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Editorial on the Research Topic 


Advances in fruit-growing systems as a key factor of successful production





Summary

The fruit production industry has recently been faced with many challenges. Examples include climate change, introduction of new fruit-bearing species into production, traits of newly-bred fruit cultivars, innovations in orchard systems, rootstock/scion interactions, effects of fruit-growing technology and growing systems on yield and fruit quality, emergence of new pathogens and pests, as well as birds and mammals in orchards, organic production, fruit quality and compounds, regulatory frameworks, high labor input, and more. Farmers need to have more up-to-date information and answers to these challenges. Modern fruit production is based on an adequate fruit-growing system, supported by many elements that complete this production.

The fruit-growing system is the key factor in fruit production. All aspects of production must fulfill the requirements of the growing system. The aim of the Research Topic titled ‘Advances in Fruit-Growing Systems as a Key Factor of Successful Production’ is to present the latest information on modern innovations, experimental developments, advanced research, and basic research to increase the efficiency of fruit production in the next century. Fruit production is based on biological, phenological, and biochemical processes. Therefore, all participants in the fruit industry must understand the procedures taking place in the background to have successful growth.

Within this research topic, nine manuscripts were published by 54 co-authors covering various topics and fruit species. 

The use of biostimulants is a common practice in the production of pome and stone fruit species, but it is not in practice in the production of Persian walnut (Juglans regia L.). Researchers from Hungary examined the responses of nut characteristics and some phenolic compounds of this nut tree species by applying some biostimulants (Wuxal Ascofol, Alga K Plus, and Kondisol) in a bearing orchard. In conclusion, it can be stated that not all applied biostimulants had the same effects on the walnut trees. The effects of the applied materials depended on the spring weather conditions; when the spring was hot, the effects of the applied materials were positive. On the contrary, when the spring was rainy and cold, there were no effects of the applied materials on the host plants.

A Chinese group of researchers studied the effects of different nitrogen application rates on the accumulation of major nutrients and metabolites in wolfberry (Lycium barbarum L.) fruits, and published a paper entitled ‘Effects of different nitrogen application rates and picking batches an the nutritional components of Lycium barbarum l. fruits’. The different nitrogen applications significantly affected the compounds of wolfberry. A 20% lower nitrogen application (675 kg ha-1) than the usual practice was beneficial for the wolfberry fruit.

Another group of researchers from China examined the swelling agent treatment on the Xiangti” grape variety and the application of electronic nose identification detection in their paper, titled ‘Effect of swelling agent treatment on grape fruit quality and the application of electronic nose identification detection’. The authors recognized that soluble sugars, soluble solids, soluble proteins and vitamin C were significantly increased, and the contents of hexanal, (E)-2-hexenal, and nonanal aldehydes were significantly decreased. They also confirmed, that the electronic nose can be used to detect, whether the grapes have been treated with swelling effects.

It is an interesting topic to have a research about robotics. It is more interesting to do some research about novel harvesting methods for fruit species having small and relatively soft fruit flesh with picking robots. In a study entitled ‘Is this blueberry ripe?’, a blueberry ripeness detection algorithm for picking robots was developed by a Chinese group of researchers, and the authors solved this challenge with a new algorithm that can recognize the ripe blueberries. The paper entitled ‘Apple detection and instance segmentation in natural environments using an improved Mask Scoring R-CNN Model’ is about robotics in apple production. The authors developed a mask-scoring R-CNN method that is very useful for the identification of the apples on the trees.

From a yield perspective, it is important to better understand the metabolomics and genetic background of reproductive bud development in two different variants (edible fig and caprifig) of fig (Ficus carica L.). An Italian group of researchers stated in their published paper entitled ‘Metabolomics and genetics of reproductive bud development in Ficus carica var. sativa (edible fig) and in Ficus carica var. caprificus (caprifig): similarities and differences’ that there were different patterns between the two types of figs observed. RNA-sequencing identified 473 downregulated genes, of which 22 were found only in profichi, and 391 up-regulated genes, of which 21 were found only in mammoni, compared to literature data.

To increase the yield in a vineyard with double cropping under a tunnel within one year is a fantastic result. A group of researchers from China provided more data on this research in their published paper entitled ‘Grapevine double cropping: a magic technology’.

Pomegranate (Punica granatum L.) is a new fruit species that can be grown in large areas. To preserve fruit quality after mechanical harvesting, it is necessary to detect damaged fruits. A South African – Nigerian group of researchers examined some detection and classification methods using different cameras (SWIR, NVIR), and they stated that there is huge potential in hyperspectral imaging.

In addition to eight original research papers, a review entitled ‘Application of Convolutional Neural Network-Based Detection Methods in Fresh Fruit Production: A Comprehensive Review’ by a Chinese group of researchers was published. The authors created a convolutional neural network-based deep learning detection technology to better protect fresh fruit on the field.

As can be seen from this editorial article, many different topics are covered in this research topic, in line with the aims of the guest editors.
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As one of the representative algorithms of deep learning, a convolutional neural network (CNN) with the advantage of local perception and parameter sharing has been rapidly developed. CNN-based detection technology has been widely used in computer vision, natural language processing, and other fields. Fresh fruit production is an important socioeconomic activity, where CNN-based deep learning detection technology has been successfully applied to its important links. To the best of our knowledge, this review is the first on the whole production process of fresh fruit. We first introduced the network architecture and implementation principle of CNN and described the training process of a CNN-based deep learning model in detail. A large number of articles were investigated, which have made breakthroughs in response to challenges using CNN-based deep learning detection technology in important links of fresh fruit production including fruit flower detection, fruit detection, fruit harvesting, and fruit grading. Object detection based on CNN deep learning was elaborated from data acquisition to model training, and different detection methods based on CNN deep learning were compared in each link of the fresh fruit production. The investigation results of this review show that improved CNN deep learning models can give full play to detection potential by combining with the characteristics of each link of fruit production. The investigation results also imply that CNN-based detection may penetrate the challenges created by environmental issues, new area exploration, and multiple task execution of fresh fruit production in the future.

Keywords: computer vision, deep learning, convolutional neural network, fruit detection, fruit production


INTRODUCTION

Fresh fruits in the market are beloved by people because of their enticing aroma and unique flavor. From fruit flowers blooming to fruit grading, every link of fresh fruit production needs to be seriously supervised so that fruits enter the market without economic loss. In recent years, the world agricultural population and labor force have been having a declining trend leading to the urgent need for automation of fresh fruit production (Yuan et al., 2017). Object detection based on computer vision has been applied to the main link of automatic fresh fruit production such as smart yield prediction, automatic harvesting robots, and intelligent fruit quality grading (Naranjo-Torres et al., 2020).

A function of ML is to ensure that machines can automatically detect objects accurately. Although ML has been applied in many fields, the ML technology has been developing to achieve efficient detection. The detection performance of traditional ML will not improve with increase in training sample data. The features need to be given artificially for object detection, which is also a disadvantage of traditional ML (Mohsen et al., 2021). As an intelligent algorithm in the development of ML, DL has significant advantages over traditional algorithms of ML. The detection performance of DL usually improves with increase in the amount of training sample data. DL can automatically extract features of a detected object using network structure. However, DL takes a lot of training time and runs on computers with higher cost configurations compared with traditional ML (Joe et al., 2022).

Deep learning is a further study on artificial neural networks such as deep belief network (Hinton et al., 2006), recurrent neural network (Schuster and Paliwal, 1997), and convolutional neural network (LeCun et al., 1989). The deep learning algorithm has a similar calculation principle with a mechanism of the visual cortex of animals (Rehman et al., 2019). The deep learning-based technology has broad applications in many domains due to its superior performance in operation speed and accuracy, for example, in the medical field (Gupta et al., 2019; Zhao Q. et al., 2019), in the aerospace field (Dong Y. et al., 2021), in the transportation sector (Nguyen et al., 2018), in the agriculture field (Kamilaris and Prenafeta-Boldú, 2018), and in the biochemistry field (Angermueller et al., 2016).

A CNN with a convolutional layer and a pooling layer was proposed by Fukushima (1980), which was subsequently improved to LeNet (LeCun et al., 1998), GoogleNet (Szegedy et al., 2015), ResNet (He et al., 2016), AlexNet (Krizhevsky et al., 2017), and so on. With the appearance of R-CNN (Girshick et al., 2014), CNN-based object detection became a hot research topic on computer vision and digital image processing (Zhao Z. et al., 2019). Object detection is the coalition of object classification and object location requiring a network to differentiate an object region from the background and accomplish the classification and location of the object. The technique of CNN-based image segmentation using a CNN model to perceive the representative object of each pixel for classifying and locating objects can be performed for object detection tasks. Frequently used image segmentation models are Mask-R-CNN, U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017), DeepLab (Chen et al., 2018), and so on.

Early fruit image segmentation algorithms use traditional ML algorithms to identify fruit objects by combining shallow characteristics of fruits such as color, texture, and shape, and mainly included threshold segmentation (Pal and Pal, 1993), DTI (Quinlan, 1986), SVM (Cortes and Vapnik, 1995), cluster analysis (Tsai and Chiu, 2008), and so on. Color traits of fruits are frequently used in fruit detection (Thendral et al., 2014; Zhao et al., 2016). Shape, as an outstanding mark of fruits, is applied to fruit segmentation and recognition (Nyarko et al., 2018; Tan et al., 2018). In addition, spectral features and depth information are applied in fruit detection (Bulanon et al., 2009; Okamoto and Lee, 2009; Gené-Mola et al., 2019a; Lin et al., 2019; Tsoulias et al., 2020). The above methods can detect fruit objects; however, they have certain limitations of features expression for fruit object detection in a complex environment. CNN-based detection technology has been proved to have a potential in fresh fruit production by many studies (Koirala et al., 2019b). Models combined with CNN, for example, CNN + SVM (Dias et al., 2018), CNN + ms-MLP (Bargoti and Underwood, 2017), fuzzing mask R-CNN (Huang et al., 2020), faster R-CNN (Gao et al., 2020), the Alex-FCN model (Wang et al., 2018), and 3D-CNN (Wang et al., 2020), have obtained satisfactory detection results in fruit flower detection, fruit recognition, fruit maturity prediction, and surface defect detection-based fruit grading. These successful studies imply that CNN-based methods can break the technical bottleneck in detection and accelerate the mechanization of fresh fruit production.

As shown in Figure 1, this review investigates the CNN-based detection application in the process of fresh fruit production, which is a complete process from fruit flower detection, growing fruit detection, fruit picking to fruit grading. We provide a comprehensive introduction and analysis of the CNN model and its improved models in fresh fruit production. In addition, different CNN-based detection methods are compared and summarized in each link of fresh fruit production. The arrangement of this article is as follows: Section “Common Models and Algorithms of Convolutional Neural Network” introduces the composition and algorithms of CNN; Section “Implementation Process of Convolutional Neural Network-Based Detection” explains the CNN-based detection implementation process; Section “Convolutional Neural Network-Based Fresh Fruit Detection” investigates the current research on CNN applications in each link of fresh fruit production; Section “Challenges and Future Perspective” discusses difficulties that will be encountered by CNN-based detection in future research on fresh fruit production; Section “Conclusion” presents an entire summary of this investigation.
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FIGURE 1. Convolutional neural network (CNN)-based detection application in main links of fresh fruit production.




COMMON MODELS AND ALGORITHMS OF CONVOLUTIONAL NEURAL NETWORK


Convolutional Neural Network Models for Image Detection

Common CNN models used for image detection are usually composed of convolutional layers, activation functions, pooling layers, and full-connected layers (Mohsen et al., 2021). A CNN model transforms an image into high dimension information, so a computer can read and extract features from the image. In two-dimensional (2D) convolution operation, each pixel value of an input image entering into a convolutional layer is convoluted with a kernel to generate a feature map. When an input image is three-dimensional (3D) or four-dimensional (4D), a multi-dimension convolution operation will be implemented. In the multi-dimension convolution operation, the channel number of kernels is equal to the channel number of input images, and the channel number of output feature maps is the number of kernels (Alzubaidi et al., 2021). However, in convolutional layers and full-connected layers, the linear connection between the input and the output restricts the ability of a CNN model to solve more complex problems. The activation function is added after the operations of convolution layers and full-connected layers, which can capacitate a CNN model to solve non-linear problems. Common activation functions include the Sigmoid function, the Tanh function, the ReLU function, SoftMax, and so on.

LeNet is the first improved CNN; however, it has not been widely promoted and applied because of simple network structure (LeCun and Bengio, 1995). AlexNet is the first deep CNN architecture and the first CNN model trained on GPU (Krizhevsky et al., 2017). A VGG model with four network structures and different configurations was proposed by the Visual Geometry Group of Oxford University in 2014 (Simonyan and Zisserman, 2014). The most popular network among VGG models is VGG-16 containing thirteen convolutional layers and three full-connected layers. GoogLeNet was a new deep learning structure proposed in 2014 (Szegedy et al., 2015). The most unique of GoogLeNet is the inception component, which utilizes partial connection to accomplish parameter reduction and computation simplicity. A series of inception components including InceptionV2, InceptionV3, and InceptionV4, was proposed for optimizing GoogLeNet (Szegedy et al., 2016). By proving the existence of degradation of CNN while its depth is increasing, ResNet was proposed to improve the CNN by designing residual components with the shortcut connection (He et al., 2016). DenseNet was proposed in 2017, and dense block was the highlight of DenseNet by building connections of all layers with each other to ensure maximum information flow among the layers (Huang et al., 2017). With the popularization of CNN models, it is required that CNN-based image recognition tasks are implemented on mobile terminals or embedded devices. As a lightweight model, MobileNet was designed to run on the CPU platform, and it had good detection accuracy (Howard et al., 2017). These models are fundamentals of CNN-based object detection and can help computers learn more information about images because of functions of feature recognition and extraction. The structure and image detection performance of the above common CNN models are summarized in Table 1.


TABLE 1. Structure and performance of common convolutional neural network (CNN) models for image detection.
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Convolutional Neural Network Models for Three-Dimensional Point Cloud Detection

With the development of vision technology, sensors that directly acquire 3D data are becoming more common in robotics, autonomous driving, and virtual/augmented reality applications. Because depth information can eliminate a lot of segmentation ambiguities in 2D images and provides important geometric information, the ability to directly process 3D data is invaluable in these applications. However, 3D data often come in the form of point clouds. Point clouds are typically represented by a set of 3D points that are not arranged in order, each with or without additional features (such as RGB color information). Because of the disordered nature of point clouds and the fact that they are arranged differently from regular mesh-like pixels in 2D images, traditional CNNs struggle to handle this disordered input.

At present, the deep learning point cloud target recognition method mainly has three kinds of point cloud target recognition methods based on views (Kalogerakis et al., 2017), voxels (Riegler et al., 2016), and point clouds (Qi et al., 2017a). Among them, the idea based on views is still to convert three-dimensional data into a two-dimensional representation; that is, 3D data are projected according to different coordinates and different perspectives to obtain a two-dimensional view, and then the two-dimensional image convolution processing method is used to extract features from each view and, finally, aggregate the features to obtain classification and segmentation results. The idea based on voxels is to put an unordered point cloud into the voxel grid, so that it becomes a three-dimensional grid regular data structure, and then as network input data. However, in order to solve problems of view-based and voxel-based computational complexity and information loss, researchers began to consider directly inputting raw point cloud data into the network for processing.

At Stanford University in the United States, Qi et al. (2017a) proposed a new type of neural network, PointNet, for point cloud identification and segmentation directly using a point cloud as the input object, the spatial transformation network T-Net to ensure the displacement invariance of the input point, a shared multilayer perceptron (MLP) to learn the characteristics of each point, and, finally, the maximum pooling layer to aggregate global features. However, PointNet cannot learn the relationship characteristics between different points in the local neighborhood, and then Qi et al. (2017b) proposed PointNet++ to improve PointNet, according to the idea of two-dimensional convolution proposed hierarchical point cloud feature learning for local areas, which is composed of sampling layer, grouping layer and feature extraction layer (PointNet) in the hierarchical module, while improving the stability of the network architecture and the ability to obtain details. Later, the description ability of local features was enhanced in order to make the local structure information between points, such as distance and direction, be able to learn in the network.

PointNet inputs an irregular point cloud directly into the deep convolutional network, the framework represents the point cloud as a set of 3D points { (P—i = l, …, n}, where each point P is its 3D coordinates plus additional feature channels such as color, normal vector, and other information; the architecture is shown in Figure 2. In response to the point cloud disorder problem, PointNet pointed out that a symmetric method is used; that is, maximum pooling, no matter how many orders there are in N points, the maximum eigenvalue in the pooling window corresponding to N points is selected for each dimension of the final high-latitude feature and fused into the global feature. For the rotation invariance problem of point cloud, PointNet points out that spacial transform network (STN) is used to solve it. Through the T-Net network to learn the point cloud itself attitude information to obtain a DD rotation matrix (D represents the characteristic dimension), PointNet in the input space transformation using 3×3, feature space transformation using 64×64 to achieve the most effective transformation for the target.


[image: image]

FIGURE 2. Structure of PointNet.




Convolutional Neural Network-Based Detection Algorithms

Convolutional neural network-based detection algorithms mainly include object detection algorithms, semantic segmentation algorithms, and instance segmentation algorithms, which are described in detail as follows.


Object Detection Algorithms

As a kind of object detection algorithm, a two-stage detector is mainly composed of a region proposal generator and classes and bounding box prediction. The R-CNN series is the most representative two-stage detector and includes R-CNN (Girshick et al., 2014), Fast-R-CNN (Girshick, 2015), Faster-R-CNN (Ren et al., 2017), etc. R-CNN is the pioneer in using deep learning for object detection. After that, researchers proposed Fast-R-CNN and Faster-R-CNN in succession to update detection performance. Figure 3 shows the structure of Faster-R-CNN, which is frequently used. Besides the above object detection algorithms, R-FCN and Libra R-CNN are also two-stage detectors.
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FIGURE 3. Faster-R-CNN structure. The feature map is extracted by a convolutional neural network, and then the RPN (region proposal network) generates several accurate region proposals according to the feature map. The region proposals are mapped to the feature map. The ROI (region of interest) pooling layer is responsible for collecting proposal boxes and calculating proposal feature maps. Finally, the category of each proposal is predicted through the FC (full connect) layer.


Compared with a two-stage detector, a one-stage detector conducts classification and bounding box regression after feature extraction without generation of proposal regions. Prediction of objects depends on doing dense sampling on an input picture. Representative one-stage detectors are the YOLO series and SSD (single shot multibox detector). The YOLO series contains YOLOv1 (Redmon et al., 2016), YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), and YOLOv4 (Bochkovskiy et al., 2020). Notably, during the evolution of YOLO, a new convolution neural net, DarkNet, was constructed for feature extraction. Furthermore, YOLOv2 referenced the anchor conception from Faster-R-CNN. YOLOv3 contains three different output nets that can predict multi-scale pictures. SSD (Liu W. et al., 2016) is also a kind of one-stage detector that can implement multi-box prediction. VGG-16 was used as a backbone in SSD. With the development of DL, more improved one-stage detection algorithms have been designed.

A comparison of CNN models between two-stage detectors and one-stage detectors is shown in Table 2. As can be seen in Table 2, frames per second (FPS) of the one-stage detector are bigger than those of the two-stage detector, which implies that the detection speed of the one-stage detector is faster than that of the two-stage detector. The FPS and mAP of the Mask-R-CNN model are bigger than those of other models of the two-stage detector. It shows that the Mask-R-CNN model has faster detection speed and higher detection accuracy than the two-stage detector. However, in the one-stage detector, no CNN model has faster detection speed and higher detection accuracy. Because of lack of mAP in some CNN models on data of VOC2012 and COCO, the accuracy of the two detectors cannot be compared.


TABLE 2. Summary of common CNN-based object detection models.
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Semantic Segmentation Algorithms

Unlike box recognition in object detection, semantic segmentation refers to pixel-level recognition and classification, which classifies pixels of the same class into one group. Early DL-based semantics segmentation methods performed clustering to generate super-pixels and a classifier to classify them (Couprie et al., 2013; Farabet et al., 2013). However, such methods have drawbacks of time-consuming and rough segmentation results. With the popularity and development of object detection algorithms based on CNNs, semantic segmentation algorithms have also made great progress, and can be divided into region-classification-based image semantic segmentation and pixel-classification-based image semantic segmentation.

The method of region-classification-based image semantic segmentation first selects the appropriate region, then classifies the pixels in the candidate region. SDS (simultaneous detection and segmentation) is a model based on R-CNN that can simultaneously detect and semantically segment targets (Hariharan et al., 2014). In 2016, based on the SDS method, Liu S. et al. (2016) convoluted images using sliding windows of different sizes and constructed multi-scale feature maps, proposed an MPA (multi-scale patch aggregation) method that can semantically segment an image at the instance level. DeepMask is a segmentation model proposed based on CNN to generate object proposals (Pinheiro et al., 2015). It generates image patches directly from original image data and then generates a segmentation mask for given image patches. The whole process is applied to a complete image to improve the efficiency of segmentation.

The method of pixel-classification-based semantic segmentation does not need to generate object candidate regions but extracts image features and information from labeled images. Based on that information, a segmentation model can learn and infer the classes of pixels in an original image, and classify each pixel in the image directly to achieve end-to-end semantic segmentation. FCN (fully convolutional network) is a popular semantic segmentation model that can be compatible with any size of images (Shelhamer et al., 2017). FCN can distinguish the categories of pixels directly, which greatly promotes the development of semantic segmentation. Subsequently, researchers proposed a series of methods based on FCN. FCN-based image semantic segmentation methods are as follows: DeepLab, DeepLab-V2, and DeepLab-V3. Image semantics segmentation methods based on encoder-decoder model are as follows: U-net, Segnet, Deconvnet, and GCN (global convolution network).



Instance Segmentation Algorithms

The purpose of instance segmentation is to distinguish different kinds of objects in an image and different instances of the same kind. Therefore, it has the characteristics of object detection and semantic segmentation at the same time. Because of the characteristics of instance segmentation, it can include instance segmentation based on object detection and instance segmentation based on semantics segmentation.

An instance segmentation algorithm based on object detection has been the mainstream direction in the field of instance segmentation research in recent years. Its main process is to locate an instance using an object detection algorithm, and then segment the instance in each detected box. Mask-R-CNN is one of the famous models in instance segmentation proposed by He K. et al. (2017). Mask-R-CNN is one of the famous models in instance segmentation on the basis of Fast-R-CNN(He K. et al., 2017). As a representative instance segmentation model, many scholars are deeply inspired by Mask-R-CNN. Based on Mask-R-CNN, PANet (path aggregation network) introduces a bottom-up path augmentation structure, adaptive feature pooling, and a fully connected fusion structure to obtain more accurate segmentation results (Liu S. et al., 2018). Chen et al. (2018) proposed Masklab, which uses directional features to segment instances of the same semantic class. In 2019, the first instance segmentation algorithm based on a one-stage object detection algorithm, YOLACT, was proposed by Bolya et al. (2019). It added a mask generation branch behind the one-stage object detector to complete a segmentation task. The overall structure of YOLACT is relatively lightweight, and the trade-off between speed and effect would be good. In addition, there are some newly proposed instance segmentation algorithms such as MS-R-CNN (Huang et al., 2019), BMask-R-CNN (Cheng et al., 2020) and BPR (Tang et al., 2021).

An instance segmentation algorithm based on semantic segmentation classifies each pixel first and then segments different instances of the same category. For example, the SGN (Liu et al., 2017) model decomposes an instance segmentation into multiple subtasks, then uses a series of neural networks to complete these subtasks, and finally recombines the results of the subtasks to obtain the segmentation task.



Differences of Detection Algorithms

In this section, differences among object detection, semantic segmentation, and instance segmentation are visually explained through pear flower detection. Figure 4A is an undetected image of pear flowers. The result of detecting pear flowers with the object detection algorithm is shown in Figure 4B, and it shows the approximate position of pear flowers with bounding boxes. The result with semantic segmentation algorithm is shown in Figure 4C, which reaches the pixel level compared with the result of object detection. It means that when labeling data sets, the annotation of the task of semantic segmentation is also at pixel level. Compared with rectangular box annotation in the object detection task, the annotation of semantic segmentation task is more complex. The result with the instance segmentation algorithm is shown in Figure 4D, and the detection results of instance segmentation are more detailed than those of semantic segmentation in distinguishing each pear flower individual.
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FIGURE 4. Different CNN-based algorithms for pear flower detection. (A) Original image, (B) object detection, (C) semantic segmentation, and (D) instance segmentation.






IMPLEMENTATION PROCESS OF CONVOLUTIONAL NEURAL NETWORK-BASED DETECTION

This section introduces the main procedures of comprehensively training a CNN-based deep learning model for basic tasks. The first step is determining the learning target and establishing the data set. Second, it is vital to choose an adept deep learning framework to modify the model and implement training. Finally, mastering the estimation metrics of deep learning models leads to knowing the performance of the modified models and training results.


Data Set Construction


Dataset Acquisition

An RGB camera, which can capture the properties of a fruit surface, such as color, shape, defect, and texture, is a pervasive and affordable camera for image acquisition used in many types of research (Fu et al., 2020a). Vasconez et al. (2020) held an RGB camera and acquired apple, avocado, and lemon pictures at 30 frames per second in orchards. However, the information obtained from RGB images is not sufficient for 3D location and reconstruction. Thus, most researchers have begun utilizing RGB-D to capture RGB images and depth images in their experiments. RGB-D cameras generally operate with three depth measurement principles: structured light, time of flight, and active infrared stereo technique (Fu et al., 2020a). Data sets that provide geometric information and radiation information can enhance the models’ ability to distinguish fruits from complex environments. Gené-Mola et al. (2019b) established an apple data set containing multimodal RGB-D images and pointed out that the model provided with RGB-D images is more robust than that provided with RGB images in a complex environment. However, sensors in most depth cameras cannot obtain information beyond 3.5 m, and light detection and ranging (LiDAR) scanners are needed to acquire information at a far distance (Tsoulias et al., 2020). A LiDAR scanner can directly provide three-dimensional positioning information of fruits without being affected by light conditions. In addition, LiDAR data can improve the positioning accuracy of fruits because of the appearance of different objects showing different reflectivity to laser. Gené-Mola et al. (2019a), by detecting Fuji apples in orchards with LiDAR, found that the reflection of apple surface was 0.8 higher than that of leaves and branches at a wavelength of 905 nm.

The internal properties of fruits need hyperspectral reflectance images to be represented. Yu et al. (2018) used a hyperspectral imaging system that constituted of a spectrometer, a CDD camera, a light system, and a computer to detect the internal features of Korla fragrant pear. Some scholars bought a designed hyperspectral system for data collection (Wang et al., 2020).



Data Set Augmentation

Data sets, as an input, play a significant part in a DL model. Most researchers consider that enhancing the scale and quality of data sets can strengthen the models’ generalization and learning capacity. The methods of dataset augmentation can be divided into the basic-image-manipulation-based method and the DL-based method. The most straightforward and frequently-used methods based on basic image processing are geometric transformations, flipping, color space, cropping, rotation, translation, noise injection, color space transformations, kernel filters, mix images, and random erasing. Figure 5 displays example images with some usual image processes. In addition, the DL-based method contains SMOTE (Chawla et al., 2002), adversarial training, DC-GAN (deep convolutional GAN) (Zheng et al., 2017), CycleGAN (Zhu et al., 2017), CVAE-GAN (Bao et al., 2017), etc.
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FIGURE 5. Example images with different image processes. (A) Original image, (B) vertical flip image, (C) noise injected image, (D) sharpened image, (E) Gaussian blurry image, (F) random erased image, (G) image with brightness adjustment, (H) RGB2GRB image, and (I) gray image.


Some researchers processed images from angle, brightness, and sharpness to simulate different light conditions (Jia et al., 2020). Some used clockwise rotation, horizontal mirror, color balance processing, and blur processing to augment a data set for apple detection (Tian et al., 2019). Flowers have distinct characteristics from fruit organs. Thus, Tian et al. (2020) proposed a novel image augmentation method as per apple inflorescence (Figure 6). The procedure of image generation is displayed in Figure 7. They clipped 50 pictures of central flowers and 150 pictures of side flowers. Then, they filtered and combined these clipped images to generate foreground pictures. At the same time, 200 pictures were extracted and processed for background pictures. Finally, sample images were produced by coalescing foreground pictures and background pictures. The experiment results proved that this way of augmentation contributed to detection performance.
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FIGURE 6. Apple inflorescence: (A) the central flower and the side flowers have a bud shape, (B) the central flower has a semi-open shape and the side flowers have a bud shape, (C) the central flower has a fully open shape and the side flowers have bud and semi-open shapes, and (D) the central flower and the side flowers have a fully open shape.
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FIGURE 7. Procedure of image generation in Tian et al. (2020).





Convolutional Neural Network Model Training


Training Tools

It is onerous to construct a deep learning model from zero. Many open-source or commercial deep learning tools came into being with the advent of deep learning (Li et al., 2021). In the field of fresh fruit detection, Caffe, TensorFlow, Keras, and PyTorch are popular open-source training tools.

Caffe is the abbreviation of convolution architecture for feature extraction, and is one of the earlier DL frameworks. Caffe defines a network structure in the form of configuration text instead of code. Users can expand new models and learning tasks with its modular components (Jia et al., 2014). TensorFlow is an open-source machine learning library from Google Brain that can be used for a variety of deep learning tasks, including CNN, RNN, and GAN (generative adversarial network) (Abadi et al., 2016). It uses data flow graphs to represent calculations, shared states, and operations (Zhu et al., 2018). Keras is a very friendly and simple DL framework for beginners. Strictly speaking, it is not an open-source framework but a highly modular neural network library based on TensorFlow and Theano. PyTorch is a DL framework launched by Facebook in 2017 and is based on the original Torch framework; it utilizes Python as main development language (Paszke et al., 2019). Furthermore, the open-source code of Caffe2 has merged into PyTorch, which signifies that PyTorch has strong capacity and flexibility. Table 3 describes the detail and differences of the above DL tools. In Table 4, we display the code of the first convolutional layer of Lenet-5 in different languages.


TABLE 3. Comparison of Caffe, TensorFlow, Keras, and PyTorch.
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TABLE 4. Different languages define the code of the first convolution layer of Lenet-5.
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Furthermore, data set annotation, which generates ground truth for supervising networks’ learning object features, is a prerequisite for tasks of object detection and segmentation. Familiar label tools have LabelImg, LabelMe (Russell et al., 2007), Matlab, Yolo_mark, Vatic, CVAT, etc.



Parameter Tuning

Parameter initialization is very important. Reasonable initial parameters can help a model improve training speed and avoid local minima. The Kaiming initialization and Glorot initialization methods are generally used (Glorot and Bengio, 2010; He et al., 2015).

In the beginning of the training, all parameters have typically random values and, therefore, far away from the final solution. Using a too-large learning rate may result in numerical instability. We can use warm-up heuristic (He et al., 2019) to gradually increase the learning rate parameter from 0 to the initial learning rate, and then use the conventional learning rate attenuation scheme. With the progress of training, a model will gradually converge to the global optimum. It is necessary to reduce the learning rate to prevent a model from oscillating back and forth near the optimum. Generally, learning rate adjustment strategies such as Step, MultiStep, and exponential and cosine annealing can be used.

Selection of an optimizer plays an important role in DL training and is related to whether the training can converge quickly and achieve high accuracy and recall. Commonly used optimizers include gradient descent, momentum, SGD, SGDM, Adagrad, Rmsprop, Adam, etc.

Convolutional neural network learning needs to establish millions of parameters and a large number of labeled images. If the amount of data is not enough, a model will be over fitted, and the effect is likely to be worse than traditional manual features. If the data set of a new task is significantly different from the original data set and the amount of data is small, one can try transfer learning to complete the new task (Oquab et al., 2014). The weight update of a whole network can be adopted during transfer learning.




Evaluation Metrics

The confusion matrix is a basic, intuitive, computational, and simple method for measuring the accuracy of a model. Take the binary classification model as an example, and its confusion matrix is shown in Figure 8. It is mainly composed of four basic indicators: TP (true positive), FN (false negative), FP (false positive), and TN (true negative).
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FIGURE 8. Basic confusion matrix.



•TP: an outcome where a model correctly predicts a positive class.

•FP: an outcome where a model incorrectly predicts a positive class.

•TN: an outcome where a model correctly predicts a negative class.

•FN: an outcome where a model incorrectly predicts a negative class.



With a confusion matrix, accuracy, precision, recall, and F1-score can be calculated to evaluate a model. Accuracy (Eq. 1) indicates the proportion of correctly classified test instances to the total number of test instances. Precision (Eq. 2) represents the correct proportion of positive samples predicted by a model. Recall (Eq. 3) represents the proportion of all positive samples that are correctly predicted by a model. Generally speaking, precision and recall is a pair of contradictory indicators. As the weighted harmonic average of the two of them, F1-score (Eq. 4) balances the relative importance between precision and recall.
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In addition to the above basic evaluation metrics, there are also IoU (intersection over union) and mAP (mean average precision) for evaluating the accuracy of a bounding box in an object detection and segmentation model, FPS for detection of speed, and the metrics of the regression model of MAE (mean absolute error), MSE (mean square error), RMSE (root mean square error), and R2 coefficient of determination, etc. Diversified evaluation indicators can help researchers evaluate and improve algorithms used in many aspects.

ROC curve is often used for evaluating two classifiers. The vertical axis of the ROC diagram is TPrate (Eq. 5) and the horizontal axis is FPrate (Eq. 6). FPrate represents the probability of misclassifying negative cases into positive cases, and TPrate represents the probability that positive cases can be divided into pairs. Each discrete classifier produces an (FPrate, TPrate) pair corresponding to a single point in ROC space. Several points in the ROC space are important to note. The lower left point (0, 0) represents the strategy of never issuing a positive classification; such a classifier commits no false positive errors but also gains no true positives. The opposite strategy of unconditionally issuing positive classifications is represented by the upper right point (1, 1). The point (0, 1) represents perfect classification (Fawcett, 2006).
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In addition to ROC curve, MCC (Eq. 7) is also used to measure the performance of binary classification. This indicator considers true positives, true negatives, false positives, and false negatives. It is generally considered to be a relatively balanced indicator. It can be applied even when sample sizes of two categories are very different (Supper et al., 2007). MCC is essentially a correlation coefficient between actual classification and prediction classification, and its value range is [−1, 1]. When it is 1, it means perfect prediction of a subject; when it is 0, it means that the predicted result is worse than the random prediction result; −1 means that the predicted classification is completely inconsistent with the actual classification.
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CONVOLUTIONAL NEURAL NETWORK-BASED FRESH FRUIT DETECTION


Fruit Flower Detection

Fruit flowers are the primary form of fruit organ. Most fruit trees bloom far more than final fruits. However, if there are too many flowers, nutrition supply will be insufficient, which will not only affect the normal development of fruits but will also cause formation of many small fruits and secondary fruits. Yield and economic benefits will be affected. Therefore, flower thinning is necessary to remove some excessive flowers and obtain high-quality fruits (Wouters et al., 2012). After flower thinning, flower detection is implemented and plays a considerable role in fresh fruit production. Flowers of most kinds of fruits are small and dense, resulting in overlap and blockage, which seriously affect the accuracy of detection. Precise estimation based on DL can assist orchardists in assigning labor resources on time to attain a highly effective but low-cost harvest.

The size of flowers of most species of fruits is small, and the flowers are dense, which causes overlap and occlusion quickly. Many researchers detect the flowers in outdoor fields close to make the most of flowers’ traits. Being inspired by the performance of CNNs in computer vision tasks, Dias et al. (2018) incorporated CNN and SVM for apple flower detection. Lin et al. (2020) compared the performance of R-CNN, Fast-R-CNN, and Faster-R-CNN in recognizing strawberry flowers, and Faster-R-CNN ha higher accuracy (86.1%) than R-CNN (63.4%) and Fast-R-CNN (76.7%). Farjon et al. (2020) constructed a system for apple flower detection, density calculation, and flourish peak prediction. The detector in the system was based on Faster-R-CNN. Mask R-CNN with ResNeXt50 is a superior algorithm for recognizing citrus flowers and detecting their quality in an end-to-end model. The average precision of detecting citrus flowers is 36.3, and the error of calculating the number was decreased to 11.9% (Deng et al., 2020). Using U-Net (Ronneberger et al., 2015) as the backbone of Mask-Scoring-R-CNN can also detect flowers with great precision (Tian et al., 2020). At the same time, researchers augmented a data set based on apple flowers’ growth and distribution features to improve the learning capacity of networks. YOlOv4 can detect objects on three different scales. Wu D. et al. (2020) proposed a channel-pruning algorithm based on the YOLOv4 model. The pruned model contains simple structures and has fewer parameters, and it works with sound accuracy and faster speed.

Grape flower counting is often very time-consuming and laborious because the grape flower has particular phenotypic traits that their shapes are the small sphere and growing on the inflorescence densely. Hence, scholars utilized full convolution net (FCN) to detect and identify inflorescences, and then used CHT to recognize the flowers (Rudolph et al., 2019). Palacios et al. (2020) also detected inflorescences and flowers, but both steps used the SegNet architecture with a VGG19 network. In addition, they estimated the actual number of flowers from the number of detected flowers by training a linear regression model. Litchi flowers are also densely clustered and difficult to distinguish in morphology. Thus, a semantic segmentation net that constituted of a backbone net, DeepV3, for feature extraction and a full convolutional net for pixel prediction can detect litchi flower at the pixel level (Xiong et al., 2021).



Growing Fruit Detection


Terrestrial Platform

In addition to fruit flower detection, fruit detection and counting are also important for yield estimation. Fruit growth in fruit trees is different, and fruit thinning needs to be implemented to remove small fruits, residual fruits, diseased fruits, and fruits with incorrect shapes, so that fruits are evenly distributed in trees and branches and can fully receive nutrients. After the fruit thinning and fruit dropping stages, fruits can be detected during fruit ripening to estimate yield (Zhou et al., 2012).

The CNN algorithm has better performance for detecting expanding fruits in a vast scene, which has been proved by comparing it with existing methods (Bargoti and Underwood, 2017). Various species of fruits have different characteristics; therefore, different CNN models are used. Tu et al. (2020) proposed a MS-FRCNN model to estimate passion fruit production. To detect fruits of small and dense olive, researchers tested five different CNN configurations in an intensive olive orchard, and the model with Inception-ResNetV2 showed the best behavior (Aquino et al., 2020). Behera et al. (2021) proposed a Faster-R-CNN model with MIoU, and it achieved an F1 score of 0.9523 and 0.9432 for yield estimation of apple and mango in the ACFR data set. Janowski et al. (2021) employed the YOLOv3 network to predict the yield of an apple orchard. Nevertheless, all algorithms face the problems of occlusion resulting from leaves or branches and fruit overlap. To suppress the disturbance from occlusion, an instance segmentation neural net based on Mask-R-CNN was used to detect apples in two-dimensional space and a multi-view structure from motion (SFM) (Triggs et al., 2002) was used to generate a 3D point cloud according to 2D detection results. Recognizing unripe tomatoes is important for long-term yield prediction, but green fruits are hard to perceive in a green background. Mu et al. (2020) used Faster-R-CNN to detect immature tomatoes in greenhouses and created a tomato location map from detected images. Prediction errors of a whole orchard caused by duplicate statistics attracted the attention of many scholars. It is remarkably effective segmenting individual mango trees with LiDAR Mask and identifying fruits with a Faster-R-CNN-based detector. Koirala et al. (2019a) designed a mango identification system and installed it on a multifunctional agricultural car to realize real-time detection. The algorithm named “MnagoYOLO” in the detction system is modified based on YOLOv2. The car drove on the path between rows of mango trees while the system detected and summed the mangoes on the trees (Koirala et al., 2019a). Some researchers thought of using mobile phones to detect kiwifruits in an orchard in real-time (Zhou et al., 2020). They used a single shot multi-box detector (SSD) with two lightweight backbones, MobileNetV2 and InceptionV3, to develop a device for kiwifruit detection in the wild, the Android app KiwiDetector. Four types of smart phones are used for experiments. Highest detection accuracy can reach 90.8%, and fastest detection speed can reach 103 ms.

