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Editorial on the Research Topic

Machine Learning Methods for High-Level Cognitive Capabilities in Robotics

1. INTRODUCTION

Adaptive learning and emergence of integrative cognitive system that involve not only low-level
but also high-level cognitive capabilities are crucially important in robotics (Cangelosi et al., 2010;
Cangelosi and Schlesinger, 2015; Ugur and Piater, 2015; Tani, 2016; Taniguchi et al., 2016, 2018).
Recent advancement in machine learning methods, e.g., deep learning and hierarchical Bayesian
modeling, enables us to develop cognitive systems that integrate multi-level sensory-motor and
cognitive capabilities. Low-level cognitive capabilities includes sensory perception, physical control,
and behavioral motion generation, while high-level cognitive capabilities include logical inference,
planning, and language acquisition. To create robots that can deal with uncertainty in our daily
environment, developing machine learning methods that can integrate low-level and high-level
is essential. Following the successfully organized session “the Workshop on Machine Learning
Methods for High-Level Cognitive Capabilities in Robotics 2016” held in IEEE-IROS 20161, we
organized this Research Topic. We aimed to publish original papers about the state-of-the-art
machine learning methods that contribute to modeling sensory-motor and cognitive capabilities
in robotics.

2. ABOUT THE RESEARCH TOPIC

We are pleased to present 9 research articles, related to motor and behavior learning, concept
formation, language acquisition, and cognitive architecture. In this section, we briefly introduce
each paper.

First, three papers focused on action and behavior learning. Imitation learning is an important
topic related to the integration of high-level and low-level cognitive capability because it enables
a robot to acquire behavioral primitives from social interaction including observation of human
behaviors. Nakajo et al. proposed a machine learning method for viewpoint transformation

1The Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics 2016: http://mlhlcr2016.

tanichu.com/
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and action mapping using a neural network having encoder-
decoder architecture, i.e., sequence to sequence. In imitation
learning, demonstrator and imitator have different perspectives.
The method deals with the problem and produced a successful
result. Nakamura et al. proposed a new machine learning
method called Gaussian process-hidden semi-Markov model
(GP-HSMM). GP-HSMM can segment continuous motion
trajectories without defining a parametric model for each
primitive. That comprises Gaussian process, which is a regression
method based on Bayesian non-parametric, and hidden semi-
Markov model. This method enables a robot to find motion
primitives from complex human motion in an imitation
learning scenario. Manipulation using the left and right arms
is an essential capability for a cognitive robot. Zhang et al.
proposed a neural-dynamic based synchronous-optimization
scheme manipulators. It was demonstrated that the method
enables a robot to track complex paths.

Second, two papers focused on the relationship between action
and object concept. Andries et al. proposes the formalism for
defining and identifying affordance equivalence. The concept
of affordance can be regarded as a relationship between an
actor, an action performed by this actor, an object on which
the action is performed, and the resulting effect. Learning
affordance, i.e., inter-dependency between action and object
concept, is an important topic in this field. Taniguchi et al.
proposed a new active perception method based on multimodal
hierarchical Dirichlet process, which is a hierarchical Bayesian
model for multimodal object concept formation method. The
important aspect of the approach is that the policy for active
perception is derived based on the result of unsupervised
learning without any manually designed label data and
reward signals.

Third, three papers are related to language acquisition and
concept formation. Hagiwara et al. proposed hierarchical spatial
concept formation method based on hierarchical multimodal
latent Dirichlet allocation (hMLDA). They demonstrated that
a robot could form concept for places having hierarchical
structure, e.g., “around a table” is a part of “dining room,”
using hMLDA, and became able to understand utterances
indicating places in a domestic environment given by a human
user. Yamada et al. described representation learning method
that enables a robot to understand not only action-related
words, but also logical words, e.g., “or,” “and” and “not.”
They introduced an neural network having an encoder-decoder
architecture, and obtained successful and suggestive results.
Taniguchi et al. proposed a new multimodal cross-situational
learning method for language acquisition. A robot became able

to estimate of each word in relation with modality via which each
word is grounded.

The final paper presents a framework for cognitive
architecture based on hierarchical Bayesian models.
Nakamura et al. proposed Symbol Emergence in Robotics
tool KIT (SERKET) that can integrate many cognitive modules
developed using hierarchical Bayesian models, i.e., probabilistic
generative models, effectively without re-implementation of
each module. Integration of low-level and high-level cognitive
capability and developing an integrative cognitive system
requires researchers and developers to construct very complex
software modules, and this is expected to cause practical
problems. Serket can be regarded as a practical solution for the
problem, and expected to push the research field forward.

3. NEXT STEP

With the tremendous success of the past three Special issues of
this Research Topic, we organized follow-up workshops2 and
a Research Topic3. Two survey papers related to the series of
workshops have already been published (Taniguchi et al., 2018;
Tangiuchi et al., 2019). We will also organize a workshop with
the special emphasis on deep probabilistic generative models4

We believe that in order to create an artificial cognitive system,
i.e., a robot, it is important to integrate low-level and high-level
cognitive capabilities based on machine learning-based methods.
We hope that this special issue will contribute to accelerating
the robotics and machine learning studies that aims to create
human-like cognitive systems that can behave in our real-world
environment in collaboration with people.
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In this paper, we propose a Bayesian generative model that can form multiple categories
based on each sensory-channel and can associate words with any of the four sensory-
channels (action, position, object, and color). This paper focuses on cross-situational
learning using the co-occurrence between words and information of sensory-channels in
complex situations rather than conventional situations of cross-situational learning. We
conducted a learning scenario using a simulator and a real humanoid iCub robot. In the
scenario, a human tutor provided a sentence that describes an object of visual attention
and an accompanying action to the robot. The scenario was set as follows: the number
of words per sensory-channel was three or four, and the number of trials for learning was
20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results
showed that the proposed method was able to estimate the multiple categorizations and
to learn the relationships between multiple sensory-channels and words accurately. In
addition, we conducted an action generation task and an action description task based
on word meanings learned in the cross-situational learning scenario. The experimental
results showed that the robot could successfully use the word meanings learned by using
the proposed method.

Keywords: Bayesian model, cross-situational learning, lexical acquisition, multimodal categorization, symbol
grounding, word meaning

1. INTRODUCTION

This paper addresses the study of robotic learning of the word meanings inspired by the process of
language acquisition of humans.We developed an unsupervisedmachine learningmethod to enable
linguistic interaction between humans and robots. Human infants can acquire word meanings by
estimating the relationships between multimodal information and words in a variety of situations.
For example, if an infant grasps a green cup by hand, let us consider the way the parent describes the
actions of the infant to the infant using a sentence such as “grasp green front cup.” In this case, the
infant does not know the relationship between words and situations because it has not acquired the
meanings of words. In other words, the infant cannot determine whether the word “green” indicates
an action, an object, or a color. However, it is believed that the infant can learn that the word “green”
represents the green color by observing the co-occurrence of the word “green” with objects of green
color in various situations. This is known as cross-situational learning (CSL), which has been both
studied in children (Smith et al., 2011) andmodeled in simulated agents and robots (Fontanari et al.,
2009). The CSL is related to the symbol grounding problem (Harnad, 1990), which is a challenging
and significant issue in robotics.
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The generalization ability and the robustness of observation
noise to process situations that have never been experienced are
important in cognitive robotics. The study of language acquisition
by infants led to the proposal of a hypothesis of taxonomic bias
(Markman andHutchinson, 1984) that infants tend to understand
a word as the name of a category to which the target object
belongs rather than a proper noun. This hypothesis could also
be considered to play an important role in CSL. In this study,
we assume that words are associated with categories based on
taxonomic bias. By associating words with categories, it becomes
possible for a human to generalize and process words. Therefore,
humans can use words for communication in new situations.
To develop this ability, the robot needs to form categories from
observation information autonomously. We develop this abil-
ity by categorization based on the Bayesian generative model.
Another hypothesis regarding the lexical acquisition by an infant
was mutual exclusivity bias (constraint) (Markman and Wach-
tel, 1988). In studies on lexical acquisition, this hypothesis was
considered to be particularly important for CSL (Twomey et al.,
2016). Mutual exclusivity bias assumes that the infant considers
the name of an object to correspond to one particular category
only. In other words, multiple categories do not correspond to
that word simultaneously. In Imai and Mazuka (2007), it was
suggested that once an infant decides whether a word refers to the
name of an object or a substance, the same word is not applied
across the ontological distinction such as objects and substances.
In this study, we extend the mutual exclusivity constraint to the
CSL problem in complex situations. We aim to develop a novel
method that can acquire knowledge of multiple categories and
wordmeanings simultaneously. In addition, we verify whether the
effect of mutual exclusivity is biased toward lexical acquisition by
constructing a model assuming different constraints.

In addition, humans can perform the instructed action using
acquired knowledge. For example, the parent places some objects
in front of an infant and speaks “grasp green right ball” to the
infant. In this case, the infant can use the acquired wordmeanings
to select the green ball to the right of some objects and perform the
action of grasping. Furthermore, humans can explain self-action
with the sentence using the acquired knowledge. For example, if
the infant knows the word meanings after grasping a blue box in
front of it, the infant can speak “grasp blue front box” to another
person. Understanding instructions and describing situations are
crucial problems that are also required to build a cognitive robot.

In this paper, the goal is to develop an unsupervised machine-
learning method for learning the relationships between words
and the four sensory-channels (action, object, color, and position)
from the robot’s experience of observed sentences describing
object manipulation scenes. In the above example, sentences con-
taining four words for four sensory-channels are shown. However,
in the scenario described in this study, sentences of less than
four words are allowed. In addition, the position sensory-channel
corresponds to the original position of the object. In other words,
we assume that the environment is static.We assume that the robot
can recognize spoken words without errors, as this work focuses
specifically on (1) the categorization for each sensory-channel,
(2) the learning of relationships between words and sensory-
channels, and (3) the grounding of words in multiple categories.

In addition, we demonstrate whether the robot can carry out its
actions and the sentence description of its action by conducting
experiments using the CSL results. The main contributions of this
paper are as follows:

• Weproposed an unsupervisedmachine-learningmethod based
on a Bayesian generative model that makes it possible to learn
word meanings, i.e., the relationships between words and cate-
gories, from complex situations.

• We demonstrated that word meanings learned by using the
proposed method are effective for generating an action and
description of a situation.

The remainder of this paper is organized as follows. In
Section 2, we discuss previous studies on lexical acquisition by
a robot and CSL that are relevant to our study. In Section 3,
we present a proposed Bayesian generative model for CSL. In
Sections 4 and 5, we discuss the effectiveness of the proposed
method in terms of three tasks, i.e., cross-situational learning,
action generation, and an action description task, in a simulation
and a real environment, respectively. Section 6 concludes the
paper.

2. RELATED WORK

2.1. Lexical Acquisition by Robot
Studies of language acquisition also constitute a constructive
approach to the human developmental process (Cangelosi and
Schlesinger, 2015), the language grounding (Steels and Hild,
2012), and the symbol emergence (Taniguchi et al., 2016c). One
approach to studying language acquisition focuses on the estima-
tion of phonemes andwords from speech signals (Goldwater et al.,
2009; Heymann et al., 2014; Taniguchi et al., 2016d). However,
these studies used only continuous speech signals without using
co-occurrence based on other sensor information, e.g., visual,
tactile, and proprioceptive information. Therefore, the robot was
not required to understand the meaning of words. Yet, it is impor-
tant for a robot to understand word meanings, i.e., grounding the
meanings to words, for human–robot interaction (HRI).

Roy and Pentland (2002) proposed a computational model by
which a robot could learn the names of objects from images of
the object and natural infant-directed speech. Their model could
perform speech segmentation, lexical acquisition, and visual cat-
egorization. Hörnstein et al. (2010) proposed a method based
on pattern recognition and hierarchical clustering that mimics a
human infant to enable a humanoid robot to acquire language.
Their method allowed the robot to acquire phonemes and words
from visual and auditory information through interaction with
the human. Nakamura et al. (2011a,b) proposed multimodal
latent Dirichlet allocation (MLDA) and a multimodal hierarchi-
cal Dirichlet process (MHDP) that enables the categorization of
objects frommultimodal information, i.e., visual, auditory, haptic,
and word information. Their methods enabled more accurate
object categorization by usingmultimodal information. Taniguchi
et al. (2016a) proposed a method for simultaneous estimation of
self-positions and words from noisy sensory information and an
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uttered word. Their method integrated ambiguous speech recog-
nition results with the self-localizationmethod for learning spatial
concepts. However, Taniguchi et al. (2016a) assumed that the
name of a place would be learned from an uttered word. Taniguchi
et al. (2016b) proposed a nonparametric Bayesian spatial con-
cept acquisition method (SpCoA) based on place categorization
and unsupervised word segmentation. SpCoA could acquire the
names of places from spoken sentences including multiple words.
In the above studies, the robot was taught to focus on one target,
e.g., an object or a place, by a tutor using oneword or one sentence.
However, considering a more realistic problem, the robot needs to
know which event in a complicated situation is associated with
which word in the sentence. The CSL, which is extended from
the aforementioned studies on the lexical acquisition, is a more
difficult and important problem in robotics in comparison. Our
research concerns the CSL problem because of its importance in
relation to the lexical acquisition by a robot.

2.2. Cross-Situational Learning
2.2.1. Conventional Cross-Situational Learning
Studies
Frank et al. (2007, 2009) proposed a Bayesian model that unifies
statistical and intentional approaches to cross-situational word
learning. They conducted basicCSL experimentswith the purpose
of teaching an object name. In addition, they discussed that the
effectiveness ofmutual exclusivity for CSL in probabilisticmodels.
Fontanari et al. (2009) performed object-word mapping from the
co-occurrence between objects and words by using a method
based on neural modeling fields (NMF). In “modi” experiments
using iCub, their findings were similar to those reported by
Smith and Samuelson (2010). The abovementioned studies are
CSL studies that were inspired by studies based on experiments
with human infants. These studies assumed a simple situation
such as learning the relationship between objects and words as
the early stage of CSL. However, the real environment is varied
and more complex. In this study, we focus on the problem of
CSL in utterances includingmultiplewords and observations from
multiple sensory-channels.

2.2.2. Probabilistic Models
Qu and Chai (2008, 2010) proposed a learning method that
automatically acquires novel words for an interactive system.
They focused on the co-occurrence between word-sequences
and entity-sequences tracked by eye-gaze in lexical acquisition.
Qu and Chai’s method, which is based on the IBM-translation
model (Brown et al., 1993), estimates the word-entity associa-
tion probability. However, their studies did not result in per-
fect unsupervised lexical acquisition because they used domain
knowledge based on WordNet. Matuszek et al. (2012) presented
a joint model of language and perception for grounded attribute
learning. This model enables the identification of which novel
words correspond to color, shape, or no attribute at all. Celikkanat
et al. (2014) proposed an unsupervised learning method based
on latent Dirichlet allocation (LDA) that allows many-to-many
relationships between objects and contexts. Their method was
able to predict the context from the observation information
and plan the action using learned contexts. Chen et al. (2016)
proposed an active learning method for cross-situational learning

of object-word association. In experiments, they showed that LDA
wasmore effective than non-negativematrix factorization (NMF).
However, they did not perform any HRI experiment using the
learned language. In our study, we perform experiments that use
word meanings learned in CSL to generate an action and explain
a current situation.

2.2.3. Neural Network Models
Yamada et al. (2015, 2016) proposed a learning method based on
a stochastic continuous-time recurrent neural network (CTRNN)
and a multiple time-scales recurrent neural network (MTRNN).
They showed that the learned network formed an attractor
structure representing both the relationships between words and
action and the temporal pattern of the task. Stramandinoli et al.
(2017) proposed partially recurrent neural networks (P-RNNs) for
learning the relationships between motor primitives and objects.
Zhong et al. (2017) proposed multiple time-scales gated recur-
rent units (MTGRU) inspired by MTRNN and long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997). They
showed that the MTGRU could learn long-term dependencies
in large-dimensional multimodal datasets by conducting multi-
modal interaction experiments using iCub. The learning results
of the above studies using neural networks (NNs) are difficult
to interpret because time-series data is mapped to continuous
latent space. These studies implicitly associate words with objects
and actions. Generally, NN methods require a massive amount
of learning data in many cases. On the other hand, the learning
result is easier to interpretwhenBayesianmethods rather thanNN
methods are used. In addition, Bayesianmethods require less data
to learn efficiently. We propose a Bayesian generative model that
can perform CSL, including action learning.

2.2.4. Robot-to-Robot Interaction
Spranger (2015) and Spranger and Steels (2015) proposed a
method for the co-acquisition of semantics and syntax in the
spatial language. The experimental results showed that the robot
could acquire spatial grammar and categories related to spatial
direction. Heath et al. (2016) implemented mobile robots (Lin-
godroids) capable of learning a lexicon through robot-to-robot
interaction. They used two robots equipped with different sensors
and simultaneous localization and mapping (SLAM) algorithms.
These studies reported that the robots created their lexicons in
relation to places and the distance in terms of time.However, these
studies did not consider lexical acquisition by HRI. We consider
HRI to be necessary to enable a robot to learn human language.

2.2.5. Multimodal Categorization and Word Learning
Attamimi et al. (2016) proposed multilayered MLDA (mMLDA)
that hierarchically integrates multiple MLDAs as an extension of
Nakamura et al. (2011a). They performed an estimation of the
relationships among words and multiple concepts by weighting
the learned words according to their mutual information as a
post-processing step. In their model, the same uttered words
are generated from three kinds of concepts, i.e., this model has
three variables for same word information in different concepts.
We consider this to be an unnatural assumption as the generative
model for generating words. However, in our proposed model,
we assume that the uttered words are generated from one vari-
able. We consider our proposed model to involve a more natural
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assumption than Attamimi’s model. In addition, their study did
not use data that were autonomously obtained by the robot. In
Attamimi et al. (2016), it was not possible for the robot to learn
the relationships between self-actions and words because human
motions obtained by the motion capture system based on Kinect
and a wearable sensor device attached to a human were used as
action data. In our study, the robot learns the action category
based on subjective self-action. Therefore, the robot can perform a
learned action based on a sentence of human speech. In this paper,
we focus on complicated CSL problems arising from situations
with multiple objects and sentences including words related to
various sensory-channels such as the names, position, and color
of objects, and the action carried out on the object.

3. MULTICHANNEL CATEGORIZATIONS
AND LEARNING THE MEANING OF WORDS

We propose a Bayesian generative model for cross-situational
learning. The proposed method can estimate categories of mul-
tiple sensory-channels and the relationships between words and
sensory-channels simultaneously.

3.1. Overview of the Scenario and
Assumptions
Here, we provide an overview of the scenario on which we focus
and some of the assumptions in this study. Figure 1 shows an
overview of the scenario. The robot does not have any specific
knowledge of objects, but it can recognize that objects exist on
the table, i.e., the robot can segment the object and then extract
the features of the segmented object. In addition, we assume that
the robot can recognize the sentence uttered by the tutor without
error. The training procedure consists of the following steps:

1. The robot is in front of the table onwhich the objects are placed.
Multiple objects are placed separately on the table.

2. The robot selects an object from the objects on the table. The
robot pays visual attention to a selected object, and then, exerts
an action on the selected object, e.g., “grasp,” “touch,” “reach,”
and “look-at.”

3. The human tutor utters a sentence including words about the
object at which the robot is gazing and also a word about the
action performed by the robot, e.g., “grasp front green cup.”

4. The robot obtains multimodal information regarding all
objects on the table in the current situation, e.g., the object
features, positions, colors, and self-action. The robot processes
the sentence to discover the meanings of the words.

This process (steps 1–4) is carried out many times in different
situations.

We assume that the robot does not know the relationships
between the words and sensory-channels in advance. This study
does not consider grammar, i.e., a unigram language model is
assumed. The robot learns wordmeanings andmultiple categories
by using visual, tactile, and proprioceptive information, as well as
words.

In this study, we consider two-level cross-situational learning
(CSL-I and II). The first level (CSL-I) is the selection of an object
related to a tutor utterance from multiple objects on the table.

FIGURE 1 | Overview of the cross-situational learning scenario as the focus of
this study; the robot obtains multimodal information from multiple
sensory-channels in a situation and estimates the relationships between
words and sensory-channels.

The second level (CSL-II) is the selection of the relationship
between the specific word in the sentence and a sensory-channel
in the multimodal information. In the first level, we assume joint
attention. Tomasello and Farrar (1986) showed that the utterance
referring to the object on which the child’s attention was already
focused is more effective in language acquisition. The above sce-
nario enables the tutor to identify the object of attention, i.e., the
object at which the robot is gazing. Furthermore, we assume that
the robot considers the tutor to be speaking a sentence concerning
the object of attention. This assumption of joint attention can
avoid the problem of the selection of an object. The second level is
the main problem in this study. Many previous studies on CSL-I
have been reported (Frank et al., 2007, 2009; Fontanari et al., 2009;
Morse et al., 2010); however, there are not the case for studies on
CSL-II. The study discussed in this paper focused on solving the
crucial problem of CSL-II.

In this study, we assume a two-level mutual exclusivity con-
straint (Markman and Wachtel, 1988) (MEC-I and II) regarding
the selection of the sensory-channel. The first level (MEC-I) is the
mutual exclusivity of sensory-channels with a word, i.e., one word
is allocated to one category in one sensory-channel. The second
level (MEC-II) is themutual exclusivity between sensory-channels
indicated by words, i.e., one word related to each sensory-channel
is spoken only once in a sentence (or is not spoken). MEC-II
is a stronger constraint than MEC-I. The proposed method can
include both levels of mutual exclusivity.

3.2. Generative Model and Graphical Model
The generative model of the proposed method is defined as equa-
tions (1–10). Figure 2 shows a graphical model representing the
probabilistic dependencies between variables of the generative
model. Basically, the categorization for each sensory-channel is
based on the Gaussian mixture model (GMM). In this model, the
probability distribution of words is represented by the categorical
distribution. The categorization of words in sentences is similar to
that of LDA. The latent variable of a word shares the latent variable
of any one of the sensory-channels in GMMs, signifying that a
word and a category in a particular sensory-channel are generated
from the same latent variable.
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FIGURE 2 | Proposed graphical model for multichannel categorizations and
for learning word meaning; the action, position, color, and object categories
are represented by a component in Gaussian mixture models (GMMs). A word
distribution is related to a category on GMMs. Gray nodes represent observed
variables. Each variable is explained in the description of the generative model
in Section 3.2.

We describe the generative model as follows:

Fd ∼ Unif(λ) (1)
θl ∼ Dir(γ) (2)
π ∼ GEM(α) (3)

zdm ∼ Cat(π) (4)

wdn ∼ Cat
(

θl=(Fdn,z
Fdn
dAd

)

)
(5)

ϕk ∼ GIW(β) (6)
odm ∼ Gauss(ϕo

zodm) (7)

cdm ∼ Gauss(ϕc
zcdm) (8)

pdm ∼ Gauss(ϕp
zpdm

) (9)

ad ∼ Gauss(ϕa′

zad), (10)

where the discrete uniform distribution is denoted as Unif(·),
the categorical distribution is denoted as Cat(·), the Dirichlet
distribution is denoted as Dir(·), the stick-breaking process (SBP)
(Sethuraman, 1994) is denoted as GEM(·), the Gaussian-inverse-
Wishart distribution is denoted as GIW(·), and the multivariate
Gaussian distribution is denoted as Gauss(·). See Murphy (2012)
for specific formulas of the above probability distributions. In
this paper, variables omitting superscript represent general nota-
tion, e.g., π ∈ {π}= {πa, πp, πo, πc}, and variables omitting
subscripts represent collective notation, e.g., F= {F1, F2, . . . FD}.
The number of trials is D. The number of objects on the table
is Md in the d-th trial. The number of words in the sentence is
Nd in the d-th trial. The n-th word in the d-th trial is denoted
as wdn, which is represented by the bag-of-words (BoW). The
model allows sentences containing zero to four words. The model
associates the word distributions θ with categories zdm on four
sensory-channels, namely, the action ad, the position pdm of the
object on the table, the object feature odm, and the object color
cdm. In this study, we define the action ad as a static action feature,
i.e., proprioceptive and tactile features, when the robot completes

an action. An index of the object of attention selected by the
robot from among the multiple objects on the table is denoted
as Ad =m. The sequence representing the respective sensory-
channels associated with each word in the sentence is denoted
as Fd, e.g., Fd = (a, p, c, o). The number of categories for each
sensory-channel isK. An index of theword distribution is denoted
as l. The set of all the word distributions is denoted as θ =
{θl=(Fdn,z

Fdn
dm )|Fdn ∈ {o, c, p, a}, zFdndm ∈ {1, 2, . . . ,KFdn}}. The

index of the category of the sensory-channel Fdn and the object
Ad is denoted as zFdndAd

. Then, the number of word distributions L is
the sum of the number of categories of all the sensory-channels,
i.e., L = K a +Kp +Ko +K c. The action category ϕa

k, the position
category ϕ

p
k , the object category ϕo

k , and the color category ϕc
k

are represented by a Gaussian distribution. The mean vector and
the covariance matrix of the Gaussian distribution are denoted
as ϕk = {µk, Σk}. We define ϕa′

zad as the parameter of the Gaussian
distribution that added the object position pdAd to the element of
the mean vector representing the relative coordinates between the
hand position and the target position. The position information
of the object Ad =m is denoted as pdAd . Therefore, ϕa′

zad is the
parameter obtained by converting the target hand position to the
absolute coordinate system based on ϕa

zad (the parameter of the
action category represented in the relative coordinate system) and
pdAd (the position of the object of attention). The mixture weights
of the categories for each sensory-channel are denoted as πa, πp,
πo, andπc. The hyperparameterλ of the uniformdistribution, i.e.,
equation (1), has themutual exclusivity constraint that determines
that each sensory-channel is represented only once in each sen-
tence. The hyperparameter of the mixture weights π is denoted
as α. The hyperparameter of the Gaussian-inverse-Wishart dis-
tribution is denoted as β = {m0, κ0, V0, v0}. The hyperparameter
of the Dirichlet distribution is denoted as γ. Italic notation (a, p,
o, c) represents observation variables, ordinary notation used as a
superscript (a, p, o, c) represents sensory-channels.

The robot needs to estimate the number of categories based
on experience because the robot cannot have previous knowledge
about categories. The proposed method can learn an appropriate
number of categories, depending on the collected data, by using a
nonparametric Bayesian approach. Specifically, this method uses
the SBP, a method based on the Dirichlet process. Therefore, this
method can consider theoretically infinite numbers Ka, Kp, Ko,
and Kc. In this paper, we approximate the values of parameters
representing the number of categories Ka, Kp, Ko, and Kc by
assigning sufficiently large values, i.e., a weak-limit approximation
(Fox et al., 2011).

3.3. Learning Algorithm
Thismodel estimates parameters representingmultiple categories,
word distribution, the relationships between the word and the
sensory-channel as input for the object features, positions, colors,
robot actions, and the sentences spoken by a tutor. The model
parameters and latent variables of the proposed method are esti-
mated from the following joint posterior distribution by Gibbs
sampling:

Θ,Z ∼ p(Θ,Z |X,H), (11)
where the set of model parameters is denoted asΘ= {{π}, {ϕ}, θ},
the set of latent variables is denoted as Z= {{z}, F}, the set of
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observation variables is denoted as X= {a, p, o, c, w, A}, and the
set of hyperparameters of the model is denoted as H= {{α}, {β},
λ, γ}.

The learning algorithm is obtained by repeatedly sampling
the conditional posterior distributions for each parameter. The
Dirichlet and GIW distributions are conjugate prior distribu-
tions for the categorical and Gaussian distributions, respectively
(Murphy, 2012). Therefore, the conditional posterior distribu-
tions can be determined analytically. Algorithm 1 shows the
pseudo-code for the learning procedure. The initial values of the
model parameters can be set arbitrarily in accordance with a
condition. The following is the conditional posterior distribution
of each element used for performing Gibbs sampling.

A parameter πo of categorical distribution representing the
mixture weight of an object category is sampled as follows:

πo ∼ p(πo|zo, αo) ∝
D∏

d=1

Md∏
m=1

Cat(zodm|πo)Dir(πo|αo)

∝ Dir(πo|zo, αo), (12)

where zo denotes the set of all the latent variables of an object
category. A parameter πc of categorical distribution representing
the mixture weight of the color category is sampled as follows:

πc ∼ p(πc|zc, αc) ∝
D∏

d=1

Md∏
m=1

Cat(zcdm|πc)Dir(πc|αc)

∝ Dir(πc|zc, αc), (13)

where zc denotes a set of all the latent variables of the color cate-
gory. A parameter πp of the categorical distribution representing
the mixture weight of the position category is sampled as follows:

πp ∼ p(πp|zp, αp) ∝
D∏

d=1

Md∏
m=1

Cat(zpdm|πp)Dir(πp|αp)

∝ Dir(πp|zp, αp), (14)

where zp denotes the set of all the latent variables of the position
category. A parameter πa of the categorical distribution repre-
senting the mixture weight of the action category is sampled as
follows:

πa ∼ p(πa|za, αa) ∝
D∏

d=1

Cat(zad|πa)Dir(πa|αa) ∝ Dir(πa|za, αa),

(15)
where za denotes a set of all the latent variables of the action
category. A parameterϕo

k of theGaussian distribution of the object
category is sampled for each k∈ {1, 2, . . . ,Ko} as follows:

ϕo
k ∼ p(ϕo

k|zo, o, βo) ∝
D∏

d=1

Md∏
m=1

Gauss(odm|ϕo
k)GIW(ϕo

k|βo)

∝ GIW(ϕo
k|ok, βo), (16)

where ok denotes a set of all the object features of the object
category zodm = k in m∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D}.

Algorithm 1 | Learning algorithm based on Gibbs sampling.

1: procedure Gibbs_Sampling (a, p, o, c, w, A)

2: Setting of hyperparameters {α}, {β}, λ, γ

3: Initialization of parameters and latent variables {π}, {ϕ}, θ, {z}, F

4: for j= 1 to iteration_number do

5: πo ∼ Dir(πo | zo, αo) // equation (12)

6: π c ∼ Dir(π c | zc, αc) // equation (13)

7: πp ∼ Dir(πp | zp, αp) // equation (14)

8: πa ∼ Dir(πa | za, αa) // equation (15)

9: for k= 1 to Ko do

10: ϕo
k ∼ GIW(ϕo

k |ok, βo) // equation (16)

11: end for

12: for k= 1 to Kc do

13: ϕc
k ∼ GIW(ϕc

k |ck, βc) // equation (17)

14: end for

15: for k= 1 to Kp do

16: ϕp
k ∼ GIW(ϕp

k |pk, βp) // equation (18)

17: end for

18: for k= 1 to Ka do

19: ϕa
k ∼ GIW(ϕa

k |a
′
k, βa) // equation (19)

20: end for

21: for l =
(
Fdn, z

Fdn
dAd

)
in
{(

Fdn, z
Fdn
dm

)
| Fdn ∈ {o, c, p, a},

z
Fdn
dm ∈ {1, 2, . . . , KFdn}

}
do

22: θl ∼ Dir(θl | wl, γ) // equation (20)

23: end for

24: for d= 1 to D do

25: for m= 1 to Md do

26: zodm ∼
∏Nd

n=1 Cat

(
wdn|θ

l=
(
Fdn,z

Fdn
dAd

)
)

Gauss
(
odm|ϕo

zodm

)
Cat(zodm|πo) // equation (21)

27: zcdm ∼
∏Nd

n=1 Cat

(
wdn|θ

l=
(
Fdn,z

Fdn
dAd

)
)

Gauss
(
cdm|ϕc

zcdm

)
Cat(zcdm|πc) // equation (22)

28: zpdm ∼
∏Nd

n=1 Cat

(
wdn|θ

l=
(
Fdn,z

Fdn
dAd

)
)

Gauss
(
pdm|ϕp

zpdm

)
Cat(zpdm|πp) // equation (23)

29: end for

30: zad ∼
∏Nd

n=1 Cat

(
wdn|θ

l=
(
Fdn,z

Fdn
dAd

)
)

Gauss
(
ad|ϕa′

zad

)
Cat(zad|π

a) // equation (24)

31: Fd ∼
∏Nd

n=1 Cat

(
wdn|θ

l=
(
Fdn,z

Fdn
dAd

)
)

Unif(Fd|λ) // equation (25)

32: end for

33: end for

34: return {π}, {ϕ}, θ, {z}, F

35: end procedure

A parameter ϕc
k of the Gaussian distribution of the color category

is sampled for each k∈ {1, 2, . . . ,Kc} as follows:

ϕc
k ∼ p(ϕc

k|zc, c, βc) ∝
D∏

d=1

Md∏
m=1

Gauss(cdm|ϕc
k)GIW(ϕc

k|βc)

∝ GIW(ϕc
k|ck, βc), (17)
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where ck denotes the set of all the color features of the color
category zcdm = k in m∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D}. A
parameter ϕ

p
k of the Gaussian distribution of the position category

is sampled for each k∈ {1, 2, . . . ,KP} as follows:

ϕ
p
k ∼ p(ϕp

k |z
p, p, βp) ∝

D∏
d=1

Md∏
m=1

Gauss(pdm|ϕp
k)GIW(ϕp

k |β
p)

∝ GIW(ϕp
k |pk, β

p), (18)

where pk denotes the set of all the position information of the posi-
tion category zpdm = k inm∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D}.
A parameterϕa

k of the Gaussian distribution of the action category
is sampled for each k∈ {1, 2, . . . ,Ka} as follows:

ϕa
k ∼ p(ϕa

k|za, a, p,A, βa) ∝
D∏

d=1

Gauss(a′
d|ϕa

k)GIW(ϕa
k|βa)

∝ GIW(ϕa
k|a′

k, β
a), (19)

where a denotes the set of all the action information, p denotes
the set of all the position information, and A denotes the set
of all the attention information. The element representing the
relative coordinates of the hand of a′

d is calculated by the ele-
ment representing the absolute coordinates of the hand of a, the
object positions p, and the attention information A. The set of
all the action information of the action category zad = k in
d∈ {1, 2, . . . ,D} is denoted as a′

k. A parameter θl of the word
probability distribution is sampled for each l ∈ {(Fdn, zFdndm)|Fdn ∈
{o, c, p, a }, zFdndm ∈ {1, 2, . . . , KFdn}} as follows:

θl ∼ p(θl|w, zo, zc, zp, za, F,A, γ)

∝
D∏

d=1

Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Dir(θl|γ)

∝ Dir(θl|wl, γ) (20)

where w denotes the set of all the words, F denotes the set of
frames of all the sentences, and wl denotes the set of all the
words of the word category l = (Fdn, zFdndAd

) in n∈ {1, 2, . . . ,Nd}
and d∈ {1, 2, . . . ,D}. A latent variable zodm of the object category
is sampled for each m∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D} as
follows:

zodm ∼ p(zodm|wd, zcd, z
p
d, z

a
d, zo−dm, θ, Fd,Ad, odm, ϕo, πo)

∝
Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Gauss(odm|ϕo
zodm)Cat(zodm|πo),

(21)

where wd is a sequence of words in the d-th trial and zo−dm is the
set of indicates of the object categories without zodm in the d-th
trial. A latent variable zcdm of the color category is sampled for each
m∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D} as follows:

zcdm ∼ p(zcdm|wd, zod, z
p
d, z

a
d, zc−dm, θ, Fd,Ad, cdm, ϕc, πc)

∝
Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Gauss
(
cdm|ϕc

zcdm

)
Cat(zcdm|πc),

(22)

where zc−dm is the set of indicates of the object categories without
zcdm in the d-th trial. A latent variable zpdm of the position category
is sampled for each m∈ {1, 2, . . . ,Md} and d∈ {1, 2, . . . ,D} as
follows:

zpdm ∼ p(zpdm|wd, zod, zcd, zad, z
p
−dm, θ, Fd,Ad, pdm, ϕp, πp)

∝
Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Gauss
(
pdm|ϕp

zpdm

)
Cat(zpdm|πp),

(23)

where zp−dm is the set of indicates of the object categories without
zpdm in the d-th trial. A latent variable zad of the action category is
sampled for each d∈ {1, 2, . . . ,D} as follows:

zad ∼ p(zad|wd, zod, zcd, z
p
d, θ, Fd,Ad, ad, pd, ϕa, πa)

∝
Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Gauss
(
ad|ϕa′

zad

)
Cat(zad|πa),

(24)

where pd is the set of position data in the d-th trial. A latent vari-
able Fd representing the sensory-channels of words in a sentence
is sampled for each d∈ {1, 2, . . . ,D} as follows:

Fd ∼ p(Fd|w, zo, zc, zp, za, θ,A, λ)

∝
Nd∏
n=1

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))Unif(Fd|λ). (25)

3.4. Action Generation and Attention
Selection
In this section, we describe the approach that selects an action
and an object of attention from the human spoken sentence. A
robot capable of learning word meanings accurately is considered
to be able to understand human instruction more accurately.
In an action generation task, the robot performs an action ad
based onwordmeanings andmultiple categoriesΘ fromobserved
information wd, od, cd, and pd. In this case, the robot can use the
set of model parametersΘ learned by using Gibbs sampling in the
CSL task. In the action generation task, wemaximize the following
equation:

argmax
ad

p(ad|wd, od, cd, pd, θ, {ϕ }, {π}, λ)

= argmax
ad

∑
Ad

∑
zad

p(ad|ϕa, zad, pd,Ad)

× p(Ad, zad|wd, od, cd, pd, θ, {ϕ }, {π}, λ). (26)

In practice, this maximization problem is separated into two
approximation processes, because it is difficult to maximize equa-
tion (26) directly.

(1) The first process is the maximization of the attention Ad and
the index of the action category zad

A∗
d , zad

∗ = argmax
Ad,zad

p(Ad, zad|wd, od, cd, pd, θ, {ϕ}, {π}, λ).

(27)
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The probability distribution of equation (27) is represented
by the following equation:

p(Ad, zad|wd, od, cd, pd, θ, {ϕ}, {π}, λ)

∝ p(Ad = m)p(zad|πa)
∏
Md

∑
zodm

∑
zcdm

∑
zpdm

Gauss
(
odm|ϕo

zodm

)
Cat(zodm|πo)

Gauss
(
cdm|ϕc

zcdm

)
Cat(zcdm|πc)

Gauss
(
pdm|ϕp

zpdm

)
Cat(zpdm|πp)[∑

Fd

Unif(Fd|λ)
∏
Nd

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

))]
. (28)

Then, we assumed p(Ad =m)= 1/Md as equal probability
for the number of objects.

(2) The second process is themaximization of the action ad using
A∗
d and zad

∗

a∗
d = argmax

ad
p(ad|ϕa, zad

∗
, pd,A∗

d )

= argmax
ad

Gauss
(
ad|ϕa′

zad∗

)
= µa′

zad∗ , (29)

where the mean vector of the Gaussian distribution of the
action category zad

∗ is denoted as µa′

zad∗ .

3.5. Description of the Current Situation
and Self-Action by the Robot
In this section, we describe the approach followed by the descrip-
tion task representing the current situation and the self-action
of the robot. We consider a robot capable of learning word
meanings accurately to be able to describe the current situation
and self-action more accurately. In the action description task,
the robot utters a sentence wd regarding a self-action ad and
observed information od, cd, and pd based on word meanings and
multiple categories Θ. In this case, the robot can use the set of
model parameters Θ learned by using Gibbs sampling in the CSL
task. In the action description task, we maximize the following
equation:

argmax
wd

p(wd|ad, od, cd, pd, θ, {ϕ}, {π}, Fd,Ad)

∝ argmaxwd

∑
zad

∑
zodAd

∑
zcdAd

∑
zpdAd

Gauss
(
ad|ϕa′

zad

)
Cat(zad|πa),

Gauss
(
odAd |ϕ

o
zodAd

)
Cat(zodAd |π

o)

Gauss
(
cdAd |ϕ

c
zcdAd

)
Cat(zcdAd |π

c)

Gauss
(
pdAd |ϕ

p
zpdAd

)
Cat(zpdAd

|πp)

∏
Nd

Cat
(
wdn|θl=

(
Fdn,z

Fdn
dAd

)) . (30)

If the frame of the sentence is decided, e.g., Fd = (a, p, c, o),
equation (30) is represented as the following:

Equation (30) =
∏
Nd

argmax
wdn

∑
zFdndAd

Gauss
(
xFdndAd

|ϕFdn
zFdndAd

)

× Cat
(
zFdndAd

|πFdn
)
Cat

(
wdn|θl=(Fdn,z

Fdn
dAd

)

)
,

(31)

where xFdndAd
denotes data of the sensory-channel Fdn in the object

number Ad, i,e., ad, pdAd , cdAd , or odAd . Therefore, equation (30)
can be divided into the equations of finding a maximum value for
each word.

4. EXPERIMENT I: SIMULATION
ENVIRONMENT

We performed the experiments described in this section using
the iCub simulator (Tikhanoff et al., 2008). In Section 4.1, we
describe the difference in the conditions of the methods that
are used for comparison purposes. In Section 4.2, we describe
the CSL experiment. In Section 4.3, we describe the experiment
involving the action generation task. In Section 4.4, we describe
the experiment relating to the action description task.

4.1. Comparison Methods
Weevaluated our proposedmethod by comparing its performance
with that of two other methods.

(A) The proposed method.
This method has a mutual exclusivity constraint between

the word and the sensory-channel (MEC-I and II), deter-
mining that each sensory-channel occurs only once in each
sentence. For example, if the number of words in a sentence
is Nd = 4, Fd can become a sequence such as (a, c, p, o), (a, p,
c, o), or (p, c, o, a). Possible values of Fd are constrained by
λ as a permutation of four sensory-channels. The number of
permutations is 4PNd = 4!/(4 − Nd)!.

(B) The proposed method without the mutual exclusivity con-
straint (w/o MEC-II).

This method does not have the mutual exclusivity con-
straint (MEC-II). Thismeans that several words in a sentence
may relate to the same sensory-channel. For example, if the
number of words in a sentence is Nd = 4, Fd can become a
sequence such as (a, o, c, o), (a, p, p, o), or (o, o, o, o) in
addition to the above example of (A). Possible values of Fd are
constrained by λ as a repeated permutation of four sensory-
channels. The number of repeated permutations is 4ΠNd =
4Nd . In this case, the robot needs to consider additional
pairs of relationships between the sensory-channel and word
compared to method (A).

(C) The multilayered multimodal latent Dirichlet allocation
(mMLDA) (Attamimi et al., 2016).
This method is based on mMLDA. In this research, this

method was modified from the actual mMLDA to apply to
our task and the proposed method. In particular, the emis-
sion probability for each sensory-channel is changed from
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FIGURE 3 | Procedure for obtaining and processing data.

a categorical distribution to a Gaussian distribution. This
means the multimodal categorization methods are based
on a Gaussian distribution for each sensory-channel and a
categorical distribution for word information. This method
relates all observed words in a situation to all observed
sensory-channel information in the situation. This method
neither has the mutual exclusivity constraint (MEC-I and II)
nor does it select the sensory-channel by words, i.e., Fd is not
estimated.

4.2. Cross-Situational Learning
4.2.1. Experimental Procedure and Conditions
We conducted an experiment to learn the categories for each
sensory-channel and the words associated with each category.
Figure 3 shows the procedure for obtaining and processing data.
We describe the experimental procedure for CSL as follows:

1. The robot takes the initial position and posture. Some objects
are placed on the table.

2. The robot acquires a visual image of the table. Subsequently,
the robot detects object areas by using background subtraction.
The detected object areas are cut out as object images of 64× 64
pixels. The robot obtains the number of objects on the table.

3. The robot extracts object features, color features, and object
positions. We used the deep learning framework Caffe (Jia
et al., 2014) for convolutional neural networks (CNNs)
(Krizhevsky et al., 2012) as an object feature extractor.We used
a pre-trained CNN, i.e., CaffeNet trained by using ImageNet
Large Scale Visual Recognition Challenge 2012 as the dataset.
The object features are obtained from the fully connected FC6
layer (4096-dimensions) in CaffeNet. After that, the object fea-
tures are reduced by principal component analysis (PCA). In
terms of color features, the RGB histogram is vector quantized
by k-means and normalized. The position data are converted
into the world coordinate by homography. The position data
are two-dimensional to represent the plane of the table.

4. The robot performs an action including a little randomness
to an object of attention. The difference and uncertainty in
the robot’s action are represented by this randomness. First,
the robot moves its eye-gaze to an object of attention. The
object is selected randomly. Next, the robot moves its right
hand to the coordinates of the target object by using inverse
kinematics. A little random noise is added to a target position
of the end-effector of the right hand. In many cases, the robot
moves its right hand after looking at the object. The robot
rarely refrains frommoving its hands, looks at the object, which
means the action of “look-at.” When the hand approaches
the position of the target object, the robot bends its fingers.
The rate at which it bends its fingers is selected randomly.
The five fingers move in synchronization. After the action is
completed, the robot acquires the data relating to this action,
including data relating to the posture, tactile data, and the
relative coordinates of the object from its right hand. The
action data are 38-dimensional and include the position of the
right hand relative to the object (3-dim.), the rate at which the
finger bends (1-dim.), the joint angles of the head, right_arm,
and torso (6, 16, 3-dim.), and tactile information of the right
hand (9-dim.). The action data is normalized to [0,1] for each
dimension.

5. When the robot completes an action, the human tutor speaks
a sentence about the object of attention and the action of the
robot. The sentence contains the word related to each sensory-
channel once, e.g., “touch left red box.” In this task, the number
of words in the sentence is indicated by a number ranging
from zero to four. Zero means that the tutor did not speak a
sentence.

The above process is carried out many times in different situa-
tions. The robot learns multiple categories and word meanings by
using multimodal data observed in many trials.

The number of trials was D= 20 and 40 for CSL. The number
of objects Md on the table for each trial was a number from
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one to three. The number of words Nd in the sentence was a
number from zero to four. We assume that a word related to each
sensory-channel is spoken only once in each sentence. The word
order in the sentences was changed. This experiment used 14
kinds of words: “reach,” “touch,” “grasp,” “look-at,” “front,” “left,”
“right,” “far,” “green,” “red,” “blue,” “box,” “cup,” and “ball.” The
upper limit number of the categories for each sensory-channel
was K= 10, i.e., the number of word distributions was L= 40. The
number of iterative cycles used for Gibbs sampling was 200. The
hyperparameters were α= 1.0, γ = 0.1, m0 = Oxdim , κ0 = 0.001,
V0 = diag(0.01, 0.01), and v0= xdim + 2, where the number of
dimensions for each sensory-channel x is denoted as xdim and the
zero vector in xdim dimensions is denoted asOxdim . PCA is used to
reduce the object features to 30 dimensions. The color features are
quantized to 10 dimensions by k-means.

We describe the criteria of words uttered for action category as
follows: “reach” corresponds to the robot extending its right hand
toward an object and the robot’s finger does notmake contact with
an object; “touch” corresponds to the robot touching an object and
its finger is relatively opened; “grasp” corresponds to the robot’s
hand holding firmly an object; “look-at” corresponds to the robot
not moving its right hand and it focuses on an object of attention
only. Based on these criteria, the tutor determines an action word.
In particular, “reach” and “touch” are similar; the only difference
is whether the hand touches the object or not.

We evaluate the estimation accuracy of the learning results by
using uncertain teaching sentences. Each sentence contains four
words or fewer in different order. We compare the accuracy of
three methods by reducing the word information. In addition, the
number of learning trials is changed. We compared the accuracy
by changing the number of trials. We evaluated the methods
according to the following metrics.

• Adjusted Rand index (ARI)
We compare the matching rate between the estimated latent

variables z for each sensory-channel and the true categorization
results. The evaluation of this experiment uses the ARI (Hubert
andArabie, 1985), which is ameasure of the degree of similarity
between two clustering results.

• Estimation accuracy rate of Fd (EAR)
The evaluation of the estimation results of the sensory-

channels corresponding to the words are determined as
follows:

EAR = 1 − The number of estimation errors
The number of all of uttered words

. (32)

4.2.2. Learning Results and Evaluation
The learning results obtained by using the proposed method are
presented here. Forty trials were used. In this case, the number
of words was four in all utterance sentences. Figure 4A shows
the word probability distributions θ. Higher probability values are
represented by darker shades. If the relationship between the word
and sensory-channel can be estimated correctly, the ranges within
thick-bordered boxes show higher probabilities. For example, the
action categories show higher probabilities for words of action
(“touch,” “look-at,” “reach,” and “grasp”). The categories of the
other sensory-channels are also the same. In the position and color

categories, the estimated number of categories was equal to the
number of types of words representing the sensory-channel. In
the action category, the words “touch,” “reach,” and “grasp” were
associated across several categories. In addition, these words were
confused with each other. We considered actions representing
these words to be ambiguous and similar. On the other hand, we
considered the reason why these actions were divided into several
categories to be a change in posture information depending on
the position of the target object. Figure 4B shows the learning
result for the position category ϕp. For example, the position
category p1 is associatedwith the word “front” (see Figures 4A,B).
Figures 4C,D show examples of the categorization results for the
object and color categories. The object categorization result was
not perfect. We considered the robot to find it difficult to clearly
distinguish objects of different shapes because the 3D-models of
the objects had simple shapes. The color categorization result
was perfect. In this case, Fd was correctly estimated in all of the
trials. The results demonstrate that the proposed method was
able to accurately associate each word with its respective sensory-
channel.

We performed the learning scenarios 10 times for eachmethod.
Tables 1A,B show the evaluation values of the experimental
results for 20 and 40 trials. The rate of omitted words (ROW),
which is expressed as a percentage, represents the uncertainty
of teaching sentences. For example, the total number of words
is 80 when ROW is 0%, 64 words for 20%, 48 words for 40%,
and 32 words for 60% in 20 trials. Also, the total number of
words is 160 for a ROW value of 0% and 96 words for 40% in
40 trials. ARI_a, ARI_p, ARI_o, and ARI_c are the ARI values
of the action, position, object, and color category, respectively.
The EAR values of mMLDA were not calculated because this
method does not have Fd. If the ROW value is 100 (no word), the
three methods will be equivalent as ALL, i.e., the GMM for each
sensory-channel.We described the ARI values of ALL as reference
values because ALL is not CSL. The EAR value obtained for the
proposed method was higher than that obtained for the other
methods. When the ROW decreased, i.e., the word information
increased, the evaluation values tended to increase. Particularly,
the result for the position category was favorably affected by the
increase inword information for categorization. In addition, when
the number of trials increased, the evaluation values tended to
increase. This result suggests that the robot is able to learn the
wordmeaningsmore effectively by accumulatingmore experience
even in more complicated and uncertain situations. When the
number of words was small (i.e., the ROW value is 40 or 60%),
the difference between the EAR values of methods (A) and (B)
was small (approximately 0.02) in 20 trials. However, when the
number of words was large, the difference between the EAR values
of methods (A) and (B) increased, and the EAR value of the
method (A) was larger than that of (B). As a result, when the
number of words was small, e.g., sentences including one or two
words, there was almost no influence of the presence or absence
of the MEC-II because the number of possible values of Fd of the
methods (A) and (B) were close. On the other hand, when the
number of words was large, e.g., sentences including four words,
the MEC-II worked well because the number of possible values of
Fd of the method (A) was narrowed properly down.
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A

B C D

FIGURE 4 | (A) Word probability distribution across the multiple categories; darker shades represent higher probability values. The pair consisting of a letter and a
number on the left of the table is the index of the word distribution, which represents the sensory-channel related to the word distribution and the index of the
category. Note that category indices are not shown; they are merged and not used because the number of the categories is automatically estimated by the
nonparametric Bayesian method. (B) Learning result of the position category; for example, the index of position category p1 corresponds to the word “front.” The
point group of each color represents each Gaussian distribution of the position category. The crosses in the different colors represent the object positions of the
learning data. Each color represents a position category. (C) Example of categorization results of object category; (D) example of categorization results of color
category.

4.3. Action Generation Task
4.3.1. Experimental Procedure and Conditions
In this experiment, the robot generates the action regarding the
sentence spoken by the human tutor. The robot uses the learning
results of the CSL task in Section 4.2. The robot selects the object
of attention from among the objects on the table. In addition, the
robot performs the action on the object of attention. In this task,
the robot cannot use joint attention. Therefore, the robot needs
to overcome both the problems of CSL-I and II. We describe the
process of action generation as follows:

1. The robot takes the initial position and posture. Some objects
are placed on the table.

2. The tutor speaks a sentence about an action that should be per-
formed by the robot. The robot recognizes the tutor’s spoken
sentence.

3. The robot detects the objects on the table. The robot obtains
object, color features, and position data by the same process as
in Section 4.2.1 (step 3).

4. The robot selects the action category and the object of the
attention by using equation (26). The robot calculates the target
position by using equation (29).

5. The robot directs its eye-gaze to the object of attention, and the
robot performs an action on the object of attention.
The above process is carried out many times on different

sentences.
We compare the three methods by quantitative evaluation on

the action generation task. We evaluate the accuracy of the selec-
tion of the object of attention. In addition, we evaluate the accu-
racy of an action of the robot based on questionnaire evaluation by
participants. The robot generates an action from the tutor’s spoken
sentence in a situation. Participants check videos of the action

Frontiers in Neurorobotics | www.frontiersin.org December 2017 | Volume 11 | Article 661117

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Taniguchi et al. Cross-Situational Learning with Bayesian Generative Models

generated by the robot and select a word representing the robot’s
action. We calculate the word accuracy rate (WAR) of the words
selected by participants and the true words spoken by the tutor. In
addition, we calculate the object accuracy rate (OAR) representing
the rate at which the robot correctly selected the object instructed
by the tutor.

We performed action generation tasks for a total of 12 different
test-sentences. The test-sentences included four words represent-
ing the four sensory-channels. This placement of objects on the
table was not used during the learning trials. In addition, the
word order of sentences uttered during the action generation task
is different from the word order of sentences uttered during the
CSL task. The eight participants checked 36 videos of the robot’s
actions.

4.3.2. Results
Figure 5 shows three examples of the action generation results
of the proposed method. Figure 5A shows the result of action
generation by the robot in response to the sentence “reach front

TABLE 1 | Experimental results of the CSL task for 20 and 40 trials.

