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Case report: A case study on the
treatment using icaritin soft
capsules in combination with
lenvatinib achieving impressive PR
and stage reduction in
unresectable locally progressive
pancreatic cancer and a literature
review

Xiaolong Liu1, Feimin Yang2, Dunmao Jia3, Xinyu Dong1,
Yizhuo Zhang1 and Zhengrong Wu1*
1Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
Hangzhou, China, 2Department of Nursing, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang
University, Hangzhou, China, 3Department of General Surgery, Affiliated Run Run Shaw Hospital,
Jiangshan Branch, Harbin Medical University, Quzhou, China

Background: Pancreatic cancer is one of the most deadly malignancies in the
world. It is characterized by rapid progression and a very poor prognosis. The five-
year survival rate of pancreatic cancer in China is only 7.2%, which is the lowest
among all cancers and the use of combined paclitaxel albumin, capecitabine, and
digital has been the clinical standard treatment for advanced pancreatic cancer
since 1997. Also, the application of multidrug combinations is often limited by the
toxicity of chemotherapy. Therefore, there is an urgent need for a more
appropriate and less toxic treatment modality for pancreatic cancer.

Case presentation: The patient was a 79-year-old woman, admitted to the
hospital with a diagnosis of unresectable locally advanced pancreatic cancer
(T3N0M0, stage IIA), with its imaging showing overgrowth of SMV involvement
and unresectable reconstruction of the posterior vein after evaluation. As the
patient refused chemotherapy, lenvatinib (8 mg/time, qd) and icaritin soft capsules
(three tablets/time, bid) were recommended according to our past experience and
a few clinical research cases. The tumor lesion was greatly reduced by 57.5% after
the treatment, and the extent of vascular involvement also decreased. The
aforementioned medication resulted in a significant downstaging of the
patient’s tumor.

Conclusion: Better results were achieved in the treatment with icaritin soft
capsules and lenvatinib in this case. Because of its less toxic effect on the liver
and kidney and bone marrow suppression, it was suitable to combine icaritin soft
capsules with targeted drugs for treating intermediate and advanced
malignancies, which brings hope to patients who cannot or refuse to take
chemotherapy.
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Preface

Today, pancreatic cancer is one of the deadliest malignancies.
The global tumor registry data of 2020 show that pancreatic cancer
ranks 12th in incidence but 7th in mortality among malignancies
(Hu et al., 2021). It is mostly characterized by rapid progression and
a very poor prognosis. The five-year survival rate of pancreatic
cancer in China is only 7.2%, the lowest among all tumor types
(Zhao et al., 2019). Most patients are diagnosed with locally
advanced pancreatic cancer or distant metastases when the tumor
is detected, so only 15%–20% of patients have the opportunity to
accept surgical treatment with a better prognosis (Van Veldhuisen
et al., 2019). A total of 95,000 new cases of pancreatic cancer were
diagnosed in China in 2015, while 85,000 deaths occurred, with
generally higher morbidity and mortality rates in men and in urban
areas (Jia et al., 2018).

Gemcitabine has been the standard chemotherapy for advanced
pancreatic cancer since 1997. Several phase III clinical trials have
tried chemotherapy with gemcitabine to improve outcomes.
However, most of these trials failed to show an improvement in
overall survival, except for two studies. A phase III trial of erlotinib
and gemcitabine showed very limited improvement compared to
gemcitabine alone (Moore et al., 2007). Also, in the ACCORD
11 study, better results were observed with FOLFIRINOX
chemotherapy (five-fluorouracil, oxaliplatin, and irinotecan with
folinic acid), which showed an improvement in overall survival
by more than four months (from 6.8 to 11.1 months) compared to
gemcitabine (Conroy et al., 2010). However, the significant toxicity
of multidrug chemotherapy often limits its use to the extent that
some patients refuse it. Therefore, there is an urgent need for a more
efficient and less toxic treatment modality for pancreatic cancer.

Studies have concluded that most pancreatic cancers are blood-
deprived tumors with insignificant angiogenesis, and therefore,
there is little data about the anti-angiogenic drugs for clinical
treatment. However, one study showed that the ORR of
lenvatinib for the treatment of pancreatic neuroendocrine tumors
was up to 44.2% and the DCR was 96.2%, which proves its
effectiveness (Capdevila et al., 2021). Other cases of target-free
combination therapy for pancreatic tumors have also been
reported, such as a 55-year-old pancreatic cancer patient
(cT4N1M1) with liver and lung metastases who carried
ERBB2 mutation and had high tumor mutational load (TMB)
being treated with lenvatinib in combination with
pembrolizumab; it achieved partial remission for up to 5 months
after a series of treatments failed (Chen et al., 2019). A 48-year-old
patient with metastatic pancreatic alveolar cell carcinoma treated
with lenvatinib and sintilimab demonstrated significant tumor
remission and long-term progression-free survival (>21 months)
(Qin et al., 2021). The data previously discussed suggest that
lenvatinib and immunologic agents may be effective in the
clinical treatment of pancreatic cancer.

Icaritin soft capsules are an original small-molecule
immunomodulator with independent intellectual property rights
in China; it is a first-in-class original drug in the world, and it was

approved by China’s National Medical Products Administration
(NMPA) in January 2022. The results of its preclinical studies and in
vivo pharmacodynamic study showed that epimedium had a
significant dose-effect positive correlation in inhibiting tumor
growth in the human-derived hepatocellular carcinoma Hep
G2 mouse liver, which is an in situ transplantation tumor model,
and also had different inhibition of tumor growth in the human-
derived breast cancer BCAP-37, human-derived prostate cancer PC-
3, and other subcutaneous transplantation tumor models, which also
showed a certain quantitative-effect relationship (Huang et al., 2007;
Tong et al., 2011; Sun et al., 2021), confirming its significant and
broad-spectrum antitumor activity. As a novel small-molecule
immunomodulator, it can inhibit inflammatory signaling
pathways, reduce the release of inflammatory factors, enhance
antigen presentation, decrease expression of PD-L1 and MDSC,
increase T-cell termination, and improve the immune
microenvironment of tumors through dual activation of intrinsic
and adaptive immunity. The current indication of the icaritin soft
capsule is approved for the first-line treatment of hepatocellular
carcinoma (Guo et al., 2011). As far as we know, there are many
studies about liver cancer treatment with icaritin soft capsule, and no
related research concerning different stages of pancreatic cancer
treatment with icaritin soft capsule in practice.

This article reports a case of a patient with locally progressive
unresectable pancreatic cancer who refused chemotherapy and
achieved PR after treatment with lenvatinib and icaritin soft
capsules with satisfactory efficacy and controlled safety.

Case presentation

The patient is a 79-year-old woman admitted to our hospital in
mid-August 2022 for “distension and pain in the upper and middle
abdomen for 1 week and pancreatic occupancy for 6 days.” In fact,
the patient could maintain a normal life and take care of herself
except for distension and pain in the upper and middle abdomen
without any cause, accompanied by nausea and a small amount of
vomiting, which were mostly gastric contents. The KPS score of the
patient was approximately 80. The aforementioned condition could
evidently be aggravated by hunger and was relieved by eating small
amounts of food. There was no fever, chills, diarrhea, or black stool.
At first, she went to the local hospital to find elevated CA 19-9 levels
(details unknown), and abdominal ultrasonography suggested an
occupancy in the head of the pancreas. For further diagnosis and
treatment, the patient came to our hospital with a diagnosis of
pancreatic mass. The patient denied a past history of hypertension,
diabetes mellitus, hepatitis, tuberculosis, etc. and denied any history
of surgical trauma. The hospital conducted a physical examination
as follows: T 36.9°C, R 19°bpm, HR 85°bpm, BP 159/72 mmHg, and
pain score 1. The patient was conscious and mentally competent.
The skin and sclera were not yellowish and without enlarged
superficial lymph nodes, with clear breath sounds in both lungs
and uniform heart rhythm without cardiac murmur. The abdomen
was flat with normal bowel sounds and negative shifting dullness.
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The whole abdomen was soft without abnormal masses and pressure
pain or rebound pain. There was no edema in both lower
extremities, and the pathological features were negative.

The supplementary examination included the blood count:
WBC, 6.0*10̂9/L; Neo, 3.32*10̂9/L; HB, 128 g/L; and Plt, 254*10̂9/L.

Blood biochemistry was reported as follows: K, 3.78 mmol/L;
ALT, 19 U/L; AST, 17 U/L; AKP, 123 U/L; γGGT, 45 U/L; ALB,
42.9 g/L; TBIL, 6.3 μmol/L; and DBIL, 1.0 μmol/L. Blood glucose
was 11.4 mmol/L. Tumor markers included CA 19-9, 69.8 IU/mL;
CEA, 1.39 ng/mL; CA 15-3, 10.60 U/mL; CA 125, 14.30 U/mL; and
AFP, 1.77 ng/mL. CT scan images of admission (Figure 1) showed
occupancy in the pancreas head, which was considered to be cancer,
with an involvement of the gastroduodenal artery and the superior
mesenteric vein, and a soft tissue mass shadow was observed in the
pancreas head, approximately 57*32 mm.

Ultrasound endoscopy showed a well-defined and irregular
hypoechoic mass in the pancreatic head with a vascular invasion
of approximately 43*29 mm. The preliminary diagnosis was
considered pancreatic malignancy (cT3N0M0, stage IIA), which
indicated the clinical diagnosis stage. Due to excessive SMV
involvement and evaluation of posterior venous unresectable
reconstruction, the disease was diagnosed as locally progressive
unresectable pancreatic cancer. The current standard first-line
treatment for advanced unresectable pancreatic cancer is based
on a gemcitabine regimen. However, the patient insistently
refused chemotherapy after repeated communication and
explanation, and based on its immune regulation mechanism,
combining our previous medication experience with the icaritin
soft capsule, we tried to recommend lenvatinib and icaritin soft
capsule for treatment. To the best of our knowledge, no case study
was found to be reported to treat pancreatic cancer until now.

The patient underwent a CT review after 1 month of medication,
and although the huge mass did not shrink and significant cystic
necrosis was visible inside, in the meantime, the significant spillage
of the contrast agent could be observed, suggesting the possibility of
bleeding inside a tumor. It was inferred that the disease has been
controlled (Figure 2). Since the tumor envelope was still intact, it was
considered that the risk of progressive bleeding could be avoided by
self-compression to stop the bleeding. Generally speaking, short-
term and small amounts of bleeding have limited harm, but it could
lead to death with a large amount of bleeding. The patient was
discharged after conservative treatment in the hospital.

The patient came to our hospital for the second time due to sudden
abdominal pain. The routine blood tests showedWBC, 12.0*109/L; Neo,
9.82*109/L; CRP, 188.5 mg/L; blood amylase, 239 IU/L; and lipase,
231.10 IU/L; all of the aforementioned indicators were elevated. The
tumor biomarker of CA 19-9 showed a decrease from 70 IU/mL to
30 IU/mL, and the imaging showed a 52% reduction in tumor size
(35*28mm), a reduction in superior mesenteric vein (SMV)
involvement, and significant relief of vascular stenosis. The efficacy of
lenvatinib and icaritin soft capsules was evaluated comprehensively and
reached PR with significant tumor remission after 2 months (Figure 3).
Anti-infective and amylase-lowering symptomatic treatment was given
for acute pancreatitis after her admission into the hospital.

On 15 October 2022, the patient was readmitted to the hospital
again with sudden onset of abdominal pain for 1 day, and routine
blood showed WBC, 14.7*109/L; Neo, 11.98*109/L; CRP, 156.3 mg/
L; blood amylase, 211.6 IU/L; and lipase, 224.0 IU/L. CT of the
abdomen showed a diffuse inflammatory exudate below the
pancreas, suggesting secondary acute pancreatitis (Figure 4).
Also, the tumor lesion was approximately 20% smaller than last
time and 57.5% smaller overall than before treatment. The vascular

FIGURE 1
Abdominal CT scan (2022-08-05): a soft tissue mass shadow was seen in the pancreas head, approximately 57*32 mm; meanwhile, the
gastroduodenal artery and superior mesenteric vein were also involved.
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involvement was also reduced and the proximal stenosis of SMVwas
also relieved with a better contour. The patient’s condition was
regarded to be locally advanced pancreatic cancer as before, and the
surgical assessment met the criteria for SMV resection and
reconstruction (Figure 4). Therefore, its TNM stage was
downgraded from T3N0M0 (stage IIA) before the treatment to

T2N0M0 (stage IB) after the treatment, and surgery was
recommended as an effective treatment choice. Meanwhile, the
patient requested the surgery after another two cycles of
medication due to the results being beyond her expectation. The
patient was admitted to the hospital only for an anti-infective
symptomatic treatment of secondary acute pancreatitis.

FIGURE 2
Abdominal CT scan (2022.08.27): a mass of shadow in the neck of the pancreatic head, approximately 57*32 mm; tumor with cystic necrosis was
considered as a small amount of local bleeding.

FIGURE 3
CT imaging of the abdomen (2022.9.26): a slightly hypodensemass of approximately 35*28 mmwithmild enhancement at themarginwas observed
in the neck of the pancreatic head, and the right wall of the proximal end of the adjacent superior mesenteric vein was involved with a slightly narrower
lumen. The tumor was 52% smaller than before treatment.
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Unfortunately, the patient stopped taking these two drugs for
financial reasons and was re-examined 1 month later, which showed
an increase of 1 cm in the active component of the primary
pancreatic lesion (original necrotic part), an increment of 2 cm in
the tumor located in the pancreatic hook, and multiple metastases in
the hepatoduodenal ligament and the hepatogastric ligament based
on the results of abdominal CT imaging. Also, increased tumor
biomarkers, such as CA 19-9 (241.1 U/mL) and ferritin (686.0 ng/
mL), on November 3 suggested tumor progression. Later, the patient
took Tegio as treatment, and CA 19-9 increased to 501.6 U/mL in
December without a CT review (Figure 5). Also, the patient is still
alive today.

Treatment summary

Icaritin soft capsules are now widely used as an
immunomodulatory agent in the treatment of solid tumors. In this
case, a 79-year-old woman with nausea and vomiting was found to
have elevated CA 19-9 at a local hospital, while an ultrasonic
examination showed an occupied lesion in the patient’s pancreatic
head. In our hospital, it just presented with the symptoms or signs of
slightly elevated blood pressure, blood glucose, and mild abdominal
pain. The patient was initially diagnosed with pancreatic cancer with
T3N0M0 (stage IIA). The evaluation revealed a tumor invading an
SMV, which was unfit for removal and reconstruction, and it can be
classified as an unresectable, locally advanced pancreatic cancer.
Generally, pancreatic cancer at this stage can be treated with
gemcitabine combined with albumin paclitaxel (GN) or
gemcitabine and cisplatin (GP) according to the new guidelines
recommended by CSCO, whose efficiency can reach 20%–30%
(Cui et al., 2022). However, the fact lies in the low validity as
expected, and some serious side effects with chemotherapy.
Therefore, the patient’s family insisted on refusing chemotherapy.
The choice of icaritin soft capsules and lenvatinib wasmainly based on
the following reasons:

1) Due to economic reasons, the patient refused gene sequencing,
including the BRAC1/2 gene and other tumor-associated genes,
and no targeted drugs could be chosen and applied without the
definite gene status of the BRAC1/2 gene; meanwhile, the patient
refused radiotherapy.

2) Icaritin soft capsules are a broad-spectrum immunomodulator
for solid tumors, with enough evidence for a favorable experience
of clinical application and good security.

3) There are some data to support the use of lenvatinib in the
clinical treatment of pancreatic cancer.

FIGURE 4
CT scan of the abdomen (2022.10.15): a slightly hypodense mass of approximately 35*28 mmwith mild edge enhancement was seen in the neck of
the pancreatic head, with a slightly reduced lesion compared to the last imaging (2022.09.26), and with a relief of the proximal stenosis in the adjacent
SMV. It showed better improvement than before for the vague edema and thickening of the lateral wall of the greater curvature of the gastric antrum and
the colorectal wall, and the vague inflammatory exudation of the gastrocolic ligament. The tumor was 20% smaller than in the last review.

FIGURE 5
Changes in tumor markers: the patient took two drugs for
2 months between August and stopped them in early October for
financial reasons, later replaced them with Tegio in early November,
and followed up about 3 months after the drug’s withdrawal.

Frontiers in Genetics frontiersin.org05

Liu et al. 10.3389/fgene.2023.1167470

9

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1167470


Pancreatic cancer is generally a blood-deprived tumor with
insignificant angiogenesis; therefore, the role of anti-angiogenic
drugs in the treatment of pancreatic cancer remains to be
proven. Studies have shown that all types of tumors require
vascularization to provide the oxygen and nutrients, which
tumors need to grow (Craven et al., 2016). According to Haltly’s
research, the vasculature was generally divided into visualized tumor
vessels and microscopic microvasculature. Now, the microvessel
density is thought to be a better indicator of tumor metabolic load
than visual angiogenesis. Therefore, it is believed that tumors lacking
blood supply can also benefit from anti-angiogenic therapy (Lynn
et al., 2002). Although there are fewer visualized vessels in pancreatic
cancer, a higher microvessel density suggests the possible benefits of
the anti-VEGF treatment. However, the clinical practice has shown
that small-molecule TKIs, including bevacizumab and aparatinib in
combination with chemotherapy for pancreatic cancer, did not meet
the expectations due to insignificant OS prolongation and even
shorter survival than chemotherapy alone in some cases (Kindler
et al., 2010; Gonçalves et al., 2012; Bergmann et al., 2015; Kim et al.,
2015). This may be related to the fact that targeted drugs increase the
side effects and prevent patients from the full course of
chemotherapy, which leads to poor treatment effects.

Generally, due to the complex mechanism of tumorigenesis and
metastasis, combination therapy can inhibit tumors from multiple
mechanisms to achieve better clinical results; therefore, multiple
combined medication schemes are recommended by NCCN, ASCO,
and CSCO guidelines in the clinical practice at present. There are
data about the treatment of pancreatic cancer with lenvatinib. In
fact, lenvatinib is a synthetic multi-target inhibitor of tyrosine kinase
with oral activity, which is most effective for the VEGFR2 (KDR)/
VEGFR3(Flt-4) gene mutation of cancer. Also, we think that it is an
anti-tumor drug, not an immune modulator. There is a report that
the ORR reached 44.2% with lenvatinib after the treatment of the
pancreatic neuroendocrine tumor, and DCR was up to 96.2%, which
showed higher efficiency but a poor safety profile. The common
adverse events often included fatigue, hypertension, and diarrhea,
and approximately 93.7% of patients would have dose reduction
requirements or treatment interruption (Capdevila et al., 2021).
Another study also exhibited its inhibition focused on the growth of
pancreatic cancer graft tumors and also mentioned that
microvascular density may be related to the efficacy of anti-
angiogenic drugs (Yamamoto et al., 2014). This inferred the
therapeutic effects of pancreatic cancer with lenvatinib.

There are few clinical precedents of targeted-drug monotherapy
for pancreatic cancer until now. In this case, based on two case
reports of lenvatinib and immune-related drugs of pancreatic
tumors and our experience (Yi et al., 2019), and the patient’s
opinion of refusing chemotherapy, icaritin soft capsule, as a new
small-molecule immunomodulator, and lenvatinib was used in the
treatment for the patient. It is believed that immunomodulation of
icaritin soft capsule plays an important role in tumor cells and the
microenvironment, including 1) icaritin suppresses IL-6/JAK2/
STAT3 signaling pathway by inhibiting JAK2 and
STAT3 phosphorylation, leading to downregulation of its
downstream-related genes (Zhu et al., 2015); 2) directly binds
MyD88/IKKα and inhibits the TLR-MyD88-IKK-NFκB-signaling
pathway, which in turn reduces TNF-α, IL-6, and other factors’
production and downregulates the IL-6/JAK2/STAT3-signaling

pathway (Li et al., 2021). It is shown that the two signaling
pathways aforementioned are complementary and can exhibit
anti-tumor effects by downregulating inflammatory factors, such
as TNF-α, IL-6, and PD-L1 expression. The results demonstrated
that the number and proportion of CD8+ T cells in tumor tissues of
mice were significantly increased, and the proportion of MDSCs was
significantly reduced in the icaritin soft capsule group in the related
immune microenvironment studies, indicating that it not only
increased the number and activity of CD8+ T cells but also
effectively reduced the proportion of immunosuppressive cell
MDSCs (Hao et al., 2019). It is concluded that restoring the
ability of CD8+ T cells could contribute to producing IFN-γ and
improving the tumor microenvironment to prevent tumor growth.

The patient was re-examined after 1 month of medication, and
CT showed that the lesion did not shrink but a larger internal cystic
necrosis and notable contrast spillage were seen, suggesting the
presence of tumor bleeding and the possibility of tumor remission.
After the whole treatment, significant tumor remission and a good
quality of life improvement were observed in this patient, and it
proved the treatment effective. This may be related to the combined
potency of the two drugs. Cytokine IL-6 has various pro-tumor
activities, such as promoting the release of angiogenic factors leading
to neovascularization (Fisher et al., 2014); therefore, downregulation
of IL-6 expression may enhance the inhibition of tumor
microangiogenesis and thus increase its effects of anti-angiogenic
drugs.

The commonly mutated genes in pancreatic cancer include
BRCA1/2, CDKN2A, PALB2, ATM, TP53, STK11, and PRSS1.
Currently, patients with a family history of pancreatic cancer are
mostly recommended to undergo BRCA1/2 and other related
genetic tests to clarify the possibility of tumor heritability, and to
help targeted-drug screening and clinical treatment on the other
hand. Lenvatinib is a receptor tyrosine kinase (RTK) inhibitor that
inhibits the VEGF receptor VEGFR1/2/3 kinase activity and also
inhibits pathological tumor angiogenesis, thereby inhibiting tumor
growth and progression. It is approved for unresectable
hepatocellular carcinoma primarily based on the results of the
non-inferiority, multicenter randomized REFLECT Phase III
clinical study compared with sorafenib. The Phase II clinical trial
of GETNE1509 with lenvatinib also demonstrated efficacy against
progressive advanced pancreatic and gastrointestinal
neuroendocrine cancers (Capdevila et al., 2021). There are details
about gene mutations in pancreatic cancer (Table 1). Another phase
II clinical study of lenvatinib in combination with a PD1 inhibitor
for unresectable cholangiocarcinoma has also shown good efficacy
and promise (Zhang et al., 2021). Because of the indications for
advanced hepatocellular carcinoma of lenvatinib, it is currently less
used in the clinical treatment of pancreatic cancer. Therefore, there
is no expert consensus or guidelines for selecting lenvatinib for
locally progressive unresectable pancreatic cancer based on its
tumor-related driver gene by gene sequencing. Nevertheless,
high-throughput sequencing will undoubtedly become a key
cornerstone of pharmacogenomics and individualized therapy
during the treatment of tumors (Morganti et al., 2019). In this
case, the patient had significant efficacy with two cycles of lenvatinib
and icaritin soft capsules, considering the possible existence of
VEGFR1/2/3 gene variants and their benefits. In the future, the
treatment of pancreatic cancer may require more high-throughput
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sequencing as an important means and tool for treatment selection.
With the discovery of more tumor-driver genes and the research and
application of related targeted drugs, the treatment of pancreatic
cancer and its clinical prognosis can be expected. The tumor is
actually a chronic inflammatory process accompanied by changes in
various inflammatory factors. Because we paid more attention to
clinical symptoms during the treatment course, the related clinical
symptoms, imaging findings, and hematological examination could
only indicate therapeutic effects, while neglecting the tumor
microenvironment change without conducting for the
inflammatory factor test. In the future, more observation and
research should be conducted on the changes in relevant
inflammatory factors in the tumor treatment.