Deep learning has advantages in yield estimation of clustered fruits. For dense small fruits such as blueberries and small tomatoes, DL has a better detection effect on single fruits and is more convenient for counting fruits. However, using DL to detect small fruits is more vulnerable to the influence of light conditions. To quantify the number of berries per image, a network based on Mask R-CNN for object detection and instance segmentation was proposed by Gonzalez et al. (2019). Grapes are a type of crop presenting a large variability in phenotype. Zabawa et al. (2020) chose to train a CNN to implement semantic segmentation for single grape berry detection, and then used the connected component algorithm to count each berry. SfM (structure-from-motion) can simultaneously solve camera pose and scene geometry estimation to find a three-dimensional structure. Thus, Santos et al. (2020) used Mask-R-CNN to segment grape clusters and generate comprehensive instance masks. Then, the COLMAP SfM software can match and track these masks to reduce duplicate statistics. GPS was employed to establish pair-wise correspondences between captured images and trajectory data (Stein et al., 2016). Figure 9 displays the process of instance matching and tracking. A counting method for cherry tomatoes based on YOLOv4 was proposed by Wei et al. (2021), and it takes the counting problem as detecting and classifying problems that can reduce the effects of occlusion and overlap. Ni et al. (2021) proposed a method for counting blueberries based on the result of individual 3D berry segmentations. In that study, Mask-R-CNN was used for 2D blueberry detection, and the 3D point was used for 3D reconstruction.
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FIGURE 9. Instance matching and tracking by 3-D assignment. (Left) Key frames extracted from a video sequence with a 1,080-p camera. (Right) Graph-based tracking. Each column represents instances found by a neural network, and each color represents an individual grape cluster in a video frame.


Some types of fruits are only edible when ripe. Therefore, maturity monition can provide a timely signal to harvest workers. Tomatoes have the characteristics of clustered growth and batch ripening. Immature tomatoes contain solanine, which is noxious to the human body. Thus, dozens of studies are related to tomato maturity detection. Sun et al. (2018) first used Faster-R-CNN with ResNet 50 to detect critical organs of tomatoes, and the mAP of the model is 0.907. Subsequently, they improved the FPN model to recognize tomato flowers, green tomatoes, and red tomatoes, and the mAP achieved 0.995 (Sun et al., 2020). Coconuts with different maturities can be sold for various purposes. Therefore, Parvathi and Tamil Selvi (2021) used Faster-R-CNN to detect the maturities of coconuts in trees to decrease economic loss. The definition of mature and immature fruits is the primary issue of maturity detection. Some researchers transformed the identification task into a classification task. According to the relationship between storage time and appearance, tomatoes can be classified into five categories: “Breaker,” “Turning,” “Pink,” “Light red,” and “Red.” A CNN can classify the level of tomato maturity (Zhang L. et al., 2018). Tu et al. (2018) collected five maturities category pictures of passion fruit (Figure 10), and then modified the Faster-R-CNN model to recognize the fruit and its ripeness. Tian et al. (2019) divided objective apples into three classes, young, expanding, and ripe, and optimized the YOLOv3 model with DenseNet for detection. The classification method referred in Tian et al. (2019) was used on litchi (Wang H. et al., 2021). However, litchi fruits are different from apples that are small and dense; thus, Wang adjusted the prediction scale and decreased the weight layers of YOLOv3 to enhance the capacity of the model for compact object detection. Khosravi et al. (2021) coded olives according to their mature stages and varieties, divided them into eight categories, and used a deep convolutional network for detection. The overall accuracy of detection can reach 91.9, and the processing speed on the CPU is 12.64 ms per frame.
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FIGURE 10. Different maturity levels of passion fruit in Tu et al. (2018). (A) Near-young passion fruit. (B) Young passion fruit. (C) Near-mature passion fruit. (D) Mature passion fruit. (E) After-mature passion fruit.


Offering indices of fruit maturity can help workers make harvesting plans and assist harvest robots in making decisions. Some scholars offered indices for describing fruit maturity under the premise of using a CNN to detect fruits. Huang et al. (2020) utilized Mask-R-CNN to identify the location of tomatoes in images and evaluated the HSV value of detected tomatoes. They then constructed Fuzzy inference rules between the maturity and the color feature of the surface of tomatoes, which can predict ripeness and harvesting schedule. Ni et al. (2020) also used Mask-R-CNN to extract blueberry fruit traits and gave two indices to describe fruit maturity (Figure 11). One index is about the maturity of individual berries that can infer whether blueberries are harvestable or not. Another is the maturity ratio (mature berry number/total berry number) of a whole cluster that can indicate the specific harvesting time of this cultivar. For clustered and dense fruits such as blueberries, cherries, and cherry tomatoes, the maturity of whole bunches of fruits can be calculated by detecting the maturity of each fruit using DL. At the same time, the labeling process is time-consuming and laborious. To provide technical support for high quality cherry production, Gai et al., 2021 proposed aYOLO-V4-dense model for detection of the maturity of cherries.
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FIGURE 11. Detection examples in Ni et al. (2020). The black rectangle contains the ID number and three traits (number, maturity, and compactness) of the corresponding sample.




Aerial Platform

Many researchers have begun using UAVs (unmanned aerial vehicles) to obtain images, and UAVs have become common in agricultural remote sensing as intelligent devices progress. Studies have demonstrated that data taken with UAVs are suitable for fruit yield prediction (Wittstruck et al., 2021). Chen et al. (2017) proposed a novel method that uses DL to map from input images to total fruit counts. It utilizes a detector based on an FCN model to extract candidate regions in images, and a counting algorithm based on a second convolutional network that estimates the number of fruits in each region. Finally, a linear regression model maps that fruit count estimate to a final fruit count. A UAV-based visual detection technology for green mangoes in trees was proposed by Xiong J. et al. (2020). In their study, the YOLOv2 model was trained for green mango identification. The mAP of the trained model on the training set was 86.4%, and estimation error rate was 1.1%. Apolo-Apolo et al. (2020) used a UAV to monitor citrus in orchards (shown in Figure 12) and adopted Faster-R-CNN to develop a system that can automatically detect and estimate the size of citrus fruits and estimate the total yield of citrus orchards according to detection results. To solve the problem of inconvenient data capture in mountain orchards, Huang et al. (2022) designed a real-time citrus detection system for yield estimation based on a UAV and the YOLOv5 model. Kalantar et al. (2020) presented a system for detection and yield estimation of melons with a UAV. The system included three main stages: CNN-based melon recognition, geometric feature extraction (Kalantar et al., 2019), and individual melon weight (Dashuta and Klapp, 2018).
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FIGURE 12. Workflow of field tests (Apolo-Apolo et al., 2020).


After using UAVs to predict fruit yield produced significant results, some scholars began to use UAVs to detect fruit maturity. Chen et al. (2019) used a UAV to capture images of the strawberry crop, and then utilized Faster-R-CNN to detect strawberry flowers and immature and mature strawberries with 84.1% accuracy. Zhou et al. (2021) also divided the growth of strawberries into three stages, “flowers,” “immature fruits,” and “mature fruits,” and utilized the YOLOv3 model to detect images photographed with a UAV. The experimental results show that the model has the best detection effect on the data set taken with the UAV 2 m away from fruits, and the mAP reaches 0.88.



Differences Between Two Platforms

In Sections “Terrestrial Platform” and “Aerial Platform,” we have described in detail the existing literature on the use of DL for detecting fruits in the growing period, and the differences can be seen in Table 5.


TABLE 5. Summary of related studies on application of CNN-based detection models in growing fruits.
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From the above discussion, the advantages and disadvantages of terrestrial and aerial platforms for yield estimation and maturity detection are obvious. For orchards located in harsh terrains, it is time-consuming and laborious that researchers use hand-held cameras to obtain data sets, and it is difficult to achieve automatic detection. Researchers only need to remotely control a UAV to easily acquire a large data set with different terrains and shooting distances, which is more convenient than handheld cameras. However, a UAV cannot be too close to the detected subject in the air; otherwise, a collision accident will occur. Therefore, it is noticed that the operation of a UAV needs more skilled technology.

For the yield prediction task, a UAV can capture a wider field of vision, such as fruits at the top of trees. However, when a UAV is used for long-distance shooting, the visibility of fruits is low because fruits at the bottom or inside of a canopy cannot be recognized, and increase in prediction error. When a handheld camera is used, the visibility of fruits is higher because a small part of a blocked fruit can be detected. However, the repetition rate of photographed fruits is high, which is not conducive to yield estimation.

For the maturity detection task, the characteristics of fruits are more conspicuous when a handheld camera is used for close shooting. Fruits photographed with the UAV equipment are too small because of long distance, and the characteristics are relatively fuzzy. In Zhou et al. (2021), researchers used UAV equipment and a handheld camera equipment for data acquisition. They divided the strawberry data captured with the camera into seven different growth stages: flower fruits, green fruits, green-white fruits, white-red fruits, red fruits, and rotten fruits. The strawberry data collected with the UAV were only divided into three labels: flowers, immature fruits, and mature fruits.




Fruit Picking

The picking period of fruits arrives when fruit organs expand to a certain size. Mature fruits are needed to harvest fruits in time. However, there has been an imbalance between labor force and economic benefits for a long time. In these years, automatic fruit harvest robots have become a hotspot of intelligent agricultural study. Most fruit trees have proper growth heights and structured planting modes that offer convenience to harvest robots. Table 6 summarizes the crops (containing fruits, branches, and trunks) experimented on for automatic harvest and corresponding detection models.


TABLE 6. Summary of related studies on application of CNN-based detection models in fruit harvesting.
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Fruit Recognition on Fields

The recognition and detection of fruits in an orchard environment provide robots with vital contextual information for maneuvering. However, branches, foliage, and illumination conditions affect the fruit detection with robots. Feature augmentation is a simple way to enhance the learning capacity of DL models. Mu et al. (2019) collected images with four types of occlusions in four illumination conditions as training data. Some researchers divided target apples into four classes depending on their obscured circumstances: leaf-occluded, branch/wire-occluded, non-occluded, and occluded fruits (Gao et al., 2020). Different varieties of the same fruit will have subtle differences in appearance. Using Mask-R-CNN to segment fruit images can distinguish fruits from occluded ones well. Chu et al. (2021) used an integrated data set with two varieties of apple to train Mask-R-CNN for suppression. Jia et al. (2020) optimized the Mask-R-CNN model in the backbone net, ROI layer, and FCN layer for apple harvesting robots. In a research study on strawberry harvest, the researchers reduced the magnitude of backbone and mask network and used a process of filtering and grouping of candidate regions to replace the object classifier and the bounding box regressor Mask-R-CNN. The new architecture can process original high-resolution images at 10 frames per second (Pérez-Borrero et al., 2020). Then, Pérez-Borrero et al. (2021) proposed a new strawberry instance segmentation model based on FCN whose FPS rate was six times higher than those obtained in reference methodologies based on Mask R-CNN.

As we have discussed in Section “Dataset Acquisition,” a depth image contains more information. Ganesh et al. (2019) assessed the performance of Mask-R-CNN by applying three forms of color space input, RGB images, HSV images, and RGB + HSV images. The result showed that adding HSV information to RGB images can decrease false positive rate. Sa et al. (2016) explored two methods for imagery modality fusion based on Faster-R-CNN. One is early fusion (Figure 13A) by augmenting channels of input images from three (red, green and blue) to four (red, green, blue, and NIR) channels. Another is later fusion (Figure 13B) that fuses pieces of classified information of an RGB-trained model and an NIR-trained model. NIR (near infrared) here refers to images taken by near-infrared imaging technology. There are also two fusion methods for detecting kiwifruits based on Faster-R-CNN (Liu et al., 2019). One is similar to the early fusion (Sa et al., 2016), and the other fuses the feature maps from two modes displayed in Figure 14. The background objects of RGB-D images captured with a Kinect V2 camera can be filtered by distance threshold and foreground-RGB images, and Faster-R-CNN with VGG achieved a high average precision of 0.893 for the foreground-RGB-images (Fu et al., 2020b). Gené-Mola et al. (2019b) added an imaging modality, the range-corrected IR intensity proportional to reflectance, based on RGB-D images. It makes an input image become five channels, and the F1-score of the detection model improves 4.46% more than simple RGB images.


[image: image]

FIGURE 13. Diagram of fusion methods in Sa et al. (2016). (A) Early fusion: first, channels of the detected image are augmented from three to four channels. Second, the augmented image is detected by Faster-R-CNN. Third, NMS (non-maximum suppression) removes duplicate predictions. Finally, the classifier and regressor calculate the category and coordinate of the bounding box. (B) Late fusion: first, the RGB image and the NIR image are detected by Faster-R-CNN. Second, the detected outputs from two Faster R-CNN networks are fused. Third, NMS (non-maximum suppression) removes duplicate predictions. Finally, the classifier and regressor calculate the category and coordinate of the bounding box.



[image: image]

FIGURE 14. Feature-fusion model in Liu et al. (2019). First, it inputs the RGB and NIR images separately into two VGG16 networks and then combined them on the feature map; then, the feature map is detected by Faster-R-CNN.


In most studies, researchers spent energy optimizing algorithms. Peng et al. (2018) used SDD and replaced the original VGG-16 with ResNet-101 to detect apple, citrus, and lichi. Besides, decreasing layers of the backbone of SSD can achieve accurate and precise detection in a low-power hardware (Lamb and Chuah, 2018). Kang and Chen (2020) designed a CNN model named “LedNet,” which is mainly improved by a lightweight backbone, FPN, and ASSP, for fruit detection in an apple orchard. Integration of DenseNet and FPN can obtain small fruits’ features more correctly (Xu et al., 2021). Fu et al. (2018) first used a DL model for kiwifruit detection in 2018, and they developed a kiwifruit detection system based on Faster-R-CNN with ZFNet for filed images. Three years later, they proposed a DY3TNet model based on the addition of convolutional layers to YOLOv3-Tiny for kiwifruit recognition in a wild environment (Fu et al., 2021). Some scholars are also dedicated to kiwifruit detection but used Faster-R-CNN with VGG-16; however, the precision and speed of detection are lower than the results of Fu et al. (2018). Modification of the pooling layer can also improve detection accuracy. Yan et al. (2019) changed the Faster-R-CNN model by replacing the ROI pooling layer with the ROI align layer. Wan and Goudos (2020) modified the pooling layers and convolution layers of the existing Faster-R-CNN. In the two experiments (Yan et al., 2019; Wan and Goudos, 2020), detection speed and accuracy accomplished prominent improvements. As we know, most fruits are elliptical in a 2D space. Thus, specialists presented an ellipse regression model based on Mask-R-CNN for detecting elliptical objects and inferring occluded elliptical objects (Dong W. et al., 2021). The original YOLOv3 has low precision in detecting cherry tomatoes, and DPNs (dual-path networks) can extract richer features of recognition targets. Therefore, researchers improved the YOLOv3 model based on DPNs for identification of cherry tomatoes.



Obstacle Avoidance

Robots should also learn to avoid foliage and branches except when identifying fruits. For sure, researchers thought of making robots recognize obstructions while detecting fruits, so robots can react differently according to different objects. Using the R-CNN model to detect and locate branches of apple trees in natural environments can establish a branch of skeletons, so that the arms of robots can avoid branches while grabbing apples (Zhang J. et al., 2018). For citrus harvest, Yang et al. (2019) utilized the Mask-R-CNN model to recognize and reconstruct branches of citrus trees. Later, the researchers designed a recognition model based on their previous studies for citrus harvest robots to detect fruits and branches simultaneously (Yang et al., 2020). Lin et al. (2021) used a tiny Mask-R-CNN model to identify fruits and branches of guava trees and reconstructed the fruits and branches for robotic harvest.

There are some other means for occlusion avoidance except when detecting obstructions. Rehman and Miura (2021) presented a viewpoint plan for fruit harvest. They demonstrated the possible types of a fruit in one scene with the labels “center,” “left,” “right,” “occluded,” which are depicted in Figure 15. The arm of a robot is qualified to determine the harvesting path as per detected labels. What is more, objective fruits could be classified into normal, branch occlusion leaf occlusion, slight occlusion overlapping, or main branch (Liu Y. P. et al., 2018). Also, a new strawberry-harvesting robot with a more sophisticated active obstacle separation strategy has been developed, and the strawberry location detector in the system is based on Mask-R-CNN (Xiong et al., 2020).


[image: image]

FIGURE 15. Possible types of fruit in one scene formulated by Rehman and Miura (2021). (A) Center, (B) left, (C) right, and (D) occluded.




Picking Point Detection

The feasibility of automatic harvesting has been confirmed broadly. A further important issue is locating harvesting points precisely that can guarantee that the robot’s grasp of fruits is accurate and uninjurious. Mask-R-CNN not only can detect an object accurately but can also generate corresponding masks of an object region at the pixel level, which can assist in locating picking points. Longye et al. (2019) segmented and reconstructed the overlapping citrus using the Mask-R-CNN model and performing concave region simplification and distance analysis. Strawberry detection can also employ the Mask-R-CNN model. Then, picking points are determined by analyzing the shape and edge of objective masks (Yu et al., 2018). Ge et al. (2019) also utilized the Mask-R-CNN model to detect strawberries based on RGB-D images that have depth information of images; they performed coordinate transformation and density-based point clustering, and proposed a location approximation method to help robots locate strawberry fruits. Yin et al. (2021) proposed segmenting the contours of grapes from RGB images with Mask-R-CNN and then reconstructing a grape model by fitting a cylinder model based on point cloud data extracted from segmented images. By recognizing and calculating the outline of a bunch of grapes, the arm of robot can grab stalks at the top of a bunch of grapes. Shake-and-catch harvesting first appeared in 2010 (He L. et al., 2017). Some researchers used the Faster-R-CNN model to establish a relationship between fruit location and branch location (Zhang et al., 2020). Connections can help a robot to determine shake points.

Generally, researchers detect fruits on the side of trees, but Onishi et al. (2019) proposed a novel method for inspecting apples from below. The SSD model is used to detect the 2-D position of the apple shown in Figure 16A. The stereo camera ZED provides the 3-D position of the center of the bounding box, which is like in Figure 16B, and the position can be a picking point. Then, the robot can move below the target apple to grasp the fruit according to the predicted position like in Figure 16C.
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FIGURE 16. Automatic apple harvesting mode in Onishi et al. (2019). (A) Detection of a two-dimensional position, (B) detection of a three-dimensional position, (C) approaching the target apple.





Fruit Grading

After a fruit is picked, it will gradually flow to the market and produce economic benefits. Recently, customers have higher requirements for fruit quality as consumption levels increase. Hence, it is necessary to evaluate the quality of fruits before delivering them to consumers because of external and internal vulnerabilities. Those with better fructifications can be consumed, and those with worse can be processed to make fruit foods. Graded-based vendition by detecting internal diseases, sugar content, surface damages, maturity, size, etc. can promise both seller and purchaser benefits. In this section, we will introduce the research on CNN-based fresh fruit grading from grading as per external traits, grading as per internal traits, and fruit cultivar classification.


External Trait-Based Grading

External phenotypic characteristics of fruits directly show their qualities, which affect the sale price and consumer enthusiasm. Thus, external quality detection plays a significant role in fruit grading. Many experiments testified that CNNs have noteworthy superiority in fruit quality grading (Wang et al., 2018; Jahanbakhshi et al., 2020; Patil et al., 2021). In the research of Wang et al. (2018), a modified AlexNet model was used to extract the feature of defects on litchi surface and classify litchi defect images. The classification precision of the AlexNet-based full convolutional network is higher than that of linear SVM and Naive Bayes Classifier. Jahanbakhshi et al. (2020) compared sour lemon detection performance based on a CNN model with other image categorization methods and demonstrated the superiority of the CNN-based model in fruit grading. Patil et al. (2021) also concluded that CNNs have a faster speed of operation in dragon fruit grading and sorting by comparing the performance of ANN, s, and CNN models.

Apple is the most salable and lucrative fruit globally. Some researchers developed apple defect detection systems for apple grading. Fan et al. (2020) designed a 4-lane fruit sorting system to detect and sort defective apples, and a CNN model for a defective apple sorting system, in which a global average pooling layer was applied to replace a fully connected layer. Wu, Zhu, and Ren performed laser-induced light backscattering imaging to capture apple defect images and designed a simple CNN model to classify scabs on apple surface (Wu A. et al., 2020). Aside from scabs on apple surface, the CNN model can classify images of apples with bruises, cracks, and cuts (Nur Alam et al., 2020). Researchers also conducted related studies on other fruits. Azizah et al. (2017) used a CNN model to implement mangosteen surface defect detection. Zeng et al. (2019) constructed an ensemble-convolution neural net (E-CNN) model based on the “Bagging” learning method for detection of defects in jujube fruits. Cherries are prone to abnormal shapes during growth, so some researchers used a modified AlexNet model to classify cherries according to growth shapes (Momeny et al., 2020). Wu S. et al. (2020) combined and investigated several deep learning methods for detecting visible mango defects and found that VGG-16 has a dominant position by combining and investigating several DL methods. De Luna et al. (2019) also demonstrated that the VGG-16 model has better performance in tomato defect inspection. Some researchers used a modified ResNet-50 model to extract the features of tomato surface defects and classify images of tomato defects (Da Costa et al., 2020). Chen et al. (2021) established an online citrus sorting system, shown in Figure 17, and a detector named Mobile-citrus based on Mobile-V2 to identify surface defects in citrus. Then, the arms of robots arms pick out the defective ones with the linear Kalman filter model used in predicting the future path of the fruits.
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FIGURE 17. Platform setup and computer vision system (Chen et al., 2021). (A) The citrus processing line was assembled in the laboratory, with a webcam mounted above the conveyor. (B) The diagram shows an automated citrus sorting system using a camera and robot arms, and the robot arms will be implemented in future studies.


The external appearance of a fruit sometimes also represents its freshness. A multi-class classifier based on VGG-16 and Inception-V3 was built by Ashraf et al. (2019) for detecting fresh and rotten fruits. Researchers also practiced the advantages of CNNs in classifying the freshness of apples, bananas, and oranges (Ananthanarayana et al., 2020).



Internal Trait-Based Grading

Commonly used RGB images cannot acquire internal traits of fruits, for instance, diseases, sugar content, moisture, etc. Consequently, many researchers combined CNN-based DL models with spectrum techniques and made remarkable progress in internal quality-based grading. The sweetness, crispiness, and moisture of apples can be detected using hyperspectral images and 3D-CNN (Wang et al., 2020). Researchers have also proposed a multi-task model based on 3D-CNN for predicting the sugar content and hardness of yellow peaches simultaneously (Xu et al., 2020). Jie et al. (2021) proposed a non-destructive determination method based on the YOLOv3 algorithm, and hyperspectral imaging technology contraposes citrus granulation.





CHALLENGES AND FUTURE PERSPECTIVE

As per the above statements, the appearance of CNN models is already invigorating the automatic production of fresh fruits. However, people remain having quite a lot of challenges to face, because the whole automation of the fruit industry is merely in the period of development.


Environmental Issues

The problem of fruits being occluded is a difficulty in fruit detection. Most occlusions are caused by foliage, branches, trunks, and fruit overlapping in complex fruit-growing environments. Moreover, varying illumination conditions are also one of the instability factors in fruit detection. For instance, green fruits, such as green citrus, green litchi, avocado, and guava, conceal in a green background, which results in more faulty detections of machine visions. Thus, algorithms with high detection accuracy and speed are the objective of researchers.

In addition to algorithm improvement, human intervention can also assist in solving environmental issues. It is a feasible method to increase the visibility of fruits by trimming the crown of fruit trees and standardizing planting according to the principles of horticultural operations. For example, a trellised fruiting wall is suitable for robotic operations during pruning and harvesting (Majeed et al., 2020). Artificially improving the lighting of an environment can also reduce uncertainty in the process of detection. When light is strong, cameras are prone to overexposure. In response to this problem, some researchers have adopted a shading platform to reduce the impact of sun exposure (Gongal et al., 2016; Nguyen et al., 2016; Silwal et al., 2016). To increase the utilization rate of machines, people will have to let robots work at night. However, there is insufficient lighting during night operations, and external light sources are needed to improve the lighting of an environment (Koirala et al., 2019a). Most of the current shading devices and light supply devices are relatively bulky, so it is of commercial value to design a shading or a lighting system that is simpler and more portable.



Exploration of New Areas

In the process of fresh fruit production from blooming to marketing, and pollination, pesticide application, harvesting, sorting, and grading all need a large pool of workers. The preceding discussion suggests that most applications of CNNs in fresh fruit production are in the algorithm development stage. Autonomous operation of robots is mostly used for fruit harvesting and grading. There are fewer exploitations of automatic pollination robots for the problem of greenhouse plants’ insufficient pollination. In current studies, Chunjiang Zhao utilized the improved YOLOv3 network to identify tomato flowers in greenhouses and embedded the system in automatic pollination robots. Phenology distribution monitoring can govern the timing and dosage of chemistry thinning, which determines the quality of fruits. Fruit flower phenology involves a period from the emergence of fruit buds to petal withering means that monitoring of flower phenology is not only estimating flower number. Studies on using computer vision to detect fruit flower phenology are rare, and CNN-based methods are even less. According to our search, Wang X. et al. (2021) designed a phenology detection model based on a CNN named DeepPhenology to estimate apple flower phenology distribution. Currently, more researchers are utilizing CNN to detect fruit flowers and achieve the purpose of yield estimation. Perhaps the application of CNN in fruit flowers phenology estimation is a new area worth exploring.

Food safety is an issue that concerns people, because accumulation of pesticides in the human body risks causing cancers. However, pesticide residues on fruit surfaces are inescapable, because orchardists will perform pesticide delivery to guarantee fruit’s healthy growth. CNNs can be used to identify pesticide residues, but the CNN used in most studies (Yu et al., 2021; Zhu et al., 2021) is a one-dimensional CNN, and input data are pre-processing data extracted with a spectrometer. The process of detection is complicated and cumbersome. Rarely have researchers used the 2D CNN model to detect pesticide residues in harvested fruits (Jiang et al., 2019). Although pesticide residues belong to the external characteristics of fruits, its vision detection still needs hyperspectral images, because RGB images cannot capture pesticide residues. The current detection methods have complex processes out of proportion to the economic benefits generated by pesticide residue detection. Thus, the feasibility of using CNNs to detect pesticide residues in fruits should be studied further. When grading and sorting clustered fruits such as grapes, litchis, and longan, a manipulator grabs the stalk on the top of a fruit to minimize damage to the fruit. However, fruits on the sorting table are arranged disorderly, and stalks are not arranged neatly on a horizontal plane. Therefore, it is necessary to use CNNs to determine the robot’s sequence of grabbing of clustered fruits (Zhang and Gao, 2020).

There is no doubt that CNNs have a developing potential in fresh fruit production. In future studies, it is promising to enhance the application areas of CNNs in fresh fruit detection. It could be a good direction that infuses CNNs into whole fruit production.



Execution of Multiple Tasks

Fruit surfaces are easily damaged, so the general method is utilizing a mechanical arm to grab fruits to reduce mechanical injuries. Most existing CNN-based picking robots are based on one fruit kind, However, the time of fruit harvest is not continuous, therefore, robots are, most, of the time idle. That generates averse economic effectiveness, because robots have high manufacturing expenses but low use ratio. According to the advantages of CNNs, they can directly extract features from input images; therefore, scholars can develop algorithms that can detect and locate a variety of fruits (Saedi and Khosravi, 2020). The mode of multitask operations can improve the use ratio of harvest robots that ensures fruit harvest robots’ commercial value.

In CNN-based fruit quality grading, detection methods based on RGB images can only identify external defects, and detection methods based on hyperspectral and infrared images are focused more on internal trait detection. Results of a single detection technique are biased. Simultaneous detection of multiple quality parameters and comprehensive evaluation are a good improving trend. In addition, detection algorithms and hardware should be optimized with increasing detection difficulty.




CONCLUSION

The perishability and fragility of fruits make fruits use more labor force for careful care during the production process, which is also the reason why most fruits are expensive. At present, many researchers are bringing artificial intelligence into the field of fruit production and are carrying out a series of research studies on the use of machine vision to identify fruits. In this article, the principle of CNNs and implementation of CNN-based detection methods is elaborated, enabling researchers to better understand CNNs and their applications in fruit detection. This review emphasizes the application of CNNs in fresh fruit production, including detection of fruit flowers, detection of fruits in the expansion period, detection of fruits in the harvest period, and detection of fruits before entering the market. We have performed a lot of investigations and analyses of literature in this area and presented in detail the convolution models, improvement points, training methods, detected objects, and final detection results in these studies. Through our investigation of experiments, we found that CNNs do have exceptional performance in the detection of fruits. However, this does not mean that fruit detection should evolve toward a single direction of detection based on CNNs. Through our comprehension and comparison of current research, we summarized the challenges that researchers encountered when using CNNs for fruit recognition and discussed future development trends.
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CNN, convolutional neural network; DBN, deep belief network; RNN, recurrent neural network; VGG, visual geometry group; DTI, decision tree induction; SVM, support vector machine; 2D, two-dimensional; ms-MLP, multiscale-multilayered perceptron; HoG, histogram of oriented gradient; ML, machine learning; GLCM, gray-level co-occurrence matrix; CIELab, Commission Internationale de l’Eclairage Laboratory; CHT, circular Hough transform; SLIC, simple linear iterative clustering; YOLO, you only look once; SSD, single shot multibox detector; mAP, mean average precision; STN, Special Transform Network; CCD, charge coupled device; SMOTE, synthetic minority oversampling technique; DC-GAN, deep convolutional generative adversarial network; CycleGAN, cycle generative adversarial network; CVAE-GAN, conditional autoencoder generative adversarial network; GAN, generative adversarial network; CPU, central processing unit; GPU, graphics processing unit; TP, true positive; FN, false negative; FP, false positive; TN, true negative; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; FCN, full convolutional net; AV, unmanned aerial vehicle; MS-FRCNN, multiple scale Faster R-CNN; MIoU, mean intersection over union; SFM, structure from motion; ROI, region of interest; E-CNN, ensemble-convolutional neural net; NIR, near infrared.
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The accurate detection and segmentation of apples during growth stage is essential for yield estimation, timely harvesting, and retrieving growth information. However, factors such as the uncertain illumination, overlaps and occlusions of apples, homochromatic background and the gradual change in the ground color of apples from green to red, bring great challenges to the detection and segmentation of apples. To solve these problems, this study proposed an improved Mask Scoring region-based convolutional neural network (Mask Scoring R-CNN), known as MS-ADS, for accurate apple detection and instance segmentation in a natural environment. First, the ResNeSt, a variant of ResNet, combined with a feature pyramid network was used as backbone network to improve the feature extraction ability. Second, high-level architectures including R-CNN head and mask head were modified to improve the utilization of high-level features. Convolutional layers were added to the original R-CNN head to improve the accuracy of bounding box detection (bbox_mAP), and the Dual Attention Network was added to the original mask head to improve the accuracy of instance segmentation (mask_mAP). The experimental results showed that the proposed MS-ADS model effectively detected and segmented apples under various conditions, such as apples occluded by branches, leaves and other apples, apples with different ground colors and shadows, and apples divided into parts by branches and petioles. The recall, precision, false detection rate, and F1 score were 97.4%, 96.5%, 3.5%, and 96.9%, respectively. A bbox_mAP and mask_mAP of 0.932 and 0.920, respectively, were achieved on the test set, and the average run-time was 0.27 s per image. The experimental results indicated that the MS-ADS method detected and segmented apples in the orchard robustly and accurately with real-time performance. This study lays a foundation for follow-up work, such as yield estimation, harvesting, and automatic and long-term acquisition of apple growth information.
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1  Introduction

The production and management of apple orchards mainly rely on experienced growers, which has the disadvantages of being time-consuming, labour-intensive, high cost and low precision (Barbole et al., 2021). With the rapid development of precision and intelligent agriculture, machine vision has become an important way to obtain apple growth information. Apple detection and segmentation through machine vision is the foundation of an innovative orchard management method. It is of great significance for monitoring the growth and nutritional status of fruit, performing early yield estimation and timely harvesting, and it can effectively reduce the dependence on manual labour (Tian et al., 2019; Jia et al., 2020). However, the complex growth environment in orchards, fluctuating illumination, uneven distribution of fruits, overlaps and occlusions of apples, change of apple color during the growth process, varying colors and shadows on the surface of apples, and other environmental variables in the natural orchard have a significant impact on the accurate detection and segmentation of apples (Tang et al., 2020; Wang and He, 2022).

Many methods have been proposed to solve the problems mentioned above. For instance, Gongal et al. (2015) used histogram equalization first to intensify color differences between apples and background and then used Otsu threshold and edge detection methods to detect foreground pixels. Finally, Circular Hough Transformation and Blob detection were used to detect apples in images. The accuracy of this method was 82% with dual-side imaging. In another study, based on the color, texture, and three-dimension (3D) shape properties, Rakun et al. (2011) developed an apple image segmentation method, where color features and threshold segmentation were used to segment potential apple region from the background. Further, texture analysis and 3D reconstruction were utilized to refine the color-segmented area, and finally apple image segmentation were achieved. It is also believed that using artificial lighting during night time, a bright spot would appear on the surface of apple. Linker and Kelman (2015) used this property to design a method for detecting green apples, they found that this method was insensitive to the color of apples. These traditional image processing methods use manually designed features for target detection and segmentation. However, apple growth environment is complex, and the illumination conditions constantly change over time. Texture, shape and color features of fruit change due to light intensity, occlusions and overlaps. It is very difficult to extract the universal features of apples in natural environment, resulting in poor universality of traditional methods (Zhou et al., 2012; Nguyen et al., 2016; Fu et al., 2020).

With the development of machine learning, deep learning has been widely applied in the agricultural field (Tian H. et al., 2020; Naranjo-Torres et al., 2020; Saleem et al., 2021). Compared with traditional image processing methods, the deep learning-based methods avoid complex operations, such as image pre-processing and target feature extraction. These methods take images as input and extract appropriate features automatically (Guo et al., 2016). Deep learning achieves outstanding results with good robustness. Recently, it has been applied to fruit detection and segmentation (Jia et al., 2020; Maheswari et al., 2021; Jia et al., 2021; Jia et al., 2022a). For example, Kang and Chen (2019); Kang and Chen (2020) designed a detection and segmentation network (DaSNet) to achieve the accurate segmentation of apples. Li et al. (2021) proposed an ensemble U-Net segmentation model for immature green apple segmentation. To compensate for the poor performance of the deep convolutional neural network in keeping the edge of the target, the edge features of the apples were fused with the high-level features of U-Net (Ronneberger et al., 2015) to achieve accurate segmentation of the apples. The experimental results showed that this method ensured the segmentation accuracy of apples and improved the generalisation ability of the model. A suppression mask region-based convolutional neural network (R-CNN) was developed by Chu et al. (2021) to detect apples. In this study, a suppression branch was added to the standard Mask R-CNN (He et al., 2020), which effectively suppressed the generation of non-apple features and improved the accuracy of detection. To realize the accurate segmentation of green fruit, Jia et al. (2022b) proposed an efficient You Only Look One-level Feature (YOLOF)-snake segmentation model. In the research, the contour based instance segmentation method Deep-snake algorithm module is embedded after the YOLOF regression branch. The method achieved the fast and accurate segmentation of green fruit. Liu J. et al. (2022) proposed a DLNet model to detect and segment obscured green fruits. They introduced an approach consisting of a detection network and a segmentation network. In the detection network, the Gaussian non-local attention mechanism was added to the feature pyramid network (FPN) to build a refined pyramid network that could continuously refine semantic features generated by the residual network (ResNet) (He et al., 2016) and FPN. The segmentation network was composed of a dual-layer Graph Attention Network (GAT). The experimental results showed that this method has high accuracy in detecting and segmenting green fruits with good robustness. An obscured green apple detection and segmentation method based on a fully convolutional one-stage (FCOS) object detection model was proposed by Liu M. Y. et al. (2022). They used a residual feature pyramid to improve the detection accuracy of green fruits of various sizes and fused a two-layer convolutional block attention network into FCOS to recover the edges of incomplete green fruits. The accuracy of detection and segmentation were 77.2% and 79.7%, respectively. Compared with traditional methods, the accuracy and generalization ability of the above deep learning-based methods are significantly improved. However, most of the researches focus on immature green fruit or mature red fruit. The detection and segmentation of fruit whose ground color gradual change from green to red throughout the whole growth period in natural orchard remains a challenge. Currently, study on apple detection and segmentation based on deep learning is still under development, and there are few studies on the detection of apple in the whole growth periods. Additionally, the existing methods mainly focus on detecting fruit with little occlusion and simple lighting conditions (Jia et al., 2022c), which is difficult to meet the development needs of intelligent management of orchard.

Image segmentation includes semantic and instance segmentation. Semantic segmentation generates the same mask for the same class, rendering it ineffective in separating overlapping objects of the same class. Instance segmentation integrates object detection and segmentation and generates a different mask for each object. For apples grown in natural orchards, fruit overlap is common; hence instance segmentation is more applicable for apple detection and segmentation. Mask Scoring R-CNN (Huang et al., 2019) is one of the state-of-the-art instance segmentation methods, which is widely used in the detection and instance segmentation of various targets. For example, Tian Y. et al. (2020) applied Mask Scoring R-CNN to apple flower detection. They fused U-Net into Mask Scoring R-CNN, and proposed a MASU-R-CNN model. Tu et al. (2021) used Mask Scoring R-CNN to segment pig images, achieving the effective segmentation of adhesive pigs.

With the development of deep learning, the attention mechanism has gradually become an important component. Fusing the attention mechanism into network can effectively increase the expression ability of the network model and allows it to focus on important features of the target while suppressing unnecessary features (Zhu et al., 2019). Recently, attention mechanisms have also been used for fruit detection. Jiang et al. (2022) fused the non-local attention module (Wang et al., 2018) and convolutional block attention model, inspired by the Squeeze-and-excitation network (Hu et al., 2018), into a You Only Look Once (YOLO) V4 to achieve high-efficiency detection of young apples. The experimental results showed that the added attention module effectively improved the detection accuracy. Liu J. et al. (2022) added the Gaussian non-local attention mechanism to the FPN to refine the semantic features continuously generated by the ResNet and FPN.

The overall goal of this study is to provide a reliable and efficient method to detect and instance segment apples throughout the whole growth periods in complex environment. Inspired by the above successful researches, a method based on an improved Mask Scoring R-CNN (MS-ADS) that fused attention mechanism was proposed. Specific objectives are as follows:

	To improve the feature extraction ability of the backbone, ResNeSt, a variant of ResNet fused with attention mechanism, combined with FPN was used to replace the original backbone network of the Mask Scoring R-CNN.

	To further improve the utilization of high-level features and enhance the accuracy of bounding box detection and instance segmentation, the R-CNN head and mask head of the Mask Scoring R-CNN were improved by adding convolution layers and Dual Attention Network (DANet), respectively.

	Train and test the MS-ADS model to achieve the accurate detection and instance segmentation of apples in the natural environment.



The MS-ADS method focus on reliable and efficient detection and segmentation of apples throughout the whole growth stages. The method was achieved by improving the backbone and high-level architectures including R-CNN head and mask head of the original model. The improvement of backbone allows the network to improve its feature extraction ability by being more attentive to the apple features and effectively ignoring background features. High-level feature maps, containing rich context and semantic information, are useful in determining the invariant and abstract features that could be used for a variety of vision tasks including target detection and classification. By modifying high-level architectures, it was conducive to improving the utilization of high-level features to obtain more accurate detection results and more refined edge segmentation results. Accurate apple detection and segmentation throughout the growth period are crucial for realizing yield estimation, timely harvesting and automatic monitoring of the fruit growth. The proposed method can be used to count the growth cycles of apple, and simultaneously perform appropriate variable rate irrigation and fertilization according to the monitored growth state or density of the fruits at different growth stages, which then improves the resource utilization efficiency. Additionally, this method can also provide a reference for storage facilities according to production estimation.


2  Materials and methods

2.1  Image dataset acquisition

In this study, apple images were captured in an experimental apple orchard belonging to the College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China. The images used in this research were collected from 9:00 to 11:00 a.m. and 3:00 to 6:30 p.m. from May to September in 2019 during cloudy and sunny weather conditions. Images under natural daylight with backlight and direct sunlight conditions were acquired using an iPhone 7 Plus. The images were captured with a resolution of 4032 × 3024 pixels and were saved in JPEG format.