Method ROW ARI_a ARI_p ARI_o ARI_c EAR_Fd

(A) 20 trials
Proposed 0 0.300 0.606 0.408 0.782 0.970
w/o MEC-II 0 0.317 0.648 0.338 0.805 0.759
mMLDA 0 0.316 0.428 0.277 0.756 –

Proposed 20 0.290 0.564 0.332 0.762 0.727
w/o MEC-II 20 0.342 0.486 0.436 0.755 0.598
mMLDA 20 0.267 0.494 0.369 0.776 –

Proposed 40 0.324 0.493 0.354 0.780 0.556
w/o MEC-II 40 0.318 0.486 0.347 0.812 0.529
mMLDA 40 0.356 0.479 0.312 0.771 –

Proposed 60 0.282 0.460 0.295 0.783 0.381
w/o MEC-II 60 0.311 0.454 0.326 0.750 0.406
mMLDA 60 0.294 0.487 0.403 0.724 –

ALL 100 (no word) 0.325 0.431 0.346 0.751 –

(B) 40 trials
Proposed 0 0.375 0.540 0.366 0.870 0.989
w/o MEC-II 0 0.383 0.524 0.333 0.805 0.834
mMLDA 0 0.388 0.594 0.377 0.822 –

Proposed 40 0.368 0.543 0.313 0.835 0.867
w/o MEC-II 40 0.417 0.577 0.320 0.842 0.780
mMLDA 40 0.340 0.600 0.377 0.856 –

Bold and underscore indicate the highest evaluation values, and bold indicates the second
highest evaluation values.

blue cup.” Figure 5B shows the result of action generation by
the robot in response to the sentence “grasp right green ball.”
Figure 5C shows the result of action generation by the robot in
response to the sentence “touch left red box.” Table 2 shows the
results of the quantitative evaluation of the action generation task.
The proposed method enabled the robot to accurately select the
object. As a result of the proposed method, the object indicated
and the object selected by the robot coincided in all sentences. In
addition, the proposedmethod showed the highest values for both
WAR and OAR. Therefore, the robot could select an appropriate
object and could perform an action even in situations and for
sentences not used for CSL.

4.4. Action Description Task
4.4.1. Experimental Procedure and Conditions
In HRI, the ability of the robot to use the acquired wordmeanings
for a description of the current situation is important. In this
experiment, the robot performs an action and speaks the sentence

TABLE 2 | Results of evaluation values for the action generation using the results of
the CSL for 40 trials (ROW is 0%).

Method WAR OAR

Proposed 0.604 1.000
w/o MEC-II 0.510 0.917
mMLDA 0.260 0.667

Bold and underscore indicate the highest evaluation values, and bold indicates the second
highest evaluation values.

TABLE 3 | Experimental results of action description task for 20 and 40 trials.

Method Trials ROW F1 ACC

Proposed 20 0 0.586 0.660
w/o MEC-II 20 0 0.534 0.613
mMLDA 20 0 0.401 0.469

Proposed 20 40 0.388 0.425
w/o MEC-II 20 40 0.343 0.369
mMLDA 20 40 0.319 0.352

Proposed 40 0 0.663 0.692
w/o MEC-II 40 0 0.642 0.671
mMLDA 40 0 0.474 0.560

Proposed 40 40 0.588 0.623
w/o MEC-II 40 40 0.548 0.606
mMLDA 40 40 0.479 0.569

Bold and underscore indicate the highest evaluation values, and bold indicates the second
highest evaluation values.

A

“reach front blue cup.”

B

“grasp right green ball.”

C

“touch left red box.”

FIGURE 5 | Example of results of the action generation task in the iCub simulator. (A) Reach front blue cup. (B) Grasp right green ball. (C) Touch left red box.
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20 trials; ROW values are (top) 0 and (bottom) 40.
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A

B

FIGURE 6 | Confusion matrix of results of the action description task using the learning result for 20 and 40 trials. (A) 20 trials; ROW values are (top) 0 and (bottom)
40. (B) 40 trials; ROW values are (top) 0 and (bottom) 40.
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corresponding to this action. In other words, the robot explains
self-action by using a sentence. The robot uses the learning results
of the CSL task in Section 4.2. We describe the process of action
description as follows:

1. The robot takes the initial position and posture. Some objects
are placed on the table.

2. The robot detects the objects on the table. The robot obtains the
object, color features, and position data by the same process as
in Section 4.2.1 (step 3).

3. The robot selects the object of attention randomly. The robot
directs its eye-gaze to the object of attention, and the robot
performs an action on the object of attention by using the same
process as in Section 4.2.1 (step 4).

4. When the robot completes an action, it utters a sentence about
this action.

The above process is carried out many times on different
actions. We performed action description tasks for a total of 12
actions. This placement of objects on the tablewas not used during
the learning trials. The robot generates a sentence consisting of
fourwords that include the four sensory-channels. Theword order
in the sentence is fixed as Fd = (a, p, c, o).

We compare the three methods by quantitative evaluation of
the action description task. We evaluate the F1-measure and the
accuracy (ACC) between the sentence generated by the robot and
the correct sentence decided by the tutor. The evaluation values
are calculated by generating the confusion matrix between the
predicted words and true words.

4.4.2. Results
Table 3 show the F1-measure and ACC values of the action
description task using the learning results under the different
conditions. The proposed method showed the highest evaluation
values. Figures 6A,B shows the confusion matrices of the results
of the action description task using the learning result for 20
and 40 training trials. Overall, the robot confused the words
“reach” and “touch” similar to the learning result in Figure 4A.
The robot had difficulties in distinguishing between “reach” and
“touch.” In other words, this result suggests that these words were
learned as synonyms. When the ROW increased, the evaluation
values decreased. For the ROW value of 40% obtained for 20
trials, the robot confused words related to the action and position
categories. This could be explained by considering that the robot
misunderstood the correspondence between the word and the
sensory-channel because the word information was insufficient
and uncertain during CSL with the ROW value of 40% and 20
trials. On the other hand, an increase in the number of learning
trials resulted in an increase in the evaluation values. Even if the
robot is exposed to uncertain utterances, the robot can explain
self-action more accurately by gaining more experience. As a
result, the robot could acquire the ability to explain self-action by
CSL based on the proposed method.

5. EXPERIMENT II: REAL iCub
ENVIRONMENT

In this section, we describe the experiment that was conducted by
using the real iCub robot. The real-world environment involves

more complexity than the simulation environment. We demon-
strate that results similar to those of the simulator experiment
can be obtained even in a more complicated real environment.
We compare three methods, as in Section 4.1. In Section 5.1, we
describe the experiment to assess cross-situational learning. In
Section 5.2, we describe the experiment relating to the action gen-
eration task. In Section 5.3, we describe the experiment relating to
the action description task.

5.1. Cross-Situational Learning
5.1.1. Conditions
The experimental procedure is the same as in Section 4.2.1. We
use ARI and EAR as evaluation values. Figure 7 shows all of
the objects that were used in the real environment. We used 14
different objects including four types (car, cup, ball, and star)
and four colors (red, green, blue, and yellow). In the simulation
environment, the same type objects had the same shapes. In
the real environment, objects of the same type include different
shapes. In particular, all the car objects have different shapes,
the cup objects have different sizes, and the star objects include
one different shape. This experiment used 16 kinds of words:
“reach,” “touch,” “grasp,” “look-at,” “front,” “left,” “right,” “far,”
“green,” “red,” “blue,” “yellow,” “car,” “cup,” “ball,” and “star.”
The number of trials was D= 25 and 40 for CSL. The number
of objects Md on the table for each trial was a number ranging
from one to three. The number of words Nd in the sentence
was a number ranging from zero to four. We assume that a
word related to each sensory-channel is spoken only once in
each sentence. The word order in the sentences was changed.
Object features are reduced to 65 dimensions by PCA. Color
features are quantized to 10 dimensions by k-means. The upper
limit number of the categories for each sensory-channel was
K= 10, i.e., the upper limit for the number of word distributions
was L= 40. The hyperparameters were α= 1.0, γ = 0.1,
m0 = Oxdim , κ0 = 0.001, V0 = diag(0.01, 0.01), and v0 = xdim + 2.
The number of iterative cycles used for Gibbs sampling
was 200.

FIGURE 7 | All of the objects used in the real experiments (14 objects
including four types and four colors).
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5.1.2. Learning Results and Evaluation
The example we describe is the learning result of 25 trials and for
a ROW value of 9%. In this case, the number of categories was
set to K = 5. Figure 8A shows the word distributions θ. In the
action category, the robot confused the words “reach” and “touch”

as is the case with the simulator experiment. Figure 8B shows the
learning result of the position category on the table. Figure 8C
shows categorization results of objects. Although the object cate-
gorization contained a few mistakes, the results were mostly cor-
rect. Figure 8D shows the categorization results obtained for the

A

B

C

D

FIGURE 8 | (A) Word probability distribution across the multiple categories; (B) learning result of position category; each color of the point group represents each of
the Gaussian distributions of the position category. The crosses of each color represent the object positions of the learning data. Each color represents a position
category. The circle represents the area of the white circular table. (C) Example of categorization results of object category; (D) example of categorization results of
color category.
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color categorization, which was successful. Interestingly, two cat-
egories corresponding to the word “green” were created because
the robot distinguished between bright green and dark green. In
addition, the robot was able to learn that both of these categories
related to the word “green.”

Table 4 shows the evaluation values of the experimental results
for 25 and 40 trials. There was not much difference in ARI values
between the methods and between different conditions of ROW
values. The EAR values of the proposed method were higher than
those of the othermethods. An increase in the number of trials led
to an increase in the evaluation values, similar to the simulation
results.

5.2. Action Generation Task
5.2.1. Conditions
In this experiment, the robot generates the action correspond-
ing to the sentence spoken by the human tutor. The robot uses
the learning results of the CSL task in Section 5.1. The experi-
mental procedure is the same as in Section 4.3.1. We evaluated
accuracy of object selection (the OAR values) using the CSL
results for 25 trials. We performed the action generation task for

TABLE 4 | Experimental results of the CSL task for 25 and 40 trials.

Method ROW ARI_a ARI_p ARI_o ARI_c EAR_Fd

(A) 25 trials
Proposed 0 0.239 0.932 0.201 0.720 0.866
w/o MEC-II 0 0.299 0.971 0.207 0.717 0.723
mMLDA 0 0.255 0.959 0.226 0.703 –

Proposed 30 0.297 0.879 0.227 0.702 0.751
w/o MEC-II 30 0.242 0.980 0.218 0.683 0.601
mMLDA 30 0.296 0.893 0.256 0.730 –

Proposed 50 0.240 0.905 0.257 0.681 0.604
w/o MEC-II 50 0.224 0.895 0.211 0.694 0.482
mMLDA 50 0.221 0.981 0.303 0.688 –

(B) 40 trials
Proposed 0 0.304 0.960 0.240 0.691 0.988
w/o MEC-II 0 0.282 0.986 0.190 0.729 0.763
mMLDA 0 0.290 0.959 0.224 0.736 –

Proposed 30 0.303 0.978 0.193 0.698 0.829
w/o MEC-II 30 0.349 0.917 0.219 0.726 0.718
mMLDA 30 0.307 0.956 0.159 0.717 –

Proposed 50 0.316 0.922 0.199 0.718 0.668
w/o MEC-II 50 0.258 0.937 0.210 0.726 0.639
mMLDA 50 0.297 0.989 0.123 0.687 –

Bold and underscore indicate the highest evaluation values, and bold indicates the second
highest evaluation values.

a total of 12 different test-sentences, each of which comprised
four words representing the four sensory-channels. The place-
ment of objects on the table was different in each trial and dif-
fered from the placements that were used during the learning
trials.

5.2.2. Results
Figure 9 shows an example of the results of the action generation
task. Figure 9A shows the result of action generation by the robot
for the sentence “grasp front red ball.” Figure 9B shows the result
of action generation by the robot for the sentence “reach right
red cup.” Figure 9C shows the result of action generation by the
robot for the sentence “look-at left yellow cup.” The resultingOAR
values of the proposed method and its w/o MEC-II were 1.000,
and the OAR value of mMLDA was 0.833. As a result, the robot
could select an appropriate object even in situations and sentences
not used at the CSL.

5.3. Action Description Task
5.3.1. Conditions
In this experiment, the robot performs the action and speaks the
sentence regarding this action. The robot uses the learning results
of the CSL task in Section 5.1. The experimental procedure is
the same as in Section 4.4.1. We use the F1-measure and ACC
as evaluation values. We performed the action description task
for a total of 10 actions. The placement of objects on the table
was different for each trial and differed from those used during
the learning trials. The robot generates a sentence of four words
representing the four sensory-channels. The word order in the
sentence is fixed as Fd = (a, p, c, o).

5.3.2. Results
Table 5 shows F1-measure and ACC values of action description
task using the learning results under the different conditions. The

TABLE 5 | Experimental results in 25 and 40 trials.

Method Trials ROW F1 ACC

Proposed 25 0 0.575 0.650
w/o MEC-II 25 0 0.558 0.640
mMLDA 25 0 0.406 0.558

Proposed 40 0 0.618 0.720
w/o MEC-II 40 0 0.654 0.698
mMLDA 40 0 0.509 0.645

Bold and underscore indicate the highest evaluation values, and bold indicates the second
highest evaluation values.

A

“grasp front red ball.”

B

“reach right red cup.”

C

“look-at left yellow cup.”

FIGURE 9 | Examples of results of action generation task with real iCub. (A) Grasp front red ball. (B) Reach right red cup. (C) Look-at left yellow cup.
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FIGURE 10 | Confusion matrix of results on action description task using the learning result by (top) 20 and (bottom) 40 trials under the ROW is 0%.

proposed method showed the higher evaluation values than other
methods. Figure 10 shows confusion matrices between predicted
words and truewords using the learning results by 20 and 40 trials.
In the action category, there was a tendency to confuse words
“reach” and “touch” similar to simulation. The major difference
in the result for each method was found in the words of action
and object categories. Even if the accuracy of categorization is
low as in action and object categories and the categories include
uncertainty, the robot could describe the action more correctly if
the correspondence between the word and the sensory-channel
was performed more properly.

6. CONCLUSION

In this paper, we have proposed a Bayesian generative model that
can estimate multiple categories and the relationships between
words andmultiple sensory-channels.We performed experiments
of cross-situational learning using the simulator and real iCub
robot in complex situations. The experimental results showed
that it is possible for a robot to learn the combination between a
sensory-channel and a word from their co-occurrence in complex
situations. The proposed method could learn word meanings
from uncertain sentences, i.e., the sentence including four words
or less with a changing order. In comparative experiments, we
showed that the mutual exclusivity constraint is effective in the
lexical acquisition by CSL. In addition, we performed experi-
ments of action generation task and action description task by
the robot that learned word meanings. The action generation task
confirmed that the robot could also select an object successfully
and generate an action even for situations other than those it

encountered during the learning scenario. The action description
task confirmed that the robot was able to use the learned word
meanings to explain the current situation.

The accuracy of the categorization of objects and actions tended
to be lower than those of the color and position categories. In
this paper, we used GMM for the categorization of each sensory-
channel. MLDA achieved highly accurate object categorization
by integrating multimodal information (Nakamura et al., 2011a).
The accuracy of object categorization can be improved by using
MLDA instead of GMM, i.e., by increasing the number of sensory-
channels for the object categories. In the action categorization,
the robot confused “reach” and “touch,” because these are similar
actions. However, the robot is able to classify diverse actions
more accurately. In addition, we used static features as action
information. The accuracy can be improved by segmenting the
time-series data of the actions by using a method based on the
hidden Markov model (HMM) (Sugiura et al., 2011; Nakamura
et al., 2016).

In this study, we performed the action generation task by a
sentence including four words corresponding to the four sensory-
channels. However, action instruction also presented cases in
which an uttered sentence contains uncertainty. In future, we plan
to investigate what kind of action the robot performs based on
uncertain utterances, such as when the number of words is fewer
than four, when the same objects exist on the table, and when the
sentence contains the wrong word. If the robot can learn the word
meanings more accurately, the robot would be able to perform an
action successfully even from an utterance including uncertainty.
Detailed and quantitative evaluation of such advanced action
generation tasks is a subject for future work.
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Other factors we aim to address in future studies are gram-
matical information, which was not considered in the present
study, and sentences containing five words or more. We showed
that the robot could accurately learn word meanings without
considering grammar in the scenario of this study. However, it
is important to include even more complicated situations with
more natural sentences such as “grasp the red box beside the green
cup.” More complicated sentences would require us to consider
a method that takes the grammatical structure into account. We,
therefore, aim to extend the proposed method to more compli-
cated situations and natural sentences. Attamimi et al. (2016)
used HMM for the estimation of transition probabilities between
words based on concepts, as a post-processing step of mMLDA.
However, they were unable to use grammatical information to
learn the relationships between words and categories. Hinaut
et al. (2014) proposed a method based on recurrent neural net-
works for learning grammatical constructions by interacting with
humans, which is related to the study of an autobiographical
memory reasoning system (Pointeau et al., 2014). Integrating
such methods with the proposed method may be effective for
action generation and action description using more complicated
sentences.

In this paper, we focused on mutual exclusivity of words indi-
cating categories in language acquisition. However, there are hier-
archies of categories, e.g., ball and doll belong to the toy category.
Griffiths et al. (2003) proposed a hierarchical LDA (hLDA), which
is a hierarchical clustering method based on a Bayesian generative
model, and it was applied to objects (Ando et al., 2013) and places
(Hagiwara et al., 2016). We consider the possibility of applying
hLDA to the proposed method for hierarchical categorization of
sensory-channels.

For futurework,we also plan to demonstrate the effectiveness of
the proposed method by employing a long-term experiment that
uses a larger number of objects.We believe that the robot can learn
more categories and word meanings based on more experience.

In addition, as a further extension of the proposed method, we
intend increasing the types of sensory-channels, adding a posi-
tional relationship between objects, and identifying words that
are not related to sensory-channels. For example, Aly et al. (2017)
learned object categories and spatial prepositions by using amodel
similar to the proposed model. It would be possible to merge the
proposed method with this model in the theoretical framework of
the Bayesian generative model. This combined model is expected
to enable the robot to learn many different word meanings from
situations more complicated than the scenario in this study.
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Humans divide perceived continuous information into segments to facilitate recognition.

For example, humans can segment speech waves into recognizable morphemes.

Analogously, continuous motions are segmented into recognizable unit actions. People

can divide continuous information into segments without using explicit segment points.

This capacity for unsupervised segmentation is also useful for robots, because it enables

them to flexibly learn languages, gestures, and actions. In this paper, we propose a

Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous

time series data into segments in an unsupervised manner. Our proposed method

consists of a generative model based on the hidden semi-Markov model (HSMM),

the emission distributions of which are Gaussian processes (GPs). Continuous time

series data is generated by connecting segments generated by the GP. Segmentation

can be achieved by using forward filtering-backward sampling to estimate the model’s

parameters, including the lengths and classes of the segments. In an experiment using

the CMU motion capture dataset, we tested GP-HSMM with motion capture data

containing simple exercise motions; the results of this experiment showed that the

proposed GP-HSMM was comparable with other methods. We also conducted an

experiment using karate motion capture data, which is more complex than exercise

motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was

0.92, which outperformed other methods.

Keywords: motion segmentation, Gaussian process, hidden semi-Markov model, motion capture data

1. INTRODUCTION

Human beings typically divide perceived continuous information into segments to enable
recognition. For example, humans can segment speech waves into recognizable morphemes.
Similarly, continuous motions are segmented into recognizable unit actions. In particular, motions

are divided into smaller components called motion primitives, which are used for imitation
learning and motion generation (Argall et al., 2009; Lin et al., 2016). It is possible for us to divide
continuous information into segments without using explicit segment points. This capacity for
unsupervised segmentation is also useful for robots, because it enables them to flexibly learn
languages, gestures, and actions.
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However, segmentation of time series data is a difficult
task. When time series data is segmented, the data points
in the sequence must be classified, and each segment’s start
and end points must be determined. Moreover, each segment
affects other segments because of the nature of time series
data. Hence, segmentation of time series data requires the
exploration of all possible segment lengths and classes. However,
this exploration process is difficult; in many studies, the lengths
are not estimated explicitly or heuristics are used to reduce
computational complexity. Furthermore, in the case of motions,
the sequences vary because of dynamic characteristics, even
though the same movements are performed. For segmentation
of actual human motions, we must address such variations.

In this paper, we propose GP-HSMM (Gaussian process–
hidden semi-Markov model), a novel method to divide time
series motion data into unit actions by using a stochastic model
to estimate their lengths and classes. The proposed method
involves a hidden semi-Markov model (HSMM) with a Gaussian
process (GP) emission distribution, where each state represents
a unit action. Figure 1 shows an overview of the proposed GP-
HSMM. The observed time series data is generated by connecting
segments generated by each class. The segment points and
segment classes are estimated by learning the parameters of the
model in an unsupervised manner. Forward filtering-backward
sampling (Uchiumi et al., 2015) is used for the learning process;
the segment lengths and segment classes are determined by
sampling them simultaneously.

2. RELATED WORK

Various studies have focused on learning motion primitives
from manually segmented motions (Gräve and Behnke, 2012;
Manschitz et al., 2015). Manschitz et al. proposed a method
to generate sequential skills by using motion primitives that
are learned in a supervised manner. Gräve et al. proposed
segmenting motions using motion primitives that are learned by
a supervised hiddenMarkov model. In these studies, the motions

FIGURE 1 | Overview of the proposed GP-HSMM.

are segmented and labeled in advance. However, we consider that
it is difficult to segment and label all possible motion primitives.

Additionally, some studies have proposed unsupervised
motion segmentation. However, these studies rely on heuristics.
For instance, Wächter et al. have proposed a method to segment
human manipulation motions based on contact relations
between the end-effectors and objects in a scene (Wachter
and Asfour, 2015); in their method, the points at which the
end-effectors make contact with an object are determined as
boundaries of motions. We believe this method works well
in limited scenes; however, there are many motions, such as
gestures and dances, in which objects are not manipulated.
Lioutikov et al. proposed unsupervised segmentation; however,
to reduce computational costs, this technique requires the
possible boundary candidates between motion primitives to
be specified in advance (Lioutikov et al., 2015). Therefore,
the segmentation depends on those candidates, and motions
cannot be segmented correctly if the correct candidates are not
selected. In contrast, our proposed method does not require
such candidates; all possible cutting points are considered by
use of forward filtering-backward sampling, which uses the
principles of dynamic programming. In some methods (Fod
et al., 2002; Shiratori et al., 2004; Lin and Kulić, 2012),
motion features (such as the zero velocity of joint angles)
are used for motion segmentation. However, these features
cannot be applied to all motions. Takano et al. use the error
between actual movements and predicted movements as the
criteria for specifying boundaries (Takano and Nakamura, 2016).
However, the threshold must be manually tuned according to
the motions to be segmented. Moreover, they used an HMM
that is a stochastic model. We consider such an assumption
to be unnatural from the viewpoint of stochastic models, and
boundaries should be determined based on a stochastic model.
In our proposed method, we do not use such heuristics and
assumptions, and instead formulate the segmentation based on
a stochastic model.

Fox et al. have proposed unsupervised segmentation for the
discovery of a set of latent, shared dynamical behaviors in
multiple time series data (Fox et al., 2011). They introduce a
beta process, which represents a share of motion primitives in
multiple motions, into autoregressive HMM. They formulate the
segmentation using a stochastic model, and no heuristics are used
in their proposed model. However, in their proposed method,
continuous data points that are classified into the same states
are extracted as segments, and the lengths of the segments are
not estimated. The states can be changed in the short term, and
therefore shorter segments are estimated. They reported that
some true segments were split into two or more categories, and
that those shorter segments were bridged in their experiment. On
the other hand, our proposed method classifies data points into
states, and uses HSMM to estimate segment lengths. Hence, our
proposed method can prevent states from being changed in the
short term.

Matsubara et al. proposed an unsupervised segmentation
method called AutoPlait (Matsubara et al., 2014). This method
uses multiple HMMs, each of which represents a fixed pattern;
moreover, transitions between the HMMs are allowed. Therefore,
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time series data is segmented at points at which the state is
changed to another HMM’s state. However, we believe that
HMMs are too simple to represent complicated sequences such
as motions. Figure 2 illustrates an example of representation of
time series data by HMM. The graph on the right in Figure 2

represents the mean and standard deviation learned by HMM
from data points shown in the graph on the left. HMM represents
time series data using only the mean and standard deviation;
therefore, details of time series data can be lost. Therefore, we
use Gaussian processes, which are non-parametric methods that
can represent complex time series data.

The field of natural language processing has also produced
literature related to sequence data segmentation. For example,
unsupervised morphological analysis has been proposed for
segmenting sequence data (Goldwater, 2006; Mochihashi et al.,
2009; Uchiumi et al., 2015). Goldwater et al. proposed a method
to divide sentences into words by estimating the parameters of a
2-gram language model based on a hierarchical Dirichlet process.
The parameters are estimated in an unsupervised manner by
Gibbs sampling (Goldwater, 2006). Mochihashi et al. proposed a
nested Pitman-Yor language model (NPYLM) (Mochihashi et al.,
2009). In this method, parameters of an n-gram language model
based on the hierarchical Pitman-Yor process are estimated via
the forward filtering-backward sampling algorithm. NPYLM can
thus divide sentences into words more quickly and accurately
than the method proposed in (Goldwater, 2006). Moreover,
Uchiumi et al. extended the NPYLM to a Pitman-Yor hidden
semi-Markov model (PY-HSMM) (Uchiumi et al., 2015) that can
divide sentences into words and estimate the parts of speech
(POS) of the words by sampling not only words, but also
POS in the sampling phase of the forward filtering-backward
sampling algorithm. However, these relevant studies aimed to
divide symbolized sequences (such as sentences) into segments,
and did not consider analogous divisions in continuous sequence
data, such as that obtained by analyzing human motion.

Taniguchi et al. proposed a method to divide continuous
sequences into segments by utilizing NPYLM (Taniguchi and
Nagasaka, 2011). In their method, continuous sequences are
discretized and converted into discrete-valued sequences using
the infinite hidden Markov model (Fox et al., 2007). The
discrete-valued sequences are then divided into segments by

using NPYLM. In this method, motions can be recognized by the
learned model, but cannot be generated naively because they are
discretized. Moreover, segmentation based on NPYLM does not
work well if errors occur in the discretization step.

Therefore, we propose a method to divide a continuous
sequence into segments without using discretization. This
method divides continuous motions into unit actions. Our
proposed method is based on HSMM, the emission distribution
of which is GP, which represents continuous unit actions.
To learn the model parameters, we use forward filtering-
backward sampling, and segment points and classes are
sampled simultaneously. However, our proposed method also
has limitations. One limitation is that the method requires the
number of motion classes to be specified in advance. It is
estimated automatically in methods such as (Fox et al., 2011) and
(Matsubara et al., 2014). Another limitation is that computational
costs are very high, owing to the numerous recursive calculations.
We discuss these limitations in the experiments.

3. GAUSSIAN PROCESS-HIDDEN

SEMI-MARKOV MODEL

Figure 3 shows a graphical representation of the proposed
GP-HSMM. In this figure, cj(j = 1, 2, · · · , J) denotes classes

FIGURE 3 | Graphical representation of the proposed GP-HSMM.

FIGURE 2 | Example of representation of time series data by HMM. Left: Data points for learning HMM. Right: Mean and standard deviation learned by HMM.
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of segments, and each segment xj is generated by a Gaussian
process, with parameters denoted by Xc and given by the
following generative process:

cj ∼ P(c|cj−1), (1)

xj ∼ GP(x|Xcj ), (2)

where Xc represents a set of segments classified into class c.
Segments are generated by this generative process, and the
observed time-series data s is generated by connecting the
segments.

3.1. Gaussian Process
In this study, we utilize Gaussian process regression, which
learns emission xi of time step i in a segment. This makes it
possible to represent each unit action as part of a continuous
trajectory. If we obtain pairs (i,Xc) of emissions xi of time step i of
segments belonging to the same class c, a predictive distribution
whereby the emission of time step i becomes x follows a Gaussian
distribution.

p(x|i,Xc, i) ∝ N (kTC−1
i, c− k

T
C
−1

k), (3)

where k(·, ·) represents the kernel function and C is a matrix
whose elements are

C(ip, iq) = k(ip, iq)+ β−1δpq. (4)

β is a hyperparameter that represents noise in the observation. In
Equation (3), k is a vector containing the elements k(ip, i), and c
is a scalar value k(i, i). Using the kernel function, GP can learn a
time-series sequence that contains complex changes. We use the
following Gaussian kernel, which is generally used for Gaussian
process regression:

k(ip, iq) = θ0 exp(−
1

2
||ip − iq||

2 + θ2 + θ3ipiq), (5)

where θ∗ represents parameters of the kernel. Figure 4 shows
examples of Gaussian processes. The left graph in each pair of
graphs represents learning data points (i,Xc), and the right graph
shows the learned probabilistic distribution p(x|i,Xc, i). One can
see that the standard deviation decreases with an increase in the
number of learning data points. If the emission of time step i
is multidimensional vector x = (x0, x1, · · · ), we assume that
each dimension is generated independently, and a predictive
distribution GP(x|Xc) is computed as follows:

GP(x|Xc) = p(x0|i,Xc,0, ic)

× p(x1|i,Xc,1, ic)

× p(x2|i,Xc,2, ic) · · · . (6)

Based on this probability, similar segments can be classified into
the same class.

3.2. Learning of GP-HSMM
3.2.1. Blocked Gibbs Sampler
Segments and classes of segments in the observed sequences
are estimated based on dynamic programming and sampling.
For efficient sampling, we use the blocked Gibbs sampler, which
samples segments and their classes in an observed sequence. In
the initialization phase, all observed sequences are first randomly
divided into segments. Segments xnj(j = 1, 2, · · · , Jn) in observed
sequence sn are then removed from the learning data, and
parameter Xc of the Gaussian process and transition probability
P(c|c′) of HSMM are updated. Segments xnj(j = 1, 2, · · · , Jn) and
their classes cnj(j = 1, 2, · · · , Jn) are then estimated as follows:

(xn1, · · · , xnJn ), (cn1, · · · , cnJn ) ∼ P(X, c|sn), (7)

where X is a set of segments into which sn is divided, and
c denotes classes of the segments. To carry out this sampling
efficiently, the probability of all possible segments X and

FIGURE 4 | Examples of Gaussian processes. Left graph in each pair of graphs represents learning data points (i,Xc). Right graph shows the learned probabilistic

distribution p(x|i,Xc, i); the solid line represents the mean, and the blue region represents the range of standard deviation.
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Algorithm 1 Blocked Gibbs Sampler

1: // Iterate the following procedure until convergence

2: for n = 1 to N do

3: for j = 1 to Jn do

4: Ncnj− = 1

5: Ncnj ,cn,j+1− = 1

6: if j 6= 0 then

7: Delete segments xnj from Xcnj
8: end if

9: end for

10:

11: // Sample segments and their classes

12: (xn1, · · · , xnJn ), (cn1, · · · , cnJn ) ∼ P(X, c|sn)

13:

14: for j = 1 to Jn do

15: Ncnj ++

16: Ncnj ,cn,j+1 ++

17: if j 6= then

18: Add segments xnj into Xcnj
19: end if

20: end for

21: end for

Algorithm 2 Forward filtering-backward sampling

1: // Forward filtering

2: for t = 1 to T do

3: for k = 1 to K do

4: for c = 1 to C do

5: Compute α[t][k][c]

6: end for

7: end for

8: end for

9:

10: // Backward sampling

11: t = T, j = 1

12: while t > 0 do

13: k, c ∼ α[t][k][c]

14: xj = st−k : t
15: cj = c

16: t = t − k

17: j = j+ 1

18: end while

19: return (xJn , xJn−1, · · · , x1), (cJn , cJn−1, · · · , c1)

classes c must be computed; however, these probabilities are
difficult to compute simply because the number of potential
combinations is very large. Thus, we utilize forward filtering-
backward sampling, which we presently explain. After sampling
xnj and cnj, parameter Xc of the Gaussian process and transition
probability P(c|c′) of HSMM are updated by adding them to
the learning data. The segments and parameters of Gaussian
processes are optimized alternately by iteratively performing the
above procedure. Algorithm 1 shows the pseudocode of the
blocked Gibbs sampler. Ncnj and Ncnj , cn, j+1 represent parameters

for computing the transition probability in Equation (10).

3.2.2. Forward Filtering-Backward Sampling
In this study, we regard segments and their classes as
latent variables that are sampled by forward filtering-backward
sampling (Algorithm 2). In forward filtering, as shown in

FIGURE 5 | A segment whose probability is computed during forward filtering.

FIGURE 6 | Recursive computation in forward filtering.

Figure 5, the probability that k samples st−k : t prior to time step
t in observed sequence s form a segment, and that the resulting
segment belongs to class c, is computed as follows:

α[t][k][c] = P(st−k : t|Xc)

×

K∑

k′=1

C∑

c′=1

p(c|c′)α[t − k][k′][c′], (8)

where C and K denote the number of classes and the maximum
length of segments, respectively. P(st−k : t|Xc) represents the
probability that st−k : t is generated from a class c; this is computed
as follows:

P(st−k : t|Xc) = GP(st−k : t|Xc)Plen(k|λ). (9)

where Plen(k|λ) represents a Poisson distribution with a mean
parameter λ; this corresponds to the distribution of the segment
lengths. p(c|c′) in Equation (8) represents a transition probability
computed as follows:

p(c|c′) =
Nc′c + α

Nc′ + Cα
, (10)
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where Nc′ and Nc′c denote the number of segments whose
classes are c′ and the number of transitions from c′ to c,
respectively, and k′ and c′ respectively denote the length and
class of the segment preceding st−k : t ; these are marginalized
out in Equation (8). Moreover, α[t][k][∗] = 0 if t − k < 0,
and α[0][0][∗] = 1.0. All elements of α[∗][∗][∗] in Equation
(8) can be recursively computed from α[1][1][∗] by dynamic
programming. Figure 6 depicts the computation of a three-
dimensional array α[t][k][c]. In this example, the probability
that two samples before time step t become a segment is
computed; the resulting segment would be assigned to class two.
Hence, samples at t − 1 and t become a segment, and all the
segments whose end point is t − 2 can potentially transit to this
segment. α[t][2][2] can be computed by marginalizing out these
possibilities.

Finally, segment xj and its class are determined by backward
sampling length k and class c of the segment, based on forward

FIGURE 7 | Coordinate system used in the experiments.

probabilities in α. From t = T, length k1 and class c1 are
determined according to k1, c1 ∼ α[T][k][c], and sT−k1 :T

becomes a segment whose class is c1. Then, length k2 and class
c2 of the next segment are determined according to k2, c2 ∼

α[T − k1][k][c]. By iterating this procedure until t = 0, the
observed sequence can be divided into segments and their classes
can be determined.

4. EXPERIMENTS

We conducted experiments to confirm the validity of the
proposed method. We used two types of motion capture data: (1)
data from the CMU motion capture dataset (CMU, 2009), and
(2) data containing karate motions.

4.1. Segmentation of Exercise Motions
We first applied our proposed method to CMU motion capture
data containing several exercise routines. The CMU motion
capture data was captured using a Vicon motion capture system,
and positions and angles of 31 body parts are available. The
dataset contains 2605 trials in six categories and 23 subcategories,
and motions in each subcategory were performed by one
or a few subjects. In this experiment, three sequences from
subject 14 in the general exercise and stretching category
were used, and include running, jumping, squats, knee raises,
reach out stretches, side stretches, body twists, up and down
movements, and toe touches. To reduce computational cost,
we downsampled from 120 frames per second to 4 frames
per second. Figure 7 shows the coordinate system of motion
capture data used in this experiment; two-dimensional frontal
views of the left hand (xlh, ylh), right hand (xrh, yrh), left
foot(xlf , ylf ), and right foot (xrf , yrf ) were used. Therefore,
each frame was represented by eight dimensional vectors:

TABLE 1 | Segmentation accuracy of CMU motion capture data.

Hamming distance Precision Recall F-measure

0.33 0.81 0.81 0.81

FIGURE 8 | Segmentation results of CMU motion capture data.
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FIGURE 9 | Example of segmentation evaluation. Estimated boundaries are evaluated as true positive (TP), true negative (TN), false positive (FP), or false negative (FN).

FIGURE 10 | Motion capture data of karate motions.

FIGURE 11 | Basic motions in Kata: (A) Left punch. (B) Left lower guard.

(C) Right upper guard.

(xlh, ylh, xrh, yrh, xlf , ylf , xrf , yrf ). Because GP-HSMM requires the
number of classes to be specified in advance, we set it to
eight.

Figure 8 shows the results of the segmentation. The
horizontal axis represents the frame number, and the colors
represent motion classes into which each segment was
classified. The segments were classified into seven classes
out of eight. Table 1 shows the accuracy of the segmentation.
We computed the following normalized Hamming distance
between the unsupervised segmentation and the ground
truth:

ND(c, c̄) =
D(c, c̄)

|c̄|
, (11)

where c and c̄ represent sequences of estimated motion classes
and true motion classes, D(c, c̄) is the Hamming distance
between two sequences, and |c̄| represents the length of the
sequence. Therefore, the normalized Hamming distance ranges
from 0 to 1; lower Hamming distances indicate more accurate
segmentation. In this experiment, the Hamming distance was
0.33, which is comparable with the BP-HMM reported in (Fox
et al., 2011). However, they also reported that some segments
were split into two or more categories, and that those shorter
segments were bridged. In contrast, we performed no such
modifications, and Figure 8 shows that there are no shorter
segments. We also computed the precision, recall, and F-
measure of the segmentation. To compute them, estimated
boundaries of segments are evaluated as true positive (TP),
true negative (TN), false positive (FP), or false negative (FN).
Figure 9 shows an example of segmentation evaluation. We
considered the estimated boundary to be TP if it was within
true boundary ± four frames, as shown in Figure 9(2). If
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FIGURE 12 | Results of segmentation and classification for each method.

TABLE 2 | Segmentation accuracy of karate motions.

Hamming distance Precision Recall F-measure

GP-HSMM 0.21 0.92 0.92 0.92

HDP-HMM 0.47 0.12 0.54 0.19

HDP-HMM + NPYLM 0.61 0.00 0.00 0.00

BP-HMM 0.49 0.13 0.23 0.16

AutoPlait 0.76 0.00 0.00 0.00

the ground truth boundary has no corresponding estimated
boundary as shown in Figure 9(6), it was considered as FN.
Conversely, if the estimated boundary has no corresponding
ground truth boundary as shown in Figure 9(11), it was
considered as FP. From these evaluations, the precision,
recall, and F-measure of the segmentation are computed as
follows:

P =
NTP

NTP + NFP
, (12)

R =
NTP

NTP + NFN
, (13)

F =
2PR

P + R
, (14)

where NTP, NFP, and NTN represent the number of points
assessed as TP, FP, and FN. The F-measure of the segmentation
was 0.81, and this fact indicates that GP-HSMM can
estimate boundaries reasonably. This is because GP-HSMM
estimates the length of segments as well as the classes of
segments.

Moreover, Figure 8 shows that most false segmentations are
in sequence 3. This is because “up and down” and “toe touch”
motions are included only in sequence 3, and GP-HSMM was
not able to extract patterns that occur infrequently. However, this
problem is not limited to GP-HSMM, and it is generally difficult
for any learning method to extract infrequent patterns. The
Hamming distance, which was computed only from sequence
1 and sequence 2, was 0.15. This result shows that GP-HSMM

can accurately estimate segments that appear multiple times in a
sequence.

4.2. Segmentation of Karate Motion
We then applied our proposed method to more complex motion
capture data, which consisted of the basic motions of karate
(called kata in Japanese)1 as shown in Figure 10 from the motion
capture libraryMocapdata.com2. There are fixedmotion patterns
(punches or guards) in kata, and it is easy to form a ground
truth for the segmentation. However, there might be shorter
motion patterns, and GP-HSMM might be able to find those
motion patterns if the number of classes is set to a larger number.
Moreover, it is possible for GP-HSMM to discover patterns that
cannot be labeled by humans, and GP-HSMMhas the potential to
analyze unlabeled time series data. However, in this experiment,
we must evaluate the proposed method quantitatively, and fixed
motion patterns (punches or guards) labeled by a human expert
are used as ground truth. The type of kata we used was called
heian 1, which is the most basic form of kata consisting of
punches, lower guard, and upper guard (Tsuki, Gedanbarai, and
Joudanuke in Japanese). Figure 11 shows the basic movements
used in heian 1. We divided this motion sequence into four
parts, for use as four motion sequences to apply the blocked
Gibbs sampler. Each motion sequence consisted of the following
actions:

1. Left lower guard, right punch, right lower guard, and left
punch.

2. Left lower guard, right upper guard, left upper guard, and right
upper guard.

3. Left lower guard, right punch, right lower guard, and left
punch.

4. Left lower guard, right punch, left punch, and right punch

By way of its preprocessing, as shown in Figure 7, the motion
capture data was converted into motions with the body facing
forward with a center of (0,0,0). To reduce computational cost,
we downsampled the motion capture data from 30 frames per

1https://mocapdata.blob.core.windows.net/freemotions/karate.zip
2http://www.mocapdata.com/
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second to 15 frames per second, and used two-dimensional left-
hand positions (xlh, ylh) and right-hand positions (xrh, yrh) in the
frontal view, as shown in Figure 7. To compare our method
with others, we used segmentation based on HDP-HMM (Beal
et al., 2001) and segmentation based on NPYLM andHDP-HMM
(Taniguchi and Nagasaka, 2011), where NPYLM (Mochihashi
et al., 2009) divides sequences discretized by HDP-HMM. In
addition, we compared our method with BP-HMM (Fox et al.,
2011) and AutoPlait (Matsubara et al., 2014).

Figure 12 shows the segmentation results. The horizontal
axis represents the frame number, and the colors represent
motion classes into which each segment was classified. The
figure shows that HDP-HMM estimated shorter segments
than the ground truth. This occurred because the emission
distribution of HDP-HMM is a Gaussian distribution, which
cannot represent continuous trajectories. Moreover, the result
produced by segmentation, in which NPYLM divided sequences
discretized by HDP-HMM, yielded longer segments. Moreover,
NPYLM cannot extract fixed patterns of sequences. This is
because the sequences discretized by HDP-HMM included noise
and, therefore, NPYLM was unable to find a pattern in them.

It was also difficult for BP-HMM to estimate correct segments,
and some shorter segments were present. Further, AutoPlait
could not find any segments in the karate motion sequences. We
believe this occurred because HMMs are too simple to model
complex motions. On the contrary, we use Gaussian processes
that make it possible to model complex sequences. Table 2 shows
the segmentation accuracy of each method. We considered the
estimated boundary to be correct if it was within true boundary
± five frames. The F-measure of the proposed method was
0.92, which indicates that GP-HSMM can estimate boundaries

TABLE 3 | Computational time of each method.

Time (s)

GP-HSMM 248

HDP-HMM 1.99

HDP-HMM + NPYLM 18.2

BP-HMM 3.37

AutoPlait 0.31

FIGURE 13 | Learned Gaussian processes for left lower guard, left upper guard, and right upper guard.
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accurately. The results show that GP-HSMM outperforms the
other methods. Figure 13 shows the learned Gaussian process.
yrh in Figure 13A, which represents the height of the left hand,
is decreased, which indicates the motion where the left hand
is dropped for the lower guard. In contrast, yrh in Figure 13B

is increased, which indicates the motion where the left hand
is raised for the upper guard. Conversely, ylh in Figure 13C is
increased for the right upper guard. From this result, we can
see that characteristics of motions can be learned by Gaussian
processes.

Moreover, the motions were classified into seven classes,
although we set the number of classes to eight. This result
indicates that the number of classes can be estimated to a
certain extent, if a number closer to the correct number is
given. However, a smaller number leads to under-segmentation
and misclassification, and a much larger number leads to over-
segmentation. This is a limitation of the current GP-HSMM,
and we believe it can be solved by introducing a non-parametric
Bayesian model.

Computational cost is another limitation of GP-HSMM.
Table 3 shows the computational time required to segment karate
motion. HMM-based methods such as HDP-HMM, BP-HMM,
and AutoPlait are relatively faster. In particular, AutoPlait is
the fastest because it uses a single scan algorithm proposed in
(Matsubara et al., 2014) to find boundaries, and it has been
demonstrated that AutoPlait can detect meaningful patterns
from large datasets. In contrast, our proposed GP-HSMM is
much slower than other methods, and cannot process such large
datasets. This is another limitation of the proposed method.

5. CONCLUSION

In this paper, we proposed a method for motion segmentation
based on a hidden semi-Markov model (HSMM) with a Gaussian
process (GP) emission distribution. By employing HSMM,
segment classes and their lengths can be estimated. Moreover,

a forward filtering-backward sampling algorithm is used to
estimate the parameters of GP-HSMM; this makes it possible
to efficiently search for all possible segment lengths and classes.
The experimental results showed that the proposed method can
accurately segment motion capture data. Although motions that
occurred in the sequences a single time were difficult to segment
correctly, motions that occurred a few times could be segmented
with higher accuracy.

However, some issues remain in the current GP-HSMM.
The most significant problem is that GP-HSMM requires the
number of classes to be specified in advance. We believe this
value can be estimated by utilizing a non-parametric Bayesian
model. We are planning to introduce a stick-breaking process
as a prior distribution of the transition matrix, and beam
sampling for parameter estimation; these techniques are utilized
in Beal et al. (2001). Another problem is computational cost. The
computational cost to learn a Gaussian process is O(n3), where
n denotes the number of data points classified in the GP. To
overcome this problem, efficient computationmethods have been

proposed (Nguyen-Tuong et al., 2009; Okadome et al., 2014), and
we will consider introducing these methods into GP-HSMM.
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An important characteristic of human language is compositionality. We can efficiently

express a wide variety of real-world situations, events, and behaviors by compositionally

constructing the meaning of a complex expression from a finite number of elements.

Previous studies have analyzed how machine-learning models, particularly neural

networks, can learn from experience to represent compositional relationships between

language and robot actions with the aim of understanding the symbol grounding structure

and achieving intelligent communicative agents. Such studies have mainly dealt with

the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In

addition to these words, the current study deals with logic words, such as “not,” “and,”

and “or” simultaneously. These words are not directly referring to the real world, but

are logical operators that contribute to the construction of meaning in sentences. In

human–robot communication, these words may be used often. The current study builds

a recurrent neural network model with long short-term memory units and trains it to learn

to translate sentences including logic words into robot actions. We investigate what kind

of compositional representations, which mediate sentences and robot actions, emerge

as the network’s internal states via the learning process. Analysis after learning shows

that referential words are merged with visual information and the robot’s own current

state, and the logical words are represented by the model in accordance with their

functions as logical operators. Words such as “true,” “false,” and “not” work as non-linear

transformations to encode orthogonal phrases into the same area in a memory cell state

space. The word “and,” which required a robot to lift up both its hands, worked as if it

was a universal quantifier. The word “or,” which required action generation that looked

apparently random, was represented as an unstable space of the network’s dynamical

system.

Keywords: symbol grounding, neural network, human–robot interaction, logic words, language understanding,

sequence-to-sequence learning

1. INTRODUCTION

In recent years, the development of robots that work collaboratively in our living environment has
attracted great attention. In many scenarios, these robots will be required to behave appropriately
by understanding linguistic instruction from humans. Here, the meanings of instructions may
change depending on the environment. Thus, robots must be able to flexibly adapt their behavior
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in accordance with the current situation or context. In the
real world, no two events are identical; thus, a model that can
generalize in order to translate an instruction to appropriate
behavior even in novel situations is required. Specifying rules
to define relations between language and behavior for various
possible contexts becomes difficult and costs much more as
task complexity increases. Therefore, to build a learning model
that enables a robot to acquire generalizable relations from
experience is especially desirable. To flexibly link language, which
operates on discrete elements, to behavior, which operates within
a continuous world, requires a solution to the symbol grounding
problem (Harnad, 1990; Taniguchi et al., 2016).

One important characteristic of human language that
enables us to describe even previously unseen situations is
compositionality. In the field of formal semantics, the principle
of compositionality (also referred to as Frege’s principle) models
a language system as follows: the meaning of a phrase or
a sentence is given as a function of the meanings of its
parts (e.g., words) (Partee, 2004). This principle means that
the meaning of a complex expression is built from the
meaning of its constituents and rules for combining them.
Thanks to the compositionality of language and our cognitive
ability to deal with it, humans can efficiently describe a wide
variety of situations and dynamic events in the real world
by compositionally constructing a complex expression from
a finite number of elements. Investigating the compositional
aspects of language deeply is important for understanding how
human languages work in practice and for building intelligent
communicative agents. Using the principle of compositionality
as a base, formal semanticists attempt to build theoretical
frameworks to explain the compositionality of natural language
in a top-down manner.

In contrast with the top-down approach, there is a bottom-
up approach that attempts to work from observation and
analyze what kind of symbolic or compositional expressions
emerge spontaneously through communicative tasks among
humans, robots, and other intelligent agents (Steels and
Kaplan, 1998; Steels and McIntyre, 1998; Steels, 2001; Kirby,
2002; Sasahara et al., 2007; Bleys et al., 2009; Schueller and
Oudeyer, 2015; Spranger, 2015; Sukhbaatar et al., 2016; Wang
et al., 2016; Havrylov and Titov, 2017; Lazaridou et al., 2017;
Mordatch and Abbeel, 2017). In particular, in recent years,
there have been many studies of multi-agent interaction, in
which agents implemented with a deep learning model are
developed in a mutually interactive manner and a compositional
communication protocol emerges through the interaction. In
Mordatch and Abbeel (2017), multiple agents situated within
simulated 2D environments were given collaborative tasks in
which agents had to symbolically communicate with each other
to tell other agents their own goals. Before learning, symbols were
meaningless. Being trained by reinforcement learning, the agents
spontaneously gave the symbols shared meanings, which were
sometimes interpretable by humans (e.g., “GO-TO,” “LOOK-
AT”), and they became able to communicate by combining the
symbols, each of which was a token representing a subject, verb,
or objective. In Havrylov and Titov (2017), two long short-term
memory (LSTM) networks developed their own communication

protocol to express the content of images. The sender network
encoded the image information as a sentence expression, and the
receiver network decoded the sentence and inferred which image
among alternatives was described by the sentence. The analysis
showed that a natural language-like coding such as hierarchy of
categories or the importance of word order could be developed.

In the bottom-up approach, there has also been much
research that trained neural network models by supervised
learning (Sugita and Tani, 2005; Ogata et al., 2007; Sugita
and Tani, 2008; Arie et al., 2010; Tuci et al., 2011; Chuang
et al., 2012; Stramandinoli et al., 2012; Ogata and Okuno, 2013;
Heinrich and Wermter, 2014; Heinrich et al., 2015; Hinaut
et al., 2014; Yamada et al., 2015, 2016; Zhong et al., 2017). In
these studies, the example sets of language and corresponding
behavior were designed and prepared by humans in advance.
These sets were used as ground truth during training, and
after that, compositional representations intermediating between
language and behavior were self-organized in their models. For
example, Sugita and Tani (2005) and Arie et al. (2010) trained
recurrent neural network (RNN) models (Elman, 1990) to learn
relations between 2- or 3-word sentences and corresponding
robot behavior. After training, representations corresponding to
verbs and nouns were topologically self-organized as different
components in the feature space binding language with robot
behavior. These were construed as plausible materialization of
linguistic compositionality by a dynamical system approach. Tuci
et al. (2011) also conducted robot experiments using a feed-
forward neural network and claimed that the compositional
aspects that potentially exist in the behavior space are required
for embedding robot behavior into compositional semantics
via language. Heinrich et al. (2015) trained an RNN model to
translate a robot’s visual input into a corresponding sentence
at the phoneme level. After training, the activated internal
states of the RNN were more correlated with the type of
word (color, shape, or position) than the phonemes. Hinoshita
et al. (2011) visualized a similar kind of abstract encoding
by a hierarchical RNN that was activated in accordance with
the categories of words, even though they trained the RNN
with linguistic sequences only. Investigating such representations
organized in machine learning models is valuable, not only for
understanding the compositionality of language but also for
building interpretable intelligent systems.

The current study follows the supervised learning approach
to the integration of language and behavior. In most previous
studies of this type, mainly words that are directly grounded in
real-world matters have been considered. For example, nouns
(e.g., ball, box) or adjectives (e.g., red, tall) correspond to
characteristics of objects. Verbs (e.g., hit, push) or adverbs
(e.g., quickly, slowly) correspond to characteristics of motion.
However, in our language, there are more abstract words (e.g.,
society, justice) that are not grounded in concrete physical objects
or actions. To tackle the grounding of such words, Cangelosi et
al. have conducted a series of language-robot experiments from
the point of view of cognitive developmental robotics (Cangelosi
et al., 2010; Chuang et al., 2012; Stramandinoli et al., 2012; Zhong
et al., 2014; Stramandinoli et al., 2017). In these works, a robot
implemented with a neural network develops its linguistic skill
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step by step, beginning by acquiring relations between simple
basic motions and words (e.g., “push,” “pull”) directly grounded
in them and moving on to achieving relationships between more
abstract actions and words (e.g., “give,” “reject”) only indirectly
grounded in them through connections to basic words.

However, the current study deals with another kind
of abstraction. Language expressions in this study include
grounded, in other words, referential1 words and logic words,
such as “not,” “and,” and “or”. These logical words are not directly
referring to the real world but act as logical operators in the
construction of the meaning of the sentence. For example, just
after you have closed a door, the commands “open the door!” and
“do not close the door!” can express the same behavior OPEN-
DOOR2. In another case, the appropriate behaviors in response
to “bring A or B” include BRING-A and BRING-B. These
logic words have not been addressed in conventional studies of
integrative learning of language and behavior. In accordance with
the formulation of formal semantics, even such non-referential
words working as logical operators can be handled in a unified
way. In fact, in cases of actual human–robot communication, it is
highly likely that these words will be used.

The current study investigates what kind of structure
representing compositional relations between language and robot
actions is self-organized in the space of internal states of an RNN
model trained through supervised learning. Here, our designed
tasks include referential words and non-referential logic words.
The meanings of sentences are constructed from both word
types. We analyze how logic words are processed and how their
functions are represented by the RNN dynamics along with
the referential words. More precisely, we apply the sequence-
to-sequence learning method that has recently attracted great
attention in the field of natural language processing (Sutskever
et al., 2014; Bahdanau et al., 2015; Vinyals and Le, 2015; Wu
et al., 2016) to the translation from sentences to robot actions
and analyze representations by visualizing internal states during
interactions that occur after training.

This paper is organized as follows. In section 2, we introduce
the learningmodel. In section 3, we give the results of the learning
experiment for the first task and analyze the representations
acquired by the learning model in detail. In section 4, we report
the results of the second task. In section 5, we discuss the results
and then conclude this study.

2. LEARNING MODEL

2.1. Problem Formulation
The aim of the current study is to investigate how the
compositional relations between language and robot actions

1In this paper, we use the term “referential” instead of “grounded” for the following

reason. We conduct two robot experiments in the following sections, but the first

task is numerically simulated on a computer. Even though the second task uses

a real robot, the visual input is still highly preprocessed. Strictly speaking, we do

not deal with the symbol grounding problem in accordance with the definition

by Harnad (1990). To prevent misunderstanding, we use the term “referential,”

and sometimes “linking” to express that a word has a referent or a corresponding

feature in other sensorimotor modalities.
2In this paper, we denote specific actions or behaviors executed by agents with

capital letters.

are developed and represented internally by the model from
direct experiences of interaction. Therefore, we define the
interactive instruction–action task as a simple problem, learning
to predict a robot’s joint angles appropriate to the current
situation. At each discrete time step t a neural network model
receives a word wt , visual information vt , and the robot’s current
joint angle configuration jt . An instruction sentence is given
as a concatenation of some words, thus it takes some time
steps. At each time step the model generates its prediction
jt+1 based on the input history w0 : t , v0 : t , and j0 : t . During
the instruction phase the appropriate prediction would be just
keeping the current posture jt . After an instruction is given,
an appropriate prediction should be the generation of angles
different from the current ones. An action corresponding to
the instruction must also be generated as a sequence of joint
angle configurations over several time steps. In our tasks, the
appropriate action sequence after an instruction is determined
by the combination of the instruction sequence, the visual
information given simultaneously with the sentence, and the
robot’s current posture.

