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Editorial on the Research Topic

IoT, UAV, BCI empowered deep learning models in precision agriculture
Introduction

This Research Topic focuses the recent development in the Internet of Things and deep

learning algorithms, including convolutional neural networks, transformer, and diffusion

models, for precision agriculture in field and specialty crops. The 15 accepted papers

include original research and review articles focusing novel deep learning algorithms,

architectures, and applications of various instruments combined with the Internet of

Things (IoT) and others advanced devices.
Research Topic coverage

We collected two reviews and thirteen research papers on the Research Topic focused

by this Research Topic. The authors of the accepted publications presented articles that

cover mainly of the following topics: deep learning models for precision agriculture; deep

learning, BCI, and UAV-based crop monitoring; plant disease recognition and

classification; UAV and deep learning for plant species detection and classification; deep

learning and the BCI-empowered UAV applications for precision agriculture and

optimization for deep learning algorithms in Precision Agriculture. There was a total of

37 submitted papers, 15 were accepted and 22 were rejected, that means an acceptance rate

around 40%. This editorial discusses AI advancements in categorization, segmentation,

detection, monitoring, and route planning that are influencing agriculture globally.
Image classification

Leaf disease classification needs improvement for precision agriculture applications.

Han and Guo propose a new method for diagnosing leaf diseases in ligneous plants using

an enhanced vision transformer model. The suggested method uses a multi-head attention
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module to record pictures and class context. Additionally, the

multi-layer perceptron module was used. The proposed deep

model is trained using 22 types of ligneous leaf disease photos

from a public dataset. The suggested model’s training time is

reduced via transfer learning. Identification of apple leaf diseases

is critical for apple production. Propose a new attention strategy to

help apple tree growers spot leaf diseases. Cheng and Li present a

novel deep learning network based on MobileNet v3 and its

methodology. Our network outperformed EfficientNet-B0,

ResNet-34, and DenseNet-121 in recognizing apple leaf diseases

with a remarkable accuracy of 98.7% on a private dataset. This

model also outperforms existing models in accuracy, recall, and f1-

score while keeping MobileNet ’s fewer parameters and

computational efficiency. High-throughput crop monitoring using

remotely recorded pictures and deep learning has improved crop

health monitoring. Nampally et al. conduct studies on maize crops

using various water treatments in a controlled setting. They capture

crop data from tillering to heading using a multispectral camera on

a UAV. A CNN model was presented with a flexible convolutional

layer to learn and extract rich spatial and spectral characteristics. A

weighted attention-based bi-directional long short-term memory

network processes these features to deal with how they depend on

time and order. Aggregated spatial-spectral-temporal

Characteristics forecast water stress. To enable more efficient

identification of plant diseases and pests, Guan et al. designed a

novel network architecture based on EfficientNetV2. The

experiments demonstrate that training this model using a

dynamic learning rate decay strategy can improve the accuracy of

plant disease and pest identification. Transfer learning is

incorporated into the training process. After being trained using

the dynamic learning rate decay strategy, the model achieves an

accuracy of 99.80% on the Plant Village plant disease and

pest dataset.
Image segmentation

Fine ripeness identification can improve strawberry harvest

management by providing more precise crop information.

Accordingly, Tang et al. offer a technique for recognizing

strawberry ripeness in the field. The approach has three steps:

after adding self-calibrated convolutions to the Mask R-CNN

backbone network to boost model performance, the model

extracts the strawberry target from the picture. In the second

step, region segmentation divides the strawberry target into four

sub-regions and extracts color features. The final step classifies and

visualizes strawberry ripeness using color feature values. SVM

classifiers provide the best strawberry ripeness classification effect.

Classification outperforms manual feature extraction and AlexNet,

ResNet18 models. Strawberry improved planting management

decisions may be made accurately using this strategy. Precision

field segmentation using satellite data is a major difficulty in

sugarcane yield prediction and crop management. Yuan et al.

propose DSCA-PSPNet using a modified ResNet34 and pyramid

scene parsing network with new modules. The proposed sugarcane
Frontiers in Plant Science 026
field feature representation is preferable since it can respond to

spatial and channel-wise information.
Object detection

Jia et al. present an improved YOLOX_m approach for effective

green fruit recognition in complicated orchard situations. First, the

model uses the CSPDarkNet backbone network to extract three

effective feature layers at various sizes from the input picture. These

effective feature layers are fed into the feature fusion pyramid

network for enhanced feature extraction, which combines feature

information from different scales. The Atrous spatial pyramid

pooling module increases the receptive field and the network’s

ability to obtain multi-scale contextual information. For

classification and regression prediction, the head prediction

network receives the fused features. Varifocal loss also reduces the

influence of an imbalanced positive and negative sample

distribution to improve accuracy. Khan et al. explore the use of

edge computing devices to improve the accuracy of deep learning

models for agricultural applications, while taking into account

resource restrictions. Example data came from the publicly

accessible Plant Village dataset of healthy and sick leaves for 14

crop species and 6 disease categories. The MobileNetV3-small

model achieved 99.50% accuracy in leaf classification.

Quantization-based post-training optimization lowered model

parameters from 1.5 million to 0.9 million while retaining 99.50%

accuracy. The final ONNX model allows deployment on mobile

devices and other platforms. It provides a cost-effective way to

deploy accurate deep-learning models in agriculture. Vello et al.

studied the usefulness of image-based phenotyping using

fluorescent and visible light pictures to measure and classify

Camelina seeds. They created SeedML, a user-friendly online

service that uses phenomics platforms with fluorescent and visible

light cameras to detect Camelina seeds from high-salt plants. This

gateway can improve quality control, detect stress signs, and track

agricultural productivity trends with high throughput. This study

may aid climate crisis research and agri-food quality control tool

deployment. Mbouembe proposes SBCS-YOLOv5s, an effective

tomato identification method. SBCS-YOLOv5s adds SE, BiFPN,

CARAFE, and Soft-NMS modules to improve model feature

expression. Modelling channel-wise interactions and adaptive re-

calibration of feature maps enable the SE attention module to catch

essential information and enhance model feature extraction. The SE

module’s adaptive re-calibration may also increase model resilience

to environmental changes. Next, an efficient, weighted bidirectional

feature pyramid network replaced the PANet multi-scale feature

fusion network. Third, the neck network replaces the upsampling

operator with CARAFE. Better feature maps with more semantic

information result from this approach. CARAFE’s spatial detail

enhancement helps the model distinguish closely placed fruits.

Finally, the Soft-NMS method replaced the Non-Maximum-

Suppression (NMS) approach to better identify occluded and

overlapping fruits. Soft-NMS’s continuous weighting approach

makes it better at managing little and big fruits in images. Yang
frontiersin.org
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et al. used a multi-sensor fusion and CNN to identify moisture

content in agricultural goods during drying in real time. This work

designed a multi-sensor data collection platform and created a CNN

prediction model using raw load, air velocity, temperature, tray

position data and material weight data. In the model performance

comparison, the CNN prediction model had the best prediction

effect. Validation trials demonstrated that the detection system

satisfied online moisture content detection criteria for agricultural

product drying. This work allows online detection of various

agricultural product drying indicators. Popescu et al. discuss

neural network-based emerging agricultural trends for detecting

hazardous insects and pests. Using a systematic review, this

technology’s pros and cons and researchers’ methods for

improving it are discussed. This review examines pest detection

using neural networks, pest databases, current software, and unique

modified architectures. Multiple research publications from 2015 to

2022 were analyzed, with fresh patterns analyzed between 2020 and

2022. Molina-Rotger et al. study the use of random forest and

support vector machine algorithms to detect and classify olive flies

in a Raspberry Pi B+-based electronic trap. Combining the two

approaches improves classification accuracy with a limited training

data set.
Monitoring

For ecological fruit production, orchard monitoring is an

essential study and practice. Popescu et al. discuss recent

advances in orchard monitoring, focusing on neural networks,

UAVs, and practical applications. Papers on complicated issues

found by combining field keywords were chosen and examined. The

study focused on 2017–2022 studies on neural networks and UAVs

in orchard monitoring and productivity assessment. UAV

trajectories and flights in the orchard were emphasized due to

their intricacy. The structure and implementation of the newest

neural network systems utilized in such applications, databases,

software, and performance are studied. To make recommendations

for researchers and end users, the new concepts and their

implementations were surveyed in concrete applications.
Path planning

Zhang et al. offer an enhanced local route planning technique

for an artificial potential field, including an elliptic repulsion

potential field as the border potential field. The potential field
Frontiers in Plant Science 037
function solves unreachable objectives and local minima by using

an enhanced variable polynomial and a distance factor. The scope of

the repulsion potential field is changed to an ellipse, and a fruit tree

boundary potential field is added, which reduces environmental

potential field complexity, allows the robot to avoid obstacles

without crossing the fruit tree boundary, and improves its safety

when working independently.

All of the 15 accepted papers include advances and novelties in

the different topics covered by the Research Topic “IoT, UAV, BCI

empowered deep learning models in precision agriculture”. The

editors are pleased to present this collection of articles to the

precision agriculture research area and others related areas, and

they hope that it will help researchers’ advances in the future.
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An accurate green fruits
detection method based on
optimized YOLOX-m

Weikuan Jia1,2*, Ying Xu1, Yuqi Lu1, Xiang Yin3, Ningning Pan1,
Ru Jiang1 and Xinting Ge1,4*

1School of Information Science and Engineering, Shandong Normal University, Jinan, China,
2School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China, 3School of
Agricultural Engineering and Food Science, Shandong University of Technology, Zibo,
Shandong, China, 4School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
Fruit detection and recognition has an important impact on fruit and vegetable

harvesting, yield prediction and growth information monitoring in the automation

process of modern agriculture, and the actual complex environment of orchards

poses some challenges for accurate fruit detection. In order to achieve accurate

detection of green fruits in complex orchard environments, this paper proposes an

accurate object detection method for green fruits based on optimized YOLOX_m.

First, the model extracts features from the input image using the CSPDarkNet

backbone network to obtain three effective feature layers at different scales. Then,

these effective feature layers are fed into the feature fusion pyramid network for

enhanced feature extraction, which combines feature information from different

scales, and in this process, the Atrous spatial pyramid pooling (ASPP) module is used

to increase the receptive field andenhance thenetwork’s ability to obtainmulti-scale

contextual information. Finally, the fused features are fed into the head prediction

network for classification prediction and regression prediction. In addition, Varifocal

loss is used tomitigate the negative impact of unbalanced distribution of positive and

negative samples to obtain higher precision. The experimental results show that the

model in this paper has improved on both apple and persimmon datasets, with the

average precision (AP) reaching 64.3% and 74.7%, respectively. Comparedwith other

models commonly used for detection, themodel approach in this study has a higher

average precision and has improved in other performance metrics, which can

provide a reference for the detection of other fruits and vegetables.

KEYWORDS

green fruits, YOLOX_m, Atrous spatial pyramid pooling, varifocal loss, object
detection (OD)
1 Introduction

In the world, the annual consumption of fruits in all countries is huge and has been

showing an increasing trend, so the production and planting area have been expanding in

recent years, which requires a lot of human resources. In order to reduce labor costs, the

production and management of modern agriculture is gradually developing in the direction
frontiersin.org018
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of automation. In recent years, computer vision technology is

gradually being applied to modern agriculture because of its role

in vision systems for agricultural automation equipment, such as

pest and disease identification and detection (He et al., 2013;

Fuentes et al., 2017; Johnson et al., 2021), automated harvesting

of fruits and vegetables (Jia et al., 2020; Wang et al., 2022; Tang et al.,

2023), crop growth information monitoring and yield estimation

(Apolo-Apolo et al., 2020; Li et al., 2020), and so on. The precision

of the vision system detection determines the efficiency of the

automated equipment, and the complexity of the modern orchard

environment makes its ability to accurately detect the target fruit

dependent on a variety of factors, such as the angle of light, weather

conditions, and the overlap of shading between fruits, etc. In

addition, the color of most immature fruits is green, so the

research on the detection of green fruits is important for the

subsequent operation of fruits, such as yield estimation and fruit

harvesting, etc., but the similar color of immature green fruits and

leaves will cause the boundary to be more difficult to distinguish,

which will also have an impact on the precise detection of fruits.

These problems have attracted the attention of many domestic and

international scholars, who have carried out some relevant research

and achieved some results.

Traditional machine learning plays an important role in the

field of computer vision, and many results have been achieved in

machine learning detection research in agricultural fruit detection.

Linker (Linker et al., 2012) proposed a green apple recognition

model based on fruit characterization information with a correct

detection rate close to 95%. Wu (Wu et al., 2020) proposed a fruit

point cloud segmentation method combining color and 3D

geometric features, where local descriptors were used to obtain

candidate regions and global descriptors were used to obtain the

final segmentation results. Wang (Wang et al., 2021) proposed a

new kernel density clustering (KDC) to better realize the accurate

identification of green apples. Tian (Tian Y. et al., 2019) proposed a

fruit localization algorithm based on image depth information,

which fits the detection region by introducing a segmentation

algorithm to locate the center and radius of the apple circle,

respectively, through the gradient information obtained from the

depth apple image and the corresponding RGB spatial information.

Moallem (Moallem et al., 2017) used the multilayer perceptron

(MLP) and k-nearest neighbors (KNN) to classify the apples with

92.5% and 89.2% recognition rates for the extracted features,

respectively. Traditional machine learning for agricultural fruit

detection is relatively well established, but the limitations of

machine learning also limit the speed and precision of

object detection.

In recent years, with the rapid development of deep learning

and convolutional networks, they have eliminated some of the

limitations and complex operations of traditional machine

learning. Computer vision has also shifted its research focus to

deep learning and convolutional networks, and has been widely

used in many fields. At present, research on vision systems for

agricultural automation equipment has also focused on deep

learning models, and some results have been achieved. Sun (Sun

et al., 2022) proposed a balanced feature pyramid for small apple

detection, which achieved an average detection accuracy of 35.6%
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for small targets on the Pascal VOC benchmark with good

generalization performance. Wang (Wang and He, 2019)

proposed an apple object detection and recognition algorithm

based on R-FCN. The model uses ResNet-44 as the backbone

network, which improves the detection accuracy and simplifies

the network. Triki (Triki et al., 2021) proposed a Mask RCNN-

based leaf detection and pixel segmentation technique that can

segment leaves of different families, measure the length and width of

leaves, and reduce the recognition error. Mu (Mu et al., 2020)

performed detection of highly shaded unripe tomatoes based on

deep learning techniques, combined with regional convolutional

networks (R-CNN) and Resnet-101, for ripeness detection and yield

prediction of tomatoes. Jia (Jia et al., 2022b) proposed a Mask R-

CNN based segmentation model RS-Net, which achieves robust

segmentation of green apples to meet the accuracy and robustness

of vision systems in agronomic management. Kang (Kang and

Chen, 2020) obtained DASNet-v2 by improving DASNet, which

uses visual sensors to segment apple instances, so it can achieve

segmentation of fruits more robustly and efficiently.

Compared with traditional machine learning, the detection

accuracy of the above research has been greatly improved, but

due to the complex environment of real orchards, the existence of

difficult detection conditions such as leaves obscuring fruits,

overlapping fruits, and the similar color of fruits and branches,

the accuracy of the above methods for fruit detection still does not

meet the needs of modern automated agriculture, and the precision

needs to be further improved.

Therefore, in order to simulate the actual environment of the

orchard as much as possible, this paper collects images of green

apples and persimmons in various complex situations to make two

datasets and proposes an improved YOLOX-m network model to

improve the detection accuracy of the fruits. The model uses the

CSPDarknet backbone network to better extract image features. In

the multi-scale feature fusion stage, referring to the PAnet structure,

it will not only upsample the features to achieve feature fusion, but

the features are also downsampled to achieve feature fusion, and

ASPP (Atrous spatial pyramid pooling) is used to increase the

receptive field during fusion, so that each convolution output

contains a larger range of information, thereby improving network

performance and reducing the rate of missed and wrong detections.

In addition, Varifocal loss is used instead of BCE (binary cross-

entropy) loss to mitigate the negative effects of sample imbalance and

better optimize the model parameters to improve the detection

accuracy of green fruits in complex orchard environments.
2 Datasets production and
experimental setup

2.1 Datasets collection

The datasets used in this paper are the immature green

persimmon and green apple datasets. The persimmon images

constituting the dataset were collected from the back mountains

of Shandong Normal University (Changqing Lake Campus) and the

southern mountainous region of Jinan, using a Canon EOS 80D
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SLR camera with a CMOS image sensor, and the apple images were

collected from the apple production base in Longwang Mountain,

Fushan District, Yantai City, Shandong Province, using a Sony

Alpha 7 II camera. The image resolution was 6000 pixels × 4000

pixels, saved in.jpg format, and 24-bit color image. Figure 1 list

several collected images of apples and persimmons in different

complex situations.
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The actual environment of the orchard is more complex, and in

order to simulate the real situation as much as possible, the dataset

collects images of different complex situations. It is not easy to

discriminate overlapping fruit boundaries by shading, water drops

on fruits after rain can be a factor affecting detection, and different

lighting can also affect the final detection effect. Considering, a total

of 553 images of green persimmons and 1361 images of green
   

Daylighting        LED lighting at night     Distance-shot 

   

Leaves cover          Fruit overlap           After the rain 

 Green apple images

Green persimmon images

 

    

Frontlighting          Backlighting       Overlapping occlusion 

   

After the rain            Night               Daylighting 

A

B

FIGURE 1

Images of green fruit in different situations. (A) Green apple images (B) Green persimmon images.
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apples were finally collected under different situations, including

down-lighting, back-lighting, daytime and nighttime LED lighting,

overlapping fruits, and leaf shading. Among them, the persimmon

and apple datasets contained 2524 and 7137 fruits, respectively, and

Table 1 shows the number and proportion of fruits of different scale

sizes, where the ground truth box area less than 322 belongs to the

small-scale target fruits, the ground truth box area between 322 and 

962 belongs to the medium-scale target fruits, and the ground truth

box area greater than 962 belongs to the large-scale target fruits.
2.2 Datasets production

The collected apple and persimmon images were divided into

training set and test set in the ratio of 7:3. After the division, the apple

training set included953 images and the test set included408 images; the

persimmon training set included 388 images and the test set included

165 images. And in order to reduce the computational effort and the

subsequent experiment time, the image resolutionwas uniformly scaled

from 6000×4000 pixels to 600×400 pixels. The labeling software used is

LabelMe, and the edge contours of the fruit are labeled with labeling

points, so that the fruit can be separated from the background. The

labeling information of the image and the coordinates of the labeling

points are saved in the corresponding.json file, and the completed json

file is finally converted into a coco format dataset (Lin et al., 2014).
3 Optimized YOLOX-m network

The actual orchard environment is complex and variable, and

the color of green fruits is similar to the leaves, which further makes

the boundary between the background and the fruits blurred and

unclear, not easy to decide, causing the detection of fruits to be more

difficult and affecting the final accuracy of detection. In order to

improve the object detection accuracy of green fruits and improve

the vision system of agricultural automation equipment, this paper

proposes an improved YOLOX_m (Ge et al., 2021) model for

efficient detection of green fruits, and the specific detection

framework is shown in Figure 2.

The model in this paper uses CSPDarknet (Bochkovskiy et al.,

2020) as the backbone network for feature extraction of apple and
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persimmon images, and the input images will get three effective

feature layers C1, C2, and C3 through the backbone network. The

bottom feature layer has less semantic information, but accurate

target location information, and the higher-level features have rich

semantic information, but locate the target location more roughly, so

the feature map needs to go through a feature fusion pyramid (Lin

et al., 2017a) for feature fusion before classification and regression

prediction, combining feature information of different scales. As

shown in Figure 2, in the feature fusion stage, the model in this

paper introduces the Atrous Spatial Pooling Pyramid (ASPP) module

before the upsampling operation, which sets different dilation rates to

construct convolution kernels with different receptive fields, and

increases the receptive fields by parallelizing multiple Atrous

convolution layers with different dilation rates to obtain multi-scale

information of the target, so as to more effectively enhance feature

extraction and improve the detection accuracy of the target green

fruits. The three fused feature layers are input to the prediction head,

and the prediction head of the model is decoupled to perform

classification and regression to determine whether the target is a

green fruit or a background, and to accurately locate the target fruit.

In addition, although the original model reduces the number of

negative samples, the target fruit still only accounts for a small portion

of the entire input image, and the number of positive samples is still

far less than the number of negative samples. To further alleviate the

negative impact of sample imbalance, the loss function was replaced

from BCE (binary cross-entropy) loss to Varifocal loss (Zhang et al.,

2021) to make the model focus more on difficult to classify samples

and to focus training on positive samples, which can better optimize

the model parameters, improve detection accuracy and reduce the

false detection rate, thus improving the fruit picking and yield

prediction and other aspects of accuracy.
3.1 Backbone network CSPDarkNet

Taking into account the difficult detection problems such as the

similarity of green fruits to the background and the overlapping of

fruit occlusion, in order to extract the features of the images more

effectively, the model in this paper uses CSPDarkNet as the

backbone network, and the input immature green persimmon

and green apple images use the backbone network CSPDarkNet
TABLE 1 The divided results of datasets by area size of fruit.

Area Small Medium Large Fruit Total Image Total

Apple Dateset

Train 1701/34% 2007/41% 1235/25% 4943 953

Val 851/39% 816/37% 527/24% 2194 408

Total 2552/36% 2823/39% 1762/25% 7137 1361

Persimmon Dataset

Train 272/15% 1111/59% 482/26% 1865 388

Val 47/7% 415/63% 197/30% 659 165

Total 319/13% 1256/60% 679/27% 2524 553
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for feature extraction to obtain three effective feature layers of

different scales, using them for subsequent training and prediction.

The residual module in CSPDarkNet is based on the network

structure of residual network and CSPNet (Wang et al., 2020).

The jump link in the residual network can effectively mitigate the

gradient disappearance problem as the network depth increases,

while the use of CSP structure can enhance the learning ability of

the convolutional neural network and speed up the inference. First,

the input image is passed through the Fcous network to reduce the

number of parameters and improve the running speed of the model,

then, after a series of operations of convolutional regularization and

activation function for a channel expansion, and finally, three

effective feature layers of different scales are output in turn

through four residual modules, and the structure of CSPLayer in

the residual module is shown in Figure 3.

The green persimmon and apple images are continuously

feature extracted by four residual modules in the backbone

network CSPDarkNet. During this process, the width and height

of the feature maps are continuously halved and the number of
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channels is expanded to twice. When passing through the last three

residual modules, three effective feature layers at different scales are

output respectively. Although the semantic information is gradually

enriched during the feature extraction process, the image resolution

decreases and the boundary information is lost, so the information

contained in the three feature layers will be different. Therefore,

before inputting the feature map into the head for prediction, it is

necessary to fuse the features of different scales through the feature

pyramid, so as to better predict the fruit for classification regression.
3.2 Feature pyramid network

Originally, Atrous convolution andASPP (Atrous Spatial Pyramid

Pooling) (Sullivan and Lu, 2007) were proposed in the semantic

segmentation model DeepLabv2 (Chen et al., 2017). Compared with

ordinary convolution, atrous convolution has an additional parameter

dilation rate, which increases the receptive field of the convolution

kernel without causing information loss. Atrous convolution is an

important part of the ASPP module, which sets different dilation rates

to construct convolution kernels with different receptive fields, and

obtains multi-scale information of the target by parallelizing multiple

atrous convolution layers with different dilation rates. In this way, the

receptive field can be increased while ensuring that there is not much

loss of resolution. If the loss of resolution is too large, the information

of the fruit image boundary will be lost, which is not beneficial to the

detection of green fruits. The module specifically consists of a 1×1

convolution, three atrous convolution layers with different dilation

rates, and an atrous pooling layer in parallel, and the obtained results

are concatenated in the channel dimension, and then, the output is

obtained after another 1×1 convolution layer for channel number

reduction. The specific structure as shown in Figure 4.

When feature extraction is performed on apple and persimmon

images, the semantic information and location detail information of
FIGURE 2

Improve YOLOX-m network detection framework.
FIGURE 3

CSPLayer structure schematic diagram.
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the feature layers change continuously because of the need for

constant convolution and down sampling. The initial low-level

feature layer C1 is rich in spatial information and locates the

location more accurately, but contains less semantic information,

so the green fruits with similar color to the branches and leaves are

more difficult to be determined and easy to detect incorrectly. The

feature layer from C1 to C3, the semantic information becomes

richer, but the resolution gradually decreases and the detail

information such as boundary is lost, so the localization of the

target fruit is rougher, and the higher feature layer C3 can

determine the target species more accurately, but it is not

conducive to the localization of the target fruit. Therefore, to

improve the accuracy of final classification and localization, a

feature pyramid network is used to enhance feature extraction,

and the feature layers of different scales of green fruit images are

complemented with advantages to make the information of feature

layers more comprehensive. The feature fusion pyramid network

used in this model refers to the structure of PANet (Liu et al., 2018).

In the process of feature fusion, it will not only start from the high

level features, perform up-sampling operation and fuse with the low

level features, but also perform down-sampling operation on the

three feature layers after up-sampling and fusion from the low level,

and perform feature fusion again to get the final input head for

prediction of feature layers.

Before the upsampling operation, the feature layer needs to be

down-dimensioned by a 1×1 convolution to reduce the number of

channels. In order to increase the receptive field, capture multi-scale

information, and better extract features at different scales, the model

in this paper adds a 1×1 convolution layer, atrous convolution

layers with different dilation rates, an atrous pooling layer, etc. in

parallel before the dimensionality reduction operation, and

concatenates the results together. Therefore, Atrous Spatial

Pyramid Pooling (ASPP) is introduced to replace the 1×1

convolutional layer before upsampling to obtain more accurate

localization and classification information of the target green fruits.
3.3 Loss function

The construction of the loss function has an important

significance to the training of the model, and the main role is that
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during training, the model will use the loss values obtained during

forward propagation to update the training parameter weights

through backward propagation. After continuous iterations, the

loss difference between the prediction box and the ground truth box

is gradually reduced, and the loss function will gradually reach the

minimum value, so that the prediction box gradually overlaps close

to the ground truth box, thus achieving accurate localization of the

target green fruits. In this paper, the loss of the model during

training mainly contains classification loss, regression loss and

confidence loss. The IOU (intersection of union) loss is used for

the regression loss, and the Varifocal loss is used for the

classification and confidence loss, and the formula for the overall

loss function of the model is shown in equation (1).

Loss  =
1

Npos
(Lcls + lLreg + Lobj) (1)

Where Npos refers to the number of feature points that are

assigned as positive sample points, Lcls refers to the classification

loss, Lreg refers to the regression loss, and Lobj refers to the

confidence loss, l is the balance coefficient of the regression loss,

set to 5.0.

The regression loss refers to the IOU loss between the ground

truth box and the predicted box, and is calculated as shown in

equation (2).

IOU loss  =   − ln
Intersection(Bgt, Bpred)

Union(Bgt, Bpred)
(2)

where Intersection(Bgt ,Bpred) refers to the area where the real

frame intersects the prediction frame, and Union(Bgt,Bpred) refers to

the area where the real frame and the prediction frame are

combined and summed.

In the actual training phase of the model, the target green fruit

only accounts for a small portion of the whole input image, so the

number of negative samples is much larger than the number of

positive samples, and there will be an unbalanced distribution of

positive and negative samples, which will lead to a decrease in

training accuracy and the optimization direction of the model is not

as desired. In addition, the commonly used loss function BCE loss

does not distinguish between samples that are difficult to classify

and those that are easy to classify. When the negative samples that

are easy to classify are much more than the positive samples, the
FIGURE 4

Atrous spatial pyramid pooling structure.
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model will focus more on these negative samples and drown out the

impact of the positive samples that help training, causing a loss in

the final detection precision. In order to alleviate the above negative

effects and improve the detection accuracy of fruits, the

classification and confidence loss function of the model in this

paper adopts Varifocal loss, which is based on BCE loss, and the

specific formula of the loss function is shown in equation (3).

VFL(p, q) =
−q(qlog(p) + (1 − q)log(1 − p)     q > 0

−apg log(1 − p)                                     q = 0

(
(3)

In the formula, a, g are hyperparameters, a is the balance

parameter to adjust the weight of positive and negative samples, and

the tempering factor pg can reduce the influence of easy to classify

samples on the loss and make the model focus more on difficult to

classify samples, such as targets in the image that are obscured by leaves

or overlapped with other fruits. Varifocal loss is treated differently for

positive and negative samples compared to focal loss. For negative

samples, q=0, in this case, pg can be used to reduce the loss

contribution of negative samples, and for positive samples, which is

the case of q>0, the value of q is the IOU between the prediction box

and the ground truth box, and q is used to weight the positive samples,

so that when the positive sample has a higher IOU, its contribution to

the loss is also large, and it allows the model to focus its training on

high-quality positive samples, which can result in better detection

accuracy and better detection of the target green fruits.
4 Experiments

4.1 Experimental design and
operation platform

The server environment used for model training in this paper is

Ubuntu 18.04 OS, NVIDIA A30 graphics card and 11.1 CUDA
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environment. The programming language used in the model is

python, and the Pytorch 1.8 (Paszke et al., 2019) deep learning

library is also used in this process, and the implementation is built

with the help of MMdetection (Chen et al., 2019) related modules.

Before formal training, the pre-training weights obtained using

the ImageNet dataset are imported as initialization parameters to

accelerate the detection speed and improve the robustness of the

model. In the formal training phase, the model parameters are

optimized and updated using the SGD optimizer. The learning rate,

momentum factor, and weight decay factor are set to 0.00125, 0.9,

and 0.0005, respectively, and 300 epochs are trained iteratively, and

the parameter results are saved once every 10 iterations. The

variation of the loss during training is shown in Figures 5A, B,

where the x-axis represents the number of iterations and the y-axis

indicates the value of the loss function, and different colors are used

to distinguish the various types of losses.
4.2 Assessment metrics

In order to comprehensively evaluate the performance of the

model, this paper uses a variety of assessment metrics to evaluate

the effect, among which the main consideration is the average

precision (AP) of detection. The precision (P) is the probability of

the samples being correctly predicted among all samples, calculated

as shown in equation (4), and the recall (R) is the probability of the

positive samples being correctly predicted among the prediction

results, calculated as shown in equation (5).

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)
A B

Loss curve of green apples Loss curve of green persimmon

FIGURE 5

Loss function change curve. (A) Loss curve of green apples. (B) Loss curve of green persimmon.
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Where TP, FP, and FN are the number of true positive samples,

the number of false positive samples, and the number of false

negative samples, respectively. Further it is possible to calculate

the AP (Average precision) under a specific IOU threshold, and the

calculation formula is shown in equation (6).

APIOU=i = 1=101or∈R max p(

r
∼
: r
∼
≥ r

r
∼
) (6)

where i is the value of the settable IOU threshold, whose value

can be set in a range greater than or equal to 0.5 less than 1, i ∈I

[0.5,0.55,0.6, ……, 0.95], with a total of 10 values, p(r) denotes the

accuracy rate associated with the recall, R ∈ [0, 0.01, 0.02, ……, 1]

with 101 values, and r denotes the value taken as the recall rate.

Continuing to average the 10, the final AP metric used can be

obtained, and the formula is shown in equation (7).

AP =
1
10oi∈I

APIOU=i (7)

In order to evaluate the performance of the model approach in

more detail, a number of other evaluation metrics are used. AR refers to

the average recall; APIOU=0:5 and APIOU=0:75 refer to the AP value when

the IOU threshold is over 0.5 and 0.75, respectively; APS, APM  and APL

refer to the average detection accuracy for small, medium and large scale

target fruits, respectively, where the ground truth box area less than 322

belongs to the small-scale target fruits, the ground truth box area

between 322 and 962 belongs to the medium-scale target fruits, and the

ground truth box area greater than 962 belongs to the large-scale target

fruits; In addition, Time refers to the speed of validation set detection to
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evaluate an image in ms; Params refers to the total parameters to

measure the size of the model; and FLOPs refers to floating point

operations to measure the computational complexity of the model.
4.3 Results and analysis

4.3.1 Green fruit detection effect
In this paper, we use the improved yolox_m network model to

analyze the target fruit detection effect on the collected immature

green persimmon and green apple datasets. The pictures contained

in the datasets restore the complex environmental conditions of real

orchards as much as possible, considering different shooting

distances, different situations such as overlapping fruit shading,

after rain, at night and smooth backlighting, etc. The detection effect

under several situations is selected for analysis, and the specific

detection effect is shown in Figures 6A, B.

As can be seen from Figure 6, we can see that the sparse and

independent fruits will have a clearer and more complete outline, so

the detection accuracy of such target fruits is better, and the

detection effect of the images collected at night can also reach a

better level. In terms of distance, the detection effect of close-range

fruit is better than that of distant target fruit. For those densely-

distanced fruit or occluded and overlapping target fruit, the

detection is relatively difficult, and the accuracy is slightly

reduced, but there are almost no omissions and errors.

In Figures 7A, B, it can be seen that True Positive is 89% and

96% for apples and persimmons, respectively, which is an
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FIGURE 6

Green fruits detection effect images. (A) Performance of green apple detection (B) Performance of green persimmon detection.
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improvement of 2%, and False Negative is a decrease of 2%. Overall,

although the complex reality of orchards brings some negative

effects on detection, the model in this paper achieves a good level of

detection accuracy for target fruits, and some target fruits that were

not labeled at the time of dataset labeling can be detected, with a

decrease in the rate of omission and error.

In order to fully verify the performance of the model in this

paper, the model was tested on two datasets, apple and persimmon,

and the model detection effect basically reached the highest

accuracy after the last epoch. In order to validate the

improvement effect, the original network without improvement is

recorded as yolox_origin, the network with only the improved

feature pyramid is recorded as yolox_A, the network with only

the improved loss function is recorded as yolox_V, and the network

with all the improvements is recorded as yolox_after, and the results

of various evaluation indicators on the validation set are shown in

Table 2, and the change curve of mAP is shown in Figure 8.

From Table 2 and Figure 8, it can be found that the final

detection average precision of the method in this paper for green

apple and green persimmon images is 64.8% and 74.7%, and the
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average recall rate is 72.6% and 81.5%, respectively. It can be seen

from the table that using the atrous spatial convolution pooling

pyramid (ASPP) and the loss function using the Varifocal loss can

improve the detection accuracy of the model and improve the

model performance on both datasets. In addition, APIOU=0:5 and A

PIOU=0:75 have also been greatly improved, and in both data sets, the

average accuracy of large, medium and small targets has been

improved to a certain extent. The detection accuracy on large

targets can also reach about 90%.

4.3.2 Comparison of model detection effects
In order to objectively analyze and compare the performance of

the model in this paper, we compare the model with several

common and representative object detection model algorithms.

The selected models are FCOS (Tian et al., 2019), Faster-RCNN

(Ren et al., 2015), YOLOv3 (Redmon and Farhadi, 2018), SSD (Liu

et al., 2016), FSAF (Zhu et al., 2019) and ATSS (Zhang et al., 2020),

where Faster-RCNN is a two-stage detection model based on

anchor frames, YOLOv3, SSD and ATSS are single-stage

detection models based on anchor frames, and FCOS as well as
A

B
Confusion matrix for green apple

Confusion matrix for green persimmon

FIGURE 7

Confusion matrix. (A) Confusion matrix for green apple. (B) Confusion matrix for green persimmon.
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FSAF belong to the detection model with anchor-free. The above

models will be trained and validated for evaluation on two datasets

of apples and persimmons, respectively, and the specific evaluation

index results obtained are shown in Table 3. In addition, a picture

with high detection difficulty is randomly selected in each of the two

datasets and detected with the above models, respectively, and the

detection effect images are shown in Figures 9A, B.

From the images of different model detection effects on the two

datasets, it can be seen that some target fruits in the images that are

not labeled because they are not easily labeled or forgotten at the

time of labeling can basically be detected at the time of model

detection, among which the detection effect of the model method in

this paper is better. For the fruits that are severely obscured by

leaves in the figure, several other models did not detect them, but

this model can still detect them, and it can be seen that the detection

accuracy of this model is higher compared with several other

detection models in the case of overlapping obscured fruits with

LED lighting at night.
Frontiers in Plant Science 1017
From the comparison results of various evaluation indexes of

different models shown in Table 3, it can be seen that the average

detection accuracy of this model is better than several other

detection models on two datasets, the average accuracy is 2.6-7.2

percentage points higher than othermodels on the apple dataset, and

the average accuracy is 1.9-5 percentage points higher than other

models on the persimmon dataset. For APIOU=0:5 and AR, the results

of this model are also basically better than other models. In addition,

the model results are most similar to the model in this paper for

ATSS, and the average precision of the model in this paper is also

2.6% and 1.9% higher than ATSS on both datasets, and the average

recall is 3.3% and 1% higher, respectively. When evaluating on the

validation set, it is also necessary to consider the detection time for

recognizing an image. Through Table 3, the average precision and

average recall of FSAF and ATSS are closest to the results of the

models in this paper, but the detection time used by the models in

this paper to recognize an image is only about 45% of theirs. Overall,

the model in this paper has a better real-time performance with

higher average accuracy and average recall than the other models.

As can be seen from Tables 3, 4, the model in this paper

introduces some parameters, but the number of parameters is still

lower than the anchor-based models Faster-RCNN and YOLOv3.

The FLOPs and detection times of these two models are also higher

than those of the model in this paper, and the average precision and

average recall of the detection of the model in this paper on the

green apple and green persimmon datasets are also significantly

higher than those of these two models. In addition, compared with

other models, the FLOPs of this model are only about 50% of those

of the other models with some improvement in the average

precision and recall rate.
5 Conclusion

In order to improve the accuracy of fruit detection in modern

orchards, this paper proposes an efficient target detection and
FIGURE 8

mAP curve for each epoch.
TABLE 2 Image detection and evaluation results.

Network

Metric

AP APIOU=0.5 APIOU=0.75 APS APM APL AR

Apple Dataset %

yolox_origin 62.9 87.3 68.4 44.3 69.4 91.9 68.6

yolox_A 63.7 88 70 46.6 69.8 90.9 69.7

yolox_V 63.8 87.4 69.8 46.4 70.2 91.4 69.5

yolox_after 64.8 88.4 71.2 47.7 70.7 92.1 72.6

Persimmon Dataset %

yolox_origin 72.7 91.3 82.1 36.6 73.9 86.7 78.5

yolox_A 74 91.6 84.6 39.2 74.8 88.2 79.6

yolox_V 73.6 91.5 83.3 36.6 74.5 88.3 80.5

yolox_after 74.7 91.9 84 39 75.6 89.4 81.5
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FIGURE 9

Different model detection effect. (A) Green apple detection effect. (B) Green persimmon detection effect.
TABLE 3 Comparison results of detection of different models.

Network
Metric

AP/% APIOU=0.5/% AR/% Time/ms

Apple Dataset

FCOS 57.6 86.6 65.1 50.3

Faster-RCNN 59.2 85.9 65.1 54.5

YOLOv3 59.1 84.3 65.2 19.4

SSD 59.6 86.6 66.2 22.3

FSAF 61.7 87.6 68.5 54.2

ATSS 62.2 88.3 69.3 54.6

Ours 64.8 88.4 72.6 25.6

Persimmon Dataset

FCOS 69.7 92.3 76.1 50.1

Faster-RCNN 70.7 91.3 76.1 54.3

YOLOv3 70.5 87.9 76.2 18.8

SSD 71.2 91.6 76.4 22.2

FSAF 72.1 92.1 78.1 54

ATSS 72.8 91.6 79.2 54.7

Ours 74.7 92 80.2 26.7
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recognition method with improved yolox-m. The model uses two

datasets, unripe green persimmon and green apple, for training

detection. Considering the complex situation of real orchards, the

images collected in the dataset include leaf occlusion, fruit overlap

and after rain. In this paper, we use Atrous Spatial Pyramid Pooling

(ASPP) in the feature pyramid network to increase the receptive

field and combine the feature information at different scales to

improve the detection accuracy of the model, in addition, in order

to mitigate the negative impact of sample imbalance and make the

model focus more on positive samples to optimize the updated

model parameters. For the loss function, the original binary cross-

entropy (BCE) loss is replaced by varifocal loss to better optimize

the model, improve the model performance and increase

the precision.

The experimental results prove that the average precision,

average recall and real-time performance of the model in this

paper are better than those of several other models, and the

computational complexity is also lower, which can achieve the

detection and recognition of fruits accurately and in real time. It

meets the needs of agricultural automation equipment. The model

achieves a good level of detection on both datasets, however, it also

has certain limitations, as follows:

(1) The number of images contained in the dataset used is

relatively small due to realistic experimental conditions, and

therefore we will consider continuing to expand the dataset.

(2) In order to improve the accuracy of the model, some

parameters are introduced in this paper, and we will try to reduce

the parameters of the model and reduce the size of the model in the

future, while continuing to improve the accuracy.
Frontiers in Plant Science 1219
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efficient identification of
plant diseases and pests
based on deep learning
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Peng Wang and Zhenfang Zhu

School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan, China
Plant diseases and pests have always been major contributors to losses that

occur in agriculture. Currently, the use of deep learning-based convolutional

neural network models allows for the accurate identification of different types of

plant diseases and pests. To enable more efficient identification of plant diseases

and pests, we design a novel network architecture called Dise-Efficient based on

the EfficientNetV2 model. Our experiments demonstrate that training this model

using a dynamic learning rate decay strategy can improve the accuracy of plant

disease and pest identification. Furthermore, to improve the model’s

generalization ability, transfer learning is incorporated into the training process.

Experimental results indicate that the Dise-Efficient model boasts a compact size

of 13.3 MB. After being trained using the dynamic learning rate decay strategy, the

model achieves an accuracy of 99.80% on the Plant Village plant disease and pest

dataset. Moreover, through transfer learning on the IP102 dataset, which

represents real-world environmental conditions, the Dise-Efficient model

achieves a recognition accuracy of 64.40% for plant disease and pest

identification. In light of these results, the proposed Dise-Efficient model holds

great potential as a valuable reference for the deployment of automatic plant

disease and pest identification applications on mobile and embedded devices in

the future.

KEYWORDS

plant diseases and pests, deep learning, lightweight model, dynamic decay strategy,
transfer learning
1 Introduction

Plant diseases and pests can severely disrupt the normal growth and development of

crops, leading to reduced crop yields and negatively impacting farmers’ income. Moreover,

they can have severe implications for the supply of grains and agricultural products in the

market, potentially resulting in a significant food crisis. Prioritizing the prevention and

control of plant diseases and pests is essential in agricultural production, as effective
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management of these issues holds significant importance for

ensuring food security, improving farmers’ income, and

promoting sustainable agricultural development (Elnahal et al.,

2022; Sehrawat et al., 2022).

Plant diseases and pests arise from a combination of

environmental factors and pathogen invasion. Pathogens, which

include fungi, bacteria, and viruses, are the fundamental cause of

plant diseases. They can enter plant organisms through different

transmission pathways, leading to the development of plant diseases

and pests (Barragán-Fonseca et al., 2022). Environmental changes

are also a critical factor in the onset and spread of plant diseases and

pests (Canassa et al., 2020). Most plant diseases and pests exhibit

distinct characteristics depending on the disease type, and

accurately identifying the disease type based on these

characteristics is crucial in effectively preventing and controlling

plant diseases and pests.

In the past, people relied on visual observation of plant leaves

and fruits to determine the presence of plant diseases and pests.

They identified the type of plant disease based on the distinctive

features exhibited by affected plants. However, this manual

identification method heavily relied on individual experience,

resulting in high labor costs and low efficiency. Subsequently,

with the advancement of computer technology, machine learning

techniques were introduced to aid in the identification of plant

diseases and pests. At first, machine learning utilized computer

vision to analyze the morphological changes in diseased leaves or

fruits and extract the pathological features of plant diseases. The

computer then made predictions about the disease type based on

the obtained features. However, machine learning-based methods

for automated plant disease and pest identification faced limitations

in terms of accuracy and generalizability. The use of rule-based

image processing techniques to extract disease features led to

sensitivity to image quality, as image noise could greatly affect the

final results (Behmann et al., 2015; Wani et al., 2022).

In recent years, deep learning has made significant

breakthroughs and has taken the forefront as become a research

direction in computer vision, particularly in the field of agriculture.

In this context, the use of deep learning for plant disease and pest

type identification has emerged as an important application and

research area (Liu and Wang, 2021). Currently, deep learning-based

models for plant disease and pest identification are exhibiting a

trend toward increased accuracy, smaller model sizes, faster training

speeds, and stronger transferability. In response to this trend, this

paper proposes a lightweight model for the efficient identification of

plant diseases and pests based on deep learning, called the Dise-

Efficient model.

The main contributions of this study are as follows:
Fron
1. Proposing the Dise-Efficient model, a novel deep learning-

based model for efficient and accurate identification of

plant diseases and pests.

2. Demonstrating how the number of convolutional layers

and the size of the convolution kernel affect the accuracy of

the Dise-Efficient model in identifying plant diseases and

pests.
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3. Training the Dise-Efficient model using the dynamic

learning rate decay strategy and experimentally

demonstrating that this strategy can significantly improve

the accuracy of the model.

4. Excrementally validating the Dise-Efficient model has a

good transfer learning ability.
2 Related work

The advancement of deep learning technology has led to rapid

progress in the field of plant pest detection. The research on the

automatic identification of plant pests and diseases has witnessed an

evolution of convolutional neural network (CNN) models from

small to large, resulting in continual improvement in accuracy rates.

More recently, however, there has been a shift toward developing

more lightweight models that maintain high accuracy rates while

having smaller model sizes.
2.1 Convolutional neural network models

Following the proposal of the AlexNet model by Krizhevsky

et al. (Krizhevsky et al., 2017), there has been rapid development of

CNNs in the field of computer image recognition. Subsequently,

CNNmodels began to be applied to the agricultural field. According

to the experimental results presented by Mohanty et al. (Mohanty

et al., 2016), the AlexNet model can achieve an accuracy rate of

99.28% in identifying plant diseases and pests on the Plant Village

public dataset. This indicates the effectiveness of CNN models in

identifying plant diseases and pests. He et al. (He et al., 2016)

proposed a ResNet model, which involved adding an increased

number of convolutional layers to a CNN model, as an

improvement to the accuracy of image recognition. Following

this, researchers have used the concept of the ResNet model to

design CNN models with deep convolutional layers across various

image recognition applications. The aim is to improve the accuracy

of CNN models in identifying different image types. Fuentes et al.

(Fuentes et al., 2019) used ResNet50 as the feature extractor in the

SSD target detection framework to identify potato diseases,

resulting in an accuracy rate of 85.98%. Similarly, Kumar et al.

(Kumar et al., 2020) implemented the ResNet34 model to identify

14 different crop diseases on the Plant Village dataset, with a high

accuracy rate of 99.40%.

As CNN models achieved high accuracy rates, researchers

started exploring the issue of making the model lightweight. The

emergence of lightweight CNN models such as MobileNet and

EfficientNet has led the research on plant disease image recognition

towards the development of lightweight CNN models (Howard

et al., 2019; Tan and Le, 2019). Lightweight CNNmodels usually use

depthwise (DW) separable convolution (DW) to replace ordinary

convolution, reducing model and parameter size. However, this

approach may result in a decline in recognition accuracy. To deal

with this problem, a common approach is to add a squeeze and
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excitation (SE) block (Hu et al., 2018) to lightweight models to

improve their accuracy in identifying image types. Many

lightweight CNN model structures, such as the EfficientNetV2

model (Tan and Le, 2021), have been proposed based on this

concept. SE blocks are often added to ensure the accuracy of the

model. Kamal et al. (Kamal et al., 2019) used the original MobileNet

model to train their proposed model on the Plant Village dataset,

achieving an accuracy rate of 98.65%. However, when compared to

traditional CNN models such as AlaxNet and VGG, there was a

decrease in the accuracy rate by approximately 1%. Chen et al.

(Chen et al., 2021) embedded the SE block into MobileNet and

trained it on the Plant Village dataset, achieving an accuracy rate of

99.78%, which surpassed those obtained by many traditional CNN

models trained on this dataset for plant disease type identification.
2.2 Learning strategies

Initially, researchers used a fixed learning rate to train the CNN

model, which caused the accuracy of the model to be heavily

dependent on the learning rate parameter. Later, many

researchers improved the training speed and identification

accuracy of the model by proposing strategies for adjusting the

learning rate parameter. These strategies can be categorized into

two main groups: adaptive learning rate and learning rate decay.

Among them, the Adam optimizer, which utilizes an adaptive

learning rate strategy, is widely used in deep learning and is

known for its effectiveness. Loshchilov et al. (Loshchilov and

Hutter, 2017) proposed a cosine processing strategy to

dynamically adjust the learning rate. He et al. (He et al., 2019)

applied the cosine learning rate decay strategy to train the ResNet50

model, resulting in an improvement of approximately 2% in

model accuracy.

Inspired by the successful application of dynamic learning rate,

this paper applies the cosine-type progressive learning rate decay

strategy to the Dise-Efficient model to improve the model’s accuracy

in identifying plant diseases and pests. Formula (1) outlines the

dynamic learning rate decay strategy proposed in this paper:

lr = (1 + cos
px
n

) · (1 − lrf ) + lrf (1)

where lr represents the learning rate of the next round; lrf

represents the learning rate of the last round; x represents the

learning rate of the current round; n represents the maximum

number of iterations.
2.3 Transfer learning

Recent CNN models have shown high accuracy rates of over

95% on the Plant Village plant disease dataset (Ahmad et al., 2022).

However, the performance of these CNN models on the IP102

large-scale plant pest dataset is lower than expected, with traditional

CNN models achieving an accuracy rate of around 50% (Ren et al.,

2019; Wu et al., 2019; Nurfauzi et al., 2023). Despite the

improvements made to the CNN models, their accuracy on this
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dataset is only slightly over 60% (Nanni et al., 2020). This can be

explained by the fact that the IP102 dataset is a plant pest dataset

that reflects the actual environment, with images possessing more

complex backgrounds and fewer samples for each pest category.

Therefore, conducting deep learning model training utilizing

transfer learning is an effective solution to address the issue of

limited data samples for certain pest categories in the IP102 dataset.

Transfer learning involves transferring the knowledge or

patterns learned from existing labeled training data to improve

learning in a new target field (Weiss et al., 2016). Incorporating

transfer learning in the deep learning model training process not

only accelerates the model training process but also facilitates the

acquisition of a more accurate deep learning model through the

fine-tuning of the pre-trained model (Zhu et al., 2023). In current

research on plant disease and pest identification, many researchers

have applied transfer learning to CNN models to improve both the

training speed of the model and the accuracy of identification

(Thenmozhi and Reddy, 2019; Liu et al., 2022).
3 Experiments

3.1 Dataset and environment

Plant Village is a public plant disease dataset (Hughes and

Salathé, 2015), containing 54,303 images of healthy or diseased

leaves categorized into 38 different groups from 9 crop species.

Researchers often utilize this dataset in studies related to the

identification of plant diseases and pests, as well as for developing

models aimed at identifying various types of plant pests.

IP102 is a large-scale dataset developed for identifying pests

(Wu et al., 2019), comprising more than 75,000 images categorized

into 102 types, exhibiting a natural long-tail distribution. IP102 has

a hierarchical taxonomy that groups pests that primarily affect one

particular agricultural product into the same upper category. This

dataset is often used in research aimed at identifying plant pests and

is implemented in this study as a training dataset for the plant pest

identification model.

The Mini-ImageNet dataset (Satorras and Estrach, 2018)

comprises 100 common categories selected from the ImageNet

dataset, with each category containing 600 images and a total of

60,000 images. Given that this dataset is often used in the pre-

training of small sample learning models, it is employed as the

dataset for the pre-trained model in the present study.

Before it is applied for model training, the dataset must be split

into different sets. In this study, we divided the Plant Village and

IP102 datasets into a training set, a validation set, and a test set at a

ratio of 3:1:1. Meanwhile, the Mini-ImageNet dataset was used for

the pre-training model, so it was divided into a training set and a

validation set at a ratio of 4:1. Table 1 shows the number of images

present in the different sets of each divided dataset.

During the training phase of this experimental model, we

employed the Tencent Cloud GN7-8-core 32G cloud server that

supports GPU computing tasks. The GPU model used was Nvidia

Tesla T4, featuring 16 GB video memory and 32 GB internal
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memory, and the operating system was Ubuntu Server 20.04 LTS

64-bit with a Cuda version of 11.2.
3.2 Model

Drawing upon our previous research experience, we thoroughly

studied the structures and principles of the classic ResNet model

and the lightweight EfficientNetV2 model. After careful

consideration, we decided to use the residual block of ResNet to

replace a portion of the MBConv block and Fused-MBConv block

in the EfficientNetV2 model. Finally, we managed to design a

lightweight CNN network model that can efficiently identify

various types of plant diseases and pests: the Dise-Efficient model.

The framework of this model is shown in Figure 1.

The Residual block is regarded as the basic residual block of

ResNet18. It features three convolution kernels with a size of

3×3, along with a shortcut connection. The residual block can

add the original feature map to the feature map resulting from the

convolution process to obtain a new feature map. Because the image

feature distribution of diseased crop leaves is relatively simple, issues

of gradient explosion and gradient disappearance may arise due to

the continuous deepening of the convolutional layer. These problems
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can be addressed by incorporating a Residual layer, which allows for

the extraction of deep features from diseased crop leaf images. A

detailed illustration of the Residual block’s structure is provided

in Figure 2.

The MBConv block represents an improvement based on the

residual block. First, the ordinary convolution operation was replaced

with a DW separable convolution operation. This involved adding

two convolution kernels with a size of 1×1 into the residual structure,

thereby realizing a DW separable convolution operation.

Subsequently, a compression and excitation layer was added to

enhance the self-attention mechanism of the model and mitigate

the reduction in accuracy caused by a decrease in the number of

parameters. As a result of these adjustments, the prediction accuracy

of the model was improved. A detailed illustration of the MBConv

block’s structure is provided in Figure 3.

The Fused-MBConv block is a modified version of the MBConv

block, which involves removing the first convolutional layer for

dimensionality increment and the data squeezing and excitation

layer in the MBConv module. The block was used to determine

whether DW separable volumes are to be performed based on the

expansion coefficient point-by-point operations of the product. A

detailed illustration of the Fused-MBConv block’s structure is

provided in Figure 4.
TABLE 1 Number of images in different sets of each divided dataset.

Dataset Training set/sheet Validation set/sheet Test set/sheet Total/sheet

Plant Village 36,892 12,297 12,297 61,486

IP102 45,132 15,043 15,043 75,218

Mini-ImageNet 48,000 12,000 / 60,000
FIGURE 1

Framework of the Dise-Efficient model.
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FIGURE 2

Structure of the Residual block.
FIGURE 3

Structure of the MBConv block.
FIGURE 4

Structure of the Fused-MBCov block.
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3.3 Experimental design

3.3.1 Experimental comparison of convolutional
layers of different models

To verify the effect of different convolutional layers on the

accuracy of the Dise-Efficient model in identifying plant disease

types, we designed a baseline model called Dise-Efficient-B0-N, also

referred to as B0-N. In this baseline model, each convolutional layer

consists of two layers. In addition, we developed the B0-S model,

which is smaller than the B0-Nmodel, and the B0-L model, which is

larger than the B0-N model.

In the experiment, we trained the B0-N, B0-S, and B0-L models

on the Plant Village dataset. After the training, we compared the

accuracy of the three models in identifying plant disease types. The

main parameters of the three models are presented in Table 2.

3.3.2 Experimental comparison of different
learning strategies

The learning strategy designed in this study is comprised of a

stochastic gradient descent (SGD) optimizer, which utilizes

momentum to improve the model training process. Additionally,

we implemented a cosine dynamic decay strategy for the learning

rate, which started at 0.01 and decayed in a cosine manner as the

number of training rounds increased. Formula (1) illustrates the

dynamic decay strategy for the learning rate, with the final learning

rate being 0.001. The learning rate decay result is depicted in the

form of a curve in Figure 5.

Generally, the Adam optimizer provides better optimization

performance for model training than the SGD optimizer combined

with the momentum learning strategy. However, our experiments

revealed that the model generally achieved higher accuracy in

identifying disease types when the SGD optimizer was implemented

in combination with the cosine dynamic decay strategy, as designed in

this paper, compared to when the Adam optimizer was used.

To verify whether the cosine dynamic decay learning strategy

can improve the accuracy of the automatic plant disease and pest

identification model, we conducted experiments on the Plant

Village dataset, using the B0-N, B0-S, and B0-L models for

comparative analysis. In experimental group 1, we implemented

the Adam optimizer commonly used in CNN model training, while
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setting the learning rate parameter to a fixed value of 0.001. In

experimental group 2, we utilized the SGD optimizer with a fixed

learning rate. In the control group, we employed the SGD optimizer

with a cosine dynamic decay strategy that gradually reduced the

learning rate from 0.01 to 0.001 based on formula (1). The specific

experimental parameters are listed in Table 3.

3.3.3 Experimental comparison of convolution
kernel sizes of different models

Generally, smaller convolution kernels tend to capture finer-

grained features, while larger ones are better suited for capturing

more macroscopic features (Szegedy et al., 2015). Therefore, by

changing the size of the convolution kernel and observing how the

accuracy of the model accordingly, we can understand the effect of

different feature scales on the performance of the model. With this

in mind, we changed the size of the module convolution kernel to

investigate the effect of replacing a small convolution kernel with a

large one on each module’s performance.

In this experiment, we constructed models from Dise-Efficient-

B1 to Dise-Efficient-B7, all based on the Dise-Efficient-B0-N

(abbreviated as B0) model. Specifically, the B1 to B7 models were

designed with 5x5 large convolution kernels to replace the 3x3 small

convolution kernels of different modules. Table 4 shows the details

of the convolution kernel replacements, and other parameters

remain unchanged from the B0 model.

3.3.4 Experimental comparison of transfer
learning abilities of different models

The migration learning process consists of two phases: pre-

training and migration learning. In the pre-training phase of this

experiment, we used the cosine dynamic learning rate decay

strategy designed in this study to train the B0 and B2 models, as

shown in Table 4, on the Mini-ImageNet dataset, generating pre-

training models for B0 and B2. Finally, the pre-trained model

weights were uploaded in the IP02 dataset for use in the transfer

learning process, as illustrated in Figure 6.

In this study, two transfer learning methods were used to

compare the experimental results. The first one involved freezing

the feature layer of the pre-trained model before performing

transfer learning. The second one involved using the full set of
TABLE 2 Parameters of the B0-N, B0-S, and B0-L models.

Block B0-N
Layers

B0-S
Layers

B0-L
Layers Stride Number of convolution kernels Dropout Expansion

ConvBNAct 1 1 1 2 32 0 –

Fused-MBConv1 2 1 3 1 32 0 1

Fused-MBConv2 2 1 3 2 64 0 4

Residual1 2 1 3 2 64 0 –

Residual2 2 1 3 2 128 0 –

MBConv1 2 1 3 1 160 0.25 6

MBConv2 2 1 3 2 256 0.25 6
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parameters for direct transfer learning. Details of the specific

experimental design are shown in Table 5.
4 Results and analysis

4.1 Validity of the model

To evaluate the performance of the proposed Dise-Efficient

model in identifying plant pest types, we trained the baseline model

Dise-Efficient-B0 on the Plant Village dataset. This experiment was

conducted under the experimental conditions and parameters for

the experimental groups in Table 3. We compared the accuracy rate

obtained by the final model on the test set with the accuracy rates of

other CNN models used for agricultural pest detection. The

comparison results are presented in Table 6.

From the results in Table 6, it can be seen that the Dise-

Efficient-B0 model achieved the highest accuracy rate in identifying

plant disease types on the Plant Village dataset, reaching 99.71%.
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The model delivered a 61.84% accuracy rate in identifying plant pest

types on the IP102 dataset, which was only lower than the accuracy

rate of a previously proposed model (Nanni et al., 2020). These

findings demonstrated that the Dise-Efficient model has a strong

ability in identifying various types of plant diseases and pests.

Therefore, this model holds substantial research and practical

value for the identification of plant diseases and pests.
4.2 Effect of the number of convolutional
layers on model performance

To investigate the effect of the number of convolutional layers

on the accuracy of plant disease and pest identification models, we

experimentally implemented the B0-N, B0-S, and B0-L models

presented in Table 1 under the experimental conditions and

parameters for the experimental groups in Table 3. Finally, we

obtained the indexes of the models in the experimental groups, as

shown in Table 7.
TABLE 3 Experimental conditions and parameters.

Experimental group 1 Experimental group 2 Control group

Learning strategy Fixed learning rate Fixed learning rate Cosine dynamic attenuation

Optimizer Adam SGD SGD

Momentum / 0.9 0.9

Initial learning rate (lr) 0.001 0.001 0.01

Final learning rate (lrf) 0.001 0.001 0.001

Epochs 60 60 60

Batch size 64 64 64
FIGURE 5

Learning rate decay result.
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The above results indicate that the B0-N model is the most

accurate in identifying plant disease types, achieving an accuracy

rate of 99.71%. Furthermore, the B0-S model is the smallest in size,

at only 5.86 MB, but delivers a 0.16% lower accuracy rate than the

B0-N model. In contrast, the B0-L model has the largest size,

measuring 20.80 MB.
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Through an analysis of the above results, we found that the B0-S

model has one less convolutional layer in each module when

compared to B0-N, so the model size of B0-S is smaller than that

of B0-N; the B0-L model has one more layer convolutional layer in

each module when compared to B0-N, so the model size of B0-L is

larger than that of B0-N. Hence, the number of convolutional layers
FIGURE 6

Flowchart of transfer learning.
TABLE 4 Number of model layers and convolution kernel size.

Block B0 B1 B2 B3 B4 B5 B6 B7

BNConvAct 3x3

Fused-Conv1 3x3 5x5 3x3 3x3 5x5 5x5 3x3 5x5

Fused-Conv2 3x3 5x5 3x3 3x3 5x5 5x5 3x3 5x5

Residual1 3x3 3x3 5x5 3x3 5x5 3x3 5x5 5x5

Residual2 3x3 3x3 5x5 3x3 5x5 3x3 5x5 5x5

MBConv1 3x3 3x3 3x3 5x5 3x3 5x5 5x5 5x5

MBConv2 3x3 3x3 3x3 5x5 3x3 5x5 5x5 5x5
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will directly affect the model size – the more convolutional layers,

the larger the model size.
4.3 Effect of dynamic learning strategy on
model performance

Based on the experimental design in Table 3, we obtained the

accuracy and model size of the Dise-Efficient model used for

identifying plant disease types in experimental group 1,

experimental group 2, and the control group on the Plant Village

test set. The results are shown in Table 8.

We implemented the Adam optimizer with a fixed learning rate

for experimental group 1 and the SGD optimizer with a fixed

learning rate for experimental group 2. From Table 8, it can be seen

that for the same model trained under a fixed learning rate strategy,

using the Adam optimizer for training leads to higher accuracy rates

compared to using the SGD optimizer. In the control group, we

used the SGD optimizer in combination with the cosine dynamic

learning decay strategy to train the model, resulting in a higher

accuracy in identifying plant disease types than the model trained

under the conditions and parameters for experimental group 1. It

can be concluded that incorporating a cosine dynamic learning rate
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decay strategy into the model training process can improve the

model’s accuracy in identifying plant diseases and pests.
4.4 Effect of convolution kernel size on
model performance

The experiment was conducted based on the B0-N model (B0

for short), which had its convolution kernel replaced according to

the design in Table 3, resulting in the creation of models B1 to B7.

Models B0 to B7 were trained on the IP102 plant pest dataset

utilizing the experimental conditions and parameters for the control

group outlined in Table 3. The trained model’s accuracy and other

indexes of these models are presented in Table 9.

Based on the abovementioned experimental findings, it is

evident that replacing a small-sized ordinary convolution kernel

with a larger one usually improves the accuracy of the Dise-Efficient

model in identifying plant pest types. However, replacing a small-

sized DW separable convolution kernel with a larger one negatively

affects the model’s accuracy in identifying plant pest types.

It can be seen from Figure 1 that the Residual block of the Dise-

Efficient model is the only one utilizing a common convolution

kernel, while the MBConv and Fused-MBConv blocks use a DW
TABLE 6 Comparison between Dise-Efficient and other plant disease and pest identification models.

Dataset Research paper Model name Accuracy (%) Dataset Research paper Model name Accuracy (%)

Plant
Village

Sladojevic et al., 2016 CaffeNet 98.21

IP102

Nurfauzi et al., 2023 EfficientNetV2-B0 51.00

Gokulnath, 2021 LF-CNN 98.93 Ren et al., 2019 FR-ResNets 55.24

Ganatra and Patel,
2020

Inception V4 98.30
Lin et al., 2023 GPA-Net 56.90

Bedi and Gole, 2021
Models in the
research

99.38
Nanni et al., 2020 Models in the

research
61.93

Ours Dise-Efficient-B0-N 99.71 Ours Dise-Efficient-B0 61.48
Bold values mean the line with the best model evaluation index.
TABLE 7 Indexes of different models in the experimental groups.

Index Dise-Efficient-B0-N Dise-Efficient-B0-S Dise-Efficient-B0-L

Accuracy/% 99.71 99.55 99.60

Model size/MB 13.30 5.86 20.80
Bold values mean the line with the best model evaluation index.
TABLE 5 Experimental design of transfer learning.

Model name Original model Feature layer freezing Full parameter transfer

B0 B2 √

B0-Freeze-TF B2-Freeze-TF √

B0-TF B2-TF √
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separable convolution kernel. From the convolution kernel sizes set

for the different blocks of each model in Table 4, it can be seen that

Dise-Efficient-B2 only replaces the small convolution kernel with a

larger one in its Residual block. Consequently, this model

experiences a substantial improvement in identifying plant pest

types, which is evidenced by a peak accuracy rate of 61.84%. As for

models B1 and B3, they only replace the DW convolution kernel in

their Fused-MBConv and MBConv blocks. As a result, both of these

models experience varying degrees of reductions in accuracy.

Table 8 shows that the Dise-Efficient-B5 model delivers the

lowest accuracy rate, likely due to its use of a larger DW convolution

kernel in the place of a smaller one in its Fused-MBConv and

MBConv blocks. This replacement caused the model’s accuracy in

identifying plant pest types to experience the largest drop.

Additionally, models B4, B6, and B7 all replace smaller DW

convolution kernels with larger ones, leading to varying degrees

of reductions in the accuracy in identifying plant pest types.

In terms of the number of parameters, a DW convolution kernel

of the same specification has fewer parameters than the ordinary

convolution kernel. Therefore, replacing the ordinary convolution

kernel with a larger one will increase the size of the model compared

to replacing a DW convolution kernel. As a result, as illustrated in

Table 8, B2 experiences a more significant increase in model size

when compared to B1 and B3. This can be explained by the fact that

B2 replaces the ordinary convolution kernel with a larger one, while

B1 and B3 replace simply DW convolution kernels. Similarly, model

B4 only replaces DW convolution kernels in the Fused-MBConv

and MBConv blocks without replacing the ordinary convolution

kernel, leading to a smaller increase in model size compared to B4,

B6, and B7.
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Through the above analysis, it can be concluded that in the

application of the Dise-Efficient model for identifying plant pests,

replacing the convolution kernel in the Residual module with a

larger one can improve the model’s accuracy in plant pest type

identification, although this improvement comes at the cost of

increased model size. In contrast, while replacing a smaller DW

convolution kernel with a larger one only causes a small increase in

model size, it results in a reduction in accuracy. Therefore,

sacrificing a lightweight cost for greater accuracy improvement

could be a meaningful research direction to explore.
4.5 Application of transfer learning

Based on the experimental design in Table 5, the accuracy of the

model during the transfer learning process on the IP102 dataset is

depicted in Figure 7, and the experimental results are summarized

in Table 10.

It can be seen from Figure 7 that at the beginning of training,

the transfer learning model for plant pest identification delivered a

higher accuracy rate than the original model. After the model

training was completed, the transfer learning model with a frozen

special feature layer significantly outperformed the prototype in

terms of accuracy when it comes to identifying plant pests. In other

words, the transfer learning training process gave the model a much

stronger ability to identify plant pests accurately.

According to Table 10, the transfer learning effect of B0 is

superior to that of B2. When under the same transfer learning

conditions, the transfer learning model obtained through B0

exhibited higher accuracy rates and faster training speeds than
TABLE 8 Model indexes for comparison of experimental results.

Index B0-N B0-S B0-L

Accuracy for experimental group 1 (%) 99.71 99.55 99.60

Accuracy for experimental group 2 (%) 99.27 99.19 99.51

Accuracy for control group (%) 99.81 99.77 99.82
Bold values mean the line with the best model evaluation index.
TABLE 9 Indexes of Dise-Efficient-B0 to B7 models.

Model Accuracy (%) Increase in accuracy (%) Model size (MB) Increase in size (MB)

Dise-Efficient-B0 61.48 0 13.3 0

Dise-Efficient-B1 61.24 -0.24 15.0 +1.7

Dise-Efficient-B2 61.84 +0.36 16.1 +2.8

Dise-Efficient-B3 61.39 -0.09 13.9 +0.6

Dise-Efficient-B4 61.32 -0.16 17.5 +4.2

Dise-Efficient-B5 60.75 -0.73 15.3 +2.0

Dise-Efficient-B6 61.32 -0.16 16.4 +3.1

Dise-Efficient-B7 61.45 -0.03 17.8 +4.5
Bold values mean the line with the best model evaluation index.
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the one obtained through B2. Moreover, freezing the feature layer

and then performing transfer learning resulted in a significant

improvement of over 30% in the model’s training speed. Direct

transfer learning was performed on both groups of models, leading

to accuracy improvements of over 2% compared to the

original model.

Therefore, in practical applications, it is desirable for the Dise-

Efficient model to make more precise judgments about the types of

plant pests, thereby achieving accurate pest and disease prevention.

Therefore, full-parameter migration holds great importance in

enhancing the accuracy of the Dise-Efficient model in identifying

plant pest types.
5 Conclusions

This present study introduces a novel Dise-Efficient model

based on previous related research, capable of identifying various

types of plant diseases and pests. A series of experiments were

conducted to evaluate how the number of convolutional layers,

learning strategy, and convolution kernel size affect the model’s

performance and how transfer learning can be applied to train the
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model. The following conclusions have been drawn from

the experiments.

The Dise-Efficient-B0-N model achieved 99.71% accuracy in

identifying plant disease types on the Plant Village plant disease

dataset, with a model size of 13.3 MB. In addition, the model size

decreases with fewer convolutional layers, leading to a slight

reduction in accuracy. In contrast, more convolutional layers

result in larger model size, but there is no obvious effect on

accuracy improvements.

Also on the Plant Village plant disease dataset, implementing a

cosine dynamic learning rate decay strategy during the training of

the Dise-Efficient-B0-N model resulted in an accuracy rate of

99.80% in identifying plant disease types, higher than that of the

B0-Nmodel. The accuracy rate of the B0-L reached 99.81%, without

any overfitting. Therefore, using a cosine dynamic learning rate

decay strategy can effectively improve the accuracy of the model in

identifying plant disease types.

The effect of convolution kernel size on the performance of the

Dise-Efficient model on the IP102 plant pest dataset was

investigated through experiments. Results indicate that the

accuracy rates of the Dise-Efficient-B0 and Dise-Efficient-B2

models in identifying plant pest types on this dataset were 61.48%
FIGURE 7

Comparison of the accuracy of the transfer learning process.
TABLE 10 Comparison of model accuracy.

Model Accuracy (%) Total time spent (h) Model Accuracy (%) Total time spent (h)

B0 61.48 2.49 B2 61.84 2.73

B0-Freeze 43.67(-17.81) 1.63 B2-Freeze 43.58(-18.26) 1.67

B0-TF 64.40(+2.92) 2.50 B2-TF 64.02(+2.18) 2.73
Bold values mean the line with the best model evaluation index.
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and 61.84%, respectively, exceeding those of other advanced models

in this field. Furthermore, the experimental results suggest that

replacing small convolution kernels with larger ones in the Residual

layer of the Dise-Efficient model is effective in improving the

model’s accuracy in identifying plant pest types.

The results obtained through the transfer learning experiment

conducted on the IP102 plant pest dataset demonstrate that freezing

the feature layer of the pre-trained model during transfer learning

training increases the model training speed by more than 30%,

which, however, comes at the cost of greatly reduced accuracy.

Conversely, performing full-parameter transfer learning training on

the pre-trained model keeps the model training speed unchanged

while increasing the accuracy of the obtained model by more than

2%. These findings demonstrate the strong transfer learning ability

of the Dise-Efficient model and suggest full-parameter transfer

learning as an effective approach to improve the model’s accuracy

in identifying plant pest types.

In summary, our proposed Dise-Efficient model can effectively

identify various types of plant diseases and pests, thereby

contributing to preventing them in agricultural production. The

baseline model Dise-Efficient-B0 exhibits the most comprehensive

performance and boasts a compact size of only 13.3MB, making it

ready for deployment in almost all kinds of lightweight mobile

device applications. Specifically, the Dise-Efficient-B0 model

achieves an accuracy rate of 99.80% for plant disease

identification on the Plant Village dataset and an accuracy rate of

64.40% for plant pest type identification on the IP102 pest dataset

after full-parameter transfer learning training. Consequently, it is

anticipated that the Dise-Efficient-B0 model will be one of the top-

performing models for plant disease and pest identification.
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In orchard scenes, the complex terrain environment will affect the operational

safety of mowing robots. For this reason, this paper proposes an improved local

path planning algorithm for an artificial potential field, which introduces the

scope of an elliptic repulsion potential field as the boundary potential field. The

potential field function adopts an improved variable polynomial and adds a

distance factor, which effectively solves the problems of unreachable targets

and local minima. In addition, the scope of the repulsion potential field is

changed to an ellipse, and a fruit tree boundary potential field is added, which

effectively reduces the environmental potential field complexity, enables the

robot to avoid obstacles in advance without crossing the fruit tree boundary, and

improves the safety of the robot when working independently. The path length

planned by the improved algorithm is 6.78% shorter than that of the traditional

artificial potential method, The experimental results show that the path planned

using the improved algorithm is shorter, smoother and has good obstacle

avoidance ability.

KEYWORDS

mowing robot, artificial potential field, path planning, local minimum, boundary
potential field
1 Introduction

With the development of science and technology, mobile robots are increasingly used

in agriculture. In orchards, mowing robots with autonomous navigation ability are a hot

research topic. As a key autonomous navigation technology, path planning has attracted

increasing attention from researchers.

According to the degree of a mobile robot’s mastery of the information in an area, path

planning can be divided into two types: one is global path planning based on complete area
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information (Li et al., 2022), and the other is local path planning

based on local area information (Wu et al., 2022). Algorithms to

solve global path planning include particle swarm optimization

(PSO) (Delice et al., 2017; Wang et al., 2018), visibility methods

(Zimmermann and König, 2016; Salman et al., 2023), and link

graph methods (McCammon and Hollinger, 2021) and topology

method (Jin and Choi, 2011). Algorithms to solve local path

planning include artificial potential field methods (Khatib, 1986),

the ant colony algorithm (Gao et al., 2023; Li et al., 2023), the A*

algorithm (Zhang et al., 2022), artificial immune methods (Lin et al.,

2023) and rolling window methods (Xin et al., 2023). Real-time

mowing robot obstacle avoidance mainly utilizes local robot path

planning algorithms. Because of the advantages of a simple

structure, easy understanding, small calculation and real-time

capability, artificial potential field methods are widely used in the

robot field.

The basic idea of an artificial potential field (APF) method is

constructing a virtual APF that senses the positions of the robot,

obstacles and target points in an environment using sensors so that

the mobile robot can be influenced by the target points and

obstacles at the same time. In the potential field, the robot is

attracted by the target points and moves toward them while being

repelled by the obstacles and moves away from them. Therefore,

under the action of this resultant force, the robot avoids obstacles

and moves toward the target points, thus planning a collision-free

path. Compared with other classical obstacle avoidance algorithms,

an APF method has the advantages of fewer calculations, solving

local obstacle avoidance problems and solving sudden challenges.

Therefore, this algorithm is widely used in obstacle avoidance

methods. However, an APF method has the following

obvious disadvantages:
Fron
1. Target unreachable problem: When the robot is far away

from a target point, the attraction will become extremely

large. If the relatively small repulsion force can be ignored,

the robot may encounter obstacles on its path. When there

are obstacles near the target point, the repulsion force will

be very large, and the attraction will be relatively small,

making it difficult for the robot to reach the target point.

When the distance between the robot and the target point is

very close, if there is an obstacle near the target point, the

attraction on the robot is approximately zero relative to the

large repulsion, and the robot will always wander around

the target point and cannot reach the target point.

2. Local minimum problem: The robot relies on the

overlapping of the potential fields detected from all

directions to obtain the overlapping field, and the

direction and size of the overlapping field are used to

determine the next trajectory. However, if the

overlapping field is close to zero, the robot will not move

and stop.

3. Poor adaptability in a complex environment: The more

obstacles there are in the overlapping field, the higher the

probability that the overlapping field is zero, and the easier

it is to stagnate, leading to the local minimum problem.
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In this regard, many scholars have invested much energy in

research and improvement. Based on an artificial immune

algorithm, Hou YB (Hou et al., 2012) adopted a potential field

function method in an APF method to easily obtain the optimal

path and improve the quality of path planning. Q. Song (Q. Song

et al., 2012) To effectively solve the local minimum problem of APF

methods, the force function of the potential field was improved

using a velocity vector, and the repulsive potential field coefficient

was adjusted in real time by combining it with a fuzzy control

algorithm, which overcomes the robot easily falling into a local

minimum and alleviates the oscillation problem. Li G (Li et al.,

2013) proposed an improved APF method based on a regression

search method, redefined the potential field function to solve the

local minimum and oscillation problems, improved a wall-

following method to solve the unreachable problem, and

optimized the planned path using a regression search algorithm

to obtain a better and shorter effective path. To solve the problems

of local minimum and inefficiency of classical APF methods,

Abdalla T Y (Abdalla et al., 2017) proposed a fuzzy control

algorithm to improve the APF method, and the proposed

problems were successfully solved. A fuzzy logic controller was

used to control the movement of the robot, and a particle swarm

optimization algorithm was used to optimize the membership

function of the controller. Rostami S M H (Rostami et al., 2019)

proposed an improved APF method to address the optimal path

and solve the problems of local minima and unreachable targets in

the APF algorithm, realizing effective robot obstacle avoidance

without falling into local minima. Orozco-Rosas U (Orozco-Rosas

et al., 2019) proposed a membrane evolution APF method for robot

path planning, combining membrane calculation using a genetic

algorithm and APF method to find suitable parameters, thus

generating a feasible and safe path. This method consists of

limited separated regions, in which there are several groups of

parameters evolving according to biochemical inspiration to

minimize the path length. Compared with classical APF methods,

it shows better performance in path length. Jiachen Yang (Yang

et al., 2022) proposes a Residual-like Soft Actor Critic (R-SAC)

algorithm for agricultural scenarios, which improves the efficiency

of reinforcement learning through offline experts experience pre-

training methods, and optimizes the reward mechanism of the

algorithm by using multi-step TD error, which solves the dilemma

that may occur in the training process, and is a stable and efficient

path planning method.

The author analyzes the above three problems in detail and

proposes three improvement methods:
1. A target point distance factor is introduced into the

attraction and repulsion potential field functions to

reduce the resultant attraction and repulsion force

received near a target point when the algorithm is far away;

2. An improved variable polynomial is used in the repulsion

potential field function, which minimizes the distorted

obstacle potential field when the robot is not near the

target point and simultaneously ensures that the robot takes

the global minimum at the target point;
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3. The scope of the repulsion potential field is changed to an

ellipse, and a fruit tree boundary potential field is added to

reduce the environmentally potential field complexity so

that the robot can avoid obstacles in advance without

crossing the fruit tree boundary.
The effectiveness of the improved algorithm is verified through

simulation and field tests.
2 Improved artificial potential field
method with boundary constraints

2.1 Attractive potential field with distance
factor introduced

The distance between the robot and a target point in a

traditional APF method directly determines the attractive

potential field function or the attractive force. When the distance

between the robot and the target point is very large, the attractive

potential field function or attraction will also become very large. In

other words, the attraction plays a major role, while the repulsion

plays a very small role in the robot motion control, which will easily

lead to collisions between the robot and obstacles. To solve the

collision risk of robots in an obstacle environment when

considering the deviation of path planning, the attractive

potential field function of the APF method is optimized, and a

target point distance factor is added to reduce the attraction of the

algorithm when the target point is far away. The improved

attractive potential field function is defined as follows:

Uatt(X) =
1
2 k · r

2(X,Xg), r(X,Xg) ≤ d = 2r0
1
2 k · d · r(X,Xy), r(X,Xg) > d = 2r0

 

(
(1)

where k is the attractive gain coefficient, d is a constant

determined by the environment, X(x,y) is the current position of

the robot, r(X,Xg) is the distance between the robot and the target

point, and r0 is the influence radius of the obstacle.
The improved attractive function is shown in Formula (2):

Fatt(X) =
−k · r(X,Xg) ·∇(X,Xg), r(X,Xg) ≤ d = 2r0

− 1
2 k · d ·∇(X,Xg), r(X,Xg) > d = 2r0

(
(2)
2.2 Improved elliptic repulsion potential
field with variable polynomials

In the actual operation process, a mowing robot is limited by the

orchard environment and its own performance, so the obstacle

repulsion potential field influence range is different from that of a

traditional APF method. Therefore, the repulsion potential field

influence range is improved as follows: the longitudinal distance of

the influence range is increased so that the mowing robot can

correct its direction in advance and enter the obstacle avoidance

mode; the lateral distance of the influence range is reduced to ensure
tiers in Plant Science 0336
that the mowing robot can avoid obstacles safely. After

modification, the influence range becomes oval, as shown

in Figure 1:

In this study, the major axis and minor axis of the influence

range of the repulsive potential field are r0 and r1 =
r0
2 .

By improving the repulsive potential field function, the local

minimum and the oscillation around obstacles are solved. To

address the problems in an APF, a method of adding a rotating

force is adopted to improve the repulsion function (Gao et al., 2023)

by applying a polynomial factor not less than zero to the repulsion

potential field, which becomes zero when the robot reaches the

target position. When the superimposed potential fields are all equal

to zero at the target position, the robot position is the global

minimum. This polynomial is the squares (Yang et al., 2016; Xin

et al., 2022) of the distance from the robot to a target point. This

form of the repulsive potential field greatly distorts the shape of the

repulsive potential field when the robot is not near a target point

while ensuring the global minimum of the target point. Therefore,

in this study, an improved variable polynomial is used to minimize

the distorted obstacle potential field when the robot is not near a
FIGURE 1

Influence range of the elliptic repulsion potential field.
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target point and at the same time ensure that the robot has the

global minimum at the target point. The improved repulsion

potential field function is defined in Formula (3):

Urep(x) =

1
2 h · ½ 1

r(X,X0)
− 1

r0
� · 1 − e

r2(X,Xg )

R2

� �
,Xϵ (x−x0)

2

r  20
+ (y−y0)

2

r  21
= 1

0,X ∉ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

8>><
>>: (3)

where h is the repulsion gain coefficient, r0 is the major axis of

the influence range of the obstacle, r1 =
r0
2 is the minor axis of the

influence range of the obstacle, R is the radius of the robot, X0(x0,y0)

is the position of an obstacle, Xg(xg,yg) is the position of a target

point, r(X,X0) is the Euclidean distance between the current

position of the robot and the position of obstacle X0 and r(X,X0)

is the Euclidean distance between the robot and target point. When

the robot moves to the target position, the total potential field Utotal

(X) is equal to zero. Therefore, when the robot moves to the target

position, the robot will stop moving at the target position when the

speed drops to zero, so the total potential field of the robot at the

target position is equal to zero.

The improved repulsion function is shown in Formula (4):

Frep(X) =
Frep1(X) + Frep2(X),Xϵ

(x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

0,X ∉ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

8><
>: (4)

where Formula (5) Frep1(X) means that the robot is far away

from an obstacle along the line connecting it with the obstacle, and

it decreases with the decrease in the distance between the robot and

the target point; Formula (6) Frep2(X) means that the robot

approaches the target position along the line connecting the robot

and target position.