To improve computational efficiency and to adapt to the images collected by cameras with a low resolution, the images were rescaled to 369 × 277 pixels. To make the edges of the apple clearer and facilitate image annotation and subsequent feature extraction, the images were sharpened using the Laplace operator (Gonzalez & Woods, 2020). The rescaled and sharpened images were manually annotated by polygons using the VGG image annotator (VIA) (Dutta and Zisserman, 2019) for network training and testing. After annotating, 219 images acquired under various conditions were selected as the test set, and the remaining images were used as the training set. Table 1 shows the information of the apple dataset.

Table 1 | Information of apple dataset.




2.2  Apple detection and instance segmentation based on the improved Mask Scoring R-CNN (MS-ADS)

Mask Scoring R-CNN is one of the state-of-the-art detection and instance segmentation methods. It is improved from the Mask R-CNN (He et al., 2020) by adding a maskIoU branch to achieve accurate object detection and instance segmentation. In this study, an MS-ADS network model based on an improved Mask Scoring R-CNN was proposed to accurately detect and segment apples in orchards. Figure 1 shows the structure of the MS-ADS network, which includes three parts: (1) Backbone network: ResNeSt (Zhang et al., 2022), which is a variant of ResNet, combined with FPN, was used as the backbone network for extracting features of the images. (2) The output of the backbone network was fed into the region proposal network (RPN) to generate the region proposals. Then, RoIAlign extracted features from each proposal to properly align the features with the input. (3) Classification and bounding box regression of apples were performed, and the masks of apples were generated.



Figure 1 | Structure of MS-ADS network. 1. Input images into backbone for feature extraction. 2. Input obtained feature maps into RPN and RoIAlign. 3. Fed acquired feature maps into R-CNN head for classification and bounding box regression, and into attended mask head and Mask IoU head for apple instance segmentation.



2.2.1  Backbone network of MS-ADS

A backbone network is used to extract features from images for subsequent object detection and segmentation. In this study, ReNeSt-50, a variant of ResNet-50 fused with attention mechanism, combined with FPN, was used as the backbone network.

ResNeSt network (Zhang et al., 2022), which improves based on ResNet, combines the advantages of Squeeze-and-Excitation networks (Hu et al., 2018), Selective Kernel networks (Li et al., 2019), and ResNeXt (Xie et al., 2017). As in ResNeXt blocks, in ResNeSt blocks, a Cardinality hyperparameter is given to divide the feature map into K groups. Meanwhile, a radix hyperparameter is defined to divide each group into R splits. Then, the input X is divided into G groups, G = KR, and X = {X1, X2,…, XG}. A series of transformations F = {F1, F2,…, FG} are performed on each individual group, then the intermediate representation of each group is Ui = Fi(Xi), i ∈{1, 2,…, G}. A weighted fusion of the cardinal group representation Vk ∈ℝH×W×C/K (H, W and C are the sizes of output feature map) is aggregated using channel-wise soft attention, where each feature map channel was produced using a weighted combination of over splits. The features of the c-th channel are calculated by the formula (1).

 

where   denotes an assignment weight. The cardinal group representations are then concatenated along the channel dimension: V= Concat{V1, V2,…, VK}. In a standard residual block, if the input and output feature map share the same shape, the final output Y of the ResNeSt block is produced using a shortcut connection: Y = V + X. For blocks with a stride, the shape of the input and output feature map are not the same; hence, an appropriate transformation T is applied to the shortcut connection to align the output shapes: Y = V + T(X).

The ResNeSt block is shown in Figure 2. An equivalent transformation of network model shown in Figure 2 was used in this experiment for it can be modularized and accelerated by group convolution and standard CNN layers (Zhang et al., 2022). In this study, we used ResNeSt-50 to extract features. The parameter R was set to 2, and K was set to 1. The output of ResNeSt-50 was used as the input for FPN and together they functioned as the backbone network of our MS-ADS model. FPN extracts multi-scale features from a pyramid hierarchy of convolutional neural networks and combines the features of each stage of the ResNeSt-50 network to give network semantic and spatial information, thus improving its accuracy.



Figure 2 | ResNeSt block. r is the number of Splits. r = 1, 2,…, R. k denotes the number of Cardinal, k = 1, 2,…, K. h, w and c represent the height, width and channel of the input feature map, respectively. Conv represents convolutional layer, and Global pooling means global average pooling. BN and ReLU are batch normalization and activation function, respectively.




2.2.2  Generation of Region of interest and RoIAlign

The feature maps generated by the backbone network were fed into RPN to search RoIs where apples are located. When generating RoIs, according to the actual situation of a single fruit on the image, three area scales, including 32 × 32, 64 × 64 and 128 × 128, and three aspect ratios as 1:1, 1:2 and 2:1 were randomly combined to generate nine anchors. The anchors were used to predict the location of apples to enhance the accuracy of the RoI outputs. After generating RoIs, the RoIs and the corresponding feature maps were input into RoIAlign to adjust the size of the anchor box to a fixed size. RoIAlign properly aligned the extracted features with the input to improve the pixel-level segmentation accuracy.


2.2.3  Apple detection and instance segmentation based on MS-ADS

The feature maps obtained from RoIAlign were used as input for the high-level heads of MS-ADS model. The heads included an improved R-CNN head, an attended mask head and a Mask IoU head. High-level feature maps, containing rich context and semantic information, are useful in determining the invariant and abstract features that could be used for a variety of vision tasks including target detection and classification. By modifying high-level architectures (R-CNN head and mask head), it was conducive to improving the utilization of high-level features to detect apples of various scales. Improving high-level architectures could be necessary and beneficial for obtaining more accurate detection results and more refined edge segmentation results.

2.2.3.1  Improved R-CNN head

The improved R-CNN head of the MS-ADS model, which was used for classification and bounding box regression, was composed of convolutional layers and a fully connected layer. The structure of the improved R-CNN head is shown in Figure 1. Four convolutional layers were added to the original R-CNN head to extract features sufficiently and improve the accuracy of the final classification and regression. The kernel size, padding and stride of the added convolutional layers were 3 × 3, 1 and 1, respectively, and the output channel was 256.


2.2.3.2  Attended mask head

To further improve the accuracy of instance segmentation, in this research, the DANet (Fu et al., 2019) was inserted into the original mask head. The structure of DANet is illustrated in Figure 3. DANet draws global context over local features, including a position attention module and a channel attention module. The position attention module selectively integrates the feature at each position through a weighted sum of the features at all positions (similar features would be related to each other, regardless of their distances). The channel attention module selectively emphasizes interdependent channel maps by aggregating relevant features among all channel maps. DANet sums the outputs of the two attention modules to further enhance the feature representation and to achieve more accurate segmentation results.



Figure 3 | Structure of DANet. (H, W and C are the height, width and channel of the input feature map, respectively).



In this study, DANet was inserted followed by the second convolutional layers of the original mask head (as shown in Figure 1) to get a precise segmentation mask. The improved mask head was named as attended mask head.


2.2.3.3  MaskIoU head

MaskIoU head consists of convolutional layers and fully connected layers. It regresses the IoU between the predicted mask and its ground truth mask. The output features of the RoIAlign and the predicted mask were concatenated, and the concatenation result was used as the input for the MaskIoU head. The output of the MaskIoU head is the number of classes. In this study, the number of classes is 1, that is, the apple class.



2.2.4  Loss function

The loss function represents the difference between the prediction and the ground truth, which is very important in network training. The loss function of the MS-ADS network model was composed of two parts: RPN loss and the training loss of the three heads, as shown in formula (2).

 

where L is the loss of the MS-ADS network model, LRPN is the loss of RPN, and it can be calculated by the formula (3).

 

where, LRPN_cls and LRPN_bbox are the classification loss and the bounding box regression loss of RPN, respectively. λ is a balance parameter. NRPN_cls and NRPN_bbox are the mini-batch size and the number of anchor locations, respectively. Pi is the classification probability of anchor i, and   is the ground truth label probability of anchor i. ti represents the difference between the predicted bounding box and the ground truth labelled box.   denotes the difference between the ground truth labelled box and the positive anchor.

Lheads represents the loss of the three heads, and it is a sum of the loss of the three heads. Lheads can be calculated by the formula (4).

 

where, Lcls and Lbbox are the classification loss and the bounding box regression loss of the improved R-CNN head, respectively, Lmask is the mask loss of attended mask head, and LmaskIoU is the MaskIoU loss of MaskIoU head. The loss function of the three heads in this study is the same as those of the original Mask Scoring R-CNN.


2.2.5  Network training and evaluation of MS-ADS network model

The processor used in this study was an Intel Core i7-7700HQ, with a 16 GB RAM and an 8 GB NVIDIA GTX 1070 GPU. We trained the network on Ubuntu 16.04, and Python 3.6 was used in the training and testing of the MS-ADS network model.

The original Mask Scoring R-CNN model pre-trained on the COCO dataset (Lin et al., 2014) was used to initialize the MS-ADS to accelerate the training process. The manually annotated apple images were then utilized for training and testing the MS-ADS network. The iteration number was set to 24 epochs. The initial learning rate was set to 0.02 and later decreased by ten times at the 16th and 22nd epochs, respectively. The momentum and weight decay were set to 0.9 and 1 × 10−4, respectively. The total training time lasted for 3 h and 6 min.

To test the performance of the proposed MS-ADS method on the detection and instance segmentation of apples, precision, recall, F1 score, mean average precision of the detection bounding box (bbox_mAP), mean average precision of the segmentation mask (mask_mAP) and average run time were used to evaluate the method.




3  Results

3.1  Apple detection and instance segmentation using the MS-ADS method

To verify the effectiveness of the proposed MS-ADS method, 219 apple images captured during the growth stage were used to test the method. The precision and recall of the MS-ADS method were 96.5% and 97.4%, respectively, and the false detection rate was 3.5%. The bbox_mAP and mask_mAP were 0.932 and 0.920, respectively, on the test set, and the average run time was 0.27 s (Table 2). Examples of the detection and instance segmentation results are illustrated in Figure 4. To further analyze the detection results of apples under various conditions, the recall of apples affected by different factors, such as independent apples, occluded apples, apples divided into parts by branches and petioles, clustered apples, red apples, green apples, apples with uneven colors, shadows and uneven illumination on the surface, were calculated and analyzed. The results are shown in Table 3.

Table 2 | Detection and instance segmentation results of apples on test set.





Figure 4 | Examples of detection and instance segmentation of apples. (A, C, E) Original images. Specifically, (A1) Green apples affected by shadows. (A2) Small green apples with strong illumination on the surface. (A3) Apples affected by overlap, occlusion, shadows, and strong illumination. (A4) Green apple image captured under backlight condition. (A5) Green apples with uneven illuminations on the surface. (A6) Green apples with high similarities to the background. (C1) Overlapped apples with uneven colors. (C2) Apples affected by occlusion, shadows, and uneven colors. (C3) Apples affected by overlap, occlusion, shadows, and uneven colors. (C4) Apples with uneven colors and shadows on the surface captured under backlight conditions. (C5) Apples affected by overlap, occlusion, uneven colors, and backlight. (C6) Apples affected by overlap, occlusion, and uneven colors. (E1) Red overlap apples and apples with uneven colors. (E2) Red apples with uneven illuminations and apples with uneven colors. (E3) Overlapped and small red apples. (E4) Red apples affected by occlusion and shadows. (E5) Red apples affected by overlap and shadows. (E6) Red apples affected by overlap, occlusion, and shadows. (B1-6, D1-6, F1-6) Detection and instance segmentation results of images in (A, C, E).



Table 3 | Detection results of apples under different conditions.



As can be seen in Figure 4 and Table 3, the MS-ADS method was accurate and effective in detection and instance segmentation of green apples (Figure 4A), apples with uneven colors on the surface (Figure 4C) and red apples (Figure 4E), and the detection recall of these apples were 98.3%, 96.8%, and 97.5%, respectively. The MS-ADS method achieved accurate detection for apples occluded by branches and leaves (Figures 4A1, A3, A6, C3, C5, C6, E4, E6), and the detection recall was 96.3%. For apples occluded by branches and leaves, detection of apples divided into multiple parts by branches or petioles (Figures 4A6, C5, C6, E4) are often considered a special case. It is relatively difficult to detect this kind of apple. However, the detection recall of apples under this condition using the MS-ADS method was 95.8%, indicating that the proposed method is applicable for the detection and segmentation of apples divided into parts by branches or petioles. The MS-ADS method was also effective in detecting clustered apples (Figures 4A3, A4, A6, C1, C2, C3, C5, C6, E1, E2, E3, E5, E6), and the detection recall was 96.6%. Apples with shadows (Figures 4A1, A3, C2, C3, C4, E4, E5, E6) and uneven illumination (Figures 4A5, E2) on the surface were also accurately detected by the MS-ADS method. The detection recall of apples with shadows and uneven illumination on the surface were 97.2% and 98.1%, respectively. Additionally, the detection results for apples with extremely strong illumination (Figures 4A2, A3), extremely dark illumination on the surface (Figure 4A4) and extremely small apples (Figures 4A2, E3) by the MS-ADS method were all satisfactory. The MS-ADS method was also effective in detecting apples that were similar to the backgrounds (Figure 4A6), a task that is difficult even for human eyes.

From the detection and instance segmentation results shown in Figure 4, Tables 2 and 3, it is clear that the proposed MS-ADS method overcame the effect of colors, illuminations, overlap, occlusion, complex background and shadows, and accurately and effectively detected and segmented apples under various conditions with good robustness.


3.2  Comparison with other methods

To further analyze the performance of the proposed MS-ADS method, parameters including precision, recall, F1 score, bbox_mAP, mask_mAP, and average run time, were used to evaluate the MS-ADS method. The performance of the method was compared with that of other six methods: YOLACT (Bolya et al., 2019), PolarMask (Xie et al., 2020), Mask R-CNN (He et al., 2020) with ResNet-50-FPN as backbone, Mask R-CNN with ConVeXt-T (Liu Z. et al., 2022) as backbone, Mask R-CNN integrated with GRoIE (Rossi et al., 2021), and Mask Scoring R-CNN (Huang et al., 2019). The configurations used in the seven methods are shown in Table 4. In the comparison experiments, 5-fold cross-validation was used to evaluate the seven methods. We divided the dataset into 5 parts: 219, 256, 255, 255, and 255 to make the ratio of training set to test set was about 8:2 in each experiment. Table 5 gives the detection and instance segmentation results of the seven methods, and the results was the average of the five independent experiments.

Table 4 | Configurations of seven methods.



As can be seen from Table 5, the proposed MS-ADS method was more accurate in apple detection in terms of precision, F1 score, and bbox_mAP compared with the other six methods. Although the recall and mask_mAP for apples were lower than those of ConVeXt-T-based Mask RCNN, MS-ADS had a faster detection and segmentation speed and smaller computation than ConVeXt-T-based Mask RCNN. Though the run time was longer than that of methods including YOLACT, PolarMask, Mask R-CNN (ResNet-50-FPN) and Mask Scoring R-CNN, MS-ADS method was more accurate in detecting and segmenting apples throughout the whole apple growth period. Through the above comparison and analysis, the MS-ADS method outperformed other six methods, which enabled real-time and accurate detection and segmentation of apples under complex background.

Table 5 | Detection and instance segmentation results of seven methods.





4  Discussion

4.1  Analysis of detection and segmentation results of apples in the growth period

Accurate fruit detection and segmentation during the growth period are crucial for realizing yield estimation, timely harvesting and automatic monitoring of the fruit growth. Apples are grown in open and unstructured orchards; therefore, the detection and segmentation of apples are affected by several factors, such as the fluctuating illumination, overlapping and occlusion of apples and similarities between immature green apples and the background color, which makes accurate detection and segmentation of apples challenging. An MS-ADS method was proposed in this study to solve these problems. To further improve the detection and segmentation accuracy of the Mask Scoring R-CNN model, a ResNeSt, which is a variant of ResNet fused with attention mechanism, combined with FPN, was used to replace the backbone network of the original Mask Scoring R-CNN. This allowed the network to improve its feature extraction capability by being more attentive to the apple features and effectively ignoring background features. Convolutional layers were added to the original R-CNN head to improve the accuracy of bounding box regression. Simultaneously, a dual attention network was inserted into the original mask head to improve the segmentation accuracy. The apple detection and instance segmentation results of the MS-ADS method showed that this method accurately detected and segmented apples under various conditions in a real-time way.

There were also false detection and segmentation when using the MS-ADS method, as shown in Figure 5. False detection was mainly caused by the high similarities between the background and apples. As shown in Figure 5A, a tag, which was made by testers, was falsely detected as an apple. In the image shown in Figure 5B, a green leaf was falsely detected as an apple. Future improvements will be made by expanding training samples with similar backgrounds to reduce false detection. The false detection rate of the MS-ADS method in this study was 3.5%. Although there was false detection, the MS-ADS method achieved optimal detection and segmentation on the test set.



Figure 5 | False detection and segmentation. (A, B) Original images. (C, D) Detection and instance segmentation results of original images (A, B).




4.2  Effect of the improved parts of the model on apple detection and segmentation

The proposed MS-ADS method was improved by modifying the Mask Scoring R-CNN (Huang et al., 2019). Firstly, the ResNeSt-50 combined with FPN was used as the backbone network to improve the feature extraction ability of the network. To further improve the accuracy of bounding box regression and segmentation, convolutional layers were added to the original R-CNN head to make feature extraction more sufficient, and DANet was inserted into the original mask head to make segmentation more accurate. To analyze the effect of each improvement on the performance of apple detection and segmentation, the training loss function (Figure 6), model parameters (Table 6) and the detection and segmentation results on 219 test images (Table 6 and Figure 7) of the original Mask Scoring R-CNN (ResNet-50-FPN), Mask Scoring R-CNN with ResNeSt-50-FPN as the backbone network, Mask Scoring R-CNN with ResNeSt-50-FPN as the backbone network and improved R-CNN head, and the MS-ADS were compared.



Figure 6 | Loss curves of four methods. (A) Overall loss curves. (B) Bounding box loss curves. (C) Mask loss curves. (D) Mask_IoU loss curves.



Table 6 | Detection and instance segmentation results of three methods.





Figure 7 | Comparison of detection and segmentation results of four methods. (A) Original images. (B) Results of the MS-ADS method. (C) Results of the original Mask Scoring R-CNN (ResNet-50-FPN). (D) Results of the Mask Scoring R-CNN with ResNeSt-50-FPN. (E) Results of the Mask Scoring R-CNN with ResNeSt-50-FPN and improved R-CNN head.



As can be seen from Figure 6, the training loss curve of the proposed MS-ADS model is lower than that of the other three models. We improved the backbone network, R-CNN head and mask head of the original Mask Scoring R-CNN. This, in turn, improved the quality of the generated bounding box and mask, and the overall loss was reduced in comparison to the other three models.

During the experiment, the original Mask Scoring R-CNN based on ResNet-50 was first used to conduct the experiment. In order to further improve the feature extraction ability of the backbone network, ResNeSt-50, a variant of ResNet-50, was used to replace the ResNet-50. From the detection and segmentation results of the two models, it can be found that although the model size, calculations and the number of parameters increased, the detection and segmentation results of the Mask Scoring R-CNN based on ResNeSt-50 had dramatically improved (concluded from the comparison of precision, recall, F1 score, bbox_mAP and mask_mAP of the two methods). To make the detection more accurate and improve the bbox_mAP, we added four convolutional layers in the R-CNN head to extract features sufficiently. From the experimental results, we observed that although the bbox_mAP had been improved, precision and mask_mAP were reduced. To further improve precision and mask_mAP and ensure a high bbox_mAP, DANet was inserted into the mask head. The experimental results showed that bbox_mAP and mask_mAP had improved, and precision rebounded after the addition of DANet. However, since we replaced the backbone of the original Mask Scoring RCNN, added convolutional layers in the RCNN head and inserted DANet in the mask head, the proposed model was more complicated than the original model and the computation had dramatically increased, which resulting in longer training time and detection time. The results, as shown in Table 6, indicate that although the model size, calculations, parameters and training time of the proposed MS-ADS method increased, the accuracy of the detection and segmentation had significantly improved, indicating that the MS-ADS model was suitable for the accurate detection and instance segmentation of apples in this study.

Figure 7 shows the comparison results of the four methods. Although apples in images were detected and segmented by the four methods (i.e., the precision and recall were high), the quality of the detected bounding box (bbox_mAP) and the segmented mask (mask_mAP) were very different. By contrast, the MS-ADS method achieved accurate detection and segmentation of apples on the premise of ensuring the quality of bounding box detection and segmentation.



Conclusions

The MS-ADS method was proposed in this study to accurately detect and instance segment apples in different growth stages. The method was developed from the original Mask Scoring R-CNN. First, ResNeSt-50, a variant of ResNet-50 fused with attention mechanism, combined with FPN, was used to replace the backbone network of the original Mask Scoring R-CNN to enhance the feature extraction ability of the network model. Second, convolutional layers were added to the original R-CNN head to make feature extraction more sufficient and further enhance the accuracy of the generated bounding box. Finally, the DANet was inserted into the original mask head to further improve the accuracy of instance segmentation. Compared with the original Mask Scoring R-CNN, the proposed MS-ADS model performed better at detecting and segmenting the apples under various conditions.

The MS-ADS method effectively and accurately detected and segmented apples under various conditions during the growth stage with good robustness and real-time performance. The recall, precision, F1 score, bbox_mAP, mask_mAP and the average run-time of our method were 97.4%, 96.5%, 96.9%, 0.932, 0.920 and 0.27 s per image, respectively, on test set. This research could provide a reference for developing an automatic and long-term monitoring system for retrieving apple growth information.

The detection and instance segmentation results of this method were an improvement on prior studies; however, the network model was relatively large, and many aspects still need improvement. In the future, we will continue to track the latest research results and further expand the training set to cover more kinds of apples and apples under various conditions. We will continue to study methods that can further streamline the network model and improve its efficiency and the accuracy of the detection and segmentation of apples.
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Grapevine is one of the most important fruit trees in the world, but it is often threatened by various biotic and abiotic stresses in production, resulting in decreased yield and quality. Grapevine double cropping in one year is a kind of preparatory and artificial control technology, which can not only save the loss of natural disasters, but also plays an important role in staggering the peak to market, thus increasing yield and improving the quality of grape fruit. This perspective provides a concise discussion of the physiological basis, the main determinants, and their impacts on yield and fruit quality of grapevine double cropping. We also highlight the current challenges around this theme and prospect its application in the future.
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Introduction

Grapevine (Vitis vinifera L.) is one of the earliest fruit trees domesticated and cultivated by human beings. It originated from contiguous regions of Eurasia and North America, and began to be cultivated between the Caspian Sea and Black Sea in Asia Minor and its south coast about 6,000 ~ 8,000 years ago, which gradually expanded to all over the world with cultural and economic exchanges (Hirst, 2021). It is now one of the most widely cultivated and economically valuable crops in the world. At present, there are more than 10,000 grape varieties, including about 3,000 cultivated, mostly with wine production, fresh food, dry, juice and other types. The cultivated area is about 7 million hectares, and the annual gross production value is more than 70 billion dollars (FAO, 2021).

During grape production, it is often subjected to abiotic and biotic stresses such as typhoon, hail, cold damage, drought, pest and diseases, resulting in yield reduction or even total crop failure in some areas (Louime et al., 2010). Due to the reason that some varieties also blossom and bear fruit after the disaster, the phenomenon did not attract enough attention at that time, but due to the lack of effective recovery management measures, the yield and quality of grape were seriously reduced. Until the 1930s, Баширов and Сушков from the former Soviet Union successively produced the second fruits from summer buds and winter buds at the same year. Since then, successful cases in India, Israel, China, Japan, Thailand and other countries have been reported continuously (Lu and Tudan, 2018), and in Lhasa (altitude 3,650 m), the roof of the world, the second fruit bearing has even been achieved in the facility grapes (Lu, 2019).

In the long-term exploration, the new cultivation and management modes have gradually been shaped for grapevine double cropping: (1) two-crop-a-year grape cultivation that two crops are overlapped at some time, that is the growth periods of the first fruit and the second fruit partially overlap, but the maturity periods are staggered; (2) two-crop-a-year grape cultivation that two crops are not overlapped, in which the first and the second fruit will bear separately, and the growth periods will not overlap. Surprisingly, no matter in the field or facility cultivation, the second fruit can be produced by using summer buds or forcing winter buds to germinate according to local conditions, which has been confirmed on ‘Cabernet Sauvignon’, ‘Pinot Noir’, ‘Syrah’, ‘Muscat Hamburg’, ‘Red Balado’ and ‘Summer Black’ (Figure 1) (Gu et al., 2012; Bai et al., 2015; Guo et al., 2016; Junior et al., 2017; Lu, 2019; Poni et al., 2020).




Figure 1 | The second grape fruits of facility cultivation in Lhasa. (A) ‘Muscat Hamburg’ summer bud; (B) ‘Red Globe’ summer bud; (C) ‘Red Balado’ winter bud; (D) ‘Summer black’ winter bud.



The newly developed technology of grapevine double cropping is a standby technology and artificial control technology, which can not only reduce natural disaster losses, but also regulate the production period, ensure the annual supply of fresh fruit, and has great potential for development in terms of increasing production, income and efficiency. The aim of this perspective is to provide the latest overview on the research of grapevine double cropping, analyze the current challenges, and especially emphasize its development potential as a reserve technology.





Physiological basis of grapevine double cropping

Grapevine double cropping, that is, using the characteristics of grape summer buds that can be sprouted and flowered many times in a year, and the physiological differentiation feature of flower buds in winter buds that can be completed in the same year, combined with certain production measures to promote the sprouting of summer buds or winter buds formed in the same year to form the second fruit (Bai et al., 2015; Guo et al., 2016). In grapevine, summer buds are precocious, which grow side by side with the winter buds (Figure 2A). Generally, it can mature and germinate into accessory shoot about 20 d after leaf spreading. The ability for summer buds to form flowers is poor. The use of pinching and other measures can accelerate the differentiation process of flower bud, so that summer buds can germinate many times and form inflorescences. However, due to the short time of summer bud differentiation, the formed inflorescences are generally small (Vasconcelos et al., 2009). Grapevine winter buds are late maturing buds (Figure 2B). The differentiation generally starts around the flowering stage and is completed around the fruit maturity stage. The optimum temperature for flower bud formation is 20~30 °C, and the formation of flower primordium is most sensitive to temperature requirements, especially in the first three weeks (Srinivasan and Mullins, 1980). Generally, the winter buds near the lower part of the main branch are the first to differentiate, and the time, speed and integrity are affected by variety, temperature, light and other factors. Interestingly, they generally do not germinate in the year when they are formed, however they will only germinate and bear fruit when strongly stimulated by drought, pests and diseases, pruning, chemical treatment (Figure 2C) and other stress (Pellegrino et al., 2020; Poni et al., 2020; Martinez de Toda, 2021a).




Figure 2 | Grapevine growth diagram (A), winter bud structure profile (B) and pruning after the harvesting of primary fruit and application of bud-breaking chemicals near the top first and second winter buds (C).



In plants, the dormancy of winter buds is not the result of single hormone action, but closely related to the hormone balance (Or, 2009). Previous studies demonstrated that the formation of the second fruit of grapevine winter bud is closely related to the breaking of bud dormancy (Sudawan et al., 2016; Orrantia-Araujo et al., 2019), during which a series of physiological and biochemical changes will occur in the bud from dormancy to sprouting, such as the increase of endogenous hormones auxin (IAA), gibberellin (GA) and cytokinin (CTK), and the decrease of abscisic acid (ABA). Under the action of endogenous hormones, starch in buds is degraded into soluble sugar, which creates conditions for bud sprouting (He, 1999). During dormancy, late embryogenesis abundant (LEA) proteins, whose molecular structure contains a dehydrin region rich in Lys, are highly expressed in winter buds and can be induced by ABA (Or, 2009). ABA accumulates during the development of grapevine endoderm by inhibiting the activity of bud meristem, and its degradation is critical to dormancy release (Zheng et al., 2015; Zheng et al., 2018). Ethylene is suggested to participate in the degradation of ABA by regulating the expression of ABA signal regulator, thus promoting the breaking of dormancy (Oracz et al., 2008; Zheng et al., 2015). In addition, a higher proportion of zeatin-riboside/GA is conducive to promote the formation of more inflorescences (Guo et al., 2018), and studies have also confirmed that the flowering genes LEAFY (Li et al., 2011), FT, TFL1A, and TFL1B (Guo et al., 2018), and several miRNAs (vv-miR160a, vv-miR171a, vv-miR159, vv-miR160a, vv-miR164c, vv-miR167c) (Wang et al., 2011), are involved in the formation and development of grapevine flower buds.





Determinants of grapevine double cropping application




Variety

Grapevine is a warm-temperate crop that only begin to sprout and grow when the daily average temperate reaches 10°C in spring, and 10°C is thus generally referred to as grapevine biology zero. During the growing season, the accumulated temperature (i.e., active accumulated temperature) is the sum of the daily average temperature that is greater than or equal to 10°C during the year. Different grape types or varieties require different accumulated temperatures of more than 10 °C from sprouting to fruit maturity. In general, 2,100~2,500 °C for extreme early maturing grape varieties, 2,500~2,900 °C for early maturing grape varieties, 2,900~3,300 °C for medium maturing grape varieties, 3,300~3,700 °C for late maturing grape varieties, and more than 3,700 °C for extremely late maturing grape varieties (He, 1999). During the growth period of grape, if the accumulated temperature is insufficient for the second fruit, the ripening process cannot be successfully completed. Therefore, early and medium mature varieties with easy to form flower buds, good quality and short fruit bearing period should be developed as the first element for double cropping (Lu, 2019).





Temperature

Regarding whether the open field conditions can achieve grapevine double cropping, the annual average temperature is most important. In the area with an average annual temperature of more than 20 °C, the two crops will not overlap for early and middle maturing varieties under natural conditions (Bai et al., 2015; Guo et al., 2016). While in the area with an average annual temperature of 12~20 °C, the model of two crops overlapped is suitable. Surprisingly, in facility cultivation, two modes of grape production, overlapped or unoverlapped, can be carried out even in cold areas (Ulanhot), where the annual average temperature is only about 5 °C through appropriate management measures (Guo et al., 2016).





Pruning

During production, grape pruning can not only regulate the relationship between vegetative and reproductive growth, but also promotes the sprouting of summer buds and facilitates the winter buds to break dormancy (Poni et al., 2020; Martinez de Toda, 2021b). For summer buds, plucking 2~3 leaves above the inflorescence, and retaining 4~5 leaves from the accessory shoots sprouted at the top through repeated plucking, can promote the formation of the second inflorescence, while for winter buds, pinching 4~6 leaves on the inflorescence can promote the differentiation and concentration of flower buds, shorten the differentiation time, and improve the rate of flowering. For example, 4 or 6 leaves is profit for pinching on the inflorescence in ‘Summer Black’ (Zhu et al., 2020). It is shown that cutting and defoliating grapes after one fruit harvest can accelerate the flower bud differentiation of winter buds, and they even stimulate germinating and blossoming in some varieties (Gu et al., 2012; Martinez de Toda, 2021a). Besides, the node position and diameter of pruned branches are important for the formation of the second fruit of winter buds. Previous researches revealed that node 6 is suggested to be selected for ‘Summer Black’ (Zhu et al., 2020), middle nodes (8~10 nodes) for ‘Yatomi Rosa’ (Huang and Li, 2017), and high nodes (9~13 nodes) for ‘Kyoho’ for pruning (Li et al., 2013), which can not only ease the plant vigor, but also improve the bud sprouting rate and flower bud differentiation rate. In addition, the diameter of the remaining branches should be controlled above 0.8 cm, otherwise the nutrient accumulation of the bud is insufficient and the flower bud is difficult to differentiate (Fu et al., 2016).





Chemical treatment

Under normal conditions, the grapes winter buds formed in that year do not germinate, and they must be treated with bud-breaking chemicals. The commonly used agents include nitrogen compounds, sulfur compounds, mineral oils and plant growth regulators, such as hydrogen cyanamide, lime nitrogen, and garlic extract (Srinivasan and Mullins, 1980; Leonei et al., 2015; Sudawan et al., 2016; Orrantia-Araujo et al., 2019). Among them, the dormancy breaking effect of monocyanine at a concentration of 2.5% was significant (Qiu et al., 2019), and the treated annual winter buds could generally sprout in 7~15 d, during which period the uniformity of winter bud sprouting were remarkably improved. Spraying an appropriate amount of chlormequat or paclobutrazol solution also plays an important role in accelerating the differentiation of winter buds and improving the rate of bearing branches of the second fruits (Lu and Tudan, 2018). In addition, due to the lack of low temperature stress, winter buds of grapevine planted in tropical or subtropical areas cannot pass the natural dormancy period, which means that they need bud-breaking chemicals to assist in sprouting (Sudawan et al., 2016).





Cultivation management

The flower bud is formed by the combined effect of the accumulation of floral hormones and nutrients. If the nutrient accumulation is insufficient, the flower bud will mostly differentiate into tendrils (He, 1999; Monteiro et al., 2021). Therefore, strengthening the link between cultivation and management is important for the success of grapevine double cropping. For example, timely pruning shall be adopted to ensure ventilation and light transmission, while timely tendrils removing, flower and fruit thinning, and timely water and fertilizer supplying can ensure nutrient supply. Meanwhile, increasing microbial fertilizer can improve soil and living root, and timely cleaning and disinfecting the orchard are helpful for controlling and pest and disease. These comprehensive measures are not only beneficial to the healthy growth of grapevine and the differentiation of flower buds, but also create good conditions for the growth and thus improve the yield and quality of grape fruits (Morinaga, 2001; Pommer, 2006; Szabo and Shojania, 2019).





Other

The differentiation process of grape winter buds is also affected by many factors, such as light level, drought stress, disease infection and pest stress. Furthermore, strong light and moderate drought stress are conducive to the maturity of winter buds (Vasconcelos et al., 2009; Pellegrino et al., 2020). When the scales of winter bud turn yellow, the scales edge is light brown, and the branches are semi-lignified, it may indicate that the differentiation is basically completed (Lu and Tudan, 2018). According to this feature and the characteristics of grape varieties, an appropriate cultivation mode of grapevine double cropping can be established.






The impact on fruit quality and yield of grapevine double cropping




Quality

Previous studies have shown that the fruit flavor and quality of the second fruit of grapevine is obviously better than that of the primary fruit, although the spike weight, single grain weight and size of the former are smaller than those of the latter (Ahmed et al., 2019; Qiu et al., 2019). Specifically, the content of soluble solids (Junior et al., 2017), flavonoids (Chen et al., 2017; Wang et al., 2022; Cheng et al., 2023), phenolic compounds (Xu et al., 2011; Cheng et al., 2019; Lu et al., 2022), volatile compounds (Chen et al., 2021; Lu et al., 2021), and tartaric acid and malic acid (Poni et al., 2020; Martinez de Toda, 2021a) in the second fruit are significantly increased, and compared to the primary fruit, the major components of flavonoids, phenolic compounds and volatile compounds were different in the second fruit. Besides, the growth period of second fruit grape with more beautiful color (Chen et al., 2017; Cheng et al., 2017; Ahmed et al., 2019; Cheng et al., 2023), is significantly shorter than that of the primary fruit (Koyama et al., 2020). This is mainly related to the large temperature difference between day and night, less rainfall, low water-heat coefficient before harvesting in the environment where the second fruit of grape grows, and the less occurrence of pests and diseases in this period, which is more conducive to the improvement of fruit quality (Cheng et al., 2017; Cheng et al., 2019; Chen et al., 2021; Wang et al., 2022).





Yield

Grapevine double cropping can generally increase the yield by 10%~20% per year, but if the primary fruit yield is too high, it will increase the nutrient consumption of the tree body, which has a negative impact on the maturity and quality of the second fruit (Lu and Tudan, 2018). To ensure the stability of yield and quality of grapes harvested twice a year, the yield ratio of the second fruit to primary fruit should be controlled at 2:5~3:5 (Qiu et al., 2019). If the mode of two crops not overlapped are used, the trees should be left at least for more than 20 d after the first fruit harvest, and nutrition should be supplemented in time to better restore the tree vigor and improve the yield and quality of the second fruits (Lu and Tudan, 2018). In addition, it is of great significance to regulate the yield and marketing time of grape production reasonably in the primary and second fruits, which is also important to avoid the phenomenon of major or minor year, maintain the health of grape tree and its reasonable growth life.






Challenges and prospects




Challenge

The flower bud is the basis and key to grapevine double cropping. It is relatively simple to use the accessory shoots of summer buds to produce the second fruits, and repeated pinching is used to promote the formation of flower buds. However, due to the inability to uniformly control the flowering time, it frequently causes uneven fruit bearing period, ear size and quality. And the technology of using grape winter flower bud to germinate to form the second fruit is much more complicated. The unified regulation and management have the advantages of sprouting neatly, similar ear size, consistent maturity, good quality, beautiful color, and high price of winter grapes, which have good market competitive advantages. At present, winter buds are mainly used in production. However, the current research still faces challenges: (1) the hormone changes in the whole grape growth and development process and the regulation mechanism of flowering genes are not completely clear; (2) the side effects of the use of bud-breaking chemicals, as well as the more environmentally friendly and convenient method of breaking the winter bud sleep also need to be further studied; (3) the corresponding cultivation techniques of different climatic types and grape varieties still need further research and improvement; and (4) the specific effects of double cropping production on grape growth characteristics (including tree vigor, result life) and fruit quality also need to be further explored.





Prospect

The edaphoclimatic conditions are essential to increase the competitiveness of plant productive system, and in this sense, global warming is partly conducive to the application of the two harvest one year for grapes. Moreover, the world population will exceed 9.7 billion by 2050 (United Nations, 2022), and the demand for grapes will further increase, while at the same time we also faced with the urgent dilemma of frequent global extreme climate, limited available land resources and continuous challenges of industrialization and urbanization. It is no doubt that, in order to guarantee/improve the yield and quality of grapes per unit, we should take precautions and constantly improve the reserve technology for two harvest one year, especially when we are in face of current and future unpredictable difficulties. In conclusion, grapevine double cropping has broad application prospects in future production, and we recommend that it should be reasonably applied and promoted according to the scientific laws of grape growth.
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Introduction

Fresh pomegranate fruit is susceptible to bruising, a common type of mechanical damage during harvest and at all stages of postharvest handling. Accurate and early detection of such damages in pomegranate fruit plays an important role in fruit grading. This study investigated the detection of bruises in fresh pomegranate fruit using hyperspectral imaging technique.





Methods

A total of 90 sample of pomegranate fruit were divided into three groups of 30 samples, each representing purposefully induced pre-scanning bruise by dropping samples from 100 cm and 60 cm height on a metal surface. The control has no pre-scanning bruise (no drop). Two hyperspectral imaging setups were examined: visible and near infrared (400 to 1000 nm) and short wavelength infrared (1000 to 2500 nm). Region of interest (ROI) averaged reflectance spectra was implemented to reduce the image data. For all hypercubes a principal components analysis (PCA) based background removal were done prior to segmenting the region of interest (ROI) using the Evince® multi-variate analysis software 2.4.0. Then the average spectrum of the ROI of each sample was computed and transferred to the MATLAB 2022a (The MathWorks, Inc., Mass., USA) for classification. A two-layer feed-forward artificial neural network (ANN) is used for classification.