2.2. Model Architecture and Forward

Dynamics
In this study, as a model that learns the aforementioned
problem, we use an RNN with an LSTM layer (Hochreiter and
Schmidhuber, 1997). The model is a three-layer neural network
whose middle layer is the LSTM layer, as shown in Figure 1.
All the LSTM units have a peephole connection (Gers and
Schmidhuber, 2000). At each time step, the model receives wt ,
vt , and jt . The LSTM layer calculates the current output ht from
these external inputs, the memory cell state in the previous step
ct−1, and its own output in the previous step ht−1:

ht = LSTM(wt , vt , jt , ht−1, ct−1; θ), (1)

where θ denotes the parameters of the LSTM layer. In this
process, ct−1 is also updated to ct . The output layer is a fully
connected layer. It receives the output of the LSTM layer and
predicts the appropriate joint angles for the next time step,
denoting these ĵt+1. We denote the model prediction by jt+1:

jt+1 = tanh(Wht + b), (2)

where W and b are a learnable weight matrix and a bias vector,
respectively. The model prediction is also used as the joint
angle input at the next time step. In this process, receiving an
instruction and generating an action are completely conducted
in the forward-propagation algorithm. An instruction sentence,
visual information, and the robot’s current posture are encoded
as the states of memory cells in the LSTM layer. After receiving
the instruction, a corresponding action sequence is generated by
decoding the integrated information.

The working after training seems to be similar to the
normal sequence-to-sequence models that have recently been
used in the field of natural language processing for tasks such
as question answering and translation. However, the current
model is different in that it has only one LSTM layer; in other
words, it does not separate the decoder from the encoder.
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FIGURE 1 | The framework employed to learn the current tasks. The learning model is a three-layer neural network whose middle layer is an LSTM layer. At each time

step, the model receives wordwt, visual information vt, and the current robot joint angles jt. The LSTM layer calculates the current output ht from these external

inputs, the memory cell state ct, and its own output in the previous step ht−1. The output layer is a fully connected layer. It receives the output of the LSTM layer and

predicts the appropriate joint angles for the next time step. In this process, receiving an instruction and generating an action are completely conducted in the forward

propagation algorithm. An instruction sentence, visual information, and the robot’s current posture are encoded as the states of memory cells in the LSTM layer. After

receiving the instruction, a corresponding action sequence is generated by decoding the integrated information.

Moreover, the algorithm does not explicitly switch between the
instruction and action phases. As visually illustrated in Figure 3

in the next section, the relations between instructions and
corresponding actions are experienced entirely in the sequential
data that represent human robot interaction, which consists of
repeated iteration of instructions and actions. With such data, as
mentioned above, the model learns to predict only the robot’s
joint angles appropriate for the next time step in the current
situation. Because both phases are only implicitly included in the
sequential data, the model has to learn to switch phases without
a priori knowledge. In more precise terms, the contrasting
functions of encoding and decoding (i.e., instruction receiving
and action generation) emerge as an apparent phenomenon as a
result of learning alone. The model continues to predict the joint
angles even during receipt of an instruction, while the target is
keeping the current posture. In contrast, zero-filled vectors are
continuously received as language inputs even when the robot is
generating an action sequence. Although no external algorithms
or explicit signals on the network I/O for phase switching exist,
the trained model behaves as though it flexibly switched phases.
Formore discussion from the point of view of dynamical systems,
refer to Yamada et al. (2016).

2.3. Training
To train the model, supervised learning is conducted by
minimizing the squared error between the model’s output jt+1

and the correct joint angles at the next time step ĵt+1: that is, the
model is trained to minimize

E =
∑

s

∑

t

(jt+1 − ĵt+1)
2, (3)

where s is the index of a sequence. The error at each time step
is back-propagated to the initial time step without truncation by
using the back propagation through time algorithm (Rumelhart

et al., 1986). In our tasks, sometimes there are multiple correct
actions. For example, if the instruction is “hit red or blue,” both
HIT-RED and HIT-BLUE can be correct. In such cases, one
action is chosen randomly each time and given as the correct
response.

In the following sections, we describe learning experiments
conducted using the model described in this section. We
designed two tasks, the “flag task” and the “bell task,” in which
a robot is required to generate an action in response to linguistic
instructions that sometimes include logic words. Although the
former task is numerically simulated on a computer from data
preparation to evaluation, it is interpretable as a task for a robot.
In contrast, the latter task collects motion data by using a real
robot; it is, therefore, a more complicated task.

3. EXPERIMENT 1: FLAG TASK

3.1. Task Overview
In this section, we first report the learning results of the first task,
the “flag task”. Although this task is completely performed in a
computer simulation, we describe the task as if it was undertaken
by a robot so that it is easy to imagine intuitively. First, a human
makes the robot grasp flags colored red, green, or blue, one in
the left hand and another in the right, at random. After that,
the human gives the robot a linguistic instruction. The sentence
consists of a combination of an objective (“red,” “green,” “blue”),
a verb [“up” (i.e., lift), “down” (i.e., lower)], and a truth value
(“true,” “false”). Note that the words are given in this order
because this gamewas designed bymodifying a popular children’s
game in Japan. Japanese is a subject-object-verb language (cf.,
English, which is a subject-verb-object language), therefore a verb
follows an objective word, and a truth value, which is one of the
auxiliary verbs, follows a verb. Here, the objective color word
indicates the arm that is grasping a flag of the stated color. The
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verb determines whether the flag should be raised or lowered.
Finally, if the truth value is “true,” the robot must behave as
indicated by the preceding verb. In contrast, if “false,” it must
generate the opposite action. For example, if the robot receives
an instruction “red up false” when it is grasping a red flag in the
right arm, the correct action is to lower the right arm (R-DOWN).
In other words, “true” and “false” roughly represent “do” and “do
not,” respectively.

In the objective part, two color words can be concatenated
by “and” (referred to as AND-concatenated). For example,
if the robot receives the instruction “red and blue up true”
when it is grasping red and blue flags, the robot must lift
up both arms. There are also cases in which two color words
are concatenated by “or” (referred to as OR-concatenated).
For example, if the robot receives the instruction “green or
blue up false” when it is grasping the green and blue flags,
the correct action is to lower either arm. However, if at least
one arm is already in the DOWN posture, the robot must
keep the current posture. The number of possible goal-oriented
actions is six: L-UP, R-UP, B-UP, L-DOWN, R-DOWN, and
B-DOWN, where L, R, and B mean left, right, and both,
respectively. However, there are situations in which, even though
the same goal-oriented action is required, the actual motion
that should be generated by the robot varies according to the
robot’s current posture (shown as arrows in Figure 2). Note that
there are even cases in which the robot should not move either
of its arms. The number of possible situations, based on the
combination of flag colors (6 patterns), instructions (24 patterns),
and the robot’s waiting posture (4 patterns), is 576. In this task,
instructions inconsistent with the flag colors are never given.
For example, if the colors of the flags held by the robot are
red and blue, the instruction “green up true” is never given.
Furthermore, cases in which both flags are the same color are not
permitted.

The requirements imposed on the robot in this game are
analyzed as follows. (1) First, the arm indicated by the color
words depends on the arm with which the robot holds the flag.
In other words, referring to an external situation is required.
(2) The actual motion trajectory to be generated depends on
the robot’s current posture. For example, suppose the robot is
required to generate L-UP action. If the robot’s left arm is in
the DOWN posture, the robot has to lift its left arm. However,
if the robot’s left arm is already in the UP posture, the robot
has to maintain its posture. (3) Finally, the RNN has to deal not
only with referential words (e.g., verb, objective) but also logic
words such as “true,” “false,” “and,” and “or,” which we focus
on in the current study. Due to this task setting, in extreme
cases, sentences completely orthogonal to each other can indicate
the same action (e.g., “red up true” with the red flag in the
left arm and “blue down false” with the blue flag in the left
arm). In contrast, some OR-concatenated sentences have an
ambiguity that allows the robot multiple choices even in the same
situation.

3.2. Data Representation
We represent the execution of the flag task as a sequence of 14-
dimensional vectors. The state St at time step t is represented as

follows:

jt = [j
(t)
l
, j(t)r ], (4)

vt = [v(t)r , v(t)g , v
(t)
b
], (5)

wt = [w
(t)
0 ,w

(t)
1 ,w

(t)
2 ,w

(t)
3 ,w

(t)
4 ,w

(t)
5 ,w

(t)
6 ,w

(t)
7 ,w

(t)
8 ], (6)

St = [jt; vt;wt]. (7)

Regarding the robot joints, only the left and right shoulder pitches

(j
(t)
l
, j
(t)
r ) are used. The permissible range of each shoulder pitch

is scaled in the interval [−1.0, 1.0]. The UP posture corresponds
to a pitch of 0.8, and the DOWN posture corresponds to a
pitch of −0.8. Posture changes from UP to DOWN or from
DOWN to UP after receiving an instruction are completed over
6 time steps. Visual information is represented in 3 dimensions

(v
(t)
r , v

(t)
g , v

(t)
b
). The three components correspond to the R, G,

and B channels, respectively. If the color is grasped by the left
hand, the component is set to 0.8; if it is in the right hand,
the component is −0.8; and if not grasped by either hand, the
component is 0.0. Nine elements are assigned for language. Each
element corresponds to one word, out of “red,” “green,” “blue,”
“up,” “down,” “true,” “false,” “and,” and “or,” and an instruction
sentence is represented as a sequence of one-hot vectors, which
have the value of 0.8 at one element and 0.0 at the other element.
In this study, the data representing the flag task are completely
generated on a computer without using a real robot. Example
interaction data are shown in Figure 3. Note that we added a
small amount of Gaussian noise (mean: 0.00; standard deviation:
0.02) to the values of joint angles. In the preliminary experiment,
we first trained the model without noise and got poor results. We
then added noise and the results improved. We discuss this effect
in section 5.

3.3. Learning Setting and Evaluation

Method
We made 2,048 sequential datasets for training, each of which
includes 10 episodes. The term, “episode” denotes a chunk
consisting of an instruction and an action response. The
situations included in each sequence were randomly ordered.
All 576 possible situations were included at least once. We
built five models with 50, 70, 100, 150, and 300 LSTM units
and trained them 10 times from randomly initialized learnable
parameters. We also trained the 100-node model with data
without noise applied to the joint angles. Adam, a version of the
stochastic gradient descent algorithm made stable by computing
individual adaptive learning rates for each parameter, is used
as an optimizer (for details, refer to Kingma and Ba, 2015).
The number of learning iterations is 10,000, and the learning
rate is set to 0.001. We coded our model within Python using
the Chainer (https://chainer.org) framework. The source code
of our model is available at https://github.com/ogata-lab/RNN_
FNR2017.

After learning, we made another dataset for the evaluation.
This dataset includes all the possible situations 10 times each.
Although the situations were randomly ordered, the order was
different from the training dataset. When the errors between
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FIGURE 2 | Overview of the flag task. The experimenter makes the robot grasp two colored flags. Instructions are given as sentences in the form of an objective

(“red,” “green,” “blue”), a verb [“up” (i.e., lift), “down” (i.e., lower)] and a truth value (“true,” “false”). The robot must generate one of six goal-oriented actions (L-UP,

L-DOWN, R-UP, R-DOWN, B-UP, B-DOWN) in accordance with the instruction. In the objective parts, two color words can be concatenated by “and”. In this case,

the robot must generate B-UP (B-DOWN) action. Two color words also can be concatenated by “or,” in which case the robot must move either arm. The actual

movements corresponding to these goal-oriented actions for each starting posture are indicated by the arrows in this figure.

FIGURE 3 | An example sequence that represents the flag task. Each vertical broken line indicates the end of an episode. (Top) An instruction is given as a

succession of words, which are each represented as a 1-hot vector. In the waiting and action-generation phases, zero-filled vectors are given. (Middle) Visual

information is continuously given as a sequence of three-element (R, G, B) vectors. The flag colors can be changed randomly just after action generation. Because this

task was numerically simulated on a computer, changes in flags were represented as instantaneous changes in values. Note that flags are sometimes not changed as

in the case from the first episode to the second episode in this figure. (Bottom) Each action immediately follows an instruction.

the generated postures of both arms six steps after receiving an
instruction and the correct ones are less than 0.04, we judge
that the RNN has succeeded in generating an appropriate action.
Here, there are cases in which the correct action cannot be
determined uniquely. In such cases, if the RNN succeeds in
generating any of the correct actions, we judge that as success.
We regard the situation patterns in which the RNN succeeds
in generating an appropriate action more than seven times out

of 10 as “appropriately learned”. Note that in the current task,
the sequences are given to the robot as multiple repetitions of
the instructions and corresponding actions. Therefore, even if
situations that are defined by combination of an instruction,
the vision, and the robot posture are the same, slightly
different activations are gained every time because the contextual
information of the previous episode remains in the memory cell
states. Thus, the generated action is not identical among trials.
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3.4. Task Performance after Training
We classify all possible situations into four types. (1) Situations
in which the instruction includes only one objective word
(192 situations). (2) Situations in which the instruction is
AND-concatenated (192 situations). (3) Situations in which the
instruction is OR-concatenated, but there is only one correct
action. For example, when the instruction is “red or blue up
true” and the both arms are already in the UP position, the
only correct action is to maintain the UP-UP posture (144
situations). (4) Situations in which the instruction is OR-
concatenated, and two correct actions exist (48 situations).
We evaluate performance by counting how many situation
patterns each model learns appropriately with respect to each
of the four types. Figure 4 shows the result. Most situations
in types (1), (2), and (3), in which the correct action is
uniquely determined, were appropriately learned by all the
models. However, the 100-node model trained with data without
noise applied to the joints could not learn sufficiently well. For
type (4), in which the correct action cannot be determined
uniquely, a clear difference exists between models: the number
of appropriately learned situations increased in accordance
with the number of LSTM nodes. The model without noise
also performed worse than the 100-node model with noise.
Figure 5 shows an actual example of interaction achieved by
the 300-node model. It can be seen that the RNN generates an

appropriate action immediately after receiving an instruction in
each episode.

Next, we checked which arm was actually moved in situations
of type (4). If the model learned the type (4) situations just
as a left-arm action or just as a right-arm action, the meaning
of “or” cannot be regarded as being truly learned, although
the aforementioned evaluation criteria is fulfilled. Here, we
investigated the results for a model with 300 LSTM units. In
45.4% of the trials, the left hand was moved. In 52.5%, the right
hand was moved. In 2.1%, neither movement could be generated
successfully. Overall, the arms were quite evenly chosen in these
situations. There are 48 situation patterns of type (4), and the test
was conducted 10 times for each of them. In all cases, the RNN
sometimes chose to move the left arm and other times chose to
move the right arm. In other words, the RNN could learn the
meaning of OR-concatenated instructions appropriately as “OR”.
Thus, the flag task was performed sufficiently well by the trained
models.

3.5. Analyses of Internal Representations
In the previous subsection, we confirmed that the RNN could
learn to execute the flag task. In this section, to analyze how
the RNN internally represents the relations between instructions
and sensorimotor information, we visualized the internal states

FIGURE 4 | Experiment 1 (flag task). Action generation performance. We evaluated performance by counting how many situation patterns each model learned

appropriately with respect to each of the four situation types: (1) the instruction includes one objective; (2) the instruction is AND-concatenated; (3) the instruction is

OR-concatenated, but there is only one correct action; and (4) the instruction is OR-concatenated, and two correct actions exist. Note that the written values are

averages of 10 trials in which learning began with different seeds. Error bars represent standard deviations.

FIGURE 5 | An example of the resulting interaction in the flag task. The 300-node model could generate an appropriate action in almost all situations.
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FIGURE 6 | Top left: The states of the memory cells after the instruction “(L-flag color word) up true” or “(R-flag color word) up true” is given to the robot projected

onto the space spanned by PC1, 2, and 3. Here, the robot is always waiting in the DOWN-DOWN posture, but the situations are different with respect to the colors of

the flags grasped in each hand. For example, the filled blue circle is the activation after receiving “blue up true” in the situation B-R in which a blue flag is in the left

hand and a red flag is in the right. In this task, which arm should be moved cannot be determined from the given objective word alone. However, in the PC1 direction,

which arm is indicated by the objective word is represented. The RNN learned to integrate the objective word information and the current visual information, and

acquired a representation corresponding to the meaningful pair of “left–right”. By using these activations, the robot could choose a correct arm for each trial.

Others: We also plotted the internal states after giving these instructions to the robot that is waiting in the other postures, together with the internal states on the

DOWN-DOWN condition. We projected them onto the PC1–2, PC3–4, and PC5–6 space. Note that we carried out PCA again by using the internal states on all of

these conditions. Plot colors and shapes are as in the top left panel except that the frame lines differ according to the robot current posture. In this case, the current

posture information is strongly reflected to the internal states, thus it is encoded in the PC1–2 plane. But the representation corresponding to “left” and “right” is still

able to be seen easily in the PC3–4 plane. The visual information was encoded in the PC5–6 space although the hexagon shape was a little distorted.

during the execution of the task by principal component analysis
(PCA)3.

3.5.1. Representations of Referential Color Words
First, the top left panel of Figure 6 shows the states of thememory
cells after the instruction “(L-flag color word) up true” or “(R-
flag color word) up true” is given to the robot. Here, the robot is
always waiting in the DOWN-DOWN posture, but the situations
are different with respect to the flag colors. Therefore, the RNN
has to choose which arm should be raised by integrating the
visual information and the input objective word. In the PC2–PC3
plane, the current visual input is directly embedded. However,
in the PC1 direction, which arm has been indicated by an
objective word is represented. In other words, in the experience

3Before applying PCA, parallel translation was applied to the internal state vectors

to make the mean of them the zero vector (i.e., centering preprocessing was

performed).

of generating action sequences by receiving an instruction and
visual input, the RNN acquired a representation corresponding
to the meaningful pair of “left” and “right”. We also plotted the
internal states after giving these instructions to the robot that is
waiting in the other postures, together with the internal states
on the DOWN-DOWN condition. In the other three panels of
Figure 6, we projected them onto the PC1–2, PC3–4, and PC5–
6 space. In this case, the current posture information is strongly
reflected to the internal states, thus it is encoded in the PC1–2
plane. But the representation corresponding to “left” and “right”
is still able to be seen easily in the PC3–4 plane. Here, note
that in the case of the UP-UP posture, the actual motions to be
generated by receiving “(L-flag color word) up true” or “(R-flag
color word) up true” are the same (keep the current posture),
and, in fact, the network could keep the posture. This analysis
shows that even in such situations in which the same action was
generated, themodel could internally represent these instructions
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as different meanings, “left” or “right”. Incidentally, the visual
information was also still encoded in a less principal component
space (PC5–6) although the hexagon shape was a little distorted.

3.5.2. Representations of Logic Words: “True” and

“False”
Next, we also analyzed the representations of logic words. We
visualized memory cell activations after giving eight possible
instructions with one objective word to a robot that was grasping
R-B flags and waiting in the DOWN-DOWN posture (Figure 7).
In the directions of PC1, PC2, and PC3, the activations directly
corresponding to each part of speech (objective, verb, truth
value) of the input sentence can be seen, that is, “red”/“blue”,
“up”/“down” and “true”/“false” pairs are reflected in the PC2,
PC1, and PC3 axes, respectively. Here, the problem is that the
RNN has to solve an X-OR problem that consists of “up”/“down”
and “true”/“false” (shown in the left panel of Figure 7), and to link
its interpretation into UP or DOWN goal-oriented action. More
precisely, if the sentence includes “up true” or “down false,” UP
action must be chosen. In contrast, if the sentence includes “up
false” or “down true,” DOWN action must be chosen.

Actually, by exploring the lower-rank component PC4, the
activations that were located diagonally across the parallelogram
in PC1–PC3 space were located in the same direction. “Up true”
and “down false,” which are mutually orthogonal but have the
same meaning UP, are represented in the bottom area of the right
panel. In contrast, “up false” and “down true” are represented
in the top area. Thanks to this non-linear embedding, the X-OR
problem is solved in the PC4 direction. In summary, the RNN has
extracted the XOR problem implicitly included in the sequential
experiences and learned to link the orthogonal instructions in
the same goal-oriented action by its non-linear dynamics, while
retaining the information that the input sentences are very
different from each other in the larger principal components.

3.5.3. Representations of Logic Words: “And” and

“Or”
The left panel of Figure 8 shows the memory cell states after
giving a robot that is grasping R-B flags some instructions
whose objective part is one word, AND-concatenated, or OR-
concatenated. The verb and the truth value are “up” and
“true,” respectively. AND-concatenated instructions that direct
the robot to raise both arms are represented away from other
instruction encodings in the PC1 direction. The pair of “red”
and “blue” is represented in the PC2 direction. Here, the word
“or” that directs the robot to raise either hand is embedded in
the middle space between these two encodings. This suggests
that “or” is represented as an unstable point of the network
dynamics and that, thanks to this acquired dynamics, behavior
which apparently looks like randomly choosing the left or right
arm has emerged.

To verify this, we conducted the following additional
simulation. To a robot that had 2,048 different contexts, we
gave the instruction “green or blue up true.” Specifically, in all
2,048 contexts, a robot is currently waiting in a DOWN-DOWN
posture with G-B flags. However, in each context, the order
of preceding episodes is randomly different from in the other
contexts. As mentioned in section 3.3, even when the situation,
defined by the combination of an instruction, the vision, and the
robot current posture (in this simulation, “green or blue up true,”
the green flag in the left hand, the blue flag in the right hand,
and DOWN-DOWN posture, respectively) is the same, different
activations occur every time because the contextual information
of the previous episodes still remains in the memory cell states.
Therefore, we see 2,048 different activations corresponding to
2,048 contexts. As shown in the top left panel of the right side
of Figure 8, the memory cell states after the instruction “green or
blue up true” were then arranged in an arch-shaped space. Each
point corresponds to one specific context. When the activation
was on the left side of the arch, the robot generated L-UP action.

FIGURE 7 | Memory cell states after giving eight possible instructions with one objective word to the RNN in the situation that the grasped flags are R-B and the

waiting posture is DOWN-DOWN. The left panel projects them onto PC1–3 space, and the right panel projects them onto PC2–4 space. In the directions of PC1,

PC2, and PC3, the activations directly corresponding to each part of speech (objective, verb, truth value) can be seen: that is, “red”/“blue”, “up”/“down” and

“true”/“false” pairs are reflected in the PC2, PC1, and PC3 axes, respectively. However, by exploring lower rank components, it can be seen that the X-OR problem

consisting of “up”/“down” and “true”/“false” pairs is solved in the PC4 direction by non-linearly embedding the input sentences.
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FIGURE 8 | Left: The memory cell states after giving a robot that is grasping red and blue flags some instructions whose objective part is one word,

AND-concatenated, or OR-concatenated. The verb and the truth value are “up” and “true,” respectively. The AND-concatenated instructions are represented away

from other instruction encodings in the PC1 direction. The pair of “red” and “blue” is represented in the PC2 direction. The “or” that directs the robot to raise either

hand is embedded in the middle space between these two encodings. Right: To a robot waiting in the DOWN-DOWN posture with G-B flags after 2,048 different

contexts, we gave the instruction “green or blue up true.” The memory cell states after the instruction (t = 0) were arranged on an arch-shaped space (left top). Each

point corresponds to one specific context. When the activation was on the left side of the arch, the robot generated L-UP action and the internal states converged to

the fixed-point corresponding to the UP-DOWN posture. In contrast, on the right side, the robot generated R-UP action, and the internal states converged to the

fixed-point corresponding to the DOWN-UP posture. When the activation was on the topmost area of the arch, a little unstable action was generated. However, even

in such cases, the internal states eventually converged to one of fixed-points, as shown in the right bottom panel.

In contrast, for right-side activation, the robot generated R-UP
action. When the activation was in the topmost area of the arch,
some unstable motion was generated. However, in all cases, the
internal states eventually converged into one of the fixed-point
attractors that corresponded to the DOWN-UP posture or the
UP-DOWN posture, as shown in the bottom rightmost panel
of Figure 8. This means that to respond to OR instructions that
require the robot to behave in a random exclusive-OR-like way,
the internal representation was the convergence from an unstable
space to either one of two stable points.

In this analysis, PC1 was strongly dominant (the contribution
ratio is 97.9%). Therefore, due to this important contribution
ratio, one could assume that only one neuron would be enough
to generate this unstable dynamics. However, the activation in
the PC1 direction was actually composed of the activations of
multiple units. Specifically, no single unit has cosine similarity of
more than 0.4 (or less than −0.4) to PC1. Instead, seven units
have cosine similarity of in the range between 0.2 and 0.4 (or
between −0.4 and −0.2) to PC1. In other words, this unstable
dynamics was realized in a distributed way.

3.5.4. Dynamical Representations of the Task

Execution
Finally, we visualized the internal dynamics during the execution
of the task. Figure 9 shows the state transition of memory cells
while the robot experienced four episodes and its posture is
moved in the order from DOWN-DOWN, through UP-DOWN,
UP-UP, DOWN-UP, to DOWN-DOWN. Here, the PC1-2 space
seems to roughly correspond to the robot’s posture. Moreover,
the transitions among different postures are represented as

FIGURE 9 | The state transition of memory cells while the robot experienced

four episodes and its posture moved in the order from DOWN-DOWN, through

UP-DOWN, UP-UP, DOWN-UP, to DOWN-DOWN. The transitions among

different postures are represented as transitions among different fixed-point

attractors (circle marks), each of which corresponds to a posture. By receiving

an instruction, the internal state is activated in the PC3 direction and reaches

the unstable point indicated by a + mark. By converging into one of the

fixed-points again after the activation, the corresponding goal-oriented action

is generated. The robot then waits for a subsequent instruction at that point.

transitions among different fixed-point attractors (shown as
circles), each of which corresponds to a posture. By receiving an
instruction, the internal state is activated in the PC3 direction
and reaches the unstable point indicated by a + mark. This
activation is gained as a result of the integration of the visual
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information and processing logic words, as mentioned above,
although it is difficult to visualize them simultaneously in this
figure. By converging to one of the fixed-points again after the
activation, the corresponding goal-oriented action is generated.
The robot then waits for a subsequent instruction at that point.
This is the case even when the correct action is to maintain the
current posture. While the apparent motion of joint angles is
remaining stationary, it was internally represented as converging
to the original fixed-point.

In summary, the RNN learned to encode the instructions in
a form integrated with the visual inputs and the current robot
posture and to generate an appropriate robot action through the
experience of sequential interaction data. It was also revealed that
logical words, “true,” “false,” “and,” “or” are processed along with
the other referential words and encoded in a way that reflects the
functions in the current task.

3.6. Generalization Ability
In the previous subsection, we showed the internal
representations of relations between instructions and actions
acquired through the experience of an imposed task. Empirically,
when such kinds of systematic representation can be organized,
the model achieves a certain level of generalization ability (Sugita
and Tani, 2005; Ogata et al., 2007; Yamada et al., 2016). Thus, we
conducted learning experiments again by removing 50 or 25%
of the possible situations from the training dataset. We chose
removed patterns regularly so that each word, robot posture, and
flag arrangement would appear uniformly, as shown in Table 1.
Here, we trained only three models with 100, 150, and 300 LSTM
units. The results are shown in Figure 10.

We first explain the performance of the models trained with
only 50% of possible situations. For types (2)–(4), the models
behaved appropriately for many of the possible patterns, even

TABLE 1 | To evaluate the model’s generalization ability for the flag task, we conducted learning experiments again by removing (a) 50% or (b) 25% of the possible

situations from training dataset.

Posture Colors Instructions

LUT LUF LDT LDF RUT RUF RDT RDF AUT AUF ADT ADF OUT OUF ODT ODF

DOWN-DOWN R-G ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦

G-R ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-B ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-G ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚

B-R ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

R-B ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚

DOWN-UP R-G ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-R ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

G-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦

B-G ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚

B-R ⊚ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦

R-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

UP-DOWN R-G ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚

G-R ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚

G-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

B-R ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ⊚ ⊚ ◦

R-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚

UP-UP R-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ◦

G-R ◦ ⊚ ⊚ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚

G-B ⊚ ◦ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚

B-G ⊚ ⊚ ◦ ◦ ⊚ ⊚ ⊚ ◦ ⊚ ⊚ ⊚ ◦

B-R ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚ ◦ ⊚ ◦ ⊚ ⊚

R-B ◦ ⊚ ⊚ ⊚ ⊚ ◦ ◦ ⊚ ⊚ ◦ ⊚ ⊚

(a) In the former case, only the situations indicated by ⊚ marks were included in training data. (b) In the latter case, situations indicated not only by ⊚ marks but also by ◦ marks were

included in the training data. The situations denoted as an empty cell were included in traning data in neither case. In this table, instruction patterns are abbreviated as follows. L: Left

flag color; R: right flag color; A: AND-concatenated objectives; O: OR-concatenated objectives; U: up; D: down; T: true; F: false. For example, the cell referred to as DOWN-DOWN,

R-G, LUF is indicated by a ⊚ mark. It means that it is possible that the robot grasping R-G flags and waiting in a DOWN-DOWN posture receives an instruction “red up false” during

training in both cases of (a) and (b). As another example, the cell referred to as UP-UP, R-B, OUT is indicated by a ◦ mark. It means that it is possible that the robot grasping R-B flags

and waiting in an UP-UP posture receives an instruction “red or blue up true” and “blue or red up true” during training in only the case of (b). In the other example, the cell referred to as

DOWN-UP, B-R, LUT is denoted as empty. It means that the robot grasping B-R flags and waiting in an DOWN-UP posture does not receive an instruction “blue up true” during training

in either case.
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FIGURE 10 | To evaluate the model’s generalization ability for the flag task, we conducted learning experiments again by removing (a) 50% or (b) 25% of the possible

situations from training dataset. We evaluated the performance by counting how many unexperienced situation patterns each model dealt with appropriately. Similarly

to Figure 4, we evaluated the performances with respect to each of the four situation types.

for the unexperienced ones. In contrast, only about one-third
of the possible patterns of type (1) single-objective instructions,
could be dealt with appropriately. In fact, this performance
matches the level from chance, in which the robot uniformly
randomly chooses one of three possible motions for a single-
objective instruction (moving the left arm, moving the right arm,
or keeping the current posture). To clarify why the network failed
to generate appropriate motions, we checked some examples
actually generated by the 100-node model (Figure 11). In one
failure (indicated by the left rounded box), the final posture was
correct but the trajectory was not stable, and so it did not satisfy
the criterion that the error should be within 0.04. In another
failure (right rounded box), a wrong action was chosen. The
latter case indicates that although the model roughly learned
to generate some possible actions after an instruction input, it
failed to learn the relationships between color words and visual
information.

One possible reason for failing to respond to (1) single-
objective instructions is that only this type is actually linked with
visual information. For example, in the case of type (2) AND-
concatenated instructions, the RNN does not have to consider
visual stimuli because, when the instruction includes “and,” both
arms have to be moved, regardless of the flag colors. In fact,
when we tried to give the robot grasping R-B flags a contradictory
instruction “green and blue up true,” it raised both arms. In other
contradictory cases, the results were similar. Also for types (3)
and (4), when the instruction includes “or,” either arm should
be moved regardless of the flag colors. In that sense, type (1)

single-objective instructions are more difficult than other types.
It is possible that experiencing only half of the possible patterns
is not enough to completely generalize the task space. Then, we
performed the learning with the dataset in which only 25% of
the situations were removed. In this case, the models responded
appropriately to more than 80% of type (1) unexperienced
situations in a generalized way.

In the next section, we describe another learning experiment
based on the “bell task.” The bell task is different from the
flag task in two ways. First, the action sequences are more
complicated because we collect motion data by using a real
robot. Second, all the instructions including a logic word require

referring to the visual information. We investigate whether a
similar kind of representations of logic words that reflect their
function can be organized in more realistic setting.

4. EXPERIMENT 2: BELL TASK

4.1. Task Overview
As a more realistic task, we conducted a learning experiment
based on the bell task. In contrast with the first task, we collect
motion data by using a real robot. First, a human places three
bells colored red, green, and blue at random: one on the left,
another to the center, and the other on the right front of the
robot. Then, the human gives the robot a linguistic instruction
consisting of a combination of a verb (“hit,” “point”), an objective
(“red,” “green,” “blue”), and an adverb (“slowly,” “quickly”).When
the left or right bell is indicated, the robot must hit (point at)
the bell with the closer hand. However, when the center bell is
indicated, the robot can hit (point at) the bell with either hand.

Similarly to the flag task, two objective (color) words can be
concatenated by “and”. In such cases, the robot has to hit (point
at) the two indicated bells simultaneously. If two color words are
concatenated by “or,” hitting (pointing at) either bell indicated is
correct. In another case, the logic word “not” can be prefixed to
a color word (referred to as NOT-prefixed). In this case, hitting
(pointing at) the two bells that are the complementary set of
the indicated color is the correct response. For example, when
the instruction is “hit not red quickly,” the correct action is to
simultaneously hit both the green and blue bells quickly.

The number of possible situations are 432: a combination of
72 possible instructions and 6 bell arrangements. In contrast to
the flag task, in this task, the initial posture and end posture are
the same, therefore the motion does not depend on the robot’s
initial posture. However, the actual action sequences are more
complicated than the flag task, as shown in Figure 12.

4.2. Data Representation
We represent the execution of the bell task as a sequence of 26
dimensional vectors. The state St on time step t is represented as
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FIGURE 11 | In unexperienced situations of the flag task, some different patterns of failures could be seen (indicated by beige-colored rounded boxes). The first case,

indicated by the left rounded box, was that the final posture was correct but the trajectory was not stable, thus it could not satisfy the criterion that the error should be

within 0.04. The second pattern was that a wrong action was chosen. In the case indicated by the right rounded box, the right arm had to be raised. However, it was

actually kept in the DOWN posture.

FIGURE 12 | Overview of the bell task. A human places three bells colored red, green, and blue in random order. The human gives the robot an instruction consisting

of a combination of a verb (“hit,” “point”), an objective (“red,” “green,” “blue”), and an adverb (“slowly,” “quickly”). When the left or right bell is indicated, the robot must

hit (point at) the bell with the closer hand. In the case of the center bell, the robot may hit (point at) it with either arm. Two color words can be concatenated by “and”.

In this case, the robot must act to both bells simultaneously (not presented in this figure). Two color words also can be concatenated by “or,” in which case the robot

may hit (point at) either bell. In another case, the logic word “not” can be prefixed to a color word. In this case, simultaneously hitting (pointing at) the two bells that are

the complementary set of the indicated color is the correct response.

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2017 | Volume 11 | Article 7049

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yamada et al. Representation Learning of Logic Words by an RNN

follows:
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St = [jt; vt;wt]. (11)

To represent the robot joints, 10 elements that correspond to
shoulder pitch, shoulder roll, elbow roll, elbow yaw, wrist yaw
on each arm are assigned to the vector jt . Action sequences take
approximately 16 steps in the case of QUICKLY actions, and
approximately 25 steps in the case of SLOWLY actions. Action
sequences are recorded by actually controlling the robot joints
along predesigned trajectories. Visual information is encoded as
a six-dimensional vector (vt). Three pairs of elements encode the
bell colors. For example, vl0 and vl1 are used to represent the left
bell color. In this task, it is assumed that the hues R, G, and B
correspond to 0, 120, and 240◦ on the hue circle, respectively.

The component v
(t)
l0

is the sine of the angle of the left bell color

on the hue circle, v
(t)
l1

is its cosine. The pairs v
(t)
c0 , v

(t)
c1 and v

(t)
r0 , v

(t)
r1

encode the center and right bell colors, respectively, in the same
way. This encoding method was used by Sugita and Tani (2005)
and Yamada et al. (2016). Ten elements are assigned for language.
Each element ofwt corresponds to one word, out of “hit,” “point,”
“red,” “green,” “blue,” “slowly,” “quickly,” “and,” “or,” and “not,”
and an instruction sentence is represented as a sequence of 1-hot
vectors. Here, the instruction sentences and corresponding action
sequences are concatenated on a computer, and sequences that
represent interactions are similar to those for the flag task, with
multiple repetitions of instructions and corresponding actions
(and waiting phases).

4.3. Learning Setting and Evaluation

Method
We made 512 sequential datasets for training, each of which
includes eight episodes. All the possible situations were included
at least once. We built models with 100, 300, 500, and 700
LSTMunits, and trained them 10 times from randomly initialized
learnable parameters. Adam is used as an optimizer. The number

of learning iterations is 10,000, and the learning rate is set to
0.001.

After learning, we made another dataset for the evaluation
which includes all possible situations 10 times. When the root
mean squared errors between the generated angles and the
correct ones per time step per joint during the action generations
are less than 0.04, we judge that the RNN succeeds in generating
an appropriate action. We regard the situation patterns in which
the RNN succeeds in generating an appropriate action more than
seven times out of 10 as “appropriately learned,” just as in the flag
task.

4.4. Task Performance after Training
We classify all the possible situations into four types: situations
with (1) an instruction that includes only one objective
word (72 situations); (2) an instruction is AND-concatenated
(144 situations); (3) an instruction is OR-concatenated (144
situations); and (4) an instruction is NOT-prefixed (72
situations). We evaluate the performance by counting how many
situation patterns each model learns appropriately with respect
to each of four types. Figure 13 shows the results. The task
performance was improved by increasing the number of LSTM
nodes. However, there is no significant difference between 500
and 700 node models for all situation types.

Next, we investigated which action was chosen by the model
for instructions that had multiple correct actions. Here, we
counted the result of the model with 500 LSTM units. The
situations that havemultiple correct actions are divided into three
types. (a) The sentence instructs the robot to act on the center
bell. In this case, acting with either arm is correct; therefore, two
correct actions exist. (b) The sentence instructs the robot to act
on the “left or right” bell. In this case, there are also two solutions.
(c) The sentence instructs the robot to act on the “left or center”
bell, or the “right or center” bell. In this case, there are three
answers, (i) acting on the center bell with the left arm, (ii) acting
on the center bell with the right arm, and (iii) acting on the left
(right) bell with the left (right) arm. The results for these three
types of situation are shown in Table 2. As shown in Table 2, the
model could choose each of multiple solutions evenly. In fact,
types (a), (b), and (c) have 24, 48, and 96 possible variations,
respectively, and the test was conducted 10 times for each of

FIGURE 13 | Experiment 2 (bell task). Action generation performance. We evaluated performance by counting how many situation patterns each model learned

appropriately with respect to each of the four situation types: (1) the instruction includes one objective; (2) the instruction is AND-concatenated; (3) the instruction is

OR-concatenated; and (4) the instruction is NOT-prefixed. The written values are averages of 10 trials in which learning began with different seeds. Error bars

represent standard deviations.
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TABLE 2 | Ratios of chosen solutions for ambiguous cases (two or three

acceptable answers) of bell task.

Situation Choice 1 (%) Choice 2 (%) Choice 3 Failure (%)

(a) 49.2 42.9 – 7.9

(b) 50.0 44.4 – 5.6

(c) 29.1 29.4 36.6 5.0

The situations that have multiple correct actions are divided into three types. (a) The

sentence instructs the robot to act on the center bell. In this case, acting with either arm is

correct; therefore, two correct actions exist. (b) The sentence instructs the robot to act on

the “left or right” bell. In this case, there are also two solutions. (c) The sentence instructs

the robot to act on the “left or center” bell, or the “right or center” bell. In this case, there

are three correct answers: (i) acting on the center bell with the left arm, (ii) acting on the

center bell with the right arm, and (iii) acting on the left (resp., right) bell with the left (resp.,

right) arm.

them. In most of these ambiguous situations, the RNN chose
each possible solution at least once. Just as in the flag task, the
RNN could learn to behave appropriately even in such ambiguous
situations.

4.5. Analyses of Internal Representations
4.5.1. Representations of “Or”
As in the flag task, we investigated the internal representations
organized after learning by using PCA. First, we visualized
the states of the memory cells after giving instructions in the
form of “hit (objective part) slowly” that include one objective
word or two OR-concatenated objective words (the left panel
of Figure 14). This figure shows that the activations after the
OR-concatenated instructions are located between the activations
after the one objective word instructions. For example, “hit red
or green slowly” and “hit green or red slowly” are embedded
between the encodings of “hit red slowly” and “hit green slowly.”
This suggests the fact that “or” is represented by unstable points
in the network dynamics, as in the flag task. In fact, the right panel
of Figure 14 shows an arch shaped activation space like the one in
the flag task, although the shape is less clean. Note that although
in the flag task, the meaning of “or” is always “left or right”
regardless of the flag colors, in the current task the two candidate
bells depend on the input color words and visual information.
Even in this kind of situation, the functional meaning of “or”
can be appropriately acquired in a way that is integrated with the
objective color words.

4.5.2. Representations of “And” and “Not”
Figure 15 shows the memory cell states after giving instructions
in the form of “hit (objective part) slowly,” in which the
objective part is AND-concatenated or NOT-prefixed. The bell
arrangement was fixed in the order of R,G,B from left to right. In
this task, “not” indicates the complementary set. Therefore, for
example, “not green” and “red and blue” have the same meaning.
Although the objective parts of these instructions are completely
orthogonal to each other, they are located close each other in
the space spanned by PC4 and PC5 and, as a result, instructions
with the samemeaning form clusters: that is, R-AND-G, G-AND-
B, and B-AND-R. These instructions including logic words also
require the RNN to consider visual information to determine
the meaning of the sentence. Which two bells should be hit

(pointed at) depends on both the input color words and visual
information. The RNN learned to link these sentences flexibly
in the sensorimotor information just from the experience of
sequential data for the imposed task.

In summary, even in the bell task that requires both
referring to visual information and processing of logic words
simultaneously, the functional meaning of logic words could be
appropriately organized in a way that was integrated with the
referential words.

5. DISCUSSION

The current study conducted learning experiments involving
translation from linguistic instructions, including both
referential and logic words, into robot actions in order to
investigate what kind of compositional representations emerged
from the interactive experiences. In the case of referential
words, objective words were merged with visual input, verbs
were integrated with the robot’s own posture, and as a result,
appropriate actions were generated. Simultaneously, the model
could also deal with the logic words “true,” “false,” “not,” “and”
and “or”. By embedding these words as internal representations
that reflect their functional properties, appropriate actions were
achieved. In this following, we discuss three types of logic word
separately.

5.1. True, False, Not
“True” and “false” in the flag task were understood as the
goal-oriented action UP/DOWN by being combined with “up”
and “down” in a X-OR manner. “Not” in the bell hitting task
worked as an operation to choose a complementary set. For
example, “not red” corresponded to “green and blue.” The
RNN learned to embed these completely orthogonal phrases
as having the same meaning in the lower-ranking principal
component space by its non-linear transformation. In the field
of natural language understanding by deep learning, a similar
kind of analysis has been performed. Li et al. (2016) showed
that a model optimized for sentiment analysis changes its
internal encoding drastically in response to the negation of an
expression. Hence, for example, “not good” is encoded closer to
“bad” than to “good”. However, the visualization in the current
study showed that even though the information that input
sentences were completely different is still retained in the main
component space, the combined representation corresponding to
the behavioral meaning is reflected in the lower ranking principal
components. In other words, not only information encoding
compositionally integrated meaning but also information of
compositional elements are retained in the model’s memory.

This aspect seems to be important. For example, imagine that
both of the sentences “hit red quickly” in the case of an RGB
bell arrangement and “hit blue quickly” in the case of a BGR
arrangement were encoded just as the action HIT-L-QUICKLY
with the loss of the information about element words. In this case,
it would be impossible for the model to respond appropriately
to changes, such as a sudden replacement of bells during the
action generation, because the color word information has been
lost. By retaining the information about compositional elements,
adaptive behavior to respond to such fluctuations would be
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FIGURE 14 | Left: The states of the memory cells after giving instructions in the form of “hit (objective part) slowly” that include one objective word or two

OR-concatenated objective words. The activations after the OR-concatenated instructions are located between the activations for the one objective word instructions.

For example, “hit red or green slowly” and “hit green or red slowly” are embedded between the encodings of “hit red slowly” and “hit green slowly.” Right: To a robot

waiting with bells arranged in the order of RGB from left to right after 2,048 different contexts, we gave the instruction “hit red or blue slowly.” The memory cell states

after the instruction were arranged on an arch shaped space which was less defined than that for the flag task. When the activation was on the left side of the arch,

the robot generated HIT-L-SLOWLY action. For activation on the right side, the robot generated HIT-R-SLOWLY action. When the activation was in the topmost area,

an unstable action was generated.

possible, although it is not certain that our current model is
capable of dealing with such situations because they were not
included in training data.

5.2. And
In the flag task, “and” per se worked as a kind of universal
quantifier without referring to objective words. For example,
when a robot grasping R-B flags was given “green and blue up
true,” it lifted up both arms. In other contradictory cases, the
results were similar. In other words, if the instruction includes
“and,” the color words are ignored and only the verb (and truth
value) is considered. In that sense, “and” is represented as a
concept one step higher. This interpretation of “and” by the
neural network could not be expected before the experiment
and is actually out of our common usage of “and”; but it can
be seen as a reasonable and rational solution in the range of
the current task. In contrast, in the bell task, AND-concatenated
instructions required referring to visual information, and the
model appropriately integrated them with the visual information
and then generated correct both-hand actions.

In this way, “and” was represented in a different suitable
manner with respect to each task. However, in general, there
are more situations in which “and” is used in different ways to
combine words, phrases, or sentences. The investigation of how
such higher order or general types of “and” can be handled or
represented is left for future work.

5.3. Or
In the flag task it was shown that without noise applied to the
joint angles, the model learned less successfully than it did with
noise. This difference did not appear in preliminary experiments
that did not include OR-concatenated instructions. We think
that due to the inclusion of OR-concatenated instructions that
introduce ambiguity by giving as correct either of the answers

FIGURE 15 | The memory cell states after giving instructions in the form of “hit

(objective part) slowly,” in which objective part is AND-concatenated or

NOT-prefixed. The bell arrangement was fixed in the order of R, G, B from left

to right. In this task, “not” indicates the complementary set. Therefore, for

example, “not green” and “red and blue” have the same meaning. Although

the objective parts of these instructions are completely orthogonal, they are

located close each other in the space spanned by PC4 and PC5 and, as a

result, instructions with the same meaning form clusters: R-AND-G, G-AND-B,

and B-AND-R.

randomly each time, the optimization by minimization of the
simple squared error became unstable. This is a very similar
to a popular thought experiment called Buridan’s ass. In the
story, an ass is given grass feed on both its left and right
sides, located at exactly the same distance away. Faced with this
dilemma it could not choose a side and finally starved to death.
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Our analysis shows the possibility that the network solved this
problem, which the ass faced too honestly, by using the tiny
amount of noise as a clue to determine which arm moves and
by organizing unstable dynamics which converges to either of
two fixed-point attractors. However, a more detailed analysis
of the dynamical characteristics of the model is required. For
example, Tani and Fukumura (1995) showed that a deterministic
RNN model can reproduce a simple symbol sequence that is
generated in accordance with probabilistic rules by producing
a self-organizing chaotic dynamics. Namikawa et al. (2011) also
demonstrated that a temporally hierarchical RNN could learn to
generate pseudo-stochastic transitions between multiple motor
primitives on a robot. Our experiment showed that a similar
kind of function to generate actions as if they were generated
probabilistically is achieved from the learning of an interactive
instruction-action task that includes longer time dependency and
more complexity. Our results also showed that the ability to deal
with OR-concatenated instructions was improved by increasing
LSTM node numbers. We think that by increasing the number
of nodes and improving the representation ability the network
could learn to forcibly embed the probabilistic experiences in
a chaotic dynamics. We should analyze how the function is
dynamically represented in the future.

5.4. Summary and Future Work
This study conducted learning experiments that translates
linguistic sentences, including both referential and logic words,
into robot actions to investigate what kind of compositional
structures emerged from the experiences of interaction.
Referential words were linked in the visual information and the
robot’s current state and then appropriate actions were generated.
The logical words were also simultaneously represented by the
model in accordance with their functions as logical operators.
To be more precise, the words “true,” “false” and “not” work as
non-linear transformations to embed orthogonal phrases into
the same area in a lower-rank principal component space. “And”
in the flag task eliminated referring to the visual information in a
rational way and worked as if it per se was a universal quantifier.
“Or,” which requires action generation that looks apparently
random, was represented as an unstable space of the network’s
dynamical system.

Future work includes the following. First, we should confirm
whether both referential and logic words are simultaneously
learned when the complexity of the task is more extended.
Although the scaling up of vocabulary size is one way to extend,
the scaling up of syntactic variety is also required because

the sentence patterns in this study were fixed in each task.
In extended tasks, it would be possible that the logic words
are used not only between words but also between phrases or
clauses. Moreover, although the visual information in the current
experiments is highly preprocessed, in more realistic tasks, the
environment would include various meaningful information,
not only color. Therefore, the relationships between language
and the environment should be learned from low-level data
(e.g., raw images) in a less arbitrary way. To deal with such
tasks, we could extend our model by replacing the preprocessing
module with another neural network model for vision, such as a
convolutional neural network (CNN). In fact, some studies have
actually combined a CNNwith an RNN to learn the relationships
between linguistic instructions and corresponding behavior in an
end-to-end manner (Chaplot et al., 2017; Hermann et al., 2017).

Second, a more detailed analysis of the internal
representations is required. This includes the analysis of
more dynamical characteristics and the visualization of the
activation patterns of each neuron. In particular, the latter
seems to be valuable, because, although in the current study we
visualized activation only in the principal component space,
models that have memory cells, such as gated recurrent units
or LSTM, are expected to encode different information and
functions in specific nodes.

Finally, we are planning to build a bi-directional neural model
to translate between linguistic and behavioral sequences. In
fact, human language systems are bi-directionally translatable.
To build a bi-directional model would be valuable both for
understanding symbol grounding structure more deeply and for
developing more flexible communicative agents.
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In this paper, we propose a hierarchical spatial concept formation method based on the

Bayesian generative model with multimodal information e.g., vision, position and word

information. Since humans have the ability to select an appropriate level of abstraction

according to the situation and describe their position linguistically, e.g., “I am in my home”

and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary

in order for human support robots to communicate smoothly with users. The proposed

method enables a robot to form hierarchical spatial concepts by categorizing multimodal

information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object

recognition results using convolutional neural network (CNN), hierarchical k-means

clustering result of self-position estimated by Monte Carlo localization (MCL), and a

set of location names are used, respectively, as features in vision, position, and word

information. Experiments in forming hierarchical spatial concepts and evaluating how

the proposed method can predict unobserved location names and position categories

are performed using a robot in the real world. Results verify that, relative to comparable

baseline methods, the proposed method enables a robot to predict location names and

position categories closer to predictions made by humans. As an application example

of the proposed method in a home environment, a demonstration in which a human

support robot moves to an instructed place based on human speech instructions is

achieved based on the formed hierarchical spatial concept.

Keywords: spatial concept, hierarchy, human-robot interaction, multimodal categorization, human support robot,

unsupervised learning

1. INTRODUCTION

Space categorization is an important function for human support robots. It is believed that humans
predict unknown information flexibly by forming categories of space through their multimodal
experiences. We define categories of spaces formed by self-organization from experience as spatial
concepts. Furthermore, prediction based on the connection between concepts and words is thought
to lead to a semantic understanding of words. It means that spatial concept formation is an
important function of human intelligence, and having this ability is important for human support
robots.

Spatial concepts form a hierarchical structure. The use of this hierarchical structure enables
humans to predict unknown information using concepts in an appropriate layer. For example,
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humans can linguistically represent their own positions at an
appropriate level of abstraction according to the context of
communication, such as “I’m in my home” at the global level,
“I’m in the living room” at the intermediate level, and “I’m in
front of the TV” at the local level. In this case, the living room
has the home in the higher layer and front of the TV in the
lower layer. By learning such a hierarchical structure, even if the
unknown place does not have features such as front of the TV,
its characteristics can be predicted if it has features of the living
room. It is expected that the robot acquires spatial concepts in
a higher layer by learning the commonality of features in spatial
concepts at the lower layer.

Furthermore, the hierarchical structure of spatial concepts
plays an important role when a robot moves based on linguistic
instructions from a user. As shown in Figure 1, even if
multiple tables are present in a room, robots can recognize
them individually by using a spatial concept at a higher layer,
such as “the front of the table in the living space.” Indeed,
in RoboCup@Home, an international competition in which
intelligent robots coexist with humans in home environments,
location names are defined as two layers in the tasks of a General
Purpose Service Robot1 as shown in Table 1. This table indicates
that having sense of space relations is important for a robot
coexisting with humans, e.g., that the living space has a center
table. By having such hierarchical spatial concepts, it becomes
possible to describe and move within a space based on linguistic
communication with a user.

We assume that a computational model, which considers
the hierarchical structure of spatial concepts, enables robots to
acquire not only the spatial concepts, but also the hierarchical
structure hiding among the spatial concepts through a bottom-
up approach and form spatial concepts similar to those perceived
by humans. The goal of this study was to develop a robot
that can predict unobserved location names and positions from
observed information using formed hierarchical spatial concepts.
The main contributions of this paper are as follows.

• We propose a method of forming hierarchical spatial concepts
using a Bayesian generative model based on multimodal
information, e.g., vision, position, and word information.

• We show that spatial concepts formed by the proposedmethod
enable a robot to predict location names and positions similar
to prediction made by humans.

• We demonstrate application examples in which a robot
moves within and describes a space based on linguistic
communication with a user through the hierarchical spatial
concept formed by the proposed method.

The rest of this paper is structured as follows. Section
2 describes related works. Section 3 presents an overview
and the computational model of hierarchical spatial concept
formation. Section 4 presents experimental results evaluating the
effectiveness of the proposed method in space categorization.
Section 5 describes application examples of using hierarchical
spatial concepts in a home environment. Finally, section 6
presents conclusions.

1GPSR Command Generator: https://github.com/kyordhel/GPSRCmdGen

2. RELATED WORKS

In order for a robot to move within a space, a metric map
consisting of occupancy grids that encode whether or not an
area is navigable is generally used. The simultaneous localization
and mapping (SLAM) (Durrant-Whyte and Bailey, 2006) is a
famous localization method for mobile robots. However, the
tasks that are coordinated with a user cannot be performed
using only a metric map, since semantic information is required
for interaction with a user. Nielsen et al. (2004) proposed
a method of expanding a metric map into a semantic map
by attaching a single-frame snapshot in order to share spatial
information between a user and a robot. As a bridge between a
metric map and human-robot interaction, research on semantic
maps that provide semantic attributes (such as object recognition
results) to metric maps has been performed (Pronobis et al.,
2006; Ranganathan and Dellaert, 2007). Studies have also been
reported on giving semantic object annotations to 3D point
cloud data (Rusu et al., 2008, 2009). Moreover, in terms of
studies based on multiple cues, Espinace et al. (2013) proposed
a method of characterizing places according to low-level visual
features associated to objects. Although these approaches could
categorize spaces based on semantic information, they did not
deal with linguistic information about the names that represent
spaces.