At present, tumor immunotherapy is widely carried out;
unfortunately, the effect is not clear with many clinical studies of
immunotherapy in combination with chemotherapy,
chemoradiotherapy, vaccines, and cytokine antagonism in
patients with pancreatic cancer (Sahin et al., 2017). Generally, the
microenvironment of pancreatic cancer is thought to create an
immunosuppressive environment for its low immunogenicity,
and there is currently no immunotherapy approved for these
patients with pancreatic cancer. Also, the FDA approved the use
of pembrolizumab in the treatment of microsatellite unstable
cancers unrelated to the type of cancers, which seems to depend

on the synergistic effect with increased response rates when a
combinatorial approach of immunotherapy in conjunction with
other modalities is being used (Schizas et al., 2020; Zhao and Liu,
2020). Therefore, a comprehensive treatment using different
therapeutic strategies with immunotherapy may bring hope to
pancreatic cancer patients (Schizas et al., 2020).

The patient stopped the medication in early October 2022 for
financial reasons, and she was subsequently transferred to the
hospital for the treatment due to tumor progression. From her
tumormarker changes and abdominal CT results, it showed (Figures
4, 5) that the effect of Tegio chemotherapy was not satisfactory and
the efficacy was much less than that of lenvatinib and icaritin soft
capsules. Although the patient had to switch drugs for economic
reasons, it provided clinical application evidence and reference for
the subsequent combination treatment with targeted and immune-
related drugs in advanced pancreatic cancer.

It is noteworthy that there were two sudden onsets of acute
pancreatitis during the treatment in this case. Icaritin soft capsules as
a new class I drug were launched in May 2022, the total number of
users is currently small, and no reports related to triggering
pancreatitis have been seen in phase III clinical studies, but cases
of lenvatinib leading to pancreatitis have been reported (Kawakami
et al., 2018). Therefore, it cannot be excluded that patient’s two acute
pancreatitis were related to the application of lenvatinib. The safety

TABLE 1 Common pancreatic cancer-related gene variations and possible effective targeted drugs (some table contents based on the public data of COSMIC).

Common pancreatic cancer-
related gene

Point mutation Copy number
variation

Gene expression Targeted drug

%
mutated

Tested Variant
%

Tested % regulated Tested

BRCA1 2.32 2,891 0.22 898 6.15 (Over
expressed)

179 PARP inhibitors: oplaparib,
rucaparib, and niraparib

0.56 (Under
expressed)

BRCA2 3.83 3,079 5.59 (Over
expressed)

179 The same as aforementioned

CDKN2A 7.64 4,582 4.68 898 12.29 (Over
expressed)

179 CDk4/6 inhibitors: palbociclib

PALB2 1.27 2,828 4.47 (Over
expressed)

179 May benefit from PARP inhibitors
treatment

1.68 (Under
expressed)

ATM 5.7 3,649 3.35 (Over
expressed)

179 May benefit from oplaparib
treatment

TP53 38.53 5,076 7.82 (Over
expressed)

179

9.5 (Under
expressed)

STK11 1.81 3,932 0.22 898 3.91 (Over
expressed)

179 PARP inhibitors: bemcentinib +
pembrolizumab

10.61 (Under
expressed)

PRSS1 0.65 2,011 3.35 (Over
expressed)

179
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of the combined application of the two drugs was positive
throughout the treatment, with no serious complications.
Moreover, because it was administered orally, the patient
complied well and never discontinued the drug except for
economic reasons, confirming the safety of the drug.

Summary

Overall, the efficacy of icaritin soft capsules in combination with
lenvatinib in this case of advanced pancreatic cancer is very
remarkable. Also, because icaritin soft capsules have minimal
effects on liver and kidney function and bone marrow
suppression, it is well suited for combination with targeted or
immune drugs for the treatment of advanced malignancies,
bringing new hope to patients with advanced pancreatic cancer
who are unable or refuse to receive first-line treatment with
chemotherapy, at least, as an alternative treatment.
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COVID-19 is an infectious disease caused by SARS-CoV-2, with respiratory
symptoms as primary manifestations. It can progress to severe illness, leading
to respiratory failure and multiple organ dysfunction. Recovered patients may
experience persistent neurological, respiratory, or cardiovascular symptoms.
Mitigating the multi-organ complications of COVID-19 has been highlighted as
a crucial part of fighting the epidemic. Ferroptosis is a type of cell death linked to
altered iron metabolism, glutathione depletion, glutathione peroxidase 4 (GPX4)
inactivation, and increased oxidative stress. Cell death can prevent virus replication,
but uncontrolled cell death can also harm the body. COVID-19 patients with multi-
organ complications often exhibit factors related to ferroptosis, suggesting a
possible connection. Ferroptosis inhibitors can resist SARS-CoV-2 infection from
damaging vital organs and potentially reduce COVID-19 complications. In this
paper, we outline the molecular mechanisms of ferroptosis and, based on this,
discuss multi-organ complications in COVID-19, then explore the potential of
ferroptosis inhibitors as a supplementary intervention for COVID-19. This paper
will provide a reference for the possible treatment of SARS-CoV-2 infected disease
to reduce the severity of COVID-19 and its subsequent impact.

KEYWORDS

COVID-19, ferroptosis, iron, ROS, GPX4, multi-organ complications, inhibitors

1 Introduction

Due to its rapid spread and rising mortality rate, the pandemic brought on by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as Corona Virus
Disease 2019 (COVID-19), has had a significant influence on the entire world. Globally,
more than 6.8 million fatalities and over 755 million occurrences of COVID-19 have been
reported as of February 2023 (Organization, 2023). Some infected individuals exhibit only
mild signs and symptoms like fever, tiredness, and a chronic cough, a subset develops severe
COVID-19 (Borges do Nascimento et al., 2020). Patients with severe COVID-19, however,
may experience immunological and coagulation abnormalities and organ damage to the
lungs, heart, kidneys, brain, liver, and other organs (Mehta et al., 2020). In addition,
individuals with varying degrees of COVID-19 severity, including those with mild to
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moderate symptoms, often experience neurological, respiratory, or
cardiovascular symptoms that can persist for weeks or months,
commonly called “post-COVID-19 syndrome” or “long COVID”
(Yong, 2021). Although vaccines for COVID-19 are widely available,
the emergence of mutant strains of the virus still poses a threat.
While antiviral small-molecule oral drugs such as Paxlovid and
Molnupiravir have proven to help avoid hospital stays and death in
high-risk COVID-19 patients and have been approved for
treatment, they have strict population and timing restrictions to
use. There have also been reports of recurrent infection and
symptom rebound after a 5-day course of therapy with Paxlovid
(Rubin, 2022).

Cell death is a two-edged sword in viral infections (Imre, 2020).
It can remove cells infected with SARS-CoV-2, thereby inhibiting
virus replication and spread. Still, dysregulated cell death can lead to
uncontrolled cellular damage and immune responses, contributing
to the multi-organ manifestations observed in COVID-19 patients
during acute infection and potentially leading to long COVID.
Ferroptosis, a type of cell death brought on by the small
molecule erastin, was initially identified in 2012 (Dixon et al.,
2012). As opposed to apoptosis, a type of programmed cell
death, ferroptosis is primarily brought on by a buildup of
intracellular lipid reactive oxygen species (ROS), leading to fatal
lipid peroxidation (Hadian and Stockwell, 2020). This process is
called ferroptosis because iron ion overload is an essential factor in
lipid peroxidation. 4-Hydroxynonenal (4-HNE), a breakdown
product of lipid peroxidation leading to ferroptosis, can be used
as a marker for ferroptosis. The pathology report of a COVID-19
patient in 2020 showed a decreased lymphocyte count and positive
staining of the proximal renal tubules and myocardial tissue,
suggesting an association between ferroptosis and organ damage
caused by COVID-19 (Jacobs et al., 2020). A growing number of
studies now suggest a strong link between ferroptosis and COVID-
19. This paper discusses the main molecular mechanisms of
ferroptosis and its association with multi-organ complications in
COVID-19, providing directions for the potential treatment
modalities to weaken the effects of COVID-19.

2 Molecular mechanisms of ferroptosis

Production of ROS has been reported to occur in the
mitochondrial membrane and the mitochondrial and
endoplasmic reticulum membranes (Neitemeier et al., 2017).
Mitochondria are the metabolic center in most mammalian cells
and are an efficient source of ROS. The imbalance between oxidative
and antioxidant systems prevents ROS from being removed. The
intrinsic/enzyme-regulated pathways mainly involve the inhibition
of glutathione peroxidase 4 (GPX4) (Stockwell et al., 2017). Thus,
the primary oxidative and antioxidant mechanisms of ferroptosis are
analyzed below.

2.1 Oxidation mechanisms

2.1.1 Lipid peroxidation
Long-chain fatty acids, which contain more than two double

bonds, are called polyunsaturated fatty acids (PUFA). PUFA is a

critical component of cell membranes and is vital in regulating
biological functions, including physiological and immune responses
(Gill and Valivety, 1997). Due to the large number of double bonds,
PUFA has less stability and is highly sensitive to oxygen (Yin et al.,
2011). Arachidonic acid (AA) and adrenic acid (AdA) are the lipids
most vulnerable to oxidation. Generally, lipid peroxidation can be
divided into two types: enzymatic oxidation (with enzymes) and free
radical chain reactions (non-enzymatic), through which PUFA can
be oxidized and broken down into toxic derivatives such as 4-HNEs
and malondialdehyde (MDA) (Feng and Stockwell, 2018).

Several enzyme species are involved in the type of lipid
peroxidation caused by enzyme oxidation (Figure 1). The ROS
catalyzed by NADPH oxidase (NOX) is the primary source of
ROS in the cellular oxidative stress process. Moreover, enzymes
such as lipoxygenases (LOXs) are essential in triggering cell
ferroptosis (Doll et al., 2019). LOX can directly oxidize
phosphatidylethanolamine-adrenic acid/arachidonic acid (AA/
AdA-PE) into peroxide products (AA/AdA-PE-OOH), which are
ferroptosis signals. However, the conversion of AA and Ada to AA/
AdA-PE cannot occur without acyl-coenzyme A synthase long-
chain family member 4 (ACSL4) and lysophospholipid
acyltransferase 3 (LPCAT3). After ACSL4 ligated coenzyme A
(CoA) to AA/AdA, forming AdA-CoA, LPCAT3 facilitates AdA-
CoA esterification in the cell membrane to develop AA/AdA-PE
(Kagan et al., 2017). The LOX catalytic process contributes to the
LOOH cell pool and makes the cells sensitive to ferroptosis.
However, some cell lines susceptible to ferroptosis do not express
any significant LOX (Shah et al., 2018). Therefore, LOX may not be
required in ferroptosis. Non-enzymatic lipid peroxidation is
powered by carbon and oxygen-centered free radicals, such as
ferroptosis triggered by an iron-dependent free radical
mechanism, where it undergoes a free radical chain reaction of
lipid peroxidation (Shah et al., 2018).

2.1.2 Iron cycle
Fenton reaction, the oxidation of Fe2+ and H2O2, catalyzes the

production of ROS and is the beginning of the non-enzymatic
reaction of lipid peroxidation (Hendren et al., 2020). Iron
overload is an indispensable link to turning on lipid peroxidation
with a critical position in inducing ferroptosis (Figure 2). Usually,
iron is absorbed from the intestine into the body as ferrous ions
(Fe2+) and subsequently oxidized to ferric ions (Fe3+). The primary
protein for transporting iron is transferrin. Iron ions bind to
transferrin outside the cell and then attach to membrane
transferrin receptor 1 (TFR1), entering the cell through
endocytosis and colonizing the endosome (Andrews and
Schmidt, 2007; Frazer and Anderson, 2014). Upon entry into the
cell, in acidic endosomes, the six transmembrane epithelial antigens
of prostate 3 (STEAP3) decrease Fe3+ to Fe2+. Fe2+ is transported to
the cytoplasm via divalent metal transporter protein 1 (DMT1) and
eventually liberated into the cytoplasm and mitochondria to form a
labile iron pool (LIP). In contrast, excess iron, which forms redox-
inactive heterogeneous polymers, is stored in ferritin to protect
tissues and cells from damage (Ryu et al., 2017; Philpott, 2018).
Ferroportin (FPN), the only known mammalian protein, can export
intracellular iron out of cells when needed (Ganz, 2005). Iron
import, storage, and export imbalance lead to iron overload
(Stockwell et al., 2017).
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Worthy of mention is that nuclear receptor coactivator 4
(NCOA4) can promote iron storage or release from ferritin and
plays a crucial function in maintaining a dynamic balance of
intracellular iron. Indeed, when cellular iron levels are low,
ferritinophagy, cell-selective autophagy mediated by NCOA4, can
degrade ferritin, leading to the release of ferritin-bound iron as free
iron (Santana-Codina and Mancias, 2018). The evidence has shown
that NCOA4-mediated degradation of proteins may also be an
essential mechanism for the occurrence of ferroptosis.
Additionally, Haeggstrom and Funk (2011) introduced the notion
of atypical ferroptosis in 2008, demonstrating that an increase in the
intracellular LIP caused by iron overload leads to the over-activation
of heme oxygenase-1 (HO-1), which ultimately induces atypical
ferroptosis.

2.2 Antioxidant system

Lipid peroxidation could induce ferroptosis. If the antioxidant is
deactivated in the cell, lipid peroxides cannot be removed and thus
accumulate, eventually leading to cellular damage and death
(Figure 3). Glutathione (GSH) and oxidized glutathione (GSSG)
are widely available in cells for controlling intracellular oxidation

levels. GSH is mainly available in the cytoplasm and, to a lesser
extent, in organelles such as mitochondria and is involved in many
biological processes (Dolma et al., 2003). GSH is equipped with the
biological function of scavenging ROS to play a crucial role in
preventing ferroptosis. Cysteine is an essential precursor of GSH.
The solute carrier family seven-member 11 (SLC7A11) and the
solute carrier family three member 2 (SLC3A2) comprise the
heterodimer referred to as system Xc-, a cysteine and glutamate
reverse system (Chen et al., 2021). The system Xc-allows cysteine to
enter the cell in its oxidized form and reduces it again to cysteine
within the cell.

Glutathione peroxidase 4 (GPX4) is an oxidation inhibitor
protein and belongs to the selenoproteins. GPX4 protects cells
from lipid peroxidation by catalyzing the occurrence of reduction
reactions, of which GSH is the most prevalent reducing agent
(Ursini et al., 1995). GPX4 converts GSH to GSSG and also
returns the phospholipid polyunsaturated fatty acid peroxides
(PL-PUFA-OOH) to the corresponding phosphatidyl alcohol
(PL-PUFA-OH) for reducing the accumulation of peroxidized
lipids and inhibiting ferroptosis (Florez and Alborzinia, 2021). As
a phospholipid hydroperoxide, Gpx4 is expressed or active under the
regulation of selenium and GSH. Inhibition of the GPX4-GSH-
cysteine axis is a significant factor contributing to ferroptosis.

FIGURE 1
The Signaling Pathway of lipid peroxidation. In hyperglycemia, hyperlipidemia, and hypoxia, NOX catalyzes the reaction of H2O2 with lipids to
produce ROS, leading to ferroptosis. ACSL4 attaches coenzyme A (CoA) to AA/AdA forming AdA-CoA, then LPCAT3 facilitates AdA-CoA esterification in
the cell membrane to form AA/AdA-PE which could be directly oxidized to AA/AdA-PE-OOH by LOX, eventually causing ferroptosis.
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3 Association between ferroptosis and
COVID-19

3.1 Signitures of ferroptosis in COVID-19
multi-organ complications

Although respiratory symptoms are the most common
symptom of COVID-19, severe patients may experience
pulmonary, cardiac, nephritic, neurological, gastric, and hepatic
damage, as well as impaired immune and coagulation function
(Gupta et al., 2020) (Figure 4). Moreover, some patients with
long COVID may suffer from persistent dyspnea, chest pain,
headache, and decreased mental status even after negative SARS-
CoV-2 RNA tests or weeks to months following initiation of the
disease. These symptoms appear to be common in heavy patients
and groups of young people or children who do not require
respiratory support, affecting the patient’s daily routine and
survival after infection.

Angiotensin-converting enzyme 2 (ACE2) has been reported to
be a common viral receptor (Perico et al., 2020). During infection,
SARS-CoV-2 forms a complex by binding the tegument-expressed
stinging protein (protein S) to the viral receptor ACE2, after which
the complex is endocytosed, and the virus enters the host cell. The

virus binds to ACE2 present in lung cells to infect the organism,
resulting in symptoms including mild upper respiratory symptoms
or severe dyspnea. The lungs of dead patients due to COVID-19 can
be seen: severe endothelial damage, intracellular SARS-CoV-2, and
extensive microangiopathy with vascular thrombosis (Ackermann
et al., 2020). ACE2, a crucial enzyme of the renin-angiotensin-
aldosterone system (RAAS), is expressed in multiple organs all over
the system and is vital in sustaining blood pressure and
cardiovascular, renal, immune, and nervous system homeostasis.
Considering the association of SARS-CoV-2 and ACE2, Patel et al.
(2017) have hypothesized that COVID-19 can cause an imbalance in
RAAS. The broad distribution of ACE2 throughout the body may
explain the extra-pulmonary manifestations of COVID-19, and it
supports the idea that SARS-CoV-2 infection is a multi-system
disease affecting the lungs. However, the pathogenesis of long
COVID is not yet conclusive. The most supported theory is that
it occurs through an autoimmune process with exaggerated innate
immune responses and cytokine activation (Lechner-Scott et al.,
2021). Ferroptosis plays an important role in the immune response
and cytokine activation induced by SARS-CoV-2. In the late stages
of infection, various cell deaths, including ferroptosis, promote
inflammatory cytokine release, exacerbating immune and
inflammatory system dysfunction and causing associated damage

FIGURE 2
The Signaling Pathway of lipid peroxidation iron cycle. Fe3+ binds to transferrin outside the cell and then attaches to TFR1, entering the cell. Fe3+ is
converted to Fe2+ by STEAP3. Fe2+ is transported to the cytoplasm via DMT1 to form a LIP which happens Fenton reaction, and excess iron is stored in
ferritin. Ferritinophagy, mediated by NCOA4, can degrade ferritin, releasing ferritin-bound iron as free iron, and FPN exports intracellular iron out of cells
when needed. Free iron generates ROS through the Fenton reaction, eventually leading to ferroptosis.
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that ultimately leads to COVID-19 multi-organ complications (Sun
et al., 2022). We describe the frequent organ complications in
COVID-19 and ferroptotic signitures below.

3.1.1 Heart
Data indicate that the heart is the second most affected organ

with the entry of SARS-CoV-2 into the host through binding to
ACE2 (Zou et al., 2020). Commonly reported cardiovascular
complications involving COVID-19 include myocardial injury,
acute myocardial infarction (AMI), and arrhythmias. Severe
patients are usually accompanied by increased cardiovascular
complications, including thoracic pain, tachypnea, fainting,
tachycardia, and other common symptoms (Zou et al., 2020).
Infection with the virus in the coronary region could trigger
thrombosis and lead to acute coronary syndrome (Chieffo et al.,
2020). Moreover, patients with COVID-19 who have underlying
cardiovascular disease have been proven to have a higher chance of
poor prognosis (Guo et al., 2020; Ni et al., 2020). However, given
the limited evidence of direct cardiac infection by SARS-CoV-2 in
animal models and patient autopsy samples, Nishiga et al. (2022)
suggested that cardiac injury in COVID-19 could also be an
indirect result of the cytokine storm. For example, ferroptosis
during acute SARS-CoV-2 infection triggers the death of sinus
node pacing cells, causing irreversible sinus node damage and
ultimately leading to bradycardia (Han et al., 2022). Activation of
the ferroptosis signaling pathway by viral infection may explain

part of the mechanism of COVID-19 cardiovascular
complications.

3.1.2 Brain
Clinical data reveal that central nervous system symptoms are

present in 36% of patients with COVID-19 (Mao et al., 2020).
Inflammation and hypoxia in the brain caused by SARS-CoV-
2 infection can impact the center nerve system, leading to
various neuropsychiatric symptoms such as cognitive
impairment, insomnia, and anxiety that can last for months after
the respiratory symptoms have subsided (Boldrini et al., 2021).
ACE2 is more abundant in the brainstem than in other brain
regions. The viral proteins of SARS-CoV-2 and the evidence of
pathological immunity were discovered in dead patients’ brainstems
(Matschke et al., 2020). Furthermore, ferroptosis is connected with
the pathology of several neuronal degeneration diseases, such as the
Alzheimer as well as the Parkinson. It is hypothesized that the virus
can damage the brain either through direct infection of the brain
tissue or by inducing a series of pro-inflammatory and immune
response pathways. Ferroptosis, associated with neuroinflammatory
processes, may promote brain damage and psychiatric symptoms
emerging in COVID-19 patients. Brain injury disorders, including
cerebrovascular lesions, ischemic stroke, and cerebral hemorrhage,
have been observed in COVID-19 patients. Furthermore, critically
unwell patients have a high rate of brain injury than those who are
not critically ill (Koralnik and Tyler, 2020; Lee et al., 2021).

FIGURE 3
Themechanism of antioxidant system. System Xc-comprises SLC3A2 and SLC7A11 and promotes cellular uptake of cysteine, an essential precursor
for GSH synthesis. GPX4 converts GSH to GSSG and returns PL-PUFA-OOH to the PL-PUFA-OH, achieving ferroptosis resistance.
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Therefore, severe SARS-CoV-2 infection has a strong potential to
cause an acute stroke.

3.1.3 Kidney
The kidney is one of the most frequently attacked targets of

SARS-CoV-2. Acute kidney injury (AKI) is the most commonly
observed renal impairment in clinical practice, and its pathogenesis
is believed to be multifactorial. AKI could be brought on by the virus
itself, hypoxia, or shock (Amann et al., 2021). Clinical studies have
revealed that severe COVID-19 patients, even without a history of
renal disease, can develop renal dysfunction or impairment (Ronco
et al., 2020). Autopsy data from COVID-19 patients have indicated
SARS-CoV-2 was present in various renal compartments,
particularly in the parenchyma of the kidney, cells of glomerular
epithelial, endothelial, and tubular (Puelles et al., 2020). An analysis
conducted in the United Kindom has revealed that COVID-19
patients with chronic kidney disease had a higher mortality risk
than those with other recognized risk factors, such as chronic
cardiopulmonary disease (Williamson et al., 2020). Infecting
SARS-CoV-2 could induce renal dysfunction or injury in patients
without underlying renal disease and aggravate pre-existing renal
damage, thereby increasing mortality risk. The virus can cause
kidney injury through direct infection with ACE2, which is
widely expressed in different kidney regions. Additionally, SARS-
CoV-2 can aggravate kidney injury by inducing coagulation
dysfunction or cytokine and complement activation. The kidney

is vulnerable to oxidative stress, and excessive accumulation of ROS
can cause kidney injury. Therefore, disruption of lipid metabolism is
considered a common mechanism for the progression of various
types of kidney diseases (Ratliff et al., 2016; Zhou et al., 2022).
Inhibition of ferroptosis might have an improving effect on kidney
injury induced by SARS-CoV-2 infection.