Results and discussion

The accuracy of bruise severity classification ranged from 80 to 96.7%. When samples from both bruise severity (Bruise damage induced from a 100cm and 60 cm drop heights respectively) cases were merged, class recognition accuracy were 88.9% and 74.4% for the SWIR and Vis-NIR, respectively. This study implemented the method of selecting out informative bands and disregarding the redundant ones to decreases the data size and dimension. The study developed a more compact classification model by the data dimensionality reduction method. This study demonstrated the potential of using hyperspectral imaging technology in sensing and classification of bruise severity in pomegranate fruit. This work provides the foundation to build a compact and fast multispectral imaging-based device for practical farm and packhouse applications.
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1 Introduction

Pomegranate (Punica granatum L) is undeniably one of the most ancient deciduous fruit in the world (Al-Said et al., 2009; Opara et al., 2009; Pareek et al., 2015). With its origin traceable to the Middle East, it has expanded and has now been grown across the world, even meeting commercial export in South Africa (Adetoro et al., 2020; Pienaar and Barends-Jones, 2021). Pomegranate fruit can be consumed as fresh arils or in its processed form such as juice, dried arils, jams, etc. In the past decades, the demand for pomegranate fruit has been increasing due to its nutritional and health benefits (Lansky and Newman, 2007; Al-Said et al., 2009; Fawole and Opara, 2013). It has been recounted to be highly effective for preventing inflammatory diseases and induces anti-proliferative and antimetastatic side effects in human (Pareek et al., 2015).

Bruise is the most common type of postharvest mechanical injury affecting pomegranate fruit (Opara et al., 2021a; Opara et al., 2021b). Bruise reduces fruit quality and causes considerable post-harvest losses and decreases the income (Opara and Pathare, 2014; Shafie et al., 2017; Hussein et al., 2019). Bruise usually results when the fruit is subjected to high impact and vibration (Opara and Pathare, 2014; Shafie et al., 2017; Opara et al., 2021a). Bruise damage normally manifest when the outer tissue of the fruit fails without rupturing due to excessive mechanical stress (Ahmadi et al., 2014; Hussein et al., 2019; Opara and Pathare, 2014). various studies showed that most bruises occurred during harvest and transportation to the packhouse and during handling in the packaging processing line. Studies have shown the detrimental effect of bruise on the physical and biochemical quality of pomegranate fruit (Shafie et al., 2015; Hussein et al., 2019). The economic losses in the fruit and vegetable industry due to bruise damage is substantial (Van Zeebroeck et al., 2007; Opara and Pathare, 2014). In the pomegranate industry, bruise damage reduces the market value considerably and causes a huge economic loss (Opara et al., 2021a; Opara et al., 2021b), as bruised fruits do not meet export quality and are devalued at marketplace.

Unlike other fruit with soft tissues and thin rind/peel such as apples and pear, early detection of bruises on pomegranate fruit is difficult due to the tough and leathery skin of this fruit (Hussein et al., 2019). Bruise on pomegranate fruit is only visible long after the impact (Hussein, 2019). Typically, in the industry, bruises are identified through visual inspection by trained panels or line operators and removed manually. This approach for bruise diagnosis is laborious, time consuming and subjective. Therefore, there is a need for alternative technology for rapid and non-destructive detection of early bruise damage. Other studies showed that pomegranate fruit responded physiologically and in some physico-chemical changes when they undergo bruises. This is indicative in the changes in total soluble solids (TSS), titratable acidity (TA), Brix-to-acid ratio (TSS : TA) and BrimA when exposed to bruising (Hussein, 2019). The effect of fruit ripeness (maturity), on bruise susceptibility has been reported (Hussein, 2019; Hussein et al., 2019), with corresponding physico-chemical changes. The ripening (maturity) stage, depending on the type of fruit and cultivar, can be the most important factors influencing bruise damage susceptibility (Hussein, 2019; Hussein et al., 2019). Previous studies have revealed that mature fruits are more susceptible to bruise damage than immature fruit (Xing and De Baerdemaeker, 2005). Spectroscopic analysis is gaining widespread research attention because of its ability to extract huge chemical information to analyze and develop a quality prediction model for several fruit types (Xing and De Baerdemaeker, 2005; Du et al., 2020).

There have been different imaging and feature extraction approaches for fruit bruise detection and measurement (Shahin et al., 2002; Kim et al., 2014; Du et al., 2020; Zeng et al., 2020). The shortcoming with most of these approaches is the need for wider spectral range (Xing and De Baerdemaeker, 2005). Spectroscopic assessment for fruit quality gained attention in research as viable nondestructive technique for quality attributes and grading (Khodabakhshian et al., 2017; Arendse et al., 2018; Jamshidi et al., 2019). Other imaging techniques that have been applied for bruise detection in recent times include X-ray (Hussein, 2019), Thermal imaging (TI) (Zeng et al., 2020), Magnetic resonance imaging (MRI) (Razavi et al., 2018), Fluorescence imaging (FI) (Chiu et al., 2015; Everard et al., 2016) as well as hyperspectral imaging (Dian et al., 2019; Zhu et al., 2016).

Hyperspectral imaging (HSI) has emerged as a powerful non-destructive inspection technique in the agricultural, biosecurity diagnostic and food domain recently. HSI is a non-invasive/nondestructive technique that integrates spectroscopy and imaging to form one system (Wu and Sun, 2013; Su & Sun, 2018). This non-destructive approach has been proposed for detections of different fruit defects (Arendse et al., 2021; Okere et al., 2021). It has been employed for disease detection (Li et al., 2016; Siedliska et al., 2018), common defects (Li et al., 2013; Zhang et al., 2015; Munera et al., 2021), physical damage (Lee et al., 2014), and in particular for bruise detection (Che et al., 2018; Tan et al., 2018b; Fang et al., 2019; Zhu & Li, 2019). Some of the specific fruits that have been investigated for bruise damage includes apples (Siedliska et al., 2014; Ferrari et al., 2015; Li et al., 2018), strawberries (Nagata et al., 2006; Liu et al., 2018), blueberries (Jiang et al., 2016; Fan et al., 2018), peaches (Li et al., 2018), kiwifruit (Lü and Tang, 2012), pears (Dang et al., 2012; Fu and Wang, 2022), jujube (Feng et al., 2019), cucumbers (Ariana et al., 2006), and so forth. These studies reported success in accurate classification of bruise severity suggesting the potential of implementing the technique. However, to the best of our knowledge, no study has yet reported on the application of hyperspectral imaging for non-destructive detection and classification of bruise of pomegranate fruit. Therefore, this study seeks to explore the potential of hyperspectral imaging to detect and classify bruise severity for pomegranate fruit.




2 Materials and methods



2.1 Fruit procurement and sample preparation

In this study, pomegranate fruit (cv. Wonderful) was procured from Sonlia pack-house in the Western Cape region, South Africa. Sample pomegranates were harvested at commercial maturity at average maturity indices, viz. total soluble solids (TSS) of 16.36± 1.05°Brix and brix-acid ratio (TSS/TA) of 10.08± 2.13%. A total of 90 pomegranate fruit, with an average weight of 280 ± 45g, without visible surface defects were individually sorted, washed, and stored at 7.0 ± 1°C and 90 ± 2% RH, which is the recommended optimum storage condition for pomegranate fruit (Arendse et al., 2018).




2.2 Bruise simulation

Bruise damage was created on the middle (equatorial) region of the fruit by dropping fruit from a predefined height onto a steel surface with side of the fruit perpendicular to the metal surface. This experiment follows the previously developed method by Hussein et al. (2019) (Figure 1). Each pomegranate fruit was dropped once from a given height to the metal surface and caught by hand after the first rebound to avoid multiple impacts. Following impact tests, fruit were incubated at ambient condition (19 – 22°C, 60 ± 5% RH) for an hour prior to image acquisition. A total of 90 pomegranates were used for this study. Samples were sub-divided into three groups of 30 samples, each representing dropping induced bruising level: 100 cm, 60 cm, and no drop (not bruised). Assuming the fall was nearly free, impact energies applied on the fruit surface were calculated according to impact force from falling object. The calculated average impact energy was approximately 760 ± 0.5 mJ and 680 ± 0.8 mJ for the falling from 100 cm and 60 cm heights, respectively.




Figure 1 | Picture of pomegranate fruit sample under drop impact bruise from 100cm height (A) fresh unbruised fruit sample (B) fruit placed at 100cm drop height (C) fruit dropped under free fall due to gravity (D) bruised fruit sample.






2.3 Hyperspectral image acquisition system

Prior to image acquisition the system was set up as follows. The distance between sample and camera was set to 20.5 cm; the grey standard was fixed at 68 mm from above Scanning was performed at the Central Analytical Facility (CAF) Vibrational Spectroscopy Unit of Stellenbosch University. Two different hyperspectral imaging cameras: HySpex VNIR-1800 and HySpex SWIR-384 (NEO; Norsk Electro Optikk, Norway) were tested (Figure 2). The camera specifications for both equipment is elaborated and compared in (Table 1). In the VNIR camera, images are acquired at wavelengths ranging from 400 to 1000 nm with a waveband of 186 and spectral resolution of 3.26 nm. Figure 2 illustrates the hyperspectral image acquisition system and the formation of three‐dimensional hyperspectral data (hypercube). The VNIR has spatial pixels (x) of 1800 which corresponds to the number of photodetectors along the spatial dimension of the detector array of the camera. The second spatial dimension (y) is the number of pixels in the scanning direction and is physically bounded by the size of the scene and the speed of the translation stage. A 30 cm focal length lens with field view of 9.733 cm were used. Reflectivity reference data were obtained for each fruit. Hence, each image was obtained as a three-dimensional image block (x, y, λ), including 1800 × y pixels on the space dimension (x, y), and 128 bands at 3.26‐nm intervals within a range of 400 to 1000 nm on the spectral dimension (λ).




Figure 2 | Schematics illustrating the hyperspectral imaging and analysis workflow followed in this study.




Table 1 | Summary of hyperspectral imaging system, comparison of SWIR and VNIR camera specifications.



The SWIR camera works at a wavelength range of 950 to 2500 nm with spectral wavebands of 288 and spectral resolution of 5.45 nm. It has spatial pixels of 384. The cameras were mounted above a translation stage which has a speed regulation system (Figure 2). A 30 cm focal length lens with a field view of 9.470 cm was used. Reflectivity reference data were obtained for each fruit with the bruised surface facing the camera.




2.4 Hyperspectral image calibration

To minimize the impact of the uneven intensity distribution of the light source and dark current in the charge coupled device (CCD) detector on the hyperspectral images, image correction was performed using known true spectral information. Eqn. (1) provides the formula for the image correction.

ρ_

 

where ρref(λ) is the reflectivity of the 50% grey calibration plate (Zenith Polymer® Reflectance standard; SphereOptics GmbH, Germany); Rxy(λ) is the original uncorrected hyperspectral image; Rref(λ) the image of the calibration board and Rdark(λ) is the completed black image collected after turning off the light source and ρxy(λ) the spectra of the corrected image. The system operation and image acquisition were carried out using ‘Breeze’ software (version 2021.1.5, Umeå, Prediktera, Sweden) installed on a 64-bit Dell computer of 40 GB RAM and processor speed of 2.20GHz running on Windows 10 pro–operating system.




2.5 Explorative analysis using PCA

The three-dimensional hyperspectral images (hypercubes) were imported into Evince software (version 2.7.10, Prediktera, Sweden) for pre-processing and background removal. The background was removed by interactively separating (selecting, excluding, and reconstructing) the background pixels from the fruit pixels using contour 2D and scatter 2D plots of the PCA applied on individual and group hypercubes (Figure 2).

Preprocessing of extracted hyperspectral image data is necessary to reduce artifacts (variations that are not required in the spectral data) arising due to background noise, instrumental effects or luminescence and heterogeneity in samples (shape, size and position of sample) (Magwaza et al., 2012; Xu et al., 2023). The hypothesis is that the part of the spectral signal removed represents an interference and is generally not useful for numerical analysis. Different spectral preprocessing algorithms have been employed individually or in a sequential processing mode to reduce artifacts (Magwaza et al., 2012; Ravikanth et al., 2017). In this study raw reflectance data and six commonly used spectral preprocessing, namely, multiplicative scatter correction (MSC), standard normal variate (SNV), de-trending (DT), continuum removal (CR) and Savitzky–Golay first and second derivative were compared to identify the best for predicting bruise severity level. The SNV model achieved the best classification predictive performance compared to other methods used. SNV reduces disturbances in spectral data by correcting spectra with the mean and standard deviation of each spectrum (Tan et al., 2018a).

Subsequent hyperspectral data processing was implemented using hyperspectral Imaging Library in MATLAB® (The MathWorks, Inc., Natick, Massachusetts, United States). Supervised classification models based on a two-layer feed-forward artificial neural network (ANN), with sigmoid hidden and softmax output neurons was used to classify inputs into two target (for bruise detection) and three target (bruise severity) categories (Jamshidi, 2003; Nturambirwe and Opara, 2020). The original data was randomly divided into training set (70%), validation (15%) and test set (15%). Training set is presented to the network during training, and the network is adjusted according to its error. Validation set measure network generalization, and halt training when generalization stops improving. Testing set has no effect on training and so provide an independent measure of network performance during and after training. To achieve this, a dummy binary-coded matrix of equal rows as the input was created. In this study, for the case of bruise detection, 2-column response matrix in which samples belonging to the first class (bruised) were described by a vector [1 0] while the No bruise class was represented by the vector [0 1]. In the case of severity, a 3-column matrix was generated with the first class (60 cm drop) described by [1 0 0], 100 cm drop [0 1 0], and the No drop class [0 0 1] respectively. Classification was accomplished by using the machine learning and deep learning functions in MATLAB. Classification performances were evaluated based on its overall classification accuracy for training set, test set and validation set as well as class error. A good model should possess high classification accuracy and low-class error. A model with a 100% classification accuracy means that the model made no classification error.





3 Results and discussion



3.1 Principal component analysis

Figure 3 depicts the averaged spectral of all the samples scanned with the VNIR (Figure 3A) and SWIR (Figure 3B) cameras squeezed out using the Evince software (version 2.7.10, Prediktera, Sweden). Evince extracted the spatial (horizontal and vertical), and spectral profiles from the image display. Each sample fruit exhibited a unique spectral signature based on the sample’s composition, surface structure, viewing geometry, etc. The assumption is that bruising can create its own signature by affecting the surface structure and composition. However, the overall shape (locations of wavelength bands where highs and lows) is similar across the electromagnetic spectrum for all samples in both cameras. Hence, the classification parameter this study used to identify bruise severity and presence/absence of a bruise was based on reflectance values at bands than the overall shape of the spectra.




Figure 3 | Spectral characteristic curves of the SWIRL data. average spectra of the hyperspectral images of all samples.



The two cameras have their distinctive spectra depending on their spatial and spectral resolution (Table 1). Due to its high spatial resolution the VNIR camera provided high-resolution HS images as shown by (Figures 4A–F) for sample without bruise and with bruise, respectively. The SWIR camera, due to its law spatial resolution, provides rough images with noticeable spatial lines on the painting (Figures 4G–I) and (J-L)). Correspondingly, the HS image visualization and data analysis process is much faster and easier for SWIR than VNIR. Using the Evince software the initial data compression stage was undertaken by cropping the view span to capture fruit only, PCA based background removal. This process compressed the data size significantly. In average, the HSI data size reduced from 3.5 GB to 200 MB for the VNIR and 1.5 GB to 150 MB for the SWIR cameras, respectively, before transferring to MATLAB.




Figure 4 | A typical explorative PCA analysis. Sample with no drop (A–C) and drop from 100 cm (D–F) under the VNIR camera and no drop (G–I) and drop from 100 cm (J–L) under the SWIR camera.



For each sample, the number of spectrally distinct endmembers were estimated using the find the number of endmembers present in a hyperspectral data cube feature by using the noise-whitened Harsanyi–Farrand–Chang (NWHFC) method implemented in MATLAB, and the corresponding bands were identified using PCA method for dimensionality reduction (Figure 5). Effective band selection was done for each fruit sample.




Figure 5 | A plot of principal component analysis (PCA) coefficients vs. wavelength of the SWIR HS image.



Figure 6, top row, displays the first five spectral bands of the original data of unbruised fruit. Variability is not significant both between bands and spatially on the fruit surface. Figure 6, bottom row, shows the same fruit seen with the identified five informative bands. Clearly, differentiations come both spatially and spectrally with the informative bands. The same informative bands used on a fruit that was bruised by dropping from 100 cm height is shown in Figure 7. The accentuation of the bruise mark in the bottom raw (viewed with the informative bands) is apparent. The residences of the five effective bands are shown as vertical dashed line on the class mean spectra of the two cameras (Figure 8).




Figure 6 | Display of the first 5 spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical fruit without bruise.






Figure 7 | Display of the first 5 spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical fruit sample bruised from falling from 100 cm.






Figure 8 | The average class spectral of the three bruise severity classes of the VNIR (A) and SWIR (B) camera. The vertical dashed lines identified the most informative bands selected by the effective wavelength (407, 639 and 917nm) selected using the noise-whitened Harsanyi–Farrand–Chang (NWHFC) method.



The class mean spectral plot clearly distinguished the two bruised groups from the unbruised group. The unbruised spectral (orange) showed the highest reflectance signature across the electromagnetic spectrum of the SWIR camera, while both bruised samples at different severities (blue and yellow) showed lower reflectance. However, for the VNIR camera, the variation between classes looks small and it is not consistent across the spectrum. Similar trend is observed in most bruise study for different fruit (Siedliska et al., 2018; Tan et al., 2018b). This spectral profile pattern for bruised and unbruised samples has been attributed to the fact that there is an outflow of water from the surface of the sample that have been bruised (Siedliska et al., 2018; Tan et al., 2018b).




3.2 Classification model development for bruise fruit detection

The classification test results for bruise detection classification accuracy, true positive, false positive of the VNIR and SWIR data are summarized on Table 2. The results for classification were grouped into three groups or levels of severity, group 1 comprised fruit bruised at 60 cm and unbruised fruit, group 2 was made up of samples bruised at 100 cm and unbruised samples and finally group 3 which combined the two-bruised fruit samples (60 cm vs. 100cm). For bruise severity classification training, each ROI averaged reflectance values at the five wavelengths (1 × 5), presented to the classification model, is accompanied by a (1 × 3) target matrix where each column indicates a category with a one in either element 1, 2, or 3, defining the desired network output (no bruising, bruised at 60 cm and 100 cm). On the other hand, the bruise classification problem, which is a binary (two-class) problem distinguishing between bruised and unbruised samples, is accompanied by a (1 × 2) target matrix where each column indicates a category with a one in either element 1 or 2. The ANN pattern recognition algorithm divides the data randomly into training (70%), testing (15%) and validation (15%) sets during model development.


Table 2 | Summary of results for the different bruise severity of pomegranate fruit.



The effect of the structure of the artificial neural network (number of hidden neurons and random division of sample into training, testing and validation sets) on the performance of the classification was evaluated using error histogram, confusion matrix and Receiver Operating Characteristic curve. Confusion matrix is a very popular measure used while solving classification problems and it is used in this paper to report the classification performances. For the bruise severity classification which has three classes, the confusion matrix is a 3 x 3 and the bruise classification, which is binary, has a 2 x 2 confusion matrix.



3.2.1 Classification performance for SWIR camera

The ANN model accurately discriminated between bruised fruit from this group against unbruised ones (Table 2). The confusion matrix indicates how the model correctly and wrongly placed input data to the different severities is seen (Figures 9A–C). For the first severity stage SI (60cm drop height), the model showed a recognition accuracy of bruised samples and unbruised samples to be 76.7% and 90% respectively. The last column of the matrix indicates the ratio of the number of correctly classified samples to the number of all the total samples classified (Figure 9A). In the first column, for a total of 30 bruised samples, 23 were correctly classified as bruised while 7 were misclassified as unbruised. In the second column, out of the 30 unbruised samples, 27 were correctly recognized as unbruised while only 3 samples were misclassified. This yielded an overall recognition accuracy of 83.3% and a classification error of 16.7%.

Similar accuracy was obtained by Zhang and Li (2018). The authors implemented the Adaboost algorithm to investigate bruises on apple. The accuracy of their training model was 80.56%. The performance of the second severity group is presented (Figure 9B). The classification accuracy for this severity level (SII) improved as compared to the severity level I (SI). The average recognition accuracy improved from 83.3% (Figure 9A) to 93.3% (Figure 9B). The same accuracy was maintained for the unbruised samples, but a higher accuracy was obtained as 29 of the samples bruised under 100cm drop height were rightly classified. For the third category, SIII, comprising of samples bruised at 60cm height (30) and those bruised at 100cm height (30) from both SI and SII respectively were combined, model showed an average classification accuracy of 80% (Figure 9C). model performance showed high false positive and true negative of 8 out of 30 samples for 60cm drop bruised samples and 4 out of 30 samples for 100cm drop bruised samples. This shows model accurately classified SII (86.7%) data as compared to SI data (73.3%).




3.2.2 Classification performance for VNIR camera

The results for the model recognition accuracy are listed in Table 2. Different model accuracy for the two different severity levels is shown (Figures 9D–F). As can be seen from the results, for bruise severity category one (SI), the VNIR model slightly outperformed the SWIR model, achieving an accuracy of 83.3% and 96.7% for bruised and unbruised samples (Figure 9D). The confusion matrix shows that for 30 samples bruised from a drop height of 60cm, 25 were rightly recognized while 5 were wrongly classified. The second column indicates that only 1 of the 30 unbruised samples was wrongly classified. This resulted in an average classification of 90% and class error of 10%.




Figure 9 | The confusion matrix of the classification performance of the different class groups using the SWIR camera (SI (A), SII (B), and SIII (C), and VNIR SI (D), SII (E) and SIII (F). The x axis refers to the true categories, and the y axis refers to the classifier outputs. The integers in the matrix show several samples. The color encodes the percentage of a class of blocks (x) classified into a predicted class (y).



For the case of severity category two (SII), the model showed similar performance to the SWIR, achieving an equal average accuracy of 93.3%. Unlike the SWIR, the model mis-classified 3 samples of 100cm dropped bruise samples out a total of 30 samples and correctly classified 27, achieving a 90% accuracy and class error of 10% (Figure 9E). The study on kiwifruit when applying VNIR-HSI system for bruise detection resulted similar low classification error of 14.5% (Lü & Tang, 2012). For the VNIR camera, it can be observed that the unbruised samples were always better recognized compared to the bruised data, irrespective of the bruise severity.

Similar trend was observed in several studies on bruising and detection of other defects on pome fruits (Zhang et al., 2015; Che et al., 2018). The result indicate that model was able to achieve higher accuracies as the severity heightened, this was contrary to findings by (Tan et al., 2018a). The authors re-ported lower identification accuracy for severely bruised samples. Both cameras performed equally as they both obtained an average accuracy of 93.3%.

The confusion matrix for model performance for a combined data is presented in (Figure 9F). model showed higher recognition accuracy for SII samples (93.3%) as compared to SI (90%). The VNIR data set performed slightly better than the SWIR when both bruised samples were grouped together. The average classification accuracy for the VNIR was 91.7% while that of the SWIR was 80%. The result indicates that the model was able to recognize the different bruise severity when they are modelled against each other. Some of the reasons for model misclassification might be because of light scattering effect during image data acquisition (Tan et al., 2018a). The shiny nature of pomegranate fruit could have an impact of how light penetrates the fruit during imaging.




3.2.3 Classification model development for combined data for bruise detection

Table 3 gives the combined classification performance of the ANN model for bruise detection of pomegranate fruit. Figure 10 provides the resulting confusion matrix of the classification based on the ANN model. The columns of the matrix refer to the true categories, and the rows refer to the classifier outputs. For instance, for the SWIR (Figure 10A), of the 30 sample fruits in the first block (60 cm drop), 25 were correctly classified as “60 cm drop” 2 were classified as “100 cm drop” and 1 was classified as “No drop”. Of the 30 “100 cm drop”, 4 were wrongly classified as “60 cm drop,” 25 were correctly classified, and 1 was wrongly classified as “No drop.” Of the 30 “No drop”, all the 30 were correctly classified.


Table 3 | Combined performance of the classification model for bruise severity detection on pomegranate fruit.






Figure 10 | Summary of confusion matrices obtained for the combined ANN model for both SWIR and VNIR input data (A) SWIR classification performance (B) VNIR classification performance.



The bottom row and the extreme-right column of the confusion matrix summarizes the performance of the classification model. Accordingly, the overall accuracy of the ANN model in classifying the SWIR data was 88.9% (classification error of 11.1%) and for the VNIR data the classification accuracy was 74.4% (classification error of 25.6%) (Figure 10B). This result agrees with the study on blackspot by (López-Maestresalas et al., 2016), where they concluded that SWIR achieved better results than VNIR data (98.56% against 95.46%). The results of sound samples classified as sound (true positives) (90% and 100%), were better than results for bruised samples classified as bruised (83.3%, 70%). This is the case for most reported study. Xing et al. (2005) reported 93% for non-bruised apples correctly classified and 86% accuracy for bruised samples.

Applying Adaboost algorithm for visual detection of bruises in apple (Zhang & Li (2018), observed out of the 54 samples of intact apples, 52 was correctly classified and only 2 was wrongly classified yielding an accuracy of 96.3%, while for the bruised samples, 87.04% was achieved. For jujube bruise detection (Feng et al., 2019), achieved almost 100% accuracy for healthy sample detection, in the NIR region, the authors attributed the lower accuracy for bruised samples to (browning coloration) of the bruised jujube samples which is like the healthy ones and made classification difficult.

Classification accuracies can also be impacted by the state of the sample, at the time of image acquisition. Huang et al. (2015), compared static and online application of multispectral data. The authors found classification accuracies to be higher for the static data (91.5%) as compared to the online (samples in motion on a translation stage) (87.3%).






4 Conclusion

This study investigates the detection and classification of bruises on pomegranate fruit surface using hyperspectral imaging system. The use of VNIR and SWIR cameras was explored. The result of the classification accuracy metric indicated that both cameras were able to accurately recognize bruised and unbruised pomegranate fruit samples. Both SWIR and VNIR data yielded highly accurate classification results ranging from 80% - 96.7%. The overall average classification accuracy achieved was 93.3% in distinguishing fruits dropped at 100cm and 90% for fruit dropped at 60cm height for the VNIR camera. Model performance was slightly lowered when both severity cases were combined, and model was able to accomplish a recognition accuracy of 80% and 91.7% for both SWIR and VNIR camera respectively. The model accuracy increases with the increase in bruise severity (93.3%). This study laid a foundation for further development of an in-line inspection system using hyperspectral imaging techniques for bruise detection on pomegranate fruits.

While gathering satisfactory datasets is very important, HS imaging tasks are still costly and time-consuming. Usually, HS image data sets are not enough for training artificial neural networks for classification model development. Using the raw HS image, as is, can easily create high dimensional data that can significantly cause overfitting. To augment this bottle neck, it is important to undertake data dimensionality reduction. This study implemented the method of selecting out informative bands and disregarding the redundant ones to decrease the data size and dimension. Unlike other fruit with soft tissues and surfaces, early detection of bruises on pomegranate fruit is difficult due to the tough and thick rind. Hence, developing an effective non-destructive technic like hyperspectral imaging could have a huge economic benefit in the industry. To this end, this paper demonstrated effective wavelength selection technique for a more compact and accurate classification prediction model. The implemented wavelength optimization technic will help develop a compact and fast multispectral imaging device for practical farm and packhouse applications.
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In figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, ‘Petrelli’ (San Pedro type) and ‘Dottato’ (Common type), and one caprifig. In this work, proton nuclear magnetic resonance (1H NMR-based metabolomics) has been used to analyze and compare buds of the caprifig and the two fig cultivars collected at different times of the season. Metabolomic data of buds collected on the caprifig, ‘Petrelli’, and ‘Dottato’ were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the “y” variable as the sampling time to allow the identification of the correlations among metabolomic profiles of buds. The sampling times revealed different patterns between caprifig and the two edible fig cultivars. A significant amount of glucose and fructose was found in ‘Petrelli’, differently from ‘Dottato’, in the buds in June, suggesting that these sugars not only are used by the ripening brebas of ‘Petrelli’ but also are directed toward the developing buds on the current year shoot for either a main crop (fruit in the current season) or a breba (fruit in the successive season). Genetic characterization through the RNA-seq of buds and comparison with the literature allowed the identification of 473 downregulated genes, with 22 only in profichi, and 391 upregulated genes, with 21 only in mammoni.
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1 Introduction

Ficus is the largest genus in the Moraceae family, showing great diversity in morphology (leaves, inflorescences, and fruits), breeding systems (monoecious and dioecious), and pollination types (Berg, 1989; Bronstein and McKey, 1989; Berg and Corner, 2005; Chawla et al., 2012). The Ficus genus is approximately 75 million years old (Cruaud et al., 2012), and many fig species are native to tropical regions with only a few ones in warm and temperate areas. The Ficus genus can be classified into six subgenera, namely, two monoecious subgenera (Urostigma and Pharmacosycea) and four functionally dioecious subgenera (Sycomorus, Ficus, Synoecia, and Sycidium). Approximately half of the total Ficus species are monoecious (Berg, 1989), such as Ficus sycomorus (Galil and Eisikowitch, 1968) and Ficus aurea (Hossaert-McKey and Bronstein, 2001), and the others are gynodioecious, such as Ficus carica (2n = 26) (Condit, 1947). The dioecious Ficus species are generally less synchronized than monoecious species such as F. aurea (Hossaert-McKey and Bronstein, 2001). Ficus species have diverse growth habits, with an important role in tropical, subtropical, and Mediterranean ecosystems to feed with their fruits the seed dispersers of many species (Shanahan and Compton, 2001; Harrison, 2005; Cottee-Jones et al., 2016). The Ficus species most important for commercial cultivation is F. carica L., called the common (edible) fig, which is gynodioecious and includes several cultivars.

The female (edible) fig can produce one to three fruits: 1) brebas (parthenocarpic), at the end of spring to the beginning of summer on the 1-year-old shoot; 2) figs (main crop), in summer on the current-year shoot; and 3) a late crop at the end of summer to the beginning of autumn on the current-year shoot. In some cultivars, this latter crop can be the only main fruit (figs, late crop). The male fig (caprifig) can have three fruits similar to the female fig: 1) the profichi in spring to the beginning of summer on the 1-year-old shoot, 2) the mammoni in summer–autumn on the current-year shoot, and 3) the mamme during autumn–winter on the current-year shoot (over-wintering fruits). According to their pollination behavior, the numerous edible fig cultivars have been grouped into three main groups: 1) the Common type, with persistent fruits; 2) the Smyrna type, necessarily requiring pollination; and 3) the San Pedro type, requiring or not pollination (Storey, 1955; Ferrara et al., 2016; Marcotuli et al., 2020). Brebas are always produced parthenocarpically, whereas the main and late fruits (figs) are either parthenocarpic or produced after pollination depending on the cultivar. Considering only the pollination behavior, figs could be classified into two groups: 1) requiring pollination to set fruits or 2) not requiring pollination since they are able to set fruits parthenocarpically (persistent fruits).

In the common fig, the female trees (F. carica var. sativa L.) are often pollinated, or “caprificated”, by the male trees (F. carica var. caprificus L.), called “caprifig” to set the fig (main crop). The wasps (Blastophaga psenes) can carry pollen from male flowers, located close to the ostiole in the inedible profichi fruits (hermaphrodite, with male and short-styled female flowers) borne on caprifig trees, to the long-styled female flowers of the edible figs (unisexual with pistillate flowers in the main crop, or “fig”) driven by olfactory sense toward the flavors emitted by the fruits.

However, either in the common fig or in the caprifig, all the buds are developed on the same shoot (Condit, 1947; Marcotuli et al., 2020). The apical/lateral bud, normally a mixed one, develops a shoot carrying axillary fruits in summer-autumn (i.e., figs) and/or flower buds developing in the successive season (i.e., brebas). In the common fig, the basal/middle portion of the shoot is generally occupied by the main and/or the late crop (when occurring) and the distal by the breba crop, whereas in the caprifig, the basal portion is occupied by the mammoni (when occurring), the middle by the more abundant mamme, and the distal by the profichi (Lama et al., 2022). This localization of the fruits occurs when all the types of fruits are present and usually only two types of fruits are present (breba/fig and profichi/mamme) (Figure 1).




Figure 1 | A caprifig (A) with mamme (pale green, at the bottom of the 1-year-old shoot) and profichi (vivid green, at the top of the 1-year-old shoot) and an edible fig (B) with brebas (big fruits on 1-year-old shoot) and figs (main crop, small growing fruits on the current year shoot).



It is unknown why some flower buds on the current year shoot may develop in summer for the figs (main crop), in autumn for the late crop, or the successive year for the breba crop since they are all present on the same shoot of the current season. It seems that the evolution of each bud on the nodes of the 1-year shoot is already predetermined, but it is unclear when or how this predetermination is defined. New techniques and devices can help to clarify some of these unsolved questions.

Sweetness is perhaps the main indicator of fruit quality in figs and is determined by the soluble sugar concentration. Ripe fig fruits are very rich in sugars, and sugar accumulation is a developmental process. Sugar levels remain low during the first phases of development, and concentrations increase considerably during the final stages of ripening, until harvest. The role of sugar in bud differentiation has been investigated in a recent study (Lama et al., 2022).

NMR is increasingly being used for plant metabolomic profiling due to its capability to analyze complex traits. NMR-based metabolomics, which is often approached through untargeted analysis and whose data are handled with multivariate analysis techniques, has already been applied successfully in several areas of research. In particular, in plant science, NMR metabolomics has been used to facilitate the identification of active compounds in medicinal plants (Mandrone et al., 2018; Salomé-Abarca et al., 2020), for taxonomical and phylogenetic studies (Maggio et al., 2016; Cheng et al., 2020), for food, fruit, and botanical quality control and fraud detection (Rizzuti et al., 2015; Callao and Ruisánchez, 2018; Sherman et al., 2020; Mandrone et al., 2021a), and for plant physiology and plant–environment interaction studies (Mandrone et al., 2021b; Mandrone et al., 2022). It is, in fact, a fast, robust, reliable, and non-destructive technique, with quick and simple sample preparation, and, importantly, it allows to obtain quantitative information due to the linear relationship between the integral of a resonance peak and the respective metabolite concentration. Moreover, NMR has no dependence on the ionization of the metabolites. However, NMR profiling has limitations due to the sensitivity of the technique itself; thus, it is optimal to acquire an overview of the most abundant metabolites in an extract but not suitable to detect metabolites present at very low concentrations in the mixture. Recently, the availability of a high-quality fig reference genome provided an important resource to genetic improvement and breeding programs, and Mori et al. (2017) released a preliminary genome sequence of a Japanese cultivar of F. carica, ‘Horaishi’, which was affected by the typical deficiencies of short-read genome assemblies (Veeckman et al., 2016; Low et al., 2019). Usai et al. (2020) recently reported a high-quality genome reference for the cultivar ‘Dottato’. Genetic analysis with RNA-seq provides a useful instrument to understand complex and massive biological processes, by data integration and processing at multiple levels of biological systems (Fabres et al., 2017). Transcriptomic data may provide new insights for fig breeding and postharvest management.

The present work aimed to understand the process of bud differentiation at two nodes (3 and 5) of two fig cultivars (Common and San Pedro type) and one caprifig by using both a metabolomic, using 1H NMR, and a genetic investigation, with RNA sequences analysis and candidate gene investigation in order to understand what makes a bud develop into a fig in the current year or enter into dormancy and develop into a breba in the following season.




2 Results



2.1 1H NMR-based metabolomic analysis

This study represents the first NMR-based metabolomic analysis on both fig and caprifig buds. In the June samples, the presence of several metabolites was evident from the spectra, including organic acids, such as formic acid, fumaric acid, malic acid, α-ketoglutarate, quinic acid, and GABA, sugars, namely, α- and β-glucose, sucrose, and fructose, and amino acids, such as alanine, asparagine, and aspartic acid. However, citric acid was not detected (Figure 2). Moreover, secondary metabolites such as trigonelline, chlorogenic acid, and rutin were also detected. The presence of rutin and chlorogenic acid was further confirmed by liquid chromatography–mass spectrometry (LC-MS), finding negative ions at m/z 609.152 and 353.088, respectively, and positive ions at m/z 633.142 and 377.084 corresponding to [M+ Na] adducts. At the same time of the season, the flower buds of both fig cultivars and the caprifig showed similar spectra with regard to the metabolomic analysis but with some important remarks (Figure 2). After proper data processing, the complete dataset obtained was analyzed by principal component analysis (PCA). This unsupervised model was performed to acquire a first overview of sample distribution based on metabolomic profile. This analysis showed the complexity of the dataset; in fact, no clustering was evident (Supplementary Figure S1), likely due to the highly diversified nature of samples: buds collected at two nodes, two fig cultivars, and a caprifig and at different times during the season (June to October). Consequently, metabolomic data of buds collected on caprifig and the two fig cultivars were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the sampling time as the “y” variable.




Figure 2 | Comparison between 1H NMR profiles of caprifig buds (blue trace), ‘Dottato’ buds (green trace), and ‘Petrelli’ buds (red trace) collected in June. (A) Full spectra. (B) Enlarged region between δ 5.95 and 9. (C) Enlarged region between δ 5.5 and 3.1. (D) Enlarged region between δ −0.1 and 3.1. 1 = formic acid, 2 = fumaric acid, 3 = sucrose, 4 = α-glucose, 5 = β-glucose, 6 = malic acid, 7 = quinic acid, 8 = rutin, 9 = chlorogenic acid, 10 = fructose, 11 = asparagine, 12 = α-ketoglutarate, 13 = aspartic acid, 14 = alanine, 15 = lipids, 16 = trigonelline, and 17 = GABA. Spectral references are given in Table S1.



Through these analyses, it was possible to find correlations between metabolomic profiles of buds and sampling times, which revealed different patterns between caprifig and the two edible fig cultivars.

In the case of ‘Dottato’, the model (Figure 2) was fitted by two components (R2x(cum) = 72.6%, R2y(cum) = 86.2%, and Q2(cum) = 80.9%). Its predictability was confirmed by R2y(cum) and Q2(cum) obtained by permutation tests, which were 86.2% and 80.9%, respectively; the intercept on the y-axis of the Q-line was −0.446; and the intercept of the R-line was 0.21. CV-ANOVA F and p were 14.797 and 6.24 × 10−5, respectively. In the early stage (June) of bud development (both nodes) of ‘Dottato’, a higher concentration of trigonelline, formic acid, quinic acid, alanine, GABA, and other unknown metabolites (responsible for signals at δ 3.2 and 1.65) was found. In late summer/beginning of autumn, these compounds were gradually decreasing in both nodes, whereas sucrose and aromatic compounds were increasing because of the quiescence/dormancy of the buds. Rutin and chlorogenic acid resulted in two of the most important aromatic compounds present in the extracts; however, other unidentified aromatic metabolites (spectral signals from δ 6.7–6.9) increased along the sampling times (Figure 3).




Figure 3 | (A) OPLS score scatter plot built using bucketed 1H NMR spectra of ‘Dottato’ buds as the x-axis and sampling day as the y-axis; the sampling time is highlighted by the color gradient, from blue (which indicates the earliest collections) to red (for the latest). (B) S-plot of the OPLS model, highlighting the x-axis (spectral signals) highly correlated with harvesting time (y-axis). 1 = sucrose, 2 = rutin, 3 = spectral region from δ 6.05 to 7.05 (aromatic region), 4 = chlorogenic acid, 5 = quinic acid, 6 = alanine, 7 = trigonelline, 8 = formic acid, 9 = GABA, 10 = spectral region from δ 1.61 to 1.69, and 11 = spectral region from δ 3.17 to 3.25. OPLS, orthogonal partial least squared.



As for ‘Dottato’, also in ‘Petrelli’ at three- and five-node buds, both sucrose and aromatic compounds (including rutin and chlorogenic acid) increased in the late sampling dates, i.e., at the end of the growing season (Figure 4). However, in this cultivar, malic acid was also more abundant in late summer. GABA also increased at this stage of development in ‘Petrelli’, following an opposite pattern compared to ‘Dottato’.




Figure 4 | (A) OPLS score scatter plot built using bucketed 1H NMR spectra of ‘Petrelli’ buds as the x-axis and sampling day as the y-axis; the sampling time is highlighted by the color gradient, from blue (which indicates the earliest collections) to red (for the latest). (B) S-plot of the OPLS model, highlighting the x-axis (spectral signals) highly correlated with harvesting time (y-axis). 1 = sucrose, 2 = rutin, 3 = spectral region from δ 6.05 to 7.05 (aromatic region), 4 = chlorogenic acid, 8 = formic acid, 9 = GABA, 12 = malic acid, 13 = glucose, and 14 = fructose. OPLS, orthogonal partial least squared.