In the field of navigation tasks with human-robot interaction,
methods of classifying corridors and rooms using a predefined
ontology based on shape and image features have been
proposed (Zender et al., 2008; Pronobis and Jensfelt, 2012).
In studies on semantic space categorization, Kostavelis and
Gasteratos (2013) proposed a method of generating a 3D metric
map that is semantically categorized by recognizing a place using
bag of features and support vector machines. Granda et al. (2010)
performed spatial labeling and region segmentation by applying
a Gaussian model to the SLAM module of a robot operating
system (ROS). Mozos and Burgard (2006) proposed a method of
classifying metric maps into semantic classes by using adaboost
as a supervised learning method. Galindo et al. (2008) utilized
semantic maps and predefined hierarchical spatial information
for robot task planning. Although these approaches were able

to ground several predefined names to spaces, the learning
of location names through human-robot communication in a
bottom-up manner has not been achieved.

Many studies have been conducted on spatial concept
formation based on multimodal information observed in
individual environments (Hagiwara et al., 2016; Heath et al.,
2016; Rangel et al., 2017). Spatial concepts are formed in a
bottom-up manner based on multimodal observed information,
and allow predictions of different modalities. This makes it
possible to estimate the linguistic information representing a
space from position and image information in a probabilistic
way. Gu et al. (2016) proposed a method of learning relative
space categories from ambiguous instructions. Taniguchi et al.
(2014, 2016) proposed computational models for a mobile robot
to acquire spatial concepts based on information from recognized
speech and estimated self-location. Here, the spatial concept was
defined as the distributions of names and positions at each place.
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FIGURE 1 | Example of movement based on linguistic instructions with a hierarchical space structure.

The method enables a robot to predict a positional distribution
from recognized human speech through formed spatial concepts.
Ishibushi et al. (2015) proposed a method of learning the
spatial regions at each place by stochastically integrating image
recognition results and estimated self-positions. In these studies,
it was possible to form a spatial concept conforming to human
perception such as an entrance and a corridor by inferring the
parameters of the model.

However, these studies did not focus on the hierarchical
structure of spatial concepts. In particular, the features of the
higher layer, such as the living space, are included in the features
of the lower layer, such as the front of the television, and it
was difficult to form the spatial concept in the abstract layer.
Furthermore, the ability to understand and describe a place
linguistically in different layers is an important function in robots
that provide services through linguistic communication with
humans. Despite the importance of the hierarchical structure of
spatial concepts, a method that enables such concept formation
has not been proposed in previous studies. We propose a method
that forms a hierarchical spatial concept in a bottom-up manner
from multimodal information and demonstrate the effectiveness
of the formed spatial concepts in predicting location names and
positions.

3. HIERARCHICAL SPACE CONCEPT
FORMATION METHOD

3.1. Overview
An overview of the proposed method of forming hierarchical
spatial concepts is shown in Figure 2. First, a robot was
controlled manually in an environment based on a map
generated by simultaneous localization and mapping

TABLE 1 | Definition of location names with two layers in RoboCup@Home.

Name (1st layer) Name (2nd layer)

Living room Bar

Living room TV stand

Living room Center table

Office Drawer

Office Desk

Kitchen Bar

Kitchen Cupboard

Bathroom Cupboard

(SLAM) (Durrant-Whyte and Bailey, 2006) and acquires
multimodal information, i.e., vision, position, and word
information from attached sensors. Vision information is
acquired as a feature vector generated by a convolutional neural
network (CNN) (Krizhevsky et al., 2012). Position information
is acquired as coordinate values in the map estimated by
Monte Carlo localization (MCL) (Dellaert et al., 1999). Word
information is acquired as set of words by word recognition.
Text input is used for word recognition in this study. Second,
acquired vision, position, and word information is represented as
histograms. The histograms are utilized as observations in each
modality. Third, the formation of hierarchical spatial concepts
is performed by using hierarchical multimodal latent Dirichlet
allocation (hMLDA) (Ando et al., 2013) on the observations. The
proposed method enables a robot to form hierarchical spatial
concepts in a bottom-up manner based on observed multimodal
information. Therefore, it is possible to adaptively learn location
names and the hierarchical structure of a space, which depend
on the environment.
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FIGURE 2 | Overview of the proposed method for hierarchical spatial concept formation.

3.2. Acquisition and Feature Extraction of
Multimodal Information
3.2.1. Vision Information
Vision information was acquired as the object recognition
results of a captured image by Caffe (Jia et al., 2014),
which is a framework of CNN (Krizhevsky et al., 2012)
provided by Berkeley Vision and Learning Center. The
parameters of CNN were trained by using the dataset from
the ImageNet Large Scale Visual Recognition Challenge 20132,
which comprises 1,000 object classes, e.g., television, cup, and
desk. The output of Caffe is given as a probability p(ai) at
an object class ai ∈ {a1, a2, ..., aI} where I is the number
of object classes and was set to 1,000. The probability p(ai)
was represented as a 1,000-dimensional histogram of vision

information w
(υ) = (w

(υ)
1 ,w

(υ)
2 ,···,w

(υ)
1,000)

T by the following
equation:

w
(υ)
i = p(ai) ∗ 102. (1)

3.2.2. Position Information
The position information (x, y) in the map generated by SLAM
was estimated by MCL (Dellaert et al., 1999). It is assumed that
the observed information is generated from a multinomial

distribution in hMLDA. For this reason, the observed
information with a continuous value is generally converted into a
finite dimensional histogram by vector quantization. Ando et al.
(2013) replaced the observed information with typical patterns
by k-means clustering to form a finite dimensional histogram.
The proposed method converts a position information (x, y)
into a finite dimensional histogram of position information w

p

by hierarchical k-means clustering. The positional information
(x, y) was classified hierarchically into 2, 4, 8, 16, 32, and 64
clusters with six layers by applying k-means clustering with
k = 2 six times. If a position (x, y) was classified into a cluster
ci ∈ {0, 1} at the ith layer, a path for the position information
was described as C = {c1, c2, c3, c4, c5, c6}. The path C has the
structure of a binary tree with six layers. The number of nodes
at the 6th layer is 26 = 64. The position information (x, y)

2ILSVRC2013: http://www.image-net.org/challenges/LSVRC/2013/

is represented as a 64-dimensional histogram of the position

information w
(p) = (w

(p)
1 ,w

(p)
2 ,···,w

(p)
64 )

T by incrementing w
(p)
i

based on the path C. For example, in a path C of position

information (x, y), when c1 = 0, w
(p)
1 to w

(p)
32 corresponding

to nodes at the 6th layer are incremented, and when c1 = 1,

w
(p)
33 to w

(p)
64 are incremented. Similarly, w(p) corresponding

to nodes at the 6th layer below it are incremented in each
layer.

3.2.3. Word Information
The voice information uttered by a user is converted manually
into text data, which is then used as word information. In
section 5, rospeex (Sugiura and Zettsu, 2015) is used to
convert human speech into text data. The location names are
manually extracted from the text data. The word information
is described as a set of location names, which is a Bag of
Words (Harris, 1954) with a location name as a word. The
user could give not only one name but also several names
to a robot at a given position. The given word information
was represented as a histogram of word information w

(w) =

(w
(w)
1 ,w

(w)
2 ,···,w

(w)
J )T . J is the dimension of w(w), and depends on

the number of location names in a dictionary S = {s1, s2,···,sJ},

which was obtained through the training phase. w
(w)
j was

incremented when a location name sj was taught from user.
J is the number of location names. Histograms of vision,
position, and word information were used as observations in
hMLDA.

3.3. Hierarchical Categorization by hMLDA
The hierarchical structure of spatial concepts is supported by
nested Chinese restaurant process (nCRP) (Blei et al., 2010) in
hMLDA (Ando et al., 2013). nCRP is an extended model of
the Chinese restaurant process (CRP) (Aldous, 1985), which is
a Dirichlet process used to generate multinomial distribution
with infinite dimensions. nCRP stochastically calculates the
hierarchical structure based on the idea that there are infinite
Chinese restaurants with infinite number of tables. Figure 3
shows the overview of nCRP. A box and a circle represent
a restaurant and a customer, respectively. The customer
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FIGURE 3 | Overview of nested Chinese restaurant process (nCRP).

FIGURE 4 | Graphical model of hierarchical spatial concept formation.

stochastically decides the restaurant to visit. In the proposed
method, a box and a circle mean a spatial concept and data,
respectively. Data is stochastically allocated to a spatial concept
in each layer by the nCRP. In hMLDA, each spatial concept has
a probability distribution with parameter βl,i to generate data.
The proposed method forms a hierarchical spatial concept by
hierarchical probabilistic categorization using nCRP. In the non-
hierarchical approach, a place called “meeting space” and its
partial places called “front of the table” and “front of the TV”
are formed in the same layer. Therefore, the meeting space is
learned as a place different from places called “front of the table”
and “front of the TV.” The proposed method enables the robot
to learn the meeting space as a upper concept encompassing
places called “front of the table” and “front of the TV” as lower
concepts.

The graphical model of hMLDA in the proposed method
and the definition of the variables are shown in Figure 4 and
Table 2, respectively. In Figure 4, c is a tree-structured path
generated by nCRP with a parameter γ and z is a category
index for a spatial concept that is generated by a stick-breaking
process (Pitman, 2002) with parameters α and π . wυ ,wp,ww are
acquired vision, position, and word information generated by
multinomial distributions with a parameter βm at a modality
m (m ∈ υ , p,w). βm was determined according to a Dirichlet
prior distribution with a parameter ηm.D and L written on plates
are the number of acquired data and the number of categories,
respectively.

The generation process of the model is described as follows:

βmk ∼ Dirichlet(ηm) (2)

cd ∼ nCRP(γ ) (3)

θd ∼ GEM(α,π) (4)

zmd,n ∼ Multi(θd) (5)

wm
d ∼ Multi(βcd [z

m
d,n]), (6)

where:

• The parameter βm
k

of a multinomial distribution is generated
by a Dirichlet prior distribution with a parameter ηm in a table
k(k ∈ T), e.g., β1,1 and β2,1 in Figure 3.

• The path cd in a tree structure for the data d (d ∈ 1, 2, ...,D) is
decided by nCRP with a parameter γ . cd is represented by the
sequence of numbers assigned to each node in the path, e.g.,
{(1, 1), (2, 1), (3, 2)} at data 2 in Figure 3.

• The parameter θd of a multinomial distribution is generated
by the stick-breaking process based on a GEM distribution
which forms θd from a Beta(απ , (1 − α)π) distribution with
the parameters α(0 ≤ α ≤ 1) and π(π > 0) (Pitman, 2006). θd
represents the selection probability of a layer in a path cd and
corresponds to the generation probability of a category index
z in a path cd.

• zm
d,n

, which is a category index at the nth feature of the observed
information wm

d
, is generated by a multinomial distribution

with a parameter θd.
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TABLE 2 | Definition of variables in the graphical model.

Variable Definition

wυ ,wp,wn Observation of vision, position and word information

z Index of category

βυ ,βp,βn Parameter of multinomial distribution in vision, position and word

information

θ Parameter of multinomial distribution in category

c Path of tree structure

ηυ , ηυ , ηw Parameter of Dirichlet prior distribution

γ Hyper parameter of c

α,π Hyper parameter of θ

• wm
d
is the observed information generated by a multinomial

distribution with a parameter β from a category zm
d,n

at
a path cd.

In this study, z is equivalent to a spatial concept expressed by the
location name such as “the living room” or “front of the table.”

Model parameter learning was performed by a Gibbs sampler.
Parameters were calculated by alternately sampling a path cd for
each datum and a category zm

d,n
assigned to the nth feature value of

a modalitym of the data d in the path. Category zm
d,n

was sampled
according to the following formula.

zmd,n ∼ p(zmd,n|z
m
−(d,n), c,w

m,α,π , ηm)

∝ p(zmd,n, z
m
−(d,n), c,w

m|α,π , η)

∝ p(zmd,n|z
m
d,−n,α,π)p(w

m
d,n|z, c,w

m
−(d,n), η

m),

(7)

where−(d, n) means excluding the nth feature value of the data d.
p(zm

d,n
|zm
d,−n

,α,π) is a multinomial distribution generated by the
stick-breaking process. The probability, that k is assigned to a
category of the n-th feature of modality m of the d-th data, was
calculated by the following formula.

p(zmd,n = k|zmd,−n,α,π) = E

[
Vk

k−1∏

j=1

(1− Vj)|z
m
d,−n,α,π

]

= E

[
Vk|z

m
d,−n,α,π

] k−1∏

j=1

E

[
1− Vj|z

m
d,−n,α,π

]
(8)

=
(1− α)π + #[zm

d,−n
= k]

π + #[zm
d,−n

≥ k]

k−1∏

j=1

απ + #[zm
d,−n

> j]

π + #[zm
d,−n

≥ j]
,

where #[·] is a number that satisfies a given condition and Vk

and Vj are values that determine the rate of folding a branch in
categories k and j by the stick-breaking process, respectively.

In Formula (7), p(wm
d,n

|z, c,wm
−(d,n)

, ηm) is the probability that a

feature value is generated from a path cd and a category z
m
d,n

. Since
it is assumed that the parameters of the multinomial distribution
that generates a feature value are generated from a Dirichlet prior
distribution, the following formula is obtained.

p(wm
d,n|z, c,w

m
d,n, η

m) ∝ #[zm
−(d,n) = zmd,n, czmd,n

= cd,zm
d,n
,wm

−(d,n)

= wm
d,n]+ η

m (9)

This gives the number of times that a category zm
d,n

is assigned to
a feature value wm

d,n
in a path cd. A path cd was sampled by the

following formula.

cd ∼ p(cd|w
v,wp,ww, c−d, z, η

v, ηp, ηw, γ )

∝ p(cd|c−d, γ )p(w
v
d|c,w

v
−d, z

v, ηv)p(w
p

d
|c,w

p

−d
, zp, ηp)

p(ww
d |c,w

w
−d, z

w, ηw),

(10)

where c−d is a set of paths excluding c from cd. Sampling based
on Formulas (9) and (10) was repeated for each training datum
d ∈ {d1, d2, · · · , dD}. In this process, paths and categories for all
observed data converge to ĉ and ẑ.

3.4. Name Prediction and Position
Category Prediction
If vision information wv

t and position information w
p
t are

observed at a time t, then the posterior probability of word
information ww

t can be calculated with estimated parameters ĉ
and ẑ by the following formula.

p(ww
t |ẑ, ĉ,w

w,wv,wp, ct ,w
v
t ,w

p
t ,α,π , η

n, ηv, ηp) =
∑

zt

p(ww
t |zt , ẑ

w, ĉ,ww, ηw)

p(zt|ẑ
v, ẑp, ĉ,wv,wp, ct ,w

v
t ,w

p
t ,α,π , η

v, ηp)

(11)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

If word information ww
t is obtained at a time t, then a category

zwt can be predicted by Formula (12) and selecting position
p̂ randomly from dataset Dzwt

, which is a set of position data
categorized into zwt .Dzwt

was automatically generated by the robot
itself as a part of the categorization process.

zwt ∼ p(zwt |z
w
−t ,w

w
t , ĉ,w

w,wv,wp, ηw, ηv, ηp,α,π) (12)

4. EXPERIMENT

4.1. Purpose
We conducted experiments to verify whether the proposed
method can form hierarchical spatial concepts, which enable a
robot to predict location names and position categories close to
predictionsmade by humans. In the experiment, (1) the influence
of multimodal information, i.e., words, on the formation of
a hierarchical spatial concept was evaluated by comparing the
space categorization results of using the proposed method and
those of hierarchical latent Dirichlet allocation (hLDA) (Blei
et al., 2010), which is a hierarchical categorization method with
single modality; (2) the similarity between the hierarchical spatial
concepts formed by the proposed method and those made by
humans was evaluated in terms of predicting location names and
position categories.
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FIGURE 5 | Experimental environment and mobile robot for learning and testing. (A) Experimental environment for data collection. (B) Mobile robot used for

experiments.

FIGURE 6 | Map generated by SLAM and examples of collected data: image, position, and location name.

4.2. Experimental Conditions
Figure 5A shows an experimental environment which includes
furniture, e.g., tables, chairs, and a book shelf, in order to collect
training and test data. Figure 5B shows a mobile robot, which
consists of a mobile base, a depth sensor, an image sensor, and
a computer, used to generate a map and collect multimodal
information in the test environment. The height of the camera
attached to the robot was 117 cm in consideration of the
typical eye level in the human body. This is equivalent to the
average height of a 5-year-old boy in Japan. The Navigation
Stack package3 was used with ROS Hydro4 for mapping,
localization, and moving in the experiment. The robot was
manually controlled to collect data from the environment. The
orientation of the robot was controlled in as many different
orientations as possible.

Figure 6 shows a map generated in the environment by the
robot using SLAM and examples of the collected data. Collected
data consisted of image, position, andword information as shown
in the samples of collected data at A, B, and C. In the experiment,

3Navigation Stack: http://wiki.ros.org/navigation
4ROS Hydro: http://wiki.ros.org/hydro

900 data points were used for training and 100 data points were
used for testing from a total of 1,000 data points collected in
the area surrounded by a dotted line in the map. The robot
simultaneously acquired images and self-position data (x, y) at
times of particle re-sampling for MCL. Words were given as
location names by a user who was familiar with the experimental
environment. The user gave one or more location names suitable
for the place at a data point during the training. In example A,
not only a name such as “front of the door” but also a name
representing a space such as “entrance” and a name meaning a
room such as “laboratory” were given as word information.Word
information was partially supplied as training data. Five training
data sets were prepared to evaluate robustness of the naming rate
in training data as 1, 2, 5, 10, and 20%.

The similarity between the spatial concepts formed by the
proposed method and those made by humans was evaluated in
experiments of location name prediction and position category
prediction based on the ground truth. The ground truth
information was given for 100 test data points according to
the agreement of three experts who were familiar with the
environment. The hierarchy of the space in the experimental
environment was defined as global, intermediate, and local.
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TABLE 3 | List of location names and ground truth in the hierarchy.

Global Laboratory

Intermediate Entrance Meeting space

Local Front of the door Umbrella storage Magazine rack zone

Chair storage Book shelf zone Around Skype PC

Around the

charger

Around the electric

piano

Locker zone

Front of the white

board

Front of the display Front of the table

Location names assigned to each hierarchy are shown in
Table 3. As the ground truth for name prediction, three location
names were uniformly given to each test datum considering
the hierarchy to evaluate the accuracy of name prediction. As
the ground truth for the position category prediction, regions
corresponding to the 15 location names in Table 3 were decided
on the map. Figure 7 shows the three regions of the “laboratory,”
“entrance,” and “front of the table.” The environment was divided
into a grid of 50 units in length and 25 units in width, and the gray
grids show the ground truth.

In the name prediction experiment, the accuracy of name
prediction compared with the ground truth was calculated as an
index of similarity. Formula (11) was used to predict names using
the proposed method. The accuracy of name prediction at global,
intermediate, and local levels was calculated by the following
formula.

Accuracy =
Ml

D
, (13)

where Ml is a number matching the predicted names with
the ground truth at layer l in the test dataset and D is the
number of test data. In the experiment, l was set as (l ∈

{global, intermediate, local}) and D was 100.
In the position category prediction experiment, the precision,

recall, and F-measure of the predicted position categories
compared with the ground truth were calculated as an index
of similarity. In the proposed method, a position (x, y) sampled
multiple times for each location name by Formula (12). The
precision, recall, and F-measure of position category prediction
were calculated by the following formulas.

Precision =
Tn

Tn + Fn
(14)

Recall =
Tn

Gn
(15)

F-measure =
2 · Recall · Precision

Recall+ Precision
, (16)

where Tn is a number matching the position with the ground
truth for location name n, Fn is a number that does not match
the position with the ground truth, and Gn is the number of

grids for the ground truth. In the experiment, n was set as (n ∈

{1, 2, · · · , 15}).
In the proposed method, the hyper-parameters α,π , γ , η were

set as α = 0.5,π = 100, γ = 1.0, ηυ = 1.0 × 10−1, ηp =

1.0 × 10−3, ηw = 1.0 × 10−2, respectively. The path c and
category z of each data were trained with the hyper-parameters.
In the experiment, the dimensions of the information vectors wυ ,
wp, and ww were 1,000, 64, and 15, respectively.

4.3. Baseline Methods
The most frequent class, nearest neighbor method, multimodal
hierarchical Dirichlet process (HDP), and spatial concept
formation model were used as baseline methods for evaluating
the performance of the proposed method in the name prediction
and position category prediction experiments. In the latter, the
sampling of position for each location name was performed 100
times.

4.3.1. Most Frequent Class
The training dataset D = {d1, d2, · · ·, dI} is used in this method.
The datum di consists of the position information pi = (xi, yi)
and the word information wi, which is a set of location names.
The frequency cntnj of each location name nj(j ∈ {1, 2, · · ·, 15})
is counted in the training dataset D. The location name nj is
classified into three clusters by k-means (k = 3) based on cntnj .
The three clusters of location names are Cglobal, Cintermediate, and
Clocal in descending order of the frequency of the location name
based on the assumption that global location names are more
frequent than local location names. In the training dataset D,
if a datum di includes a location name in Cglobal, Cintermediate,
and Clocal, the datum di is set as a global dataset Dg , an
intermediate dataset Di, and a local dataset Dl. The location
names in the global, intermediate, and local levels are predicted
as the most frequent location name in each dataset Dg , Di, and
Dl, respectively.

In the position category prediction, the positions are predicted
by sampling the position information p̂ randomly from the
datasetsDg,f ,Di,f , andDl,f , which have themost frequent location
names in each dataset Dg , Di, and Dl, respectively. The sampling
of position information for each location name was performed
100 times.

4.3.2. Nearest Neighbor (Position and Word)
The nearest neighbor method (Friedman et al., 1977)
discriminates data based on Euclidean distance. A datum
di involves position information pi = (xi, yi) and word
information wi. wi consists of a set of location names that
obtained at a position pi in the training. For example, wi

at data point B in Figure 6 contains the following location

names: “Meeting space,” “Book shelf zone,” and “Around the
electric piano.” If position information pt is observed, then
word information ŵt is calculated with the training dataset
D = {(p1,w1), (p2,w2),···,(pI ,wI)} by the following formulas.

k = arg min
1≤i≤I

|pt − pi| (17)

ŵt = wk (18)
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FIGURE 7 | Examples of ground truth for regions where the location names are at the global, intermediate, and local levels. The area is mapped by a grid of 50

columns and 25 rows. The region of ground truth is represented by the gray grids.

FIGURE 8 | Hierarchical spatial concept formed by the proposed method.

The location name n̂ can be predicted by randomly selecting a
location name from location names in ŵt of the nearest data
point.

If word information wt is observed, then position information
p̂t is randomly selected from dataset Dnt , which is a set of data
di = (pi,wi) satisfying the formula wi ∈ wt . The sampling of
position information for each location name was performed 100
times.

4.3.3. Nearest Neighbor (Vision, Position and Word)
This method is used only in the name prediction experiment. A
datum di includes vision information vi, position information
pi = (xi, yi) and word information wi. υi is a value
calculated by Formula (1) at a position pi during training.
wi consists of a set of location names that are obtained at a

position pi during the training. If the vision information vt
and the position information pt are observed, then the word
information ŵt can be calculated with the training dataset D =

{(υ1, p1,w1), (υ2, p2,w2),···,(υI , pI ,wI)} by using the following
formulas.

k = arg min
1≤i≤I

(α|vt − vi| + (α − 1)|pt − pi|) (19)

ŵt = wk (20)

where α is the weight coefficient between vision and position
information. α was set as 0.3 in the validation dataset empirically.
The location name n̂ can be predicted by randomly selecting a
location name from the location names in ŵt of the nearest data
point.
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4.3.4. Multimodal HDP
Multimodal HDP (Nakamura et al., 2011) enables the
multimodal handling of HDP (Teh et al., 2005), which
is a method of categorizing observed data based on a
Bayes generative model, in the topic distribution of latent
Dirichlet allocation (LDA) as HDP. The graphical model and
definition of variables in the multimodal HDP are shown
in the Supplementary Material. Here, multimodal HDP was
trained using vision, position, and word information. If vision
information wv

t and position information w
p
t are observed at a

time t, then the posterior probability of word information ww
t

can be calculated by the following formula:

p(ww
t |ẑ,w

w,wυ ,wp,wυt ,w
p
t ,π , η

w, ηυ , ηp) =
∑

zt

p(ww
t |zt , ẑ

w, ĉ,ww, ηw)p(zt|ẑ
υ , ẑp,wυ ,wp,wυt ,w

p
t ,π , η

υ , ηp)

(21)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

If word information ww
t is obtained at a time t, then a category

zwt can be predicted by Formula (22) and selecting position
information p̂ randomly from dataset Dzwt

, which is a set of
position data categorized into zwt .

zwt ∼ p(zwt |z
w
−t ,w

w
t ,w

w,wυ ,wp, ηw, ηυ , ηp,π) (22)

The sampling of position information for each location name
was performed 100 times. In the multimodal HDP, the hyper-
parameters π , η were set as π = 50, ηυ = 5.0 × 10−1, ηp =

1.0 × 10−1, ηw = 1.0 × 10−1 in the validation dataset. The
category z of each data is trained with the hyper-parameters.

4.3.5. Spatial Concept Formation
Spatial concept formation (SpCoFo)5 is a model that integrates
namemodalities into the spatial region learningmodel (Ishibushi
et al., 2015). The model forms concepts from multimodal
information and predicts unobserved information. The graphical
model and definition of variables in the spatial concept formation
model are shown in the Supplementary Material. The posterior
probability of word information wn

t after obtaining vision
information wυt and position information pt was calculated by
the following formula:

p(wn
t |pt ,w

υ
t ) =

∑

zt

p(wn
t |zt)p(zt|pt ,w

υ
t )

=
∑

zt

p(wn
t |β

n
zt
)p(pt|µzt ,6zt )p(w

υ
t |β

υ
zt
) (23)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

5Spatial Concept Formation: https://github.com/EmergentSystemLabStudent/

Spatial_Concept_Formation

The prediction of position p̂t after obtaining word information
wn
t was calculated by estimating a category zt and sampling

position information p̂ using the following formulas.

zt = arg max
zt

p(zt|w
n
t )

p̂t ∼ p(pt|µzt ,6zt ) (24)

The sampling of position information for each location name
was performed 100 times. In the spatial concept formation, the
hyper-parameters π , η, µ0, κ0, ψ0, and ν0 were set as π = 50,
ηυ = 5.0 × 10−1, ηw = 1.0 × 10−1, µ0 = (xcenter , ycenter),

κ0 = 3.0×10−2,ψ0 = diag[0.05, 0.05, 0.05, 0.05], and ν0 = 15 in
the validation dataset, respectively. (xcenter , ycenter) indicates the
center of the map. The category z of each data is trained with the
hyper-parameters.

4.4. Experimental Results
4.4.1. Hierarchical Space Categorization
Figure 8 shows some categories formed by the proposed method.
Categorized training data at each category are shown by
positions, images, and the best three examples from the word
probability. The category corresponds to the formed spatial
concept. Each category was classified into an appropriate layer
in the hierarchy of spatial concepts. One, four, and 28 categories
were classified into the 1st, 2nd, and 3rd layers, respectively. The
number of categories in each layer was determined by the nCRP
based on the model parameter γ , which controls the probability
that the data is allocated to a new category.

The 1st layer included only category 1, into which 900
data were allocated. The high-probability word of category
1 was “laboratory,” which referred to the entire experimental
environment. Since category 1 contains all the location names,
the probabilities for location names becomes relatively low.
Nonetheless, the proposed method was able to learn “laboratory,”
which was given only about 10% to the training dataset, with
high probability compared to the second candidate. In the 2nd
layer, 343 data in the vicinity of the entrance in the experimental
environment were allocated into category 4. The location name of
category 4 with the greatest probability was “entrance.” The 389
data in the region deeper than the entrance in the experimental
environment were categorized into category 5, in which “meeting
space” had the greatest probability. In the 3rd layer, the data
categorized into categories 4 and 5 in the second layer were
further, more finely categorized. In categories 26 and 16, which
were formed under category 4, “front of the door” and “front of
the chair storage” had the greatest probabilities, respectively. 53
and 81 data were allocated into categories 26 and 16, respectively.
Position and image data corresponding to “front of the door”
and “front of the chair storage” were finely allocated. These
results demonstrated that the proposed method can form not
only categories in a lower layer such as “front of the chair storage”
and “front of the door” but also categories at higher layers such as
“entrance” and “laboratory,” and can form its inclusion relations
as a hierarchical structure.
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TABLE 4 | Mutual information for categorization of location names when changing

the number of layers in hLDA with word information and the proposed method

with vision, position, and word information.

Method Modality 2 layers 3 layers 4 layers 5 layers

hLDA Word 0.87 0.71 0.44 0.41

Proposed

method

Vision, position, and

word

0.97 1.28 0.94 0.89

Mutual information was calculated by Formula 25. Underlined and bold values mean the

maximum value in the experimental parameter.

4.4.2. Evaluation of Categorization
To evaluate the effectiveness of multimodal information
on hierarchical space categorization, we compared the
categorization results of using the proposed method and those
obtained using hLDA, which is a hierarchical categorization
method with single modality, i.e., based only on word
information. Although the number of layers in ground truth
in this experiment is 3, robots can not know the number of
hierarchies of the spatial concepts in advance. Therefore, in the
proposed method and hLDA, categorization was performed with
the number of layers changed from 2 to 5. The accuracy of space
categorization was evaluated by calculating mutual information
between the ground truth, which consisted of a location name
given by humans, and the estimated name, which was the best
item in the word probability at a category allocated by the
proposed method or by hLDA. Mutual information I(E;G)
between estimated name E and ground truth G in each layer i
and j was calculated by the following formula:

I(E;G) =
∑

gj∈G

∑

ei∈E

p(ei, gj) log
p(ei, gj)

p(ei)p(gj)
. (25)

When the mutual information become high, the dependency of
ei and gj can be regarded as high. By using mutual information,
accuracy of categorization can be evaluated when the number
of layers on ground truth and estimation result is different.
Table 4 shows the mutual information for categorization results
between hLDA with word information and the proposed method
with vision, position, and word information in the training
data set. The effectiveness of multimodal information in space
categorization was clarified, since the proposed method had a
high level of mutual information in all layers. In addition, mutual
information was maximized when using the same hierarchical
number as in the ground truth. In the subsequent evaluations,
the number of layers of the proposed method is set to 3.

4.4.3. Evaluation of Name Prediction and Position

Category Prediction
We conducted experiments to verify whether or not the proposed
method could form hierarchical spatial concepts, which enable a
robot to predict location names and position categories similar
to predictions made by humans. In the experiment, (1) the
influence of multimodal information on the formation of a
hierarchical spatial concept was evaluated by comparing the
space-categorization results obtained using the proposed method

and using hLDA, which is a hierarchical categorization method
with single modality; (2) the similarity between the hierarchical
spatial concepts formed by the proposed method and those of
humans was evaluated in predicting location names and position
categories. The evaluation experiments were performed by cross
verification with three data sets that consist of 900 training data
and 100 test data with ground truth. The experimental results are
indicated by the mean and standard deviation in the three data
sets.

To verify whether or not the proposed method can form
hierarchical spatial concepts, accuracy evaluation of name
prediction and position category prediction through spatial
concept use was performed. In the evaluation of name prediction,
vision, position, and word information were given to the robot
at the training data points. In the test data points, only vision
and position information were given. Therefore, the robot has
to predict the unobserved word information from the observed
vision and position information. Table 5 shows the accuracy
of name prediction using the baseline methods, the proposed
method, and those made by humans. The most frequent class,
nearest neighbor (position and word), nearest neighbor (vision,
position, and word), multimodal HDP, and spatial concept
formation model were used as the baseline methods. The
accuracy of name prediction was calculated by Formula (13)
at global, intermediate, and local layers in ground truth. The
proposed method and humans predicted location names in three
layers. The results of humans consisted of the average accuracy of
three subjects familiar with the experimental environment.

Compared with the accuracy obtained using the baseline
methods, higher accuracies were obtained by the proposed
method in the 1st, 2nd, and 3rd layers. It was assumed that
weak features buried in the lower layer in the baseline methods
were categorized as features of the higher layer in the proposed
method. The proposed method enabled a robot to predict
location names close to predictions made by humans by selecting
the appropriate layer depending on the situation.

Table 6 shows the evaluation results of position category
prediction using the baseline methods, the proposed method,
and those made by humans. In the evaluation, the most frequent
class, nearest neighbor (position and word), multimodal HDP,
and spatial concept formation model were used as the baseline
methods. The position category prediction was evaluated in
terms of precision, recall, and F-measure, which were calculated
by Formula (14).

Compared with results obtained by the baseline methods,
higher values of precision and recall were obtained by the
proposed method in the global and intermediate layers. In
the local layer, higher values of precision and recall were
obtained by Nearest neighbor and Spatial Concept Formation
(SpCoFo), respectively. However, in the F-measure, which is
a harmonic mean between precision and recall, the proposed
method has the largest values in the global, intermediate, and
local layers. The reason why the recall and F-measure values
were lower than the precision is that only 100 data points were
predicted and plotted for regions with 100 grids or more, as
shown in Figure 7. In the result of F-measure, independent t-
tests were performed in nine samples consisting of three data

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2018 | Volume 12 | Article 1165

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagiwara et al. Hierarchical Spatial Concept Formation

TABLE 5 | Accuracy of name prediction using the baseline methods, the proposed method, and those made by humans; the accuracy was calculated by using

Formula (13).

Mean (s.d.)

Method Modality Layer Global Intermediate Local

Most frequent class Position and word 1.00 (0.00) 0.18 (0.32) 0.09 (0.02)

Nearest neighbor Position and word 0.12 (0.01) 0.24 (0.02) 0.20 (0.03)

Nearest neighbor Vision, position and word 0.18 (0.03) 0.28 (0.04) 0.31 (0.04)

Multimodal HDP Vision, position, and word 0.13 (0.02) 0.54 (0.06) 0.24 (0.07)

SpCoFo Vision, position, and word 0.25 (0.13) 0.23 (0.15) 0.36 (0.13)

1st 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Proposed method Vision, position, and word 2nd 0.00 (0.00) 0.96 (0.04) 0.01 (0.02)

3rd 0.00 (0.00) 0.04 (0.04) 0.55 (0.07)

1st 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Humans 2nd 0.00 (0.00) 0.98 (0.02) 0.00 (0.00)

3rd 0.00 (0.00) 0.03 (0.04) 0.74 (0.10)

The accuracy is indicated by the mean and standard deviation (s.d.). Underlined and bold values mean the maximum value in the experimental parameter.

sets with three types of ground truth: global, intermediate,
and local. In the proposed method, the p-values of the Most
frequent class, Nearest neighbor, multimodal HDP, and SpCoFo
were 0.00012, 0.00004, 0.00003, and 0.00051, respectively, and
significant differences were observed with (p < 0.05). As
the reason why the result of humans were not perfect, some
errors were found in the boundary of the place. For example,
the boundary between “Book shelf zone” and “front of the
table,” and the edge of the region called “front of the door”
were different depending on the human. The centricity of the
place is consistent, but the region includes ambiguity even
among humans. The experimental results show that the proposed
method enabled a robot to predict position categories closer to
predictions made by humans than possible using the baseline
methods.

In the experiments for location name and position category
prediction, the proposed method showed higher performance
than the baseline methods. In the baseline methods, i.e.,
multimodal HDP and SpCoFo, since the feature space is classified
uniformly, the location concepts are formed non-hierarchically.
For example, an upper concept, e.g., meeting space, is embedded
in the lower concepts, e.g., front of the table and front of the
display. Therefore, the place called “Meeting space” is learned as
a place different from the places called “front of the table” and
“front of the display.” Since the proposed method forms concepts
by extracting the similarity of knowledge in the upper concept,
it is possible to form an upper concept without interfering with
the formation of the lower concept. For this reason, the proposed
method was able to show high performance in the experiments of
name and position category prediction with global, intermediate,
and local.

In human-robot interactions in home environments, location
names as word information are given to only a part of the
training data from a user. We evaluated the robustness of the
proposed method in terms of the naming rate in order to verify
how name and position category prediction performance changes
with decreasing naming rate. In this experiment, the formation
of spatial concepts using the proposed method was performed

using the training data with the naming rate changed to 1, 2, 5,
10, and 20% successively. The naming rates of 1 or 20%mean that
9 or 180 of the 900 training data contained location names, while
the remaining data did not contain any location name. Table 7
shows the accuracy of name prediction and the F-measure of
position category prediction for each naming rate. In the results
of name prediction and position category prediction, it was
confirmed that learning progresses in the global layer earlier than
in the intermediate and local layers. It was clarified that overall
prediction ability did not decrease greatly owing to the decreased
naming rate, but gradually decreased from the lower layer. In
this experiment, we performed spatial concept formation without
prior knowledge in only one environment, but it is possible
to increase learning efficiency by giving parameters of models
estimated in other environments as prior probabilities. The
transfer learning of spatial concepts will be performed in the
future.

5. APPLICATION EXAMPLES FOR HUMAN
SUPPORT ROBOTS

Application examples of the hierarchical spatial concept using
the proposed method are demonstrated in this section. We
implemented the proposed method for the Toyota human
support robot (HSR)6 and created application examples in which
the robot moves based on human linguistic instructions and
describes its self-position linguistically in an experimental field
assuming a home environment.

The home environment and the robot used are shown in
Figure 9. There were two tables as shown in Figure 9A, A and
B. In the environment, whether the robot could move based
on linguistic instructions including the hierarchical structure of
spaces such as “front of the table in the living room” and “front
of the table in the dining room” was verified. In Figure 9B, an

6Toyota Global Site—Partner Robot Family: http://www.toyota-global.com/

innovation/partner_robot/family_2.html
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TABLE 6 | Precision, recall, and F-measure evaluation of position category prediction using the baseline methods, the proposed method, and those made by humans in

global, intermediate, and local; the precision, recall, and F-measure were calculated by using Formula (14).

Method Precision Recall F-measure

Global Intermediate Local Global Intermediate Local Global Intermediate Local

Most frequent class 1.00 (0.01) 0.49 (0.01) 0.37 (0.03) 0.12 (0.02) 0.17 (0.02) 0.15 (0.03) 0.22 (0.03) 0.25 (0.02) 0.20 (0.02)

Nearest neighbor 1.00 (0.00) 0.93 (0.03) 0.67 (0.03) 0.12 (0.03) 0.26 (0.04) 0.23 (0.04) 0.22 (0.04) 0.41 (0.05) 0.33 (0.03)

Multimodal HDP 1.00 (0.00) 0.95 (0.02) 0.53 (0.03) 0.12 (0.01) 0.26 (0.04) 0.26 (0.02) 0.21 (0.02) 0.40 (0.05) 0.33 (0.02)

SpCoFo 0.82 (0.00) 0.62 (0.04) 0.35 (0.04) 0.16 (0.01) 0.32 (0.02) 0.38 (0.04) 0.27 (0.02) 0.42 (0.01) 0.35 (0.04)

Proposed method 1.00 (0.00) 0.96 (0.03) 0.59 (0.05) 0.18 (0.01) 0.34 (0.02) 0.36 (0.04) 0.30 (0.02) 0.50 (0.02) 0.43 (0.01)

Humans 1.00 0.99 0.76 0.19 0.50 0.49 0.32 0.65 0.56

In the experiment, the modalities of the nearest neighbor were position and word. The results are indicated by the mean and standard deviation as mean (s.d.). Underlined and bold

values mean the maximum value in the experimental parameter.

TABLE 7 | Robustness evaluation of the proposed method with respect to naming rate: accuracy in name prediction indicates the maximum value of the three layers.

Naming rate Name prediction (accuracy) Position prediction (F-measure)

Global Intermediate Local Global Intermediate Local

1% 1.00 0.68 0.14 0.29 0.46 0.30

2% 1.00 0.77 0.26 0.29 0.47 0.31

5% 1.00 0.92 0.35 0.28 0.36 0.37

10% 1.00 0.92 0.58 0.30 0.46 0.37

20% 1.00 0.92 0.63 0.31 0.50 0.44

Humans 1.00 0.96 0.76 0.32 0.65 0.56

FIGURE 9 | Experimental environment and robot for demonstrating application examples. (A) Environments A, B, and C in the generated map show positions in

which images were captured. (B) Human support robot produced by the Toyota Company.

RGB-D sensor and a laser range sensor were used to capture
images and to estimate self-position, respectively. The packages7:
hector_slam and omni_base for mapping, localization, and
moving were used with ROS Indigo8 to navigate the robot to the
predicated position.

The robot collected 715 training data consisting of images,
positions, and word information and formed a hierarchical
spatial concept using the proposed method. Location names
were given to 20% of total training data. Rospeex (Sugiura and

7hector_slam: http://wiki.ros.org/hector_slam
8ROS Indigo: http://wiki.ros.org/indigo

Zettsu, 2015) was used to recognize human speech instructions
and convert them into text information. In the experiment, the
dimensions of the information vectors wυ , wp, and ww were
1,000, 64, and 16, respectively.

The two places predicted by Formula (12) based on the speech
instructions, i.e., “go to the front of the table in the living
room” and “go to the front of the table in the dining room”
are shown in Figures 10A,B, respectively. Predicted position
categories indicated by red dots show that the “front of the table
in the living room” and the “front of the table in the dining room”
were recognized as different places using the space concept in the
higher layer.
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FIGURE 10 | Position category prediction using a hierarchical structure based on linguistic instructions from the user. (A) Positions for the front of the table in the living

room. (B) Positions for the front of the table in the dining room.

FIGURE 11 | Movement based on speech instructions from the user through the hierarchical spatial concept.

FIGURE 12 | Linguistic description of self-position based on communication between the user and the robot using the hierarchical spatial concept.

Figure 11 shows how the robot moved based on human
speech instructions in the experiment. The robot recognized
human speech instructions using rospeex and predicted position
categories with the Formula (12) using a hierarchical spatial
concept. It moved to the instructed place by sampling
randomly from the predicted positions. Figure 12 shows an
application example in which the robot described its self-
position linguistically. The robot observed its self-position and
image and predicted the name of its self-position by calculating
Formula 11 using the hierarchical spatial concept. As shown
in the left side of Figure 12, the proposed method enabled the
robot to describe its self-position linguistically with different
layers. We demonstrated application examples using the formed
hierarchical spatial concept in the service scene in a home
environment. The movie of the demonstration and training
dataset can be found at the URL9.

9Multimedia - emlab page: https://emlab.jimdo.com/multimedia/

6. CONCLUSIONS

We assumed that a computational model that considers the
hierarchical structure of space enables robots to predict the name
and position of a space close to the corresponding prediction by
humans. In our assumptions, we proposed a hierarchical spatial
concept formation method based on a Bayesian generative model
with multimodal information, i.e., vision, position, and word
information, and developed a robot that can predict unobserved
location names and position categories based on observed
information using the formed hierarchical spatial concept. We
conducted experiments to form a hierarchical spatial concept
using a robot and evaluated its ability in name prediction and
position category prediction.

The experimental results for name and position category
prediction demonstrated that, relative to baseline methods,
the proposed method enabled the robot to predict location
names and position categories closer to predictions made by
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humans. Application examples using the hierarchical spatial
concept in a home environment demonstrated that a robot
could move to an instructed place based on human speech
instructions and describe its self-position linguistically through
the formed hierarchical spatial concept. The experimental results
and application example demonstrated that the proposedmethod
enabled the robot to form spatial concepts in abstract layers and
use the concepts for human-robot communications in a home
environment. This study showed that it the name and position of
a location could be predicted, even in a home, using generalized
spatial concepts. Furthermore, by conducting additional learning
in each house, a spatial concept adapted to the environment can
be formed.

The limitation of this study is as follows. In the feature
extraction of the position information, hierarchical k-means
method was utilized to convert the position information (x, y)
into the position histogram. In the experiment, 389 and 511 data
were allocated to two clusters at the top layer c1. In the bottom
layer c6, the number and standard deviation of the data allocated
to each of the 64 clusters were 14.1 and 12.2, respectively. There
is some bias between the clusters. The hierarchical k-means
makes it possible to convert the position information into
the position histogram including hierarchical spatial features.
However, nearby data points at a classification boundary, which
are classified into different clusters on a high level, are regarded
as very different. We are considering a method to reduce bias in
space while maintaining hierarchical features of space. As for the
number of location names, at section 4 and 5 in the experiments,
the numbers of location names were 15 and 16, respectively. The
number of location names increases with increase in the numbers
of teachings and users. If the robot learns the location names from
several users over a long term, an algorithm to remove location
names with low probability of observation is needed in order to
improve the learning efficiency.

As future work, we will generalize the spatial concepts
for various environments and perform transition learning
of spatial concepts with the generalized spatial concepts as prior
knowledge.
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In this paper, we propose an active perception method for recognizing object categories

based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables

a robot to form object categories using multimodal information, e.g., visual, auditory,

and haptic information, which can be observed by performing actions on an object.

However, performing many actions on a target object requires a long time. In a real-time

scenario, i.e., when the time is limited, the robot has to determine the set of actions

that is most effective for recognizing a target object. We propose an active perception

for MHDP method that uses the information gain (IG) maximization criterion and lazy

greedy algorithm. We show that the IG maximization criterion is optimal in the sense that

the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence

between a final recognition state and the recognition state after the next set of actions.

However, a straightforward calculation of IG is practically impossible. Therefore, we derive

a Monte Carlo approximation method for IG by making use of a property of the MHDP.

We also show that the IG has submodular and non-decreasing properties as a set

function because of the structure of the graphical model of the MHDP. Therefore, the

IG maximization problem is reduced to a submodular maximization problem. This means

that greedy and lazy greedy algorithms are effective and have a theoretical justification

for their performance. We conducted an experiment using an upper-torso humanoid

robot and a second one using synthetic data. The experimental results show that the

method enables the robot to select a set of actions that allow it to recognize target objects

quickly and accurately. The numerical experiment using the synthetic data shows that

the proposed method can work appropriately even when the number of actions is large

and a set of target objects involves objects categorized into multiple classes. The results

support our theoretical outcomes.

Keywords: active perception, cognitive robotics, topic model, multimodal machine learning, submodular

maximization

1. INTRODUCTION

Active perception is a fundamental component of our cognitive skills. Human infants
autonomously and spontaneously perform actions on an object to determine its nature. The sensory
information that we can obtain usually depends on the actions performed on the target object.
For example, when people find a gift box placed in front of them, they cannot perceive its weight
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without holding the box, and they cannot determine its sound
without hitting or shaking it. In other words, we can obtain
sensory information about an object by selecting and executing
actions to manipulate it. Adequate action selection is important
for recognizing objects quickly and accurately. This example
about a human also holds for a robot. An autonomous robot
that moves and helps people in a living environment should
also select adequate actions to recognize target objects. For
example, when a person asks an autonomous robot to bring an
empty plastic bottle, the robot has to examine many objects by
applying several actions (Figure 1). This type of information is
important, because our object categories are formed on the basis
of multimodal information, i.e., not only visual information is
used, but also auditory, haptic, and other information. Therefore,
a computational model of the active perception should be
consistently based on a computational model for multimodal
object categorization and recognition.

In spite of the wide range of studies about active perception
(e.g., Borotschnig et al., 2000; Dutta Roy et al., 2004; Eidenberger
and Scharinger, 2010; Krainin et al., 2011; Ferreira et al., 2013)
and multimodal categorization for robots (e.g., Nakamura et al.,
2007, 2011a; Sinapov and Stoytchev, 2011; Celikkanat et al., 2014;
Sinapov et al., 2014), active perception methods for a robot,
i.e., action selection methods for perception for unsupervised
multimodal categorization, have not been sufficiently explored
(see section 2).

This paper considers the active perception problem for
unsupervised multimodal object categorization under the
condition that a robot has already obtained several action
primitives that are used to examine target objects. In the
context of this study, we need to study active perception
on an unsupervised multimodal categorization method having
generality as much as possible because it is believed that
unsupervised multimodal categorization is important for future
language learning by robots, and the findings obtained in this
study should be able to be applied to other unsupervised
multimodal categorization models. It was suggested that a child
forms a category based on his/her sensorimotor experience
before learning a word for the category in a Bayesian manner,
and learning the word is a matter of attaching a new label to
this preexisting category (Kemp et al., 2010). The multimodal
hierarchical Dirichlet process (MHDP) is a mathematically very
general and sophisticated nonparametric Bayesian multimodal
categorization method. Therefore, we adopt MHDP proposed by
Nakamura et al. (2011b) as a representative computational model
for unsupervised multimodal object categorization.

We develop an active perception method based on
the MHDP in this paper. The MHDP is a sophisticated,
fully Bayesian, probabilistic model for multimodal object
categorization (Nakamura et al., 2011b) that is developed by
enabling hierarchical Dirichlet process (HDP) (Teh et al., 2006)
to have multimodal emission distributions corresponding to
multiple sensor information1. Nakamura et al. (2011b) showed
that the MHDP enables a robot to form object categories

1HDP is a nonparametric Bayesian extension of latent Dirichlet allocation

(LDA) (Blei et al., 2003), which has been widely used for document-word

using multimodal information, i.e., visual, auditory, and haptic
information, in an unsupervised manner. The MHDP can
estimate the number of object categories as well because of the
nature of Bayesian nonparametrics.

This paper describes a new MHDP-based active perception
method for multimodal object recognition based on object
categories formed by a robot itself. We found that an active
perception method that has a good theoretical nature, i.e., the
performance of the greedy algorithm is theoretically guaranteed
(see section 4), can be derived for MHDP. Our formulation is
based on a hierarchical Bayesian model. If a cognitive system
of a robot is modeled by using hierarchical Bayesian model, a
recognition state are usually represented by posterior distribution
over latent variables, e.g., object categories. The purpose of an
active perception is to infer appropriate posterior distribution
with a small number of actions. In our approach, we propose
an action selection method that can reduce the distance between
inferred posterior distributions and true posterior distributions.

In this study, we define the active perception problem in
the context of unsupervised multimodal object categorization as
following. Which set of actions should a robot take to recognize a
target object as accurately as possible under the constraint that
the number of actions is restricted2? Our MHDP-based active
perception method uses an IG maximization criterion, Monte
Carlo approximation, and the lazy greedy algorithm. In this
paper, we show that the MHDP provides the following three
advantages for deriving an efficient active perception method.

1. The IG maximization criterion is optimal in the sense
that a selected set of actions minimizes the expected
Kullback–Leibler (KL) divergence between the final posterior
distribution estimated using the information regarding all
modalities and the posterior distribution of the category
estimated using the selected set of actions (see section 4.1).

2. The IG has a submodular and non-decreasing property as a
set function. Therefore, for performance, the greedy and lazy
greedy algorithms are guaranteed to be near-optimal strategies
(see section 4.2).

3. A Monte Carlo approximation method for the IG can be
derived by exploiting MHDP’s properties (see section 4.3).

Although the above properties follow from the theoretical
characteristics of the MHDP, this has never been pointed out in
previous studies.

The main contributions of this paper are that we

• develop an MHDP-based active perception method, and
• show its effectiveness through experiments using an upper-

torso humanoid robot and synthetic data.

The proposed active perception method can be used for general
purposes, i.e., not only for robots but also for other target

clustering. The nonparametric Bayesian extension allows HDP to estimate the

number of topics, i.e., clusters, as well.
2We can consider an extension of this problem by introducing different cost to

each action, i.e., different action requires different time and energy. However, for

simplicity, this paper focuses on the problem in which cost for each action is the

same.
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FIGURE 1 | Overview of active perception for multimodal object category recognition. The numbers attached to the arrows show a sample of the order of action

selection by the robot.

domains to which the MHDP can be applied. In addition, The
proposed method can be easily extended for other multimodal
categorization methods with similar graphical models, e.g.,
multimodal latent Dirichlet allocation (MLDA) (Nakamura et al.,
2009). However, in this paper, we focus on the MHDP and the
robot active perception scenario, and explain our method on the
basis of this task.

The remainder of this paper is organized as follows. Section 2
describes the background andwork related to our study. Section 3
briefly introduces the MHDP, proposed by Nakamura et al.
(2011b), which enables a robot to obtain object categories
by fusing multimodal sensor information in an unsupervised
manner. Section 4 describes our proposed action selection
method. Section 5 discusses the effectiveness of the action
selection method through experiments using an upper-torso
humanoid robot. Section 6 describes a supplemental experiment
using synthetic data. Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK

2.1. Multimodal Categorization
The human capability for object categorization is a fundamental
topic in cognitive science (Barsalou, 1999). In the field of robotics,
adaptive formation of object categories that considers a robot’s
embodiment, i.e., its sensory-motor system, is gathering attention
as a way to solve the symbol grounding problem (Harnad, 1990;
Taniguchi et al., 2016).

Recently, various computational models and machine
learning methods for multimodal object categorization have
been proposed in artificial intelligence, cognitive robotics, and
related research fields (Roy and Pentland, 2002; Natale et al.,
2004; Nakamura et al., 2007, 2009, 2011a,b, 2014; Iwahashi
et al., 2010; Sinapov and Stoytchev, 2011; Araki et al., 2012;
Griffith et al., 2012; Ando et al., 2013; Celikkanat et al., 2014;
Sinapov et al., 2014). For example, Sinapov and Stoytchev (2011)

proposed a graph-based multimodal categorization method
that allows a robot to recognize a new object by its similarity
to a set of familiar objects. They also built a robotic system
that categorizes 100 objects from multimodal information in a
supervised manner (Sinapov et al., 2014). Celikkanat et al. (2014)
modeled the context in terms of a set of concepts that allow
many-to-many relationships between objects and contexts using
LDA.

Our focus of this paper is not a supervised learning-based,
but an unsupervised learning-based multimodal categorization
method and an active perception method for categories formed
by the method. Of these, a series of statistical unsupervised
multimodal categorization methods for autonomous robots have
been proposed by extending LDA, i.e., a topic model (Nakamura
et al., 2007, 2009, 2011a,b, 2014; Araki et al., 2012; Ando et al.,
2013). All these methods are Bayesian generative models, and
the MHDP is a representative method of this series (Nakamura
et al., 2011b). The MHDP is an extension of the HDP, which was
proposed by Teh et al. (2006), and the HDP is a nonparametric
Bayesian extension of LDA (Blei et al., 2003). Concretely,
the generative model of the MHDP has multiple types of
emissions that correspond to various sensor data obtained
through various modality inputs. In the HDP, observation data
are usually represented as a bag-of-words (BoW). In contrast,
the observation data in the MHDP use bag-of-features (BoF)
representations for multimodal information. BoF is a histogram-
based feature representation that is generated by quantizing
observed feature vectors. Latent variables that are regarded as
indicators of topics in the HDP correspond to object categories
in the MHDP. Nakamura et al. (2011b) showed that the MHDP
enables a robot to categorize a large number of objects in a
home environment into categories that are similar to human
categorization results.

To obtain multimodal information, a robot has to perform
actions and interact with a target object in various ways, e.g.,
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grasping, shaking, or rotating the object. If the number of
actions and types of sensor information increase, multimodal
categorization and recognition can require a longer time. When
the recognition time is limited and/or if quick recognition is
required, it becomes important for a robot to select a small
number of actions that are effective for accurate recognition.
Action selection for recognition is often called active perception.
However, an active perception method for the MHDP has not
been proposed. This paper aims to provide an active perception
method for the MHDP.