3.1.4 Gastrointestinal tract
ACE2 is also expressed in the digestive system, including the

duodenum, jejunum, and liver (Li et al., 2020). Therefore, the
digestive system is susceptible to SARS-CoV-2 infection. Patients
infected with SARS-CoV-2 frequently present with digestive
symptoms in addition to the commonly reported respiratory
symptoms. Anorexia, nausea, vomiting, diarrhea, abdominal pain,
and liver injury are common digestive symptoms of COVID-19 and
may appear during infection or after negative SARS-CoV-2 RNA
tests (Chen et al., 2020; Brussow and Timmis, 2021). Diarrhea is the
most frequently observed gastrointestinal symptom among COVID-
19 patients. A study found viral RNA in stool samples from almost
half of the patients, including those with negative respiratory tests
(Cheung et al., 2020). SARS-CoV-2 infection can disrupt the
adhesion and tight junctions between the endothelium and
intestinal epithelium, leading to dysbiosis of the intestinal flora
and immune activation (Guo et al., 2021). The virus causes damage
to the gastrointestinal tract by activating innate immune cells and
promoting the release of inflammatory factors, leading to a cytokine

FIGURE 4
Multi-organ complications of COVID-19. COVID-19 involves the lungs, heart, brain, kidneys, liver, and gastrointestinal tract. Pulmonary symptoms
include dyspnea and chest pain; common cardiovascular complications include myocardial injury, acute myocardial infarction (AMI), and arrhythmia;
brain complications often include cognitive impairment, insomnia, anxiety, and other central nervous symptoms; acute kidney injury (AKI) and renal
dysfunction are the main renal manifestations; anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver injury are common digestive
symptoms of COVID-19. The mechanism of COVID-19 multi-organ complications may be correlated with ferroptosis.
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storm. After SARS-CoV-2 infects gastrointestinal cells via
ACE2 may lead to RAAS dysregulation, exacerbating ionic
imbalance and inflammation, affecting cellular metabolic status,
flora composition, and cell viability, resulting in increasing
gastrointestinal dysfunction in COVID-19 patients (Megyeri
et al., 2021).

3.1.5 Liver
The liver is an essential part of the digestive systemwith immune

function and contains many cells associated with immune response.
After the virus infects the liver, immune cells may become over-
activated and secrete a large number of inflammatory factors,
leading to cytokine storm and inducing ferroptosis, resulting in
lung injury and ischemia, and hypoxia. Ischemia and hypoxia trigger
systemic inflammatory response syndrome (SIRS), which can cause
damage to vital organs throughout the body, including further liver
cell damage and death (Tian and Ye, 2020). Therefore, ferroptosis
may be one of the critical mechanisms of COVID-19 liver injury. It is
worth noting that the expression of ACE2 in hepatocytes increases
under liver fibrosis/cirrhosis conditions (Paizis et al., 2005). Patients

with underlying liver disease and COVID-19 are more likely to
suffer from viral attacks on their liver and are at a greater risk of
developing severe COVID-19.

3.2 Link between SARS-CoV-2 infection and
ferroptosis signaling pathway

Most patients who have acute COVID-19 exhibit significantly
elevated serum levels of pro-inflammatory cytokines. This can cause
a cytokine storm, leading to an abnormal systemic inflammatory
response. Once the cytokine storm occurs, the immune system
response becomes uncontrollable and can attack multiple tissues
and organs of the body, causing multi-organ damage (Xu Z. et al.,
2020). COVID-19 patients also experience systemic
hyperinflammation, characterized by elevated ROS and cytokine
storm (Girelli et al., 2021). As a result, there may be a link between
SARS-CoV-2 infection and the ferroptosis signaling pathway. Using
ferroptosis inhibitors to block the signaling pathway may reduce the
multi-organ damage caused by SARS-CoV-2 (Figure 5).

FIGURE 5
Ferroptosis pathway and inhibitors in SARS-CoV-2 infection. Crossover of SARS-CoV-2 infection and ferroptosis pathway:SARS-CoV-2 invades cells
by binding to ACE2, and a feedback increase in circulating AngII triggers NOX activation leading to increased ROS production. During the acute phase of
SARS-CoV-2 infection, a surge in IL-6 promotes hepcidin and ferritin synthesis. Hepcidin decreases FPN expression levels, resulting in a decrease in
intracellular free iron output. The increased ferritin guarantees intracellular iron storage, and in inflammatory conditions, ferritin is degraded to
release free iron, leading to a raised LIP, which generates ROS through the Fenton reaction. SARS-CoV-2 infection depletes intracellular GSH and
attenuates Gpx4 activity, exacerbating lipid peroxidation. Ferroptosis inhibitors: NOX inhibitor, 15-LOX-1 inhibitor, and ACSL4 inhibitor-
thiazolidinediones (TZDs) are the main oxidase inhibitors; α-Tocopherol (α-Toc), ferroportin-1 (Fer-1) and Liproxstatin-1 (Lip-1) can trap peroxyl radicals;
they can prevent lipid peroxidation from occurring. Desferrioxamine (DFO), deferiprone (L1), and deferasirox (DFX) can form complexes with iron to
reduce LIP, thus interrupting lipid peroxidation caused by iron overload. Ebselen acts as a selenium supplement to maintain GPX activity and
N-acetylcysteine (NAC) increases GSH levels in vivo; they enhance the XC--GSH-Gpx4 axis to reduce lipid peroxide accumulation to resist ferroptosis.
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3.2.1 Lipid peroxidation and coagulation in SARS-
CoV-2 infection

It was demonstrated that angiotensin II (Ang II), hyperglycemia,
hyperlipidemia, or hypoxia are associated with NOX activation,
leading to excessive production of mitochondrial ROS (Dikalov and
Nazarewicz, 2013). SARS-CoV-2 invades cells by binding to ACE2,
which leads to downregulation of ACE2 and feedback increased Ang
II in the circulation, thus triggering NOX activation, resulting in
oxidative stress and inflammation (Hikmet et al., 2020). Clinical
observations indicate that thrombotic complications have become
an essential issue in patients with COVID-19 (Guan et al., 2020). It
has been reported that NOX2 was triggered in COVID-19, with
higher values in critically ill patients than in non-critically ill
patients, strongly linked to thrombotic events (Violi et al., 2020).

Inflammation initiates coagulation through tissue factor TF,
which is present in monocytes and vascular endothelial cells (Iba
et al., 2019). Oxidative stress products have been shown to promote
TF expression and initiate monocyte inflammatory programs. At the
same time, activated endothelial cells are fully responsible for
initiating coagulation using TF-expressing inflammatory monocytes
(Owens et al., 2012; von Bruhl et al., 2012). The accumulation of lipid
peroxidation products in the COVID-19 patients’ lungs and
cardiovascular system may also be involved in the process of
coagulation initiation (Merad and Martin, 2020), contributing to a
hypercoagulable state of blood in patients. A clinical study supported
the association of COVID-19 severity with a hypercoagulable state
(Helms et al., 2020). The dislodgement of the formed thrombus
caused by the hypercoagulable state leads to fatal complications
such as strokes in patients. In addition, iron oxide accelerates
serum coagulation by interacting with coagulation cascade
proteins. Methemoglobinemia and free iron may also contribute to
the COVID-19 hypercoagulable state (Jankun et al., 2014). Lipid
peroxidation and iron overload are ferroptosis-related factors, so we
speculate that the increased incidence of cardiovascular and
cerebrovascular complications in patients with moderate to severe
COVID-19 may be related to iron death.

3.2.2 Iron metabolism in SARS-CoV-2 infection
It has been shown in clinical studies that COVID-19 patients have

abnormal ironmetabolism, with patients having low serum iron levels
but elevated serum iron levels after treatment (Bellmann-Weiler et al.,
2020; Zhao et al., 2020). Besides, those COVID-19 patients with
significantly lower serum iron concentrations and transferrin levels
are commonly anemic, indicating a potential inverse relationship
between serum iron levels and the severity of COVID-19. Hepcidin,
an antimicrobial cysteine-rich peptide synthesized and secreted by the
liver, is abundantly expressed during the immune process and plays a
role in regulating iron homeostasis in the body. It could regulate the
expression levels of iron transport-related proteins, especially FPN, to
decrease iron export from cells and increase iron storage. During the
emergency phase of SARS-CoV-2 infection, the abrupt increase of IL-
6 in a highly inflammatory state promotes the synthesis of hepcidin
and ferritin.

Additionally, pathogens’ iron may be deprived and coupled with
transferrin to enter cells via TFR1, increasing the amount of
intracellular iron. Iron can be sequestered in cells by hepcidin,
leading to decreased iron efflux from cells, while increased ferritin
allows sufficient iron stores. Notably, it has been suggested that ferritin

leaks out of cells damaged by inflammation, having lost most of its
iron in the process, and that iron remains in the cell unconnected
(Kell, 2010). A rise in intracellular free iron caused by the above
pathways may explain the decrease in serum iron levels in patients
with COVID-19. It may trigger further cellular damage, which
ultimately results in ferroptosis. In severe COVID-19, as a
consequence of cell death and tissue damage, intracellular ferritin
is released out of the cells, with excess ferritin accumulating in the
body to form hyperferritinemia (Kell and Pretorius, 2014). Therefore,
elevated serum ferritin levels are typically linked to systemic
inflammation. Methemoglobinemia is largely considered to be an
indicator of severe COVID-19 correlation. In hospitalized COVID-19
patients, the risk of death increases roughly nine-fold when blood
ferritin levels exceed 300 μg/L (Goldberg et al., 2020).

3.2.3 Antioxidant system in SARS-CoV-2 infection
Endogenous GSH deficiency may be closely related to factors

such as age, gender, and concurrent chronic. Viral replication
accelerates cysteine depletion, and COVID-19 patients are
vulnerable to endogenous GSH depletion which has been
demonstrated to function as a critical player in specific viral
infections (Polonikov, 2020). A study showed that a decrease in
GSH was linked to more ROS and complications, so patients with
increased GSH levels had reduced ROS production and faster
recovery (Horowitz et al., 2020). As an important antioxidant
and free radical scavenger in the body, GSH is synthesized in the
liver and functions in hepatic biochemical metabolism. One of the
key contributors to liver damage in COVID-19 may be the
formation of lipid peroxides brought on by GSH shortage, which
in turn accelerates GSH depletion and exacerbates endogenous GSH
insufficiency. Besides, immune responses induced by SARS-CoV-
2 infection may also contribute to liver damage as one of the
common factors (Bangash et al., 2020).

An underlying study infected African green monkey kidney
(Vero) cells with SARS-CoV-2 and found that SARS-CoV-2 resulted
in a significant reduction in mRNA expression of endoplasmic
reticulum-resident selenoproteins, which is strongly correlated
with selenium by GPX4 expression or activity, so infection with
SARS-CoV-2 may be related to suppression of GPX4 (Wang et al.,
2021). Available data suggest that infecting with SARS-CoV-2 would
induce low levels of GSH and decreased expression of GPX4 protein,
both of which are essential aspects of ferroptosis (Dixon et al., 2012).
Ferroptosis may explain the clinical phenomenon that severe
COVID-19 patients without a background of renal disease
nevertheless develop renal dysfunction or impairment (Cheng
et al., 2020). Notably, GPX4-deficient T cells undergo rapid
accumulation of lipid peroxide (Matsushita et al., 2015).
Eventually, the T cells go into ferroptosis due to the lack of
GPX4, resulting in a weakened body defense system unable to
effectively defend against viral infections, which may be one of
the crucial reasons for COVID-19 progressing to severity.

4 COVID-19 potential treatment based
on ferroptosis

Using ferroptosis inhibitors to block the signaling pathway may
reduce multi-organ damage from SARS-CoV-2 infection. Both
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enzymatic and non-enzymatic processes in mammalian cells can
generate ROS, leading to lipid peroxidation. The two primary
categories of methods to block this process are oxidase inhibitors
and lipid autoxidation inhibitors. Free iron is a crucial factor in the
induction of ROS production, and controlling its levels in vivo is
critical for preventing ferroptosis. Iron chelating agents and
hepcidin inhibitors are two effective methods for reducing free
iron levels. Additionally, maintaining appropriate levels of GSH
and activity of GPX4 expression is crucial for the GPX4-GSH-
cysteine axis to function effectively against ferroptosis. Some
treatments for viral infections have also been found to inhibit
ferroptosis, potentially reducing complications of COVID-19.

4.1 Inhibitors of lipid peroxidation

4.1.1 Oxidase inhibitors
In lipid peroxidation with the involvement of oxidases, oxidase

inhibitors can reduce the production of ROS and inhibit ferroptosis.
15-LOX-1 inhibitors may block ferroptosis and have positive
performance in treating ischemic and hemorrhagic stroke
(Yigitkanli et al., 2013; Wenzel et al., 2017). This may offer an
alternative direction for improving brain injury in COVID-19
patients. Currently, a variety of NOX inhibitors with new
structures are emerging. However, due to the short research
period, some NOX inhibitors are still in the preliminary research
stage, except for a few inhibitors under clinical trials. Recent studies,
however, have revealed that AA metabolites of the LOX pathway
have a signal link with NOX and can activate NOX-mediated ROS
production in various cells (Cho et al., 2011). Consequently, we
turned to the LOX pathway of AA and found a complex tissue-
specific interaction between LOX and GPX4 (Brutsch et al., 2016).
LOX has many isoforms. It has been reported that inhibition of
multiple lipoxygenases is more protective for cells than targeted
inhibition of a single lipoxygenase (Yang et al., 2016). Regrettably,
more studies are necessary to validate how oxidase inhibitors impact
ferroptosis.

As mentioned previously, ACSL4 is essential for the oxidation
of AA by LOX. Therefore, the inhibition of ferroptosis could be
achieved if ACSL4 is inhibited from interrupting the process of
lipid peroxidation. Studies have shown significant resistance to
ferroptosis for ACSL4-deficient cells even when the GPX4 gene
was inactivated (Doll et al., 2017), adding to the conviction that
ACSL4 may act as a target for ferroptosis inhibition. The
peroxisome proliferator-activated receptor γ (PPARg) agonist,
thiazolidinediones (TZDs), selectively inhibits ACSL4 (Kim
et al., 2001). TZDs like rosiglitazone (Rosi), pioglitazone (PIO),
and troglitazone (Tro), show significant inhibition in a model of
ferroptosis cells induced by the ferroptosis inducer RSL-3. Both
ACSL4-deficient and Acsl4-non-deficient cells treated with Rosi
demonstrated a decrease in AA/AdA-PE (Doll et al., 2017). By
inhibiting ACSL4, TZDs are believed to reduce the availability of
substrates and prevent lipid peroxidation. It has been reported that
the ACSL4 inhibitor Rosi mitigated pathological kidney and lung
injury based on inhibiting cellular ferroptosis (Xu Y. et al., 2020;
Wang et al., 2022), which may give hope for the treatment of
COVID-19 complicated by multi-organ injury. Moreover, TZDs
have been developed as an insulin sensitizer and may be optional

for COVID-19 patients with underlying diabetes. More clinical
trials are expected to validate the safety and efficacy of TZDs for
ferroptosis inhibition.

4.1.2 Lipid autoxidation inhibitors
In non-enzymatic lipid peroxidation, lipid autoxidation

inhibitors represented by RTAs protect lipids from
autoxidation. RTAs are compounds that can interact with
chain-carrying radicals. They are also referred to as chain-
breaking antioxidants. α-Tocopherol (α-Toc), the most
biologically active form of vitamin E, is a characterization of
the activity in RTAs (Burton and Ingold, 2002). α-Toc is a
typical antioxidant that traps peroxyl radicals and exceeds the
ability of other lipid substrates to be oxidized by peroxyl radicals.
Interestingly, vitamin E has recently been reported to have another
possible function - direct inhibition of lipoxygenases, which may
be achieved by competing for the substrate binding site with
lipoxygenases (Kagan et al., 2017). As COVID-19 therapeutic
agents, vitamin E supplements can reduce the damage caused
by ferroptosis with several organs, including the lungs, kidneys,
liver, intestines, heart, and nervous system. Furthermore,
phenprocoumon, a vitamin K antagonist, was shown to
significantly exacerbate ferroptotic cell death in vitro and
significantly worsen the course of AKI in mice (Kolbrink et al.,
2022). Vitamin K, as an antioxidant, can also prevent lipid
peroxidation and thus inhibit ferroptosis, which has a
therapeutic effect in COVID-19 patients with AKI.

In addition, ferroportin-1 (Fer-1) and Liproxstatin-1 (Lip-1)
have been recognized in recent years as RTAs that effectively
inhibit ferroptosis because of their ability to trap peroxyl radicals
with acyl chains in lipid bilayers, having a strong activity to slow
down the accumulation of lipid peroxides (Zilka et al., 2017).
Fer-1 and Lip-1 are more potent in terminating lipid
peroxidation compared to α-Toc. It may attribute to the fact
that they are subsequently converted to nitrogen oxides, which
are good RTAs (Haidasz et al., 2016). In the works of Krainz et al.
(2016), Fer-1 and Lip-1 could inhibit ferroptosis in an in vitro
cellular system. Lip-1 was the first Liproxstatin-like molecule to
be identified, and it showed good pharmacological properties in
the low nanomolar range with a short plasma half-life. In animal
experiments, Lip-1 has been shown to effectively reduce liver and
kidney-related disorders such as fatty liver and renal fibrosis by
inhibiting ferroptosis (Zhang et al., 2021; Tong et al., 2023).
Importantly, such molecule was shown to counteract acute renal
failure in a Gpx4-deficient model and to have ferroptosis-
inhibiting activity in vivo (Friedmann Angeli et al., 2014).
Fer-1 eliminates lipid hydroperoxides in the presence of iron
reduction. Fer-1 might interact with iron, as same as other
antioxidants or complexing molecules, forming complexes to
reduce lipid peroxidation formation. It has demonstrated that
Fer-1 can effectively inhibit the oxidation of cell membranes and
possess a notable protective effect on AKI (Skouta et al., 2014).
Further studies are necessary to support the hypothesis that such
inhibitors can reduce the complications of COVID-19. Although
Fer-1 and Lip-1 are generally considered safe, there are limited
studies on their potential adverse reactions. Therefore, it is
imperative to exercise caution in the dose control of future in
vivo trials.
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4.2 Iron depletion methods

Free iron can catalyze the production of ROS in Fenton reaction,
and excessive production of ROS in the presence of iron overload
can lead to oxidative stress and damage DNA, lipids, and proteins
(Evans et al., 2004). Therefore, excess iron can lead to cellular
damage, which is harmful to the organism. The SARS-CoV-
2 requires iron to replicate and function. As described previously
in 3.3.2, LIP increases during the acute phase of infection by a
mechanism involving the deprivation of additional iron from the
pathogen. Currently, the treatment for iron overload is usually iron
chelation therapy. This treatment uses iron complexing agents to
compete with the body’s natural chelator transferrin for iron and
reduce LIP to interrupt the iron-catalyzed lipid peroxidation
process. Desferrioxamine (DFO), deferiprone (L1), and
deferasirox (DFX) are the three types of iron chelators most
frequently used in the globe.

DFO is a clinically used iron chelator derived from streptomyces
polymyxa and is a hexadentate complex that forms a 1:1 Fe3+/DFO
complex at physiological PH. DFO is generally administered
intravenously for a prolonged period, requiring five to 7 days of
infusion a week. For this reason, oral iron chelators have become a
common choice (Franchini and Veneri, 2004). L1, an FDA-
approved oral iron chelator, is a bidentate chelator that forms
3L1-1Fe complexes with iron and is comparable in efficacy to
DFO. L1 is rapidly absorbed after oral administration, usually
peaking 45 min after ingestion, and the widely adopted
recommendation is to take three doses of L1 daily (Banerjee
et al., 2019). Notably in COVID-9 patients, L1 can restore T cell
resistance to the virus infection by increasing the expression of IFN-
R2 on the surface of activated T cells (Regis et al., 2005; Perricone
et al., 2020). DFX is also a commonly used oral iron chelator, a
tridentate complex that can form 2DFX-1Fe complexes with iron,
and its efficacy is also comparable to that of DFO. DFX reaches peak
blood levels within one and a half to 4 h after oral administration,
with a half-life ranging from 8 to 16 h, and is generally administered
once daily (Stumpf, 2007). DFX and DFO have been reported to
reduce tissue fibrosis by inhibiting free radical production and tissue
infiltration of macrophages and significantly reducing IL-6 levels
(Darwish et al., 2015). Therefore, DFX and DFO can treat COVID-
19 patients with tissue damage caused by increased LIP and
subsequent liver injury complicated by fibrosis. The mechanism
of action differs between iron chelators, with DFO exerting a direct
effect by inducing autophagy to promote ferritin degradation in the
lysosome, while L1 and DFX may chelate intracellular free iron and
take iron from ferritin before proteases break it down (Temraz et al.,
2014).

Yet, iron complexation toxicity is a major problem, especially in
patients with inadequate iron stores (Kolnagou et al., 2014). DFX is
not recommended for iron-loaded patients with a serum ferritin
below 500 μg/L. Patients receiving DFX are regularly monitored for
renal function, with discontinuation of the drug recommended for
patients with persistently elevated serum creatinine levels. DFO is
relatively safe and has a much lower incidence of serious toxicities,
but restrictions on the use of DFX still apply in patients with low iron
stores. It is noted that ocular and auditory toxicity has also been
reported with DFO when used for ophthalmic disease (Orton et al.,
1985). The most serious reported toxicities of L1 are reversible

granulocyte deficiency and neutropenia, for which blood counts are
recommended every one to 2 weeks to prevent L1 toxicity. Besides,
less severe toxic effects of L1 include gastric intolerance, joint pain,
and zinc deficiency (Kolnagou et al., 2014). Notably, hepcidin plays a
vital function, including iron regulation in SARS-CoV-2 infection as
described earlier in 3.3.2. Studies have shown that the hepcidin
inhibitor dalteparin improves symptoms in diabetic COVID-19
patients by properly regulating and reducing oxidative stress and
inflammation (Zeinivand et al., 2022). This finding is beneficial for
the prospect of developing dalteparin as a therapeutic agent for
COVID-19 patients with the underlying diabetic disease.

4.3 GPX4-GSH-cysteine axis protector

SARS-CoV-2 infection disrupts the balance between the body’s
oxidative and antioxidant systems, preventing the timely clearance
of ROS. As mentioned above, the GPX4-GSH-cysteine axis is one of
the most critical antioxidant systems against ferroptosis, and
selenium has a protective effect on GPX4 activity. However,
COVID-19 patients with systemic inflammation have decreased
hepatic selenase production, which lowers intraplasma selenium
(Heller et al., 2021). Thus COVID-19 patients have GPX4 inhibition
due to selenium deficiency, leading to ferroptosis. A related study
showed that Ebselen was suggested as a low cytotoxic
organoselenium compound for the clinical treatment of COVID-
19 (Banerjee et al., 2021), as it could reduce the virus replication in
the experiment. Furthermore, Ebselen can be used as a selenium
supplement to maintain Gpx activity to enhance the antioxidant
system. SARS-CoV-2 infection may lead to GSH deficiency, and
patients with severe COVID-19 are often accompanied by liver
damage by a mechanism related to ferroptosis. Maintaining GSH
levels not only resists ferroptosis but also has great significance in
protecting liver function itself. Since cysteine is a precursor of GSH
synthesis, maintaining adequate cellular cysteine levels can hinder
GSH depletion and enable GPX4 to scavenge lipid peroxidation
products continuously (Stockwell et al., 2017). N-acetylcysteine
(NAC) is a cysteine prodrug used to treat acetaminophen-
induced liver failure, critically ill patients with sepsis, and mucus
loss in chronic obstructive pulmonary disease. On the one hand,
NAC can act as a precursor of GSH and exert an antiferroptosis
effect by enhancing the Xc--glutathione--GPX4 axis. On the other
hand, it has been shown that NAC can act as a free radical scavenger
to counteract IL-6-induced ferroptosis in bronchial epithelial cells
while possibly alleviating respiratory symptoms in COVID-19
patients (Han et al., 2021). Recently, there has been evidence that
NAC is available for preventing and treating COVID-19 as an
adjuvant drug (Shi and Puyo, 2020).