However, together with formic acid, a high concentration of glucose and fructose characterized the buds at the early stage of development. The OPLS model on ‘Petrelli’ samples was fitted by three components (R2x(cum) = 85.9%, R2y(cum) = 94%, and Q2(cum) = 71.6%). The permutation test gave R2y(cum) = 94% and Q2(cum) = 71.6%; the intercept on the y-axis of the Q-line was −0.727; and the intercept of the R-line was 0.68. CV-ANOVA F and p were 3.60 and 0.03, respectively (Figure 4).

A further OPLS model (Figure 5) was built using the x variable using bucketed 1H NMR spectra of buds collected on the caprifig and harvesting time for the y-axis. This model was fitted by three components (R2x(cum) = 74.3%, R2y(cum) = 88.1%, and Q2(cum) = 21.5%). The permutation test gave R2y(cum) = 88% and Q2(cum) = 21%, the intercept on the y-axis of the Q-line was −0.342, and the intercept of the R-line was 0.54. CV-ANOVA F and p were 0.38 and 0.84, respectively. This analysis provided interesting information. In fact, different from the two fig cultivars, caprifig buds yielded higher levels of aromatic compounds (such as rutin and chlorogenic acid) and sucrose at the early stage of development, and also malic acid was more abundant. As the sampling time progresses, lipids increase along with glucose and trigonelline. Notably, glucose and trigonelline were involved also in the development of ‘Petrelli’ and ‘Dottato’ buds, respectively, but followed an opposite pattern compared to “caprifig”, since in ‘Petrelli’ and ‘Dottato’, they were more abundant in the early sampling times.




Figure 5 | (A) OPLS score scatter plot built using bucketed 1H NMR spectra of “caprifig” buds as the x-axis and sampling day as the y-axis; the sampling time is highlighted by the color gradient, from blue (which indicates the earliest collections) to red (for the latest). (B) S-plot of the OPLS model, highlighting the x-axis (spectral signals) highly correlated with harvesting time (y-axis). 1 = sucrose, 2 = rutin, 3 = spectral region from δ 6.05 to 7.05 (aromatic region), 4 = chlorogenic acid, 7 = trigonelline, 10 = spectral bins from δ 1.61 to 1.69, 11 = spectral bins from δ 3.17 to 3.25, 12 = malic acid, 13 = glucose, and 15 = lipids. OPLS, orthogonal partial least squared.



In all the developed models, generally, the metabolomic profiles of buds collected at nodes 3 and 5 were quite similar between them with some specific differences in the pattern of some compounds.




2.2 Differential gene expression analysis in caprifig

Among the total expressed genes, 473 were downregulated, with 22 only in profichi, and 391 were upregulated, with 21 only in mammoni (Table 1). Looking at the function of upregulated genes, 225 followed the molecular function category, 54 genes belonged to the cellular component, and 112 belonged to the biological process, while among the downregulated genes, 151 coded for the biological process, 61 for the cellular component, and 261 for molecular function (Figure S2).


Table 1 | Total number of loci identified in our genotypes, number of loci expressed in caprifig and in two time points, and regulation obtained from the RNA-seq analysis.



Comparing the number of transcripts detected in profichi and mammoni from caprifig with the same fig buds from ‘Petrelli’ and ‘Dottato’, two F. carica cultivars belonging to the San Pedro and Common type, respectively (previously studied with RNA-seq analysis as reported in Marcotuli et al., 2020), the number of expressed loci was different; in particular, caprifig showed a higher number of transcripts in profichi (22,088) and the lowest number in mammoni (21,031) when compared to the two fig cultivars (Figure S3). Within the 22,088 and 21,031 loci expressed in caprifig in profichi and mammoni, respectively, 2,254 were unique for caprifig with 36 singles for profichi and 12 for mammoni.

Considering that among the upregulated and downregulated genes, there were 22 upregulated specifically for profichi and 21 downregulated unique for mammoni, the analysis of these specific genes was carried out to determine the role in the caprifig bud development.

The evaluation of the upregulated genes underlined how six genes were responsible for biological processes and molecular function, two for cellular components, and 14 for molecular function (Table 2). Analyzing the downregulated genes, seven corresponded to biological processes, three to cellular components, and 11 to molecular function (Table 3).


Table 2 | List of loci upregulated and expressed only in profichi buds (from caprifig tree) was obtained with the RNA-seq analysis.




Table 3 | List of loci downregulated and expressed only in mammoni buds (from caprifig tree) obtained with the RNA-seq analysis.






2.3 Transcriptome analysis of flowering genes during bud differentiation and development

To define the genes potentially involved in the caprifig bud development process, we considered the unique genes upregulated and downregulated in profichi and mammoni as reported in Tables 2, 3.

Considering all the genes expressed and upregulated in profichi, we detected oxidase genes, in particular the linoleate 13S-lipoxygenase, that are involved in a number of diverse aspects of plant physiology including growth and development and that catalyze hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (Park et al., 2020). We also detected gibberellin 20 oxidase, which is involved in the promotion of the floral transition, fertility, and stem elongation (Li et al., 2021), polyphenol oxidase, which oxidizes monophenols and diphenols in the presence of molecular oxygen and could be activated during the first weeks of storage (McLarin and Leung, 2020), and anthocyanidin reductase-like, which catalyzes the NADPH-dependent conversion of anthocyanidins into flavonoids (Tang et al., 2009).

Additionally, the aluminum-activated malate transporter, which is involved in GABA transport, and the indole-3-pyruvate monooxygenase, which is involved in auxin biosynthesis genes, were identified. Genes implicated in cell cycle control and cell expansion during plant development were also reported and in particular the G-type lectin S-receptor-like serine/threonine-protein kinase, the origin of replication complex subunit 5, MYB transcription factor and wall-associated receptor kinase-like, extensin-2-like, senescence-specific cysteine protease, GDSL esterase/lipase, heparanase-like protein, and E3 ubiquitin-protein ligase. Finally, three hydrolase genes were found represented by acid phosphatase, carbonic anhydrase, and polygalacturonase.

Considering the genes downregulated in mammoni, some of the genes were reported in more than one locus such as the 7-deoxyloganetin glucosyltransferase (two loci), which is most expressed in anthers, and plays a major role in cell homeostasis (Qu et al., 2021); late embryogenesis abundant protein (three loci), which induces the maturation drying process of embryo development correlates with the acquisition of desiccation tolerance (Hoekstra et al., 2001); oleosin-like protein (two loci), which is involved in species recognition by discriminating between compatible and incompatible pollen (Schein et al., 2004); and probable l-gulonolactone oxidase (two loci), which is associated with the endoplasmic reticulum membrane and synthesizes the oxidation of l-gulonolactone to l-ascorbic acid (Linster and Van Schaftingen, 2007). Even in this case, genes for plant development were identified, in particular the signal peptidase complex, which acts in the translocation of polypeptide chains across the endoplasmic reticulum membrane (Linster and Van Schaftingen, 2007); the 11S globulin precursor isoform, which is involved in seed storage protein (Hsiao et al., 2006); the nuclear transcription factor Y that acts in gametogenesis, embryogenesis, seed development, flowering time regulation, and abscisic acid signaling (Mu et al., 2013); pectinesterase, which facilitates plant cell wall modification and subsequent breakdown (Suzuki et al., 2013); and the O-acyltransferase WSD1-like, which catalyzes the condensation of fatty alcohol and a fatty acyl-Coenzyme A (acyl-CoA) (De la Fuente Cantó et al., 2018). The analysis of the downregulated genes in figs (main crop) highlighted the presence of genes involved in the plant defense response, such as probable flavin-containing monooxygenase gene, 1-Cys peroxiredoxin, pathogenesis-related protein, and proteinase inhibitor.

In order to correlate the metabolomic data with the genetic ones, genes involved in the biosynthetic pathway of the detected metabolites identified through the 1H NMR-based analysis were investigated among all the expressed genes in both cultivars, ‘Dottato’ and ‘Petrelli’, and in the caprifig. We were able to identify 13 loci and six genes with an expression level, reported as RPKM value, higher than 50, and correlated to the metabolites detected (Table S2). In particular, the analysis allowed the identification of: asparagine synthetase (one locus), which showed a peak of expression in mammoni, while similar values were reported for profichi and ‘Dottato’ and ‘Petrelli’ breba and fig (main crop) (Figure 6) (Lama et al., 2022); glucose-6-phosphate 1-epimerase (two loci), which converts α-glucose in β-glucose, andshowed higher expression in brebas compared to figs (main crops) in both fig cultivars, and with the caprifig showing a general higher level compared to the two cultivars; glucose-6-phosphate isomerase (one locus), which converts glucose in fructose, and is highly expressed in ‘Dottato’ and ‘Petrelli’ figs (main crops) (Lama et al., 2022); malic enzyme (four loci), which showed different values in relation of the locus considered (Figure 6); protein N-terminal asparagine amidohydrolase-like (one locus), which converts asparagine into aspartic acid and showed higher expression levels in brebas/profichi of all the genotypes; and sucrose synthase (three loci), which showed higher values in ‘Dottato’ and ‘Petrelli’ brebas and for one locus also in caprifig (Figure 6).




Figure 6 | Quantitative expression data (reported as FPKM values) of genes correlated to metabolites detected by 1H NMR breba/profig and fig (main crop)/mammoni of caprifig, ‘Dottato’, and ‘Petrelli’. Asterisks on the bars indicate datasets significantly different according to ANOVA (*, **, and *** correspond to p < 0.05, p < 0.01, and p < 0.001, respectively).







3 Discussion

In monoecious species of Ficus, male and female flowers grow on the same tree, and self-pollination occurs, although cross-pollination may partly occur, which could help to reduce inbreeding depression.

Metabolomic analysis revealed differences in the two fig cultivars and the caprifig, and values were also different in the two nodes, thus indicating a correlation between metabolomic profiles of buds and sampling and position times, which showed a significantly different pattern between caprifig and the two edible fig varieties.

It was surprising that citric acid, an important and abundant organic acid of fig fruits (Jafari et al., 2022), was not detected at the budding level, according to the metabolomic analyses, whereas minor organic acids such as quinic and fumaric acid were present in the buds.

In ‘Dottato’, trigonelline, formic acid, quinic acid, alanine, and GABA were more abundant in buds sampled in June and decreasing in late summer samples, whereas sucrose and aromatic compounds were high in June and decrease in late summer. Trigonelline is synthesized from nicotinic acid, which is a catabolite of pyridine nucleotides, and accumulates in seeds of legumes and coffee (Ashihara et al., 2015); several hypotheses have been proposed on the physiological functions of trigonelline in plants (Ashihara et al., 2015). A massive increase in trigonelline content was found during the early stages of maturation in the pericarp of coffee fruits (Ashihara et al., 2015). The role of trigonelline in ‘Dottato’ buds may be related to the storage of nicotinic acid or a compatible solute to face stress conditions during the growing stage in summer, i.e., drought, or to contribute indirectly to the formation of desirable flavor products of the fruit to attract the wasp for the pollination.

The detection of quinic acid, a side product of the shikimate pathway regulated by the activity of quinate dehydrogenase, at this stage of bud development, suggested a behavior similar to the kiwifruit’s accumulation of quinic acid, although with different concentrations (Jiang et al., 2020). However, quinic acid was also detected in the sap of another fig species, Ficus dubia, and was suggested that such phenolic derivatives either are from the shikimate pathway or are used for biosynthesis of chlorogenic acid (Chansriniyom et al., 2021), which was detected in large amounts in the successive samplings. Quinic acid was also found in the leaves of Portuguese F. carica cultivars ‘Pingo de mel’ and ‘Branca Tradicional’ (Chansriniyom et al., 2021). Chlorogenic acid and rutin have been recently found in different tissues of several fig cultivars, from fruits (peel and pulp) to leaves (Teruel-Andreu et al., 2021). Chlorogenic acids and rutin have been generally extracted from the leaves more than present in fruits or buds (Mahmoudi and Chawla, 2022) and are possibly translocated from leaves to developing buds.

In both fig cultivars, at 3 and 5-node buds, a significant increase of both sucrose and aromatic compounds was detected in the late sampling dates. However, sucrose is generally low in the fruits throughout development and maturation (Vemmos et al., 2013), but sucrose increases during fruit development, in stages I and II, and then decreases after ripening. In this case, the increase of sucrose in the fruit buds of both ‘Dottato’ and ‘Petrelli’ may suggest the preparation of the buds for dormancy, and sugars could be used, such as in peach (Santiago-Mejía et al., 2018) and in sweet cherry (Fadón et al., 2018), to support the differentiation of the various tissues of a flower bud, i.e., xylem, anthers, and ovary. Moreover, sucrose would be used in the successive season for the development of possible breba fruits in spring. Sucrose could be used to sustain the first development stages of the brebas prior to the leaf’s full functionality for the production of photosynthates. In fact, carbohydrate reserves act as key agents in dormant buds, and thus they accumulate before the end of the growing season and are utilized following bud break (Mohamed et al., 2012). Carbohydrate reserves are also used as an indicator of bud break in many fruit trees (Kaufmann and Blanke, 2017). In a recent study conducted on the fig cultivar ‘Sabz’, soluble sugars decreased during bud break, bringing about new leaf development and shoot growth in spring (Sedaghat et al., 2022). These carbohydrates were possibly transformed into structural forms, resulting in new organ formation (leaves and stems) and an increase in plant volume (Sedaghat et al., 2022). Soluble sugars are also partly lost through the energetic process of transpiration (Spann et al., 2008).

The presence of sucrose in both ‘Dottato’ and ‘Petrelli’ fruit buds may also suggest that both varieties are physiologically prone to yield such type of early fruit, although brebas of ‘Dottato’ generally drop and are seldom produced. Differently from sucrose, glucose and fructose contents increase during fruit growth and ripening (Sedaghat and Rahemi, 2018). The major soluble sugars in fig leaves and fruits are sucrose, glucose, and fructose, with the latter being more abundant. Sucrose is always higher than other sugars in the leaves (Gaaliche et al., 2022) since it is the end product of photosynthesis and the primary sugar transported in the phloem. Sucrose in the fig buds could be either transported to or synthesized in the buds, which can photosynthesize when they have chlorophyll. Differently from ‘Dottato’, the presence of glucose and fructose in ‘Petrelli’, already in the buds at early sampling times (June), may indicate that these sugars are not only used by the ripening brebas of this cultivar but are also used by the developing buds on the current-year shoot (flower, mixed, and vegetative buds).

However, in ‘Petrelli’, malic acid is also more abundant in late summer. Pande and Akoh (2010) identified five organic acids in fresh figs: malic, citric, oxalic, ascorbic, and succinic acids. Citric and malic acids are the primary organic acids found in the fruits of figs (Pereira et al., 2017). Shikimic and fumaric acids have also been identified in the peel and pulp of figs (Oliveira et al., 2009). Chlorogenic acid, which is abundant at the end of the growing season in ‘Petrelli’ (Figure 3), is reported to be among the major individual phenolic compounds in whole fig fruit (Talon et al., 1990).

GABA was found to increase in the last sampling times in ‘Petrelli’, following an opposite pattern compared to ‘Dottato’. When considering an important crop such as citrus, GABA is more active or mostly functioning during citrus fruit ripening (Cercós et al., 2006). In particular, a reduction of approximately 42% of GABA was determined by comparing young and older citrus fruits (Cercós et al., 2006). The different GABA contents in the fruit buds of ‘Dottato’ and ‘Petrelli’ may indicate the different evolutions of the buds toward brebas, fig, or even latent buds.

Many genomic tools are available for the ‘Dottato’ cultivar, including a haplotype-phased genome sequence (Usai et al., 2020) and a leaf transcriptome (Fattorini et al., 2021), but no information is available on metabolomics in buds. Previous studies showed that the ‘Dottato’ transcriptome is very different from that of another fig cultivar, such as ‘Horaishi’ sequenced by Mori et al. (2017).

We found that sugar accumulation is a key factor also in bud development. Key genes involved in sugar content variability were previously identified, and their expression was compared between unripe fruits and ripe fruits of cultivars ‘Dottato’ and ‘Brogiotto’ (Fattorini et al., 2021). In addition, in the present work, the sucrose synthase (three loci) showed higher values in Dottato and ‘Petrelli’ buds and for one locus in caprifig. Fattorini et al. (2021) also found in ‘Dottato’ an increased expression of a gene encoding a sucrose synthase, SUSY1, in ripe fruits, while SUSY6 showed a reduced expression. The high content of sucrose at the end of samplings in ‘Dottato’ and ‘Petrelli’ and glucose in caprifig may suggest either a possible use during the dormant stage of the buds or that fruit buds accumulated sugars (as the fruits) without the growth of the fruit. In the latter case, it seems as if the fruit bud is not completely activated in the season to develop a fruit and will overwinter. The fruit buds on the current season shoot seem all ready to develop fruit, with the increase of sugars, but other factors, i.e., hormonal control, make some of them develop in fruits and others to overwinter.

Cui et al. (2019) also identified key enzymes and genes (sucrose synthase 2) involved in sucrose accumulation, and blasting the protein sequence in public databases, it was found that upregulated sucrose synthase gene had high similarity to both Vitis vinifera (88.7%) and Citrus unshiu sucrose synthase (84.4%).

The key role of sugar accumulation was confirmed by the positive correlation found between sugar metabolomic data with the genetic ones; in fact, in the present work, 13 loci and six genes with an expression level higher than 50 RPKM value correlated with the metabolites detected. The glucose-6-phosphate 1-epimerase locus, which converts α-glucose into β-glucose, showed higher expression in brebas compared to figs (main crops) in both cultivars and with the caprifig showing a generally higher level compared to the two cultivars. Glucose-6-phosphate isomerase (one locus), which converts glucose into fructose, was highly expressed in ‘Dottato’ and ‘Petrelli’ figs.




4 Materials and methods



4.1 Plant materials and bud sampling

Two fig cultivars grown at the fig repository equipped with environmental and soil sensors (Torres et al., 2017) at the “P. Martucci” experimental station in Valenzano (Bari) belonging to the University of Bari “Aldo Moro”, Department of Soil, Plant and Food Science—Tree Fruit Unit, and a caprifig tree located in a private orchard not far from the fig repository, were used in this work. The two cultivars were 1) ‘Dottato’ (also known as ‘Kadota’) of the Common type and 2) ‘Petrelli’ of the San Pedro type. In summer 2021, starting from June to October, buds at two different nodes (3 and 5 from the basal part) of the current year shoots of both the two cultivars and the caprifig were sampled at an interval of approximately 10 days starting from June until the beginning of October (with a total of 51 samples), placed in a paper bag, and rapidly transported in a portable fridge to the lab for storage in a −80°C refrigerator. For caprifig samples, RNA-seq and candidate genes analysis were also conducted on fruit buds harvested at two different times, corresponding to profichi and mammoni.




4.2 1H NMR-based metabolomic analysis

Samples were grounded in a mortar using liquid nitrogen. For each node of the two fig cultivars and the caprifig, 30 mg of freeze-dried and powdered buds underwent ultrasound-assisted extraction for 20 min (TransSonic TP 690, Elma, Germany) using 1 ml of a mixture (1:1) of phosphate buffer (0.1 M; pH 6.0) in H2O-d2 (containing 0.01% trimethyl silyl propionic acid sodium salt (TMSP)) and MeOH-d4. The extraction solvents were selected based on previous metabolomics studies (Johri and Konar, 1956; Kim and Verpoorte, 2010; Kim et al., 2010; Jafari et al., 2022), which reported that a mixture of methanol and aqueous phosphate buffer, pH 6.0 (1:1), provided a good overview of both secondary and primary metabolites, giving the best extraction conditions to obtain a broad spectrum of compounds from plant samples. Since there was no previous research on the NMR-based metabolomics of fig buds, we decided to use the most generic extraction protocol for broad-spectrum extraction in NMR-metabolomics. After this procedure, samples were centrifuged for 10 min (17,000 ×g), and then 600 μl of supernatant was transferred into NMR tubes and analyzed. 1H NMR spectra were recorded at 25°C on a Varian Inova instrument (equipped with a reverse triple-resonance probe) operating at a 1H NMR frequency of 600.13 MHz, and H2O-d2 was used as an internal lock. Each 1H NMR spectrum consisted of 256 scans (corresponding to 16 min) with a relaxation delay (RD) of 2 s, acquisition time of 0.707 s, and spectral width of 9,595.8 Hz (corresponding to δ 16.0). A presaturation sequence (PRESAT) was used to suppress the residual water signal at δ 4.83 (power = −6 dB, presaturation delay 2 s). The analysis of 1H NMR profiles of extracts was performed based on an in-house library (for plant metabolites since online libraries are for human metabolites) and in comparison with the literature, and each identified metabolite was also semi-quantified using the internal standard TMSP.




4.3 Multivariate data analysis

For multivariate analysis, data were Pareto scaled and subjected to multivariate data analysis (PCA and OPLS) through SIMCA P+ software (v. 15.0, Umetrics, Sweden). OPLS models were built using the harvesting time for the y-axis, which was calculated as the number of days from the first day of harvesting (ranging from day 1 to day 124). The obtained OPLS models were evaluated by the goodness of fit (R2x (cum) and R2y(cum)) and goodness of prediction (Q2(cum)), together with the parameters given by cross-validation tests: permutation test (performed using 200 permutations) and CV-ANOVA.




4.4 UPLC-qTOF-MS data acquisition

This further analysis was required to confirm the structure of rutin and chlorogenic acid, which were present at low concentrations, and some of their diagnostic 1H NMR signals overlapped with those of other metabolites.

Flower bud hydroalcoholic extracts at a concentration of 0.5 mg/ml were analyzed using a Xevo G2-XS QTof system (Waters, Milford, MA, USA) equipped with a polar C18 analytical column (Luna Omega, 100 × 3.0 mm, 3 µm particle size, Phenomenex, Torrance, CA, USA). The column was kept at 45°C, while the samples were kept at a constant temperature of 10°C. The mobile phases were H2O (A) and MeCN (B). The method and gradients used were the following: 95% A for 1 min followed by a gradient reaching 25% B in 2 min, 25% B was kept for 1 min, then the gradient reached 70% B in 3 min, 70% B was kept for 1 min, and then the gradient reached 5% B again in 20 s. The flow rate was 0.4 ml/min, and the injection volume was 2 µl.

Electrospray ionization in positive and negative modes was applied in the mass scan range of 50−1,200 m/z. Electrospray ionization (ESI) source conditions were as follows: capillary = 0.8 kV, cone = 40 V, source temperature = 120°C, desolvation temperature = 600°C, cone gas flow = 50 L/h, and desolvation gas flow = 1,000 L/h.




4.5 Total RNA extraction and differential gene expression analysis

Fruit buds from caprifig, harvested at two different times, June and July, were used for the extraction of total RNA according to the RNeasy Plant Mini Kit (QIAGEN®) instructions. In order to determine the standard deviation among replicates, at each stage, three different biological replicates were used, with three technical replicates. Considering that no variation was detected among the technical replicates, single samplings were mixed for the subsequent analysis. NanoDrop 2000 was used to check RNA quality and quantity (Thermo Scientific, Waltham, MA, USA) and samples were visualized on 1.5% agarose gel. RNA sequencing preparation and performance were carried out following the instruction reported by Marcotuli et al. (2020). Gene expression values in caprifig samples were quantified and considered statistically differentially expressed with a false discovery rate (FDR) value ≤0.05 as reported in the previous manuscript on fruit development in F. carica L (Marcotuli et al., 2020)..

The gene sequences of F. carica obtained with RNA-seq analysis (e-value threshold ≤E−10 and identity percentage higher than 80%) and differentially expressed in caprifig were assigned to biological process, cellular component, and molecular function through the Gene Ontology (GO) database, and the chromosome locations were identified using the locus ID GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and the Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to find regions of similarity with the ‘Dottato’ genome sequence (Usai et al., 2020). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and National Center for Biotechnology Information (NCBI) databases were queried to define the putative biological pathways of the genes and to determine the role in fruit ripening at two different fruits (time points).

Additionally, expressed genes upregulated and downregulated were compared to ‘Petrelli’ and ‘Dottato’ genes previously analyzed and published (Lama et al., 2022).
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Blueberries are grown worldwide because of their high nutritional value; however, manual picking is difficult, and expert pickers are scarce. To meet the real needs of the market, picking robots that can identify the ripeness of blueberries are increasingly being used to replace manual operators. However, they struggle to accurately identify the ripeness of blueberries because of the heavy shading between the fruits and the small size of the fruit. This makes it difficult to obtain sufficient information on characteristics; and the disturbances caused by environmental changes remain unsolved. Additionally, the picking robot has limited computational power for running complex algorithms. To address these issues, we propose a new YOLO-based algorithm to detect the ripeness of blueberry fruits. The algorithm improves the structure of YOLOv5x. We replaced the fully connected layer with a one-dimensional convolution and also replaced the high-latitude convolution with a null convolution based on the structure of CBAM, and finally obtained a lightweight CBAM structure with efficient attention-guiding capability (Little-CBAM), which we embedded into MobileNetv3 while replacing the original backbone structure with the improved MobileNetv3. We expanded the original three-layer neck path by one to create a larger-scale detection layer leading from the backbone network. We added a multi-scale fusion module to the channel attention mechanism to build a multi-method feature extractor (MSSENet) and then embedded the designed channel attention module into the head network, which can significantly enhance the feature representation capability of the small target detection network and the anti-interference capability of the algorithm. Considering that these improvements will significantly extend the training time of the algorithm, we used EIOU_Loss instead of CIOU_Loss, whereas the k-means++ algorithm was used to cluster the detection frames such that the generated predefined anchor frames are better adapted to the scale of the blueberries. The algorithm in this study achieved a final mAP of 78.3% on the PC terminal, which was 9% higher than that of YOLOv5x, and the FPS was 2.1 times higher than that of YOLOv5x. By translating the algorithm into a picking robot, the algorithm in this study ran at 47 FPS and achieved real-time detection well beyond that achieved manually.
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1 Introduction

Blueberries are some fruit with high flavor and nutritional value and are loved all over the world, and as a result, blueberry cultivation is spreading rapidly around the globe (Li et al., 2018). Since the 21st century, China has been growing blueberries on a large scale and is the leading blueberry grower in the Asia-Pacific region (Li Y. D, et al., 2021). However, given the extreme difficulty and workload of blueberry picking, it has led to a significant reduction in efficiency. To address these issues, new automated picking robots are being created to fill the production gap. More and more detection algorithms are being created to enable these robots to have the ability to accurately identify the ripeness of the blueberries so that the robots can accurately pick the ripe fruit.

To alleviate manual pressure and labor costs while increasing the efficiency of ripeness detection, some traditional machine vision algorithms have been gradually introduced to detect fruit ripeness. For example, Aquino et al. (2017) used mathematical morphology with pixel classification to estimate the number of berries in a single cluster of grapevines, which has high stability, but the images run too slowly, which leads to a significant decrease in the real-time performance of the algorithm. Zhang et al. (2020) proposed a method based on multi-feature fusion with the support vector machine method for fruit counting with an accuracy of 78.15%. Liu et al. (2018) converted the image from RGB space to Y′CbCr space by applying a visual detection algorithm with an elliptic boundary model, and then introduced ordinary least squares (OLS) to fit an implicit second-order polynomial of the elliptic boundary model in Cr–Cb color space. Liu et al. (2019) proposed an apple fruit detection algorithm based on color and shape features with a recall of more than 85%. However, the robustness of the method is poor. Tan et al. (2018) explored a method to identify and count blueberry fruits based on different ripeness regions by applying the direction histogram of oriented gradient (HOG) features and color features to detect blueberry fruits, but this method had the problem of ineffective recognition of obscured fruits and took longer. Recently, ripening parameters of berries of wine and table grape cultivars have been predicted by using NIR devices with promising results (Ferrara et al., 2022a; Ferrara et al., 2022b), and these devices could be mounted on picking robots.

Taken together, these machine learning-based algorithms do have outstanding advantages over manual detection, but they still have the problem of low detection accuracy or slow detection speed. Given the realities of growing blueberries in clusters and the different maturity of each blueberry in each cluster, the complex environment in which blueberries are grown with serious background interference, and the fact that each blueberry is stuck together and obscured by the others. These situations can lead to traditional machine vision algorithms detecting the wrong ripeness of blueberries or failing to detect blueberries. Therefore, further attempts have been made to introduce deep learning-based algorithms to detect fruit ripeness (Tian et al., 2019; Cecotti et al., 2020; Kuznetsova et al., 2020; Aguiar et al., 2021; Li H, et al., 2021; Lu et al., 2021; Wu et al., 2021; Zheng et al., 2021; Hou et al., 2022; Li et al., 2022; Zheng et al., 2022). For example, Zhu et al. (2020) proposed a faster R-CNN-based algorithm for blueberry fruit detection and recognition that was able to identify blueberries and distinguish their ripeness more accurately and quickly under sunny conditions, but the algorithm was greatly influenced by either the background or light and was not robust. Yang et al. (2022) proposed a lightweight blueberry fruit detection algorithm for multi-scale targets that incorporates a novel attention mechanism. MacEachern et al. (2023) applied YOLOv4 to blueberry ripeness detection and showed that the algorithm has high accuracy for blueberry ripeness detection but given the large computational effort of the YOLOv4 model, later migration to a small, embedded device would lead to a significant reduction in algorithm speed. These deep learning-based algorithms represent a quantum leap in both accuracy and speed compared to traditional machine vision algorithms. However, they are not perfect, and if installed on a platform with good computing power, they can show their performance advantages, but they still have a large number of parameters, which makes it impossible to run these algorithms on some low-power embedded platforms. Manufacturers of agricultural automation equipment currently do not install computationally powerful graphics cards or embedded devices on their equipment in order to reduce the cost of manufacturing the equipment. Therefore, considering the application prospects of our algorithm, we need to reduce the amount of computation required during the algorithm’s operation while improving its accuracy, thus making the algorithm less demanding on the device’s computational power. At the same time, there are many uncertainties in the field, such as changes in light, cultivar growing habits and trellising systems, weather, and air visibility, which can affect the algorithm’s accuracy, so we also want the algorithm to be resistant to these objective factors.




2 Materials and methods



2.1 Algorithm design

To achieve the lightweightness of the blueberry detection algorithm and improve detection accuracy, this paper makes various improvements based on the algorithm structure of YOLOv5x. The final improved algorithm structure is shown in Figure 1B, where Figure 1A shows the YOLOv5x algorithm. To facilitate the description, we divide the algorithm into three parts: backbone structure, neck structure, and head structure, and the specific improvements are as follows:

	For the backbone network part, the structure of MobileNetv3 (Howard et al., 2019) is used in this paper instead, considering that the original structure of YOLOv5x is complex and computationally expensive. MobileNetv3 uses a variety of lightweight strategies and is able to greatly reduce the computational cost of the algorithm. However, after replacing the original backbone network with MobileNetv3, the overall algorithm has shown a certain decrease in its ability to focus on and extract valid information. Therefore, this paper continues to incorporate a lightweight attention mechanism called Little-CBAM into the MobileNetv3 structure. Little-CBAM is an improvement of the CBAM (Woo et al., 2018) structure that enhances the network’s ability to integrate channel and spatial information and adjusts the attention weights of target regions.

	For the neck network, the original YOLOv5x of this part was used eight times, 16 times, and 32 times downsampling for the backbone network to obtain the feature layers of P3, P4, and P5, respectively. The three lines above are shown in Figures 1A, B. However, if the downsampling times are too large, then the deeper feature maps in the model training process will not be able to learn the feature information of the small-sized blueberries. To solve this problem, we add a four-time downsampling feature layer P2 between the backbone network and the neck network, as shown by a red line in Figure 1B.

	For the head structure of YOLOv5x, this paper embeds an improved SENet (Hu et al., 2018) attention mechanism (MSSENet). This structure can enhance feature representation in small target detection networks and anti-interference capability in complex contexts.






Figure 1 | Structural diagram of YOLOv5x and the algorithms in this paper. Where (A) represents the network structure of YOLOv5x and (B) represents the network structure of the improved BlueberryYOLO.



After making these changes to the algorithm’s backbone, neck, and head, the algorithm took longer to train, and the loss curve did not fit for a long time. To solve these problems, the following scheme is proposed in this paper:

	For the algorithmic loss function, the Efficient Crossover Joint Loss (EIOU_Loss) function is used to optimize the model’s overall performance. Moreover, this loss function can reduce the model training time and improve the final detection accuracy compared with the original loss function.

	We use the K-means++ algorithm (Arthur and Vassilvitskii, 2006) to cluster the dataset used for algorithm training so that the generated pre-defined anchor frames are more adapted to the scale size of blueberries, thus improving the accuracy of target detection. In addition, it also reduces the time required for model training.






2.2 Dataset collection

The aim of this study was to identify the ripeness of blueberries grown in a natural environment, which is not only complex but also highly susceptible to severe disturbances by either internal factors (leaves, branching, size of clusters, etc.) or external factors (light, climatic conditions, etc.) (MacEachern et al., 2023). Second, blueberry fruits are closely adhered to each other, and each cluster usually contains blueberries of different maturity levels.

Since this paper focuses on analyzing the application of computer vision algorithms to blueberries, the vision algorithms are distinguished based on the differences in the appearance characteristics of different ripe blueberries, such as color shades, hue saturation, and shape size. Based on these features, we distinguished blueberries into the following three categories: ripe, semi-ripe, and unripe, as shown in Figure 2. Ripe blueberry color is dark purple, large volume, overall color is dark, sugar content is about 15%, acidity is about pH 4.35, TSS is 12.1%; semi-ripe blueberry color is red or lavender, small volume, bright color, sugar content is about 9%, acidity is pH 3.95, TSS is 8.1%; immature blueberry color is green, small volume, very bright color. The unripe blueberries were green in color, small in size, and very bright in color, with a sugar content of 3.8%, an acidity of pH 3.6, and a TSS of 6.8%. In addition, the central role of the algorithm in this paper is to identify the different ripeness of blueberries by the changes in color, morphology, and volume.




Figure 2 | Diagram of the three ripeness levels of blueberries.



The dataset used in this paper was expanded from the published dataset in Reference (Li et al., 2022), with a total of 9,312 images. The dataset was taken at Prince Blueberry Estate in Xinjian District, Nanchang City, Jiangxi Province, with a cultivar of high irrigation blueberry and a planting density of about 3,200 plants per hectare, with a plant spacing of 1.0–1.2 m and a row spacing of 2.5 m. The annual yield of each plant was about 1.5–2.5 kg.




2.3 Dataset annotation and processing

The images are annotated using the annotation tool labeling in the format of the Pascal VOC dataset to produce an.xml annotation file. Deep learning algorithms require a large amount of data to achieve good detection results, and too few training images can lead to overfitting of the model, so this paper performs data enhancement operations on the 9,312 raw photos generated from direct camera shots in Section 2.1. The data enhancement operations we employ specifically include flipping, scaling, panning, rotating, adding random noise combinations, and so on, and simultaneously transforming the corresponding annotation files for each image. The data sets were randomly divided into training (18,498 images), validation (2,642 images), and test (5,286 images). The distribution of the dataset by type is shown in Table 1. In this table, we highlight several factors that can interfere with the target detection algorithm, including light intensity, the density of fruit distribution on each blueberry tree, and the clarity of the camera when capturing images, among others. In the category of light intensity, Backlighting indicates that there is no direct sunlight on the fruit, Normal indicates that the light on the fruit is soft and non-irritating, Strong indicates that the fruit is exposed to direct light and the light intensity is strong. In the category of fruit density, Very sparse indicates that the fruit is scattered, and Normal indicates that the distribution of fruits is very tight, but the phenomenon that adjacent fruits do not obscure each other is not severe. Tightly arranged indicates that the distribution of fruits is tight, but the phenomenon that adjacent fruits obscure each other is very serious. In the category of fruit shot clarity, Very blurry indicates that the blueberry image in the camera is very blurred. Partially blurred indicates that the blueberry image in the camera is partially blurred but not deep, and Very clear indicates that the blueberry image in the camera is very clear.


Table 1 | The quantities in each type of dataset.






2.4 Training and experimental comparison platform

The hardware and software used in this experiment were as follows: Ubuntu 18.04, NVIDIA GeForce RTX 3070; operating system: CentOS 7.6; CUDA version 11.2, CUDNN8.2.1, OpenCV version 4.5.3, and deep learning framework: TensorFlow 2.5.




2.5 Platform for practical application of algorithms

The picking robot used in the algorithm in this study has the appearance and the various components on this robot are shown in Figure 3. The computing platform of the picking robot is a Jeston Xavier NX, an embedded platform with many times less computing power than the RTX3070 presented in Section 2.3.




Figure 3 | Appearance of the picking robot and types of accessories.







3 Algorithm structure analysis



3.1 Introducing Little-CBAM to MobileNetv3

Compared with the YOLO (Redmon and Farhadi, 2017; Redmon and Farhadi, 2018) model, YOLOv5x has improved speed and accuracy, but the model is still significant and unsuitable for deployment on embedded devices with small video memory and arms. Therefore, we replaced the modules CSP1_N and CSP2_N in Figure 1Aa with C3Mobile. The structure of C3Mobile is shown in Figure 1Bf, where the MobileNetv3-Bottleneck is the basic unit that constitutes MobileNetv3.

MobileNetv3-Bottleneck uses deeply separable convolution. The number of model parameters is significantly reduced compared to conventional convolution without compromising the model’s performance. The ratio of the decrease in the number of parameters is:



However, considering the complex background of the actual blueberry plantation, the accuracy of blueberry detection will be reduced to some extent after the YOLOv5x backbone network is changed to MobileNetv3; therefore, we embed Little-CBAM on top of the MobileNetv3 structure. The structure of the specific modified MobileNetv3 is shown in Figure 1Bg. Little-CBAM was obtained by improving CBAM. CBAM is an attention algorithm that uses a fully connected layer to map the tandem channels and spaces of the feature map, and the fully connected layer is a computationally resource-intensive method. In contrast, using 7 × 7 convolutional kernels for spatial feature extraction in spatial attention enhances the perceptual field but also increases computational effort.

In the ECA algorithm, the closer the channels are to each other, the higher the correlation between them; therefore, using a convolution with a one-dimensional kernel instead of a fully connected layer can significantly reduce the computational parameters. In the literature (Yu et al., 2017), a null convolution is proposed, which replaces the 7 × 7 convolution with a 3 × 3 null convolution with a null rate of only 2. The final perceptual field was the same, but the number of parameters was only 9/49 of the original one. To achieve this effect, CBAM combines the above two points and significantly reduces the number of parameters without reducing accuracy. Figure 4 contains CBAM and the improved Little-CBAM, where Figure 4A is the network structure of CBAM. The improved structure is shown in Figure 4B, where   denotes a one-dimensional convolution with a convolution kernel of k, and   denotes a 3 × 3 convolution with a void rate of 2.




Figure 4 | Structure of CBAM and improved CBAM (Little-CBAM). Where (A) is the network structure of CBAM and (B) is the network structure of the improved Little-CBAM.



The insertion of Little-CBAM into MobileNetv3-Bottleneck introduces only a small number of parameters, but it enhances the network’s ability to integrate channel and spatial information and adjust the attention weights of the target region. Specifically, for the MobileNetv3-Bottleneck, the first Ghost module expands the number of channels, after which the insertion of Little-CBAM is the most cost-effective.




3.2 Improved neck

Considering that blueberries appear entirely in bunches, the number of targets to be detected in a single image is large, and the scale of color variability is high. The original YOLOv5x model was poor at detecting small targets because of the loss of small-target information during the convolution and downsampling processes. This study improved the sensitivity of the model to small targets by expanding the shallow structure of the YOLOv5x backbone by one layer and adding a new detection head at the detection end. Figure 5 shows the improved neck structure. It consists of adding a convolutional layer and upsampling after the 76 × 76 feature layer, and then fusing the two upsampling feature layers with the 152 × 152 feature layer to obtain a 152 × 152 detection feature map for small target detection.




Figure 5 | Improved neck structure of the YOLOv5x.