2.2. Active Perception
Generally, active perception is one of the most important
cognitive capabilities of humans. From an engineering viewpoint,
active perception has many specific tasks, e.g., localization,
mapping, navigation, object recognition, object segmentation,
and self–other differentiation.

In machine learning, active learning is defined as a task in
which a method interactively queries an information source
to obtain the desired outputs at new data points to learn
efficiently Settles (2012). Active learning algorithms select an
unobserved input datum and ask a user (labeler) to provide a
training signal (label) in order to reduce uncertainty as quickly
as possible (Cohn et al., 1996; Muslea et al., 2006; Settles, 2012).
These algorithms usually assume a supervised learning problem.
This problem is related to the problem in this paper, but is
fundamentally different.

Historically, active vision, i.e., active visual perception, has
been studied as an important engineering problem in computer
vision. Dutta Roy et al. (2004) presented a comprehensive survey
of active three-dimensional object recognition. For example,
Borotschnig et al. (2000) proposed an active vision method in a
parametric eigenspace to improve the visual classification results.
Denzler and Brown (2002) proposed an information theoretic
action selection method to gather information that conveys the
true state of a system through an active camera. They used
the mutual information (MI) as a criterion for action selection.
Krainin et al. (2011) developed an active perception method in
which a mobile robot manipulates an object to build a three-
dimensional surface model of it. Their method uses the IG
criterion to determine when and how the robot should grasp the
object.

Modeling and/or recognizing a single object as well as
modeling a scene and/or segmenting objects are also important
tasks in the context of robotics. Eidenberger and Scharinger
(2010) proposed an active perception planning method for
scene modeling in a realistic environment. van Hoof et al.
(2012) proposed an active scene exploration method that enables
an autonomous robot to efficiently segment a scene into
its constituent objects by interacting with the objects in an
unstructured environment. They used IG as a criterion for action
selection. InfoMax control for acoustic exploration was proposed
by Rebguns et al. (2011).

Localization, mapping, and navigation are also targets of
active perception. Velez et al. (2012) presented an online
planning algorithm that enables a mobile robot to generate plans
that maximize the expected performance of object detection.

Burgard et al. (1997) proposed an active perception method for
localization. Action selection is performed by maximizing the
weighted sum of the expected entropy and expected costs. To
reduce the computational cost, they only consider a subset of
the next locations. Roy and Thrun (1999) proposed a coastal
navigation method for a robot to generate trajectories for its goal
by minimizing the positional uncertainty at the goal. Stachniss
et al. (2005) proposed an information-gain-based exploration
method for mapping and localization. Correa and Soto (2009)
proposed an active perception method for a mobile robot with
a visual sensor mounted on a pan-tilt mechanism to reduce
localization uncertainty. They used the IG criterion, which was
estimated using a particle filter.

In addition, various studies on active perception by a robot
have been conducted (Natale et al., 2004; Ji and Carin, 2006;
Schneider et al., 2009; Tuci et al., 2010; Saegusa et al., 2011;
Fishel and Loeb, 2012; Pape et al., 2012; Sushkov and Sammut,
2012; Gouko et al., 2013; Hogman et al., 2013; Ivaldi et al., 2014;
Zhang et al., 2017). In spite of a large number of contributions
about active perception, few theories of active perception for
multimodal object category recognition have been proposed. In
particular, an MHDP-based active perception method has not
yet been proposed, although the MHDP-based categorization
method and its series have obtained many successful results and
extensions.

2.3. Active Perception for Multimodal

Categorization
Sinapov et al. (2014) investigated multimodal categorization
and active perception by making a robot perform 10 different
behaviors; obtain visual, auditory, and haptic information;
explore 100 different objects, and classify them into 20 object
categories. In addition, they proposed an active behavior
selection method based on confusion matrices. They reported
that the method was able to reduce the exploration time by half
by dynamically selecting the next exploratory behavior. However,

their multimodal categorization is performed in a supervised
manner, and the theory of active perception is still heuristic. The
method does not have theoretical guarantees of performance.

IG-based active perception is popular, as shown above, but
the theoretical justification for using IG in each task is often
missing in many robotics papers. Moreover, in many cases in
robotics studies, IG cannot be evaluated directly, reliably, or
accurately. When one takes an IG criterion-based approach, how
to estimate the IG is an important problem. In this study, we
focus on MHDP-based active perception and develop an efficient
near-optimal method based on firm theoretical justification.

3. MULTIMODAL HIERARCHICAL

DIRICHLET PROCESS FOR STATISTICAL

MULTIMODAL CATEGORIZATION

We assume that a robot forms object categories using the
MHDP from multimodal sensory data. In this section, we briefly
introduce the MHDP on which our proposed active perception
method is based (Nakamura et al., 2011b). The MHDP assumes
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that an observation node in its graphical model corresponds
to an action and its corresponding modality. Nakamura et al.
(2011b) employed three observation nodes in their graphical
model, i.e., haptic, visual, and auditory information nodes. Three
actions, i.e., grasping, looking around, and shaking, correspond
to these modalities, respectively. However, the MHDP can be
easily extended to a model with additional types of sensory
inputs. It is without doubt that autonomous robots will also gain
more types of action for perception. For modeling more general
cases, an MHDP with M actions is described in this paper. A
graphical model of the MHDP is illustrated in Figure 2. In this
section, we describe the MHDP briefly. For more details, please
refer to Nakamura et al. (2011b).

The indexm ∈ M (#(M) = M) in Figure 2 represents the type
of information that corresponds to an action for perception, e.g.,
hitting an object to obtain its sound, grasping an object to test its
shape and hardness, or looking at all of an object by rotating it.
We assume that a robot has action primitives and it can execute
one of the actions by selecting the index of the action primitives.
The observation xmjn ∈ Xm is the m-th modality’s n-th feature

for the j-th target object. Xm represents a set of observation of
m-th modality. The observation xmjn is assumed to be drawn from

a categorical distribution whose parameter is θm
k
, where k is an

index of a latent topic. Each index k is drawn from a categorical
distribution whose parameter is β that is drawn from a Dirichlet
distribution parametrized by γ . Parameter θm

k
is assumed to be

drawn from the Dirichlet prior distribution whose parameter is
αm
0 . The MHDP assumes that a robot obtains each modality’s

sensory information as a BoF representation. Each latent variable
tmjn is drawn from a topic proportion, i.e., a parameter of a

multinomial distribution, of the j-th object πj whose prior is a
Dirichlet distribution parametrized by λ.

Similarly to the generative process of the original HDP (Teh
et al., 2006), the generative process of theMHDP can be described
as a Chinese restaurant franchise, which is the name of a special
type of probabilistic process in Bayesian nonparametrics (Teh
et al., 2005). The learning and recognition algorithms are both
derived using Gibbs sampling. In its learning process, the MHDP
estimates a latent variable tmjn for each feature of the j-th object

and a topic index kjt for each latent variable t. The combination
of latent variable and topic index corresponds to a topic in
LDA (Blei et al., 2003). Using the estimated latent variables, the
categorical distribution parameter θm

k
and topic proportion of the

j-th object πj are drawn from the posterior distribution.
The selection procedure for latent variable tmjn is as follows. The

prior probability that xmjn selects t is

P(tmjn = t|λ) =






∑
m wmNm

jt

λ+
∑

m wmNm
j −1

, (t = 1, · · · ,Tj),

λ
λ+

∑
m wmNm

j −1
, (t = Tj + 1),

where wm is a weight for the m-th modality, To balance the
influence of different modalities, wm are set as hyperparameters.
The weight wm increases the influence of the modality m on
multimodal category formation. Nm

jt is the number of m-th

modality observations that are allocated to t in the j-th object,

and λ is a hyperparameter. In the Chinese restaurant process,
if the number of observed features Njt =

∑
m wmNm

jt that

are allocated to t increases, the probability at which a new
observation is allocated to the latent variable t increases. Using
the prior distribution, the posterior probability that observation
xmjn is allocated to the latent variable t becomes

P(tmjn = t|Xm, λ) =
P(xmjn|X

m
k = kjt

)P(tmjn = t|λ)

P(xmjn|X
m \ {xmjn}, λ)

∝





P(xmjn|X

m
k = kjt

)

∑
m wmNm

jt

λ+
∑

m wmNm
j −1

, (t = 1, · · · ,Tj),

P(xmjn|X
m
k = kjt

) λ
λ+

∑
m wmNm

j −1
, (t = Tj + 1),

where Nm
j is the number of the m-th modality’s observations

about the j-th object. The set of observations that correspond
to the m-th modality and have the k-th topic in any object are
represented by Xm

k
.

In the Gibbs sampling procedure, a latent variable for each
observation is drawn from the posterior probability distribution.
If t = Tj + 1, a new observation is allocated to a new latent
variable. The dish selection procedure is as follows. The prior
probability that the k-th topic is allocated on the t-th latent
variable becomes

P(kjt = k|γ ) =

{
Mk

γ + M−1 , (k = 1, · · · ,K),
γ

γ + M−1 , (k = K + 1),

where K is the number of topic types, and Mk is the number of
latent variables on which the k-th topic is placed. Therefore, the
posterior probability that the k-th topic is allocated on the t-th
latent variable becomes

P(kjt = k|X, γ ) = P(Xjt|Xk)P(kjt = k|γ )

=

{
P(Xjt|Xk)

Mk
γ + M−1 , (k = 1, · · · ,K),

P(Xjt|Xk)
γ

γ + M−1 , (k = K + 1)

where X = ∪mX
m, Xk = ∪mX

m
k
, and Xjt is the set of the j-th

object’s observations allocated to the t-th latent variable. A topic
index for the latent variable t for the j-th object is drawn using the
posterior probability, where γ is a hyperparameter. If k = K + 1,
a new topic is placed on the latent variable.

By sampling tmjn and kjt , the Gibbs sampler performs

probabilistic object clustering:

tmjn ∼ P(tmjn|X
−mjn, λ), (1)

kjt ∼ P(kjt|X
−jt , γ ), (2)

where X−mjn = X \ {xmjn}, and X−jt = X \ Xjt . By sampling tmjn
for each observation in every object using (1) and sampling kjt
for each latent variable t in every object using (2), all of the latent
variables in the MHDP can be inferred.

If tmjn and kjt are given, the probability that the j-th object is

included in the k-th category becomes

P(k|Xj) =
6

Tj
t = 1δk(kjt)

∑
m wmNm

jt∑
m wmNm

j

, (3)
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FIGURE 2 | Graphical representation of an MHDP with M modalities corresponding to actions for perception.

where Xj = ∪mX
m
j , w

m is the weight for the m-th modality and

δa(x) is a delta function.
When a robot attempts to recognize a new object after the

learning phase, the probability that feature xmjn is generated from

the k-th topic becomes

P(xmjn|X
m
k ) =

wmNm
kxmjn
+ αm

0

wmNm
k
+ dmαm

0

,

where dm denotes the dimension of them-th modality input, and
Nm
kxmjn

represents the number of features xmjn that is corresponding

to the index k. Topic kt allocated to t for a new object is sampled
from

kt ∼ P(kjt = k|X, γ ) ∝ P(Xjt|Xk)
γ

γ +M − 1
.

These sampling procedures play an important role in the Monte
Carlo approximation of our proposed method (see section 4.2.).

For a more detailed explanation of the MHDP, please
refer to Nakamura et al. (2011b). Basically, a robot can
autonomously learn object categories and recognize new objects
using the multimodal categorization procedure described above.
The performance and effectiveness of the method was evaluated
in the paper.

4. ACTIVE PERCEPTION METHOD

4.1. Basic Formulation
A robot should have already conducted several actions and
obtained information from several modalities when it attempts to
select next action set for recognizing a target object. For example,
visual information can usually be obtained by looking at the
front face of the j-th object from a distance before interacting
with the object physically. We assume that a robot has already
obtained information corresponding to a subset of modalities
moj ⊂ M, where the subscript o means“originally” obtained
modality information. When a robot faces a new object and has
not obtained any information,moj = ∅.

The purpose of object recognition in multimodal
categorization is different from conventional supervised
learning-based pattern recognition problems. In supervised
learning, the recognition result is evaluated by checking
whether the output is the same as the truth label. However,
in unsupervised learning, there are basically no truth labels.
Therefore, the performance of active perception should be
measured in a different manner.

The action set the robot selects is described as A =

{a1, a2, . . . , aNA} ∈ 2M\mo j , where 2M\mo j is a family of subsets
of M \moj, i.e., A ⊂ M \ moj, ai ∈ M \ moj and NA

represents the number of available actions. We consider an
effective action set for active perception to be one that largely
reduces the distance between the final recognition state after
the information from all modalities M is obtained and the
recognition state after the robot executes the selected action setA.
The recognition state is represented by the posterior distribution

P(zj|X
mo j∪A

j ). Here, zj = {{kjt}1≤t≤Tj , {t
m
jn}m∈M,1≤n≤Nm

j
} is a

latent variable representing the j-th object’s topic information,
whereXA

j = ∪m∈AX
m
j ,X

m
j = {x

m
j1 , . . . , x

m
jn, . . . , x

m
jNm

j
}. Probability

P(zj|X
mo j∪A

j ) represents the posterior distribution related to the

object category after taking actionsmoj and A.
The final recognition state, i.e., posterior distribution

over latent variables after obtaining the information from
all modalities M, becomes P(zj|X

M
j ). The purpose of active

perception is to select a set of actions that can estimate the
posterior distribution most accurately. When L actions can be
executed, if we employ KL divergence as the metric of the
difference between the two probability distributions,

minimize
A∈F

mo j
L

KL
(
P(zj|X

M
j ), P(zj|X

mo j∪A

j )
)

(4)

is a reasonable evaluation criterion for realizing effective active

perception, where F
mo j

L = {A|A ⊂ M \moj,NA ≤ L} is a feasible
set of actions.

However, neither the true XM
j nor X

mo j∪A

j can be observed

before taking A on the j-th target object, and hence cannot be
used at the moment of action selection. Therefore, a rational
alternative for the evaluation criterion is the expected value of
the KL divergence at the moment of action selection:

minimize
A∈F

mo j
L

E
X
M\mo j
j |X

mo j
j

[KL
(
P(zj|X

M
j ), P(zj|X

mo j∪A

j )
)
]. (5)

Here, we propose to use the IG maximization criterion to select
the next action set for active perception:

A∗j = argmax

A∈F
mo j
L

IG(zj;X
A
j |X

mo j

j ) (6)

= argmin

A∈F
mo j
L

E
XA
j |X

mo j
j

[KL
(
P(zj|X

mo j∪A

j ), P(zj|X
mo j

j )
)
], (7)
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where IG(X;Y|Z) is the IG of Y for X, which is calculated on the
basis of the probability distribution commonly conditioned by Z
as follows:

IG(X;Y|Z) = KL
(
P(X,Y|Z), P(X|Z)P(Y|Z)

)
.

By definition, the expected KL divergence is the same as IG(X;Y).
The definition of IG and its relation to KL divergence are as
follows.

IG(X;Y) = H(X)−H(X|Y)

= KL
(
P(X,Y), P(X)P(Y)

)

= EY [KL
(
P(X|Y), P(X)

)
].

The optimality of the proposed criterion (6) is supported by
Theorem 1.

Theorem 1. The set of next actions A ∈ F
mo j

L that maximizes the

IG(zj;X
A
j |X

mo j

j ) minimizes the expected KL divergence between

the posterior distribution over zj after all modality information has
been observed and after A has been executed.

argmin

A∈F
mo j
L

E
X
M\mo j
j |X

mo j
j

[KL
(
P(zj|X

M
j ), P(zj|X

mo j∪A

j )
)
]

= argmax

A∈F
mo j
L

IG(zj;X
A
j |X

mo j

j )

Proof: See Appendix A.

This theorem is essentially the result of well-known
characteristics of IG (see MacKay, 2003; Russo and Van Roy,
2016 for example). This means that maximizing IG is the optimal
policy for active perception in an MHDP-based multimodal
object category recognition task. As a special case, when only a
single action is permitted, the following corollary is satisfied.

Corollary 1.1. The next action m ∈ M \ moj that maximizes

IG(zj;X
m
j |X

mo j

j ) minimizes the expected KL divergence between

the posterior distribution over zj after all modality information has
been observed and after the action has been executed.

argmin
m∈M\mo j

E
X
M\mo j
j |X

mo j
j

[KL
(
P(zj|X

M
j ), P(zj|X

{m}∪mo j

j )
)
]

= argmax
m∈M\mo j

IG(zj;X
m
j |X

mo j

j ). (8)

Proof: By substituting {m} into A in Theorem 1, we can obtain
the corollary.

Using IG, the active perception strategy for the next single action
is simply described as follows:

m∗j = argmax
m∈M\mo j

IG(zj;X
m
j |X

mo j

j ). (9)

This means that the robot should select the action m∗j that can

obtain the X
m∗j
j that maximizes the IG for the recognition result

zj under the condition that the robot has already observed X
mo j

j .

However, we still have two problems, as follows.

1. The argmax operation in (6) is a combinatorial optimization
problem and incurs heavy computational cost when #(M\moj)
and L become large.

2. The calculation of IG(zj;X
A
j |X

mo j

j ) cannot be performed in a

straightforward manner.

Based on some properties of theMHDP, we can obtain reasonable
solutions for these two problems.

4.2. Sequential Decision Making as a

Submodular Maximization
If a robot wants to select L actions Aj = {a1, a2, . . . , aL} (ai ∈
M \ moj), it has to solve (6), i.e., a combinatorial optimization
problem. The number of combinations of L actions is #(M\mo j)CL,

which increases dramatically when the number of possible
actions #(M \ moj) and L increase. For example, Sinapov et al.
(2014) gave a robot 10 different behaviors in their experiment on
robotic multimodal categorization. Future autonomous robots
will have more available actions for interacting with a target
object and be able to obtain additional types of modality
information through these interactions. Hence, it is important to
develop an efficient solution for the combinatorial optimization
problem.

Here, the MHDP has advantages for solving this problem.

Theorem 2. The evaluation criterion for multimodal active

perception IG(zj;X
A
j |X

mo j

j ) is a submodular and non-decreasing

function with regard to A.

Proof: As shown in the graphical model of the MHDP in
Figure 2, the observations for eachmodalityXm

j are conditionally

independent under the condition that a set of latent variables
zj = {{kjt}1≤t≤Tj , {t

m
jn}m∈M,1≤n≤Nm

j
}is given. This satisfies the

conditions of the theorem by Krause and Guestrin (2005).

Therefore, IG(zj;X
m
j |X

mo j

j ) is a submodular and non-decreasing

function with regard to Xm
j .

Submodularity is a property similar to the convexity of a real-
valued function in a vector space. If a set function F :V → R
satisfies

F(A ∪ x)− F(A) ≥ F(A′ ∪ x)− F(A′),

where V is a finite set ∀A ⊂ A′ ⊆ V and x /∈ A, the set function
F has submodularity and is called a submodular function.

Function IG is not always a submodular function. However,
Krause et al. proved that IG(U;A) is submodular and non-
decreasing with regard to A ⊆ S if all of the elements of S are
conditionally independent under the condition that U is given.
With this theorem, Krause and Guestrin (2005) solved the sensor
allocation problem efficiently. Theorem 2means that the problem
(6) is reduced to a submodular maximization problem.

It is known that the greedy algorithm is an efficient strategy
for the submodular maximization problem. Nemhauser et al.
(1978) proved that the greedy algorithm can select a subset
that is at most a constant factor (1 − 1/e) worse than the
optimal set, if the evaluation function F(A) is submodular, non-
decreasing, and F(∅) = 0, where F(·) is a set function, and A
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is a set. If the evaluation function is a submodular set function,
a greedy algorithm is practically sufficient for selecting subsets
in many cases. In sum, a greedy algorithm gives a near-optimal
solution. However, the greedy algorithm is still inefficient because
it requires an evaluation of all choices at each step of a sequential
decision making process.

Minoux (1978) proposed lazy greedy algorithm to make the
greedy algorithm more efficient for the submodular evaluation
function. The lazy greedy algorithm can reduce the number
of evaluations by using the characteristics of a submodular
function.

4.3. Monte Carlo Approximation of IG
Equations (6) and (9) provide a robot with an appropriate
criterion for selecting an action to efficiently recognize a target
object. However, at first glance, it looks difficult to calculate
the IG. First, the calculation of the expectation procedure
E
XA
j |X

mo j
j

[·] requires a sum operation over all possible XA
j . The

number of possible XA
j exponentially increases when the number

of elements in the BoF increases. Second, the calculation of

P(zj|X
A∪mo j

j ) for each possible observation XA
j requires the

same computational cost as recognition in the multimodal
categorization itself. Therefore, the straightforward calculation
for solving (9) is computationally impossible in a practical
sense.

However, by exploiting a characteristic property of theMHDP,
a Monte Carlo approximation can be derived. First, we describe
IG as the expectation of a logarithm term.

IG(zj;X
m
j |X

mo j

j ) =
∑

zj , X
m
j

P(zj,X
m
j |X

mo j

j ) log
P(zj,X

m
j |X

mo j

j )

P(zj|X
mo j

j )P(Xm
j |X

mo j

j )

= E
zj , X

m
j |X

mo j
j

[
log

P(zj,X
m
j |X

mo j

j )

P(zj|X
mo j

j )P(Xm
j |X

mo j

j )

]
. (10)

An analytic evaluation of (10) is also practically impossible.
Therefore, we adopt a Monte Carlo method. Equation (10)
suggests that an efficient Monte Carlo approximation can be
performed as shown below if we can sample

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j ), (k ∈ {1, . . . ,K}).

Fortunately, the MHDP provides a sampling procedure for

z
[k]
j ∼ P(zj|X

mo j

j ) and X
m[k]
j ∼ P(Xm

j |z
[k]
j ) in its original

paper (Nakamura et al., 2011b). In the context of multimodal

categorization by a robot, X
m[k]
j ∼ P(Xm

j |z
[k]
j ) is a prediction of

an unobserved modality’s sensation using observed modalities’
sensations, i.e., cross-modal inference. The sampling process

of (z
[k]
j ,X

m[k]
j ) can be regarded as a mental simulation by a

robot that predicts the unobserved modality’s sensation leading
to a categorization result based on the predicted sensation and

observed information.

(10) ≈
1

K

∑

k

log
P(z

[k]
j ,X

m[k]
j |X

mo j

j )

P(z
[k]
j |X

mo j

j )P(X
m[k]
j |X

mo j

j )

=
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

P(X
m[k]
j |X

mo j

j )
︸ ︷︷ ︸

∗

. (11)

In (11), P(X
m[k]
j |z

[k]
j ,X

mo j

j ) in the numerator can be easily

calculated because all the parent nodes of X
m[k]
j are given in the

graphical model shown in Figure 2. However, P(X
m[k]
j |X

mo j

j ) in

the denominator cannot be evaluated in a straightforward way.
Again, a Monte Carlo method can be adopted, as follows:

(∗) = P(X
m[k]
j |X

mo j

j ) =
∑

zj

P(X
m[k]
j |zj,X

mo j

j )P(zj|X
mo j

j )

= E
zj|X

mo j
j

[P(X
m[k]
j |zj,X

mo j

j )]

≈
1

K ′

∑

k′

P(X
m[k]
j |z

[k′]
j ,X

mo j

j ) (12)

where K ′ is the number of samples for the second Monte Carlo
approximation. Fortunately, in this Monte Carlo approximation
(12), we can reuse the samples drawn in the previous Monte
Carlo approximation efficiently, i.e., K ′ = K. By substituting (12)
for (11), we finally obtain the approximate IG for the criterion of
active perception, i.e., our proposed method, as follows:

IG(zj;X
m
j |X

mo j

j ) ≈
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑
k′ P(X

m[k]
j |z

[k′]
j ,X

mo j

j )
.

Note that the computational cost for evaluating IG becomes
O(K2). In summary, a robot can approximately estimate the
IG for unobserved modality information by generating virtual
observations based on observed data and evaluating their
likelihood.

4.4. MHDP-Based Active Perception

Methods
We propose the use of the greedy and lazy greedy algorithms for
selecting L actions to recognize a target object on the basis of
the submodular property of IG. The final greedy and lazy greedy
algorithms for MHDP-based active perception, i.e., our proposed
methods, are shown in Algorithms 1 and 2, respectively.

The main contribution of the lazy greedy algorithm is to
reduce the computational cost of active perception. The majority
of the computational cost originates from the number of times
a robot evaluates IGm for determining action sequences. When
a robot has to choose L actions, the brute-force algorithm that

directly evaluates all alternatives A ∈ F
mo j

L using (6) requires

#(M\mo j)CL evaluations of IG(zj;X
A
j |X

mo j

j ). In contrast, the greedy

algorithm requires {#(M \moj) + (#(M \moj) − 1) + . . . +
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Algorithm 1 Greedy algorithm.

Require: MHDP is trained using a training data set.
The j-th object is found.

moj is initialized, and X
mo j

j is observed.

for l = 1 to L do

for allm ∈ M \moj do

for k = 1 to K do

Draw

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j )

end for

IGm ←
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑
k′ P(X

m[k]
j |z

[k′]
j ,X

mo j

j )

end for

m∗← argmax
m

IGm

Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

end for

(#(M \moj)−L+1)} evaluations of IG(zj;X
m
j |X

mo j

j ), i.e.,O(ML).

The lazy greedy algorithm incurs the same computational cost as
the greedy algorithm only in the worst case. However, practically,
the number of re-evaluations in the lazy greedy algorithm
is quite small. Therefore, the computational cost of the lazy
greedy algorithm increases almost in proportion to L, i.e., almost
linearly. The memory requirement of the proposed method is
also quite small. Both the greedy and lazy greedy algorithms only
require memory for IGm for each modality and K samples for the
Monte Carlo approximation. These requirements are negligibly
small compared with the MHDP itself.

Note that the IGm is not the exact IG, but an approximation.
Therefore, the differences between IG and IGm may harm the
performance of greedy and lazy greedy algorithms to a certain
extent. However, the algorithms are expected to work practically.
We evaluated the algorithms through experiments.

5. EXPERIMENT 1: HUMANOID ROBOT

5.1. Conditions
An experiment using an upper-torso humanoid robot was
conducted to verify the proposed active perception method
in the real-world environment. In this experiment, RIC-
Torso, developed by the RT Corporation, was used (see
Figure 3). RIC-Torso is an upper-torso humanoid robot
that has two robot hands. We prepared an experimental
environment that is similar to the one in the original MHDP
paper (Nakamura et al., 2011b). The robot has four available

Algorithm 2 Lazy greedy algorithm.

Require: The MHDP is trained using a training data set.
The j-th object is found.

moj is initialized, and X
mo j

j is observed.
for allm ∈ M \moj do

for k = 1 to K do

Draw

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j )

end for

IGm ←
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑
k′ P(X

m[k]
j |z

[k′]
j ,X

mo j

j )

end for

m∗ ← argmax
m

IGm

Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

Prepare a stack S for the modality indices and initialize it.
for allm ∈ M \moj do

push(S, (m, IGm))
end for

for l = 1 to L− 1 do
repeat

S← descending_sort(S) // w.r.t. IGm

(m1, IGm1 )← pop(S) , (m2, IGm2 )← pop(S)
// Re-evaluate IGm1 as follows.
for k = 1 to K do

Draw

(z
[k]
j ,X

m1[k]
j ) ∼ P(zj,X

m1

j |X
mo j

j )

end for

IGm1 ←
1

K

∑

k

log
P(X

m1[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑
k′ P(X

m1[k]
j |z

[k′]
j ,X

mo j

j )

push(S, (m2, IGm2 )), push(S, (m1, IGm1 ))
until IGm1 ≥ IGm2

m∗ ← m1

pop(S)
Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

end for

actions and four corresponding modality information. The set
of modalities was M = {mv,mas,mah,mh}, which represent
visual information, auditory information obtained by shaking
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an object, one by hitting an object and haptic information,
respectively.

5.1.1. Visual Information (mv)
Visual information was obtained from the Xtion PRO LIVE set
on the head of the robot. The camera was regarded as the eyes of
the robot. The robot captured 74 images of a target object while it
rotated on a turntable (see Figure 3). The size of each image was
re-sized to 320 × 240. Scale-invariant feature transform (SIFT)
feature vectors were extracted from each captured image (Lowe,
2004). A certain number of 128-dimensional feature vectors
were obtained from each image. Note that the SIFT feature
did not consider hue information. All of the obtained feature
vectors were transformed into BoF representations using k-
means clustering with k = 25. The number of clusters k
was determined empirically, considering prior works (Nakamura
et al., 2011b; Araki et al., 2012). The k-means clustering was
performed using data from all objects in a training set, and the
centroids of the clusters were determined. BoF representations
were used as observation data for the visual modality of the
MHDP. The index for this modality was defined asmv.

5.1.2. Auditory Information (mas and mah)
Auditory information was obtained from a multipowered
shotgun microphone NTG-2 by RODE Microphone. The
microphone was regarded as the ear of the robot. In this
experiment, two types of auditory information were acquired.
One was generated by hitting the object, and the other was
generated by shaking it. The two sounds were regarded as
different auditory information and hence different modality
observations in the MHDP model. The two actions, i.e., hitting
and shaking, were manually programmed for the robot. Each
action was implemented as a fixed trajectory. When the robot
began to execute an action, it also started recording the
objects’s sound (see Figure 3). The sound was recorded until
two seconds after the robot finished the action. The recorded
auditory data were temporally divided into frames, and each
frame was transformed into 13-dimensional Mel-frequency
cepstral coefficients (MFCCs). The MFCC feature vectors were
transformed into BoF representations using k-means clustering

FIGURE 3 | A humanoid robot used in the experiment.

with k = 25 in the same way as the visual information.
The indices of these modalities were defined as mas and mah,
respectively, for “shake” and “hit.”

5.1.3. Haptic Information (mh)
Haptic information was obtained by grasping a target object
using the robot’s hand. When the robot attempted to obtain
haptic information from an object placed in front of it, it moved
its hand to the object and gradually closed its hand until a certain
amount of counterforce was detected (see Figure 3). The joint
angle of the hand was measured when the hand touched the
target object and when the hand stopped. The two variables
and difference between the two angles were used as a three-
dimensional feature vector. When obtaining haptic information,
the robot grasped the target object 10 times and obtained 10
feature vectors. The feature vectors were transformed into BoF
representations using k-means clustering with k = 5 in the same
way as for the other information types. The index of the haptic
modality was defined asmh.

5.1.4. Multimodal Information as BoF

Representations
In summary, a robot could obtain multimodal information from
four modalities for perception. The dimensions of the BoFs were
set to 25, 25, 25, and 5 formv,mas,mah, andmh, respectively. The
dimension of each BoF corresponds to the number of clusters
for k-means clustering. The numbers of clusters, i.e., the sizes
of the dictionaries, were empirically determined on the basis of
a preliminary experiment on multimodal categorization. All of
the training datasets were used to train the dictionaries. The
histograms of the feature vectors, i.e., the BoFs, were resampled

to make their counts Nmv

j = 100,Nmas

j = 80,Nmah

j = 130,

and Nmh

j = 30. The weight of each modality wm was set to 1.

The formation of multimodal object categories itself is out of the
scope of this paper. Therefore, the constants were empirically
determined so that the robot could form object categories that
are similar to human participants. The number of samples K in
the Monte Carlo approximation for estimating IG was set to K =
5, 000. The constant K was determined empirically. The effect of
K will be examined in the experiment as well (see Figure 11).

5.1.5. Target Objects
For the target objects, 17 types of commodities were prepared
for the experiment shown in Figure 4. An object was provided
for obtaining a training data, i.e., data for object categorization,
and another object was provided for obtaining test data, i.e., data
for active perception, for each type of objects. Each index on the
right-hand side of the figure indicates the index of each object.
The hardness of the balls, the striking sounds of the cups, and the
sounds made while shaking the bottles were different depending
on the object categories. Therefore, ground-truth categorization
could not be achieved using visual information alone.

5.2. Procedure
The experimental procedure was as follows. First, the robot
formed object categories through multimodal categorization in
an unsupervised manner. An experimenter placed each object
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FIGURE 4 | (Left) target objects used in the experiment and (Right) categorization results obtained in the experiment.

in front of the robot one by one. In this training phase, two
objects for each type of objects were provided. The robot looked
at the object to obtain visual features, grasped it to obtain haptic
features, shook it to obtain auditory shaking features, and hit
it to obtain the auditory striking features. After obtaining the
multimodal information of the objects as a training data set,
the MHDP was trained using a Gibbs sampler. The results of
multimodal categorization are shown in Figure 4. The category
that has the highest posterior probability for each object is shown
in white. These results show that the robot can form multimodal
object categories using MHDP, as described in Nakamura et al.
(2011b). After the robot had formed object categories, we fixed
the latent variables for the training data set3.

Second, an experimental procedure for active perception was
conducted. An experimenter placed an object in front of the
robot. The robot observed the object using its camera, obtained
visual information, and setmoj = {m

v}. An object was provided
for each type of objects shown in Figure 4 to the robot one by
one. Therefore, 17 objects were used for evaluating each active
perception strategy. The sequential action selection and object
recognition were performed once per an object. At each step of
the sequential action selection, Gibbs sampler for MHDP was
performed and it updated its latent variables, i.e., recognition
state, of the MHDP. The robot then determined its next set
of actions for recognizing the target object using its active
perception strategy shown in Algorithms 1 and 2.

5.3. Results
5.3.1. Selecting the Next Action
First, we describe results for the first single action selection
after obtaining visual information. In this experiment, the

3The collected datasets for this experiment can be found in GitHub: https://github.

com/tanichu/data-active-perception-hmdp

robot had three choices for its next action, i.e., mas, mah,
and mh. To evaluate the results of active perception, we

used KL
(
P(k|XM

j ), P(k|X
A∪mo j

j )
)
, i.e., the distance between

the posterior distribution over the object categories
k in the final recognition state and that in the next
recognition state as an evaluation criterion on behalf of

KL
(
P(zj|X

M
j ), P(zj|X

A∪mo j

j )
)
, which is the original evaluation

criterion in (4). The computational cost for numerical evaluation

of KL
(
P(zj|X

M
j ), P(zj|X

A∪mo j

j )
)
using a Monte Carlo method

is too high because zj = {{kjt}1≤t≤Tj , {t
m
jn}m∈M,1≤n≤Nm

j
} has

so many variables and a posterior distributions over zj is very
complex.

Figure 5 (Top) shows samples of the KL divergence between
the posterior probabilities of the category after obtaining the
information from all modalities and after obtaining only visual
information.

With regard to some objects, e.g., objects 6 and 7, the
figure shows samples of that visual information seems to be
sufficient for the robot to recognize the objects as compared
the other objects4. However, with regard to many objects,
visual information alone could not lead the recognition state
to the final state. However, it could be reached using the
information of all modalities. Figure 5 (Middle) shows samples
of IGm calculated using the visual information for each action.
Figure 5 (Bottom) shows the KL divergence between the final
recognition state and the posterior probability estimated after
obtaining visual information and the information of each selected
action. We observe that an action with a higher value of IGm

tended to further reduce the KL divergence, as Theorem 1

4Note that currently we don’t have a good criteria of KL divergence to determine

whether performing further actions are necessary or not.
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FIGURE 5 | (Top) Samples of KL divergence between the final recognition state and the posterior probability estimated after obtaining only visual information,

(Middle) samples of estimated IGm for each object based on visual information (v), and (Bottom) samples of KL divergence between the final recognition state and

the posterior probability estimated after obtaining only visual information and each selected action where as, ah, h represent represent auditory information obtained

by shaking an object, one by hitting an object and haptic information, respectively. Our theory of multimodal active perception suggests that the action with the

highest information gain (shown in the middle) tends to lead its initial recognition state (whose KL divergence from the final recognition state is shown at the top) to a

recognition state whose KL divergence from the final recognition state (shown at the bottom) is the smallest. These figures suggest the probabilistic relationships were

satisfied as a whole.

suggests. Figure 6 shows the average KL divergence for the final
recognition state after executing an action selected by the IGm

criterion. Actions IG .min, IG .mid, and IG .max denote actions
that have the minimum, middle, and maximum values of IGm,
respectively. These results show that IG .max clearly reduced the
uncertainty of the target objects.

The precision of category recognition after an action
execution is summarized in Table 1. Basically, a category
recognition result is obtained as the posterior distribution (3) in
the MHDP. The category with the highest posterior probability
is considered to be the recognition result for illustrative purposes
in Table 1. Obtaining information by executing IG .max almost
always increased recognition performance.

Examples of changes in the posterior distribution are shown
in Figure 7 (Left, Right) for objects 8 (“metal cup”) and
12 (“empty plastic bottle”), respectively. The robot could not
clearly recognize the category of object 8 after obtaining visual
information. Action IGm in Figure 5 shows thatmah was IG .max

for the 8th object. Figure 7 (Left) shows that mah reduced the
uncertainty and allowed the robot to correctly recognize the
object, as evidenced by category 6, a metal cup. This means
that the robot noticed that the target object was a metal cup
by hitting it and listening to its metallic sound. The metal cup
did not make a sound when the robot shook it. Therefore, the
IG for mas was small. As Figure 7 (Right) shows, the robot first
recognized the 12th object as a plastic bottle containing bells
with high probability and as an empty plastic bottle with a low
probability. Figure 5 shows that the IGm criterion suggestedmah

as the first alternative andmas as the second alternative. Figure 7
(Right) shows that mas and mah could determine that the target
object was an empty plastic bottle, butmh could not.

As humans, we would expect to differentiate an empty
bottle from a bottle containing bells by shaking or hitting
the bottle, and differentiate a metal cup from a plastic
cup by hitting it. The proposed active perception method
constructively reproduced this behavior in a robotic system
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FIGURE 6 | Reduction in the KL divergence by executing an action selected

on the basis of the IGm maximization criterion. The KL divergences between

the recognition state after executing the second action and the final

recognition state are calculated for all objects and shown with box plot. This

shows that an action with more information brings the recognition of its state

closer to the final recognition state.

TABLE 1 | Number of successfully recognized objects.

v only v+IG.min v+IG.mid v+IG.max Full information

8/17 11/17 15/17 16/17 17/17

using an unsupervised multimodal machine learning
approach.

5.3.2. Selecting the Next Set of Multiple Actions
We evaluated the greedy and lazy greedy algorithms for active
perception sequential decision making. The KL divergence from
the final state for all target objects is averaged at each step
and shown in Figure 8. For each condition, the KL divergence
gradually decreased and reached almost zero. However, the
rate of decrease notably differed. As the theory of submodular
optimization suggests, the greedy algorithm was shown to be
a better solution on average and slightly worse than the best
case (Nemhauser et al., 1978). The best and worst cases were
selected after all types of sequential actions had been performed.
The “average” is the average of the KL divergence obtained by all
possible types of sequential actions. The results for the lazy greedy
algorithm were almost same as those of the greedy algorithm, as
Minoux (1978) suggested.

The sequential behaviors of IGm were observed to determine
if their behaviors were consistent with our theories. For example,
the changes in IGm at each step as the robot sequentially selected
its action to perform on object 10 using the greedy algorithm is
shown in Figure 9. Theorem 2 shows that the IG is a submodular
function. This predicts that IGm decreases monotonically when
a new action is executed in active perception. When the robot
obtained only visual information (v only in Figure 9), all values
of IGm were still large. Aftermah was executed on the basis of the

greedy algorithm, IGmah became zero. At the same time, IGmas

and IGmh decreased. In the same way, all values of IGm gradually
decreased monotonically.

Figure 10 shows the time series of the posterior probability
of the category for object 10 during sequential active perception.
Using only visual information, the robot misclassified the target
object as a plastic bottle containing bells (category 3). The action
sequence in reverse order did not allow the robot to recognize the
object as a steel can at its first step and change its recognition state
to an empty plastic bottle (category 4). After the second action,
i.e., grasping (mh), the robot recognized the object as a steel can.
In contrast, the greedy algorithm could determine that the target
object was in category 4, i.e., steel can, with its first action.

The effect of the number of samples K for the Monte
Carlo approximation was observed. Figure 11 shows the relation
between K and the standard deviation of the estimated IGm for
the 15th object for each action after obtaining a visual image.
This figure shows that estimation error gradually decreases
when K increases. Roughly speaking, K ≥ 1, 000 seems to be
required for an appropriate estimate of IGm in our experimental
setting. Evaluation of IGm required less than 1 second, which
is far shorter than the time required for action execution by a
robot. This means that our method can be used in a real-time
manner.

These empirical results show that the proposed method for
active perception allowed a robot to select appropriate actions
sequentially to recognize an object in the real-world environment
and in a real-time manner. It was shown that the theoretical
results were supported, even in the real-world environment.

6. EXPERIMENT 2: SYNTHETIC DATA

In experiment 1, the numbers of classes, actions, and modalities
as well as the size of dataset were limited. In addition, it was
difficult to control the robotic experimental settings so as to
check some interesting theoretical properties of our proposed
method. Therefore, we performed a supplemental experiment,
Experiment 2, using synthetic data comprising 21 object types,
63 objects, and 20 actions, i.e., modalities.

First, we checked the validity of our active perception method
when the number of types of actions increases. Second, we
checked how the method worked when two classes were assigned
to the same object. Although the MHDP can categorize an
object into two or more categories in a probabilistic manner,
each object was classified into a single category in the previous
experiment.

6.1. Conditions
A synthetic dataset was generated using the generative model that
the MHDP assumes (see Figure 2). We prepared 21 virtual object
classes, and three objects were generated from each object class,
i.e., we obtained 63 objects in total. Among the object classes, 14
object classes are “pure,” and seven object classes are “mixed.”
For each pure object class, a multinomial distribution was drawn
from the Dirichlet distribution corresponding to each modality.
We set the number of modalities M = 20. The hyperparameters
of the Dirichlet distributions of the modalities were set to αm

0 =
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FIGURE 7 | (Left) Posterior probability of the category for object 8 after executing each action. These results show that the action with the highest information gain,

i.e., ah, allowed the robot to efficiently estimate that the true object category was “metal cup”. (Right) Posterior probability of the category for object 12 after

executing each action. These results show that the actions with the highest and second highest information gain, i.e., ah and as, allowed the robot to efficiently

estimate that the true object category was “empty plastic bottle”.

FIGURE 8 | KL divergence from the final state at each step for each sequential

action selection procedure. Note that the line of the lazy greedy algorithm is

overlapped by that of the greedy algorithm.

0.4(m − 1) for m > 1. For m = 1, we set α1
0 = 10. For each

mixed object class, a multinomial distribution for each modality
was prepared by mixing the distributions of the two pure object
classes. Specifically, the multinomial distribution for the i-th
mixed object was obtained by averaging those of the (2i − 1)-th
and the 2i-th object classes. The observations for each modality
of each object were drawn from the multinomial distributions
corresponding to the object’s class. The count of the BoFs for
each modality was set to 20. Finally, 42 pure virtual objects and
21 mixed virtual objects were generated.

The experiment was performed almost in the same way as
experiment 1. First, multimodal categorization was performed
for the 63 virtual objects, and 14 categories were successfully
formed in an unsupervised manner. The posterior distributions
over the object categories are shown in Figure 12. Generally
speaking, mixed objects were categorized into two or more
classes. After categorization, a virtual robot was asked to
recognize all of the target objects using the proposed active
perception method.

6.2. Results
We compared the greedy, lazy greedy, and random algorithms
for the active perception sequential decision making process. The
random algorithm is a baseline method that determines the next
action randomly from the remaining actions that have not been

FIGURE 9 | IGm at each step for object 10 when the greedy algorithm is

used.

FIGURE 10 | Time series of the posterior probability of the category for object

10 during sequential action selection based on (top) the greedy algorithm, i.e.,

mah → mh → mas, and (bottom) its reverse order , i.e., mas → mh → mah.

taken. In other words, the random algorithm is the case in which
a robot does not employ any active perception algorithms.

The KL divergence from the final state for all target objects
is averaged at each step and shown in Figure 13. For each
condition, the KL divergence gradually decreased and reached
almost zero. However, the rate of decrease was different. The
greedy and lazy greedy algorithms were clearly shown to be better
solutions on average than the random algorithm. In contrast
with experiment 1, the best and worst cases could not practically
be calculated because of the prohibitive computational cost.
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Interestingly, the lazy greedy algorithm has almost the same
performance as the greedy algorithm, as the theory suggests,
although the laziness reduced the computational cost in reality.

FIGURE 11 | Standard deviation of the estimated information gain IGm for the

15th object. For each K, 100 values of the estimated information gain IGm

were obtained, and their standard deviation is shown.

FIGURE 12 | Categorization results for the posterior probability distributions

for each object.

FIGURE 13 | KL divergence from the final state at each step for each

sequential action selection procedure.

The number of times the robot evaluated IGm to determine
the action sequences for all executable counts of actions L =
1, 2, . . . ,M is summarized for each method. The number of times
the lazy greedy algorithm was required for each target object was
71.7 (SD = 5.2) on average, and that of the greedy algorithm was
190. Theoretically, the greedy and lazy greedy algorithms require
O(M2) evaluations. Practically, the number of re-evaluations
needed by the lazy greedy algorithm is quite small. In contrast, the
brute-force algorithm requires O(2M) evaluations, i.e., far more
evaluations of IG are required.

Next, a case in which two classes were assigned to the same
object was investigated. The target dataset contained “mixed”
objects. The results also imply that our method works well even
when two classes are assigned to the same object. This is because
our theory is completely derived on the basis of the probabilistic
generative model, i.e., the MHDP. We show a typical result.
Figure 14 shows the time series of the posterior probability
of the category for object 51, i.e., one of the mixed objects,
during sequential active perception. This shows that the greedy
and lazy greedy algorithms quickly categorized the target object
into two categories “correctly.” Our formulation assumes the
categorization result to be a posterior distribution. Therefore, this
type of probabilistic case can be treated naturally.

7. CONCLUSION AND DISCUSSION

In this paper, we described an MHDP-based active perception
method for robotic multimodal object category recognition. We
formulated a new active perception method on the basis of the
MHDP (Nakamura et al., 2011b) .

First, we proposed an action selection method based on the
IG criterion and showed that IG is an optimal criterion for
active perception from the viewpoint of reducing the expected

FIGURE 14 | Time series of the posterior probability of the category for object

51 during sequential action selection based on (Top) the greedy algorithm,

(Middle) the lazy greedy algorithm, and (Bottom) the random selection

procedure.
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KL divergence between the final and current recognition states.
Second, we proved that the IG has a submodular property
and reduced the sequential active perception problem to a
submodular maximization problem. Third, we derived a Monte
Carlo approximation method for evaluating IG efficiently
and made the action selection method executable. Given the
theoretical results, we proposed to use the greedy and lazy greedy
algorithms for selecting a set of actions for active perception. It
is important to note that all of the three theoretical contributions
mentioned above were naturally derived from the characteristics
of the MHDP. These contributions are clearly a result of the
theoretical soundness of the MHDP. In this sense, our theorems
reveal a new advantage of the MHDP that other several heuristic
multimodal object categorization methods do not have.

To evaluate the proposed methods empirically, we conducted
experiments using an upper-torso humanoid robot and a
synthetic dataset. Our results showed that the method enables
the robot to actively select actions and recognize target objects
quickly and accurately.

One of the most interesting points of this paper is that not
only object categories but also an action selection for object
recognition can be formed in an unsupervised manner. From
the viewpoint of cognitive developmental robotics, providing
an unsupervised learning model for bridging the development
between perceptual and action systems is meaningful for
shedding a new light on the computational understanding
of cognitive development (Asada et al., 2009; Cangelosi
and Schlesinger, 2015). It is believed that the coupling of
action and perception is important for an embodied cognitive
system (Pfeifer and Scheier, 2001).

The advantage of this paper compared with the related works
in robotics is that our action selection method for multimodal
category recognition has a clear theoretical basis and is tightly
connected to the computational model for multimodal object
categorization, i.e., MHDP. The theoretical basis gives the
method preferable characteristics, i.e., theoretical guarantee.

However, note that the theoretical guarantee is satisfied only
when IG is correctly estimated. We assumed that outcome of
each action is deterministic and fully observable when we apply
the theory of submodular optimization to active perception
in multimodal categorization. However, observations Xm and
IG are measured somehow probabilistically because of real-
world uncertainty andMonte Carlo approximation. For example,
IG is approximately estimated at each step of the greedy and
lazy greedy algorithms. Theoretically, given this approximation
in evaluating the objective being maximized, the (1 − 1/e)
bound no longer holds. Streeter et al. proposed to introduce an
additional penalty based on a function approximation (Streeter
and Golovin, 2009). Golovin et al. extended submodularity to
adaptive submodularity to consider stochastic property (Golovin
and Krause, 2011). Though we discussed the proposed method
from the viewpoint of submodular optimization, this algorithm
can be regarded as a version of the sequential information
maximization, more specifically (Chen et al., 2015). Extending
our idea by referring the adaptive submodularity and/or the
sequential information maximization, and update our method is
our future challenge.

We assumed that each action requires same cost, and tried
to reduce the number of actions in active perception, i.e.,
to maximize the performance of perception with the fixed
number of actions. However, practically, each action, e.g.,
shake, hit and look at, requires different duration and different
energy. Therefore, practical cost is not always the number of
actions, but total cost of actions. Zhang et al. (2017) tried to
deal with this problem in the context of multimodal object
identification. This problem leads us a knapsack problem-like
formulation. This type of submodular optimization has been
studied by many researchers (Streeter and Golovin, 2009; Zhou
et al., 2013). Our method will be able to be extended in the similar
way.

In addition to active perception, active “learning/exploration”
for multimodal categorization is also an important research
topic. It takes a longer time for a robot to gather multimodal
information to formmultimodal object categories from amassive
number of daily objects than it does to recognize a new object.
If a robot can notice that “the object is obviously a sample
of learned category,” the robot need not obtain knowledge
about object categories from such an object. In contrast, if
a target object appears to be completely new to the robot,
the robot should carefully interact with the object to obtain
multimodal information from the object. Such a scenario will be
achieved by developing an active “learning/exploration” method
for multimodal categorization. It is likely that such a method
will be able to be obtained by extending our proposed active
perception method.

Considering more complex categorization scenario is our
future challenge. For example, Schenck et al. (2014) is dealing
with the more complex categorization scenario, i.e., 36 plastic
containers with identical shape and 3 colors, 4 types of contents,
and 3 different amounts of those contents. In this paper, we used
MHDP which assumes an object is classified into a single object
category and infers the posterior distribution over categories.
When we consider human cognition, we can find that object
categories have more complex characteristics. For example,
object categories have a hierarchical structure, an object is
categorized into several classes, and they have different modality-
dependency based on the types of categories. Unsupervised
machine learning methods for such complex categorization
problem have proposed by several researchers based on
hierarchical Bayesian models (Griffiths and Ghahramani, 2006;
Ando et al., 2013; Nakamura et al., 2015). Theoretically, the
main assumption we used was that the MHDP is a hierarchical
Bayesian model and action selection is corresponding to
obtaining an observation which is a probabilistic variable on the
leaf node of its graphical model. Therefore, by applying the same
idea to the more complex categorization methods, we will be able
to extend our theory to more complex categorization problems.
This is on of our future works.

Another challenge lies in feature representation for
multimodal categorization. The MHDP assumed that
observations are given as bag-of-features representations.
However, there are many kinds of feature representations
for visual, auditory and haptic information. In particular,
the feature extraction capability of deep neural networks is
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gathering attention, recently. Theoretically, our main theorems
do not depend on the type of emission distributions, i.e.,
bag-of-features representations. It is likely that the same
approach can be used even when a multimodal categorization
method uses different feature representations, e.g., the
features in the last hidden layer of a pre-trained deep
neural network. This extension is also a part of our future
challenges.

In addition, the MHDP model treated in this paper assumed
that an action for perception is related to only one modality,
e.g., grasping only corresponds to mh. However, in reality,
when we interact with an object with a specific action, e.g.,
grasping, shaking, or hitting, we obtain rich information related
to various modalities. For example, when we shake a box to
obtain auditory information, we also unwittingly obtain haptic
information and information about its weight. The tight linkage
between the modality information and an action is a type
of approximation taken in this research. An extension of our
model and the MHDP to a model that can treat actions that
are related to various modalities is also a task for our future
work.
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APPENDIX A: PROOF OF THE OPTIMALITY

OF THE PROPOSED ACTIVE PERCEPTION

STRATEGY

In this appendix, we show that the proposed active perception
strategy, which maximizes the expected KL divergence between
the current state and the posterior distribution of zj after a
selected set of actions, minimizes the expected KL divergence
between the next and final states.

A∗j = argmin

A∈F
mo j
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M\mo j
j |X

mo j
j

[
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The numerator inside of the log function does not depend on A.
Therefore, the term related to the numerator can be deleted. In
addition, by negating the remaining term, we obtain
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Automatic knowledge grounding is still an open problem in cognitive robotics.

Recent research in developmental robotics suggests that a robot’s interaction with its

environment is a valuable source for collecting such knowledge about the effects of

robot’s actions. A useful concept for this process is that of an affordance, defined as

a relationship between an actor, an action performed by this actor, an object on which

the action is performed, and the resulting effect. This paper proposes a formalism

for defining and identifying affordance equivalence. By comparing the elements of

two affordances, we can identify equivalences between affordances, and thus acquire

grounded knowledge for the robot. This is useful when changes occur in the set of actions

or objects available to the robot, allowing to find alternative paths to reach goals. In the

experimental validation phase we verify if the recorded interaction data is coherent with

the identified affordance equivalences. This is done by querying a Bayesian Network that

serves as container for the collected interaction data, and verifying that both affordances

considered equivalent yield the same effect with a high probability.

Keywords: affordance, learning, cognitive robotics, symbol grounding, affordance equivalence

1. INTRODUCTION

Symbolic grounding of robot knowledge consists in creating relationships between the symbolic
concepts used by algorithms controlling the robot and the physical concepts to which they
correspond (Harnad, 1990). An affordance is a concept that allows collection of grounded
knowledge. The notion of affordance was introduced by Gibson (1977), and refers to the action
opportunities provided by the environment. In the context of robotics, an affordance is a
relationship between an actor (i.e., robot), an action performed by the actor, an object on which
this action is performed, and the observed effect.

A robot able to discover and learn the affordances of an environment can autonomously adapt
to it. Moreover, a robot that can detect equivalences between affordances can quickly compute
alternative plans for reaching a desired goal, which is useful when some actions or objects suddenly
become unavailable.

In this paper, we introduce a method for identifying affordances that generate equivalent effects
(see examples in Figures 1, 2). We define a (comparison) operator that allows robots to identify
equivalence relationships between affordances by analysing their constituent elements (i.e., actors,
objects, actions).
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FIGURE 1 | Example of equivalence between two objects for cleaning a whiteboard: a wiper and an eraser. The robot affords to clean the white board by wiping it

either with a wiper or an eraser.

FIGURE 2 | Example of equivalence between different actors and their actions for opening a door. A door can be opened by any robot that can interact with the door.