4.4 Others

Lactoferrin (LF) is a first-line defense protein that has a major
role in the maturation and regulation of immune system function.
Some studies suggested that LF enhances immunity against
SARS–CoV–2 by enhancing intracellular antiviral mechanisms
and could be a potential adjuvant therapy for COVID–19
(AlKhazindar and Elnagdy, 2020; Chang et al., 2020). In
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addition, LF, as an iron-binding protein, possesses the ability to
sequester free iron and prevent injury-induced oxidative stress that
may be associated with ferroptosis, which can eventually lead to
severe tissue necrosis. LF can be used for prophylaxis or as a
therapeutic agent administered by multiple routes (including oral
administration) to individuals at risk of SARS-CoV-2 infection,
especially those with impaired innate immune function (Zimecki
et al., 2021). Hypoxia-inducible factor (HIF), the effective substrate
of HIF prolyl hydroxylase (HIF-PHD), similarly activates several
genes involved in glucose metabolism, intracellular acidity
regulation, vasculature, iron overload, mitosis, and other
physiological processes (Wang and Semenza, 1995). Inhibitors of
HIF-PHD can promote endogenous erythropoietin (EPO) by
stabilizing and activating HIF and erythropoiesis (Joharapurkar
et al., 2018). Since EPO treatment has anti-inflammatory and
healing characteristics, people with moderate to severe COVID-
19 are likely to benefit from it. Poloznikov et al. (2020) suggested that
HIF-PHD inhibitors can counteract ferroptosis through various
interactions with iron but also have the potential to cause greater
damage. HIF-PHD inhibitors are a prospective therapy for COVID-
19 adverse effects since they can inhibit ferroptosis as well as the
entry of the virus into cells. Moreover, Coenzyme Q (CoQ), an
essential antioxidant and anti-inflammatory compound in the body,
is regarded as a lipophilic antioxidant that traps free radicals. As a
CoQ reducer, ferroptosis suppressor protein 1 (FSP1) regenerates
CoQ in the plasma membrane using NADPH. The
Xc—glutathione—GPX4 axis is assumed to be a parallel system
to the FSP1-CoQ10-NADPH pathway, and the two work together to
combat ferroptosis and lipid peroxidation (Doll et al., 2019).

5 Discussion

COVID-19 is still spreading worldwide, negatively impacting
human health and life. Severe patients are at high risk of complicated
multi-organ failure and immune and coagulation dysfunction. Even
mildly ill patients may still have persistent respiratory,
cardiovascular, neurological, and digestive sequelae. It may be
attributed to the wide distribution of ACE2 throughout the body,
and SARS-CoV-2 damages multiple tissues and organs through
ACE2. Besides, COVID-19 causes high systemic inflammation
characterized by elevated ROS and cytokine storm (Girelli et al.,
2021). The imbalance between oxidative and antioxidant systems
triggered by SARS-CoV-2 infection causes elevated ROS, which
exacerbates the corresponding acute/chronic inflammatory process,
ultimately leading to multi-organ damage in the body. COVID-19
primarily affects multiple organs, including the lungs, heart, brain,
liver, and gastrointestinal tract. Fatigue, dyspnea, cardiac
arrhythmia, anxiety, insomnia, abdominal pain, diarrhea, and
vomiting are among the symptoms. We are eager to discover
new ways to reduce the complications of COVID-19, thereby
easing the burden of life and gradually restoring social order as
soon as possible. During our research, we discovered that ferroptosis
could be a significant breakthrough.

Ferroptosis is a process that involves three primary metabolisms
of thiols, lipids, and iron (Tang et al., 2021). It is a relatively passive
process that results in cellular destruction or imbalance, mainly due
to intracellular iron overload or disruption of normally active

antioxidant mechanisms. This results in reactions of lipid
peroxidation that depend on iron and the buildup of lipid
peroxides. The GPX4-GSH-cysteine axis is the most crucial
component of the antioxidant system that protects against
ferroptosis. When GSH levels are low, this axis is inhibited,
which indirectly inactivates GPX4. The inhibition of the
antioxidant system leads cells can not clear the accumulated lipid
peroxide, which compromises the cell membrane and ultimately
results in ferroptosis.

There may be a crossover between the SARS-CoV-2 infection
process and the ferroptosis pathway. Infection with SARS-CoV-
2 triggered inflammation, and increased cytokines such as IL-6
promoted the synthesis of hepcidin and ferritin. While the high level
of inflammation causes depletion of cells, resulting in the release of
free iron from intracellular iron-storing ferritin, accompanied by
accumulation of free iron in cells but the leakage of ferritin into the
blood leads to hyperferritinemia. Iron is required for SARS-CoV-
2 replication. The extracellular iron could be transported to the cell
through the transporter protein, which eventually increases the
intracellular LIP resulting in the active Fenton reaction and the
production of lipid ROS. SARS-CoV-2 invades the cell by binding to
ACE2, which leads to the downregulation of ACE2 and, therefore,
the feedback increase of Ang II in circulation. Ang II triggers the
activation of NOX, leading to oxidative stress. Clinical studies have
shown that infection with SARS-CoV-2 leads to GSH deficiency and
GPX4 inhibition in the body. Thus the antioxidant system is
inhibited, and GSH is unable to reduce lipid peroxides in the
presence of GPX4. In addition, oxidative stress promotes TF
expression to initiate coagulation, and a hypercoagulable state,
associated with thrombosis in patients with severe COVID-19,
may be a marker of ferroptosis. Also, in the presence of cellular
iron overload, hyperproteinemia in COVID-19 patients marks a
worse prognosis and higher mortality in COVID-19 patients.

This paper discusses the possible therapeutic effects of lipid
peroxidation inhibitors, iron complexing agents, and GPX4-GSH-
cysteine axis protectors for patients based on the potential
connection between COVID-19 complications and ferroptosis.
Lipid peroxidation inhibitors are mainly divided into oxidase
inhibitors and autoxidation inhibitors. As an ACSL4 inhibitor,
TZDs not only interrupt the oxidation of AA or AdA to reduce
the pathological damage caused by COVID-19 but also acts as an
insulin sensitizer. Therefore, patients with severe COVID-19 with
underlying diabetic disease may be considered to use hepcidin
inhibitors or rosiglitazone to inhibit ferroptosis and mitigate the
associated symptoms. Fer-1 and Lip-1 are currently commonly used
ferroptosis inhibitors, and they have been shown to inhibit
ferroptosis as RTAs. Regrettably, their effects on COVID-19
patients have not been clarified yet. The main treatment for iron
overload is the use of iron chelators, which reduce ROS from the
Fenton reaction by binding to free iron. Some studies have
demonstrated the effect of iron chelators in reducing tissue
fibrosis, which can prevent liver injury complicated by severe
COVID-19 due to increased LIP. However, it has to be taken
into account that iron levels in the patient should not be too low
while using iron complexing agents. Hepcidin inhibitors can also
treat iron overload, thereby reducing oxidative stress and
inflammation. It has surprisingly been reported to improve the
symptoms of COVID-19 in diabetic patients. GPX4-GSH-cysteine
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axis protectors include selenium supplements and NAC, which
together enhance the anti-ferroptosis effect of the GPX4-GSH-
cysteine axis. Selenium supplements enhance the activity of
Gpx4, and NAC not only scavenges free radicals but also acts as
a precursor of GSH. GPX4-GSH-cysteine axis protectors include
selenium supplements and NAC, which together act as anti-
ferroptosis agents. GSH levels and Gpx4 activity are maintained
to counteract the tissue and organ damage caused by SARS-CoV-
2 infection and to reduce the severity of COVID-19. Other potential
treatments for COVID-19-based ferroptosis include LF and HIF-
PHD inhibitors. LF effectively enhances immunity to SARS-CoV-2,
and HIF-PHD inhibitors are helpful in blocking virus entry into
cells, prospective treatments for severe COVID-19 complications.

In conclusion, there is an association between ferroptosis and
the multi-organ complications of COVID-19. Although partial
inhibition of ferroptosis has been recorded clinically as adjuvant
therapy for COVID-19 with desirable results (Shi and Puyo, 2020;
Banerjee et al., 2021; Zeinivand et al., 2022), the definitive
mechanism of ferroptosis inhibitors for preventing multi-organ
damage in COVID-19 has not been illuminated. More clinical
studies on the effects of inhibiting ferroptosis on COVID-19 are
expected to emerge providing a new method to reduce COVID-19
complications.
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Objective: The aim of this study was to investigate the molecular mechanisms
underlying the therapeutic effects of dichloroacetic acid (DCA) in lung cancer by
integratingmulti-omics approaches, as the current understanding of DCA’s role in
cancer treatment remains insufficiently elucidated.

Methods: We conducted a comprehensive analysis of publicly available RNA-seq
and metabolomic datasets and established a subcutaneous xenograft model of
lung cancer in BALB/c nude mice (n = 5 per group) treated with DCA (50 mg/kg,
administered via intraperitoneal injection). Metabolomic profiling, gene expression
analysis, and metabolite-gene interaction pathway analysis were employed to
identify key pathways and molecular players involved in the response to DCA
treatment. In vivo evaluation of DCA treatment on tumor growth and MIF gene
expression was performed in the xenograft model.

Results: Metabolomic profiling and gene expression analysis revealed significant
alterations in metabolic pathways, including the Warburg effect and citric acid
cycle, and identified the MIF gene as a potential therapeutic target in lung cancer.
Our analysis indicated that DCA treatment led to a decrease in MIF gene
expression and an increase in citric acid levels in the treatment
group. Furthermore, we observed a potential interaction between citric acid
and the MIF gene, suggesting a novel mechanism underlying the therapeutic
effects of DCA in lung cancer.

Conclusion: This study underscores the importance of integrated omics
approaches in deciphering the complex molecular mechanisms of DCA
treatment in lung cancer. The identification of key metabolic pathways and the
novel finding of citric acid elevation, together with its interaction with the MIF
gene, provide promising directions for the development of targeted therapeutic
strategies and improving clinical outcomes for lung cancer patients.
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lung cancer, dichloroacetic acid (DCA), multi-omics, metabolomics, gene expression,
molecular mechanisms, therapeutic target, drug mechanism
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Introduction

Lung cancer remains a formidable global health issue,
accounting for a considerable percentage of cancer-related
mortalities worldwide (Bunn, 2012). This complex and
heterogeneous disease presents numerous challenges in terms of
early diagnosis, treatment, and management. The late-stage
detection of lung cancer often renders treatment less effective,
emphasizing the need for improved diagnostic tools and
screening methods to facilitate timely intervention
(Hammerschmidt and Wirtz, 2009). Additionally, the high
incidence of drug resistance and recurrence in lung cancer
patients underscores the importance of developing novel
therapeutic strategies. A comprehensive understanding of the
molecular mechanisms underlying lung cancer is crucial to
identifying innovative treatment options and overcoming the
existing obstacles in lung cancer management (Mottaghitalab

et al., 2019). Dichloroacetic acid (DCA), a small halogenated
molecule, has recently emerged as a potential anti-cancer agent
due to its ability to modulate cellular metabolism. The side effects
and toxicities of DCA have been relatively well-documented. The
most common side effects reported include peripheral neuropathy,
which is reversible upon cessation of treatment, as well as liver
enzyme abnormalities and gastrointestinal disturbances. In some
cases, patients have experienced a mild and reversible cognitive
decline. While these side effects are generally manageable, it is
essential to balance the potential therapeutic benefits of DCA
with the risk of adverse events (Farina et al., 2020). However, the
precise mechanisms through which DCA exerts its therapeutic
effects in lung cancer remain to be fully elucidated (Ma et al.,
2018; Tataranni and Piccoli, 2019).

The utilization of multi-omics methodologies, incorporating
metabolomics and transcriptomics, has demonstrated
considerable potential in deciphering intricate biological systems

FIGURE 1
Metabolomic analysis of lung cancer control and DCA treatment groups. (A) Volcano plot displaying the differentially expressed metabolites
between the lung cancer control group and the DCA treatment group. Red dots represent upregulated metabolites, while blue dots indicate
downregulated metabolites. The threshold for differential expression is set at |log2(Fold change)|> 1 and -log10(P) > 1. (B) Principal component analysis
(PCA) of the differentially expressed metabolites, showing a clear separation between the lung cancer control group (red) and the DCA treatment
group (green). (C) Pathway enrichment analysis of the differentially expressed metabolites, with the Warburg effect and Citric acid cycle emerging as the
most significantly enriched pathways. (D) Pathway impact analysis, revealing the Citrate cycle (TCA cycle) as the most significantly impacted pathway in
the DCA treatment group.
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and revealing previously unidentified therapeutic targets (Lefort
et al., 2014). Metabolomics, the comprehensive analysis of
endogenous small molecules within biological systems, can
furnish valuable information on the metabolic ramifications of
DCA administration. Concurrently, transcriptomics facilitates the
examination of DCA-induced alterations in gene expression
patterns. The amalgamation of these techniques can yield a more
thorough understanding of DCA’s mode of action in the context of
lung cancer treatment (Tataranni and Piccoli, 2019).

In the present investigation, our objective was to shed light on the
therapeutic mechanisms of DCA in lung cancer by employing an
integrated multi-omics approach, which encompasses both
metabolomic and transcriptomic analyses. We utilized gas
chromatography-time-of-flight mass spectrometry (GC-TOF-MS) to
characterize the metabolomic profile of lung cancer cells subjected to
DCA treatment, while RNA sequencing generated the corresponding
transcriptomic data. Through the integration of these datasets, we
endeavored to unravel the molecular pathways influenced by DCA
and pinpoint potential biomarkers indicative of treatment response.
Our findings may enhance the understanding of the molecular
foundations of DCA’s therapeutic effects in lung cancer and offer
invaluable insights for refining DCA-based treatment strategies.
Moreover, the integrated multi-omics approach implemented in this

research may serve as a template for subsequent inquiries into the
mechanisms of other putative anti-cancer agents.

Materials and methods

Data collection and processing

We collected RNA-seq data from publicly available datasets. We
extracted gene expression profiles from RNA-seq data in public datasets,
including GSE10072, GSE12236, and GSE19188 (Lu et al., 2012; Zhang
et al., 2018; Edginton-White et al., 2023). For transcriptomic data, we
performed background correction, log2 transformation, and quantile
normalization. For the metabolomic data, we applied missing value
imputation, data transformation (log10), and autoscaling (mean-
centering and dividing by the standard deviation) to obtain the
normalized dataset. The primary purpose of using these datasets was
to identify differentially expressed genes and potential biomarkers
associated with DCA treatment in lung cancer. By integrating and
analyzing the gene expression profiles from these datasets, we aimed
to reveal the key molecular mechanisms underlying the therapeutic
effects of DCA in lung cancer.

FIGURE 2
Identification of differentially expressed genes in lung cancer. (A–D) Expression patterns of the four highly significant differentially expressed genes
(MIF, CLEC3B, FCN3, and EMCN) across the three public datasets GSE10072, GSE12236, and GSE19188.
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Quantitative real-time PCR (qRT-PCR)
analysis

Total RNA was extracted from tumor tissues using TRIzol reagent
(Invitrogen, United States) following the manufacturer’s instructions.
The quality of the extracted RNA was assessed using a NanoDrop
spectrophotometer (Thermo Scientific, United States) and an Agilent
2100 Bioanalyzer (Agilent Technologies, United States). cDNA
synthesis was performed using the RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, United States) according to
the manufacturer’s instructions. Quantitative real-time PCR (qRT-
PCR) was conducted using the PowerUp SYBR Green Master Mix
(Thermo Fisher Scientific, United States) on a QuantStudio 6 Flex Real-
Time PCR System (Applied Biosystems, United States). The primer
sequences used in the study are as follows:

MIF Forward: 5′- GAACCGCAACTACAGTAAGCTGC -3′
MIF Reverse: 5′- ACGTTGGCAGCGTTCATGTCGT -3′
GAPDH Forward: 5′- CATCACTGCCACCCAGAAGACTG -3′
GAPDH Reverse: 5′- ATGCCAGTGAGCTTCCCGTTCAG -3′
The relative expression levels of the MIF gene were calculated

using the 2̂(-ΔΔCt) method, with the reference gene (GAPDH)
serving as an internal control for normalization.

Bioinformatics analysis

For the transcriptomic meta-analysis, we utilized the
MetaIntegrator tool, a robust bioinformatics resource designed to
integrate and analyze gene expression data from multiple studies
(Haynes et al., 2017). The MetaIntegrator tool facilitated the
identification of consistent gene expression signatures across diverse
datasets, thereby enhancing the reliability of our findings. During the
meta-analysis, both forward and backward searches were conducted to
ensure a comprehensive assessment of the available data. Regarding the
metabolomic analysis, we employed the MetaboAnalyst platform, a
powerful and user-friendly web-based tool tailored for the
interpretation of high-throughput metabolomics data (Chong et al.,
2018). This platform enabled us to perform a series of advanced
statistical analyses, including volcano plots to visualize the
distribution of differentially expressed metabolites, principal
component analysis (PCA) for dimensionality reduction and sample
clustering, differential metabolite enrichment analysis to identify
significantly altered metabolic features, and metabolic pathway
analysis to investigate the biological functions and pathways
impacted by DCA treatment. Additionally, we conducted
metabolite-gene interaction analysis to explore the possible
relationships between the identified metabolites and their
corresponding genes, providing further insights into the molecular
mechanisms underlying the therapeutic effects of DCA in lung cancer.

Animal handling and treatment

We established a subcutaneous xenograft model of lung cancer using
BALB/c nudemice, whichwere purchased from the Shanghai Laboratory
Animal Center of the Chinese Academy of Sciences (Shanghai, China).
The mice were housed in a temperature-controlled environment with a
12-h light/dark cycle and were provided with standard rodent chow and

water ad libitum. After acclimatization, the animals were injected
subcutaneously with A549 cells to establish the lung cancer model.
Once the tumors were successfully established, the mice were divided
into two experimental groups: the lung cancer control group and the lung
cancer treatment group. In the lung cancer treatment group, the mice
received dichloroacetic acid (DCA) at a concentration of 2 g/L (DCAC2)
in their drinking water, while the lung cancer control group was
administered an equivalent volume of 0.9% saline solution as their
drinking water. At the end of the treatment period, the mice were
euthanized following approved ethical guidelines, and serum samples
were collected for further analyses.

GC-TOF-MS

For the metabolomic profiling of mouse serum samples using gas
chromatography-time-of-flight mass spectrometry (GC-TOF-MS), we
adapted a published protocol with minor modifications to prepare and
derivatize the samples. Initially, pooled quality control (QC) samples were
created by combining 20 μL aliquots from each serum sample (Dunn
et al., 2008). Subsequently, a 50 μL aliquot of serum sample was spiked
with two internal standards (10 μL of L-2-chlorophenylalanine in water,
0.3 mg/mL; 10 μL of heptadecanoic acid in methanol, 1 mg/mL) and
vortexed for 10 s. The mixed solution was extracted with 175 μL of
methanol/chloroform (3:1) and vortexed for 30 s. After storing the
samples for 10 min at −20°C, they were centrifuged at 8,000 rpm for
10min. A 200 μL supernatant aliquot was transferred to a glass sampling
vial and vacuum-dried at room temperature. The dried residue
underwent a two-step derivatization process. First, 80 μL of
methoxyamine (15 mg/mL in pyridine) was added to the vial,
followed by incubation at 30°C for 90 min. Next, the samples were
incubated with 80 μL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA, containing 1% trimethylchlorosilane (TMCS)) at 70°C for
60min. Upon completion of the reaction, the samples were allowed
to rest at room temperature for 1 h before proceeding with the GC-TOF-
MS analysis.

Cell culture

The human lung cancer cell line A549 was procured from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China). Cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM; Gibco,
United States) supplemented with 10% fetal bovine serum (FBS;
Gibco, United States) and 1% penicillin-streptomycin (Gibco,
United States). Cultures were incubated at 37°C in a humidified
atmosphere containing 5% CO2.

Results

Metabolomic profiling

In this study, we utilized a total of 38mice, comprising 18 in theDCA
treatment group and 20 in the lung cancer control group. Based on our
previously defined criteria for selecting differentially expressed
metabolites, we set the threshold at |log2(Fold Change)|> 1 and
-log10P) > 1. A total of 53 differentially expressed metabolites were
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identified between the two groups (see Supplementary Table S1 for
details). These metabolites were visualized using a volcano plot to
demonstrate their differential expression (Figure 1A). We conducted a
principal component analysis (PCA) on the differentially expressed
metabolites between the lung cancer and DCA treatment groups. The
PCA revealed a significant separation between the two groups
(Figure 1B), indicating distinct metabolic profiles. Subsequently, we
performed pathway enrichment analysis and pathway impact analysis
on the differentially expressed metabolites. The pathway enrichment
analysis revealed that the two most significantly enriched pathways were
the Warburg effect and the Citric acid cycle (Figure 1C). In the pathway
impact analysis, the Citrate cycle (TCA cycle) emerged as the most
significantly impacted pathway (Figure 1D), suggesting a potential
influence of DCA treatment on these metabolic processes in lung cancer.

Gene expression profiles in lung cancer

We integrated and analyzed RNA-seq data from three public
datasets, including GSE10072, GSE12236, and GSE19188. Our
analysis identified four highly significant differentially
expressed genes in lung cancer, comprising MIF, CLEC3B,
FCN3, and EMCN (Figures 2A–D). The consistent validation
of these genes across multiple datasets suggests their potential

importance in lung cancer. To further investigate the diagnostic
potential of these four genes, we generated a meta-score by
combining their expression levels in each sample (Figures
3A–C). We then used this meta-score to distinguish between
lung cancer and normal control samples. The summary receiver
operating characteristic (ROC) curve analysis revealed that the
area under the curve (AUC) was 0.99, indicating high diagnostic
accuracy for lung cancer (Figure 3D).

Metabolite-metabolite andmetabolite-gene
interaction pathway analysis

In order to explore the relationships between differentially
expressed metabolites and their associated genes, as well as
the interactions among the metabolites themselves, we
conducted a series of analyses. First, we performed a
metabolite-pathway interaction analysis on the
53 differentially expressed metabolites. In the resulting
network, we observed interactions between the Warburg effect
and Citric acid cycle pathways (Figure 4A). Subsequently, we
investigated the interactions between metabolites and genes. Our
analysis revealed a significant interaction between the core
metabolite citric acid, which is involved in the Citric acid

FIGURE 3
Diagnostic potential of the four identified genes in Lung cacner. (A–C) Meta-score generation by combining the expression levels of the four
differentially expressed genes (MIF, CLEC3B, FCN3, and EMCN) in each sample. (D) Summary receiver operating characteristic (ROC) curve analysis
demonstrating the diagnostic accuracy of the meta-score, with an area under the curve (AUC) of 0.99.
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cycle, and the differentially expressed gene MIF in lung cancer
(Figure 4B). This finding suggests a potential link between the
identified metabolites and genes in the context of lung cancer
pathogenesis.

In vivo evaluation of DCA treatment on
tumor growth and MIF gene expression

To assess the impact of DCA treatment on tumor growth in
vivo, we compared the subcutaneous xenograft tumors in the
cancer control group and the DCA treatment group. As
depicted in Figure 4C, there was a significant difference in
tumor size between the two groups, with the DCA
treatment group exhibiting notably smaller tumors compared
to the cancer control group, which received saline. We
then performed RT-PCR analysis to examine the expression of
the MIF gene in the tumors of both groups. The results, shown
in Figure 4D, revealed a significant decrease in MIF gene
expression in the DCA treatment group compared to the
cancer control group. These findings suggest that DCA
treatment may effectively suppress tumor growth and
modulate MIF gene expression in the lung cancer xenograft
model.

Discussion

In this study, we aimed to explore the effects of DCA treatment on
lung cancer by integrating transcriptomic and metabolomic data, as well
as validating our findings using an in vivo lung cancer xenograft model.
Our comprehensive analysis not only provided insights into the
molecular mechanisms underlying the therapeutic effects of DCA in
lung cancer but also identified potential diagnostic biomarkers and
therapeutic targets.