3.3 Introduction and analysis of the MSSENet structure

In this study, we designed SENet to generate a multi-scale fused attention module (MSSENet) by constructing multi-scale fused features and a multi-method feature extractor to enhance feature representation in small target detection networks and prevent interference from complex backgrounds. The structure of MSSENet is inspired by (Zhu et al. 2022).

The next step of feature extraction processing is first performed by integrating multiple scales of feature maps through different scales of convolution kernels. The multi-scale feature fusion within the convolutional layer allows the output feature map to combine resolution and semantic information, providing a richer feature set for the subsequent feature extractor.

The squeezing operation of SENet was subsequently improved to obtain adaptive channel feature information. SENet was designed to construct a feature extractor to obtain global features through global averaging pooling operations. For small targets with little feature information, focusing only on global features may result in a loss of feature information, whereas the global maximum pooling operation focuses more on local features. Therefore, this study introduces two pooling methods for feature extraction that can better capture the local feature information of small targets and enhance the feature extraction capability of the attention mechanism in complex contexts.

Finally, the adaptive channel feature information generated by the two pooling methods is summed and activated to generate attention weight information, which is then weighted with the input feature map to obtain the channel attention map. The Mish (Misra, 2019) activation function is used instead of the ReLU activation function for the first full-connected dimensionality reduction operation, which avoids the use of the ReLU activation function to sparse out too many effective features and helps the module obtain more non-linear relationships. The improved MSSENet attention module is shown in Figure 1Bh, where “+” represents features for summing operations and “×” represents features for weighting operations. For the input feature X ∈ Rc × h × w, c is the number of input channels, h is the input height, and w is the input width. Then the operation of extracting features by convolution of different sizes for the input features is



where V is the convolution of the input features using different-sized convolution kernels, and Xc is the output features convolved with different-sized convolution kernels.

Two separate pooling operations are then performed to obtain better channel feature information, with the original multi-scale features from the previous step as input.





where:   is the global average pooling operation and   is the global maximum pooling operation.

The channel attention vectors are generated by the following equations: Xa for feature extraction on the global average pooling branch and Xm for feature extraction on the global maximum pooling branch. As the features were extracted, they were transformed into a nonlinear space to complete the activation operation.







where: the input is the multi-scale fusion feature from the previous step; Sigmoid is the normalization function; FC is the fully connected function; and Mish is the non-linear activation function.

Next, the calculated attention weights are weighted to the feature map generated in the first step as the final channel attention feature map.






3.4 The improved loss fuction

In this study, CIOU_Loss of the original model was replaced by EIOU_Loss with a more accurate evaluation and faster convergence, which can improve the overall performance of the model and compensate to a certain extent for the increase in training time and slower convergence caused by the addition of the multiscale feature fusion module.

CIOU_Loss considers the overlap area, centroid distance, and aspect ratio of the bounding box regression but ignores the true difference between the width and height and their confidence levels, which hinders the effectiveness of the model optimization. The EIOU_Loss penalty term used in this study contains three components: the overlap loss LIOU, the centroid distance loss Ldis, and the aspect loss Lasp. The first two adopt the advantages of the method in CIOU_Loss, whereas the aspect loss directly sets the optimization target to the minimum difference between the width and height of the real and predicted boxes, resulting in faster convergence. The formula is



where:   and   are the width and height of the minimum external frame covering the real frame and the predicted frame.




3.5 Using K-means++ clustering algorithm

The original anchor frame size of the YOLOv5x model is based on the clustering of the labeled target frame of the COCO dataset, which is different from the fault target size of the transmission line; therefore, the direct use of the model affects the detection performance of the model. The steps are as follows:

(1) A randomly selected sample target frame is used as the initial cluster center, and the minimum intersection over union (IOU) distance A(x) between the remaining sample frames and the current cluster center is calculated as



(2) The probability O(x) of each insulator sample frame being selected as the next cluster center is calculated, and the next cluster center is selected using the roulette wheel method.



where X is the total sample of target marker frames.

(3) Steps (1) and (2) are repeated until K clusters are selected.

(4) The distance from each sample x to the K cluster centers in the dataset is calculated, the sample is assigned to the class corresponding to the cluster center with the smallest distance, the cluster centers for each class are re-calculated as shown in Equation (13), and the update of the classification and cluster centers is repeated until the anchor box size remains the same.



where: l = 1, ····, K; K is the number of anchor frames of different sizes, the value of which is determined by the number of anchor frames in the detection model. Since the detection model in this paper contains four inspection feature maps, each of which corresponds to three anchor frames.

After anchor frame optimization, the models of the four inspection heads correspond to the 152 × 152, 76 × 76, 38 × 38 and 19 × 19 feature maps and corresponding anchor frames in Table 2.


Table 2 | The corresponding anchor frames.







4 Evaluation indicators

In this study, the performance of the target detection model was verified using the metrics of precision (P), recall (R), mean average precision (mAP), and frames per second (FPS), expressed as follows:











where TP and FP are the numbers of accurately and incorrectly identified samples, respectively; FN is the number of unidentified samples; accuracy P is the probability that a detected sample is correctly predicted; recall R denotes the probability that a certain category of samples is detected; N denotes the number of categories set by the model; N = 3 corresponds to the three maturity levels of blueberries; and tavg is the average time required to detect a picture.

The mAP is the average accuracy of the algorithm in identifying blueberries of three maturity levels, which can represent the comprehensive accuracy of the algorithm, so in the subsequent comparison experiments we mainly compare the magnitude of this parameter to derive the strength of the comprehensive accuracy of the algorithm.




5 Results and discussion



5.1 Ablation experiments

The YOLOv5x algorithm was benchmarked by adding each of the improvements mentioned in the study to evaluate the contribution of each improvement to mAP and real-time performance. Tests were conducted using a test set from the dataset used in this study.

From Table 3, Experiment 2 shows a more than twofold increase in speed compared to Experiment 1 after using the MobileNetv3 lightweight network as the backbone feature extraction network, at the cost of an 86% decrease in accuracy. Experiment 5 showed a slight decrease in accuracy compared to Experiment 1 but a significant increase in speed, which suggests that we have achieved a lightweighting of the algorithm. Experiment 3 showed no significant decrease in speed compared to Experiment 1 after adding an extra layer to the neck structure of the algorithm, but at the same time a more significant increase in accuracy. Compared with Experiment 1, Experiment 4 showed that the overall speed of the algorithm did not decrease significantly after MSSENet was embedded in the head network; however, the recognition accuracy improved significantly. Experiment 13 is the proposed algorithm, which has a significant improvement in both accuracy and speed compared to Experiment 1. This shows that the improvements in our algorithm have had a significant effect to some extent.


Table 3 | Ablation Experiments for YOLOv5x.



Compared with Table 4, the computation and model size of this algorithm are only one-sixth of YOLOv5x and are close to YOLOv5s, which achieves light weighting of the algorithm; however, the accuracy is significantly better than that of other algorithms.


Table 4 | Performance comparison of different networks.






5.2 Ablation experiments

To verify the effectiveness of the backbone network lightweighting combined with attention mechanism improvement, comparison experiments were conducted to embed different attention mechanisms in the backbone network. Table 5 shows the final experimental results. In Experiments 2 and 3, we found that mAP, R, and P improved to a certain extent, but FPS decreased significantly, which proves that the idea of embedding the attention mechanism in MobileNetv3 is valid. By comparing Experiments 2 and 4, we found that mAP, R, and P improved to a certain extent, and FPS only decreased slightly, indicating that embedding a small amount of CBAM in MobileNetv3 can significantly improve the accuracy of the algorithm while maintaining its speed. By comparing Experiments 3 and 4, we found that the mAP, R, and P of the two algorithms were essentially the same, but with a significant speed-up. By comparing Experiments 1 and 4, we found that the modified algorithm has only a slight decrease in accuracy and a significant increase in speed, which initially demonstrates the effectiveness of embedding Little-CBAM in MobileNetv3.


Table 5 | Different attention mechanisms embedded in the backbone network.






5.3 Verifying the role of MSSENet

To verify the superior performance of the MSSENet proposed in this study, we added it to the head structure of YOLOv5x separately from other commonly used attention mechanisms. The final experimental results are listed in Table 6, from which we can observe that the values of P, mAP, and R for the MSSENet structure embedded in the head network significantly exceed the effects of embedding other attention mechanisms. This phenomenon indicates that the MSSENet proposed in this study has a considerably higher accuracy improvement for blueberry detection than the other attention mechanisms.


Table 6 | Head networks embedded in multiple attention mechanisms.






5.4 Validity of loss function improvements

Two different models were used to train and detect blueberry images, where Model A was BlueberryYOLO with a loss function of CIOU_Loss and Model B was BlueberryYOLO with a loss function of EIOU_Loss. The initial learning rate was set to 0.001, and the weight was decreased to 0.0005. The training process lasted for approximately 2,000 batches (epochs), and stochastic gradient descent was used as an optimization function to train the models.

Considering that the role of the loss function in the training process of different algorithms is mainly in the early stages of model training, we focused on the loss value curves of the first 1,000 batches. A comparison of the loss value curves of different models is shown in Figure 6. Model A is in a constant state with large oscillations. Compared to Model A, Model B has a larger initial loss value than Model A owing to the EIOU_Loss splitting the width and height losses. However, Model B shows a better decrease rate and convergence ability than Model A after approximately 50 iterations, which confirms that the EIOU_Loss helps accelerate the decrease rate and shorten the convergence time of the model. The final loss value of Model B after convergence was 2.12%, which is significantly lower than that of Model A. This demonstrates that the model with the adjusted loss function can achieve improved training and detection results.




Figure 6 | Loss value curves of different comparison models.






5.5 Comparison of detection performance of different algorithms

We have demonstrated the effectiveness and advantages of each part of the proposed algorithm in Sections 5.1–5.4, and in this section we demonstrate the overall performance of our algorithm by comparing it with other popular and advanced target detection algorithms to demonstrate the comprehensive performance of our algorithm. The data are listed in Table 7, from which we can conclude that the accuracy of Algorithm 7 is higher than that of all the other algorithms. In terms of speed, Algorithm 7 was slightly slower than Algorithm 5, but Algorithm 5 was significantly less accurate than Algorithm 7. Therefore, for balance, the overall performance of Algorithm 7 is significantly better than that of Algorithm 5.


Table 7 | Comprehensive performance comparison of multiple algorithms.



The proposed algorithm was primarily used for blueberry ripeness detection in outdoor fields, and the strength of the algorithm’s immunity to changes in objective factors, such as the environment, must be considered. This section demonstrates the immunity of the proposed algorithm to changes in three objective factors: changes in light, the sharpness of the photographed fruit, and fruit density. The test results are presented in Figure 7. From Figure 7A, the other algorithms have more or less false or missed detections, but the proposed algorithm does not, and each detection result has a high confidence level. From Figure 7B, the proposed algorithm can also effectively apply the interference caused by image sharpness, and the detection results are generally much better than those of the other algorithms. In Figure 7C, the proposed algorithm shows the best resistance to interference when dealing with mutual occlusion between blueberries. The above analysis shows that the algorithm can reasonably cope with interference caused by environmental changes.




Figure 7 | Multiple algorithms for immunity to environmental changes. (A) represents multiple algorithms for immunity to environmental changes. Aa represents backlighting and Ab represents front lighting. (B) represents multiple algorithms for blueberry image clarity immunity. Ba represents clear lighting, Bb represents general blurring, and Bc represents severe blurring. (C) represents multiple algorithms for immunity to interference between fruits when there is severe occlusion between them.






5.6 Validation of practicality

The above experimental results on a PC suggest that the proposed algorithm has considerably good application potential. However, experiments are required to verify whether the algorithms are stable on a platform with low computing power, such as a picking robot. The main control computer of the QIZHI MANI robot uses the new Jetson Xavier NX computing unit from NVIDIA.

The final experimental results are shown in Table 8. +TensorRT appearing in the table refers to the application of the algorithm to the TensorRT framework for acceleration. The main role of the TensorRT framework is to accelerate the algorithm by significantly invoking the computational power of the hardware while essentially not losing the accuracy of the algorithm. All experiments in Section 5.6 apply the TensorRT framework acceleration to the YOLO family of algorithms (YOLOv3, YOLOv4, YOLOv4-Tiny, YOLOv5x, and BlueberryYOLO). We find that the mAP, R, and P in this table are only slightly decreased compared to Table 7. This shows that the migration of the algorithm in this paper to the picking robot does not affect the accuracy of the algorithm. We continue to observe the FPS of the seven algorithms and find that the algorithm in this paper runs at a frame rate of 47 FPS, which indicates that our algorithm is able to run quickly on the picking robot. We find that the mAP, R, and P in this table are only slightly decreased compared to Table 7. This shows that the migration of the algorithm in this paper to the picking robot does not affect the accuracy of the algorithm. We also find that the values of mAP, R, and P for this paper’s algorithm are higher than the accuracy of the other six algorithms, which proves that our algorithm has the highest combined accuracy relative to the other algorithms. We continue to observe the FPS of the seven algorithms and find that the algorithm in this paper runs at a frame rate that surpasses all algorithms except YOLOv4-Tiny, reaching 47.03 FPS, but the mAP, R, and P of the algorithm in this paper are much higher than those of the other six algorithms, and the performance of the algorithm in this paper is higher than that of YOLOv4-Tiny from the perspective of comprehensive performance. In summary, the algorithm in this paper is more stable and faster on the picking robot than the other six algorithms.


Table 8 | Comprehensive performance comparison of multiple algorithms.



Although the immunity of the algorithm in this paper was initially discussed in Section 5.5, we do not know whether the performance of the algorithm changes after migrating it to a picking robot due to the change in the hardware environment. Therefore, we selected the corresponding set of images from the dataset of this paper to test the immunity of the algorithm applied to the picking robot. Table 9 shows the distribution of the number of test sets used in this experiment; Table 10 shows the experimental results data for interference immunity; and Figure 8 shows the line graph drawn from the data in Table 10. Combining the data in Table 10 and Figures 8A–C, we migrated all seven algorithms to the picking robot and ran them under the effect of three disturbance factors, and the final accuracy of this algorithm surpassed the other six algorithms, which indicates that this algorithm has the strongest anti-interference ability against all three disturbance factors when run on the picking robot. Figure 8D shows the trend of the accuracy of this algorithm for three different disturbance factors, from which we can find that the sensitivity of the accuracy of this algorithm to the density of fruit distribution will be higher than the other two disturbance factors.


Table 9 | The test set used in this section of the immunity experiment.




Table 10 | Experimental results data of interference immunity of multiple algorithms.






Figure 8 | A line graph of experimental results on interference immunity of multiple algorithms (A–C) indicates the accuracy trends of multiple algorithms under the action of three different disturbance factors, respectively. For example, when observing the blue curve in (D), 1 means Backlighting, while 2 means Normal, and 3 means Strong. When observing the green curve (D), 1 means Very blurry, while 2 means Partially blurred, and 3 means Very clear. Considering that the training data set of the algorithm is from one region and only one cultivar of blueberry, we need to collect some blueberries from different regions and different cultivars of blueberries as the test set to further test the migration and applicability of the algorithm. To complete the experiment, three cultivars of blueberry were collected from three cities, namely Nanchang, Jiangxi Province, Hangzhou, Zhejiang Province, and Kunming, Yunnan Province, as test sets, namely Highbush blueberry, Lowbush blueberry, and Rabbiteye blueberry. The number distribution is shown in Table 11, and the test result data are shown in Table 12.




Table 11 | Blueberry test sets for different regions and different species.



In analyzing the results, we need to use the column of highbush blueberries from Nanchang in Table 12 as the control group because the dataset used for training the algorithm in this paper is from the dataset in Table 1, which is the highbush blueberries collected from a blueberry farm in Nanchang, Jiangxi Province.


Table 12 | Various algorithms to identify mAP results of multiple blueberry cultivars in multiple locations.



First, we observe the three columns of Nanchang in Table 12 separately, and we find that the accuracy of the algorithm does decrease when the recognition species of blueberry are different from the one used in the algorithm training. For example, the accuracy of the algorithm in this paper decreases from 79.6% to 77.2% and 77.8%, respectively, but the decrease is the smallest compared with the other six algorithms. Therefore, this indicates to some extent that the algorithms in this paper have better migration and adaptability to the recognition of different cultivars of blueberries. Secondly, we compare the highbush blueberries in Nanchang, Hangzhou, and Yunnan, and we can find that when the origin of the blueberries used for detection is different from the origin of the blueberries used in the training of the algorithm, the detection accuracy of the algorithm also decreases to some extent. For example, the accuracy of the algorithm in this paper decreases from 79.6% to 78.7% and 77.8%, respectively, but the decrease is minimal compared with the other six algorithms. The accuracy of this algorithm decreases from 79.6% to 78.7% and 77.8%, respectively. Therefore, to a certain extent, this experimental result can show that the algorithm in this paper has some migration and adaptability when dealing with blueberries in different cities and climates.

To examine the practical applicability and transferability of the algorithm to other fruits, we collected 2,000 images each of pitaya (Red Pitaya), grape (Kyoho grape), and strawberry (Red Strawberry) fruit datasets from the same origin (Nanchang) as the blueberry training set used in this paper, and then made these images into the dataset used for the final algorithm training after the data enhancement method described in Section 2.2. The specific number distribution of these datasets is shown in Table 13. We trained each of the seven algorithms directly on the above datasets to obtain recognition models for different fruits, and the final detection results are shown in Table 14. The detection results are shown in Figure 9.


Table 13 | Number distribution of the dataset for three different cultivars of fruits.




Table 14 | Multiple algorithms for different fruit detection accuracy.






Figure 9 | Multiple algorithms for immunity to environmental changes. (A) represents multiple algorithms for the detection effect of dragon fruit, (B) represents multiple algorithms for the detection effect of grapes, and (C) represents multiple algorithms for the detection effect of strawberries.



By analyzing Table 14, we can see that our algorithm has achieved a good level of AP, R, and P, surpassing the other six algorithms. Our algorithm performs better at detecting grapes compared to dragon fruit and strawberries, while its detection performance for strawberries is the worst. The main reason is that the picking robot only needs to recognize a whole bunch of grapes instead of individual grapes when picking and locating them, and there is also a relatively large gap between each bunch of grapes during the actual picking process. However, strawberries are heavily obscured by leaves during their growth, which to some extent affects the accuracy of the algorithm. Overall, our algorithm has demonstrated good performance and algorithm transferability in recognizing different cultivars of fruits. The ninth figure shows the detection results of seven algorithms on three different fruits. It can be seen from this figure that the algorithm proposed in this paper has no obvious missing detection or false detection, and the confidence level of each detected target is higher than that of other algorithms.





6 Conclusion

In this study, we propose a BlueberryYOLO-based blueberry ripeness detection algorithm that is suitable for running on a blueberry picking robot. The experiment result shows that MobileNetv3 introduces a Little-CBAM structure, replaces the original backbone structure, enables the algorithm to have a stronger focus on blueberries, and significantly reduces the computational effort of the algorithm. This paper extends the original structure with a layer of feature fusion structure, which enables the algorithm to have a stronger feature extraction capability for small targets. We embedded a new attention mechanism, MSSENet, which can significantly enhance the feature representation capability of a small target detection network and the anti-interference capability of the algorithm. Our algorithm has a final mAP of 78.4% on the PC terminal, which far exceeds other advanced algorithms. When the algorithm was transferred to the picking robot, it was able to run at a frame rate of 47.06 FPS with no significant change in accuracy, achieving real-time operation. Also, our algorithm has good transferability and applicability, and the algorithm in this paper has the possibility of being used on other fruits as well.
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Biostimulants have different effects on plants. The aim of this paper is to determine responses of the ‘Alsószentiváni 117’ walnut cultivar on foliar applications of different biostimulants (Wuxal Ascofol, Kondisol, Alga K Plus). The nut traits (nut length, nut diameter, nut weight, kernel weight) and some phenolic compounds of the kernel were measured and detected. In 2020, during warmer early spring weather conditions under pistillate flowering receptivity, chlorogenic acid and quercetin content of kernels treated with Kondisol were higher than in control. All biostimulants influenced positive effects on catechin and rutin content, as well as treatments made with Wuxal Ascofol and Kondisol increased the juglon content of the kernel. In 2021, when the spring weather was typical for that period, only the Kondisol treatments had increasing effects on the catechin and chlorogenic acid content, than the control. The rutin and quercetin concentrations reached the highest value in this trial by Alga K Plus applications. The juglon content decreased in this year compared to the control. The pirocathecin, cinnamic acid, and gallic acid (except Wuxal Ascofol treatment in 2021) content decreased in all treatments in both observed years. Responses of woody fruit species on biostimulants applications depend on the weather conditions. Biostimulants had positive effects on the nut size characteristics in both observed years.




Keywords: HPLC, inner content value, kernel, phenolic compounds, nut characteristics




1 Introduction

There is a keen interest in nut tree crops worldwide, because their production shows a massive increasing trend in many countries. During the last two decades the global Persian or English dried walnut (Juglans regia L.) production increased by 20% annually. Currently, the harvested quantity of dried walnuts with shells is 3.5 million tons globally (FAO, 2023). In Hungary, the ecological demands of walnut are similar to wine grape (Vitis vinifera L.) (Nyitrainé Sárdy et al., 2022) and apricot (Prunus armeniaca L.) (Mendelné Pászti et al., 2023). The growing area doubled to 6,000 ha during the past three decades, and the production reached the 6,000 tons dried shelled nuts annually (FAO, 2023).

The cultivars with large, at least 32 mm in diameter nut size are the most valuable product on the market (Akca, Y et al., 2016; Vahdati et al., 2019; Iordănescu et al., 2021; Özcan et al., 2022; Sokolova, 2022; Sutyemez et al., 2022; Paunović and Rade, 2023). There are some possibilities for growers to increase the nut size and to enrich the phenolic compounds of kernels. Among the phenolics, ellagic acid, ferulic acid, gallic acid, catechin, vanillic acid, caffeic acid, sinapic acid, salicylic acid, rutin, and epicatechin were abundant in the kernel and seed coat (Colaric et al., 2005; Bujdosó et al., 2014; Gharibzahedi et al., 2014; Kónya et al., 2015; Trandafir et al., 2016/a; Rahmani et al., 2018; Kafkas et al., 2020; Trandafir and Cosmulescu, 2020; Shen et al., 2021; Medic et al., 2021/a; Medic et al., 2021/b; Li et al., 2023; Wu et al., 2023). Different papers reported quite similar quantities of phenolics in three different forms, however their sequence is always the same. The largest quantity of the phenolics is in free form, which rate is 51.1%-75.8%, followed by bound form (17.7%-38.0%) and esterified form (1.3%-18.7%) (Persic et al., 2018/a; Wu et al., 2021; Wang et al., 2022; Wu et al., 2023). The main source of the phenolic compounds (Colaric et al., 2005; Persic et al., 2018/a; Sheng et al., 2021; Medic et al., 2021/a; Jin et al., 2022) is pellicle, which contains almost 95% of the phenolic compounds, which can be detected in kernel (Slatnar et al., 2015). Positive and very strong correlations were found between the total phenolic content in free, esterified, and bound forms in pellicle and the pellicle color (0.920, 0.990, 0.940) (Wang et al., 2022). Kernels with a yellow pellicle contain more total phenolic content and flavonoids than a kernel with red pellicle (Trandafir et al., 2016/b; Peršić et al., 2018/b).

Beside the genetic backgrounds of the cultivars, just usage of the biostimulants is the only way to reach both aims described above, as they do not apply mechanical and chemical thinning in the nut tree production nowadays. The biostimulants have some positive effects on the plant characteristics, which can be seen from outside and can be measured inside. Usage of them is typical for herbaceous species mostly. In the nursery production usage of biostimulants (benzyladenine in 0.02%) increased feathering of the woody fruit bearing species such as apple, European plum, and cherries (Magyar and Hrotko, 2002). Furthermore, biostimulants had a positive influence on the growth of container grown shrubs, this application (applied biostimulants: Kelpak® in 0.3%, Yeald Plus® in 1.5%, Bistep in 0.5% dosages) improved their market value (Kovács et al., 2017). They increased the yield of different crops such as on faba bean (Lammas et al., 2022.), barley (Lakić et al., 2022), spring wheat (Lozowicka et al., 2022), wheat (Iwaniuk et al., 2022), sweet pepper (Ombódi and Toók, 2022), and potato (Mystkowska et al., 2022). Yield of peanuts was increased 25% to 296% after usage of the biostimulant treatments (Khudaykulov et al., 2021) compared to the control. Length of spike on spring barley plants increased significantly, and weight of grains of spring barley increased also up to 30% to 31% (Lammas et al., 2022) with 7% up to 14% on corn (Ajaj et al., 2020). Number of seeds per pods of faba bean become more with 22% (Lakić et al., 2022), oil content of peanut increased 2% to 7% after the application (Khudaykulov et al., 2021) compared to the control. Protein content of spring barley was increased by 11.9% to 12.8% by usage of Restart Zh (Lammas et al., 2022.). On ‘Oita 4’ mandarin easily extractable glomalin-related soil protein application combined with some other agricultural treatments (fruit bagging, reflective film mulching, and grass-proof cloth mulching) had positive effects on fruit quality (coloration value, hardness, fruit size, weight of pulp, peel and single fruit) (Lei et al., 2023). On strawberry, biostimulant applications had an effect on the yield and total anthocyanin content, but there were no effects on the total soluble sugar and acid content (Popovic et al., 2022). The biostimulant treatments decreased the mycotoxins contamination in the seeds of spring wheat (Lozowicka et al., 2022), and spring barley (Lammas et al., 2022). Among Eastern Bulgarian conditions ‘Lozen 1’ coriander contained from 2.9% to 9.6% more essential oil content after applying the biostimulant Fertigrain – 1.26% and the foliar fertilizer Masterblend – 1.25% (Georgieva et al., 2022). On oilseed plants usage of HL100, HLN55, and TH1-20% biostimulants decreased the saturated (by 3.5%, 1.74%, and 4.7%) and polyunsaturated fatty acids (by 2.74%, 0.59%, and 3.1%) content, however the monounsaturated fatty acid content increased (by 0.99%, 0.58%, 1,47%) (Petrova et al., 2023). Application of potassium (K) foliar fertilizers (such as Alga K Plus – 1%) had a moderate increase of cluster weight of wine grape cultivar ‘Zéta’. It also increased the sugar content in its juice and acceleration of ripening processes compared to the control vines. These results pointed out the positive effects of K foliar fertilization during the ripening process due to K deficiency of grapevines (Zsigrai and Juhász, 2000).

Currently, there is no data about effects of biostimulants’ applications on walnut, therefore the possible responses of this nut crop should be checked. Aim of this study was to examine the responses of nut size characters and some phenolic compounds of walnut kernel on usage of different biostimulants applied in a bearing orchard.




2 Materials and methods



2.1 Plant material and orchard system

The trial was conducted in a commercial orchard of Hilltop Vinery Ltd. located in Kocs (North-West Hungary, GPS coordinates 47°34’57” N, 18°15’04” E, 193 m above sea level). The orchard was planted in fall of 1999 with grafted trees. The ‘Alsószentiváni 117’ scion was grafted on Juglans regia selected seedling rootstocks, and planted out 10 x 10 m in the rows and between the rows, and trained to a central leader canopy. The orchard was not irrigated. The observed trees produced 30 to 50 cm one-year-old shoots during the previous year, which means medium condition in the practice.

The examined cultivar, derived from the walnut breeding program of the Fruit Research Centre of the Hungarian University of Agriculture and Life Sciences in Budapest – Érd (Hungary), is a selection from the local population. It has early budburst (early April) and the earliest harvest time (second decade of September) in the Hungarian walnut assortment. It is a proterandric cultivar. It has an oval, large nut size, which means 33 to 35 mm in diameter, large kernel recovery (40 to 45%), and a light brown shell and kernel color (Bujdosó et al., 2022).




2.2 Soil and climatic conditions

The trial was planted on loamy soil with high lime (pH = 7.5, total lime content in the top 120 cm layer 5%) and humus content (0,8–1.5%). Considering the Arany-type cohesion index (Dobos et al., 2010) the KA = 49 refers to medium compactness. Meteorological conditions of the site are presented in Table 1. The 2020 spring was warmer during the pistillate flowering receptivity, than spring of 2021.


Table 1 | Meteorological data during the data collection in 2020 and 2021.






2.3 Treatments

The biostimulants used in the trial were tested in a small plot trial design. 10-10 sample walnut trees per treatment were selected in such a way as to represent the different growing conditions of the area. Five replications of the samples taken per each treatment and the untreated control, where one sample consisted of 50 nuts, thus the physical parameters of 250 nuts per treatment were measured individually. Three biostimulants were tested that can also be used in organic farming to increase yields and improve nut quality: Wuxal Ascofol (Kwizda Agro Hungary Kft.), Alga K Plus (Leili Agrochemistry Co. LTD) and Kondisol (Huminisz Kft). Each tested product was applied according to the product description and instructions.

Used biostimulants:

Wuxal Ascofol: This biostimulant is from algae extracts derived from seaweed Ascophyllum nodosum, which belongs to the group of yellow algae. Its active ingredients are N – 30 g/l; K – 20 g/l; B – 38 g/l; Mn – 10 g/l; Zn – 6,3 g/l. In the case of stone fruit species, the recommended dose to increase the size of the fruit (to stimulate cell division and elongation) is 3 l/ha. The application was foliar spraying after leafing, when the leaf surface was sufficiently developed. Due to its natural plant hormone content, it increases the stress tolerance of plants, especially in the early phase of the fruit growth, and stimulates cell division and elongation, which can be expected to improve the quality and quantity of the crop. Due to its high microelement content, it promotes fruit setting and strengthens the plants’ natural resistance and improving frost tolerance (Website 1).

Alga K Plus: It is a foliage fertilizer with a very high potassium (K2O 30%) and algae content. The combination of the algae extract and potassium found in it can be very effective in the case of walnuts, especially as walnuts are a potassium-demanding plant. Its application is recommended for most of fruit species from the beginning of ripening. The combination of the algae extract and potassium effectively improves the fruit quality, especially the sugar and dry matter content, the amount of flavoring substances, and contributes to the development of the marketable color. To improve the quality of grape and fruit crops, to increase the sugar content, to add color, the advised dose is 3–5 kg/ha and the maximum concentration is 0.7–1.0%. The dose of the Alga K Plus treatment in walnuts was 3 kg/ha (Website 2).

Kondisol: The physiological effect of the Kondisol product family is primarily due to different sized humic acids and fulvic acids. In addition, the products contain enzymes, co-enzymes, polysaccharides, various macro-, micro- and meso-elements. Mechanism of action of the product is humic acids have a “carrier” role, since they significantly contribute to the faster uptake and better utilization of macro-, micro- and meso-elements, as they adsorb metal ions in the form of metal humates. Due to the oxygen-carrying and respiratory processes-accelerating effect of humic acids (they stimulate peroxidase activity), Kondisol enhances root formation, plant growth, enzyme activity and protein synthesis resulting to increased yields. It can be used to reduce the year effect, to treat and eliminate relative nutrient deficiencies (ion antagonisms: e.g. P-Zn, K-Mg). In the case of unfavorable soil conditions (e.g. compaction, excessive water saturation) it helps the uptake and utilization of mineral elements and nutrients. It also reduces the scale of stress on plants in extreme weather and stress situations (e.g. drought, cold weather, heavy rainfall). It is characterized by fast uptake and excellent utilization (several times faster related to traditional foliar fertilizers). Applied dose in the treatments was 6 l/ha, which matched the application recommendations (Website 3).

Timing of treatments:

The products presented above were applied with a mist blower motorized spraying machine to evenly apply the treatment on the canopy. Date of application for all three products was on 11th May 2020 and on 7th May 2021. The different treatments were separated from each other by a safety (untreated) row of walnut trees.

Sample collection:

Nut samples from three treatments and the untreated control for the laboratory tests were collected during the harvest time (when 50% of the green husks were opened). A total of 250 nuts per treatment (in 5 replications, 50 nuts per replication) were taken randomly. The sample collection date for Alga K Plus and Kondisol was on 24th September 2020. At this time, the nuts of the trees treated with Wuxal Ascofol were still immature (their green husks did not crack). In the case, the samples were collected one week later, on 30th September 2020. In 2021, all samples were collected on 1st October.

During laboratory observations the phenolic compounds (pirocatechin, catechin, chlorogenic acid, rutin, quercetin, juglon, cinnamic acid, and gallic acid) and their physical parameters (nut size (nut length, nut diameter), dried nut weight, dried kernel weight, kernel recovery (dried kernel weight/dried nut weight)) were checked.




2.4 Chemicals, sample preparation, analytical conditions



2.4.1 Chemicals for sample preparation

Analytical HPLC grade standards of different phenolic compounds such as catechin (PubChem CID: 73160), chlorogenic acid (PubChem CID: 1794427), cinnamic acid (PubChem CID: 44539), epicatechin (PubChem CID: 72276), gallic acid (PubChem CID: 370), juglone (PubChem CID: 3806), pyrocatechin (PubChem CID: 161125), quercetin (PubChem CID: 5280343), rutin (PubChem CID: 5280805) and the solvents phosphoric acid and methanol (MeOH), were purchased from Sigma Aldrich Chemical Co. (St. Louis, MO, USA). The standards (0.5 g mL-1) were dissolved in methanol and a 100× dilution was used as the working standard for HPLC.




2.4.2 Sample preparation

1000 g of dried kernels –contained their seed coats– (drying at 30°C up to 10% of moisture content) were examined. 2 g samples were taken to Falcone-tubes and extracted in 10 mL methanol for 12 hours in the dark (4°C, using an Edmund Bühler SM 30 control shaker on 250 rpm min-1). The supernatant was decanted and centrifuged in Eppendorf tubes in a Hettich Mikro 22R (Andreas Hettich GmbH & Co. KG Tuttlingen, Germany) centrifuge (15000 rpm min-1 for 5 min). The supernatant was filtered on a 0.45 μm MILLEX® HV Syringe Driven Filter Unit (SLHV 013 NL, PVDF Durapore), purchased from Millipore Co. (Bedford, MA, USA), and injected into the HPLC system. The quantities of the individual phenolic compounds are given in mg g-1.




2.4.3 Analytical conditions

The analysis carried out at the HPLC Laboratory of Department of Fruit Growing, Institute of Horticultural Science, Hungarian University of Life Sciences. The WATERS High Performance Liquid Chromatograph (purchased from Waters Co., Milford, MA, USA) was equipped with 2487 Dual λ Absorbance Detector, a 1525 binary HPLC pump, and in-line degasser, a column thermostat (set at 35°C) and an 717plus auto sampler (set at 5°C) and was controlled using EMPOWER TM2 software. An Atlantis dC18 5 μm 4.6X150 mm column (Waters Co., Milford, MA, USA) was installed. The gradient mobile phase was A: H2O:MeOH:H3PO4 = 940:50:1; B: MeOH (0–30 min: A 100%–10%, 30–30.1 min: 10%–100%, 30.1–31: A 100%) with a flow rate 1 cm3 min-1, the pressure in the column was 2500 ± 10 psi at a column temperature of 30°C. The running time was 35 minutes. Each injected volume was 20 μL. The sampling rate was 10 pt sec-1, and the phenolic components were monitored at a wavelength of 280 nm.





2.5 Statistical evaluation

The data derived from compositional analyses were evaluated using the SPSS software (IBM SPSS 27.0, Chicago, IL, USA). The letters, a, b, c indicate significantly different groups at SD5%, while cultivars that are not significantly different are indicated with the same letter. Values represent the mean and standard deviation of five replicates from each sample.





3 Results

The applied biostimulants had different effects on the physical parameters of the nuts. In the case of nut length, all treatments had positive effects compared to the control during both years (Figure 1).




Figure 1 | Effects of different biostimulants on nut length (mm) of ‘Alsószentiváni 117’ walnut cultivar (SD5%(2020)=0.6, SD5%(2021)=0.6).



All treatments resulted to a larger nut diameter than the control. In both years, the diameter of the examined nuts reached the lowest border of first grade category (Figure 2).




Figure 2 | Effects of different biostimulants on nut diameter (mm) of ‘Alsószentiváni 117’ walnut cultivar (SD5%(2020)=0.4, SD5%(2021)=0.25).



In both observed years, all treatments resulted to heavier dried nut weight compared to control. Among the treatments, the heaviest dried nut weight was produced by Wuxal Ascofol in 2020. In 2021, nuts after all treatments had the same value of dried nut weight. The Alga K Plus treatments reached the same values in both observed years; there was no effect of year in this case (Figure 3).




Figure 3 | Effects of different biostimulants on dried nut weight (g) of ‘Alsószentiváni 117’ walnut cultivar (SD5%(2020)=0.5, SD5%(2021)=0.3).



All treated kernels were heavier than the control in 2020 and in 2021. Among the Wuxal Ascofol treatments, a heavier kernel weight was produced in 2020, than in 2021. Among the Kondisol, Alga K Plus, and control treatments, heavier dried kernel weights were measured in 2021 compared to 2020 (Figure 4).




Figure 4 | Effects of different biostimulants on dried kernel weight (g) of ‘Alsószentiváni 117’ walnut cultivar (SD5%(2020)=0.4, SD5%(2021)=0.5).



The applied biostimulant treatments had positive effects on the kernel recovey in both observed years, except the Kondisol treatment had a significantly negative effect in 2020 compared to the other treatments (Figure 5).




Figure 5 | Effects of different biostimulants on kernel recovery (%) of ‘Alsószentiváni 117’ walnut cultivar (SD5%(2020)=6.1, SD5%(2021)=5.2).



There were big differences in the quantity of phenolic compounds detected in the kernel between the two years during our research. In 2021, all observed compounds had higher concentrations compared to their quantities measured in 2020.

Figure 6 shows a typical HPLC chromatogram of ‘Alsószentiváni 117’ (retention times of observed phenolic compounds; pirocathecin 8.6 min, catechin 9,5 min, chologenic acid 12,2 min, rutin 16.3 min, quercetin 18.5 min, juglon 19.4 min, cinnamic acid 21.2 min, gallic acid 32.9 min).




Figure 6 | Typical HPLC chromatogram of walnut extraction (‘Alsószentiváni 117’) at 280 nm.



In 2021, the pirocatechin concentration was 5 to 14-fold higher than in 2020. In 2020, the highest concentration of pirocatechin was measured in control, followed kernels treated with Alga K Plus, Wuxal Ascofol, and Kondisol. In 2021, the quantity of this compound decreased in all kernels with applied biostimulants treatments compared to the control (Figure 7).




Figure 7 | Effects of different biostimulants on pirocatechin content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B)(SD5%(2020)=0.01 SD5%(2021)=0.15) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



For catechin, kernels from trees treated with Wuxal Ascofol and Alga K Plus reached the highest concentration in 2020. In the case of 2021, the Kondisol treatment had the highest concentration followed by control, Alga K Plus, and Wuxal Ascofol treatments. The concentration of catechin was 7-fold higher in the control and Kondisol treatment, followed by a 4-fold after Wuxal Ascofol and Alga K Plus treatments in 2021 compared to 2020 (Figure 8).




Figure 8 | Effects of different biostimulants on catechin content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.05, SD5%(2021)=0.6) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



The sequence of chlorogenic acid content was similar in both observed years, but the chlorogenic acid concentration was 4-fold higher after all treatment applications in 2021, than in 2020. Kernels treated with Kondisol reached the highest concentration followed by Alga K Plus, as well as Wuxal Ascofol treatments and control (Figure 9).




Figure 9 | Effects of different biostimulants on chlorogenic acid content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.11, SD5%(2021)=0.3) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



There were large differences in the rutin concentration between 2020 and 2021. Kernels from Alga K Plus treatment and the control produced 17-fold, Wuxal Ascofol-treatment 15-fold, and Kondisol treatment had 10-fold higher rutin quantity in 2021 than in 2020. Among the biostimulants the sequence was different in both observed years. In 2020, kernels with Kondisol had the highest rutin concentration, followed by the two other biostimulants and control, which reached the same amount. In 2021, kernels with Alga K Plus application produced the highest concentration of rutin, followed by Kondisol, control, and Wuxal Ascofol treatments (Figure 10).