1.1. Affordance Discovery and Learning
All methods proposed in the literature for affordance learning
are similar in viewing an interaction as being composed of three
components: an action, a target object, and a resulting effect.
Different methods were proposed to infer the expected effect,
given knowledge about the action and target object.

Several papers approached affordance learning as learning
to predict object motion after interaction. For this purpose,
Krüger et al. (2011) employed a feedforward neural network
with backpropagation which learned so-called object-action
complexes; Hermans et al. (2013) used Support Vector Machines
(SVM) with kernels; while Kopicki et al. (2017) employed Locally
Weighted Projection Regression (LWPR) with Kernel Density
Estimation and a mixture of experts. Ridge et al. (2009) first
used a Self-Organising Map and clustering in the effect space to
classify objects by their effect, and then trained a SVM which

identified to which cluster an object belongs using its feature-
vector description.

Other papers addressed affordance learning from the
perspective of object grasping. Stoytchev (2005) employed
detection of invariants to learn object grasping affordances. Ugur
et al. (2012) used SVMs to study the traversability affordance of
a robot for grasping. Katz et al. (2014) used linear SVM to learn
to perceive object affordances for autonomous pile manipulation.
More details on the use of affordances for object manipulation
can be found in the dissertation of Hermans (2014).

Some works followed a supervised training approach,
providing hand-labeled datasets which mapped objects images
(2D or RGB-D) to their affordances. Myers et al. (2015) learned
affordances from local shape and geometry primitives using

Superpixel-based Hierarchical Matching Pursuit (S-HMP), and
Structured Random Forests (SRF). Image regions (from RGB-D
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frames) with pre-selected properties were tagged with specific
affordance labels. For instance, a surface region with high
convexity was labeled as containable (or a variation of it).
Varadarajan andVincze (2012) proposed anAffordanceNetwork
for providing affordance knowledge ontologies for common
household articles, intended to be used for object recognition and
manipulation. An overview of machine learning approaches for
detecting affordances of tools in 3D visual data is available in the
thesis of Ciocodeica (2016).

Another approach for learning affordances uses Bayesian
Networks. Montesano et al. (2008) and Moldovan et al.
(2012) employed a graphical model approach for learning
affordances, using a Bayesian Network which represents
objects/actions/effects as random variables, and which encodes
relations between them as dependency links. The structure of this
network is learned based on the data of robot’s interaction with
the world and on a priori information related to the dependency
of some variables. Once learned, affordances encoded in this way
can (1) predict the effect of an action applied to a given object, (2)
infer which action on a given object generated an observed effect,
and (3) identify which object generates the desired effect when
given a specific action.

Yet another popular method for supervised affordance
learning uses Deep Learning techniques. For instance, Nguyen
et al. (2016) trained a convolutional neural network to identify
object affordances in RGB-D images, employing a dataset
of object images labeled pixelwise with their corresponding
affordances. A similar approach using a deep convolutional
neural network was taken by Srikantha and Gall (2016).

Recent comprehensive overviews of affordance learning
techniques are available in the dissertation of Moldovan (2015),
and in reviews by Jamone et al. (2016), Min et al. (2016), and Zech
et al. (2017).

We argue that once affordances are learned, we can find
relations between affordances by considering the effects they
generate. One of these relations is equivalence, i.e., when two
different affordances specify corresponding actions on objects
that generate the same effect.

1.2. Affordance Equivalence
Affordance equivalence was studied by Şahin et al. (2007),
who considered relationships between single elements of an
affordance. Thus, it was possible to identify objects or actions that
are equivalent with respect to an affordance when they generate
the same effect. Griffith et al. (2012) employed clustering to
identify classes of objects that have similar functional properties.
Montesano et al. (2008) and Jain and Inamura (2013) treated
affordance equivalence from a probabilistic point of view, where,
in the context of imitation learning, the robot searches for
the combination of action and effect that maximises their
similarity to the demonstrated action on an object. Boularias
et al. (2015) discovered through reinforcement learning the
graspability affordance over objects with different shapes, and
indirectly showed equivalence of the grasp action.

Developing this line of thought, we propose a probabilistic
method to identify which combinations of affordance elements
generate equivalent effects. We first present in section 2 the

affordance formalization employed, and based on that we
then list in section 2.4 all the possible types of affordance
equivalences.

Since the purpose of this study is to identify equivalences
between affordances that were already recorded by the robot, we
are not seeking to explain how to record these affordances. In this
paper we employed the graphical model approach for learning
affordances proposed by Montesano et al. (2008). In addition,
we rely purely on perception-interaction data, without using a
priori information (Chavez-Garcia et al., 2016b). To facilitate
the experimental setup, we used pre-defined sensorial and motor
capabilities for our robots.

The remainder of this paper is organized as follows. In
section 2, we introduce our formalization of affordance elements,
and define the equivalence relationship in section 2.4. A
series of experiments on the discovery of equivalences between
affordances is detailed in section 3, together with the obtained
results. We conclude and present opportunities for future work
in section 4.

2. METHODOLOGY: AFFORDANCE
FORMALIZATION

In this section, we present the affordance formalism employed
throughout the paper.We follow the definition proposed by Ugur
et al. (2011), that we enrich by including the actor performing
the action into the affordance tuple (object, action, effect). The
inclusion of the actor into the affordance allows robots to record
affordances specific to their bodymorphologies. Althoughwewill
not focus on this aspect in this paper, it is possible to generalize
this knowledge through a change of affordance perspective from
robot joint space to object task space (more about this in section
2.1.2).

We define an affordance as follows. Let G be the set of actors
in the environment, O the set of objects, A the set of actions,
and E the set of observable effects. Hence, when an actor applies
an action on an object, generating an effect, the corresponding
affordance is defined as a tuple:

α = (actor, object, action, effect), for actor ∈ G, object ∈ O,

action ∈ A, and effect ∈ E, (1)

and can be graphically represented as shown in Figure 3.
From actor perspective, it interacts with the environment (the
object) and discovers the affordances. From object perspective,
affordances are properties of objects which can be perceived by
actors, and which are available to actors with specific capabilities.
We can also consider observers, who learn by perceiving other
actors’ affordance acquisition process.

The way in which affordance elements are defined influences
the operations that can be performed with affordances. Since we
aim to establish equivalence relationships between affordances,
we will analyse the definitions of the following affordance
elements: actions (from actor and object perspectives), objects
(as perceived by robot’s feature detectors), and effects (seen as a
description of the environment).
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FIGURE 3 | A graphical representation of an affordance. An object accepts

any action that fits its interface (shown on object’s left), and produces the

specified effect (shown on object’s right). Any actor capable of performing the

expected action on this object can produce the described effect.

2.1. How Are Actions Defined?
Actions can be defined (1) relative to actors, by describing the
body control sequence during the execution of an action in joint
space; or (2) relative to objects, by describing the consequences
of actions on the objects in operational space. We refer to object
perspective when the actions are defined in the operational/task
space, making their definition independent of the actor executing
them. We refer to actor perspective when the actions are defined
in the joint space of the actor, making them dependent of the
actor executing them.

This statement comes from the different perspectives obtained
from the affordance definition in Equation (1): actor and object
perspective.

2.1.1. Actions Described Relative to Actors
Actions are here described relative to actors and their
morphology. They are defined with respect to their control
variables in joint space (i.e., velocity, acceleration, jerk), indexed
by time τ :

action : {Q, Q̇, Q̈}τ (2)

As the action is described with respect to the actor morphology
and capabilities, comparing two actions requires comparing
both the actors performing the actions, and the actions
themselves. When the actors are identical, the action comparison
is straightforward. However, when there is a difference
between actors’ morphologies (and their motor capabilities), the
straightforward comparison of actions is not possible and a
common frame of reference for such comparison is needed.

2.1.2. Actions Described Relative to Objects
When actions are described relative to objects, they represent an
action generalisation from the joint space of a particular actor
(where actions are defined on the actor) to the operational space
of any actor (where actions are defined on the object).

Thus, when actions are described relative to objects, the
actor can be omitted from the affordance tuple, to indicate that
any actor which has the required motor capabilities is able to
generate the action which causes this effect. In addition, the
action employed in this representation is defined in operational
space (and not in joint space as before). Hence, dropping the actor
from the equation, we can rewrite Equation (1) as:

α = (object, action, effect), for object ∈ O, action ∈ Ao, and

effect ∈ E (3)

where Ao is the set of all actions in operational space, applicable
to object o.

While affordances defined from actor perspective (in joint
space, e.g., joint forces to apply) allow to learn using robot’s
motor and perceptual capabilities, affordances defined from
object perspective (in task space, e.g., forces applied on the object)
allow to generalise this knowledge.

2.2. How Are Objects Defined?
If an actor has the feature detectors p1, . . . , pn corresponding to
its perception capacities (such as hue, shape, size), then an object
is defined as:

object = {p1, . . . , pn}, (4)

where each feature detector can be seen as function on a
perceptual unit (e.g., a salient segment from a visual perception
process).

2.3. How Are Effects Defined?
We suppose that an actor g has a set ξ of q effect detectors,
that are able to detect changes in the world after an action
a ∈ Ag is applied. For example, when an actor executes
action push on an object, the object-displacement-effect detector
would be a function that computes the difference between two
measurements of the object position taken before and after
the interaction. Another effect can be the difference in the
feedback force measured in the end effector before and after the
interaction. Formally, effects are a set of q salient changes in the
world ω (i.e., in the target object, the actor, or the environment),
detected by robot’s effect detectors ξ :

effect = {ξ1(ω), . . . , ξq(ω)} (5)

2.4. Affordance Equivalence Operator
In this section, we introduce the concept of affordance
equivalence, based on the formalization presented earlier in
section 2. We provide truth tables for two different affordance
comparison operators: one for the case where actions are defined
in actor joint space, and one for the case where actions are defined
in object task space. For each case, we explore the possible types
of affordance equivalence.

We have defined an affordance as a tuple of type
(actor, object, actionjoint_space, effect) when the action is
defined relative to the actor, or as a tuple of type
(object, actionoperational_space, effect) when the action is defined
relative to the object. Let us now define the truth table for
an operator for comparing affordances (one for the actor
perspective, and one for the object perspective) and identifying
equivalence relationships between them.

We consider equivalent two affordances that generate
equivalent effects. To know when two effects are equivalent, an
effect-comparison function is required. We define an equivalence
function f (ea, eb) that yields true if two effects values ea and eb are
similar in a common frame (e.g., distances for position values,
similarity in color models, vector distances for force values).
We detect affordance equivalence by (1) feeding the continuous
(non-discretised) data on the measured effects to the Bayesian
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Network (BN) structure learning algorithm, and then (2)
querying the BN over an observed effect to obtain the empirical
decision on effect equivalence. Whenever two affordances
generate equivalent effects, it is possible to find which affordance
elements cause this equivalence. We distinguish several cases of
affordance equivalence, depending on the elements which differ
in two equivalent affordances, which are detailed below.

2.4.1. Equivalence Between Affordance With Actions

Defined Relative to Actors
The comparison cases for affordances with actions described
relative to actors are shown in Table 1. The 24 cases of
comparison between the elements of two affordances stem from
all the possible (binary) equivalence combinations between the
elements. In each case we compare the four components and
establish if the elements of affordances are equivalent.

Since actions are defined here relative to the actors, actors
with different morphologies cannot perform the same action
defined in joint space, because their joint spaces are different.
This renders inconsistent cases in which different actors perform
the same action: lines (3), (4), (7), and (8) in Table 1. This leaves
us with five cases of equivalence in Table 1, where:

• If different actors using different actions on different objects
generate an equivalent effect, then we have (actor, action,
object) equivalence

• If different actors using different actions on the same object
generate an equivalent effect, then we have (actor, action)
equivalence

• If the same actor using different actions on different objects
generates an equivalent effect, then we have (object, action)
equivalence

• If the same actor using the same action on different objects
generates an equivalent effect, then we have object equivalence

• If the same actor using different actions on the same object
generates an equivalent effect, then we have action equivalence.

We assume that the environment is a deterministic system:
each time the same actor applies the same action on the same
object, it will generate an equivalent effect. Therefore, generating
a different effect with the same actor, action, and object is
impossible, due to determinism.

Both the effect equivalence and non-equivalence cases provide
information about the relationship between two affordances.
The affordance equivalence concept is empirically validated in

section 3.

2.4.2. Equivalence Between Affordances With

Actions Defined Relative to Objects
The comparison cases for affordances with actions described
relative to objects are shown in Table 2. There are 23 cases
of comparison, corresponding to the total number of possible
(binary) equivalence cases between the elements of a pair of
affordances. In this case, three types of equivalence exist:

• If different actions on different objects generate the same
effect, then it is (object, action) equivalence;

• If same action on different objects generates the same effect,
then it is object equivalence;

• If different actions on same object generate the same effect,
then it is action equivalence.

3. EXPERIMENTS AND RESULTS:
AFFORDANCE EQUIVALENCE

We designed experiments that would confirm the capability
of our affordance representation to detect equivalences and
non-equivalences between learned affordances. We employed
a Bayesian Network structure-learning approach presented in
(Chavez-Garcia et al., 2016a) to describe and learn affordances as
relations between random variables (affordance elements). Then
we analyse how the learned affordances relate to each case of
equivalence presented in Table 2.

3.1. Pre-defined Actions
We assume that an agent is equipped, since its conception, with
motor and perceptual capabilities that we called pre-defined.
However, we do not limit the agent’s capabilities to the pre-
defined set, as through learning the agent may acquire new
capabilities. In our scenario, we employed three robotic actors of
different morphologies, each with its pre-defined actions:

1. Baxtergripper: the Baxter robot’s left arm (7 DOF) equipped
with a gripper, with actions:

• Push (moving with constant velocity without closing the
gripper)

• Pull (closing the gripper and moving with constant
velocity)

• Wipe (closing the gripper and pressing downwards while
moving)

• Move aside (closing the gripper and moving aside)

2. Baxternogripper: the Baxter robot’s right arm with no gripper,
with action:

• Poke (moving forwards with constant acceleration)

3. Katana arm with no gripper (5 d.o.f.), with action:

• Side push (moving aside with constant velocity)

The actors and their pre-defined sets of actions (motor
capabilities) are shown in Figure 4.

3.2. Pre-defined Perceptual Capabilities
Our visual perception process takes raw RGB-D data of
an observed scene to oversegment the point cloud into a
supervoxel representation. This 3D oversegmentation technique
is based on a flow-constrained local iterative clustering
which uses color and geometric features from the point
cloud (Papon et al., 2013). Strict partial connectivity between
voxels guarantees that supervoxels cannot flow across disjoint
boundaries in 3D space. Supervoxels are then grouped to
obtain object clusters that are used for extracting features and
manipulation. Figure 5 illustrates the visual perception process.
The objects employed were objects of daily use: toys that can
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TABLE 1 | Comparison of two affordances, when actions are described with respect to actors.

# Actors Objects Actions Effects Conclusion

1 different different different different (actor, object, action) non-equivalence

2 different different different equivalent (actor, object, action) equivalence

3 different different same different (actor, object) non-equivalence

4 different different same equivalent (actor, object) equivalence

5 different same different different (actor, action) non-equivalence

6 different same different equivalent (actor, action) equivalence

7 different same same different actor non-equivalence

8 different same same equivalent actor equivalence

9 same different different different (object, action) non-equivalence

10 same different different equivalent (object, action) equivalence

11 same different same different object non-equivalence

12 same different same equivalent object equivalence

13 same same different different action non-equivalence

14 same same different equivalent action equivalence

15 same same same different impossible in deterministic systems

16 same same same equivalent due to determinism

Equivalence cases between affordances are presented in even rows. Inconsistencies are underlined in red. The types of affordance equivalence are shown in bold letters.

TABLE 2 | Comparison of two affordances, when actions are described with

respect to objects.

# Objects Actions Effects Conclusion

1 different different different (object, action) non-equivalence

2 different different equivalent (object, action) equivalence

3 different same different object non-equivalence

4 different same equivalent object equivalence

5 same different different action non-equivalence

6 same different equivalent action equivalence

7 same same different impossible in deterministic systems

8 same same equivalent due to determinism

Equivalence cases between affordances are presented in even rows. The types of

affordance equivalence are shown in bold letters.

be assembled, markers, and dusters. The objects were selected
so as to be large enough to allow easy segmentation and
manipulation.

3.3. Pre-defined Effect Detectors
We used custom hand-written effect detectors for the
experimental use-cases, although our experimental architecture
allows for an automatic effect detector. An effect detector
quantifies the change, if present, in one property of the
environment or the actor. For this series of experiments, we
developed the following effect detectors: color change in a 2D
image (HSV hue) for an object or a region of interest; object’s
position change (translation only); and the end-effector position.
Figure 6 illustrates the detected effects when wipe action is
performed. In our previous work we covered changes in joint
torques, distance between finger grippers and object speed.

3.4. Affordance Learning
Affordance elements E (effects), O (objects) and A (actions) are
represented as random variables of a Bayesian Network (BN) B.
First, in each actor interaction we record the values (discretized)
for the random variables representing the objects (section 3.2),
actions (section 3.1), and effects (section 3.3). The problem of
discovering the relations between E, O, and A can be then
translated to finding dependencies between the variables inB, i.e.,
P(B|D) learning the structure of the corresponding network B

from data D. Thus, affordances are described by the conditional
dependencies between variables in B.

We implemented an information-compression score to
estimate how well a Bayesian Network structure describes data
D (Chavez-Garcia et al., 2016b). Our score is based on the
Minimum Description Length (MDL) score:

MDL(B|D) = LL(B|D)− |B|
logN

2
, (6)

where the first term measures (by applying a log-likelihood
score Suzuki, 2017) how many bits are needed to describe data
D based on the probability distribution P(B). The second term

counts the number of bits needed to encode B, where
log(N)

2 bits

are used for each parameter in the BN. We consider
log(N)

2 as
factor that penalizes structures with larger number of parameters.
For a BN’s structure B, its score is then defined as the posterior
probability given the data D.

We implemented a search-based structure learning algorithm
based on the hill-climbing technique, as we did in our previous
work. As inputs, this algorithm takes values for the variables in
E, O, and A obtained from robot’s interaction. This procedure
estimates the parameters of the local probability density functions
(pdfs) given a Bayesian Network structure. Typically, this is a
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FIGURE 4 | Set of pre-defined actions for three actors: Baxtergripper equipped with a 7 d.o.f. arm, and an electrical gripper attached to it, Baxternogripper equipped

only with a 7 d.o.f. arm, and Katana 5 d.o.f. arm without gripper. Poke is the only pre-defined action of actor Baxternogripper, and side push the only pre-defined action

of Katana. The arrows show the direction of the manipulator movement. The arcs show the position of the gripper with respect to the object, while the black bullet

represents the object.

FIGURE 5 | An example of the visual perception process output. From left to right: (A) reference image (B) RGB cloud of points of the scene (C) supervoxel extraction

(D) clusterization of supervoxels. For visual perception we use a Microsoft Kinect sensor that captures RGB-D data.

FIGURE 6 | Example of captured effects when performing the action wipe on the object duster. Left figure shows the spatial (pose) and perceptual (color) state of the

duster, and the surface. After wipe action is performed, the effects on position and in hue are detected: duster has changed position but not color, surface has

changed color but not position. Although for this experiment we do not use the force in the joints, we are also capturing these changes.

maximum-likelihood estimation of the probability entries from
the data set, which, for multinomial local pdfs, consists of
counting the number of tuples that fall into each table entry of
each multinomial probability table in the BN. The algorithm’s

main loop consists of attempting every possible single-edge
addition, removal, or reversal, making the network that increases
the score the most the current candidate, and iterating. The

process stops when there is no single-edge change that increases
the score. There is no guarantee that this algorithm will settle at a
global maximum, but there are techniques to increase its reaching
possibilities (we use simulated annealing).

By using the BN framework, we are capable of displaying
relationships between affordance elements. The directed
nature of its structure allows us to approximate cause-effects
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relationships. It also handles uncertainty through the established
probability theory. In addition to direct dependencies, we can
represent indirect causation.

3.4.1. Detection of Affordance Equivalence
Equivalence between two affordances can be identified by
comparing their ability to consistently reproduce the same effect
e, judging by the cumulated experimental evidence. The precise
type of equivalence between two affordances, which tells which
affordance elements’ values are equivalent, can be identified by
probabilistic inference on the learned BN. Inference allows to
identify which (actor, object, action) configurations are more
likely to generate the same effect. In practice, this inference is
calculated through executing queries to the Bayesian Network,
which allow to compute the probability of an event (in our case:
the probability of an effect having a value between some given
bounds) given the provided evidence data.

Queries have the following form: P(proposition|evidence)
where proposition represents the query on some variable x, and
evidence represents the available information for the affordance
elements, e.g., the identity of the actor, the description of the
action, and the description of the object. In the example of the
robot pushing an object, the following query allows to compute
the probability of the object displacement falling between certain
bounds:

P
(
(position > lower bound) and (position < upper bound) |

actor = Baxter, action = push, object = block
)

(7)

After querying the learned BN with the corresponding elements
from Tables 1, 2 as evidence, if two (actor, object, action)
configurations have probabilities of generating an effect that
are higher than an arbitrary threshold, then we consider both
affordances equivalent:

if P(e|actor1, object1, action1) > θ

and P(e|actor2, object2, action2) > θ (8)

then (actor1, object1, action1) ≡ (actor2, object2, action2)

For our experiments, we empirically established the equivalence
threshold θ = 0.85. The aforementioned querying process
connects the learning and reasoning steps, and according to the
current goal of an actor, it allows for an empirical threshold
selection or an adaptive mechanism.

3.5. Experimental Results
As shown in Table 1, affordances composed of 4 elements
(actor, object, action, effect), which have their actions defined
from the actor perspective, have five cases of equivalence (see
Figure 7 for some illustrated examples). We have selected three
of them to demonstrate the use of the affordance equivalence
operator: (object) equivalence, (action) equivalence, and (actor,
action) equivalence. In Figure 7 they correspond to the settings
(a), (b), and (c). These experiments are detailed below. For
a video demonstration of these experiments, please see the
Supplementary Material section at the end of this document.

3.5.1. The (Actor, Action) Equivalence
This experiment consisted in discovering the equivalence
between (actor, action) tuples. The goal was to identify
configurations that are equivalent in their ability of uncovering a
region of interest (a red mark on the table) by moving the object
occluding it from robot’s camera view (in the case of the Baxter
— a toy with features color: blue and shape: box; in the case of
the Katana actor — a box with the same perceptual features). In
our representation, two objects with the same perceptual features
are considered the same. Actor Baxtergripper is equipped with a
gripper and can perform actionmove_aside. Actor Baxternogripper
does not have a gripper and can only perform action poke. Actor
Katana does not have a gripper and can only perform side push
action.

The Bayesian Network structure was learned using data
from 15 interactions using each (actor, action) tuple (Figure 8).
Variables object_shape and object_color represent the object
features, variable color_mark captures the presence or absence
of a colored mark. Queries performed on the BN suggested that
the effect of revealing the red mark is consistently recreated
when moving the object toy, with a probability of 0.98 for
the action move_aside done by the hand with a gripper,
0.97 for the action poke done by the hand with no gripper,
and 0.94 for the action side_push done by the Katana arm
on the box object. The probabilities are based on the total
number of trials verifying these relationships. Since these
affordances consistently recreate equivalent effects while having
some equal elements (same toy object for Baxtergripper and
Baxternogripper, and a similar object for Katana), this points
that affordance elements that differ between configurations are
in fact equivalent in their ability to generate the effect of
revealing the red mark, i.e., the tuples (Baxternogripper, poke),
(Baxtergripper, move_aside) and (Katana, side_push). Source code
of the experimental setup for the Katana actor is available at
https://romarcg@bitbucket.org/romarcg/katana_docker.git.

3.5.2. The (Object) Equivalence
The experiment consisted in determining the equivalence
between two visually different whiteboard dusters: dusterblue and
dusterorange. Actor Baxtergripper applies the same action wipe to
remove a red marker trace from a blue colored surface, as shown
in Figures 4, 6. For distinguishing the clean blue colored surface
from the surface dirtied with the red marker, the robot’s pre-
defined effect detector measured the effect on the hue extracted
from an HSV histogram.

The robot performed 25 trials of the wipe action with each
duster, and the obtained data was subsequently used to learn
the Bayesian Network structure (see Figure 8B). Objects are
represented in the same way as in section 3.5.1. The effect
capturing the change in the wiped area is described by the
variable color_effect. Queries revealed that the wipe action cleans
the red marker trace from the blue colored surface with a
probability of 0.95 in both cases. Since the observed effects were
equivalent, and the actor and action were the same, the objects
dusterblue and dusterorange are considered equivalent in their
ability to reach this effect.
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FIGURE 7 | Illustrated examples for each of the five types of affordance equivalences, from the actor perspective, when affordances are represented as (actor, object,

action, effect) tuples: (A) A robot can use two different objects (wiper/eraser) to obtain the same effect of obtaining a clean whiteboard when performing wipe action.

(B) A robot can perform two different actions (push/pull) to obtain the same effect of revealing a book underneath. (C) Two different robots can perform two different

actions on the same object to obtain the same effect of opening a door. (D) A robot can perform two different actions (pull/push) on two different objects (door

handle/door) in order to obtain the same effect of opening those doors. (E) Two robots can apply two different actions on two different objects (light switch, lamp) to

obtain the effect of turning on the light.

3.5.3. The (Action) Equivalence
In this experiment we analysed equivalence between the actions
of an actor. This experiment consisted in placing the same object
toy into a desired location using two different actions push and

pull of the actor Baxtergripper. The robot performed 30 trials using
each of the push and pull actions. Figure 8C shows the learned
BN for (action) equivalence. The arrival of the object (described
as in previous experiments) to the desired position is described
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FIGURE 8 | Learned Bayesian networks for the experiments. (A) (actor, action) equivalence between Baxter and Katana actors using different movements to

reveal a colored region of interest (section 3.5.1). The BN shows the dependence between the chosen actors and actions and the revelation of the colored region of

interest. (B) (object) equivalence between two dusters of different colors that clean a whiteboard (section 3.5.2). The BN shows the irrelevance of object_color

feature for the wiping affordance. (C) (action) equivalence between push/pull actions (section 3.5.3). The BN shows the relation between the chosen action and the

final displacement of the object (feature x_end).

by the effect variable x_end (only the x component of the 3D
position was measured). The target location to which we aim to
push/pull the object is at x coordinate 0.72 ± 0.02m. Variable
object_x_start is an object feature representing the object initial
position. According to the BN that processed the obtained data,
there was a 0.97 probability to pull the object to the desired
location, and a 0.89 chance to do so by pushing it. With all the
rest being equal (the actor, object, and effect are the same), and
since both actions have a high probability of generating the given
effect, these push and pull actions can be considered equivalent
for placing the object toy in a desired location.

4. CONCLUSIONS AND FUTURE WORK

Wehave presented a formalization for affordances with respect to
their elements, and the equivalence operator for comparing two
affordances from the actor and object perspective. We performed
Bayesian Network structure learning to capture affordances
as sensorimotor representations based on the observed
experimental data. We analysed and validated experimentally
the affordance equivalence operator, demonstrating how to
extract information on the tuples of actors, actions and objects
by comparing two affordances and determining if such tuples are
equivalent.

In practice, the learned affordance equivalences can be
interchangeably used when some objects or actions become
unavailable. In a multi-robot setting, these equivalences can
allow an ambient intelligence (an Artificial Intelligence system
controlling an environment) to select the appropriate robot for
using an affordance to reach a desired effect.

4.1. Future Work
Our future work will focus on the domain of transfer learning.
We plan to implement a transformation between the affordances
learned by specific robots (in their own joint space) to affordances
applicable to objects and defined in their operational space. This
will generalise the affordances learned and perceivable by a robot
with a specific body schema, making them perceivable (and
potentially available) to robots with any type of body schema
(morphology).

We are already working on an automatic method for
generating 3D object-descriptors. This would allow us to remove
human bias from the way in which the robot observes and

analyses its environment. By using an auto-encoder (a type of
artificial neural network) that trains on appropriate datasets, it
can automatically adapt to changes in objects that the robot
interacts with.

Work is also underway on representing robot actions in a
continuous space (e.g., using a vector representation of torque
forces, or Dynamic Movement Primitives), which would be an
improvement from today’s discrete representation of actions
(e.g., move, push, pull).

Ultimately, we intend to define an algebra of affordances
detailing all the operations that are possible on affordances,
and which would encompass operators such as affordance
equivalence, affordance chaining (Ugur et al., 2011), and other
operators that are still to explore.
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Ridge, B., Skočaj, D., and Leonardis, A. (2009). Unsupervised Learning of

Basic Object Affordances from Object Properties. PRIP, Vienna University of

Technology.
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To realize human-like robot intelligence, a large-scale cognitive architecture is required for

robots to understand their environment through a variety of sensors with which they are

equipped. In this paper, we propose a novel framework named Serket that enables the

construction of a large-scale generative model and its inferences easily by connecting

sub-modules to allow the robots to acquire various capabilities through interaction with

their environment and others. We consider that large-scale cognitive models can be

constructed by connecting smaller fundamental models hierarchically while maintaining

their programmatic independence. Moreover, the connected modules are dependent

on each other and their parameters must be optimized as a whole. Conventionally, the

equations for parameter estimation have to be derived and implemented depending

on the models. However, it has become harder to derive and implement equations of

large-scale models. Thus, in this paper, we propose a parameter estimation method that

communicates the minimum parameters between various modules while maintaining

their programmatic independence. Therefore, Serket makes it easy to construct

large-scale models and estimate their parameters via the connection of modules.

Experimental results demonstrated that the model can be constructed by connecting

modules, the parameters can be optimized as a whole, and they are comparable with

the original models that we have proposed.

Keywords: cognitive models, probabilistic generative models, symbol emergence in robotics, concept formation,

unsupervised learning

1. INTRODUCTION

To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots
to understand their environment through a variety of sensors with which they are equipped. In
this paper, we propose a novel framework that enables the construction of a large-scale generative
model and its inferences easily by connecting sub-modules in order for robots to acquire various
capabilities through interactions with their environment and others. We consider it important for
robots to understand the real world by learning from their environment and others, and have
proposed a method that enables robots to acquire concepts and language (Nakamura et al., 2014;
Attamimi et al., 2016; Nishihara et al., 2017; Taniguchi et al., 2017) based on the clustering of
multimodal information that they obtain. These proposed models are based on Bayesian models
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with complex structures, and we derived and implemented
the parameter estimation equations. If we realize a model
that enables robots to learn more complicated capabilities, we
have to construct a more complicated model, and derive and
implement equations for parameter estimation. However, it is
difficult to construct higher-level cognitive models by leveraging
this approach. Alternatively, these models can be interpreted as
a composition of more fundamental Bayesian models. In this
paper, we develop a large-scale cognitive model by connecting
the Bayesian models and propose an architecture named Serket
(Symbol Emergence in Robotics tool KIT1), which enables the
easier construction of such models.

In the field of cognitive science, cognitive architectures
(Laird, 2008; Anderson, 2009) have been proposed to implement
human cognitive mechanisms by describing human perception,
judgment, and decision-making. However, complex machine
learning algorithms have not yet been introduced, which makes
it difficult to implement our proposed models. Serket makes
it possible to implement more complex models by connecting
modules.

One approach to develop a large-scale cognitive model is the
use of probabilistic programming languages (PPLs), which make
it easy to construct Bayesian models (Patil et al., 2010; Goodman
et al., 2012; Wood et al., 2014; Carpenter et al., 2016; Tran
et al., 2016). PPLs can construct Bayesian models by defining the
dependencies between random variables, and the parameters are
automatically estimated without having to derive the equations
for them. By using PPLs, it is easy to construct relatively small-
scale models, such as a Gaussian mixture model and latent
Dirichlet allocation, but it is still difficult to model multimodal
sensory information, such as images and speech obtained by
the robots. Because of this, we implemented models for concept
and language acquisition, which are relatively large-scale models,
as standalone models without PPLs. However, we consider the
approach where an entire model is implemented by itself has
limitations if it is constructed as a large-scale model.

Large-scale cognitive models can be constructed by
connecting smaller fundamental models hierarchically; in
fact, our proposed models have such a structure. In the
proposed novel architecture Serket, large-scale models were
constructed by hierarchically connecting smaller-scale Bayesian
models (hereafter, each one is referred to as a module) while
maintaining their programmatic independence. The connected
modules are dependent on each other, and parameters must
be optimized as a whole. When models are constructed by
themselves, the parameter estimation equations have to be
derived and implemented depending on the models. However,
in this paper, we propose a method for parameter estimation
by communicating the minimum parameters between various
modules while maintaining their programmatic independence.
Therefore, Serket makes it easy to construct large-scale models
and estimate their parameters by connecting modules.

1Symbol emergence in robotics focuses on the real and noisy environment, and

the e in Serket represents a false recognition obtained through learning in such an

environment.

In this paper, we propose the Serket framework and
implement models that we proposed by leveraging this
framework. Experimental results demonstrated that the model
can be constructed by connecting modules, the parameters can
be optimized as a whole, and they are comparable with original
models that we have proposed.

2. BACKGROUND

2.1. Symbol Emergence in Robotics
Recently, it has been said that artificial intelligence is superior
to human intelligence in the area of supervised learning, as
typified by deep learning as far as certain specific tasks (He
et al., 2015; Silver et al., 2017). However, we believe that it is
difficult to realize human-like intelligence only via supervised
learning because all supervised labels cannot be obtained for all
the sensory information of robots. To this end, we believe that it
is also important for robots to understand the real environment
by structuring their own sensory information in an unsupervised
manner. We consider such a learning process as a symbol
emergence system (Taniguchi et al., 2016a).

The symbol emergence system is based on the genetic
epistemology proposed by Piaget (Piaget and Duckworth, 1970).
In genetic epistemology, humans organize symbol systems in a
bottom-up manner through interaction with the environment.
Figure 1 presents an overview of the symbol emergence system.
The symbols are self-organized from sensory information
obtained through interactions with the environment. However,
it can be difficult for robots to communicate with others using
symbols learned only in a bottom-up manner, because the
sensory information cannot be shared directly with others and
the meaning of symbols differs depending on the individual.
To communicate with others, the meanings of symbols must
be transformed into common meanings among individuals
through their interactions. This is considered as a top-down
effect from symbols to individuals’ organization of them. Thus,
in the symbol emergence system, the symbols emerge through
loops of top-down and bottom-up effects. In the symbol
emergence in robotics, symbols include not only linguistic
symbols but also various types of knowledge self-organized
by robots. Therefore, symbol emergence in robotics covers
a wide range of research topics, such as concept formation
(Nakamura et al., 2007), language acquisition (Taniguchi et al.,
2016b, 2017; Nishihara et al., 2017), learning of interactions
(Taniguchi et al., 2010), learning of body schemes (Mimura
et al., 2017), and learning of motor skills and segmentation
of time-series data (Taniguchi et al., 2011; Nakamura et al.,
2016).

We have proposed models that enable robots to acquire
concepts and language by considering its learning process as
a symbol emergence system. The robots form concepts in a
bottom-up manner, and acquire word meanings by connecting
words and concepts. Simultaneously, words are shared with
others, and their meanings are changed through communication
with others. Therefore, such words affect concept formation in
a top-down manner, and concepts are changed. Thus, we have
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considered that robots can acquire concepts and word meanings
through loops of bottom-up and top-down effects.

2.2. Existing Cognitive Architecture
There have been many attempts to develop intelligent systems.
In the field of cognitive science, cognitive architectures
(Laird, 2008; Anderson, 2009) have been proposed to
implement humans cognitive mechanisms by describing
human perception, judgment, and decision-making. As
mentioned earlier, it is important to consider how to model
the multimodal sensory information obtained by robots.
However, this is still difficult to achieve with these cognitive
architectures. To construct more complex models, some
frameworks have been proposed in the field of machine
learning.

Frameworks of deep neural networks (DNNs) such as
TensorFlow (Abadi et al., 2016), Keras (Chollet , 2015), and
Chainer (Tokui et al., 2015) have been developed. These
frameworks make it possible to construct DNN models and
estimate their parameters easily. These frameworks are one
of the reasons why DNNs have been widely used for several
years.

Alternatively, PPLs that make it easy to construct Bayesian
models have also been proposed (Patil et al., 2010; Goodman
et al., 2012; Wood et al., 2014; Carpenter et al., 2016;
Tran et al., 2016). The advantages of PPLs are that they
can construct Bayesian models by defining the dependencies
between random variables, and the parameters are automatically
estimated without deriving equations for them. By using PPLs,
relatively small-scale models, such as the Gaussian mixture
model and latent Dirichlet allocation (LDA), can be constructed
easily. However, it is still difficult to model multimodal sensory
information, such as images and speech obtained by the
robots. We believe that a framework by which a large-scale

probabilistic generative model can be more easily constructed
is required to model the multimodal information of the
robot.

2.3. Cognitive Architecture Based on
Probabilistic Generative Model
We believe that cognitive models make it possible to predict
an output Y against an input X. For example, as shown in
Figure 2, an object label Y is predicted from a sensor input
X via object recognition. It is through the understanding of
word meanings that the semantic content Y are predicted from
speech signal X. In other words, the problem can be defined
as how to model P(Y|X), where the prediction is realized by

FIGURE 2 | Overview of cognitive model by (A) probabilistic generative model

and (B) end-to-end learning.

FIGURE 1 | Symbol emergence system.
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argmaxY P(Y|X). DNNs model relationships between an input X
and output Y directly by an end-to-end approach (Figure 2B).
Alternatively, we considered developing these cognitive models
by leveraging Bayesian models, where X and Y are treated
as random variables, and the relationships between them are
represented by a latent variable Z (Figure 2A). Therefore, in
Bayesian models, the prediction of output Y from input X is
computed as follows:

P(Y|X) ∝ P(Y ,X) (1)

=

∫

Z
P(Y|Z)P(X|Z)P(Z)dZ. (2)

This is multimodal latent Dirichlet allocation (MLDA) (Blei and
Jordan, 2003; Nakamura et al., 2009; Putthividhy et al., 2010), the
details of which are described in the Appendix. However, MLDA
is based on the important assumption that the observed variables
X and Y are conditionally independent against latent variable Z.
Here, we consider models where assumptions are made about
multiple observations without distinguishing between input and
output. Figure 3A displays the generalized model, where the
right side of Equation (1) corresponds to the following equation,
and a part of the observations can be predicted from other

observations.

P(o1, o2, · · · ) =

∫

z
P(z)5nP(on|z)dz. (3)

As mentioned earlier, it is assumed that all observations
o1, o2, · · · are conditionally independent against z. This
assumption is often used to deal with multimodal data (Blei
and Jordan, 2003; Wang et al., 2009; Putthividhy et al., 2010;
Françoise et al., 2013) because modeling all dependencies makes
parameter estimation difficult.

Considering the modeling of various sensor data as
observations o1, o2, · · · , it is not always true for all the
observations to satisfy the conditionally independent
assumption. In general, the information surrounding us
has a hierarchical structure. Hence, a hierarchical model can be
used to avoid this difficulty (Attamimi et al., 2016). Furthermore,
latent variables, such as concepts, are generally related to each
other, and such relationships can be represented by hierarchical
models. Figure 3B represents a hierarchical version of Figure 3A
and can be thought of as generalization of the cognitive
architecture based on a probabilistic generative model. It should
be noted that the structure can be designed manually (Attamimi
et al., 2016) and/or found autonomously by using a structure
learning method (Margaritis, 2003), which is beyond the scope

FIGURE 3 | Generalized hierarchical cognitive model: (A) single-layer model, (B) multilayered model by hierarchicalization of single-layer models, and (C) generalized

form of a module in Serket.
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of this paper. In this hierarchized model, o∗,∗ are observations
and z∗,∗ are latent variables, and the right side of Equation (1)
corresponds to the following equation:

P(O|zM,1, zM,2, · · · ) =

M∏

m

N̄m∏

n

∫

zm,n

P(zm,n)

Nm∏

i

P(om,n,i|zm,n)

N̄m−1∏

n′

P(zm−1,n′ |zm,n)dzm,n, (4)

where O is the set of all observations, M is the number
of the hierarchy, and Nm and N̄m denote the number
of observations and latent variables in the m-th hierarchy,
respectively. In this model, it is not difficult to analytically
derive equations to estimate the parameters if the number
of the hierarchy is not large. However, it is more difficult
to derive them if the number of the hierarchy increases.
To estimate the parameters of the hierarchical model, we
propose Serket, which is an architecture that renders it
possible to estimate the parameters by dividing them into even
hierarchies.

From the viewpoint of hierarchical models, many studies have
proposed models that capture the hierarchical nature of the data
(Li and McCallum, 2006; Blei et al., 2010; Ghahramani et al.,
2010; Ando et al., 2013; Nguyen et al., 2014). On the other hand,
Serket models the hierarchical structure of modalities. For such
hierarchical models, methods based on LDA (Li et al., 2011; Yang
et al., 2014) have been proposed, and we have also proposed
multilayered MLDA (Attamimi et al., 2016). These models are
the simplest examples constructed by Serket. In this paper, we
construct these models by dividing them into smaller modules.

2.4. Cognitive Models
In the past, studies on how the relationships between multimodal
information are modeled have been conducted (Roy and
Pentland, 2002; Wermter et al., 2004; Ridge et al., 2010;
Ogata et al., 2010; Lallee and Dominey, 2013; Zhang et al.,
2017). Neural networks were used in these studies, which
made inferences based on observed information possible
by learning multimodal information, such as words, visual
information, and a robot’s motions. As mentioned earlier,
these are some examples of the cognitive models that we
defined.

There are also studies in which manifold learning was
used for modeling a robot’s multimodal information (Mangin
and Oudeyer, 2013; Yuruten et al., 2013; Mangin et al.,
2015; Chen and Filliat, 2015). These studies used manifold
learning such as non-negative matrix factorization, in which
multimodal information is represented by low-dimensional
hidden parameters. We consider this as another approach to
constructing cognitive models, in which the information is
inferred through hidden parameters.

Recently, DNNs have made notable advances in many
areas such as object recognition (He et al., 2015), object
detection (Redmon et al., 2016), speech recognition (Amodei

et al., 2016), sentence generation (Vinyals et al., 2015),
machine translation (Sutskever et al., 2014), and visual
question answering (Wu et al., 2016). In these studies, end-
to-end learning was used, which made it possible to infer
information from other information. Therefore, these are also
considered part of the cognitive model defined in this paper.
However, as mentioned in section 2.1, we believe that it is
important for robots to understand the real environment by
structuring their own sensory information in an unsupervised
manner.

To develop a cognitive model where robots learn
autonomously, our group proposed several models for concept
formation (Nakamura et al., 2007), language acquisition
(Taniguchi et al., 2016b, 2017; Nishihara et al., 2017), learning of
interactions (Taniguchi et al., 2010), learning of body schemes
(Mimura et al., 2017), learning motor skills, and segmentation
of time series data (Taniguchi et al., 2011; Nakamura et al.,
2016). Although all of these are targets of Serket, we focused
on concept formation in this paper. We define concepts as
categories into which the sensory information is classified, and
propose various concept models. These are implementations
of the aforementioned hierarchical model. Figure 4A displays
one of our proposed models. This is the simplest form of
the hierarchical model, where zO and zM denote an object
and a motion concept, respectively, and their relationship is
represented by z (Attamimi et al., 2016). Therefore, in this
model, z represents objects and possible motions against them,
which are considered as their usage, and observations become
conditionally independent by introducing the latent variables zO

and zM .
In these Bayesian models, the latent variables shown

as the white nodes z, zO, and zM in Figure 4A can be
learned from the observations shown as gray nodes in an
unsupervised manner. Moreover, these latent variables are
not determined independently but optimized as a whole
by depending on each other. Although it seems that this
model has a complex structure and that it is difficult to
estimate the parameters and determine the latent variables,
this model can be divided into smaller components, each
of which is an MLDA model. The models shown in
Figures 4B,C can also be divided into smaller components
despite their complex structure. Similar to these models, it
is possible to develop larger models by combining smaller
models as modules. In this paper, we propose a novel
architecture Serket to develop larger models by combining
modules.

In the proposed architecture, the parameters of each module
are not learned independently but learned based on their
dependence on each other. To implement such learning,
it is important to share latent variables between modules.
For example, zO and zM are shared between two MLDAs
in the model, respectively, as shown in Figure 4A. The
shared latent variables were not determined independently but
determined depending on each other. Serket makes it possible
for each module to maintain its independence as a program
as well as be learned as a whole through the shared latent
variables.
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FIGURE 4 | Graphical models for concept formation: (A) model for hierarchical concept (Attamimi et al., 2016) constructed with multimodal latent Dirichlet allocations

(MLDAs), (B) model for object concept and language acquisition (Nakamura et al., 2014; Nishihara et al., 2017) constructed with MLDAs and speech recognition, and

(C) model for location concept and language acquisition (Taniguchi et al., 2017) constructed with simultaneous localization and mapping (SLAM), Gaussian mixture

model (GMM), MLDA, and speech recognition.

3. SERKET

3.1. Composing Cognitive Sub-modules
Figure 3C displays the generalized form of the module assumed
in Serket. In this figure, we omit the detailed parameters for
generalization because we assume that any type of models can be
the modules of Serket. Each module has multiple shared latent
variables zm−1,∗ and observations om,n,∗, which are assumed to
be generated from latent variable zm,n of a higher level. Modules
with no shared latent variable or observations are also included
in the generalized model. Moreover, the modules can have any
internal structure as long as they have shared latent, observation,
and higher-level latent variables. Based on this module, a larger
model can be constructed by connecting the latent variables
of module(m − 1, 1), module(m − 1, 2), · · · recursively. In
the Serket architecture, each module must satisfy the following
requirements:

1. In each module with shared latent variables, the probability
that latent variables are generated can be computed as

P(zm−1,i|zm,n, om,n,1, om,n,2, · · · , zm−1). (5)

2. The module can send the following probability by leveraging
one of the methods explained in the next section:

P(zm−1,i|zm,n, om,n,1, om,n,2, · · · , zm−1). (6)

3. The module can determine zm,n by using the following
probability sent frommodule (m+ 1, j) by one of the methods

explained in the next section:

P(zm,n|zm+1,j, om+1,j,1, om+1,j,2, · · ·, zm). (7)

4. Terminal modules have no shared latent variables and only
have observations.

In Serket, the modules affecting each other and the shared latent
variables are determined by their communication with each
other. Methods to determine the latent variables are classified
into two types depending on their nature. One is the case that
they are discrete and finite, and another is the case that they are
continuous or infinite.

3.2. Inference of Composed Models
In this section, we explain the parameter inference methods used
for the composed models. We focus on the batch algorithm
for parameter inference, which makes it easy to implement
each module. Therefore, real-time application is beyond the
scope of this paper although we would like to realize it in
the future. One of the inference methods used to estimate the
parameters of complex models is based on variational Bayesian
(VB) approximation (Minka and Lafferty, 2002; Blei et al.,
2003; Kim et al., 2013). However, a VB-based approach requires
derivation against latent variables, and it is difficult to implement
derivation in independent modules. To this end, we employed a
sampling-based method because of its simpler implementation.

In this section, we utilize three approaches according to the
nature of the latent variables.
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3.2.1. Message Passing Approach
First, we consider the case when the latent variables are
discrete and finite. For example, in the model shown in
Figure 4A, the shared latent variable zO was generated from
a multinomial distribution, which is represented by finite
dimensional parameters. Here, we consider the estimation of
the latent variables according to the simplified model shown
in Figure 5A. In module 2, the shared latent variable z1 was
generated from z2; and in module 1, the observation o was
generated from z1. The latent variable z1 is shared in modules
1 and 2, and determined by the effect on these two modules as
follows:

z1 ∼ P(z1|o, z2) (8)

∝ P(z1|o)P(z1|z2). (9)

In this equation, P(o|z1) and and P(z1|z2) can be computed
in modules 1 and 2, respectively. We assumed that the latent
variable is discrete and finite, and P(z1|z2) is a multinomial

distribution that can be represented by a finite-dimensional
parameter whose dimension ranges from the number of elements
of z1. Therefore, P(z1|z2) can be sent frommodule 2 to module 1.
Moreover, P(z1|z2) can be learned in module 2 by using P(z1|o)
sent frommodule 1, which is also amultinomial distribution. The
parameters of these distributions can be easily sent and received,
and the shared latent variable can be determined by the following
procedure:

1. In module 1, P(z1|o) is computed.
2. P(z1|o) is sent to module 2.
3. In module 2, the probability distribution P(z1|z2), which

represents the relationships between z1 and z2, is estimated
using P(z1|o).

4. P(z1|z2) is sent to module 1.
5. In module 1, the latent variable z1 is estimated using Equation

(9), and the parameters of P(o|z1) are updated.

Thus, in the case when the latent variable is infinite and discrete,
the modules are learned by sending and receiving the parameters

FIGURE 5 | Connecting two modules by (A) MP approach and (B) SIR approach.
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of a multinomial distribution of z1. We call this the message
passing (MP) approach because the model parameters can be
optimized by communicating the message.

3.2.2. Sampling Importance Resampling Approach
In the previous section, the latent variable was determined by
communicating the parameters of the multinomial distributions
if the latent variables are discrete and finite. Otherwise, it can
be difficult to communicate the parameters. For example, the
number of parameters becomes infinite if the possible values of
the latent variables are infinite patterns. In the case of a complex
probability distribution, it is difficult to represent it by a small
number of parameters. In such cases, the model parameters
are learned by approximation using sampling importance
resampling (SIR). We also consider parameter estimation using
the simplified model shown in Figure 5B. Here, the latent
variable z1 is shared, and its possible value is either an infinite
pattern or continuous. Similar to the previous section, the latent
variable is determined if the following equation can be computed:

z1 ∼ P(z1|o, z2) (10)

∝ P(z1|o)P(z1|z2). (11)

However, when the value of z1 is infinite or continuous, module
2 cannot send P(z1|z2) to module 1. Therefore, P(z1|o) is first
approximated by L samples {z(l) : l = 1, · · · , L}:

z
(l)
1 ∼ P(z1|o). (12)

This approximation is equivalent to approximating P(z1|o) by the
following P̃(z1|o):

P(z1|o) ≈ P̃(z1|o) =
1

L

L∑

l

δ(z1, z
(l)
1 ), (13)

where δ(a, b) represents a delta function, which is 1 if a = b, and
0 otherwise. The generated samples are sent from module 1 to
module 2, and a latent variable is selected among them based on
P(z1|z2):

z1 ∼ P(z1 ∈ {z
(1)
1 , · · · , z

(L)
1 }|z2). (14)

This procedure is equivalent to sampling from the following
distribution, which is an approximation of Equation (11):

z1 ∼ P(z1|z2)P̃(z1|o). (15)

Thus, the parameters of each module can be updated by the
determined latent variables.

3.2.3. Other Approaches
We have presented two methods but these are not the only ones
available for parameter estimation. There are other applicable
methods to estimate parameters. For example, one of the
applicable methods is the Metropolis-Hastings (MH) approach.
In the MH approach, samples are generated from a proposal
distribution Q(z|z∗), where z∗ and z represent the current value

and generated value of latent variables, respectively. Then, they
are accepted according to the acceptance probability A(z, z∗):

A(z, z∗) = min (1,α) (16)

α =
P(z∗)Q(z|z∗)

P(z)Q(z∗|z)
, (17)

where P(z) represents the target distribution from which the
samples are generated.

The model parameters in Figure 5 can be estimated
by considering P(z1|o) and P(z1|z2, o) as the proposal
distribution and target distribution, respectively. P(z1|z2, o)
can be transformed into

P(z1|z2, o) ∝ P(z1|o)P(z1|z2)P(z2). (18)

Therefore, α in Equation (16) becomes

α =
P(z∗)Q(z|z∗)

P(z)Q(z∗|z)
=

P(z∗1 |z2, o)

P(z1|z2, o)
·
P(z1|o)

P(z∗1 |o)
(19)

=
P(z∗1 |o)P(z

∗
1 |z2)P(z2)

P(z1|o)P(z1|z2)P(z2)
·
P(z1|o)

P(z∗1 |o)
=

P(z∗1 |z2)

P(z1|z2)
, (20)

Hence, the proposal distribution P(z1|o) can be computed in
module 1, and the acceptance distribution can be computed
in module 2. By using this approach, the parameters can be
estimated while maintaining programmatic independence. The
proposed value is sent to module 2, and module 2 determines
whether it is accepted or not. Then, the parameters are updated
according to the accepted values.

Thus, various approaches can be utilized for parameter
estimation, and it should be discussed which methods are most
suitable. However, we will leave this for a future discussion
because of limited space.

4. EXAMPLE 1: MULTILAYERED MLDA

First, we show that a more complex model, mMLDA, can be
constructed by combining the simpler models based on Serket.
By using the mMLDA, the object categories, motion categories,
and integrated categories representing the relationships between
them were formed from the visual, auditory, haptic, and motion
information obtained by the robot. The information obtained
by the robot is detailed in Appendix 2. We compared it with
the original mMLDA and an independent model, where the
object and motion categories were learned independently. The
original mMLDA has an upper-bound performance because
any approximation is not used in it. Therefore, the purpose of
this experiment is to show that Serket implementation has a
comparable performance with the original mMLDA.

4.1. Implementation Based on Serket
The mMLDA shown in Figure 4A can be constructed using
the MP approach. This model can be divided into to three
MLDAs. In the lower-level MLDAs, object categories zO can be
formed from multimodal information w

v, wa, and w
h obtained

from the objects, and motion categories zM can be formed from
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joint angles obtained by observing a human’s motion. Details
of the information are explained in the Appendix. Moreover, in
the higher-level MLDA, integrated categories z that represent
the relationships between objects and motions can be formed
by considering zO and zM as observations. In this model,
latent variables zO and zM are shared; therefore, the whole
model parameters are optimized in a mutually affecting manner.
Figure 6 shows the mMLDA represented by three MLDAs.

First, in the two MLDAs shown in Figures 6A,B, the
probabilities P(zOj |w

v
j ,w

a
j ,w

h
j ) and P(zMj |w

p
j ) that the object and

motion category of the multimodal information in the j-th data
become zOj and zMj , respectively, can be computed using Gibbs

sampling. These probabilities are represented by finite and
discrete parameters, which can be sent to the integrated concept
model shown in Figure 6C, where ẑOj and ẑMj can be treated as

observed variables using these probabilities.

ẑOjn ∼ P(zOj |w
v
j ,w

a
j ,w

h
j ), (21)

ẑMjn ∼ P(zMj |w
p
j ). (22)

where w
v
j ,w

a
j ,w

h
j , and w

p
j represent the visual information,

auditory information, haptic information, and joint angles of the
human’s motion, respectively, which are included in the j-th data.

Thus, in the integrated concept model, category z can be
formed in an unsupervised manner. Next, the values of the
shared latent variables are inferred stochastically using a learned
integrated concept model:

P(zO|ẑMj , ẑOj ) =
∑

z

P(zO|z)P(z|ẑmj , ẑ
o
j ), (23)

P(zM|ẑ
M
j , ẑOj ) =

∑

z

P(zM|z)P(z|ẑmj , ẑ
o
j ). (24)

These probabilities are also represented by finite and discrete
parameters, which can be communicated using theMP approach.