We found 53 differentially expressed metabolites between the DCA
treatment and lung cancer control groups. Our pathway enrichment and
impact analyses revealed that the Warburg effect and Citric acid cycle
were the most significantly enriched and impacted metabolic pathways,
respectively. Importantly, we observed a significant increase in citric acid
levels in the DCA treatment group. Previous studies have reported that
elevated citric acid can inhibit the growth of A549 cells (Zhou et al., 2015;
Ji et al., 2020). Furthermore, our analysis indicated a potential interaction
between citric acid and the MIF gene. These findings suggest a novel
mechanism by which DCAmay exert its anticancer effects, involving the
modulation of citric acid levels and its subsequent interaction with the
MIF gene.

The Warburg effect, a well-known metabolic alteration in cancer
cells, is characterized by an increased rate of glycolysis even under
nonmonic conditions, leading to lactate production instead of oxidative

FIGURE 4
Interactions between metabolites and pathways, and in vivo evaluation of DCA treatment. (A) Network analysis of differentially expressed
metabolites showing interactions between the Warburg effect and Citric acid cycle pathways. (B) Interaction between citric acid and MIF gene in lung
cancer. (C) Representative images of subcutaneous xenograft tumors in the cancer control and DCA treatment groups, showing a significant difference in
tumor size. (D) RT-PCR analysis of MIF gene expression in tumors from the cancer control and DCA treatment groups, demonstrating a significant
reduction in MIF expression in the DCA-treated group.
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phosphorylation in the mitochondria (Liberti and Locasale, 2016). Our
findings suggest that DCA may exert its anticancer effects by targeting
these key metabolic pathways and shifting the cancer cells’metabolism
away from the Warburg effect towards oxidative phosphorylation,
which ultimately leads to increased ROS production and subsequent
cell death. This is in line with previous studies demonstrating that DCA
can reverse theWarburg effect in cancer cells and promote apoptosis via
the mitochondria-dependent pathway.

Our analysis also identified four highly significant differentially
expressed genes in lung cancer, namely, MIF, CLEC3B, FCN3, and
EMCN. Among these, MIF was found to interact significantly with the
core metabolite citric acid in the Citric acid cycle. MIF, also known as
macrophage migration inhibitory factor, is a pleiotropic cytokine
implicated in various biological processes, including cell proliferation,
angiogenesis, and immune regulation. Overexpression of MIF has been
reported in several cancer types, including lung cancer, and is associated
with tumor progression, metastasis, and poor prognosis (Verjans et al.,
2009; Nobre et al., 2017; Penticuff et al., 2019). Our findings suggest that
the therapeutic effects of DCA in lung cancer may be partially mediated
through the regulation of MIF expression and its interaction with citric
acid. Further investigation ofMIF as a potential therapeutic target in lung
cancer is warranted. Besides lung cancer, DCA has been investigated in
numerous other cancer types, including breast cancer, glioblastoma,
colorectal cancer, and prostate cancer. In addition to the Warburg
effect reversal, DCA treatment has been shown to modulate other
signaling pathways and cellular processes in various cancer types. For
instance, in breast cancer, DCA has been found to inhibit the Akt/mTOR
signaling pathway, leading to the suppression of cell proliferation and
migration (Xiao et al., 2017). In glioblastoma, DCA has been reported to
enhance the activity of theDNA repair enzymeO6-methylguanine-DNA
methyltransferase (MGMT), thereby increasing the sensitivity of
glioblastoma cells to temozolomide, a standard chemotherapeutic
agent (Singh et al., 2021). In colorectal cancer, DCA has been shown
to modulate the p53 signaling pathway, promoting cell cycle arrest and
apoptosis (Zeng et al., 2015).

In our in vivo lung cancer xenograft model, we observed that DCA
treatment significantly reduced tumor size and suppressed MIF gene
expression. This corroborates our in silico findings and provides evidence
for the potential therapeutic value of DCA in lung cancer treatment.
Although DCA has been widely studied for its anticancer properties,
clinical trials involving DCA for cancer treatment have yielded mixed
results. Our study adds to the growing body of evidence supporting the
potential of DCA as a therapeutic agent in lung cancer and provides a
rationale for further investigation into the optimal dosing, treatment
duration, and possible combination therapies with other anticancer
agents to enhance its efficacy and minimize potential side effects.

In summary, our integrated transcriptomic and metabolomic
analysis, together with in vivo validation, provided valuable insights
into the molecular mechanisms underlying the therapeutic effects of
DCA in lung cancer. We identified key metabolic pathways, including
the novel finding of citric acid elevation and its interaction with theMIF
gene, potential diagnostic biomarkers, as well as therapeutic targets,
which may help guide future research and clinical management of lung
cancer. Nevertheless, further studies with larger sample sizes and diverse
cancer models are needed to confirm our findings and establish the
clinical utility of DCA in the treatment of lung cancer. Additionally,
investigations into the potential synergistic effects of DCA in

combination with other anticancer agents may help optimize its
therapeutic potential and overcome potential resistance mechanisms.

In conclusion, our study highlights the importance of integrated
omics approaches in unraveling the complex molecular mechanisms
underpinning the therapeutic effects of DCA in lung cancer. The
identification of key metabolic pathways, including the novel finding
of citric acid elevation and its interaction with the MIF gene, offers
promising avenues for the development of targeted therapeutic strategies
and the improvement of clinical outcomes for lung cancer patients.
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Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to
treat invasive fungal infections (IFI). The administration dosage and blood
concentration of VRZ are influenced by various factors, posing challenges for
standardization and individualization of dose adjustments. On the one hand, VRZ is
primarily metabolized by the liver, predominantly mediated by the cytochrome
P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly
impacts the blood concentration of VRZ, particularly the trough concentration
(Ctrough), thereby influencing the drug’s efficacy and potentially causing adverse
drug reactions (ADRs). Recent research has demonstrated that
pharmacogenomics-based VRZ dose adjustments offer more accurate and
individualized treatment strategies for individuals with hepatic insufficiency,
with the possibility to enhance therapeutic outcomes and reduce ADRs. On
the other hand, the security, pharmacokinetics, and dosing of VRZ in
individuals with hepatic insufficiency remain unclear, making it challenging to
attain optimal Ctrough in individuals with both hepatic insufficiency and IFI,
resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using
VRZ to treat IFI, drug dosage adjustment based on individuals’ genotypes and
hepatic function is necessary. This review summarizes the research progress on
the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in
IFI individuals, compares current international guidelines, elucidates the current
application status of VRZ in individuals with hepatic insufficiency, and discusses
the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms
on VRZ dose adjustments and Ctrough at the pharmacogenomic level.
Additionally, a comprehensive summary and analysis of existing studies’
recommendations on VRZ dose adjustments based on CYP2C19 genetic
polymorphisms and hepatic insufficiency are provided, offering a more
comprehensive reference for dose selection and adjustments of VRZ in this
patient population.
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1 Introduction

Invasive fungal infection (IFI) is a dangerous disease commonly
seen in individuals with damaged immune function, such as
individuals with acquired immune deficiency syndrome (AIDS),
malignancy, and organ transplantation (Kullberg and Arendrup,
2015; Douglas et al., 2021). Individuals with hepatic insufficiency are
vulnerable to IFI due to their low immune function and increased
intestinal mucosal permeability, and IFI has a high mortality rate,
which seriously affects patient prognosis, especially in
immunosuppressed individuals, where the mortality rate may
reach up to 90% (Yamada et al., 2018; Chen et al., 2021; Jenks
et al., 2021). VRZ is a medication with broad-ranging antifungal
properties extensively used to treat IFI (Ullmann et al., 2007).
However, the pharmacokinetic parameters, efficacy, and safety of
VRZ are influenced by various factors, such as genetic
polymorphisms, liver function, and drug interactions (Liu and
Mould, 2014; Lamoureux et al., 2016).

Gene polymorphism is one of the critical factors in the
variability of pharmacokinetic parameters of VRZ. Gene
polymorphism is when multiple versions of genes are present in
a population, and these versions can result in different enzyme
activities (Cheng et al., 2018). VRZ is primarily metabolized in the
liver by CYP2C19 enzyme and partially by CYP3C4 and CYP2C9.
CYP2C19 gene polymorphism affects the pharmacokinetic
parameters and efficacy of VRZ (Hulin et al., 2011; Hamadeh
et al., 2017). It has been found that the pharmacokinetic
parameters of VRZ in mutant carriers such as CYP2C19*2 are
significantly higher than those in wild-type carriers, while
enhanced carriers such as CYP2C19*17 show the opposite trend
(Pascual et al., 2008; Dolton et al., 2012). Therefore, individualized
dose adjustment strategies are needed for different
CYP2C19 genotypes to improve the efficacy and safety of VRZ
(Pascual et al., 2012).

Hepatic insufficiency can also affect the pharmacokinetic
parameters and efficacy of VRZ. Individuals with hepatic
insufficiency experience difficulty breaking down and eliminating
drugs from their system, and this causes the drug to remain in the
body for an extended duration, leading to higher concentrations of
the drug (Liu and Mould, 2014). Therefore, individuals with hepatic
insufficiency should decrease their VRZ dosage to prevent ADRs
caused by a potential overdose (Lamoureux et al., 2016). According
to a study, the way VRZ works and its effects differ significantly for
individuals with hepatic insufficiency compared to those with
normal liver function (Tang et al., 2019; 2021). In addition, VRZ
has a small margin of safety and has multiple ADRs, including
neurotoxicity, hepatotoxicity, and visual impairment (Levine and
Chandrasekar, 2016; Lem et al., 2019). Research has confirmed a
meaningful connection between Ctrough and both the effectiveness
of the treatment and the adverse drug reactions (Yang et al., 2022).
As a result, medical professionals frequently suggest therapeutic
drug monitoring (TDM) to enhance patient outcomes (Jin et al.,
2016; Luong et al., 2016). The instructions provide dosage
adjustment recommendations for individuals with mild to

moderate liver impairment, utilizing exposure data from real-
world usage of VRZ. However, there is a lack of comprehensive
data on the safety, pharmacokinetics, and appropriate dosage for
patients with severe hepatic insufficiency. It is crucial to develop
individualized dose adjustment strategies for these patients to
optimize the efficacy and safety of VRZ treatment.

Based on the above studies, the treatment of IFI involves a
significant role for VRZ, but its pharmacokinetic parameters,
efficacy and safety are influenced by several factors.
Individualized dose adjustment strategies can enhance the
effectiveness and safety of VRZ, but there are some differences in
the results of different studies. Therefore, when developing dose
adjustment strategies, the distribution of genetic polymorphisms
and hepatic insufficiency in diverse populations should be
considered, and the effects of multiple factors should be taken
into account. However, there is not enough large-scale clinical
research on personalized dosing for VRZ to confirm whether it is
a safe and effective approach for guiding clinical practice. This paper
focuses on how the CYP2C19 gene and hepatic insufficiency affect
VRZ dose adjustment. From a pharmacogenomic perspective, we
further investigate the influence of genetic polymorphisms in
CYP3A4, CYP2C9, and ABCB1 on Ctrough. This information
can help develop personalized treatment plans for VRZ use in
individuals with IFI.

2 Voriconazole

Voriconazole (VRZ) was approved for marketing by the U.S.
Food and Drug Administration (FDA) in 2002 and was introduced
in China in 2005 (Pallet and Loriot, 2021). VRZ is a synthetic
second-generation triazole antifungal drug derived from fluconazole
and exhibits broad-spectrum antifungal activity. It is believed that
the mechanism of action for triazole antifungal drugs involves
inhibiting the fungal enzyme 14α-demethylase, which is
responsible for converting lanosterol to ergosterol, thereby
disrupting the synthesis of the cell membrane (Thompson and
Lewis, 2010). The Infectious Diseases Society of America
recommends VRZ as the primary treatment for invasive
Aspergillosis (Chen et al., 2018). It is also effective against
Candida spp. in treatment and prevention (Xing et al., 2017).
The metabolic pathways of VRZ are influenced by multiple
enzymes, with its primary circulating metabolite being
Voriconazole N-oxide (Theuretzbacher et al., 2006; Voriconazole
Pathway, Pharmacokinetics, n.d.) (Figure 1).

VRZ is used to treat invasive Aspergillosis, non-neutropenic
Candidaemia individuals, and severe invasive infections caused by
fluconazole-resistant Candida; however, VRZ may cause side effects
such as hepatotoxicity, neurotoxicity, photosensitivity, visual
disturbances, and osteochondritis with or without hyperfluorosis
(Chau et al., 2014). Psychiatric disorders are common ADRs caused
by VRZ, characterized by symptoms such as delirium,
hallucinations, and emotional excitement (Benitez and Carver,
2019). A study suggested that these symptoms are associated
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with the distribution and blood concentration of VRZ in the body;
during its distribution in the body, VRZ can penetrate the blood-
cerebrospinal fluid barrier, resulting in brain tissue concentrations
that are 2–3 times higher than plasma concentrations (Ertem et al.,
2022). ADRs associated with Ctrough also include hepatotoxicity
and other neurological disorders (Hamada et al., 2012; Moriyama
et al., 2017). Any form of VRZ can be excreted as a metabolite (98%)
and as a prototype (2%) within 48 h of administration, so although it
is not uncommon for VRZ to cause psychiatric disorders, psychiatric
symptoms can rapidly improve or even disappear in a brief amount
of time after discontinuation of the drug (Yi et al., 2017). In
individuals with hepatic insufficiency combined with invasive
aspergillosis, VRZ remains the drug of choice, but there is still
much controversy regarding dose selection (Chen and Ning, 2022).

Reports suggest that VRZ can cause liver injury, but the
mechanism of its occurrence is still unclear, and some studies
suggest that it is mainly related to VRZ metabolism (Kyriakidis
et al., 2017; Zhou et al., 2022). VRZ can be converted to active
metabolites in the liver, and such functional products can cause
mitochondrial damage directly or through inhibition of CYP

proteins, leading to cellular dysfunction or necrosis, thus causing
liver injury (Pessayre et al., 2012). There is controversy surrounding
the impact of VRZ on liver injury, with some studies suggesting that
VRZ-induced liver injury is a dose-dependent ADR, but others
suggesting that liver injury does not correlate with drug
concentration (Suzuki et al., 2013; Zonios et al., 2014).

The pharmacokinetic profile of VRZ in adults is nonlinear, with
a significant increase in Ctrough with increasing medication
administration. It is predominantly metabolized oxidatively by
cytochrome P450 isoenzymes and secondarily by CYP3A4 and
CYP2C9 enzymes, in addition to being a CYP3A4 inhibitor itself,
so VRZ has more clinically significant drug interactions (Lee et al.,
2022). Some studies have reported that the interaction of VRZ with
carbamazepine, efavirenz, ritonavir, rifampin, phenobarbital,
rifabutin, and nevirapine affects their pharmacokinetic
parameters and efficacy (Chen et al., 2018). Therefore, attention
needs to be paid to VRZ interactions with other drugs during
treatment. VRZ pharmacokinetics are variable within and
between individuals, with influencing factors including age,
CYP2C19 gene polymorphisms, hepatic function status, drug

FIGURE 1
Metabolic pathways of VRZ. VRZ is primarily metabolized by the enzyme CYP2C19 to form Voriconazole N-oxide, with contributions frommembers
of the CYP3A4, CYP2C9, and FMO families. Subsequently, Voriconazole N-oxide is further metabolized to voriconazole O-glucuronidated derivative and
other oxidizedmetabolites. The secondmetabolic pathway involves hydroxylation of themethyl group of VRZ, in which VRZ ismetabolized by CYP3A4 to
4-Hydroxyvoriconazole, which is then glucuronidated to form 4-Hydroxyvoriconazole 4-glucuronidate. The third pathway involves hydroxylation
of the fluconazole ring of VRZ, in which VRZ is metabolized by CYP2C19 to hydroxyvoriconazole, which can further undergo hydroxylation by
CYP2C19 to form dihydroxyvoriconazole. Finally, dihydroxyvoriconazole is glucuronidated to form dihydroxyvoriconazole O-glucuronidated.
Voriconazole Pathway, Pharmacokinetics (Reproduced from PharmaGKB, licensed under CC BY-SA 4.0).
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interactions, and ingestion, further adding to the concern of clinical
response variability (Job et al., 2016; Li et al., 2017; You et al., 2018).
In addition, Ctrough can significantly impact clinical response, and
routine TDM of VRZ is recommended because of inter-patient
variability in VRZ pharmacokinetics to avoid high Ctrough-related
toxicity and treatment failure with low Ctrough (Denning et al.,
2002).

3 Hepatic insufficiency combined
with IFI

Hepatic insufficiency refers to the damage of liver cells by
various hepatogenic factors, resulting in dysfunction of synthesis,
degradation, detoxification, storage, secretion, and immunity, which
may lead to jaundice, hemorrhage, infection, renal dysfunction, and
hepatic encephalopathy (Verma et al., 2022). The advanced stage of
hepatic insufficiency is generally called hepatic failure, and the main
clinical manifestations are hepatic encephalopathy and hepatorenal
syndrome (Rose et al., 2020; Vasques et al., 2022). Individuals with
hepatic insufficiency are prone to complications of various
infections due to impaired immune function, dysbiosis of
intestinal flora, and reduced number of hepatic Kupffer cells,
resulting in low immunity (Yamada et al., 2018). Moreover, the
application of broad-spectrum, potent antimicrobial drugs and
glucocorticoids, as well as invasive procedures, greatly raises the
risk of opportunistic infections, especially in individuals with IFI,
which are mostly single-site, but there are also cases of two or even
multi-site disseminated infections (Hou et al., 2010; Lahmer et al.,
2022). In critically ill individuals with hepatic insufficiency and IFI,
the most frequent site of infection is the lung (37.0%–56.0%); other
sites are the gastrointestinal tract (1.1%–20.2%), urinary tract (4.3%–

15.9%), abdominal cavity (2.9%–14.4%) and bloodstream (0.7%–

5.8%), and fungal infections of the thoracic cavity, biliary tract, and
central nervous system are also seen (Fernández et al., 2018; Piano
et al., 2019; Libera et al., 2023). When the liver is not functioning
properly, it can affect the metabolism and excretion of VRZ; this
may impact the drug’s absorption and clearance rates from the body
(Baririan et al., 2007; Verbeeck, 2008). Their Ctrough levels are
significantly higher when they have hepatic insufficiency, which
raises the risk of ADRs and can have a detrimental effect on their
prognosis (Alffenaar et al., 2009; Ueda et al., 2009).

The most common pathogenic fungi of hepatic insufficiency
combined with IFI are Candida spp. and Aspergillus spp. Candida
spp. are mainly Candida albicans, accounting for more than 50%,
and are the main pathogens of the intestinal tract, bloodstream,
abdominal cavity, and urinary tract (Jenks et al., 2020; Silva et al.,
2021; Hall et al., 2023). A multicenter study in Europe showed that
fungal bloodstream infections were dominated by Candida albicans
(54.4%), followed by Candida smooth (14.5%), Candida subsmooth
(14.1%), Candida tropicalis (5.8%), Candida graminearum (2.5%),
of which 34.9% of individuals suffered from septic shock (Bassetti
et al., 2017; Medeiros et al., 2019). Candida albicans was also the
main causative agent of fungal peritonitis (48.0%–81.8%), followed
by Candida klebsiella (15.0%–25.0%), Candida smoothes (6.6%–

20.0%), and novel Cryptococcus spp. were seen in some individuals
(Tariq et al., 2019; Feldman et al., 2023). Pulmonary IFI is mainly
caused by Aspergillus spp., with Aspergillus fumigatus being the

most common, followed by Aspergillus flavus and Aspergillus niger;
Aspergillus pyogenes and Aspergillus terreus are less frequently
reported (Su et al., 2010; Jović et al., 2019; Lahmer et al., 2019). Cases
of severe hepatic insufficiency combined with Pneumocystis
pneumonia have also been reported to occur (Hadfield et al.,
2019). In severe hepatic insufficiency, both natural and acquired
immunity are severely impaired, resulting in decreased immunity,
and often accompanied by intestinal dysfunction, intestinal mucosal
edema, increased permeability, impaired intestinal barrier leading to
flora translocation, intestinal microorganisms can enter the portal
vein through the intestinal wall, coupled with serious damage to the
liver mononuclear macrophage system, the ability to remove
microorganisms is reduced, resulting in infection with bacteria,
viruses and fungi and other pathogens the risk of infection with
pathogens such as bacteria, viruses and fungi is significantly
increased (Matsubara et al., 2016; Andrade et al., 2022).
Therefore, individuals with hepatic insufficiency are more
susceptible to developing IFI, and IFI usually occurs in the blood
circulation and eventually causes systemic fungal infections, leading
to conditions such as organ failure, sepsis, and fatal multi-organ
dysfunction syndrome, for which VRZ is the first-line drug (Xing
et al., 2017).

Severe hepatic insufficiency combined with IFI has an
inadequate prognosis, with an upper morbidity and death rate,
the clinical manifestations can be atypical, and diagnosing and
treating it can be difficult. Antifungal drugs are mostly
metabolized in the liver, which can cause highly toxic side effects
(Cheong et al., 2009). According to relevant literature, individuals
infected with Candida have a 30%–40% morbidity and mortality
rate, while individuals infected with Aspergillus have an even higher
rate of 50%–100% (Lahmer et al., 2016). Candida infection, invasive
Aspergillus infection individuals to increase morbidity andmortality
rate (Hwang et al., 2014). During liver transplantation, individuals
who receive a new liver have an increased chance of getting fungal
infections during and after the procedure (Kang et al., 2020). In
recent years, prophylactic use of antifungal medications has helped
to bring the overall prevalence of these infections down to 4%–8%
(Lum et al., 2020; Khalid et al., 2021).

4 The impact of gene polymorphisms
on VRZ

4.1 The impact of CYP2C19 on VRZ dose
adjustment

VRZ is mainly metabolized in the liver and mediated by
cytochrome P450 (CYP) 2C19 enzyme (Theuretzbacher et al.,
2006). The CYP2C19 gene has genetic polymorphisms that can
affect the pharmacokinetic characteristics of VRZ; in fact, these
polymorphisms are responsible for 50% of the variability in VRZ.
(Amsden and Gubbins, 2017). The gene that codes for CYP2C19 has
more than 34 different versions, known as alleles; one of these alleles,
called CYP2C19*17, has a mutation in the gene’s promoter region,
making it more active than usual (Lee et al., 2022). It was found that
mutant genes such as CYP2C19*2 and CYP2C19*3 were connected
to pharmacokinetic parameters of VRZ, and individuals carrying
mutant genes such as CYP2C19*2 and CYP2C19*3 had a slower
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clearance of VRZ, higher drug exposure, and greater fluctuations in
drug concentration at the same dose (Hamadeh et al., 2017). It has
been found that individualized adjustment of VRZ dose according to
individuals’ CYP2C19 genotypes can reduce drug exposure and
decrease the incidence of ADRs while ensuring drug efficacy
(Amsden and Gubbins, 2017; Zhang et al., 2021). Individualized
dose adjustment of VRZ may be necessary for different
CYP2C19 genotypes. The proper dosage can be determined using
TDM in conjunction with pharmacogenetic testing (He et al., 2020;
Li et al., 2021).

The Clinical Pharmacogenetics Implementation Consortium
(CPIC) categorizes individuals into five groups based on their
genotype for CYP2C19 (Moriyama et al., 2017). These groups
include CYP2C19 ultrarapid metabolizers (UMs), CYP2C19 rapid
metabolizers (RMs), CYP2C19 normal metabolizers (NMs),
CYP2C19 intermediate metabolizers (IMs), and CYP2C19 poor
metabolizers (PMs) (Lee et al., 2022) (See Table 1:
CYP2C19 phenotype classification). The differences in
CYP2C19 genes between individuals can greatly affect how they
respond to VRZ medication, particularly for those with liver
problems. Studies have shown that identifying a patient’s
CYP2C19 gene phenotype is essential in determining the
appropriate VRZ dosage, as it can vary greatly from UMs to PMs
(Ren et al., 2019). The impact of CYP2C19 is noted in the VRZ
medication label approved by the FDA. However, there are currently
no genetic variant-based dosing instructions available. To avoid
potential problems, CPIC suggests utilizing antifungal medications
that do not rely on the CYP2C19 enzymemetabolism for individuals
with PMs/Ums, while standard VRZ dosing is recommended for
other phenotypes, and the Dutch PharmacogeneticsWorking Group
(DPWG) recommends dose adjustment for both PMs and UMs
phenotypes (García-García and Borobia, 2021; Maertens et al.,
2021). The inconsistency and ambiguity of these guidelines may
hinder clinicians’ practical application of these drugs.