Frep1(X) =
1
2 h · 1

r2(X,X0)
· 1 − e

r2(X,Xg )

R2

� �
·∇(X,X0),Xϵ

(x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1 (5)
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Frep2(X) =
1
2 h · ½ 1

r(X,X0)
− 1

r0
� · e

r2(X,Xg )

R2 ·
2r(X,Xg )

R2

� �
·∇(X,Xg)

,Xϵ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

(6)
2.3 Introduction of a fruit tree boundary
potential field

When a mowing robot operates in an actual orchard, it needs to

consider the influence of the surrounding environment while

considering the obstacles. When the mowing robot moves to avoid

obstacles, it cannot hit the fruit trees. In most orchards, facilities such as

water and fertilizer irrigation and green prevention and control are

installed among the fruit trees, as shown in Figure 2. If the fruit trees are

regarded as individual obstacles, a large number of obstacles will easily

make the mowing robot fall into the local minimum, and it is

impossible to drive to the target point. At the same time, according

to the operating characteristics of the mowing robot, it is easy to

damage the facilities when driving into a fruit tree row. Therefore,

adding a repulsive potential field to each fruit tree row as a boundary

can effectively reduce the environmental potential field complexity and

prevent orchard facilities from being damaged. According to mowing

robot operating experience, the fruit tree boundary is the area with the

highest risk factor, followed by the middle area of the path, as shown in

Figure 3. According to the above distribution of the path danger degree,

a path boundary potential field function is considered in sections.

When the mowing robot is located in the area between paths, a

function with a relatively gentle change trend is adopted; however,

when it is close to the fruit tree boundary area, because of the high risk

coefficient, a function with a large change trend is adopted. Based on
FIGURE 2

Facilities installed in fruit tree intervals.
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the above factors, the orchard path is divided into four parts, and a fruit

tree boundary potential field function is established as shown in

Formula (7):

Uedge(X) =

hedge · v · e
x−xl , x ≤ xl

1
3 hedge · x

2, xl < x < 0

− 1
3 hedge · x

2, 0 ≤ x < xr

hedge · v · e
x−xr , xr ≤ x

8>>>>><
>>>>>:

(7)

wherehedge is the potential energy gain coefficient near the fruit tree
boundary, 1

3 hedge is the potential energy gain coefficient of the middle

part of the path, Xl = − L
4 is the dividing line near the left boundary,

Xr =
L
4 is the dividing line near the right boundary, and L is the

path width.

In summary, the total potential field function of the improved

APF method is:

Utotal(X) = Uatt(X) +o
n

i=1
Urep(X) + Uedge(X) (8)
3 Algorithm test and result analysis

To verify the effectiveness of the improved APF method designed

in this study. Written the improved algorithm, and validated the code

through the MATLAB simulation platform, defining a path planning
Frontiers in Plant Science 0538
evaluationmodel. The simulation results of the improved algorithm are

compared with those of the traditional artificial potential field method,

and the practical test of the improved artificial potential field method is

conducted on the self-developed mowing robot platform.
3.1 Path planning evaluation model

To directly evaluate the quality of different path planning

methods, a path planning evaluation model is established in

combination with a practical application, which mainly includes

the following three key evaluation parameters:
3.11 Path planning evaluation
The primary goal and basic requirement of path planning is to

generate a safe collision-free path. If the robot collides with an

obstacle or cannot reach the target during the path planning, the

path planning is invalid, which is a typical 0-1 problem.

fsuccess =
1, success

0, fail

(
(9)
3.12 The total length of the planned path
When the robot actually moves and runs, the total length of the

planned path can be equated to the cost of energy and time
FIGURE 3

Boundary potential field.
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consumed by the robot. The shorter the total length of the planned

path is, the better the path planning result. Assuming that the

planned path is divided into N sections and the path length of time

period i is Si, the total length of the planned path is:

Stotal =o
N

i=1
Si (10)
3.13 Maximum turning angular velocity
In the real working environment space, the path planned by the

robot is often a curve due to the existence of obstacles, so it is easy to

know that the course of the robot changes in real time. The heading

angular velocity of the robot is the first derivative of the heading

angle with respect to time. The smaller the angular velocity of the

robot is, the smoother the planned path, and the better the stability

and maneuverability of the robot.

Let the heading of the i time period be qi and the heading of the i
+ 1 time period be qi+1; then, the heading angular velocity of the

robot is:

Dqi =
qi+1−qi
stepi

, (i = 1, 2,…N − 1) (11)

where stepi is the time consumed in planning period i. In the

whole path planning cycle, the maximum absolute value of the

heading difference may be taken as the maximum turning angular

velocity, that is,

wmax = max Dq1,…,Dqi,…,Dqn−1f g,   (i = 1, 2,…,N − 1) (12)

Based on the above three parameters, the path planning is

evaluation model determined, and the evaluation function value is

VF, as shown in Formula (13):

VF = fsuccess · (
r1

Stotal
+ r2

wmax
) (13)

where r1 and r2 are greater than zero and satisfy r1 + r2 = 1. By

definition, the larger VF is, the higher the quality of the

planned path.
3.2 Test steps and parameter settings

3.2.1 Simulation test steps and parameter settings
The lawn mower robot obstacle avoidance path planning of

based on the improved APF method can be divided into the

following steps:
Fron
S1, setting the positions of the starting point and the target

point of the mowing robot, initializing the parameters, and

establishing an environmental model around the robot

using sensors mounted on the robot for environmental

perception;

S2, calculating the attraction potential field function;

S3, calculating the repulsion potential field function;

S4, calculating the boundary potential field function;

S5, calculating the magnitude and direction of the attraction

and repulsion exerted by the robot, calculating the
tiers in Plant Science 0639
components of the attraction and repulsion in the

horizontal direction and the vertical direction, and

determining the magnitude and direction of the total

potential force exerted by the robot;

S6, setting the mowing robot moving step and updating the

robot coordinates.
x(k + 1) = x(k) + l cos q (14)

y(k + 1) = y(k) + l sin q (15)

Guided by the total potential force of the APF method, the robot

moves to a target point and the coordinates are updated. When the

robot does not reach the target point, it continues to run under the

combined force. When the mowing robot reaches the target point, it

stops running. Thus, the planning path that meets the mowing

robot operating requirements is obtained.

The attraction gain coefficient k =15, the repulsion gain

coefficient h = 20 and the boundary repulsion gain coefficient

hedge = 35 in the improved APF method are set through

continuous experimental tests, and the major axis r0 = 2 m, minor

axis r1 = 1
2 r0 = 1m, and step length l = 0.05 m. The traditional APF

method has an attractive gain coefficient k = 15, a repulsive gain

coefficient h = 20, an obstacle influence range r0 = 2 m, and a step

size l = 0.05 m. Considering the distance between the robot and the

target, the repulsion potential field function is improved as a

polynomial factor with an index m =1, and the other parameters

are the same.
3.2.2 Real machine test steps and
parameter settings

Using a self-developed mowing robot platform, a real machine

verification test of the improved APF method is carried out, and a

four-wheel electric differential structure is used. Equipped with 16-

wire mechanical LIDAR, it can perceive the 360° environment

around the lawn mower. The mowing robot use GPS to obtain

global absolute position information and fuse IMU high-frequency

body posture information to realize the navigation and positioning.

The mowing robot measures the wheel speed through the rotary

encoder to receive real-time feedback and control the vehicle speed,

and obtain the actual trajectory value through the path tracking

algorithm. The experimental environment is a modern standard

orchard in the school, shown in Figure 4, with a spacing of 4 m and

a length of 25 m. The real machine platform is shown in Figure 5.

According to the research objectives and content, the real-time

obstacle avoidance experiment steps of the mowing robot are

as follows:
1. A starting position (0, 0) and a target position (0,20) for the

mowing robot are set according to an actual application

scene;

2. To verify the applicability of the mowing robot, the scene is

set according to the simulation test, obstacles are randomly

placed between the starting position and the target position,

and the obstacle position information is collected and

recorded.
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Fron
3. The mowing robot and all its instruments and equipment

are started at the initial position, and the path planning

algorithm based on the improved APF method is run to

make the robot move autonomously in the obstacle scene

set in step (2) and realize real-time obstacle avoidance;

4. A data acquisition program is run during the experiment

and the GPS and IMU are used to collect the experimental

data of the mowing robot during autonomous operation;
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5. The real vehicle experimental data collected in step (4) are

analyzed and compared with the planned path to verify the

feasibility and effectiveness of the designed improved APF

method.
In the Visual Studio Code software environment, the improved

APF method is compiled into a Python program, uploaded to the

vehicle controller, and the program is run in the set obstacle
FIGURE 5

Real machine platform.
FIGURE 4

Orchard environment.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1184352
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1184352
environment for a real vehicle test. The algorithm parameters are

set as follows: attractive gain coefficient k = 15, repulsive gain

coefficient h =30, boundary repulsive gain coefficient hedge = 40,

obstacle influence range major axis r0 = 3 m, minor axis r1 = 1
2 r0 =

1:5 m, and step length l = 0.1 m.
3.3 Simulation test results and analysis

Scenario 1:

In general, the obstacle environment is set as follows: there are n

obstacles, with n=6, and the obstacle positions are X0=[3 0.2; 7 -0.4;

10 0.3; 13 -0.2; 15 0.5; 17 -0.4], the starting position of the robot is

Xs=[0 0.1], and the target position is Xg=[20 0.1].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

different scenarios is evaluated. The evaluation data are shown

in Table 1:

The scenario 1 simulation results are shown in Figures 6, 7, and

the experimental results show that both the improved APF method

and the APF method can realize collision-free effective path

planning. Among them, there is slight oscillation in the planned
Frontiers in Plant Science 0841
path in Figure 6. There is no oscillation or jitter in the planned path

shown in Figure 7. From Table 1, by comparing the parameters Stotal
and wmax, it is found that the path length planned in Case 2 is the

shortest, wmax is greatly reduced, and the evaluation function VF

value is the largest, so the path planned in Case 2 is shorter,

smoother and better in quality than that planned using the

traditional APF method.

Scenario 2:

In the setting of an obstacle environment with a local minimum,

there are n obstacles, n=6, and the obstacle positions are X0=[3 0.2;

7 -0.4; 13 -0.2; 15 0.5; 17 -0.4; 17 0.5], the starting position of the

robot is Xs=[0 0.1], and the target position is Xg=[20 0.1].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

scenario 2 is evaluated, and the evaluation data are shown

in Table 2.

The scenario 2 simulation results are shown in Figures 8, 9, and

the experimental results show that the traditional APF method is

ineffective in path planning. Among them, there is a local minimum

problem in the planned path in Figure 8, and the robot cannot

continue to move to the target position when it falls into a local

minimum. It can be seen from Figure 9 that the Case 2 method can
FIGURE 6

Scenario 1, case 1 test result using the traditional APF method.
TABLE 1 Scenario 1 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 1 21.72 72.8 0.0428

Case 2 1 20.34 15.9 0.0505
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realize effective path planning without collision, and in Table 2,

compared with the parameter wmax, the path planned in Case 2 is

smoother and has better quality.

Scenario 3:

In the obstacle environment in the case of boundary collision,

there are n obstacles, n=6, and the obstacle positions are X0=[3 0.2;

5 -0.2; 7 -0.6; 9,-0.9; 10.5 -1.2; 12 -1.5], the starting position of the

robot is Xs=[0 0], and the target position is Xg=[20 0].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

different scenarios is evaluated, and the evaluation data are shown

in Table 3.

The scenario 3 simulation results are shown in Figures 10, 11, and

the experimental results show that the traditional APF method is

ineffective in path planning. Among them, the path planned in

Figure 10 has a boundary collision problem, and the robot collides

with the fruit tree boundary during obstacle avoidance, resulting in

obstacle avoidance failure. As seen from Figure 11, the Case 2 method

can realize effective path planning without collision and will not

collide with the fruit tree boundary. Based on the experimental results

and analysis of scenario 3, the designed Case 2 method can not only

effectively realize collision-free path planning, overcome the oscillation

or jitter phenomenon in the path planning process, and effectively

solve the problem that the robot easily falls into a local minimum but
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also avoid the boundary collision problem in the obstacle avoidance

process and has the best comprehensive performance.
3.4 Real machine test results and analysis

Scenario 1:

In general, in the obstacle environment, the actual layout of

obstacle position information is X0=[4.0 0.6; 8.0 -0.8; 12.0 0.5; 16

-1.0]. The experimental results are shown in Figure 12. Among

them, the dark blue point in the figure is the starting point of the

mowing robot, the green point is the target point, the red points are

obstacles, the black straight line is the orchard boundary, the blue

curve represents the reference path planned based on the improved

APFmethod, and the purple dotted line represents the experimental

results of obstacle avoidance for the real vehicle.

The experimental results of scenario 1 obstacle avoidance

verification are analyzed, and the analysis data are shown in Table 4.

Scenario 2:

When there is a local minimum, the actual obstacle position

information is X0=[4.0 0.2 8.0 -0.8; 16.0 0.7; 16 -0.6]. The

experimental results are shown in Figure 13.

The experimental results of obstacle avoidance verification in

scenario 2 are analyzed, and the analysis data are shown in Table 5.
TABLE 2 Scenario 2 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 0 16.92 68.4 0

Case 2 1 20.24 10.1 0.0543
FIGURE 7

Scenario 1, case 2 test result 1 using the improved APF method.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1184352
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1184352
Scenario 3:

In general, in the obstacle environment, the actual layout of

obstacle position information is X0=[4.0 -0.2; 6.5 0.5; 9.0 1.0; 11.5

-0.6]. The experimental results are shown in Figure 14.

The experimental results of obstacle avoidance verification in

scenario 3 are analyzed, and the analysis data are shown in Table 6.
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The test results of scenario 1 are shown in Figure 12 and

Table 4. Compared with the planned path, the actual path has a

length of 2.59% and a maximum rotation angle of 22.2%, with a

maximum deviation of 0.137 m in the X direction and 0.051 m in

the Y direction. As shown in Figure 13 and Table 5, the test results

of scenario 2 show that the actual path is 2.3% longer than the
FIGURE 9

Scenario 2, case 2 test result using the improved APF method.
FIGURE 8

Scenario 2, case 1 test result using the traditional APF method.
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FIGURE 10

Scenario 3, case 1 test result using the traditional APF method.
FIGURE 11

Scenario 3, case 2 test result using the improved APF method.
TABLE 3 Scenario 3 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 0 13.69 51.95 0

Case 2 1 20.17 6.97 0.0589
F
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planned path, and the maximum rotation angle is 12% smaller, of

which the maximum deviation in the X direction is 0.105 m and the

maximum deviation in the Y direction is 0.048 m. The test results of

scenario 3 are shown in Figure 14 and Table 6. Compared with the

planned path, the actual path length is 2.7% longer and the

maximum rotation angle is 7.1% smaller, of which the maximum

deviation in the X direction is 0.126 m and the maximum deviation

in the Y direction is 0.053 m. The above situation shows that the gap

between the actual path and the planned path is small, and the

maximum displacement error is kept within 0.15 m, which meets

the design needs.

The experimental results show that in an actual orchard

environment, the mowing robot can effectively solve the local

minimum problem and effectively avoid obstacles in the obstacle

environment. The robot successfully completes the path planning

from the initial position and avoids all obstacles to reach the target

position safely. In the actual driving process, due to the influence of

the orchard ground environment, the actual driving path deviates
Frontiers in Plant Science 1245
from the planned path, but it meets the control requirements of the

mowing robot within the allowable control error.
4 Conclusion

The artificial potential field method has been widely used in local

path planning because of its simple and real-time characteristics. To

further improve the performance of the algorithm, many scholars have

studied improving the method algorithms. In this study, the following

methods are adopted: by improving the attractive field model, the

problem of colliding with obstacles when the distance is too far and the

attraction is too large is avoided; on the basis of the original repulsive

force field, considering the influence of the relative position and speed

between the target and the robot, a new repulsive function is

introduced, and the repulsive potential field strength of obstacles

near the target is reduced by adding a rotating force, thus solving the

local minimum problem.
FIGURE 12

Real machine obstacle avoidance verification scenario 1.
TABLE 4 Real machine obstacle avoidance verification experimental data analysis.

Path Planning path Actual path

Path length (m) 20.20 20.725

Maximum rotation angle (degree) 5.705 6.972

Maximum relative deviation in x direction (m) 0 0.137

Maximum relative deviation in y direction (m) 0 0.051
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FIGURE 13

Real machine obstacle avoidance scenario 2 verification.
TABLE 5 Real machine obstacle avoidance verification experimental data analysis.

Path Planning path Actual path

Path length (m) 20.12 20.592

Maximum rotation angle (degree) 5.63 4.975

Maximum relative deviation in x direction (m) 0 0.105

Maximum relative deviation in y direction (m) 0 0.048
FIGURE 14

Real machine obstacle avoidance verification scenario 3.
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The actual operation requirements of a mowing robot require path

planning in complex environments. This study combines the

advantages of these two methods, considers the environmental

constraints in an actual orchard, modifies the scope of the

repulsive potential field, and introduces boundary potential field

constraints to ensure that the algorithm can realize planning path

that meets the actual operation requirements of mowing robots.

To address the shortcomings of traditional APF path planning

algorithms, an improved APF path planning algorithm suitable for

orchard mowing robots is proposed. The simulation experiment in

this study can be divided into three parts: first, the robustness of the

improved APF method compared with a traditional APF method is

verified, and the planning path is smoother and shorter. Second, it is

verified that the improved algorithm has a stronger ability to solve

local minimum problems. Finally, an actual orchard working

environment is simulated, and it is verified that the improved

APF method has better adaptability to the orchard environment

and can successfully avoid boundary collisions and complete

obstacle avoidance to reach the target point. At the same time,

according to the scenario set up in the simulation experiment, the

corresponding practical verification experiment of the improved

APF method is carried out. The experimental results verify the

effectiveness and reliability of the improved algorithm. This

provides a new method for the path planning of this kind of

mowing robot working in orchard environments.
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As a fruit with high economic value, strawberry has a short ripeness period, and

harvesting at an incorrect time will seriously affect the quality of strawberries,

thereby reducing economic benefits. Therefore, the timing of its harvesting is

very demanding. A fine ripeness recognition can provide more accurate crop

information, and guide strawberry harvest management more timely and

effectively. This study proposes a fine recognition method for field strawberry

ripeness that combines deep learning and image processing. The method is

divided into three stages: In the first stage, self-calibrated convolutions are added

to the Mask R-CNN backbone network to improve the model performance, and

then the model is used to extract the strawberry target in the image. In the

second stage, the strawberry target is divided into four sub-regions by region

segmentation method, and the color feature values of B, G, L, a and S channels

are extracted for each sub-region. In the third stage, the strawberry ripeness is

classified according to the color feature values and the results are visualized.

Experimental results show that with the incorporation of self-calibrated

convolutions into the Mask R-CNN, the model’s performance has been

substantially enhanced, leading to increased robustness against diverse

occlusion interferences. As a result, the final average precision (AP) has

improved to 0.937, representing a significant increase of 0.039 compared to

the previous version. The strawberry ripeness classification effect is the best on

the SVM classifier, and the accuracy under the combined channel BGLaS reaches

0.866. The classification results are better than common manual feature

extraction methods and AlexNet, ResNet18 models. In order to clarify the role

of the region segmentation method, the contribution of different sub-regions to

each ripeness is also explored. The comprehensive results demonstrate that the

proposed method enables the evaluation of six distinct ripeness levels of

strawberries in the complex field environment. This method can provide

accurate decision support for strawberry refined planting management.

KEYWORDS

strawberry, ripeness recognition, deep learning, image processing, Mask R-CNN
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1 Introduction

Strawberries, being a typical non-climacteric fruit, can continue

to ripen after being picked, but their edible quality does not improve

with further ripening (Chen et al., 2014; Van de Poel et al., 2014).

Once strawberries begin to bear fruit, they typically take 20-30 days

to reach full ripeness. Furthermore, the transition from the white

ripe stage to the fully ripe stage takes only about 7 days for

strawberries. Therefore, an efficient and accurate method for

assessing strawberry ripeness would align with practical

requirements. The traditional manual observation method is

characterized by low work efficiency, poor accuracy and

significant variability, rendering it inadequate to meet the

demands of efficient detection. Despite the high accuracy of the

sensor detection method, its requirement for professional operation

and low efficiency make it unsuitable for large-scale detection

(Moghimi et al., 2010; Abbaszadeh et al., 2014; Aghilinategh

et al., 2020). Therefore, it is of great significance to study an

efficient and accurate strawberry ripeness judgment method in an

unstructured environment for strawberry harvest management.

However, the field environment where strawberries grow is

characterized by leaf occlusion and fruit overlapping, presenting

challenges in accurately recognizing the ripeness of strawberries.

With the advancement of new information technology and the

promotion of technical methods, machine learning (ML) and deep

learning (DL) have made significant strides in scene recognition and

object classification. Considering their characteristics of faster

detection, better generalization, and stronger robustness, these

methods have also emerged as a research hotspot in strawberry

detection and recognition (Yu et al., 2019; Pérez-Borrero et al., 2020;

Le Louëdec and Cielniak, 2021). The current strawberry ripeness

detection method predominantly revolve around the integration of

ML, DL, and hyperspectral imaging techniques. Zhang et al. (2016)

used PCA to obtain optimal wavelengths from hyperspectral images,

and then extracted texture features from the optimal wavelength

images. They finally obtained the best strawberry ripeness

classification in SVM with the combined information of the best

wavelength and texture features. Shao et al. (2020) extracted effective

wavelengths for field and outdoor hyperspectral strawberry images,

respectively. Finally, their PLS-DA and LS-SVM classifiers achieved

between 91.7% and 96.7% accuracy in field strawberry ripeness

classification. Su et al. (2021) established a 1D residual network

and a 3D residual network to process 1D and 3D strawberry

hyperspectral data. The accuracy of ripeness classification exceeded

84% in both networks. Raj et al. (2022) obtained over 98% ripeness

classification accuracy when using the full spectrum data of

strawberries as the input data of SVM. Furthermore, they

developed a strawberry water content index based on a portion of

the spectral data from the band, achieving the highest accuracy of

71.2% when using the water content index as input data.

Additionally, there have been studies exploring the utilization of

image processing techniques in conjunction with deep learning for

strawberry ripeness detection. Fan et al. (2022) used a dark channel

enhancement algorithm to preprocess strawberry images taken at

night, and finally achieved a ripeness recognition accuracy of over

90% on YOLOv5. Despite achieving some results in strawberry
Frontiers in Plant Science 0250
ripeness estimation, hyperspectral imaging is known for its high

cost and inconvenience in practical usage. Moreover, its application is

primarily limited to indoor environments, making it challenging to

fulfill the requirements of real-time detection in the field.

According to the characteristics of strawberry at different

ripeness stages, most of the above studies have categorized

strawberry ripeness into 2-3 levels. However, the classification of

2-3 levels is rough and cannot provide an accurate decision-making

basis for strawberry harvesting management. On the one hand,

foliar fertilizer spraying before strawberry ripening can increase the

firmness of strawberries at harvest and prolong the storage time (He

et al., 2018). This necessitates the identification of early ripeness in

strawberries to determine optimal timing for fertilization. On the

other hand, for the two different modes of on-site sales and off-site

sales, it is necessary to identify the harvest ripeness of strawberries

in the later stage to determine the harvest time. Therefore,

considering the current large-scale strawberry cultivation, there is

a need for finer ripeness grading to offer precise decision support for

strawberry harvesting management.

Based on the above analysis, combined with deep learning

technology and image processing technology, this paper proposes

a strawberry ripeness recognition method combined with Mask R-

CNN and region segmentation. This method not only enhances the

segmentation accuracy of strawberries in complex field

environments but also accurately estimates six distinct levels of

ripeness, providing richer and more detailed information about

strawberry maturation.
2 Materials and methods

2.1 Dataset

2.1.1 Image acquisition
In order to improve the robust performance of the model in

various environments, the strawberry images for this study were

acquired in two batches to increase data diversity. The first shot was

taken on January 7, 2022 in a strawberry plantation in Changping

District, Beijing, China, from 10:00 to 14:00, and the local weather

was sunny and cloudless. The device used is an MI 8 smart mobile

phone with a SONY IMX363 lens. The second shot was taken on

February 9, 2023 in a strawberry plantation in Pinggu District,

Beijing, China, from 13:00 to 17:00, and the local weather was

cloudy. The device used is a MI 12X smart mobile phone, and the

lens is SONY IMX766. The distance from the lens to the strawberry

ridge was 0.2-0.3 m for each shooting, and finally 500 pictures with

a size of 4032×2268 pixels and 700 pictures with a size of 4096×2304

pixels were obtained respectively. The pictures include images

under different lighting conditions such as normal, frontlighting,

and backlighting, as shown in Figure 1A. We compressed all images

to a size of 1280×720 pixels to reduce computational cost.

2.1.2 Dataset partitioning and annotation
The strawberry datasets were divided into two parts: instance

segmentation dataset and image classification dataset. For the

instance segmentation dataset, the initial images were randomly
frontiersin.org
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divided into 860 images for training set, 100 images for validation set,

and 240 images for test set. Each strawberry contour was annotated

with labelme annotation tool. For the image classification dataset, the

dataset consisted of a series of strawberry patches. The training set

comprised a total of 2172 strawberry patches, which were manually

cropped from the training set of the instance segmentation task. The

test set consisted of a total of 651 strawberry patches, which were

detected by the instance segmentation model from the test set of the

instance segmentation task.

Efficient and accurate decision-making is crucial for the

management of large-scale strawberry harvesting in order to

enhance economic benefits. This necessitates a more precise

classification of strawberry ripeness to meet the requirements of

the industry. Based on the physiological changes (Azodanlou et al.,

2004; Zhang et al., 2011) and color representation of strawberries

during the ripening process, the strawberry ripeness has been

categorized into six levels: White, Breaking, Turning-1, Turning-

2, Ripe and Full ripe. At White the fruit is light green, and it is

basically no longer growing. At Breaking the fruit is one-fifth red

and begins to enter the color changing period. It is suitable to apply

foliar fertilizer to improve the hardness of the strawberry when it is

mature. Turning-1 is two-fifths red strawberry, and Turning-2 is

three-fifths red strawberry. At Ripe the strawberry is approximately

four-fifths red, indicating it is ready for harvest, particularly for off-

site sales. At Full ripe the strawberry is dark red and is completely

ripe. Completely ripe strawberries offer the best taste but are not

ideal for storage and transportation. Therefore, the Full ripe stage is

considered the harvest period for local sales. The patches of

strawberries with different ripeness are shown in Figure 1B. The

details of the dataset are shown in Table 1.
2.2 Annotation validation

The strawberry ripeness labels are manually annotated, and the

quality of the annotation results directly impacts the effectiveness of
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subsequent classification. Therefore, it is necessary to verify the

accuracy of manual labels. Uniform Manifold Approximation and

Projection for Dimension Reduction (UMAP) is a nonlinear data

dimensionality reduction algorithm (McInnes et al., 2018). It can

map the structural features of high-dimensional space xi to low-

dimensional space yi for representation, and preserve the global

structure of the data well. Through low-dimensional data

visualization, potential relationships among raw data can be

observed. We input the strawberry patches into UMAP for

dimensionality reduction, and then observe the distribution

of strawberries.

Let X = fx1,  …,   xNg be the input data set. First, we use the

nearest neighbor or approximate nearest neighbor algorithm to

obtain the k nearest neighbor set fxi1,  …,   xikg, and then for each

xi, we use Eq. (1) and (2) to find the nearest neighbor distance ri and
the normalization factor si.

ri = min d(xi, xij)j1 ≤ j ≤ k, d(xi, xij) > 0
� �

(1)

o k
j=1
exp(

−max(0, d(xi, xij) − ri)
si

) = log2(k) (2)
TABLE 1 Strawberry ripeness classification dataset.

Ripeness category #Training set #Test set

White 603 178

Breaking 313 83

Turning-1 230 61

Turning-2 230 64

Ripe 359 116

Full ripe 437 149

Total 2172 651
fr
B

A

FIGURE 1

(A) Initial images. (B) Images of strawberries at different ripeness. From left to right: White, Breaking, Turning-1, Turning-2, Ripe and Full ripe.
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In high-dimensional space, the distance probability is expressed

as Eq. (3) and (4).

pi ∣ j = exp(
−max(0, d(xi, xij) − ri)

si
) (3)

pij = pi ∣ j + pj ∣ i − pi ∣ jpj ∣ i (4)

In the low-dimensional space, the distance probability is

expressed as Eq. (5), where yi, yj are low-dimensional space data,

a≈1.93, b≈0.79 are hyperparameters.

qij = (1 + a(yi − yj)
2b)−1 (5)

Finally, a low-dimensional representation of UMAP is obtained

by minimizing the cross-entropy cost function, which can be

expressed as Eq. (6).

CE(X,Y) =oioj
pij(X)log

pij(X)

qij Yð Þ

 !
+ 1 − pij(X)
� �

log
1 − pij(X)

1 − qij(Y)

 !" #

(6)

After resizing the strawberry patches to a size of 30×40 pixels,

the pixel values of each patch were inputted into UMAP as the

original high-dimensional data for 1000 iterations. The algorithm

was implemented by umap of the python third-party tool library.

The size of local neighborhood and effective minimum distance

were respectively set to 25 and 0.4 for iteration. By reducing the

initial data to three-dimensional space through the UMAP

algorithm, we can observe the distribution of strawberries with
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different ripeness levels (Figure 2). Strawberries at different ripeness

levels exhibit distinct boundaries and tend to cluster together based

on their ripeness. This observation confirms the correctness of

strawberry image annotation to a certain extent. But some points

have large deviations, and we checked the strawberry patch

annotations corresponding to these points. Then based on this

result, the annotations of some images in the dataset were modified

to improve the quality of manual annotations, making them more

suitable for subsequent training tasks.
2.3 The overall processing flow of
strawberry image

The image processing flow is shown in Figure 3. First, the initial

image is input into the Mask R-CNN network for strawberry

instance segmentation, which generates a mask map. Next, each

strawberry instance is segmented using the corresponding mask and

divided into four sub-regions to extract features. Finally, the

extracted feature values are input into a classifier to determine the

ripeness level, resulting in the final visualization on the initial image.

The ripeness detection of strawberries can be completed through

the above three steps.
2.4 Strawberry detection model

Convolutional neural networks have strong feature extraction

capabilities. However, in common convolution operations, the
FIGURE 2

3D visualization of partial data sets on UMAP. 0 to 5 indicates increasing ripeness.
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convolution is typically performed using multiple sets of

convolution kernels of the same size, and the individual channels

are then summed to obtain feature maps. The common convolution

operation mode is the same, resulting in a limited richness of the

learned feature representation. Therefore, the final segmentation

results may exhibit shortcomings such as unclear object edges and

incomplete segmentation of large objects (Pérez-Borrero et al.,

2020). However, the utilization of self-calibrated convolutions can

to a certain extent mitigate the above target segmentation issues.

The Mask R-CNN instance segmentation model with self-calibrated

convolutions will be explained in detail below.

2.4.1 Self-calibrated convolutions
A larger receptive field means that CNN can extract richer

semantic information. In the traditional convolution process, the

convolution kernels in same size result in fixed receptive fields, which

may lack the capability to capture higher-level semantic information

from a larger receptive field. The idea of self-calibrated convolution is

to use deep features with a larger receptive field (such as strawberry

advanced global information) to calibrate shallow features with richer

position information (such as strawberry shape contour information)

(Liu et al., 2020). The conventional convolutional layer applies a

convolution operation to the feature map using a set of convolution

kernels (K) of identical size. The self-calibrated convolution

technique involves dividing the set of convolution kernels (K) into

four parts, K1, K2, K3, and K4, and each part performs distinct

convolution operations. Assuming that the number of input and

output channels is the same, and the shape of K is (C, C, w, h), then

the shape of K1 to K4 is (C/2, C/2, w, h). The details are shown in

Figure 4. The input feature maps are divided into two parts, Part A

and Part B. The K2 branch feature maps are first down-sampled to

make it have a larger receptive field, and then convolution operation

and up-sampling are performed with K2. Subsequently, the
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upsampling results are added to the feature maps of part B, and

these results are then mapped to a weight value ranging from 0 to 1.

This weight value assists in the convolution operation of the K3

branch, thereby achieving the goal of calibration. Finally, Part A and

the calibrated Part B are concatenated after K1 and K4 convolution

operations to obtain the final output feature maps.

The self-calibrated convolutions can effectively expand the

receptive field and make the target positioning more complete

and accurate without introducing additional parameters and

complexity. The growth of strawberries in the field is influenced

by a multitude of environmental factors, which often leads to

variations in their sizes. The receptive field of common

convolution is fixed and cannot adapt to changes in strawberry

size. To address this limitation, the self-calibrated convolutions

module is introduced to enhance the feature extraction results.

2.4.2 Mask R-CNN combined with
self- calibrated convolutions

Mask R-CNN (He et al., 2017) is a convolutional neural

network designed for instance segmentation tasks, and it can

segment fruits from complex natural environments (Ge et al.,

2019; Yu et al., 2019; Huang et al., 2020). Mask R-CNN uses

ResNet50/ResNet101 (He et al., 2016) as the backbone network

and FPN (Lin et al., 2017) as the neck. Its head is the Faster R-CNN

(Ren et al., 2017) head and adds a Mask head branch for pixel-level

image segmentation. In order to reduce the computational cost,

ResNet50 is selected as the backbone network. The Mask R-CNN

network structure is shown in Figure 5A.

To enhance the performance of Mask R-CNN and achieve more

accurate strawberry segmentation, the aforementioned self-calibrated

convolutions are integrated into the original network. ResNet50 is

constructed by stacking multiple building blocks, which consist of

convolutional blocks and identity blocks. The architectural details of
FIGURE 3

Flow chart of strawberry image processing.
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ResNet50 can be found in Figure 5B. It is worth mentioning that in

Figure 5B, the last average pooling layer and fully connected layer of

the original ResNet50 architecture are omitted. Convolutional block

has a structure similar to identity block, which consists of a series of

1 × 1 convolution and 3 × 3 convolution, but the former has onemore

1 × 1 convolution calculation in upper branch, as shown in Figure 5C.

The self-calibrated convolution module can improve the network

feature extraction results, so the convolution calculation of 3 × 3

convolution layers in all building blocks are replaced by self-

calibrated convolutions.

2.4.3 Model training
The training of DL model performed under the environment of

Intel(R) Core(TM) i7-10700KF CPU @ 3.80GHz, 10 GB NVIDIA

GeForce RTX 3080 GPU and 32 GB of RAM. The network was built

through MMDetction open source tool library on the basis of PyTorch

DL framework. In the training process, the horizontal flip data

augmentation was performed randomly to prevent overfitting. The

SGD optimizer was used for back-propagation to update the network

parameters. The learning rate decay strategy was applied in the model

training, and the learning rate was multiplied by 0.1 at the 15th, 20th,

and 25th epoch to gradually reduce the learning rate. The model had

been converging when the epoch was set as 30, so we saved the training

results of each epoch and selected the best one on the validation set as

test model. The specific hyperparameters are shown in Table 2.
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2.5 Feature extraction method

First, the RGB images were converted to HSV and Lab color

spaces, and the color features of strawberry patches were counted.

Then the change relationship between the color mean of each

channel and the ripeness level can be observed in Figure 6. The

ordinate in the figure represents the mean value of strawberry

foreground pixels, and the abscissa from 0 to 5 represents the

gradually increasing ripeness. It can be seen from the figure that the

average color values of channels B, G, and L show an obvious

decreasing trend with the increase of strawberry ripeness. The mean

color values of channels a and S increased significantly with the

increase of ripeness. There is a certain correlation between the color

feature value of strawberry and its ripeness, among which the

channel a is the strongest, but the channels R, b, H, and v are not

obvious enough. Channels B, G, L, a, and S are selected for

strawberry color feature extraction based on region segmentation

to reduce computational complexity and eliminate noise

interference in other data.

To extract strawberry features effectively, the strawberry is

divided into four sub-regions, and the color mean of each region

is extracted as the color feature of the strawberry. Before feature

extraction, it is necessary to divide and mark the strawberry, which

can be accomplished through the following steps. The specific

process is shown in Figure 7A.
FIGURE 4

Self-calibrated convolutions structure.
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Step 1: Determine the strawberry centroid. After processing the

original image with Mask R-CNN, a masked binary image of

strawberry will be generated. The mask coordinate (xi, yi) and Eq.

(7) are used to determine the center of mass coordinate C (x0, y0) of

strawberry.

x0 = oN
i=1

pixi

oN
i=1

pi

y0 = oN
i=1

piyi

oN
i=1

pi

8>><
>>: (7)

where N is the total number of strawberry pixels, and pi is the

value of the i-th pixel.

Step 2: Find the longest line segment through the centroid. The

outer contour point Pi of the strawberry binary image can be
TABLE 2 Hyperparameters of model training.

Hyperparameter Value

Learning Rate 0.02

Momentum 0.9

Optimizer SGD

Batch Size 3

Epoch 30

Wormup Iterations 500

Decay Steps(epoch) [15,20,25]
B

C

A

FIGURE 5

(A) Mask R-CNN network architecture. (B) ResNet50 network architecture. (C) Building block architecture.
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expressed as f(xi, yi) ∣ 1 ≤ i ≤ Mg, and by traversing each outer

contour point, M straight lines passing through the centroid C (x0
, y0) can be obtained, which can be expressed as f(x, y) ∣Aiy + Bix +

Ci = 0, 1 ≤ i ≤ Mg. These lines are traversed, and the distance from
each contour point to the line is obtained using Eq. (8). Find the

contour point Pi’ at the minimum distance and use it as another

approximate intersection of this line with the contour. When the

minimum distance is 0, it indicates that the point is on the line

(excluding the contour points that construct the line). This results

in a total ofM approximate intersections. Finally, each line has two

intersections with the strawberry outline. The farthest set of

intersection points are connected and used as the longest line

segment PP’ through the strawberry’s centroid.

d =
Aixj + Biyj + Ci

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i + B2

i

p , (1 ≤ i ≤ M, 1 ≤ j ≤ M) (8)

Step 3: Find three vertical lines to divide the longest line

segment into four equal parts. We can easily find the three

coordinate points a, b, c on the line segment PP’ such that PP’ is

divided into four equal parts. Then through these three points, three

vertical lines la, lb, lc perpendicular to the line segment PP’ are

obtained. Each vertical line approximately intersects with the

strawberry contour at two points, which can be obtained by

calculating the approximate intersection point in step 2.

Step 4: Area marking. The three sets of intersection points in

step 3 are connected respectively, and the strawberry is divided into

four sub-regions. The centroid coordinate C of each sub-region is

calculated separately by Eq. (7). The sub-regions are sorted from

bottom to top according to the value of y0 and marked as R1, R2, R3,

R4. The purpose of region marking is to enable subsequent feature

extraction in this order.

Figure 7B shows some examples of results after the strawberry

region is automatically divided. It can be seen that each sub-region

of strawberry is well segmented by three line segments, and the four

sub-regions are correctly marked in order.
2.6 Classification method

According to the extracted strawberry features, selecting a

classifier that matches the data type can maximize the
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classification effect. Strawberry features are high-dimensional data

and have nonlinear characteristics. To fully leverage the

performance of the classifier and enhance the accuracy of

ripeness classification, the SVM (Support Vector Machine) was

considered first. SVM is a linear classifier suitable for processing

high-dimensional data. Due to its advantages of fast training speed,

high accuracy, and good robustness, SVM has gained extensive

usage in the field of image classification (Tu et al., 2018; Dhakshina

Kumar et al., 2020). For comparison, we tried other classic machine

learning methods, including LR (Logistic Regression), KNN (K-

Nearest Neighbors), RF (Random Forest), and finally obtained the

best classifier by comparative analysis. We used 5-fold hierarchical

cross-validation and grid search methods to optimize the

parameters of these classifiers. The optimized parameters were

used as the final parameters of the model (Table 3).
3 Results

3.1 Evaluation methods

For segmentation tasks, we will compare the segmentation effects

of Mask R-CNN’s backbone network before and after adding self-

calibrated convolutions. For the task of strawberry ripeness

classification, we will evaluate the classification performance of

different classifiers using various combinations of color channels.

Subsequently, we will identify the optimal classifier based on the

results. Then we will use the optimal classifier to evaluate the

classification effect of different feature extraction methods to illustrate

the superiority of our proposed feature extraction method. Finally, the

proposed method will be compared with the common CNN.

The following is an introduction to the model evaluation

indicators. AP, AP.50, AP.75 are used to evaluate the segmentation

effect of the model. F1 and accuracy are used to evaluate the

classification performance of the classifier. AP represents the mean

of the average precision under 10 IoU thresholds from 0.50 to 0.95

with 0.05 intervals, which is the most important evaluation metric for

MS COCO competition. AP.50 represents the average precision when

IoU=0.50, and AP.75 represents the average precision when

IoU=0.75. IoU is the intersection and union ratio of the mask area.

The average precision is the area under the P-R curve, which can be
FIGURE 6

Mean values of different color spaces. 0 to 5 indicates increasing ripeness.
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obtained from Eq. (9). P(r) is the P-R curve obtained from precision

and recall. TP represents the number of positive samples correctly

predicted. TN represents the number of negative samples correctly

predicted. FP represents the number of positive samples that were

incorrectly predicted. FN represents the number of negative samples

that are incorrectly predicted.

Precision = TP
TP+FP

Recall = TP
TP+FN

Average Precision = ∫ P(r)dr

8>><
>>: (9)

F1   Score = 2�Precision�Recall
Precision+Recall

Accuracy = TP+TN
TP+TN+FP+FN

(
(10)
3.2 Detection performance of instance
segmentation model

To assess the impact of the Mask R-CNN model improvement,

we conduct a comprehensive comparison by considering the
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training phase, testing phase, and the final strawberry

segmentation results. This allows us to observe the effectiveness of

the model before and after the proposed enhancements. The loss

curve and training error curve of the model are shown in Figure 8. It

can be seen from the figure that the loss of the model begins to

stabilize around 25 epochs, and the model has converged at 30

epochs. After incorporating self-calibrated convolutions to the

original ResNet50 backbone network, the model exhibits lower

loss during convergence, indicating an improved fit of the model.

Additionally, it is evident that the training error of SCNet50, after

incorporating self-calibrated convolutions, is lower than that of

ResNet50. This demonstrates that the inclusion of self-calibrated

convolutions leads to an improvement in model accuracy to a

certain extent.
During the training process, the best performing model on the

validation set was saved. Then the final performance of the model was

verified on the test set. The test results of the model are shown in

Table 4. Mask R-CNN utilizing SCNet50 as the backbone network

exhibits a higher average precision compared to using ResNet50. The

AP of SCNet50 reaches 0.937, which is 0.039 higher than that of

ResNet50, and the AP.50, AP.75 are also improved by 0.021 and

0.032, respectively. But in inference speed, the FPS of SCNet50 is

reduced, which is within our allowable range. The feature extraction

ability of ResNet50 is improved after adding self-calibrated

convolutions. Not only did the model perform better on training, it

also performed well on testing. This indicates its strong generalization

ability, but at the same time it also increases a certain time cost.
The final segmentation results of strawberry are shown in Figure 9.

The strawberry marked by the yellow box in the first row of picture has

missed detection. The reason may be that the surrounding background

color is similar to the strawberry. The strawberry in the picture on the

right is successfully detected because SCNet50 extracts richer semantic

information. It is still capable of identifying the target even in cases
TABLE 3 The main parameters of the different classifiers.

Classifier Param

LR ‘c’: 0.7, ‘solver’: ‘newton-cg, ‘penalty’: l2

KNN ‘n_neighbors’: 12

RF ‘max_depth’: 20, ‘n_estimators’: 35

SVM ‘C’: 10, ‘kernel’: ‘rbf’, ‘gamma’: 0.0005
* ‘c’: reciprocal of penalty term coefficient, ‘penalty’:penalty item, ‘solver’: optimization
method, ‘n_neighbors’: number of neighbors, ‘max_depth’: decision tree maximum depth,
‘n_estimators’: number of decision trees, ‘C’: penalty coefficient, ‘kernel’: kernel function,
‘gamma’: gamma coefficient.
BA

FIGURE 7

(A) Flow chart of strawberry region segmentation. (B) Example of strawberry region segmentation results.
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where the background and the target have similar colors. In the second

row of the figure, the overlapping strawberries marked by the yellow

box on the left are not completely segmented. In the third row of the

picture, the strawberry marked by the yellow box on the left is

incorrectly identified as part of the strawberry because the strawberry

is occluded by the leaf. These erroneous segmentations will have an

impact on subsequent strawberry ripeness classifications. From

Figure 9D, it can be observed that the aforementioned erroneous

segmentations have been effectively improved, and overall, the edges of

the strawberries are more detailed. By adding self-calibrated

convolutions, the model has a larger receptive field and can generate

richer feature representations, making target positioning

more accurate.

To further analyze the model’s robustness against occlusion, we

have compared the strawberry segmentation accuracy under different

occlusion areas (Table 5). We manually counted the number of

strawberries covered by stalks, leaves, and other strawberries in the

test set, dividing them into two categories: 0-20% and 20-50% based

on occlusion area. As shown in Table 5, SCNet50 demonstrates

higher accuracy in segmenting strawberry when faced with occlusion

interference, particularly under the 20-50% occlusion area where its

mean IoU improves by 0.056 compared to ResNet50. Examples of the

segmentation results can be found in Figure 10.
3.3 Strawberry color feature extraction

We employ the approach outlined in Section 2.5 to extract the

color features of strawberries. By calculating the color mean of each

sub-region in each channel, we can observe the trends and
Frontiers in Plant Science 1058
variations in these color features. The results are shown in

Figure 11. The ordinate in the figure represents the average pixel

value of the strawberry sub-region, and the abscissa from 0 to 5

represents the gradually increasing ripeness. With the change of

sub-regions R1 to R4, the color feature values in channels B, G, L

show an increasing trend at the same ripeness stage, and show a

decreasing trend in channels a and S. In addition, the color feature

values of the B, G, and L channels have similar trends with ripeness.

Among them, R1, R2, and R3 decrease with increasing ripeness,

while R4 gradually increases in the first three ripeness stages and

then gradually decreases in the last three ripeness stages. Channel a

and S have a gradual rise in overall. Among them, R4 gradually

decreases in the first three ripeness stages in the channel S, and the

latter three ripeness stages gradually increases. As the strawberry

ripeness increases, we observe a systematic change in the color

feature values of the different sub-regions across each channel. This

consistent pattern proves beneficial for the effective functioning of

subsequent classifiers.
3.4 Classification of strawberry ripeness

The classification results of strawberry ripeness are shown in

Table 6. From the perspective of each color channel, Channel a

achieves the highest classification accuracy when considered

individually. Among the classifiers, SVM shows the best

performance with an accuracy of 0.850. It can be easily explained

from Figure 11. The color feature values of Channel a increase with

the ripeness, indicating a strongest correlation and providing

favorable conditions for classifier judgment. In the combined
FIGURE 8

Model training loss and training error. SCNet50 is the backbone network with self-calibrated convolutions.
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channels, as the number of channels increases, the accuracy of the

LR and SVM classifiers gradually increase. However, in the KNN

classifier, BGa, GaS, BGaS, and BGLaS under the combination

channels have decreased accuracy compared to Ga. This shows

that the features of the B, S, and L channel have a certain

interference effect on the classification effect of KNN. In the RF

classifier, the results of GaS have decreased compared to Ga, and the

results of BGLaS have decreased compared to BGaS. This indicates

that the feature information from the S and L channels is redundant

for the classifier, and including this data dose not lead to an

improvement in performance. When all channels are combined,

SVM achieves the highest classification accuracy of 0.866,

demonstrating its effectiveness in handling high-dimensional data.

The classification performance of RF is second only to SVM, with

an accuracy of 0.861 achieved using the BGaS channel. The

inaccurate classification may be due to abnormal distribution of

surface color in some strawberries or the strawberries not being in a

downward fruit-hanging posture overall. These will cause outliers in

feature extraction, which will lead to wrong classification.

Figure 12. is the confusion matrix when RF and SVM

respectively obtain the best results. Except in Breaking (label 1)

and Turning-1 (label 2), SVM is better than RF. According to the

above analysis, SVM is selected as the suitable classifier.
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The final detection results of strawberry ripeness is visualized

(Figure 13). It is worth mentioning that the probabilities in the

results represent SVM classification probabilities. It is important

to mention that in the left image of the second row, there was an

undetected green strawberry. This is because it is not considered

in the model training and does not belong to any of the six

ripeness categories. Strawberries can be detected in both

frontlighting and backlighting environments, as shown in the

first row of images. Even under slight occlusions, as depicted in

the second row, the strawberry ripeness level can still be

successfully identified. However, in the right image of the first

row, the strawberry is severely occluded, and the instance

segmentation model failed to detect the strawberry, resulting in

the inability to recognize its ripeness subsequently. In the last

image, the same strawberry was detected twice, resulting in

duplicate detections. This is because the strawberry is occluded

by the stalk, and the instance segmentation model mistakenly

recognizes it as two instances, causing subsequent tasks to treat it

as two objects for processing. In general, the overall performance

of the model is largely affected by the segmentation performance.

When the first-stage segmentation model failed to detect or

misdetected objects, the model was unable to predict strawberry

ripeness, so the predictions could not be reversed.
B C DA

FIGURE 9

Strawberry segmentation results. The yellow rectangles indicate the area to be compared. (A) Ground truth. (B) Initial images. (C) ResNet50 results.
(D) SCNet50 results.
TABLE 4 The test results of instance segmentation model.

Model Backbone AP AP.50 AP.75 FPS

Mask R-CNN
ResNet50 0.898 0.958 0.937 19.4

SCNet50 0.937 0.979 0.969 18.2
frontiers
SCNet50 is the backbone network with self-calibrated convolutions.
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3.5 The effect of different sub-regions on
classification results

Table 7 is the classification results of strawberry ripeness

under the SVM classifier based on the color features of different

sub-regions. In terms of the single sub-regions’ effects, except for

the B channel, R3 consistently exhibits the highest classification

accuracy. In terms of the combination effects of sub-regions, as

the number of sub-regions increases, the feature information is

more diverse and comprehensive. Consequently, this leads to

enhanced classification accuracy for each single channel. In

order to further analyze the specific contributions of each sub-

region to different ripening stages of strawberries, we extracted

the color feature values under the combined channel BGLaS.

Subsequently, we utilized the SVM classifier to classify the

ripeness. The number of correct classification labels was

counted, as shown in Table 8. First of all, the sub-region with

the highest classification accuracy is R3, which is 68.15%. This is

consistent with the result that R3 in Table 7 basically maintains

the highest accuracy in a single channel. In the White stage, the
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accuracy of R2 demonstrates the highest performance, while in

the Breaking and Turning-1 stages, the accuracy of R1 exhibits

the highest level of accuracy. The classification effect of Turning-

2 mainly depends on R3, which contributes the most to the

classification effect of this stage. Ripe and Full ripe both bring the

most obvious classification effect under R4.

The increase of strawberry ripeness is basically accompanied

by the continuous expansion of the surface red area from bottom

to top, as shown in Figure 14. During the early stages of

strawberry ripeness, the red area is small. The color change

primarily occurs in the lower half of the strawberry, while the

color of the upper half remains relatively unchanged. Therefore,

the color differences of White, Breaking and Turning-1 in the

sub-regions R1 and R2 are relatively large, which is conducive to

the judgment of the three ripeness levels. In the later stages of

strawberry ripening, the lower half of the strawberry basically

turns red, and the green area of the upper half gradually

diminishes. This color difference is also helpful in judging the

ripeness of Turning-2, Ripe and Full ripe. Therefore, when

considering Table 8, it becomes evident that R1 and R2 play a

significant role in determining the first three ripeness levels. On

the other hand, R3 and R4 exhibit greater influence in discerning

the last three ripeness levels. In Table 8, the accuracy of each sub-

region of the White stage is higher, because the whole surface of

the strawberry in the White stage is light green. No matter under

which sub-region, its color value is obviously different from

other stages.
3.6 Comparison of different
classification methods

To validate the superiority of the proposed feature extraction

method, we compared it with the common manual feature

extraction methods. Typical manual feature extraction methods

can be divided into two categories: 1) taking each pixel as a feature

value; 2) taking the pixel mean of the foreground target as a feature

value. Table 9 shows the classification results of different strawberry

color feature extraction method. Method 1 is to resize the

strawberry block cropped by the rectangular frame to 30×40,

while method 2 is to take the mean value of the segmented

strawberry foreground pixels as the feature value. Table 9 clearly

demonstrates that the accuracy of the proposed method is higher

than other methods across all channels. The highest accuracies of

method 1 and method 2 are 0.811 and 0.826, which are 0.055 and

0.040 lower than the proposed method respectively. Method 1

primarily emphasizes full-image pixel classification, placing

excessive emphasis on pixel position information. This approach

may result in inaccurate classification, particularly when dealing
B C DA

FIGURE 10

Segmentation examples under different occlusion areas. (A) Ground
truth. (B) occlusion strawberries. (C) ResNet50 results. (D) SCNet50
results.
TABLE 5 Mean IoU comparison of models under different occlusion areas of strawberries.

Model Backbone 0~20% 20~50%

Mask R-CNN
ResNet50 0.896 0.849

SCNet50 0.918 0.905
fro
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with horizontally arranged strawberries that undergo deformation

during the resizing process. Method 2 primarily emphasizes

foreground pixel classification and relies on the color mean value

as a classification feature. However, it overlooks pixel position

information, which ultimately results in inaccurate classification.

While the color feature extraction based on region segmentation in

the proposed method takes into account both the positional

information of the red region as it changes with ripeness and the

pixel-level information. Therefore, the proposed method can obtain

more informative features for strawberry ripeness classification.

The fruit ripeness classification based on CNN is also a widely

adopted method. Therefore, we conducted a comparison between

the proposed method and commonly used CNN models. The

parameter settings of CNN model training are consistent. The

learning rate and batch size are 0.001 and 16, respectively. The

model uses the SGD optimizer and iterates for 30 epochs to train the

parameters. The learning optimization strategy adopts the

MultiStepLR method, and the learning rate decays at the 18th,

24th, and 27th epoch respectively. Gaussian blur and horizontal flip

data augmentation are randomly performed on the image during
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training. The experimental results are shown in Table 10. Except

that the F1 score of the proposed method is lower than AlexNet and

ResNet18 in the Turning-1 and Turning-2 stages, the rest of the

ripeness stages show better classification results. The classification

error rate of the proposed method is primarily concentrated in the

Turning-1 and Turning-2 stages, because there are more

strawberries in transitional ripeness stages between Turning-1

and Turning-2 stages. Their features are very similar, which can

easily result in the classification results to swing between these

two stages.
4 Discussion

In this study, we have developed a method that combines Mask

R-CNN and region segmentation to accurately assess the ripeness of

strawberries in the field. The method proposed in this paper is

compared with existing research work (Table 11). In most cases,

managing strawberry planting, including monitoring fruit growth

status and predicting fruit yield, needs to be done in a natural
FIGURE 11

Variation trend of color feature values in strawberry sub-regions. 0 to 5 indicates increasing ripeness.
TABLE 6 Classification accuracy of different color channels.

B G L a S Ga BGa GaS BGaS BGLaS

LR 0.651 0.768 0.693 0.842 0.704 0.840 0.850 0.849 0.854 0.857

KNN 0.645 0.783 0.724 0.844 0.696 0.839 0.828 0.829 0.823 0.819

RF 0.622 0.791 0.705 0.846 0.659 0.860 0.860 0.856 0.861 0.849

SVM 0.639 0.770 0.710 0.850 0.697 0.854 0.863 0.859 0.863 0.866
front
Values in bold mean the highest classification accuracy under single channel and combined channel among all classifiers.
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environment rather than indoors. In earlier studies, the majority of

research was conducted within the confines of an indoor setting.

This highly structured environment allowed for greater control,

thereby facilitating the extraction of strawberry features and

subsequent analysis(Zhang et al., 2016; Indrabayu et al., 2019; Su

et al., 2021). Compared to the unstructured outdoor environment,

the complexity of lighting, background similarity to fruit,
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overlapping fruit, and fruit occlusion by plants are some of the

uncertain factors that can pose a challenge (Yu et al., 2019; Pérez-

Borrero et al., 2020). The presence of these phenomena poses a

challenge in precisely segmenting the target fruit from the

surrounding environment, thereby impacting the subsequent

research work. The significant improvement of AP in Table 4 is

specifically reflected in the model’s miss rate of strawberries and the
BA

FIGURE 12

(A) RF confusion matrix. (B) SVM confusion matrix. 0 to 5 indicates increasing ripeness.
FIGURE 13

The visualization results of strawberry ripeness detection.
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integrity of the segmentation mask. Thanks to the unique

architecture of self-calibrated convolution, the model shows the

potential of greater adaptability in the face of complex

field environments.

Strawberries undergo a brief veraison period and mature

rapidly. By utilizing a more comprehensive categorization of
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ripeness stages, fruit farmers can obtain precise information on

fruit growth, enabling them to efficiently seize crop management

opportunities such as topdressing and harvesting. In this study,

strawberries were categorized into six ripeness levels, providing

more comprehensive information on their ripeness than previous

studies. Due to the large similarity between some categories (such as
TABLE 7 Classification results of different sub-regions under single channel.

R1 R2 R3 R4 R3R4 R1R3R4 R2R3R4 R1R2R3R4

B 0.488 0.493 0.481 0.487 0.588 0.630 0.625 0.639

G 0.601 0.604 0.621 0.593 0.694 0.766 0.768 0.770

L 0.524 0.539 0.553 0.551 0.639 0.682 0.699 0.710

a 0.590 0.642 0.710 0.690 0.776 0.846 0.840 0.850

S 0.510 0.521 0.522 0.502 0.625 0.693 0.671 0.697
fr
TABLE 8 Contribution of different sub-regions to each ripeness stage.

Class (number) R1 R2 R3 R4

White (178) 172(96.63%) 174(97.75%) 169(94.94%) 164(92.13%)

Breaking (83) 62(74.70%) 61(73.49%) 51(61.44%) 46(55.42%)

Turning-1 (61) 41(67.21%) 36(59.02%) 26(42.62%) 1(1.64%)

Turning-2 (64) 1(1.56%) 21(32.81%) 37(57.81%) 26(40.63%)

Ripe (116) 28(24.14%) 43(37.07%) 74(63.79%) 89(76.72%)

Full ripe (149) 124(83.22%) 127(85.23%) 124(83.22%) 136(91.28%)

Total (672) 428(63.69%) 437(65.03%) 485(68.15%) 433(64.43%)
Values in bold mean the highest classification accuracy in each ripeness stage.
FIGURE 14

Examples of sub-regions at different ripeness levels.
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Turning-1 and Turning-2), it is difficult for the classifier to

distinguish them, which eventually leads to a decrease in the

overall accuracy (Table 10). This phenomenon is also evident in

other studies on fruit ripeness. (Saranya et al., 2021; Chen et al.,

2022). Categorizing strawberries into 2 to 3 ripeness levels enhances

the distinctiveness of their characteristics, facilitating the classifier’s

judgment and contributing to the high accuracy achieved in

previous studies (Habaragamuwa et al., 2018; Shao et al., 2020;

Raj et al., 2022). However, the rough ripeness classification will

make the strawberry interval span larger. This often leads to missed

opportunities for timely topdressing during the intermediate stages

of ripeness and the optimal timing for harvest under various sales

patterns towards the end of ripeness. We devised a color feature

extraction method that incorporates region segmentation, along
Frontiers in Plant Science 1664
with a classifier tailored to the feature data, resulting in precise

classification of strawberries into six ripeness levels. The method we

proposed not only enables the completion of multi-category

ripeness distinction, but also ensures high accuracy. This provides

important technical support for the precise harvesting operation

of strawberries.
5 Conclusion

This study presents a fine recognition method for assessing

strawberry ripeness, with the objective of addressing the current

issue of coarse classification and emphasizing indoor experimental

investigations. It can provide more accurate decision support for
TABLE 9 SVM classification accuracy of different feature extraction methods.

B G L a S Ga BGa GaS BGaS BGLaS

Method 1 0.612 0.745 0.676 0.762 0.676 0.811 0.806 0.800 0.799 0.796

Method 2 0.520 0.692 0.614 0.786 0.561 0.800 0.812 0.821 0.821 0.826

Proposed 0.639 0.770 0.710 0.850 0.697 0.854 0.863 0.859 0.863 0.866
front
Values in bold mean the highest classification accuracy for each method.
TABLE 10 Test results of different classification methods.

Ripeness category
AlexNet ResNet18 Proposed

P R F1 Acc P R F1 Acc P R F1 Acc

White 0.94 0.99 0.96

0.848

0.99 0.93 0.96

0.856

0.98 0.98 0.98

0.866

Breaking 0.86 0.75 0.80 0.73 0.94 0.73 0.83 0.81 0.82

Turning-1 0.69 0.74 0.71 0.79 0.69 0.79 0.67 0.77 0.72

Turning-2 0.69 0.72 0.72 0.72 0.61 0.72 0.70 0.62 0.66

Ripe 0.77 0.81 0.79 0.78 0.81 0.78 0.82 0.84 0.83

Full ripe 0.93 0.87 0.90 0.92 0.93 0.93 0.95 0.93 0.94
ier
Acc means accuracy.
TABLE 11 Comparison of different ripeness identification methods.

Source Classes Environment Model Results

Zhang et al. (2016) 3 Laboratory SVM Accuracy: over 85%

Habaragamuwa et al. (2018) 2 Field DCNN AP: 88.03%, 77.21%

Indrabayu et al. (2019) 3 Laboratory SVM Accuracy: 85.64%

Shao et al. (2020) 3 Laboratory, Field PLS-DA, LS-SVM Accuracy: 91.7% ~ 96.7%

Su et al. (2021) 4 Laboratory
1D ResNet,
3D ResNet

Accuracy: 86.03%, 85.29%

Fan et al. (2022) 4 Field YOLOv5 Accuracy: over 90%

Raj et al. (2022) 3 Laboratory, Field SVM Accuracy: over 98%, 71%

Ours 6 Field Mask R-CNN,SVM Accuracy: 86.6%
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strawberry harvest management. The achievement of fine recognition

of strawberry ripeness in the field involves three stages. The first stage

is to detect and segment strawberries from images with a deep

learning model. We added self-calibrated convolutions to Mask R-

CNN to improve the network segmentation effect, and the final AP

and AP.50 were 0.937 and 0.979, respectively. The second stage is

strawberry color feature extraction. Firstly, to extract relevant

features, the change trend of feature values with ripeness was

analyzed, leading to the selection of channels B, G, L, a, and S for

feature extraction. Subsequently, the strawberry was divided into four

sub-regions, and the feature values of each region were individually

extracted under the aforementioned color channels. The third stage is

ripeness classification. The feature values were input into different

classification models for ripeness classification, and finally achieved

the best results in the SVM classifier. The classification accuracy of

SVM is 0.850 under single channel a and 0.866 under combined

channel BGLaS. Through additional experiments, it was observed

that sub-regions R1 and R2 primarily play a role in identifying

strawberry ripeness in the White, Breaking, and Turning-1 stages.

On the other hand, sub-regions R3 and R4 demonstrated significant

contributions in identifying strawberry ripeness in the Turning-2,

Ripe, and Full ripe stages.

In summary, the incorporation of self-calibrated convolutions

enhances the model’s robustness in field environments, leading to

improved segmentation outcomes for strawberries. Additionally,

the color feature extraction method based on region segmentation

effectively captures the distinctive feature information among

strawberries of varying ripeness levels, thus enhancing the

classifier’s ability to differentiate between strawberries at different

stages of ripeness. The research findings demonstrate that this

method can accurately identify multiple levels of ripeness for

strawberries in field conditions, thereby providing more effective

guidance for strawberry harvest management.
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Introduction: Intelligent monitoring systems must be put in place to practice

precision agriculture. In this context, computer vision and artificial intelligence

techniques can be applied to monitor and prevent pests, such as that of the olive

fly. These techniques are a tool to discover patterns and abnormalities in the

data, which helps the early detection of pests and the prompt administration of

corrective measures. However, there are significant challenges due to the lack of

data to apply state of the art Deep Learning techniques.

Methods: This article examines the detection and classification of the olive fly

using the Random Forest and Support Vector Machine algorithms, as well as their

application in an electronic trap version based on a Raspberry Pi B+ board.

Results: The combination of the two methods is suggested to increase the

accuracy of the classification results while working with a small training data set.

Combining both techniques for olive fly detection yields an accuracy of 89.1%,

which increases to 94.5% for SVM and 91.9% for RF when comparing all fly

species to other insects.

Discussion: This research results reports a successful implementation of ML in an

electronic trap system for olive fly detection, providing valuable insights and

benefits. The opportunities of using small IoT devices for image classification

opens new possibilities, emphasizing the significance of ML in optimizing

resource usage and enhancing privacy protection. As the system grows by

increasing the number of electronic traps, more data will be available.

Therefore, it holds the potential to further enhance accuracy by learning from

multiple trap systems, making it a promising tool for effective and sustainable fly

population management.

KEYWORDS

precision agriculture, olive fruit fly pest, machine learning, support vector machine,
random forest, computer vision, edge computing, remote sensing
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1 Introduction

Precision Agriculture for pest management requires constant

monitoring of the target pest population as well as continuous

evaluation of environmental conditions like temperature and

humidity. Bactrocera oleae (Gmelin), known as the olive fruit fly,

is a serious pest in the olive industry. If environmental conditions

favour the proliferation of this tephritidae, losses from this pest

might exceed 100% of productivity in a year. As a result, developing

a system capable of collecting field data is critical for precise

pest management.

The traditional monitoring system is based on flytraps. Those

traps kill specific species of fruit flies, which are then manually

collected and identified. The number of flies trapped are checked

manually usually every week during the fruit fly season and then

fortnightly during the winter months. The number of hours spent in

this check task is huge and due to the manually data collection

frequency, the time to detect an infestation is too large for flash

responses. Therefore, developing a monitoring station to automate

this manual trap checking will produce many benefits Martins et al.

(2019). In addition, several environmental and public health

problems appear when insecticides and off-target sprays are used

extensively without adequate management. Weather parameters

like air temperature and humidity levels in the spraying area are

critical to determine the moment to spray and the duration of this

process. The adult fly population is the insecticide target, and the

weather conditions are important to decrease or increase the spray

process effectiveness. In this sense, automatically monitoring those

parameters in real time using computer-based platforms is

important to adjust the spray activity.

In general, agricultural scenarios seem to be one of the most

promising application areas for wireless monitoring station

deployments due to the necessity of improving the agro-food

production chain in terms of precision and quality. This involves

a careful system design, since a rural scenario consists of an

extensive area devoid of an electrical power supply and available

wired connections. Automatic monitoring stations technology is

introduced in Precision Agriculture strategy (PA) to obtain accurate

real time field information and make accurate and optimum

decisions Bjerge et al. (2023); Fasih et al. (2023).

Plant pest control remains one of the main research objectives

of modern agriculture Shah and Wu (2019). The widespread use of

insecticides at the field level is still the most common practice for

the control of plant pests in general and for the fruit flies in

particular Dias et al. (2018). However, its use is being restricted

by official authorities due to its impact on the environment, human

health, and the development of resistance in target pests. The use of

PA for pest control has been applied to improve the control and/or

detection of several pests, as examples: particularly sensitive maps

are used to drive variable insecticide application for the control of

certain insect pests Reay-Jones et al. (2019); hyperspectral imaging

is used to detect fruit fly infestation in fruits Ding et al. (2021); or

GIS technologies are used to implement user support systems to

take more precise decisions about treatments of insect pests in the

Mediterranean areas Goldshtein et al. (2021). In all these cases, a

continuum of more accurate monitoring data produces a more
Frontiers in Plant Science 0268
accurate assessment of pest presence which, together with

geolocation information, improves understanding of the spatial

and temporal distribution of pest effects. In fact, the fast access to

the information about pests is mandatory to accurately manage

pests and diseases in agriculture Grasswitz (2019).

Since the monitoring of fruit flies is dependent on fly

identification, the first fruit fly identification platform was

proposed by Pontikakos et al. (2012) as a combination of

traditional manual inspection process and the computer-based

platform for storing the trap checking results. The proposed

computer-based platform can perform olive fruit fly evolution

analysis and treatment prediction considering weather conditions.

Although the manual trap inspection is also required, the automatic

analysis of data combined with weather conditions allows

determining the best period to apply the spray treatment and the

areas to be considered in the treatment.

The second one is related to solve the identification process and

reduce the time needed to check the fly traps. The authors in Bjerge

et al. (2023); Fasih et al. (2023) describe a procedure to identify the

fruit fly using image segmentation techniques using a camera as a

sensor and some computing process to obtain the identification

results. Although, the procedure is proposed using a MacPhil trap.

In a MacPhil trap, the fly can be over or in the liquid introducing

some additional difficulty for accurate fly identification process in

comparison with using sticky traps. The sticky trap retains the flies

on the surface of the trap plane and increases the possibilities to take

an adequate photograph for identification purposes.

This is where computer vision and Artificial Intelligence (AI)

come in. It can analyze the photo and identify the olive fly, reducing

the time it takes to check the traps and automating the process. As a

result, the farmer’s workload is reduced. Advances in image

identification techniques have paved the way for the use of AI in

this field. Although Deep Learning (DL) is the most commonly used

technique, Krizhevsky et al. (2017), and there are examples of their

effectiveness, Victoriano et al. (2023); Uzun (2023), this article

discusses classical machine learning (ML) approaches. This is

because DL requires a large dataset to achieve good results, and

such a dataset is currently unavailable. It is also computationally

expensive. Therefore, the study will focus on the ML algorithms

Random Forests (RF) and Support Vector Machines (SVM).

This work shows the design and implementation of a real time

automated low-cost olive fruit fly smart trap, will now be referred to

as e-trap throughout this article. The main novelty is the use of ML

for image identification, in addition to the connection through a

GPRS link with a cloud-based platform described in Miranda et al.

(2019). In particular, it is explored how RF and SVM can improve

efforts to reduce the use of pesticides against the olive fly to prevent

crop loss and monitor it remotely.
2 Materials and methods

The smart trap approach consists of a photographic camera for

image capture, a linux-based electronic system to implement the

algorithms to recognize olive fly adults, a solar-based power system,

and an ambient relative humidity/temperature sensor. The sensor
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and picture data collected by the smart trap is processed and stored

allowing in-situ access in case of communication lost.

The solar panel and the Stevenson screen for the humidity and

temperature sensors are at the upper part of a metal pole see

Figure 1A. The battery, transmitter system, and controller are

included in a box just in the middle part, as Figure 1A shows. The

controller system and the transmitter module are in the middle box

for weather condition protection. In addition, Figure 1B shows the

sticky trap supported by a metal pole, including a junction box with a

camera installed in front of the trap. This camera is connected to the

controller system for image capture and power supply. Finally, the

lower part of the metal pole will be used to nail the pole on Earth and

thus have a first fastening point to finish tying the pole to the

strongest olive branches. In this way, the metal pole will be stable and

tied up during the measurement period without disturbing the

agricultural machines and workers between olive trees.
2.1 Sensors and camera

The designed prototype includes a temperature, a relative

humidity sensor, and a camera serial interface (CSI). The two

sensors (model DHT22) installed in the upper part of the pole

will be connected and powered from the controller box. This sensor

has enough resolution in both parameters, see Table 1. The DHT22

device provides a new value each 2 seconds with reduced energy

consumption ratio. The controller system is designed to measure

and save in local storage memory the temperature and humidity

values each minute. But, only the maximum, minimum and the

average values are transmitted to the cloud server every hour
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including the exact timestamp. This methodology reduces the

amount of data to be sent to the server and filters the unwanted

values (aberrant values or errors in communication with the

sensor), storing the information on the station for post-analysis

and maintenance purposes.

The camera used is a CMOS sensor Omnivision 5647 with

removed IR filter (see Table 1 for camera specifications). It is

connected and powered by the controller system using a CSI bus.

The cable between camera and controller is 1.5 meters long,

allowing to determine the most adequate position of sticky trap

without restrictions of distances, see metal arm where sticky trap

and camera are fixed in Figure 1B.

The camera is the most energy demanding device in the

proposed e-trap system apart from the 4G modem. Therefore, it

is powered on during the instant to take the photo, afterwards, it

remains turned off. The instant when taking the photography can be

adjusted considering the sun position and the amount of light

available. The smart trap has been programmed by default, to take

three photos when the sun is around the upper level, so the sunlight

intensity will be the highest producing the highest image contrast.

The three photos will be taken around midday hour with a delay of

30 minutes between each photo. In addition, users can change the

timing of the photo at any time to capture the best quality photo

depending on the locations and shadows on the sticky trap surface.

Photographies are taken only three times a day because this is

not a real-time application. Here the goal is to infer and report the

insect population without being on the field. In addition, since the

system is not perfect, it is convenient to take several photographies,

three in our case, to filter errors and increase the amount of

training data.
A B

C

FIGURE 1

Electronic components of the e-trap. (A) E-trap with solar panel, Stevenson screen to protect the temperature and relative humidity sensor, battery
and electronics. (B) Camera placed in front of a Rimi® trap. (C) Battery and electronics.
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2.2 Controller and communication system

The controller system is one of the most important parts of the

smart trap. It manages sensor, camera, data transmission and

performs the fly identification task. All these tasks require enough

computer resources, low energy consumption and system flexibility.

In this work a Raspberry Pi B+ is selected to supply the required

hardware requirements in combination with the Raspbian OS lite

version. The selected platform is flexible enough to manage all the

tasks reducing the number of active processes and power

consumption, while image processing software can be

implemented using open-source resources like OpenCV,

Bradski (2000).

The communication module consists of an Airlink GL8200

modem connected to the controller system using the serial port

interface (SPI). The communication uses flux control to obtain

maximum transmission velocity ratios (115200 bps). The modem

module is compatible with standard AT commands and can allow

server connections using standard internet protocols like File

Transfer Protocol (SFTP), Hypertext Transfer Protocol (http) and

Network Time Protocol (NTP) between others. The NTP protocol

is used to maintain and update the local real time controller (RTC)

enabling a time-based schedule of the tasks. The http protocol

enables the connection with the remote server to store the sensor
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data and the fly count result on the remote database. In case of

necessary, the SFTP protocol allows uploading images to the server

for validation purposes with the penalty to increase the energy

consumption available at the smart trap. In any case, a SD storage

disk is used to save all sensor data, fly count and images. Therefore,

the data will remain in the smart trap in case communication fails

and can be accessed manually visiting the trap location during

sticky trap maintenance.
2.3 E-trap firmware

The e-trap controller is designed using the Raspian Lite

operating system implementing a time-scheduled management.

The different e-trap tasks are executed using the Cron task

manager embedded in the Unix systems. In this way, the e-trap is

configured to work alone without expecting interaction from

remote infrastructures.

The e-trap firmware is divided into five main tasks as shown in

the functional diagram in Figure 2. All tasks are lunched using the

Cron manager, Kernighan and Pike (1984). The first task, called

“system”, maintain the controller date and time updated, check the

battery level, peripheral power supply management and rebooting-

based strategy to avoid software issues. The second task, referred to

as “collect”, is related to sensor access, and collects temperature and

humidity values from DHT22 sensor storing it timestamped in a

local file using CSV format. The third task, named “capture”, takes a

picture adjusting the exposition time and white balance level to

optimize the resolution and the quality of the picture. The fourth

task, termed “identify”, analyzes the obtained images, and try to

identify the number of flies trapped. This identification process is

explained in the next section. And finally, the fifth task, called

“transfer”, is responsible to establish LTE communications, to send

the sensor data file to the remote server and to attend to the remote

requirements (send the picture file or software update).

Each task of the e-trap software is launched by Cron daemon at

different time during the day. Therefore, each task is implemented

independently of the other tasks avoiding that one task stop the rest

of tasks. In fact, meanwhile the Cron daemon is running, the tasks

are initiated and terminated without interaction between them.

It is important to note that the “system” task is executed twice a

day. The first time it reboots the controller to get a fresh system after

one day of continuous operation. The second execution of the

“system” task (@16:00) will shut down all peripherals not related to
TABLE 1 Specifications of sensor and camera elements.

Parameter Value

Sensor voltage supply 3.3 Vdc ≤ Vcc ≤ 6 Vdc

Sensor output type Digital

Temperature range -40°C to 80°C

Temperature accuracy ± 0.5°C

Temperature resolution 0.1°C

Humidity range 0% to 100% RH

Humidity accuracy 2% RH

Humidity resolution 0.1% RH

Sensor measurement period 2 s

Camera resolution 2592 x 1944 pixels

Camera focus Fixed focus

Camera dimensions 25 x 20 x 9 mm
FIGURE 2

E-trap firmware flowchart showing the five main tasks and their execution times.
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the collection task. With this procedure, the power consumption of

Raspberry Pi platform is minimized until the next day’s reboot.
3 Data collection and generation

3.1 Dataset collection

This article uses images of the two e-traps identified as N10 and

N17. These traps were placed in the olive fields of the “Institut de

Recerca i Formació Agroalimentària i Pesquera de les Illes Balears”

(IRFAP) in Mallorca, Spain. The OV5647 camera, which is already

integrated in the e-trap itself, was used to capture the images. The

resulting images have a resolution of 1600 pixels wide by 1200 pixels

high, 3 RGB channels, 24-bit depth, and were saved in.jpg format.

Note that the physical position of the traps in the olive trees was

similar but not exactly the same, resulting in differences in the final

image. The dataset consists of a total of 62 images, 45 generated by

N10 and 15 generated by N17. Figure 3 shows an example of an

image taken by each of the traps and Table 2 shows all this

data summarized.

By taking a photo every day until the sticky pad is replaced, the

observation reveals the emergence of new flies alongside the already

trapped flies that persist over time. Figure 4 shows how this allows

us to know how the same olive fly is observed with different lighting,

thus performing the data augmentation (DA) technique in an

organic way and allowing the classifier model to learn which

features have the highest priority in defining the fly for its correct

classification. The application of this technique is common in the AI

world, since it allows to face the problem of lack of data to train, and

in the PA world it is no exception (Brilhador et al. (2019);

Fawakherji et al. (2020)); (Shorten and Khoshgoftaar (2019)).
3.2 Dataset generation

The 45 images from N10 were used to train the classifier

models. Classifier test was performed on the remaining 15 images

from N17. This was advantageous because the classifier model never

knew the training data and could even be given different e-trap

positions and luminance conditions with respect to N10. In
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summary, it was possible to test whether a single e-trap could be

used to generate a first scalable smart trap system capable of

localizing and classifying the olive fruit fly.

After studying all the available images to train the classifier

model, the dataset consisted of 501 olive flies, 368 flies of other

species or very similar insects, and 611 different elements such as

the bag or tube with the olive fly attractant, the brand of the

adhesive panel, holes in the panel, other insects, shadows due to

different lighting, trap identifier, etc., all of 32 × 32 × 3 pixels. All of

these were grouped into two groups, “olive fly”/”others”, resulting

in a data set with a ratio of 501 “olive fly” and 979 “others” samples.

All these dataset values are summarized in Table 3.

A 9:1 ratio was used for training and validation of the models,

i.e. 90% of the samples are used for training and 10% for validation.

In addition, in order to have more working data, basic DA

techniques that could be present in the nature of the project were

applied: vertical image flipping, horizontal flipping, 90° rotation,

and changes in the brightness and contrast of the images. These

actions allowed us to enlarge each image up to 24 = 16 new

alternatives. In addition, it is worth highlighting these DA

techniques based on basic image manipulations are considered

“safe” for this application because the label is always preserved

Shorten and Khoshgoftaar (2019).

Two conditions were set for this DA process: first, between zero

and ten new images could be generated, this number being random

for each sample. Second, each DA technique could occur with a 50%

chance. In this way, the augmentation would not be homogeneous,

thus preventing the model from learning repetitive patterns. This

action eventually increased the training data set from 1332 to 8069

samples, and all AI models used it, so that the result comparisons

for different models are not biased by the dataset.

Finally, the test images from N17 were simply labeled to match

the image provided by the e-trap to simulate the real system process.
4 Machine learning
classification models

As mentioned earlier, due to the size of the dataset, the final

algorithms selected for this article were RF and SVM. These ML

methods and their validation would be the focus of this section.
FIGURE 3

Example targets from N10 and N17 sticky traps.
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4.1 Random forest

Random Forest, introduced by Breiman (2001), is a supervised

learning algorithm used for both classification and regression tasks.

It is an ensemble method that combines multiple decision trees to

make predictions. Each decision tree in the RF is built independently

on a different subset of the training data, and the final prediction is

made by aggregating the predictions of all the trees.

Here’s how RF works:
Fron
1. Data Preparation Given a collection of training examples

denoted as ½(xi, yi)�ni=1, where xi represents the input features
and yi represents the corresponding target labels, RF starts

by randomly selecting subsets of the training data with

replacement. These subsets are known as bootstrap

samples.

2. Building Decision Trees: For each bootstrap sample, a

decision tree is constructed independently. At each node

of the decision tree, a feature subset is randomly selected,

and the split that optimally separates the data based on

some criterion (e.g., Gini impurity or entropy for

classification, Jost (2006), mean squared error for

regression, Langs et al. (2011)) is chosen. The tree

continues to split the data until a stopping criterion is
tiers in Plant Science 0672
met, such as reaching a maximum depth or minimum

number of samples required to split further.

3. Ensemble Prediction: Once all the decision trees are built,

predictions are made by each tree on unseen data. For

classification tasks, the class with the majority of votes

among the trees is selected as the final prediction. For

regression tasks, the average of the predicted values from all

the trees is taken.
RF offers several advantages over individual decision trees:
• Ensemble Effect: By aggregating predictions from multiple

decision trees, RF reduces the risk of overfitting and

provides more robust predictions.

• Feature Randomness: Randomly selecting a subset of

features at each node helps to decorrelate the trees and

capture different aspects of the data.

• Out-of-Bag Evaluation: As the trees are built on bootstrap

samples, the instances left out in each sample (out-of-bag

instances) can be used for validation without the need for an

additional holdout set.
In summary, RF is a versatile and powerful algorithm that

combines the predictions of multiple decision trees to achieve high

accuracy and robustness in both classification and regression tasks.

It is particularly effective when dealing with complex data and can

handle a large number of features.
4.2 Support vector machines

Support vector machines (SVM), introduced by Vapnik and

Chervonenkis (2015), are also supervised learning models used for

classification and regression analysis. The term SVM typically does

not refer to a linear SVM, but rather to the use of kernel methods,

Sánchez A (2003).
FIGURE 4

Example of the same olive fruit fly from 8 to 15 October on N17.
TABLE 2 Dataset collection parameters.

Parameter Value

e-traps count 2 (N15 & N17)

Sticky trap images count 45/15 (N10/N17)

Location IRFAP, Mallorca, Spain

Resolution 1600 × 1200 × 3

Depth 24-bit

Format .jpg
frontiersin.org

https://doi.org/10.3389/fpls.2023.1241576
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Molina-Rotger et al. 10.3389/fpls.2023.1241576
Given a collection of training examples denoted as ½(xi, yi)�ni=1,
and a kernel function denoted as K, each yi belonging to the set [−1,

+1] represents its categorization into one of two categories. An

objective function of the SVM is used to solve the optimization

problem defined as follows:

max
a o

n

i=1
ai + o

n

i,j=1
aiajyiyjK(xi, xj)

" #
(1)

subject to the constraints:

0 ≤ ai ≤ C

o
n

i=1
aiyi = 0

Here, the Lagrange coefficients ai are involved, and the constant

C is used to penalize training errors present in the samples.

An SVM training algorithm constructs a model that classifies

new examples into one of two categories, acting as a non-

probabilistic binary linear classifier. The SVM model represents

the examples as points in a space in which they are mapped to

ensure a clear gap that maximizes its width between the different

categories. Then, new examples are projected into the same space

and their categorization is predicted based on which side of the

gap they fall. As mentioned in the introduction, the choice of the

regularization parameters aiand the form of the kernel function

K(xi, xj) have a significant impact on the performance of the SVM.

These factors are thoroughly considered and extensively discussed

in the comparative experiments.
4.3 Model validation

When building a model, there are several parameters to

consider, and depending on how they are combined, the results

may vary. In addition, there is a stochastic variable in the selection

of data that may or may not favor the final result.