These parameters are sent to an object concept model andmotion
concept model, respectively, where the latent variables assigned
to the modality information m ∈ {v, a, h, p} of concept C ∈

{O,M} are determined using Gibbs sampling.

zCjmn ∼ P(zC|Wm,Z−jmn)P(z
C|ẑ

M
j , ẑOj ), (25)

where W
m represents all the information of modality m, and

Z−jmn represents a set of latent variables, except for the latent
variable assigned to the information of modality m of the
j-th observation. Whereas the latent variables were sampled
from P(zC|Wm,Z−jmn) in the normal MLDA, they were also

sampled using P(zC|ẑMj , ẑOj ). Therefore, all the latent variables
were learned in a complementary manner. From the sampled
variables, the parameters of P(zoj |w

v
j ,w

a
j ,w

h
j ) and P(zmj |w

m
j )

were updated, and Equations (21–25) were iterated until they
converged.

Figure 7 shows the pseudocode of mMLDA and the
corresponding graphical model. The model on the left
in Figure 7 can be constructed by connecting the latent
variables based on Serket. Although the part framed by
the red rectangle was implemented in the experiment,
it can be easily extended to the model shown in this
figure.

4.2. Experimental Results
Figure 8A shows a confusion matrix of classification by
the model, where the object and motion categories were
learned independently, and the vertical and horizontal axes
represent the correct category index and the category index to
which each object was classified, respectively. The accuracies
were 98 and 72%. One can see that the motion categories
can be formed by the independent model almost correctly.
However, the object categories could not be formed correctly
compared to the motion categories. On the other hand,
Figure 8B shows the results of using mMLDA implemented
based on Serket, and the categories were learned in a

FIGURE 6 | Implementation of mMLDA by connecting three MLDAs. The dashed arrows denote the conditional dependencies represented by Serket. (A) Object

concept, (B) motion concept, and (C) integrated concept.
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FIGURE 7 | Pseudo code of mMLDA.

complementary manner. The classification accuracies were
100% and 94%. The motion that could not be classified
correctly by the independent model was classified correctly.
Moreover, the object classification accuracy improved by 22%

owing to the effects of motion categories. In the independent
model, category five (shampoos) objects were classified as
category seven because of their visual similarity. On the
other hand, in the mMLDA based on Serket, they were
misclassified as category three (dressings) because the same
motion (pouring) was performed with these objects. Also,

the rattles (category 10) were misclassified because the rattles

(category 10) and soft toys (category nine) had a similar
appearance and the same motion (throwing) was performed

with them. However, other objects were classified correctly,
and this fact indicates that mutual learning was realized by
Serket.

Furthermore, we conducted an experiment to investigate
the efficiency of the original mMLDA which was not
divided into modules. The results in Figure 8C show that

the accuracies of the classification of objects and motions
were 100 and 94%, respectively, although misclassified

objects differed from that of the Serket implementation of
mMLDA because of sampling. One can see that mMLDA
implementation based on Serket is comparable with the original
mMLDA.

Table 1 shows the computation time of mMLDA
implemented by each method. The Independent model
was fastest because the parameters of two MLDAs were
independently learned. Serket implementation was slower
than the independent model but faster than the original
mMLDA. In the original MLDA, all the observations were
used for parameter estimation of the integrated concept
model. On the other hand, in the Serket implementation,

this was approximated and only the parameters sent from
lower-level MLDA in Equations (21, 22) were used for
parameter estimation of the integrated concept models.
Thus, the Serket implementation is faster than the original
mMLDA.

4.3. Deeper Model
In the original mMLDA, the structure of the model was
fixed, and we derived the equations to estimate its parameters
and then implemented them. However, by using Serket,
we can flexibly change the structure of the model without
deriving the equations for the parameter estimation. As
one example, we changed the structure of mMLDA and
constructed a deeper model as shown in Figure 9. To confirm
that the parameters can be learned by using Serket, we
generated training data by using the following generative
process:

z5,1 ∼ P(z|θ5) (26)

o5 ∼ P(o|φz5,1 ) (27)

for m = 4 to 1:

zm,1 ∼ P(z|zm+1,1, θm) (28)

om ∼ P(o|φzm,1
) (29)

where m denote the index of hierarchies, and the number
of categories of all modules was 10. θm and φz were
randomly generated, and we used uniform distribution
as P(z|θ5). This generative process was repeated 50 times,
and 250 observations were made. The parameters were
estimated by classifying these 250 observations through a
Serket implementation and independent model. Table 2

shows the classification accuracies in each hierarchy. We
can see that the Serket implementation outperformed the
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FIGURE 8 | Classification results of motion and object by (A) independent model, (B) Serket implementation, and (C) original model. The classification accuracies for

motions and objects were (A) 98 and 72%, (B) 100 and 94%, and (C) 100 and 94%, respectively.

TABLE 1 | Computational time of mMLDA.

Methods Time (seconds)

Independent model 1.77

Serket implementation 21.4

Original model 64.1

independent model because the parameters were optimized
as a whole by using an MP approach. Usually, the equations
for parameter estimation must be derived for each model
individually; deriving them for a more complicated model
is difficult. However, Serket makes it possible to construct a
complicated model flexibly and to estimate the parameters
easily.

5. EXAMPLE 2: MUTUAL LEARNING OF
CONCEPT MODEL AND LANGUAGE
MODEL

In Nakamura et al. (2014) and Nishihara et al. (2017), we
proposed a model for the mutual learning of concepts and
the language model shown in Figure 4B; its parameters were
estimated by dividing the models into smaller parts. In this
section, we show that this model can be constructed by Serket.
To learn the model, the visual, auditory, and haptic information
obtained by the robot and teaching utterances given by a human
user were used. The details are explained in Appendix 2. As in
the previous experiment, the original model has upper-bound
performance. Therefore, the purpose of this experiment is also to
show that Serket implementation has comparable performance
with the original model.
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FIGURE 9 | mMLDA that has five hierarchies.

TABLE 2 | Classification accuracies of mMLDA having five hierarchies.

Methods z1,1 (%) z2,1(%) z3,1(%) z4,1(%) z5,1(%) Average

Independent model 70.0 66.0 74.0 76.0 66.0 70.4

Serket implementation 100 90.0 100 100 100 98.0

5.1. Implementation Based on Serket
Here, we reconsider the mutual learning model based on
Serket. The model shown in Figure 4B is a one where the
speech recognition part and the MLDA that represents the
object concepts are connected, and can be divided as shown in
Figure 10. TheMLDAmakes it possible to form object categories
by classifying the visual, auditory, and haptic information
obtained, as shown in the Appendix 2. In addition, the words
in the recognized strings of a user’s utterances to teach object
features are also classified in the model shown in Figure 10.
Through this categorization of multimodal information and
teaching utterance, the words and multimodal information are
connected stochastically, which enables the robot to infer the
sensory information represented by the words. However, the
robot cannot obtain the recognized strings directly; it can only
obtain continuous speech. Therefore, in the model shown in
Figure 10, the words s which are in the recognized strings are
treated as latent variables and connected to the model for speech
recognition. The parameter L of the language model is also
a latent variable, and is learned from the recognized strings
of continuous speech o using the nested Pitman–Yor language
model (NPYLM) (Mochihashi et al., 2009). Furthermore, it is
an important point of this model that the MLDA and speech
recognition model are connected through the words s, which
makes it possible to learn them in a complementarymanner. That
is, the speech is not only recognized based on the similarity of o
but is accurately recognized by utilizing the inferred words s from
the multimodal information perceived by the robot.

FIGURE 10 | Mutual learning model of concepts and language model.

First, as the initial parameter ofL, we used the languagemodel
where all phonemes were generated with equal probabilities.
The MP approach can be used if all teaching utterances O are
recognized by using a language model whose parameter is L

and the probability P(S|O,A, L) that the word sequences S are
generated can be computed. However, it is actually difficult to
compute the probabilities for all possible word segmentation
patterns of all possible recognized strings. Therefore, we
approximated this probability distribution using the SIR
approach. The L-best speech recognition results were utilized
as samples because it is difficult to compute the probabilities

for all possible recognized strings. s
(l)
j represents the l-th

recognized string of a teaching utterance given the j-th object.
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By applying the NPYLM and segmenting them into words, the

word sequences S = {s
(l)
j |1 ≤ l ≤ L, 1 ≤ j ≤ J} can be

obtained.

S ∼ P(S|S′,L). (30)

These generated samples are sent to the MLDA module, and
the samples that are likely to represent multimodal information
are sampled based on the MLDA whose current parameter is
2:

ŝj ∼ P(s
(l)
j |wv

j ,w
a
j ,w

t
j ,2). (31)

The selected samples ŝj are considered as words
that can represent multimodal information. Then,
the MLDA parameters are updated using a set of
these words Ŝ = {ŝj|1 ≤ j ≤ J} and a set of
multimodal information W

v,Wa,Wt by utilizing Gibbs
sampling.

2 = argmax P(Ŝ,Wv,Wa,Wt|2). (32)

Moreover, Ŝ is sent to the speech recognition model,
and the parameter L of the language model is
updated.

L = argmax P(Ŝ|Ŝ
′
,L), (33)

where Ŝ
′
denotes strings obtained by connecting words in

Ŝ. The parameters of the whole model can be optimized by
iteration through the following process: the sampling words
using Equation (30), the resampling words using Equation
(31), and the updating parameters using Equations (32,
33).

Figure 11 displays the pseudocode and the corresponding
graphical model. In this model, one of modules is MLDA with
three observations and one shared latent variable connected
to the speech recognition module. o1, o2, and o3 represent
multimodal information obtained by the sensors on the robot,
and o4, which is an observation of the speech recognition model,
represents the utterances given by the human user. Although
the parameter estimation of the original model proposed in
Nakamura et al. (2014) and Nishihara et al. (2017) is very
complicated, it can be briefly described by connecting the
modules based on Serket.

5.2. Experimental Results
We conducted an experiment where the concepts were formed
using the aforementioned model to demonstrate the validity of
Serket. We compared the following three methods.

(a) A method where speech recognition results S′0 of teaching
utterances with maximum likelihoods are segmented into
words by the applied NPYLM, and the words obtained are
used for concept formation.
(b) A method where the concepts and language model are
learned by a mutual learning model implemented based on
Serket. (Proposed method)

(c) A method where the concepts and language model are
learned by a mutual learning model implemented without
Serket proposed in (Nakamura et al., 2014). (Original method)

In method (a), the following equation was used instead of
Equation (30), and the parameter L of the language model was
not updated:

S0 ∼ P(S|S′0,L). (34)

Alternatively, method (b) was implemented by Serket, and the
concepts and language model were learned mutually through the
shared latent variable s.

Table 3i shows the speech recognition accuracies of each
method. In method (a), the language model was not updated;
therefore, the accuracy is equal to phoneme recognition. In
contrast, in method (b), the accuracy is higher than that of
method (a) by updating the language model from the words
sampled by MLDA.

Table 3ii shows the accuracies of word segmentation.
Segmentation points were evaluated, as shown in Table 4,
by applying dynamic-programming matching to find the
correspondence between the correct and estimated segmentation.
This table shows a case where the correct segmentation of
a correctly recognized string “ABCD” is “A/BC/D,” and the
recognized string “AACD” is segmented into “A/A/CD.” (“/”
represents the cut points between each word.) The points that
were correctly estimated (Table 4b), as cut points were evaluated
as true positive (TP), and those that were incorrectly estimated
(Table 4d) were evaluated as false positive (FP). Similarly,
the points that were erroneously estimated as not cut points
(Table 4f) were evaluated as false negative (FN). From the
evaluation of the cut points, the precision, recall, and F-measure
are computed as follows.

P =
NTP

NTP + NFP
, (35)

R =
NTP

NTP + NFN
, (36)

F =
2RP

R+ P
, (37)

where NTP,NFP, and NFN denote the number of points evaluated
as TP, FP, and FN, respectively. Comparing the precision of
methods (a) and (b) in Table 3ii, one can see that it increases
according to Serket. This is because more correct words can be
selected among the samples generated by the speech recognition
module. Alternatively, the recall of method (b) decreases because
some functional words (e.g., “is” and “of”) are connected
with other words such as “bottleof.” However, the precision
of method (b) is higher, and its F-measure is greater than
0.11. Therefore, method (b), which was implemented based on
Serket, outperformed method (a). Table 3iii displays the object
classification accuracy. One can observe that the accuracy of
method (b) is higher because the speech can be recognized more
correctly. Moreover, the Serket implementation [method (b)] was
comparable to the original implementation [method (c)]. Thus,
the learning of the object concepts and language model presented

Frontiers in Neurorobotics | www.frontiersin.org 13 June 2018 | Volume 12 | Article 25113

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Nakamura et al. Serket

FIGURE 11 | Pseudocode of mutual learning of concept model and language model.

TABLE 3 | Accuracies of speech recognition, segmentation, and object

classification.

(i) Speech

recognition

(ii) Segmentation (iii) Object

classification

Methods Precision Rcall F-measure

(a) w/o mutual

learning

0.64 0.50 0.68 0.58 0.80

(b) Serket

implementation

0.74 0.91 0.59 0.72 0.94

(c) Original

model

0.77 0.95 0.59 0.73 0.94

TABLE 4 | Evaluation of segmentation.

(a) (b) (c) (d) (e) (f) (g)

Correct segmentation: A / B C / D

Estimated segmentation: A / A / C D

Evaluation: TN TP TN FP TN FN TN

TABLE 5 | Computation time of mutual learning model.

Methods Time (seconds)

w/o mutual learning 135

Serket implementation 2,640

Original model 2,637

in Nakamura et al. (2014); Nishihara et al. (2017) was realized by
Serket.

Table 5 shows the computation time of mutual learning
models. From this figure, the model without mutual learning
is fastest because the parameters of one MLDA and language
model are independently learned once. On the other hand, Serket

implementation is slower and comparable with the original
model. This is because the parameters of theMLDA and language
model in the Serket implementation were updated iteratively
by communicating the parameters with the MP approach, and
the computational cost was not much different from that of the
original model.

6. CONCLUSION

In this paper, we proposed a novel architecture where the
cognitive model can be constructed by connecting modules,
each of which maintains programmatic independence. Two
approaches were used to connect these modules. One is the
MP approach, where the parameters of the distribution are of a
finite dimension and communicated between the modules. If the
parameters of the distribution are of an infinite dimension or a
complex structure, the SIR approach was utilized to approximate
them. In the experiment, we demonstrated two implementations
based on Serket and their efficiency. The experimental results
demonstrated that the implementations are comparable with the
original model.

However, there is an issue with regard to the convergence of
the parameters. If a large number of samples can be obtained,
each latent variable can be locally converged into global optima
because the MP, SIR, and MH approaches are based on the
existing Markov chain Monte Carlo method. But when various
types of models are connected, it is not clear whether all latent
parameters can be converged into global optima as a whole.
It was confirmed that the parameters were converged in the
models used in the experiments. Nonetheless, this remains a
difficult and important issue which will be examined in future
work.

We believe thatmodels that can be connected by Serket are not
limited to generative probabilistic models, although we focused
on the connected generative probabilistic models in this paper.
Neural networks or other methods can be one of the modules of
Serket, and we are planning to connect them. Furthermore, we
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believe that large-scale cognitive models can be constructed by
connecting various types of modules, each of which represent a
particular brain function. In so doing, we will realize our goal
of artificial general intelligence. Serket can also contribute to
developmental robotics (Asada et al., 2009; Cangelosi et al., 2015),
where the human developmental mechanism is understood
via a constructive approach. We believe that robots can learn
capabilities ranging from motor skills to language, and these can
be developed using Serket, as it makes it possible to understand
humans.
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We propose an imitative learning model that allows a robot to acquire positional relations

between the demonstrator and the robot, and to transform observed actions into robotic

actions. Providing robots with imitative capabilities allows us to teach novel actions

to them without resorting to trial-and-error approaches. Existing methods for imitative

robotic learning require mathematical formulations or conversion modules to translate

positional relations between demonstrators and robots. The proposed model uses two

neural networks, a convolutional autoencoder (CAE) and a multiple timescale recurrent

neural network (MTRNN). The CAE is trained to extract visual features from raw images

captured by a camera. The MTRNN is trained to integrate sensory-motor information and

to predict next states. We implement this model on a robot and conducted sequence

to sequence learning that allows the robot to transform demonstrator actions into robot

actions. Through training of the proposedmodel, representations of actions, manipulated

objects, and positional relations are formed in the hierarchical structure of the MTRNN.

After training, we confirm capability for generating unlearned imitative patterns.

Keywords: imitative learning, human-robot interaction, recurrent neural networks, deep neural networks,

sequence to sequence learning

1. INTRODUCTION

Today there is increased interest in robots capable of working in human living environments. Robot
motions are generally preprogrammed by engineers, but it is crucial for robots to learn new actions
in work environment contexts if they are to work with humans. One way for robots to learn new
actions is imitation, which is the behavioral capability to generate the equivalent actions after the
observation of the demonstrator’s actions. Imitation is a powerful learning method that humans
apply to acquire new actions without resorting to trial-and-error attempts. Hence, robot acquisition
of imitative abilities will realize programming by demonstration (PbD) (Billard et al., 2008), in which
new action skills are acquired from demonstrators without any prior design.

Early studies of imitation learning are related to computational neuroscience, focusing on task-
level imitation such as assembly (Kuniyoshi et al., 1994), kendama manipulation (Miyamoto et al.,
1996), and tennis serves (Miyamoto and Kawato, 1998). To date, the main approaches to imitative
learning have been probabilistic models, reinforcement learning, and neural networks. Among
probabilistic models, hidden Markov models realize behavior recognition, generation through
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imitative learning (Inamura et al., 2004), and imitation of object
manipulation (Sugiura et al., 2010). Gaussian mixture models
allow robots to imitate human gestures (Calinon et al., 2010).
Reinforcement learning has been used for robot acquisition
of motor primitives (Kober and Peters, 2010) and applied to
task-level learning (Schaal, 1997). By combining reinforcement
learning with a Gaussian mixture model, Guenter et al.
(2007) achieved robot imitation of reaching movements. Neural
network approaches mainly use recurrent neural networks that
allow robots to imitate human gesture patterns (Ito and Tani,
2004) and object manipulations (Ogata et al., 2009; Arie et al.,
2012).

As another perspective, cognitive developmental robotics
(Asada et al., 2009; Cangelosi et al., 2010) has tried to understand
the development of the human cognitive abilities through
robot experiments based on constructive approaches. In studies
focusing on imitative learning, robots were trained to learn
imitative tasks by Hebbian learning (Nagai et al., 2011; Kawai
et al., 2012) and neural networks (Ogata et al., 2009; Arie et al.,
2012; Nakajo et al., 2015). Through training, experimenters
observe behavior changes in robots and in the internal states of
the learning models, then consider the developmental processes
of imitation. The Hebbian learning approach reveals changes
in granularity on visual development, allowing the robot to
recognize self–other correspondences (Nagai et al., 2011; Kawai
et al., 2012). Our previous studies used recurrent neural networks
to demonstrate how robots can translate from other to own
actions (Ogata et al., 2009), imitative ability for the composition
of behaviors (Arie et al., 2012), and recognition of positional
relations between self and other (Nakajo et al., 2015).

For robots working in human living environments, imitation
of demonstrator behaviors roughly comprises two processes:
(1) observing the behavior and (2) transforming the observed
behavior into an action. During observations, robots are
expected to extract information about the imitated behavior.
In the transformation process, robots must extract necessary
information from the observations, and match them with
their own actions. Robots cannot always observe behaviors
from the same position, but are expected to recognize and
reproduce behaviors regardless of the position from which they
were observed. However, few previous studies have focused
on positional relations between robots and demonstrators or
considered correspondences between actions provided from
various positions.

If robots are to observe demonstrated actions and transform
them into the robots’ own actions, robots must process
raw images and extract from them information necessary
for imitation. However, the huge dimensionality of raw data
makes direct processing too difficult. Deep-learning techniques
are looked to as a solution to this problem (LeCun et al.,
2015), because deep learning can process raw data and
allows machines to automatically extract necessary information
about requested tasks. For instance, deep learning techniques
have outperformed previous methods for image recognition
(Krizhevsky et al., 2012). Over the past several years, deep
learning has been applied to action learning by robots, and
many studies have investigated imitative learning through

deep learning (Liu et al., 2017; Sermanet et al., 2017; Stadie
et al., 2017). Stadie et al. applied deep learning methods
to transformation of demonstrator views into robot control
features. Sermanet et al. and Liu et al. trained learning models
to relate demonstrator views from various positions with
the robot view. After training learning models to transform
demonstrator views, reinforcement learning (Liu et al., 2017;
Stadie et al., 2017) or supervised learning methods (Sermanet
et al., 2017) are applied to allow robots to imitate behaviors.
Although these learning methods are suited to allowing
robots to acquire imitative skills regardless of positional
relations, demonstrators cannot provide their views to robots in
actual environments; robots must instead capture demonstrator
behaviors via cameras, and relate observed behaviors to their own
situation.

Various training methods have also been researched in
the field of deep learning. One common method applied to
robot action learning is end-to-end learning, in which the
learning model receives images and robot motor commands,
and directly plans the robot’s actions. Another technique
often applied to natural language translation is sequence
to sequence learning (Sutskever et al., 2014), which allows
translation of a multi-dimensional time series into another
time series. Utilizing this characteristic, Yamada et al.
(2016) allowed a robot to perform tasks based on language
instructions. This characteristic can also be applied to imitative
learning, because robots must translate observations of
demonstrator actions into their own actions. We thus consider
the application of sequence to sequence learning to imitative
learning.

The main contribution of this paper is demonstration of how
a robot can acquire the following two abilities: (1) automatic
visual-feature extraction, and (2) transformation from human
demonstration into robotic action when positional differences
are present. This paper proposes an imitative learning model
that simultaneously enables a robot to acquire positional relations
between a demonstrator and the robot, and transforms observed
actions into the robot’s own actions. In the learning process, the
robot observes demonstrator actions using a mounted camera,
and no pre-training is provided. To achieve imitative abilities,
we combined two deep neural network models. An autoencoder
extracts visual features from raw camera images, and a dynamic
neural network model called a multiple timescale recurrent
neural network (MTRNN) (Yamashita and Tani, 2008) is trained
to learn how to imitate tasks . An MTRNN learns positional
relations between a demonstrator and a robot. To allow the
robot to learn how to translate observed actions into its own
actions, the MTRNN is trained based on a sequence to sequence
approach (Sutskever et al., 2014). In experiments, we imposed
object manipulation tasks on a robot and conducted predictive
learning to train the proposed learning model. After training, we
confirmed that the robot could translate observed actions into
its own actions. By inspecting the internal states of the MTRNN,
we show how the robot recognizes positional relations between
the demonstrator and the robot during tasks. We also considered
what information the robot extracts through observation and
translates into actions.
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2. METHODS

2.1. Sequence to Sequence Learning of

Imitative Interaction
We first describe the method by which robots use our proposed
learningmodel to learn imitative interactions.We apply sequence
to sequence learning (Sutskever et al., 2014) to map observed
demonstrator actions to robot actions. sequence to sequence
learning is a learning method for RNNs that is mainly used
in the machine translation field. By inputting to RNNs series
of sentences in the original and target languages, sequence to
sequence learning allows forward propagation in the RNNs
both to recognize the meaning of the original sentence and
to generate a sentence in the target language by using the
internal states acquired through encoding the original language.
We use sequence to sequence learning to encode demonstrator
actions and to generate robot actions. As Figure 1 shows, by
concatenating demonstrator and robot actions and inputting the
concatenated sequences to a RNN, the network is expected to
learn how to map the demonstrator actions to robot actions.

2.2. Overview of Proposed Learning Model
Robot imitation of demonstrator actions requires observation
of demonstrator actions and transformation of observed actions
into robot actions. The robot must process visual information to
extract information related to demonstrator actions. Captured
camera images have too many dimensions to process directly.
The robot thus requires functions for automatically compressing
and extracting visual information. To map extracted visual
information from demonstrator actions to robot actions, visual
features and robot motor information must be integrated into
a single learning scheme. Doing so requires another learning
model for integrating this information, separate from visual
feature compression.

Our proposed learning model satisfies these conditions by
including two neural networks. The first is a deep neural network
called a convolutional autoencoder (CAE), which is applied to
extraction of visual features from camera images. The second
is a multiple timescale recurrent neural network (MTRNN),
which we use to integrate time series of extracted visual features
with robot motor information. Figure 2 shows an overview of
the proposed learning model. In the following subsections, we
explain the CAE method for extracting visual features and the
MTRNNmethod for integrating them with motor information.

2.3. Visual Feature Extraction via

Convolutional Autoencoder
An autoencoder is a neural network with bottleneck layers,
and comprises an encoder for dimensionally compressing input
images and a decoder for restoring dimensionality in output
images (Hinton and Salakhutdinov, 2006). Updating learnable
parameters in the autoencoder to identically output an input
image allows the network to acquire lower-dimensional features
representing input images at the narrowest layer. By compressing
input images, the robot can nondestructively extract visual
features of camera images.

In this study, we applied a convolutional autoencoder (CAE),
which is an autoencoder including convolution layers (Masci
et al., 2011). Convolution is an arithmetic process inspired
by the mammalian visual cortex, and is expected to extract
visual features by focusing on spatial localities in the images.
We combined a conventional CAE with fully connected layers.
Camera images are taken as input, then the CAE is trained
to minimize the mean squared error between input and
reconstructed images. The mean squared error EAE is processed
as

EAE =
1

N

N∑

n

E
(n)
AE, (1)

FIGURE 1 | sequence to sequence learning scheme of the RNN. In the first half of the time sequence, the robot moves only its head and captures images of only the

action being demonstrated. From the captured images, the RNN is expected to recognize and encode the demonstrator actions. In the second half of the time

sequence, the RNN receives encoded internal states, plans robot actions, and issues robot motor commands.

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2018 | Volume 12 | Article 46119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Nakajo et al. Imitative Visuo-Motor Transformation by DNNs

FIGURE 2 | The proposed learning model. (A) A convolutional autoencoder (CAE) is trained to extract visual features in images from a robot-mounted camera. (B) A

multiple timescale recurrent neural network is used to integrate CAE-extracted visual features and robot motor information.

E
(n)
AE =

1

HWC
||X̂(n) − X(n)||22, (2)

where N is the number of mini-batches; X̂(n) is the nth input
image; X(n) is the nth reconstructed image; and H, W, and
C indicate the height, width, and channel, respectively, of the
images. To avoid drastic changes in extracted visual features
between continuous time steps, we furthermore applied the
following slow penalty introduced in Finn et al. (2016):

g(ft) = η · ||(ft+2 − ft+1)− (ft+1 − ft)||
2
2 (t ≥ 1) , (3)

where ft indicates the visual features extracted from an image at
time step t, and η is a hyper-parameter to control the strength of
the penalty.

2.4. Sensory-Motor Integration by Multiple

Timescale Recurrent Neural Network
Generating imitative actions from observation of demonstrator
actions requires a function that integrates visual features

u
(s)
t,i =
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1

τi

)
u
(s)
t−1,i +

1

τi




∑

j∈II
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wijc
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1
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)
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t−1,i +

1

τi




∑

j∈IFC∪ISC

wijc
(s)
t−1,j + bi



 (t ≥ 1, i ∈ ISC) ,

∑

j∈IO

wijc
(s)
t,j + bi (t ≥ 1, i ∈ IO) ,

(4)

extracted by the CAE with robot motor information. In this

work, we use a dynamic neural network model called a multiple

timescales recurrent neural network (MTRNN) (Yamashita

and Tani, 2008). An MTRNN has different time constants

in its hierarchically context layers. The layer connected to

the input–output layers [“fast context” (FC) in Figure 2B] is

a group of neurons with a smaller time constant, and so

responds more quickly to current external inputs. Another

layer connected only to neurons in the context layers [“slow
context” (SC) in Figure 2B] has a larger time constant,

and so responds more slowly. Yamashita and Tani (2008)

demonstrated that stacking layers with different timescales allows

the robot to acquire action primitives in the FC layer, and
described the order of sequential combinations of primitives in
the SC layer.

In MTRNN forward propagation, the internal state of the ith

FC, SC, and output neural unit at time step t, (ut,i), for the sth
sequence is calculated as
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where IFC, ISC, and IO are index sets of the respective neural units,
τi is the time constant of the ith neuron, wij is the connective

weight from the jth to the ith neural units, x
(s)
t,j is the external

input of the jth neural unit at time step t of the sth sequential

data, c
(s)
t,j is the activation value of the jth context neuron at time

step t of the sth sequence, and bi is the bias of the ith neural unit.
We use tanh as the activation function for the context neural unit
c
(s)
t,i and output unit y

(s)
t,i .

We trained the MTRNN by minimizing the mean squared
error with the gradient descent method. The mean squared error
ERNN is described as

ERNN =
1

S

S∑

s

1

T(s)

T∑

t

E
(s)
RNN,t , (5)

E
(s)
RNN,t =

1

Y
||ŷ

(s)
t − y

(s)
t ||22, (6)

where S is the number of sequential data, T(s) is the number
of time steps of the sth sequential data item, Y is the number

of neural units in the output layer, ŷ
(s)
t is the target sensory-

motor values at time step t of the sth sequence, and y
(s)
t is the

predicted sensory-motor values at time step t of the sth sequence.
The learnable parameters of the MTRNN are composed of
connected weights w, biases b, and initial internal states in

context layers u
(s)
0 . The gradients of these learnable parameters

follow a conventional back propagation through time method
(Rumelhart et al., 1986).

3. EXPERIMENT

3.1. Task Design
This section describes an experimental task given to a humanoid
robot (NAO; Aldebaran Robotics). The task in this experiment
is imitative interaction for object manipulation as shown in
Figure 3A. Imitative interaction cycles comprised four processes:
(i) the demonstrator shows the object manipulation action
to the robot, then (ii) passes the manipulated object to the
robot. Next, (iii) the robot mimics the observed manipulation,
and (iv) the demonstrator receives the object from the
robot. Furthermore, actions, manipulated objects, and positional
relationships between the robot and the demonstrator were
varied between cycles. Manipulated objects were two toys (a
chick and a watering can), shown in Figure 3B. Objects were
manipulated in two ways (move-side and move-up) as shown in
Figure 3C. The positional relationship between the robot and
the demonstrator varied according to where the demonstrator
presented the action. We define 180◦ as the position when the
robot presents a motion in front of itself. Accordingly, 120, 150,
180, 210, and 240◦ counterclockwise in the positive direction are
used as the positional relationship between the demonstrator and
the robot. Figure 3D shows a schematic diagram of positional
relations between the demonstrator and the robot . Under these
conditions, combinations that can be taken in a single cycle
come in 20 patterns, from two objects, two movements, and five
positional relations.

3.2. Training Data
This subsection describes the method for creating sequential
training data. In this experiment, the training data consisted of
time series of the robot joint angles and 120 × 160 RGB images
captured by a front-facing camera mounted in its mouth. The
CAE extracts visual features from captured images. Controlled
joints had four degrees of freedom (DoF) (ShoulderPitch,
ShoulderRoll, ElbowYaw, and ElbowRoll) at each arm and two
DoF (HeadPitch and HeadYaw) at the neck.

To prepare the training data, the robot was controlled
and actual joint angles and images were recorded. A control
method for both arms was predesigned and the arms tracked
the planned trajectories with noise. Gaussian noise was added
into the planned trajectories to augment the training data,
with the noise variance set as 0.0001. Neck joint angles
were operated by proportional–integral–derivative control, so
manipulated object centroids were centered in camera images
during interaction. While recording training data, joint angles
and camera images were sampled every 400ms. Because recorded
joint angle and camera image information had different value
ranges, the information was normalized before input to the
neural networks: joint angles were scaled to [−1.0, 1.0] according
to angle limits, and image pixel values were normalized from
[0, 255] to [−1.0, 1.0].

This experiment separately recorded the processes of imitative
interaction tasks such as demonstrator and robot actions and
object passing. After recording, processes were combined and an
imitative interaction cycle was generated. There were 160 time
steps for demonstrator and robot actions and 60 for passing
objects between the demonstrator and the robot, for a total of
440 time steps. Each sequence of 20 combinations was generated
five times, for a total of 100 instances of recorded data.

3.3. Training of CAE and MTRNN
The robot was trained with imitative interaction tasks through
predictive learning of recorded time series including joint angles
and camera images.

3.3.1. Visual Feature Learning via CAE
We first trained the CAE with camera images to extract visual
features for input to the MTRNN with robot joint angles. Input
120 × 160 RGB images have 57,600 dimensions. These input
images were trained to minimize errors between the original
inputs and reconstructed images, and to extract 10 visual features
from the middle CAE layer. Table 1 presents the detailed CAE
structure used in this learning experiment. For CAE training, we
conductedmini-batch training with an Adam optimizer (Kingma
and Ba, 2015), setting Adam hyperparameters as α = 0.01,
β1 = 0.9, and β2 = 0.99, mini-batch sizes of 200, and slow
penalty strength as η = 1.0 × 10−5. Learnable CAE parameters
were updated 7,500 times.

3.3.2. Sensory-Motor Integration Learning via MTRNN
After extracting visual features by the trained CAE, time series
of sensory-motor information were generated by concatenating
robot joint angles and extracted visual features. To allow the
robot to carry out imitative interactions, training sequences
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FIGURE 3 | Task design: (A) A single cycle of the imitative interaction task given to the robot comprises four components: (1) action presentation by the demonstrator,

(2) passing the manipulated object to the robot, (3) generating an imitative action by the robot, and (4) receiving the object by the demonstrator. (B) Objects

manipulated during imitative interaction. (C) Imitative robot actions. (D) Positional relation between robot and demonstrator. The position of actions that the robot

observed in front of the demonstrator is defined as 180◦, and five positions (120, 150, 180, 210, and 240◦) are labeled counterclockwise.

TABLE 1 | The structure of the CAE.

The lth layer Input Output Processing Kernel size Stride Padding

1 (120, 160, 3) (60, 80, 16) Conv (4, 4) (2, 2) (4, 4)

2 (60, 80, 16) (30, 40, 32) Conv (4, 4) (2, 2) (4, 4)

3 (30, 40, 32) (10, 10, 64) Conv (6, 8) (3, 4) (6, 8)

4 (10, 10, 64) (2, 2, 128) Conv (10, 10) (5, 5) (10, 10)

5 512 250 Linear − − −

6 250 10 Linear − − −

7 10 250 Linear − − −

8 250 512 Linear − − −

9 (2, 2, 128) (10, 10, 64) Deconv (10, 10) (5, 5) (10, 10)

10 (10, 10, 64) (30, 40, 32) Deconv (6, 8) (3, 4) (6, 8)

11 (30, 40, 32) (60, 80, 16) Deconv (4, 4) (2, 2) (4, 4)

12 (60, 80, 16) (120, 160, 3) Deconv (4, 4) (2, 2) (4, 4)

In the “Processing” column, conv, deconv, and linear respectively indicate convolutional encoding, deconvolutional decoding, and fully-connected transformation. The input dimensions

for convolutional and deconvolutional layers are shown as (height,width, channel), and fully-connected layers are shown as d.

for input to the MTRNN were created by connecting several
combinations of imitative tasks. In this case, training sequences
were sequences of four randomly selected imitative tasks, with
overlapping allowed. An interval of 5–30 time steps was inserted
between the connected time series. The robot retained the same
pose during this interval. Under these conditions, 100 sequences
were generated as MTRNN training data.

While there were 20 combinations of imitative tasks,
we trained the MTRNN with 10 combinations to evaluate
generalizability to unlearned combinations. Table 2 shows the 10
combinations used for MTRNN training to predict the next state
of joint angles and visual features. There were 10 joint angles and

TABLE 2 | MTRNN training sequences.

120◦ 150◦ 180◦ 210◦ 240◦

move-side C W C W C

move-up W C W C W

Rows show actions, and columns show positional relationships. In each cell, characters C

andW indicate the manipulated object (chick or watering can). The time sequence indicated

in each cell is used for MTRNN training.

10 extracted visual features, for a total of 20 dimensions input
to the MTRNN. We set the number of neural units in the FC
and SC layers as 180 and 20 and time constant values as 2.0 and
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FIGURE 4 | Image reconstruction by trained CAE. The upper figure shows an image of a [move-side, chick] demonstration, and the lower figure shows an image of

[move-up, watering can] generated by the robot.

64.0, respectively. For training, we used the Adam optimizer with
hyperparameters α = 0.01, β1 = 0.9, and β2 = 0.99. Learnable
parameters were updated with these settings 10,000 times.

4. TRAINING RESULTS

4.1. Reconstructed Images by CAE
After CAE training, the mean squared error between trained
images and their reconstructed output was at most 0.0141. The
worst mean squared error between untrained and reconstructed
images was 0.0150. Figure 4 shows a selection of reconstructed
and untrained images. The reconstructed image in Figure 4

suggests that the trained CAE could regenerate original input
images. We applied principal component analysis to visual
features extracted by the CAE at the beginnings of the
demonstrations and robotic actions. As shown in Figure 5A, the
positional relationships between the demonstrator and the robot
were separated in the visual features at the beginning of the
demonstrations. Figure 5B shows that the manipulated objects
were separated in the visual features at the beginning of the
robotic actions. The CAE could extract the visual features from
images, thus we used time series of the extracted visual features
for training of the MTRNN. An example of a time series of the
extracted visual features is shown in Figure 5C.

4.2. Robot Action Generation
After MTRNN training, we evaluated the mean squared error
between trained target sequences and predicted output, which
was 0.00140 at worst. We input new sequences generated with
the combination including untrained series, and evaluated the

mean squared error. In that case, the evaluated value was 0.00164
at worst. Figure 6 shows the MTRNN-predicted output against
the untrained input [move-side, chick] as observed from position
150◦. By using predicted output of theMTRNN against untrained
input, the robot could imitate demonstrator actions.

4.3. Internal States in MTRNN
Principal component analysis was performed on the internal
MTRNN state to grasp the internal structure the MTRNN
acquired through predictive learning of robot sensory-motor
information. We conducted PCA on internal states in the FC and
SC layers at the time when the demonstrator ended the actions.
Figure 7 shows the difference in the positional relationship
between the demonstrator and the robot in the FC layer, and
Figure 8 shows the difference between imitative actions and
manipulated objects. As shown in Figure 7, the FC layer in the
MTRNN separated positional relationships between the robot
and the demonstrator when demonstrator actions were complete.
At the same time, differences in imitative actions are clustered
in the plane described by PC1 and PC2 of the internal states
in the SC layer (see the upper graph in Figure 8). In contrast,
in the plane described by PC3 and PC4 the differences between
manipulated objects are separated by the dashed line in the lower
graph in Figure 8.

We next extracted internal states in the SC layer at the time
when the robot starts its action, and plotted the PCA results in
Figure 9. As that figure shows, combinations of imitative actions
and manipulated objects were clustered in the SC layer. The
actions were distinguished at the beginning of robot imitation, so
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FIGURE 5 | Visual features extracted by the CAE: (A) principal components of the visual features at the beginning of demonstrations (PC1–PC2), (B) principal

components of the visual features at the beginning of robotic actions (PC1–PC2), and (C) an example of a time series of the visual features for

[move− side,watering− can, 150◦].

FIGURE 6 | The predicted output of an untrained [move− side, chick] sequence observed from the 150◦ position. This figure shows only the prediction for both arms.

The horizontal axis indicates time steps, and the vertical axis represents predicted output of the joint angles. The solid and dotted lines show output by the MTRNN

and target sequences, respectively.
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FIGURE 7 | Results of PCA of the internal states in the FC layer when demonstrator actions are finished. PC1, PC2, and PC3 are plotted in the 3D space. Numbers in

parentheses indicate contribution ratios of each principle component. Filled points are trained imitative patterns, and others are unlearned patterns. The positional

relationships are separated in the 3D space.

the robot could map observed actions to corresponding imitative
actions in advance. Similarly, the robot could acquire an ability
to carry out imitative actions while retaining information about
manipulated objects in the internal MTRNN states. Furthermore,
unlearned patterns indicated in Figure 9 were recognized, so the
MTRNN could acquire the ability to generalize via combinations
of actions and manipulated objects.

One time step during the robot action was chosen and the
internal states were analyzed at that time. Since robot motions
comprised 160 steps, we chose the middle (80th) time step and
visualized the internal states by PCA. Figure 10 shows internal
states of the FC layer at that time, and confirms that the robot
distinguished between different combinations of actions and
manipulations while performing imitative actions. In contrast,
principle components in the FC layer do not show positional
relations between the demonstrator and the robot. Therefore,
the robot could transform observations into actions regardless
of the positional relation. Finally, to confirm how internal
MTRNN states transit during imitative interaction, we plotted
the time development of neural units in the SC layer during
interaction in a plane. Figure 11 shows transitions of neural
activities in the SC layer during imitative interactions. The
positional relationship between the demonstrator and the robot
is fixed as 120◦, and combinations of actions and manipulated
objects are separately shown. The figure shows that the internal
states for all patterns start from the beginning of demonstrator

actions (©), transit to robot actions (△), and finally reach
the same point where manipulated objects are passed from the
robot to the demonstrator (�). Since the internal states always
reach the same point, the robot could continue to recognize
the actions, manipulated objects, and positional relations after
a single imitative interaction. Other positional relations also
acquired results similar to those in Figure 11.

5. DISCUSSION

We proposed a possible imitative model that allows a robot
to acquire the ability to recognize positional relations between
the demonstrator, and to transform observed actions into
robot actions. The imitative model had two neural networks:
(1) a CAE that was trained to extract visual features from
captured raw images, and (2) an MTRNN that integrated
and predicted sensory-motor information. Through training
of image reconstruction by the CAE, the robot could extract
visual features from raw images captured by its camera. By
sensory-motor integration through predictive learning with the
MTRNN, the robot could recognize information that relates
imitative interactions, such as positional relations between the
demonstrator and the robot. In the rest of this section, we
compare earlier studies with our current work, and clarify the
distinction between them.
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FIGURE 8 | Results of PCA of internal states in the SC layer when

demonstrator actions are finished. Numbers in parentheses indicate

contribution ratios of each principle component. Filled points are trained

imitative patterns, and others are unlearned patterns. In the upper figure

(PC1–PC2), differences of actions are separated in the PC1 direction. In the

lower figure (PC3–PC4), differences of manipulated objects are classified by

the dashed line.

From the viewpoint of acquiring positional relations between
the demonstrator and robot, our proposed model allows the
robot to recognize positional relations via predictive learning of
sensory-motor sequences. By including differences in positions
between the demonstrator and the robot, the proposed learning
model might be forced to optimize these differences during
predictive learning. Thanks to the hierarchical structure of the
MTRNN and the sequence to sequence learning methods, the
robot might come to process positional differences in the FC
layer (shown in Figure 7), and possess information required
for robot actions, such as kinds of actions and manipulated

FIGURE 9 | Internal states in the SC layer at the beginning of robot actions

(PC1–PC2). Filled points indicate trained imitative patterns, and outlined marks

are unlearned. Combinations of imitative actions and manipulated objects can

be clustered by the two dotted lines.

objects in the SC layer (see Figures 8, 9). In this work, the
sequence to sequence learning method was tried for encoding
the demonstrator’s actions into the plan of robotic actions.
Thus, the information necessary for the robotic actions may
be encoded in the SC layer, and the information necessary
for the current prediction may appear in the FC layer. In the
current experiment, the robotic actions do not require any
positional relationships between the demonstrator and the robot.
Therefore, positional relationships may remain in the FC layer.
Furthermore, from Figure 10, conducting sequence to sequence
learning that translates demonstrator actions into robot actions
might allow the robot to properly transform observed actions
into the same actions. In previous works, positional relations
between demonstrator and robot were represented by coordinate
transformations described as mathematical formulations (Billard
et al., 2004; Lopes et al., 2010). Our proposed model requires
no designed transformation to acquire positional relations
between the demonstrator and robot. In this experiment,
the robotic head moved through imitative interaction, and its
joint angles differed for each positional relationship during
the demonstration phase. These difference in the robotic
head depended on the positional relationships between the
demonstrator and the robot. Thus, the proposed learning
model might require optimizing for these differences during
predictive learning. Through predictive learning of sensory-
motor sequences, including positional differences between the
demonstrator and robot, the robot could automatically recognize
differences and transform demonstrator actions into robot
actions. Our previous work (Nakajo et al., 2015) allowed robots
to acquire information about actions and positional relations by
labeling this information and providing constraints that make
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FIGURE 10 | Internal states in the FC layer while conducting robot actions (PC1–PC2–PC3). Filled points indicate trained imitative patterns, and outlined marks are

unlearned patterns. Actions and objects are distinguished between in this 3D space, but positional differences between the demonstrator are ignored.

FIGURE 11 | Transition of neural activities in the SC layer during imitative interaction (PC1–PC2). The positional relationship between the demonstrator and the robot

is fixed as 120◦, and combinations of actions and manipulated objects are separately plotted. Symbols ©, △, and � respectively indicate the beginning of

demonstrator actions, the beginning of robot actions, and the end of passing objects to the demonstrator. Filled marks indicate trained patterns, and others indicate

unlearned patterns. All transitions start from © points, pass through △, and finally return to similar � points near the beginning of demonstrator actions (©).
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activities of neural units representing the same information
close. In contrast, the current work eliminates labeling of actions
and positional relations by conducting sequence to sequence
learning.

From the perspective of action translations, sequence to
sequence learning methods might contribute to learning how to
translate demonstrator actions into robot actions. As Figures 7,
8 show, the robot recognized positional relations, actions,
and manipulated objects in the demonstration phase. From
Figure 10, after a demonstration, the robot could perform
observed actions regardless of positional relation. Thanks to
the characteristics of sequence to sequence learning, which can
translate one multidimensional sequence into another sequence,
the robot acquired the ability to choose information necessary
for conducting actions. In addition, we conducted a validation
trial in which the demonstrations from untrained positional
relationships (135, 165, 195, and 225◦) were given to the
MTRNN. The demonstrations observed from all untrained
positions could be translated into the proper robotic actions
by the MTRNN. On the other hand, although the MTRNN
could map the untrained positional relationships into the points
between the trained positional relationships, sometimes mapping
failed and these relationships appeared at different points in
the PCA space of Figure 7. These failures might come from
visual features extracted by the CAE. In the current experiment,
differences in the positional relationships were present in the
visual images and the joint angles of the robotic head. However,
the CAE did not learn to extract visual features from the
untrained positional relationships. Thus, it may be difficult to
extract these visual features with the CAE, which could affect
predictions by the MTRNN. Previous studies applied separate
modules to transform positional differences (Ogata et al., 2009;
Liu et al., 2017; Sermanet et al., 2017). Ogata et al. (2009)
used a mixture-of-experts algorithm, where each expert module
translated demonstrator actions provided from a different
position. Positional relations that the robot recognized were thus
limited by the number of experts, although the robot could
imitate observed actions from various positions. In this paper,
every positional relationship is acquired within the internal
structure of a single RNN, so the robot can process various
positional relations. Sermanet et al. (2017) and Liu et al. (2017)
used deep neural networks that associated demonstrator views
with robot views. These methods were very powerful, because
no previous knowledge was required to associate the views.
However, third-person views were synchronized with robot views
where needed to translate actions. In this paper, the robot
required its own views, so a robot-mounted camera was necessary
in an actual environment. Furthermore, from the viewpoint of
transforming actions, previous works used separate modules to
extract invariances that were included in views, and additional
training was required to learn robot actions. Our proposed
model allowed the robot to simultaneously learn recognition of
positional relations and action transformation, so no pre-training
was needed to integrate sensory-motor information.

When we train the CAE to extract visual features from
the robot’s vision, we discretely input visual frames. However,
in sensory-motor integration for achieving sequential tasks,

visual feature learning in which the learning model sequentially
predicts images may be required. In the experiment described
in this paper, robot actions were determined at the end of
the demonstration, and only passing of objects occurs between
the end of demonstrator actions and the beginning of robot
actions. Thus, both internal representations in the SC layer
might be similar. However, discrimination of manipulated
objects was not acquired at the end of demonstrator actions, as
shown in Figure 8. Discrimination of manipulated objects was
instead achieved at the beginning of robot actions, as shown in
Figure 9. This difference in representations might come from
prediction error arising from visual information. For the CAE,
the difficulty of reconstructing any object comes from the size
of object regions. Specifically, reconstructing smaller objects is
more difficult than larger objects. In this paper, the regions
of manipulated objects during demonstration are smaller than
those during robot actions. It thus seems more difficult for the
CAE to reconstruct manipulated objects in the demonstration
phase. This difficulty of reconstruction might affect sensory-
motor integration, as seen in the internal representations in the
SC layer. Video prediction in which the learning model is trained
to sequentially predict images would contribute to overcoming
this problem. Thanks to sequential prediction, the learningmodel
applies histories of past predictions to the current prediction.
Moreover, we separately trained the CAE and the MTRNN.
Therefore, through training of sensory-motor integration with
the MTRNN, no feedback was sent to visual processing by the
CAE. However, to allow the robot to more properly process
sensory-motor sequences, the prediction error should affect all
processing in the learning model. A previous work by Hwang
and Tani (2017) prepared a neural network that processes visual
sequences, and another that controls the robot. By combining
two neural networks through another subnetwork, they realized
end-to-end training of sensory-motor integration. Our learning
model has a structure similar to the model proposed by Hwang
and Tani (2017), so combining two neural networks through
another subnetwork might also be applicable to the proposed
method.

We conducted sequence to sequence learning to allow the
robot to transform each demonstrator action into robot actions.
However, by giving the learning model pairs of demonstrator
and robot actions that differ from the demonstrator’s, sequence
to sequence learning can realize translation of demonstrator
actions into robot actions differing from the demonstrator’s.
Furthermore, we gave only one-to-one pairs of demonstrator
and robot actions as training data during sequence to sequence
learning. The robot can thus only imitate demonstrated actions
in a single way, and cannot acquire imitative ability that performs
demonstrated actions with equivalent goals but conducted by
differing means, such as using both hands vs. using only one
hand. Such an imitative ability is important for robots, but
has not yet been realized by current methods using sequence
to sequence learning. To realize this imitative ability, in future
studies we should enrich training data to allow the robot to
imitate demonstrated actions by various means. In the training
data, the demonstrator and robot conduct equivalent actions
by various means. Through training pairs of demonstrator and
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robot actions, the robot might come to imitate demonstrated
actions in various ways. As has been found in the field of
neural machine translation (Cho et al., 2014; Johnson et al.,
2016), RNNs with an encoder–decoder architecture trained
by sequence to sequence learning methods can acquire both
syntactic and semantic structures. Thus, by applying sequence to
sequence learning to action learning by robots, RNNsmight allow
robots to capture the underlying structures of demonstrated
actions.

In this paper, imitative learning using a sequence to
sequence learning method required an RNN to deal with long
sequences. Therefore, RNNs other than MTRNN could be used
to learn sensory-motor sequences. For example, we tried a
continuous-time recurrent neural network (CTRNN) for the
current experiment. Although the CTRNN generated the trained
imitative patterns after predictive learning, it sometimes failed to
generate untrained imitative patterns. As another example, it is
well known that the long short-term memory technique (LSTM)
can process long sequences because of its gating mechanisms.
Thus, replacing MTRNN with LSTM will yield similar results.
Although an RNN other than MTRNN could have been used,
we adopted MTRNN because of its simpler representation of the
internal state.

Moreover, future studies from the viewpoint of imitative
learning should discuss the existence of mirror neurons
(Rizzolatti et al., 1996), which by themselves show common

ignition states in the imitation ability of primates with
the perception of other acts and movement. This mirror
neuron system has also been discussed from the viewpoint of
cognitive development robotics, because human beings lead the
development of behavioral understandings in others (Nagai et al.,
2011; Arie et al., 2012; Kawai et al., 2012). In a previous study
(Nakajo et al., 2015), we realized robot acquisition of common
neuronal transitions in the robot’s own and other behaviors
by constraint to neurons representing labeled information, but
the internal states of all neurons were separated according to
their own actions in this work. Therefore, as a future method
for realizing neuron activity simulating mirror neurons, it is
conceivable to consider an imitation experiment using a group
of neurons with slow response speeds in the context layer of the
RNN.
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In order to track complex-path tasks in three dimensional space without joint-drifts,

a neural-dynamic based synchronous-optimization (NDSO) scheme of dual redundant

robot manipulators is proposed and developed. To do so, an acceleration-level

repetitive motion planning optimization criterion is derived by the neural-dynamic

method twice. Position and velocity feedbacks are taken into account to decrease

the errors. Considering the joint-angle, joint-velocity, and joint-acceleration limits, the

redundancy resolution problem of the left and right arms are formulated as two quadratic

programming problems subject to equality constraints and three bound constraints. The

two quadratic programming schemes of the left and right arms are then integrated into

a standard quadratic programming problem constrained by an equality constraint and a

bound constraint. As a real-time solver, a linear variational inequalities-based primal-dual

neural network (LVI-PDNN) is used to solve the quadratic programming problem. Finally,

the simulation section contains experiments of the execution of three complex tasks

including a couple task, the comparison with pseudo-inverse method and robustness

verification. Simulation results verify the efficacy and accuracy of the proposed NDSO

scheme.

Keywords: dual-redundant-manipulators, redundant robot, complex tasks, motion planning, acceleration-level,

neural dynamic method

1. INTRODUCTION

Redundancy resolution problem is an important issue in the control of redundant robot
manipulators. The redundancy of the robot manipulators endows us with extra degrees-of-freedom
to finish some subtasks in addition to the end-effector main task (Jin and Li, 2016; Reynoso-
Mora et al., 2016; Guo et al., 2017; Huang et al., 2017). Control of dual-redundant-manipulators
is more complex because they have twice degrees-of-freedom than a single-redundant manipulator
does. With more and redundant degrees-of-freedom, dual-redundant-manipulators can not only
complete themain task of the end-effectors, but also finish various subtasks, such as joint-limitation
avoidance, obstacle avoidance, singularity avoidance, and dual-arms cooperations (Zhang et al.,
2014; Liu et al., 2015; Jin et al., 2017; Chikhaoui et al., 2018).

For each manipulator of the dual-redundant-robot-manipulators, since the number n of
degrees-of-freedom of joints is greater than the dimensionm of end-effectors’ position and posture,
solutions to the inverse kinematic problem of each manipulator as same as dual-manipulators are
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infinite (i.e., the multiple-solution problem). In order to solve
such a multiple-solution problem, a number of methods have
been proposed (Chevallereau and Khalil, 1988; Jin and Zhang,
2014; Toshani and Farrokhi, 2014; Luo et al., 2017). The
conventional method is the pseudo-inverse formulation θ̇ =

J+ṙ + (I − J+J)zv or θ̈ = J+(r̈ − J̇θ̇) + (I − J+J)za, which
contains a specific minimum-norm solution plus a homogeneous
solution (Lin and Zhang, 2013). The pseudo-inverse method
has a simple form and has been applied to dual-redundant-
manipulators (Zheng and Luh, 1986), but it has to compute
the matrix inverse which may have high computational cost
(Ho et al., 2005), algorithm singularities and have difficulty in
containing zv, za ∈ Rn into inequality form. That is to say, it
cannot solve inequality constrain problems (Cheng et al., 1994).
What’s worse, the determining themagnitude of zv and za is based
on trial-and-error approach and is over-dependent on subjective
judgement and experience (Zhang et al., 2004). Although some
improved pseudo-inversemethods have been developed in recent
years, such as joint torque optimization (Flacco and De Luca,
2015; Wang et al., 2015; Xiao et al., 2016), but it still cannot solve
the inequality problems.