The CYP2C19*1/*17 and *17/*17 genotypes conferred higher
enzymatic activity to the RMs and UMs phenotypes, respectively,
compared to NMs (Sim et al., 2006). The *2 and *3 alleles were loss-
of-function variations. IMs with one such variant had significantly
lower enzyme activity compared to NMs. However, PMs with two
such variants showed no enzyme activity. According to Hamadeh
et al. (2017), CYP2C19 genotype significantly impacts the risk of
VRZ underexposure, individuals with *17/*17 genotypes (UMs) and
around 50% of those with *1/*17 genotypes (RMs) were unable to
achieve a therapeutic Ctrough (2–6 mg/L) when VRZ was
administered based on body weight. UMs showed a decrease in
VRZ Ctrough, resulting in a delay in reaching the target Ctrough; on
the other hand, PMs exhibited an increase in Ctrough, which puts
them at a higher risk of ADRs (Walsh et al., 2018). Hence, compared
to NMs, UMs and RMs may require an increase in the VRZ dosage,
while PMs may necessitate a reduction in the VRZ dosage
(Lamoureux et al., 2016) (See Table. 2: Recommendations for
dose adjustment for different CYP2C19 phenotypes). It is
important to be aware that medications like omeprazole and
cimetidine, which inhibit CYP2C19, can increase Ctrough levels
in VRZ; conversely, taking certain CYP450 enzyme inducers at the
same time can cause Ctrough levels to drop below the necessary
therapeutic levels, resulting in clinical failure (Mikus et al., 2006).
Existingmeta-analyses indicate that PMs taking VRZ are at an upper
risk of experiencing ADRs compared to NMs and IMs; however,
other meta-analyses have not found a significant correlation
between the two (Li et al., 2016; Amsden and Gubbins, 2017).
Therefore, we still require extensive, high-quality trials to confirm
these findings.

Even though many studies have shown how the CYP2C19 gene
polymorphisms affect VRZ dosage adjustment, specific details and
controversies still exist. PMs/IMs lead to elevated VRZ blood levels
that may result in toxicity, such as hepatotoxicity or neurotoxicity,
but the link between PMs/IMs and hepatotoxicity has not been

TABLE 1 CYP2C19 phenotype classification.

Phenotype Genotype Effects on ctrough Recommendations for adjustment from the
CPIC

UMs (2–5%) An individual with 2 increased function alleles
(*17/*17)

The probability of attainment of
therapeutic voriconazole Ctrough is

small with standard dosing

Consider using an alternative agent, such as isavuconazole,
liposomal amphotericin B, or posaconazole, as the primary
therapy instead of voriconazole. These agents are not

dependent on CYP2C19 metabolism

RMs (2–30%) An individual with one common function allele
and one increased function allele (*1/*17)

The probability of attainment of
therapeutic voriconazole Ctrough is

small with standard dosing

Consider using an alternative agent, such as isavuconazole,
liposomal amphotericin B, or posaconazole, as the primary
therapy instead of voriconazole. These agents are not

dependent on CYP2C19 metabolism

NMs (35–50%) An individual with 2 common function alleles
(*1/*1)

Normal voriconazole metabolism Start treatment with the recommended standard dosage

IMs (18–45%) An individual with one common function allele
and one no function allele or one no function allele
and one increased function allele (*1/*2, *1/*3,

*2/*17)

Higher dose-adjusted Ctrough of
voriconazole compared with NMs

Start treatment with the recommended standard dosage

PMs (2–15%) An individual with 2 no function alleles (*2/*2, *2/
*3, *3/*3)

Higher dose-adjusted Ctrough of VRZ
and may increase probability of adverse

events

Consider using an alternative agent, such as isavuconazole,
liposomal amphotericin B, or posaconazole, as the primary
therapy instead of voriconazole. These agents are not

dependent on CYP2C19 metabolism

UMs, CYP2C19 ultra-rapid metabolizers; RMs, CYP2C19 rapid metabolizers; NMs, CYP2C19 normal metabolizers; IMs, CYP2C19 intermediate metabolizers; PMs, CYP2C19 poor

metabolizers.

Frontiers in Genetics frontiersin.org05

Li et al. 10.3389/fgene.2023.1242711

41

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1242711


established (Wang et al., 2014b). Additional investigation is
necessary to fully comprehend the effects of CYP2C19*2 and
CYP2C19*3 mutations on VRZ therapy response and
hepatotoxicity. Differences in CYP2C19 genotype distribution in
different populations may affect the applicability of dose adjustment
strategies. For example, some studies have found a higher frequency
of mutant phenotypes such as CYP2C19*2 in Asian populations,
while enhanced phenotypes such as CYP2C19*17 predominate in
European and American people, which may affect the accuracy and
effectiveness of dose adjustment strategies (Mikus et al., 2011; Lee
et al., 2021). Various studies indicate that the impact of

CYP2C19 gene variations on the efficiency and security of VRZ
may depend on the particular approach used for adjusting the
dosage. For example, it has been suggested that individualized
dose adjustment strategies may improve the efficacy and safety of
VRZ more than conventional dose adjustment strategies in
CYP2C19*2 and other mutant carriers (Hamada et al., 2013).
Although CYP2C19 gene polymorphisms have an impact on the
pharmacokinetic parameters and efficacy of VRZ, other causes,
including individuals’ liver and kidney function and drug
interactions, need to be considered in actual clinical application.
Special attention should be given to the impact of drug-induced

TABLE 2 Recommendations for dose adjustment for different CYP2C19 phenotypes.

First author year Study design Sample size Phenotype Recommendations for dose adjustment

Zubiaur et al. (2021) prospective observational study 106

UMs 3 times the standard dose

RMs 2 times the standard dose

NMs the standard dose

IMs 0.5 times the standard dose

PMs 0.25 times the standard dose

Tanaka et al. (2020) prospective observational study 19
IMs Reduce the initial maintenance dose

PMs

Blanco-Dorado et al. (2020) prospective observational study 78
RMs Increase the initial maintenance dose

UMs

Li et al. (2020) prospective observational study 93

RMs PO 400 mg, twice a day

NMs PO 400 mg, twice a day

IMs PO 200 mg, twice a day

Hicks et al. (2020) prospective observational study 202

UMs VRZ is recommended to be avoided

RMs PO 300 mg, twice a day

NMs, IMs, PMs PO 200 mg, twice a day

Miao et al. (2019) retrospective cohort study 105

NMs the standard dose

IMs 1.64 times the standard dose

PMs 2.61 times the standard dose

Lin et al. (2018) prospective observational study 105

RMs IV 300 mg, twice a day

IMs IV 200 mg/Oral 350 mg, twice a day

PMs IV 150 mg/Oral 250 mg, twice a day

PharmGKB (2017) NA NA

UMs 1.5 times the standard dose

IMs the standard dose

PMs 0.5 times the standard dose

Lamoureux et al. (2016) retrospective study 35

UMs IV 6.75 mg/kg, twice a day

RMs IV 3.94 mg/kg, twice a day

NMs IV 2.57 mg/kg, twice a day

Wang et al. (2014b) prospective observational study 144
PMs PO 200 mg, twice a day

non-PMs IV 200 mg/PO 300 mg, twice a day

UMs, CYP2C19 ultra-rapid metabolizers; RMs, CYP2C19 rapid metabolizers; NMs, CYP2C19 normal metabolizers; IMs, CYP2C19 intermediate metabolizers; PMs, CYP2C19 poor

metabolizers; PO, oral administration; IV, intravenous injection; NA, not applicable.
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enzyme reactions on the alteration of related drug plasma
concentrations, particularly when co-administered with hepatic
enzyme inducers or inhibitors, to avoid ADRs (Hakkola et al.,
2020) (See Table 3: Inhibitors and inducers of CYP2C19,
CYP3A4, and CYP2C9). Therefore, the dose adjustment strategy
should consider various factors rather than being based solely on
CYP2C19 genotype (Moriyama et al., 2017).

4.2 The impact of CYP3A on VRZ

CYP3A is the most prevalent metabolic enzyme in the liver and
is engaged in the metabolism of 45%–60% of frequently used
medications; CYP3A4 and CYP3A5 are the most significant
drug-metabolizing enzymes in this regard (Wojnowski, 2004).
CYP3A5 accounts for approximately 17%–60% of hepatic CYP3A
and has a similar substrate specificity to CYP3A4; however, even
with the same substrate, CYP3A4 exerts a higher metabolic
efficiency (Klyushova et al., 2022). CYP3A4 is the main
metabolic enzyme for VRZ hydroxylation metabolism, while
CYP3A5 plays a relatively weak role in VRZ hydroxylation
metabolism, and studies have shown that the hydroxylation
metabolism of VRZ by CYP3A4 and CYP3A5 is relatively
enhanced when CYP2C19 enzyme activity is diminished
(Murayama et al., 2007). The CYP3A4 gene is a key enzyme in
VRZ metabolism, and its genotype is associated with the
pharmacokinetic and pharmacodynamic properties of VRZ. Still,
compared with CYP2C19, CYP3A4 affects VRZ metabolism in vivo
to a lesser extent, approximately 1/50th of CYP2C19(Hyland et al.,
2003). Although CYP3A4 has been addressed in several previous
studies, no genotypes explained the phenotype until two SNPs,
rs4646437 and rs35599367, were found to be associated with the
Ctrough of VRZ. The research findings reveal that the
rs4646437 polymorphism significantly influences the mean blood
drug concentration of VRZ, with the T variant allele being associated
with higher blood drug concentrations (Gautier-Veyret et al., 2015;
He et al., 2015). Walsh et al. found that polymorphisms such as
CYP3A4*22 and CYP3A4*23 may impact the metabolism of VRZ,
and CYP3A4 *22 was associated with higher VRZ concentrations
compared to CYP3A4 *1/*1 (Walsh et al., 2018). Meanwhile, some
studies indicate that genetic variations of CYP3A4 and
CYP3A5 have little impact on the pharmacokinetics of VRZ

(Lee et al., 2012; Chuwongwattana et al., 2020). Diverse studies’
findings on how CYP3A4 genotype affects VRZ are equivocal; more
research is required to determine how the two are related. Research
on how CYP3A5 affects the pharmacokinetics of VRZ has also
produced inconsistent results. According to Weiss et al., there is no
apparent connection between CYP3A5*3 mutations and VRZ
pharmacokinetics (Weiss et al., 2009). According to Levin et al.
(2007), the amount of hepatic drug-metabolizing enzymes in the
blood may indicate high levels of VRZ plasma concentration-
induced liver toxicity; the study also discovered that the liver
damage was not related to the CYP3A5*3 allele. However, a
study conducted in a laboratory setting has demonstrated that
individuals with the genetic variant CYP3A5*3/*3 experience a
threefold increase in AUC when taking VRZ compared to those
with at least one functional allele (Yamazaki et al., 2010).

4.3 The impact of CYP2C9 on VRZ

Studies have revealed that CYP2C19 is the primary enzyme
responsible for the nitrogen-based oxidative metabolism of VRZ;
however, CYP2C9 can also contribute to this process to a lesser
extent (Dorji et al., 2019). Lee et al. (2002) showed that there is a link
between the variability of VRZ blood concentration and the
CYP2C9*2 and CYP2C9*3 alleles. The CYP2C9*13 allele is the
first novel variant of CYP2C9 identified in Chinese and is important
in determining the metabolic capacity of CYP2C9. Some studies
indicate that the CYP2C9*13 gene variation can decrease drug
clearance from the bloodstream (Si et al., 2004; Zhang et al.,
2007). There are few conclusions regarding clinical aspects
supporting the impact of different genotypes of CYP2C9 on VRZ
metabolism, and there are some indications that CYP2C9 genotypes
may not be associated with VRZ pharmacokinetics. The current
research has made the function of CYP2C9 in VRZ metabolism
somewhat controversial. According to Niwa et al., the CYP2C9
*2 allele results in less effective inhibition of CYP2C9 by VRZ
compared to the CYP2C9 *1 and CYP2C9 *3 alleles (Niwa and
Hata, 2016). It has been reported that the pharmacokinetic
parameters of VRZ were not altered in individuals genotyped as
CYP2C9 *2/*2 pure siblings (Liu and Mould, 2014). Furthermore, a
study conducted on 35 healthy participants revealed that there was
no impact of CYP2C9 on VRZ pharmacokinetic parameters, as

TABLE 3 Inhibitors and inducers of CYP2C19, CYP3A4, and CYP2C9.

Liver
enzymes

Inhibitors Inducers

CYP2C19
Esomeprazole, omeprazole, fluconazole, voriconazole, chloramphenicol,
artemisinin, isoniazid, fluoxetine hydrochloride, indomethacin, valproate
sodium, oxcarbazepine, fluvastatin, lovastatin, nicardipine, amiodarone,
zafirlukast, oral contraceptives, etc

Rifampicin, ritonavir, dexamethasone, Ginkgo biloba preparation, etc

CYP2C9
Amiodarone, nifedipine, nicardipine, fenofibrate, fluvastatin, tamoxifen,
cimetidine, fluoxetine, paroxetine, sertraline, fluvoxamine, isoniazid,
ketoconazole, fluconazole, voriconazole, sulfamethoxazole, Leflunomide,
sodium valproate, zafirlukast, fluorouracil, etc

Barbiturates, bosentan, carbamazepine, rifampicin, dexamethasone,
ritonavir, etc

CYP3A4
Amiodarone, verapamil, cimetidine, doxycycline, enoxacin, Ciprofloxacin
hydrochloride, erythromycin, clarithromycin, ketoconazole, miconazole,
fluconazole, itraconazole, voriconazole, ritonavir, etc

Glucocorticoids, phenobarbital, phenytoin sodium, carbamazepine,
oxcarbazepine, topiramate, rifampicin, pioglitazone, etc
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determined by a multiple regression analysis of VRZ
pharmacokinetics (Weiss et al., 2009). In conclusion, there are
varying results from different studies regarding the impact of
CYP2C9 genotype on VRZ, further research is necessary to reach
a definitive conclusion.

4.4 The impact of ABCB1 on VRZ

P-glycoprotein (ABCB1) is one of the crucial transporter
proteins in the human body and is essential for maintaining
biological barriers (Tulsyan et al., 2016). Currently, there have
been over 50 SNPs documented in the ABCB1 gene (Tanabe
et al., 2001). According to Cascorbi et al., a specific variation,
rs1045642, in exon 26 of the ABCB1 gene can lead to a decrease
in protein function (Cascorbi et al., 2001). ABCB1 also has genetic
polymorphisms that affect its transport activity and, thus, the
pharmacokinetic parameters of its transported substrates (Sauna
et al., 2007). It was found that VRZ can interact with CaMdr1p, a
homolog of yeast P-glycoprotein and that VRZ can mildly inhibit
the activity of P-glycoprotein, corroborating that VRZ may be a
substrate of ABCB1(Wakieć et al., 2007). Few studies have been
conducted on the effects of ABCB1 gene polymorphisms on VRZ
metabolism, and no clear conclusions have been obtained. One
study found that ABCB1 gene polymorphism has an impact on VRZ
clearance (Weiss et al., 2009). It has been shown that the AA allele of
the rs1045642 polymorphic locus carrying the ABCB1 gene is
associated with reduced VRZ metabolism in healthy individuals
compared to the GG genotype (Weiss et al., 2009; Allegra et al.,
2018). However, Recent studies have shown that the ABCB1 gene
polymorphism does not significantly impact blood concentrations of
VRZ (Chuwongwattana et al., 2020). Therefore, To fully understand
the impact of ABCB1 gene variations on VRZ metabolism, it is
necessary to conduct studies using larger sample sizes encompassing
different races.

4.5 The impact of other gene
polymorphisms on VRZ

In addition to the genetic involvement of CYP2C19, CYP3A4,
CYP2C9, and ABCB1, several other genetic variants may also
broadly affect VRZ concentrations in individuals. According to
the study, subjects carrying the rs3781727 variant of the
SLCO2B1 gene had reduced and delayed oral absorption of VRZ,
and genotype CC + CT was associated with reduced VRZ exposure
in healthy individuals compared to genotype TT (Lee et al., 2020).
The presence of the AA genotype at the rs2461817 polymorphic site
in the NR1I2 gene is associated with a decrease in VRZ
concentrations; furthermore, the presence of the GG allele at the
rs6785049 polymorphic site and the CC allele at the
rs3814057 polymorphic site in the NR1I2 gene, the AA allele at
the rs2266780 polymorphic site in the FMO3 gene, and the AA allele
at the rs2266780 polymorphic site in the POR gene, as well as the GG
allele at the rs10954732 polymorphic site in the POR gene, is
correlated with an increase in VRZ concentrations (Zeng et al.,
2020). Regression analysis confirmed the potential function of the
rs4149117 GT/TT genotype group of the SLCO1B3 gene in

predicting Ctrough reduction by VRZ, and one study showed
that individuals carrying the GT + TT allele of the
rs4149117 polymorphic locus of the SLCO1B3 gene were
associated with reduced Ctrough in children (Allegra et al.,
2018). The ABCC2 gene encodes a transporter protein that has a
tremendous impact on the transport and clearance of VRZ, and the
rs717620 polymorphic locus CT + TT allele carrying the
ABCC2 gene and the rs13120400 polymorphic locus CC allele
carrying the ABCG2 gene were also associated with elevated
Ctrough in children (Allegra et al., 2018).

Overall, among the genetic influences on VRZ dose adjustment,
CYP2C19 gene polymorphisms were the most influential,
accounting for approximately 50% of VRZ variability (Amsden
and Gubbins, 2017). Although CYP3A4 is associated with the
pharmacokinetic and pharmacodynamic properties of VRZ, the
effect of CYP3A4 on the metabolism of VRZ in vivo is less than
that of CYP2C19, which is about 1/50 of CYP2C19 (Hyland et al.,
2003; Murayama et al., 2007). The effect of CYP2C9 on the dose
adjustment of VRZ is more slight, and it is only involved in a small
part of the nitrogen oxidation metabolism of VRZ (Dorji et al.,
2019). Although several studies have shown that CYP3A5, ABCB1,
SLCO2B1, NR1I2, FMO3 and other genes have an effect on VRZ
metabolism, these effects are relatively small compared with
CYP2C19, CYP3A4, and CYP2C9. Moreover, there is a
considerable amount of confounding factors and a lack of
consistent conclusions in these studies, warranting further
research in this area.

5 The recommended dose of VRZ in
individuals with IFI

The recommended dose of VRZ for treating IFI in adults varies
between countries and regions. Thus, it is important to adjust the
dosage for each individual (See Table 4: Comparison of
recommended doses in different countries). Overall, the
recommended doses varied somewhat between countries. Still, all
had the same intravenous loading dose and maintenance dose, and
there was less variation between countries in oral dosing, and all
recommended inter-individual dose adjustments based on Ctrough.

Different countries have varying Ctrough levels. For instance,
Chinese guidelines suggest a minimum of 0.5 mg/L and a maximum
of 5 mg/L for VRZ target Ctrough (Chen et al., 2018). The Japanese
guidelines state that Ctrough ≥12 mg/L can achieve clinical efficacy,
and individuals with Ctrough >4–5 mg/L should be monitored for
elevated related indicators (Roberts et al., 2012). According to the
2016 guidelines in the US, individuals should maintain a minimum
requirement of 1–1.5 mg/L and a maximum requirement of 5–6 mg/
L for Ctrough (Patterson et al., 2016). European 2017 guidelines
recommend that the lower limit of Ctrough in individuals should be
1–1.5 mg/L, and the recommended Ctrough for severe infections is
2–6 mg/L (Ullmann et al., 2018). The British Society for Medical
Mycology (BSMM) antifungal drug TDM guideline
recommendation defines the VRZ treatment window as 2 ~
6 mg/L (Ashbee et al., 2014).

In terms of dose adjustment, the “VRZ Personalized Medication
Guidelines,” published by the Chinese Pharmacology Society,
recommend using a population pharmacokinetic model based on
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the Chinese public to adjust VRZ dosing. For individuals with a
steady-state Ctrough below the lower limit of the target Ctrough or
poor efficacy, it is recommended that the VRZ maintenance dose be
increased by 50% and then adjusted according to Ctrough; for
individuals with a steady-state Ctrough above the upper limit of
the target Ctrough and below 10 mg/L, and in the absence of grade
2 or higher adverse events, it is recommended that the VRZ
maintenance dose be diminished by 20% and then adjusted
according to Ctrough; For individuals with steady-state Ctrough
above 10 mg/L or Grade 2 adverse events, then VRZ is
recommended to be discontinued for one dose, followed by a
maintenance dose reduction of 50%, followed by adjustment
based on Ctrough (Chen et al., 2018).

6 VRZ dose adjustment in individuals
with hepatic insufficiency

Individuals with hepatic insufficiency may face a higher risk of
ADRs due to the potential accumulation of VRZ caused by
decreased hepatic blood flow and enzyme activity. Individuals
with hepatic insufficiency are advised to follow the VRZ
instructions. For those with mild to moderate hepatic
insufficiency (Child-Pugh A/B), a standard loading dose and a
maintenance dose that is half the usual dosage are recommended
(Chen and Chen, 2021). However, it is unclear what the proper
dosing of VRZ should be for individuals with serious hepatic
insufficiency (Child-Pugh C). Studies have indicated that the
recommended VRZ loading dose and maintenance dose halving
are not suitable and that reducing the maintenance dose by half can
result in perilously high drug levels in these individuals (Wang et al.,

2018b; Spernovasilis and Kofteridis, 2018). Therefore, conducting a
pharmacokinetic study of VRZ in this particular population is
crucial to develop suitable dosage schedules (See Table 5:
Recommendations for dose adjustment in hepatic insufficiency).

The 12 studies have examined the use of VRZ in individuals with
hepatic insufficiency. All have concluded that the currently
recommended dose is unsuitable for these individuals and
requires adjustment. Of these, 10 studies provided specific
recommendations for dose adjustments, but only 5 gave both
loading and maintenance doses, while the other 5 only provided
maintenance doses. 8 retrospective multisample studies and 1 case
report have shown that the standard loading dose and maintenance
dose for individuals with hepatic insufficiency may not be
appropriate, particularly for those in Child-Pugh class B and C.
This is because of their higher Ctrough levels, which increase the risk
of serious ADRs. To prevent elevated Ctrough levels and associated
ADRs, it is advisable to consider lower doses, longer dosing intervals,
and early TDM for these patients.

In individuals with hepatic dysfunction, total bilirubin has been
identified as a crucial factor in predicting the pharmacokinetic
parameters of VRZ. Optimizing the VRZ dosage to align with
the total bilirubin levels can enhance treatment effectiveness. A
prospective observational study categorized individuals with hepatic
insufficiency into three levels based on total bilirubin levels and
determined the optimal therapeutic dosage of VRZ for each bilirubin
level (refer to Table 5); additionally, the study found that the
pharmacokinetics of VRZ can be appropriately described using a
one-compartment model with first-order absorption and
elimination in individuals with hepatic dysfunction (Tang et al.,
2021). These findings align with former retrospective studies and the
research conducted by Pascual et al. (2012) and Wang et al. (2014a)

TABLE 4 Comparison of recommended doses in different countries.