Therefore, the techniques used in this article can be grouped

into two. (i) Grid search, to find the combination of

hyperparameters that give the best results. (ii) Cross validation, to

perform the process k times with different combinations of data,

thus validating that the response of the classifier model is general

and not specific to a single combination of data.

The metrics used for validation were: confusion matrix,

accuracy, precision, recall, f1-score, Receiver Operating

Characteristic (ROC) curve and the Area Under the ROC

Curve (AUC).
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4.3.1 Confusion matrix
Measures the performance of a classification model by

summarizing the number of true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) predictions in

tabular form.

4.3.2 Accuracy
This metric measures the proportion of correctly classified

images out of the total number of images in the dataset.

Accuracy = ((TP + TN)=TotalImages) ∗ 10
4.3.3 Precision
It measures the proportion of correctly predicted positive

instances out of all instances predicted as positive.

Precision = TP=(TP + FP)
4.3.4 Recall
The recall metric measures the ability of a model to correctly

identify positive instances out of all the instances that are actually

positive.

Recall = TP=(TP + FN)
4.3.5 F1-Score
The F1 score is a metric that combines precision and recall to

provide a single measure of a model’s performance in classification

tasks, including image classification. It takes into account both the

false positives and false negatives to assess the balance between

precision and recall. The F1 score is calculated by

F1score = 2 ∗ (Precision ∗Recall)=(Precision + Recall) :
4.3.6 ROC curve
The ROC curve is created by plotting the true positive rate

(TPR) against the false positive rate (FPR) at various threshold

settings. The TPR represents the recall or sensitivity (correctly

predicted positive instances), while the FPR represents the

proportion of negative instances incorrectly classified as positive.

4.3.7 AUC
The AUC measures the performance of a model in terms of its

ability to discriminate between positive and negative instances

across different classification thresholds.
TABLE 3 Training, validation, and test set sizes for the cropped images. Note that the training size refers to the already augmented data and the
percentages refer to the sum of these augmented samples.

Parameter Total value Train value (90%) Validation value (10%) Test value

Olive flies 501 451 50 6

Other species flies 368 332 36 17

Other elements 611 550 61 14
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5 Image approach: fruit fly detection

Identifying the olive fruit fly in the e-trap images involved a

number of challenges. The first was the lack of images available to

train and validate the AI model. The second was the ability to

distinguish the olive fruit fly from other fly families or dark

elements that might appear in the images. Finally, the third was

related to the processing power and energy consumption allocated

for inference, in this case the target device was a Raspberry Pi B+.

The usual way to perform this process of object detection on an

image is usually done by applying convolutional neural networks

(CNNs). An example of this is the recent publication by Jia et al.

(2023), where they apply the YOLOX-m network for the

localization of different green fruits, such as green apple and

green persimmon, among the leaves of trees, which can also be

green. Other examples include the recognition and counting of

bananas by Wu et al. (2021, 2023). The reason for applying this

technique is mainly due to its ability to extract physical and

temporal features from the images. However, in this paper, the

CNNs path is discarded because the challenges mentioned in the

previous section become clearly latent. State of the art CNNs require

large datasets to train the model, which has not been available so far,

and the computational process is expensive for some devices such as

a Raspberry Pi B+ without external aids like a hardware accelerator.

The working dataset is considered small compared to the usual

benchmarks for these tasks. For example, MNIST with 60,000

training images, CIFAR-10 and CIFAR-100 with 50,000 images

each or Imagenet with 1.2 million training images (LeCun et al.

(1998); Krizhevsky and Hinton (2009); Deng et al. (2009)).

Due to this challenge, in this article it was decided to finally apply

classification methods based on traditional ML techniques. Although

such models are mainly used for tabular data, present less overfitting

when working with small amounts of data. In addition, since the

model complexity is usually lower, in general, power consumption is

lower too. Table 4 shows the different models tested in a first step. It is

observed that for the same set of training data and all themetrics of the

ML models are clearly superior to those of the DL models. Therefore,

it was decided to investigate the different ML models in more detail.

The use of ML techniques for image processing is not new,

Wang et al. (2021) concluded that traditional ML has a better

solution effect on small sample data sets. Researchers such as Mekha

and Teeyasuksaet (2021) have already studied the use of different

ML algorithms for the detection of diseases in rice leaves,
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concluding that the application of RF was the one that gave them

the best results. Another example are Liu et al. (2017), which

proposes the use of the SVM algorithm for image classification in

remote locations, as in our case, instead of using DL.

Performing fly detection with traditional ML methods was a

new challenge. Some pre-trained DL models for object detection

already have this built-in function, capable of locating and

classifying objects, as well as understanding the overlap between

different possible locations of the same object (Milioto et al. (2018);

Prasetyo et al. (2020); Rong et al. (2022)). In our case, the solution

was to first apply image processing that takes advantage of the

contrast between the yellow background of the trap and the dark

color of the fly to distinguish where the different elements to be

classified appear. Finally, all that remained was the ML classification

process for each of the elements found.

Since RF and SVM gave the top-2 better performance metrics

compared to other models, it was decided to combine them to

improve classification performance. Therefore, it is validated that

the element is an olive fruit fly if both models assert that the element

is an olive fruit fly.

Figure 5 shows the logical flow. First, the image is captured.

Second, the image is processed by segmenting the trap to avoid

possible false positives and locating the elements that appear in the

e-trap. Third, each element is classified one by one by applying RF

and SVM. Finally, if both validate the classification, it is marked on

the image.
6 Results

This section presents the results of the study. In the previous

points, it was mentioned that CNNs are not able to provide accurate

results due to the small training dataset. Therefore, classical ML

solutions are compared with CNNs solutions.
6.1 Machine learning and deep
leaning results

As mentioned above, the challenges of the project were: mainly

how to deal with the limited training data available, and also

whether it is possible to develop an accurate classifier model

taking into account the low computational capacity of the
TABLE 4 Olive fly classification performance metrics for different traditional ML and DL approaches.

Model Type Accuracy Precision Recall F1-score AUC

Random Forest ML 0.85 0.84 0.85 0.85 0.85

SVM ML 0.81 0.80 0.80 0.80 0.80

Decision Tree ML 0.75 0.78 0.75 0.75 0.77

VGG16 DL 0.59 0.68 0.69 0.39 0.54

MobileNet DL 0.59 0.68 0.69 0.39 0.54

Xception DL 0.58 0.68 0.69 0.38 0.53
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Raspberry Pi B+. Table 1 shows the metrics of the different models

proposed in the first phase of the project.

As evident from the analysis, there are six evaluated models,

comprising three classical ML algorithms and three CNN models.

The ML algorithms are the already mentioned RF and SVM, and

also the Decision Tree algorithm, which already includes the RF, as

mentioned above.

On the other hand, the CNNs include the VGG16, Mobilenet,

and Xception models (Simonyan and Zisserman (2014); Howard

et al. (2017); Chollet (2017)). Models that are widely used for image

classification due to their good results. For example, the work of

Subramanian and Sankar (2022), where they compare this CNN

model and others for coconut maturity detection. Or the work of

Sehree and Khidhir (2022) that classifies olive trees from unmanned

aerial vehicle images.

Looking at Table 4, the superiority of the ML becomes evident,

maintaining an accuracy of no less than 75%, compared to the DL,

which does not achieve more than 60% accuracy in any case due to

the limited availability of data.

As mentioned in section 3.2 Dataset Generation, the validation

data come from N10, so the metrics will always tend to be higher

than the test metrics, which comes from e-traps unknown to the

model. Table 4 also shows the AUC value, DL models tend to be

around 0.5, which could lead us to think that they are doing a

random classification.

At this point, it was decided to take the two best results and test

them as if the system was already in production.
6.2 Random forest and support
vector machines analysis

Figure 6 shows the results of the two-week evolution of trap N17

from no flies to six flies. The Figure 6A refers to the true positives

(TP), i.e. the correct classification of the olive fly by the different

models. And the Figures 6B, C refer to the false classifications of the

fly, the false positives (FP) refer to the elements that the model

classified as flies and they are not, and the false negatives (FN) refer

to the elements that are flies and the model discarded them. The

final hyperparameters used in RF were: max depth of 20, min

samples split equal to 5, and 3 estimators. And the final SVM

hyperparameters were A polynomial kernel, C equal to 0.1, and

gamma equal to 1.
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6.2.1 RF classifier
This model tends to classify most items that resemble an olive

fruit fly as “Olive Fly”. After examining the images, one may

conclude this is because the RF model is not able to differentiate

whether a fly belongs to the olive fruit fly species or not, so its FP

rate tends to rise and conversely the FNs are very low.

6.2.2 SVM classifier
The graphs show how this model is more cautious about RF in

determining whether an object is an olive fly or not. Therefore, its FP rate

is lower, but it increases the FN discriminating flies that were correct.

6.2.3 RF+SVM classifier
Finally, combining the two models allows for more accurate

classification. The FNs go down even further, in exchange for the fact

that if an item is claimed to be a olive fly, it is muchmore likely to be so.
7 Discussion

In this study, an intelligent system capable of detecting the olive

fly using non-invasive techniques was developed. Two models were

created with an accuracy of 62.1% for RF and 86.4% for SVM,

Figure 7A, using only the data of two traps, one for training and the

other to validate the models.

While RF would be the first to warn of a possible fly infestation.

SVM proved to be more conservative in stating whether or not there

was a fly in the sticky trap. In addition, a third option was also presented

too, the combination of both models to be able to combine the best of

each and achieve a higher accuracy of 89.1%, as shown in Figure 7A.

It has been shown that it is also possible to control the olive fly

using classical ML techniques. Allowing deploy this intelligent systems

faster than if the detection were performed using CNN techniques.

And consequently understand the status of the crops before and

remotely observe the evolution of the fly population, Figure 6A. In

addition, the robustness achieved using ML is reflected in Figure 7B.

Here, the performance of both models is shown when trying to classify

only flies, regardless of the species. As can be seen, the accuracy of

both algorithms increases to 91.9% for RF and 94.5% for SVM.

Therefore, this project demonstrates the application of ML on an

e-trap system that facilitates the control tasks to the experts, being able

to reduce the number of times they should go to the fields to make the

manual count of the flies, as well as providing additional information
FIGURE 5

Inference pipeline.
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not to go blindly. Thus providing an improvement compared to the

previous article of this same project of Miranda et al. (2019).

This opens a horizon for new challenges where, if the size of the

data set and the computational capabilities of the system are not

optimal, as is often the case in specific systems such as the trap

described, combined ML techniques can be explored for image

classification on remote devices.

In addition to the benefits described above, the application of ML

strategies opens up new possibilities for the system. Once the model

is trained, the device performs the prepreocessing and inference on

the image data, but only the prediction is exchanged with the server.

In this regard, it is also worth mentioning the advantages in terms of

privacy, e.g. there is no risk related to identifying people in images

sent to the server. Since no images are shared with the server, it also

represents an improvement in terms of privacy. Moreover, these

models are relatively small compared to state-of-the-art neural

networks and might be running on small IoT devices, such as
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Raspberry Pi B+ used in this case, or even smaller very low power

microcontroller boards. Overall, it implies a reduction in power and

energy consumption and an increase in battery life. All this is

possible by making a more efficient use of bandwidth.

Finally, it is important to note that the data source used has come

from a single e-trap system, so the system has the potential to increase

the accuracy of the results as the system of nodes grows while each e-trap

system can learn specific details of the conditions that make it unique.
8 Conclusions

The main contributions of this study are threefold: development

of an intelligent system for efficient crop monitoring, demonstrating

superior performance of ML methods over DL for this particular

case study, and further improving performance using a simple

model ensembling approach.
B

C

A

FIGURE 6

Evolution of the number of olive flies detected in the sticky trap as a function of time using different ML classifiers for the N17 e-trap. (A) TP
evolution of RF classifier, SVM classifier and their combination together with the real count. (B) FP evolution of the same classifiers. (C) FN evolution
of the same classifiers.
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An intelligent system capable of detecting the olive fly using

non-invasive techniques was successfully developed. The system is

capable of monitoring the fly and olive fly population using image

processing and ML techniques. This enabled experts to remotely

monitor the status and evolution of the fly population, thereby

reducing the need for manual fly counts in the fields.

Since a relatively small dataset was available, the application of

classical ML techniques worked better compared to a transfer

learning approach using pre-trained DL models. The study

revealed that classical ML models (RF and SVM) outperformed

CNN solutions in this case. Despite the scarcity of images, these

models demonstrated good accuracy, making them an attractive

option for resource-constrained applications. In particular, the RF

and SVM models reported an accuracy of 62.1% and 86.4% for the

olive fly detection task, respectively. In addition, the RF and SVM

approaches reported an accuracy of 91.9% and 94.5%, respectively,

when classifying only flies, regardless of the species.

Finally, the model performance was further improved by

combining both RF and SVM models. RF was found to be more

sensitive in detecting a potential fly infestation, while SVM

demonstrated a more cautious approach in stating whether a fly

was present in the sticky trap. As a result, combining both models

led to an increased accuracy of 89.1% for the olive fly detection task.

In conclusion, this research showcases the successful

implementation of ML in an e-trap system for olive fly detection,

providing valuable insights and benefits. The combination of RF and

SVM models demonstrated promising results, offering more efficient

crop monitoring and control tasks to the experts. The potential for

using small IoT devices for image classification opens up new

possibilities, emphasizing the significance of ML in optimizing
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resource usage and enhancing privacy protection. As the system

grows by increasing the number of e-traps, more data will be

available. Therefore, it holds the potential to further enhance

accuracy by learning from multiple e-trap systems, making it a

promising tool for effective and sustainable fly populationmanagement.
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Identification of apple leaf
disease via novel attention
mechanism based convolutional
neural network

Hebin Cheng and Heming Li*

School of Intelligence Engineering, Shandong Management University, Jinan, China
Introduction: The identification of apple leaf diseases is crucial for apple

production.

Methods: To assist farmers in promptly recognizing leaf diseases in apple trees,

we propose a novel attention mechanism. Building upon this mechanism and

MobileNet v3, we introduce a new deep learning network.

Results and discussion: Applying this network to our carefully curated dataset,

we achieved an impressive accuracy of 98.7% in identifying apple leaf diseases,

surpassing similar models such as EfficientNet-B0, ResNet-34, and DenseNet-

121. Furthermore, the precision, recall, and f1-score of our model also

outperform these models, while maintaining the advantages of fewer

parameters and less computational consumption of the MobileNet network.

Therefore, our model has the potential in other similar application scenarios and

has broad prospects.

KEYWORDS

apple leaf disease, classification, deep learning, attention mechanism, multi-scale
feature extraction
1 Introduction

Apple is one of the most popular and widely grown fruits worldwide and has been

cultivated by humans for over 2000 years. Apple fruit is rich in vitamins and minerals, with

high nutritional value, and is an indispensable part of a healthy diet. However, the

production of apples is also hindered by various diseases, which can seriously affect the

yield and quality of apples. Traditional plant disease identification, management, and

prevention rely on the experience of farmers and local agricultural technicians. When these

measures are insufficient, it is impossible to accurately identify the diseases and timely

intervene, causing great losses to apple production. In the past decade, with the continuous

development and progress of machine learning (ML), especially the advancement of deep

learning (DL) technology, the accuracy of identifying leaf diseases has been continuously
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improved, paving the way for more efficient and real-time disease

detection. Kamilaris and Prenafeta-Boldú (2018); Pardede

et al. (2018).

The disease recognition of plant leaves is essentially an image

classification problem that requires accurate capture of disease

features, comparison with other types of diseases, and

classification. Traditional ML methods typically use image

processing and classifier for plant disease recognition. The image

processing methods include extracting the color and texture of

disease spots through grayscale values or performing pixel-level

segmentation of disease spots. Deng et al. (2019) Support vector

machine (SVM), Mokhtar et al. (2015) k-means clustering, Naive

Bayes, etc. Ma et al. (2018) are most widely used classifier. Tradition

ML has good recognition accuracy for diseases with certain

characteristics. Singh et al. (2016) However, the generalization of

these methods is poor, limited by the inability to recognition of

nonlinear data and the difficulty of feature extraction. Once the

processing object changes, the model cannot perform

reasonable classification.

Convolutional neural network (CNN) automatically extracts

features directly from the original image, greatly improving the

efficiency of image classification. Therefore, with the emergence of

CNN, especially the success of AlexNET in the competition of

ImageNet LSVRC-2010, Krizhevsky et al. (2017); Shin et al. (2021) a

series of DL models have been proposed, such as GoogleNet,

Inception, VGG, ResNet, DenseNet, etc. Not surprisingly, these

DL networks have also been used by researchers in plant disease

detection. For example, Fuentes et al. present a deep-learning-based

model to detect diseases and pests in tomato plants. They proposed

a two-stage model which combines the meta-architecture (faster R-

CNN) with feature extractors such as VGG and ResNet. Their

system can effectively recognize nine different types of diseases and

pests in complex surroundings. Fuentes et al. (2017) Khan, et al.

utilized a hybrid method -a segmentation method which followed

pre-trained deep models to achieve the classification accuracy of

98.60% on public datasets. Khan et al. (2018) Ferentinos compared

some DL networks such as AlexNet, GoogLeNet, and VGG et al.

and reported a 99.53% accuracy with VGG16 on the extended

PlantVillage dataset. Ferentinos (2018) Arsenovic et al. proposed a

novel two-stage architecture of a neural network which focused on a

real environment plant disease classification. Their model achieved

an accuracy of 93.67%. Arsenovic et al. (2019) Too, et al. compared

many DL architecture and evaluated the best performance of

DenseNet-121 in the experiment. Too et al. (2019). Shoaib et al.

utilized the Inception Net model in the research work. For the

detection and segmentation of disease-affected regions, two state-of

the-art semantic segmentation models, i.e., U-Net and Modified U-

Net, are utilized in their work too. Shoaib et al. (2022) At the same

time, in the segmented field of apple leaf disease detection, a

number of research achievements have also emerged. Hasan et al.

(2022) For example Jiang et al. proposed an INAR-SSD

(incorporating Inception module and Rainbow concatenation)

model that achieves a detection accuracy of 78.80% mean Average

Precision (mAP) on the apple leaf disease dataset, while

maintaining a rapid detection speed of 23.13 frames per second

(FPS) Jiang et al. (2019). Sun et al, proposed a novel MEAN-SSD
Frontiers in Plant Science 0281
(Mobile End AppleNet based SSD algorithm) model, which can

achieve the detection performance of 83.12% mAP and a speed of

12.53 FPS. Sun et al. (2021).

MobileNet is a lightweight network proposed by Google and is

widely used by researchers. Howard et al. (2017); Wang et al. (2021);

Xiong et al. (2020) In MobileNet v1, depthwise separable

convolution was first proposed, which combines depthwise

convolution and pointwise convolution in the module. The

computational complexity was successfully reduced to 1/9 of that

of ordinary convolution. Therefore it greatly reduces computational

parameters and improves the speed of model computation. Sandler

et al. (2018) In MobileNet v2, the interest manifold is captured by

inserting a linear bottleneck in the convolution module instead of

the original nonlinear activation function. Kavyashree and El-

Sharkawy (2021) The researchers also proposed the inverted

residual structure, which expands dimensions through an

expansion layer. The depthwise separable convolutions are used to

extract features, and projection layers are used to compress data,

making the network smaller again. Through this structure, the

dimensionality and computational speed of convolutions are

balanced, enhancing the performance of the network. In

MobileNet v3, the Squeeze-and-Excitation (SE) attention

mechanism is further introduced. The SE module is added to the

inverted residual structure, and the activation function is updated.

Howard et al. (2019) Compared to MobileNet v2, the computational

speed and accuracy of MobileNet v3 have been further improved.

In recent years, more Transfer learning (TL) strategies are used

in DL. Chen et al. (2020); Coulibaly et al. (2019) These DL models

require a large amount of labeled data to achieve good performance.

However, in many real-world scenarios, obtaining such a large

amount of labeled data may be expensive, time-consuming, or

impractical. TL enables the utilization of pre-existing large-scale

datasets, such as ImageNet or COCO data sets, and transfers the

knowledge obtained from them to the target tasks. On the other

hand, DL models consist of multiple layers that learn the

hierarchical representation of data. Early layers capture general

low-level features (such as edges and textures), while later layers

capture high-level semantic features. By using TL, we can reuse low-

level and intermediate features learned from pre-trained models as

feature extractors. This reduces the need to train these layers from

scratch and allows us to focus on training only the top layers specific

to our tasks. In the training process of our model, we also adopted

the method of TL and achieved very good results.

In this article, we propose a deep learning model named

mobileNet-MFS, where MFS is the abbreviation for multi-fused

spatial. The main contributions of our work include:
1. A novel fused spatial channel attention (FSCA) mechanism

is proposed, which considers both channel and spatial

connections of the input layer. We use it to replace the

Squeeze-and-Excitation(SE) attention mechanism in the

MobileNet v3 architecture and significantly improve the

performance of the model.

2. In order to include multi-dimensional information in

neural networks, a multi-scale feature extraction module

was applied in our network, which fused image features
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through convolutions of different dimensions. Research has

shown that this module has successfully improved the

model’s accuracy.

3. Our proposed MobileNet-MFS model has better

performance than the original version of MobileNet v3,

demonstrating advantages in accuracy, computational

speed, parameter size, and other aspects compared to

MobileNet VIT, EffientNet, ShuffleNet, DenseNet in

diagnosing apple leaf diseases.
2 Methodology

2.1 Network architechture

The network architecture of our model(MobileNet-MFS) is

shown in Figure 1A. The design of the model inherits the main

modules of MobileNet v3, but in order to obtain better diagnostic

efficacy, many modifications were also made to the model. The

main body of the model is consistent with MobileNet v3, which

consists of a two-dimensional convolutional layer, a series of

bottleneck layers with different dimensions, a two-dimensional

convolutional layer, a pooling layer, and a one-dimensional

convolutional layer in sequence. Through this series of modules,

feature information on plant disease-affected areas is extracted, and

diseases are classified into 9 types through 1×1 convolution.

However, at the front end of the model, in order to further

explore the feature information that cannot be captured in the

original MobileNet v3, we introduced a multi-scale feature

extraction module. The most important change is that we have

proposed a new FSCA attention mechanism to replace the SE

attention mechanism module used in MobileNeT v3. The FSCA

mechanism will be explained in detail in the following chapters.

As shown in Figure 1B, in MobileNet-MFS, the most basic

module is the bottleneck layer, which is composed of an inverted
tiers in Plant Science 0382
residual network containing depthwise separated convolutions. It

replaces the standard convolution operation with a depthwise

convolution followed by a pointwise convolution. This reduces

computational complexity and model size while maintaining

accuracy. In addition to depthwise separated convolution, the

bottleneck layer also includes expansion convolution, which

mainly serves to increase the number of channels in the input

feature map using a 1x1-sized convolutional kernel. Projection

convolution is a 1x1 convolutional kernel with a significantly

smaller number of output channels than the input channels, thus

achieving the goal of limiting the size of the model. When the input

and output channels are the same, a residual network can be used.

The bottleneck layer of the inverted residual structure formed by the

above convolution operations is finally activated using ReLU or h-

swish function.
2.2 Attention module

Although CNN is very powerful in image expression, they are

deficient in expressing spatial information. Therefore, the attention

mechanism has been introduced into MobileNet v3, which can

improve the learning ability of the model by assigning weights to

images. In the original version of MobileNet v3, the SE attention

module is placed in the middle of the bottleneck layer, Hu et al.

(2020) giving an updated set of weight values through two fully

connection layers and the activation function. However, the SE

attention module only cares about the dependencies between

channels and ignores location information, which is crucial for

generating spatially selective attention maps. Therefore, we propose

our FSCA attention mechanism to replace the SE module.

The FSCA attention mechanism considers both spatial and

channel information of the input layer, thus more effectively

guiding the model to focus on effective positions in the image. As

shown in Figure 2, the FSCA attention mechanism consists of two
B

A

FIGURE 1

(A) Network structure of MobileNet-MFS. (B) Detailed composition of a single bottleneck module.
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concatenated modules. The first module mainly focuses on

aggregating features in the spatial directions of X and Y. By

averaging pooling in the X and Y directions and performing

concat operation, a 1 × (H+W) × C dimensional array is

obtained. Furthermore, we normalized the array through

convolution, separated it, and activated it with a sigmoid function

to obtain a set of weights containing information in the X and Y

directions. Afterward, the weights are multiplied with the original

data to obtain a set of directional perception feature layers. These

transformations allow the attention module to capture long-term

dependencies along one spatial direction and preserve precise

positional information along another spatial direction, which

helps the network locate interested targets more accurately.

The second module focuses on channel attention. In this

module, we will take the maximum and average values of the

input feature layers on the channels of each feature point.

Afterward, we stack these two values and adjust the number of

channels using a convolution with a channel count of 1. Then, we

take a sigmoid function and obtain the weights of each feature point

in the input feature layer (between 0 and 1). After obtaining this

weight, we multiply it by the original input feature layer.

By concatenating and multiplying the two steps, we obtain our

FSCA attention mechanism, which focuses on both the X and Y

dimensions of input and the fusion of information of channels.

Therefore, the obtained results are more comprehensive. Since our

attention mechanism fused both spatial and channel information,

we named it FSCA attention mechanism, which references CBAM

Woo et al. (2018) and CAHou et al. (2021) attention mechanism. In

the following experiments, it was demonstrated that the FSCA

mechanism helped our model better identify the characteristics of

apple leaf diseases.
2.3 Multi-scale feature extraction

For apple leaf diseases, there are two main characteristics that

are not easily extracted by machines. One is that there is a
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significant difference in the size of the disease on the leaves, such

as Powdery Mill Draw and Grey spot lesions. Another type of

disease is that its color or other details may vary depending on the

scope of the disease, such as Grey spot and Rust lesions.

The above features involve dimensions of different sizes and are

not easily captured by MobileNet V3, which mainly uses 3 × 3 and 5

× 5 convolution operations. In order to enable the machine to

capture more features from different dimensions, Li et al. (2020) we

have added a multi-scale feature extraction module to the front end

of the input layer.

The structure of this module is shown in Figure 3. Four

dimensions of convolution: 1 × 1, 3 × 3, 5 × 5, and 7 × 7 were

applied in the module. After the image is convoluted, it is merged

into a new feature map and then placed ahead of the network.

Through such feature extraction, the accuracy of disease

classification was improved.
3 Experimental results

3.1 Dataset

The images of apple leaves were collected from both laboratory

and outdoor environments, with a total of eight diseases. These

leaves were divided into nine categories, and each photo was labeled

with the disease type. Our data mainly comes from PlantVillage,

PPCD2020, PPCD2021, and ATLDSD datasets. PlantVillage is

mainly from laboratory environments, while images from the

PPCD2020 and PPCD2021 are collected in natural environments.

The total number of samples is 15250, including 12204 for the

training set and 3046 for the testing set. The sample ratio for the

training and testing sets is 4:1.

As shown in Figure 4, there are a total of eight apple diseases in

our sample, namely Alternaria leaf spot, Brown spot, Frogeye leaf

spot, Grey spot, Mosaic, Powdery Mildew, Rust and Scab. The

number of samples was collected in Table 1. Both Brown spot and

Mosaic form large spots on the leaves, but the former will first cause
FIGURE 2

Network architecture of FSCA attention mechanism module.
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FIGURE 4

Classification of the samples: (A) Alternaria leaf spot; (B) Brown spot; (C) Frogeye leaf spot; (D) Grey spot; (E) Mosaic; (F) Powdery mildew; (G) Rust;
(H) Scab; (I) Health.
FIGURE 3

Compositions of multi-feature extraction module.
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the diseased parts of the leaves to turn yellow in a large area.

Powdery Mildew can turn the veins of the leaves white and stain the

leaves with white spots. Many other plants also suffer from similar

diseases, such as strawberries. Other diseases can cause various

types of spots on the leaves, such as Rust causing red spots on the

leaves, while Gray spots causing gray spots, and Frogeyes causing

yellow-brown spots on the center, similar to those on the outer ring

of a frog’s eye. In order to distinguish these different types of spots,

neural networks need to first be able to capture these spots and

further distinguish the different features of color and shape in

the spots.
3.2 Evaluation metric

Accuracy is the most commonly used indicator, which represents

the proportion of the true value of a model in the overall population.

However, measuring the quality of a model cannot be solely based on

accuracy. Some other indicators also reflect the quality of the model.

For example, precision focuses on the model’s ability to avoid false

positives, while recall focuses on the model’s ability to identify all

positive instances. At the same time, when the dataset of the model is

imbalanced, the f1-score balances the results of recall and precision,

which better reflects the advantages and disadvantages of the model.

The area under curve (AUC) shows the trade-off between the true

positive rate and the false positive rate. Higher AUC values indicate

better discriminability of the model. Therefore, accuracy is used with

other performance metrics like precision, recall, f1-Score, and AUC.

The definition of accuracy is:

Accuracy =
TP + FN

TP + FP + TN + FN
(1)

where TN = true negative, FN = false negative, TP = true

positive, and FP = false positive.

The expression of precision, recall, and f1-score are equations

(2–4), respectively.

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1score =
2� Precision� Recall
Precision + Recall

(4)
4 Result

4.1 Accuracy and Loss

The accuracy and loss values of the model are shown in

Figure 5. By analyzing the images, we can conclude that the

accuracy of training and testing has improved to over 97% after

20 epochs. For the training data, the loss is around 0.5, while for the

test data, the loss stabilizes below 0.1 after 20 epochs. When epochs

approach 80, the model achieved a maximum accuracy of 98.7%.
4.2 Confusion matrix

The confusion matrix of the experiment is shown in Figure 6,

where the horizontal and vertical coordinates represent the disease

predicted by the model and the real disease respectively. Therefore,

when the prediction is consistent with the actual situation, the axis

data of the matrix will be added by one. When the predicted disease

is inconsistent with the actual disease, the increased value of the

matrix appears in the nondiagonal region. Take ‘Rust’ as an

example, 534 cases of Rust were accurately identified, but 4 cases

were misdiagnosed as Frogeye, 2 cases were misdiagnosed as health,

and 10 cases were misdiagnosed as Scab. The 10 misdiagnosed cases

were also the most common in the model, due to the similarity in

size and color between rust and scab. Next, we want to further

modify the model to better distinguish between the two diseases.
4.3 ROC

We have depicted the Receiver Operating Characteristic (ROC)

curve of each disease, as shown in Figure 7. It should be noted that
TABLE 1 Number of samples from different diseases.

Types Training Sample Test Sample Total Sample Total (data augumation)

Alternaria leaf spot 526 131 657 1578

Brown spot 354 88 442 1062

Frogeye leaf spot 2544 635 3179 7632

Grey spot 285 71 356 855

Health 704 175 879 2112

Mosaic 316 79 395 948

Powdery mildew 947 236 1183 2841

Rust 2202 550 2752 6606

Scab 4326 1081 5407 12978

Total Number 12204 3046 15250 36612
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the true positive rate of various diseases is high, resulting in a very

steep ROC curve. The curve of Gery spot is different from several

other diseases, as it initially reaches around 0.95. When the false

positive rate reaches over 0.6, the true positive rate further increases

to over 0.98. The steep ROC curve shows that the model can

distinguish various diseases very well. In contrast, the ROC of

general models is only diagonal.
4.4 Comparison with other
attention mechanisms

In order to visually display the impact of different attention

mechanisms, we calculated and compared the accuracy of different

attention mechanisms (SE, ECA, CBAM, CA, FSCA, MFS) within

the MobileNet v3 framework. As shown in Figure 8, our proposed

FSCA attention mechanism and combined multi-scale MFS

attention mechanism grow rapidly with epochs but are slightly

slower compared to other types. But when the epoch increases to 20,
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their stability and maximum value are the best. In contrast, the

fluctuation amplitude of other attention mechanisms is relatively

large, while the accuracy of the MFS and the FSCA mechanism

fluctuates at the highest point, demonstrating special stability.
4.5 Comparison with other CNNs

The accuracy of different CNNs and MobileNet-MFS are also

compared. As shown in Figure 9, the light gray curve represents the

accuracy curve of MobileNet-MFS. Compared with other models, it

also rises very quickly and gradually reaches its high-level platform

after 20 epochs. At the 28th epoch, MobileNet-MFS has an accuracy

of around 98%, which is better than other models at the same epoch.

Finally, when the epoch reaches 75, the MobileNet-MFS reaches its

maximum accuracy of 98.7%, surpassing all other models.

In order to comprehensively compare our model with other

classic models, we calculated several indicators such as precision,

recall, f1 score, and AUC. These indicators can measure the model’s
FIGURE 6

Confusion matrix of disease classification.
BA

FIGURE 5

The (A) accuracy and (B) loss curve of the experiment.
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capabilities from different aspects. From Table 2, we can note that

the MobileNet-MFS has the highest metrics in precision, recall and

f1-score. However, in terms of AUC, it is not as good as a group of

models such as EfficientNet-B0 and MobileNet-VIT.

Regarding the comparison of model performance, in addition to

the above indicators, it is also necessary to consider the

computational resources used by the models. MobileNet-MFS is

based on MobileNet v3 and belongs to a lightweight CNN. The

lightweight of the model will help it be applied to a wider range of

scenarios. In addition, the computational complexity of the model is

also a very important indicator, and the FLOPs provide an effective

method to measure the computational complexity of the model. The

indicators provided in Table 3 help us measure various aspects of the

model more comprehensively. Taking into account parameter

counts, memory size, and FLOPs counts, The MobileNet-MFS has

more advantages over EfficientNet-B0, ResNet-34, and DenseNet-

121, consuming slightly more computing resources than MobileNet

v3, but not as streamlined as ShuffleNet v2.

In summary, through the comparison of various indicators,

parameter quantities, and computational complexity, we can

conclude that although many excellent models have emerged for

image classification, MobileNet-MFS is still a state-of-the-art model.

5 Discussions

Finally, we utilized Gradient-weighted Class ActivationMapping

(GRAD-CAM) to extract network recognition feature maps of

images. Through these feature maps, we can more intuitively see

the model’s recognition of image features. As shown in Figure 10A,

the Alternaria leaf spot on the leaf is very well and directly identified.

From Figures 10B, C, it should be noted that the lesion areas on the

Rust and Gray spot leaves with multiple spots have also been

simultaneously observed, without any omissions or misjudgments.

As shown in Figure 10D, the large area of yellow on the brown spot

was well captured by our model, and the spots on the brown spot

were also given special attention. These figures demonstrate the

model’s excellent feature capture ability.

The error case of MobileNet-MFS is also checked, and these

images are selected from the library. As shown in Figures 11A, B,

the Rust lesion can be accurately captured by our model. However,

the leaves in Figures 11C, D with Frogeyes disease were mistakenly

identified by the model as Rust-infected leaves. It can be deduced

that these erroneous cases are due to the many similarities in the

characteristics of these two diseases, and this discrimination error

should be very difficult for CNNs.

From the perspective of incorrect images, it is actually difficult for

the human eye to distinguish between the two situations. We cannot

rule out that the database itself may still havemisclassification in some

cases. Without proper management, the error rate of the human eye

itself is within the range of 5% -10%. If artificial intelligence is well-

trained, it can surpass human recognition ability. Therefore,

considering randomness, we believe that certain errors are inevitable.

Simply comparing accuracy, our work is inferior to some recent

work. However, on the one hand, our dataset differs from theirs, as a

large proportion of the images in our dataset are collected from the

natural environment. On the other hand, the parameters and
FIGURE 8

Comparison of accuracy curves for different attention mechanisms.
FIGURE 9

Comparison of accuracy curves for different models.
FIGURE 7

ROC curves of disease samples.
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operation time of our model are also different. Although 98.7% is a

high-level score for the classification of leaf diseases, the images in

our dataset have been well processed, so they cannot fully restore

the real usage scenarios. We have not yet processed images taken in
Frontiers in Plant Science 0988
orchard environment, therefore it is the weakness of our work. Our

next step is to develop a network that can process drone and robot

camera images, remove unclear and messy backgrounds, and make

accurate classifications on mobile devices.
TABLE 2 Precision, Recall, F1-Score and AUC for different models.

Model Precision Recall F1-Score AUC

MobileNetV3 0.982257 0.982272 0.982245 0.996483

Densenet121 0.978340 0.978332 0.978258 0.998184

EfficientB0 0.985624 0.985555 0.985524 0.998827

ShuffnetV2 X10 0.981947 0.981944 0.981842 0.998230

Resnet34 0.979438 0.979317 0.979282 0.997757

MobileVIT 0.984214 0.984242 0.984185 0.998727

MobileNet-MFS 0.986198 0.986211 0.986156 0.996105
fron
TABLE 3 Comparison of operational and parameter performance among different models.

Model
TOP-1 Accuracy (%) Parameters Count

(Millions)
Memory Size (MB) FLOPs Count (MFLOPs)

MobileNet-MFS 98.69 4.96 51.30 251.94

MobileNetV3 98.39 4.21 50.39 226.44

Densenet121 97.90 6.96 147.10 2881.60

EfficientB0 98.56 4.02 79.40 398.03

ShuffnetV2 X10 98.33 1.26 20.84 149.58

Resnet34 98.09 21.29 37.61 3673.72

MobileVIT 98.49 1.94 – 743.48
B
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FIGURE 10

Heat map display of feature extraction of leaf disease sites: (A) Alternaria leaf spot (B) Rust (C) Grey spot (D) Brown spot.
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6 Conclusions

The identification of apple leaf diseases is very difficult, thanks

to the development of deep learning, a series of models have shown

great achievement in identifying leaf diseases. On the basis of these

works, we have improved MobileNet v3 by modifying its attention

mechanism, taking into account the influence of dimension and

space. At the same time, we have added a multi-scale feature

extraction module to further improve the performance of the

network. By comparing with similar models, we found that our

proposed MobileNet-MFS showed the best performance in terms of

accuracy and stability. This also indicates that our proposed

attention mechanism and multi-scale module have effectively

improved the feature capture ability of the model for leaf diseases,

and there is also hope for their application in other aspects. We also

calculated the ROC and confusion matrix of the model, which

shows that the model is very good at resolving various diseases.

Finally, we reviewed the feature extraction graph of the model

through GRAD-CAM and analyzed the error cases. Compared to

previous models, the model is more efficient mainly due to the

mutual cooperation of two aspects. FSCA and multi-scale

respectively increase the model’s feature discovery ability and the

implementation of more scale features, both of which are crucial for

getting more accurate classifications. This work indicates that the

MobileNet-MFS is a very effective model for distinguishing apple

leaf diseases, and the FSCA attention mechanism used in this model

is also worthy of further application in other scenarios.
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FIGURE 11

(A) Leaves with Rust disease. (B) Heat map of feature extraction of the Rust lesion site. (C, D) Mistakenly identified leaves with Frogeye disease.
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Modern and precision agriculture is constantly evolving, and the use of

technology has become a critical factor in improving crop yields and

protecting plants from harmful insects and pests. The use of neural networks is

emerging as a new trend in modern agriculture that enables machines to learn

and recognize patterns in data. In recent years, researchers and industry experts

have been exploring the use of neural networks for detecting harmful insects and

pests in crops, allowing farmers to act and mitigate damage. This paper provides

an overview of new trends in modern agriculture for harmful insect and pest

detection using neural networks. Using a systematic review, the benefits and

challenges of this technology are highlighted, as well as various techniques being

taken by researchers to improve its effectiveness. Specifically, the review focuses

on the use of an ensemble of neural networks, pest databases, modern software,

and innovative modified architectures for pest detection. The review is based on

the analysis of multiple research papers published between 2015 and 2022, with

the analysis of the new trends conducted between 2020 and 2022. The study

concludes by emphasizing the significance of ongoing research and

development of neural network-based pest detection systems to maintain

sustainable and efficient agricultural production.

KEYWORDS

insect detection, pest detection, precision agriculture, image processing, deep learning,
artificial neural networks
1 Introduction

The adoption of artificial intelligence (AI) and integrated structures has rapidly become

multidisciplinary and spread across various fields, dominating research areas and plans in

previous years (Zhang, 2022). Thanks to the technological advancements in the field of AI

and more importantly in the field of deep learning (DL), a multitude of domains enjoy
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notable results for various associated tasks (Abade et al., 2021). This

advance has brought such technologies to the fore with great

success, its upward trajectory and continued development being

supported by a range of technological, financial, and educational

resources (Kumar and Kukreja, 2022). The integration of AI and

integrated structures has significantly impacted insect pest

detection, offering innovative solutions to this pressing

agricultural and environmental concern. This evolution is driven

by advancements in DL and supported by substantial resources,

ultimately resulting in the development of highly efficient and

sustainable techniques for insect pest detection and management

(LeCun et al., 2015).

Considering the agricultural field, these techniques have

enjoyed great popularity and started to be adopted on a large

scale, where human labor does not have the necessary time and

speed to analyze the data in a timely manner and to cover

considerable areas in the monitoring area (De Cesaro Júnior &

Rieder, 2020). Often, these features are more than useful and

relevant to every operation, and early detection, monitoring, and

classification deliver results to match (Ampatzidis et al., 2020). Due

to this aspect, automation areas have been successfully introduced

and are based on thorough research and massive development and

optimization techniques (Ahmad et al., 2022). Technological

advances, particularly in deep learning (DL), have been critical in

the identification of insect pests. These breakthroughs have resulted

in tremendous progress in correctly detecting and managing insect

pests in agriculture and other industries. In recent years, the use of

artificial intelligence (AI) and integrated structures has spread to a

variety of disciplines, with a special emphasis on insect pest

identification. This integrative approach has gained prominence

in research agendas, altering how we address pest-related concerns.
Abbreviations: ACC, Accuracy; AI, Artificial Intelligence; ANN, Artificial Neural

Network; API, Application Programming Interface; BPNN, Back-Propagation

Neural Network; CAD, Computer Aided Diagnosis; C-GAN, Conditional

Generative Adversarial Network; CNN, Convolutional Neural Network; CSA,

Channel-Spatial Attention; DA, Dragonfly Algorithm; DB, Database; DC-GAN,

Deep Convolutional Generative Adversarial Network; DCNN, Deep

Convolutional Neural Network; DL, Deep Learning; DS, Dataset; F1, Dice

Coefficient (F1 Score); FPN, Feature Pyramid Network; GaFPN, Global

Activated Feature Pyramid Network; GAM, Global Activated Module; GAN,

Generative Adversarial Network; IoT, Internet of Things; IPM, Integrated Pest

Management; KNN, K-Nearest Neighbor; LSTM, Long-Short Term Memory;

mAP, Mean Average Precision; MBD, Maryland Biodiversity Database; ML,

Machine Learning; MLP-ANN, Multilayer Perceptron Artificial Neural Network;

MSR, Multi-scale super-resolution; NIN, Network in Network; NMS, Non-

Maximum Suppression; ORB, Oriented Rotated Brief; PRE, Precision; PSSM,

Position-sensitive score map; R-CNN, Deep region based convolutional neural

network; ReLU, Rectified Linear Units; RGB, Red, Green, Blue; ROI, Region of

Interest; RPN, Region Proposal Network; SANN, Smart Agriculture Neural

Network; SEN, Sensitivity; SMOTE, Synthetic minority over-sampling

technique ; SOTA, State-of-the-art; SPE, Specificity ; SSD, Single Shot Detector;

SVM, Support Vector Machine; UAV, Unmanned Aerial Vehicle; YOLO, You

Only Look Once; ZF, Zeiler and Fergus Model.
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Intelligent and precision techniques are necessary for farmers,

especially for automation, because they reduce the complexity of

pest detection and counting estimation, compared to a process done

manually by farmers or authorized auxiliary persons, this process

being expensive and requiring a lot of time execution (Ahmad et al.,

2018; Apolo-Apolo et al., 2020; Thakare and Sankar, 2022).

Solutions based on DL and the automation of the processes

involved in crop management prove to be effective, with high

coverage and low costs (Iost Filho et al., 2019). At the same time,

it helps the process of detecting and managing pests in a timely

manner, without resorting to highly invasive solutions and

representing effective measures (Mavridou et al., 2019).

Considering the chemical treatment applied with pesticides, the

amounts administered become directly proportional to the degree

of infestation and do not present sustainability characteristics, as

they are present or required in modern development areas. Pest

populations cause massive, considerable damage to crops of various

types and sizes. This highlights an important point because

agriculture is the most significant economic branch in many

countries (Cardim Ferreira Lima et al., 2020). Monitoring,

managing, and protecting crops from insect pests is an important

step and an area of thorough research (Zhu et al., 2020). In an

unfortunate setting, the productivity and production volume of

agricultural areas is strongly affected by the appearance and

presence of pests and their widespread (Ahmad et al., 2022). The

identification and monitoring of pests, mostly represented by

insects, and careful management of crops are of interest in

agricultural development. Many times, the management of these

pests takes place in poorly managed processes, without clear

expertise, and often based on invasive, non-sustainable, and

polluting solutions (Wen & Guyer, 2012). Modern models and

techniques based on AI and DL, especially image processing and

convolutional neural networks (CNNs), are very useful and effective

in the so-called precision agriculture (PA) or integrated pest

management (IPM) (Mavridou et al., 2019). The way to combine

automatic or supervised image acquisition using drones and digital

cameras with the emphasized developments of models based on

CNNs was a great success (Du et al., 2022; Zhang et al., 2022).

The continuous progress of DL models has brought to the fore

several notable applications for pest management and PA in

general. CNNs, as part of DL, represent a state-of-the-art around

image analysis and are mainly and successfully used for the

development of classification, object detection, or segmentation

tasks (Wang et al., 2017; Zhang et al., 2020). In principle, the

convolution techniques and the mathematical models present

among them make possible the existence and continuous

expansion of the previously mentioned techniques and even their

strong development, modification, or optimization. Starting from

an initial and innovative step, these types of techniques have been

developed and researched along the way, having today a series of

remarkable architectures with adequate performance in various

tasks (Tian H. et al., 2020; Zhang et al., 2022). The study (Nanni

et al., 2022) addresses the problem of automatic identification of

invasive insects to combat crop damage and losses. The authors

created ensembles CNNs using various topologies optimized with

different Adam variants for pest identification. The best ensemble,
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combining CNNs with various Adam variants, achieved impressive

results, surpassing human expert classifications on several known

datasets. With the awareness that agricultural pests severely impair

food crop quality, the importance of agriculture as an economic

backbone is underlined in (Sanghavi et al., 2022). Machine learning

models have been employed to handle pest categorization and

detection, however they suffer when dealing with insects that have

similar traits but live in diverse environments. The paper offers an

enhanced deep learning model named Hunger Games Search-based

Deep Convolutional Neural Network (HGS-DCNN) for efficient

insect identification with improved accuracy to address this

difficulty. The process of recognizing and classifying insects,

addressing several challenges, was proposed by the authors in

paper (Xia et al., 2018) locating information on an insect quickly

as part of a complex backdrop, precisely recognizing insect species,

especially when they are highly similar within the same species

(intra-class) and across species (inter-class) and identifying

differences in the appearance of the same insect species at various

stages of development. These issues are crucial in the field of insect

recognition and categorization.

Starting with a motivation area, we highlighted IPM and PA for

this study. There are several problems facing the current agricultural

sector in terms of production management, security, and the negative

impact of external and biological/natural factors (Csillik et al., 2018;

Ronchetti et al., 2020). Speaking of the agricultural area, the desire for

sustainability has brought to the fore a series of characteristics

represented by IPM and a series of actions for the areas where it

can be applied. Basically, IPM represents a collection of good

practices to attract attention and give rise to effective approaches in

the fight against pest populations and for the optimal and timely

management of the associated effects (Cardim Ferreira Lima et al.,

2020). IPM has developed over the years based on up-to-date, well-

verified information and gradual adoption. A series of studies

developed and researched this topic in detail for the construction

of PA areas, with innovative and well-documented techniques

(Velusamy et al., 2022). Moreover, the desire for sustainability

quickly accentuated this. The accuracy of the information, the

continuous monitoring, and the effective IPM documentation make

possible the emergence and continuous support of good practices that

can be successfully applied to the development of the agricultural field

(Ronchetti et al., 2020; Misango et al., 2022). In principle, the

adoption of IPM is done for the adequate control of pests and to

reduce them and their effects to a tolerable level. On the other hand,

the IPM effect also has a considerable positive impact on the

environment and the population. The desire for adoption is

primarily emphasized by the decrease in the amounts of pesticides

used after prior monitoring. The effects of pests, their presence, and

plant diseases represent a serious threat to agricultural production

and the resulting food security due to the agricultural sector (Misango

et al., 2022; Wu et al., 2019). The IPM objective is to create a

combination of actions associated with good practices to develop

specific solutions for each agricultural area and culture. Although

IPM notions and application methods are not relatively new

techniques, a considerable number of studies have emerged to

identify the status and trends of the agricultural sector regarding

the existence of these good practices that IPM wishes to highlight.
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As highlighted by the authors (Damos, 2015) the management

of pests in a sustainable or ecological way brings into question the

reduction of pesticides and the adoption of alternatives for the

control and development of production in a safe and ecological way.

Being a basic field, agriculture represents a sector that has enjoyed a

series of changes over time marked by automation, modern crop

management and monitoring models, and various smart

methodologies. Research developed by the authors (Deguine

et al., 2021) shows the impact and evolution of IPM practices

over the last five or six decades. Data needed for the area of crop

profiles, pesticides, and strategy plans for the safe management of

agricultural areas were noted by (Bouroubi et al., 2022) to highlight

an educational basis for decision-making and risk assessment. data

creation and documentation were noted as necessary and examples

of databases and applications that can be used for continuous and

quality information with high availability were highlighted. The

need for access to data and the influence of IPM adoptions were also

noted by the authors (Tong et al., 2022) for the agricultural

production area. Here, several mechanisms and factors for the

adoption of good practices by farmers and the attached IPM

notions, as well as research trends in these directions, have been

noted. In a more advanced framework, the authors of the meta-

analysis (Sekabira et al., 2022) emphasized socio-economic factors

with impact in the combined area of IPM and climate-smart CS-

IPM. To ensure the sustainability of agricultural ecosystems, the

authors analyzed and noted the strategic determinants for the

adoption of smart innovations in the case of modern agriculture

and environmental policies. CS-IPM involves a range of practices

and techniques that are tailored to local conditions and needs.

These include crop diversification, conservation agriculture,

integrated pest management, and the use of climate-resilient

crop varieties.

Modern agriculture has great potential and is aided today by

several powerful working and monitoring technologies to increase

productivity, efficiency, and the eco-friendliness that can be

attached. Precision farming techniques and advanced

methodologies have helped to increase food security and

environmental sustainability (Wen and Guyer, 2012). Analyzing

the papers highlighted for this study, there is a general trend of

massive adoption of technological processes or automation in the

agricultural area as part of the idea and methods involved in PA. It

uses data and precision farming tools such as sensors, drones, and

precision planting equipment to gather information about soil,

weather, and crop growth, and then use that information to make

precise, data-driven decisions about planting, fertilizing, harvesting

crops or pest detection and management (Popescu et al., 2020). This

can help farmers to increase yields, reduce costs, and improve the

efficiency of their operations, being a major advantage to achieve

modern targets such as sustainability and ecological production.

CNN-based systems for insects and pest detection have been

successfully applied to a range of crops, including vegetables, fruits,

and grains. In addition to identifying insects, CNNs can also detect

damage caused by insects, such as holes and discoloration on plant

leaves. This information can be used to quantify the severity of

insect infestations and to guide pest management strategies. Digital

images of plants and crops are obtained using cameras or drones
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equipped with high-resolution sensors. These images are then

analyzed using CNNs, that has been shown to be highly effective

at image classification and object detection tasks. However, the

models used for monitoring need training and validation of insect

pest datasets and innovative optimizations. Examples of digital

images for this topic, illustrating several known insect pests, are

shown in Figure 1: A) Aulacophora indica, B) Bemisia tabaci, C)

Sesamia inferens, D) Cicadella viridis, E) Cnaphalocrocis medinalis,

F) Trigonotylus caelestialium, G) Emposca flavenscens, H) Pieris

rapae, I) Ostrinia nubilalis, J) Epitrix fuscula, K) Halyomorpha

halys, and L) Cydia pomonella.There are often problems in the

highly accurate detection of insects of interest, as they are part of the

natural setting where the conditions in which these insects are

captured are not optimal – accurate detection is hindered by

lighting conditions, various artifacts, or obturations of various

types (leaves, flowers, branches, fruits). Based on these

limitations, there has been continuous research and development
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aimed at creating innovative techniques for extracting information

of interest from digital images that illustrate real contexts.

The presence of natural factors with a negative impact on

performance inclined toward the development of research based

on concrete work methods. The general workflow for insect

detection and monitoring in modern agriculture using neural

networks is composed of the following phases: a) Data collection,

b) Data processing, c) NN training, and d) Validation and testing.

To start developing a system for insect pest detection using

digital images and CNNs, the first step is to collect relevant data

consisting of images of insects and crops, which would need to be

labeled and categorized to identify the type of insects encountered

(Partel et al., 2019; Nanni et al., 2022). The next step is data

preprocessing, which involves removing noise, distortion, or other

anomalies from the collected data (Du et al., 2022). This can include

resizing images, adjusting brightness and contrast, and data

augmentation (Ahmad et al., 2022). A great feature extraction
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FIGURE 1

Examples of harmful insects for agriculture: (A) Aulacophora indica, (B) Bemisia tabaci, (C) Sesamia inferens, (D) Cicadella viridis, (E) Cnaphalocrocis
medinalis, (F) Trigonotylus caelestialium, (G) Emposca flavenscens, (H) Pieris rapae, (I) Ostrinia nubilalis, (J) Epitrix fuscula, (K) Halyomorpha halys, (L)
Cydia pomonella (Xie et al., 2018), (https://www.dlearningapp.com/web/DLFautoinsects.htm).
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model can make use of DL techniques to focus attention on insect

pests (Li et al., 2020; Li et al., 2022). From the preprocessed dataset,

a representative subset of images needs to be selected for training

CNNs to identify and classify insect pests in the images and adjust

internal weights to improve accuracy (Khanramaki et al., 2021).

Once trained, the CNN must be validated and tested on a separate

dataset to evaluate its accuracy and identify any issues that need to

be addressed. Since manual classification and detection are time-

consuming automation using CNNs is preferred (Butera

et al., 2021).

This paper wants to present a detailed review of the methods of

automatic identification of populations of harmful insects by

involving algorithms in the field of neural networks (NNs).

Recently, it has been observed that the use of digital tools and

services for the early and automatic detection of populations of

harmful insects represents an impact factor on agricultural areas.

Moreover, the optimization of agricultural processes in

combination with these tools offers optimal and high-

performance solutions. To facilitate reading the article, a list of

abbreviations is given in Annex 1.

The presentation of the selected studies brings to the fore a

series of key, modern methods related to the topic attached to the

paper. Pest detection methods have made significant advancements

over the years, but there are still several challenges and areas that

need improvement in existing approaches. These challenges often

include accuracy and reliability, data quality and quantity,

integration with pest management, automation and scalability,

real-time detection and species and diversity. Many current

methods for pest detection still suffer from high rates of false

positives (identifying non-pests as pests) or false negatives (failing

to detect pests when they are present). On the other hand,

developing accurate machine learning models for pest detection

often requires large amounts of high-quality labeled data, which can

be expensive and time-consuming to obtain. Imbalanced datasets,

where certain pests are rare or hard to find, can lead to biased

models that perform poorly on underrepresented pests. Pest species

can be highly diverse, and methods that work for one pest may not

be effective for others. Developing generalized detection methods

that can adapt to different pests is a challenge.
2 Materials and methods

2.1 Investigation of references

The paper considered method workflow from PRISMA

guidelines (Page et al., 2021) for insect detection and monitoring in

agriculture based on NNs by investigating articles published between

2015 and 2022. This review article aims to provide an overview of the

new trends and advancements in CNN research for insect pest

detection in agriculture between 2015 and 2022. To select the

papers for this review, the focus was primarily on papers that

contribute to the development of CNN-based systems for insect

pest detection in agriculture. Specifically, papers that propose novel

CNN architectures, explore the use of transfer learning for insect pest

detection, or apply CNNs to new insect pest detection tasks were
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prioritized. The selected papers demonstrate the power of CNNs in

various applications for insect monitoring in modern agriculture,

including object detection, segmentation, and recognition.

The research databases used in this review were: Web of

Science, Scopus, and IEEE. Following the Prisma flow diagram

(Figure 2), several criteria were attached for searching and

extracting articles of interest. Although there was an initially large

number of papers identified for the topic of this review, the initial

selection criteria extracted approximately 354 relevant studies in the

first instance. Of all these, only 138 were chosen based on the final

criteria related to new periods, new trends, attachment in top

publications, and innovation. An initially large number of diverse

research for the modern agricultural area and a considerable

evolution in recent years are observed.

Searches for important terms and evolution as article numbers

during the last years in the Web of Science, Scopus, and IEEE

Xplore DBs between 2015 and 2021 with AND connector are

presented in Figure 3: A) (CNN) AND (agriculture) AND (image

processing), B) (CNN) AND (agriculture) AND (insects), C)

(CNN) AND (agriculture) AND (pest detection), D) (image

processing) AND (pest detection), E) (CNN) AND (pest

detection), and F) (CNN) AND (insects). The graphs highlight

the strong increase in the number of research articles in the

connected fields in recent years regarding the use of CNN.
2.2 Datasets used

A robust image database (DB) is crucial for DL classification

and detection because it is the foundation upon which a model is

trained (Ding & Taylor, 2016). The larger and more diverse the

dataset is, the better the ML model’s performance will be. A robust

image dataset allows a DLmodel to learn a general representation of

the objects or classes it is supposed to recognize. The more diverse

the dataset, the better the model will be at recognizing new images

that it has not seen before. Also, it enables an ML model to achieve

higher accuracy in classification and detection tasks. When the

dataset is comprehensive and covers a wide range of scenarios, the

model can learn more accurately how to identify objects and

classify them.

Insect pest databases were used in agricultural monitoring

applications to track and identify the presence of insect pests that

can damage crops (Turkoglu et al., 2022). These databases are

typically created by agricultural organizations, universities, and

research institutions that have collected data on the life cycles,

presence, behavior, and distribution of various insect pests. In this

regard, analyzing the papers selected for this study, several ways to

construct datasets in training and validating models used for insect

detection and identification were observed. Several public databases

have been used by researchers in their studies to measure the

performance of the implemented architectures and to test the

defined models against the obtained results. Table 1 presents a

summary of the most known and frequently used databases for

modern insect pest monitoring applications in agriculture.

Insect pest image databases often include images of insects at

different life stages, including larvae and adult stages (Zhang S. et al.,
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2022). These images could be accompanied by additional

information, such as the insect’s common name, scientific name,

and the types of crops or plants that the insect pest is known to

damage. This is an important aspect because the primary purpose of

an insect image database is to provide a visual reference for

identifying insect pests in the field. Insect pest image databases

can be used as educational resources to help people learn about the

different types of insect pests and their impact on agriculture and

the environment (Shi et al., 2020).

One of the databases that is highlighted in the present study and

that was used by the researchers in the selected papers is the IP102

DB. As presented in the acronym, it contains 102 classes of

common insect pests with hierarchical taxonomy and broadly

totals around 72,222 images (see Table 1). The database is

regularly updated and maintained by a team of experts in the

field of entomology. It covers a wide range of insect orders. Each

entry in the IP102 Insect Database includes information on the

insect’s scientific name, common name, description, habitat, diet,

life cycle, behavior, and distribution, all being presented in high-
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quality images and illustrations, making it easy to identify

different species.

The authors on IP102 DB note that existing image datasets

primarily focus on everyday objects like flowers and dogs, limiting

the applicability of advanced deep learning techniques in

agriculture. To address this gap, they introduce a comprehensive

dataset called IP102 for insect pest recognition. The authors

conducted baseline experiments on the IP102 dataset using both

handcrafted and deep feature-based classification methods. Their

findings revealed that the dataset poses challenges related to inter-

class and intra-class variance, as well as data imbalance. They

anticipate that IP102 will serve as a valuable resource for future

research in practical insect pest control, fine-grained visual

classification, and addressing imbalanced learning challenges in

this domain.

The Maryland Biodiversity Database (MBD) (Maryland

Biodiversity Database, 2022) is another important database, and it

has been used in various research works for the insect pest

monitoring area. This database is a vast and valuable public
FIGURE 2

PRISMA 2020 flow diagram for this study.
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resource that can serve as an important tool in researching various

information for the insect pest area and querying it can create

diverse datasets. The MBD database provides ecological

information about species, including their habitats and

interactions with other organisms. This can be useful for

understanding the ecological context of insect pests, their host

plants, and their natural predators. Its strengths lie in providing

detailed species records and distribution data, facilitating ecological

context for organisms, and supporting research on insect pests and

native species. Researchers and conservationists benefit from its

wealth of information to assess biodiversity impact and pest
Frontiers in Plant Science 0797
behavior. While not specialized in pest monitoring, MBD

enhances pest management by offering a broader understanding

of local ecosystems. This collaborative database stands as a crucial

asset in safeguarding Maryland’s natural heritage and aiding

scientific research. Scientists studying insect pests or conducting

research on entomology can use the MBD to access data on insect

species’ distributions and occurrences. Pest management strategies

often require a comprehensive understanding of the local

ecosystem. MBD can provide context by offering information on

the diversity of species that may interact with or be affected by

insect pests.
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FIGURE 3

Searches for important terms in the Web of Science, Scopus, and IEEE Xplore DBs between 2015 and 2021 with AND connector: (A) (CNN) AND
(agriculture) AND (image processing), (B) (CNN) AND (agriculture) AND (insects), (C) (CNN) AND (agriculture) AND (pest detection), (D) (image
processing) AND (pest detection), (E) (CNN) AND (pest detection), (F) (CNN) AND (insects).
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AgriPest introduces a domain-specific benchmark dataset for

tiny wild pest detection in agriculture. This dataset contains over

49.7K images and 264.7K annotated pests, making it the largest of

its kind. It aims to enhance the application of deep learning in

agriculture by providing standardized data for pest detection

research. AgriPest also defines sub-datasets, including challenges

like pest detection and population counting, and validation subsets

for various real-world scenarios. The authors build practical pest

monitoring systems based on deep learning detectors and evaluate

their performance using AgriPest. This dataset and associated code

will be publicly available, facilitating further research in pest

detection and precision agriculture.

Crafted to serve as a robust resource for training deep learning

models in pest detection, Pest24 is another important DB which

offers a vast repository of meticulously annotated images of

agricultural pests. This paper addresses the challenges of real-time
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pest population monitoring in precision agriculture using AI

technology. It introduces a large-scale standardized dataset called

Pest24, comprising 25,378 annotated images of agricultural pests

collected from automatic pest traps and imaging devices. The

dataset covers 24 categories of common pests in China. On the

other hand, the study applies various advanced deep learning

detection methods, such as Faster RCNN, SSD, YOLOv3, and

Cascade R-CNN, to detect these pests and achieves promising

results for real-time field crop pest monitoring. The authors aim

to advance accurate multi-pest monitoring in precision agriculture

and provide a valuable object detection benchmark for the machine

vision community.

The analysis of Pest24 highlights three key factors influencing

pest detection accuracy: relative scale, number of instances, and

object adhesion. Due to the scarcity of multi-target pest image big

data, Pest24 holds great importance as a resource for advancing
TABLE 1 Insect DSs frequently used in agriculture applications.

DS
name

Availability/Link Classes/Observation Number of
images

Papers

IP102 Publicly/
https://github.com/xpwu95/IP102

102/Common pest species
with a hierarchical taxonomy

75 222 (Ayan et al., 2020), (Butera et al., 2021),
(Kasinathan et al., 2021), (Nanni et al., 2022),
(Wang et al., 2022), (Wu et al., 2019)

Maryland Publicly/
https://www.marylandbiodiversity.com/

20 600 species/
Cataloging living things

671 983 (Popescu et al., 2022)

AgriPest Publicly/
https://github.com/liuliu66/AgriPest

14/Common pest species 49.7 K and
264.7 K
annotated

(Wang et al., 2022)

Deng Publicly/
https://doi.org/10.1016/
j.biosystemseng.2018.02.008

10 species of tea plants insect
pests

NA (Deng et al., 2018)
(Teng et al., 2022)

NBAIR Publicly/
https://www.nbair.res.in/databases
National Bureau of Agricultural Insect Resources

40/field crop insect images NA (Cardim Ferreira Lima et al., 2020)
(Thenmozhi & Srinivasulu Reddy, 2019)

RGBInsect Publicly/
http://rgbinsect.cn/

10/stored-grained insects 3757 (Li et al., 2019)
(Li et al., 2020)

Xie 1 Publicly/
http://www2.ahu.edu.cn/pchen/web/
insectRecognition.htm

24/field crop insect images 60 per species (Cardim Ferreira Lima et al., 2020)
(Xia et al., 2018), (Xie et al., 2015)

Xie 2 Publicly/
https://www.dlearningapp.com/web/
DLFautoinsects.htm

40/field crop insect images 4500 (Cardim Ferreira Lima et al., 2020),
(Ayan et al., 2020), (Nanni et al., 2022),
(Xie et al., 2018)

MDP2018 Private/Multi-Class Pests Dataset 2018
https://doi.org/10.1109/ACCESS.2019.2909522

16/Insect pests 88 670 (Liu et al., 2019)

LLPD-26 Private/ https://doi.org/10.3389/fpls.2022.810546 26/insect pests 18 585 (Teng et al., 2022)

Pest24 Publicly/
http://aisys.iim.ac.cn/zhibao.html

24/field crop insect images 25 378 (Wang et al., 2020)
(Wang et al., 2022)

iDigBio Publicly/
https://www.idigbio.org/

NA/Biodiversity specimens
and resources

NA (Valan et al., 2019)

Turkey-
PlantDataset

Publicly/ https://github.com/mturkoglu23/
PlantDiseaseNet

15/Plant disease and pest
images

4 447 (Turkoglu et al., 2022)

CPAF
Dataset

Publicly/
https://drive.google.com/drive/folders/
1GR4S2eqahZrLTmZlPphyfcIX5fkkV36?
usp=sharing

20/insect species 73 635 (Wang et al., 2020)
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intelligent field crop pest monitoring. Characterized by its large-

scale data, small relative object scales, high object similarity, and

dense distribution, Pest24 presents unique challenges for deep

learning-based object detection methods and is poised to drive

progress in pest detection for precision agriculture while serving as

a specialized benchmark for the computer vision community.

Beyond its application in precision agriculture, Pest24 serves as

an invaluable benchmark for the machine vision community,

fostering advancements in specialized object detection. Future

work aims to expand the dataset with more diverse multi-pest

images from various practical.

Xie1 and Xie2 databases were other important resources in

creating databases or testing and training the architectures defined

in various works (Table 1). Because these datasets are not large

some authors have often resorted to augmentation techniques to

increase the size of these datasets. The Xie2 dataset also called D0

contains 40 classes of insect pests represented in 4508 RGB images

of 200 x 200px resolution.

Although there are several public databases illustrating and

grouping various common classes of insect pests, most of the

authors used their own datasets in solving the problems specific

(Bhoi et al., 2021; Rajeena et al., 2022). Creating proprietary

databases for insect pest detection or monitoring using NNs can

help improve the accuracy and specificity of pest detection systems,

while also providing flexibility and cost-effectiveness (Segalla et al.,

2020; Hong et al., 2021). From the point of view of flexibility,

creating its own database offers absolute control of the data that is

attached to train the NNs for insect pest monitoring. This is about

how the data set can be adjusted as needed to meet the changing

need for insect pest families and environmental changes that may

occur rapidly. Complete control of the specificity of pest

populations was discussed in several works to describe the

specificity zone (Khanramaki et al., 2021). By creating proprietary

databases, specific insect pests can be tailored and described

regarding each context and interest in pest recognition and

monitoring. This can help ensure that the NNs are able to

accurately identify and differentiate between the specific insect

pests, rather than simply providing a general detection of any

insect in the image (Liu and Wang, 2020; Xu et al., 2022).

It is very important that the data set describes a real context to

solve real problems with increased accuracy. What was observed in

this regard as part of the present study in relation to the

performances obtained by the authors in various works was a

tendency to create robust datasets in increasing performances.

The larger the database used for training and validating NNs, the

higher the accuracy of the created models can be (Knyshov et al.,

2021; Liu et al., 2022). The database used is determined by the

precise study objectives and the sort of data required. Researchers

interested in insect pest recognition, for example, may pick IP102 or

Pest24, but those needing ecological context may prefer MBD.

AgriPest is appropriate for precision agricultural research.

Collectively, these databases help to advance pest detection and

agricultural research. When paired with these different datasets,

CNNs provide a very effective tool for insect pest study and control.

They can help to increase pest detection accuracy, understand pest

behavior in ecological contexts, and improve real-time monitoring
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and control tactics in precision agriculture. Researchers and

practitioners may use these datasets to create more effective and

efficient pest-related solutions in agriculture.

In another scenario, from a cost point of view, creating own

database can be a cost-effective alternative. Test and training data

creation solutions can capture data using low-cost methods like

phones or digital cameras, which is a pretty good starting point.

Where the data set is acquired using drones, high-fidelity cameras,

robots, or specialized human resources, the cost of acquiring and

creating the reference data set for pest monitoring can increase

commensurately with the size and quality of data acquired (Xing

et al., 2019; Tian H. et al., 2020; Genaev et al., 2022).

The organization of the data set represents another aspect noted

by the authors in the development of models for harmful insect and

pest detection in modern agriculture. In general, for training and

evaluation using CNNs for pest detection and identification, the

dataset division commonly includes training and validation sets or

training, validation, and testing sets. The most common ratio

observed in the last split was 70% for training, 20% for validation,

and 10% for testing (Huang et al., 2022). The other ratio could

include 80% for training and 20% for testing (Du et al., 2022; Zhang

S. et al., 2022), or 70% with 30% respectively (Ahmad et al., 2022).

Regarding the dataset, the authors also followed techniques like

data augmentation (Du et al., 2022; Zhang et al., 2023). Data

augmentation in the context of CNNs is the process of producing

additional training examples by applying various changes to

existing pictures in the training dataset (Albanese et al., 2021).

Geometric changes such as random rotation, horizontal and vertical

flips, random cropping, and transformations such as brightness

modifications or color jitter are examples of frequent

transformations used for data augmentation in CNNs

(Padmanabhuni and Gera, 2022). Adding random cropping can

assist the model in learning to distinguish things that are not

centered in the image (Genaev et al., 2022).

For data augmentation, some of the new trends include

synthetic data generation to increase the number of samples if the

number of representatives of a class is insufficient (Abbas et al.,

2021). Using generative models to create synthetic images is one

novel method of data augmentation. Augmentation through

synthetic data generation is a novel technique of generating new

training data using computer algorithms rather than gathering real-

world data (Huang et al., 2022). The purpose of this method is to

enhance the quantity and variety of the dataset, which can improve

the performance of ML models (Divyanth et al., 2022). Synthetic

data generation could address issues such as imbalanced datasets,

lack of data privacy, and limited data availability (Lu et al., 2019).

For the topic of agricultural pests, this can be done in a variety of

ways. There are several methods for creating synthetic data for

CNNs (Karam et al., 2022), including generative adversarial

networks (GANs), deep learning picture synthesis, data

augmentation, and data interpolation (Padmanabhuni and Gera,

2022). Conditional GAN was used by (Abbas et al., 2021) to

generate synthetic images for tomato pests and to improve the

performances. Another performance improvement was noted by

(Divyanth et al., 2022) by creating an artificially generated dataset

using GAN.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1268167
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Popescu et al. 10.3389/fpls.2023.1268167
For the testing phase, the acquisition of digital images from real

contexts can be noted. This was pursued by the authors to test the

NN architectures they created and optimized against the real

contexts, using pest images in the field (Brunelli et al., 2020). For

modern agriculture, there are some ways of acquiring digital

images, using various systems and techniques (Terentev et al.,

2022). The present study identified four important directions that

describe image acquisition vectors and were grouped and described

in Table 2. Based on the analyzed references, the performances

obtained using the created databases were also noted. In this sense,

satisfactory results are observed, and at the same time, it is

important to note that the methods of image acquisition are done

in an optimized framework and represent a strong point attached to

the research areas in this field. For the modern agricultural area, the

acquisition of data for the creation of models and automatic

solutions in pest monitoring represents an extensive process that

can include several resources (Nanni et al., 2022).

Table 2 summarizes the most common data gathering methods,

with UAVs and pheromone traps emerging as the most popular

options. This section will evaluate the benefits and drawbacks of

different techniques. The integration of ML and deep learning DL

for automated data processing, with a special focus on remote

sensing and sensory data for complete area mapping, is an emerging

research field. It is worth mentioning that remote sensing, as

investigated by (Stefas et al., 2016; Ahmad et al., 2021), has

several applications in fields such as agriculture and forestry.

Unmanned Aerial Vehicles (UAVs) are gaining remarkable

traction across diverse domains, with agriculture and

environmental monitoring being prominent beneficiaries. One of

their vital applications lies in the realm of pest detection and

management within agricultural crops Mu et al., 2018. UAVs offer

versatile data acquisition methods, including high-resolution imagery

and sensory capabilities (Tian H. et al., 2020; Cochero et al., 2022).

Equipped with high-resolution cameras, UAVs excel at capturing

images and videos of crops, facilitating the identification of insect
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pests (Tian H. et al., 2020; Cochero et al., 2022). Subsequently, these

images can undergo automated pest detection using ML algorithms

(Preti et al., 2021). Moreover, UAVs can be equipped with sensors for

detecting specific chemicals in the air or on plant surfaces, thus

enabling pest identification, as well as treatment efficacy monitoring

(Velusamy et al., 2022). To combat identified pests, certain UAVs are

equipped with precision sprayers, targeting affected areas with

minimal chemical usage and environmental impact (Iost Filho

et al., 2019; Li C. et al., 2022). Thermal cameras mounted on

UAVs provide valuable temperature data, aiding in pinpointing

stressed or pest-infested crop areas due to temperature differences

(Yuan & Choi, 2021). UAVs also use multispectral cameras, such as

infrared and hyperspectral imaging, in addition to typical RGB

images, which considerably improves the accuracy of pest detection

models (Terentev et al., 2022). Another current technique employs

lidar sensors to collect high-resolution 3D pictures of agricultural

fields, allowing for the identification of pest-infested areas (Dong

et al., 2018; López-Granados et al., 2019). Lidar imaging also provides

information about crop dimensions, growth patterns, and prospective

yield (Johansen et al, 2018; Ampatzidis et al., 2020).

Nonetheless, there are several drawbacks to the UAV-based

strategy. UAVs, in general, have limited payload capacity,

restricting their ability to carry large amounts of equipment and

sensors. Furthermore, UAV flight durations are limited, often

ranging from 20 to 30 minutes depending on the type and payload.

As a result, covering large regions may demand numerous flights,

which can be both time-consuming and costly (Dong et al., 2020).

While UAVs excel in collecting high-resolution photographs of crops

and insect pests, image analysis algorithms’ accuracy may be limited,

necessitating professional analysis. Furthermore, the use of UAVs for

data collecting is vulnerable to weather and legal limitations. These

variables might limit the capacity to collect insect pest data during

certain seasons or geographical locations. Many nations have tight

UAV laws that include flying limitations as well as criteria for

permissible equipment and sensors (Csillik et al., 2018).
TABLE 2 Modality of image acquisition.

Image acquisition vector Agricultural crop/images Performances Papers

Human operators (with camera or smartphone) Oil palm/8000
Eggplant/NA
NA/563
Fruits/365

ACC: 89%
R2 = 0.85 to 0.95
ACC: 94.3%
F1 Score: 83.8%

(Ahmad et al., 2021)
(Bereciartua-Pérez et al., 2022)
(Cochero et al., 2022)
(Genaev et al., 2022)

Pheromone-based traps and cameras Apple orchard/8000
Apple/300
Vegetables/1789
Forest/50
Greenhouse/400

ACC: 97.9% training
ACC: 97% training, 93% validation
F1 Score: 83.8%
ACC: 95.3% - 97.89%
F1 Score: 90% - 92%

(Albanese et al., 2021)
(Brunelli et al., 2020)
(Guo et al., 2021)
(Hong et al., 2021)
(Rustia et al., 2020)

UAV Forest/4710
Rice/NA
Weeds, Potato, Grapes/600
NA/500
Maize/5691
Eucalyptus/4930

PRE: 70%
ACC: 80%
ACC: 90%
PRE: 85%, F1 Score: 55%
ACC: 97.59% - 98.77%
ACC: 98.45%

(Aota et al., 2021)
(Bhoi et al., 2021)
(Bouroubi et al., 2018)
(De Cesaro Júnior et al., 2022)
(Dai et al., 2021)
(Dos Santos et al., 2022)

Terrestrial vehicles and camera Pomelo orchard/510 ACC: 95.83% (Partel et al., 2019)
(Tian G. et al., 2020)
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Another way of data acquisition for insect monitoring in

modern agriculture is based on pheromone traps (Table 1). Data

acquisition using pheromone traps is a useful tool for monitoring

and controlling insect pests in agriculture and forestry. Pheromone

traps are placed in strategic locations throughout a crop. The

number and placement depend on the type of insect pest being

targeted and the size of the area being monitored. Pheromone traps

need to be checked regularly to ensure that they are working

properly. Digital cameras can be attached to the pheromone traps

to capture images of the trapped insects. The traps should be

monitored regularly, typically every 1-2 weeks. During each

monitoring visit, the traps are checked for trapped insects, and

the dig i ta l cameras are checked to ensure they are

functioning correctly.

While pheromone traps can be an effective tool for monitoring

and managing insect pests, there are some disadvantages to their

use. They are only effective against insect pests that are attracted to

specific pheromones (Cardim Ferreira Lima et al., 2020). On the

other hand, their effectiveness is limited to the area in which they

are placed (Toscano-Miranda et al., 2022). Pheromone traps can

attract not only the target insect pest but also non-target species that

are attracted to the same pheromones. Additionally, pheromone

traps can give an incomplete or inaccurate representation of the

population of insect pests. This is because some individuals of the

pest species may not respond to the pheromone lure or may be

located outside the trapping area. This can lead to incorrect

decisions about pest management strategies.

In agriculture, insect pest identification and monitoring are key

parts of precision farming because they have a direct influence on

crop production, quality, and overall agricultural sustainability.

CNNs, in conjunction with specialist databases, provide

significant promise for tackling the issues connected with insect

pest control. Deep learning architectures, object identification,

categorization and taxonomy, and real-time monitoring may be

essential elements of neural networks applied to these datasets, as

demonstrated in the selected research. With the use of CNNs and

specialized datasets, insect pest identification and monitoring have

entered a new age. This synergy has the potential to lead to more

accurate, timely, and environmentally conscious pest management

solutions. Continuous research, multidisciplinary cooperation, and

an emphasis on practical application are required to fully achieve

this promise. As technology advances, the future of insect pest

identification and monitoring in agriculture remains bright, with

the potential to greatly contribute to global food security and

sustainable agriculture practices.
2.3 Neural networks used in insect
detection, segmentation, and classification

Automated monitoring systems use sensors and cameras to

detect and identify insect pests (Amorim et al., 2019). These systems

can be connected to the internet, allowing farmers to receive real-

time information about pest populations. There are many solutions

and methodologies based on image processing, DL, and NNs. CNNs

are particularly well suited for tasks involving the detection of small
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objects, such as insects, within an image. In this scenario, CNNs are

a powerful tool for pest detection and have been shown to achieve

high accuracy in many applications. One key advantage of CNNs

for pest detection is their ability to handle complex images. For

example, a CNN can be trained to detect pests in images that

contain multiple objects, different backgrounds, and varying

lighting conditions (Fang et al., 2020). Additionally, CNNs can be

trained on a large dataset of images, which can help improve the

accuracy of the model. Another advantage of CNNs for monitoring

crops for pest detection is their real-time ability (Ayan et al., 2020).

On the other hand, one of the most significant advancements in this

field is the development of transfer learning, where a pre-trained

CNN model is fine-tuned on a smaller dataset of pest images. Some

of the most used NNs for insect and pest detection and classification

are presented in Figure 4.

VGG Net (Visual Geometry Group) (Simonyan & Zisserman,

2014) is a key architecture used in insect detection and monitoring,

especially VGG-16 and VGG-19. The architecture is widely used in

computer vision applications such as object detection and image

segmentation (Popescu et al., 2022). The architecture for VGG-16

(Ramadhan & Baykara, 2022) is shown in Figure 4A, and it was the

most used for insect detection and classification tasks. The

convolutional layers are responsible for extracting features from

the input image, while the pooling layers reduce the spatial

dimensions of the feature maps to reduce computation time. The

fully connected layers are used to classify the features extracted by

the convolutional and pooling layers. The most used, VGG-16

model has a total of 16 layers and the VGG-19 has 19 layers

being a modified version of VGG-16 with the addition of the new

three convolutional layers.

Residual Network (ResNet) is another CNN family used in

insect monitoring for modern agriculture. ResNet-18, ResNet-34,

ResNet-50, ResNet-101, and ResNet-152 are variants of the CNN

architecture that was introduced in 2015 by researchers at Microsoft

(He et al., 2016). The key innovation of ResNet is the use of

“residual connections,” or shortcut connections, that allow the

network to learn identity mapping and make it easier to train

very deep networks. This is shown in Figure 4B as a residual block

example. According to the investigated papers, ResNet-50 was the

most used for insect detection and classification tasks, and the basic

architecture is shown in Figure 4C.

The R-CNN (Region-based CNN) architecture is a type of

object detection model that uses a combination of CNNs and

region proposal algorithms to detect objects within an image (Ren

et al., 2015) and was also used for insect monitoring. It is a two-

stage process that first generates a set of region proposals and then

uses a CNN to classify and refine the proposals. The first stage of the

R-CNN architecture is the region proposal algorithm, which

generates a set of regions or “proposals” that may contain an

object of interest. These regions are then passed to the second

stage of the R-CNN architecture, which is the CNN. This is used to

classify and refine the regions generated by the region proposal

algorithm and it is done by extracting features from each region and

passing them through a series of convolutional and fully connected

layers. In this context, another architecture often used for insect

detection tasks was Faster R-CNN. This is a type of object detection
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model that uses a CNN to extract features from an image and then

uses a region proposal network (RPN) to propose regions that may

contain objects. The feature extractor typically uses a pre-trained

CNN, such as VGG or ResNet, to extract features from the input

image. The main advantage of Faster R-CNN over other object

detection models is its efficiency, as it shares computation between

the RPN and the classifier. The Faster R-CNN architecture, adapted

from (Ren et al., 2015) is presented in Figure 4E.

The Inception CNN architecture (Szegedy et al., 2015) is also

representative of insect classification and detection. This deep CNN

architecture utilizes a combination of convolutional, pooling, and

inception modules to efficiently learn hierarchical representations of

visual data. The novel aspect is that it includes a series of

components named Inception modules that apply a combination

of convolutional and pooling layers at different scales, allowing the

network to efficiently capture and learn both the high-level and low-

level features of the image. This review highlighted that the most
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used architecture from this family, for insect detection and

classification was the InceptionV3 (Szegedy et al., 2016).

Following the structure and features presented previously, the

basic scheme of Inception V3 can be viewed in Figure 4F

(adapted from Szegedy et al., 2016).

Dense Convolutional Network (DenseNet) is another CNN

family used for insect detection and classification. This neural

network architecture is characterized by dense layers Huang et al.,

2020. Each layer is connected to every other layer in the network

(Huang et al., 2017). This creates a dense network of connections,

which allows for a more efficient flow of information and a greater

capacity for learning. A dense block is shown in Figure 4D, adapted

from (Huang et al., 2017). One of the main advantages of DenseNet

architecture is its ability to effectively handle large amounts of data

and complex patterns (Huang et al., 2017).