Figure 10 | Effects of different biostimulants on rutin content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.12, SD5%(2021)=0.3) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



The quercetin concentration increased 4-fold from 2020 to 2021 after all treatments. Within the observed years, there were quite similar values. In 2020, the Kondisol treatment reached the highest value, followed by control, Wuxal Ascofol, and Alga K Plus applications. In 2021, Alga K Plus, Kondisol treatments, control, and Wuxal Ascofol applications were in descending order (Figure 11).




Figure 11 | Effects of different biostimulants on quercetin content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.08, SD5%(2021)=0.22) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



Juglon is one of the most important compounds of walnut, therefore we put more attention on it. The control, kernels with Wuxal Ascofol, and Alga K Plus treatments produced 3-fold, the kernels with Kondisol reached a 2-fold higher juglon concentration in 2021 than in 2020. Among the treatments the sequence of juglon concentration was different between 2020 and 2021. In 2020, Kondisol, Wuxal Ascofol, control, and Alga K Plus treatments were the decreasing order. However, the control reached the highest concentration of juglon in 2021, followed by Wuxal Ascofol, Alga K Plus, and Kondisol applications (Figure 12).




Figure 12 | Effects of different biostimulants on juglon content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.2, SD5%(2021)=1.1) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



The cinnamic acid concentration showed a 1.2 to 1.4-fold increase from 2020 to 2021. During 2020, the control produced the highest cinnamic acid quantity followed by samples with Kondisol, Wuxal Ascofol, and Alga K Plus treatments. In 2021, again the control reached the highest cinnamic acid concentration followed by Kondisol, Alga K Plus, and Wuxal Ascofol treatments (Figure 13).




Figure 13 | Effects of different biostimulants on cinnamic acid content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.9, SD5%(2021)=0.7) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.



In 2021, we detected 3 to 4-fold higher gallic acid concentration after all treatments than in 2020. In 2020, the control had the highest gallic acid quantity, followed by samples treated with Wuxal Ascofol, Alga K Plus, and Kondisol. In the next year, we measured the highest concentration in the control and in a sample with Wuxal Ascofol, Alga K Plus and Kondisol treatments (Figure 14).




Figure 14 | Effects of different biostimulants on gallic acid content (mg/g kernel) of ‘Alsószentiváni 117’ walnut kernel in 2020 (A) and 2021 (B) (SD5%(2020)=0.5, SD5%(2021)=1.8) The scale on the Y axis is different on the a and b figures due to quantities caused by effects of the year.






4 Discussions

The applied biostimulants had different effects on nut and kernel characteristics as well as the quantity of phenolic compounds in the kernels during the two trial years. All nut size and kernel traits increased after the biostimulants treatments in both observed years, except in the case of kernel recovery after Kondisol treatment in 2020. There was a significant difference between the treated nut length and the control in 2020, this difference was not observed in 2021. There were no significant differences in the nut diameter during the observed two years. There were significant difference in dried nut weight between the control and nuts treated with Wuxal Ascofol in 2020. There were significant difference in dried kernel weight between the control and nuts treated with Wuxal Ascofol in 2020. In 2021, the Alga K Plus produced a significantly positive effect on kernel recovery than the other treatments and control. It is clear, that there were huge differences between years of 2020 and 2021. The early spring weather during the pistillate flowering receptivity was warmer in 2020 than in 2021, which might have caused this difference.

According to Wielgolaski (2001) climatic factors correlated well to the phenological stages, and the air temperature is reported to be the major force for the onset of the early spring phenological stages (Rodriguez-Rajo et al., 2003; Wielgolaski, 2003; Crepinsek et al., 2009; Cosmulescu et al., 2010; Crepinsek et al., 2012; Bîrsanu Ionescu and Cosmulescu et al., 2017; Cosmulescu et al., 2015; Bujdosó et al., 2022) such as pistillate flower receptivity. Negative relationships between the heat demand of early spring phenological stages and daily air temperatures indicate that warm weather is required for early flowering (Emberlin et al., 2007). ‘Alsószentiváni 117’ has one of the earliest pistillate flowering receptivity listed on the Hungarian walnut assortment.

Respect to phenolic content, this study analyzed eight compounds. In 2020, pirocatechin content was significantly lower than the control. In 2021, again the control had significantly higher pirocatechin content, than those treated with Wuxal Ascofol and Kondisol. Catechin content of kernels treated with Wuxal Ascofol and Alga K Plus were significantly higher than in control and Kondisol in 2020. In the next year, there was no significant difference in the catechin content in all treated kernels. The chlorogenic acid content was higher in kernels treated with Kondisol in both years. In 2020, the Kondisol treatment had significant higher value in chologenic acid content. In 2021, the difference in chologenic acid content was only significant between kernels treated with Wuxal Ascofol and Kondisol. In rutin content, significant differences were only observed in kernels treated with Kondisol in 2020. For the case of quercetin content, kernels treated with Kondisol and Alga K Plus had the highest quantity. They were significantly different from those treated with Wuxal Ascofol and the control in 2021. Significant difference in juglon content was observed between kernels treated with Alga K Plus and Wuxal Ascofol in 2020. In the next year, the untreated kernels had the highest juglon content, followed by kernels treated by Wuxal Ascofol, both were significant different from kernels treated with Kondisol. There was no significant difference in the cinnamic acid content in both observed years. In the case of gallic acid, untreated kernels had the highest content, which were significantly different from all treated kernels in 2020. There was no significant difference in gallic acid in 2021.

Our results confirm statements of Popovic et al., 2022, and Petrova et al., 2023 that different effects of the biostimulants on the compounds can be detected.




5 Conclusions

The biostimulants affect the plants at different levels, and we have to underline that responses of woody fruit species on biostimulants depend not only on biostimulant – host plant interactions, but also on weather conditions during and after their application. When warm spring weather conditions occurred, not only significant differences in the nut size characteristics were observed, but all examined characters increased.
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The swelling agent is a plant growth regulator that alters the composition and content of nutrients and volatile gases in the fruit. To identify whether grape fruit had been treated with swelling agent, the odor information and quality indexes of grape berries treated with different concentrations of swelling agent were examined by using electronic nose technology and traditional methods. The contents of soluble sugars, soluble solids, soluble proteins and vitamin C were significantly increased in N-(2-chloro-4-pyridyl)-N’-phenylurea (CPPU) treated fruit. The contents of hexanal, (E)-2-hexenal, and nonanal aldehydes decreased significantly. Similarly, the levels of phenyl ethanol, 1-octanol, ethanol, and ethyl acetate alcohols and esters also decreased noticeably. Additionally, the levels of damascenone, linalool, and geraniol ketones and terpenoids decreased. However, the contents of benzaldehyde, D-limonene, acetic acid and hexanoic acid increased. In addition, the electrical signals generated by the electronic nose (e-nose) were analyzed by linear discriminant analysis (LDA), support vector machine (SVM) and random forest (RF). The average recognition rate of SVM was 94.4%. The results showed that electronic nose technology can be used to detect whether grapes have been treated with swelling agent, and it is an economical and efficient detection method.
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1 Introduction

Grape (Vitis vinifera L.) is one of the longest cultivated and most productive fruit tree species in the world and one of the most popular fruit crops. As one of the world’s leading grape producers, China’s viticultural area and grape production have been on the rise. Grapes are popular in the market because of their high nutritional value (Samoticha et al., 2017; Silva et al., 2018; Leng et al., 2023), such as vitamins and mineral. For table grapes, grape fruit aroma is a secondary metabolite, which has an important impact on grape quality (Yao et al., 2021) and is an important characteristic that determines consumer preference (Ji et al., 2019). One of the most important factors affecting the aroma profile of a particular grape variety is the stage of ripening (Yao et al., 2021). Studies have shown that grape fruit contains volatile aromatic substances, such as esters, alcohols, aldehydes and others (Diéguez et al., 2003). Consequently, the aromas of table grapes are very important to study.

Plant growth regulators, classically referred to as phytohormones, are a group of chemically diverse compounds that govern or influence both plant developmental programs and responses to inner and outer cues at minute concentrations (Castro-Camba et al., 2022). N-(2-chloro-4-pyridyl)-N’-phenylurea (CPPU) is a plant growth regulator commonly used in horticultural crop production to regulate the growth and development of certain organs of crops. Huitrón et al (Huitrón et al., 2007). indicated that CPPU-treated watermelons had a lower accumulation of sugars than those treated with 2,4-D. A decrease in total soluble solids was also reported in CPPU-treated muskmelon (Hayata et al., 2000) and watermelon (Lopez-Galarza et al., 2004). Rational use of this swelling agent could promote the division, differentiation and enlargement of fruit cells, as well as to improve crop yield (Jing et al., 2013; Matsuo et al., 2013). However, irrational use will cause fruit appearance deformity, flavor deterioration, accelerated fruit softening, tree potential decline and other negative effects (Antognozzi et al., 1996; Qing-Ping, 2001), especially on fruit quality, including the reduction of anthocyanin, vitamin C and sucrose content, as well as the increase of bitterness (Hayata et al., 2000; Qian et al., 2018; Luo et al., 2020). Studies have shown that swelling agent treatment can reduce internal physiological indicators such as soluble sugar, acidity and firmness of grapes (Wang et al., 2017). There is often an unreasonable phenomenon of abuse of swelling agent in agricultural production. Some farmers excessively pursue large granulation of fruit and overspray these kinds of compounds, which seriously affects the taste and nutrition of grapes, resulting in grape distortion, a large number of bad and cracked fruit, and seriously affects the quality of grapes. The abuse of swelling agent leads to uneven product quality and market price confusion, which has become an important factor restricting the healthy development of the grape industry. Therefore, it is of great significance to explore some rapid and efficient methods to identify whether grape fruit has been treated with swelling agent.

The current methods for detecting the quality of grape fruits mainly include instrumental analysis, chemical analysis and sensory evaluation. With the increase of CPPU concentration, the size, color, shape, nutrient composition and content of grapes will change to some extent (Wang et al., 2017), such as the size and shape of grapes increase and the content of nutrients change, which provides a theoretical basis for the application of physicochemical index detection method in the detection of grape fruits treated with swelling agent. However, these methods are time-consuming and laborious, which make it difficult to meet the practical testing requirements. With the advantages of fast, sensitive, real-time, and nondestructive testing due to simple sample preparation, electronic noses offer a rapid and nondestructive alternative to traditional methods that rely on lengthy laboratory processing (Peris & Escuder-Gilabert, 2016). At present, electronic nose detection technology has been widely used in vegetable, fruit and other crops maturity, freshness, damage identification and other fields (Qiu et al., 2017; Xing et al., 2018; Chen et al., 2019), and the e-nose technique combined with different pattern recognition methods (e.g., LDA.RF and SVM) can rapidly identify samples (Qiao et al., 2022). Gas chromatography and mass spectrometry are mainly used to study the volatile gases of grape (Ji et al., 2019; Yao et al., 2021), and these research methods have disadvantages such as time-consuming and laborious, the next step will be to explore the electronic nose technique combined with LDA, RF and SVM methods for rapid detection of grape fruit quality.

Previous studies on the combination of electronic nose technology for the detection of swelling agent-treated grape fruits are relatively scarce, and the composition and content of volatile gases in treated fruits may be different compared with naturally ripened (un-expanded) fruits. Based on this, the present study is intended to detect and analyze the aroma components of grape berries treated with different concentrations of swelling agent using electronic nose technology and traditional physicochemical experimental methods, in order to quickly identify whether grape berries have been treated with swelling agent or not, and to provide a new method for the quality testing of grape berries in the market.




2 Materials and methods



2.1 Experimental design

The grape cultivation experiment was carried out in the orchard of Jilin Agricultural University (43°48′ N, 125°25′ E), Changchun, China. The materials used in the experiment were “Xiangti” grape plants, with the same number of years of growth as well as planting culture, free of pests and diseases. Field soil fertilization management and pest control were carried out under controlled conditions in the greenhouse and in a conventional manner. This base is a solar greenhouse, planted to avoid rain. The spacing between plants and rows was set to 2.0m×2.0m. The swelling agent used was N-(2-chloro-4-pyridyl)-N ‘-phenylurea (CPPU). The first spray treatment was carried out on June 7, 2021 (when the grapes grew to the size of soybean grains, and the second spray treatment was carried out on June 14. The swelling agent with different concentration gradients was sprayed between each treatment, and water was sprayed as the control (CK). The amount of spraying was determined by the fact that there was no liquid dripping on the peel surface. The CK and treatment group were treated with the same water and fertilizer management. CPPU treatment concentrations were 2 mg/L, 4 mg/L and 6 mg/L which were recorded sequentially as treatment A, treatment B, and treatment C. Each treatment was repeated 3 times. At harvest, samples of grapes free of pests or damage were selected from the same orchard, with 40 samples per treatment. Following the selection of the fruits for each treatment, an electronic nose was used to identify the odor information of the fruit before the fruit quality indexes were determined. All samples were evaluated at room temperature to lower experimental error.




2.2 E-Nose detection

An electronic nose system created (Jilin University, Changchun, China) in the lab was used to examine the materials. A data gathering card, a test circuit, a tiny air pump, a sampling chamber, and a number of gas-sensitive sensors make up the system. The physical diagram is shown in Figure 1. The gas sensing system array is composed of 16 different metal oxide semiconductor (MOS) sensors, and each sensor is sensitive to a specific class of volatile chemicals in the sample gas. The 16 MOS sensors are listed in Table 1 with a brief description of the primary application for each sensor and the manufacturer of each sensor.




Figure 1 | Electronic nose system diagram. (A) the miniature air pump; (B) the air inlet; (C) the sampling chamber; (D) the air-sensitive sensor array; (E) the air outlet; (F) the data acquisition card; (G) the test circuit for the electronic nose.




Table 1 | Application of sensors used in the sensor array.



For the purpose of the experiment, the fruits from each treatment were randomly divided into 40 groups each containing 5 fruits, and the experiment yielded a total of 160 sets of electronic nose sampling data from grape samples at different treatment stages (40 replicates × 4 treatments). Figure 2 illustrates the schematic diagram of the electronic nose measurement process in the experiment. The electronic nose was activated 120 minutes before detection to ensure that the sensor surface was heated to operating temperature and the gas path was cleaned with pure air. During the cleaning process, the gas path and sensor chamber were filled with clean air to control the normalization of the sensor signal. During the detection process, each group of grapes was placed in a 300 ml glass beaker and sealed with plastic wrap for 15 minutes, in order to ensure that the volatile chemicals in the grapes filled the beaker and equilibrated. Sample gas was then pumped in by headspace aspiration and flowed through the sensor array at a rate of 300 mL/min. As the sample gas was introduced into the sensor array, the test circuit converted the resulting conductance change to a voltage change (V), which was recorded as the response of the electronic nose sensor. The sample collection time for this experiment was 50 s, and the electronic nose collection frequency was set to 100 Hz. 5000 data were obtained from each sensor during each sample collection. This data is automatically recorded and used for subsequent analysis. After each measurement, the electronic nose sensors were reset and recalibrated with clean gas for 300 s before the next round of headspace sampling.




Figure 2 | Electronic-nose device schematic diagram.






2.3 Determination of fruit quality indexes

After non-destructive detection by the electronic nose, the fruits were subjected to relevant quality indicators. The soluble sugar content was determined by the anthrone colorimetric method. Measurements were made with specific reference to the method of Magné et al. (Magné et al., 2006). Titratable acid content was determined concerning GB/T 12456-2008 “Acid-base titration method in the determination of total acid in food (Zahedipour et al., 2019; Gao and Xu, 2022)”. Sugar-acid ratio: The sugar-acid ratio is expressed as the ratio of soluble sugar content to titratable acidity content. The content of soluble protein was determined concerning GB 5009.5-2016 “Determination of Protein in Food Safety National Standard”. The vitamin C content was determined regarding GB 5009.86-2016 “Determination of Ascorbic Acid in Food” of the National Food Safety Standard. Determination of soluble solids content: measured by hand-held refractometer. Samples from each treatment were randomly selected for the determination of quality indicators, and each indicator was repeated three times, and the test results were averaged. Soluble solids content was determined with reference to the method of Zhu et al (Zhu et al., 2020). To process and analyze the experimental data, we utilized Microsoft Excel 2019 (USA) and SPSS26.0 statistical software (IBM, USA). The Duncan’s new complex polar difference method was used to test the significance of the differences between treatments (P<0.05). The purity of the chemical substances used for the determination of fruit quality indexes in this study was analytical pure and was provided by Changchun Anmei Biotechnology Co (Changchun, China).




2.4 Determination of volatile compounds in fruits

The content of aroma substances was determined by solid-phase headspace microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) (Pu et al., 2022; Ju et al., 2023).

Extraction of volatile substances: The 15 g of grape fruit tissue was ground into powder with the treatment of liquid nitrogen and transferred to a centrifuge tube containing 1 g of cross-linked polyvinyl pyrrolidone and 0.5 g of D-gluconolactone. The centrifuge tubes were placed in the refrigerator at 4°C for 120 min. and then centrifuged at 4°C for 15 min at 1000 r·min-1 to obtain clarified grape juice. It was took 5 mL of grape juice into a 15 mL headspace vial, added 1 g of sodium chloride, 5 μL of internal standard 2-octanol (0.45mg/mL) and magnetic rotor, and quickly tighten the cap, insert the SPME fiber (DVB/CAR/PDMS 50/30 µm) into the sample headspaced vial and placed it in a magnetic stirrer at 60°C for 30 min. After the adsorption process, remove the SPME fiber and then insert it into the inlet of the gas chromatograph. It was then resolved at a temperature of 200°C for a duration of 5 minutes.

Gas chromatography separation conditions: Chromatographic columns: HP-INNO-Wax capillary column (length 30 m, inner diameter 0.25 mm, liquid film thickness 0.25 μm), carrier gas He (99.99%), flow rate 1.10 mL; the sample inlet temperature 200°C, ramp-up procedure: 35°C for 3 min, ramp up to 120°C at a rate of 4°C·min-1, hold for 2 min, Increase the temperature at a rate of 10°C-min-1 to 230°C. Mass spectrometry detection conditions: Mass spectrometry detection conditions: GC-MS transmission line temperature of 250°C, EI ion source temperature of 170°C, electron energy of 70eV, photomultiplier voltage of 350V, the mass scan range of 30-350amu.

Qualitative analysis and quantitative analysis: Both NIST08 and RTLPEST3 spectral library searches and information were used for qualitative analysis (Yao et al., 2021). The relative quantification was performed by the internal standard method, using 2-octanol as the internal standard to determine the relative content, calculated as: μg·L-1= μg ×L.




2.5 Analysis of e-nose data



2.5.1 Feature extraction methods

In the electronic nose data processing process, in order to effectively reduce the time of processing data, in general, the electronic nose data will be signal amplification, filtering, baseline processing and drift compensation and other pre-processing mainly to eliminate or reduce the noise and signal drift caused by various factors in the test process, to achieve the purpose of the electronic nose signal stability. Moreover, in the electronic nose system, multiple gas-sensitive sensors constitute a sensor array, and there is cross-sensitivity between the sensors, so it is usually necessary to standardize the data and eliminate the magnitude of the response data when performing data analysis.

Feature extraction refers to the extraction of a feature matrix from the sensor data according to a certain rule. Previous literature shows that different feature extraction methods have different classification performance (Qiao et al., 2022). Based on the analysis of the electronic nose response signal, the maximum value, average value, integral value and wavelet transform are selected for feature extraction. In this study, all feature values of the data were performed with MATLAB 2013 software.

Maximum value represents the final steady-state characteristic of the entire dynamic response process at final equilibrium, reflecting the maximum variation of the sensor response to odor. It is used as the most common feature extraction method.

Average value is a calculation used to measure the mean value of data. It not only reflects the central tendency of a set of data, but also allows comparing different data and seeing the differences between different data sets.

Integrated value represents the area of the response curve versus the time axis in the response interval, which reflects the overall response of the sensor to the volatile component of the sample to be measured.

Wavelet transform decomposes the original response into low and high frequencies. It has good immunity to interference and is capable of multi-resolution analysis. It also has the ability to characterize local features of the signal in both the time and frequency domains.




2.5.2 Pattern recognition

Pattern recognition means classifying and identifying different types of gas samples and processing and analyzing the information that characterizes things mathematically through computers. In this study, a 10-fold cross-validation method combined with linear discriminant analysis (LDA), support vector machine (SVM), and random forest (RF) methods will be used for pattern recognition accuracy of the sample data (Qiu et al., 2015; Zhu et al., 2020). LDA is a common classification method where the classification results of each group are linearly correlated. LDA is computed using category information and is designed to minimize intra-class ratios and maximize inter-class ratios. The SVM algorithm is a pattern recognition algorithm. SVM was originally developed for linear categorization of separable data, but is also applicable to nonlinear data using kernel functions. The main goal of SVM is to define decision boundaries for different classes of data points using hyperplanes, with edges separating the classes in the hyperplane from the distances from the data set to the nearest point in the data set. RF is a nonparametric, nonlinear classification and regression algorithm. The algorithm is a collection of multiple decision trees, where each tree is classified based on a randomly selected subset of attributes. Majority voting is then used to obtain the final classification result, where the tree with the highest number of classifications is selected. Decision trees have received increasing attention due to the speed with which they can be produced. The analysis of different feature values of the e-nose data by LDA, SVM and RF will investigate how to use the e-nose in combination with the most appropriate recognition algorithm to identify whether the grapes have been treated with swelling agent and to determine the most appropriate feature values for the sample data. In this study, the pattern recognition algorithms (LDA, SVM, and RF) were performed using R language 4.0.2 software (University of Auckland, New Zealand).






3 Results



3.1 Effects of swelling agent treatment on grape fruit quality indexes



3.1.1 Soluble sugar content, titratable acid content and sugar–acid ratio of fruit

The differences in soluble sugar contents, titratable acid contents and sugar–acid ratio in grapes under different treatments are shown in Figure 3. Figure 3 showed that the expander treatment had a great influence on the soluble sugar content and titratable acid content in grapes. As shown in Figure 3 (I), the soluble sugar content of treatment A, treatment B and treatment C were lower than the CK. However them, the difference between the soluble sugar content of treatment A and CK did not reach a significant level (P>0.05). Treatment B and treatment C significantly decreased by 9.76% and 13.52%, respectively, compared to CK, and both were significantly lower than CK (P<0.05). As shown in Figure 3 (II), the titratable acid content of treatment A, treatment B and treatment C were all higher than the CK, where the titratable acid content of treatment A was not significantly different compared to CK (P>0.05). The titratable acid content of both treatment B and treatment C was significantly higher than that of CK, 11.76% and 15.29%, respectively, and both were significantly different from CK (P<0.05). As a result, the fruit sugar-acid ratio changed significantly with the swelling agent treatment (Figure 3III). The control fruit had the highest soluble sugar content and sugar-acid ratio and better taste compared to treatment A, treatment B and treatment C.




Figure 3 | Effect of swelling agent treatment on soluble sugar content, titratable acid content and sugar-acid ratio in fruits. (I) Soluble sugar content, (II) titratable acid content, (III) sugar-acid ratio. Different lowercase letters in the graphs indicate significant differences between treatments (P<0.05).






3.1.2 Content of soluble protein, vitamin c, and soluble solids of fruits

The differences in soluble protein content, vitamin C content and soluble solids content in grapes under different treatments are shown in Figure 4. As can be seen from Figure 4 (I), it is observed that treatment with swelling agent had a greater effect on soluble protein content in grapes. As the concentration of swelling agent increased, the soluble protein content of the fruits showed a decreasing trend. Among them, no significant change in soluble protein content was observed in treatment A compared with CK. The soluble protein content of treatment B decreased by 5.38% compared with CK, and the difference between treatment B and CK did not reach a significant level (P>0.05). Significantly lower soluble protein content was observed in treatment C compared to CK, with a significant decrease of 14.62% compared to CK. It can be seen from Figure 4 (II) that with the increase of the swelling agent concentration, the vitamin C content in the fruit shows a decreasing trend. The changes in treatment A were not significant compared with CK. And the vitamin C content of treatment B decreased by 5.67% compared with CK, and the difference between it and CK did not reach a significant level (P<0.05). Treatment C had significantly lower vitamin C content than CK, with a significant decrease of 13.03% compared to CK. From Figure 4(III), it can be seen that with the increase of swelling agent concentration, the soluble solids content of swelling agent treated fruits were all reduced compared to the control, and the difference between treatment B and treatment C and CK was significant (P<0.05).




Figure 4 | Effect of swelling agent treatment on soluble protein content, vitamin C content and soluble solids content in fruits. (I) Soluble protein content, (II) vitamin C content, (III) soluble solids content. In the graphs, different lowercase letters indicate significant differences between treatments (P<0.05).







3.2 Effects of swelling agent treatment on the main volatile substances content in grape fruits

The contents of the main volatile substances in the grapes under different treatment conditions are shown in Table 2. The changes in the content of aldehydes showed that the contents of hexanal, (E)-2-hexenal and nonanal in grape fruit were significantly reduced under the swelling agent treatment; the swelling agent treatment caused a significant increase in the content of benzaldehyde in grape fruit, with treatment A, treatment B and treatment C increasing by 19.06%, 23.75% and 31.12%, respectively, compared with the CK; the content of decanal in fruit did not differ significantly between the treatments (P>0.05); the content of (E)-2-heptenal showed an increasing and then decreasing trend with the increase of the swelling agent concentration.


Table 2 | Effects of swelling agent treatment on the main volatile substances content in grape fruits.



The changes in the content of alcohols showed that the contents of phenethyl alcohol, 1-octanol and ethanol in the fruits were significantly reduced by the swelling agent treatment; however, the effect of swelling agent treatment on the content of 2-ethylhexanol was minimal, and the differences between treatments did not reach a significant level (P>0.05).

The changes in the content of esters and ketones showed that the content of ethyl acetate and dammarone in the fruits was significantly reduced under the treatment with swelling agent, while the content of ethyl benzoate and 1-octen-3-one did not change much.

Analysis of the changes in terpene and acid contents showed that the contents of D-limonene, acetic acid and hexanoic acid were significantly increased and the contents of linalool and geraniol were decreased under the swelling agent treatment, but the effect of swelling agent treatment on α-terpineol was minimal. In addition, 2-pentylfuran content in fruits showed a significant decrease under the swelling agent treatment, with the largest decrease in treatment C, which was 38.82% compared to the CK.




3.3 E-Nose detection results of fruit



3.3.1 The classification results based on linear discriminant analysis (LDA)



3.3.1.1 Classification results based on maximum values

The results of the linear discriminant analysis based on the maximum values were shown in Figure 5. It can be seen from Figure 5 that the first two discriminant functions explain 71.9% and 19.89% of the effect, respectively, with an overall contribution of 91.79%. The LDA emphasizes both the spatial distribution of grape aroma components and the distance between them. The higher the scatter between data collection points, the higher the differentiation of the population. Generally, grape samples from each treatment were separated, but data collection points for treatment A and CK still partially overlapped, which indicated that fruit volatile gases were similar for treatments A and CK, and samples from treatments A and CK may have been incorrectly classified as adjacent groups. There were no obvious overlapping parts between treatment B and treatment C, and they were spaced apart from the others. The distinction between different treatments was more obvious, but the data points collected were more scattered.




Figure 5 | The results of linear discriminant analysis based on the maximum values.






3.3.1.2 Classification results based on average values

The analysis results in Figure 6 indicated that the contribution of the first linear discriminant (LD1) and the second linear discriminant (LD2) of LDA were 76.71% and 12.18%, respectively, and the total contribution of LD1 and LD2 was 88.89%. The two-dimensional scatter plot of the test samples showed that the average data point distribution was relatively concentrated compared to the results of the maximum value-based analysis. The data points of treatment A and the CK have overlapping parts; therefore, it is easy to cause misclassification phenomenon. In contrast, the data points between treatment B and treatment C were relatively close, but there was no obvious overlapping part, and there was a clear distinction between the two, and the interval with other treatments was larger and easy to distinguish.




Figure 6 | The results of linear discriminant analysis based on the average values.






3.3.1.3 Classification results based on integral values

It is shown in Figure 7 that the results of the linear discriminant analysis based on the integrated values. From Figure 7, it can be seen that the contribution of the first linear discriminant (LD1) and the second linear discriminant (LD2) of LDA are 71.78% and 19.86%, respectively, and the total contribution of LD1 and LD2 is 91.64%. The CK has a more obvious distinction from treatment B and treatment C, but there is an overlapping part between the CK and treatment A, which does not get a more obvious distinction. In addition, the data collection points of treatment B mainly showed a concentrated trend, while treatment C showed a discrete state, which may be caused by the complexity of fruit volatiles or some measurement errors generated in the experiment, such as the extraction of sample aroma and improper operation during the assay.




Figure 7 | The results of linear discriminant analysis based on the integral values.






3.3.1.4 Classification results based on wavelet transform values

Linear discriminant analysis results based on wavelet transform values are shown in Figure 8. From Figure 8, it can be seen that the contribution of linear discriminant LD1 and LD2 in the analysis of LDA based on wavelet transform values of electronic nose response data is 71.2% and 20.05%, respectively, and the total contribution is 91.25%. From the results of LDA based on the wavelet transform extracted values of the e-nose response data, it can be seen that there is no obvious overlapping part of data points between CK and treatment A, but the data points are close to each other, and there is also no obvious overlapping part between treatment B and treatment C, compared with the first three sets of data. The data points between different treatments were all relatively dispersed, with obvious demarcation lines, and the differentiation was relatively good.




Figure 8 | The results of linear discriminant analysis based on wavelet transform values.







3.3.2 The classification results based on SVM and RF

In analyzing the data and constructing the model, the tenfold cross-validation method was used for the sample data. The recognition results of SVM and RF based on different feature extraction methods can be seen in Figure 9. The recognition results of SVM based on maximum, mean, integral and wavelet transformed values were 94.38%, 93.75%, 92.5% and 96.88% respectively. While the recognition results of RF based on maximum, mean, integral and wavelet transformed values were 90.63%, 94.38%, 94.38% and 95%, respectively. From Figure 9, it is observed that the recognition based on the integral value did not reach the significance level between SVM and RF (P>0.05), while the recognition based on the maximum value, average value and wavelet transform showed a significant difference between SVM and RF ((P>0.05). From the results in Figure 9, it can be seen that SVM outperformed RF in performing grape expansion fruit recognition based on various feature extraction methods, and the average recognition accuracy of SVM was 94.4%.




Figure 9 | Recognition results of support vector machine (SVM) and random forest (RF) based on different feature extraction methods.








4 Discussion

Flavor is one of the key factors in measuring grape quality and depends on a combination of sugars, acids and aromas of the fruit, but Aroma is composed of a variety of volatile compounds, and the formation of fruit volatiles is a dynamic process, with aroma components closely related to fruit quality, processing characteristics and nutritional value. There is a wide variety of aromatic substances in grapes, and their concentration and interactions give grapes their different flavors, mainly aldehydes, alcohols, acids, esters, terpenoids and their derivatives. Factors affecting grape aroma are both endogenous and exogenous, including endogenous factors such as variety, fruit maturity, vine age and rootstock; exogenous factors include environmental conditions, plant growth regulators, etc. These factors interact with each other, resulting in differences in the aroma composition of the grapes and affecting the quality of the berries. The results of this study showed significant changes in the content of aldehydes, alcohols, esters, and ketones in grapes treated with swelling agent, which leads to the assumption that the flavor of fruit treated with swelling agent is slightly inferior to that of naturally ripened fruit, which is consistent with the results of the relevant quality indicators of grapes in this study. Through the determination of soluble sugar, titratable acid, and sugar-acid ratio in the different treated grapes, it was found that the soluble sugar content, titratable acid content, and sugar-acid ratio in naturally ripe fruit differed significantly from those in grapes treated with swelling agent, and soluble sugar, titratable acid, sugar-acid ratio, and volatile substances were the main factors affecting the flavor quality of grapes (Costa et al., 2011), the combined results suggest that changes in nutrients and volatile compounds may affect the overall quality of the grapes, which also proved that the flavor quality of naturally ripened fruits is better than those treated with swelling agent. Fang et al. (Fang et al., 2002) concluded that the use of appropriate amounts of swelling agent enhanced fruit competition for photosynthetic products, accelerated cell division, promoted fruit expansion and altered fruit nutrient composition. Cruz-Castillo et al. (Cruz-Castillo et al., 2014) suggested that swelling agent affect the changes in the content of various sugars and titratable acids during fruit development. The results of this paper show that the nutrient composition of grapes treated with swellings is indeed altered, which is consistent with the results of previous studies. Grapes treated with swelling agent undergo changes in nutrients and volatile compounds, and these changes can have an impact on the sensory experience of the grapes in terms of shape, size, color and flavor. In future research, more in-depth and systematic studies are required in terms of a comprehensive evaluation of how the swelling agent affects the samples and combining sensory evaluation with electronic nose technology. In addition, the quality parameters covered in this study were only the conventional physicochemical parameters such as soluble sugars and titratable acids, therefore, in order to study the quality of grapes (or other varieties of fruits) in more depth, physicochemical parameters such as antioxidant substances and microbial colony counts can be added in future studies. Moreover, the present study was carried out using ‘ Xiangti ‘ grapes as test material, and in future studies, such treatments will be carried out on other grape varieties to study the reactions produced by different grape varieties, as well as to study the reactions that other swelling agent will produce on the grapes.

After the rapid detection of volatile gases in different treated grape fruits using the electronic nose technique, the analytical results showed that grape fruit samples have different accuracy in different pattern recognition processes, and the results of the pattern recognition also demonstrate the potential of the electronic nose technique in distinguishing whether grapes are treated with swelling agent or not. The electronic nose technique can be used to distinguish between wines made from different raw materials (Capone et al., 2013). These results show that the e-nose technique combined with appropriate pattern recognition methods can be a fast and effective means of identifying volatile substances in grape berries. The electronic nose used in this paper is equipped with 16 sensors, and the response values of the sensors are different when detecting volatile substances in different treatments of grape fruits, thus generating response patterns of volatile gases in different treatments of grape samples. However, the electronic nose used in this study has a limited selection of sensors, such as S3 (WSP2110 aldehydes), S4 (MP135 alcohols) and S8 (TGS2620 most volatile organic compounds). Because the results of electronic nose detection are not information about one or more components in the sample, it is the overall information of volatile substances (fingerprint). At the same time, the limited type and number of sensors will affect the accuracy of the model construction. Therefore, in future research, the sensor part of the e-nose can be composed of an array of gas-sensitive sensors with different selectivities, which can be used to analyze mixed gases by taking advantage of their cross-sensitivity to multiple gases and converting the effects of different odour molecules on their surfaces into time-dependent measurable groups of physical signals that can be conveniently computed, as well as designing and preparing e-nose instruments that are specific and selective for volatile compounds in fruits. In addition, in practical applications, different detection methods and environments may also have an impact on the response signal of the electronic nose. and environment will also affect the response signal of the electronic nose, and it is necessary to correct the response signal of the electronic nose and processing, so as to realize the real-time detection of the internal quality of the fruit by the electronic nose.

In summary, LDA had the highest contribution of 91.79% in the cumulative analysis based on maximum values. And combined with the LDA two-dimensional scatter plot analysis of the four eigenvalues, it can be seen that the data collection points of treatment A and CK are close and partially overlapped. Therefore, the electronic nose combined with the LDA method was less effective in practice, probably due to the incomplete quality information contained in the samples and the weaker than expected correlation of the electronic data with the main volatile substances of the fruits. In future work, we will perform more detailed analysis of gas volatiles changes in swelling agent-treated fruits by gas chromatography-mass spectrometry (GC-MS) and e-nose, and then select a smaller number of gas sensors for monitoring swelling agent-treated fruits and develop a dedicated e-nose system for fruit monitoring, which will lay the foundation for further development of identification and classification models of swelling agent-treated grape fruits, and also have important reference significance for quality and safety testing of agricultural products.




5 Conclusions

In this study, traditional physical and chemical test detection and electronic nose techniques were used to detect and classify and identify unexpanded and swollen-treated fruits, with the following main conclusions:

1. Through analyzing the differences in quality indicators such as soluble sugar and titratable acid between naturally ripened fruits and those treated with swelling agent, the results show that: naturally ripened grapes have better flavor and it is possible to distinguish whether the grapes are treated with swelling agent or not based on the results, but the operation process is tedious, time-consuming, requires the participation of professional testers and cannot be realized in real time. In contrast, the use of an electronic nose system based on a metal oxide semiconductor sensor array is faster and more convenient for practical applications.

2. By comparing the performance of LDA, SVM and RF modeling, the feature matrices suitable for distinguishing whether grapes were treated with swelling agent were preferentially selected, and the classification models and for different treatments of grapes were constructed. The classification results showed that the two-dimensional scatter plot results obtained by LDA based on different feature values were 91.79%, 88.89%, 91.64% and 91.25%, but there was overlap in the classification process, which led to the samples not being accurately classified and prone to errors in practical applications. In contrast, the classification accuracy of both nonlinear recognition methods SVM and RF is higher than that of LDA, and when pattern recognition is performed based on different feature values, SVM has a better recognition effect with an average recognition accuracy of 94.4%. It indicates that nonlinear recognition methods are more suitable than linear recognition methods to solve nonlinear recognition classification problems, such as the recognition of whether grapes were treated with swelling agent or not.

Based on the results of the above study, the analysis of the e-nose response data can be used to discriminate between naturally ripe and CPPU treated grapes. The model was successfully developed for the identification of naturally ripe and CPPU-treated grapes. Evidence is provided in this study that electronic noses can be used as a non-destructive method to identify swelling agent-treated fruits.
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Lycium barbarum L., commonly known as wolfberry, is not only a traditional Chinese medicine but also a highly nutritious food. Its main nutrients include L. barbarum polysaccharide, flavonoid polyphenols, carotenoids, alkaloids, and other compounds, demonstrating its wide application value. This study investigated the effects of nitrogen application on the accumulation of the main nutrients and metabolites in wolfberry fruits under three different nitrogen application rates, namely, N1 (20% nitrogen (N) reduction, 540 kg·ha–2), N2 (medium N, 675 kg·ha–2), and N3 (20% nitrogen increase, 810 kg·ha–2,which is a local conventional nitrogen application amount.). Additionally, due to continuous branching, blossoming, and fruiting of wolfberry plants during the annual growth period, this research also explored the variation in nutritional composition among different harvesting batches. The contents of total sugar and polysaccharide in wolfberry fruit were determined by Fehling reagent method and phenol-sulfuric acid method, respectively;The content of betaine in fruit was determined by high-performance liquid chromatography,and the flavonoids and carotene in the wolfberry fruits were determined by spectrophotometry. Analysis of data over three consecutive years revealed that as nitrogen application increased, the total sugar content in wolfberry fruits initially decreased and then increased. The levels of L. barbarum polysaccharides, total flavonoids, and total carotenoids initially increased and then decreased, while the betaine content consistently increased. Different picking batches significantly impacted the nutrient content of wolfberry fruits. Generally, the first batch of summer wolfberry fruits had greater amounts of total sugar and flavonoids, whereas other nutrients peaked in the third batch. By employing a broadly targeted metabolomics approach, 926 different metabolites were identified. The top 20 differentially abundant metabolites were selected for heatmap generation, revealing that the contents of L-citrulline, 2-methylglutaric acid, and adipic acid increased proportionally to the nitrogen gradient. Conversely, the dibutyl phthalate and 2, 4-dihydroxyquinoline contents significantly decreased under high-nitrogen conditions. The remaining 15 differentially abundant metabolites, kaempferol-3-O-sophorosid-7-O-rhamnoside, trigonelline, and isorhamnosid-3-O-sophoroside, initially increased and then decreased with increasing nitrogen levels. Isofraxidin, a common differentially abundant metabolite across all treatments, is a coumarin that may serve as a potential biomarker for wolfberry fruit response to nitrogen. Differentially abundant metabolites were analyzed for GO pathway involvement, revealing significant enrichment in metabolic pathways and biosynthesis of secondary metabolites under different nitrogen treatments. In conclusion, a nitrogen application of 675 kg·ha–2, 20% less than the local farmers’ actual application, was most beneficial for the quality of four-year-old Ningqi 7 wolfberry fruits. Consumers who purchase wolfberry-dried fruit for health benefits should not consider only the first batch of summer wolfberry fruits. These results offer a broader perspective for enhancing the quality and efficiency of the wolfberry industry.
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1 Introduction

Wolfberry (Lycium barbarum L.), a perennial deciduous shrub of the genus L., Solanaceae, serves as a significant cash crop in Northwest China. It produces an infinite inflorescence, blooms, and fruits multiple times annually, and its fruit is highly valued for its rich nutritional and medicinal properties (Kulczyński and Gramza-Michałowska, 2016). Modern medical research has shown that wolfberry has various pharmacological effects, including effects on the lung, eye, kidney, and liver, as well as immunity enhancement, antiaging, antitumor, antifatigue, antioxidation, and synergistic anticancer effects (Khoo et al., 2017; Wang et al., 2018b; Yao et al., 2018). Wolfberry fruits are composed of key functional components such as total sugar, L. barbarum polysaccharide, betaine, carotenoids, flavonoids, polyphenols, and amino acids (Yajun et al., 2019). Sugars contribute significantly to the fruit’s sweetness and overall flavor, with moderately sweet fruits being preferred by consumers (Baldwin et al., 2000; Tieman et al., 2012). L. barbarum polysaccharide, a crucial active ingredient, enhances immune function (Zhou et al., 2018; Tian et al., 2019). Moreover, betaine, which function as a methyl donor, positively influences lipid metabolism and anti-fatty liver conditions (Christopher and Stephen, 2016). The carotenoids present in wolfberry, including β-carotene, lutein, lycopene, zeaxanthin, and zeaxanthin dipalmitate (Breithaupt et al., 2004), exhibit antioxidant properties and help prevent cancer, cardiovascular disease, and age-related macular degeneration (Islam et al., 2017). Flavonoids are known for their ability to relieve cough, expel phlegm, alleviate asthma, dilate coronary arteries, reduce blood cholesterol, strengthen cardiac contractions, and lower heart rate (Tanaka and Takahashi, 2013). The amino acid profile of wolfberry fruit includes 16 components, predominantly aspartic acid, glutamic acid, proline, serine, alanine, lysine, tyrosine, glycine, and 9 medicinal amino acids, such as leucine (Leu), aspartate (Asp), phenylalanine (Phe), glycine (Gly), lysine (Lys), methionine (Met), glutamic acid (Glu), arginine (Arg) and tyrosine (Tyr) (Zhang et al., 2004a). Additionally, wolfberry fruits contain γ-aminobutyric acid, hydroxyproline, citrulline, and other nonprotein amino acids with specific metabolic roles (Lu et al., 2021). Numerous organic acids and vitamins have also been identified in wolfberry fruits and roots, with studies indicating that wolfberry can provide twice the recommended daily dosage of vitamins A and C (Qian et al., 2017; Sun et al., 2019).