Country
Intravenous infusion Oral administration

Recommendations for dose
adjustmentLoading

dose
Maintenance

dose
Loading dose Maintenance dose

China 6 mg/kg
every 12 h

4 mg/kg every 12 h

weighing more than 40 kg:
400 mg every 12 h; weighing less
than 40 kg: 200 mg every 12 h

weighing more than 40 kg:
200 mg every 12 h; weighing

less than 40 kg: 100 mg
every 12 h

The dosage should be modified for each
patient based on weight, disease features,

drug metabolism, liver, kidney, and
Ctrough (Chen et al., 2018)

United States 6 mg/kg
every 12 h

4 mg/kg every 12 h

6 mg/kg every 12 h (Intravenous
infusion)

weighing more than 40 kg:
200 mg every 12 h; weighing
less than 40 kg: 100/150 mg

every 12 h

The prescribed dose interval should be
modified according to the patient’s

medication metabolism, liver function, and
renal function (Patterson et al., 2016)

EU 6 mg/kg
every 12 h

4 mg/kg twice daily

weighing more than 40 kg:
400 mg every 12 h; weighing less
than 40 kg: 200 mg every 12 h

Weighing more than 40 kg:
200 mg twice daily; weighing
less than 40 kg: 100 mg twice

daily

Individuals with compromised liver
function and drug interactions should have
their dosages customized based on their
Ctrough levels (Ullmann et al., 2018)

United Kingdom 6 mg/kg
every 12 h

4 mg/kg twice daily

weighing more than 40 kg:
400 mg every 12 h; weighing less
than 40 kg: 200 mg every 12 h

weighing more than 40 kg:
200 mg twice daily; weighing
less than 40 kg: 100 mg twice

daily

The dosage should be adjusted accordingly,
taking into consideration the patient’s drug
metabolism, potential drug interactions, as
well as liver and kidney function (Ashbee

et al., 2014)

Japan 6 mg/kg
every 12 h

4 mg/kg twice daily

weighing more than 40 kg:
300 mg twice daily (For the first

2 days). weighing less than
40 kg: 150 mg twice daily (For

the first 2 days)

weighing more than 40 kg: 150/
200 mg twice daily; weighing
less than 40 kg: 100 mg twice

daily

Ctrough monitoring is advised, along with
tailored dosage and dosing interval

adjustments for VRZ based on genetic
polymorphism and drug metabolism

(Roberts et al., 2012)
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on the pharmacokinetics of VRZ in individuals. A population-based
pharmacokinetic modeling study showed that individuals with
Ctrough >5.12 mg/L were more likely to experience VRZ-related
ADRs, and individuals with hepatic insufficiency should receive a
reduced half-load dose regimen compared with individuals with
normal liver function, and the VRZ maintenance dose should be
reduced to one-third for Child-Pugh A/B individuals and one-
quarter for Child-Pugh C individuals (Wang et al., 2021).
CYP2C19 phenotype plays a crucial role in selecting VRZ

treatment regimens in individuals with liver insufficiency. When
CYP2C19 activity is reduced, individuals with the same degree of
liver insufficiency can further reduce the dose of VRZ. The results of
a dosing regimen optimization based on MonteCarlo simulation
showed that the maintenance dose of VRZ should be decreased to
less than 50% in individuals with mild to moderate hepatic
insufficiency with extensive CYP2C19 metabolism and o 1/4 in
individuals with moderate to severe hepatic insufficiency (Ren et al.,
2019). Dote et al. found that taking glucocorticoids alongside VRZ

TABLE 5 Recommendations for dose adjustment in hepatic insufficiency.

First author
year

Study design Sample
size

Liver function
grading

Recommendations for dose adjustment

Cai et al. (2023) retrospective study 308 Child-Pugh C Loading dose: no recommendation Maintenance dose: 200 mg every 24 h

Lin et al. (2022) prospective
observational study

26

Child-Pugh A/B
Loading dose:5 mg/kg every 12 h

Maintenance dose: 100 mg every 12 h/200 mg every 24 h

Child-Pugh C
Loading dose:5 mg/kg every 12 h

Maintenance dose: 50 mg every 12 h/100 mg every 24 h

Zhao et al. (2021) prospective
observational study

43 Child-Pugh C
Loading dose:200 mg every 24 h

Maintenance dose: 100 mg every 24 h

Wang et al. (2021) Retrospective study 120

Child-Pugh A/B
Loading dose: 200 mg every 12 h

Maintenance dose: 75 mg every 12 h/150 mg every 24 h

Child-Pugh C
Loading dose:200 mg every 12 h

Maintenance dose: 50 mg every 12 h/100 mg every 24 h

Tang et al. (2021) prospective
observational study

51

TBIL-1
Loading dose:200 mg every 12 h

Maintenance dose: 100 mg every 12 h

TBIL-2
Loading dose:200 mg every 12 h

Maintenance dose: 50 mg every 12 h/100 mg every 24 h

TBIL-3
Loading dose: 200 mg every 12 h

Maintenance dose: 50 mg every 24 h

Ren et al. (2019) retrospective study 180

Child-Pugh A/B Loading dose: no recommendation Maintenance dose: 75 mg every 12 h

Child-Pugh C
Loading dose: no recommendation

Maintenance dose: 100 mg every 24 h

Zhao et al. (2019) retrospective study 117 Child-Pugh C
Loading dose: no recommendation

Maintenance dose: 100 mg every 12 h

Yamada et al.
(2018)

retrospective study 6 Child-Pugh C Loading dose: no recommendation Maintenance dose: 100–130 mg every 24 h

Wang et al.
(2018b)

Retrospective Study 78 Child-Pugh B/C The recommended maintenance dose (200 mg every 12 h) and halved maintenance
dose (100 mg every 12 h) result in high Ctrough

Wang et al.
(2018a)

Retrospective Study 34 Child-Pugh C Maintenance doses (100 mg every 12 h/200 mg every 24 h) result in high Ctrough

Gao et al. (2018) retrospective study 20 Acute Chronic Liver
Failure

Loading dose: 200 mg every 12 h

Maintenance dose: 100 mg every 24 h

Liu et al. (2017) case report 1 Child-Pugh C
Loading dose: no recommendation

Maintenance dose: 100 mg every 24 h

TBIL-1, TBIL <51 μmol/L; TBIL-2, 51 μmol/L ≤ TBIL <171 μmol/L; TBIL-3, TBIL ≥171 μmol/L.
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lowers plasma levels, while taking proton pump inhibitors increases
plasma levels (Dote et al., 2016). Some studies have indicated that
steroids are a hazard element for fungal infections in individuals
with liver failure; Liu et al. (2017) found that VRZ is safe in
individuals with fungal pneumonia and that low-maintenance
doses of VRZ (100 mg/d) can achieve effective Ctrough without
causing liver damage, but Ctrough of VRZ should be carefully
monitored. A prospective observational study has shown that the
regular VRZ dose can be increased by 50 mg in individuals with
hepatic insufficiency at a MIC of 1 mg/L, but Ctrough needs to be
monitored carefully to avoid severe ADRs;When theMIC is ≥ 2 mg/
L, other alternative drugs are recommended, and depending on the
type of fungal pathogen and its susceptibility to VRZ, lower doses or
longer dosing intervals should be recommended to individuals with
hepatic insufficiency (Lin et al., 2022).

7 Discussion

VRZ, a widely used broad-spectrum antifungal medication for
treating fungal infections, shows significant variability in its
pharmacokinetics and pharmacodynamics among individuals.
This is due to the involvement of multiple metabolic pathways
and influencing factors. More and more research has emphasized
the significance of genetic polymorphisms and hepatic insufficiency
in determining appropriate VRZ dosage adjustments for individuals
with IFI. Recent studies have investigated the potential relationship
between genetic variations, such as CYP2C19, CYP3A4, ABCB1,
ABCC2, FMO3, and POR, and the pharmacokinetics and
pharmacodynamics of VRZ. Among these genes, CYP2C19 has
the strongest impact on VRZ metabolism and clearance, followed
by CYP3A4. Certain variants, like CYP2C19*2 and CYP2C19*3,
reduce the enzymatic activity of CYP2C19, which results in higher
drug exposure. On the contrary, variants such as
CYP2C19*17 enhance CYP2C19 activity, resulting in faster VRZ
metabolism and reduced drug exposure. ABCB1 and
ABCC2 genotypes may influence VRZ transport and distribution,
while FMO3 and POR genotypes could potentially impact its
metabolism and clearance. However, it is important to note that
the findings from different studies are not always consistent,
warranting further research to understand the specific effects of
each genotype on VRZ.

The treatment of patients with hepatic insufficiency complicated
by IFI is a clinical challenge and a topic of great interest. While
existing pharmacokinetic studies, clinical trials, and post-marketing
safety data of available antifungal agents can assist clinicians in
optimizing antifungal treatment regimens in patients with mild to
moderate hepatic insufficiency and IFI, the recommended dosage
adjustments for patients with severe hepatic insufficiency remain
unclear in most current guidelines. Furthermore, the majority of
dose adjustment studies for VRZ in patients with hepatic
insufficiency have primarily focused on maintenance doses, with
limited recommendations for loading doses. Moreover, there are
discrepancies in the recommended adjustment doses across different
studies, highlighting the lack of consensus. Therefore, further
pharmacokinetic and clinical research is warranted to guide the
use of VRZ in patients with hepatic insufficiency. Additionally,
TDM of antifungal agents should be strengthened in clinical practice

for patients with hepatic insufficiency and IFI to prevent or
promptly identify hepatic and renal impairment, thereby
avoiding adverse clinical outcomes. Furthermore, there is limited
evidence and research on the dose adjustment of antifungal agents
based on genotype and phenotype in patients with hepatic
insufficiency, necessitating more extensive investigation in this
aspect.

The current recommendations in guidelines and package inserts
regarding patients with mild to moderate hepatic insufficiency (Child-
Pugh A and B) who are prescribed VRZ suggest standard loading doses
and halved maintenance doses, but this approach is likely to result in
high Ctrough levels in patients, making it potentially inappropriate.
Several ADRs associated with VRZ use have been found to directly
correlate with Ctrough levels (Zonios et al., 2008; Tang et al., 2021). A
meta-analysis conducted to assess the utility of TDM revealed a
significantly higher frequency of toxic adverse events in patients
with Ctrough levels ranging from 4.0 to 6.0 mg/L compared to those
with lower Ctrough levels (Luong et al., 2016). Furthermore, a review of
plasma monitoring studies for VRZ demonstrated that maintaining a
treatment window of >1–2 mg/L and <5–5.5 mg/L was associated with
improved efficacy and reduced toxicity (Karthaus et al., 2015).
Additionally, a randomized controlled trial evaluating the utility of
TDM in patients receiving VRZ treatment for IFI found that patients
undergoing TDM exhibited a significant increase in complete or partial
treatment response, with fewer discontinuations due to adverse events
(Park et al., 2012). Moreover, the “VRZ personalized dosing guideline”
strongly recommends Ctrough monitoring for patients with hepatic
insufficiency, those co-administering drugs that affect VRZ
pharmacokinetics, patients with CYP2C19 gene mutations, patients
experiencing VRZ-related adverse events or suboptimal treatment
efficacy, and critically ill patients with life-threatening fungal
infections (Chen et al., 2018). It is evident that conducting Ctrough
monitoring in hepatic insufficiency patients using VRZ is highly
necessary. TDM should be initiated early when administering VRZ,
and if steady-state Ctrough falls below the lower limit or if treatment
efficacy is suboptimal, dosage adjustments should be made according to
the dose adjustment scheme outlined in the “VRZ personalized dosing
guideline.” Additionally, the CYP2C19 gene phenotype plays a crucial
role in determining VRZ dosage in patients with hepatic insufficiency.
When making dosage adjustments, special attention should be given to
the impact of CYP2C19 gene phenotype in hepatic insufficiency
patients on VRZ dosage adjustments (Tang et al., 2019).

From an individualized dosing perspective, hepatic insufficiency
and genetic polymorphisms are two important factors influencing
the administration dosage of VRZ in patients. In terms of the genetic
impact on VRZ dose adjustments, the majority of the influence is
attributed to the involvement of CYP2C19, CYP3A4, and CYP2C9,
with CYP2C19 being particularly significant (accounting for
approximately 50% of VRZ variability). Therefore, it is crucial to
focus on the impact of CYP2C19, CYP3A4, and CYP2C9 gene
phenotypes in hepatic insufficiency patients on VRZ plasma
concentrations, as this holds positive implications for the
successful treatment of hepatic insufficiency with concomitant
invasive fungal infections. Other genes such as CYP3A5, ABCB1,
SLCO2B1, NR1I2, and FMO3, which have lesser impact, may also be
considered to some extent. To validate the safety and efficacy of VRZ
dose adjustment strategies based on genotypes and liver function,
future research should further investigate how to optimize the
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therapeutic approach of VRZ and better utilize genetic testing and
clinical practice guidelines to guide VRZ dosage adjustments. This
includes expanding the sample size and enhancing comparative
studies among different populations, which can further elucidate the
influence of genetic polymorphisms on VRZ pharmacokinetics and
pharmacodynamics. Furthermore, since hepatic insufficiency
patients often present with other diseases and receive concurrent
medication, these factors may also impact VRZ pharmacokinetics
and dose adjustments. Lastly, further research is necessary to
examine the influence of genetic polymorphisms on ADRs, in
order to guide clinical drug use and personalized treatment.

In conclusion, pharmacogenomics-based VRZ dose adjustment
offers accurate and personalized treatment for hepatic insufficiency,
improving outcomes and reducing ADRs. Compared to those with
normal liver function, patients with hepatic insufficiency require
lower drug doses and longer dosing intervals. Early TDM is crucial
to mitigate potential adverse events. Additionally, the impact of
CYP2C19, CYP3A4, and CYP2C9 genes on hepatic insufficiency
patients with IFI should be carefully considered. Future high-quality
pharmacogenomics trials are urgently needed to enhance evidence-
based medicine and pharmacology for the diagnosis and treatment
of hepatic insufficiency patients with IFI.
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Introduction: Cervical cancer remains a significant global health burden, and
Doxorubicin is a crucial therapeutic agent against this disease. However, the precise
molecular mechanisms responsible for its therapeutic effects are not fully understood.

Methods: In this study, we employed a multi-omics approach that combined
transcriptomic and metabolomic analyses with cellular and in vivo experiments.
The goal was to comprehensively investigate the molecular landscape associated
with Doxorubicin treatment in cervical cancer.

Results: Our unbiased differential gene expression analysis revealed distinct
alterations in gene expression patterns following Doxorubicin treatment. Notably,
the ANKRD18B gene exhibited a prominent role in the response to Doxorubicin.
Simultaneously, our metabolomic analysis demonstrated significant perturbations in
metabolite profiles, with a particular focus on L-Ornithine. The correlation between
ANKRD18Bgeneexpression andL-Ornithine levels indicated a tightly controlledgene-
metabolite network. These results were further confirmed through rigorous cellular
and in vivo experiments, which showed reductions in subcutaneous tumor size and
significant changes in ANKRD18B, L-Ornithine, and Doxorubicin concentration.

Discussion: The findings of this study underscore the intricate interplay between
transcriptomic and metabolomic changes in response to Doxorubicin treatment.
These insights could have implications for the development of more effective
therapeutic strategies for cervical cancer. The identification of ANKRD18B and
L-Ornithine as key components in this process lays the groundwork for future
research aiming to unravel the complex molecular networks that underlie
Doxorubicin’s therapeutic mechanism. While this study provides a solid foundation,
it also highlights the necessity for further investigation to fully grasp these interactions
and their potential implications for cervical cancer treatment.

KEYWORDS

cervical cancer, Doxorubicin, transcriptomics, metabolomics, ANKRD18B, L-Ornithine,
multi-omics integration
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Introduction

Cervical cancer, an intricate health concern worldwide,
predominantly afflicts women and stands as the fourth most
common malignancy in the female population (Ginsburg et al.,
2017). The global burden of cervical cancer is colossal, with an
estimated 604,000 new cases and around 342,000 deaths reported
in 2022, according to the World Health Organization (Tan et al.,
2022). Despite the advent of novel diagnostic techniques and
preventative strategies such as the human papillomavirus (HPV)
vaccination, the morbidity and mortality rates remain daunting,
particularly in low- and middle-income countries where
healthcare resources and infrastructure are limited (Bosch
et al., 2013). It is widely acknowledged that persistent
infection with certain types of human papillomavirus (HPV) is
the most important risk factor for cervical cancer. Indeed, HPV is
detected in more than 90% of cervical cancer cases, with HPV
types 16 and 18 being the most prevalent. HPV, a small DNA
virus, has over 100 types, of which about 40 can infect the genital
tract. Among these, approximately 15 types are considered high-
risk for the development of cervical cancer and other anogenital
cancers (Ahmed et al., 2023). Prolonged infection with these
high-risk types, particularly HPV 16 and HPV 18, can lead to the
formation of precancerous lesions, which may progress to
invasive cervical cancer if not treated (Cascardi et al., 2022).
Despite the availability of prophylactic HPV vaccines, cervical
cancer incidence remains high due to factors such as limited
vaccine coverage and the long period between HPV infection and
cancer development. Furthermore, the vaccines do not have
therapeutic effects on existing HPV infections or HPV-
associated lesions. As such, understanding the molecular
mechanisms underlying cervical cancer progression and
response to treatment, as explored in this study, is of utmost
importance.

The standard therapeutic approach for cervical cancer
encompasses a combination of surgery, radiation therapy, and
chemotherapy, tailored according to the stage and extent of the
disease (Yessaian et al., 2004). Doxorubicin, a potent anthracycline
chemotherapy drug, has been employed as a primary or adjuvant
treatment modality in various stages of cervical cancer (Koning
et al., 2010). It operates primarily by intercalating into DNA,
inhibiting the topoisomerase II enzyme, thus impeding DNA
replication and transcription, culminating in cell death.
Nevertheless, the precise molecular and metabolic pathways
influenced by Doxorubicin in cervical cancer remain to be
comprehensively elucidated. Recent advancements in high-
throughput technologies have made it feasible to explore the
complex landscape of biological systems at multiple levels, from
genes to metabolites (Yessaian et al., 2004).

Transcriptomics and metabolomics, two integral components of
systems biology, provide profound insights into the functional
elements of the genome and the downstream metabolic
processes, respectively (Zampieri et al., 2019; Jamil et al., 2020).
These methodologies have empowered the scientific community to
probe into the molecular intricacies of disease mechanisms, drug
responses, and personalized therapeutics (Naylor and Chen, 2010;
Beckmann and Lew, 2016). In the realm of cervical cancer, an
integrative analysis of transcriptomic and metabolomic data may

unveil the precise molecular and metabolic alterations induced by
Doxorubicin. Such comprehensive understanding could aid in the
optimization of treatment strategies, identification of potential
therapeutic targets, and prediction of treatment response
(Fleisher et al., 2017; Niu et al., 2019). This study leverages the
synergistic potential of transcriptomics and metabolomics to
investigate the mechanism of action of Doxorubicin in cervical
cancer, paving the way for innovative and personalized treatment
options in the future.

Materials and methods

Public data retrieval and preprocessing

Transcriptomic data for this study were obtained from the
publicly available dataset GSE160234 (Demir et al., 2021). The
experimental design encompassed HeLa cells that were incubated
for 6 days without treatment (group Normal, n = 3), treated with
300 nM doxorubicin for 72 h and then incubated for an additional
72 h without treatment (group Cancer, n = 3), or treated with
300 nM doxorubicin for 72 h. These data were preprocessed and
normalized according to the standard pipelines to ensure the
accuracy and reliability of subsequent analyses.

Metabolomics analysis

For the metabolomic study, cells under the same treatment
conditions were harvested, and metabolites were extracted using a
cold methanol-acetonitrile-water solution (2:2:1 v/v/v). The extracts
were then analyzed using an Agilent 1290 Infinity II LC system
coupled with an Agilent 6545 Q-TOF mass spectrometer (Agilent
Technologies, Santa Clara, CA, United States). The
chromatographic separation was carried out on a Waters
ACQUITY UPLC BEH Amide column (2.1 mm × 100 mm,
1.7 μm). The raw data were processed and analyzed using Agilent
MassHunter Qualitative Analysis software (B.06.00).

Quantitative polymerase chain reaction
(qPCR)

Quantitative polymerase chain reaction (qPCR) was
performed to validate the expression of the ANKRD18B gene.
RNA was extracted from the cells using the RNeasy Mini Kit
(Qiagen, Valencia, CA, United States), and cDNA was
synthesized using the iScript cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, United States). Real-time PCR was performed
using the SYBR Green Master Mix (Applied Biosystems,
Foster City, CA, United States) on a StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA, United
States). The primer sequences for ANKRD18B were: forward,
5′- CTCGCTCTATCACCAGTCTGGA -3′; reverse, 5′- ATG
GTCGCATGTGCCTGTTGTC -3′. Beta-actin was used as the
reference gene, with the following primer sequences: forward, 5′-
CACCATTGGCAATGAGCGGTTC -3′; reverse, 5′- AGGTCT
TTGCGGATGTCCACGT -3′.
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In vivo mouse model experiments

The nude mice were inoculated subcutaneously with HeLa cells
(ATCC® CCL-2™) to generate xenograft tumors. Post-inoculation, the
mice were intraperitoneally treated with either doxorubicin (CAS
25316-40-9, Sigma-Aldrich, St. Louis, MO, United States) at varying
doses between 2 and 3 mg/kg, or normal saline (CAS 7647-14-5, Sigma-
Aldrich, St. Louis, MO, United States) at doses between 10 and
12 mg/kg, twice a week. The treatments started from the seventh
day post-inoculation, and the experiment lasted for 28 days.

Statistical analysis

All statistical analyses were performed using the R programming
language (version 4.0.2). Descriptive statistics were used to summarize
the transcriptomics and metabolomics data. The Normal and Cancer
groups were compared using Student’s t-test for normally distributed
data or the Mann-Whitney U test for non-normally distributed data. A
p-value of less than 0.05 was considered statistically significant.
Correlation analyses between the transcriptomics and metabolomics
data were conducted using Pearson’s correlation coefficient or
Spearman’s rank correlation coefficient as appropriate. The most
significant genes and metabolites were selected based on the
correlation coefficients. Differential expression analyses for the
transcriptomics data were conducted using the DESeq2 package
(Love et al., 2014). Genes with an adjusted p-value (Benjamini-
Hochberg procedure) less than 0.05 and a log2 fold-change greater
than 1 or less than −1 were considered differentially expressed. For the
qPCR and in vivo mouse model experiment data, one-way analysis of
variance (ANOVA) followed by Tukey’s multiple comparisons test was
used to compare the groups. Data visualization was performed using the
ggplot2 package in R. Heatmaps were generated using the pheatmap
package (Kolde and Kolde, 2018). Boxplots were used to visualize the
expression levels of the most significant genes and metabolites.

Results

Revealing altered gene expression
landscape in cervical cancer cells treated
with Doxorubicin: a comprehensive
transcriptomic analysis

As part of our endeavor to characterize the molecular
mechanisms that underpin the therapeutic effect of Doxorubicin
on cervical cancer, we began with a deep dive into the transcriptomic
changes it instigates. We carried out an unbiased differential gene
expression analysis to discern the molecular patterns associated with
Doxorubicin treatment. Our analysis led us to the discovery of
several genes that displayed marked expression differences between
the Normal and Cancer groups. The ensuing volcano
plot—Figure 1A—brings into stark relief the multitude of
differentially expressed genes. Notably, the distribution of these
genes followed an interesting pattern, suggesting potential
stratification of gene expression alterations. Moreover, to zero in
on the most significantly altered genes, we constructed a heatmap
using those with an adjusted p-value < 0.05 and |log2 fold-change| >
1 (Figure 1B). This analysis unveiled clusters of genes with distinct
expression patterns, giving us valuable insights into the potential
molecular programs disrupted by Doxorubicin (Supplementary
Table S1).