YOLO (You Only Look Once) is another state-of-the-art family

that is widely used in the modern agricultural sector for real-time
A B

D E

F

C

FIGURE 4

Examples of neural networks used: (A) VGG-16 architecture (adapted from Simonyan and Zisserman 2014, (B) Residual block example (adapted from
He et al., 2016), (C) Example architecture of ResNet-50 (adapted from He et al., 2016), (D) Dense block example (adapted from Huang et al., 2017),
(E) Faster RCNN architecture (adapted from Ren et al., 2015), (F) Inception V3 architecture (adapted from Szegedy et al., 2016).
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insect detection and monitoring. YOLO (Redmon et al., 2016) is an

object detection algorithm that uses a single stage to perform object

detection. Unlike other object detection algorithms that rely on

region proposals, YOLO uses a grid of cells to divide the image into

smaller regions and predicts the object class and location for each

cell. The algorithm is trained on large datasets, such as the COCO

(Common Objects in Context) or ImageNet, and has been designed

to be fast and accurate. Different variants from this family were

used: YOLOv2 (Redmon & Farhadi, 2017), YOLOv3 (Redmon &

Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5s,

YOLOv5m, and YOLOv5l (Ultralytics, 2020).

A synthetic presentation of NNs used for insect and pest

detection and classification in agricultural applications is given in
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Table 3. Based on the information from Table 3, the graph in

Figure 5 describes the evolution over the last three years of the most

used neural networks for insect monitoring in modern agriculture.

This study primarily centers its focus on exploring emerging

trends in CNNs for insect pest detection and monitoring through

the innovative application of new combinations, while also

acknowledging classic CNN models as reference points. This

approach aligns with the prevalent practice in the field, where most

studies strive to strike a balance between pioneering CNN architectures

and established, foundational models. This dual perspective,

embracing innovation while respecting tradition, mirrors a common

practice observed in the contemporary studies within the deep learning

community. Researchers understand that leveraging the strengths of
TABLE 3 CNN used in insect and pest detection.

CNN
family/

References

Representatives/
configuration

Function Performances Papers

AlexNet
5

AlexNet Classification ACC: 80.3% -
91.31.%,
F1 score: 96%

[(Khanramaki et al., 2021), (Li et al., 2019),
(Malathi and Gopinath, 2021), (Xu et al., 2022), (Divyanth et al., 2022)

CapsNet
2

CapsNet/modified Classification ACC: 82.4%,
PRE: 75.41%

(Xu et al., 2022), (Zhang S. et al., 2022)

CNN
8

CNN Classification ACC: 91.5% -
98,6%
F1 score: 95%

(Chodey & Shariff, 2021), (Hossain et al., 2019), (Espinoza et al., 2016),
(Kasinathan et al., 2021), (Sharma et al., 2020), (Singh et al., 2021)

BPNN Classification ACC: 91% (Zhu et al., 2020)

DenseNet
8

DenseNet 121 Detection
and
classification

ACC: 88.06% -
99.1%

(Abbas et al., 2021), (Sanghavi et al., 2022),
(Zhang & Chen, 2020), (Shi et al., 2020)

DenseNet 169 Detection mAP: 92.3% (Butera et al., 2021)

DenseNet 201 Detection
and
classification

ACC: 79.01%,
95.52%

(Nanni et al., 2022), (Singh et al., 2021)

Weakly DenseNet-16 Classification ACC: 93.42% (Xing et al., 2019)

EfficientNet
4

EfficientNet Detection ACC: 97.89% -
99.1%

(Dai et al., 2021), (Sanghavi et al., 2022), (Takimoto et al., 2021)

EfficientNet B0 Detection ACC: 94.25% (Nanni et al., 2022)

EfficientDet
1

EfficientDet D0 Detection ACC: 95.3% -
97.9%

(Hong et al., 2021)

GoogLeNet
1

GoogLeNet with
Inception modules

Classification ACC: 91.02% (Malathi and Gopinath, 2021)

Inception
10

Inception v3 Classification ACC: 75.3% -
99.04%
mAP: 71%

(Ayan et al., 2020), (Fang et al., 2020), (Hansen et al., 2019), (Rajeena et al.,
2022), (Sanghavi et al., 2022), (Singh et al., 2021), (Wang et al., 2020), (Liu et al.,
2022)

Inception ResNetv2 Detection ACC: 91.14% (Khanramaki et al., 2021), (Singh et al., 2021)

LeNet
3

LeNet5 Classification ACC: 93.1% -
96.1%,
PRE: 94%

(Albanese et al., 2021), (Ding & Taylor, 2016)
(Segalla et al., 2020)

MobileNet
10

MobileNet Detection
and
classification

ACC: 82.10% -
97.39%

(Ayan et al., 2020), (Singh et al., 2021), (Xing et al., 2019)

(Continued)
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TABLE 3 Continued

CNN
family/

References

Representatives/
configuration

Function Performances Papers

MobileNetv2 Detection ACC: 81.32% -
96.29%

(Albanese et al., 2021), (Hong et al., 2021), (Nanni et al., 2022), (Rajeena et al.,
2022), (Xing et al., 2019), (Zhang & Chen, 2020)

MobileNetv3 Detection mAP: 92.66% (Butera et al., 2021)

Optimized MobileNet Classification ACC: 95.04% (Rimal et al., 2022)

NASNet/1 NASNetMobile Classification ACC: 73.46% (Singh et al., 2021)

Perceptron/1 Multi-layer perceptron Detection ACC: 98.45% (Dos Santos et al., 2022)

R-CNN/13 Cascade R-CNN Detection mAP: 70.83% (Dos Santos et al., 2022)

Faster R-CNN Detection
and
classification

ACC: 60,2% - 99%
F1: 85.5% - 99.5%
mAP: 65.58% -
89.1%

(Ahmad et al., 2021), (Alsanea et al., 2022), (Butera et al., 2021), (Du et al.,
2022), (Guo et al., 2021), (Hong et al., 2021), (Li et al., 2019), (Liu et al., 2019),
(Wang et al., 2022), (Shi et al., 2020)

Mask R-CNN Detection
and
segmentation

PRE: 85% (De Cesaro Júnior et al., 2022)

MSR-RCNN/ResNet-50
backbone

Detection mAP: 67.4% (Teng et al., 2022)

RegNet
1

RegNet Detection ACC: 98.07% (Dai et al., 2021)

ResNet
31

ResNet/modified Detection ACC: 95.83% (Tian G. et al., 2020),

ResNet 18/modified Detection ACC: 60.3% (Roosjen et al., 2020)

ResNet 34 Detection ACC: 94.3%, 91.2% (Cochero et al., 2022), (Malathi and Gopinath, 2021)

ResNet 50 Classification ACC: 43.99% -
99.04%
F1 score: 55% -
92.6%
mAP: 74,24% -
88.5%

(Ayan et al., 2020), (Bereciartua-Pérez et al., 2022), (Butera et al., 2021), (De
Cesaro Júnior et al., 2022), (Fang et al., 2020), (Dai et al., 2021), (Khanramaki
et al., 2021), (Li et al., 2019), (Liu et al., 2019), (Liu et al., 2022), (Malathi and
Gopinath, 2021), (Nanni et al., 2022), (Rajeena et al., 2022), (Sanghavi et al.,
2022), (Wang et al., 2020), (Wang et al., 2022), (Xu et al., 2022)

ResNet 53 Detection mAP: 77.29% (Lv et al., 2022)

ResNet 101 Detection mAP: 85.53% -
99.5%

(Hong et al., 2021), (Li et al., 2019), (Liu et al., 2019), (Lv et al., 2022), (Wang
et al., 2022), (Zhang & Chen, 2020), (Shi et al., 2020)

ResNet 152 Detection ACC: 96.31% (Zhang & Chen, 2020)

ResNeXt-50 Classification ACC: 86.5% (Li C. et al., 2022)

RetinaNet
3

RetinaNet Detection mAP: 65.03% -
94.77%

(Li et al., 2020), (Wang et al., 2022)

RetinaNet50 Detection mAP: 86.40% (Hong et al., 2021)

SqueezeNet 1 SqueezeNet Classification ACC: 94.02% (Ayan et al., 2020)

ShuffleNet
2

ShuffleNet v1 Classification ACC: 83.58% (Xing et al., 2019)

ShuffleNet v2 Classification ACC: 83.58% (Xing et al., 2019)

SSD
3

SSD Detection PRE: 70% (Aota et al., 2021)

SSD with MobileNetv2 Detection mAP: 84.54% (Hong et al., 2021)

SSD/with VGG-16 and
ResNet-50

Detection mAP: 63.38% (Wang et al., 2022)

VGG
23

VGG16/modified Classification ACC: 67% - 97.9%
R2 = 0.85 to 0.95

(Albanese et al., 2021), (Ayan et al., 2020), (Bereciartua-Pérez et al., 2022),
(Khanramaki et al., 2021), (Knyshov et al., 2021), (Kusrini et al., 2021), (Li et al.,
2019), (Nazri et al., 2018), (Rajeena et al., 2022), (Sanghavi et al., 2022), (Singh
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both new and classic CNN models can yield comprehensive insights

and solutions, ultimately driving the field forward.

Regarding key trends and advancements, CNNs continued to be

a popular choice for image-based insect pest detection. Researchers
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were developing and fine-tuning CNN architectures to achieve

higher accuracy in recognizing and classifying pests from images.

Transfer learning techniques were becoming increasingly important

in this domain. Researchers were pre-training CNNmodels on large
TABLE 3 Continued

CNN
family/

References

Representatives/
configuration

Function Performances Papers

et al., 2021), (Valan et al., 2019), (Wang et al., 2020), (Wu et al., 2019), (Xing
et al., 2019), (Zhang S. et al., 2022)

VGG16/modified Detection F1:95.25%, mAP:
78.20%, PRE: 99%

(Segalla et al., 2020), (Wang et al., 2022), (Shi et al., 2020)

VGG19 Classification ACC: 74.07% -
99.02%

(Ayan et al., 2020), (Fang et al., 2020), (Rajeena et al., 2022), (Singh et al., 2021)

VGG19/improved +
RPN

Detection mAP: 89.22% (Xia et al., 2018)

Xception
4

Xception Classification ACC: 74.07% -
97.98
PRE: 77%

(Ayan et al., 2020), (Fang et al., 2020), (Rajeena et al., 2022), (Singh et al., 2021),
(Kuzuhara et al., 2020)

YOLO
14

YOLO Detection ACC: 88.06% -
92.50%

(Shi et al., 2020), (Zhong et al., 2018)

YOLOv3/improved Detection PRE: 77%, mAP:
77.29%, F1: 87% -
90%

(Kuzuhara et al., 2020), (Liu and Wang, 2020)
(Lv et al., 2022), (Partel et al., 2019), (Rustia et al., 2020)

Tiny-YOLOv3 Detection F1 Score: 90% -
92%

(Rustia et al., 2020)

YOLOv4 Detection F1 Score: 55% -
83.8%

(Genaev et al., 2022), (Takimoto et al., 2021)

YOLOv5 Detection ACC: 98.45%, mAP:
77.0% -99.2%

(Bereciartua-Pérez et al., 2022), (Dos Santos et al., 2022), (Zhang Y. et al., 2022),
(Zhang et al., 2023)

ZF Net
2

ZF Net Detection mAP: 88.5%,
75.46%

(Li et al., 2019), (Liu et al., 2019)
FIGURE 5

The graph of the evolution in the last three years of the most used neural networks.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1268167
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Popescu et al. 10.3389/fpls.2023.1268167
datasets and then fine-tuning them for insect pest detection tasks.

This approach helped in achieving better results even with limited

labeled data for specific pests. For object detection and localization,

object detection models like Faster R-CNN, YOLO and SSD were

adapted for insect pest monitoring. These models not only classified

pests but also provided bounding box coordinates, which is crucial

for precise pest localization. As a new trend, researchers were

experimenting with advanced data augmentation techniques to

improve model robustness. Techniques like GANs were used to

create synthetic pest images to augment the training dataset. Next,

focusing on network architectures, capsule networks, which aim to

address the limitations of traditional CNNs in handling hierarchical

features, have been explored for insect pest recognition (Xu et al.,

2022; Zhang S. et al., 2022). They can capture the spatial hierarchies

of pest body parts for improved classification. Some researchers

have proposed hybrid architectures that combine the strengths of

CNNs for image processing and recurrent neural networks (RNNs)

for sequential data processing. This is particularly useful when

tracking pests’ movements over time (Butera et al., 2021; Alsanea

et al., 2022; Du et al., 2022). To make pest detection systems more

transparent and interpretable, explainable AI in architectures

techniques have been integrated into neural network

architectures. This allows users to understand why a particular

pest detection decision was made. Researchers often choose or

design architectures based on the unique characteristics and

challenges of the pests they are targeting and the monitoring

environment. Advancements in neural network architectures for

insect pest detection and monitoring are ongoing, so staying up to

date with the latest research papers and developments in the field is

essential for the most current insights.
2.4 Performance indicators

Looking at the area of impact and innovation, the new trends

stand out with high-performance indices in relation to the area of

pest identification. Attaching these was done to create a comparison

area. Since the research was based on deep learning models, the

indicators most used as evaluation methods of these models were

highlighted as part of this study, being represented by accuracy,

precision, sensitivity, specificity, F1 score, Jaccard index, mean

average precision (mAP), and sometimes R2. Names and

calculation formulas are attached in Table 4. The most used
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performance indicators were mAP, accuracy, and F1 score.

Representative indices were also extracted from the creation of

the confusion matrix (Ahmad et al., 2022) where the values for TP –

True Positive, TN – True Negative, FP – False Positive, and FN –

False Negative are indicated.
2.5 Software used

This study underlines the need of tracking the software used in

NNs (Table 5). This is especially important given the fast

developments in NNs and the advent of new software and

approaches. Nevertheless, various software programs may yield

somewhat different results due to differences in implementation

and optimization strategies. Knowing what software was used

allows others to replicate and validate the results. This is

especially significant for improving the area and expanding on

previous studies. Furthermore, knowing the software utilized helps

enhance collaboration in the fields of NNs and PA. It allows

academics to share code and data, enabling the flow of ideas and

speeding up research and development.

As can be observed from Table 5, Tensorflow in combination

with Keras is the most popular choice for software development in

pest detection or identification systems using CNNs (Fang et al.,

2020). The second popular way of software implementation,

showing increasingly high and modern adoption, is represented

by PyTorch with the attached torch and torch-vision libraries.

TensorFlow is an open-source software library developed by

Google for building and training ML models (Abadi et al., 2016). It

is a popular and powerful DL framework that provides a wide range

of tools and APIs for building and training models (Wang et al.,

2022). TensorFlow is a library for numerical computation that is

particularly well-suited to the computation of large-scale linear

algebra operations, which are a common component of many ML

algorithms. It provides a wide range of tools for building and

training DL models, including CNNs and recurrent NNs. It also

includes support for distributed training and deployment on

different hardware platforms. For the task of detection of harmful

insects and pests in modern agriculture, it was a popular

choice (Table 5).

Keras is an open-source software library written in Python that

provides a high-level interface for building and training DL models

(Chollet et al., 2015). It is built on top of other popular DL
TABLE 4 Performance indicators used in the review.

Indicator Formula Indicator Formula

Accuracy (ACC) ACC =
TP + TN

TP + TN + FP + FN

Sensitivity
(SEN) SEN =

TP
TP + FN

Precision
(PRE) PRE =  

TP
TP + FP

Specificity
(SPE) SPE =  

TN
TN + FP

F1 Score
(F1) F1 =  

2 · TP
2 · TP + FP + FN

Jaccard index
(j) j =  

TP
TP + FN + FP

Mean Average Precision
(mAP) mAP =  

1
N *  o

N

i=1

APi R2
R2 (y, ŷ) =   1 −  on

i=1

(yi − ŷi)
2

on
i=1 (yi − ӯ)2

R2 =  
Explained   variation
Total  Variation
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frameworks, including TensorFlow, and provides a simple and

intuitive API for defining and training models. Keras was

designed with the goal of making DL accessible to a wider

audience, including researchers, students, and developers with

limited ML experience.

For insect monitoring tasks, another software used was

PyTorch. Based on the analyzed papers, a strong adoption of the

framework in pest detection tasks is observed in the last three years,

especially in 2022. Facebook (actual Meta) team created PyTorch as

an open-source machine learning framework (Paszke et al., 2019). It

is a well-known and sophisticated DL framework that offers a

variety of tools and APIs for developing and training ML models.

Torch is a scientific computing framework that enables efficient

tensor operations and automated differentiation. PyTorch is built

on top of the Torch library and improves these capabilities by

including a dynamic computational graph, allowing for more

flexible and intuitive model creation, and debugging. PyTorch

includes a variety of tools and APIs for developing and training

DL models such as CNNs, recurrent NNs, and others.

The MATLAB programming and numerical computing

platform do not have the same characteristics as the libraries and

deep learning frameworks like Tensorflow + Keras or PyTorch,

based on the performance and flexibility associated with the Python

programming language in which they are implemented. MATLAB

(matrix laboratory) is a programming environment and a

programming language used primarily for numerical computing

and scientific computing (MathWorks Matlab 22). MathWorks

MATLAB provides a wide range of built-in functions and tools

specifically designed for image processing and computer vision

applications (Nagar and Sharma, 2021). MATLAB’s Image

Processing Toolbox provides a comprehensive set of tools for

image analysis, filtering, segmentation, feature extraction, and
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object recognition (Divyanth et al., 2022). The toolbox includes

functions for common image processing tasks such as image

smoothing, noise reduction, edge detection, and morphological

operations. MATLAB also provides support for deep learning and

machine learning, which can be used for image classification and

object recognition tasks.

In this sense, although there are various software solutions, the

Python programming language remains a solid basis to build such

deep-learning systems based on artificial neural networks in the

detection, identification or even monitoring of insect pest. Cloud

computing services capable of providing modules, APIs or even

software platforms as a service in the development of deep-learning

solutions for pest detection have also been noted. The main

characteristic in their case is represented by the availability and

flexibility in accessing these types of cloud resources, being

therefore part of the new trends.

Another software used for insect monitoring in precision and

modern agriculture was Fastai. It is a high-level open-source DL

library built on top of PyTorch (Howard & Gugger, 2020). It is

designed to make it easier to train state-of-the-art DL models with

as little code as possible. The library provides a simple and

consistent API for quickly training deep NNs on a wide range of

tasks, such as image classification, object detection, text

classification, and natural language processing. One of the unique

features of Fastai is its approach to transfer learning, which involves

leveraging pre-trained models and fine-tuning them for specific

tasks (Cochero et al., 2022).

Another modern software that was used for insect monitoring

in agriculture was Imagga Cloud API which is a cloud-based image

recognition platform that provides a suite of APIs for developers to

build image-related applications (Imagga, 2020). Imagga API was

used for rice pest detection (Bhoi et al., 2021), integrating IoT and
TABLE 5 Software used.

Software Description Link Papers

PyTorch ▪ An open-source machine
learning framework
▪ Based on Python
programming language and
Torch library

https://pytorch.org/ (Cochero et al., 2022), (Du et al., 2022), (Dai et al., 2021), (Guo et al., 2021), (Huang et al.,
2022), (Lv et al., 2022), (Wang et al., 2022), (Zhang Y. et al., 2022), (Zhang et al., 2023), (Shi
et al., 2020)

TensorFlow ▪ An end-to-end open-source
machine learning platform

https://
www.tensorflow.org/

(Ahmad et al., 2021), (Alsanea et al., 2022), (Bereciartua-Pérez et al., 2022), (De Cesaro Júnior
et al., 2022), (Fang et al., 2020), (Guo et al., 2021), (Hossain et al., 2019), (Karam et al., 2022),
(Knyshov et al., 2021), (Rajeena et al., 2022), (Rimal et al., 2022), (Sharma et al., 2020),
(Takimoto et al., 2021), (Valan et al., 2019), (Wang et al., 2020), (Wang et al., 2022), (Wu
et al., 2019)

Keras ▪ High-level, modular, and
flexible open-source neural
network library and API
based on Python
programming language

https://keras.io/ (Ayan et al., 2020), (Fang et al., 2020), (Hossain et al., 2019), (Karam et al., 2022), (Knyshov
et al., 2021), (Lu et al., 2019)

Imagga
Cloud API

▪ Image recognition API as a
service

https://imagga.com / (Bhoi et al., 2021)

Fastai ▪ Deep learning library https://www.fast.ai/ (Cochero et al., 2022)

MathWorks
Matlab

▪ Programming and numeric
platform designed for
engineers and scientists

https://
www.mathworks.com/
products/matlab.html

(Divyanth et al., 2022), (Nagar and Sharma, 2021)
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UAV systems. The Imagga Cloud API provides a range of image

analysis and recognition services, including image tagging, content-

based image search, color extraction, cropping, and ML algorithms

that can identify objects, scenes, colors, and other attributes within

an image.
3 New trends in harmful insect and
pest detection

Regarding insect monitoring for detection, classification, and

even segmentation there are several modern approaches to train

and validate a computer system for pest monitoring tasks using AI

(Zhang, 2022). CNNs are frequently utilized in this procedure

because they are particularly well-suited to image recognition

tasks (Teng et al., 2022). Over time a well-trained system can be

used to identify pests quickly and accurately in real-world scenarios

and images, enabling farmers, growers, and other stakeholders to

take action to address any issues quickly and effectively (Aota et al.,

2021). The modification of networks in relation to specific detection

or identification tasks has evolved over time and new ways of

implementation and development have emerged to meet

these needs.

Training and validating individual networks are the first

starting point. Modifying existing architectures through various

mathematical or structural methods is a common practice to

increase the robustness of such a system. By increasing the

number of training images and fine-tuning the network’s

parameters, the accuracy of pest identification using NNs may be

enhanced (Xia et al., 2018). This procedure is done multiple times

until the system achieves a satisfactory level of accuracy (Butera

et al., 2021). On the other hand, approaches to modify the base

structure and new optimization methods are addressed to satisfy the

same final need, to increase the accuracy and precision of a system

in relation to representative areas for pest detection and monitoring.

Models with notable results starting from the basic structures of

state-of-the-art networks by applying transfer learning techniques,

increasing dimensions, and implementing custom optimizations

were developed (Abbas et al., 2021). The research papers adopted

transfer learning applied to several public databases or similar

research datasets noted and described in previous chapters.

Oftentimes, research has involved the creation of proprietary and

private databases that are focused on the needs of each area

under investigation.

Multinetwork-based systems are new trends for insect

monitoring and detection. The most representative ones are based

on custom ensemble models. The use of ensembles of NNs and

innovative modified architectures can improve the accuracy of pest

detection. A CNN ensemble is a mixture of several CNN models

that results in a stronger, more accurate prediction model. The aim

of an ensemble is to use the strengths of many models to

compensate for the shortcomings of a single model (Xu et al.,

2021). The final decision of an ensemble of CNNs is derived by

fusion of the predictions of separate CNNmodels, often by majority

voting or weighted averaging. An ensemble’s diversity of models

decreases the problem of overfitting, resulting in greater accuracy
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and precision. Once trained, the outputs of the individual CNN

models are combined to form a final prediction. The idea is that by

combining the predictions of multiple models, the overall accuracy

and reliability of the system can be improved, and the risk of false

positives or false negatives can be reduced. One of the main

advantages of using a CNN ensemble for insect pest detection is

that it can improve the ability of the system to generalize to new

images or environments that may be different from the training

dataset. By using multiple models with different strengths and

weaknesses, the ensemble can be more robust to variations in

lighting, background, or other factors that may affect the

appearance of the insects in the images. The majority voting

ensembles, weighted average ensembles, and multinetwork

ensembles using a variety of CNNs backbones are the most

popular and most adopted in the case of pest detection and

identification. Some examples of ensemble models of NNs are

presented in Figure 6.

Fusion by weighted sum rule and combinations based on

different topologies and various Adam optimization were used

(Nanni et al., 2022) for the detection of several insect pests

attached to each database. The performance of the presented

work was noted and compared for different datasets. CNN

architectures are trained using various optimization functions,

including some novel Adam variations, and then fused. The

system is described in Figure 6A (inspired by Nanni et al., 2022).

The paper compared some of the state-of-the-art architectures for

pest classification: ResNet50, GoogleNet, DenseNet201, and

EfficientNetB0. Some other models were added and used for their

speed and efficiency on mobile devices: ShuffleNet and

MobileNetV2. In terms of optimization, Adam variants like

diffGrad was used to calculate a scaling factor in the learning rate.

Another strategy using transfer learning, fine-tuning, and

model ensemble was proposed in (Ayan et al., 2020). D0, SMALL,

and IP102 datasets were again selected and used to train, validate,

and test the accuracy rates of the proposed models. The study

involved modifying and re-training seven pre-trained CNN models

using transfer learning and fine-tuning on a 40-class dataset.

The top three models (Inception-V3, Xception, and MobileNet)

were ensembled using the sum of maximum probabilities and

weighted voting with weights determined by a genetic algorithm

to create two ensembled models: SMPEnsemble and GAEnsemble

(Ayan et al., 2020). Pre-trained models on ImageNet were

implemented and the proposed model of insect classification

ensemble methodology can be seen in Figure 6B. The paper

highlights that deep networks with different architectures can

have varying generalization capabilities when trained on the same

dataset. This is because different models can extract different

features from the data based on their architecture. Therefore, it is

important to consider the model architecture when selecting the

best-performing model for a given task. Adopting the suitable CNN

architecture for insect pest detection helps increase the detection

system’s accuracy and efficiency. It may be able to construct models

that are more adapted to certain pest detection tasks by using the

inherent capabilities of each architecture because various insect

pests might have diverse physical characteristics that necessitate

specific detection procedures. Certain pests, for example, may have
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a distinguishing pattern of spots or stripes on their body, while

others may have distinct antennae or wings. As a result, it is critical

to carefully pick the CNN architecture to be employed for insect

pest identification. Because of its capacity to extract data at different

scales, an architecture like Inception-V3 may be more suited for

pests with complex traits. MobileNet, on the other hand, can be

more suited for simpler pests or resource-constrained applications

because of its lightweight design.

Another ensemble model was proposed in (Turkoglu et al.,

2022) using a majority voting method Figure 6C. Feature

concatenation and SVM (Support Vector Machine) classifier was

also implemented at the core of the proposed system which used six

state-of-the-art networks for pest classification and plant

disease classification.

The tendency of researchers to modify the NN backbone was

also observed. Modifying the backbone of a pre-trained NN for a

given task is a typical approach in deep learning (Li Z. et al., 2022).

Many cutting-edge models are constructed on modified backbones

of pre-trained NNs (Kuzuhara et al., 2020; Liu et al., 2022).
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Although this aspect does not define a new area, there are some

directions that can be highlighted in relation to the idea of

modifying the backbone of a neural network. In this sense,

specific modifications of the backbone and the impact on the

performance of the network can describe novel and innovative

research (Table 6). Modifying the NN backbone can have a

significant impact on its performance. For instance, changing the

number of layers in the backbone can affect the depth of the

network and its ability to learn more complex features. Adding or

removing layers can also affect the number of parameters in the

network, which can impact its overall computational efficiency.

Additionally, changing the architecture of the backbone can impact

the type of features extracted from the input data. A defining

example of the area of innovation brought by modifying the

backbone of a model can be researched in the study (Butera et al.,

2021). The authors (Butera et al., 2021) used Faster R-CNN, SSD,

and RetinaNet. Backbone used was based on several models such as

VGG, ResNet, DenseNet, and MobileNet, adapted for the task of

insect pest detection in real-world scenarios. Additionally, the
A

B

C

FIGURE 6

Examples of multi-network-based systems as a new trend: (A) Adapted system architecture for the ensemble model proposed in (Nanni et al., 2022)
for insect pest detection, (B) Adapted insect classification ensemble methodology proposed in (Ayan et al., 2020), (C) Adapted majority voting
ensemble model for pest classification proposed in (Turkoglu et al., 2022).
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impact of the transfer learning technique on the models used for

accuracy and inference time was also studied. The authors noted

that a model based on Faster R-CNN with MobileNetv3 is a strong

point for insect pest detection.

The YOLOv4-tiny architecture with CSPDarknet53-tiny as the

backbone was used to train a pest fly detection model using a dataset

of insects of interest (Genaev et al., 2022). The network consists of

Backbone, Neck, and three recurring blocks including Convolution,

CBL, and CSP blocks. The CSP block structure utilizes a feature

pyramid network to divide the input feature map into two parts.

This structure reduces computational complexity while maintaining
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accuracy in object detection. Using YOLOv4-tiny allowed for the

development of a fly recognition method that can be implemented

as a modern mobile application.

A network for robust pest detection, with emphasis on small-

size, multi-scale, and high-similarity pests was proposed by the

authors (Teng et al., 2022). The proposed pest detection network

used two customized core designs: a multi-scale super-resolution

(MSR) feature enhancement module and a Soft-IoU (SI)

mechanism. The MSR module developed enhances feature

expression ability for small-size, multi-scale, and high-similarity

pests, while the SI mechanism emphasizes position-based detection
TABLE 6 CNN ensemble architectures and backbone modifications.

NN Used Novelty Combination/
Description

Function/
Application

Perfor-
mances

Papers,
year

AlexNet, GoogleNet,
DenseNet201

CNN
Ensemble

▪ Majority voting fusion Classification/Apple pest and
disease classification in a real-
time application

ACC: 96.1% -99.2% (Turkoglu
et al., 2020)

AlexNet, VGG16, ResNet-50,
InceptionResNet V2

CNN
Ensemble

▪Fusion by correlation
coefficient comparison
▪Majority voting

Classification/Citrus pest F1 Score: 0.935 (Khanramaki
et al., 2021)

EfficientNetB0, GoogleNet,
ResNet-50, MobileNetV2,
ShuffleNet, DenseNet201

CNN
Ensemble

▪Fusion by weighted sum rule
▪Combination based on
different topologies
▪ Various Adam optimization

Detection/
Insect pest

ACC:
95.52% (SMALL),
74.11% (IP102),
99.81% (D0)

(Nanni et al.,
2022)

AlexNet, ResNet 18, 50 and 101,
DenseNet201, GoogleNet

CNN
Ensemble

▪ Fusion by averaging
▪ Majority voting ▪Integrating
SVM classifier

Detection and classification/
Plant disease and pest

ACC: 97,56%,
96.83%

(Turkoglu
et al., 2022)

Inception-V3, ResNet-50,
Xception, VGG-16, VGG-19,
MobileNet

CNN
Ensemble

▪Fusion by majority voting
▪Four-stage classification
methodology

Classification/Insect ACC: 98% (Ayan et al.,
2020)

FasterRCNN, MobileNetV3 Backbone
modification

▪FasterRCNN with
MobileNetV3 backbone

Detection/Insect pest mAP: 92.66% (Butera et al.,
2021)

YOLO-v4-tiny,
CSPDarknet53

Backbone
modification

▪YOLO v4-tiny with
CSPDarknet53-tiny backbone

Detection/Insect pest F1: 0.838 (Genaev
et al., 2022)

R-CNN
ResNet50

Backbone
modification

▪Novel MSR-RCNN model
with ResNet-50 backbone

Detection/
Multi-class pest

mAP: 67.4% (Teng et al.,
2022)

SSD, RetinaNet,
FCOS, R-CNN,
FPN, Cascade R-CNN

Backbone
modification

▪SSD with VGG16 as
backbone
▪ResNet 50 for object detetion

Detection/Insect pest (Wang et al.,
2022)

RetinaNet Backbone
modification

▪RetinaNet with feature
pyramid network backbone

Detection/multi-scale insect
detector

mAP: 94.77% (Li et al.,
2020)

VGG, ZFNet,
ResNet 50 - 101,
Faster R-CNN

Backbone
modification

▪Deep CNN fused with CSA Detection and classification/
Multi-class pests

mAP: 75.46% (Liu et al.,
2019)

YOLOv3,
Xception

Two-stage detector ▪Two-stage detection using
YOLOv3 and Xception

Detection and classification/
Small insect pests

PRE: 77% (Kuzuhara
et al., 2020)

Inception,
ResNet50

Two-stage detector
and backbone
modification

Two-stage CNN solution
integrating GaFPN and GAM

Detection and classification/
Small insect pests

mAP: 71% (Liu et al.,
2022)

YOLOv5,
ShuffleNetv2

Model combination ShuffleNetv2-YOLOv5-Lite-E
improved detection model for
edge devices

Detection/
Tea culture pest

mAP: 97,43% (Zhang et al.,
2023)

GhostNet,
YOLOv5

Model combination YOLOv5-GhostNet
combination for embedding
devices

Detection/
Orchard pest

mAP: 99% (Zhang Y.
et al., 2022)
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requirements. The MSR-RCNN is more suitable for pest detection

tasks and includes a ResNet50 backbone and a feature full fusion

mechanism to improve multi-scale pest detection. A feature full

weighting mechanism was added and optimizes the detection

performance of similar pests from two dimensions (depth and

location). The implemented MSR module includes a super-

resolution component used to obtain a six-layer feature map for

recognizing small-sized objects. Additionally, the full feature fusion

mechanism is used to integrate all features at once for recognizing

multi-scale objects. On the other hand, in this study, a large-scale

pest dataset of trap images was developed (LLDP-26). It can be

observed that the changes made to the existing models and

backbones bring considerable improvements in performance,

enabling the solution of pest identification problems from digital

images and outperforming existing state-of-the-art models

and techniques.

A two-stage detection and identification method for small insect

pests using CNN was proposed in (Kuzuhara et al., 2020). The

authors used YOLOv3 as an object detection model, which is a

popular deep learning model for object detection. A region proposal

network (RPN) to help identify the regions of the image that

contain the pest is used. After identifying the regions of interest,

the proposed method performs pest classification using the

Xception model (Chollet, 2017), which is a deep CNN that has

been shown to achieve high accuracy in image classification tasks.

The authors further improved the classification accuracy by using a

data augmentation method based on image processing, which

helped to generate more training examples by applying

transformations to the original images. One of the strengths of

this two-stage detection method is that it can handle the challenges

posed by small insect pests, which are difficult to detect using

traditional object detection methods due to their small size and low

contrast. This method shows a good way in achieving high accuracy

in detecting and identifying small insect pests, which can help

improve pest management in agriculture.

Regarding the new trends, the authors in (Zhang et al., 2023)

proposed an improved detection model based on ShuffleNetv2 and

YOLOv5. This paper presents a target detection model based on the

ShuffleNetv2-YOLOv5-Lite-E method, which substitutes the Focus

layer with the ShuffleNetv2 algorithm. It also reduces the model size

by pruning the YOLOv5 head at the neck layer. The suggested
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model is more robust and lightweight, and it may enhance detection

efficiency while maintaining the recognition rate.

Combining YOLOv5 and GhostNet (Zhang Y. et al., 2022) and

using a custom pest dataset allowed the method to achieve a higher

mAP with the same number of epochs. In this case, the usage of

GhostNet in YOLOv5 can be described as a new trend. GhostNet is

a lightweight neural network architecture proposed in 2020 (Han

et al., 2020) for usage in edge devices. The utilization of Ghost

modules, which replace the usual convolutional layers in a NN, is

the core characteristic of GhostNet. Ghost modules have a primary

and secondary path. The primary path is a normal convolutional

layer, but the secondary path has fewer channels and is used to

simulate the behavior of the primary path. GhostNet may achieve

equivalent precision to bigger networks by employing Ghost

modules but with fewer parameters and lower processing cost.

This makes it appropriate for deployment on low-power devices

with limited processing resources. For the proposed model, authors

noted 1.5% higher mAP than the original YOLOv5, with up to three

times fewer parameters and the same or less detection time. With

this architecture, the mAP obtained by the authors was about 99%.

Table 6 synthesizes the novelty and performances of CNN

ensemble architectures.
4 Applications

In real applications, data classification and analyzing huge

volumes of data are time-consuming. To increase efficiency, the

final strategy is to create and optimize ML and DL models to

estimate and create powerful systems for understanding features,

patterns, and complex, big amounts of data (Csillik et al., 2018;

Abayomi-Alli et al., 2021). The focus area is to train models to find

optimal parameters, auto-adjust values, and adapt to a robust

architecture generated and optimized step by step over several

epochs of training with dataset capture (Nanni et al., 2022; Wang

et al., 2022). For agricultural areas, ML is widely used to automate

time-consuming, labor-intensive tasks and to collect essential

information having at the core mathematical models,

computational resources, and infrastructure with high

performance and standards. As part of this study, we can note

this as a new trend in precision agriculture. Proposed works show
TABLE 7 Applications.

Application Papers

Harmful insect
detection

(Albanese et al., 2021), (Alsanea et al., 2022), (Ayan et al., 2020), (Butera et al., 2021), (Cochero et al., 2022), (Genaev et al., 2022), (Guo et al., 2021),
(Hansen et al., 2019), (Hong et al., 2021), (Hossain et al., 2019), (Iost Filho et al., 2022), (Espinoza et al., 2016), (Kasinathan et al., 2021), (Khanramaki
et al., 2021), (Knyshov et al., 2021), (Li et al., 2019), (Li et al., 2020), (Li C. et al., 2022), (Liu et al., 2019), (Liu and Wang, 2020), (Lv et al., 2022),
(Malathi and Gopinath, 2021), (Nagar and Sharma, 2021), (Nanni et al., 2022), (Rajeena et al., 2022), (Rimal et al., 2022), (Rustia et al., 2020),
(Sanghavi et al., 2022), (Teng et al., 2022), (Valan et al., 2019), (Wang et al., 2020), (Wang et al., 2022), (Xia et al., 2018), (Zhang & Chen, 2020), (Shi
et al., 2020)

Infected crops
by insects

(Bereciartua-Pérez et al., 2022), (Bhoi et al., 2021), (Fang et al., 2020), (Espinoza et al., 2016), (Kusrini et al., 2021), (Nazri et al., 2018), (Sharma et al.,
2020), (Singh et al., 2021), (Tian G. et al., 2020), (Turkoglu et al., 2020), (Turkoglu et al., 2022), (Wu et al., 2019), (Xing et al., 2019), (Xu et al., 2022),
(Zhang S. et al., 2022), (Zhu et al., 2020)

Crop
monitoring

(Ahmad et al., 2021), (Aota et al., 2021), (Bouroubi et al., 2018), (Brunelli et al., 2020), (De Cesaro Júnior et al., 2022), (Ding & Taylor, 2016), (Dai
et al., 2021), (Partel et al., 2019), (Dos Santos et al., 2022), (Takimoto et al., 2021), (Zhong et al., 2018)
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considerable results and note the popularity of AI in general. The

applicability aspect of using these defined systems brings to the

forefront a series of advantages and development areas. As can be

seen from Table 7, most of the papers are focused on the following

main applications: harmful insect detection, identification of

infected crops, and crop monitoring.
4.1 Harmful insect detection

CNNs have become increasingly popular in image-processing

applications for modern agriculture following their ability to

identify insects and features in images. According to this study,

one of the applications of CNNs in the field of modern and

precision agriculture is harmful insect detection. The

identification of harmful insects is crucial for the protection of

crops and the prevention of plant diseases (Lv et al., 2022). CNNs

can be an effective tool for harmful insect detection in images (Guo

et al., 2021; Alsanea et al., 2022). By training the network on a large

and diverse dataset, CNN can learn to identify a wide range of

harmful insects. However, the issues of class imbalance and

transferability need to be addressed to ensure that CNN performs

well in real-world applications. For effective detection of harmful

insects, the first step is to collect and label a dataset of digital images

containing both harmful and non-harmful insects (Cochero et al.,

2022; Wang et al., 2022). In this case, the dataset should be large and

diverse to ensure the great performance of the CNN model and to

ensure that the CNN can learn to recognize a wide range of harmful

insects. Because this detection uses CNNmodels that learn different

features of an image through convolutional operations, the second

step is the preprocess the images in the dataset created to ensure

that they are in a format that can be fed into the CNN. This may

involve resizing the images, converting them to grayscale, or

normalizing the pixel values (Alsanea et al., 2022; Zhang Y. et al.,

2022). Following this scenario, the next step is to train the chosen

CNN model using the dataset prepared (Malathi and Gopinath,

2021; Nagar and Sharma, 2021; Liu et al., 2022). This involves

feeding the network the labeled images and adjusting the weights of

the neurons through backpropagation to minimize the error

between the predicted and actual labels. Transfer learning applied

on a custom insect pest dataset can be used and hyperparameter

tuning to speed up the process in this topic. Related to this aspect,

most of the papers analyzed for this study include such

methodology (Ayan et al., 2020). After the CNN was trained, it

can be used to classify new images of insects as either harmful or

non-harmful. To do this, the new image is fed into the CNN, and

the output is a probability score indicating the likelihood that the

insect in the image is harmful. A threshold value can be set, and if

the probability score is above this value, the insect is classified

as harmful.

One of the main challenges that were identified in applications

for harmful insect detection using CNNs is the issue of class

imbalance (Du et al., 2022). Harmful insects may be rare in the

dataset, which can lead to the CNN being biased towards non-

harmful insects. To overcome this, techniques such as over-

sampling or under-sampling can be used to balance the dataset.
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Another challenge identified is the issue of transferability. CNNs

trained on one dataset may not perform well on a different dataset

due to differences in the types of insects or the background images.

To address this, transfer learning can be used, which involves using

a pre-trained CNN as a starting point and fine-tuning the network

on the new dataset, as mentioned earlier (Butera et al., 2021; Li W.

et al., 2022; Popkov et al., 2022).
4.2 Infected crops by insects

CNNs are a powerful tool for identifying insect-infected crops.

They can be trained to learn patterns and features in images that are

indicative of insect damage and provide predictions on whether the

crops are healthy or infected (Turkoglu et al., 2022; Zhang S. et al.,

2022). The use of CNNs in agriculture can improve crop yields and

help farmers prevent and manage insect infestations more

effectively (Espinoza et al., 2016; Sharma et al., 2020; Bereciartua-

Pérez et al., 2022). Infected crops by insects can have a significant

impact on the agricultural industry, leading to the loss of crops and

revenue (Xu et al., 2022). With the increasing advancements in

computer vision, for modern agriculture, our study highlights that

the CNNs became an effective tool for identifying and detecting

insect infestations in crops.

CNNs are commonly utilized in applications such as image

classification, object identification, and segmentation. CNNs may

be taught to recognize patterns and characteristics in images that

are indicative of insect damage in the context of recognizing insect

infestations in crops. Similarly, to the insect detection tasks

discussed, a huge collection of images of healthy and infected

crops must be developed for applications used to target diseased

crops. The images are then annotated with whether the crops are

healthy or sick, as well as the species of bug inflicting the harm. The

CNN models are then trained by giving them tagged images,

allowing them to understand the patterns and characteristics

associated with insect-infested crops.

On the other hand, the CNN model can also provide

information about the type of insect causing the damage, enabling

farmers to take appropriate measures to prevent further damage. In

addition to identifying insect-infected crops, CNNs can also be used

for segmentation tasks (Zhang & Chen, 2020). Segmentation

involves dividing an image into different regions or objects. In the

context of identifying insect infestations, segmentation can be used

to identify and evaluate the areas of the crop that are infected. This

can provide more detailed information to farmers and enable them

to target their treatment strategies more effectively.
4.3 Crop monitoring

The third area of applications using models based on DL,

respectively on CNNs, is crop monitoring. This area of

application has a major impact when considering pest insect

populations and managing the effects of their presence. In this

sense, there have been several studies that have included this

direction of development. Crop monitoring refers to the process
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of keeping track of the growth, development, and health of crops.

Crop monitoring can be done using a variety of methods, including

satellite imagery, drone imagery, ground-based sensors, and visual

inspections. However, the traditional methods of crop monitoring

can be time-consuming, expensive, and require a significant

number of resources. With the advent of AI and ML, the use of

CNNs for crop monitoring has become increasingly popular. In

crop monitoring, CNNs can be used to analyze images of crops and

provide insights into their growth, development, and health. The

process of crop monitoring using CNNs typically involves several

steps including data collection, data preprocessing, training NNs,

and evaluating performances in a specific area of interest (Dai et al.,

2021). Applications of crop monitoring using CNNs have a wide

range of applications in modern agriculture, including disease and

pest detection or even yield estimation (Zhong et al., 2018; Tian G.

et al., 2020). CNNs can be used to detect the presence of diseases in

crops by analyzing the images of the leaves and other parts of the

plant. This can help farmers to take timely action to prevent the

spread of diseases and minimize crop losses. On the other hand, this

process can be automated by introducing real-time monitoring

modules, based on hardware systems and software modules

optimized for mobile platforms, used in the field. Important to

note, crop monitoring using CNNs has the potential to

revolutionize agriculture by providing farmers with real-time

insights into the growth, development, and health of their crops.

CNNs can analyze images of crops quickly, accurately, and at a
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fraction of the cost of traditional methods (Vanegas et al., 2018). By

using CNNs for crop monitoring, farmers can make informed

decisions about crop management, minimize losses due to

meteorological conditions, diseases, and pests, and optimize

their yields.
5 Discussion

This review paper points out several features in relation to the

areas of massive pest detection, classification, and recognition in

various crops. The research method plans to highlight the

advantages and disadvantages as well as the new trends of CNNs

and the application of image processing within these aspects of PA.

On the other hand, this study highlights the use of innovative

approaches and techniques, such as DL, transfer learning, active

learning, ensembles of CNNs, and multi-scale feature fusion, for

pest detection and classification from digital images. Overall, this

study is focused on insect monitoring including real environment,

NNs, and new trends.

Harmful insects and pest detection present a series of challenges

that researchers tend to study more and more and solve the

problems that arise. Analyzing the research extracted from

established databases, we noticed the wide interest in recent years

based on the topic of modern and precision agriculture. As it was

presented in the previous chapters, the databases chosen for
TABLE 8 Recent review/survey papers on similar topics.

Paper/
year

Description Period Refe-
rences

Our differences

(Abade et al., 2021) ▪ Systematic plant disease review
▪ CNN for crop disease recognition – trends and gaps.
▪ State of the art through systematic review used – StArt Tool

2010-
2019

121 ▪ Focused on insects including
real environment.
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA).
▪ More references.

(De Cesaro Júnior &
Rieder, 2020)

▪ Different approaches like CNN and other image classifiers for insect or
diseased plants detection from images.

2015 -
2019

57 ▪ Focused on insects including
real environment.
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA).
▪ More references.

(Cardim Ferreira
Lima et al., 2020)

▪ Identification and monitoring of insect pests using automatic traps.
▪ Using infrared sensors, audio sensors, and image-based classification

2007 -
2020

77 ▪ Focused on more insects
including real environment
▪ Focused on image processing
▪ Focused on neural networks
▪ Focused on new trends
(including 2022).
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Iost Filho et al.,
2019)

▪ Using drones in pest management to obtain canopy reflectance data of
arthropod infested plants.

1998 -
2018

319 ▪ Focused on insects including
real environment

(Continued)
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extracting the papers of this review study were Web of Science,

IEEE, and Scopus. Most of the papers chosen for analysis were

extracted from the Web of Science database one of the most widely

used citation databases in the world. Research on new trends and

impact information has been placed in the 2020-2022 range. For the

review topic, similar articles were extracted and compared. Their

analysis is presented in Table 8, where the differences compared to

this presented review and the area of contributions were also noted.

Based on the analysis, good quality information was highlighted,

and it was observed that the interest in the detection of harmful

insects and pests in modern agriculture using image processing and

NNs is quite pronounced.

Training, validation, and testing modalities are important

points in the research of architectures that automate processes in

modern agriculture. In the initial steps, acquiring the data set and
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organizing it is extremely important. Most papers reviewed for this

study highlighted the impact of a robust dataset, adding images

taken from real contexts. It has been observed that for the modern

area, techniques such as data augmentation and synthetic data

generation play an important role to diversify the data set. These

implications solve the problems where the training and validation

data set is small and for multi-class pest detection tasks it can solve

the class imbalance problem. A modern use case was noted by the

authors in (Karam et al., 2022) developing a web app for synthetic

data generation using DC-GANs, for agricultural pest detection

(whiteflies). The study illustrates how employing GAN in the

pipeline can improve the model’s capacity to generalize and

hence improve the accuracy of detected bounding boxes.

Image processing is another important step to note. Due to the

acquisition of digital images from real contexts, the presence of
TABLE 8 Continued

Paper/
year

Description Period Refe-
rences

Our differences

▪ Focused on new trends
(including 2022).
▪ Focused on neural networks
▪ New investigated methods for
review papers (PRISMA)

(Ghosh et al., 2021) ▪ Strategies and future trends on molecular and automated pest identification
(thrips) for rapid and high throughput diagnosis.

2001-
2020

253 ▪ Focused on insects including
real environment
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA)

(Kumar & Kukreja,
2022

▪ Systematic review on wheat disease prediction models
Kitchenham investigation method (Kitchenham et al., 2010)

1997-
2021

102 ▪ Focused on insects including
real environment
▪ Focused on new trends
(including 2022).
More references.
New investigated methods for
review papers (PRISMA)

(Liu & Wang, 2021) ▪ Plant disease and pest detection based on deep learning
▪ Aspects of classification, detection and segmentation networks are discussed

2014-
2020

108 ▪ Focused on new trends
(including 2022).
▪ Focused on insects including
real environment
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Preti et al., 2021) ▪ Insect pest management using camera-equipped traps and smart traps
▪ Remote sensing and electronics for long-distance pest monitoring
▪ Automatic detection and analysis for insect detection and counting
▪ Automatic traps usage benefits

1980-
2020

75 ▪ Focused on new trends
(including 2022).
▪ Focused on image processing
▪ Focused on neural networks
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Toscano-Miranda
et al., 2022)

▪ Insect pests and disease detection in cotton cultures using ML and IoT
▪ Focused on remote sensing and AI techniques
▪ Trends for smart agriculture
▪ Kitchenham investigation method [Kit 10]

2014-
2021

100 ▪ Focused on new trends
(including 2022).
▪ Focused on insects including
real environment
▪ Focused on image processing
▪ Focused on neural networks
▪ More references
▪ New investigated methods for
review papers (PRISMA)
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insects at the image level presents some aspects that have a negative

impact on the training and evaluation of the model that receives this

data as input. These aspects are represented by the relatively small

size of the insects, artifacts at the image level, and the context in

which they are illustrated: complex background, various types of

occlusions (branches, leaves), the presence of insects in large

numbers, and small object detection. Image processing aids in the

preprocessing and enhancement of input pictures, hence boosting

the accuracy and performance of CNN models. Images collected

from various sources, such as digital cameras or drones, may have

differences in lighting, background noise, and other artifacts that

might affect the accuracy of insect detection. As a result, image

processing techniques like filtering, segmentation, and

normalization can aid in the removal of noise and artifacts, the

improvement of contrast, and the highlighting of areas of interest in

pictures. Image processing may also aid in the extraction and

selection of useful aspects from digital images, such as color,

texture, and shape, that are significant to insect pest

identification. The CNN models can learn to discriminate

between various insect species and effectively categorize them by

finding and extracting these traits, even in complex situations.

To synthesize the findings, the present review paper highlighted

the fact that the combination of CNN architectures, as well as the

modification of existing architectures through various techniques,

bring to the fore notable performances in terms of accuracy.

According to the previously mentioned characteristics related to

the novelty in the combination of convolutional neural networks

and the problems in the detection of harmful insects of interest, a

series of studies of interest were identified with various presented

methods and integrating databases illustrating real contexts.

Starting in 2019, the authors (Liu et al., 2019) presented a DL

approach named PestNet. It was highlighted that multi-class pest

detection is a crucial step for effective pest management in modern

agriculture. In this work, PestNet includes a novel channel-spatial

attention module, a region proposal network, and a position-

sensitive score map (PSSM). A newly collected large-scale pest

image dataset named MPD2018 was proposed to evaluate the

PestNet model achieving 75.46% mAP on 16 pest classes,

outperforming other state-of-the-art methods.

Following Pest24 paper and database, to evaluate multi-pest

detection performance, the dataset described is divided into

training, validation, and test sets, with four state-of-the-art object

detection methods employed. YOLOv3 achieves the highest mAP of

63.54% and an impressive AP of 98.6% for individual pests under

optimal parameters. A 3-fold cross-validation experiment confirms

similar results. The paper examines various factors affecting

detection performance, highlighting the significant impact of

relative scale on AP while indicating that color discrepancy has

negligible influence.

Authors (Wang et al., 2022) also proposed a DL model, this

time for the recognition and counting of apple pests. The MPest-

RCNN named model achieved mAP and F1-Score values of 99.11%

and 99.50%, evaluated using an original dataset of three typical pests

in apple orchards. The paper presents a new Faster R-CNN
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structure based on the ResNet101 feature extractor and a novel

CNN structure with small anchors to extract features, therefore

boosting recognition accuracy for small pests.

Hunger Games search-based deep convolutional neural

network (HGS-DCNN) model for crop pest image classification

was proposed (Sanghavi et al., 2022), adding a new convolutional

layer to decrease parameter redundancy. Pre-processing and

augmentation, followed by pest categorization, are the two steps

of the model proposed. Pre-processing makes use of a novel

adaptive cascaded filter (ACF) in conjunction with decision-based

median filtering (DMF) and guided image filtering techniques. The

proposed model outperformed existing pre-trained architectures

such as ResNet50, EfficientNet, Dense Net, Inceptionv3, and VGG-

16 in terms of accuracy, precision, F1-score, sensitivity, and

specificity, with values of 99.1%, 97.80%, 97.80%, 97.82%, and

99.43%, respectively.

In the area of precision agriculture, the advent of new-

generation AI technology has ushered in a promising era of real-

time pest population monitoring. CNNs have exhibited amazing

performance in insect pest identification and categorization as part

of deep learning approaches. Their capacity to learn detailed

characteristics from large-scale visual data permits accurate

recognition, even when inter-class variances are small. Factors

like as dataset size, model design, and data quality can all have an

impact on CNN performance. It is still difficult to provide

robustness against intra-class volatility and data imbalance.

Ongoing research in pest identification and monitoring enhances

CNNs’ capabilities. Collaboration among agricultural, entomology,

computer vision, and machine learning professionals enables

transdisciplinary solutions.
6 Conclusions

Following this study, the use of new trends in deep learning has

the potential to revolutionize the field of pest monitoring and

significantly improve pest management in agricultural sector.

Algorithms such CNNss have shown great promise in accurately

identifying and classifying pests in digital images with high precision

and accuracy rates. Currently, CNNs have become a potent tool in

identifying crops that are infected with insects. Researchers have

developed ensemble techniques where multiple CNN models are

combined to achieve better performance. This technique is becoming

increasingly popular in the field of pest identification due to its

effectiveness in handling complex datasets and the ability to capture

diverse features of insects. Optimizing existing models for identifying

harmful insects by modifying their architectures specifically for this

topic represents another approach with a strong innovative impact.

For modern and precision agriculture or integrated pest

management, farmers can enhance their treatment approaches by

utilizing applications like insect detection for harmful insects,

identifying crop infections caused by insects, or monitoring crop

growth, which can offer them comprehensive insights and allow them

to precisely target their treatments.
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Orchard monitoring is a vital direction of scientific research and practical

application for increasing fruit production in ecological conditions. Recently,

due to the development of technology and the decrease in equipment cost, the

use of unmanned aerial vehicles and artificial intelligence algorithms for image

acquisition and processing has achieved tremendous progress in orchards

monitoring. This paper highlights the new research trends in orchard

monitoring, emphasizing neural networks, unmanned aerial vehicles (UAVs),

and various concrete applications. For this purpose, papers on complex topics

obtained by combining keywords from the field addressed were selected and

analyzed. In particular, the review considered papers on the interval 2017-2022

on the use of neural networks (as an important exponent of artificial intelligence

in image processing and understanding) and UAVs in orchard monitoring and

production evaluation applications. Due to their complexity, the characteristics

of UAV trajectories and flights in the orchard area were highlighted. The structure

and implementations of the latest neural network systems used in such

applications, the databases, the software, and the obtained performances are

systematically analyzed. To recommend some suggestions for researchers and

end users, the use of the new concepts and their implementations were surveyed

in concrete applications, such as a) identification and segmentation of orchards,

trees, and crowns; b) detection of tree diseases, harmful insects, and pests; c)

evaluation of fruit production, and d) evaluation of development conditions. To

show the necessity of this review, in the end, a comparison is made with review

articles with a related theme.

KEYWORDS

orchard monitoring, unmanned aerial vehicle, dataset, image processing, neural
network, object detection, object segmentation, object classification
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1 Introduction

The monitoring of modern orchards based on the acquisition and

continuous processing of data has become a necessity for obtaining the

highest possible production of healthy fruits. Within the data

processing field, image processing is of particular interest for orchard

monitoring because it efficiently solves several essential aspects like

orchard mapping, tree segmentation, production (fruit) evaluation,

disease detection, the need for water or special solutions, pest detection,

etc. Both RGB (red-green-blue) and multispectral images are used to

evaluate the parameters characterizing the orchard problems. They

provide a significant volume of information used for efficient

monitoring. The correct acquisition of images is necessary so that

the regions of interest are of good quality. Various vectors have been

used for image acquisition, such as human operators with cameras or

smartphones, fixed cameras, cameras on land vehicles, aerial vehicles

(autonomous or not), and satellites (Lin et al., 2021). Collecting image

data in a complex 3D space, such as an orchard, is a relatively recent

challenge made possible by the recent development of new

technologies. Consequently, due to both the technological

improvements and the economic aspects promoted by large-scale

production, many agriculture-related problems have been augmented

with the integration of artificial intelligence techniques and remote

sensing systems. Although satellites and UAVs (Unmanned Aerial

Vehicles) complement each other in the task of inspecting different

terrestrial areas, in the case of orchard monitoring, UAVs offer clear

advantages such as ultra-resolution, cost-effective operation, increased

flexibility for individual tree inspection, and resilience against weather

patterns such as cloudy (Alvarez-Vanhard et al., 2021). Not least, for

the monitoring of crops in precision agriculture, collaboration with

wireless ground sensor networks is of particular importance (Popescu

et al., 2020). On the other hand, in complex applications related to

orchard monitoring, UAVs have the advantage to take images from

either amedium distance (10m -100m) through an appropriate design

of the trajectories - such as in the case of orchard or tree segmentation

(Adamo et al., 2021; Akca and Polat, 2022) or to determine the water

stress index (Zhang C. et al., 2021) or from a smaller distance (tens of

cm) - such as the case of detecting harmful insects (Aota et al., 2021;

Ichim et al., 2022) or fruits (Wang S. et al., 2022). The UAVs compared

to terrestrial robots is also a more flexible and less expensive solution.

The automatic picking of fruits is an exception. In the future, the use of

complex multirobot systems that combine the actions of UAVs,

ground robots, and manipulators (Sulistijono et al., 2020; Ju et al.,

2022) can lead to an increased degree of automation in modern

orchards. However, research papers related to the application of

artificial intelligence and the use of drones (UAVs) in the

monitoring of orchards are relatively few compared to the

monitoring of flat, field crops. This is a consequence of considering

the 3D space in orchard applications.

It should not be forgotten that an essential condition for the

effective use of UAVs is flights performed beyond the visual range of

the operators. Due to the strong increase in the number of operational

UAVs, it has become necessary to analyze the conditions for making

safe flights in shared airspace. In this sense, working meetings are

increasingly taking place at the level of the European Union to update

the relevant flight regulations. For the safe operation of many drones,
Frontiers in Plant Science 02121
the “U-space” concept was introduced into European legislation

(Barrado et al., 2020) to manage UAS (unmanned aerial systems)

traffic. It refers to the framework of regulations, technologies, and

procedures required to enable safe and efficient drone operations in

low-altitude airspace. With the integration of drones into the airspace

system, U-space provides a framework for ensuring safety, security, and

efficiency in their operation. The continued development and

implementation of U-space regulations and technologies are essential

to realizing the full potential of drones and their applications in the

future. The term refers to a collection of digitized and automated

functions and processes aimed at ensuring safe, efficient, and equitable

access to airspace for the growing number of civilian drone operators.

This is essential for enabling the many benefits of drone technology,

such as improved delivery services, monitoring and inspection of

agricultural crops, and support for emergency services. Not least, by

requiring pilots to obtain a license and submit a flight plan, U-space

regulations help to mitigate the risks associated with drone operations

and promote the responsible and safe use of this technology.

Efficient monitoring in precision agriculture requires precise

mapping of agricultural crops and, implicitly, orchards. That is why

the detection and location of orchards and trees in the orchard with

the help of aerial robots and neural networks have undergone a

spectacular evolution in recent years (Osco et al., 2020; Zhang et al.,

2018; Osco et al., 2021). In precision agriculture, terrestrial robots

and UAVs were used for instance segmentation and fine detection

of crops, trees, and weed plants (Champ et al., 2020; Chen et al.,

2019; Khan et al., 2020a). It can be stated that drones and neural

networks are essential ingredients in precise and intelligent

agriculture. As per (Jensen et al., 2021), pesticide usage is 30% of

the total cost in citrus and 42% in olive orchards. The pesticide

reduction is discussed in (Özyurt et al., 2022) where UAVs are used

to assess areas in need of spraying in a hazelnut. The actual

application of pesticides is not straightforward: multi-rotor UAVs

are severely restricted in the maximum payload weight. Time is also

a factor. (Zortea et al., 2018) show that a month of manual labeling

in the field is replaced by a week of manually labeling images

obtained from a UAV flight (which may be further reduced to less

than a day when automatizing the labeling procedure). Noteworthy,

no single algorithm works for any type of orchard/forest (Larsen

et al., 2011).

Monitoring of orchards through automated methods based on

image processing and artificial intelligence leads to increased

productivity while reducing expenses. Application of deep learning

for the delineation of visible cadastral boundaries of parcels in rural

scenes from UAV imagery can be used with smaller effort for

delineation compared to manual delineation (Crommelinck et al.,

2019). This means adjusting data processing systems to various

conditions, types, or sizes of orchards. Thus, recently, machine

learning methods, intelligent classifiers, and, especially, convolutional

neural networks (CNN) have been used for the detection, classification,

and segmentation of regions of interest (RoI) from images acquired in

the orchard for various applications. As a trend, Deep Convolutional

Neural Networks (DCNNs) are increasingly used in object detection

(Xiao et al., 2020), a particularly important aspect in orchard

management (e.g., detection of fruits, diseases, insects, etc.). Deep

neural networks and transfer learning were used for food crop
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identification from UAV images (Chew et al., 2020). In the review

paper (Alzubaidi et al., 2021), the main components of DCNN used for

object detection are detailed, emphasizing the advantage offered by

these networks to automatically detect the main features used without

human intervention. Specifically, in fruit detection problems, several

recent works have been making use of Deep Learning (DL) methods

applied to images acquired at different height levels (Biffi et al., 2021).

The measurement of size, growth, and mortality of individual

trees is of utmost importance for orchard or forest monitoring. To

this end, the authors (Hu and Li, 2020) proposed a point cloud

segmentation method for single trees. They used UAV tilt

photography and a simple neural network (NN) for data

processing feature extraction and classification tasks with an

accuracy of about 90%. A method to detect, geolocate, and

identify tree species by UAV flight and NN processing of

acquired hyperspectral images is presented by (Miyoshi et al.,

2020). UAVs are also used as a cheap and reliable solution for

measuring the height of crops (Xie et al., 2021), including orchard

trees. In this case, additional spatial information such as the digital

terrain model and the ground truth of the height is required. In such

cases, it becomes especially important to correct the positioning

errors of global navigation satellite systems (GNSS) by different

methods. To this end, UAVs are often equipped with a real-time

kinematic positioning (RTK) module.

The early detection of tree disease in orchards can significantly

improve the control of these diseases and avoid the spread of

insects, viruses, or fungi. For example, vine disease detection by

automatic methods leads to increase efficiency and productivity of

vineyard crops in smart farming, simultaneously with the reduction

of pesticides. Therefore, the detection of vine diseases in UAV

images using neural networks has been widely addressed recently

(Kerkech et al., 2018; Kerkech et al., 2020).

A difficulty that can be encountered in orchard monitoring is the

dense tree crowns. This can often cause GPS (Global Positioning

System) signal attenuation when the UAV or a terrestrial robot is

traveling in an orchard. A method to overcome this drawback is

proposed by (Kim et al., 2020) using a CNN to classify patches in the

front image in path, tree, or background. For this purpose, the image

is traversed successively with sliding investigation windows, and a

path score map is generated through the CNN classification results.

Broadly speaking, an orchard monitoring system based on the use

of UAVs and NNs has the structure of Figure 1. It has two main paths,

system learning and system operating. In the first phase, the UAV

acquires the images for the dataset (DS) needed for the learning and

validation phases to establish the parameters and weights NN(L).

Sometimes the dataset can be a public one. The images need a

preprocessing set of operations by IPp (Image Preprocessing

module). After learning, validation, and final configuration of

structure NN(C), it is implemented in the operating configuration

NN(O) on a terrestrial operating station or even on the UAV. The

system output is a decision or/and a new image (D/I). In orchard

monitoring, the respective applications and images are very different

and therefore the choice of UAV trajectories to obtain the most

relevant data (images) and especially the choice of NNs used for the

analysis of the regions of interest constitute real challenges. Still, newer

is the integration of the monitoring of agricultural crops, including
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orchards, into IoT (Internet of Things). Thus, if real-time processing of

monitoring data is required, as in the case of pest detection, a solution

presented by (Bhoi et al., 2021) is a UAV assisted by IoT, where images

of pests are sent for processing to the Imagga cloud (https://

imaga.com), to retrieve the pest information.

The current paper focuses on the importance of UAVs and image

processing through artificial intelligence techniques (in particular,

CNN) for orchard monitoring from various points of view such as

flowering, evolution, diseases, harmful insects, fruit ripening, and

picking. Thus, the paper focuses on the new trends in the use of

UAVs and image processing based on NNs for efficient monitoring of

orchards in precision agriculture with ecological considerations. Apart

from the Introduction, the paper contains five sections. Section 2,

entitled Survey Methodology, presents the methodology for

investigating papers in the field from 2017-2022. Section 3, named

UAVs and Cameras Used for Image Acquisition in Orchard

Monitoring, presents the UAVs and video/photo cameras used in

the analyzed papers, the characteristics of UAV trajectories in orchard

monitoring, and develops the aspects related to the design and tracking

of UAV trajectories in the orchard. Section 4, Neural Networks Used

for Orchard Monitoring, refers to the presentation of the neural

networks used, datasets, software, performances, and the new

implementation trends based on the fusion of decisions or the

combination of several neural networks. Section 5, Applications, is

dedicated to the most frequent orchard monitoring applications

through the prism of new technologies. In Section 6, Discussions,

some observations are made regarding the global aspects of research in

the field from the last three years and comparisons with review papers

based on the same keywords. The last section is the Conclusions which

highlights the important aspects of the paper. All development chapters

are accompanied by graphs or synthetic tables. Since there are many

notions and definitions that are repeated or are put in tables, in order

not to fill unnecessary space and to make it easier to understand, a list

with abbreviations is provided as Annex 1.

2 Survey methodology

For the systematic review paper, 872 papers were analyzed from

different databases such as the Web of Science (311), Scopus (292),

and IEEE Xplore (269). Finally, we selected 197 papers (173

research papers and 24 review-type papers) for this review. The

eligibility criteria for paper selection were recent publications, new

trends in orchard monitoring on different aspects, the impact of

contributions, the involvement of UAVs, and the use of NNs in the

processing of images acquired in orchards. As the impact, the

citations can be a relative criterion because, in general for older

papers, the citations are higher than for newer ones. The high rank

of publications refers to Category Quartile Q1, Q2, and the Journal

Impact Factor in Web of Science 2021. More than 68% of the total

references meet this criterion. Most of the papers included in this

study are from journals with an impact factor greater than 2.

Among the analyzed articles, 167 are from journals and 30 are

from conferences. Focusing on a relatively recent period (2017 –

2022), the most representative papers covering the ROI detection,

segmentation, and classification in orchard images, using state-of-

the-art NNs and UAVs, were investigated. Thus, 184 references
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between 2017 - 2022, representing 93.40% of the total, were selected,

and focusing on 2019 – 2022, as a recent period, 84.69% of

references were analyzed. In terms of new trends in using NNs

for UAV image analysis, the following directions can be mentioned:

a) improvement of a CNN with other networks included in its

structure, most often adapted for orchard images, b) systems made

up of several CNNs (that can be considered as elements of collective

intelligence), and c) systems using CNN combined with other

classifiers. This important aspect is detailed in Section 4.

For the systematic review and meta-analysis, we used a PRISMA

(Preferred Reporting Items for Systematic Reviews andMeta-Analyses)

(http://www.prisma-statement.org/) flow diagram (Figure 2). As can be

seen from the diagram, from the total of 892 identified papers, we

selected 197 papers according to the criteria mentioned in Figure 2. For

the paper search strategy, we investigated similar papers in the field.

The comparisons and the highlighting of the degree of novelty towards

them are underlined in Section 6, Discussions. Most of the analyzed
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articles were selected from journals (Figure 2) such as Remote Sensing

(RS), Computers and Electronics in Agriculture (CEA), Frontiers in

Plant Science (FPS), Sensors (S), and IEEE Access (Access).

Although concerns about the orchard, UAVs or NNs used

separately are older and the respective fields of study are well-

established, the combination of these topics in orchard monitoring

is relatively recent. As we considered the new trends in this

direction, Figure 3 is presented our search in Web of Science

(blue), Scopus (red), and IEEE Xplore (green) databases (DBs)

between 2017 - 2022 considering the following topics: UAV control,

UAV trajectory, U-space, agriculture, orchard, NNs, image

processing, diseases, insects, and fruit production. It should be

noted that to save space in Figure 3, the notation “uav”means UAV,

UAS, or drone. The search was split between combinations of

keywords using the “AND” connector: (A) neural networks AND

image processing, (B) agriculture AND image processing, (C)

orchard AND image processing, (D) orchard AND neural

networks, (E) orchard AND uav, (F) orchard AND neural

networks AND uav, (G) uav AND control AND neural networks,

(H) uav AND trajectory AND neural networks, (I) uav AND U-

space, (J) agriculture AND uav AND image processing, (K) orchard

AND uav AND image processing, (L) agriculture AND uav AND

neural networks, (M) orchard AND diseases, (N) orchard AND

insects, and (O) orchard AND fruit production. The year is labeled

on the x-axis and the number of publications identified according to

the search in the database is labeled on the y-axis. It can be observed

that the increase in research is higher in most of the cases involving

NNs and/or UAVs, with an exception in 2022 because of the

indexing latency. Furthermore, it should be noted that while we

have strived for a fair comparison between Web of Science, Scopus,

and IEEE Xplore, they do have different ways to handle queries,

such as those we constructed, for obtaining the results from

Figure 3. Because IEEE Xplore is not a paper database focused on

agriculture the number of papers is much smaller compared to

Scopus andWeb of Science when the topic of agriculture or orchard

appears in searches so that they can be neglected. Also, there is a big

difference between the number of papers related to the use of NN

and/or UAV in orchards compared to agriculture in general. This

can be attributed to the difficulties of flying inside the orchards, the

consideration of images in depth (tree crowns), and partially

covered objects. In general, we see a rapid increase in papers
FIGURE 2

The number (left) and the percentage (right) of papers that are analyzed from journals: Remote Sensing (RS), Computers and Electronics in
Agriculture (CEA), Frontiers in Plant Science (FPS), Sensors (S) and IEEE Access (Access).
FIGURE 1

Structure of the orchard monitoring system composed of UAVs and
neural networks. UAV – unmanned aerial vehicle (drone), DS – data
set, IPp – image preprocessing module, NN(L) neural network
learning (parameters and weights), NN(C) – final NN configuration
(after validation), NN(O) – neural network implemented for
operating phase.
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from 2017 to 2022, especially when it comes to NNs and UAVs in

orchard monitoring. On the other hand, due to the appearance in

2018 of the legislation regarding U-space, no articles on this topic

were published until that year. Likewise, papers considered by us to

be important and containing the orchard-UAV-neural network

triplet did not appear earlier than 2019.
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3 UAVs and cameras used for image
acquisition in orchard monitoring

UASs including UAVs tend to be the preferred platform for

modern orchard monitoring (Zhang C. et al., 2019). UAV is a

generic byword for unmanned fixed-wing devices or more usually
A B C

D E F

G H I

J K L

M N O

FIGURE 3

Web of Science-blue, Scopus – red, and IEEE Xplore – green; (A) neural networks AND image processing, (B) agriculture AND image processing, (C) orchard
AND image processing, (D) orchard AND networks, (E) orchard AND uav, (F) orchard AND neural networks AND uav, (G) auv AND control AND neural
networks, (H) uav AND trajectory AND neural networks, (I) uav AND U-space, (J) agriculture AND uav AND image processing, (K) orchard AND uav AND
image processing, (L) agriculture AND uav AND neural networks, (M) orchard AND diseases, (N) orchard AND insects, and (O) orchard AND fruit production.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1237695
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Popescu et al. 10.3389/fpls.2023.1237695
multi-rotor copters (multicopters). The latter are often quadcopters

(with four motors, the minimum number to ensure simultaneous

position and yaw angle tracking, hexacopters (six motors), and

octocopters (eight motors with redundancy and increased stability).

The drawback for the latter is that they are generally more expensive

and require expert handling (due to their larger size and increased

velocity any improper use may result in property damage and

even accidents).

Each platform comes with its own list of , usually

complementary, shortcomings. For example, fixed-wing UAVs

have significantly more endurance (flight distance) and,

sometimes, payload capacity but lack flexibility because they

require a minimum speed to avoid a stall and operate at higher

heights. They have traditionally been used for photogrammetry,

monitoring, spraying, and data acquisition from large areas (Pederi

and Cheporniuk, 2015). On the other hand, multicopters have

limited battery life (often in the range of 20 - 30 minutes) but can

hover in place and may get quite close to the objects of interest (tens

of centimeters, at least when safety measures are deactivated). For

these reasons, and due to their comparatively low cost, multicopters

are the main tool in small and medium-precision agriculture. A

comprehensive classification of multicopters cannot be carried out,

but they are mostly divided by their number of motors and whether

they are commercial (mainly DJI or Parrot variants) or custom-

made for a particular research/application project. Currently, the

drones most used for crop monitoring, in particular orchards, are

medium or small-sized (adequate for image or sensor data

acquisition applications). Larger drones are used for spraying,

picking, or planting and are not as widespread yet. Lastly, electric

multi-rotor drones are the most popular for orchard monitoring

applications as the distances traveled are relatively small, and

modern batteries have enough autonomy for this kind of

application. For a brief enumeration: popular DJI quadcopter

variants are Phantom 3 (Horton et al., 2017; Bouroubi et al.,

2018; Apolo-Apolo et al., 2020b; Cheng et al., 2020; Fang et al.,

2020; Garcıá-Murillo et al., 2020; Barbosa et al., 2021; Menshchikov

et al., 2021), Mavic 2 Pro (Barmpoutis et al., 2019; Dong et al., 2020;

Nguyen et al., 2021), and Inspire 2 (Häni, 2020) for Mavic Pro 3,

and (Mu et al., 2018). The authors in (Zortea et al., 2018) use a

GYRO-500X4 quadcopter, and (Torres-Sánchez et al., 2018) use a

microdrone MD4-1000. Hexacopters such as the Tarot 960 are used

by (Nevalainen et al., 2017). For larger payload capacity and

increased stability, octocopters have been used in orchard

applications (Abdulridha et al., 2019; Ampatzidis et al., 2019;

Horstrand et al., 2019; Deng et al., 2020). Arguably, quadcopter

models are the most used in orchard monitoring but hexacopters,

even if larger and more expensive, are becoming increasingly

popular due to propeller redundancy which leads to better

stabilization in nominal functioning and increased reliability

under hardware loss. A synthetic description of the kinematic and

dynamic models of multicopters is given by (Ju et al., 2022).

Most commercial UAVs have GPS modules that they use as the

go-to positioning system for localization in outdoor settings. The

specific difficulties for GPS mainly manifest in cities or other areas

with challenging vertical features (the “canyon effect”, where not

enough satellites are simultaneously visible for robust localization).
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In relatively smooth (i.e., of almost constant height) settings such as

orchards, GPS in conjunction with sense and avoidance sensors

exhibits acceptable performance, with position errors up to 1 m

(Nevalainen et al., 2017). A straightforward improvement is the

addition of an RTK module (for those drones which support it).

This correction mechanism reduces the errors to 2 cm in planimetry

and 3 cm in altimetry (Torres-Sánchez et al., 2018). Noteworthy,

RTK modules have mostly deprecated the use of physical targets

used for GPS correction (visible elements such as AeroPoints

(Johansen et al., 2018), whose position is estimated accurately

with a GPS module and is later used as a reference in the images

taken by the drone. Examples of UAVs like Phantom 4

(quadcopter) with RTK flighting inside the orchard and fixed-

wing UAV flighting over the orchard are given in Figure 4. The

research papers that investigate orchard monitoring based on UAVs

with different cameras are presented in the synthetic Table 1.

We observe a large variety of cameras and related applications.

Although UAVs can be equipped with payloads containing various

types of image or video sensors (RGB cameras, multispectral,

hyperspectral, thermal, SAR), in orchard monitoring applications

the most used are RGB and multispectral (Table 1). Many

applications in crop monitoring use small UAVs with included

video/photo cameras, without the possibility of attaching other

cameras. In the case of larger UAVs, there is the possibility of

using different cameras, depending on the requirements. Even if the

number and type of UAVs are relatively limited, there is a great

variation in the types and numbers of payloads with thermal

(Mesas-Carrascosa et al., 2018; Pádua et al., 2020), multispectral

(Horton et al., 2017), video (Torres-Sánchez et al., 2018) cameras, or

even spectrometers (Ocean Optics (Nevalainen et al., 2017).

Relatively recently, cameras with integrated machine learning

features have started to appear in UAV applications due to

reductions in cost, energy requirements, and weight.
3.1 Characteristics of UAV trajectories in
orchard monitoring

For orchard monitoring, the UAV trajectory can be a challenge,

because in many applications it can be a 3D trajectory, above and

inside the orchard. For a programmed, automatic flight, the lateral

distance from the crown of the trees correlated with the protection

devices of the UAV creates difficulties in establishing and following

the trajectory. Regardless of the trajectory specifics, some

parameters are important. Among the most popular are total

trajectory time, ground velocity, and flight altitude. As mentioned

in (Torres-Sánchez et al., 2018) run times may be significant for

terrestrial platforms with respect to UAV limitations. They give the

example of an almond orchard where 6.2 km was covered in 1.5

hours (with multiple passes). In general, the UAV velocity is higher

compared to ground-based vehicles. (Cheng et al., 2020) gives 5 m/

sec for the UAV flight whereas (Dong et al., 2020) runs the UAV at

3 m/sec, and (Mu et al., 2018) consider a speed of 2.5 m/sec.

Altitude is also a factor and it may vary significantly, depending on

mission specifics: (Dong et al., 2020) mentions 50 m, (Mesas-

Carrascosa et al., 2018) 120 m, and (Mu et al., 2018) 30 m. These
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TABLE 1 UAVs with cameras used.

UAV/Type Camera/Type References

▪DJI Mavic 2 Pro/
quadcopter (DJI
Corporation)

▪ Included: Hasselblad L1D-20c, 20MP/RGB (Barmpoutis et al., 2019; Dong et al., 2020; Nguyen et al., 2021)

▪DJI Mavic 3 (DJI
Corporation)

▪ Included (Häni, 2020)

▪Phantom 3
Professional/
quadcopter (DJI
Corporation)

▪ Included: RGB, Multispectral 5 channels, 12 MP (Horton et al., 2017; Bouroubi et al., 2018; Apolo-Apolo et al., 2020b; Cheng et al.,
2020; Fang et al., 2020; Garcıá-Murillo et al., 2020; Barbosa et al., 2021; Menshchikov
et al., 2021)

▪Phantom 4, 4 PRO, 4
RTK/
Quadcopter (DJI
Corporation)

▪Included: RGB, Multispectral 5 channels, 12 MP (Lobo Torres et al., 2020; Fuentes-Pacheco et al., 2019; Ampatzidis et al., 2020; Apolo-
Apolo et al., 2020a; Gallardo-Salazar and Pompa-Garcıá, 2020; Kalantar et al., 2020;
Schiefer et al., 2020; Yang, M.-D. et al., 2020; Nguyen et al., 2021)

▪DJI Matrice 100/
quadcopter (DJI
Corporation)

▪Different: Logitech C310 webcam, MicaSense
RedEdge-M/multispectral

(Hulens et al., 2017; La Rosa et al., 2020; Sarabia et al., 2020)

▪DJI Matrice 210/
quadcopter/possible
RTK (DJI
Corporation)

▪ Different: Two cameras/RGB -48 MP (Sony Alpha
7) and multispectral 4 channels (Parrot Sequoia)

(Ampatzidis et al., 2020; Jurado et al., 2020)

▪4HSE-EVO/
quadcopter
(ITALDRON)

▪ MicaSense RedEdge-M/multispectral (Adamo et al., 2021)

▪DJI Inspire 1/
Quadcopter (DJI
Corporation)

▪Included: RGB (Hu and Li, 2020)

▪DJI Inspire 2/
Quadcopter (DJI
Corporation)

▪Included: RGB (Mu et al., 2018)

▪DJI Matrice 600/
hexacopter/possible
RTK (DJI
Corporation)

▪ Different: Zenmuse, Specim FX10, added/
Multispectral 5 channels, Resonon Pika L 2.4
hyperspectral, MicaSense RedEdge-M/multispectral

(Abdulridha et al., 2019; Ampatzidis et al., 2019; Horstrand et al., 2019; Deng et al.,
2020)

▪OktoXL 6S12/
octocopter
(Mikrokopter)

▪Alpha 7R, Sony/RGB (Schiefer et al., 2020)

▪eBee Sense Fly/fixed
wing (MikroKopter
GmbH)

▪Different: Parrot SEQUOIA, Multispectral 4
channels, senseFly S.O.D.A.

(Duarte et al., 2020; Schoofs et al., 2020)

▪Trimble UX5 fixed
wing
(Trimble.Applanix)

▪Different: RGB and multiple bands (Adhikari et al., 2021)
F
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FIGURE 4

(A) Phantom 4 (quadcopter) RTK-flight inside the orchard, (B) Fixing the RTK module to the ground, (C) Phantom 4 RTK-flight over the orchard, and
(D) Fixed-wing.
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altitude values are for top-down observations (photogrammetry

missions or disease/humidity monitoring). Flying close to the

treetops or even in between tree rows obviously reduces the flight

height to 1 m - 5 m. In this context, noteworthy elements which

characterize an orchard are row inter and intra-distance. These

depend on the type of tree and even on the country. (Cheng et al.,

2020) reports 4 m between trees and 5 m between rows in the case of

cherry trees and 3 m and 4 m respectively for apple trees. (Dong

et al., 2020) mentions spacings of 4 m and 1.5 m (apples) and 4.5 m

and 2 m (pears).

Beyond economic or availability factors, various mission

specifics may force a particular choice of UAVs. Small/convoluted

domains may require aggressive maneuvering which, for fixed-wing

UAVs, is very difficult. On the other hand, large fields may lead to

battery depletion. This is a major issue since typically a battery takes

significantly more time to charge than to discharge. A typical

solution is swapping the battery frequently for increased flight

duration (a stop where the battery is quickly changed with a full

one and the flight is then resumed). These considerations directly

influence the choice of trajectory and mission parameters.

Another aspect is the flexibility of the trajectory. The more

common approach is to pre-compute the trajectory, couple it with

an autonomous sense-and-avoidance system, and then passively

track the experiment (the supervisor intervenes only when urgency

stop commands are required). Note that typical sense and

avoidance mechanisms impose a hard limit of 1 m - 2 m between

the drone and possible obstacles. A simple solution can be to adapt

the avoidance mechanism and make sure at the supervision level

that the drone trajectories accurately avoid the obstacles (tree

branches) v ia embedded cameras or RTK-correc ted

GPS localization.

Not least, and especially for small and medium-sized drones,

the presence of wind is a major factor. Thus, flights are often

scheduled in periods when the wind is at a minimum. Less

common, but still present is the case where flights are determined

by the mission particularities. For example, some harmful insects

(HH) have a daily cycle which means that they are active (and hence

visible) only in the early morning and in periods of reproduction

(Leskey and Nielsen, 2018).

While the more interesting missions are those closer to the

ground, the most common are still the photogrammetry missions.

While conceptually simple, the output of such as mission may be

significantly affected by various flight parameters. Beyond those

related to resolution (fly height, camera specifications) and mosaic/

3D reconstruction (front and sideways overlapping for consecutive

images), flight direction, solar irradiation, camera inclination, and

whether the pictures are taken time or position-wise, are also

relevant (Tu et al., 2020). Thus, most orchard applications reduce

to a coverage problem. Beyond the technicalities imposed by the

particularities of the problem (Mokrane et al., 2019) enumerate the

generic properties that the resulted trajectory must verify: i) cover

all points of interest; ii) avoid overlapping routes; iii) avoid

obstacles; iv) as much as possible, use simple primitives to

construct the trajectory (straight lines and/or arcs of circles).