With the rapid advancement of the wolfberry industry, production challenges have become increasingly pronounced. Pursuing high yields and profits, farmers often disregard the actual nutrient requirements and resort to excessive chemical fertilizer use. Furthermore, unreasonable irrigation practices, which rely heavily on copious amounts of water and fertilizer, lead to suboptimal soil conditions, significant nutrient loss, reduced nitrogen fertilizer efficiency, declining economic returns, and increased risks of soil and groundwater pollution. This cultivation approach results in a detrimental cycle of high input and high yield, but low quality, impeding the green and sustainable development of the wolfberry industry. The chemical composition of medicinal plants is influenced by various environmental factors (Ng, 1999; Zhu et al., 2009). Although numerous reports exist on the pharmacological properties of wolfberry, the impact of fertilizer on the synthesis of bioactive substances in its fruit remains underexplored.

Nitrogen fertilizer plays a crucial role in crop growth, yield, and fruit quality (Chung et al., 2010). Proper nitrogen application enhances the soil nitrogen content, thereby promoting plant growth. However, excessive nitrogen use does not increase yield and can lead to environmental pollution (Ju et al., 2009). Several studies have examined the effects of nitrogen absorption and assimilation on plant growth and development (Kaplan et al., 2019). Research on wolfberry has indicated that nitrogen fertilizer significantly influences the growth of L. barbarum L. seedlings in spring, more so than phosphorus and potassium fertilizers (Shi et al., 2016). Furthermore, studies have identified the peak period for nitrogen uptake in wolfberry plants as early May to late June (Jianhong et al., 2008; Cai et al., 2013; Liu et al., 2016). Regarding the response of wolfberry fruit nutrients to nitrogen fertilizer, several researchers have reported that increasing nitrogen levels alter the main nutrients in wolfberry, with 53 metabolites (lipids, fatty acids, organic acids, and phenolic amides) exhibiting significant changes (Shi et al., 2019). Excessive nitrogen application can diminish the activities of betaine and betaine aldehyde dehydrogenase in wolfberry fruits, with the optimal nitrogen level for betaine accumulation being 450 kg/ha2 (Liu et al., 2020a). These findings lay a scientific foundation for understanding the response mechanism of wolfberry quality to nitrogen fertilizer. However, since wolfberry plants continue to branch, blossom, and bear fruit throughout the year, prior studies were largely based on a single fruit batch, and the changes in main nutrients across different batches under varying nitrogen conditions remain unreported.

To address this gap, this paper utilizes three years of field experiment data to examine the variations and differences in total sugar, L. barbarum polysaccharide, betaine, flavonoids, and carotenoids in wolfberry fruits under different nitrogen fertilizer treatments and in different batches. Concurrently, by employing an integrated LC-ESI-MS/MS detection system, the best quality wolfberry fruits from various batches were selected for analysis to explore the effects of different nitrogen treatments on wolfberry fruit metabolites. This study enhances the theoretical model and molecular mechanism underlying the response of wolfberry quality response to nitrogen fertilizer.




2 Materials and methods



2.1 Basic conditions of the experimental site and experimental design

The experiment was conducted at the base of Qiyuan Lvfeng Agriculture and Forestry Technology Co., Ltd., Sanhe Town, Haiyuan County, Zhongwei City, Ningxia (106°09’ 00” E, 36°25’ 48” N, altitude of 1428.5 m) from April 2020 until September 2022, with an average annual precipitation of 367 mm and an average annual temperature of 7.5°C. The terrain of the experiment was flat, with deep, high-quality, and uniformly fertile soils. The basic physical and chemical properties of the topsoil (0–20 cm) are shown in Table 1. The tested variety was four-year-old Ningqi No. 7 plants, the main variety of wolfberry. The selected test materials had great growth potential with no pests or diseases.


Table 1 | Basic physical and chemical properties of the topsoil.



The experiment followed a single-factor randomized block design, with each plot measuring 6 m×9 m and the plants spaced 1 m apart within rows that were 3 m apart. We conducted a one-way analysis of variance (ANOVA) with three treatments and five replications. The treatments included the following: ① N1 (low fertilizer): 20% nitrogen reduction, pure nitrogen of 540 kg·ha-2; ② N2 (medium fertilizer): medium nitrogen, pure nitrogen of 675 kg·ha-2; and ③ N3 (high fertilizer): increase nitrogen by 20%, pure nitrogen of N 810 kg·ha-2, which is a local conventional nitrogen application amount. The nitrogen (N), phosphorus (P), and potassium (K) fertilizers used were urea (N 46%), superphosphate (P2O5 50%), and potassium sulfate (K2O 50%), respectively, and P and K fertilizers were applied at the same rate for each treatment, (450 kg·ha–2 and 300 kg·ha–2, respectively). According to the phenological period of wolfberry, these three fertilizers were applied in batches at 5 different fertilization times starting on approximately April 20 (the process of budding and unfolding), May 20 (the green fruit stage), June 15 (the fruit ripening process), late July to early August (the fruiting period in autumn), and late September (the resting period in autumn). Before May 20, the application rates of nitrogen fertilizer accounted for more than 50% of the annual application amount, while those of phosphorus and potassium fertilizers accounted for less than 40% of the annual application amount. After June, however, the application rates of nitrogen fertilizer accounted for less than 50% of the annual fertilizer amount, and those of P and K fertilizers accounted for more than 60% of the annual fertilizer amount. This approach resulted in the creation of nitrogen gradients among the various treatments. For field water management, we followed the traditional irrigation methods commonly used by local farmers. Irrigation was typically carried out approximately nine times throughout the growth period. The annual irrigation volume is approximately 7500 m3/ha2, of which the first irrigation occurs in mid to late April, the second irrigation occurs 8 to 10 days apart from the first, and the third irrigation occurs during the flowering and bearing period of perennial branches. During the summer harvest period, irrigation was carried out once every one to two fruit picking events, during which 2-3 irrigation events were generally carried out. After entering the autumn fruiting period, one irrigation event was carried out in early August combined with fertilization, one irrigation event was carried out in early September, and the last winter irrigation event was carried out in early November.




2.2 Determination of nutrients in wolfberry fruit

From 2020 to 2022, the first, second, and third batches of fresh wolfberry fruits will be picked at the summer fruit maturity stage every year, and the nutrient content will be determined after drying. All measurements were conducted in triplicate, and the average value was calculated. The contents of total sugar and L. barbarum polysaccharide were determined according to Appendix B of GB/T 18672-2014 (Wolfberry) (Zhang et al., 2014). The content of betaine in the fruit was determined by high-performance liquid chromatography (HPLC) with reference to Fang et al (Fang et al., 2011). Total flavonoid contents were determined by spectrophotometry, and rutin was used as the standard product for generating the standard curve according to the method of Zhang et al (Zhang et al., 2004b). The beta-carotene content was determined via in ultraviolet spectrophotometry using the method of Mi et al (Mi et al., 2018).




2.3 Extraction and quantitative analysis of metabolites from wolfberry fruit



2.3.1 Extraction of metabolites

The freeze-dried samples were crushed using a mixer mill (MM 400, Retsch) with a zirconia beads for 1.5 min at 30 Hz. Then, 100 mg of powder was weighed, and pure methanol containing 0.1 mg·L-1 lidocaine was added for the extraction of fat-soluble metabolites (or 70% methanol was used for the extraction of water-soluble metabolites), vorticed once every 10 min three times, and then stored in a refrigerator at 4°C overnight. The next day, the sample was centrifuged (4°C, 10,000 rpm, 10 min), and the supernatant was collected. The water-soluble and fat-soluble metabolites were mixed 1:1, filtered through a microporous filter membrane (SCAA-104, 13 mm, 0.22 μm, ShanghaiAnpu Experimental Technology Co., Ltd., Shanghai, China, http://www.anpel.com.cn/15 November 2020) and stored in injection bottles for UPLC-MS analysis (Chen et al., 2014).




2.3.2 HPLC conditions

The sample extracts were analyzed using an LC-ESI-MS/MS system (HPLC, Shim-pack UFLC SHIMADZU CBM30A system, Redwood City, USA www.shimadzu.com.cn/; MS, Applied Biosystems 6500 Q TRAP, www.appliedbiosytem.com.cn/). The analytical conditions were as follows. HPLC column, water ACQUITY UPLC HSSS T3 C18 (1.8 μm, 2.1 μm × 100 mm); solvent system, water (0.04% acetic acid), acetonitrile (0.04% acetic acid); gradient program, 95:5 v/v at 0 min, 5:95 v/v at 11.0 min, 95:5 v/v at 12.0 min, 95:5 v/v at 15.0 min; flow rate, 0.40 mL/min; temperature, 40°C; injection volume, 2 μL. The effluent was alternatively connected to an ESI-triple quadrupole-linear ion trap (Q TRAP)–MS instrument.




2.3.3 ESI-Q TRAP-MS/MS

Mass spectrometry was performed according to the methods of Chen et al (Chen et al., 2013). Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on a triple quadrupole–linear ion trap mass spectrometer (Q TRAP), API 6500 Q TRAP LC/MS/MS System, equipped with an ESI Turbo Ion-Spray interface, which was operated in both positive and negative ion mode and controlled via Analyst 1.6 (AB Sciex, Concord, ON, Canada). The ESI source operation parameters were as follows: ion source, turbo spray; source temperature, 500°C; ion spray voltage (IS) 5500 V; and ion source gas I (GSI), gas II (GSII), and curtain gas (CUR),which were set at 55, 60, and 25.0 psi, respectively. The amount of collision gas (CAD) was high. Instrument tuning and mass calibration were performed with 10 and 100 µmol/L polypropylene glycol solutions in the QQQ and LIT modes, respectively. QQQ scans were performed as multiple reaction monitoring (MRM) experiments, with the collision gas (nitrogen) set to 5 psi. The declustering potential (DP) and the collision energy (CE) for individual MRM transitions were determined with further DP and CE optimization. A specific set of MRM transitions was monitored for each period according to the metabolites eluted within this period.




2.3.4 Qualitative and quantitative analyses of the metabolites

Qualitative and quantitative analyses of metabolites followed the methods of Wang (Wang et al., 2018a) and Fraga (Fraga et al., 2010). Based on the self-built database MWDB (MetWare Biotechnology Co., Ltd. Wuhan, China) and the public database of metabolite information, qualitative analyses of the primary and secondary spectral data of mass spectrometry data were performed. The analyses removed the isotope signal, a repetitive signal containing K+ ions, Na+ ions, NH4+ ions, and a repetitive signal of fragment ions with larger molecular weights. The quantitative analysis of metabolites was performed using MRM analysis via QQQ mass spectrometry. After obtaining the metabolite mass spectrometry data of different samples, peak area integration was performed on the mass spectrum peaks of all substances, and the mass spectrum peaks of the same metabolite in different samples were integrated for correction.





2.4 Statistical analysis

The metabolite data were log2-transformed for statistical analysis to improve normality and were normalized. Metabolites from 9 samples were subjected to hierarchical clustering analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) using R software to study metabolite accession-specific accumulation. The p and fold change values were set to 0.05 and 2.0, respectively. Venn diagrams were used to illustrate the number of differentially abundant metabolites. The Gene Ontology (GO) database with a p-value <0.01 was used to study differentially abundant metabolites associated with the different amounts of applied nitrogen. All the data were analyzed using Origin 9 (OriginLab Corporation, USA).





3 Results



3.1 Contents of the main nutrients in wolfberry fruits under different nitrogen application rates and batch picking conditions



3.1.1 Total sugar content

Figure 1, shows that the total sugar content ranges of wolfberry fruits in 2021 (Figure 1A), 2022 (Figure 1B), and 2023 (Figure 1C) were 43.62–56.08 g/100 g, 34.9–46.9 g/100 g, and 43.57–77.33 g/100 g, respectively. This variation in the total sugar content of wolfberry fruits exhibits substantial year-to-year variability, likely linked to the annual climatic conditions. The results of one-way ANOVA showed that there were significant differences in the total sugar content of wolfberry fruits under different nitrogen application levels (P < 0.05), with N1 > N3 > N2 in descending order. This pattern remained consistent over the three years. Through a two-factor analysis of variance, it was determined that both the nitrogen application amount and the number of picking batches had notable effects on the total sugar content of wolfberry fruits. Additionally, an interaction effect was observed between the nitrogen application amount and the number of picking batches. According to the data from all three years, the first batch of fruits exhibited the highest total sugar content, while subsequent batches showed a decreasing trend. The total sugar content between the second and third batches was relatively similar (Figure 1D) upper left and lower left). Furthermore, under the N1 and N3 treatments, the total sugar content of the fruit was greater and displayed a trend of initially decreasing and then increasing with increasing nitrogen application (Figure 1D upper left and lower left).




Figure 1 | Variance analysis and interactive effect diagram of the total sugar content of wolfberry fruits. ((A) shows the total sugar data for fruits in 2021. The different capital letters in the figure indicate that the total sugar content of wolfberry fruits has significantly differed among the different nitrogen application rates after removing the picking batch factor (P < 0.05). Different lowercase letters in the figure indicate that the total sugar content of wolfberry fruits significantly differed among the different nitrogen application rates for the same picking batch (P < 0.05).In the upper left corner of the picture, the effects of the nitrogen application amount, picking batch, and nitrogen application amount in combination with the picking batch on the total sugar content in wolfberry fruits are shown. Two-factor analysis of variance was used, with *** indicating P < 0.01 and ** indicating P < 0.05. The same applies below. (B) shows the total fruit sugar data for 2022. (C) shows the total fruit sugar data for 2023. (D) shows the interaction effect between the nitrogen application amount and harvest batch.).






3.1.2 L. barbarum polysaccharide content

Figure 2 shows that the L. barbarum polysaccharide content in wolfberry in 2021 (Figure 2A), 2022 (Figure 2B), and 2023 (Figure 2C) ranged from 4.08–5.68 g/100 g, 4.66–5.62 g/100 g, and 3.32–4.43 g/100 g, respectively. This wide variation in the L. barbarum polysaccharide content of wolfberry from year to year appears to be closely associated with the annual climatic conditions. One-way analysis of variance revealed no significant difference in the L. barbarum polysaccharide content between N1 and N2 under the different nitrogen application levels (P > 0.05). However, this content was significantly greater than that under the N3 treatment (P < 0.05), and this trend remained consistent over the three years. According to two-way analysis of variance, both different nitrogen application amounts and different picking batches had significant effects on the polysaccharide content of L. barbarum. Additionally, there was an interaction effect between nitrogen application amount and number of picking batches, except in 2021. According to the data from all three years, the L. barbarum polysaccharide content was highest in the third batch of fruits, exhibiting a trend of initial decrease and then increase with increasing number of batches. The content of L. barbarum polysaccharide was relatively similar between the first and third batches (Figure 2D upper right and lower right). Furthermore, the L. barbarum polysaccharide content in fruits was greater under the N1 and N2 treatments and initially increased and then decreased with increasing nitrogen application (Figure 2D upper left and lower left).




Figure 2 | Variance analysis and interactive effect diagram of L. barbarum polysaccharides from wolfberry fruits. ((A) shows the L. barbarum polysaccharide data for fruits collected in 2021. The different capital letters in the figure indicate that the L. barbarum polysaccharide content of wolfberry fruits significantly differed among the different nitrogen application rates after removing the picking batch factor (P < 0.05).The different lowercase letters in the figure indicate that the L. barbarum polysaccharide content in wolfberry fruits significantly differed among the different nitrogen application rates in the same picking batch (P < 0.05).In the upper left corner of the picture, the effects of the nitrogen application amount, picking batch, and nitrogen application amount in combination with the picking batch on the L. barbarum polysaccharide content in wolfberry fruits are shown. Two-factor analysis of variance was used, with *** indicating P < 0.01 and ** indicating P < 0.05. The same applies below. (B) shows the L. barbarum polysaccharide data for 2022. (C) shows the L. barbarum polysaccharide data for 2023. (D) shows the interaction effect between the nitrogen application amount and harvest batch.).






3.1.3 Total flavonoid content

Figure 3 shows that the total flavone content ranges for wolfberry fruits in 2021 (Figure 3A), 2022 (Figure 3B), and 2023 (Figure 3C) were 1.15–1.76 g/100 g, 0.39–0.57 g/100 g, and 0.58–1.04 g/100 g, respectively. This substantial variation in the total flavone content of wolfberry fruits from year to year is evident. In 2021, under different nitrogen application rates, the total flavonoid content of wolfberry fruit was significantly greater under the N1 treatment than under the N2 and N3 treatments (P < 0.05). However, there was no significant difference between the N2 and N3 treatments (P > 0.05). In both 2022 and 2023, the total flavonoid content of wolfberry fruits initially increased and then decreased with increasing nitrogen application, and there were significant differences among all treatments (P < 0.05). Through two-way analysis of variance, it was determined that both different nitrogen application amounts and different picking batches had significant effects on the total flavonoid content of wolfberry fruits. Additionally, there was an interaction effect between nitrogen application amount and picking batch. According to the data from all three years, the total flavonoid content in wolfberry fruits was greater in the first batch of fruits, except for that in 2023. The total flavonoid content in fruits exhibited a decreasing trend with increasing batch size (Figure 3D upper right and lower right). Moreover, the content of total flavonoids in fruits was greater under the N1 and N2 treatments and followed a pattern of initially increasing and then decreasing with increasing nitrogen application (Figure 3D upper left and lower left).




Figure 3 | Variance analysis and interactive effect diagram of the total flavone content of the wolfberry fruits. ((A) shows the total flavone content data of fruits in 2021. Through one-way analysis of variance, different capital letters in the figure indicate that the total flavone content of wolfberry fruits significantly differed among the different nitrogen application rates after removing the picking batch factor (P < 0.05).The different lowercase letters in the figure indicate that the total flavone content of wolfberry fruits significantly differed among the different nitrogen application rates for the same picking batch (P < 0.05).In the upper left corner of the picture, the effects of the nitrogen application amount, picking batch, and nitrogen application amount in combination with the picking batch on the total flavone content in wolfberry fruits are shown. Two-factor analysis of variance was used, with *** indicating P < 0.01 and ** indicating P < 0.05. The same applies below. (B) shows the total flavone content data for 2022. (C) shows the total flavone content data for 2023. (D) shows the interaction effect between the nitrogen application amount and harvest batch.).






3.1.4 Betaine content

Figure 4 shows that the betaine content ranges for wolfberry in 2021 (Figure 3A), 2022 (Figure 3B), and 2023 (Figure 3C) were 0.44–0.65 g/100 g, 1.16–1.54 g/100 g, and 0.21–0.31 g/100 g, respectively. This significant variation in the betaine content of wolfberry from year to year is evident. In 2021, under different nitrogen application rates, the betaine content of wolfberry fruit was significantly greater under the N2 treatment than under the N1 and N3 treatments (P < 0.05). However, there was no significant difference between the N1 and N3 treatments (P > 0.05). In 2022, the betaine content of wolfberry plants under different nitrogen application rates significantly differed (P < 0.05), with the order from highest to lowest being N2 > N3 > N1. In 2023, the betaine content of wolfberry fruits under the N1 and N2 treatments did not significantly differ (P > 0.05), but it was significantly greater than that under the N3 treatment (P < 0.05). Through two-way analysis of variance, it was determined that both different nitrogen application amounts and different picking batches had significant effects on the betaine content of wolfberry fruits. Additionally, there was an interaction effect between nitrogen application amount and picking batch. Finally, based on data from three years, the betaine content in wolfberry fruits was highest in the third batch of fruits. The total betaine content in fruits increased initially and then decreased with increasing batch size (Figure 4D upper right and lower right). The betaine content in the fruit was greater under the N3 treatment and tended to increase with increasing nitrogen application rate (Figure 4D upper left and lower left).




Figure 4 | Variance analysis and interactive effect diagram of the betaine content of wolfberry fruits. ((A) shows the betaine content data for fruits collected in 2021. Through one-way analysis of variance, different capital letters in the figure indicate that the betaine content of wolfberry fruits significantly differed among the different nitrogen application rates after removing the picking batch factor (P < 0.05).Different lowercase letters in the figure indicate that the betaine content of wolfberry fruits significantly differed among the different nitrogen application rates for the same picking batch (P < 0.05).In the upper left corner of the picture, the effects of the nitrogen application amount, picking batch, and nitrogen application amount in combination with the picking batch on the betaine content in wolfberry fruits are shown. Two-factor analysis of variance was used, with *** indicating P < 0.01 and ** indicating P < 0.05. The same applies below. (B) shows the betaine content data for 2022. (C) shows the betaine content data in 2023. (D) shows the interaction effect between the nitrogen application amount and harvest batch.).






3.1.5 Total carotenoid content

Figure 5 shows that the total carotenoid content ranges for wolfberry fruits in 2021 (Figure 5A), 2022 (Figure 5B), and 2023 (Figure 5C) were 0.083–0.124 g/100 g, 0.065–0.162 g/100 g, and 0.021–0.057 g/100 g, respectively. This considerable variation in the total carotenoid content of wolfberry fruits from year to year appears to be closely related to the annual climate conditions. In 2021, under the different nitrogen application rates, the total carotenoid content of wolfberry significantly differed among all the treatments (P < 0.05), with the order from highest to lowest being N2 > N3 > N1. In 2022 and 2023, there was no significant difference in the total carotenoid content between N2 and N3 under different nitrogen application levels (P > 0.05), but it was significantly greater than that in the N1 treatment group (P < 0.05). Through a two-way analysis of variance, it was determined that both different nitrogen application amounts and different picking batches had significant effects on the total carotenoid content of wolfberry fruits. Additionally, there was an interaction effect between nitrogen application amount and picking batch. Finally, considering data from three years, the total carotenoid content of wolfberry fruits was highest in the third batch of fruits. The total carotenoid content exhibited an increasing trend with increasing batch size (Figure 5D upper right and lower right). The total carotenoid content of the fruit was the highest under the N2 treatment, with a pattern of initial increase followed by a decrease with increasing nitrogen application rate (Figure 5D upper left and lower left).




Figure 5 | Variance analysis and interactive effect diagram of the total carotenoid content of wolfberry fruits. ((A) shows the total carotenoid content of fruits in 2021. Through one-way analysis of variance, different capital letters in the figure indicate that the total carotenoid content of wolfberry fruits significantly differed among the different nitrogen application rates for removing the picking batch factor (P < 0.05). Different lowercase letters in the figure indicate that the total carotenoid content of wolfberry fruits significantly differed among the different nitrogen application rates for the same picking batch (P < 0.05). In the upper left corner of the picture, the effects of the nitrogen application amount, picking batch, and nitrogen application amount in combination with the picking batch on the total carotenoid content in wolfberry fruits are shown. Two-factor analysis of variance was used, with *** indicating P < 0.01 and ** indicating P < 0.05. The same applies below. (B) shows the total carotenoid content data for 2022. (C) shows the total carotenoid content data for 2023. (D) shows the interaction effect between the nitrogen application amount and harvest batch.).







3.2 Metabolomic analysis revealed the dynamic changes in metabolites in wolfberry fruits under different nitrogen application levels

To gain a deeper understanding of the metabolite changes occurring in wolfberry fruits in response to different nitrogen application levels, we established a comprehensive metabonomics database using a broad targeted metabonomics approach facilitated by HPLC-MS technology. This database allowed us to identify primary and secondary metabolites within the samples. In total, 926 class I metabolites were detected, comprising 91 amino acids and their derivatives, 53 nucleotides and their derivatives, 57 organic acids, 119 lipids, 138 phenolic acids, 159 flavonoids, 29 lignans and coumarins, 13 steroids, 133 alkaloids, 32 terpenes, and 102 other compounds were detected (Figure 6).




Figure 6 | Metabolite classification diagram with annotated structure.



The partial least square discriminant analysis of metabolites demonstrated that all samples fell within the 95% confidence interval without any outliers. Analysis of the point clouds from the three groups revealed significant differences in the metabolite profiles of wolfberry fruits subjected to low, medium, and high nitrogen application. Components 1 and Component 2 explained 16.8% and 21.8% of the variation, respectively (Figure 7A), underscoring substantial variations in metabolite accumulation among wolfberry fruits under different nitrogen application levels. To investigate the alterations in metabolites due to nitrogen application, heatmaps were generated to visualize metabolite contents in wolfberry fruits under various nitrogen conditions. The results highlighted the most pronounced changes in metabolites occurring under medium nitrogen application conditions (Figure 7C). We selected the top 20 differentially abundant metabolites to construct heatmaps, as illustrated in Figure 7B. Under low nitrogen application, the dominant metabolites in wolfberry fruits included dibutyl phthalate and 2,4-dihydroxyquinolines. In contrast, medium nitrogen application led to the dominance of metabolites such as kaempferol-3-O-sophoroside-7-O-rhamnoside, trigonelline, 3-carbamyl-1-methylpyridine oxide, isorhamnein-3-O-sophoroside, and 3-(4-hydroxyphenyl) propionic acid. High nitrogen application resulted in the prevalence of metabolites such as L-citrulline, 2-methylglutaric acid, and adipic acid in wolfberry fruits.




Figure 7 | Metabolome analysis results for wolfberry fruits under different nitrogen application conditions. ((A) shows the PLS-DA analysis of different metabolites of wolfberry fruits under different nitrogen application conditions. (B) shows the clustering heatmap of the top 20 differentially abundant metabolites in wolfberry fruits under different nitrogen application conditions. (C) shows the total metabolite clustering heatmap of wolfberry fruit under different nitrogen application conditions).






3.3 Multivariate analysis of wolfberry fruit metabolites under different nitrogen application rates

Univariate analysis quantified the magnitude of differences by calculating the fold change in metabolite levels. The screening criteria included P < 0.05 and a log2-fold change > 0.5 or < –0.5. As shown in Figure 8A, 63 different metabolites were identified in wolfberry fruit samples under low- and medium-nitrogen conditions, with 5 upregulated and 18 downregulated metabolites. Figure 8B, shows that 68 different metabolites were detected in wolfberry fruit samples subjected to low- and high-nitrogen application, with 7 upregulated and 11 downregulated metabolites. Figure 8C shows the 103 differentially abundant metabolites identified in wolfberry fruit samples under medium and high nitrogen application, including 28 upregulated and 10 downregulated metabolites. A Venn diagram (Figure 8D) was generated to analyze the differentially abundant metabolites in wolfberry fruits following pairwise comparisons across low, medium, and high nitrogen application levels. Notably, isofraxidin, a coumadin component, emerged as a common differentially abundant metabolite influenced by different nitrogen application levels.




Figure 8 | Volcano plot and Venn diagram of differentially abundant metabolites in wolfberry fruits under various nitrogen application conditions. (A–C show the volcanic plots of different metabolites in wolfberry fruits treated with N1N2, N1N3, and N2N3, respectively. D shows the Venn diagram of different metabolites of wolfberry fruits under different nitrogen application conditions.).






3.4 Analysis of the metabolic pathways of wolfberry fruits under different nitrogen application rates

We conducted GO pathway analysis on the differentially abundant metabolites to identify significantly enriched metabolic pathways. The most significantly enriched pathways in all three comparison groups were related to metabolic pathways and the biosynthesis of secondary metabolites (Figures 9A–C). Specifically, under low and medium nitrogen application levels, differentially abundant metabolites in wolfberry fruits were notably enriched in pathways such as β-alanine metabolism, spermidine and spermine biosynthesis, lactose synthesis, nucleotide sugar metabolism, and pantothenic acid and coenzyme A biosynthesis (Figure 9A). Moreover, under low and high nitrogen application levels, different metabolites were enriched in pathways such as α-linolenic acid and linoleic acid metabolism, lactose synthesis, glutamic acid metabolism, pyrimidine metabolism, and purine metabolism (Figure 9B). Finally, under medium and high nitrogen application conditions, differentially abundant metabolites in wolfberry fruits were significantly enriched in pathways involved in valine, leucine, and isoleucine degradation; the urea cycle; starch and sucrose metabolism; fructose and mannose degradation; and the citric acid cycle (Figure 9C). To further explore metabolites that exhibited significant changes in response to nitrogen application, we generated heatmaps for the 10 most significantly enriched metabolic pathways in each comparison group (Figures 9D–F). With the exception of D-pantothenic acid (vitamin B5) and L-alanyl-l-leucine, the expression levels of the other eight metabolites in N2 were significantly greater than those in N1 (Figure 9D). For N1 and N3, the expression of the first four differentially abundant metabolites (lysophosphatidylcholine 20:1, guanosine 3’,5’-cyclic monophosphate, 2,4-dihydroxyquinoline, quercetin-3-O-(2”-O-rhamnosyl) rutinoside 7-O-glucoside) was significantly greater in N1 than in N3 (Figure 9E). A comparison of the differentially abundant metabolites between N2 and N3 revealed that the expression levels of the other nine metabolites, except for 2,4-DBT phenol, were significantly greater in N2 than in N3 (Figure 9F).




Figure 9 | GO enrichment analysis of different metabolites of wolfberry fruits under different nitrogen application conditions. (A–C show the metabolic pathway enrichment of differentially abundant metabolites in wolfberry plants treated with N1N2, N1N3, and N2N3, respectively. D–F are the top10 differentially abundant metabolite clustering heatmaps of wolfberry fruits treated with N1N2, N1N3, and N2N3, respectively.).







4 Discussion



4.1 Effects of different nitrogen application rates on the nutrient content of wolfberry fruits

The primary goal of agricultural production has always been to enhance the yield and quality of cash crops. Adequate irrigation and nitrogen fertilizer application play pivotal roles in augmenting crop yield and quality. However, the relationships between crop yield, water, and nitrogen fertilizer follow a parabolic pattern. This means that when water and fertilizer levels exceed a certain threshold, crop yield and quality can be adversely affected (Sandhu et al., 2019; Liu et al., 2020b; Liu et al., 2021). In this study, the nutrient composition data of wolfberry fruits from 2020 to 2022 indicated that with increasing nitrogen application, the total sugar content in wolfberry fruits tended to initially decrease and then increase. The levels of L. barbarum polysaccharides, total flavonoids, and total carotenoids initially increased and then decreased, while the content of betaine continuously increased. These findings are generally consistent with prior research. For instance, Kang et al. reported that with increased nitrogen fertilizer application, the total sugar and betaine contents in wolfberry fruits tended to increase, while the L. barbarum polysaccharide and total carotenoid contents tended to decrease. However, the total flavonoid content contradicted the results of this study, as they observed an increasing trend with increasing nitrogen application (Kang et al., 2008). Cai et al.’s study revealed that the total sugar content of wolfberry fruits increased with nitrogen fertilizer application, but the L. barbarum polysaccharide content remained relatively stable with varying nitrogen levels (Cai et al., 2013). L. barbarum polysaccharide, a vital component of wolfberry fruits, comprises arabinose, glucose, galactose, mannose, xylose, and rhamnose. Most studies indicate that its content decreases with increased nitrogen application (Chung et al., 2010), suggesting that improving wolfberry fruit quality may involve sacrificing some biomass. Additionally, while the total sugar content in wolfberry fruit is an essential indicator, the trend in recent years has favored low-sugar foods due to improved living standards. Therefore, scientifically adjusting nitrogen fertilizer application to balance the total sugar and L. barbarum polysaccharide contents in wolfberry fruits may lead to the production of high-quality wolfberries with low total sugar and high polysaccharide contents. Regarding the change in flavonoid content with nitrogen application, Wei et al. reported that the total flavonoid content increased after nitrogen application, primarily due to the significant impact of nitrogen fertilizer on specific flavonoids such as 3’,4’,5’-tricetin O-rutinoside, chrysoeriol O-glucuronic acid-O-hexoside, tricin 7-O-hexosyl-O-hexoside, and tricin 5-O-hexoside (Shi et al., 2019). In contrast, in this study, the total flavonoid content increased initially and then decreased with increasing nitrogen application, suggesting that excessive nitrogen fertilizer application may have an inhibitory effect on flavonoid production. However, the precise mechanisms underlying this trend require further investigation. Betaine is one of the primary bioactive components in wolfberry fruits and is a quaternary ammonium compound (Chen and Murata, 2011). Its content correlates with the amount of applied nitrogen. Nonetheless, it has been observed that under conditions of insufficient nitrogen supply, wolfberry plants prioritize meeting their growth requirements over synthesizing the secondary metabolite betaine (Chung et al., 2010). In summary, adjusting the balance between yield and quality in wolfberry through nitrogen application is highly important for the high-quality development of the wolfberry industry, ensuring the quality of medicinal materials and maintaining stable clinical efficacy.




4.2 Effects of different picking batches on the nutrient content of wolfberry fruits

Wolfberry fruits are categorized into summer and autumn fruits based on their picking period. Summer fruits typically ripen from mid-June to the end of August, with the highest yield in the third batch, which best represents the quality of summer fruits. Autumn fruit ripening usually occurs from mid-September to the end of October (Zhang et al., 2007). Due to the high cost of manually picking autumn fruits, most farmers do not harvest them. In this experiment, the first three batches of summer fruits were collected under different nitrogen application conditions for three consecutive years, after which the primary nutrients in the dried wolfberry fruits were determined. The results revealed that the first batch of fruits had the highest total sugar and total flavonoid contents, while other nutrients reached their maximum levels in the third batch of summer fruits. Few studies have explored the impact of different picking batches on the nutrient content of wolfberry fruits. Previous research has shown that the polysaccharide content of the first batch of wolfberry fruits, characterized by higher L. barbarum polysaccharide content, exceeded that of summer fruits by approximately 25.3% (Ye and Zhao, 2004). Zhang et al. reported that different picking periods significantly affected the contents of L. barbarum polysaccharides, total sugars, amino acids, and betaine, with the first batch exhibiting higher levels than the other batches (Zhang et al., 2007). In light of these findings, it can be inferred that the first batch of wolfberry fruits exhibits certain advantages in terms of nutrient content after three months of winter and three months of spring. However, multiple factors contribute to the quality of wolfberry fruit and the nutritional value of other batches of summer fruits should not be underestimated through artificial cultivation measures. Furthermore, previous research on the first batch of wolfberries revealed that their appearance and palatability did not match those of other summer fruit batches (Ye and Zhao, 2004), suggesting that consumers should not blindly favor the first batch when purchasing functional health products to avoid unsold wolfberry fruits in other batches.




4.3 Metabolic characteristics of wolfberry fruits under different nitrogen fertilizer treatments

Metabolites serve as the foundation of biological phenotypes and offer a more intuitive and effective means to comprehend biological processes and mechanisms (Shi et al., 2019).In this study, a comprehensive total of 926 different metabolites were identified under three distinct nitrogen application treatments via a broadly targeted metabolomics approach. Among them, 309 metabolites were detected in N1, 434 in N2, and 183 in N3. In comparison to those in the N1 and N3 treatments, most metabolites in the N2-treated fruits were upregulation. Notably, the dominant metabolites in the N2 treatment group included kaempferol-3-O-sophoroside-7-O-rhamnoside, trigonelline, 3-carbamoyl-1-methylpyridine oxide, isorhamnein-3-O-sophoroside, and 3-(4-hydroxyphenyl) propionic acid, which are primarily flavonoids or alkaloids. Flavonoids are a valuable group of secondary metabolites in plants and are known for their various beneficial properties, including anticancer, anti-inflammatory, antioxidant, and bone-strengthening effects (Dong et al., 2009; Zhao et al., 2019). Wolfberry contains thirteen different flavonoid compounds, with rutin, quercetin, and kaempferol being the main flavonoid metabolites. In recent research, an additional seven flavonoid compounds have been identified in wolfberry fruits, expanding the repertoire of flavonoids present in wolfberry (Yang et al., 2022). The differentially abundant metabolites of wolfberry fruits subjected to N1, N2, and N3 treatments were analyzed using a Venn diagram, revealing that isofraxidin was a common differentially abundant metabolite influenced by different nitrogen application levels. Isofraxidin is a coumarin-like substance, and coumarins have gained significant attention in recent years for their diverse physiological activities, including anticancer, antioxidation, anti-inflammation, anti-HIV, anticoagulation, antibacterial, analgesic, and immune-regulating properties (Wu et al., 2009). As isofraxidin was the sole common differentially abundant metabolite across all treatments in this study, coumarins may serve as potential biomarkers for the response of wolfberry fruits to nitrogen. The differences in GO enrichment classification under various nitrogen fertilizer treatments primarily pertain to metabolic pathways and the biosynthesis of secondary metabolites. Specifically, the N1 and N2 treatments were predominantly associated with β-alanine metabolism, spermidine and spermine biosynthesis, lactose synthesis, nucleotide sugar metabolism, and pantothenic acid and coenzyme A biosynthesis. Moreover, under N1 and N3 conditions, the focus shifted to α-linolenic acid and linoleic acid metabolism, lactose synthesis, glutamic acid metabolism, pyrimidine metabolism, and purine metabolism. Finally, the N2 and N3 treatments were primarily associated with the degradation of valine, leucine, and isoleucine; the urea cycle; starch and sucrose metabolism; fructose and mannose degradation; and the citric acid cycle.





5 Conclusions

In summary, the application of 675 kg·ha–2 of nitrogen, which is 20% lower than the local farmers’ actual nitrogen application rate, was most beneficial for obtaining high-quality wolfberry fruit from four-year-old Ningqi 7 plants, a major wolfberry variety. Analysis of three years of field experiment data revealed that both the nitrogen application amount and picking batch significantly affected the main nutrient content in wolfberry fruits. A total of 926 metabolites were identified in wolfberry fruits subjected to the N1, N2, and N3 treatments, with 65 metabolites significantly influenced by nitrogen application. Isofraxidin, a coumarin-like substance, emerged as a common differentially metabolite across all treatments, suggesting its potential as a biomarker for wolfberry fruit response to nitrogen environments.
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