A repetitive motion is a basic requirement of redundant-
robot-manipulators in practical applications if they are expected
to execute cyclic tasks. A repetitive motion is that when the
end-effector tracks a closed path in Cartesian space, all the joint
trajectories should be closed. That is to say, the final states
of joints must coincide with the initial ones when the end-
effector completes a closed end-effector path. If this issue is not
considered into the motion planning scheme of dual-redundant-
manipulators, the joint-drift phenomenon would happen. In
order to realize repetitive motions, additional self-motion
strategy is necessary to readjust the joints of dual-manipulators
to the initial states at the end of each cycle. Evidently, this is
much inefficient and is not acceptable in a factory automation
assembly line. Klein firstly studied this problem in a single
redundant-robot-manipulator, and his research showed that the
joint-drift that occurred in the pseudo-inverse control scheme is
not unpredictable (Klein and Kee, 1989). In the last two decades,
in order to solve the joint-drift problem, many quadratic-
programming-based repetitive motion planning schemes have
been proposed and solved by neural networks but most of
them are about the single redundant robot manipulator (Zhang
et al., 2008, 2018; Zhang and Zhang, 2012, 2013b). The control
methodology of dual-redundant manipulators is imperative, as
there are more and more complex end-effector tasks, such as
unscrewing caps (Felip andMorales, 2015), grasping and moving
of an object (Shin and Kim, 2015; Dong et al., 2017). These
tasks can not be completed by a single manipulator and need
dual-robot-manipulators. In recent years, some researchers have
proposed impedance and admittance control methods to dual-
arms coordination. For example, Lee et al. (2014) and Jr and
Roberts (2015) proposed a novel relative impedance control
based on the relative Jacobian expression. These works more
focus on dual-arms cooperation and allocating task through
force/torque, and the force/torque sensors are necessary. In fact,
some tasks only need dual-manipulators synchronous working
and cooperation. For instance, moving a heavy box. To finish

these tasks, some researchers exploited quadratic-programming-
based repetitive motion planning scheme for dual-redundant-
manipulators and then used neural network as a quadratic
programming solver. In our previous work, a neural dynamic
method based repetitive motion planning scheme was proposed
for humanoid robot arms (Zhang et al., 2015), but it is on
velocity-level and cannot consider the joint-acceleration limits.
In addition, the velocity-level repetitive motion planning scheme
can not be directly applied to acceleration controlled robots. Jin
and Zhang proposed a repetitive motion planning scheme at
acceleration level (Jin and Zhang, 2014). However, the scheme
is only performed on dual-manipulators with simple planar
three links, and the end-effector tasks are very simple. It is

worth pointing out that very few acceleration-level repetitive

motion planning schemes take position-error feedback into
consideration to make the position-error convergent as time
involves.

The studying motivations of this paper can be summarized as:

1) A repetitivemotion is a basic requirement of redundant-robot-
manipulators in practical applications. 2) Most researches on the

repetitive motion planning are based on a single-manipulator
with less degrees-of-freedom, and very few researches considered
the synchronous-optimization scheme of dual redundant robot
manipulators. 3) The traditional resolution scheme at the
velocity level cannot consider the acceleration limit avoidance,

which may lead to acceleration limitation exceeded problem. In
order to resolve the redundancy problem of dual-redundant-
robot-manipulators with 14 degrees-of-freedom, a neural-
dynamic based synchronous-optimization scheme of dual

redundant robot manipulators (NDSO) is proposed in this
paper. Different from the existing work (Jin and Zhang,
2014), the proposed NDSO scheme can be performed on
dual-redundant-manipulators with 14 degrees-of-freedom and

working in three-dimensional space. In addition, the dual-
redundant-manipulators can track some complex paths (such as
geometric curves and numbers) and complete coupled tracking
task. Furthermore, the NDSO scheme has excellent robustness
under the perturbation of systematic error.

The remainder of the paper is organized into four sections. In
section 2, the neural-dynamic based synchronous-optimization

subschemes (Sub-NDSO) of the left and right manipulators are
formulated. In section 3, the Sub-NDSO of the left and right
manipulators are unified into a standard quadratic programming
problem, which is equivalent to a piecewise-linear projection
equation, and then solved by a linear variational inequalities-
based primal-dual neural network (LVI-PDNN). Section 4 shows

the simulation result that the NDSO scheme performed on dual-

redundant-manipulators to track three complex end-effector
tasks in three-dimensional space. Comparison experiments and

robustness verification experiment with perturbed LVI-PDNN
are also conducted and the related results are showed in this
section. Section 5 concludes this paper with final remarks.

The main contributions of the paper are as follows.

(1) A neural-dynamic based synchronous-optimization scheme
of dual redundant robot manipulators (NDSO) is proposed
to solve the joint-drift phenomena at the joint-acceleration
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level. The advantage of the NDSO scheme is that it can not
only complete the traditional end-effector tasks but also some
couple tasks. In addition, the physical limit constraints allow
the scheme to apply to actual situations because it guarantees
the robot joints not to exceed their physical limits. In addition,
it is easier than velocity-level scheme to conduct such a scheme
on an acceleration/torque controlled manipulator.

(2) The NDSO scheme works for dual-robot-manipulator
system, which has twice degrees-of-freedom than the
same model single-robot-manipulator and thus has better
coordination and flexibility compared with a single robot
manipulator. Evidently, the dual-redundant-manipulator with
the NDSO scheme can complete more complex and heavy
tasks. It is convenient to make adjustment to the original
scheme through changing the definition of matrixes in order
to achieve better results because the scheme is based on a
standard quadratic programming form.

(3) Three complex end-effector tasks, i.e., a pentagram tracking,
a number “47” writing and a couple task, are completed
by three-dimensional dual-redundant-manipulators, which
validate the efficiency and accuracy of the proposed NDSO
scheme.

(4) The simulation experiment verifies the robustness of the
NDSO scheme with the perturbation of the systematic error.
That means the proposed scheme will have strong capacity of
anti-disturbance considering practical scenarios.

Before ending this section, the system structure of the scheme
can be seen from Figure 1. First of all, the performance indices
of the left and right arms are obtained by using neural dynamic
method twice. Next, considering the position and velocity
error, joint-angle, joint-velocity and joint-acceleration limits, the
repetitive motion planning subschemes of left and right arms are
constructed. Furthermore, by combining the repetitive motion
planning subschemes of left and right arms, the NDSO scheme
is obtained, which is further unified into a standard quadratic
programming problem. The quadratic programming problem
(i.e., QP in the figure) is equivalent to a set of linear variational
inequalities problem (i.e., LVI in the figure) and is finally
equivalent to a piecewise linear projection equation (i.e., PLPE
in the figure). Finally, the piecewise linear projection equation
is solved by a linear variational inequalities-based primal-dual
neural network (LVI-PDNN).

2. PROBLEM FORMULATION

In this section, a forward kinematic equation is first presented.
Next, an acceleration-level feedback is designed. Third, an
acceleration-level repetitive motion criterion is deduced by
neural dynamic method two times.

2.1. Preliminaries
For simplicity, we use the subscript L/R to represent the left
and right redundant manipulators. The kinematic equations of
the left or right arm of the dual-redundant-manipulators at
position level, velocity level and acceleration level are formulated

FIGURE 1 | System structure of the neural-dynamic based

synchronous-optimization scheme of dual redundant robot manipulators

(NDSO). It visualizes the logical structure of the paper starting from

background analysis, then the problem formulation and finally the simulation.

respectively as

fL/R(θL/R) = rL/R(t) (1)

JL/R(θL/R)θ̇L/R(t) = ṙL/R(t) (2)

JL/R(θL/R)θ̈L/R(t) = r̈aL/R(t) = r̈L/R(t)− J̇L/R(θL/R)θ̇L/R(t) (3)

where rL/R(t), ṙL/R(t), and r̈L/R(t) ∈ Rm denote the position-and-
orientation vector, velocity vector, and acceleration vector of an
end-effector, θL/R(t), θ̇L/R(t), and θ̈L/R(t) ∈ Rn denote the joint
angle, joint velocity and joint acceleration of the left or right
manipulator, Jacobian matrix JL/R(θL/R) = ∂fL/R(θL/R)/∂θL/R,
matrix J̇L/R(θL/R) is the first order derivation of Jacobian matrix
JL/R(θL/R) with respect to time t. In this paper, since one
manipulator has seven degrees-of-freedom and the task is
performed in a three dimensional space, n = 7 and m = 3.
In Equation (1), θL/R(t) and rL/R(t) are related via a nonlinear
function fL/R(·). If θL/R(t) is known, it is easy to compute rL/R(t)
since fL/R(·) can be uniquely determined by a given redundant
robot manipulator. This process is called a forward kinematic
resolution. On the contrary, it is very difficult to compute
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directly θL/R(t) if rL/R(t) is known because it is difficult to
obtain the inverse function f−1

L/R(·) of nonlinear function fL/R(·).
That is to say, an inverse kinematic problem of a redundant
robot manipulator (or termed redundancy problem) is a difficult
problem.

Remark: In practical systems, the control inputs are
sometimes subject to the saturation problem and uncertainties.
Many methods have been proposed to solve the issues such as
(Tran et al., 2015; Eremin and Shelenok, 2017; Sun et al., 2017,
2018). Since we only focus on the redundancy resolution problem
and it is assumed that the control inputs satisfy the condition,
the saturation problem and uncertainties are out of our research
scope, and are ignored here.

2.2. Acceleration-Level Forward Equation
With Feedback
In practical applications, error feedback should be considered in
Equation (3). With the following theorem, the acceleration-level
forward equation with feedback is obtained, i.e.,v

Theorem 1. Considering an end-effector motion of a robot
manipulator, for any scalar parameters ρV > 0 and ρP > 0,
the error-feedback included acceleration-level forward kinematic
equation is

J(θ)θ̈(t) = r̈d(t)− J̇(θ)θ̇(t)+ ρV(ṙd(t)− J(θ)θ̇(t))+ ρP(rd(t)

−f (θ)), (4)

where rd, ṙd, and r̈d denote desired end-effector path, desired end-
effector velocity, and desired end-effector acceleration, respectively;
θ , θ̇ , and θ̈ denote the joint-angular variable, joint-velocity
variable, and joint-acceleration variable; Function f (θ) is a
continuous nonlinear mapping function with known parameters
for a given robot; J(θ) and J̇(θ) are the Jacobian matrix and the
first order derivative of Jacobian matrix; parameters ρV > 0 and
ρP > 0 are the feedback coefficients of velocity and position errors,
respectively. With these error feedbacks, the end-effector position
error would converge exponentially to zero.

Proof 1: Considering the following state-equations of two
dimensional linear system

χ̇(t) = Aχ(t), (5)

y(t) = Qχ(t), (6)

where χ(t) = [χ1(t),χ2(t)]
T is the the state vector consisting of

two state variables as its elements; χ̇(t) = [χ̇1(t), χ̇2(t)]
T is the

time derivative of the state vector χ(t); y(t) = [y1(t)] is an output
vector consisting of two outputs as its elements, and A and Q are
the coefficient matrices.

In order to make the position error converge to zero at the end
of each cycle, an error function Ef (t) is defined as

Ef (t) = rdL/R(t)− f (θL/R) (7)

where rdL/R(t) denotes the desired end-effector path. Its
first-order and second-order derivative with time t (i.e., the

FIGURE 2 | The simulation diagram of the position and velocity feedback.

velocity error Ėf and acceleration error Ëf ) are

Ėf (t) = ṙdL/R(t)− JL/R(θL/R)θ̇L/R(t), (8)

Ëf (t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)− JL/R(θL/R)θ̈L/R(t) (9)

respectively.
For the convenience of analysis, the state variables χ1 and χ2

are set as Ef and Ėf , respectively, i.e.,

χ =

[
Ef
Ėf

]
, χ̇ =

[
Ėf
Ëf

]
. (10)

In addition, by defining

A =

[
0 1

−ρP −ρV

]
and Q =

[
1 0

]
,

with ρV > 0 and ρP > 0, the state-equations (5) and (6) are
equivalent to the following second order differential equation

Ëf = −ρVĖf − ρPEf (11)

where ρV > 0 and ρP > 0 are the feedback coefficients of velocity
and position errors, respectively. Figure 2 shows the simulation
diagram of the position and velocity feedback based on Equation
(11). Substituting (7)–(9) into (11), we obtain

JL/R(θL/R)θ̈L/R(t) = r̈afL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

+ρV(ṙdL/R − JL/R(θL/R)θ̇L/R(t))+ ρP(rdL/R(t)− f (θL/R)). (12)

Equation (4) is thus proved.
Next, we will prove the exponential convergence performance

of the position errors Ef (t). According to modern control theory
(Tewari, 2002), characteristic roots ̺1 and ̺2 of the system
matrix A can be obtained by solving the following characteristic
equation

∣∣∣̺I − A
∣∣∣ =

∣∣∣
[

̺ −1
ρP ̺ + ρV

] ∣∣∣ = ̺2 + ρV̺ + ρP = 0, (13)

where I is an identity matrix, | · | is the determinant notation, and
̺ is the characteristic root of Equation (13), which is determined
by the coefficients ρP and ρV of characteristic Equation (13).
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Since the position error Ef (t) and the velocity error Ėf (t) are
the elements of state vector χ(t), discussion of the time-domain
response of the state variables χ(t) is equivalent to discussion
of errors. Based on modern control theory (Tewari, 2002), if the
initial state χ(0) = χ0 is determined, the unique solution of the
state-equation (5) can be represented as

χ(t) = 8(t)χ(0), (14)

where 8(t) = eAt .
Considering A = [0, 1;−ρP,−ρV], based on characteristic

Equation (13), the time-domain response of the state variables
χ(t) (i.e., Equation 14) can be discussed according to the
following three situations.

From the formula of root, we have the characteristic roots of
Equation (13) as

̺1 =
−ρV +

√
ρ2
V − 4ρP

2
, ̺2 =

−ρV −

√
ρ2
V − 4ρP

2
. (15)

(i) When ρ2
V > 4ρP, from Equation (15), we have ρV >√

(ρ2
V − 4ρP) > 0, thus real characteristic roots ̺1 < 0 and

̺2 < 0. Based on modern control theory (Tewari, 2002), there
exists a nonsingular matrix T satisfying

8(t) = T

[
e̺1t 0
0 e̺2t

]
T−1. (16)

Substituting (16) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 6 ‖T‖F‖T
−1‖F

√
e2̺1t + e2̺2t‖χ(0)‖2

is globally exponentially convergent to zero since ‖T‖F and
‖T−1‖F are limited. Therefore, the first element of χ(t), i.e.,
position error Ef (t), is globally exponentially convergent to zero.

(ii) When ρ2
V = 4ρP, from Equation (15) we have real equal

characteristic roots ̺1 = ̺2 = ̺e = −ρV/2 < 0. Based on
modern control theory (Tewari, 2002), there exists a nonsingular
matrix T satisfying

8(t) = T

[
e̺et te̺et

0 e̺et

]
T−1. (17)

Substituting (17) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 6 ‖T‖F‖T
−1‖F

√
t2 + 2e̺et‖χ(0)‖2

is globally exponentially convergent to zero. Therefore, the first
element of χ(t), i.e., position error Ef (t), is globally exponentially
convergent to zero.

(iii) When ρ2
V < 4ρP, from Equation (15) we have two

imaginary characteristic roots and set them as ̺1 = σ + jω and
̺2 = σ − jω with the real part σ < 0. Based on modern control
theory (Tewari, 2002),

8(t) =

[
cosωt sinωt
− sinωt cosωt

]
eσ t . (18)

Substituting (18) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 =
√
2eσ t‖χ(0)‖2

is globally exponentially convergent to zero. Therefore, the first
element of χ(t), i.e., position error Ef (t), is globally exponentially
convergent to zero.

In conclusion, it is proved that the position error Ef (t) is
globally convergent to zero with the kind of error feedback in
Equation (11) where ρV and ρP are both set positive.

2.3. NDSO Subscheme of Left/Right Arm
In order to remedy the joint-angle drift problem, a neural-
dynamic based synchronous-optimization subscheme (Sub-
NDSO) of left/right arm (i.e., the following theorem) is proposed.

Theorem 2. For a left or right arm of dual-redundant-
manipulators, given a closed end-effector path, i.e.,
rL/R(T) = rL/R(0) where T denotes a task execution period,
if Equations (19)–(23) are satisfied, the left or right arm of
dual-redundant-manipulators achieves repetitive motion, and
the joint-drift θL/R(t) − θL/R(0) would converge exponentially
to zero. In addition, all the joint-angles, joint-velocities and
joint-accelerations are constrained within their limits, i.e.,

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖

2
2 (19)

subject to JL/R(θL/R)θ̈L/R(t) = r̈afL/R(t) (20)

θ−L/R 6 θL/R(t) 6 θ+L/R (21)

θ̇−L/R 6 θ̇L/R(t) 6 θ̇+L/R (22)

θ̈−L/R 6 θ̈L/R(t) 6 θ̈+L/R (23)

with bL/R(t) = (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0)),

r̈afL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

+ρv(ṙdL/R(t)− JL/R(θL/R)θ̇L/R(t))+ ρp(rdL/R(t)

−f (θL/R))

where ‖ · ‖2 denotes the two-norm of a vector; θL/R, θ̇L/R, and
θ̈L/R denote the joint angle, joint velocity, and joint acceleration
of the left or right arms of dual-redundant-manipulators; rdL/R,
ṙdL/R, and r̈dL/R denote desired end-effector position, desired end-
effector velocity, and desired end-effector acceleration of the left or
right arm of dual-redundant-manipulators; J(θ) and J̇(θ) are the
Jacobian matrix and the first order derivative of Jacobian matrix;
α > 0 and β > 0 are used to scale the joint displacement; θ±L/R,
θ̇±L/R and θ̈±L/R denote the upper and lower limits of the joint angles,
joint velocities and joint accelerations of the left/right manipulator,
respectively.

Proof 2: First, a vector-valued error function, i.e., the deviation
between the joint instant angle θL/R(t) and the initial joint angle
θL/R(0) of the left/right manipulator, is defined as

e1L/R(t) = θL/R(t)− θL/R(0). (24)

The joint-angle drift is zero if and only if the value of the error
function e1L/R(t) = 0. In order to reduce and eventually eliminate
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the joint displacement, by the neural-dynamic method, we can
obtain

ė1L/R(t) = −αe1L/R(t) = −α[θL/R(t)− θL/R(0)], (25)

where design parameter α is used to adjust the convergence rate
of e1L/R(t) to zero. By taking the derivative of Equation (24) with
time t, ė1L/R(t) = θ̇L/R(t) is obtained. Substituting it into Equation
(25), the following equation is obtained, i.e.,

θ̇L/R(t)+ α(θL/R(t)− θL/R(0)) = 0. (26)

Second, in order to obtain the acceleration-level repetitive
motion criterion, the joint acceleration should be included in the
criterion. That is to say, there should be an equation equivalent
to (26), which includes joint acceleration. To do so, the neural
dynamic method is applied to Equation (26) again. Similarly, a
vector-valued joint-displacement function is defined as

e2L/R(t) = θ̇L/R(t)+ α(θL/R(t)− θL/R(0)). (27)

According to neural dynamic design method (Cai and Zhang,
2012), i.e.,

ė2L/R(t) = −βe2L/R(t) (28)

where design parameter β > 0, we can get

θ̈L/R(t)+ αθ̇L/R(t) = −β(θ̇L/R(t)+ α(θL/R(t)− θL/R(0))). (29)

Equation (29) is rewritten as

θ̈L/R(t)+ (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0)) = 0. (30)

Considering the motion of the robot manipulator, it is better to
minimize the performance ‖θ̈L/R(t)+(α+β)θ̇L/R(t)+αβ(θL/R(t)−
θL/R(0))‖

2
2/2 rather than use (30) directly, i.e.,

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖

2
2, (31)

where bL/R(t) = (α + β)θ̇L/R(t) + αβ(θL/R(t) − θL/R(0)), and
‖ · ‖2 denotes the two-norm of a vector. If Equation (31) is
used as the optimization criterion, the joint angle θL/R(t) tends
to converge to θL/R(0). At the end of the task execution period,
θL/R(T) = θL/R(0). Equation (19) is thus proved.

In practical applications, the joint physical limits, i.e., joint-
angle limits, joint-velocity limits and joint-acceleration limits,
should be considered into the scheme, and thus an NDSO
subschemes (termed as Sub-NDSO) is obtained as

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖

2
2 (32)

subject to JL/R(θL/R)θ̈L/R(t) = r̈aL/R(t) (33)

θ−L/R 6 θL/R(t) 6 θ+L/R (34)

θ̇−L/R 6 θ̇L/R(t) 6 θ̇+L/R (35)

θ̈−L/R 6 θ̈L/R(t) 6 θ̈+L/R (36)

with bL/R(t) = (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0))

r̈aL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

where α > 0 and β > 0 are used to scale the joint displacement.

According to the acceleration-level feedback error design
method in Theorem 1, r̈aL/R in Equation (33) can be replaced
by r̈afL/R(t) = r̈dL/R(t) − J̇L/R(θL/R)θ̇L/R(t) + ρv(ṙdL/R(t) −

JL/R(θL/R)θ̇L/R(t))+ ρp(rdL/R(t)− f (θL/R)). Equations (19)–(23) is
thus proved. That is to say, with Equations (19)–(23), the left or
right arm of dual-redundant-manipulators can achieve repetitive
motion, meanwhile it can avoid joint-physical limits during the
execution of the task.

Next, the exponential convergence rate of joint-drift θL/R(t)−
θL/R(0) will be proved. In the light of differential equation
theory (Hartman and Philip, 1982), the ith element of e2L/R(t) in
Equation (28) is

e2L/Ri(t) = e2L/Ri(0)e
−βt . (37)

When t approaches to infinity, each element would approach
exponentially zero, i.e.,

lim
t→∞

e2L/Ri(t) = lim
t→∞

e2L/Ri(0)e
−βt = 0. (38)

The proof of Theorem 2 is completed.

2.4. NDSO Scheme
In this section, based on the neural-dynamic based synchronous-
optimization subschemes (Sub-NDSO) of the left arm and
right arm proposed in Theorem 2, a neural-dynamic based
synchronous-optimization scheme of dual redundant robot
manipulators (NDSO) is proposed and developed.

Theorem 3. For a dual-redundant-manipulators system,
including left manipulator and right manipulator, given a closed
end-effector path, i.e., r(T) = r(0) where T denotes a task
execution period, if Equations (39)–(43) are satisfied, the dual-
redundant-manipulators will achieve repetitive motion, and the
joint-drift θ(t) − θ(0) would converge exponentially to zero. In
addition, all the joint angles, joint velocities and joint accelerations
of the dual-redundant-manipulators are constrained within their
limits, i.e.,

minimize
1

2
θ̈T(t)θ̈(t)+ bT(t)θ̈(t) (39)

subject to J(θ)θ̈(t) = r̈af(t) (40)

θ− 6 θ(t) 6 θ+ (41)

θ̇− 6 θ̇(t) 6 θ̇+ (42)

θ̈− 6 θ̈(t) 6 θ̈+ (43)

with b(t) = (α + β)θ̇(t)+ αβ(θ(t)− θ(0)),

r̈af(t) = r̈d(t)− J̇(θ)θ̇(t)+ ρv(ṙd(t)− J(θ)θ̇(t))

+ρp(rd(t)− f (θ))

where θ(t) = [θL(t), θR(t)]
T, θ̇(t) = [θ̇L(t), θ̇R(t)]

T, and
θ̈(t) = [θ̈L(t), θ̈R(t)]

T denote the joint angle, joint velocity,
and joint acceleration of the dual-redundant-manipulators;
rd(t) = [rdL(t), rdR(t)]

T, ṙd(t) = [ṙdL(t), ṙdR(t)]
T, and r̈d(t) =

[r̈dL(t), r̈dR(t)]
T denote the position vector, velocity vector, and
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acceleration vector of the end-effector of the dual-redundant-
manipulators; Scalar parameters α > 0 and β > 0 are used to
scale the joint displacements; θ± = [θ±L , θ±R ]T, θ̇± = [θ̇±L , θ̇±R ]T

and θ̈± = [θ̈±L , θ̈±R ]T denote the upper and lower limits of
the joint angles, joint velocities and joint accelerations of the
dual-redundant-manipulator, respectively. The combined Jacobian
matrix and the first order derivative of the combined Jacobian
matrix of the dual-redundant-manipulators are

J(θ) =

[
JL(θL) 0

0 JR(θR)

]
, J̇(θ) =

[
J̇L(θL) 0

0 J̇R(θR)

]
. (44)

Proof 3: Firstly, the optimization criterion (32) can be simplified
as

1

2
‖θ̈L/R(t)+ bL/R(t)‖

2
2

=
1

2

(
θ̈L/R(t)+ bL/R(t)

)T(
θ̈L/R(t)+ bL/R(t)

)

=
1

2

(
θ̈TL/R(t)θ̈L/R(t)+ θ̈TL/R(t)bL/R(t)+ bTL/R(t)θ̈L/R(t)

+bTL/R(t)bL/R(t)
)

=
1

2
θ̈TL/R(t)θ̈L/R(t)+ bTL/R(t)θ̈L/R(t)+

1

2
bTL/R(t)bL/R(t). (45)

Since the redundant resolution problem is solved at the
joint-acceleration level and θ̈L/R is the decision variable,
bTL/R(t)bL/R(t)/2 in Equation (45) can be regarded as a

constant. Therefore, minimizing ‖θ̈L/R(t) + bL/R(t)‖
2
2/2 =

θ̈TL/R(t)θ̈L/R(t)/2 + bTL/R(t)θ̈L/R(t) + bTL/R(t)bL/R(t)/2 is equivalent

to minimizing θ̈TL/R(t)θ̈L/R(t)/2 + bTL/R(t)θ̈L/R(t). Combining the

TABLE 1 | Joint physical limits used in simulations.

# θ
−

L θ
+

L θ
−

R θ
+

R
˙θ
−

L/R
˙θ
+

L/R
¨θ
−

L/R
¨θ
+

L/R

(rad) (rad) (rad) (rad) (rad/s) (rad/s) (rad/s2) (rad/s2)

1 –1 1 –5 0 –1.5 1.5 –6 6

2 –2 2 –2 0 –1.5 1.5 –6 6

3 –1 1 –1 1 –1.5 1.5 –6 6

4 1 3 1 3 –1.5 1.5 –6 6

5 –1 1 –1 1 –1.5 1.5 –6 6

6 –2 0 –2 0 –1.5 1.5 –6 6

7 –1 1 –1 1 –1.5 1.5 –6 6

TABLE 2 | Four sets of equations used in the three groups of contrast

experiments.

1 2 3 4

d 0 ∈ R2n b(t) ∈ R2n b(t) ∈ R2n b(t) ∈ R2n

x− ζ− −̟ζ− ζ− ζ−

x+ ζ+ ̟ζ+ ζ+ ζ+

ρp 1 1 0 1

ρv 200 200 0 200

joint variables of left and right manipulators into one combined
vector, the optimization criterion can be written as

minimize θ̈T(t)θ̈(t)/2+ bT(t)θ̈(t) (46)

where θ̈(t) = [θ̈L(t), θ̈R(t)]
T and b(t) = [bL(t), bR(t)]

T.
Secondly, acceleration level forward kinematic Equation (20)

of left and right manipulators can be written as a combined

forward kinematic equation as

[
JL(θ) 0

0 JR(θ)

]
·

[
θ̈L(t)

θ̈R(t)

]
=

[
r̈afL(t)
r̈afR(t)

]
(47)

where

r̈afL(t) = r̈dL(t)− J̇L(θL)θ̇L(t)

+ ρv(ṙdL(t)− JL(θL)θ̇L(t))+ ρp(rdL(t)− f (θL)), (48)

r̈afR(t) = r̈dR(t)− J̇R(θR)θ̇R(t)

+ ρv(ṙdR(t)− JR(θR)θ̇R(t))+ ρp(rdR(t)− f (θR)). (49)

Combining the upper and lower joint-limits of left and right
arms of dual-redundant-manipulators, we can get combined
joint-angular, joint-velocity, joint-acceleration limits respectively
as

θ±(t) = [θ±L (t), θ±R (t)]T, (50)

θ̇±(t) = [θ̇±L (t), θ̇±R (t)]T, (51)

θ̈±(t) = [θ̈±L (t), θ̈±R (t)]T. (52)

Taking into consideration of optimization criterion (46),
feedback considered acceleration-level kinematic equation (47),
and joint-limits (50)–(52), NDSO scheme (40)–(43) is obtained.
The proof of Theorem 3 is completed.

3. QUADRATIC PROGRAMMING
UNIFICATION & SOLVER

In this section, the proposed NDSO scheme (39)–(43) is unified
into a standard quadratic programming problem, which is
equivalent to linear variational inequality problem and is further
equivalent to a piecewise linear projection equation. Finally,

FIGURE 3 | Comparisons between the scheme without considering repetitive

motion and the NDSO scheme when tracking a pentagram-path. (A) Final

states do not coincide with the initial states when using the scheme without

considering repetitive motion. (B) Final states coincide with initial states when

using NDSO scheme considering repetitive motion.
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FIGURE 4 | Joint angles, joint velocities, joint accelerations during the dual-redundant manipulators tracking a pentagram path when using the scheme with

considering repetitive motion planning and feedback criteria but no physical-limits criterion. (A) Joint angle of left arm θL. (B) Joint angle of right arm θR. (C) Joint

velocity of left arm θ̇L. (D) Joint velocity of right arm θ̇R. (E) Joint acceleration of left arm θ̈L. (F) Joint acceleration of right arm θ̈R.

FIGURE 5 | Joint angles, joint velocities, joint accelerations during the dual-redundant manipulators tracking a pentagram path when using the NDSO scheme with

considering repetitive motion planning and physical-limits and feedback criterion. (A) Joint angle of left arm θL. (B) Joint angle of right arm θR. (C) Joint velocity of left

arm θ̇L. (D) Joint velocity of right arm θ̇R. (E) Joint acceleration of left arm θ̈L. (F) Joint acceleration of right arm θ̈R.
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FIGURE 6 | Position errors during the period of pentagram-path tracking

synthesized by NDSO scheme without considering position and velocity

feedback. (A) Position error of left arm ǫL; (B) Position error of right arm ǫR.

FIGURE 7 | Position errors during the period of pentagram-path tracking

synthesized by NDSO scheme with considering position and velocity

feedback. (A) Position error of left arm ǫL; (B) Position error of right arm ǫR.

the piecewise linear projection equation is solved by a linear
variational inequalities-based primal-dual neural network (LVI-
PDNN).

3.1. Joint-Limits Conversion
In order to resolve the redundancy problem at the acceleration-
level and satisfy the format requirement of standard quadratic
programming, physical limits (41)–(43) at different levels should
be converted into one bound constraint with joint-acceleration
θ̈(t). Specifically, the ith elements of bounds ζ− and ζ+ are
defined respectively as

ζ−
i (t) = max{θ̈−i (t), λv(θ̇

−
i − θ̇i(t)), λp((θ

−
i + ϑi)− θi(t))},

ζ+
i (t) = min{θ̈+i (t), λv(θ̇

+
i − θ̇i(t)), λp((θ

+
i − ϑi)− θi(t))}.

Actually, there exist the inertia movement during the
deceleration period caused by the mechanical inertia of the
dual-redundant-manipulators in practice. Thus critical areas
for joint position variables are considered into physical limits’
representation so that there will appear a deceleration earlier
when they enter the areas but not reach the joint position limit
yet. ϑi > 0 is a small constant and used to define the critical areas
[θ−i , θ−i + ϑi] and [θ+i − ϑi, θ

+
i ]. In the simulation section of

the paper, ϑi > 0 is set 0.01. The coefficient λv > 0 and λp > 0
denote the decreasing amplitude (Zhang et al., 2008).

TABLE 3 | Joint drifts when dual-redundant-manipulators tracking a

pentagram-path synthesized by NDSO scheme with considering repetitive

motions, joint limits, and feedback.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(4)− θL1(0) +3.68924× 10−3 +0.21138

θL2(4)− θL2(0) +1.12535× 10−4 +0.00645

θL3(4)− θL3(0) −8.00902× 10−4 −0.04589

θL4(4)− θL4(0) +6.05971× 10−5 +0.00347

θL5(4)− θL5(0) −6.14706× 10−3 −0.35220

θL6(4)− θL6(0) −1.44414× 10−3 −0.08274

θL7(4)− θL7(0) 0.00000 0.00000

RIGHT ARM

θR1(4)− θR1(0) −3.68924× 10−3 −0.21138

θR2(4)− θR2(0) +1.12535× 10−4 +0.00645

θR3(4)− θR3(0) +8.00902× 10−4 +0.04589

θR4(4)− θR4(0) +6.05971× 10−5 +0.00347

θR5(4)− θR5(0) +6.14706× 10−3 +0.35220

θR6(4)− θR6(0) −1.44414× 10−3 −0.08274

θR7(4)− θR7(0) 0.00000 0.00000

Therefore, constraints (39)–(43) can be rewritten as

minimize
1

2
θ̈(t)TWθ̈(t)+ bT(t)θ̈(t) (53)

subject to J(θ)θ̈(t) = r̈af(t) (54)

ζ−(t) 6 θ̈(t) 6 ζ+(t) (55)

The scheme (53)–(55) can be further unified into the following
standard quadratic programming

minimize
1

2
xTGx+ dTx (56)

subject to Cx = h (57)

x− 6 x 6 x+ (58)

where

x = θ̈(t) =

[
θ̈L(t)

θ̈R(t)

]
∈ R2n, G = W =

[
1 0

0 1

]
∈ R2n×2n,

d = b(t) =

[
bL(t)
bR(t)

]
∈ R2n, h = r̈af(t) =

[
r̈afL(t)
r̈afR(t)

]
∈ R2m,

C = J =

[
JL(θL) 0

0 JR(θR)

]
∈ R2m×2n, x± = ζ±(t) ∈ R2n.

3.2. Quadratic Programming Solver
According to Zhang et al. (2008), finding the solutions to
quadratic programming problem (56)–(58) is equivalent to
finding out a primal-dual equilibrium vector u∗ = [x∗; η∗]T ∈

� : = {u = [xT, ηT]T ∈ R2n+2m|u− 6 u 6 u+} to the following
linear variational inequality

(u− u∗)T(Mu∗ + q) > 0, ∀u ∈ �, (59)
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FIGURE 8 | Tracking trajectories, joint angles, joint velocities, and joint accelerations during the period of number “47” writing synthesized by the proposed NDSO

scheme (39)–(43) which considers repetitive motion planning, joint limits, and feedbacks. (A) 3-D simulation tracking trajectories. (B) Left arm joint angle θL. (C) Right

arm joint angle θR. (D) Left arm joint velocity θ̇L. (E) Right arm joint velocity θ̇R. (F) Left arm joint acceleration θ̈L. (G) Right arm joint acceleration θ̈R. (H) Position error

of left arm ǫL. (I) Position error of right arm ǫR.

where the augmented primal-dual decision variable u ∈

R(2n+2m), and its bounds u± ∈ R(2n+2m) are respectively defined
as

u =

[
x
η

]
, u+ =

[
x+

1ν̟

]
, u− =

[
x−

−1ν̟

]
,

with η ∈ R2m being the corresponding dual decision vectors
of Equation (57), 1ν = [1, · · · , 1]T denoting an appropriately-
dimensioned vector composed of ones, and ̟ = 1010 ∈ R
replacing the +∞ for simulation and implementation purposes.

The matrixM ∈ R(2n+2m)×(2n+2m) and the vector q ∈ R2n+2m are
defined respectively as

M =

[
G −CT

C 0

]
, q =

[
d
−h

]
.

The above inequality problem (59) can be solved by the following
piecewise-linear projection equation (Zhang and Zhang, 2013a)
as

P�(u− (Mu+ q))− u = 0 (60)
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TABLE 4 | Joint drifts during the period of number “47” writing synthesized by the

proposed NDSO scheme (39)–(43) which considers repetitive motion planning,

joint limits, and feedback.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(2)− θL1(0) +1.78619× 10−3 +0.10234

θL2(2)− θL2(0) +1.40074× 10−4 +0.00803

θL3(2)− θL3(0) −3.31570× 10−4 −0.01900

θL4(2)− θL4(0) +7.76503× 10−5 +0.00445

θL5(2)− θL5(0) −2.15183× 10−3 −0.12329

θL6(2)− θL6(0) −1.79191× 10−3 −0.10267

θL7(2)− θL7(0) 0.00000 0.00000

RIGHT ARM

θR1(2)− θR1(0) −1.30848× 10−3 −0.07497

θR2(2)− θR2(0) +4.72086× 10−5 +0.00270

θR3(2)− θR3(0) +2.97110× 10−4 +0.01702

θR4(2)− θR4(0) +2.60082× 10−5 +0.00149

θR5(2)− θR5(0) +2.39140× 10−3 +0.13702

θR6(2)− θR6(0) −6.03425× 10−4 −0.03457

θR7(2)− θR7(0) 0.00000 0.00000

where P�(·) ∈ R2n+2m → � ⊂ R2n+2m is a projection operator
defined from R2n+2m onto �, and the ith element of P�(u) is






u−i , if ui < u−i

ui, if u−i < ui < u+i ,∀i ∈ {1, 2, · · · , 2n+ 2m}

u+i , if ui > u+i

According to previous design experience on recurrent neural
networks (Zhang and Zhang, 2013a), a linear-variational-
inequality-based primal-dual neural network (abbreviated as
LVI-PDNN) is employed to solve the piecewise-linear projection

Equation (60) as well as the quadratic programming problem
(56)–(58), i.e.,

u̇ = γ (I +MT)(P�(u− (Mu+ q))− u), (61)

where I is an identity matrix, and parameter γ ∈ R is a positive
design parameter designed to scale the convergence rate of neural
network. From Zhang and Zhang (2013a), the state vector u(t)
of the primal-dual neural network in Equation (61) is globally
convergent to an equilibrium point u∗. Furthermore, the first 2n
elements of u∗ constitute the solutions to the original quadratic
programming problem (56)–(58).

Considering the systematic error generally including the
differentiation error and the implementation error, the perturbed
LVI-PDNN is formulated as

u̇ = γ (I +MT + 1D)(P�(u− (Mu+ q))− u)+ 1S, (62)

where 1D ∈ R(2n+2m)×(2n+2m) and 1S ∈ R2n+2m denote the
differentiation error matrix and the implementation error vector
respectively. Equation (62) will be used in the experiment on
robustness verification.

4. COMPUTER SIMULATIONS

In this section, the dual PA10 robot manipulators synthesized by
the presented NDSO scheme are expected to track three closed
complex trajectories, i.e., a pentagram, number “47” writing
and end-effector-coupled pentagram. Each manipulator has 7
degrees-of-freedom, and the dual-manipulators have 14 degrees-
of-freedom in total. All joint physical limits are shown in Table 1.
The design parameter α and β are set 4, and the design parameter
γ = 105 in the ensuing simulations.

4.1. Pentagram Path-Tracking
In this section, the dual PA10 robot manipulators are expected
to cooperatively track a pentagram-path. Initial joint angles
of the left arm are θL(0) = [0;−π/4; 0;π/2; 0;−π/6; 0]
rad, and initial joint angles of the right arm are θR(0) =

[−π;−π/4; 0;π/2; 0;−π/6; 0] rad. The task execution period
is 4 s. For comparisons, four sets of equations in which
the variables d, x−, x+, ρp, ρv in Equation (56)–(58) are set
different values are showed in Table 2. Then the four sets
of equations make up three groups of contrast experiments
which are performed to prove the efficiency of repetitive motion
criterion, physical limits criterion and feedback criterion. Firstly,
comparison results between the scheme considering physical-
limits, feedback criteria but no repetitive motion criterion
(experiment 1) and the NDSO scheme considering the repetitive
motion, physical limits and feedback criteria (experiment 4)
performed on dual PA10 robot manipulators are illustrated
in Figures 3A,B, respectively. Figure 3A shows that the final
states of the end-effectors of the left and right arms of the
dual-redundant-manipulators do not coincide with the initial
states, which means that the end-effectors of the dual-redundant-
manipulators can not return to the initial states when the task
is completed. That is to say, the joint drift phenomenon has
happened. It is noticed that this phenomenon is not expected in
practical applications because it is necessary to add extra self-
motion to readjust the manipulator’s configuration at the end
of each task execution period in the cyclic motions. Evidently,
this approach is inefficient. To remedy this joint-drift problem,
the repetitive motion planning criterion is developed, and the
corresponding result is shown in Figure 3B. Evidently, the final
states of the dual-redundant-manipulators coincide well with
their initial states. Comparing Figures 3A,B, we can see that the
NDSO scheme nearly eliminates the joint-drift phenomena since
it considers the repetitive motion criterion, and the efficiency of
repetitive motion criterion is verified.

Secondly, comparisons between the scheme with considering
the repetitive motion planning and feedback criterion but
without considering limits (experiment 2) and the NDSO
scheme with considering the limits criterion (experiment 4)
are illustrated in Figures 4, 5, respectively. The joint angles are
shown in Figures 4C,D, 5C,D. We can see that the final states of
joints coincide with the initial ones and thus the efficiency of the
repetitive motion planning criterion are illustrated. The velocities
are shown in Figures 4C,D, 5C,D. It can be seen from the figures
that the velocities start from zero and end at zero, which is fit
with the actual situations. However, Figures 4E,F show that θ̈L3
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FIGURE 9 | Tracking trajectories, joint angles, joint velocities, and joint accelerations during the period of end-effector-coupled pentagram-path tracking synthesized

by the proposed NDSO scheme (39)–(43) which considers repetitive motion planning, joint limits, and feedbacks. (A) 3-D simulation tracking trajectories. (B) Left arm

joint angle θL. (C) Right arm joint angle θR. (D) Left arm joint velocity θ̇L. (E) Right arm joint velocity θ̇R. (F) Left arm joint acceleration θ̈L. (G) Right arm joint

acceleration θ̈R. (H) Position error of left arm ǫL. (I) Position error of right arm ǫR.

and θ̈R3 exceed their upper or lower acceleration limits in 0–4s.
Thismay lead to the damage to the dual-redundant-manipulators
and is less desirable for practical applications. By comparison,
joint accelerations θ̈L3 and θ̈R3 in Figures 4E,F reach but never
exceed their acceleration limits. This comparison result verifies
the efficiency of the physical limits are very useful in applications.

Thirdly, comparisons between the NDSO scheme without
considering feedback (experiment 3) and the NDSO scheme
proposed in this paper with considering feedback (experiment
4) are illustrated in Figures 6, 7, respectively. In the NDSO
scheme, the feedback parameters ρP and ρV are set as 1 and 200,
respectively. It can be seen from Figure 6 that the end-effector

position errors of left and right arms are less than 6.0 × 10−4

m. However, the position errors become bigger and bigger as the
task execution, i.e., the trend of the position errors are diverging.
This would lead to bigger accumulated errors if the scheme is
applied to perform cyclic tasks. Contrastively, the position errors
in Figures 7A,B show that position errors are very tiny and
become smaller and smaller since the proposed NDSO scheme
is applied.

Last but not least, the joint drifts are measured when
the position, velocity and acceleration feedback are taken
into consideration in the NDSO scheme. Table 3 lists small
joint drifts which are all less than 6.2 × 10−3 rads when
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FIGURE 10 | Joint accelerations and position errors of the left arm during the period of end-effector-coupled pentagram-path tracking synthesized by pseudo-inverse

scheme (63) and NDSO scheme (53)–(55). (A) Left arm joint acceleration θ̈L of pseudo-inverse scheme. (B) Position error of left arm ǫL of pseudo-inverse scheme. (C)

Left arm joint acceleration θ̈L of NDSO scheme. (D) Position error of left arm ǫL of NDSO scheme.

FIGURE 11 | The form of the joint-velocity-limit margins and joint-velocity moving region where ι− is minus and ι+ is positive.

the dual-redundant-manipulators track a pentagram-path
synthesized by NDSO scheme.

In a word, the above three comparison experiments on
tracking a pentagram-path illustrate well the effectiveness, safety
and accuracy of the proposed NDSO scheme (39)–(43) and the
LVI-PDNN to solve the joint-drift problem.

4.2. Number Writing
In order to further verify the effectiveness, accuracy and
generalization of the proposed NDSO scheme (39)–(43), another
new end-effector task, i.e., number “47” writing, is expected

to finished by the same dual PA10 robot manipulators which
is synthesized by the NDSO scheme. In the simulations, ρP
and ρV in Equations (48) and (49) are set as 1 and 100
respectively. Initial joint angles of the left arm are θL(0) =

[0;−π/4; 0;π/2; 0;−π/6; 0] rad, and initial joint angles of the
right arm are θR(0) = [−π;−π/4; 0;π/2; 0;−π/6; 0] rad. The
task execution period is 2s.

The tracking trajectories, joint angles, joint velocities, joint
accelerations and end-effector position errors are shown in
Figure 8, and the joint drifts between the final state and the
initial states of the left and right arms are listed in Table 4. As

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2018 | Volume 12 | Article 73143

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. NDSO Scheme of Dual Redundant Manipulators

TABLE 5 | θ̇±L and θ̇
±
R (rad/s) used in Robustness experiments.

Joint L1 Joint L2 Joint L3 Joint L4 Joint L5 Joint L6 Joint L7

LEFT ARM

θ̇+ 1.5 1.5 1.5 1.5 1.5 1.5 1.5

θ̇− −0.5 −1.5 −1.5 −1.5 -0.5 -0.5 −1.5

RIGHT ARM

θ̇+ 0.5 1.5 1.5 1.5 0.4 1.5 1.5

θ̇− −1.5 −1.5 −1.5 −1.5 −1.5 -0.4 −1.5

TABLE 6 | Joint drifts when dual-redundant-manipulators tracking a

pentagram-path synthesized by NDSO scheme considering differentiation errors

and implementation errors.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(4)− θL1(0) +3.89070× 10−3 +0.22292

θL2(4)− θL2(0) +1.86462× 10−4 +0.01068

θL3(4)− θL3(0) −8.38750× 10−4 −0.04806

θL4(4)− θL4(0) −3.11366× 10−5 −0.00178

θL5(4)− θL5(0) −5.90065× 10−3 −0.33808

θL6(4)− θL6(0) −1.51023× 10−3 −0.08653

θL7(4)− θL7(0) −6.41855× 10−6 −0.00037

RIGHT ARM

θR1(4)− θR1(0) −3.54920× 10−3 −0.20335

θR2(4)− θR2(0) −1.56336× 10−5 −0.00090

θR3(4)− θR3(0) +7.25769× 10−4 +0.04158

θR4(4)− θR4(0) +2.49020× 10−4 +0.01427

θR5(4)− θR5(0) +5.66373× 10−3 +0.32451

θR6(4)− θR6(0) −8.71307× 10−4 −0.04992

θR7(4)− θR7(0) +1.68829× 10−5 +0.00097

can be seen from Figure 8A, the end-effector task, i.e., number
“47” writing is finished by the dual-redundant-manipulators
synthesized by NDSO scheme (39)–(43) very well. In addition, as
is shown in Figures 8B–E, all joint angles and joint velocities are
within their joint limits, and the initial and final joint velocities
and joint accelerations are both zero. From Figures 8F,G, we can
see that the joint accelerations θ̈L2 and during the range 0.3s–0.5s,
θ̈L3 during the range 1.6s–2s, θ̈R3 and θ̈R5 during the range 0.3s–
1.3s increase sharply and are constrained by the upper and lower
acceleration limits. This means that all the joint variables are in
safe motion ranges. End-effector position errors ǫ of the dual-
redundant-manipulators are shown in Figures 8H,I, which are
very small (6 3× 10−4 m). It is worth pointing out that the end-
effector position errors tend to convergence as the task execution
due to the position and velocity feedbacks considered in the
NDSO scheme. Table 4 shows that the small joint displacements
of NDSO scheme are all less than 2.4× 10−3 rads.

This number writing simulations further verify the
effectiveness of the proposed NDSO scheme.

4.3. Coupled Task Tracking Example
In order to further verify the well-coordinated performance
between dual-redundant-manipulators of the proposed NDSO

scheme (39)–(43), a complex end-effector-coupled task, i.e., the
left arm is drawing an outside pentagram while the right arm
is drawing an inside one synchronously by the dual PA10 robot
manipulators. Initial joint angles of the left arm are θL(0) =

[0;−π/6; 0; 3π/4; 0;−π/4; 0] rad, and initial joint angles of the
right arm are θR(0) = [−π;−π/6; 0; 3π/4; 0;−π/4; 0] rad. The
relation of the left and right end-effector tasks is






r̈RX = r̈LX

r̈RY = 0.5× r̈LY,∀t ∈ {0,T}

r̈RZ = 0.5× r̈LZ

In the simulations, ρP and ρV in Equations (48) and (49)
are set as 1 and 200 respectively. The task execution period
is 4s. The tracking trajectories, joint angles, joint velocities,
joint accelerations and end-effector position errors are shown
in Figure 9. From Figure 9A we can see that the coupled end-
effector task is completed by the dual-redundant-manipulators
synthesized by NDSO scheme. What’s more, the final states
perfectly coincide the initial states. In addition, in Figures 9B–E,
all joint angles and joint velocities are within their joint limits,
and the initial and final joint velocities and joint accelerations
are both zero. From Figures 9F,G, we can see that the joint
accelerations θ̈L2 and θ̈L6 during 1–3s, change sharply but both
are constrained by their acceleration limits. This means that
all the joint variables are in the safe motion ranges. The end-
effector position errors ǫ shown in Figures 9H,I are very small
(6 6× 10−4 m) and convergent.

In summary, the above three end-effector tasks and
comparisons, i.e., pentagram-path tracking, number “47”
writing, and the coupled task tracking example, demonstrate
that complex end-effector tasks can be well performed by the
presented NDSO scheme (39)–(43). From the simulations, it is
known that the NDSO scheme can achieve the repetitive motion
effectively and accurately. In addition, the position errors of the
end-effectors can converge to nearly zero at the end of each cycle
due to taking feedback into consideration.

4.4. Compared With Pseudo-Inverse
Method
In order to further illustrate the advantages of the proposed
NDSO scheme, both of the traditional pseudo-inverse
method and the proposed NDSO are used to perform on a
dual-redundant-manipulators to track the previous coupled
pentagram paths. Initial joint angles of the left and right arms are
set the same as before. The formulation of the pseudo-inverse
method is

θ̈ = J+r̈af(t)− [I − J+J]b(t) (63)

where θ̈ , r̈af(t), J and b(t) have the same definition in the NDSO
scheme. J+ means the pseudo-inverse matrix of Jacobian matrix
J and I is an identity matrix inm+ n dimensions.

The comparative simulations are shown in Figure 10. Due
to space limitation, only the joint acceleration and the position
errors of left manipulators between the proposed NDSO scheme
and the pseudo-inverse method are shown here. Specifically,
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FIGURE 12 | Joint accelerations and position errors during the period of pentagram-path tracking task synthesized by NDSO scheme considering differentiation errors

and implementation errors. (A) Left arm joint acceleration θ̈L; (B) Right arm joint acceleration θ̈R; (C) Position error of left arm ǫL; (D) Position error of right arm ǫR.

Figures 10A,B show the simulation result of the pseudo-inverse
method, and Figures 10C,D show the simulation result of the
proposed NDSO method. From Figure 10A, we can see that
the joint acceleration θ̈L2 exceeds its limits about 1.3s and 2.6s,
and the end-effector position errors of the left arm shown in
Figure 10C ǫXL are divergent as time goes on. That is to say, the
end-effector of the dual-redundant-manipulators synthesized by
the pseudo-inverse method can track the desired path but may
lead to exceeding limit problem and the positioning errors will
accumulate.

This comparison result further illustrate the efficiency and
excellent advantages of the proposed NDSO scheme.

4.5. Robustness Verification
In this subsection, systematic errors are taken into consideration
and the perturbed LVI-PDNN in Equation (62) is used
to solve the path-tracking problem of the dual redundant
manipulators. The pentagram path-tracking task in 4.1 is adopted
to compare the joint displacements without perturbation in
Table 3. During the simulations, error-matrix 1D and error-
vector 1S are generated randomly. The element 1i of them is
formulated as

1i = 0.1 ∗ νa(νcsin(νbt)+ (1− νc)cos(νbt)) (64)

where νa is a random integer in [−5, 5], νb is a random integer
in [1, 5] and νc is a random integer in [0, 1]. All of them
are distributed evenly. νa and νb control the amplitude and
frequency of the element respectively. νc controls the form of
the perturbation function to be sine function (νc = 1) or to
be cosine function (νc = 0). The initial joint angles of dual
arms are set as same in 4.1. The parameters d, x−, x+, ρp, ρv are
set according to the 4th set of equations in Table 2. Inspired
by Zhang and Zhang (2013b), we consider joint-velocity-
limit margins ι shown in Figure 11 in our experiments. The
updated θ̇±L (t) and θ̇±R (t) in (51) are shown in Table 5, where
the margins considered joint-velocity-limits are highlighted
in bold.

The joint drifts of dual arms are shown in Table 6,
which shows that the joint displacement of every joint
almost has no change compared with the result in Table 3.
The joint accelerations and position errors during the
period of pentagram-path tracking task are recorded in
Figures 12A–D. The curves in Figures 12A–D show that

the joint accelerations are all constrained within the limits
(i.e., ±6rad/s2). Besides, the position errors have been
controlled within a very small range which is lower than
1 × 10−3 (m). Although there exists time-varying systematic
perturbation, the position errors are still convergent at the
end of the task execution. In summary, the proposed NDSO
method performs well under the perturbation and has strong
robustness.

5. CONCLUSION

In this paper, a neural-dynamic based synchronous-optimization
scheme of dual redundant robot manipulators scheme (NDSO)
of dual-redundant-manipulators for tracking complex paths has
been proposed to solve the joint-drift problem. The scheme can
not only finish the end-effector task collaboratively with the dual-
redundant-manipulators, but also achieve repetitive motion,
avoid physical limits and position-error convergence. First, the
left and right manipulator subschemes are formulated and then
are combined to one quadratic program scheme, i.e., the NDSO
scheme. Next, the scheme is unified into a standard quadratic
programming problem. Finally, the quadratic programming
problem is solved by a linear-variational-inequality primal-
dual neural networks. Three complex end-effector tasks and
comparisons, i.e., pentagram-path tracking, number writing,
and coupled tasks have verified the effectiveness, accuracy,
repeatability, safety, generality and robustness of the proposed
NDSO scheme. To the best of authors’ knowledge, it is the first
time to propose such a NDSO scheme with so many optimization
criteria and can solve the joint-drift problems in three three-
dimensional workspace. The future work is to exploit higher
efficient resolving algorithms to further improve the performance
of the scheme and consider the control input saturation problem
and uncertainties.
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