Most users do not have the knowledge or the desire to design

from zero a trajectory generator. There are various local or cloud-
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based applications that permit interaction with a drone. We may

classify these apps depending on the level to which they interact/

supersede the original architecture of the drone. Many of them

reduce to providing an ergonomic interface that allows defining

various simple missions like following waypoints, covering an area

with straight parallel lines, etc. It is more challenging to intervene in

the actual control scheme and provide direct control actions. For

example, in (Horton et al., 2017) the cloud based DroneDeploy is

used to construct a flight plan, by interfacing with both GoogleMaps

and the drone. Extremely common is the Pixhawk+Ardupilot

autopilot controller. This implements all low-level control actions

leaving to operator only the task of providing the list of waypoints.

Pix4dmapper was used in (Mesas-Carrascosa et al., 2018; Pádua

et al., 2020) to triangulate and mosaic the images. (Jensen et al.,

2021) usesMoveIt for3Dmotionplanningand theoctomap_mapping

package for 3D occupancy grid mapping. ODM (Open Drone Map -

https://github.com/OpenDroneMap), in itsmultiple ports, is an open-

source effort that aims to cover the entire workflow of image post-

processing for photogrammetry applications.

As stated in the introductory section, due to the increase in the

number of drones and flight areas, it is necessary to establish and

update relevant flight regulations for UAVs. In Europe, the U-space

concept has been formalized through the European Union’s U-

space Regulation, which was adopted in 2019 and came into effect in

2021. The regulation provides requirements for the design,

implementation, and operation of U-space services, including

registration and identification of drones, communication

protocols, and geo-fencing. The unmanned aircraft system traffic

management (UTM) concept is also being developed in other parts

of the world (United States), with a range of different approaches

being taken. It is safe to say that, in one form or another, a

framework of rules and regulations has already taken shape and

will govern human-UAV interactions in the future.
3.2 Trajectory design

For most orchard-related missions, the drone does a top-down

analysis where the camera is oriented downwards to take pictures

while the drone flies in a plane parallel with the horizontal one and

at an altitude that is both safe and balances coverage and image

resolution. (Ronchetti et al., 2020) provides a list of common

altitude values. (Johansen et al., 2018) carries an interesting

analysis of tree detection (center position and canopy delineation)

in a lychee orchard by changing the height at which the pictures are

taken. This is done to find a balance between coverage speed and

precision of the estimates. Worth mentioning is that

photogrammetry applications usually take photos at a constant

sampling time (as a proxy for equal distances between coordinates).

Thus, it is important to maintain a constant ground velocity along

the flight path. This must be a design requirement at the trajectory

generation step and must also be enforced by feedback laws due to

the presence of various disturbances. The goal of such missions is

often along the lines of photogrammetry in the sense that partially

overlapped images are merged (offline, in a computationally

intensive effort) into a large-scale map from which various
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features of interest are extracted. For example, (Torres-Sánchez

et al., 2018) estimate the shape of the tree. Crown volume

estimation is carried out by (Torres-Sánchez et al., 2015).

Noteworthy, in the latter, the authors mention a root mean

square error of 0.39 m for tree height estimation. This may be

interpreted as a safety factor for tree-level flights.

One of the few results which explicitly mentions flying at tree

level is (Jensen et al., 2021) which implements a three-step run: first,

a map of the orchard is created by flying over; second, rows and

trees are identified from the acquired images; third, the drone tracks

a trajectory between trees. The caveat is that the algorithm was only

tested in simulation (within the ROS/Gazebo framework).

From papers that illustrate actual experiments various practical

interactions among the UAV components also emerge. For

example, (Mesas-Carrascosa et al., 2018) carries out a

photogrammetry path planning (straight parallel lines) with

emphasis on flight duration due to the need of calibrating the

thermal sensors (there is drifting proportional to the duration of the

flight). (Mesas-Carrascosa et al., 2018) also proposes to avoid

the pre-calibration step by doing it post-flight over the images

themselves and by carrying an in-flight drift correction for

microbolometer thermal sensors.

Of course, the most important element for rotary drones is

battery life. Their increased flexibility comes at the price of

significantly less autonomy than in the case of fixed-wing UAVs.

Hence, energy efficiency is paramount in trajectory design and

influences mission planning at all stages. This may mean proposing

very simple trajectories: straight lines as in (Mesas-Carrascosa et al.,

2018) or a grid pattern as in (Mu et al., 2018). Usually, the UAV

dynamics are ignored when assessing battery consumption (Furchì

et al., 2022). Still, the drone behavior and type of trajectories

employed can have a disproportionate effect on battery life.

(Pradeep et al., 2018) provides a first principles approach to

quantify consumption for the climb, cruise, and descent phases

(with application to a DJI Phantom 4 quadcopter).

From a dynamics viewpoint “trajectory” means that both

position and attitude must be specified at each moment of time

during the flight. Except for laboratory/experimental setups, this

is hidden by the embedded control software of the drone. Rather,

the end-user simply gives a list of waypoints from which the

drone’s control mechanism designs a suitable trajectory.

Choosing the waypoints that define a path is quite challenging,

depending on the mission complexity. In such cases, often

heuristic and graph-based methods are employed. For example,

(Ochoa and Guo, 2019) combine a genetic algorithm (to

determine way-point locations) with the Dijkstra algorithm (for

path construction).

Many times, there are multiple flights carried during the same

mission. Often, the first flight is for sensor calibration, an update of

position information, and an update of the environment’s map

(new features of interest, changes in positioning, etc.). Only in the

subsequent step, the actual flight (the one where data is gathered) is

done. Thus, a typical workflow is as the one from (Horstrand

et al., 2019):
Fron
i. initial flight to assess the environment,
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ii. planning step on the flight management system (choose

waypoints, area of interest, etc.),

iii.

start the way-point tracking and supervise the UAV during its

flight, with the possibility to update path/sending “turn to

base” commands.
In the case of modern orchards, for UAV navigation inside the

orchard, among the rows of trees, the orchard can be modeled as an

aisle graph (Sorbelli et al., 2022) so that the images are collected as

efficiently as possible. In this case, it is about collecting images to

detect some harmful insects on trees. Most if not all graph-based

methods are based on variations of the Traveling Salesman Problem

(TSP). (Furchì et al., 2022) uses a Steiner TSP implementation

where only a subset of the nodes must be visited. The paper is also

noteworthy for considering battery usage and integrating it as a

weight for the graph edges.

In general, formulating decision problems (graph-based or

otherwise) for efficient orchard travel leads to a difficult

optimization problem. Authors (Furchì et al., 2022) provided a

mixed-integer formulation that makes use of binary variables to

characterize decisions in the problem (which node is next, which

path is followed from a given list, etc.). Such methods are prone to

numerical issues and quickly become impractical for real-time

implementations. The usual approach is then to simplify the

problem and solve it to a sub-optimal solution. In this case, the

computation time reduction is significant and the loss in

performance is negligible. The heuristic methods employed are

usually based on evolutionary procedures or greedy algorithms.
3.3 Trajectory tracking

Most agricultural UAV applications give the trajectory as a list

of waypoints with associated actions. For example, the API

(programming interface) of DJI drones allows by default to give a

list of up to 100 waypoints and to associate up to 15 actions for each

of them (camera focus, take an image, start/stop the video, etc.). The

actual trajectory (path and input actions) is computed onboard the

UAV by the autopilot. At this level, further restrictions may be

considered (from the sensor and avoidance module, limitations on

control actuation, etc.) which will affect the path’s shape. Lower-

level interactions are usually relegated to experimental drones used

in research laboratories (Parrot Mambo or Crazyflie nano-drone,

NXP HoverGames for mid-sized drones, etc.).

Any path-tracking algorithm is as good as the quality of

information that it receives (Li, J.-M. et al., 2021). Usually, GPS

(possibly corrected by an RTK module) information is employed.

Albeit ubiquitous in recent years, GPS may be replaced or

supplanted by other approaches. (Emmi et al., 2021) fusions

information from 2D Lidar and RGB cameras to identify key

locations and working areas which are next integrated into a

semantic layer where the various features of interest have certain

types (lane, alley, etc.) among which the UAV transitions. The

authors in (Stefas et al., 2016) present a vision-based approach for

UAV navigation within an orchard. Both the monocular and
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binocular cases are analyzed. For the former, additional information

about the structure of the orchard rows is used and for the latter, a

depth-perception algorithm is implemented. In (Hulens et al., 2017)

the vision-based approach also makes use of the orchard

characteristics: the feasible path is determined by first detecting

the center and end (the vanishing point) of the current corridor.
4 Neural networks used for
orchard monitoring

The use of artificial intelligence and especially NNs for image

processing in various fields of agriculture has led to a significant

improvement in performance in tasks of detection, segmentation,

and classification of regions or objects of interest. Thus, from the

investigated researched papers, an improvement in orchard

monitoring performances can be noted by NNs in the processing

of orchard images. From Figure 3 it can see that the number of

research papers that study the use of NN in orchard monitoring

increased in the interval 2017-2022. Most of the NNs in the

analyzed papers in this study used RGB images and few

multispectral images as in (Kerkech et al., 2020).
4.1 Series of neural networks and their
representants for image processing in
orchard monitoring

Because orchard monitoring involves high-level image

processing functions in various conditions, the NNs used in

orchard monitoring for image processing were very diverse. Most

often, the classification can be used for a special segmentation based

on pixel classification named semantic segmentation. The name of

the used NNs is explained in the list of abbreviations (Annex 1). The

NNs for object detection, classification, and segmentation functions

(including semantic segmentation) used in the investigated

references are presented in Table 2. In some applications, the

NNs from popular series, having small structural changes, got the

names of respective applications like VddNet - Vine Disease

Detection Network (Kerkech et al., 2020) and MangoYOLO

(Koirala et al., 2019a)

The most used NNs were those from series R-CNN (Region-

Based CNN) (Girshick et al., 2014), YOLO (You Only Look Once)

(Redmon et al., 2016), U-Net (Ronneberger et al., 2015), ResNet

(Residual Neural Network) (He et al., 2016), and SegNet (Semantic

Segmentation Network) (Badrinarayanan et al., 2017). The basic

structures of these important series are given in Figure 5. Among

them, the YOLO-type NNs had the greatest growth trend. Details

regarding the architectures and layers of the most used NNs in

image processing for object detection, classification, and

segmentation are given by (Alzubaidi et al., 2021; Bhatt et al.,

2021). An interesting review (Nawaz et al., 2022) presents the

detection of objects in multimedia using NNs, considering single-

stage detection and two-stage detection algorithms. The advantages

and disadvantages related to precision, complexity, and speed of

operation, in various applications such as object detection, multi-
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object detection, and real-time object detection, were highlighted.

The analyzed networks (proposed until 2020) were those from the

YOLO, SSD, and RetinaNet series, for the single-stage algorithm,

and R-CNN for the two-stage algorithm. Representatives from these

series can also be found in the references analyzed in this paper.

R-CNN which is based on a two-stage algorithm for object

detection has two important representatives: Faster R-CNN

(Ronneberger et al., 2015) and Mask R-CNN (He et al., 2017)

which share significant commonalities. Faster R-CNN provides two

pieces of information for each candidate object, the classification

(class label) and the bounding box (regression). Mask R-CNN

extends Faster R-CNN by providing three pieces of information

at the output: the class (C), the bounding box (B), and the

segmentation mask (M) for each selected region of interest. For

the latter, a branch (pixel-to-pixel alignment) is added in parallel in

the Faster R-CNN structure. Since this branch has reduced

additional computational effort, the network remains quite fast.

Both Faster R-CNN and YOLO are detection networks with

object detection accuracy between 63.4% and 70% (Diwan et al.,

2022). The YOLO series including several variants (like YOLO v1,

v2, v3, v4, v5, v6, v7, v8, YOLOX, etc.) are networks in one stage,

and for this reason, they are much faster than Fast R-CNN or Faster

R-CNN which are detectors in two stages. Object detection in this

case is seen as a regression problem and not a classification one. The

areas of interest (objects) are identified, and their positioning is

established by a bounding box associated with the probability of

belonging to a class.

Faster R-CNN (Figure 5A) is a two-stage object detection

algorithm providing the bounding box and classification. It can

be successfully used for fruit detection in the natural environment

in difficult conditions and positions (leaf occlusion, fruit occlusion,

fruits in shadow, and different light exposure). A challenge in fruit

detection is the great number of fruits (sometimes overlapping) in

an input image. Also, it can be used for the detection of diseases and

insect pests on fruits.

Mask R-CNN (Figure 5B) is like Faster R-CNN and adds to the

output a binary mask for segmentation of the detected object. It gets

the region where the fruit is located. It can detect and segment fruits

in the natural environment (apples, pears, citrus, logan fruit

bunches, etc.) in difficult conditions and positions. It was used for

the identification and segmentation of trees in orchards from aerial

imagery (orthophoto maps).

YOLO is a single-stage object detection algorithm providing the

bounding box and classification. It is composed of four sections –

input, backbone, neck, and prediction – which allow the detection

and localization of objects of different sizes (including small objects)

in orchards, like fruits, flower clusters, and insects. It can detect and

identify fruits in the natural environment (apples, pears, citrus,

logan fruit bunches, etc.) in difficult conditions and positions

(covered by leaves, fruits in shadow, fruits at different distances

from the camera, and fruit cluster) with precise box location and

high accuracy. The various variants of YOLO networks consider a

compromise between speed, accuracy, and simplicity. Many of them

can be implemented directly on the UAV, for real-time applications

simultaneously with video acquisition. The structure of the well-

known YOLO v5 is presented in Figure 5C.
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TABLE 2 NNs used in orchard monitoring (C, classification; D, Detection; S, segmentation or semantic segmentation).

NN
series

Representatives/con-
figuration

Function References

▪CNN ▪CNN simple ▪C (Kestur et al., 2019; (Kim et al., 2020; Li, Y. et al., 2020; (Csillik et al., 2018; Zortea et al., 2018; Lei
et al., 2022)

▪Multi-layer perceptron ▪D (Nevalainen et al., 2017; Fernandez-Gallego et al., 2018)

▪Sandglass bottleneck ▪C (Chen, T et al., 2021)

FCN ▪S (Marmanis et al., 2016; Osco et al., 2021)

▪CaffeNet ▪C (Bouroubi et al., 2018)

▪DaSNet ▪DaSNet-A, DaSNet-B, DaSNet-
C, DaSNet-v2

▪D, S (Kang and Chen, 2019; Kang and Chen, 2020a)

▪DeepLab ▪DeepLab-ResNet ▪D, S (Dias et al., 2018)

▪Deep-LabV3 + ▪S (Osco et al., 2021; Li, D. et al., 2022; Zhang X. et al., 2021)

▪DensNet ▪DensNet 121 ▪D, C (Nguyen et al., 2021; Peng et al., 2023)

▪Encoder -
Decoder

▪CED-Net ▪D (Kerkech et al., 2020)

▪Spatial Pyramid- oriented
Encoder-Decoder Cascade CNN

▪S (Yuan and Choi, 2021)

Staked Autoencoder ▪D (Deng et al., 2020)

▪VddNet with three
autoencoders
(Vine Disease Detection
Network)

▪D (Kerkech et al., 2020)

▪FCRN ▪FCRN ▪D (La Rosa et al., 2020)

▪GoogLeNet ▪ Inception modules ▪C (Breslla et al., 2020)

▪HRNet ▪HRNet ▪D, C, S (Biffi et al., 2021)

▪Inception ▪Inception v3 ▪C (Fang et al., 2020; Hansen et al., 2020; Zhang, H. et al., 2019)

▪LeNet ▪LeNet5 ▪C (Kerkech et al., 2018; Kerkech et al., 2020)

▪LedNet ▪LedNet ▪S (Kang and Chen, 2020b)

▪RBF ▪RBF/RBF+KNN ▪D (Fernandez-Gallego et al., 2018; Abdulridha et al., 2019)

▪R-CNN ▪R-CNN ▪D (Zhang et al., 2018; Biffi et al., 2021)

▪Faster R-CNN ▪D (Ren et al., 2017; Apolo-Apolo et al., 2020a; Apolo-Apolo et al., 2020b; Biffi et al., 2021; Barmpoutis
et al., 2019; Cunha et al., 2021; Khan et al., 2021 Deng et al., 2022; Hu et al., 2022)

▪Mask R-CNN ▪D, S (He et al., 2017; Barmpoutis et al., 2019; Jia et al., 2020; Machefer et al., 2020; Santos et al., 2020;
Iqbal et al., 2021; Zhang, W. et al., 2022)

▪Libra R-CNN ▪D (Biffi et al., 2021)

▪Cascade R-CNN ▪D (Biffi et al., 2021)

▪ResNet ▪ResNet 18 ▪C (Zhang et al., 2021; Zhang, X. et al., 2019)

▪ResNet 50 ▪C (Fang et al., 2020; Park et al., 2020; Nguyen et al., 2021)

▪RetinaNet ▪RetinaNet ▪D (Culman et al., 2020)

▪SegNet ▪SegNet ▪S (Fuentes-Pacheco et al., 2019; Ochoa and Guo, 2019; Majeed et al., 2020; Menshchikov et al., 2021;
Osco et al., 2021)

▪SqeezeNet ▪SqeezeNet ▪C (Park et al., 2020; Nguyen et al., 2021)

▪SSD ▪SSD ▪D (Aota et al., 2021)

▪SSD with FSAF module ▪D (Biffi et al., 2021)

▪UNet ▪Simple UNet ▪D, S (Oliveira et al., 2019; Lin and Guo, 2020; Menshchikov et al., 2021; Osco et al., 2021)

(Continued)
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U-Net (Ronneberger et al., 2015) series is especially important in

image segmentation. Although U-Net networks have good

segmentation accuracy, they can be trained with relatively few

images. In a classic way, the network architecture is made up of

two paths (subnets), the first one is contraction type (encoder) and

the second one is expansion type (decoder). At each level of the two

paths, there are concatenations (skip connections) between the up-

sampling of the feature map and the corresponding down-sampling

of the feature map. In the new improved versions of the network,

various NNs are placed on the encoder as blocks instead of the

original ones. Examples of such improved U-Net are given by

(Bhatnagar et al., 2020), having ResNet 50 as a backbone, and (Liu

et al., 2020), having SE-ResNeXt 50 as a backbone. The basic U-net

architecture is presented in Figure 5D. Variants of U-Net were used

in important applications like the segmentation of trees in the

orchard and collecting orchard environment information from

UAV images, segmentation of plantation cover area, segmentation

of diseased plants and pests, and mapping of the tree species.

ResNet, the winner of the ILSVRC 2015 competition (He et al.,

2016), introduced the elements of shortcut connections, within layers

providing multi-layer connectivity. As a result, it has a lower

computational complexity. Depending on the number of layers

ResNet has more representatives: ResNet 18, ResNet 34, ResNet 50,

ResNet 101, ResNet 110, ResNet 152, ResNet 164, and ResNet 1202.

The most used type in the investigated papers was ResNet50

containing 49 convolutional layers and one FC layer (Alzubaidi

et al., 2021). For example, the ResNet network from Figure 5E

(Ichim and Popescu, 2020) was used to detect flooded zones in an

area with vegetation (crops), the meaning of the notations (to save

space) being the following: A and B— skip connections, repetitive
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modules, FC—fully connected layer, F—flood type patch, V—

vegetation type patch, and n—number of module repetition). The

image was partitioned into patches according to a specific algorithm

and each patch (of small size) was classified/segmented as being flood

or vegetation. This decomposition into patches can also be used to

detect small objects (e.g., insects) compared to the whole image.

The SegNet network (Figure 5F) introduced in 2015

(Badrinarayanan et al., 2017) is like an encoder-decoder structure

that, in the final stage, has a pixel-wise classification layer. Each

layer in the encoder has a corresponding layer in the decoder.

Finally, the multi-class soft-max classifier provides for each pixel a

probability of belonging to a class, being thus possible a semantic

segmentation of the regions of interest (RoIs). It was used in

applications like tree localization and classification from aerial

imagery, estimation of trees density (large-scale orchard

monitoring), segmentation of trunks, branches, and trellis wires

(orchard of trees on trellis wires).

As we mentioned, when the databases were unbalanced or the

images collected from the orchards were insufficient, some authors

used data augmentation techniques such as translations, rotations,

transposition, rescaling, reflections, or changing the intensities on

color channels. Usually, techniques for image preprocessing, size

reduction, or cropping smaller windows were also used before

entering the NNs.

In many applications, it has been proven that deep CNNs

(DCNNs) can learn the invariant representations of images (as in

the case of supervised learning) and can achieve performance at the

level of human observers or even better (Khan et al., 2020b). They

can also extract useful representations for unlabeled images

(unsupervised learning). More recently, they can also be learned
TABLE 2 Continued

NN
series

Representatives/con-
figuration

Function References

▪UNet with SE-ResNeXt-50 as
encoder

▪S (Liu et al., 2021; Shang et al., 2021)/

▪UNet with VGG-16 encoder ▪D, C, S (Fawakherji et al., 2019; Kattenborn et al., 2019)

▪VGG ▪VGG16 ▪C (Park et al., 2020; Nguyen et al., 2021)

▪VGG19 ▪C (Fang et al., 2020; Miyoshi et al., 2020)

▪Xception ▪Xception ▪C (Fang et al., 2020)

▪YOLO ▪YOLOv2/improved ▪D (Santos et al., 2020)

▪YOLOv3/improved ▪D (Ampatzidis et al., 2019; Li, J.M. et al., 2021; Liu and Wang, 2020; Santos et al., 2020; Chen, C.J.
et al., 2021),

▪YOLOv3/Tiny ▪D (Chen, C.J. et al., 2021)

▪YOLOv4 ▪D (He et al., 2020; Li D. et al., 2021; Lin et al., 2022; Popescu et al., 2022b)

▪YOLOv5 ▪D (Li, D. et al., 2022; Lyu et al., 2022)

▪YOLO BP ▪D (Zheng et al., 2021)

▪YOLOF-snake/ResNet101 as
backbone

▪D, S (Jia et al., 2022)

▪YOLOX ▪D (Zhang, Y. et al., 2022)

▪YOLOP ▪D (Sun et al., 2023)
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effectively through the reinforcement learning method

(Arulkumaran et al., 2017) and federated learning (Deng et al.,

2022). For example, in the review paper (Wang C. et al., 2022) the

authors analyzed the CNN use throughout the fresh fruit

production chain and evaluation: flowering, growth, and picking

(using ground or aerial platforms). Another important aspect is the

fact that modern NNs are pre-trained, for example on the ImageNet

(Deng et al., 2009) and PASCAL VOC (Everingham et al., 2015)

databases, making the transition to the desired concrete application

much easier and faster, with fewer training images.
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The use of NNs involves three distinct phases: training,

validation, and testing. The images from the available data set

(including those obtained by augmentation) must be randomly

divided between these three phases. The proportion is 70% -

training, 20% - validation, and 10% - testing. The validation

phase is used in some works to establish network confidence

levels for collective intelligence (Popescu et al., 2022a) or decision

fusion systems (Ichim and Popescu, 2020). Sometimes the testing

phase is abandoned and then the proportion is 80% - training and

20% - validation.
A B

C
D

E

F

FIGURE 5

(A) Faster R-CNN, (B) Mask R-CNN (B-box bounding, C-class, M-mask), (C) YOLO v5 (Popescu et al., 2022), (D) U-Net architecture, (E) ResNet
(Ichim and Popescu, 2020), (F) Segnet.
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4.2 Software used

Different software libraries and modules (most of them free) are

used for image processing in successive tasks like obtaining

orthomosaic, georeferenced maps, 3D models, machine learning,

image annotation, implementing deep neural networks, etc. To

obtain useful information for tree canopy extraction and

segmentation, the images acquired by UAVs must be processed with

various software, for example, Agisoft Photoscan (https://

www.agisoft.com/) to generate geo-referenced ortho-images (Kerkech

et al., 2020; Adhikari et al., 2021). To implement the NN models the

most used software and platforms were TensorFlow (https://

www.tensorflow.org/), PyTorch (https://pytorch.org), and Keras

(https://keras.io/). An important step in the learning and testing

phases is image annotation. There is different software as image

annotator like YOLOLabel for the YOLO series (Iqbal et al., 2021;

Yuan and Choi, 2021) and VGG Image Annotator (Biffi et al., 2021).
4.3 Datasets

The databases used in the analyzed papers are divided into two

groups: a) databases for learning/validating/testing NNs for the

detection/classification/segmentation of objects of interest from the

images acquired in the orchard and b) databases for configuring flights

of photogrammetry or inside the orchards to collect data (images).

A pertinent presentation of public image databases for use in

precision agriculture is made in (Lu and Young, 2020) which contains

34 such databases. Of these, 11 refer to orchards: DeepFruits, Orchard

fruit, Date fruit, KFuji RGB-DS, MangoNet, MangoYOLO, WSU

apple, Fuji-SfM, LFuji-air, MinneApple, and Apple Trees. They are

created manually or by ground vehicles. Most are based on RGB

images. Many times, augmentation, annotation, and sharing

operations can be performed on the images from the databases

when used in NNs. The augmentation operations, often necessary

in the learning stage to establish the most correct parameters and

weights, are not used in the validation or testing stages. To obtain

correct training of NN sometimes the data set must carefully filter

because it can contain errors. For example, the IP 102 dataset (Wu

et al., 2019), with more than 75,000 images for pest detection, was

filtered to obtain better results. The filtered dataset, HQIP102,

containing 47,393 images of 102 pest classes on eight crops was

used (Peng et al., 2023) to train and test NN for pest detection.

To be sure that the trained NNs will learn the main

characteristics of the objects to be detected or classified and will

be more robust in a natural environment such as the orchard, many

researchers have performed data augmentation starting from the

original data. For example, 15 different augmentation methods are

mentioned in (Lei et al., 2022), such as Gaussian noise, impulse

noise, out-of-focus blur, motion blur, zoom blur, elastic

transformation, rotation transformation, random erase, random

crop, random flip, fog, brighten, contrast, color dithering, and

pixelated. To obtain good results on NN training, the classes in

the dataset need to be balanced and annotated. In the case of data

imbalance, the authors (Peng et al., 2023) proposed an efficient data

augmentation based on a dynamic method that depends on the
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initial number of elements in each class. In addition to these classic

augmentation operations, synthetic augmentation operations using

NNs for generating new images such as GAN are also used lately

(Lu and Young, 2020).

The applications studied through this manuscript often require

large datasets for the training/validation of NNs. Unfortunately,

these resources are not always well-defined or are restricted. There

are also some exceptions such as (Torres-Sánchez et al., 2018) which

list several point cloud collections.

The advantages of automatic analysis and labeling from UAV

images are particularly important (Zortea et al., 2018): one day for

automatic image labeling compared to one month for manual

labeling in the field with a GPS locator and one week for manual

labeling of images obtained from a UAV flight. To label manually,

efficient software assisting tools were developed like labelImg used

for annotation in the MangoYOLO dataset and VIA (VGG Image

Annotator) used for annotation in the MinneApple dataset. Most

datasets are created for image processing, classification, and

segmentation inside the orchard with machine learning tools, but

there are also datasets for photogrammetry applications,

for example, the ODMdata page (https:/ /github.com/

OpenDroneMap/ODMdata) which contains a large collection of

various data sets with open access (orchards, forest areas,

parks, etc.).

It is worth mentioning that most identified databases deal with

photogrammetry applications or, at most, with production

estimation (fruit counting). In other words, there are no UAV

collections that provide close-up images (to identify visually small

bugs or morphology changes at the leaf level). In most papers, own

data sets, specific to the application, were used, but there are also

papers that were limited to public databases (Table 3).
4.4 Statistic performance indicators

Considering the results obtained from the experiments, the

analyzed papers used the following elements that make up the

confusion matrix (error matrix): true positive cases (TP), true

negative (TN), false positive (FP), and false-negative (FN). Based

on them, a series of statistical quality indicators were calculated for

the assessment of detection, classification, or segmentation

operations: Specificity (SPE), Sensitivity (SEN), Precision (PRE),

Accuracy (ACC), Dice coefficient (F1 score) (DSC or F1), and

Jaccard index (Table 4). If the application refers to several classes,

many authors prefer to provide average values for DSC and ACC in

all classes.

In addition to these indicators, Intersection over Union or

Jaccard index (IoU) was used to assess detection and

segmentation. Mean Average Precision (mAP) is a statistical

indicator used to evaluate the performance of NN for object

detection. It is calculated as an average over the number of classes

n of APi entities that represented the average detection accuracy for

class i (Table 4). The mAP is calculated for different IoU thresholds.

In the case of evaluating the correctness of the detection and

counting of several objects in the image (for example, in the case

of instance segmentation), some papers used Capturing Rate (CR),
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Detection Rate (DR), and Statistical Rate (SR) calculated based on

the actual number of objects, the number of objects in the image

and the number of objects detected by the computing system in the

same image. Another indicator worth mentioning is the Coefficient

of determination (R- squared), calculated from the sum of squares

of residuals (SSE) and the total sum of squares (SST).

Also, learning time and operating time are considered. These

time indicators strongly depend on the networks, the hardware used

(CPU, GPU, computer cluster, etc.), the resolution, and the number

of images.
4.5 New trends in the implementation of
neural networks for orchard monitoring

The novelties of the recent papers in the analyzed field refer to

the combination of several networks into decision systems to obtain

better performances than the component networks, including a
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CNN as the backbone in other CNN (network in a network), the

improvement (adaptation) of some networks for the respective

application - hence the name of the network, and the

improvement of well-established high-performance networks. The

new trends in the use of NNs in orchard monitoring follow the

general line regarding either the improvement of existing networks

by optimizing resources and improving performance or by

combining several NNs in network ensemble models. In this case,

it can be noted either the decision of the global system through the

majority vote of the decisions of the individual networks or through

the weighted summation of the detection (or classification)

probabilities offered by each component network of the ensemble.

The weight of a network is assigned proportionally to its

performance. To select the best NNs relative to an application,

some papers present comparisons regarding the values of the

performance indicators of several top NNs. Thus in (Torres-

Sanchez et al., 2020) SegNet, U-Net, FC-DenseNet, DeepLabv+

Xception, and DeepLabv3+ MobileNetV2 are compared regarding
TABLE 3 Public datasets used.

Dataset
name

Characteristics Year Number of
images

Link References

COCO-Stuff Contains pixel-level annotations of classes
such as grass, leaves, tree, and flowers

2017 123,287 images,
886,284 instances

https://cocodataset.org/#download (Caesar et al., 2018;
Dias et al., 2018)

AppleA,
AppleB,

Datasets containing apples, peaches, and
pears

2018 207 images https://data.nal.usda.gov/dataset (Dias et al., 2018;
Dias et al., 2018)

MinneApple Benchmark dataset for apple detection,
segmentation, and counting in the orchard

2019 1,000 images with
40,000 annotated
objects

https://rsn.umn.edu/downloads (Häni, 2020)

IP102 Contains 102 pest classes on eight crops. 2019 more than 75,000
images

https://www.kaggle.com/datasets/
rtlmhjbn/ip02-dataset

(Wu et al., 2019),
(Peng et al., 2023)

Mango
YOLO

Image dataset acquired with a farm terrestrial
vehicle for train, testing, and validation

2019 1730 images https://figshare.com/articles/dataset/
MangoYOLO_data_set/13450661/2

(Koirala et al.,
2019a)

Mendeley Data
(dataset added)

Image dataset acquired from a UAV over an
experimental site; added to Mendeley

2020 314 images https://data.mendeley.com (Encinas-Lara et al.,
2020)

Pistachio
Dataset

Pistachio orchard with two different nadir
angles

2021 248 images https://doi.org/10.5281/
zenodo.7271542

(Vélez et al., 2022)
TABLE 4 Statistic performance indicators used in the review.

Indicator Formula Indicator Formula

▪Specificity SPE =
TN

TN + FP

▪Sensitivity
(Recall) SEN =

TP
TP + FN

▪Precision PRE =
TP

TP + FP
▪Accuracy ACC =

TP + TN
TP + TN + FP + FN

▪Dice coefficient
(F1-score
or simple F)

DSC =
2 · TP

2 · TP + FP + FN

▪Jaccard index
(In confusion matrices) J =

TP
TP + FN + FP

▪Intersection over Union or
Jaccard index J(A,B) = IoU =

jA ∩ Bj
jA ∪ Bj

▪Mean Average Precision mAP =
1
no

n

i=1

APi

▪Coefficient of determination
(R- squared) R2 = 1 −

SSE
SST

▪Capturing rate (CR) CR =
captured   objects
real   objects

▪Detection rate (DR) DR =
detected   objects  
captured   objects  

▪Statistical
rate (SR) SR =

detected   objects
real   objects
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tree segmentation from UAV images. The obtained performances

by (Zhang and Zhang, 2023) were ACC: 88.9 – 96.7%, F1-score: 87

– 96.1%, and IoU: 77.1 – 92.5%. These networks can be combined

into ensemble systems for better detection (Deng et al., 2021;

Popescu et al., 2022a).

For areas with several orchards and different conditions, for

unitary management regarding several diseases and insect pests, the

authors (Deng et al., 2022) proposed a federated learning method of

NNs from several sources (obviously, several UAVs). In this way, if

an orchard has unbalanced or insufficient data for a disease/pest,

then the data is compensated from the other orchards, resulting in

better learning. For example, the improved Faster R-CNNmodel by

(Deng et al., 2022) can recognize fruit diseases and insect pests

under occlusion.

The popular networks were modified to improve their

performances. In (Zhang and Zhang, 2023) an improved U-Net,

namely MU-Net was implemented to segment the plant diseased

leaf. A residual block (Resblock) and a residual path (Respath) were

introduced into U-Net to overcome gradient problems and,

respectively, to improve the feature information between the two

paths of U-Net. For better performances on pest classification,

DensNet 121 was improved (Peng et al., 2023) in three directions:

input information feature, channel attention technique, and

adaptive activation function. Each improvement creates a

modified DensNet 121 model. The three models are combined

into an ensemble and the final decision is based on the sum of the

normalized confidence values for each pest category on these

three NNs.

By simultaneously considering RGB and NIR images, more

precise information can be obtained about the health of plants,

including orchards or vineyards. For example, in (Kerkech et al.,

2020) multimodal images (visible and infrared) are used for disease

detection in grapevine crops. Patches of 360 × 480 pixels were

cropped and analyzed from the original images (4608 × 3456

pixels). Two channels are selected green and NIR and the regions

of interest are segmented on both channels. For the dataset, semi-

automatic labeling was used in two steps: LeNet 5 and manual

correction. Four classes are considered: shadow, ground, healthy,

and symptomatic vine. Two SegNet models were evaluated and

tested for segmentation in RGB and NIR channels. The

symptomatic cases are interpreted considering the fusion by

intersection and union of segmentations obtained by the two

networks. The recommendation is to consider a system with

more NNs.

Some common NNs were adapted for a specific application and

got the name of the application: Vine Disease Detection Network

(VddNet) (Kerkech et al., 2020), YOLO designed for mango fruit

detection (MangoYOLO) (Koirala et al., 2021), network to detect

the invasion degree of Solanum rostratum Dunal (DeepSolanum-

Net) (Wang et al., 2021).

A synthesis of the new trends of UAVs and NNs in the orchard

monitoring context between 2020 and 2022 is done in Table 5. The

trend of most used NNs as number of appearances in research papers

between 2019–2022 were represented in Figure 6A. The symbol *

marks the fact that at the time of writing the article, the Web of
Frontiers in Plant Science 16135
Science indexing for the year 2022 has not finished. An average of the

main performance indicators is represented by the graph in

Figure 6B. It can see that both ACC and F1 have an increasing

trend, which means obtaining better-performing solutions.
5 Applications

In recent years, more and more tasks related to the monitoring

of orchards in large areas are solved by the intelligent processing of

data, and especially of images, collected with the help of drones.

Most applications related to the use of UAVs and NNs in orchard

monitoring refer to orchard mapping, pest and harmful insect

detection, fruit detection, yield estimation, and orchard condition.

In an automatic inspection of the orchard, for the desired

application, the appropriate trajectory of the UAV must be

specified and designed, according to Section 3. A major element

in orchard surveillance is identifying regions or objects of interest.

This may be at the macro level (orchard, tree lines, boundaries),

medium level (corona shape estimation, tree center, and height

identification), or micro level (counting fruits, pest detection, or

insect detection). As expected, there is a large variety of approaches

and tools to solve such problems. For example, (Torres-Sánchez

et al., 2018) discusses canopy area, tree height, and crown volume.

Noteworthy, the crown shape may vary even for the same type of

tree (as remarked by (Mu et al., 2018) for peach orchards).

Common geometric shapes considered for the crown shape are

the cone, hemisphere, and ovoid (Torres-Sánchez et al., 2018). The

precision of the estimation varies and strongly depends on the flight

characteristics and camera performance (Gallardo-Salazar and

Pompa-Garcıá, 2020).

As was mentioned in Section 4, there are cases where the

networks take the name of the specific application. For example,

the authors (Kestur et al., 2019) proposed a deep convolutional

neural network architecture for mango detection using semantic

segmentation named MangoNet. Also, the authors (Koirala et al.,

2021) call the network YOLO used MangoYOLO, and (Sun et al.,

2023) named YOLOP the modified YOLO v5 for pear fruit

detection. The authors (Kerkech et al., 2020) proposed a deep

convolutional neural network architecture for vine disease

detection named VddNet with a parallel architecture based on the

VGG encoder.

In the case of orchard monitoring using UAVs and NNs, there

are several essential applications such as the detection and

segmentation of orchards and individual trees, the detection of tree

diseases, the detection of harmful insects, the identification of fruits

and the evaluation of production, or the development of the orchard.
5.1 Orchard and tree segmentation

Themapping and segmentation of the orchards as well as the trees

inside was the subject of many research articles from the analyzed

period. Crop tree detection, location, and counting are estimated by

(Sarabia et al., 2020; Dyson et al. 2019; Lobo Torres et al., 2020;
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TABLE 5 A summary of new trends for the orchard-UAV-NN triplet.

Model Novelty Characteristics, Pros, and Cons NN used and function Performance
indicators

References

▪Combining two different
CNNs

▪Semantic segmentation of vegetation.
▪Pros: Good results in a wetland mapping
application.
▪Cons: Slower training process.

▪SegNet with VGG16
▪SegNet with ResNet50
▪UNet with VGG16
▪UNet with ResNet50

▪ACC = 91% for SegNet
with ResNet50
▪Time for NN training: 700
min

(Bhatnagar
et al., 2020)

▪Fusing the outputs of two
CNN, one for RGB and the
other for NIR images

▪Two camera sensors for RGB and NIR.
Disease detection in vine crops using
segmentation
▪Pros: Fusion by intersection is better than
classes detected in the visible or infrared
range:
▪Cons: Reduced performances on
segmentation due to the small training set
and too few NNs in the system, long runtime

▪Two SegNet (RGB and NIR)
▪Two LeNet5 (RGB and NIR) for
pre-labeling

▪Leaf-level average ACC:
82.20% - fusion AND;
90.23% - fusion OR;
▪Grapevine-level average
ACC: 88.14% - fusion
AND; 95.02% - fusion OR;

(Kerkech et al.,
2020)

▪Net with a specific name for
the application:
DeepSolanum-

▪Segmentation of UAV images to detect the
invasion degree of “Solanum rostratum
Dunal”
▪Pros: Reduced training time and complexity
▪Cons: Performances must be improved

▪DeepSolanum-Net based on U-
Net

▪Precision = 89.95%
▪Recall = 90.3%
▪IoU = 82.76%
▪F1-score = 89.85%

(Wang et al.,
2021)

▪Different CNN combined in
a system for orchard
monitoring
▪Net with a specific name:
MangoYOLO

▪Detect and count the fruits within images.
Input: tree image. Output: total fruits per tree
▪Pros: Good performance for fruit counting in
one season.
▪Cons: It is not a robust model in different
seasons.

▪Multi Layered Perceptron (MLP),
▪MangoYOLO model,
▪Xception_count model with a
regression block,
▪Xception_classification model

▪Best R2 = 94% (Koirala et al.,
2021)

▪Including a CNN as a
backbone in other CNN

▪Detection and semantic segmentation of
coconut trees
▪Pros: Good ACC
▪Cons: Need to classify and locate different
kinds of trees.

▪Mask R-CNN with ResNet 101 as
a backbone

▪mAP = 91%
▪ACC (classification) = 97%

(Iqbal et al.,
2021)

▪Dual network-based system
to eliminate successively
some FN and FP errors

▪Detecting and classifying harmful insects in
orchards (HH)
▪ Pros: Good performance to detect insects in
the foreground.
▪ Cons: Need to detect insects in a distant
plane.

▪YOLOv.4 with DarkNet combined
with EfficientNet B3

▪ACC = 95%
▪F1-score = 92%

(Popescu et al.,
2022b)

▪Combining NN YOLOv5s,
DeepLabv3+ MobileNetv2

▪Detecting and segmentation of the logan
fruit branch for logan harvesting using RGB-
D camera
▪Pros: Reduced operating time and good ACC
semantic segmentation
▪Cons: Limitations of object detection and
segmentation in environmental interference
conditions

▪Improved YOLOv5s for detection
and DeepLabv3+ MobileNetv2 for
semantic segmentation

▪ACC = 85.50% (fruit
branch detection)
▪ACC = 94.52% (fruit
branch semantic
segmentation)

(Li, D. et al.,
2022)

▪Faster R-CNN improved
with the Feature Pyramid
Networks (FPN)

▪Count the number of pecans in an orchard
▪Pros: Good mAP to identify pecans
▪Cons: Influence of lighting on fruit
recognition and detection.

▪Faster R-CNN and FPN ▪mAP = 95.932% (Hu et al.,
2022)

▪Federated learning (FL) and
improved Faster R-CNN.

▪Multiple pest detection
▪Pros: Can detect multiple pests in a short
time.
▪Cons: ACC must be improved

▪Faster RCNN with ResNet 101
and with FL

▪mAP = 89.34%
▪ACC = 90.27%
▪Detection time = 0.05 s

(Deng et al.,
2022)

▪Combining three improved
DensNet 121

▪Pest detection from an augmented big
dataset
▪Pros: Detecting pests on various agricultural
crops
▪Cons: Performances must be improved

▪Improved three DensNet 121 and
combined them into a decision
fusion system

▪ACC = 75.28% (Peng et al.,
2023)
F
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Modica et al., 2020) based on UAV flight multispectral cameras, and

morphological image processing techniques. Using U-Net and

RGB images, the authors (Schiefer et al., 2020) perform tree

species segmentation.

There are multiple ways to identify individual trees (canopy

segmentation) in an orchard/forested area. These vary with the

particularities of the specific trees and range in complexity from

simple box partitioning like in (Horton et al., 2017) to handling

irregular shapes and intermingled branches as in (Cheng et al.,

2020) tested for cherry and apple trees orchards. Classically, the

Hough transform for feature extraction has been often used but

with relatively weak performance. Better performance was observed

when using a Gaussian Mixture Model (Cheng et al., 2020). A

similar approach is followed in (Dong et al., 2020), again for

irregular crown shapes but this time applied to apple and pear

trees. Crown segmentation is sometimes only an intermediary step

for detecting the row lines and then, tree centers along each of these

lines. (Zortea et al., 2018) implements such a mechanism for citrus

orchards, a high-density case. Simply comparing the digital surface

and terrain models (DSM and DTM) may also be used, as in

(Gallardo-Salazar and Pompa-Garcıá, 2020) to geolocate trees and

delineate their crowns.

The tree detection and classification procedure apply not only to

curated environments (such as orchards) but also to natural growths

which are more irregular in both tree size and placement like large

boreal forest areas (Nevalainen et al., 2017). Another exception is (Tu

et al., 2020) where high-resolution images were acquired fromUAVs in

a more complex context (areas with urban vegetation). The application

is the semantic segmentation of trees of a specified species (Dipteryx

alata - cumbaru class) using state-of-the-art networks. The NNs

investigated were SegNet, U-Net, FC-DenseNet, and two DeepLabv3

+ implementations (Xception and MobileNetV2) all with the same

learning rates and optimizer for the learning phase. Moreover, a fully

connected CRF (conditional random field) approach is proposed as a

postprocessing step of the individual output NN decision. The results

of using CRF were statistical performance improvement (ACC: 0.2% -

1.7%, F1-score: 0.2% - 1.9%, and IoU: 0.4% - 3%) and a decrease in

computational efficiency (34.5 s for inference time). Regarding the

performances of the studied networks, the best ACC, F1-score, and IoU
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(96.7%, 96.1%, and 92.5%) were obtained for FC-DenseNet and the

lowest for DeepLabv3+Xception (88.9%, 87.1%, and 77.1%). Also, the

best results for inference time were for FC-DenseNet (1.14 s) and

the lowest for DeepLabv3+Xception (4.44 s).

It should be mentioned that some sources of error are

systematic. For example, using a point cloud to estimate tree

height naturally will provide less reliable height estimates if the

tree shape narrows toward the top, which means that fewer points

in the cloud are available for the 3D reconstruction (Gallardo-

Salazar and Pompa-Garcıá, 2020). Even for simple photogrammetry

applications, there are many features that may be considered.

Beyond the standard segment length, segment intra-distance, and

turn radius (the latter relevant only for fixed-wing UAVs) we may

also consider height variation from segment to segment. E.g., in

(Duarte et al., 2020) the segments follow the curvature of the

terrain, leading to pictures taken along a surface that maintains a

mostly constant height from the hilly ground beneath the camera.

(Hulens et al., 2017) aims to detect through image processing the

start and end points of an orchard row while traveling within it.

To obtain useful information for tree canopy extraction and

segmentation, the images acquired by UAVs must be processed

with various software (for example, Agisoft Photoscan) to generate

geo-referenced ortho-images (Apolo-Apolo et al., 2020a; Adhikari

et al., 2021). For example, in Figure 7 from a small, studied area the

segmentation and elevation map is created using the photo

capture points.

In most cases, the articles considered the detection and

segmentation of some trees of a certain species, such as citrus

(Csillik et al., 2018), palms (Culman et al., 2020), coconut (Iqbal

et al., 2021), fig plant (Fuentes-Pacheco et al., 2019), etc., but the

recommended solutions can also be applied to other types of

orchards. In this case, the NNs system must be relearned with a

new set of data (images) and the performances may be slightly

different. Authors (Garcıá-Murillo et al., 2020) proposed the

Cumulative Summation of Extended Maxima transform

(SEMAX) methodology for the automatic individual detection of

citrus and avocado trees.

A synthetic presentation of orchard and tree mapping and

segmentation application is given in Table 6.
A B

FIGURE 6

The most used NNs in orchards (A) and main performance indicators (B).
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5.2 Monitoring the evolution and condition
of the orchard

Most of cases, the conditions and evolution of an orchard are

evaluated from multispectral images, as can be seen in Table 6. But,

since NNs are implemented for RGB images (three color channels),
Frontiers in Plant Science 19138
for multispectral images less of these networks were used. There are

exceptions presented in Table 6. For example, in (Cunha et al.,

2021) the vigor and health of peach trees are evaluated using

vegetable indexes like NDVI (normalized difference vegetation

index), GNDVI (green NDVI), NDRE (normalized difference red

edge index), and REGNDVI (red-edge GNDVI) calculated from
A

D E F G H

I J K L

B C

FIGURE 7

(A) Creating the elevation map: studied area, (B) Photo capture points, (C) Elevation map, (D) image from UAV containing HH in orchard, distant plan
(4 m), (E, F) HH detected from D using image crops, (G, H) HH nymph at 0.6 m with manual acquisition, (I) Image with green apples in orchard,
(J) Marked green apples, (K) Image with red apples in orchard, (L) Marked red apples.
TABLE 6 Orchard and tree segmentation. Monitoring the evolution and condition of the orchard.

Purpose (orchard task) Resources Performance References

Orchard and tree segmentation

▪Detection of Citrus Trees based on a UAV flight and
image processing in two steps: detection and classification

▪UAV; multispectral camera; Simple CNN for detection; Simple
Linear Iterative Clustering algorithm (SLIC) for classification.

▪ACC=96.24%, (Csillik et al.,
2018)

▪Individual palms detection from high-resolution remote
sensing images

▪UAV; RGB camera; RetinaNet ▪mAP=86.1% (Culman et al.,
2020)

▪ Fig plant segmentation ▪UAV; RGB camera; encoder-decoder DCNN, inspired by SegNet
architecture

▪ACC=93.85% (Fuentes-
Pacheco et al.,
2019)

▪Tree detection and position ▪UAV; hyperspectral camera; different CNNs ▪F1 = 95.9%, (Miyoshi et al.,
2020)

▪Branch detection of apple trees ▪UAV; RGB camera; Pseudo-Color Images and Depth, R-CNN ▪REC=92%,
▪ACC=86%

(Zhang et al.,
2018)

▪Detection and segmentation of trunk/branch, apples, and
leaves

▪Terrestrial platform; RGB-D camera; ResNet-18 ▪ACC= 94.5%-
94.8%

(Zhang, X.
et al., 2019)

(Continued)
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multispectral images. Other research is focused on the detection of

spraying areas (Khan et al., 2021) and concentrations of various

chemical substances like Nitrogen, Phosphorus, and Potassium

(Noguera et al., 2021) in the leaves. The summary of the orchard

evolution monitoring is in Table 6.
5.3 Detection of pests and tree diseases
in orchards

Pest detection using UAV is an important application of orchard

monitoring because pests cause significant loss of crop production

(Castrignanò et al., 2021). A recent review of the impact of climate

change (IPPC Secretariat et al., 2021) on plant pests showed that pests

have expanded to new areas. FAO estimates that every year the losses

caused by pests are up to 40% of global crop production. Therefore,

pests and disease detection and their spread prediction in real-time

are needed for efficient and non-polluting interventions. Detecting

the pests and diseases of trees in orchards as early as possible can limit
Frontiers in Plant Science 20139
their spread. Manual observation is timely loss and inefficient

(Roosjen et al., 2020). Using UAVs and artificial intelligence in pest

detection and evaluation, important progress can be observed (Peng

et al., 2023). The low-altitude flight of UAVs is more effective than the

ground diagnosis which is time-consuming and laborious on large

area monitoring (Lan et al., 2020).

In organic orchards, it is particularly important to detect and

monitor insects, especially harmful ones. For this, there are several

ways such as direct visual inspection of farmers, land platforms, or

drones. The last option is the most efficient because it can cover a

relatively important area in a short time. In (Sorbelli et al., 2022), a

method of sweeping individual trees from an orchard for the

detection and evaluation of harmful insects (Halyomorpha Halys

(HH)) is described. Four NNs were compared (Ichim et al., 2022) to

highlight the best-performing network in HH detection. For this

experiment, the result was DenseNet201. Note that HH or other

harmful insects are at least an order of magnitude smaller than

fruits like apples or pears, hence the problem of accurately detecting

and counting them is even more challenging. The partial occlusion
TABLE 6 Continued

Purpose (orchard task) Resources Performance References

▪Identify the tree trunks and branches for a harvesting
system

▪RGB camera; Deeplab v3+ with backbone: ResNet-18, VGG-16,
and VGG-19

▪Per-class accuracy
(PcA) =97%

(Zhang X. et al.,
2021)

▪Semantic segmentation of citrus trees in a dense orchard ▪UAV; multispectral camera; FCN, U-Net, SegNet, DDCN, Deep-
LabV3 +

▪ACC= 94.88%-
95.96%

(Osco et al.,
2021)

▪Detection and classification of individual tree ▪UAV; RGB camera; AlexNet, SqueezeNet, VGG 16; ResNet 50,
DenseNet 121

▪ACC = 97.6%
-99.5%

(Nguyen et al.,
2021)

▪Dection and semantic segmentation of coconut trees ▪UAV; RGB camera; Mask R-CNN with ResNet101 as backbone ▪mAP=91% (Iqbal et al.,
2021)

▪Segmentation of planting rows of orange trees ▪UAV; RGB camera; Pipeline of two encoder-decoder networks
(DetED – for detection and CorrED – for correction

▪ACC = 94% -
99.5%,

(Rosa et al.,
2020)

Monitoring the evolution and condition of the orchard

▪Evaluating the phenotypic characteristics of orange trees
with influences on plant growth

▪UAV; multispectral camera; YOLO v3 ▪PRE=99.9% (Ampatzidis
et al., 2020)

▪Evaluating the vigor and health of trees in a peach
orchard using multispectral images

▪UAV; multispectral camera; Faster R-CNN ▪NA (Cunha et al.,
2021)

▪Recognition of spraying areas in the orchard. ▪UAV; RGB camera; improved Faster R-CNN ▪ACC=87.77% -
88.57%

(Khan et al.,
2021)

▪Determination of the NDVI in a pomegranate orchard ▪UAV; Deep Stochastic Configuration Networks (DeepSCNs),
regression model

▪R2 = 99.5% (Niu et al.,
2020)

▪Nitrogen concentration in an apple orchard ▪UAV; hyperspectral camera; backpropagation neural network
(BPNN)

▪R2 = 77% (Li, W. et al.,
2022)

▪Nitrogen, Phosphorus, and Potassium foliar content
retrieval in olive trees

▪UAV; multispectral camera; ANN R2 = 63% - 95% (Noguera et al.,
2021)

▪Monitoring citrus orchards ▪UAV; RGB camera; FCRN-MTL ▪PRE=95% (La Rosa et al.,
2020)

▪Multispecies fruit flower (apple, peach, and pear)
detection by semantic segmentation

▪Datasets publicly available; RGB camera; residual convolutional
neural

▪F1 = 74.2%- 86% (Dias et al.,
2018)

▪ Estimating olive tree’s biovolume ▪UAV; multispectral camera; Mask R-CNN based on ResNet50 ▪F1 = 95%-98% (Safonova et al.,
2021)

▪Evaluating the temperature in an apple orchard for frost
protection

▪UAV; RGB camera; thermal camera; YOLOv4 ▪mAP= 66.08%-
71.57%

(Yuan and
Choi, 2021)
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is challenging and the estimation of the abundance of these insects

is a difficult problem. In Figure 7 some examples of HH at different

stages of evolution and other insects in images taken on different

conditions confirm the difficulty of real detection of insects in trees

from UAV. As can be seen, the image from UAV at a safe distance

(in automatic surveillance) contains insects hard to be distinguished

and the recommended action is to split the images in crops and then

detect the insects with NN. If the insects are in the first plan or in

the public dataset the task detection is easier (Xing et al., 2019).

A synthetic presentation of tree disease and pest detection is

given in Table 7.
Frontiers in Plant Science 21140
5.4 Prediction and evaluation of
orchard production

As specified by (Wang C. et al., 2022; Koirala et al., 2019b) the

evaluation of fruit production is an important activity both from the

social and economic points of view. The authors used a combined

YOLO5 and FlowNet2 scheme to improve apple detection in an

orchard for accurate yield estimation. They claim a good performance

and a framerate of 20 frames/second even for partially occluded targets

and under varying illumination conditions. This is in contrast with

typical applications where the analysis is carried out offline.
TABLE 7 Detection of pests and tree diseases. Prediction and evaluation of orchard production .

Purpose (orchard task) Resources and discussions Performance References

Detection of pests and tree diseases

Infected or diseased trees detection ▪UAV; Faster R-CNN and Mask R-CNN approaches and
fusing their outputs

▪SEN=81.67% (Barmpoutis et al.,
2019)

Detection of the citrus bacterial canker in disease
development stages on Sugar Belle leaves and immature
fruit

▪UAV; hyperspectral camera; the neural network Radial Basis
Function (RBF) and the K-nearest neighbor (KNN)

▪ACC= 94%-100% (Abdulridha et al.,
2019)

Identification of fruit tree pests (Tessaratoma papillosa) ▪UAV; RGB camera; Tiny-YOLOv3 ▪mAP= 38.12%-
95.33%

(Chen, C.J. et al.,
2021)

Detection of the degree of HLB (huanglongbing)
infection on large-scale orchard citrus trees

▪UAV; multispectral camera; stacked autoencoder (SAE) neural
network

▪ACC= 99.72% (Deng et al., 2020)

▪UAV; multispectral camera; autoencoder ▪ACC=97.28%, (Lan et al., 2020)

Detection of diseases in vineyards ▪UAV; multispectral camera; LeNet-5, SegNet – single or
combination

▪ACC=78.72%-
95.02

(Kerkech et al.,
2020)

▪UAV; RGB camera; LeNet-5 ▪ACC=95.8% (Kerkech et al.,
2018)

▪UAV; RGB camera; CaffeNet ▪NA (Bouroubi et al.,
2018)

▪UAV; multispectral camera; VddNet ▪ACC=93.72 (Kerkech et al.,
2020)

Detection of the presence and behavior of the nematode
pest in coffee crops

▪UAV; RGB camera; U-Net and PSPNet ▪F1 = 69% (Oliveira et al.,
2019)

Detection of black rot on grape leaves ▪UAV; RGB camera; YOLOv3 with SPP module ▪PRE=94.05%,
SEN=93.26%

(Zhu et al., 2021)

Sick tree detection ▪UAV; RGB camera; different CNNs: Alexnet, Squeezenet,
VGG 16; Resnet 50, Densenet 121

▪ACC=97.6%
-99.5%

(Nguyen et al.,
2021)

Bug detection (Halyomorpha Halys) in an orchard ▪UAV; RGB camera; processing (NN) ▪NA (Sorbelli et al.,
2022), (Ichim et al.,
2022)

Insect detection, invasive species (Anolis carolinensis) ▪UAV, RGB camera; SSD-based model of DCNN ▪PRE=70% (Aota et al., 2021)

Invasion degree of “Solanum rostratum Dunal”
detection

▪UAV; RGB camera; DeepSolanum-Net based on U-Net ▪F1 = 89.85% (Wang et al., 2021)

Prediction and evaluation of orchard production

▪Method for semantic segmentation and instance
segmentation of bayberry fruit.

▪Terrestrial platform; RGB camera; Multi-module
convolutional neural network

▪AP = 75.5%
-91.3%

(Lei et al., 2022)

▪Accurate monitoring of fruit quantity in apple orchards ▪UAV inside orchard; RGB camera; YOLO v5s ▪AP = 90.39% (Wang S. et al.,
2022)

▪Yield estimates in apple orchards. Detecting apples on
individual trees.

▪UAV; RGB camera; R-CNN ▪R2 = 80% - 86% (Apolo-Apolo et al.,
2020a)

(Continued)
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The standard, encountered in virtually all aerial systems older

than 5-10 years, is to gather the raw data and, at most, do some

preliminary preprocessing before sending it to a ground station for

further analysis. This has the obvious benefit of minimizing the

hardware complexity and energy requirements for the drone but

makes impractical “live” implementations where the mission must

be updated on-the-fly from the gathered information. Recent

applications, due to significant hardware resources, have started

to handle increasing parts of the workflow onto the drone. While

the effort is by no means trivial, dedicated software such as Jetson

Nano, Google Coral, and the like permit image processing directly

onto the drone. This means that decisions may be taken in a fully

local manner (without interaction with the ground). Even a

supervisor (human or software agent) still must be in the loop (as

is the case for most commercial applications), there still is the

benefit of reduced bandwidth allocation (since more steps of the

image processing are done on the platform, it means that only

relevant information is exchanged with the ground).

On the other hand, for position correction, collision avoidance,

and even target counting (Wang S. et al., 2022), optical flow

methods which compare consecutive frames to detect changes are

used. This has the advantage of improving performance but comes

usually with a reduction in resolution (since video frames have,

unavoidably, less resolution than static images).

The great majority of drone trajectories are out of a plane

(images/videos are taken top-down while the drone is flying over

the treetops). Still, there are some results such as in (Wang S. et al.,

2022) where the drone travels mid-row, through the orchard’s rows.

Using artificial intelligence methods to process the images

acquired by autonomous terrestrial or aerial platforms, the

conditions for picking fruits that have reached maturity in the

optimal period can be improved. This approach leads to increased

economic efficiency for orchards (Lei et al., 2022). Fruit estimation

is challenging and the number of fruits on a tree cannot be

measured exactly due to occlusions (Zhang X. et al., 2019).
Frontiers in Plant Science 22141
Because of the similarity between the fruit and the leaf, the

detection of green citrus fruits or green apples (Figure 7) is quite

difficult. The authors (Zheng et al., 2021) proposed a modification

of the YOLO neural network modules (starting from YOLO v4),

called YOLO BP which detects the respective fruits with higher

precision than YOLO v4. If the fruits are a color different from the

leaves or are not obturated the detection task is easier (Figure 7).

NIR is used especially for highlighting the leaves and the production

of almonds in a tree. For example, in (Tang et al., 2023) aerial multi-

spectral images (near-infrared, red edge, red, and green) are

processed by a CNN to estimate the almond production in an

orchard with a coefficient of determination, R2 = 96%. It is specified

that the sun-shadow effect can decrease system performance.

A synthetic presentation of fruit production evaluation is given

in Table 7.
6 Discussion

The use of UAVs and NNs for image processing in orchard

monitoring is a relatively new method open to both research and

end-user implementation. This was possible due to the

development of new technologies in recent years and the decrease

in the prices of the necessary equipment. Unfortunately, most of the

current UAV applications are relatively simple from the viewpoint

of trajectory generation (straight lines or successive set points to be

reached). Still, continuous advances in hardware capabilities and

the expected expansion of mission complexity mean that more

complex scenarios will be defined and tackled. Continuous

reduction in size, cost, and dimensions means that various sensor

mechanisms (Lidar for example) may now be mounted onboard.

Not least, improvements in embedded image processing (software

and hardware modules such as Jetson Nano or Google Coral) mean

that image-based positioning is now increasingly used. Henceforth,

we expect that algorithms initially tailored for ground vehicles will
TABLE 7 Continued

Purpose (orchard task) Resources and discussions Performance References

▪Detection, counting, and estimation of the size of citrus
fruits on individual trees

▪UAV; RGB camera; Faster R-CNN ▪F1 = 89% (Apolo-Apolo et al.,
2020b)

▪Detection and location of longan fruits ▪UAV; RGB camera; MobileNet backbone used to improve
YOLOv4

▪mAP = 54.22
-89.73%

(Li D. et al., 2021)

▪Holly fruits detection and counting ▪UAV; RGB camera; YOLOX ▪DR >99% (Zhang Y. et al.,
2022)

▪Canopy extraction. Detect mango and predict the
number on the tree

▪Terrestrial platform; RGB camera; Mango YOLO, Xception,
Random Forest

▪R2 = 98% (Koirala et al., 2021)

▪Detect apple fruit in the orchard ▪Manual images; RGB camera; comparing RetinaNet, Libra-
RCNN, Cascade-RCNN, Faster-RCNN, FSAF, HRNet, and
ATSS

▪Maximum AP =
94.6%

(Biffi et al., 2021)

▪Longan harvesting UAVs. Branch detection and fruit
branch semantic segmentation.

▪UAV; RGB-D camera; YOLOv5s – for detection, and
improved DeepLabv3+ (MobileNet v2) for semantic
segmentation

▪ACC = 85.50% –

94.52%
(Li D. et al., 2022)

▪Grape detection, instance segmentation ▪RGB camera; Mask R-CNN with ResNet 101 as the backbone ▪F1 = 91% (Santos et al., 2020)

▪Pear (fruit) detection ▪RGB camera; YOLO-P F1 = 96.1% (Sun et al., 2023)
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be adapted in the next few years to aerial systems. For example, a

great many algorithms exist for in-lane orchard navigation for

ground autonomous systems (small-sized tractors, (Emmi et al.,

2021)) and it should be possible to adapt them with minimal

modifications. Although it is preferable to other methods such as

terrestrial platforms or human operators, automatic UAV flight and

establishing the trajectory inside the orchard for the acquisition of

images is sometimes a real challenge due to several aspects such as:

a) keeping a safe distance from tree branches, b) obtaining a

continuous 3D surface (similar to orthomosaic) from which to

cut out the images to be analyzed, c) detecting, segmenting and

classifying small (insects, some fruits, diseases) and/or partially

covered objects, d) large differences in brightness, e) background

difficulty, etc. All this, including the characteristics of public

databases (if they are used) leads to different performances for the

same type of application.

It can be noted that, in general, the performances obtained

depend both on the networks used and on the quality of the

acquired data set. Many times, the division of high-resolution

acquired images into sub-images (patches) and their analysis by

the proposed NNs give better results than the processing of large
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images through the resizing required by the networks. This solution

can be useful when trying to detect small objects in trees (such as

insects). The performance of networks or systems made of multiple

networks leans either on meeting the needs of precision or on

meeting the needs fast processing, or on the compromise between

these two. Anyway, for a large-scale application, on various farms, a

solution that saves resources or a remote processing solution via the

Internet is preferable. Another recommendation is to use, in

situations where NIR images provide relevant information, to

combine NNs for RGB with NNs for NIR in a global

decision system.

There are several review articles with the topic of some common

parts with this article, but none that include the triplet orchard,

UAV, and NNs. Their descriptions and the novelty introduced in

our paper are presented in Table 8.
7 Conclusions

This review covers a critical gap in modern orchard monitoring

considering the essential contribution of both UAV and NNs as
TABLE 8 Recent review/survey papers on similar topics.

Paper Description Period Ref. Our differences (improvement or novelty)

(Kamilaris
and
Prenafeta-
Boldú,
2018)

▪Using CNNs in agriculture.
▪Comparing NN with other techniques in agricultural
applications, high precision, and accuracy are obtained.

1995-
2018

62 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. Description of
using UAVs for image acquisition. More references. New period.

(Koirala et
al., 2019b)

▪Using DL for fruit detection and
yield estimation.
▪Comparing the statistical performances of CNN methods.

1991-
2019

83 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Graphs on the evolution of
UAV and NN use in the last period. Description of using UAVs
for image acquisition. More references. New period.

(Barbedo,
2019)

▪Using UAVs and image acquisition and processing to
monitor and assess the plant stresses.

2003-
2018

169 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. More references.
New period.

(Ma et al.,
2019)

▪Using deep NNs in general remote sensing applications. 1991-
2018

148 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Graphs on the evolution of
UAV and NN use in the last period. Description of using UAVs
for image acquisition. More references. New period.

(Iost Filho
et al.,
2020)

▪Using multi-copters in pest management to identify harmful
areas and to accurately spray pesticides. Sensing and
actuation UAVs are investigated in agricultural systems

1986-
2019

320 ▪Focused on orchard monitoring from different points of view
(applications). Focused on detailed descriptions of NN used and
new trends. Graphs on the evolution of UAV and NN use in the
last period. New period.

(Lu and
Young,
2020)

▪Analyzing and establishing the main characteristics of 34
public image DSs for computer vision tasks in precision
agriculture: 15 on weed control, 10 on fruit detection, and 9
for other applications.

2009-
2020

98 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Description of
using UAVs for image acquisition. Graphs on the evolution of
UAV and NN use in the last period. More references. New period.

(Naranjo-
Torres
et al.,
2020)

▪Using CNN for fruit recognition. Presentation of
fundamentals, tools, and examples of CNNs for fruit sorting
and quality control.

1998-
2020

104 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Description of using UAVs
for image acquisition. Graphs on the evolution of UAV and NN
use in the last period. More references. New period.

(Zhang
et al.,
2020)

▪Using DL for dense scenes analysis in agriculture. Analyzing
the challenges in dense agricultural scenes. Presentation of
architectures of DL algorithms and CNNs used in dense
agricultural scenes

1988-
2019

122 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. Description of
using UAVs for image acquisition. More references. New period.

(Continued)
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exponents of new technologies. As can be seen both from the

analysis of research articles and review articles, only in recent years

have these hardware/software resources been involved and analyzed

in research in the field. Both the advantages offered by the two

components (UAV and NN) of the analyzed orchard monitoring

systems were highlighted as well as the challenges due to the

difficulties encountered in real orchards, related to the UAV flight

inside the orchards among the trees and the detection of small

objects such as fruits or insects inside the crowns. The newest

technologies used in modern orchards were analyzed in support of

increasing production, increasing fruit quality, and eliminating

pests and diseases through environmentally friendly means.

Special emphasis was placed on the new trends in the

development of the main analyzed vectors, namely NNs, and

UAVs. The final discussion regarding the comparison with other

review articles highlights the article’s contributions regarding

improvements and new approaches. We hope the paper will help

the researchers and producers of modern systems for orchard

monitoring in the context of Agriculture 4.0. As previously stated

in the paper, a limitation of the approach is the relatively small

number of existing research articles in the complex topic of orchard

monitoring-UAV-neural networks (it is a new field, in full

expansion). As a future direction, we will follow the ever-growing

evolution in this field, based on the fusion of information from

terrestrial and aerial robots, for the most efficient monitoring of

orchards using artificial intelligence techniques.
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TABLE 8 Continued

Paper Description Period Ref. Our differences (improvement or novelty)

(Dhaka
et al.,
2021)

▪Using DCNN for prediction of plant diseases from leaf
images.

1989-
2021

124 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Li L. et
al., 2021)

▪Using DL for plant leaf disease detection and classification 2006-
2020

113 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Liu and
Wang,
2021)

▪Using DL for plant diseases and pest detection, considering
three functions of NN: classification, detection, and
segmentation.

2006-
2021

108 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Olson
and
Anderson,
2021)

▪Presentation of UAVs, image sensors, image acquisition,
image processing, and their applications in agriculture

1973-
2021

154 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Description of
using UAVs for image acquisition. Graphs on the evolution of
UAV and NN use in the last period. More references.

(Zhang C.
et al.,
2021)

▪Presentation of orchard management with small UAVs 1978-
2019

147 ▪Focused on new trends in NN usage for image processing for
orchard monitoring. Graphs on the evolution of NN use in the last
period. More references. New period.

(de Castro
et al.,
2021)

▪Using UAVs for vegetation monitoring considering diverse
agricultural and forestry scenarios such as vegetation indices,
technological goals, and applications.

2004-
2021

48 ▪Focused on orchard monitoring from different points of view
(applications). Focused on detailed descriptions of NN used and
new trends. Graphs on the evolution of UAV and NN use. More
references.

(Wang C.
et al.,
2022)

▪Detecting the phases of fruit evolution from flower, growth,
ripening, picking, and classification, based on the analysis of
images captured by terrestrial or aerial robots. NNs with one
or two stages, built for object detection were considered.

1986-
2022

201 ▪Focused on orchard monitoring from different points of view
(applications). More NNs. Focused on new trends in NN usage.
Description of using UAVs for image acquisition. Graphs on the
evolution of UAV and NN use in the last period. More
applications
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Apolo-Apolo, O. E., Martıńez-Guanter, J., Egea, G., Raja, P., and Pérez-Ruiz, M.
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AKAZE Accelerated-KAZE

ACC Accuracy

AI Artificial Intelligence

AP Average Precision

ATSS Adaptive Training Sample Selection

CRF Conditional Random Field

CNN Convolutional Neural Network

CPU Central Processing Unit

CR Capturing rate

DASNet Dual Attentive fully convolutional Siamese Network

DB Database

DCNN Deep Convolutional Neural Network

DDCN Dynamic Dilated Convolution Network

DeepSCN Deep Stochastic Configuration Network

DL Deep Learning

DR Detection Rate

DS Dataset

DSC Dice Coefficient

DSM Digital Surface Model

DTM Digital Terrain Model

F1 Dice Coefficient (F1 Measure)

FCN Fully Convolutional Network

FCRN Fully Convolutional Regression Network

FCRN-MTL Fully Convolutional Regression Network Multi-Task Learning

FN False Negative

FP False Positive

FPN Feature Pyramid Networks

FSAF Feature Selective Anchor-Free

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

HRNet High Resolution Network

IoT Internet of Things

IoU Intersection-Over-Union

KNN K-Nearest Neighbor

mAP Mean Average Precision
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ML Machine Learning

NDVI Normalized Difference Vegetation Index

NIR Near-infrared

NN Artificial Neural Network

ODM Open Drone Map

PRE Precision

PSPNet Pyramid Scene Parsing Network

RBF Radial Basis Function

R-CNN Region-Based CNN

ResNet Residual Neural Network

RGB Red-Green-Blue (images)

RTK Real-Time Kinematic Positioning

RoI Region of Interest

ROS Robot Operating System

SAE System Architecture Evolution

SAR Synthetic-aperture radar

SegNet Semantic Segmentation Network

SEN Sensitivity

SPE Specificity

SPP Spatial Pyramid Pooling

SR Statistical Rate

SSD Single Shot MultiBox Detector

TN True Negative

TP True Positive

TSP Traveling Salesman Problem

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

VGG Visual Geometry Group

WOS Web of Science

YOLO You Only Look Once
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StressNet: a spatial-spectral-
temporal deformable attention-
based framework for water
stress classification in maize

Tejasri Nampally1*, Kshitiz Kumar1, Soumyajit Chatterjee1,
Rajalakshmi Pachamuthu2, Balaji Naik3 and Uday B. Desai2

1Department of Artificial Intelligence, Indian Institute of Technology (IIT) Hyderabad, Hyderabad, India,
2Department of Electrical Engineering, Indian Institute of Technology (IIT) Hyderabad,
Hyderabad, India, 3Department of Agronomy, Professor Jayashankar Telangana State Agricultural
University (PJTSAU), Hyderabad, India
In recent years, monitoring the health of crops has been greatly aided by

deploying highthroughput crop monitoring techniques that integrate remotely

captured imagery and deep learning techniques. Most methods rely mainly on

the visible spectrum for analyzing the abiotic stress, such as water deficiency in

crops. In this study, we carry out experiments on maize crop in a controlled

environment of different water treatments. We make use of a multispectral

camera mounted on an Unmanned Aerial Vehicle for collecting the data from

the tillering stage to the heading stage of the crop. A pre-processing pipeline,

followed by the extraction of the Region of Interest from orthomosaic is

explained. We propose a model based on a Convolution Neural Network,

added with a deformable convolutional layer in order to learn and extract rich

spatial and spectral features. These features are further fed to a weighted

Attention-based Bi-Directional Long Short-Term Memory network to process

the sequential dependency between temporal features. Finally, the water stress

category is predicted using the aggregated Spatial-Spectral-Temporal

Characteristics. The addition of multispectral, multi-temporal imagery

significantly improved accuracy when compared with mono-temporal

classification. By incorporating a deformable convolutional layer and Bi-

Directional Long Short-Term Memory network with weighted attention, our

proposed model achieved best accuracy of 91.30% with a precision of 0.8888

and a recall of 0.8857. The results indicate that multispectral, multi-temporal

imagery is a valuable tool for extracting and aggregating discriminative spatial-

spectral-temporal characteristics for water stress classification.

KEYWORDS

multispectral, multitemporal, UAV, stress classification, maize, BiLSTM, attention-
based network
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1 Introduction

The growth and health of the crop depend on several essential

agronomic inputs Boyer (1982) such as water and soil nutrients like

nitrogen and phosphorous. These factors play a pivotal role in

determining both the quantity and quality of production. Water

aids in the transportation of nutrients Gonzalez-Dugo et al. (2010)

from the soil to different regions of the plant. Inadequate water

supply leads to the development of abiotic stress in plants,

disrupting their capacity Wang et al. (2016); Vicente et al. (2018)

to carry out vital processes such as photosynthesis, affecting the

crop’s yield. In the recent past, the phenomenon of global warming

Mueller et al. (2012); Food and of the United Nations (2019)

resulted in irregular rainfall patterns leading to water scarcity.

Water shortage leads to diverse physiological changes, including

loss of greenness and reduced leaf surface and biomass. Maize is a

staple food around the globe and accounts for 36% of the world’s

grain production, constituting nearly 9% of the Indian food basket

Dataset IIMR (2020). Since there are about one to two kernels per

plant, drought stress impacts Zhou et al. (2020); Liu et al. (2020) the

quality, harvesting ability, and crop yield. As per the recent study by

Laborde et al. (2020), the pandemic in 2019 (COVID) resulted in

uncertainties in global food security. Owing to the potential that

maize occupies a significant amount towards ensuring the food

supply, especially in developing nations like India, it is necessary to

advance crop monitoring methods through comprehensive

geographical evaluation. Accurate determination of optimal

timing and quantity of water will facilitate enhanced irrigation.

Over the last decade, remote sensing methods have been

extensively used by Semmens et al. (2016); Thorp et al. (2018);

Tian et al. (2020) for characterizing water stress in crops. Aerial-

based remote sensing emerged as a non-invasive technique to

gather data from crop, soil, and environmental factors. It made a

significant impact by obtaining “farm” level to “leaf” level

information through image data. Further, this data helped Berni

et al. (2009); Al-Tamimi et al. (2022) in quantifying various traits of

water stress responses. Of the current aerial remote sensing

techniques, Unmanned Aerial Vehicles (UAVs) have surfaced as

efficient platforms for high-throughput phenotyping to monitor

crop fields due to their high spatial and temporal resolution, further

resulting in the improvement of the management of water stress in

agriculture. UAVs can be accommodated with different types of

camera sensors. They can fly at lower altitudes, cost-effective,

enabling increased monitoring frequencies Berni et al. (2009);

Araus and Cairns (2014); Gago et al. (2015).

Over the recent years in the field of computer vision, from

conventional image processing techniques to present novel

methods, automated learning-based feature extraction techniques

have made substantial progress Li et al. (2020). These popular

techniques include Support Vector Machine, K-Means clustering,

and Random Forest. Moreover, Deep Learning (DL), a method that

leverages LeCun et al. (2015) hierarchical feature extraction from

images, has opened up new possibilities for interpreting vast

amounts of data and permeated the field of data analytics in the

field of agriculture. The plant science community is increasingly

embracing these DL methods to extract meaningful insights from
Frontiers in Plant Science 02151
the extensive datasets gathered through high-throughput

phenotyping and genotyping methods Kamilaris and Prenafeta-

Boldú (2018); Zhong et al. (2019); Wang et al. (2022).

Convolutional Neural Networks (CNNs) have gained popularity

among Deep Learning methods for their ability to automatically

extract valuable information from diverse features such as colour,

shape, texture, size, and spectral information across different levels

without the need for human expertise Krizhevsky et al. (2012);

Grinblat et al. (2016); Lee et al. (2017). The exhaustive review from

Singh et al. (2018) offers a thorough evaluation of DL methods

applied to a broad spectrum of plant species, focusing on tasks such

as identifying, classifying, quantifying, and predicting plant stress.

The other studies of Kumar et al. (2020); Tejasri et al. (2022)

explored UAV-captured imagery for predicting water stress-

affected crops using CNN-based frameworks. These studies

highlight that Red, Green, and Blue (RGB) bands are crucial for

classifying water-stressed crops due to their rich properties of

colour and texture. However, RGB bands are particularly light-

sensitive and can only provide details within the visible spectrum

Nijland et al. (2014). Moreover, multispectral data is of paramount

importance due to its additional spectral information greatly aided

Zarco-Tejada et al. (2012); Nijland et al. (2014); Wang et al. (2022)

to overcome the light sensitivity issues in the visible spectral domain

and helps in identifying the underlying information on crop

water stress.

Earlier studies by Spisǐć et al. (2022); Barradas et al. (2021),

utilized multispectral data and Supervised Machine Learning (ML)

based methods to effectively detect drought stress in crops. These

methods used MultiLayer Perceptron (MLP), Support Vector

Machine (SVM), decision tree, Random Forest based classifiers,

and gradient boosting techniques to classify water stressed plants.

Virnodkar et al. (2020) conducted an extensive review on the use of

supervised ML methods for crop water stress classification using

UAV captured multispectral imagery. However, these described

methods are mainly limited to manual feature extraction and thus

are inefficient, particularly when dealing with high dimensional data

or in complex environments Wang et al. (2022); Bouguettaya et al.

(2022). This inherent limitation of traditional machine learning

techniques has prompted a shift in focus towards machine learning

methods based on DL LeCun et al. (2015).

By leveraging DL techniques with multispectral data, a

significant transformation is occurring within the domain of data-

centric agriculture. While CNNs show promising results in water

stress detection and classification, as demonstrated by Kumar et al.

(2020), they do not take temporal data into account. CNNs are

limited by the assumption that data captured at different time

points are equivalent. However, it is well-known that visual changes

resulting from water stress in crop occur gradually and are not

immediately discernible. This poses a challenge for CNNs, as they

lack the ability to effectively learn temporal patterns, resulting in

difficulties in confidently classifying stress conditions, as discussed

by Singh et al. (2018); Gao et al. (2020). Moreover, the time-

invariant nature of CNNs requires data displaying severe signs of

stress for reliable detection, making it impractical for early

identification and recovery of stressed plants. Therefore, there is

an increasing need for a technique capable of analyzing the
frontiersin.org
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progressive visual changes in stressed plants, enabling confident

classification even in the absence of severe stress signs, facilitating

early-stage water stress classification, and addressing a critical gap

in current methods. In this context, Elsherbiny et al. (2022)

explored a CNN-LSTM approach to assess the water status of

wheat. This study aggregated features derived from RGB images,

climatic conditions, and soil moisture, achieving a remarkably low

loss of 0.0012. In our preliminary study Tejasri et al. (2023), we

utilized CNNs (AlexNet, VGG-19, ResNet18, ResNet-50) for

extracting the features from multi-temporal multispectral UAV-

captured maize data. The extracted visual features are further fed to

a single LSTM unit for capturing temporal dependencies. The

results showed that the model based on fine-tuned ResNet-18

backbone, using multispectral data outperformed with a precision

of 0.9765 and a recall of 0.9457 rather than just using RGB data with

a precision of 0.9523 and a recall of 0.9487. On the other hand,

considering the change in environment and the crop conditions,

this analysis becomes difficult with the help of a single LSTM unit.

Thus, a series of LSTM units can be made use of where the input

to these units are the sequences of visual features that are extracted

by CNNs to preserve the temporal patterns as demonstrated by

Azimi et al. (2021), for identifying water stress in chickpea plant.

This approach gained more insights by providing a more accurate

representation of the relationship between the environmental

conditions and the crop’s response. The sampling positions of

standard convolution kernels remain constant. They cannot be

adjusted to accommodate intricate spatial patterns in crop

classification, as noted by Feng et al. (2020) in their work on

multispectral image analysis. In addition, the classic pooling

layers (average or max pooling) are also fixed and do not possess

the capability to learn the downsampled features. Conversely,

deformable convolution proposed by Dai et al. (2017), enables the

neural network to adaptively adjust the sampling locations, allowing

it to effectively capture the spatially varying patterns. Deformable

convolution is an extension of standard CNN by introducing

learnable offsets to the standard grid sampling locations of

convolution kernels. Studies by Zhu et al. (2018) explored a

deformable convolut ion neural network (DCNN) for

hyperspectral image classification. Feng et al. (2020) adopted a

deformable CNN-LSTM-based network for vegetable mapping

from multi-temporal UAV-based RGB imagery. Motivated by the

works mentioned above, we propose a model entitled StressNet

which combines a deformable based CNN and a BiLSTM with

weighted attention to dynamically adjust the receptive field to

accommodate the size of the crop according to its growth stage.

In this study, we present a DL-based temporal analysis pipeline

for classifying water-stressed crops, utilizing multispectral data

captured by UAV. We aim to showcase the great performance of

the proposed method compared to standard CNN, which is time-

invariant and only spatial. The following contributions are obtained

from the present work:
Fron
1. Dataset is created by using multispectral data of maize crop

captured by UAV.

2. Our proposed model leverage the capabilities of CNN by

adding deformable convolutional layer and BiLSTM for
tiers in Plant Science 03152
enhanced performance. It is specifically designed to learn

spatial-spectral-temporal patterns for identifying water

stressed crops.

3. We conducted a comparative analysis of the proposed

method using CNN based architectures - AlexNet and

VGG-16.

4. We performed an ablation study by evaluating the impact

of temporal and spectral data using the proposed model.

This involved systematically reducing the number of

temporal data used and the number of spectral channels.

In addition, we discussed the impact of the deformable

convolutional layer, BiLSTM and weighted attention on the

performance of the proposed method.
2 Materials and methods

2.1 Experimental site

The experimental study was conducted in a semi-arid zone of

Hyderabad (Telangana, India) from October to February (post-

monsoon season - Rabi) during 2018-19. The study area lies between

17°19’27.2”N – 17°19’28.3”N and 78°23’55.4”E – 78°23’56.2”E shown

in Figures 1A, B. Rabi season was particularly chosen to precisely

understand the water stress effect on the crop as the crop can be

induced by heavy water stress conditions as the rainfall level is

comparatively low during this period. The farm is situated in a semi-

arid region, characterized by an average annual precipitation of 822

mm and annual potential evapotranspiration ranging from 1700 to

1960 mm. The soil in this area is predominantly composed of light red

sandy loam and extends to a depth of approximately one meter and

bedrock beneath it. For the study, maize crop (Zea mays L.) of the

‘Cargill 900 M Gold’ variety is cultivated. The farm was maintained by

Agro Climate Research Center, Professor Jayashankar Telangana State

Agriculture University (PJTSAU), Hyderabad, India. The experimental

field comprises 30 regions, each measuring 4.2 m × 4.8 m. The

experimental field was designed in a split mode with three irrigation

and nitrogen supply levels based on a climatic approach Halagalimath

et al. (2017).

The determination of the irrigation schedule was based on Reddy

and Reddy (2019) the ratio of Irrigation Water (IW) to Cumulative

Pan Evaporation(CPE). Three distinct irrigation levels are chosen,

with IW/CPE ratios of 0.6, 0.8, and 1 assigned to the respective

regions. For each irrigation event, a uniform quantity of 50 mmwater

(IW) is provided to the designated plots using pipes equipped with

water meters to ensure accurate measurement. Pan evaporimeters (in

mm) are used to record daily readings, aiding in the calculation of the

IW/CPE ratio. This ratio was crucial in determining the ideal timing

for irrigation across various regions. Additionally, each type of

irrigation plot is subjected to one of three nitrogen fertilization

levels: 100, 200, and 300 kg nitrogen per hectare, as represented in

Table 1. By combining the three irrigation levels with the three

fertilization levels, a total of nine distinct regions are created.

Furthermore, each plot is replicated three times, resulting in a total

of 27 plots (3 water levels × 3 nitrogen levels × 3 replications), as
frontiersin.org
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depicted in Figure 1C. In order to introduce diversity, each plot, that

measures 4.2 m × 4.8 m, received one of three distinct combinations

of water and nitrogen levels. This setup allowed for categorizing areas

into conditions of low, moderate, and high water and fertilizer stress

plots. In each plot within rows, the plants are spaced 20 cm apart

from each other, and rows are spaced 60 cm apart for each treatment,

resulting in an estimated plant density of 8.33 plants per square meter

as shown in Figure 1D.
2.2 Dataset collection

To ensure an accurate geo-referenced data acquisition, we

deployed nine Ground Control Points (GCPs) that are surveyed

using a Trimble R10 GNSS Receiver within the field. The images are
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captured using a DJI Inspire-1 Pro UAV equipped with a Micasense

RedEdge-MX multispectral camera included with a Downwelling

Light Sensor (DLS) (represented in Supplementary Figure S1). This

sensor is a 5-band light sensor that calculates the surrounding light

conditions during a flight for each of the camera’s five spectral bands

and then stores this data within the metadata of the captured images.

After calibration, this information is used to rectify the illumination

changes in the middle of a flight that takes place due to cloud cover.

Using Mission Planner version 4.3.1 (ArduPilot Dev team), the UAV

flight path is predetermined at an altitude of 10 meters with a speed of

4 km/hr. The pixel resolution was set to 2 cm. Vertical overlap of 70-

80% and horizontal overlap of 50-70% is maintained in consecutive

images to ensure maximum coverage. The collected data consists of

five spectral bands, blue (475 nm), green (560 nm), red (668 nm), red-

edge (717 nm), and near-infrared (NIR) (842 nm) regions. In this

study, crop cultivated from the tillering stage through the heading

stage is considered. Radiometric calibration is carried out for the

utilization of UAV-based multispectral imagery. It considers various

factors, such as the position of the sensor and sun, camera gain,

exposure information, and irradiance measurements that may affect

the quality of image data. For radiometric calibration, images of the

Calibrated Reflectance Panel (CRP) are captured by the camera and

DL sensor before the UAV flight.
2.3 Data pre-processing

Each CRP is associated with a calibration curve spanning the

visible and NIR spectrum. Absolute reflectance values in the range
TABLE 1 Treatment information of the research farm for Rabi season
(Winter 2018–19).

Treatment Detail Application Rate

I1 High water stress IW/CPE = 0.6

I2 Moderate water stress IW/CPE = 0.8

I3 No water stress IW/CPE = 1.2

N1 High nitrogen stress 100 kg/ha

N2 Optimum nitrogen 200 kg/ha

N3 Overdose nitrogen 300 kg/ha
Here, IW means irrigated water in millimeter and CPE represents cumulative potential
evaporation in mm. Nitrogen is supplied in kilogram per hectare (kg/ha).
B

CD

A

FIGURE 1

(A) Indian map. (B) Location of experiment field in Telangana map. (C) Top view of the field captured by the UAV with dummy plots highlighted.
(D) Field layout of treatments where I1, I2, I3 represent high, moderate and no water deficit plots respectively.
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of 0 to 1 are related to the range of 400 - 850 nm (with a 1 nm

increment). To perform radiometric calibration, the captured panel

images are loaded with the above values provided by Micasense on

Agisoft Metashape® Professional (Version 1.8.3 build 14331 64-bit)

photogrammetry software. To obtain a complete field perspective,

the raw photos are aligned, geo-rectified, and further stitched, based

on similar image characteristics. After the alignment, the high-

quality and mild filter mode options are used to create a dense point

cloud. A Digital Elevation Model (DEM) and an orthomosaic (a

panoramic picture stitched together and geometrically corrected) of

each band, covered by the corresponding raw images, are exported

(shown in Supplementary Figure S2A). The settings employed in

the Agisoft Metashape software for the creation of orthomosaic are

reported in Table 2. The shape files corresponding to orthomosaic

are created using open source QGIS® tool, and using these files,

subplot containing region of interest, are extracted using RStudio

(shown in Supplementary Figure S2B). The net area is considered in

the process to ensure that the impact of crops on the boundaries

does not have any effect. This is obtained by removing 5% of the

outer perimeter on each edge of the image. By performing the

sliding window method on this extracted image, Region of Interest

(ROI) of individual plants is extracted.
2.4 Methodology

Our proposed framework’s workflow is illustrated in Figure 2,

outlining all the steps undertaken in this study.

2.4.1 Overview of StressNet
Convolutional Neural Networks (CNNs) can be divided into

two main components. The initial component, often referred to as
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the ‘backbone,’ comprises a series of convolutional and pooling

layers aimed at extracting intricate features. These layers function as

feature detectors, sampling the input image data to produce high-

level feature maps. In simpler terms, specific neurons within these

layers become active when certain features are detected in the input

image. While the initial layers are proficient at capturing basic

features like edges, the deeper layers excel at identifying more

complex characteristics, such as textures and the shapes of

specific objects. The second component, known as the ‘head,’

learns from the extracted features and produces results tailored to

the specific application Zeiler and Fergus (2014).

As for the proposed model, StressNet, it comprises two key

components. The first is a feature extractionmodule based on a CNN,

while the second is a spatial-spectral-temporal feature fusion module

using BiLSTM network and an attention mechanism. The feature

extractor module captures spatial features across multiple spectral

channels. These spatial-spectral and temporal features are then

aggregated using the BiLSTM network and a weighted attention

mechanism to achieve the final water stress classification. The

architecture of the proposed model is depicted in Figure 3.

2.4.2 Spatial-spectral feature extraction
The input for the feature extractor is in the form of k x k x c, where

k x k represents the patch size and c denotes the number of channels.

The final convolutional layer of the backbone network is replaced with

a deformable convolutional layer. Deformable convolution is an

extension of standard convolution that introduces additional

parameters to control the sampling locations within the receptive

field. Unlike the standard convolution, where the sampling grid is

fixed, deformable convolution enables the network to learn spatial

transformations and adapt its sampling locations dynamically Dai et al.

(2017); Jin et al. (2019). The continuous increase in water stress leads to

physiological changes in the crop, such as a decrease in the surface area

of the leaf, which further leads to the twisting and rolling of the leaf

Spisǐć et al. (2022). Deformable convolution enables the kernel to adjust

its receptive field to the target size of the crop according to its growth

stage and water stress condition with additional offsets. These offsets

are updated during the training phase of the model Dai et al. (2017).

Equation 1 is used for determining the output y at the location a0,

where x represents the input feature map, w stands for the learned

weights, aispecifies the ithlocation and Daidenotes the offset to be

learned.

y(a0) =o w(ai)   *   x(a0 + ai + Dai) (1)
2.4.3 Spatial-spectral-temporal feature fusion
After extracting spatial and spectral features by deformable-

based CNN, it is essential to capture the relationship between the

temporal dependencies within the features. To achieve this, a

BiLSTM network similar to that of Melamud et al. (2016) is

employed. A BiLSTM layer is added to each feature extractor.

The output of each feature extractor is given to the BiLSTM layer.

Each BiLSTM is stacked with two LSTM layers, where the hidden

state of the first LSTM is an input for the second LSTM, illustrated

in Figure 4. By processing the sequential signals in reverse order, the
TABLE 2 The settings employed in the Agisoft Metashape software for
the creation of orthomosaic.

Sparse point cloud

Accuracy Medium

Image pair selection Ground control Point

Constrain features by mask Exclude Stationary tie points

Maximum number of feature points 20,000

Dense point cloud

Quality Medium

Depth filtering Mild

Digital Elevation Model(DEM)

Type Geographic

Coordinate system WGS 84 (EPSG::4326)

Source data Dense cloud

Orthomosaic

Surface DEM

Blending mode Mosaic
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second LSTM layer enables a detailed understanding of the inter-

dependencies within the data.

Equation 2 computes the input gate’s output, determining how

much of the new input shall be stored in the cell state ct. On the

other hand, Equation 3 corresponds to the forget gate ft, which

decides how much of the input xtand previous cell state ht−1 is to be

retained for the current time step. Further, Equation 4 updates the

cell state ctby removing some information based on the forget gate

ftand adding new information scaled by the input gate it. Equation 5

denotes the output gate that determines how much of the cell state’s

information should be passed to the hidden state. Finally, Equation

6 computes the new hidden state based on the cell state and the

output gate’s decision. In summary, these equations represent the

working of an LSTM cell that helps the network learn and store

information over longer sequences by controlling the flow through

the cell state and hidden state using gates.

it = s   (Wixxt +Wihht−1 + bi) (2)
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ft = s   (Wfxxt +Wfhht−1 + bf ) (3)

ct = ftct−1 + it tanh  (Wcxxt +Wchht−1 + bc) (4)

ot = s   (Woxxt +Wohht−1 + b0) (5)

ht = ot tanh  (ct) (6)

where, i refers to the input gate, f stands for the forget gate, o

refers to the output gate, c is the memory cell and s stands for the

logistic sigmoid function.

To further improve the model’s performance, a weighted

attention layer is applied to the outcome of the second LSTM. By

assigning varying degrees of importance to different input features,

the attention layer dynamically adjusts the weights according to the

input feature so that the model focuses on the most pertinent

information. Consider H to be a matrix that contains the BiLSTM’s

output vectors [h1, h2,…, hT], where T stands for the length of the
FIGURE 3

Overview of StressNet model. Input image sequence, Feature Extractor, Sequence processing BiLSTM network and Weighted attention modules
are shown.
FIGURE 2

Our pipeline illustrates all the steps involved in water stress classification.
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input features. The weighted sum of vectors adds up to the output of

the attention layer and is described by the following equations 7, 8.

The softmax activation function is a commonly used activation

function in neural networks. It is used to transform the output of a

neural network into a probability distribution. This transformation

is defined by equation 9. Equation 10 refers to the ‘combined’ and

‘attention-weighted’ spatial-spectral-temporal features Ratt, where a
represents the attention vector. The BiLSTM-Attention features

undergo an adaptive re-weighting or re-calibration, enhancing the

significance of valuable feature vectors and diminishing the

unwanted or noisy ones. Subsequently, these re-weighted features

are connected to two fully connected layers and a softmax classifier.

The output of the softmax classifier is a vector of probabilities where

each element corresponds to the probability of the input belonging

to a specific class.

M = tanh (H) (7)

a = softmax  wTM
� �

(8)

 where,   softmax (zj) =
ezj

oK
k=1e

zk
  for   j = 1,…, K (9)

Ratt  = HaT (10)
2.4.4 Data preparation
The training data is classified into three categories, namely, highly

water-stressed, moderately waterstressed, and unaffected. Each class

has 32 image sequences of 13 images of 5 channels. Each image has a

dimension of 140 x 140 pixels. The Standard image normalization

method is performed for all the channels by scaling all values to fit

within the range of [0, 1] or adjusting the first- and second-order

moments to achieve a mean of zero and a variance of one. All the

channels of multispectral data are loaded into a sequence of the length

of the days on which the data is captured using a custom data function.

The ratio of training and validation is considered as 4:1.
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2.4.5 Training details
Popular CNN-based models such as AlexNet Krizhevsky et al.

(2012) and VGG-16 Simonyan and Zisserman (2014) architectures

are employed as backbones of feature extractor. The first layer of

CNN of the proposed model is modified to work with input of 5

channels instead of 3. Detailed configuration of the feature extractor

with AlexNet and VGG-16 are shared in Tables 3, 4, respectively.

During training, the model’s weights are initialized using He

initialization He et al. (2015), and biases are set to zero. The

categorical cross-entropy loss function CE, represented in

equation 11, is employed to train our model. This loss function

considers the one-hot representation of the ground-truth label y, the

predicted outcome yp.

CE = −o
i
ypi log  (yi) (11)

A batch size of 16 is utilized, and the Adam optimizer proposed

by Kingma (2014) is employed with a learning rate of 1e-4. To

address the limited data in the study, data augmentation technique

is used. This involved rotating all training images by 90 degrees and

randomly flipping them horizontally and vertically. The model is

built using the PyTorch framework, and the training process is

executed on a computer running on the Ubuntu 20.04 operating

system. The training is implemented on Intel(R) Xeon(R) Platinum

8168 CPU with 24 cores and an NVIDIA Tesla V100-SXM3

Graphics Processing Unit (GPU) with 32 GB RAM.

2.4.6 Evaluation metrics
The assessment of the proposed model is conducted using the

performance metrics that include Accuracy (Acc), Precision (Pre),

and Sensitivity/Recall are defined in equations 12, 13, and 14

respectively. FN denotes False Negatives, TN corresponds to True

Negatives, TP represents True Positives, and FP represents False

Positives with respect to the actual and predicted water stress class.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(12)
FIGURE 4

The architecture of the weighted attention-based bi-directional LSTM. x1, x2, x3 correspond to features obtained by the feature extractor. h1 typically
refers to the hidden state output of the forward LSTM layer.
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Precision =
TP

(TP + FP)
(13)

Sensitivity=Recall =
TP

(TP + FN)
(14)
3 Experiments and results

3.1 Results of the proposed model

We conducted spectral analysis and temporal analysis to highlight

the efficiency of the proposed method. For the spectral analysis, we

validated the model’s performance by considering all 13 days’ data of

RGB channels or RGB with either NIR or red-edge channels. The

results of spectral analysis are reported in Table 5. In the temporal
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analysis experiment, we assessed the model’s performance by gradually

adding the data from 3 to 13 days by utilizing all spectral channels. The

results of the temporal analysis experiment are reported in Table 6. It is

observed that the proposed model with VGG-16 backbone achieved

the highest validation accuracy of 91.30%, a precision of 0.8888, and a

sensitivity of 0.8857 when using all five spectral channels and data

collected for up to 13 days. The class-level accuracies and the

classification report of the best model are reported in Tables 7, 8,

respectively. The training loss and validation accuracy graphs are

represented in Figures 5A, B respectively.
3.2 Computational complexity

The best model (with the VGG-16 backbone) took 75 minutes

to train for 100 epochs. The model consists of 14,060,611
TABLE 4 Detailed configuration of the feature extractor with VGG-16 backbone.

Layer Name Input Size Output size Kernel Size Padding Stride

(H x W x Channels) (H x W x Channels)

Input 140 × 140 × 5 – – – –

Conv1 140 × 140 × 5 – × – × 64 3 × 3 1 1

Conv2 – × – × 64 – × – × 64 3 × 3 1 1

Conv3 – × – × 64 – × – × 128 3 × 3 1 1

Conv4 – × – × 128 – × – × 128 3 × 3 1 1

Conv5 – × – × 128 – × – × 256 3 × 3 1 1

Conv6 – × – × 256 – × – × 256 3 × 3 1 1

Conv7 – × – × 256 – × – × 256 3 × 3 1 1

Conv8 – × – × 256 – × – × 512 3 × 3 1 1

Conv9 – × – × 512 – × – × 512 3 × 3 1 1

Conv10 – × – × 512 – × – × 512 3 × 3 1 1

Conv11 – × – × 512 – × – × 512 3 × 3 1 1

Conv12 – × – × 512 – × – × 512 3 × 3 1 1

Deform Conv Layer – × – × 512 4 x 4 x 512 3 x 3 1 1
front
H,W denotes height and width of input respectively. Conv stands for Convolution. Deform Conv stands for Deformable convolutional layer.
TABLE 3 Detailed configuration of the feature extractor with AlexNet backbone.

Layer Name Input Size Output size Kernel Size Padding Stride

(H x W x Channels) (H x W x Channels)

Input 140 × 140 × 5 – – – –

Conv1 140 × 140 × 5 – × – × 96 11 × 11 0 4

Conv2 – × – × 96 – × – × 256 5 × 5 2 1

Conv3 – × – × 256 – × – × 384 3 × 3 1 1

Conv4 – × – × 384 – × – × 384 3 × 3 1 1

Deform Conv Layer – × – × 384 4 x 4 x 256 3 x 3 1 1
H,W denotes height and width of input respectively. Conv stands for Convolution. Deform Conv stands for Deformable convolutional layer.
x - is understood as the output size of feature map after convolution operation.
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parameters that include both trainable parameters (weights and

biases) and non-trainable parameters. Considering that each

parameter is stored as a 64-bit floating-point value, the estimated

memory consumption of the proposed model is around

107.274 megabytes.
3.3 Ablation study

We performed an ablation study to assess the impact of

temporal and spectral data on the proposed model’s performance.

This involved systematically reducing the number of temporal data

used and spectral channels. Additionally, the study investigates the

influence of the deformable convolution layer in comparison to

standard convolution operation, along with the use of a BiLSTM

network with weighted attention. These experiments aim to provide

comprehensive evidence supporting the efficiency of our proposed

method. The analysis includes the following cases.
Fron
1. Case I: Standard Convolution with BiLSTM.

2. Case II: Standard Convolution with BiLSTM and

Weighted Attention.

3. Case III: Deformable Convolution with BiLSTM.
4 Discussion

For Spectral analysis, from Table 5, it can be inferred that our

proposed model with AlexNet backbone achieves highest validation

accuracy of 86.96% when using RGB-NIR channels as NIR band is
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good at highlighting the edges. With VGG-16 backbone, validation

Accuracy is lowest of 65.22% when just using RGB bands. The

addition of NIR and Re channels significantly increases accuracy

and also with improvement in precision and sensitivity. The

model’s performance is highest when using all spectral channels.

In summary, for AlexNet, the addition of NIR channels significantly

improves performance, while for VGG-16, the inclusion of all

channels, particularly RGB-NIR-Re, yields the highest

performance. Both models benefit from the inclusion of multiple

spectral channels, with VGG-16 (best model) showing higher

overall accuracy and performance. In the temporal analysis, as

shown in Table 6, our proposed model with the AlexNet backbone

demonstrates strong performance with 3 and 6 days of data,

achieving a high accuracy of 95.65%. Although there is a slight

decrease in precision, sensitivity improves. However, when the

number of temporal data increases, the model’s performance

drops to 82.60%, accompanied by a notable decrease in precision

and sensitivity. On the other hand, our proposed model with the

VGG-16 backbone exhibits a gradual increase in validation

accuracy, going from 86.95% with 3 days of data to 95.65% with

9 days’ data. However, there is a performance decrease when using

11 days of data. Notably, the model performs exceptionally well

with 13 days of data, achieving a validation accuracy of 91.30%

along with improved precision and recall. It’s worth highlighting

that this model achieves 95.65% validation accuracy using only 6

days of data, indicating the potential for early identification of

water-stressed crops.

From Figure 6A, it is evident that the performance of the best

model (StressNet with VGG-16 backbone) gradually improves with

the addition of NIR and Re spectral bands alongside RGB bands,

signifying that incorporating both red-edge and NIR channels
TABLE 6 Temporal Analysis of StressNet model with AlexNet and VGG-16 backbones, where N represent images of dataset of N days.

N AlexNet VGG-16

Tr. Loss Val. Acc. Pre Se Tr. Loss Val. Acc Pre Se

3 0.5523 95.6522 0.9111 0.9111 0.5517 86.9525 0.8055 0.7603

6 0.5517 95.6522 0.9107 0.9333 0.5660 95.6522 0.8555 0.8079

9 0.5519 82.6087 0.8498 0.7523 0.5516 95.6522 0.8484 0.7904

11 0.5517 82.6087 0.8296 0.7746 0.6051 73.913 0.5726 0.5587

13 0.5619 82.6087 0.7888 0.7888 0.5515 91.3043 0.8888 0.8857
frontie
(Tr. Loss, Training loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity/Recall).
TABLE 5 Spectral analysis of StressNet model with AlexNet and VGG-16 backbones.

No. of Channels AlexNet VGG-16

Tr. Loss Val. Acc. Pre Se Tr. Loss Val. Acc Pre Se

RGB 0.5521 73.913 0.5694 0.5206 0.5523 65.2174 0.7833 0.4777

RGB-NIR 0.5519 86.9565 0.7606 0.6793 0.5516 82.6087 0.7575 0.5936

RGB-Re 0.5516 73.913 0.6613 0.6682 0.5517 82.6087 0.6666 0.6349

All 0.5619 82.6087 0.7888 0.7888 0.5515 91.3043 0.8888 0.8857
(Tr. Loss, Training loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity/Recall.).
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enhances the model’s capability. Figure 6B illustrates a progressive

increase in the model’s performance up to 9 days. Subsequently,

there is a decrease in performance between days 9 and 11, followed

by an increase again.
4.1 Spectral analysis

In the spectral analysis conducted as part of the ablation study,

three experiments were considered: RGB, RGB+NIR, RGB+Re, and

all bands (as shown in Table 9). In Case I, the VGG-16 model

achieved the highest test accuracy of 95.65% using RGB and red-

edge data, highlighting the significance of spectral information for

model robustness. In Case II, the VGG-16 model achieved the

highest test accuracy of 95.65% when using all spectral bands. In

Case III, the AlexNet model achieved the highest accuracy of

91.30% with RGB and red-edge information. Notably, the model

a precision of 0.9027 (as shown in Case I) with standard

convolution using RGB and Re bands. In Case II, with standard

convolution and the integration of the BiLSTM network and

weighted attention, the VGG-16 backbone model achieved a

precision of 0.8727. In Case III, when using deformable

convolutional layer with BiLSTM and weighted attention, along

with AlexNet as the backbone, the model achieved a precision of

0.9047 with RGB and red-edge information. However, in cases

where VGG-16 served as the backbone, the NIR and Re bands

introduced essential features, leading the deformable convolutional

layer to capture redundant spatial feature vectors and ultimately

resulting in a reduction in accuracy compared to RGB data.
4.2 Temporal analysis

In addition to spectral analysis, we conducted a temporal study,

exploring various temporal windows ranging from 3 to 13 days (as

shown in Table 10). In Case I, AlexNet model achieved the highest

validation accuracy of 91.30% with three days of data. In Case II,

VGG-16 model achieved the highest validation accuracy of 95.65%

with nine days of data. In Case III, AlexNet model achieved the
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highest validation accuracy of 95.65% with six days of data. By

introducing a deformable convolutional layer with six days of data,

the accuracy increased to 95% from the 90% observed in Case I

(Feature extractor + BiLSTM). In contrast, VGG-16 extracted more

refined features were with nine days of data, capturing distinct

water stress patterns. However, after that point, there was minimal

change in accuracy. The test accuracy reached 95%, underscoring

the significance of incorporating a weighted attention module.

Nevertheless, the test accuracy dropped from 95% to 65% with

the addition of deformable convolution, indicating that the

deformable convolutional layer introduced unnecessary

complexity and increased parameters, leading to overfitting.
4.3 Impact of deformable convolution

To assess the impact of deformable convolution, we examined

Cases II and III in the ablation study (Tables 9, 10). In the spectral

analysis experiment, the AlexNet model’s performance increased

from 56.52% validation accuracy to 78.26% with RGB bands.

However, there was no change with RGB-NIR. Notably, with

RGB-Re bands, the AlexNet model’s accuracy surged to 91.30%.

For the VGG-16 model, adding the deformable convolutional layer

with RGB bands raised the validation accuracy to 82.60% from

43.47%. However, introducing additional spectral channels led to a

10-20% drop in validation accuracy, likely due to increased model

complexity, overfitting, and feature redundancy. Regarding

temporal analysis, the AlexNet model achieved its highest

validation accuracy of 90% with 6 days’ data. The model’s

performance gradually declined as the number of days increased.

In contrast, the VGG-16 model’s performance was more variable,

reaching a peak of 82.60% (as shown in Case III). This suggests that

deformable convolution enhances the extraction of spatial features,

resulting in a richer vector representation across timestamps. As

data increased from 3 to 6 days, the model’s performance exhibited

a decreasing trend, suggesting a potential absence of identified

geometrical transformations. The introduction of the deformable

convolution layer added unnecessary complexity and increased the

number of parameters, resulting in overfitting.
4.4 Impact of weighted attention
based BiLSTM

To assess the impact of deformable convolution, we investigated

Cases I and II in the ablation study (Tables 9, 10). In the spectral

analysis experiment, the AlexNet model achieved an impressive
TABLE 8 Classification report of the best StressNet model.

Class Precision Recall F1-Score Support

0 0.90 0.90 0.90 20

1 1.00 1.00 1.00 14

2 0.83 0.83 0.83 12
fr
TABLE 7 Class-level accuracy of the best StressNet model.

Class Name Class Label Accuracy Score

I1N2 0 0.900

I2N2 1 1.000

I3N2 2 0.833
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BA

FIGURE 6

(A) Validation accuracy of best StressNet model with respect to Spectral Analysis; (B) Validation accuracy of best StressNet model with respect to
Temporal Analysis.
BA

FIGURE 5

(A) Training loss of best StressNet model; (B) Validation Accuracy of best StressNet model.
TABLE 9 Spectral Analysis. Case-I: Feature Extractor with BiLSTM network, Case-II: Feature Extractor with BiLSTM network and Weighted Attention,
Case-III: Feature Extractor with Deformable Convolution and BiLSTM network.

Case Feature Extractor Metric RGB RGB-NIR RGB-Re All

Case - I AlexNet Tr. Loss 0.5551 0.5543 0.5546 0.5534

Val. Acc. 91.3043 91.3043 82.6087 86.9565

Pre 0.9 0.9444 0.62 0.83

Se 0.79 0.8968 0.56 0.8

VGG - 16 Tr. Loss 0.883 0.5536 0.5785 0.5729

Val. Acc. 82.6087 65.2174 95.6522 86.9565

Pre 0.5087 0.6809 0.9027 0.856

Se 0.5238 0.6015 0.8333 0.8238

Case - II AlexNet Tr. Loss 0.5527 0.5522 0.5532 0.5525

Val. Acc. 56.5217 82.6087 56.5217 78.2609

Pre 0.4583 0.7269 0.4814 0.7416

Se 0.4539 0.7269 0.466 0.7349

VGG - 16 Tr. Loss 1.0693 0.5717 0.562 0.5627

Val. Acc. 43.4783 91.3043 82.6087 95.6522

Pre 0.1449 0.8727 0.7051 0.787

(Continued)
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TABLE 9 Continued

Case Feature Extractor Metric RGB RGB-NIR RGB-Re All

Se 0.3333 0.8555 0.6634 0.7968

Case - III AlexNet Tr. Loss 0.5537 0.5534 0.5533 0.5517

Val. Acc. 78.2609 82.6087 91.3043 78.2609

Pre 0.6428 0.8214 0.9047 0.8333

Se 0.6079 0.738 0.7936 0.7666

VGG - 16 Tr. Loss 0.5515 0.6397 0.5877 0.6125

Val. Acc. 82.6087 78.2609 69.5652 78.2609

Pre 0.7306 0.7348 0.5958 0.6888

Se 0.7111 0.6873 0.5539 0.673
F
rontiers in Plant Scien
ce
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Tr. Loss, Training Loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity.
TABLE 10 Temporal Analysis. Case-I: Feature Extractor with BiLSTM network, Case-II: Feature Extractor with BiLSTM network and Weighted
Attention, Case-III: Feature Extractor with Deformable Convolution and BiLSTM network.

Case Feature Extractor Metric 3 6 9 11 13

Case - I AlexNet Tr. Loss 0.5548 0.5746 0.5541 0.5532 0.5534

Val. Acc. 91.3043 86.9565 86.9565 73.913 86.9565

Pre 0.8714 0.8517 0.8634 0.7724 0.83

Se 0.8634 0.8634 0.8634 0.6492 0.81

VGG - 16 Tr. Loss 0.5619 1.0689 0.5625 1.069 1.069

Val. Acc. 65.2174 56.5217 82.6087 43.4783 43.4783

Pre 0.5444 0.1449 0.7571 0.1449 0.1449

Se 0.5698 0.3333 0.7412 0.3333 0.3333

Case - II AlexNet Tr. Loss 0.5533 0.5535 0.5524 0.5539 0.5527

Val. Acc. 78.2609 90 82.6087 65.2174 56.5217

Pre 0.7248 0.9696 0.7471 0.7361 0.4583

Se 0.7269 0.9444 0.7269 0.5079 0.4539

VGG - 16 Tr. Loss 0.5724 0.5572 0.552 0.552 0.5621

Val. Acc. 73.913 86.9565 95.6522 95.6522 95.6522

Pre 0.3552 0.7962 0.863 0.7833 0.6974

Se 0.4523 0.5222 0.8777 0.7761 0.6571

Case - III AlexNet Tr. Loss 0.5529 0.5325 0.5529 0.5531 0.5517

Val. Acc. 82.6087 95.6522 86.9565 82.6087 78.2609

Pre 0.7458 0.9696 0.744 0.75 0.8333

Se 0.6222 0.9444 0.7555 0.7555 0.7666

VGG - 16 Tr. Loss 0.7858 0.5954 0.5795 1.0695 0.5515

Val. Acc. 78.2609 78.2609 65.2174 43.4783 82.6087

Pre 0.6388 0.7727 0.3789 0.1449 0.7306

Se 0.6253 0.6492 0.4904 0.3333 0.7111
Tr. Loss, Training Loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity.
The bold values highlighted highest validation accuracies obtained in that specific case.
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91.30% validation accuracy. However, there was no significant

improvement in performance when either NIR or Re channels

were added. This limitation can be attributed to complex

background variations in the data, which challenged the limited

feature representation capacity of the AlexNet model, making it

challenging to distinguish foreground information. In contrast, the

VGG-16 model, with its deeper layers and the support of the

BiLSTM network and weighted attention mechanism, effectively

addressed complex backgrounds, resulting in a substantial

performance increase from 86.95% to 95.65%. In the context of

temporal analysis, the performance of the AlexNet model exhibited

an initial increase, followed by a subsequent decrease as the data

extended from 3 days to 9 days (as demonstrated in Case I). Beyond

the 9th day, this pattern persisted. A similar trend was observed

after introducing weighted attention (Case II). In contrast, the

VGG-16 model demonstrated higher performance in both Case I

and II up to 9 days, indicating the model’s resilience in managing

temporal variations in images corresponding to the crop’s growth

over time. Beyond this point, the performance remained relatively

constant with 11 and 13 days’ data, suggesting negligible growth in

the crops.
5 Conclusion

In this article, we propose a novel DL-based model titled

StressNet, which aims to monitor water stress, especially in maize

crop. StressNet consists of two key components, the first being CNN

with a deformable convolutional layer, and the second is a BiLSTM

network with weighted attention. The effectiveness of our

framework is extensively validated through a comprehensive

study utilizing multispectral and multi-temporal imagery captured

by UAV. The best model achieved a validation accuracy of 91.30%

with a training loss of 0.555. However, it is essential to acknowledge

that our proposed method is validated using a dataset acquired from

a controlled environment. However, the real-world scenario

introduces more complexities. In such circumstances, it is

essential to consider additional factors such as super-resolution,

noise reduction, and plant shoot segmentation techniques. We will

develop a DL pipeline with further additions in our future research.

We encourage researchers to verify our findings using their datasets

and expand upon our pipeline.
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In this paper, we address the question of achieving high accuracy in deep

learning models for agricultural applications through edge computing devices

while considering the associated resource constraints. Traditional and state-of-

the-art models have demonstrated good accuracy, but their practicality as end-

user available solutions remains uncertain due to current resource limitations.

One agricultural application for deep learning models is the detection and

classification of plant diseases through image-based crop monitoring. We used

the publicly available PlantVillage dataset containing images of healthy and

diseased leaves for 14 crop species and 6 groups of diseases as example data.

The MobileNetV3-small model succeeds in classifying the leaves with a test

accuracy of around 99.50%. Post-training optimization using quantization

reduced the number of model parameters from approximately 1.5 million to

0.93 million while maintaining the accuracy of 99.50%. The final model is in

ONNX format, enabling deployment across various platforms, including mobile

devices. These findings offer a cost-effective solution for deploying accurate

deep-learning models in agricultural applications.

KEYWORDS

PlantVillage, deep learning, classifier, edge computing, MobileNetV3
1 Introduction

Plant diseases can be a major concern for farmers due to the risk of substantial yield loss.

While applying pesticides can prevent or limit the impact of most plant diseases, their use should

be restricted due to environmental considerations. Early and efficient detection of plant diseases

and their distribution in the field is crucial for effective treatment. The implementation of

automatic plant disease detection systems is, therefore, essential for efficient crop monitoring.

Deep LearningConvolutionalNeuralNetworks (CNNs) and computer vision are two developing

AI technologies that have recently been employed to identify plant leaf diseases automatically.

Already in 1980, Fukushima (1980) presented a visual cortex-inspired multilayer

artificial neural network for image classification. The network showed that the initial

layer detects simpler patterns with a narrow receptive field, while later levels combine

patterns from earlier layers to identify more complex patterns with wider fields. In 2012,
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Krizhevsky et al. (2012) developed the AlexNet architecture, which

helped them win the ImageNet Large Scale Visual Recognition

Challenge. Several CNN (Convolutional Neural Network) designs

have been introduced since then Krizhevsky et al. (2012); Fu et al.

(2018); Yang et al. (2023); Dutta et al. (2016); Sarda et al. (2021).

These models are called “deep learning” architectures due to their 5-

200 layers. Early investigations employed manually created

characteristics from leaf picture samples. Later, the trends shifted

to DCNN (Deep Convolutional Neural Network) architectures

capable of effectively classifying data and automatically extracting

features. Plant disease picture classification has been used to test a

variety of CNN architectures Amara et al. (2017); Sladojevic et al.

(2016); Setiawan et al. (2021); Yang et al. (2023); Qiang et al. (2019);

Swaminathan et al. (2021); Schuler et al. (2022).

Plant disease diagnosis through image analysis employs various

machine learning techniques Ferentinos (2018). These methods

identify and classify diseases affecting cucumbers, bananas Fujita

et al. (2016), cassavas Amara et al. (2017), tomatoes Ramcharan

et al. (2017), and wheat Fuentes et al. (2017). Ramcharan et al.

(2017) tested five architectures—AlexNet, AlexNetOWTBn,

GoogLeNet, Overfeat, and VGG on 58 classes of healthy and sick

plants. AlexNet achieved 99.06% and VGG 99.48% test accuracy.

Despite the large variation in trainable parameters, these designs

had test accuracy above 99%. Maeda-Gutiérrez et al. (2020) tested

five architectures for tomato illnesses. All architectures tested had

accuracies above 99%. However, when tested on field pictures,

Ramcharan et al. (2017) encountered shadowing and leaf

misalignment. These factors greatly affected classification accuracy.

Amara et al. (2017) classified banana leaf diseases using 60×60

pixel pictures and a simple LeNet architecture. Grayscale images

had 85.94%, and RGB images had 92.88% test accuracy. Chromatic

information Mohanty et al. (2016) is essential in plant leaf disease

classification. Mohanty et al. (2016) used AlexNet and GoogLeNet

(Inception V1) designs to study plant leaf diseases and found RGB

images to be more accurate than their grayscale counterparts.

Likewise, Schuler et al. (2022) split the Inception V3 architecture

into two branches, one dealing with the grayscale part of the RGB

image and the other branch dealing with the other two channels of

the RGB image. The resultant architecture has 5 million trainable

parameters and achieved an accuracy of 99.48% on the test dataset.

While these studies demonstrate the effectiveness of deep learning

in plant disease classification, they often do not address the critical

challenge of deploying these models on resource-constrained edge
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devices. In contrast, our work not only achieves high accuracy but

also emphasizes optimizing deep learning models for such constraints.

Recent advancements in the field substantiate this focus. For instance,

Hao et al. (2023) discusses system techniques that enhance DL

inference throughput on edge devices, a key consideration for real-

time applications in agriculture. Similarly, the DeepEdgeSoc framework

Al Koutayni et al. (2023) accelerates DL network design for energy-

efficient FPGA implementations, aligning with our resource efficiency

goal. Moreover, approaches like resource-frugal quantized CNNs

Nalepa et al. (2020) and knowledge distillation methods Alabbasy

et al. (2023) resonate with our efforts to compress model size while

maintaining performance. These studies highlight the importance of

balancing computational demands with resource limitations, a core

aspect of our research. Thus, our work stands out by not only

addressing the accuracy of plant disease detection but also ensuring

the practical deployment of these models in real-world agricultural

settings where resources are limited.

One major drawback in the broader field is that deep-learning

approaches often have computational requirements, i.e., highermemory

and computing capacity, which are not always feasible for edge

computing devices. Our paper tackles this challenge head-on, focusing

onmaximizing accuracy while operating within the resource constraints

inherent to edge computing devices, thereby significantly enhancing the

real-life applicability of deep learning models in agriculture.

The remaining part of the paper is organized as follows: Section

2 will look into the PlantVillage dataset, then we will explore the

MobileNetV3-small architecture, model training, and finally, the

post-training quantization. Section 3 will discuss the results and

the comparison with existing methods. In Section 4, we will discuss

the importance of the problem and the relevance of our results.

Finally, Section 5 will conclude the paper with final remarks.
2 Materials and methods

2.1 PlantVillage dataset

The present work used the publicly available PlantVillage-Dataset

(2016). All images in the PlantVillage database were captured at

experimental research facilities connected to American Land Grant

Universities. The dataset included 54,309 images of 14 crop species,

including tomato, apple, bell pepper, potato, raspberry, soybean,

squash, strawberry, and grape. A few sample images of the plants are

shown in Figure 1. It could be seen that some samples were healthy,
FIGURE 1

Sample images of the PlantVillage dataset. It is a diverse dataset with 14 plant species, including healthy and infected plants. The dataset includes a
total of 54,309 image samples.
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and some were infected. There were 17 fungal infections, 4 bacterial

diseases, 2 viral diseases, 1 mite disease, and 1 mold (oomycete). There

were images of healthy leaves from 12 crop species, showing no obvious

signs of disease. In total, the dataset included 38 classes of healthy and

unhealthy crops. A detailed description of the distribution of species

and diseases in the dataset is shown in Table 1. It included 14 crop

species with 6 types, i.e., fungi, bacteria, mold, virus, mite, and healthy.

The dataset is imbalanced and not equally distributed across all 6 types.

To further elaborate on the imbalanced nature of the dataset, t-

SNE analysis was performed. t-SNE, or tDistributed Stochastic

Neighbor Embedding, is a machine learning technique used to

reduce dimensionality and visualize high-dimensional data. It

attempts to represent complex, high-dimensional data in a

lowerdimensional space while maintaining data point
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relationships. The data overlapping is quite visible in Figure 2,

where the dimensions of the PlantVillage dataset were reduced to 2.
2.2 MobileNetV3-small

Recent research has focused on deep neural network topologies

that balance accuracy and efficiency. Innovative handcrafted

structures and algorithmic neural architecture search have

advanced this discipline.

SqueezeNet used 1×1 convolutions with squeeze-and-expand

modules to reduce parameters Iandola et al. (2016). Recent research

has focused on minimizing MAdds (Million Additions) and latency

instead of parameters. Depthwise separable convolutions boosted
TABLE 1 Distribution of observations in the PlantVillage dataset.

Fungi Bacteria Mold Virus Mite Healthy

Apple (3172) 1521 1645

Blueberry (1502) 1502

Bell Pepper (2475) 997 1478

Cherry (1906) 1052 854

Corn (3852) 2690 1162

Grape (4063) 3640 423

Orange (5507) 5507

Peach (2657) 2291 360

Potato (2152) 1000 1000 152

Raspberry (371) 371

Soybean (5090) 5090

Squash (1835) 1835

Strawberry (1565) 1109 456

Tomato (18,162) 5127 2127 1910 5730 1676 1592
The bold values represent the total number of images for that class in the dataset.
FIGURE 2

Visualization of the 38 classes in the PlantVillage data in two dimensions based on a t-SNE analysis. Each color in the spectrum represents one class
in the PlantVillage dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1308528
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khan et al. 10.3389/fpls.2023.1308528
computational efficiency in MobileNetV1 Howard et al. (2017).

MobileNetV2 added a resource-efficient block with inverted

residuals and linear bottlenecks to improve efficiency Howard

et al. (2018).

Later, MobileNetV3 Howard et al. (2019) extended

MobileNetV2’s efficient neural network design. MobileNetV3’s

backbone network, “MobileNetV3-Large,” used linear bottlenecks

and inverted residual blocks to increase accuracy and efficiency.

Hierarchical squeeze-and-excitation (HSqueeze-and-Excitation)

blocks adaptively recalibrated feature responses in MobileNetV3.

Hard-Swish and Mish activation functions balanced computing

efficiency and non-linearity. MobileNetV3 used neural architecture

search to find optimal network architectures.

MobileNetV3-small was created for resource-constrained

situations. Its tiny, lightweight neural network system is efficient

and accurate. MobileNetV3-small achieved this through

architectural optimizations, a simplified design, and decreased

complexity. A reduced network footprint reduced parameters and

operations. MobileNetV3-compact solved several real-world

problems with low computing resources or edge device

deployment with a compact but efficient architecture. It

introduced several key components to optimize performance and

achieve high accuracy with fewer parameters.

2.2.1 Initial convolution
An RGB image of size (B,H,W,3), where B is the batch size, H is

the height, and W is the width, is used as an input. The image is

passed through a standard convolutional layer with a small filter

size (e.g., 3x3) and a moderate number of channels (e.g., 16).

2.2.2 Bottleneck residual blocks
MobileNetV3-small uses inverted bottleneck residual blocks,

similar to its predecessor, MobileNetV2. The architecture is shown

in Figure 3. Each block begins with a depth-wise convolution, which

convolves each input channel separately with its small filter (e.g.,

3x3), significantly reducing the computational cost. The depth-wise

convolution is followed by a point-wise convolution with 1×1 filters
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to increase the number of channels. A nonlinear activation function

(e.g., ReLU) is applied to introduce nonlinearity.
2.2.3 Squeeze-and-excite module
The Squeeze-and-Excite (SE) module is incorporated into the

MobileNetV3-small architecture to improve feature representation

and adaptively recalibrate channel-wise information. The SE

module contains two steps:
• Squeeze: Global average pooling is applied to the feature

maps, reducing spatial dimensions to 1×1.

• Excite: Two fully connected (FC) layers are used to learn

channel-wise attention weights. These weights are

multiplied with the original feature maps to emphasize

essential features and suppress less relevant ones.
2.2.4 Stem blocks
MobileNetV3-small introduces stem blocks to further enhance

feature extraction at the beginning of the network. The stem block

consists of a combination of depth-wise and point-wise

convolutions with nonlinear activation.
2.2.5 Classification head
After multiple stacked bottleneck blocks and SE modules, the

final feature maps are passed through a classification head to make

predictions. Global average pooling is applied to the feature maps to

reduce spatial dimensions to 1×1. The output of global average

pooling is then fed into a fully connected layer with “softmax”

activation to produce K class probabilities, as shown in Figure 4.

The overall architecture is shown in Table 2.

The architecture focuses on reducing the number of parameters

while maintaining competitive accuracy. The number of parameters

in MobileNetV3-small is 1.5 million, which makes it suitable for

deployment on resource-constrained devices and applications that

require real-time inference.
FIGURE 3

The MobileNetV3 block uses depthwise and pointwise convolutions to collect spatial patterns and integrate features. These blocks balance computing
performance and precision, helping MobileNetV3 interpret complicated visual data.
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2.3 Model optimization

Model optimization, or quantization, is an essential deep-

learning technique that reduces a neural network’s memory

footprint and computational complexity. Quantization enables

efficient deployment on resource-constrained devices, such as

mobile phones, peripheral devices, and microcontrollers, by

converting the weights and activations of a full-precision model

into lower-precision representations (e.g., 8-bit integers) Zhu et al.

(2016). The procedure entails careful optimization to minimize the
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impact on model performance while achieving significant gains in

model size reduction and faster inference times. Static quantization

quantifies model weights and activations during training, whereas

dynamic quantization quantifies model weights and activations

based on the observed activation range at runtime.

For model quantization, the “Pytorch” built-in quantization

tool was used Pytorch (2023). The PyTorch library ’s

torch.quantization.quantize dynamic function was used to

dynamically quantify particular layers in a given classifier model.

The torch.quantization.quantize dynamic function clones the input
FIGURE 4

It shows the overall architecture of MobileNet-V3 Small. It includes a lightweight neural network design featuring depth-wise convolutions, inverted
residuals, and a squeeze-and-excitation module for efficient feature extraction targeted for mobile and edge devices.
TABLE 2 Specification of MobileNetV3-Small.

Input Operator Exp-Size #Out SE NL Stride

224 × 224 × 3 Conv2d, 3×3 - 16 - HSb 2

112 × 112 × 16 BottleNeck, 3 × 3 16 16 ✓ REc 2

56 × 56 × 16 BottleNeck, 3 × 3 72 24 - RE 2

28 × 28 × 24 BottleNeck, 3 × 3 88 24 - RE 1

28 × 28 × 24 BottleNeck, 5 × 5 96 40 ✓ HS 2

14 × 14 × 40 BottleNeck, 5 × 5 240 40 ✓ HS 1

14 × 14 × 40 BottleNeck, 5 × 5 240 40 ✓ HS 1

14 × 14 × 40 BottleNeck, 5 × 5 120 48 ✓ HS 1

14 × 14 × 48 BottleNeck, 5 × 5 144 48 ✓ HS 1

14 × 14 × 48 BottleNeck, 5 × 5 288 96 ✓ HS 2

7 × 7 × 96 BottleNeck, 5 × 5 576 96 ✓ HS 1

7 × 7 × 96 BottleNeck, 5 × 5 576 96 ✓ HS 1

7 × 7 × 96 Conv2d, 1×1 - 576 ✓ HS 1

7 × 7 × 576 Pool, 7 × 7 - - - - 1

1 × 1 × 576 Conv2d, 1 × 1, NBNa - 1024 - HS 1

1 × 1 × 1024 Conv2d, 1×1, NBN - K - - 1
front
Conv 2 d, Convolution 2 DBottleNeck: Bottleneck Residual Blocks.
NBN, No Batch Normalization HS: Hard-Swish activation function.
RE, Rectified Exponential Linear Unit activation function Pool: Pooling Layer.
“✓” represents that squeeze-excitation (SE) layer is used in that bottleneck block and “-” represents SE-layer is not utilized.
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“model” before converting it into a quantized form. It then locates

the cloned model’s layers corresponding to the requested classes,

such as Linear (2D convolutional layers) and Conv2d (2D

convolutional layers). The weights and activations of each

recognized layer are subjected to dynamic quantization. The

activations are quantized at runtime depending on the observed

dynamic range during inference, whereas the weights are quantized

to int8 (Integer stored with 8 bit). The cloned model replaces the

quantized layers while leaving the other layers in their original

floating-point format. Compared to the original full-precision

model, the quantized model has less memory and better

computational efficiency, and it is prepared for inference on

hardware or platforms that support integer arithmetic.

While quantization is our chosen method, it is important to

acknowledge that there are other effective techniques for

compressing deep learning models. These include knowledge

distillation, where a smaller model is trained to emulate a larger

one Hinton et al. (2015), pruning, which involves removing less

important neurons Han et al. (2015), and low-rank factorization, a

technique for decomposing weight matrices Jaderberg et al. (2014).

Each of these methods offers unique advantages in model

compression and can be particularly beneficial in scenarios with

limited computational resources. However, for the goals and

constraints of our current study, quantization emerged as the

most suitable approach.

The above technique was employed to quantize “Linear” and

“Conv2d” layers with lower-precision representations, i.e., 8-bit.
2.4 Model training

For the model training, the MobileNetV3-small model from

PyTorch, trained on ImageNet data, was employed. The training

pipeline was simple as it did not involve any preprocessing of the

image data. The model was fed with PlantVillage images of

resolution 224×224. The hardware specifications were as follows:
Fron
• Processor: 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60

GHz 2.61 GHz

• RAM: 64 GB

• GPU: Intel(R) UHD Graphics & NVIDIA RTX A3000
Although the model was trained on a GPU, the final quantized

model was intended for CPU and edge devices. The optimizer

parameters were as follows:
• Optimizer: Adam optimizer

• Betas: (0.5,0.99)

• Learning rate: 0.0001
Some additional model-training hyperparameters included:
• Batch Size: 64

• Epochs: 200

• Training Data Percentage: 80%

• Validation & Test Data Percentage: 10% each.
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3 Results

The training and testing dataset included samples from all 38

classes. “Cross-entropy” was used as the loss function for the

classification. The model’s performance was evaluated based on

two key metrics: Accuracy (Equation 1) and F1 score (Equation 4).

Accuracy, defined as the proportion of correctly identified classes to

the total number of classes, reflects the overall effectiveness of the

model in classification tasks. In our study, the initial accuracy of the

pre-trained model was 97%, which increased to a maximum test

accuracy of 99.50% at the 154-th epoch. This metric essentially

gauges the model’s ability to label classes correctly. On the other

hand, the F1 score, a harmonic mean of precision (Equation 2) (the

proportion of true positive predictions in the total positive

predictions) and recall (Equation 3) (the proportion of true

positive predictions in the actual positive cases), measures the

model’s ability to accurately identify positive examples while

minimizing false positives. This metric is especially useful in

understanding the model’s precision and robustness in identifying

correct classifications without mistakenly labeling incorrect ones as

correct. The trajectory of the model’s accuracy with MobileNetV3-

Small is shown in Figure 5. Similarly, the training loss, i.e., cross-

entropy loss, rapidly approached 0 and was ultimately reduced to 0

at the 136-th epoch. The trajectory of the training loss for

MobileNetV3-Small is depicted in Figure 6.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(Eq: 1)

Precision =
True Positives

True Positives + False Positives
(Eq: 2)

Recall =
True Positives

True Positives + False Negatives
(Eq: 3)

F1 Score = 2� Precision� Recall
Precision + Recall

(Eq: 4)

Later, the model was quantized, and the parameters were

reduced to 0.9 million without reducing the accuracy of 99.50%.

The inference time of the model was 0.01 seconds, and it achieved a

frame rate of 100 frames per second (FPS) when running on a CPU.

The higher-dimensional latent space of the model was also

visualized using t-SNE Van der Maaten and Hinton (2008).

54,309 images of 38 classes were input to the trained model, and

the output from the second-to-last layer of the MobileNetV3-small,

which had dimensions of 1024, was obtained. Using t-SNE, the

dimensions were reduced to 2, and the results were plotted to see

the underlying classification modeling of the model. The results are

shown in Figure 7. By forming distant clusters, it can be seen that

the model efficiently classified 38 classes of plants.

Finally, the model was compared with other state-of-the-art

architectures applied to the PlantVillage dataset. The comparison

was based on three parameters, i.e., the number of model

parameters, model accuracy, and F1 score. The comparison is

shown in Table 3. In the list of architectures, Schuler Schuler

et al. (2022) had the highest accuracy and F1 score, and
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Geetharamani Geetharamani and Pandian (2019) had the least

number of parameters, 0.2M. The proposed solution had the

highest accuracy (99.50%) and F1 score (0.9950). However,

the number of parameters was 0.9M, which was 5 times less than

the model suggested by the Schuler et al. (2022) model.
4 Discussion

Large model sizes can pose significant challenges to their

practical application in classification problems within agriculture.

Such problems often necessitate real-time or near-real-time

solutions, especially when identifying pests and diseases or
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assessing crop health. Bulky models can slow the processing of

data, causing delays that might compromise timely interventions.

Deploying these models on edge devices, frequently used in

agriculture for on-site analysis, becomes problematic due to their

computational and memory constraints. Furthermore, in regions

with limited connectivity, transferring data for cloud-based

processing by large models can be bandwidth-intensive, leading to

additional lags. The energy and financial costs of running extensive

models can also be prohibitive for many agricultural applications,

especially for small-scale or resource-constrained farmers.

Additionally, the adaptability of these models can be limited;

training and fine-tuning them to cater to the diverse and evolving

classification needs of different agricultural contexts can be
FIGURE 6

The training loss of MobileNetV3-small in 200 epochs quickly decreases and settles to 0.0 at 136 Epoch. The lower initial loss is the result of the
pre-trained model.
FIGURE 5

After training for 200 in epochs, the MobileNetV3-small gained an accuracy of 99.50 in roughly 154 epochs. The initial accuracy is approximately
97.0% because we used a pre-trained model.
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challenging. In essence, while large models might boast superior

accuracy, their size can often impede their practicality and

responsiveness in addressing agricultural classification problems.

Previously proposed state-of-the-art solutions Schuler et al.

(2022); Mohanty et al. (2016) for plant disease classifications

achieve good accuracy. However, they have practical limitations

in size and deployment. To overcome this issue, we proposed a

solution with MobileNetV3-small. Its compact and efficient

architecture enables rapid data processing, facilitating real-time

agricultural interventions, such as pest detection or disease

identification. The model’s low power consumption makes it ideal

for battery-operated field devices, and its adaptability ensures

relevance to diverse agricultural needs. Furthermore, its cost-

effectiveness and ease of maintainability make it a practical choice

for agricultural scenarios, offering a balance of high performance

and resource efficiency.

While MobileNetV3 offers impressive efficiency and is

optimized for edge devices, it has certain tradeoffs. The primary

disadvantage is that, in pursuit of a lightweight and compact design,

it might not always achieve the highest possible accuracy, especially
Frontiers in Plant Science 08171
when compared to larger, more complex models designed for high-

performance tasks. This reduction in accuracy can be a limitation

for applications where even a slight drop in precision can have

significant consequences. Additionally, certain customizations or

fine-tuning required for specific tasks might not be as

straightforward, given its specialized architecture. Thus, while

MobileNetV3 is advantageous for many scenarios, it may not be

the best fit for situations demanding the utmost accuracy and

complex model customizations.

The PlantVillage dataset, while comprehensive, exhibits an

unbalanced nature with respect to the number of images available

for different plant diseases. Unbalanced data can significantly

impact deep learning model performance. Such datasets have

extremely skewed class distributions, with one or a few classes

having disproportionately more samples. This imbalance causes

many issues. Deep learning models trained on unbalanced data tend

to focus accuracy on the dominant class over the minority classes,

biasing them towards the majority class. As a result, the model’s

ability to generalize and forecast underrepresented classes falls,

resulting in poor training and evaluation performance. Due to
TABLE 3 Results comparison on PlantVillage dataset.

Author Architecture Parameters Accuracy Fl-score

Proposed MobileNetV3-small 0.9M 99.50% 0.9950

Schiller Schuler et al. (2022) Inception V3 (Modifed) 5M 99.48% 0.9923

Mohanty Mohanty et al. (2016) GoogLeNet 5M 98.37% 0.9836

Mohanty Mohanty et al. (2016) AlexNet 60M 97.82% 0.9782

Toda Toda and Okura (2019) Inception V3 5M 97.15% 0.9720

Geetharamani Geetharamani and Pandian (2019) 9 layers CNN 0.2M 96.46% 0.9815

Mohanty Mohanty et al. (2016) GoogLeNet 5M 96.21% 0.9621

Mohanty Mohanty et al. (2016) AlexNet 60M 94.52% 0.9449
fr
TThe bold values correspond to the best value in each column.
FIGURE 7

The t-SNE visualization of latent space of trained MobilenetV3-small model The output is from the second-last layer with a dimension of 1024,
which is reduced to 2 using t-SNE. Each color in the spectrum represents one plant class in the PlantVillage dataset.
ontiersin.org

https://doi.org/10.3389/fpls.2023.1308528
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khan et al. 10.3389/fpls.2023.1308528
their rarity, the model may have trouble learning significant

patterns from minority classes, making it less likely to recognize

and classify cases from these classes.

MobileNetV3’s efficient and compact design offers a strategic

advantage in addressing the imbalances inherent in datasets like

PlantVillage. By leveraging transfer learning, a pre-trained

MobileNetV3 is later fine-tuned on PlantVillage classes, harnessing

generalized features to counteract dataset disparities. Its lightweight

nature facilitates rapid training, enabling extensive data augmentation

to enhance underrepresented classes. Furthermore, MobileNetV3 can

serve as a potent feature extractor, with the derived features being

suitable for synthetic sample generation techniques like SMOTE or

ADASYN to achieve class balance. The model’s cost-effectiveness

allows for swift iterative experiments, incorporating regularization

techniques to deter overfitting dominant classes. Overall,

MobileNetV3 presents a versatile toolset for researchers to navigate

and mitigate the challenges of unbalanced datasets.

Training MobileNetV3 on the PlantVillage dataset and applying

it to new images introduces challenges related to generalization.

Absent categories, like healthy orange and squash, might be

misclassified into familiar classes the model has seen. Diseases not

in the training data, such as brown spots on soybeans, could be

wrongly identified as another visually similar ailment or even as a

healthy state. The model might also grapple with new images that

differ in lighting, resolution, or background, especially if not

exposed to such variations during training. The inherent class

imbalance in the PlantVillage dataset, if unaddressed, can further

bias the model towards overrepresented classes, affecting its

performance on new or underrepresented classes. In essence,

while MobileNetV3 is efficient, its accuracy on unfamiliar data

hinges on the diversity and comprehensiveness of its training data.

Quantization compresses neural models by reducing the bit

representation of weights and activations, enhancing memory

efficiency and inference speed. “Weight quantization” reduces

weight precision after training. This post-training quantization can

introduce errors, as the model was not trained to accommodate the

reduced precision. This can sometimes lead to a significant drop in

model performance. Whereas “quantization-aware training” adjusts

the model during training to a lower precision. PyTorch’s

torch.quantization.quantize dynamic is notable, dynamically

quantizing mainly the linear layers. This balances reduced model

size and computational efficiency, preserving accuracy and making it

apt for models with varied layer intensities.

The proposed pipeline, while efficient in its current application,

does have certain limitations. Firstly, the pipeline is optimized for a

specific dataset and task; scaling it to handle larger datasets or

adapting it to different types of plants and diseases might require

additional modifications. Secondly, the maintenance and updating

of the model could present minor challenges. Ensuring that the

model remains current with the latest data and continuously

performs at its peak might necessitate regular updates and

maintenance, which can be resource-intensive over time.

As we move forward from this study, we plan to extend our

research to include a wider range of real-world datasets, such as

those suggested by Tomaszewski Tomaszewski et al. (2023) and

Ruszczak Ruszczak and Boguszewska-Mańkowska (2022). Our
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current focus on a controlled dataset lays the groundwork for this

expansion. In future work, we aim to test and refine our models

against the complexity of real-world agricultural scenarios,

enhancing their generalization capabilities. This step-by-step

approach, progressing from controlled conditions to more diverse

datasets, aims to develop robust and adaptable deep-learning

models for effective plant disease detection in practical

agricultural settings.
5 Conclusion

The traditional and cutting-edge models have shown good

accuracy; however, their suitability for onthe-ground applications

with limited resources is often limited. By focusing on maximizing

accuracy within resource constraints, we demonstrated the real-life

usability of deep learning models in agricultural settings. Using the

MobileNetV3-small model with approximately 1.5 million

parameters, we achieved a test accuracy of around 99.50%,

offering a cost-effective solution for accurate plant disease

detection. Furthermore, post-training optimization, including

quantization, reduced the model parameters to 0.9 million,

enhancing inference efficiency. The final model in ONNX format

enables seamless deployment across multiple platforms, including

mobile devices. These contributions ensure that deep learning

models can be practically and efficiently utilized in real-world

agricultural applications, advancing precision farming practices

and plant disease detection.
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Integrated web portal for non-
destructive salt sensitivity
detection of Camelina sativa
seeds using fluorescent and
visible light images coupled with
machine learning algorithms
Emilio Vello*, Megan Letourneau, John Aguirre
and Thomas E. Bureau*

Department of Biology, McGill University, Montreal, QC, Canada
Climate change has created unprecedented stresses in the agricultural sector,

driving the necessity of adapting agricultural practices and developing novel

solutions to the food crisis. Camelina sativa (Camelina) is a recently emerging

oilseed crop with high nutrient-density and economic potential. Camelina seeds

are rich in essential fatty acids and contain potent antioxidants required to

maintain a healthy diet. Camelina seeds are equally amenable to economic

applications such as jet fuel, biodiesel and high-value industrial lubricants due to

their favorable proportions of unsaturated fatty acids. High soil salinity is one of

the major abiotic stresses threatening the yield and usability of such crops. A

promising mitigation strategy is automated, non-destructive, image-based

phenotyping to assess seed quality in the food manufacturing process. In this

study, we evaluate the effectiveness of image-based phenotyping on fluorescent

and visible light images to quantify and qualify Camelina seeds. We developed a

user-friendly web portal called SeedML that can uncover key morpho-

colorimetric features to accurately identify Camelina seeds coming from plants

grown in high salt conditions using a phenomics platform equipped with

fluorescent and visible light cameras. This portal may be used to enhance

quality control, identify stress markers and observe yield trends relevant to the

agricultural sector in a high throughput manner. Findings of this work may

positively contribute to similar research in the context of the climate crisis,

while supporting the implementation of new quality controls tools in the agri-

food domain.
KEYWORDS

phenotyping, phenomics, artificial intelligence, AI, abiotic stress, salinity, Camelina
sativa, image analysis
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1 Introduction

In recent years, an ever increasing demand for land along with

unprecedented environmental consequences due to climate change

has significantly impacted agricultural productivity. The prevalence

of saline soils is increasing worldwide due to a lack of fresh water,

prolonged periods of drought and rising sea levels (Hassani et al.,

2021). It is estimated that over one billion hectares (ha) of global

land are currently affected by salinity, with this number increasing

by two Mha per year. The issue is widespread and affects over 100

countries with severe impacts in India, China, the United States,

Turkey and many other regions. For example, over 30% of land in

Iran is salt-affected, leading to ongoing economic and

environmental implications including decreased productivity and

soil erosion, which numerous countries stand to face (Singh, 2021).

Increased concentrations of sodium chloride (NaCl), lead to ionic

toxicity and osmotic stress in plants. While some plants such as

halophytes have the ability to tolerate salt stress, traditional crops

for food use are severely impacted by NaCl, leading to inhibition of

growth and low yield production (Morales et al., 2017). When

coupled with other abiotic stresses such as drought, heavy metal

exposure, high temperatures, and reduced humidity, these factors

become limiting for crop production, leading to huge economic

losses and social concerns regarding food security (Shah et al., 2018;

Razzaq et al., 2021).

Camelina sativa (Camelina) is an undervalued oilseed crop

belonging to the Brassicaceae family, closely related to Arabidopsis

thaliana and other economically relevant Brassicaceae such as

canola and the cabbage (Berti et al., 2016). This crop is native to

East European/West Asian regions and was first domesticated in the

late Neolithic era before being largely replaced by other competitor

crops. Despite being well adapted to Canada and the northern

United States due to the semi-arid, temperate and short-season

climates, Camelina is not widely produced in North America

(Vollmann and Eynck, 2015). It is only in more recent decades

that Camelina has begun to receive a renewed interest due to its

advantageous properties including low input requirements,

tolerance to cold temperatures and pests and a high nutrient-

density (Masella et al., 2014). Camelina seeds also contain

uncommonly high levels of alpha-linolenic acid, an essential

omega-3 fatty acid required for proper physical and cognitive

maintenance, making it a nutritious food source (Kagale et al.,

2014; Berti et al., 2016).

In recent years, there has been a surge in plant phenomics

equipment and platforms, ranging from compact desktop setups to

large-scale field phenotyping machines and even unmanned aerial

vehicles (Vello et al., 2022; Sarkar et al., 2023). However, there is a

limited availability of user-friendly tools for analyzing the vast

amount of data generated by these systems, and many of the

existing tools are challenging for non-computer science users to

navigate (Vello et al., 2015). Furthermore, Camelina, being an

emerging crop, has not been as extensively investigated as other

established crops such as Brassica napus (canola). Our
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understanding of the effect of abiotic stresses such as NaCl

concentration on Camelina seeds therefore remains limited

(Zanetti et al., 2021). In this study, we aim to address these

challenges by investigating the potential of image-based

phenotyping and automated analysis through a user-friendly web

portal. The SeedML portal enables the analysis of morpho-

colorimetric attributes of Camelina seeds and can in turn predict

their salt status. This prediction is based on image analysis and

machine learning algorithms, utilizing fluorescent or visible light

images acquired from a plant phenomics platform. As phenomic

systems continue to innovate in response to adapting needs in the

agricultural sector, the availability of accessible and powerful

analysis tools will play a vital role in their success.
2 Materials and methods

2.1 Plant growth and salt treatment

Protocol 1. Three Camelina sativa (Camelina) seeds (Celine

variety), were sown in 5” pots with 250 g of Sunshine mix (75-85%

Canadian Sphagnum peat moss, perlite and dolomite limestone)

and 450 mL of water. Plants were grown in the McGill phytotron

greenhouse with a 14 h / 10 h light/dark photoperiod at a

temperature of 27°C/20°C day/night. Seven days after sowing

(DAS), seedlings were thinned to one per pot based on size

similarity. At DAS 20, salt stress was induced through saline

water treatment (final NaCl concentrations of 0, 50, 100, 150 and

200 mM), prepared using a final volume of 450 ml of water (soil

water capacity). Salt treatment was progressively applied twice a day

over two days. Pots were watered every day to 700g to maintain a

constant NaCl concentration. Classic 20-20-20 (N-P-K) fertilizer

diluted 1:10 was applied at DAS 15. Plants were randomized three

times a week to avoid any positional effect in the greenhouse.

Protocol 2. Similar to protocol 1 but using a water capacity of

350 mL and a final weight of 600 g. Environmental temperature was

set at 24°C/20°C day/night and three salt concentrations were used

(NaCl at 0, 200 and 250 mM). Fertilizer was applied at DAS 8

and 15.

Protocol 3. Similar to protocol 2 but plants were watered twice

a week without weight control and only two levels of salt

concentration were used (NaCl at 0 and 200 mM). Plants were

fertilized once a week.

Protocol 4. Similar to protocol 1 but using 200 g of soil and a

400 mL water capacity at 0 and 200mM of salt. Plants were watered

to 600 g twice a week. Salt stress was induced at DAS 34.

Plant batches: Four different batches of plants were grown in

different seasons and using different protocols in a semi-controlled

environment (greenhouse) in which light and temperature may

fluctuate according to the external environmental conditions. Plants

in batch A were grown using protocol 1 in Spring-Summer 2018,

batch B using protocol 2 in Spring 2019, batch C using protocol 3 in

Fall 2020 and batch D using protocol 4 during Winter 2018.
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2.2 Seed preparation and imaging

Harvested seeds were dried for 30 days at room temperature

and then stored at 4°C. A weighing pan and an electronic balance

(PB3002 DeltaRange) were used to select 0.1g or 0.05 g seeds from

each plant according to the set (Table 1). Seeds were then

transferred to petri dishes and identified with barcodes. The

image acquisition was performed with the LemnaTec HTS

installed at the McGill Plant Phenomics Platform (MP3, http://

mp3.biol.mcgill.ca), using the visible light camera piA2400-17gc

and the fluorescent light camera scA1400-17gc. Three

configurations were selected; visible light top illumination

(VISFRONT); visible light back illumination (VISBACK); and

fluorescent illumination between 400 and 500 nm (FLUO).
2.3 Software development

The three main components of the web portal software (the web

interface, the image analysis and the machine learning

implementation), were implemented on Java OpenJDK 17 + 35

and Apache Tomcat 10.1.10. The web portal was developed using

JSP, HTML, JavaScript, CSS. The image analysis and machine

learning modules were developed using ImageJ 1.53a (Schneider

et al., 2012), Fiji (Schindelin et al., 2012) and weka 3.9.4 (Frank

et al., 2016), respectively as main packages and Java as

programming language. An adapted version of the “combined

contour tracing and region labeling” proposed by Burger and

Burge (2008, 2016) was implemented as part of the segmentation

algorithm. SeedML was assigned as the name of the portal.
2.4 SeedML web portal

The web portal runs on a Dell R910 server with 512 GB of RAM

and two MD1200 storage devices 72 TB at McGill University. The

SeedML web portal is accessible through the internet address

https://sites.google.com/view/seedml or http://mp3.biol.mcgill.ca/

seedml. The prediction of the salt status analysis is performed in

the following steps. 1) Seed detection setup; 2) Training images; 3)

Testing images; 4) Process; 5) Phenotypic traits; 6) Seed
Frontiers in Plant Science 03176
classification. The portal could also be used to analyze morpho-

colorimetric traits alone. In this case, steps 1, 3, 4 and 5 are required.
2.5 Seed detection setup

In this step, the user can select different thresholds for some

image properties or the application of determined algorithms in

order to set up the segmentation parameters, seed and background

identification. It is possible to set the scale of pixels per centimeter

assuming a pixel aspect ratio of one. The segmentation parameters

are easily set up by clicking or dragging and dropping a sample

image of a plate on the box under the title “original image”. After

clicking the refresh button, the processed images on the right box

will give a preview of some intermediary (pre-processed) and final

results of the segmentation. The adjustment and refreshing of the

segmentation parameters is performed until the identification of the

seeds is archived. This configuration can be downloaded to the local

disk to be reused in future analysis. The portal has three pre-set

configurations used for this article, visible light top illumination,

visible light back illumination and fluorescent light.
2.6 Training images

One or more images for each growth condition (salt and

normal) are uploaded by clicking or dragging and dropping to

the respective panel. These images are used to train the different

machine learning algorithms. The garbage icon allows the user to

clean up the content of the panel. The uploading operation is

successfully achieved when a scaled image and its names are shown

in the corresponding list.
2.7 Testing images

The center panel is designed to upload the images of the seed

plates to be analyzed by dragging and dropping or clicking. This

section is also used if a morpho-colorimetric analysis only is

desired. Before moving to the next step, the user has to wait until

a small-scale copy of each image is shown in the center panel.
TABLE 1 Seed sets and plate batches.

Set Plate number Seed weight x plate Image date Batch Growth season Salt concentration (mM)

1 23 0.10 g 2019-11-14 B Spring 2019 0, 200, 250

2 35 0.10 g 2020-01-17 A Spring-Summer 2018 0,50, 100, 150, 200

3 18 0.10 g 2021-02-25 C Fall 2020 0, 200

4 40 0.10 g 2021-03-02 A Spring-Summer 2018 0, 50, 100, 150, 200

5 10 0.05 g 2021-03-02 A Spring-Summer 2018 0, 200

6 15 0.10 g 2021-04-27 D Winter 2018 0, 200

M 18 0.10 g 2020-01-22 A/B A and B mixed 0, 200
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2.8 Image analysis and
classification process

Once the training and testing images are uploaded, the user can

run the process of image analysis and classification using the start

button. The classification process can be based on all, only morpho or

only color attributes (Tables 2, 3 respectively). The button in the

middle panel allows the user to change the option. Once the process is

complete, the third panel central label will change from “X” to “✓”.
2.9 Phenotypic traits

A summary table with the seed count and the average seed size,

seed length, seed width and seed circularity per plate is shown. If the

pixels/metric scale is set up, the metric attributes are displayed in

millimeters. Clicking on the image name, a new web page is

presented with the object (seed) research region, the original

objects (seeds), the color classification, the false color

representation and a table with selected morpho-colorimetric

attributes per seed (Joly-Lopez et al., 2017; Vello et al., 2022).

Each seed can be traced into the image using the ID attribute of the

table in the “original objects” image. Most of the table can be

downloaded in a comma-separated values (CSV) file format

supported by a large variety of software such as Microsoft Excel,

Google Sheets, LibreOffice, R.
2.10 Seed classification

The salt status of each plate is determined by the average of the

percentage of salt/non-salt among all algorithms Table 4 included in

the portal (Figure 1). If the percentage is greater than 50, then the plate

is marked with the stress status. This section of the software displays a
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table containing the individual percentages for each algorithm and the

predicted status of the plate. As described in “phenotypic traits”, the

details of the plate can be obtained by clicking on its name.
2.11 Testing procedure

All the output data shown in this work has been processed using

the SeedML portal in order to assess its power to identify morpho-

colorimetric features of seeds and predict the salt status of the

plates. The exception is the performance of the machine learning

algorithms that has been done before the portal implementation.

After uploading and processing the images into the portal, the

morpho-colorimetric features were downloaded using the

phenotypic traits option and plotted in R. The prediction tests
TABLE 2 Description of morphological features.

Identification Definitions

Area
Number of pixels representing the seed in the image.
(Joly-Lopez et al., 2017)

Perimeter
Length of the outer contour of the pixels representing the
seed in the image. (Joly-Lopez et al., 2017)

Circularity
Ratio between the circumference square and the area.
(Camargo et al. 2014)

Compactness
Ratio between the area and the perimeter (Burger and
Burge, 2008, 2016).

Major axis

Axis where a physical body requires less effort to rotate. It
extends from the centroid (center of gravity) to the widest
part of the object (Burger and Burge, 2008, 2016), in this
case the pixels presenting the seed in the image.

Minor axis Axis perpendicular to the major axis.

Eccentricity

Ratio between the major axis and the minor axis of the
digital plant (Burger and Burge, 2008, 2016). The minor
axis extends from the centroid to the narrowest part
perpendicular to the major axis.
TABLE 3 Description of colorimetric features.

Identification Description

Grey intensity
peak (hisgreypeak)

Intensity value having the bigger frequency from the
pixels representing the seed. It is the higher peak of the
intensity value histogram. (Joly-Lopez et al., 2017)

Q1 grey
pixels (q1grey)

First quartile of the pixel grey value distribution. (R+G
+B)/3.

Q2 grey
pixels (q2grey)

Second quartile of the pixel grey value distribution. (R+G
+B)/3.

Q3 grey
pixels (q3grey)

Third quartile of the pixel grey value distribution. (R+G
+B)/3.

Q1 red channel
pixels (q1r) First quartile of the pixel red channel value distribution.

Q2 red channel
pixels (q2r)

Second quartile of the pixel red channel
value distribution.

Q3 red channel
pixels (q3r) Third quartile of the pixel red channel value distribution.

Q1 green channel
pixels (q1g) First quartile of the pixel green channel value distribution.

Q2 green channel
pixels (q2g)

Second quartile of the pixel green channel
value distribution.

Q3 green channel
pixels (q3g)

Third quartile of the pixel green channel
value distribution.

Q1 blue channel
pixels (q1b) First quartile of the pixel blue channel value distribution.

Q2 blue channel
pixels (q2b)

Second quartile of the pixel blue channel
value distribution.

Q3 blue channel
pixels (q3b) Third quartile of the pixel blue channel value distribution.

Higher 16 color
class (hue16max)

Color class having the higher number of pixels from a
hue channel 16 class pixel division in the HSB
color space.

Higher 32 color
class (hue32max)

Color class having the higher number of pixels from a
hue channel 32 class pixel division in the HSB
color space.

Higher 64 color
class (hue64max)

Color class having the higher number of pixels from a
hue channel 64 class pixel division in the HSB
color space.
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were divided into two groups: inside sets and between sets. For

inside sets, three tests for each camera (FLUO: fluorescent,

VISFRONT: visible top light, VISBACK: visible back light),

attribute (all, only morpho, only color), set (1-6) and salt

concentration (50 mM, 100 mM, 150 mM, 200 mM, and 250

mM) were performed (Supplementary Table 1). For between sets,

the k-fold cross-validation method with k=10 (Sakeef et al., 2023)

was used on 200 mM only since this concentration is present in all

sets. The k-fold cross-validation prevents underfitting or overfitting

of the model, aligning with the sample size and the split between

testing and training in the various tests (Saharan et al., 2021;

Charilaou and Battat, 2022; Prusty et al., 2022). The portal has

been tested in Firefox and QuteBrowser.
2.12 Evaluation of the prediction process

The performance and effectiveness of the prediction status of

seeds and plates is measured using five metrics commonly used in

benchmarks of machine learning algorithms: accuracy (Equation 1),

sensitivity Equation 2, specificity Equation 3, precision Equation 4

and F1 score Equation 5 (Xu et al., 2022; Yang et al., 2023).

Accuracy   =
S(true   positives)   +  S(true   negatives)

total
(1)

  Sensitivity   =  
S(true   positive)

S(true   positive)   +  S(false   negative)
(2)

Specificity   =  
S(true   negatives)

S(true   negatives)   +  S(false   positives)
(3)

Precision   =  
S(true   positives)

S(true   positives)   +  S(false   positives)
(4)

F1   Score   =  
2  �   Precision  �   Sensitivity

Precision  �   Sensitivity
(5)
2.13 Portal availability

The SeedML portal can be accessed at https://sites.google.com/

view/seedml, where images, additional information, and access to

the portal, including current and future mirrors, can be found.

Alternatively, it is possible to access it directly at http://

mp3.biol.mcgill.ca/seedml. For any inquiries or issues, including

mirror installations, please contact the corresponding authors.
3 Results

3.1 Morpho-colorimetric features under
normal and salt conditions

Morpho-colorimetric seed features were compared between any

concentration of salt and non-salt growing conditions under visible
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back light (VISBACK) and fluorescent light cameras (FLUO). The

area, perimeter, major and minor axis have shown higher values in

the salt group under FLUO (Figure 2). However, this pattern was

not observed in the VISBACK (Figure 3). In both cameras, the

eccentricity has shown higher values in the non-salt group among

all the sets. The color related features in the VISBACK have not

presented defined patterns among the sets. For example, the red

lower quartile feature in the non-salt group is lower in set number 1

and higher in set number 3. The grey intensity peak non-salt value is

higher in set number 2 but it is lower in sets 4 and 6. In the case of

FLUO, a pattern was found in some of the color-related features.

This is the case in the red lower, median and higher quartiles where

the salt group has shown higher values. Almost no signal was

observed from the blue channel. This was expected as the

fluorescent information is represented in the red channel

under FLUO.

The values of the area in non-salt condition groups are

approximately 150 px for sets 1, 2, 4, 5 and M and slightly higher

than 200 px for sets 3 and 6 (Figure 2A), under FLUO. This pattern

is observed for the perimeter, major and minor axis as well

(Figures 2B, D, E). The sets 2, 4 and 5 come from batch A and

set 1 from batch B. The M set is a mix of A and B. Set 3 and 6 are

taken from batch C and D respectively. In the VISBACK images, the

area values for sets 3 and 6 are slightly higher than the other

batches. The non-area related features, circularity, compactness and

eccentricity show the same patterns among the sets under the

VISBACK and FLUO as expected (Figures 2C, F, G, 3C, F, G).
3.2 Pixel to metric conversion agreement
and seed count

The conversion from pixels to metrics was done using the inside

diameter of the petri dish plate at 8.50 cm. The diameter of the plate

under the FLUO is 846.50 pixels (px) giving 99.58 px/cm

(Supplementary Figure 1A). The same diameter under the

VISBACK is 1812 px giving 213.17 px/cm (Supplementary

Figure 1B). The double of the major and the minor axes can be

used as a proxy to the length and width respectively. The average

major and minor axes in the FLUO are the 9.76 px and 5.17 px

giving a length of 1.95 mm and a width of 1.03 mm. In the case of

the VISBACK, the averages are 21.75 px and 10.83 px giving a

length of 2 mm and a width of 1 mm. Our manual calculation using

a ruler on the actual seeds (Supplementary Figure 1C), has shown a

length of 2 mm. The automatic seed count from the images having

0.10 g/seeds per plate revealed that the average number of seeds is

92, (95% CI [89.53, 95.20]) for FLUO, 84, (95% CI [80.46, 88.25])

for VISFRONT and 95, (95% CI [92.54, 99.31]) for VISBACK

(Supplementary Figure 1D).
3.3 Performance of machine learning
algorithms in individual seeds

The accuracy of the 13 pre-selected machine learning

algorithms from the WEKA package (Frank et al., 2016) to
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predict salt status of the seeds was tested using set 1 and 2 on

individual seeds. FLUO and VISBACK images were computed all

together (Figure 4), using one or two plates as training for each

condition. The ZeroR showed an accuracy of 52%, NaiveBayes

74%, MultilayerPerceptron 73%, SMO 73%, IBk 70%, Kstar 71%,

LWL 72%, DecisionStump 73%, HoeffdingTree 73%, J48 72%,

LMT 75%, RandomForest 74%, RandomTree 71% and REPTree

72%. The ZeroR algorithm was not implemented in the portal

because of its low accuracy compared to the rest of

the algorithms.
3.4 Portal performance inside sets using 0
and 200 mM (0-200mM)
salt concentrations

The performance of the portal was evaluated within various

sets, specifically focusing on salt concentrations of 0 mM and 200

mM (0-200mM). This assessment encompassed both the predictive

capabilities of the portal and the type of camera used (fluorescent

and visible light), across different groups. Each concentration of salt

and non-salt plates was subjected to triplicate testing. During the

training phase, either one or three plates were employed, depending

on the specific test. The majority of tests were conducted with just

one training plate per group, which represents the minimum

information necessary for the classification algorithms.

In Figure 5, confusion matrices for the 0-200 mM salt

concentrations, utilizing one training plate for each group, are

presented. Among the 243 plates analyzed, 96 plates were

accurately classified as non-salt, and 130 were correctly identified

as salt (Figure 5A). Only 3 were incorrectly classified as salt, and 14

were misclassified as non-salt when using fluorescent images

(FLUO) with all attributes.

When only color attributes were considered, 2 plates were

wrongly classified as non-salt, and 11 were misclassified as salt.

However, 97 plates were accurately categorized as non-salt, and 133

were correctly identified as salt (Figure 5B). The classification of

plates using solely morphological attributes resulted in 3
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misclassified plates and 96 correctly classified as non-salt.

However, 60 plates were wrongly classified as non-salt, but 84

were correctly identified as salt (Figure 5C). For visible back light

(VISBACK) with all attributes, the portal incorrectly grouped 26

plates as salt and 28 plates as non-salt. Nonetheless, 73 plates were

accurately categorized as non-salt, and 116 were correctly identified

as salt (Figure 5D).

In the color and morphological features of VISBACK images

(Figures 5E, F), 76 plates were correctly classified, and 23 were

misclassified as non-salt. Notably, 109 plates exhibited accurate salt

classification when considering color attributes, surpassing the 86

plates correctly classified using morphological attributes. Conversely,

there were 35 instances of misclassification for color attributes and 58

for morphological attributes. The classification of VISFRONT images

was similar in the number of plates to that of VISBACK. However,

when considering all attributes, VISFRONT achieved higher accuracy

in classifying 5 more plates as non-salt but was 13 plates less accurate

in classifying salt content. The classification results were identical to

VISBACK when using only color attributes. In the case of

morphological attributes, VISFRONT outperformed VISBACK by

accurately classifying 2 more plates as salt but underperformed by 9

plates in the non-salt classification (Figures 5G–I).

Table 5 provides an overview of the five selected metrics

employed to evaluate the portal’s performance across all sets,

using a concentration level of 0 and 200 mM (0-200nM). When

utilizing just one training plate, the FLUO analysis achieved

impressive results, with an accuracy of 0.93, a sensitivity of 0.90, a

specificity of 0.96, a precision of 0.97, and an F1 score of 0.93 across

all attributes. In comparison, the color feature subset yielded slightly

higher results, with an accuracy of 0.94, a sensitivity of 0.92, a

specificity of 0.97, a precision of 0.98, and an F1 score of 0.95. On

the other hand, the morphological subset exhibited metrics of 0.74,

0.58, 0.96, 0.96, and 0.72, respectively.

For VISBACK with all attributes, the system achieved an

accuracy of 0.77, a sensitivity of 0.80, a specificity of 0.73, a

precision of 0.81, and an F1 score of 0.81. In contrast, the color

and morphological tests generated results of 0.76, 0.77, 0.77, 0.83,

and 0.79, as well as 0.67, 0.60, 0.77, 0.79, and 0.60, respectively.
FIGURE 1

Image and data analysis pipeline. Graphical representation of the analysis pipeline implemented in the SeedML portal for plants grown under normal or
salt stress conditions.
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When assessing VISFRONT, considering all attributes, an accuracy

of 0.76, a sensitivity of 0.72, a specificity of 0.83, a precision of 0.86,

and an F1 score of 0.78 were achieved. Using only the color

attributes, the results were 0.76, 0.76, 0.77, 0.83 and 0.79.
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Meanwhile, employing only the morphological attributes yielded

scores of 0.64, 0.61, 0.68, 0.73 and 0.67, respectively.

These findings suggest that the FLUO analysis outperforms

VISBACK, and in turn, VISBACK outperforms VISFRONT.
A B C D

E F G H
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M N O P

Q R S T

FIGURE 2

Morpho-colorimetric features from the back light visible light camera. Means and SEMs of the morpho-colorimetric features under normal and salt
conditions for the 6 sets as well as the mix set (m). (A) Area, (B) Perimeter, (C) Circularity, (D) Major axis, (E) Minor axis, (F) Compactness,
(G) Eccentricity, (H) Red lower quartile, (I) Blue lower quartile, (J) Green lower quartile, (K) Red median, (L) Blue median, (M) Green median, (N) Red
higher quartile, (O) Blue higher quartile, (P) Green higher quartile, (Q) Grey Intensity peak, (R) Higher 16 color class, (S) Higher 32 color class,
(T) Higher 64 color class.
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Moreover, it becomes evident that color attributes exhibit greater

effectiveness than morphological attributes in accurately predicting

the salt status of seeds in plates.

When three training plates were used in FLUO (as presented

in Table 5), the five metrics consistently demonstrated values
Frontiers in Plant Science 08181
ranging from 0.96 to 1, whether considered across all sets

collectively or individually. The lowest recorded value, which

was 0.96, occurred in accuracy and sensitivity for set 6, and in

the F1 score for set 1. These results indicate a near 100%

effectiveness in detection.
A B C D
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FIGURE 3

Morpho-colorimetric features from the back light visible light camera. Means and SEMs of the morpho-colorimetric features under normal and salt
conditions for the 6 sets as well as the mix set (m). (A) Area, (B) Perimeter, (C) Circularity, (D) Major axis, (E) Minor axis, (F) Compactness, (G) Eccentricity,
(H) Red lower quartile, (I) Blue lower quartile, (J) Green lower quartile, (K) Red median, (L) Blue median, (M) Green median, (N) Red higher quartile, (O)
Blue higher quartile, (P) Green higher quartile, (Q) Grey Intensity peak, (R) Higher 16 color class, (S) Higher 32 color class, (T) Higher 64 color class.
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3.5 Portal performance inside sets using
other salt concentrations

To evaluate the performance of the portal and the type of

camera (fluorescent or visible light) across various concentrations,

sets 2 and 4 were tested using 50 mM, 100 mM and 150 mM in

addition to 200 mM of salt versus non-salt under both fluorescent

(FLUO) and visible backlight (VISBACK) images. The performance

metrics are presented in Tables 6 and 7.

For the 0-200 mM concentrations, employing all attributes

resulted in an accuracy of 0.95, a sensitivity of 0.90, a specificity

and precision of 1, and an F1 score of 0.95, with a Fisher’s exact test

p-value lower than 2.2e-16. When testing at 0-150 mM, the metrics

displayed an accuracy of 0.72, a sensitivity of 0.61, a specificity of

0.80, a precision of 0.73, and an F1 score of 0.67, along with a p-

value of 1.815e-4. In the case of 0-100 mM, the performance metrics

indicated an accuracy of 0.77, a sensitivity of 0.51, a specificity and

precision of 1, and an F1 score of 0.67, with a p-value of 4.257e-06.

For the 0-50 mM tests using all attributes, the results included an

accuracy of 0.64, a sensitivity of 0.75, a specificity of 0.54, a precision

of 0.59, an F1 score of 0.65, and a p-value of 0.01.

When considering only the color attributes, the results for 0-200

mM included an accuracy of 0.94, a sensitivity of 0.88, a specificity

and precision of 1, an F1 score of 0.93, and a p-value lower than

2.2e-16. For 0-150 mM, the values were 0.80, 0.71, 0.88, 0.83, 0.77,

and a p-value of 9.294e-08. For 0-100 mM, the results were 0.75,

0.48, 1, 1, 0.66, and a p-value of 4.551e-08. In the case of 0-50 mM,

the values were 0.56, 0.50, 0.61, 0.52, 0.51, and no significant p-value

was observed.

When using only the morphological attributes for 0-200 mM,

an accuracy of 0.94, a sensitivity of 0.88, a specificity and precision

of 1, an F1 score of 0.88, and a Fisher’s exact test p-value lower than

2e-16 were achieved. In the 0-150 mM group, the metrics were 0.74,

0.86, 0.64, 0.67, 0.75, and the p-value was 7.432e-06. For the 0-100
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mM and 0-50 mM groups, the values obtained were 0.74, 0.58, 0.88,

0.82, 0.69, and 1.498e-05, and 0.53, 0.94, 0.19, 0.50, 0.65, and

0.098, respectively.

Table 7 displays the performance metrics for VISBACK in sets 2

and 4. When considering all attributes in the 0-200 mM

concentration range, the metrics included an accuracy of 0.71, a

sensitivity of 0.90, a specificity of 0.52, a precision of 0.66, and an F1

score of 0.76, with a Fisher’s exact test p-value of 3.601e-05. For the

0-150 mM tests, the metrics showed results of 0.73 for accuracy,

0.67 for sensitivity, 0.79 for specificity, 0.73 for precision, and an F1

score of 0.70, with a p-value of 7.798e-05. In the case of 0-100 mM

and 0-50 mM, the metrics values were 0.47, 0.56, 0.38, 0.46, and

0.50, and 0.42, 0.63, 0.23, 0.42, and 0.51, respectively. In both cases,

the p-values were not significant.

When using only the color attributes, the performance metrics

at the 0-200 mM concentrations were as follows: an accuracy of

0.74, a sensitivity of 0.69, a specificity of 0.78, a precision of 0.76,

and an F1 score of 0.72. In the 0-150 mM group, the metrics

displayed values of 0.73, 0.77, 0.69, 0.68, and 0.78, respectively. For

0-100 mM and 0-50 mM, the metrics indicated 0.49, 0.52, 0.43, 0.48,

and 0.51, and 0.60, 0.83, 0.40, 0.55, and 0.66, respectively. Notably,

only 0-200 mM and 0-150 mM presented significant p-values (p<

0.01). The performance metrics when considering only the

morphological attributes exhibited an accuracy of 0.82, a

sensitivity of 0.64, a specificity and precision of 1, and an F1

score of 0.78. In the 0-150 mM group, the values were 0.60, 0.63,

0.80, 0.61, and 0.46. For 0-100 mM, the metrics indicated values of

0.61, 0.36, 0.36, 0.86, and 0.47, and for 0-50 mM, the values were

0.44, 0.44, 0.45, 0.41, and 0.42. Only the 0-200 mM group showed a

significant p-value (p< 0.01).
3.6 K-fold validation portal performance
among groups

The performance of the portal and the type of sensor was

performed using the k-fold validation technique which is normally

used to test machine learning algorithms with a k equal to 10 (Sakeef

et al., 2023), on fluorescent images (FLUO). The salt concentration

chosen was 0-200 mM since it is present in all the sets. Out of 93

plates, 30 were well classified as non-salt and 51 as salt against 9

misclassified as salt and 3 as non-salt for all attributes (Figure 6A).

Using only the color attributes, 33 and 52 were well classified as non-

salt and salt and 6 and 2 misclassified as salt and non-salt (Figure 6B).

In the case of only morphological attributes, 29 and 50 were well

classified against 10 and 4 respectively (Figure 6C).

An accuracy of 0.87 was attained using all attributes,

accompanied by a sensitivity of 0.94, a specificity of 0.76, a

precision of 0.85, and an F1 score of 0.89. When exclusively

employing color attributes, an accuracy of 0.91 was achieved,

along with a sensitivity of 0.96, a specificity of 0.84, a precision of

0.90, and an F1 score of 0.93. In the case of using only

morphological attributes, results included an accuracy of 0.84, a

sensitivity of 0.90, a specificity of 0.74, a precision of 0.83, and an F1

score of 0.88. Significance (p< 0.01) in all cases was shown using

Fisher’s exact test (Table 8).
FIGURE 4

Performance of machine learning algorithms on individual seeds.
Mean accuracy and SEMs for selected machine learning algorithms
in set 1 and 2 under normal and salt conditions shown together.
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TABLE 5 Performance descriptors within groups in 0 versus 200mM.

Set Camera Attributes Training
Plates*

Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

1-6 Fluo All 1 0.93 0.90 0.96 0.97 0.93

1-6 Fluo Color 1 0.94 0.92 0.97 0.98 0.95

1-6 Fluo Morpho 1 0.74 0.58 0.96 0.96 0.72

1-6 VisBack All 1 0.77 0.80 0.73 0.81 0.81

1-6 VisBack Color 1 0.76 0.77 0.77 0.83 0.79

1-6 VisBack Morpho 1 0.67 0.60 0.77 0.79 0.60

1-6 VisFront All 1 0.76 0.72 0.83 0.86 0.78

1-6 VisFront Color 1 0.76 0.76 0.77 0.83 0.79

1-6 VisFront Morpho 1 0.64 0.61 0.68 0.73 0.67

1-6 Fluo All 3 0.98 0.97 1 1 0.98

1 Fluo All 3 0.97 0.93 1 1 0.96

(Continued)
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TABLE 4 Description of the machine learning algorithms.

Classifier Description Reference weka packages

ZeroR
A rule algorithm that predicts the majority class in case of normal data or the

average value.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

rules/ZeroR.html

NaiveBayes Implements a standard probabilistic naive Bayes algorithm using estimator classes.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

bayes/NaiveBayes.html

MultilayerPerceptron
Implements a type of artificial neural network algorithm which can be expressed as

standard mathematical functions.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

functions/MultilayerPerceptron.html

SMO
Sequential minimal optimization. This class implements a support vector classification

that can be expressed as standard mathematical functions.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

functions/SMO.html

IBk (lbk) Implements a k-nearest-neighbour classification algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/IBk.html

Kstar Implements the nearest neighbour algorithm with a generalized distance function.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/KStar.html

LWL Implements a general algorithm for locally weighted learning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/LWL.html

DecisionStump Implements a decision tree using only one level for splitting.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/DecisionStump.html

HoeffdingTree Implements a Hoeffding tree algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/HoeffdingTree.html

J48 Implements a C4.5 decision tree learner algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/J48.html

LMT
Logistic model trees. It builds classification trees with regression functions at

their leaves.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/LMT.html

RandomForest Implements the algorithm for building a forest of random trees.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/RandomForest.html

RandomTree
Given a number of random features for each node, this class builds a tree

without pruning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/RandomTree.html

REPTree Implements a fast tree learning that reduces the error pruning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/REPTree.html
(Witten et al., 2011; Smith and Frank, 2016).
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3.7 Alternative applications of SeedML

To assess the usability of the portal for working with various

types of data, a series of side-view images of Camelina plants were

captured and analyzed using this portal. The parameters for

quantifying and qualifying pods per plant were adjusted through

the user interface section “seed detection setup”. Manual counting

was also completed to evaluate performance. The strength of the

relationship was assessed using the Pearson coefficient (r=0.90),

revealing a strong positive correlation (Figure 7).
4 Discussion

The morpho-colorimetric seed features using the fluorescent

light images displayed a greater sensitivity to salt than the visible

light images (Figures 2, 3). In fact, the area-related features showed

higher values in the fluorescent images under salt conditions as well

as the lower, median and higher quartiles of the red intensity value.

This may be explained by the fluorescence emission intensity which
Frontiers in Plant Science 11184
increases with the increase in concentration of salt (Adenier et al.,

1998; Sharma et al., 2018). A variation in the morpho-colorimetric

seed features was also observed among the sets. This variation may

be attributed to differences in the chemical composition of seed oil

(Dogruer et al., 2021), which could be influenced by variations in

growing conditions, including watering regimes. It has been shown

that seed oil content can change in response to factors such as

nitrogen fertilizer, suggesting that soil content including the

prevalence of salts may play a key role in seed oil composition (Li

et al., 2017).

The conversion from pixels to the metric system is important

not only for the purpose of comparing and sharing information, as

it does not depend on the image, but also for validating the results of

seed detection. This feature is included in the portal. We used the

measurements of the plate in both cameras to calculate the

conversion and we compared seeds manually measured using a

ruler (Supplementary Figure 1). Our manual observation and pixel-

converted calculation both yielded a length of 2 mm, which aligns

with the measurements reported by Francis and Warwick (2009).

Additionally, the portal calculated a width of 1 mm, half of the
TABLE 6 Performance descriptors within groups in set 2 and 4 using one training plate for each condition group under fluorescent light
images (FLUO).

Concentration Attributes Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

p-
value*

0-200nM All 0.95 0.90 1 1 0.95 < 2.2e-16

0-150mM All 0.72 0.61 0.80 0.73 0.67 1.815e-4

0-100mM All 0.77 0.51 1 1 0.67 4.257e-06

0-50mM All 0.64 0.75 0.54 0.59 0.65 0.01098

0-200mM Color 0.94 0.88 1 1 0.93 < 2.2e-16

0-150mM Color 0.80 0.71 0.88 0.83 0.77 9.294e-08

0-100mM Color 0.75 0.48 1 1 0.66 4.551e-08

0-50mM Color 0.56 0.50 0.61 0.52 0.51 0.3616

0-200mM Morpho 0.94 0.88 1 1 0.88 < 2e-16

0-150mM Morpho 0.74 0.86 0.64 0.67 0.75 7.432e-06

0-100mM Morpho 0.74 0.58 0.88 0.82 0.69 1.498e-05

0-50mM Morpho 0.53 0.94 0.19 0.50 0.65 0.09707
fr
* Fisher’s exact test.
TABLE 5 Continued

Set Camera Attributes Training
Plates*

Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

2 Fluo All 3 1 1 1 1 1

3 Fluo All 3 0.98 0.97 1 1 0.98

4 Fluo All 3 1 1 1 1 1

5 Fluo All 3 1 1 1 1 1

6 Fluo All 3 0.96 0.96 1 1 0.98
* Training plates per condition group. (Fisher’s exact test p<0.01 for all cases). Fluo, fluorescent images; VisBack, Visible back light images; VisFront, Visible top light images.
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length, in line with the findings of Fleenor (2011). An amount of

1000 seeds weighs between 0.8 to 2.0 g (Ehrensing et al., 2008),

meaning that the number of seeds expected in 0.1 g is in the range of

50 to 125 seeds which has been corroborated in our analysis with an

average of 92, 84 and 95 normally distributed between 60-140.

The machine learning algorithms evaluated on the classification

of individual seeds were taken from the WEKA package (Frank

et al., 2016), namely ZeroR, NaiveBayes, MultilayerPerceptron,

SMO, IBk, Kstar, LWL, DecisionStump, HoeffdingTree, J48, LMT,

RandomForest, RandomTree and REPTree (Figure 1, Table 4). All

of them show an accuracy equal or greater than 70% except for the

ZeroR which showed an accuracy of 52% (Figure 4). For this reason,

the ZeroR algorithm was not implemented in the portal since it did

not significantly contribute to the classification process.

The consensus achieved by the machine learning algorithms

analyzing morpho-colorimetric features in the image analysis

process, in conjunction with the universally accessible user-

friendly web interface and a wide range of customizable
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parameters, endows the portal with exceptional performance. The

outputs may be tailored to accommodate various types of images, to

inform on a wide range of data sets. Most of the analyses were

conducted using a different plate for training in each group or set, as

it represents the minimum information that can be provided.

However, a three-plate training approach was implemented to

uphold this principle. The best performance, achieved using the

one-plate training method, was observed in the case of the

fluorescent light images, with scores of 90% or higher in all five

effectiveness metrics. This was followed by the visible light back

images and then by the visible light top images. In the case of three-

plate training, almost 100% classification performance was obtained

in the five metrics (Figure 5, Table 5). This demonstrates the

robustness of the algorithms implemented in the portal, as well as

the effect of salt on fluorescent light reflectance (Adenier et al., 1998;

Sharma et al., 2018). Furthermore, utilizing color attributes alone

resulted in an overperformance compared to using only

morphological attributes (Table 5).
A B C

D E F

G H I

FIGURE 5

Confusion matrices for 0 and 200mM. Reference (real) versus prediction plots for sets 1 through 6 using one training plate for each condition (salt/
non-salt) and set with n=3 for. (A) FLUO, all attributes. (B) FLUO, color attributes. (C) FLUO, morphological attributes. (D) VISBACK, all attributes. (E)
VISBACK, color attributes. (F) VISBACK, morphological attributes. (G) VISFRONT, all attributes. (H) VISFRONT, color attributes. (I) VISFRONT,
morphological attributes. (FLUO, Fluorescent images; VISBACK, visible back light images; VISFRONT, visible top light images).
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The reduction in salt concentration resulted in a decrease in the

effectiveness of the classification. This effect was observed in two

sets of fluorescent light images where lower concentrations were

available (Table 6). This finding supports the influence of salt on

fluorescent reflectance and may indicate a lower concentration of

salt within the seeds when grown in less saline soils. In 0-200 mM,

the F1 score is 0.95 compared to 0.65 in 0-50mM. This may

represent a correlation between the seed salt content and the

fluorescent seed reflectance.

The k-fold validation is a widely used method to estimate the

performance of machine learning algorithms on many performance

indicators, in this case, accuracy, sensitivity, specificity, precision

and F1 score (Refaeilzadeh et al., 2009). A k value equal to 10 was

used since it is the most acceptable value for testing these kinds of
Frontiers in Plant Science 13186
algorithms (Refaeilzadeh et al., 2009; Sakeef et al., 2023). The 0-200

mM concentrations were selected from sets 1 to 6 (Figure 6,

Table 8). This allows us to test the performance of the prediction

process among groups growing in different conditions using

fluorescent light images. Surprisingly, an accuracy of 0.87 and

0.91 was achieved with all and color attributes only and a

sensitivity of 0.94 and 0.96 respectively even though the

fluorescent reflectance is also affected by the oil composition

which is affected by the growing conditions (Boschi et al., 2011;

Li et al., 2017; Cober and Malcolm, 2019; Dogruer et al., 2021).

The SeedML portal offers a versatile solution for addressing

various phenotypic questions using plant images. As an illustrative

case, this research showcases the automated counting of pods in

side-view images of Camelina. This data is crucial for evaluating
A B C

FIGURE 6

K-fold validation confusion matrices. Reference (real) versus prediction plots among groups using one training plate for each condition (salt/nonsalt)
with a k=10 for 0 and 200mM. (A) All attributes, (B) Color attributes, (C) Morphological attributes.
TABLE 7 Performance descriptors within groups in set 2 and 4 using one training plate for each condition group under visible back light
images (VISBACK).

Concentration Attributes Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

p-
value*

0-200mM All 0.71 0.90 0.52 0.66 0.76 3.601e-05

0-150mM All 0.73 0.67 0.79 0.73 0.70 7.798e-05

0-100mM All 0.47 0.56 0.38 0.46 0.50 0.6561

0-50mM All 0.42 0.63 0.23 0.42 0.51 0.3616

0-200mM Color 0.74 0.69 0.78 0.76 0.72 7.328e-06

0-150mM Color 0.73 0.77 0.69 0.68 0.78 4.174e-05

0-100mM Color 0.49 0.52 0.43 0.48 0.51 1

0-50mM Color 0.60 0.83 0.40 0.55 0.66 0.0264

0-200mM Morpho 0.82 0.64 1 1 0.78 2.628e-11

0-150mM Morpho 0.60 0.36 0.80 0.61 0.46 0.1251

0-100mM Morpho 0.61 0.36 0.36 0.86 0.47 0.03802

0-50mM Morpho 0.44 0.44 0.45 0.41 0.42 0.4959
fr
* Fisher’s exact test.
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yield production and would otherwise demand significant human

resources and time if handled manually. In this case, achieving the

objective was accomplished by simply adjusting parameters through

the user interface. A high Pearson correlation coefficient (r = 0.90)

was obtained, indicating the effectiveness of this analysis. It should

be noted that this was just one illustrative example and the SeedML

portal can be used to perform a wide range of image-based

phenotyping analyses.

In this study, the capability of combining fluorescent and

visible light images with image analysis and machine learning

algorithms to assess the color-morphological characteristics of

Camelina seeds to predict the soil’s salinity status has been

demonstrated. An easy to navigate portal was devised and

designed to be accessible to individuals with minimal computer

skills and compatible with any device, including smartphones. The

utility of the portal in addressing other phenomics analyses along

with its implications in oil assessment and quality control have

been illustrated. The findings of this research may positively

inform related studies in the context of agricultural innovation

and related fields such as animal feed production, in response to

climate change. SeedML may further aid in the development and

implementation of new quality control tools within the agri-food

industry, enhancing productivity and sustainability in the

manufacturing process.
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Uneven illumination, obstruction of leaves or branches, and the overlapping of

fruit significantly affect the accuracy of tomato detection by automated

harvesting robots in natural environments. In this study, a proficient and

accurate algorithm for tomato detection, called SBCS-YOLOv5s, is proposed

to address this practical challenge. SBCS-YOLOv5s integrates the SE, BiFPN,

CARAFE and Soft-NMSmodules into YOLOv5s to enhance the feature expression

ability of the model. First, the SE attention module and the C3 module were

combined to form the C3SE module, replacing the original C3 module within the

YOLOv5s backbone architecture. The SE attention module relies on modeling

channel-wise relationships and adaptive re-calibration of feature maps to

capture important information, which helps improve feature extraction of the

model. Moreover, the SE module’s ability to adaptively re-calibrate features can

improve the model’s robustness to variations in environmental conditions. Next,

the conventional PANet multi-scale feature fusion network was replaced with an

efficient, weighted Bi-directional Feature Pyramid Network (BiFPN). This

adaptation aids the model in determining useful weights for the

comprehensive fusion of high-level and bottom-level features. Third, the

regular up-sampling operator is replaced by the Content Aware Reassembly of

Features (CARAFE) within the neck network. This implementation produces a

better feature map that encompasses greater semantic information. In addition,

CARAFE’s ability to enhance spatial detail helps the model discriminate between

closely spaced fruits, especially for tomatoes that overlap heavily, potentially

reducing the number of merging detections. Finally, for heightened identification

of occluded and overlapped fruits, the conventional Non-Maximum-

Suppression (NMS) algorithm was substituted with the Soft-NMS algorithm.

Since Soft-NMS adopts a continuous weighting scheme, it is more adaptable

to varying object sizes, improving the handling of small or large fruits in the

image. Remarkably, this is carried out without introducing changes to the

computational complexity. The outcome of the experiments showed that

SBCS-YOLOv5s achieved a mean average precision (mAP (0.5:0.95)) of 87.7%,
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which is 3.5% superior to the original YOLOv5s model. Moreover, SBCS-

YOLOv5s has a detection speed of 2.6 ms per image. Compared to other

state-of-the-art detection algorithms, SBCS-YOLOv5s performed the best,

showing tremendous promise for tomato detection in natural environments.
KEYWORDS

artificial intelligence, tomato detection, attention mechanism, BiFPN, YOLOv5,
computer vision, agriculture
1 Introduction

The tomato is one of the world’s most important crops (Peixoto

et al., 2017), but harvesting tomatoes under natural conditions

remains labor-intensive. Fruit harvesting has undergone a

significant transformation through advances in artificial

intelligence within laboratory research. This evolution has paved

the way for the emergence of fruit-picking robots anticipated to

supplant manual labor. The vision system plays a vital role in a

fruit-picking robot. This is because of its fundamental role in

accurately identifying fruits, a crucial initial step hinging on the

robot’s precision, efficiency, and resilience. Nevertheless, the

challenges posed by natural conditions introduce complexities,

such as unbalanced lighting, occlusions, overlapping, and other

unforeseeable elements (Gongal et al., 2015), all of which affect the

detection accuracy of fruit-picking robots. Consequently, enhancing

the accuracy, efficiency, and robustness of harvesting robots under

these natural conditions is essential.

Many researchers have studied fruit detection to deal with the

problems mentioned above. Some digital image processing

approaches, such as color features (Goel and Sehgal, 2015; Yang

et al., 2020), shape (Jana and Pareskh, 2017), and texture (Rakun

et al., 2011), have been proposed to obtain reasonable detection

results. Zhao et al. (2016a) developed a technique for detecting

immature citrus fruits in natural environments based on cascaded

pixel segmentation. A combination of color feature maps and a

block-matching method were employed to identify potential fruit

pixels. Subsequently, further refinement is adopted utilizing an

SVM classifier to eliminate false positives. On the other hand, in

the initial stages of segmentation, by relying solely on color features,

numerous fruit instances remain undetected due to the resemblance

between green fruit and the background. Kurtulmus et al. (2011)

introduced a new eigenfruit feature for identifying green citrus. This

characteristic was paired with color information and a study of

circular Gabor texture. Despite including the texture characteristics

alongside color features, their method has encountered challenges

distinguishing some fruit from the background and has struggled to

detect heavily obscured fruit effectively.

Other methods include K-means clustering (Jiao et al., 2020),

Support Vector Machine (SVM) (Azarmdel et al., 2020), and

AdaBoost algorithms (Payne et al., 2014). In tomato detection,
02191
Liu et al. (2019) developed an approach to identify mature tomatoes

within natural environments. A naive Bayesian classifier with an

oriented gradient histogram was used to distinguish each tomato.

Subsequently, a color analysis step was used to remove false

positives. Nevertheless, adapting this method to natural settings

posed a challenge owing to the inherent limitations of manually

crafted features in terms of their capacity for high-level abstraction.

Similarly, Zhao et al. (2016b) used Haar-like feature thresholding

and AdaBoost classifier to detect tomatoes. Their study revealed a

recognition rate of 96% for tomatoes within their testing dataset.

Nevertheless, a long training time was required in their approach.

The aforementioned methods relying on manually designed

features have inherent limitations, particularly in scenarios where

intricate feature extraction is demanded. The introduction of deep

learning successfully addressed these challenges. For example,

Rahnemoofar and Sheppard (2017) showcased commendable

fruit-counting capabilities through a customized Inception-ResNet

architecture (Szegedy et al., 2017). On the other hand, this model

focused exclusively on fruit counting and failed to detect them.

Santo et al. (2020) introduced a method to detect and track grape

clusters within images captured in vineyards. This approach utilized

the Mask-RCNN algorithm (He et al., 2017) for the precise

detection of individual grape bunches. Furthermore, structure

from motion techniques were applied to achieve the 3D

alignment of images, enabling the effective mapping of features

across various images. Their method achieved an F1-score of 91%.

In recent years, the emergence of YOLO models has revolutionized

object detection (Redmon et al., 2016; Redmon and Farhadi, 2017;

Redmon and Farhadi, 2018; Boschkovskiy et al., 2020; Jocher et al.,

2020; Wang et al., 2022). These YOLOmodels exhibited exceptional

improvement in accuracy and speed, surpassing traditional two-

stage pipelines (He et al., 2017; Girshick et al., 2014; Ren et al.,

2015). They used a single feed-forward network to detect bounding

boxes and corresponding classes. Wang et al. (2021) introduced an

innovative method anchored in an enhanced YOLOv3-tiny model

to identify disease occlusion and overlapping tomato leaves. This

model strategically mitigated information loss during network

transmission, resulting in a commendable mAP score of 93.1%.

Bresilla et al. (2019) used DCNN architectures based on single-stage

detectors. Leveraging deep learning techniques eliminates the need

to manually code specific features tailored to particular fruit shapes,
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colors, or other attributes. This method achieved an accuracy of

more than 90%. Liu et al. (2020) introduced YOLO-Tomato, a

resilient model based on YOLOv3. This model achieved an Average

Precision (AP) of 96.40% and a rapid detection speed of 54 ms.

Chen et al. (2022) introduced a modified YOLOv4 to detect citrus.

Their approach used an attention mechanism and a depth-wise

separable convolution module. Moreover, they applied a pruning

algorithm to eliminate the impact of irrelevant latent factors in the

data. Their average improved from 92.89% to 96.15%, with 0.06s to

detect each image.

Expanding the scope, Cao et al. (2023) proposed a technique for

persimmon recognition in natural environments. They harnessed

an enhanced YOLOv5 model, achieving an average accuracy of

95.53%. Mbouembe et al. (2023) proposed a modified YOLOv4-tiny

model for tomato recognition. Their enhancements included a

refined backbone design, reducing computational complexity

while augmenting feature extraction. A simplified CSP (Cross-

Stage Partial Connections) - Spatial Pyramid Pooling was

incorporated to improve the receptive field of the backbone. This

modification aimed to enhance the ability of the model to capture

information from a wider area of the input data. The CARAFE

module in the neck network further improved the quality of the

feature map. Their method produced an mAP of 82.8%.

Despite extensive research in the fruit recognition domain

within natural conditions, it is essential to improve the detection

accuracy and robustness to fulfill the requirements of fruit

detection. This study introduced a precise and resilient tomato

detection methodology grounded in the YOLOv5s model to address

these persisting challenges. Figure 1 provides a concise overview of

the proposed SBCS-YOLOv5s. The pivotal modifications of this

research are outlined as follows:
Fron
1. “C3SE Integration”: By amalgamating the SE attention

module and the C3 module into a cohesive C3SE module,

the conventional C3 module within the YOLOv5s

backbone network is upgraded. This integration

augments the capacity of the model to provide useful

information, bolstering feature extraction.

2. “Bi-directional Feature Pyramid Network Integration”: The

original multi-scale PANet feature fusion network is

replaced with an efficient weighted Bi-directional Feature

Pyramid Network. This alteration enhances feature
tiers in Plant Science 03192
propagation and reuse, thereby refining overall

feature representation.

3. “CARAFE Module Adoption”: Positioned within the

network’s neck, the CARAFE module is harnessed to

generate an improved feature map enriched with more

intricate semantic information.

4. “Soft-NMS Algorithm Implementation”: A noteworthy

shift occurs in the detection post-processing stage, where

the conventional NMS algorithm yields to the enhanced

Soft-NMS algorithm. This transition amplifies the capacity

to identify overlapping and occluded fruit.

5. “Performance Evaluation”: Rigorous evaluation using

tomato datasets unveils that the proposed SBCS-

YOLOv5s model surpasses the original YOLOv5s model

and other contemporary update object-detection methods

in terms of accuracy.
Focusing on these goals, the study aimed to contribute to

advancing tomato harvesting robots by developing an accurate

tomato detection model that outperforms existing models in

terms of accuracy and efficiency.
2 Theoretical background

2.1 YOLOv5 network

The YOLOv5s model (Jocher et al., 2020), pioneered by

Ultralytics LLC in 2020, is composed of three core components:

backbone, neck, and head networks. This study targets the

YOLOv5s variant because of its superior performance compared

to other iterations within the YOLO series. The backbone network

employs a series of convolutional operations and fusion steps to

extract the feature maps from input images. Subsequently, the neck

network integrates feature maps of diverse dimensions, obtained

from the backbone network. This amalgamation yields an

upgraded, innovative feature map that effectively preserves

contextual information, mitigating information loss. It is

important to highlight that this process leverage the FPN (Feature

Pyramid Network) structure (Lin et al., 2017) to facilitate the

propagation of robust semantic features from higher-level feature

maps to their lower-level counterparts. Simultaneously, the PANet
FIGURE 1

Overview of the SBCS-YOLOv5s.
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(Path Aggregation Network) architecture (Liu et al., 2018) facilitates

the transmission of robust localization features from lower-level

feature maps to their higher-level counterparts. The head network,

the final segment of the model, consists of three layers that generate

output feature maps at distinct scales.

The CBS (Convolution, batch normalization, and SiLU

activation function) is a conventional convolution layer in the

YOLOv5s network. It encompasses a sequence of operations,

including convolution, batch normalization (Ioffe and Szegedy,

2015), and the SiLU activation function (Elfwing et al., 2018).

YOLOv5 originally employed the BottleneckCSP module instead

of the C3 module for feature extraction. The BottleneckCSP module

combines the concepts of Bottleneck (He et al., 2016) and CSP

(Cross-Stage Partial connections) (Wang et al., 2020a). It involves

three successive convolutional kernel operations, with the output of

the first being processed through two more convolutional kernels.

This sequence culminates in the fusion of unprocessed and

convolved features. The primary objective of the BottleneckCSP

module is to deepen the model.

The CSP module introduced by Wang et al. (2020a) splits the

input into two segments; one undergoes processing via a block (like

Bottleneck), while the other proceeds directly through a 1×1

convolutional layer. These two streams are then recombined. The

C3 module supplants a 1×1 convolutional layer within the

BottleneckCSP module, simplifying the network architecture to

enable the extraction of feature maps and minimize the

computation complexity. The C3 module comprises two

branches, each involving a convolution operation that reduces the

feature map channel count by half. The output from these two

branches is concatenated using the Bottleneck module, followed by

a convolutional layer within the second branch. These processes

tightly integrate the output feature maps from both branches, with a

final convolutional layer generating the output feature map of the

module. Furthermore, SPPF (Spatial Pyramid Pooling Fusion)

augments the ability of the backbone to express features. This

module employs a sequence of three convolutions with identical

kernels, focusing on the amalgamation of features from

various resolutions.
2.2 Content-aware reassembly of features

The YOLOv5 model uses a nearest neighbor interpolation

method for its up-sampling process, utilizing the same kernel for

up-sampling across the feature map. Nevertheless, this approach

does not leverage the semantic information in the feature map

during the up-sampling process, resulting in a significant loss of

features. This study integrates the CARAFE module (Wang et al.,

2019), a novel technique, to address these limitations. The CARAFE

module consists of two main components: a content-aware

reassembly module and a kernel prediction module. It anticipates

and assembles the recombined kernel, reconstructing the features

within predetermined local regions at each point while using the

underlying content details. The CARAFE module dynamically

adjusts and optimizes the reassembled kernels at distinct points
Frontiers in Plant Science 04193
based on the content information, offering superior performance

compared to alternative up-sampling methods like interpolation.

For every predefined location, the utilization of a reassembly kernel

becomes imperative, with the kernel size denoted as kup. The

reassembly procedure is illustrated using (Equation 1):

Ol0 = o
r

n=−r
o
r

m=−r
W l

0
(n,m)

· I(i+n,j+m) (1)

where O and I represent the output and input, respectively. W l0

denotes the location-wise kernel associated with each location   l
0

based on the input. l0 signifies the neighboring location of l, and

r =
kup
2 .

The CARAFE approach significantly enhances the semantic

richness of the reassembled feature maps compared to the nearest

neighbor interpolation up-sampling technique. This approach is

achieved by strategically emphasizing crucial points within localized

regions. In scenarios where tomatoes overlap or are densely packed,

CARAFE’s ability to enhance spatial detail helps the model

distinguish between closely spaced fruits, potentially reducing the

number of merge detections. It also helps the model to improve

localization accuracy in tomato detection. In addition, CARAFE

encompasses a wider scope of observation, adept content handling,

and its lightweight design, culminating in expedited computations.

Figure 2 shows the architectural representation of CARAFE.
3 Materials and methods

3.1 Image acquisition

Images of tomatoes were taken from December 2017 to

November2019 in the greenhouses of a tomato production base,

located in Shouguang city, China, with a digital camera (DSC-

W170, Sony, Tokyo, Japan) at a resolution of 3648×2056 pixels. The

camera was equipped with a 5×Carl Zeiss Vario-Tessar precision

zoom lens. The distance between the camera and the target was

from 500 mm to 1000 mm. Nine hundred and sixty-six images were

captured under natural daylight (sunny and cloudy days) with

different conditions such as shading, sunlight, occlusions, and

overlaps. The training set had 725 images, while the test set

contained 241 images. The scale of tomatoes in the images varies

greatly, ranging from 200 to 1500 pixels in diameter.
3.2 Image augmentation

This study used data augmentation to counteract potential

issues, such as over-fitting or non-convergence, that could arise

during training. The augmentation of images was accomplished by

applying diverse techniques, such as brightness transformation,

blur, horizontal flip, noise, and rotation. These methods were

employed to enhance the resilience of the model against noise

and its ability to remain unaffected by variations in camera

positioning. In particular, introducing a Random Gaussian blur

makes the model more resistant to camera blur, with a threshold of
frontiersin.org
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25 pixels for maximum blur. In addition, the incorporation of

horizontal and vertical flips played a role in fortifying the capacity of

the model to perform consistently regardless of the orientation of

the subject. A visual representation of data enhancement techniques

can be observed in Figure 3.
3.3 The SBCS-YOLOv5s architecture

The YOLOv5 model represents a single-stage object detection

algorithm that introduces substantial enhancements over other

YOLO models. On the other hand, the challenge of achieving

high accuracy and fast speed persists in the tomato detection case,

primarily because of the intricacies of the natural environment,

such as occlusions and overlapping. This study proposes an SBCS-

YOLOv5s model to address this issue, with the incorporation of SE,

BiFPN, CARAFE, Soft-NMS into the YOLOv5s. The first module of
Frontiers in Plant Science 05194
this approach is used for feature extraction, merging the SE module

(Hu et al., 2018) and the C3 module of the YOLOv5s model. This

fusion enhances the network focus on useful information, refines

the feature extraction process, and improves the model’s robustness

to variations in environmental conditions. The neck network

integrates BiFPN (Tan et al., 2020) and CARAFE modules (Wang

et al., 2019) into YOLOv5s, enriching features with more profound

semantic information. The conventional NMS algorithm (Hosang

et al., 2017) used in YOLOv5s was substituted with the Soft-NMS

algorithm (Bodla et al., 2017) to make the network more efficient in

detecting occluded and overlapped fruits. Additional intricacies of

this approach are elaborated upon in subsequent sections. Figure 4

presents the architecture of SBCS-YOLOv5s.

3.3.1 The modified backbone network
The SE attention module (Hu et al., 2018) in Figure 5A is fused

with the C3 module structure into an improved C3SE module. The
A B

D E

C

FIGURE 3

Examples of data enhancement techniques. (A) Input image, (B, C) varied exposure, (D) Noise (salt and pepper), and (E) Horizontal Flip.
FIGURE 2

Overall architecture of the CARAFE module.
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SE module solves the issue of feature maps containing informative

and less relevant channels. The re-calibration process empowers the

network to prioritize informative channels while suppressing the

less useful ones. In addition, the SE module’s ability to adaptively

re-calibrate features helps to improve the robustness of the model to

variations in illumination and environmental conditions. It also

helps to reduce over-fitting, which is essential for tomato detection

to accurately identify the boundaries of individual tomatoes in an

image. Figure 5B presents the structure of the C3SE module. The

weight of each channel is allocated using the interdependence of the

feature channels to facilitate the neural network to focus on

significant feature information and to minimize the impact of

feature redundancy. The SE attention module comprises three key

operations: squeeze, excitation, and scale.

The squeeze operation, also called compression, involves

applying a global average pooling operation to each channel of

the feature map. This compresses the spatial dimensions of the

feature map, converting its size into multiple features while

maintaining the overall channel dimension. For example, if the

input feature map holds a size of H×W×C, and V = ½v1, v2,  …,   vc�
is an example input set, the transformation of the squeeze operation

can be expressed using (Equation 2).
Frontiers in Plant Science 06195
Fsq(Vc) =
1

H �WoH
i=1oW

j=1Vc(i, j) (2)

where c ∈ C, and C denotes the number of feature channels,

while W signifies the feature map width; H corresponds to the

height of the feature map; Fsq denotes the specific squeeze operation

being discussed.

The excitation operation consists of two primary components: a

fully connected layer and a sigmoid activation function. The fully

connected layer incorporates comprehensive information from all

input features. Subsequently, the sigmoid function transforms the

input into a range confined within [0,1]. This process is visually

represented by (Equation 3).

Fex(Fsq,B) = s(B1 · d (B2 · Fsq) (3)

where s symbolizes the sigmoid activation function, d signifies the

ReLU activation function, and Fex denotes the excitation operation. B1
and B2 denote the weights of the fully connected layer, respectively.

Finally, the scale operation combines or multiplies the input

channel weight with the weight derived from the channel feature of

the two preceding operations. (Equation 4) shows the rescaling

operation:
A B

FIGURE 5

Original SE module and improved C3SE module architecture. (A) SE module architecture, (B) C3SE module architecture.
FIGURE 4

The architecture of SBCS-YOLOv5s.
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Fscale(Vc, Sc) = ScVc (4)

where Fscale(Vc, Sc) refers to channel-wise multiplication that

takes place between Sc and Vc.

3.3.2 The modified neck network
The FPN+PANet network was replaced in the YOLOV5s neck

with the weighted BiFPN in this study. The rationale stems from

large-scale objects possessing many pixels, whereas small objects

have few. The features of large objects can be easily maintained in

the convolution process, while the features of the smaller ones can

be easily ignored. The YOLOv3 model introduced the FPN network

structure (Lin et al., 2017), emphasizing the down-sampling process

of semantic information extraction. Based on this, the YOLOv5

incorporates PANet (Liu et al., 2018) to aggregate image features by

incorporating secondary bottom-up fusion, as shown in Figure 6A.

This approach integrates accurate low-level localization signals to

enrich the entire feature hierarchy and facilitate the flow of

information. On the other hand, PANet is characterized by

simple two-way fusion, and their contributions to the output

features often remain unequal because of the varying input

resolutions. Furthermore, feature fusion of PANet involves a

direct addition of distinct input features, leading to unbalanced

output features and complicating computational processes.

The BiFPN, introduced by Tan et al. (2020), is an object detection

model module. Its main strength lies in effectively fusing information

within a deep learning network, ensuring efficiency and accuracy. The

problem of correctly combining multi-scale features from multiple

layers of a convolutional neural network are solved to improve the

detection accuracy of objects at various scales. The bottom-up and top-

down paths are used to construct a feature pyramid that captures fine-

grained features. The BiFPN combines the feature maps from the

bottom-up and top-down paths. Furthermore, to avoid all featuremaps

contributing equally, the BiFPN provides learnable weights for each

input feature map, allowing the network to assign varied priorities to

different scales and resolutions. The notable enhancement brought by

BiFPN is the introduction of a bi-directional connection between

neighboring levels of the network. This augmentation substantially

improves the flow of information and gradient propagation during the
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training process. It also improves to tomato localization, helping the

model to capture details at different scales and make more accurate

predictions of tomato locations. In addition, BiFPN is designed to be

computationally efficient, making it well suited for real-time detection.

Figure 6B shows the BiFPN architecture. (Equation 5) shows the fast

normalized fusion between the feature maps from the bottom-up and

top-down paths.

Ptd
6 = Conv( w1 ·P

in
6 +w2 ·Resize(P

in
7 )

w1+w2+e

Pout
6 = Conv( w

0
1 ·P

in
6 +w

0
2 ·P

td
6 +w

0
3 ·Resize(P

out
5 )

w0
1+w

0
2+w

0
3+e

8><
>: (5)

where the intermediate feature situated at Level 6 along the top-

down pathway is Ptd
6 , while the resulting feature at Level 6 stemming

from the bottom-up pathway is Pout
6 , Conv and Resize correspond to

convolution and sampling operations, respectively. w and ϵ

represent the weight and a small pre-set value to avoid numerical

instability, respectively. Usually, this value was set to 0.0001.

BiFPN improves the detection accuracy compared to the PANet

used in the YOLOv5s model. Nevertheless, the BiFPN employs a

nearest neighbor interpolation method for the up-sampling of

feature maps. Using this approach could lead to a small receptive

field and make the network focus only on sub-pixel spaces, resulting

in the loss of rich semantic information. In this study, the CARAFE

module was introduced to the BiFPN to tackle this problem. This

integration improved feature maps with rich information and high

resolutions. Section 2.2 describes the CARAFE module in detail.
3.3.3 Soft-NMS (non-maximum
suppression) algorithm

The soft-NMS algorithm (Bodla et al., 2017) is a modified version

of the conventional NMS algorithm (Hosang et al., 2017) used by the

YOLOv5 framework. The fundamental principle behind the NMS

algorithm involves selecting the bounding box with the highest

confidence score. It suppresses the other bounding boxes with

significant overlap with the selected box, leading to the missed

detection of overlapping fruits. Moreover, the NMS algorithm does

not perform optimally when dealing with different scales. Equation 6

shows the NMS algorithm:
A B

FIGURE 6

Architectures of PANet and BiFPN. (A) PANet architecture, (B) BiFPN architecture.
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Ŝ i =
Ŝ i,   IoU   (M, b̂ i) < Nt

0,   IoU   (M, b̂ i)   ≥  Nt

(
(6)

where b̂ i and Ŝ i denote the ith predictor and its score,

respectively. Nt is the pre-set threshold; M denotes the candidate

box having the highest score; IoU   (M, b̂ i) is the overlap region

between M and b̂ i.

The objective of the Soft-NMS algorithm is to solve the

limitations of the traditional NMS algorithm approach. It is also

designed to be more tolerant to overlapping objects. This is achieved

using a softening function that progressively decreases the scores of

bounding boxes overlapping with the one possessing the highest

score. The primary goal is to reduce the severe suppression of

surrounding boxes that might be slightly less confident but still

contain useful information. This modification seeks to enhance the

detection accuracy and improve the handling of cases involving

overlapping fruits within the final detection results. And it helps

maintain a consistent ranking of bounding box scores, even when

there is overlap. The Soft-NMS algorithm is outlined in (Equation 7):

Ŝ i =
Ŝ i,               IoU   (M, b̂ i) < Nt

Ŝ ie
−
IoU(M,b̂ i )

2

s ,   IoU   (M, b̂ i)   ≥  Nt

8<
: (7)

where  s represents the hyperparameter of the penalty function.

When the   IoU   (M, b̂ i) exceeds the pre-defined threshold, the

prediction frame confidence score is reduced systematically instead

of being set to zero. As a result, the detection accuracy of overlapping

and occluded fruits can be improved.

3.3.4 Loss function
The loss function used in this study is expressed as (Equation 8),

which encompasses the regression error of bounding coordinates,

the confidence error of the bounding box, and the classification

error of object category.

L = Lossreg + Lossconf + Losscls (8)

In this study, theboundingboxregression loss incorporatestheuseof

CIoU (Complete IoU) as in (Equation 8.a). It could accurately represent

the gap between the prediction and annotation frames, enhancing the

network model during training. It also considers crucial factors, such as

the overlapping area (expressed in Equation 8.b), central point distance,

and aspect ratio (expressed in Equation 8.c) between b and bɡt .

CIoU = 1 − IoU +
d2   (b̂ , bɡt)

c2
+ av (8:a)

with

IoU =  
b̂ ∩  bɡt

b̂ ∪  bɡt
(8:b)

and

v =
4
p2 (tan

−1 wɡt

hɡt
− tan−1

w
h
)2,  a =

v
(1 − IoU) + v

(8:c)

where b and bɡt represent the predicted and ground truth

bounding boxes, respectively. d signifies the distance between the
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predicted center point and the true center point; c is the diagonal

length of the enclosing box covering b and bɡt; a and v are the

positive trade-off and aspect ratio parameters, respectively.

Object classification loss is expressed as (Equation 8.e), wherein

the process is initiated by calculating the confidence C of the cell

grid as in Equation 8.d):

C = P(object)� IoU(b, bɡt) (8:d)

then,

Lossconf =o
s�s

i=1
o
NB

j=1
li,j½Ci · log(~Ci)log(1 − Ci)�

         −o
s�s

i=i
o
NB

j=1
(1 − li,j)½Ci · log~Ci + (1 − Ci)log(1 − ~Ci)

(8:e)

with li,j expresses in (Equation 8.f):

li,j =

1,   if   part   of   j − th   bounding   box   is   in   the   i − th   grid

0,   otherwise

8>><
>>:

(8:f)

where s×s denotes the size of the grid cell; NB stands for the

number of bounding boxes; ~Ci represents the confidence obtained

from the prediction box; Ci signifies the confidence threshold.
3.4 Experimental setup

The experiments of this research were conducted using an Intel

i5 64-bit quad-core CPUs operating at a frequency of 3.30 GHz

(Santa Clara, CA, USA). The system had 16 GB of RAM and an

NVIDIA GeForce GTX 1070Ti GPU with 8 GB memory. The

chosen model framework was PyTorch, with CUDA 11.1 and

Python 3.8.10 for implementation. Table 1 lists some hyper

parameters used in the experiments.
TABLE 1 Configuration of certain hyper-parameters.

Parameters Value

Number of epochs 400

Learning rate 0.001

Optimizer weight decay 94.75

STD momentum 96.3

Warm-up initial momentum 0.8

Batch size 8

Box loss gain 0.05

Cls (classification loss gain) 0.5

Cls_pw (cls BCE loss positive weight) 1.0

Obj (object loss gain) 1.0

Anchor_t (anchor multiple threshold) 4.0
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The criteria used for assessing the performance of fruit detection

encompassed precision, recall, mean average precision (mAP), and F1
score (Padilla et al., 2020). The metrics are defined in (Equations 9–12):

R =
True   Positive

True   Positive + False  Negatiive
(9)

P =
True   Positive

True   Positive + False   Positive
(10)

where R and P are the recall and precision, respectively. Using

mAP is a valuable approach to assess the model performance across

different confidence levels.

mAP =
1
Ncls

o
Ncls

a=1  
APa (11)

with AP expresses in (Equation 11.a):

AP =o
Q

q
(rq+1 − rq)max

~r≥rq+1
p(~r) (11:a)

where p(~r) represents the calculated precision at a given recall

value (~r), whileNcls is the total number of classes.

F1 =
2� R� P
R + P

(12)
4 Results and discussions

4.1 Ablation study

The first step in this study was to determine which attention

mechanism (CBAM (Woo et al., 2018), ECA (Wang et al., 2020b), CA
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(Hou et al., 2021), SE (Hu et al., 2018)) works better on the tomato

datasets after fusing the original C3 module network. From Table 2, we

can see that integrating the SE attention module with the C3 module

led to a notable outcome. The mean average precision with an IoU of

0.5 to 0.95 reached 85.1%, which is the best result.

Since the SE attention module relies on modeling channel-wise

relationships and adaptive re-calibration of feature maps to capture

important information, it helps to improve feature extraction of the

model. The fusion of the SE attention module with the C3 module was

implemented within the backbone network. Furthermore, the

integration of BiFPN, CARAFE, and Soft-NMS was used in the neck

to improve the detection capabilities of YOLOv5s. An ablation study

was carried out to evaluate the effectiveness of each component.

Integrating the SE attention module with the C3 module resulted

in a 0.9% increase in the mean average precision with an IoU of 0.5 to

0.95, as shown in Table 3. This enhancement underscores the efficacy

of the SE attention module to channel the model towards useful

information. Subsequently, a further increase of 0.6% in mAP was

achieved by replacing PANet with BiFPN. This is because the BiFPN

assists the model in determining useful weights for comprehensive

fusion of high-level and low-level features, thereby improving detection

performance. Discernible performance improvements became evident

after incorporating the CARAFE module as an up-sampling operator

within PANet and BiFPN. This is due to the fact that CARAFE

enhances spatial details and improves feature map resolution better

than the original up-sampling method. On the other hand, the most

remarkable results emerged when the Soft-NMS algorithm was applied

to the BiFPN+CARAFE configuration, showcasing 3.5% advancement

over the original YOLOv5s model. This proves the advantage of the

continuous weighting scheme of Soft-NMS. This sequence of

observations indicates a substantial enhancement in detection

performance through different modifications.
TABLE 2 Ablation analysis of different attention mechanisms.

C3 CBAM ECA CA SE mAP (0.5:0.95) (%)

Modifications

✓ 84.2

✓ ✓ 83.7

✓ ✓ 84.9

✓ ✓ 84.4

✓ ✓ 85.1
TABLE 3 Ablation analysis of different components.

C3SE PANet BiFPN CARAFE Soft_NMS mAP (0.5:0.95) (%)

Modifications

✓ 84.2

✓ ✓ 85.1

✓ ✓ 85.7

✓ ✓ ✓ 86.7

✓ ✓ ✓ 87.2

✓ ✓ ✓ ✓ 87.7
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4.2 Feature map visualization

Visualizations were performed to compare the improved model

variants with the original YOLOv5s. Figure 7A presents an input

image with tomatoes annotated for improved visibility. Figures 7B,

C show the difference between the C3 and C3SE modules,

respectively. In particular, Figure 7C highlights finer details that

are more discernible. This observation underscores the role of the

SE module in steering the backbone network towards useful

information. Figures 7D, E represent the original neck of

YOLOv5s and the modified neck used in SBCS-YOLov5s,

respectively. Figure 7E shows an improved feature map with

heightened resolution after incorporating the BiFPN and

CARAFE modules. These enhancements facilitate efficient context

information aggregation and seamless fusion within the network.

Every modification produced superior features with high

resolution compared to those in the original model (Figure 7). This

visual evidence substantiates that SBCS-YOLOv5s excels in accuracy,

resilience, and efficiency when compared to the original model.
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4.3 Comparison of the SBCS-YOLOv5s
with other detection algorithms

The performance of SBCS-YOLOv5s was compared with

several other object detection models. These models included

Faster-RCNN (Ren et al., 2015), Dynamic-RCNN (Zhang et al.,

2020), YOLOv3 (Redmon and Farhadi, 2018), YOLOv3-tiny

(Redmon and Farhadi, 2018), YOLOv4 (Boschkovskiy et al.,

2020), YOLOv4-tiny (Boschkovskiy et al., 2020), YOLOv7-tiny

(Wang et al., 2022), and YOLOv5s (Jocher et al., 2020).

Themean average precision with IoU of 0.5 to 0.95 was 3.8%, 9.7%,

5.8%, 16.4%, 4.6%, 9.3%, 4.5%, and 3.5% higher than those of Faster-

RCNN, ynamic RCNN, YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-

tiny, YOLOv7-tiny, and YOLOv5s, respectively (Table 4).

Furthermore, the detection time achieved 2.6 ms per image, fulfilling

the real-time detection criteria. Moreover, the precision of the proposed

model improved by 0.3%, 1.5%, 2.5%, 1.7%, 1.4%, 1.5%, 0.6%, and 1.4%

compared to the Faster RCNN, Dynamic RCNN, YOLOv3, YOLOv3-

tiny, YOLOv4, YOLOv4-tiny, YOLOv7-tiny, and YOLOv5s,
A B

D E

C

FIGURE 7

(A) Annotated input image, (B) the feature of the C3 module of YOLOv5s, (C) feature of the C3SE module of SBCS-YOLOv5s, (D) feature of the
original neck of YOLOv5s, and (E) feature of neck of SBCS-YOLOv5s.
TABLE 4 Comparison of the different models.

Model Precision (%) Recall (%) F1 (%) mAP (0.5) (%) mAP (0.5:0.95) (%) Time (ms)

Faster-RCNN
(VGG-16)

96.5 94.8 95.6 97.8 83.9 3.9

Dynamic RCNN 95.3 93.2 94.2 96.6 78.0 2.4

YOLOv3 94.3 92.4 93.4 97.1 81.8 4.8

YOLOv3-tiny 95.1 91.9 93.4 97.4 71.3 3.8

YOLOv4 95.4 95.3 95.3 97.5 83.1 4.3

YOLOv4-tiny 95.3 94.0 94.6 98.0 78.4 3.5

YOLOv7-tiny 96.2 94.2 95.1 98.2 83.2 4.3

YOLOv5s* 95.4 94.5 95.4 98.2 84.2 4.1

SBCS-YOLOv5s 96.8 97.3 97.04 98.7 87.7 2.6
*YOLOv5s v6. 1 version is used in this study.
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respectively. The F1 score and mAP with an IoU of 0.5 increased by

1.64% and 0.5%, respectively, compared to the original YOLOv5s

model. Hence, the performance of SCBS-YOLOv5s was improved

compared to other object detection networks. Importantly, the

experimental results revealed the efficient real-time detection

capability of SCBS-YOLOv5s in accurately identifying tomatoes

within their natural environmental context.

The detection performance of the improved YOLOv5s

surpassed that of alternative models while demonstrating greater

efficiency (Figure 8). The mean average precision with an IoU of 0.5

to 0.95 exhibited a notable 3.5% improvement compared to the

original YOLOv5s model. Furthermore, the processing time for

detecting each image was decreased by 1.5ms. These results

collectively signify the improved model prowess in achieving

improved accuracy, compactness, and efficiency when tasked with

fruit detection in a natural environment.
4.4 Performance of the improved model
under different conditions

In a natural environment, tomatoes are exposed to different lighting

conditions because of the uneven illumination. Moreover, they can

become obscured by leaves or branches and might overlap. The

performance of the improved model was assessed across diverse

scenarios. Table 5 shows how the tomatoes were classified into sunshine
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andshadecasesregardingillumination.Withinthetestdataset, therewere

425 tomatoes under shaded conditions and 487 tomatoes under sunlight

conditions. In terms of obscured and overlapped severity, the tomatoes

were classified asmild and significant occlusion, as delineated in Table 5.

The latter pertains to situations where tomatoes are obstructed by leaves,

branches, or other tomatoes by over 50%.

The correct detection rate for tomatoes under sunlight

conditions was 97.2%, while the rate was 97.4% when tomatoes

were in shaded conditions (Table 5). False identification was 3.1%

for sunlight and 3.3% for shade, respectively. Approximately 97.7%

of the tomatoes were detected accurately when they exhibited mild

occlusion, with a correctness rate of 96.4% in the case of severe

occlusion (Table 5). The rates of missed identification were 2.3%

and 3.6% for mild and severe occlusions, respectively. Figure 9

presents some examples of detection outcome instances under

various conditions. The results revealed the robustness of the

improved model in effectively managing variations in

illumination and situations involving overlapping fruits.
4.5 Qualitative analysis between SBCS-
YOLOv5s and the original YOLOv5s model

Figure 10 shows some prediction results from the SBCS-

YOLOv5s and the original YOLOv5s model.

As shown in Figure 10, the detection performance of SBCS-

YOLOv5s was superior to the original YOLOv5s model. In

particular, Figure 10G visually demonstrates the improved model

focus on more useful information and retain the features for small

tomatoes. Moreover, the original YOLOv5s model returned some

false negatives and false positives, as shown in Figures 10E, F.
5 Conclusions and future work

This paper introduced an accurate and efficient tomato

detection solution named SBCS-YOLOv5s, which builds upon the

YOLOv5s framework. The accuracy and efficiency of the model

were improved by substituting the original C3 module within

YOLOv5s with a C3SE module, combining the SE attention

module with the C3 module. This change amplified the feature

extraction capabilities. Furthermore, the PANet in the neck of the

original model was replaced with a weighted Bi-directional Feature

Pyramid Network (BiFPN), enhancing the adaptability of the

detector to objects of varying scales by fusing high-level and
FIGURE 8

Detection performance of different models (accuracy vs.
inference time).
TABLE 5 Performance of the improved model under different conditions.

Conditions Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 473 97.2 15 3.1 14 2.8

Shading 425 414 97.4 14 3.3 11 2.6

Mild occlusion 609 595 97.7 17 2.8 14 2.3

Severe occlusion 303 292 96.4 12 3.9 11 3.6
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A B
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J K L
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FIGURE 9

Some examples of tomato detection results under different conditions. (A–C) sunlight cases, and (D–F) shade cases, (G–I) slight occlusions, and (J–
L) severe occlusions.
A B

D E F

G IH

C

FIGURE 10

Some detection results from the two models. (A–C) ground Truth, (D–F) prediction images from the YOLOv5s model, and (G–I) prediction images
from SBCS-YOLOv5s.
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bottom-level features at high resolution. Furthermore, the

traditional up-sampling operator within the BiFPN structure was

substituted with the CARAFE module to yield more refined

semantic information. Finally, the conventional NMS algorithm

was replaced with the Soft-NMS algorithm to improve the detection

accuracy of overlapped and occluded fruits.

A thorough experimentation was carried out to validate the

performance of SBCS-YOLOv5s. An ablation study was

instrumental in substantiating the efficacy of each modification.

The findings of the experiment showed that the mAP with an IoU of

0.5 to 0.95 had 3.8%, 9.7%, 5.8%, 16.4%, 4.6%, 9.3%, 4.5%, and 3.5%

improvements compared to other object detection algorithms,

reaching 2.6ms per image in terms of detection time.

Furthermore, the experiments underscored the robustness of

SBCS-YOLOv5s because it effectively detected tomatoes across

diverse scenarios involving varying lighting and occlusion conditions.

Despite the excellent performance of the improved model, there

is room for enhancing the detection performance. In the future

study, the explicit incorporation of contextual information will be

explored to refine the detection accuracy. Moreover, we will

consider incorporating information about tomato maturity to

enable differentiation among tomatoes at distinct growth stages

based on SBCS-YOLOv5s presented in this study.
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Automatic classification of
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hierarchical vision transformer
and transfer learning
Dianyuan Han and Chunhua Guo*

Media and Communications College of Weifang University, Weifang, Shandong, China
Background: Identification of leaf diseases plays an important role in the growing

process of different types of plants. Current studies focusing on the detection and

categorization of leaf diseases have achieved promising outcomes. However, there

is still a need to enhance the performance of leaf disease categorization for

practical applications within the field of Precision Agriculture.

Methods: To bridge this gap, this study presents a novel approach to classifying

leaf diseases in ligneous plants by offering an improved vision transformer model.

The proposed approach involves utilizing a multi-head attention module to

effectively capture contextual information about the images and their classes.

In addition, the multi-layer perceptron module has also been employed. To train

the proposed deep model, a public dataset of leaf disease is exploited, which

consists of 22 distinct kinds of images depicting ligneous leaf diseases.

Furthermore, the strategy of transfer learning is employed to decrease the

training duration of the proposed model.

Results: The experimental findings indicate that the presented approach for

classifying ligneous leaf diseases can achieve an accuracy of 85.0% above.

Discussion: In summary, the proposedmethodology has the potential to serve as

a beneficial algorithm for automated detection of leaf diseases in ligneous plants.
KEYWORDS

precision agriculture, transformer, neural networks, machine vision, transfer learning
1 Introduction

The occurrence of leaf diseases in plants holds significant relevance in the field of plant

pathology. Severe leaf disease can have detrimental effects on plants, including leaf drying

and hindered bud formation. It can weaken the health of the plant and worsen the

susceptibility to other diseases Kai et al. (2011); Bo et al. (2019); Xu et al. (2020);Wang et al.

(2021; 2022). In addition, the occurrence of fruit leaf disease can lead to a decline in both
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the quantity and quality of fruits, as well as increase the vulnerability

of nearby plants to infection. Given the strong reliance of the

economy on agricultural productivity, the impact of the leaf disease

on the environment becomes particularly significant if preventive

measures are not implemented in a timely manner. Therefore, the

prompt identification of diseases affecting fruit leaves is crucial for

human well-being Patil et al. (2017); Afzaal et al. (2021); Mahum

et al. (2022). In general, the identification and categorization of leaf

diseases have predominantly depended on the human visual system,

which is error prone, is time-consuming and labor-intensive.

Hence, the implementation of automated leaf disease

classification is imperative in the context of fruit production for

mitigating both the production and economic losses Sneha and

Bagal (2019); JencyRubia and BabithaLincy (2021); Y et al. (2022).

In recent decades, there has been a significant surge in the

utilization of machine learning-based algorithms for addressing leaf

disease categorization problems. Numerous machine vision

algorithms have been proposed to classify illnesses affecting plant

leaves. In the study conducted by Singh and Misra (2017), the

authors proposed an image segmentation method for the automatic

identification and classification of plant leaf diseases, specifically

focusing on the minor leaf disease common in pine trees within the

United States. The researchers investigated the utilization of several

classifier algorithms for the purpose of identifying plant leaf disease.

A system for automatic detection of plant disease using image

processing techniques was proposed by the authors Mounika and

Bharathi (2020). The approach was used for calculation of textural

data pertaining to illnesses affecting plant leaves. In their work,

Kulkarni and Sapariya (2021) proposed a method to automatically

detect and classify leaf illnesses, which encompasses many stages,

including image gathering, image pre-processing, segmentation,

and classification. In their study, Reddy et al. (2021) employed

Support Vector Machine (SVM) and Random Forest algorithms for

the purpose of detecting illnesses in leaves. This study compared

assessment measures, such as Root Mean Square Error (RMSE),

Peak Signal Noise Ratio (PSNR), for the diseaseaffected regions of

the leaves to assess their potential impact on agricultural output.

In recent years, deep learning has gained significant interest due

to its remarkable achievements in many domains, such as natural

language processing (NLP) and machine vision. Consequently, there

have been additional advancements in the field of plant leaf disease

categorization by the utilization of deep learning models. Liu et al.

(2017) introduced a methodology for detecting apple leaf diseases

utilizing deep convolutional neural networks (CNNs). The model

reported in this study is capable of generating an ample number of

diseased images with a deep learning model, AlexNet. The study

utilized a dataset including 13,689 images depicting various apple leaf

illnesses. The CNN model developed in this research was trained to

accurately classify four types of apple leaf diseases. In the study

conducted by Anagnostis et al. (2020), a resilient CNN model was

developed to address the timely identification of anthracnose, a

prevalent fungal disease that affects numerous tree species globally.

This model was to use to classify images of plant leaves as either

infected or uninfected by anthracnose. The researchers acquired a

dataset consisting of grayscale and RGB images. Then, they utilized a

rapid Fourier transform to extract characteristics from the images.
Frontiers in Plant Science 02205
Finally, to implement the classification task, they employed a CNN

model. To effectively identify olive leaf disease, Ksibi et al. (2022)

proposed the utilization of ResNet50 and MobileNet models for

image feature extraction, employing the technique of feature

concatenation. To train the deep learning models employed in this

investigation, a dataset including 5,400 images of olive leaves was

utilized. These images were acquired from an olive grove using an

unmanned aerial vehicle (UAV) equipped with a camera. In their

study, Devi et al. (2022) proposed a methodology for the prediction

and classification of corn leaf disease. The authors employed transfer

learning and the Alexnet model, leveraging the Adaptive Moment

Estimation (ADAM) optimizer and the Stochastic Gradient Descent

with momentum (SGDM) mechanism. The model was trained and

evaluated using a dataset consisting of 5,300 images, which were

categorized into four different types: healthy, blight, common rust,

and gray leaf spot. Yao et al. (2022) conducted a study focusing on the

identification of kiwifruit leaf disease. They developed a publicly

available dataset while using the YOLOX target detection algorithm

to mitigate the influence of environmental elements. The study of Yu

et al. (2022) introduced a method for efficiently detecting soybean

illnesses. It leverages a residual attention network (RANet) model.

This study included the incorporation of three types of soybean leaf

spot diseases, namely soybean brown leaf spot, soybean frog eye leaf

spot, and soybean phyllosticta leaf spot, into the dataset. The OTSU

algorithm was utilized to pre-process the initial images for

eliminating the surrounding features. Additionally, the image

dataset was augmented by the application of image enhancement

algorithms. Additionally, the residual attention layer was constructed

by integrating attention processes into a ResNet18 model.

The majority of the preceding approaches in the field of leaf

disease classification have predominantly employed CNN

architectures. Regrettably, the CNN-based models have

limitations due to the local receptive field inside the convolutional

modules. This characteristic directs attention towards the

surrounding region in an image, perhaps overlooking the

connections between distant pixels. In contrast, the transformer is

renowned for its utilization of an attention mechanism to effectively

capture and represent the extensive inter-dependencies within the

data samples. The successful performance of transformer in NLP

tasks has resulted in its integration and use in the field of computer

vision Liu et al. (2021). For instance, the work conducted by Qian

et al. (2022) introduced a novel strategy for classifying maize leaf

diseases using a vision transformer-based method. The authors of

the study also gathered RGB images from publicly available

databases and experimental fields, classifying them into four

distinct categories: southern corn leaf blight, gray leaf spot,

southern corn rust, and healthy specimens. Nevertheless, the

vision transformer model proposed in this study might provide

challenges when used to high-resolution images due to the

quadratic computational complexity of the self-attention

mechanism in relation to image resolution. Furthermore, the

original vision transformer necessitates a substantial allocation of

memory capacity and processing resources.

Taking the aforementioned research into consideration, we

propose a hierarchical vision transformerbased approach by

employing transfer learning strategy, for classifying leaf diseases of
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ligneous plants. The hierarchical design in the proposed vision

transformer yields notable reductions in computational resource

requirements and the number of weighting parameters for the

vision transformer. Furthermore, this work utilizes the weighting

factors that were pre-trained on the dataset ImageNet Russakovsky

et al. (2014). To assess the effectiveness of the suggested methodology,

a subset of a publicly available dataset was utilized. This subset

comprises a total of 22 types of ligneous leaf images. Furthermore, a

series of comparative tests were carried out to evaluate the

performance of the suggested methodology as well as the state-of-

the-art methods. The experimental findings provide evidence that the

suggested methodology outperforms the state-of-the-art techniques

in terms of accuracy, precision, recall, and, F1 score.

In general, the contributions of this study include:
Fron
• A leaf disease classification pipeline is proposed. The

proposed model primarily consists of a hierarchical

vision transformer.

• The presented vision transformer model comprises of two

channels, which are used to extract the features from the

original leaf images and the edges in the corresponding

images, respectively.

• The experimental findings prove the superiority of the

proposed methodology over the state-of-the-art algorithms.
The subsequent sections of this article are structured in the

following manner. Section 2 presents an elaborate exposition of the

suggested transformer concept. Section 3 provides a detailed

account of the experimental methodology employed in this study,

as well as the subsequent findings and their analysis. Finally, The

study concludes at Section 4.
2 Methodology

2.1 Dataset collection and pre-processing

The dataset utilized in this research is sourced from the publicly

accessible plant dataset of AI Challenger 2018 Wu et al. (2017),

which has a total of 10 plant specimens, each classified into one of

27 categories representing either leaf diseases or healthy conditions.

In a systematic manner, a total of 61 image classes have been

categorized into distinct groups based on species, pest species, and

severity levels. The objective of this work is to categorize diseases

affecting ligneous fruit leaves. Therefore, only the leaves that were

affected by diseases were selected from the dataset for the purposes

of training and validation. In this study, a total of 22 categories of

images depicting leaf diseases were included in the dataset. These

categories encompassed both sick leaves and healthy leaves.

As seen in Figure 1, the training set comprises 11,603 images,

whereas the testing set consists of 1,668 images. These images are

categorized into 22 distinct classes. Furthermore, the dataset

includes a collection of example images, as seen in Figure 1.

These images encompass both healthy and sick leaves.

In this study, the utilization of transfer learning is employed to

improve the performance of the proposed approach, taking
tiers in Plant Science 03206
inspiration from the work of Chen et al. (2020). To achieve this,

the proposed model is initially trained on the ImageNet dataset

Russakovsky et al. (2014), considering the relatively small size of the

presented image dataset. In addition, the images are resized into a

uniform dimension of 224×224 to minimize the computing

resources needed during the training phase. Moreover, the

present study employs a set of data augmentation techniques to

increase the number of image samples, which can further enhance

the generalization of the proposed model and mitigate the risk of

over-fitting during the training process. These techniques include

RandomFlip, Color Jitter, Cutmix Yun et al. (2019), and Mixup

Zhang et al. (2017).
2.2 Overall framework

The proposed vision transformer model is provided in Figure 2,

which is a typical two-channel swin vision transformer Liu et al.

(2021) model, and there is no weighting parameter sharing between

these two channels.

As seen in Figure 3, the input of the lower channel is achieved

by the utilization of the Sobel operator Liu and Wang (2022) and

the continuous image fusion operation. The edge Sobel operator is

employed on the original image in order to provide input for the

suggested methodology. Initially, the gray-scale equivalent is

derived from each original image. Next, the original image

undergoes convolution with the Sobel operators of size 3×3 in

both the horizontal and vertical axes. The specific characteristics of

the horizontal and vertical Sobel operators, denoted as Gx and Gy

respectively, are outlined below in Equations 1 and 2.

Gx =

+1 0 −1

+2 0 −2

+1 0 −1

2
664

3
775� I, (1)

Gy =

+1 +2 +1

0 0 0

−1 −2 −1

2
664

3
775� I, (2)

where the original image is taken as I, and let Gx be equal to the

transpose of Gy. It is worth noting that the elements in the operators

Gx and Gy are differentiable. The starting values of the convolutional

layer, also known as the Sobel operator layer, are determined by the

elements in the Gx and Gy operators. These values may be optimized

by a back-propagation approach during the training phase of the

proposed transformer. In addition to combining the output of these

two channels through concatenation, the classification process

involves the utilization of a softmax classifier, an average pooling

layer, and a fully-connected layer.
2.2.1 Details of the backbone
As seen in Figure 2, the configuration of blocks in each channel

and the size of tokens may be adjusted to accommodate diverse

scales of machine vision applications. In accordance with the

present investigation, the quantity of blocks in each channel is
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multiplied by a factor of 2, 2, 6, and 2, respectively. Following the

input technique, the input image is initially partitioned into non-

overlapping patches of size 4×4. Hence, the feature dimension of a

single patch may be calculated as the product of its width, height,

and number of color channels, resulting in a value of 48 (where 3

represents the number of RGB channels). In a manner akin to the

vision transformer proposed by Dosovitskiy et al. (2020), the

approach involves treating each patch as a token, where the
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feature representation of a token is obtained by concatenating the

pixel values inside the associated patch. Different from the original

vision transformer, the proposed transformer model leverages the

swin trans former b lock and the sh i f t -window se l f -

attention mechanism.

In the initial stage, a linear embedding layer is employed to

project the original feature into a dimension of arbitrary size (C=96

in the context of this work). Next, a series of swin transformer
FIGURE 1

A collection of sample images depicting various types of leaf diseases. The leaves in the top row exhibit signs of good health. The leaves exhibiting
signs of illness are seen in the bottom row.
FIGURE 2

The suggested model consists of a two-channel swin vision transformer, which exhibits a certain overall structure. The top channel of the proposed
model receives an initial image as its input, while the lower channel gets the edge information of the original image as its input. It is worth noting
that the value of C, which is equal to 96, might vary depending on the architecture of the model.
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blocks are utilized on the tokens, incorporating two distinct forms

of self-attention modules. Furthermore, it should be noted that the

number of tokens in the swin transformer blocks stays consistent

with the linear embedding unit, which is calculated as H
4 � W

4 .

The hierarchical representation is generated by the provided

model through the utilization of patch merging modules, which

effectively down-sample the feature resolutions by a factor of 2. The

first merger module and feature modification are denoted as Stage 2,

which are then repeated as Stage 3 and Stage 4. Furthermore, the

dimensions of the output features progress from Stage 1 to Stage 4

a s H
4 � H

4 � C, H
8 � H

8 � C,   H16 � H
16 � C, a n d H

32 � H
32 � C,

respectively. The hierarchical representation is primarily

distinguished between the swin vision transformer Liu et al.

(2021) and the original vision transformer Dosovitskiy et al.

(2020) by the inclusion of Stage 2, Stage 3, and Stage 3 together.

The given methodology does not include the utilization of any class

taken. In this approach, the output vector of dimensions N =
H
32 � W

32 is generated by using global average pooling followed by a

fully-connected layer. The linear classifier then takes into account

the first C components of this output vector.

2.2.2 Swin transformer block
Each stage of the proposed model consists of the swin

transformer blocks. And each swin transformer block consists of

consecutive modules, as shown in Figure 4. In this architecture,

there are two important modules W-MSA and SW-MSA, which

represent the multi-head self-attention (MSA) with a standard

window and the MSA with a shifted window, respectively.

The mathematical representation of the consecutive swing

transformer modules can be articulated in Equations 3–6:

bz l = W −MSA(LN(zl−1)) + zl−1, (3)

zl = MLP(LN(bz l)) + bz , (4)
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ẑ l+1 = SW −MSA(LN(zl)) + zl , (5)

zl+1 = MLP(LN(ẑ l+1)) + ẑ l+1, (6)

where the notation W-MSA refers to window-based MSA, MLP

stands for multiple layer perception Tolstikhin et al. (2021), SW-

MSA represents shifted-window MSA, and LN signifies layer

normalization Ba et al. (2016).

2.2.3 Shifted window-based self-
attention mechanism

In contrast to the initial vision transformer that heavily relies on

global self-attention, which necessitates calculating the relationships

between a token and all other tokens, the window-based MSA

module employs a window of size M × M (with a default value of

M=7) to restrict the extent of calculation. Hence, the computational

complexity becomes more manageable with the incorporation of

the window-based self-attention mechanism, as opposed to the

quadratic complexity of the vision transformer Dosovitskiy et al.

(2020), which is dependent on the image resolution h × w (as shown

in Equations 7, 8).

Ω(MSA)  =  4hwC2 + 2(hw)2C, (7)

Ω(W −MSA)  =  4hwC2 + 2M2hwC, (8)

where h and w denote the height and width of an image, C=96,

and M=7 in the following settings.

Furthermore, the SW-MSA strategy is intended to enhance the

encoding of global relationships among the pixels in multiple windows.

The use of the relationship across many windows may be maximized

with the introduction of SW-MSA. As seen in Figure 5, the partitioning

method of the regular window is employed in layer l, where self-

attention is computed within each window. In the subsequent layer,

denoted as l + 1, the partitioning of the window is adjusted both
FIGURE 3

The formation of the input for the bottom channel of the proposed vision transformer model.
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horizontally and vertically, resulting in the creation of a greater number

of distinct windows. Thus, the self-attention calculation in Layer l+1

traverses the initial windows in Layer l.

It should be noted that the loss function employed in the

proposed model is a cross-entropy loss. This loss is computed by

comparing the ground truth category of the image with the

classification output given by the suggested model, as seen in Figure 2.
3 Experiments

3.1 Implementation details

The tests were done employing four NVIDIA RTX 3080 GPUs, the

PyTorch deep learning framework Paszke et al. (2019) version 2.0.1,
Frontiers in Plant Science 06209
and the Python programming language version 3.8.3. The backbone of

the suggestedmodel consists of the Swin-T vision transformer, which is

employed for each channel. The dimensions of the input images are

standardized to 224×224. Furthermore, the suggested swin vision

transformer was initialized using the pre-trained weighting

parameters of ImageNet Russakovsky et al. (2014). Typically, the

hyper-parameters employed in the experiments encompass the

subsequent elements, as shown in Table 1 To note that the

experiments by using the proposed approach were conducted in a

10-fold cross-validation scheme. Meanwhile, the hyper-parameters

were determined by using a trial-and-error strategy.

In order to assess the effectiveness of the suggested model and

the comparison methodologies, the experiments contained several

assessment measures, including accuracy, precision, recall, and F1

score (as shown in Equations 9–12).
FIGURE 5

The diagram depicting the SW-MSA mechanism employed in the proposed methodology. The red boxes are used to indicate the local window,
which serves the purpose of constraining the scope of self-attention calculation.
FIGURE 4

The detailed components inside the Swin Transformer model. The abbreviation LN is used to refer to layer normalization. The normal and shifted-windows
multi-head self-attention modules are denoted as W-MSA and SW-MSA, respectively. The acronym MLP stands for multiple-layer perception. .
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Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1 =
2� Precision� Recall
Precision + Recall,

(12)

where TP, TN, FP, and FN denote number of true positive, true

negative, false positive, and false negative, respectively.
3.2 Ablation study

The proposed vision transformer model incorporates two

distinct topologies for swin vision transformers. To evaluate the

efficacy of the introduced swin vision transformer, a series of

ablation experiments were conducted on a publicly available

dataset. These experiments involved varying the settings of the

introduced models, which were used to replace the original settings

of the proposed approach. The original approach consisted of a

vision transformer Dosovitskiy et al. (2020) and the Sobel operator

with fixed 3×3 values.

As seen in Figure 6, it is evident that the accuracy of the suggested

methodology surpasses that of the model utilizing the original vision

transformer or the fixed Sobel operator. The transformer model

under consideration has demonstrated a performance improvement

of 2.2% and 1.4% compared to the vision transformer version and the

fixed Sobel operator version, respectively, when evaluated on a subset

comprising 25% of the utilized dataset. Furthermore, the transformer
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model under consideration has demonstrated a performance

improvement of 2.22% and 1.40% compared to the vision

transformer version and the fixed Sobel operator version,

respectively, when evaluated on 50% of the identical dataset.

Hence, the selected model was deemed suitable as the foundational

framework for the subsequent investigations.
3.3 Experimental results

To evaluate the performance of the proposed approach in a fair

manner, the comparison experiments were conducted between the

state-of-the-art methods, including, and ours on the same dataset as

provided in Table 2.

In order to objectively assess the performance of the proposed

approach, a series of comparative experiments were conducted.

These experiments involved benchmarking the proposed approach

against several state-of-the-art methods, namely AlexNet

Krizhevsky et al. (2012), GoogleNet Szegedy et al. (2014), VGG

Abas et al. (2018), ResNet101 Zhang (2021), EfficientNetB3 Singh

et al. (2022), Inception V3 Jenipher and Radhika (2022), MobileNet

V2140 Elfatimi et al. (2022), and vision transformer Dosovitskiy

et al. (2020). In the experiments, these state-of-the-art methods

adopted their original settings in the literature. To note that the

former seven state-of-the-art algorithms are CNN models. And the

proposed approach was inspired by the work of the last model

vision transformer. Meanwhile, the evaluation was carried out on

the dataset specified in Table 2.

As seen in Table 3, the suggested strategy exhibits superior

accuracy, precision, recall, and F1 score compared to existing state-

of-the-art approaches. To provide specific results, our method

demonstrates an increase in overall accuracy of 2.1% when

compared to MobileNet V2140. Additionally, our proposed

approach exhibits improvements in Precision, Recall, and F1 score
FIGURE 6

Ablation study with different settings with ratios (25% and 50%) of the training set in the publicly available dataset.
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by 2.6%, 2.7%, and 2.7% respectively, when compared to MobileNet

V2140. Furthermore, even when compared to the original vision

transformer, our approach showcases enhancements in accuracy,

Precision, Recall, and F1 score by 1.1%, 1.5%, 0.59%, and 1.1%

respectively. In summary, the suggested methodology demonstrates

higher performance compared to both CNN-based and vision

transformer-based algorithms. This provides evidence of the

prospective capability of the proposed technique in feature extraction.

In order to assess the effectiveness of the suggested methodology

on various image categories within the leveraging dataset, we have

included the accuracy-based confusion matrix (as seen in Figure 7)

for the proposed technique. This matrix pertains to the 22

categories of leaf disease images inside the public dataset. The

majority of the categories have demonstrated encouraging

outcomes. The leaf disease images that exhibit inadequate

classification pertain to the plant species “Apple” and “Citrus.”

The category labeled as “Citrus healthy” can sometimes be mistaken

with the category known as “Citrus Greening June general.” The

attribution of the resemblance between various forms of leaf

diseases is warranted. Another challenging classification

assignment involves distinguishing between “Apple_Scab general”

and “Apple_Scab serious.” This phenomenon may be ascribed to

the existence of two distinct variants of an image falling under the

overarching classification of “Apple_Scab.”

In addition, the T-distributed stochastic neighbor embedding (t-

SNE) was implemented using the suggested methodology, as seen in

Figure 8, van der Maaten and Hinton (2008). It should be noted that

t-SNE is a computational approach employed for the purpose of

visualizing the multidimensional feature space of the 22 categories of

sick leaves in a two-dimensional (2D) format. Figure 8 presents a

summary of the t-SNE clustering outcomes for both the output

produced by the suggested technique and the ground truth. Figure 8

exhibits a notable clustering pattern as classes 16 and 17 are closely

packed together on the right side. It should be noted that the distinct

attributes of these leaf images can only be ascribed to a limited

number of locations that are outside the clusters.
3.4 Discussion

The utilization of CNN models in deep learning has become

prevalent. These models possess the capability to extract feature

maps from images. Furthermore, the effectiveness of feature

extraction may be enhanced by employing a network structure
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with increased depth. Nevertheless, the efficacy of CNNs may be

limited due to the inherent constraint of the convolutional module,

which primarily emphasizes the analysis of small receptive fields

inside the images. This phenomenon rapidly results in the disregard

of the interconnections among distant pixels within an image. In

addition, the process of enhancing the performance of deeper

convolutional neural network models necessitates a greater

allocation of processing resources.
TABLE 2 Distribution of the images in the dataset of this study.

Class Label Name No. of train-
ing images

No. of
testing
images

1 Apple healthy 1,185 169

2 Apple_Scab general 211 30

3 Apple_Scab serious 152 22

4 Apple Frogeye Spot 427 61

5 Cedar Apple
Rust general

142 20

6 Cedar Apple
Rust serious

40 6

7 Cherry healthy 598 85

8 Cherry_Powdery
Mildew general

116 12

9 Cherry_Powdery
Mildew serious

110 18

10 Grape healthy 294 42

11 Grape Black Rot
Fungus general

381 54

12 Grape Black Rot
Fungus serious

462 66

13 Grape Black Measles
Fungus general

503 74

14 Grape Black Measles
Fungus serious

419 59

15 Grape Leaf Blight
Fungus general

61 9

16 Grape Leaf Blight
Fungus serious

630 90

17 Citrus healthy 367 52

18 Citrus Greening
June general

1,828 269

19 Citrus Greening
June serious

1,799 262

20 Peach healthy 251 36

21 Peach_Bacterial
Spot general

857 122

22 Peach_Bacterial
Spot serious

770 110

– Total 11,603 1,668
TABLE 1 Hyper-parameters used in the experiments.

Item Value

Batch_size 8

optimizer Adam

learning rate 1e-4

depth 12

epochs 100
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In the context of leaf disease images, it is observed that the

affected regions are frequently dispersed over the whole image,

rather than being confined to a specific localized location. This

characteristic is exemplified in Figure 9. Given the limitations of

the local receptive field mechanism in addressing the specific leaf

disease image, the mere addition of extra layers to the CNN

models does not always ensure improved performance in image

classification. This study presents the introduction of a vision

transformer-based model for image classification, which leverages

the relationships among distant pixels inside the images. The
Frontiers in Plant Science 09212
suggested dual channel model employs the technique of MSA to

continually extract the correlation between image patches. This

approach effectively preserves the information that is

advantageous for classification purposes. In contrast to the

original vision transformer model, the swin vision transformer

model is capable of extracting valuable information from images

while concurrently mitigating its computing resource

requirements. Nevertheless, this research endeavor is subject to

many constraints: The dataset utilized in the experiments suffers

from unbalanced image samples, hence limiting the effectiveness
TABLE 3 Comparison results between the state-of-the-arts and the proposed method.

Method Accuracy Precision Recall F1 score

AlexNet 78.51 77.63 80.16 78.87

GoogleNet 81.23 80.59 82.05 81.31

VGG 82.35 82.19 82.94 82.56

ResNet101 83.18 82.56 83.29 82.92

EfficientNetB3 83.25 83.03 83.48 83.25

Inception V3 84.01 83.23 84.33 83.78

MobileNet V2140 84.69 83.52 84.92 84.21

Vision Transformer 85.47 84.38 86.71 85.53

Our method 86.43 85.73 87.22 86.47
fr
Bold values denote the best performance.
FIGURE 7

The confusion matrix of the proposed approach on the presented dataset.
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of the presented method. Meanwhile, number of the image

samples contained in the leveraged dataset is still limited, which

constrains the accuracy of the proposed approach at relatively low

level. In addition, there exists duplication between the edge

information included in the lower channel of the proposed

model and the upper channel.
4 Conclusion

The present study introduces a novel network architecture for

leaf disease image classification, utilizing a two-channel swin

transformer-based approach. The system consists of a dedicated

channel for the original image and an additional channel specifically
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intended to capture the edges in the merged image. In addition, the

Sobel operator has been utilized to extract the edge information

from the images of leaf diseases. The utilization of the two-channel

swin vision transformer model has resulted in the attainment of

improved performance compared to the current state-of-the-art

methods. The efficacy of the suggested model is demonstrated by

experimental findings conducted on the publically accessible

dataset. The experimental results of the proposed approach have

proved the superior performance of the proposed approach in leaf

disease classification. It can be concluded that the proposed

approach could be a valuable algorithm for leaf classification and

Precision Agriculture.

Recently, there has been encouraging performance

demonstrated by vision transformer-based models in challenges
FIGURE 8

The outcome of performing t-SNE on outcome generated from the proposed approach (Top) and on the ground truth samples (Bottom).
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related to multi-modal machine vision. Henceforth, we shall further

explore the intricacies of multi-model-based deep learning models

in the context of leaf disease categorization and prediction. In

addition, more samples need to be collected to eliminate the class

imbalance issue in the dataset used in this study.
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Sugarcane plays a vital role inmany global economies, and its efficient cultivation is

critical for sustainable development. A central challenge in sugarcane yield

prediction and cultivation management is the precise segmentation of

sugarcane fields from satellite imagery. This task is complicated by numerous

factors, including varying environmental conditions, scale variability, and spectral

similarities between crops and non-crop elements. To address these segmentation

challenges, we introduce DSCA-PSPNet, a novel deep learning model with a

unique architecture that combines a modified ResNet34 backbone, the Pyramid

Scene Parsing Network (PSPNet), and newly proposed Dynamic Squeeze-and-

Excitation Context (D-scSE) blocks. Our model effectively adapts to discern the

importance of both spatial and channel-wise information, providing superior

feature representation for sugarcane fields. We have also created a

comprehensive high-resolution satellite imagery dataset from Guangxi’s Fusui

County, captured on December 17, 2017, which encompasses a broad spectrum

of sugarcane field characteristics and environmental conditions. In comparative

studies, DSCA-PSPNet outperforms other state-of-the-art models, achieving an

Intersection over Union (IoU) of 87.58%, an accuracy of 92.34%, a precision of

93.80%, a recall of 93.21%, and an F1-Score of 92.38%. Application tests on an RTX

3090 GPU, with input image resolutions of 512 × 512, yielded a prediction time of

4.57ms, a parameter size of 22.57MB, GFLOPs of 11.41, and a memory size of

84.47MB. An ablation study emphasized the vital role of the D-scSE module in

enhancing DSCA-PSPNet’s performance. Our contributions in dataset generation

and model development open new avenues for tackling the complexities of

sugarcane field segmentation, thus contributing to advances in precision

agriculture. The source code and dataset will be available on the GitHub

repository https://github.com/JulioYuan/DSCA-PSPNet/tree/main.
KEYWORDS

deep learning, precision agriculture, remote sensing, D-scSE, PSPNet, satellite imagery,
sugarcane field segmentation
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1 Introduction

Sugarcane, accounting for approximately 70% of the world’s

sugar production (Shield, 2016) and serving as a substantial source

of biofuel, is a crop with considerable economic and environmental

consequences (Cardona et al., 2010; Sindhu et al., 2016). The crop’s

relevance extends beyond its nutritional and energy contributions,

playing an integral part in global energy security and economic

stability (Moraes et al., 2015; Shield, 2016; Som-Ard et al., 2021).

The escalating global population and concurrent amplification of

energy demands necessitate the enhancement of sugarcane

cultivation efficiency and yield optimization (Li and Yang, 2015;

Som-Ard et al., 2021; Tabriz et al., 2021).

In recent years, remote sensing technology has emerged as a

potent game-changer in agriculture. Its ability to provide

comprehensive, accurate, and timely data is significantly altering

traditional agricultural practices (Khanal et al., 2020; Weiss et al.,

2020; Omia et al., 2023). This technology is particularly influential in

major sugarcane-producing countries like Brazil, India, and China,

where it has been instrumental in economic development and energy

security (dos Santos Luciano et al., 2018; Jiang et al., 2019; Som-Ard

et al., 2021). One of the key applications of remote sensing in

agriculture is crop field segmentation (Sun et al., 2022; Ji et al.,

2023), a process critical to various agricultural management

strategies, including crop health monitoring, yield estimation, and

resource allocation (Huan et al., 2021;Wang et al., 2022; Ji et al., 2023).

Given its substantial downstream impacts on agricultural decision-

making, achieving high accuracy levels in this operation is crucial.

To address this critical need, multiple techniques have been

implemented in crop field segmentation and mapping using remote

sensing data. For instance, one notable approach used a boundary-

semantic-fusion deep convolution network (BSNet) to delineate

farmland parcels from high-resolution satellite images, enhancing

the F1 and Intersection over Union (IoU) scores (Shunying et al.,

2023). An innovative open-source tool, HS-FRAG, has

demonstrated its robustness by using an object-based hybrid

segmentation algorithm for delineating agricultural fields,

part icular ly in fragmented landscapes (Duvvuri and

Kambhammettu, 2023). An edge detection model premised on a

connectivity attention-based approach and a high-resolution

structure network has been designed for farmland parcel

extraction. The model introduces a post-processing method to

connect disconnected boundaries, thereby enabling the generation

of more refined farmland parcels (Xie et al., 2023). Similarly, a

technique called the Multiple Attention Encoder-Decoder Network

(MAENet) was proposed for farmland segmentation, yielding an

impressive IoU score of 93.74% and a Kappa coefficient of 96.74%

(Huan et al., 2021). (Bian et al., 2023) proposed CACPU-Net, linked

crop type mapping with 2D semantic segmentation based on single-

source and single-temporal autumn.

Sentinel-2 satellite images, achieving excellent classification

accuracy on the parcel boundary. (Lu et al., 2023) proposed a

multi-scale feature fusion semantic segmentation model for crop

classification in high-resolution remote sensing images, providing a

good reference for high-precision crop mapping and field plot

extraction, while avoiding excessive data acquisition and processing.
Frontiers in Plant Science 02217
Advancements in crop field segmentation have closely

paralleled innovations in the broader arena of semantic

segmentation techniques. Initially, pioneering work like the Fully

Convolutional Network (FCN) introduced by (Long et al., 2015)

broke new ground by replacing the conventional fully connected

layer in CNNs with a convolutional layer for image segmentation.

This led to alternative frameworks such as SegNet, developed by

(Badrinarayanan et al., 2017), which further refined the architecture

by eliminating the fully connected layer of VGGNet (Simonyan and

Zisserman, 2014) and obviating the need for training during the up-

sampling process. However, these early models were hampered by

limitations, notably in contextual image comprehension and small

object recognition, which gave rise to classification errors.

Addressing these issues, the Unet model proposed by

(Ronneberger et al., 2015) improved segmentation through multi-

scale down-sampling and up-sampling fusion channels. To enhance

global context information coherence, the Pyramid Scene Parsing

Network (PSPNet) model was introduced by (Zhao et al., 2017),

featuring a pyramid pooling module. Meanwhile, (Yu and Koltun,

2015) innovated by introducing dilated convolution into the

traditional convolution kernel. Yet, the stacking of dilated

convolutions with the same dilation rate led to information loss.

The hybrid dilated convolution was proposed to address this,

combining the benefits of hole convolution while reducing

information loss (Wang et al., 2018). In the same vein, the

DeepLab series, including V1, V2, V3, and V3+, focused on the

study of dilated convolution (Chen et al., 2017a; Chen et al., 2017b).

A notable advancement is the Feature Pyramid Network (FPN),

which uses a top-down architecture with lateral connections to

build high-level semantic feature maps at all scales (Lin et al., 2017).

Recently, there has been a growing concern regarding the

computational burden posed by the extensive parameters inherent

in traditional semantic segmentation models. This burgeoning

challenge has not only increased the demand for computational

resources but has also hindered the scalability and real-time

deployment of these models in resource-constrained

environments. To address these limitations, the research

community has directed its focus toward the development of

efficient and fast semantic segmentation models (Zhang et al.,

2023). One pioneering effort in this direction is the introduction

of the “squeeze & excitation” mechanism in fully convolutional

networks, which emphasizes channel-wise feature recalibration to

adaptively emphasize informative features while suppressing less

useful ones (Roy et al., 2018). This approach has been further

enhanced by the Convolutional Block Attention Module (CBAM), a

flexible and lightweight module that can be seamlessly integrated

into any CNN architecture. CBAM refines feature maps spatially

and channel-wise, ensuring that the model pays selective attention

to vital regions in the input data (Woo et al., 2018). Similarly, the

Squeeze-and-Excitation Networks propose a novel architectural

unit that dynamically adjusts channel-wise feature responses

based on the interdependencies between channels, leading to a

substantial boost in model performance without considerable

computational overhead (Hu et al., 2018). Collectively, these

advancements reflect the broader trend in the field to optimize

model efficiency without compromising accuracy, ensuring that
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semantic segmentation models remain applicable and effective in

diverse real-world scenarios.

While semantic segmentation models have made impressive

strides, their application to farmland segmentation, particularly in

the case of complex crops like sugarcane, still faces a host of

challenges. The quest for consistent precision in farmland

segmentation, particularly for complex crops such as sugarcane, is

fraught with significant challenges (Som-Ard et al., 2021). Factors

including fluctuating light conditions, variations in agricultural

landscapes, disparities in field sizes, and evolving crop phenology

add layers of complexity to these tasks (Khanal et al., 2020; Weiss

et al., 2020; Omia et al., 2023). Therefore, it is imperative to develop

robust, advanced techniques that can overcome these obstacles and

deliver accurate sugarcane field segmentation.

To this end, the present study introduces an innovative deep

learning architecture for the segmentation of sugarcane fields,

incorporating a modified ResNet34 backbone with the PSPNet

and the proposed Dynamic Squeeze-and-Excitation Context (D-

scSE) blocks. This proposed model efficiently addresses the complex

challenges inherent in sugarcane field segmentation, outperforming

traditional techniques and standard deep learning architectures.

Moreover, given the importance of high-quality training data in

deep learning applications, our research also contributes a novel

dataset derived from high-resolution satellite imagery of Guangxi’s

Fusui County in December. This dataset presents a comprehensive

spectrum of environmental conditions and sugarcane field features,

representing a realistic testing ground for our model and future

similar applications.

The remainder of this paper is organized as follows: Section 2

details the study area, dataset characteristics, and the methodological

framework underpinning our research, including the development

and refinement of the DSCA-PSPNet architecture. Section 3 presents

the findings from our extensive experiments, offering both qualitative

and quantitative analyses of the model’s performance. In Section 4 we

explore the implications of our findings, address the limitations of the

current study, and outline potential avenues for future research.

Finally, Section 5 synthesizes the key contributions of our work,

highlighting its significance in the context of precision agriculture and

its broader impact on sustainable farming practices.

In essence, the contributions of this study are threefold:
Fron
1) The study introduces an innovative deep learning model

specifically engineered for sugarcane field segmentation.

Utilizing a unique combination of a modified ResNet34

backbone with PSPNet and proposed novel D-scSE blocks,

our model is equipped to effectively navigate through the

complexities of remote sensing in agricultural landscapes.

2) The utilization and contribution of a distinctive dataset,

comprised of satellite imagery from Guangxi’s Fusui

County in December, stands as a valuable asset. The data

capture the rich diversity of environmental conditions in the

region, thus presenting a robust testing bed for our model

and a valuable resource for the wider research community.

3) Our model stands apart in its performance, outperforming

existing state-of-the-art segmentation techniques.
tiers in Plant Science 03218
Tested rigorously against established models, our approach

demonstrates superior accuracy and robustness, establishing

a new benchmark in sugarcane field segmentation.
2 Materials and methods

2.1 Study sites and data

2.1.1 Study area
The study area is in Fusui County (As shown in Figure 1),

Guangxi Zhuang Autonomous Region, China, which is situated

between latitudes 22°30′N and 22°47′N and longitudes 107°62′E
and 107°96′E. This region is known for its extensive sugarcane

production, accounting for a significant portion of the country’s

sugarcane output. The climate in Fusui County is classified as a

subtropical monsoon climate, characterized by hot and humid

summers, mild winters, and abundant rainfall, which provides

suitable conditions for sugarcane cultivation.

The landscape in this area consists of diverse terrain, including

flatlands, riverbanks, and karst hills, which pose challenges for

accurate sugarcane field segmentation. The complex terrain may

lead to variations in the spectral signature of sugarcane fields, as

well as the presence of shadows, mixed pixels, and other occlusions.

Furthermore, the study area includes a range of land cover types,

such as cropland, forests, water bodies, and urban areas, which can

create difficulties in distinguishing sugarcane fields from other land

cover types.

2.1.2 Datasets
High-resolution RGB satellite images were acquired from the

BJ-2 satellite on December 18th, 2017 for the study area. The images

have a spatial resolution of 0.8 meters, which is suitable for

identifying and segmenting individual sugarcane fields at a fine

scale. Twenty remote sensing images of size 4096×4096 pixels² were

selected for this study. The selected images provide a

comprehensive representation of the landscape diversity and

phenological stages of sugarcane fields in the region. The exact

locations of these selected images are marked in Figure 1.

As shown in Figure 2, the images were acquired during cloud-

free conditions, with minimal atmospheric haze, to ensure optimal

image quality for the analysis. Additionally, the images were chosen

to represent various landscape features and land cover types present

in the study area, including diverse terrain, riverbanks, agricultural

lands, and urban areas. This selection strategy aimed to provide a

robust dataset that could effectively capture the challenges

associated with accurate sugarcane field segmentation in a

complex and dynamic environment.

2.1.3 Data quality and preprocessing
To uphold data integrity and uniformity in this study, we

embarked on a rigorous preprocessing regimen for the satellite

imagery acquired from the Guangxi Institute of Natural Resources

Remote Sensing (GXINRRS). These high-resolution images,
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captured by the BJ-2 satellite, underwent a comprehensive

preprocessing protocol, including atmospheric correction,

radiometric calibration, and geometric correction, using

ENVI software.

The atmospheric correction stage involved adjusting specific

parameters in the Fast Line-of-sight Atmospheric Analysis of

Spectral Hypercubes module, accounting for aerosol optical

thickness, precipitable water vapor, and atmospheric pressure.

This step ensured the minimization of atmospheric distortions,

thereby enhancing the representation of the ground reflectance.

During the radiometric calibration phase, the sensor’s radiometric

response function and the incident solar irradiance at the time of

acquisition were factored in. This calibration converted the raw
Frontiers in Plant Science 04219
digital numbers in the images into standardized reflectance values,

ensuring their consistent representation across different scenes.

Lastly, geometric correction rectified any image distortions due to

sensor geometry, Earth’s curvature, and terrain relief, utilizing the

satellite’s ephemeris data, Earth’s ellipsoid and datum information,

and a digital elevation model for terrain correction. This step

facilitated the accurate portrayal of spatial relationships among

features in the images.

2.1.4 Ground truth data collection
The collection and verification of ground truth data for this

study was an intricate and meticulous process involving

collaboration with local agricultural experts, geography workers,
FIGURE 2

Selected images.
FIGURE 1

Study area.
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and sugarcane experts. The methodology was designed to ensure

accurate segmentation of sugarcane fields and robust training data

for the deep learning model.

The following steps were taken in the process of ground truth

data collection:
Fron
1) Image Acquisition and Preprocessing: We obtained BJ-2

satellite images of Fusui County, Guangxi, from GXINRRS

and performed the preprocessing techniques mentioned in

section 2.3. These images captured a diverse range of

environmental conditions.

2) Expert Annotation: Agricultural and sugarcane experts and

geography workers manually annotated the acquired

images using ArcGIS software. They drew polygons

around the sugarcane fields and delineated them by

hand-drawing, utilizing their deep knowledge of local

agriculture to identify these regions accurately.

3) Cross-Verification: After the initial annotation, the

annotated images were cross-checked by a separate team

of geography workers. They scrutinized the annotations,

ensuring the masks accurately represented sugarcane fields.

4) Review and Revision: Any images that were flagged during

cross-verification underwent a review and revision process.

The original experts and the verification team collaborated

to resolve discrepancies, resulting in a final, agreed-

upon annotation.

5) Final Dataset Formation: Once all images had been

annotated and verified, they were compiled into the final

dataset. With its carefully validated ground truth labels, this
tiers in Plant Science 05220
dataset was then used for training, validating, and

evaluating the proposed deep learning model.
This rigorous process, while time-consuming, was necessary to

ensure the high quality and reliability of our ground truth data. This

process’s collaborative and iterative nature also served to minimize

human error and bias.
2.1.5 Closer look at selected images and
annotated masks

To provide a comprehensive understanding of the study area

and the inherent complexities it presents for sugarcane field

segmentation, we examine specific images from our dataset,

displayed collectively in Figure 3.

Figure 3 presents a comprehensive view of three different

landscapes and their corresponding segmentation maps, identified

as (A), (B), and (C). In column (A), a river area is captured with

features including a riverbank, karst hills, and sugarcane fields. This

image presents the challenge of segmenting sugarcane fields that are

intertwined with riverbanks, where water and vegetation

boundaries are often indistinct. The corresponding ground truth

for this area serves as the benchmark for our segmentation task.

Column (B) depicts a living area with buildings, karst hills, and

sugarcane fields. This scenario emphasizes the intricacy of

segmenting sugarcane fields near urban structures, where the line

between built and natural environments can be ambiguous. The

corresponding ground truth, excluding the small roads, trees,

bushes, and reaped sugarcane fields, helps in accurately

distinguishing between the urban structures and natural
A B C

FIGURE 3

(A) River area and ground truth; (B) Resident area and label; (C) Farmland area and label.
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vegetation. Lastly, column (C) portrays a farmland teeming with

mixed crops and sugarcane fields. This scene highlights the

difficulty of distinguishing sugarcane fields from other crop types

and non-crop vegetation, which often share overlapping spectral

characteristics, making the task of segmentation more complex. The

corresponding ground truth excluded small roads, reaped sugarcane

fields, and other non-sugarcane vegetation, which aids in

deciphering the diverse crops present in the image.

Together, these images underscore the diverse challenges

encountered during sugarcane field segmentation in our study

area. They highlight the necessity for an advanced deep learning

approach, one that is capable of grappling with these complexities

and delivering precise and reliable segmentation outcomes. The

source code and dataset will be available on the GitHub repository

https://github.com/JulioYuan/DSCA-PSPNet/tree/main.
2.2 DSCA-PSPNet

2.2.1 Backbone comparison
In the domain of semantic segmentation tasks, particularly for

complex applications like sugarcane field segmentation from

satellite images, the choice of backbone architecture substantially

influences the overall model performance. For this study, we

exclusively used PSPNet as the segmentation decoder, with the

focus of our experimentation being on selecting the most efficient

and accurate backbone. We considered six popular architectures,

namely ResNet34, ResNet50 (He et al., 2016), VGG16 (Simonyan

and Zisserman, 2014), EfficientNet-B5 (Tan and Le, 2019),

MobileNet-V3Large (Howard et al., 2019), and ViT-B/16 (Vision

Transformer) (Dosovitskiy et al., 2020), to serve as the backbone.

Experiments were carried out using the dataset and experiment

settings elaborated in sections 3.3.1 and 3.3.2. The backbone

architectures were compared based on metrics such as IoU, F1

scores, prediction time for a single 512x512 RGB image, number of

parameters, and memory footprint. The results are concisely

tabulated in Table 1:

Based on our comprehensive evaluation, ResNet34 emerges as

the most suitable backbone architecture for sugarcane field

segmentation when paired with the PSPNet decoder. With a

prediction time of 3.98ms, it not only facilitates real-time

inference but also operates with a manageable number of
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parameters (21.44M), thereby making it amenable to deployment

in resource-constrained environments. Furthermore, its memory

requirement is 81.78 MB, while maintaining high IoU and F1

scores, indicative of its accuracy and reliability. Consequently, for

the specialized task of semantic segmentation in agricultural

settings, the balanced and robust performance of ResNet34

substantiates its selection as the backbone architecture.

2.2.2 Modified ResNet34 backbone
ResNet (He et al., 2016) is a family of deep residual networks

that effectively addresses the degradation problem in deep neural

networks by introducing residual connections. In this study, we

utilize the ResNet34 architecture as our model’s backbone, with

specific modifications tailored to the task of agricultural crop

field segmentation.

As illustrated in Figure 4A, the modified ResNet34 backbone

consists of several components. It begins with an input layer,

followed by a stem composed of a convolutional layer, batch

normalization, and a ReLU activation function. The stem is

succeeded by two residual layers, each containing a series of

standard residual blocks, as depicted in Figure 4B. These residual

layers capture local features in the input images.

The latter part of the backbone includes two dilated layers, with

dilated blocks that incorporate dilated convolutions (Yu and

Koltun, 2015), as shown in Figure 4C. The dilated blocks allow

for a larger receptive field without increasing the number of

parameters or computational complexity. The final output layer

generates high-level feature maps for the input images.

The modified ResNet34 backbone integrates the advanced D-

scSE attention mechanism after each residual layer (layer1, layer2,

layer3, and layer4), enhancing channel and spatial dependencies

and refining feature representation. The inclusion of the D-scSE

mechanism improves the model’s ability to capture essential

contextual information, leading to more precise segmentation

results. A detailed examination of the D-scSE mechanism’s design

and its role in augmenting the modified ResNet34 backbone will be

provided in section 3.3.

The architecture’s larger receptive field, achieved by

incorporating dilated convolutions in the later stages, is especially

beneficial for capturing contextual information in high-resolution

agricultural imagery with objects spanning various spatial scales. By

incorporating these modifications, the backbone design provides an
TABLE 1 Metrics comparison for different backbones

Methods IoU F1-Score Prediction
Time (ms)

Parameters
(Million)

Memory
Size (MB)

ResNet34 83.18 89.49 3.98 21.44 81.78

ResNet50 81.46 89.31 4.16 24.30 92.70

VGG16 78.85 88.09 4.98 39.34 150.09

EfficientNet-B5 81.17 89.42 7.97 28.41 108.40

MobileNet-V3Large 77.09 86.97 2.98 3.02 11.52

ViT-B/16 81.66 89.76 12.95 24.35 92.89
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effective foundation for the decoder to generate accurate

agricultural crop field segmentation maps, addressing the specific

challenges of the task and leveraging the power of residual

networks, dilated convolutions, and the D-scSE mechanism.

2.2.3 D-scSE block
The D-scSE mechanism, where “D” stands for “Dynamic,” is an

advanced attention mechanism inspired by the original scSE (Roy

et al., 2018). While the original scSE effectively encodes channel and

spatial dependencies, it doesn’t account for the varying importance

of these aspects across different input data or stages of network

depth. The importance of spatial and channel-wise features may

dynamically vary based on the contextual information in the scene,

or the intricacy of the features being learned at different network

layers. This limitation could potentially restrict the learning

capacity and performance of the original scSE.

To overcome this, the D-scSE mechanism introduces dynamic

weights, providing a more adaptive balancing between the

significance of spatial and channel-wise information. These weights

are learned during the training process, offering the flexibility to

modulate the degree of attention applied to the spatial and channel

dimensions based on the input’s inherent characteristics.

In this section, we will delve into the specifics of the D-scSE’s

design, its components, and the way it refines feature

representation. We’ll discuss how this dynamic weighting scheme

leads to enhanced feature learning and contributes to the overall

efficacy of our proposed model architecture.

1) Channel Squeeze and Spatial Excitation Block (sSE): This

block focuses on spatial information, as shown in Figure 5A. The

input feature mapU∈ RC×H×W is first channel-wise squeezed using a.
Frontiers in Plant Science 07222
1 × 1 convolution (Equation 1):

U = ½u1,1,u1,2, …, ui,j, …, uH,W � ·  with ui,j ∈ RC�1�1 (1)

The spatial squeeze operation computes the output matrix k ∈
RH�W (Equation 2):

k = Wk ⋆U (2)

where Wk ∈ RC�1�1 and ⋆ denotes the convolution operation.

The spatial information weight is added to the feature map U by

applying the sigmoid activation function (·)

to each element in k (Equation 3):

Û sSE = Fscale(U , k)

= ½s (k1,1)u1,1,…,s (ki,j)ui,j,…,s (kH,W )uH,W � (3)

2) Spatial Squeeze and Channel Excitation Block (cSE): This

block focuses on channel-wise dependencies, as shown in Figure 5B.

The input feature map U is first spatially squeezed using global

average pooling and global max pooling (concatenated) before

passing them through the convolutional layers (Equation 4):

x =  Concat 
1

H �Wo
H

i
o
W

j
U(:, i, j), max

i=1,…,H ;j=1,…,W
U(:, i, j)

 !
(4)

To discern the dependency information between channels, a

single fully connected layer is employed, with weights  W ∈ RC�2C .

Activation of this layer is achieved through the application of the

ReLU function (·) and the sigmoid function s(·) (Equation 5):

s = s (Wd (x)) (5)
A B C

FIGURE 4

(A) schematic of the modified ResNet34 architecture. (B) schematic of the standard residual block. (C) schematic of the dilated residual block.
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The final output is obtained by re-scaling the transformation U

(Equation 6):

bU cSE = Fscale(U , s) = s⋆U (6)

We introduce dynamic weighting to balance the contributions

of the sSE and cSE branches to the final output. The outputs of the

sSE and cSE branches are combined (Equation 7):

Û D−scSE = aÛ sSE + bÛ cSE (7)

where a and b are learnable parameters initialized by sampling

from a uniform distribution U( −
ffiffiffiffiffiffiffiffi
6=n

p
,
ffiffiffiffiffiffiffiffi
6=n

p
) where n is the

number of input units in the weight tensor. These dynamic weights

are updated during the training process, allowing the D-scSE

module to adaptively balance the importance of spatial and

channel information based on the input data.

D-scSE module enhances the original scSE mechanism by

integrating dynamic weighting and diversified pooling strategies, as

shown in Figure 5. With the sSE branch concentrating on spatial

information and the cSE branch addressing channel-wise

dependencies, the module effectively recalibrates both dimensions of

the feature map. By employing learnable weights, the D-scSE module

adeptly balances spatial and channel information, ultimately delivering

a robust feature extraction mechanism for the segmentation task.
2.2.4 Pyramid scene parsing network decoder
In our proposed architecture, we utilize the PSPNet decoder,

originally introduced by (Zhao et al., 2017), to generate high-quality

segmentation results. The decoder effectively captures contextual

information from the output feature map of the encoder by

leveraging pyramid parsing and fusing multi-scale features.
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Additionally, the decoder is integrated with the D-scSE

mechanism to further refine the feature representation.

The decoder comprises the following components:
1) Pyramid Pooling Module: This module is designed to

extract contextual information from the input feature

map by applying multiple pooling operations with

varying kernel sizes. This approach enables the capture

of both local and global context at different scales. The

pyramid pooling module consists of four parallel

branches, each employing an average pooling layer with

a unique kernel size. Subsequently, a 1x1 convolution is

used to reduce the number of channels to a predefined

number (e.g., C/4). The resulting feature maps are then

upsampled to their original spatial dimensions using

bilinear interpolation.

2) Feature Concatenation: The upsampled feature maps

originating from the pyramid pooling module are

concatenated with the initial input feature map,

facilitating the fusion of multi-scale contextual information.

3) D-scSE Mechanism: As detailed in Section 3.3, the D-scSE

mechanism is incorporated following the feature

concatenation step to adaptively recalibrate the spatial

and channel-wise information. The inclusion of the D-

scSE mechanism within the decoder further refines the

feature representation, enabling the model to better

manage varying object scales and shapes.

4) Final Convolution Layers: After implementing the D-scSE

mechanism, the feature map is processed through a series

of convolutional layers to generate the ultimate output

segmentation map. This typically consists of one or more
A

B

FIGURE 5

A schematic representation of the D-scSE mechanism. (A) sSE module and (B) cSE module.
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Fron
3x3 convolutions, followed by a 1x1 convolution to

project the feature map onto the desired number of

output classes. The final segmentation map is then

upsampled to match the original input image size using

bilinear interpolation.
By integrating the PSPNet decoder with the D-scSE

mechanism, DSCA-PSPNet (as shown in Figure 6) effectively

captures and exploits multi-scale contextual information,

thereby enhancing segmentation performance. This decoder

design contributes to the generation of more accurate and finer-

grained segmentation maps, ultimately improving the overall

efficacy of the architecture.
2.3 Experiments

2.3.1 Data preparation and augmentation
To create a diverse and representative dataset for model

validation, twenty remote sensing images of size 4096x4096

pixels² were selected from the remote sensing images of Fusui

County in Guangxi Zhuang Autonomous Area. The locations of

the data samples were selected based on the presence of

different land features, such as river areas, farmland areas, and

living areas.

Each of the twenty original 4096×4096 images was cropped

into sixty-four 512×512 images, resulting in a total of 1280

images. This cropping is a standard practice in semantic

segmentation tasks, especially when handling high-resolution

imagery, to manage GPU memory constraints and optimize

computational efficiency. While this approach divides larger

sugarcane plots into smaller segments, it does not significantly

impact the segmentation task. Our model is designed to
tiers in Plant Science 09224
accurately classify each pixel within these segments, ensuring

effective and reliable segmentation across the cropped images. To

ensure a balanced dataset for model training and evaluation, 70%

of the cropped images from each original image were allocated to

the training set, 15% were assigned to the validation set, and the

remaining 15% were assigned to the test set. This partitioning

strategy ensured that the training, validation, and test sets

contained a diverse range of features and challenges associated

with sugarcane field segmentation.

Data augmentation techniques were applied to increase the

diversity of the training dataset, making the model more robust and

capable of handling real-world scenarios. The augmentation

techniques applied to the dataset include rotation, horizontal and

vertical flipping, random scaling, random brightness and contrast

adjustment, addition of Gaussian noise, Gaussian blur, and hue,

saturation, and value adjustment. These augmentations were

performed using the Albumentations Python library. For each

original training sample, 5 augmented samples were generated by

applying all the aforementioned augmentation techniques

simultaneously. This resulted in an augmented dataset of 4480

samples. Hence, the distribution of samples among the training,

validation, and test sets as shown in Table 2.
FIGURE 6

Structure of DSCA-PSPNet.
TABLE 2 Sample distribution across training, validation, and test sets .

Dataset Original
Images

Augmented
Images

Total
Images

Training set 896 4480 5376

Validation set 192 0 192

Test set 192 0 192
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2.3.2 Experimental design
The experiments conducted in this study, which encompassed

the training, validation, and testing of the proposed model, were

performed on a system equipped with the Windows 10 System. The

experimental runtime environment was set up using Anaconda3,

Python 3.10.5, CUDA 11.7, and OpenCV 4.6. The hardware used

for the experiments included 64 GB RAM, Intel (R) Core i9-

10980XE@3.00GHz processor, and a NVIDIA RTX 3090 GPU.

Pytorch was chosen as the deep learning framework for

implementing the proposed model.

The purpose of the experiments in this study was to verify the

effectiveness of the proposed model, in the recognition of sugarcane

field. The fed images were 512×512. The AdamW optimizer, an

improvement over traditional Adam by decoupling weight decay

from the optimization steps, was utilized to prevent overfitting and

achieve faster convergence. The learning rate was controlled using a

cyclical learning rate strategy. The base learning rate was set to

0.0001, and it cyclically varied between this value and a maximum

of 0.001, facilitating optimal convergence. Other hyperparameters

included an epoch count of 100 and a training batch size of 16.

2.3.3 Evaluation metrics
The accuracy, precision, IoU, F1 score, and Recall were

calculated (Equations 8–12) and used as the accuracy evaluation

indexes of the experimental results in this study, that is,

IoU =
TP

TP + FP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2� Precision� Recall
Precision + Recall

(12)

where TP denotes positive samples correctly classified by the

model, FN denotes positive samples incorrectly classified by

the model, FP denotes negative samples incorrectly classified by the

model, TN denotes negative samples correctly classified by the model.

Accuracy is depicted as the fraction of pixels that were

accurately predicted, in contrast to the total sum of pixels.

Precision constitutes an evaluative metric to gauge the accuracy

of predictions within a specific category. IoU is a statistical measure

that identifies the degree of overlap between the predicted and the

original annotated regions within an image. The F1 score is the

harmonic mean of precision and recall, serving as a balanced

estimator of the classifier’s performance. In addition, recall, also

known as sensitivity or true positive rate, quantifies the proportion

of actual positives that are correctly classified. It is an integral part of

the evaluation schema, examining the classifier’s proficiency in

identifying all the pertinent instances within the dataset.
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3 Results

3.1 Contrast experiments

In this revised section, we will first delve into the qualitative

analysis through the visual examination of segmentation results and

subsequently provide a quantitative examination through the

rigorous metric evaluations. Our objective remains to present a

coherent and comprehensive comparison of the proposed DSCA-

PSPNet with the benchmark models: Unet, DeepLabV3+, FPN,

and PSPnet.

Figure 7 displays the segmentation results for a landscape

marked by reaped land, sugarcane fields, and river banks. The

original images (Figure 7A) elucidate a complex environment where

sugarcane fields fringe the river banks, interspersed with fragments

of reaped land. The ground truth (Figure 7B) meticulously captures

the distinct boundaries between these zones. DSCA-PSPNet

(Figure 7G) demonstrates a remarkable alignment with the

ground truth, adeptly segment the sugarcane fields from adjacent

reaped land and preserving the nuanced contours of the karst hills.

In contrast, Unet (Figure 7C) falsely recognizes the karst hills green

vegetation as the sugarcane field, blurring the transition between

karst hills and sugarcane fields. Deeplabv3+ (Figure 7D) provides a

robust segmentation of sugarcane fields, but the delineation of

reaped land seems slightly generalized. FPN (Figure 7E) exhibits a

slightly better results but the miss segmentations are still existing.

PSPnet (Figure 7F) offers balanced performance, although minor

miss segmentations are evident, especially in regions where

sugarcane fields are situated in the narrow land between river and

hills. Collectively, the comparative analysis underscores DSCA-

PSPNet’s superior capability in effectively segmenting complex

riverine landscapes.

Figure 8 offers a detailed segmentation analysis of a landscape

primarily characterized by sugarcane fields, reaped land, other

vegetation, and minor road networks. The ground truth

(Figure 8B) accurately maps out these features, showcasing the

stark boundaries between cultivated sugarcane fields, reaped areas,

other vegetation, and the intricate web of roads. DSCA-PSPNet

(Figure 8G) mirrors this ground truth with impressive precision,

successfully delineating the sugarcane fields from reaped patches

and capturing the delicate intricacies of the minor roads and other

vegetation patches. In comparison, Unet (Figure 8C) occasionally

confuses the reaped land with lighter patches of sugarcane fields,

leading to minor segmentation inconsistencies. Deeplabv3+

(Figure 8D) effectively segments the larger sugarcane plots but

sometimes overlooks the subtle distinction between reaped land

and lighter sugarcane fields. FPN (Figure 8E) provides a

commendable segmentation but faces challenges in accurately

mapping the other vegetations. PSPnet (Figure 8F) produces a

balanced segmentation but has minor discrepancies in areas where

roads intersect with reaped land and other vegetations.

Collectively, the comparative evaluation emphasizes DSCA-

PSPNet ’s robust capability in accurately segmenting a

multifaceted farmland environment, highlighting its promise for

precision agriculture applications.
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Figure 9 delves into the segmentation of a landscape in the

residential zones with sprawling farmland areas. DSCA-PSPNet

(Figure 9G) emerges as a standout, replicating the ground truth

with exceptional accuracy. It captures the structured layout of

residential zones and small roads, and has the minimal miss

segmentations in water pond area. In contrast, Unet (Figure 9C)

exhibits challenges in accurately segmenting the water pond region.
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Deeplabv3+ (Figure 9D) adeptly identifies the larger residential

blocks but seems to slightly oversimplify the segmentation of

smaller farmland patches situated between residential clusters.

FPN (Figure 9E) offers a respectable segmentation but shows

major miss segmentation in water pond region too. PSPnet

(Figure 9F) provides a consistent segmentation but faces minor

deviations in areas where dense vegetation in farmlands is
A B D

E F G
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FIGURE 8

Farmland area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet. (G) DSCA-PSPNet).
A B D
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FIGURE 7

River area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet. (G) DSCA-PSPNet).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1324491
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yuan et al. 10.3389/fpls.2023.1324491
proximal to residential zones. In summation, the analysis

underscores DSCA-PSPNet’s superior ability in segment the

residential and farmland landscapes, showing its power in mixed-

use land segmentation tasks.

To complement the qualitative insights underscoring the

enhanced performance of DSCA-PSPNet, we shall now transition

to a quantitative analysis that empirically substantiates

these observations.

Evidently, DSCA-PSPNet stands out across all evaluation

metrics, reinforcing its potency as affirmed by the visual

outcomes. Specifically, DSCA-PSPNet records an IoU of 87.58%,

indicative of its exceptional overlap prediction ability, leading the

second-best performer, PSPnet-resnet34, by a significant margin of

4.4%. Its accuracy score of 92.34% is the highest among all models,

reflecting the model’s impressive capability in classifying each pixel

correctly. In terms of precision, DSCA-PSPNet’s score of 93.8%

further cements its supremacy, signaling its strength in minimizing
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false positives, outperforming the runner-up, FPN-resnet34, by

approximately 0.77%. Additionally, DSCA-PSPNet records a

recall of 93.21% and an F1 score of 92.38%. These metrics

respectively highlight DSCA-PSPNet’s competence in accurately

identifying true positives and maintaining a balanced performance

between precision and recall.

Shifting focus to computational efficiency and resource

consumption in Table 3, DSCA-PSPNet continues to shine.

Although its prediction time of 4.57 ms for a single 512 × 512

image on RTX 3090 GPU is slightly slower than PSPnet-resnet34,

it outperforms Unet, DeeplabV3+ and FPN considerably.

Importantly, with 22.57M parameters, DSCA-PSPNet’s model

complexity is on par with other models, showcasing that

superior performance does not necessitate excessive complexity.

Further, DSCA-PSPNet’s GFLOPs and memory usage affirm

its efficiency, making it apt for deployment in resource-

constrained scenarios.
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FIGURE 9

Resident and farmland area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet.
(G) DSCA-PSPNet).
TABLE 3 Accuracy metrics comparison for different segmentation methods.

Methods IoU Accuracy (%) Precision (%) Recall (%) F1-Score

Unet (resnet34) 78.44 88.65 84.69 91.90 87.06

DeepLabV3+(resnet34) 81.83 90.62 86.65 92.40 90.31

FPN (resnet34) 79.84 89.79 93.13 84.88 88.59

PSPnet (resnet34) 83.18 92.25 91.64 91.52 89.49

DSCA-PSPNet 87.58 92.34 93.80 93.21 92.38
Bold value is the highest value.
Underline value is the second highest value.
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In conclusion, the comprehensive evaluation presented in this

section, through both qualitative and quantitative perspectives,

cements the superiority of DSCA-PSPNet in sugarcane field

segmentation. Its consistent lead across a variety of performance

metrics, the demonstrated visual prowess, and efficient resource

utilization collectively mark DSCA-PSPNet as a promising tool in

the domain of sugarcane field segmentation and beyond. This

underscores the applicability and potential of DSCA-PSPNet for

real-world implementation, thus appealing to the academic

community and sugarcane practitioners alike.
3.2 Ablation study

The ablation study aims to examine the progression of

performance improvements that our proposed DSCA-PSPNet

offers, starting from the baseline PSPNet(resnet34), and its variants

augmented with sSE and cSE mechanisms, and finally to DSCA-

PSPNet. Using sSE and cSE in the same position as the D-scSE in the

models, ensures an unbiased and consistent basis for comparison.

A valuable tool in our analysis is the use of attention maps,

generated from the output of the final layer of the backbone. This

layer, rich with high-level semantic information, provides a detailed

visual guide to how different models prioritize areas within an image.

The attention maps in Figure 10, column (A) presents the original

images, and columns (B) to (E) show the attention maps for PSPNet,

PSPNet+sSE, PSPNet+cSE, and DSCA-PSPNet, respectively. The

difference in focus and detail becomes quite evident upon

comparison. The baseline PSPNet exhibits less distinct segmentation,
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while the addition of sSE and cSE mechanisms enhances the model’s

ability to distinguish different landforms more clearly. Yet, it is with

DSCA-PSPNet that we observe the most significant concentration of

attention on intricate agricultural details, such as edges and sugarcane

fields. This confirms the superior capability of our D-scSE mechanism

in capturing both local and global contextual details, enhancing the

model’s understanding of the image.

Along with visual observations from attention maps, we

perform a quantitative analysis on key performance metrics for

each model variant, as represented in the tables below:

Tables 4 and 5 shows that DSCA-PSPNet surpasses PSPnet and its

sSE and cSE variants in all performance metrics. For example, in terms

of IoU, DSCA-PSPNet outperforms the next best model, PSPnet+cSE,

by 2.4 percentage points. This pattern continues with Accuracy%(2.09

percentage points higher), Precision% (0.16 percentage points higher),

Recall% (1.69 percentage points higher), and F1-Score % (0.89

percentage points higher). These results confirm the effectiveness of

the D-scSE module in improving DSCA-PSPNet’s performance.

In summary, our ablation study systematically evaluates the

performance improvements of DSCA-PSPNet, beginning with the

baseline PSPNet (ResNet34) and progressing through its variants

augmented with sSE and cSEmechanisms, to the final DSCA-PSPNet

model. This study not only quantitatively demonstrates DSCA-

PSPNet’s superiority over its predecessors but also qualitatively

underlines the effectiveness of our design choices, particularly the

inclusion of the D-scSE module. By analyzing attention maps

generated from the model’s final layer, we observed a significantly

enhanced focus on critical sugarcane field details, such as field edges

and textures, in DSCA-PSPNet compared to the baseline and other
A B D EC

FIGURE 10

Columnnn (A) Original images. Columnn (B) Attention map of PSPnet. Columnn (C) Attention map of PSPnet+sSE. (D) Attention map of PSPnet+cSE.
(E) Attention map of DSCAPSPNet.
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variants. Quantitative analysis reveals that DSCA-PSPNet surpasses

other models in key performance metrics, including IoU, accuracy,

precision, recall, and F1-score, confirming the D-scSE module’s

pivotal role in improving segmentation capabilities. These results

collectively highlight the D-scSE module’s contribution to the

model’s overall efficacy in accurately segmenting complex

sugarcane cultivation scenes, thereby validating the module’s

integration as a critical enhancement in our deep learning

architecture for precision agriculture applications.
4 Discussion

The primary limitation of the DSCA-PSPNet study is its reliance

on a dataset exclusively from Guangxi’s Fusui County, captured on a

single date. This limitation, while providing high accuracy within its

narrow scope, raises concerns about the model’s robustness and

adaptability to different sugarcane cultivation environments. The

challenges in acquiring diverse, high-resolution satellite data, often

restricted due to censorship and stringent data-sharing policies,

combined with the intensive requirements of accurately labeling

such imagery, have led to a lack of dataset diversity (Sing et al.,

2021). Consequently, the model’s current iteration, although

advanced, might not fully account for the variances in sugarcane

fields across different geographical locations with varying

environmental conditions and agricultural practices. A critical aspect

yet to be verified is the model’s ability to accurately segment sugarcane

fields in different stages of growth, under varying weather conditions,

or in regions with distinct soil types (Lin et al., 2009). Addressing these

challenges is imperative for future research. Efforts will be

concentrated on expanding the model’s application to a broader

range of sugarcane-producing regions worldwide. For instance,

testing DSCA-PSPNet in countries like Brazil and India, which are
Frontiers in Plant Science 14229
major sugarcane producers but have different climatic conditions and

cultivation practices compared to southern China and south east Asia,

would be crucial. This would help assess the model’s adaptability and

performance in diverse sugarcane farming contexts. Additionally, the

examination of the model’s performance using multi-temporal

satellite imagery is essential. This would offer insights into its

capability to consistently recognize sugarcane fields throughout

different growth stages and under varying seasonal weather patterns,

such as the monsoon impact in South Asia or the dry season in Brazil.

Collaborations with international agricultural research institutes,

satellite imagery providers, and experts in global sugarcane

cultivation could facilitate access to a more varied range of data,

overcoming the limitations in data acquisition and labeling. Such

collaborative efforts are vital in refining DSCA-PSPNet to address the

unique challenges of sugarcane field segmentation in different parts of

the world. Enhancing the model’s accuracy and versatility in this

manner is not only crucial for advancing precision agriculture in the

context of sugarcane farming but also has broader implications for

sustainable agricultural practices and food security globally.
5 Conclusion

In the pursuit of sustainable agricultural practices, precise and

accurate crop field segmentation remains a critical concern.

Addressing this need, this study introduces the DSCA-PSPNet, a

deep learning model specifically designed for sugarcane field

segmentation. The integration of a modified ResNet34 backbone

with PSPNet and D-scSE blocks is pivotal to the model’s success. The

modified ResNet34 backbone, enhanced with dilated blocks, serves as

a robust foundation for feature extraction, capitalizing on its deep

residual learning framework to circumvent issues like vanishing

gradients in deeper networks. These dilated blocks significantly
TABLE 5 Accuracy metrics comparison in ablation study.

Methods IoU Accuracy (%) Precision (%) Recall (%) F1-Score

PSPnet(resnet34) 83.18 92.25 91.64 91.52 89.49

PSPnet+sSE 84.76 92.79 92.13 92.88 90.59

PSPnet+cSE 85.18 93.25 93.64 91.52 91.49

DSCA-PSPNet 87.58 92.34 93.80 93.21 92.38
Bold value is the highest value.
TABLE 4 Performance metrics comparison for different segmentation methods.

Methods
Prediction
Time (ms)

Parameters
(Million)

GFLOPs
Memory Size
(MB)

Unet(resnet34) 6.97 24.44 31.36 93.21

DeepLabV3+(resnet34) 5.98 22.44 31.62 85.60

FPN (resnet34) 7.24 23.16 27.49 88.33

PSPnet (resnet34) 3.98 21.44 9.41 81.78

DSCA-PSPNet 4.57 22.57 11.41 84.47
Bold value is the highest value.
Underline value is the second highest value.
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augment the network’s capability for feature extraction, enabling the

model to cover a wider field of view, thus capturing more contextual

information without compromising resolution or incurring

additional computational costs (Zhang and Zhang, 2021). The

PSPNet component further assists in aggregating contextual

information across various scales, crucial for differentiating

sugarcane fields from other similar features in satellite imagery.

The D-scSE blocks add a dynamic aspect to the model by

recalibrating the channel-wise and spatial features in the network,

fine-tuning the focus on relevant features for precise segmentation.

Together, these elements enable DSCA-PSPNet to effectively navigate

the spectral and spatial complexities inherent in agricultural

landscapes. This design has enabled the model to achieve an IoU of

87.58%, an accuracy of 92.34%, a precision of 93.8%, a recall of

93.21%, and an F1-Score of 92.38%. These figures demonstrate its

superior performance over established models. Moreover, DSCA-

PSPNet proves to be computationally efficient, with a memory size of

84.47MB and a model size of 22.57MB.

In addition to developing the model, this study has compiled a

comprehensive high-resolution satellite imagery dataset from

Guangxi’s Fusui County, encompassing a broad spectrum of

environmental conditions and field characteristics. This dataset

provides a challenging yet realistic testing ground for DSCA-

PSPNet, contributing significantly to the validation and refinement

of the model. Furthermore, it represents a valuable resource for future

research and innovation in the field of agricultural segmentation. The

insights gained from this study not only demonstrate the potential of

DSCA-PSPNet in sugarcane field segmentation but also highlight the

model’s adaptability and potential applicability to other crop types.

Future research could leverage this model and dataset to explore

segmentation in different agricultural contexts, potentially expanding

the scope of precision agriculture. By integrating these advances with

ongoing research efforts, there is a strong potential for models like

DSCA-PSPNet to play a pivotal role in enhancing sustainable

farming practices, thereby contributing significantly to global food

security and sustainable development goals.
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To monitor the moisture content of agricultural products in the drying process in

real time, this study applied a model combining multi-sensor fusion and

convolutional neural network (CNN) to moisture content online detection. This

study built a multi-sensor data acquisition platform and established a CNN

prediction model with the raw monitoring data of load sensor, air velocity

sensor, temperature sensor, and the tray position as input and the weight of

the material as output. The model’s predictive performance was compared with

that of the linear partial least squares regression (PLSR) and nonlinear support

vector machine (SVM) models. A moisture content online detection system was

established based on this model. Results of the model performance comparison

showed that the CNN prediction model had the optimal prediction effect, with

the determination coefficient (R2) and root mean square error (RMSE) of 0.9989

and 6.9, respectively, which were significantly better than those of the other two

models. Results of validation experiments showed that the detection system met

the requirements of moisture content online detection in the drying process of

agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively,

indicating the good performance of the model combining multi-sensor fusion

and CNN in moisture content online detection for agricultural products in the

drying process. The moisture content online detection system established in this

study is of great significance for researching new drying processes and realizing

the intelligent development of drying equipment. It also provides a reference for

online detection of other indexes in the drying process of agricultural products.
KEYWORDS

convolutional neural network, predictionmodel, multi-sensor fusion, moisture content,
online detection
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1 Introduction

As an essential parameter in the drying processing of

agricultural products, moisture content characterizes the drying

rate and signals the end of drying (Yu et al., 2023). Achieving online

detection of moisture content in the drying process is essential to

optimize the drying process and realize the automation of drying.

At present, material moisture content online detection methods

include the dielectric properties method (Celik et al., 2022), model

prediction method (Dalvi-Isfahan, 2020), spectral imaging method

(Cho et al., 2020), and weighing method (Pongsuttiyakorn et al.,

2019). The dielectric property method is a moisture content

detection method based on the correlation between the dielectric

properties of the material and the moisture content. The dielectric

properties of the material are greatly affected by temperature, and

performing accurate moisture content detection when the material

is dried at different temperatures is not easy. The model prediction

method is suitable for moisture content detection of specific

materials under a specific drying environment. When the material

or drying environment changes, the model needs to be re-

established to detect moisture content. The spectral imaging

method is expensive and requires computer vision technology,

which is complicated to operate, not applicable to the agricultural

product drying industry with low added value. The weighing

method can detect the moisture content of different materials

with high versatility, low cost, and simple operation, and is an

essential method of moisture content online detection.

The weighing method is a method for real-time acquisition of

the weight of the material during the drying process, according to

the principle of constant dry matter, combined with the initial

moisture content of the material to achieve moisture content online

detection. The key to the weighing method is accurately acquiring

the material weight by using the load sensor. The complex drying

environment, the vibration of equipment, the impact and

disturbance of airflow, and the variation of drying temperature

will bring severe errors to the detection of the load sensor, which

will affect the accuracy of the moisture content detection. Ju et al.

(2023) stopped the blower to avoid airflow’s influence on the load

sensor’s detection during moisture content detection but ignored

the error caused by temperature variation. Yang et al. (2023a)

similarly achieved moisture content detection by using the stop-

air detection strategy and corrected the detection error caused by

temperature change, improving moisture content detection

accuracy. However, in different drying programs, the temperature

variation range is far beyond the linear calibration interval of the

load sensor, and achieving accurate measurement by simply

compensating the error due to temperature change is difficult.

Wang et al. (2014) while using a stop-air detection strategy at the

same time, carried out linearization calibration of the detection

results of the load sensor at different temperature sections and load

ranges. The scheme effectively avoids the influence of temperature

on the detection of the load sensor. Reyer et al. (2022) directly

installed the load sensor in the drying chamber outside, more

effectively eliminating the measurement error caused by

temperature. However, this scheme destroyed the sealing of the

drying chamber, which increased the difficulty of controlling the
Frontiers in Plant Science 02233
temperature and humidity in the drying chamber. The above

moisture content online detection scheme was implemented

under the stop-air detection strategy.

With the development of automation and intelligence in the

drying industry, drying equipment needs to make real-time

adjustments to the temperature and humidity in the drying

chamber according to the drying rate, and it needs to detect the

moisture content more frequently. In this context, stopping the blower

to detect moisture content will undoubtedly break the continuity of

drying and further increase energy consumption and drying time.

Therefore, the existing moisture content online detection technology

cannot meet the needs of the current drying process.

Multi-sensor fusion technology is an information processing

method that uses computer technology to automatically analyze

and synthesize information and data from multiple sensors or

sources under specific guidelines to obtain the required decisions

and estimates (Xie et al., 2022). Factors affecting load sensor

detection, such as vibration of equipment, impact and disturbance

of airflow, and temperature variation, can be detected by the

sensors. Multi-sensor fusion technology can fuse the load sensor

signal with other sensor signals, make regression prediction of the

real weight of the material in the drying process, and further detect

the moisture content of the material. Regression prediction based

on multi-sensor fusion technology has been widely used in other

industries, such as the remaining life prediction of aviation engines

(Li et al., 2022b), tool wear prediction (Meng et al., 2021), air

pollution level prediction (Ari and Alagoz, 2022), and wheel

odometry prediction (Zhu et al., 2021). Kirsanov et al. (2021)

used PLSR to relate the sensor signals to the values of different

water quality parameters, which enabled the accurate detection of

various water quality parameters. Li et al. (2019) has applied SVM

in multi-sensor fusion to assess green tea quality accurately.

The complex dry environment causes all kinds of sensor signals

to fluctuate and behave randomly. Raw sensor signals are difficult to

transform into a stable output value after filtering. At the same time,

the filtering process removes essential information hidden in the

raw signals that are correlated with the output. Deep learning has

been introduced into multi-sensor fusion prediction to obtain the

correlation and causality hidden in raw monitoring data (Xu et al.,

2020). Deep learning is a specific machine learning type consisting

of a stack of multilayer nonlinear processing units (Samaras et al.,

2019). Deep learning techniques have more powerful

representational learning capabilities than traditional machine

learning techniques. They can learn complex functions that map

inputs to outputs directly from raw data (Wang et al., 2021).

Convolutional neural network (CNN), a class of feed-forward

neural networks that include convolutional computation and have

a deep structure, are one of the representative algorithms for deep

learning (Tong et al., 2023). CNN have also been widely used in

solving regression prediction problems with multi-sensor fusion

and have contributed to many tasks with state-of-the-art accuracy

(Arvidsson et al., 2021; Zeng et al., 2021; Wan et al., 2022; Li et al.,

2022a; Gao et al., 2023).

Given the air-impingement dryer’s fast drying speed and high heat

transfer coefficient, this study built a moisture content online detection

system in the air-impingement dryer (Yang et al., 2023c). The tray
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position needs to be added to the prediction model as an input

variable because of the particularity of the structure of the air-

impingement dryer. Overall, this study applied multi-sensor fusion

technology to the moisture content online detection process and used

the CNN prediction model to fuse the raw signals from the weight

sensor, air velocity sensor, temperature sensor, and the tray position to

accurately obtain the real weight of the material in the drying process.

According to the initial moisture content of the material, the current

moisture content was obtained, and finally, the regression prediction

model of moisture content was established. A moisture content online

detection system was built based on this model.

In summary, this study (1) completed the construction of a

multi-sensor data acquisition platform; (2) carried out cantaloupe

slice drying experiments to obtain the raw monitoring signals of

multi-sensors used for CNN training; (3) established a material

weight prediction model based on CNN and compared it with the

traditional prediction model; and (4) established a moisture content

online detection system based on the CNN prediction model. The

technology roadmap is shown in Figure 1. This study built a

moisture content online detection system and will provide new

technical support for drying process optimization and promote the

intelligent development of drying equipment.
2 Principles and methods

2.1 Principles

In this study, the online detection system was built in the air-

impingement dryer and realized the online detection of the material

moisture content based on the weighingmethod. The following sections

show the operating principle of air-impingement dryer and the

principle of moisture content detection based on the weighing method.

2.1.1 Operation principle of air-
impingement dryer

The air-impingement dryer is a technology that realizes drying

by impinging and heating the material with pressurized hot air

(Zheng et al., 2023). Figure 2 shows the operation principle diagram
Frontiers in Plant Science 03234
of the air-impingement dryer. The air-impingement dryer is divided

into the inner chamber and the outer chamber. Six infrared heating

tubes are evenly installed on the top of the inner chamber, with a

total power of 0–2 KW. The infrared heating tubes heat the

materials placed on the tray with infrared radiation. The fan

draws air from the inner chamber into the outer chamber. The

air is cooled in the outer chamber, and the wet air is discharged

from the outer chamber through a wet discharge valve. The fan

blows the air into the inner chamber through the nozzle to realize

internal circulation of the air in the equipment. When the air

through the nozzle is squeezed, it forms a high-pressure airflow and

impacts the material, removing the moisture on its surface. The

material is dried under the double effect of infrared radiation

heating and airflow impact.

The dryer regulates the air velocity of the fan through a

frequency converter. The dryer is not equipped with an air

velocity sensor, which cannot achieve closed-loop regulation of

the air velocity, so there are large fluctuations in the airflow in the

inner chamber. A temperature sensor is installed at the nozzle,

which is used to detect the temperature of the air in the inner

chamber. The equipment achieves closed-loop control of the air

temperature in the inner chamber by adjusting the power of the

infrared heating tube. The temperature of the outer chamber is

significantly lower than that of the inner chamber due to the lack of

heating by the infrared heater. The internal circulation of air

increases the difficulty of temperature control in the inner chamber.

2.1.2 Principle of moisture content detection
based on the weighing method

Moisture content detection based on the weighing method is a

method to calculate the moisture content based on the initial weight

and the real-time weight during the drying process under the default

condition that the initial moisture content of the same batch of

material is the same. The formula for calculating the moisture content

based on the weighing method (wet basis) is shown in Equation 1

(Liu et al., 2021):

wt =
mt −m(1 − wi)

mt
� 100% (1)
FIGURE 1

Technology Roadmap.
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where wt is the moisture content (wet base) of the material at

time t, %; mt is the weight of the material at time t, g; m is the initial

weight of the material, g; and wi is the initial moisture content (wet

basis) of the material, %.

A load sensor usually needs to be installed at the bottom of the

rack to obtain the weight of the material at time t. During the actual

drying process, the load sensor has difficulty outputting a stable

weight signal due to airflow disturbances and equipment vibration.

The impact of airflow and temperature variation also causes

measurement errors in the load sensor. During the air-

impingement drying process, people often change the tray

position on the rack to obtain different drying quality and drying

rates of the material (Chang et al., 2022). Preliminary experiments

found that the tray position also significantly affects the load

sensor’s measurement results. The tray position here indicates the

distance between the tray and the nozzle.

The drying temperature, air velocity, tray position, and material

weight set by the drying process of different materials vary greatly.

Therefore, the error caused by the complex dry environment to the

detection value of the load sensor needs to be eliminated. In

addition to the tray position, other influencing factors can be

detected by the sensor. The air velocity sensor can detect the

airflow speed, and its raw signal can also reflect the airflow

fluctuation. The temperature sensor can detect the temperature

value that affects the measurement value of the load sensor. The

device’s vibration will also be reflected in the raw signal of the

load sensor.
2.2 Multi-sensor data acquisition

The monitoring data from the three sensors during the drying

process need to be collected for model training to establish a

moisture content online detection model with the raw signals

from load sensor, air velocity sensor, temperature sensor, and the

tray position as inputs and the real weight of the material as outputs.
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2.2.1 Multi-sensor data acquisition
platform construction

The data acquisition system consists of an upper computer, a

weight acquisition module, an air velocity acquisition module, a

temperature acquisition module, and a 485 communication module

as shown in Figure 3. The upper computer adopted the Legion

Y7000P computer from Lenovo, which was responsible for human–

computer interaction and data storage. The upper computer

adopted the MODBUS communication protocol and connected

with each slave unit via three RS485 buses to form a data acquisition

network. In the weight acquisition module, the cantilever beam

pressure sensor (HYPX017, Hengyuan Sensor Technology Co., Ltd.,

Bengbu, China) with a range of 3 kg was selected to collect the

weight signal of the material in the drying process. In the air velocity

acquisition module, a thermal air velocity sensor (WM4200,

Chaozhi Reed Technology Co., Ltd., Changchun, China) with a

range of 20 m/s was used to acquire the air velocity. The air velocity

sensor was installed in the air duct of the outer chamber with a

lower temperature to increase the service life of the air velocity

sensor and to reduce the influence of temperature on the

measurement results of the air velocity sensor. The dimensions of

the air duct were 60mm × 50mm. The dimensions of the tray were

400mm × 350mm. Temperature variations in the elastic substrate of

the load sensor are the leading cause of measurement errors. In the

temperature acquisition module, a temperature sensor (PT100,

Songdao Heating Sensor Co., Ltd., Shanghai, China) with a range

of −45°C to 125°C was selected to collect the temperature signal of

the load sensor elastic substrate. The temperature sensor was fixed

to the elastic substrate by using thermally conductive silicone. A 485

communication module was used to communicate between the

three sensors and the upper computer. The signals of each sensor

were not filtered to obtain the correlation hidden in the raw

monitoring data of the sensors.

2.2.2 Design of single-factor experiment
A single-factor experiment was carried out to investigate the

effect of air velocity, temperature, and tray position on the measured
FIGURE 2

Operation principle diagram of air-impingement dryer. (1) Air velocity adjustment knob; (2) temperature control touch panel; (3) fan; (4) wet
discharge valve; (5) tray; (6) temperature sensor; (7) outer chamber; (8) air nozzle; (9) infrared heating tube; (10) material; (11) inner chamber.
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data from the load sensor. First, air velocity was used as a single-

factor variable for the experimental design. The load sensor

measurement data were obtained continuously under a constant

load of 500 g with a sampling interval of 1 s and duration of 300 s,

load sensor substrate temperature of 25°C, tray position of 80 mm,

and air velocity varying in the range of 4–16 m/s. The load sensor

substrate temperature was set to a zero point temperature of 25°C.

The zero point temperature of the load sensor refers to the

temperature at which the output voltage of the load sensor is zero

at no load, and the weighing value at this temperature is the

standard value. In the experiment with load sensor substrate

temperature as the single factor variable, the fan stopped running,

the constant load was 500 g, the tray position was 80 mm, the

temperature varied in the range of 25°C–70°C, the sampling interval

was 10 s, and the sampling duration was 80 min. In the experiment

with tray position as the single factor variable, the constant load was

500 g, the load sensor substrate temperature was 25°C, and the air

velocity was set at 16 m/s. The load sensor data were collected at 80,

120, and 160 mm tray positions with a sampling interval of 1 s and a

sampling duration of 180 s.

2.2.3 Experimental design for multi-sensor
data acquisition

The data acquisition experiments were carried out under different

drying environments to thoroughly investigate the correlation

between the input variables and the weight of the material and

improve the prediction model’s accuracy. The temperature setting

range in the drying of agricultural products is usually 40°C–70°C. The

maximum air velocity of the outer air duct in the air-impingement

dryer is 16 m/s. The tray position is determined by the structure of the

rack, which has three layers in total, and the distances between the tray

and the nozzle are 80, 120, and 160 mm, respectively. In summary, the

data acquisition experiments were carried out at different

temperatures (40°C, 50°C, 60°C, and 70°C), different air velocities

(4, 8, 12, and 16 m/s), and different tray positions (80, 120, and

160 mm). Each group drying experiment randomly obtained 10

groups of data, and each group of data sampling interval was

greater than 5 minutes, thus obtaining a total of 480 groups of data
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(4 × 4 × 3 × 10). Each sampling time lasted 8 s, and the sampling

frequency was 8 Hz.

Data acquisition experiments were conducted during the

cantaloupe slice drying experiment. Fresh, undamaged cantaloupe

was peeled, deseeded, and sliced into 30 × 50 × 7 mm slices. For

each set of experiments, 1000 g of cantaloupe slices were weighed

and placed on the tray. The cantaloupe slices were removed from

the tray, weighed immediately after each data acquisition, and

quickly returned to the tray. The weight of the cantaloupe slices

was the output value of this dataset.
2.3 Prediction model of moisture content
online detection

2.3.1 Convolutional neural network
CNN is a deep learning model or a multilayer perceptron

similar to artificial neural network. In this study, the CNN was

used for regression analysis to mine potential information in the

raw monitoring data of load sensor, air velocity sensor, temperature

sensor, and tray position to achieve weight prediction and complete

the study of moisture content online detection.

The CNN used in this study consisted of the input layer,

convolutional layer, batch normalization layer, average pooling

layer, fully connected layer, and output layer, and its structure is

shown in Figure 4. The function of the input layer was mainly to

normalize the input data, which can improve the model’s

generalization ability and increase the training speed (Hu et al.,

2023). The convolutional layer uses convolutional operations to

filter out redundant information in the original data, enhance the

information related to the output, and achieve automatic feature

extraction (Wang et al., 2022). The convolution kernel size was set

to 3 × 3, the convolution mode was set to “same,” and the step size

was set to 1. The number of convolution kernels needed to be

adapted to the structure of the training data, which was determined

by a trial-and-error method based on the performance evaluation

index of the model (Ma et al., 2023). The activation function in the

neural network structure can make a nonlinear mapping of the
FIGURE 3

Multi-sensor data acquisition system.
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output, which is particularly important for the accuracy of the

prediction model (Guan et al., 2022).

The CNN model was trained using the rectified linear unit

(ReLU) function, the hyperbolic tangent (tanh) function, and the

sigmoid function to select the best activation function. The most

appropriate activation function was selected based on the model

performance evaluation index. The average pooling layer was

located after the convolutional layer, and its function was to

accomplish the parameter degradation and maintain translation

invariant properties, which can be achieved to reduce the feature

map while preserving the critical features in the input to some

extent (Zhong et al., 2023). The size of the average pooling matrix

was set to 2, and the step size was set to 2. Adding a batch

normalization layer between the convolutional layer and the

average pooling layer allowed the inputs of each neural network

layer to maintain the same distribution during neural network

training, thus reducing the internal covariate shift, improving the

gradient mobility, and achieving the regularization effect (Tan et al.,

2021). A dropout layer was set before the fully connected layer. In

the dropout layer, some input elements were randomly changed to

zero with a probability set to 0.05. The dropout layer randomly

rendered 5% of the elements non-functional, thus avoiding

overfitting (Zhao et al., 2023). The fully connected layer flattened

the feature map into a one-dimensional vector for final feature

integration and output prediction. The role of the output layer was

to output the predicted result, which in this study was the real

weight of the material.

A total of 480 sets of data were randomly sorted, and 70% of the

data (336 sets) were used as the training set, 15% of the data (72 sets)

were used as the validation set, and 15% of the data (72 sets) were

used as the test set. During the training of the CNN, the network

parameters were updated according to the loss function for each

training batch, and the batch size was set to 16. The training set had

336 sets of data, and one iteration was completed for every 21 updates

of the network parameters. The maximum number of iterations was

set to 50. The root mean square error (RMSE) between the real values

and the predicted values of the validation set was used as the loss

function, which was calculated by Equation 2. Model training was

performed in a Legion Y7000P computer from Lenovo with

MATLAB R2021a software.
Frontiers in Plant Science 06237
Loss = RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(byi − yi)
2

n

s
  (2)

Where n is the number of samples in the validation set, ŷi and yi
are the predicted value and real value of the ith sample.

2.3.2 Evaluation of model performance
The performance of the prediction model was evaluated in

terms of the RMSE of the training set (RMSETr), validation set

(RMSEVe), and test set (RMSETe), and the coefficients of

determination (R2) of the training set (R2Tr), validation set (R2Ve),

and test set (R2
Te). RMSE and R2 represent the deviation and degree

of fitting between the real and predicted values, respectively. RMSE

focuses on the magnitude of the error, with smaller values

indicating greater accuracy of the model. R2 focuses on the ability

of the model to explain the variation in the data, with values closer

to 1 indicating a better fit of the model. These evaluation parameters

were calculated by Equation 3 and Equation 4 (Wang et al., 2023):

R2
Tr ,R

2
Ve,R

2
Te = 1 − on

i=1(cyi−yi)2
on

i=1(yi − ym)
2 (3)

RMSETr, RMSEVe, RMSETe =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(byi − yi)
2

n

s
  (4)

Where n is the number of samples in the corresponding set

(training set, validation set, and test set), ŷi and yi are the predicted

value and real value of the ith sample, and ym is the mean value of all

the samples.
2.4 System validation experiments

MATLAB software was used for data processing, model

prediction, and real-time display of moisture content in the

moisture content online detection system. First, the initial weight

and the initial moisture content of the material were set, and the

initial moisture content was measured by the oven method (Yang

et al., 2023b). The sensor cannot detect the tray position and is a

fixed value. Thus, this value also needs to be input into the software.
FIGURE 4

Structure of CNN.
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MATLAB processed the data obtained from the sensors to meet the

format requirements of the predictive model inputs. The processed

data were then fed into a trained prediction model, which outputted

the real weight of the material. The moisture content of the material

was calculated according to the initial weight and the initial

moisture content and displayed in real time.

The cantaloupe slice drying experiment in Section 2.2.3 was

repeated. The initial weight of cantaloupe slices was 1000 g, and the

initial moisture content was 90.19% (wet basis). The set values of air

velocity, temperature and tray position were randomized into five

experimental groups. The experimental design is shown in Table 1.

Where temperature refers to the air temperature in the inner

chamber, measured by the temperature sensor in Figure 2. Five

sets of experiments were conducted sequentially under the same set

of material conditions, with each set lasting 30 minutes. Three

sensors, including a load sensor, an air velocity sensor, and a

temperature sensor acquired data once at a random time during

each set of test cycles.
3 Results and discussion

3.1 Results and analyses of single-
factor experiment

Figure 5A shows the experimental results with air velocity as a

single factor variable. The monitoring signal of the load sensor

fluctuated greatly with more noise, which was due to the unstable

impact force of the airflow on the tray caused by the inhomogeneity of

the airflow. The vibration generated by the equipment operation made

the load sensor unable to acquire the data in a stable state. The

measured values of the load sensor in different air velocities had a

significant difference, and the variation range of the measured values

was from 519.34 g to 579.78 g, with a variation of 60.44 g. The wind

direction was perpendicular to the tray’s upper surface; thus, the load

sensor’s measured values showed a positive relationship with the air

velocity and the relationship had a strong transient nature.

Figure 5B shows the experimental results with temperature as a

single factor variable. The fluctuation range of the load sensor

measurement value was 500.03–506.15 g with a fluctuation

amplitude of 6.12 g in the temperature variation range of 26.26°C–

65.76°C. The monitoring value of the load sensor and the

temperature of the load sensor elastic substrate at a fixed load

showed a positive relationship. The load sensor used for moisture
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content detection was a resistance strain gauge pressure sensor.

Temperature can cause errors and noise in the measured values of

the load sensor by affecting the resistance strain gauges’ resistance

value and the elastic substrate’s elastic modulus (Burnos and Rys,

2017). The effect of temperature on the measured value of weight

sensors also had significant relationships with the load. Wang et al.

(2014) calibrated the measured values of weight sensors at different

temperature sections and load ranges, effectively avoiding the

influence of temperature on the detection of the load sensor.

Figure 5C shows the experiment results with the tray position as

a single factor variable. Under a constant load, the tray position

significantly affected the load sensor’s measurement value. The

fluctuation range of the load sensor measurements at the three

tray positions was 521.44–578.01 g, with a fluctuation range of

56.57 g. The smaller the distance between the tray and the nozzles,

the more concentrated the airflow from the nozzles, and the greater

the force exerted on the tray, which in turn increased the load

sensor measurements. The three layers of the tray were arranged

vertically so that the tray position did not affect the measured value

of the load sensor when the fan was stopped. Therefore, the tray

position’s influence on the load sensor’s measured value was very

much related to the air velocity.
3.2 Results and analyses of CNN training

3.2.1 Selection of activation function and number
of convolution kernels

The activation function and the number of convolutional kernels in

the CNN needed to be determined by trial-and-error method based on

the model performance index. The model performance test with

different activation functions and number of convolution kernels was

performed with the same training, validation, and test sets. The test

results are shown in Table 2. Table 2 shows that the model

performance of the ReLU activation function was significantly better

than that of the tanh and sigmoid functions. Li et al. (2022c) had

similar findings when applying CNNs to predictive modeling. At the

same activation function number (ReLU), a slight difference was found

in the model performance for different numbers of convolutional

kernels. The best model performance (R2 closest to 1 and minimum

RMSE) for the training, validation, and test sets occurred in the fourth,

fifth, and fourth groups, respectively. The test set did not participate in

the training process of the CNN, and its model performance was more

reliable. The results of the test set of the fifth group were significantly
TABLE 1 The design of system validation experiments.

Factor
Group

1 2 3 4 5

Air velocity (m/s) 12.6 6.3 8.4 14.1 9.7

Tray position (mm) 140 100 140 100 60

Temperature (°C) 68 43 50 56 63
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worse than those of the fourth group. Taken together, the best structure

of the CNN was the fourth group, the best activation function was

ReLU, and the ideal number of convolutional kernels was (16, 32).

3.2.2 Variable learning rate optimization
After the optimal activation function and number of

convolution kernels were determined, the RMSE of the model

was still high. An observation of the loss function curve during

the training process of the CNN showed that the loss function

showed regular oscillations at the late stage of training, but no

decreasing trend occurred. This is the phenomenon of gradient

disappearance caused by a too-large learning rate in the late training

period (Noppitak and Surinta, 2022). However, if the learning rate

was reduced, then the training time would be much longer, and

obtaining the global optimum would be difficult. This study set the

learning rate schedule to piecewise mode, which can adopt different

learning rates in different training stages. The initial learning rate

was set to 0.0001, the learning rate drop period was set to 50, the

learning rate drop factor was set to 0.25, and the maximum number

of iterations was set to 200. The loss function curve with variable

learning rate optimization was shown in Figure 6. The maximum

number of iterations was 200, the learning rate decreased every 50

iterations, and the loss function was updated 21 times per iteration

(number of training set samples/batch size). The loss function was

updated a total of 4200 times. In Figure 6, the loss function

oscillation amplitude decreased with each decrease in the learning
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rate, which was due to gradient reduction caused by the decrease in

the iteration step size. Every time the learning rate decreased, the

loss function decreased significantly, and the whole training process

showed a decreasing trend, which indicates that the iterative

gradient was restored and the training results were constantly

approaching the optimal value. The R2 and RMSE of the model

test set were 0.9989 and 6.9, respectively, and the prediction results

of the model test set are shown in Figure 7. Figures 7A, B show the

fitting degree and prediction error of the predicted value to the real

value, respectively. The maximum error was 0.042, and 85% of the

test data had a prediction error of less than 0.02. In conclusion, the

prediction model with variable learning rate optimization can more

accurately predict the material weight.
3.3 Model performance comparison

The CNNmodel is more complex than the other two prediction

models, and the combination with hardware is much more difficult.

Therefore, the performance of the classical linear and nonlinear

regression models PLSR and SSVM was tested to prevent model

performance excess. Figures 8A–C show scatterplots of real and

predicted values for the PLSR, SVR, and CNN models. The solid

line is a regression line that aids in analyzing the degree of deviation

of the predicted values relative to the real values. The closer the

scatter is to the regression line, the better the fit of the model.
BA

C

FIGURE 5

The results of single-factor experiment. (A–C) are the experimental results with air velocity, temperature and tray position as single
factors, respectively.
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Figure 8C shows that the sample points of the CNN model were

centrally distributed near the regression line, and the model had the

best fit. In contrast, the PLSR and SVR model sample points were

more dispersed, not exactly distributed near the regression line, and

shifted relative to the regression line. The RMSE of the test set for

the two models were 47.9 and 39.8, respectively, which cannot meet

the accuracy requirements of moisture content online detection.
3.4 Validation test results

The moisture content detection based on the weighing method

defaulted to the same initial moisture content of the same batch of

material. A deviation occurred between the moisture content of the

material used for the oven test and the drying experiment, which

will inevitably affect the accuracy of moisture content detection. The

validation test results are shown in Table 3. The RMSE of the five

validation experiments was 1.47, which indicated that the error

caused by defaulting to the same initial moisture content of the

same batch of materials was within the acceptable range. The results

of the five validation experiments showed that the fit of the moisture

content detection model based on the CNN established in this study

was acceptable, and the moisture content online detection system

can accurately detect the moisture content of materials in the

drying process.
Frontiers in Plant Science 09240
4 Conclusion

In this study, a multi-sensor data acquisition platform was set

up, and a CNN prediction model was established with raw
TABLE 2 Test results of different activation function and number of convolution kernels (shaded group is the optimal structure; bold font indicates
the optimal solution).

Group
Activation
function

Number of
convolution

kernels

Training set Validation set Test set

R2 RMSE R2 RMSE R2 RMSE

1

Relu

8, 16 0.9931 17.3 0.9860 31.4 0.9734 24.7

2 8, 32 0.9910 19.8 0.9888 22.1 0.9823 25.6

3 8, 64 0.9911 19.7 0.9892 21.7 0.9829 25.1

4 16, 32 0.9957 13.8 0.9876 23.2 0.9913 17.9

5 16, 64 0.9948 15.1 0.9908 20.0 0.9800 27.2

6 32, 64 0.9926 18.0 0.9867 24.1 0.9769 29.2

7

Tanh

8, 16 0.9314 54.7 0.9096 57.8 0.8710 75.0

8 8, 32 0.8904 69.2 0.8770 73.3 0.8795 66.8

9 8, 64 0.8892 53.4 0.8836 58.2 0.8854 58.0

10 16, 32 0.9439 49.5 0.8566 79.1 0.8625 71.3

11 16, 64 0.9377 40.9 0.9299 41.5 0.8947 56.8

12 32, 64 0.9248 57.3 0.8945 62.5 0.8891 69.5

13

Sigmoid

8, 16 0.9391 51.5 0.9229 53.4 0.9014 65.6

14 8, 32 0.9806 29.1 0.9749 33.1 0.9718 32.3

15 8, 64 0.9791 30.2 0.9644 39.4 0.9512 42.5

16 16, 32 0.9388 51.7 0.9214 53.9 0.8984 66.6

17 16, 64 0.9676 37.6 0.9630 40.2 0.9575 39.6

18 32, 64 0.9858 24.9 0.9714 35.3 0.9688 34.0
FIGURE 6

Loss function curve with variable learning rate optimization.
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monitoring data from the load sensor, air velocity sensor,

temperature sensor and the tray position as inputs and the real

weight of materials as outputs. The optimal activation function and

number of convolutional kernels for the prediction model were

selected. The optimal activation function was ReLU, and the

optimal number of convolutional kernels was (16, 32). The

training process of the CNN was optimized with a variable

learning rate to optimize the model performance further. The

final performance of the CNN prediction model was satisfactory

(with R2 and RMSE of 0.9989 and 6.9, respectively) and was

significantly better than that of the traditional linear PLSA model

(with R2 and RMSE of 0.9489 and 47.9, respectively) and the
Frontiers in Plant Science 10241
nonlinear SVR model (with R2 and RMSE of 0.9648 and 39.8,

respectively). A moisture content online detection system was

constructed based on the CNN prediction model. Validation

experiments were carried out, and the R2 and RMSE of the

validation experiments were 0.9901 and 1.47, respectively. The

validation experiments showed that the CNN prediction model

was fully applicable to moisture content online detection, and the

detection system based on this model fully met the accuracy

requirements of moisture content online detection.

In the moisture content online detection system proposed in this

study, the detection of initial moisture content still has errors. Future

research can use more advanced and convenient technology to detect
BA

C

FIGURE 8

Scatterplot of PLSR (A), SVM (B), and CNN (C) models.
A B

FIGURE 7

The prediction results of the CNN model test set. (A) and (B) are plots of fitting effects and prediction errors, in that order.
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the initial moisture content of materials quickly and effectively. In

addition, this system was built with computer as the host computer.

Scholars can compile the detection model into the microcontroller in

future research, which is conducive to the application and promotion

of the detection system in actual production.

Overall, this study established a moisture content online

detection system based on multi-sensor fusion and CNN

prediction model, realizing real-time moisture content detection

during agricultural products’ drying process. This study will provide

technical support for further optimization of the drying process and

will also promote the intelligent development of agricultural

product drying equipment.
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