Doxorubicin’s therapeutic action is
accompanied by perturbations in metabolite
profiles: an in-depth metabolomic analysis

Concurrent with our transcriptomic analysis, we undertook an
exhaustive metabolomic analysis to unravel any accompanying
metabolic perturbations associated with Doxorubicin treatment.
Interestingly, like our transcriptomic analysis, many metabolites

FIGURE 1
Transcriptomics analysis of doxorubicin-treated and control Hela cells. (A) Volcano plot illustrating the differential expression of genes in Hela cells
treated with doxorubicin versus control. The X-axis represents the log2 fold change (FC) and the Y-axis represents the −log10 adjusted p-values. (B)
Heatmap showing the clustering of significantly differentially expressed genes (DEGs) in doxorubicin-treated and control Hela cells.
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exhibited significantly differential levels between the Normal and
Cancer groups. The ensuing volcano plot (Figure 2A) clearly
illustrates this widespread metabolic perturbation. To provide a

finer granularity of these metabolic changes, we charted a heatmap
using the most significantly altered metabolites. The heatmap in
Figure 2B depicts an intricate metabolic landscape, suggesting a

FIGURE 2
Metabolomics analysis of doxorubicin-treated and control Hela cells. (A)Volcano plot depicting the differentialmetabolite levels in Hela cells treated
with doxorubicin versus control. The X-axis shows the log2 FC and the Y-axis represents the −log10 adjusted p-values. (B) Heatmap demonstrating the
clustering of significantly different metabolites in doxorubicin-treated and control Hela cells.

FIGURE 3
Correlation analysis of significantly differential genes and metabolites. The heatmap demonstrates the correlation between the DEGs and the
significantly different metabolites. ANKRD18B and L-Ornithine are found to have a significant correlation.
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complex remodeling of metabolic pathways in response to
Doxorubicin treatment (Supplementary Table S2).

A symbiotic relationship between
transcriptomic and metabolomic
alterations: integrated correlation analysis

With the wealth of data generated from our omics analyses, we
sought to tease apart any possible relationships between the
transcriptomic and metabolomic changes. In doing so, we
uncovered a strong correlation between the gene ANKRD18B
and the metabolite L-Ornithine, both of which showed marked
changes in response to Doxorubicin treatment. As shown in
Figure 3, this result illustrates the intimate interplay between
gene expression and metabolite levels, potentially pointing
towards a tightly controlled gene-metabolite network affected by
Doxorubicin.

From cells to mice: experimental validation
of omics findings

Complementing our multi-omics analyses, we conducted a
series of rigorous cellular and in vivo experiments to validate our
findings. The effect of Doxorubicin treatment on tumor growth
was assessed in a mouse model, where we observed a significant
decrease in subcutaneous tumor size (Figure 4A). Furthermore,
cellular and tissue experiments corroborated the crucial roles of
ANKRD18B and L-Ornithine in mediating the action of

Doxorubicin. As evident from Figures 4B, E, ANKRD18B
expression levels were significantly different in both the cell
and tissue experiments, aligning with our omics data.
Similarly, the intracellular concentrations of Doxorubicin
(Figures 4C, F) and L-Ornithine (Figures 4D, G) were also
found to vary significantly in line with the corresponding
omics results. Collectively, these data provide compelling
evidence for the involvement of ANKRD18B and L-Ornithine
in the therapeutic mechanism of Doxorubicin, thus enriching our
understanding. In our analysis of the TCGA-CESC (Cervical
Squamous Cell Carcinoma and Endocervical Adenocarcinoma)
dataset, ANKRD18B emerged as a gene of significant interest
(Supplementary Figure S1). We found that the expression of
ANKRD18B was significantly elevated in tumor tissues compared
to their normal counterparts (p < 0.05). This upregulation in
tumor tissues suggests a potential role of ANKRD18B in cervical
cancer progression. However, when we examined the impact of
ANKRD18B expression on overall survival, the results were not
statistically significant (logrank p = 0.45).

Discussion

In this study, we embarked on a comprehensive investigation to
elucidate the molecular underpinnings of the therapeutic action of
Doxorubicin on cervical cancer. Our approach involved an
integration of transcriptomic and metabolomic analyses, paired
with rigorous cellular and in vivo experiments. This multi-
pronged strategy led us to the discovery of ANKRD18B and
L-Ornithine as significant players in the Doxorubicin treatment

FIGURE 4
Experimental validation in cells and in vivo. (A) Doxorubicin inhibits the growth of Hela cell-derived subcutaneous tumors in mice. (B) ANKRD18B
gene expression, (C) doxorubicin concentration, and (D) L-Ornithine concentration in cell cultures. (E) ANKRD18B gene expression, (F) doxorubicin
concentration, and (G) L-Ornithine concentration in tumor tissues. *p < 0.05; **p < 0.01.
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response. The observed positive correlation between ANKRD18B
and L-Ornithine is of special interest and warrants further
investigation to unravel the intricacies of their joint impact on
the disease process.

ANKRD18B, part of the Ankyrin repeat domain-containing
protein family, has been previously implicated in various
biological processes, albeit the exact mechanism of action of
ANKRD18B is not fully understood (Sundar et al., 2017). Recent
studies have shed light on the potential role of ANKRD18B in
cellular processes such as cell cycle regulation and apoptosis, both
of which are key mechanisms exploited by chemotherapeutic
drugs like Doxorubicin (Al-Alem, 2011). The marked
upregulation of ANKRD18B in response to Doxorubicin
treatment, as revealed by our transcriptomic analysis, points
towards a potential mechanistic role of this gene in the anti-
tumor action of Doxorubicin. Moreover, the fact that its
expression pattern is in sync with Doxorubicin concentration
underscores its potential importance in Doxorubicin-mediated
therapeutic effect. Although the exact role of ANKRD18B in this
process is still unclear, its significant alteration following
Doxorubicin treatment, as shown in our study, suggests that it
may be implicated in the response to therapy in HPV-positive
cervical cancers. On the other hand, L-Ornithine, a key player in
the urea cycle, has been linked to multiple cancer-related
processes (You et al., 2018). Several studies have implicated
aberrant metabolism, including alterations in the urea cycle, as
a hallmark of cancer (Erbaş et al., 2015; Wang et al., 2022). In
cervical cancer, metabolic reprogramming often manifests as
alterations in amino acid metabolism, of which the urea cycle
is an integral part. Thus, our finding of significant alterations in
L-Ornithine levels in response to Doxorubicin treatment is
noteworthy. Given the critical role of metabolic remodeling in
cancer progression and response to therapy, the observed
L-Ornithine changes might signify an important metabolic
response to Doxorubicin. Additionally, the fact that
L-Ornithine levels mirrored those of ANKRD18B and
Doxorubicin concentration points to a potential gene-
metabolite network at play.

Interestingly, the positive correlation between ANKRD18B
and L-Ornithine highlights a potential intricate interplay
between gene expression and metabolite levels. Such an
interaction could potentially contribute to the complex
adaptive response of cancer cells to chemotherapy, thereby
impacting the therapeutic outcome. The discovery of this
correlation underscores the importance of integrative multi-
omics analyses in unveiling complex molecular networks.
While it necessitates further exploration, it provides a
promising direction for future research aimed at a more
comprehensive understanding of the therapeutic mechanism
of Doxorubicin.

Our study is still with some limitations. While we have
uncovered promising candidates that might be pivotal in the
therapeutic response to Doxorubicin, the precise nature of their
interaction and the resulting molecular cascade remains to be
elucidated. Future work should focus on deciphering these
molecular networks using techniques like gene knockdown or
overexpression studies and metabolic flux analysis. Nonetheless,

our findings lay a solid foundation for future research in this
direction and can potentially aid the design of improved
therapeutic strategies. Although our multi-omics approach
has provided valuable insights into the molecular mechanisms
of Doxorubicin, it is important to note some limitations of our
study. One of these is the inability of our metabolomics
equipment to differentiate between the D and L forms of
metabolites. This is a significant limitation as the D and L
forms can have different biological activities. Future studies
with equipment capable of distinguishing between these
forms would provide a more comprehensive understanding of
the changes in the metabolome following Doxorubicin
treatment.

In conclusion, our study highlights the intricate changes in
gene expression and metabolic profiles in response to
Doxorubicin treatment in cervical cancer. We provide
compelling evidence pointing towards a crucial role of
ANKRD18B and L-Ornithine in mediating the action of
Doxorubicin. While our findings paint a complex picture of
the molecular landscape associated with Doxorubicin
treatment, they open new avenues for a deeper.
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SUPPLEMENTARY FIGURE S1
(A) Differential expression of ANKRD18B in TCGA-CESC dataset. This bar
graph represents the expression levels of ANKRD18B in paired tumor (T) and
normal (N) tissues from the TCGA-CESC dataset. The expression of
ANKRD18B was significantly elevated in tumor tissues compared to their
normal counterparts (p <0.05). Error bars denote standard error of themean
(SEM). (B) Kaplan-Meier survival analysis of cervical cancer patients based
on ANKRD18B expression. The survival curves represent the overall survival
of cervical cancer patients stratified by the expression level of ANKRD18B
(high vs. low). Despite the observed difference in survival times, the log-
rank test did not reveal a significant difference (p = 0.45).
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Introduction: Neuropathic pain remains a prevalent and challenging condition to
treat, with current therapies often providing inadequate relief. Ozone therapy has
emerged as a promising treatment option; however, its mechanisms of action in
neuropathic pain remain poorly understood.

Methods: In this study, we investigated the effects of ozone treatment on gene
expression and metabolite levels in the brainstem and hypothalamus of a rat
model, using a combined transcriptomic and metabolomic approach.

Results:Our findings revealed significant alterations in key genes, includingDCST1
and AIF1L, and metabolites such as Aconitic acid, L-Glutamic acid, UDP-glucose,
and Tyrosine. These changes suggest a complex interplay of molecular pathways
and region-specific mechanisms underlying the analgesic effects of ozone
therapy.

Discussion: Our study provides insights into the molecular targets of ozone
treatment for neuropathic pain, laying the groundwork for future research on
validating these targets and developing novel therapeutic strategies.

KEYWORDS

ozone therapy, neuropathic pain, transcriptomics, metabolomics, mechanism of action,
multi-omics

Introduction

Neuropathic pain, a complex and debilitating condition, originates from dysfunction or
damage to the somatosensory system, affecting approximately 7%–10% of the global
population (Colloca et al., 2017). It is characterized by persistent pain, burning
sensations, allodynia, and hyperalgesia, significantly impacting the quality of life for
those affected. Conventional pharmacological treatments for neuropathic pain, such as
opioids, anticonvulsants, and antidepressants, often provide limited relief and are associated
with numerous side effects, including addiction, dizziness, and sedation. Consequently, there
is an urgent need to explore novel, safe, and effective therapeutic interventions for
neuropathic pain management (Raja et al., 2020).
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Ozone therapy, an emerging alternative treatment, has recently
gained attention for its potential in neuropathic pain management.
It involves the administration of ozone, a highly reactive molecule
comprising three oxygen atoms, through various routes, including
intramuscular, intradiscal, and intraperitoneal injections. Studies
have demonstrated the therapeutic benefits of ozone therapy in
reducing pain and inflammation, improving blood flow and
oxygenation, and promoting tissue healing (Clavo et al., 2021;
Masan et al., 2021). However, despite these promising findings,
the precise mechanisms underlying the effectiveness of ozone
therapy for neuropathic pain remain largely unknown.

A comprehensive understanding of the molecular pathways
involved in ozone therapy-induced pain relief is essential for
optimizing this treatment modality and ensuring its safe and
effective application. Transcriptomics and metabolomics are
powerful tools that can facilitate the elucidation of these
mechanisms by providing a global view of gene expression and
metabolic changes in response to ozone treatment. Through the
integration of transcriptomic andmetabolomic data, researchers can
identify key regulatory genes and metabolic pathways that
contribute to the therapeutic effects of ozone therapy on
neuropathic pain (Vassallo, 2012; Ma et al., 2020).

In this study, we employ a systems biology approach,
leveraging both transcriptomic and metabolomic techniques,
to investigate the molecular mechanisms underlying ozone
therapy in the treatment of neuropathic pain. We aim to
identify the key genes and metabolic pathways involved in
ozone-induced pain relief, which could ultimately inform the
development of more targeted and effective therapeutic
interventions for neuropathic pain management.

Methods

Rat husbandry and ozone exposures

Adult male Sprague-Dawley rats were housed in temperature-
and humidity-controlled rooms with a 12-h light/dark cycle and had
free access to food and water. The rats were acclimated to their
environment for 1 week prior to the experiments. Whole-body
exposures to filtered air or ozone (0.8 ppm) were conducted for
4 h (0700–1100 AM). Ozone was generated using a silent arc
discharge generator and directed to the exposure chambers with
the aid of mass flow controllers. The concentration of ozone was
continuously monitored and maintained at 0.800 ± 0.04 ppm using
photometric analyzers. The exposure chamber conditions, including
temperature, relative humidity, and airflow, were carefully regulated,
and recorded hourly.

Blood collection and serum preparation

Before conducting the surgeries, blood samples were collected
from the rats to obtain serum for further analyses. Rats were
anesthetized using isoflurane (Piramal Critical Care, Bethlehem,
PA, United States; Cat. No. NDC0409-1964-64) to minimize stress
and discomfort during the procedure. Blood samples were collected
from the tail vein using a sterile needle and placed in BD Vacutainer

Serum Separator Tubes (BD Biosciences, San Jose, CA,
United States; Cat. No. 367988). The tubes were then allowed to
clot at room temperature for 30 min before centrifugation at 2000 ×
g for 10 min at 4°C. The obtained serum was carefully aliquoted and
stored at −80°C for further analysis.

Rat surgery

Following blood collection, rats underwent surgery under
aseptic conditions. Anesthesia was induced and maintained with
isoflurane (Piramal Critical Care, Bethlehem, PA, United States; Cat.
No. NDC0409-1964-64) during the surgery. Once the rats were
adequately anesthetized, their surgical site was shaved and
disinfected with iodine solution (Betadine, Avrio Health L.P.,
Stamford, CT, United States; Cat. No. NDC67618-150-02) and
70% ethanol (Decon Labs, Inc., King of Prussia, PA,
United States; Cat. No. 2701-4). Sterile surgical instruments were
used throughout the procedure. The surgery was conducted
following standard procedures for the specific experimental
requirements, such as nerve injury or implantation of devices.
During the surgery, the rats were placed on a heating pad
(Braintree Scientific, Inc., Braintree, MA, United States; Cat. No.
MHI-700) tomaintain body temperature. Post-surgery, rats received
appropriate pain relief, such as buprenorphine (Reckitt Benckiser
Pharmaceuticals, Richmond, VA, United States; Cat. No.
NDC12496-0757-1), and were monitored closely for any signs of
distress or complications. Rats were allowed to recover for a
designated period before the exposure to ozone or further
analysis, depending on the specific experimental design.

Metabolomics analysis by GC-TOF-MS and
TMS derivatization

Metabolomics profiling was performed using gas
chromatography coupled to time-of-flight mass spectrometry
(GC-TOF-MS). Samples were prepared by extracting metabolites
from rat serum, brainstem, and hypothalamus tissues. The extracts
were then subjected to derivatization using N-methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA) with 1%
trimethylchlorosilane (TMCS), a process known as trimethylsilyl
(TMS) derivatization. The TMS-derivatized samples were then
injected into the GC-TOF-MS system for metabolite separation
and identification (Ding et al., 2009). Our serum sample preparation
followed a modified method from established protocols, which
involved a series of extraction, derivatization, and analysis steps.
To begin, we created pooled quality control (QC) samples by
combining aliquots from each individual serum sample.

Next, an internal standard mixture, comprising L-2-
chlorophenylalanine and heptadecanoic acid, was added to a
defined volume of the serum sample, which was then briefly
vortexed for homogenization. This solution underwent metabolite
extraction using a chilled methanol-chloroform mixture, followed
by a vortexing step and cold incubation to precipitate proteins. Post
centrifugation, the supernatant was carefully collected, transferred
to a glass vial, and dried under vacuum conditions at room
temperature. Subsequently, the extracted metabolites were
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derivatized using a two-step procedure to improve their volatility
and stability for GC-TOFMS analysis. Initially, methoxyamine was
added to the vial, and the reaction was facilitated by incubation at
30°C. The second step involved the addition of BSTFA containing
1% TMCS, and a further incubation period at 70°C. After the
derivatization reaction was complete, samples were left to cool
down to room temperature prior to GC-TOFMS analysis.

Transcriptomic analysis

Publicly available transcriptomic data were obtained from the Gene
Expression Omnibus (GEO) under the accession number GSE133293
(Henriquez et al., 2019). The raw RNA-seq data were processed using
the Nextflow RNA-seq pipeline to obtain transcript per million (TPM)
values for downstream analyses. The Nextflow RNA-seq pipeline is an
open-source, reproducible, and scalable pipeline that enables efficient
and user-friendly analysis of RNA-seq data (Ewels et al., 2020). This
pipeline incorporates various bioinformatics tools for quality control,
read alignment, and quantification of gene expression levels. Quality
control of the raw sequencing reads was performed using FastQC
(Babraham Bioinformatics, Cambridge, United Kingdom) to assess
read quality and identify potential contaminants. Low-quality reads
and adapter sequences were trimmed using Trimmomatic (Usadel Lab,
Aachen, Germany). The cleaned reads were then aligned to the
reference genome using the STAR aligner (Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, United States), ensuring a
high-quality alignment. The aligned reads were subsequently
quantified for gene expression levels using featureCounts
(Weizmann Institute of Science, Rehovot, Israel), generating read
counts for each gene. Finally, the read counts were normalized to
TPM values to account for differences in sequencing depth and gene
length, enabling a more accurate comparison of gene expression levels
between samples.

Statistical analysis

For statistical analysis, various bioinformatics and statistical
tools were employed to interpret the transcriptomic and
metabolomic data. The primary objective was to identify
significant differences in gene expression and metabolite levels
between the control and ozone-treated groups. Differential gene
expression analysis was performed using the limma package in R,
which implements a linear model to estimate the fold changes and
standard errors for each gene (Ritchie et al., 2015). Empirical Bayes
moderation was applied to the standard errors, followed by the
calculation of moderated t-statistics, p-values, and log2 fold changes.
The Benjamini-Hochberg method was used to adjust the p-values
for multiple testing, and genes with an adjusted p-value of less than
0.05 were considered differentially expressed.

Results

Alterations in serum metabolomics
following ozone treatment

Either ozone or normal air to explore the metabolic changes that
occurred in response to ozone treatment. Figure 1A presents the
heatmap of differentially abundant metabolites, revealing distinct
metabolic profiles between the control and ozone-treated groups. A
detailed list of these metabolites, exhibiting a p-value < 0.05 and fold
change (FC) > 1.2 or < 0.8, is provided in Supplementary Table S1.
In Figure 2B, the top ten metabolites with the highest importance
were identified through a random forest model based on the mean
decrease accuracy. The four most significant metabolites included
Aconitic acid, L-Glutamic acid, UDP-glucose, and Tyrosine. These
key metabolites may play a critical role in the mechanism of ozone
treatment for neuropathic pain (Figure 1B).

FIGURE 1
Differential abundance of serum metabolites in rats exposed to ozone treatment compared to control rats. (A) Heatmap of differentially abundant
metabolites between control and ozone-treated groups, with colors representing the scaled intensity of each metabolite. (B) The Plot depicts the top
15 metabolites, ranked by their Mean Decrease Accuracy scores derived from the Random Forest model, in the ozone therapy group compared to the
control group.
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Distinct transcriptional responses in
brainstem and hypothalamus following
ozone treatment

To elucidate the transcriptional changes in the brainstem and
hypothalamus of rats after ozone treatment, gene expression
analyses were conducted. Figure 2A displays a Venn diagram
illustrating the distribution of significantly expressed genes in
these two regions. In the brainstem, 8,321 unique genes were
identified as being significantly expressed, while the
hypothalamus exhibited 486 unique significantly expressed
genes. Interestingly, both regions shared 44 significantly
expressed genes in common. Figure 2B presents the heatmap
of the expression patterns of these 44 overlapping genes,
highlighting their potential roles in the response to ozone
treatment in both the brainstem and hypothalamus.

Differential gene expression profiles in
brainstem and hypothalamus following
ozone treatment

The differential gene expression profiles in the brainstem and
hypothalamus of rats subjected to ozone treatment were examined.
Figures 3A, B depict volcano plots of the significantly expressed
genes in the brainstem and hypothalamus, respectively. Detailed
information on the p-values and fold changes can be found in
Supplementary Table S2 for the brainstem and Supplementary Table
S3 for the hypothalamus. Furthermore, Figures 3C, D show the top
15 most significant genes identified using the random forest Mean
Decrease Gini analysis in both the brainstem and hypothalamus.
Themost prominent gene in the brainstemwas DCST1, while AIF1L
emerged as the most significant gene in the hypothalamus.

Key gene expression and metabolite
changes in brainstem and hypothalamus
following ozone treatment

Figure 4A shows a boxplot of the expression levels of DCST1 in the
brainstem, which were found to be significantly increased in the ozone-
treated group compared to the control group (Supplementary Table S2).
In contrast, Figure 4B presents a boxplot of the expression levels of
AIF1L in the hypothalamus, revealing a significant decrease in the
ozone-treated group (Supplementary Table S3). Moreover, Figure 4C
illustrates the changes in the four key metabolites in the rat brainstem
after ozone treatment. Aconitic acid and UDP-glucose levels were
significantly elevated in the ozone-treated group, while L-Glutamic
acid and Tyrosine levels were significantly decreased. In the
hypothalamus, Aconitic acid and Tyrosine levels were significantly
reduced, L-Glutamic acid levels showed no significant difference, and
UDP-glucose levels were significantly increased (Figure 4D).

Discussion

In this study, we sought to elucidate the mechanisms underlying
the effects of ozone treatment on neuropathic pain using
transcriptomic and metabolomic analysis. Our findings revealed
significant changes in gene expression and metabolite levels in the
brainstem and hypothalamus, providing insight into the potential
pathways and molecular targets of ozone therapy.

Firstly, we identified two key genes with significantly altered
expression following ozone treatment: DCST1 in the brainstem and
AIF1L in the hypothalamus. DCST1 (Dorsal Column Stenosis 1) is
involved in neural development and has been implicated in the
regulation of neuropathic pain. The upregulation of DCST1 in the
ozone-treated group suggests that it may play a role in modulating

FIGURE 2
Transcriptional changes in the brainstem and hypothalamus of rats exposed to ozone treatment. (A) Venn diagram depicting the distribution of
significantly expressed genes in the brainstem and hypothalamus, with 8,321 unique genes in the brainstem, 486 unique genes in the hypothalamus, and
44 shared genes. (B) Heatmap illustrating the expression patterns of the 44 overlapping genes in both brainstem and hypothalamus regions.
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the response to ozone treatment, contributing to pain relief. On the
other hand, AIF1L (Allograft Inflammatory Factor 1 Like) is a gene
associated with inflammation and immune response (Yasuda-
Yamahara et al., 2018). The downregulation of AIF1L in the
ozone-treated group indicates a potential anti-inflammatory effect
of ozone therapy in the hypothalamus, which could also contribute
to the alleviation of neuropathic pain.

Moreover, our metabolomic analysis identified four key
metabolites with significant changes following ozone treatment:
Aconitic acid, L-Glutamic acid, UDP-glucose, and Tyrosine.
Aconitic acid and UDP-glucose levels were found to be elevated
in the brainstem and hypothalamus, respectively, following ozone
exposure. Aconitic acid is an intermediate in the tricarboxylic acid

(TCA) cycle and has been implicated in the regulation of
mitochondrial function and energy metabolism (Calderon-
Santiago et al., 2013; Bruni and Klasson, 2022). The increased
levels of Aconitic acid may suggest enhanced mitochondrial
function and energy production in response to ozone treatment,
potentially contributing to pain relief. In our study, we observed that
D-glucose levels decreased in the ozone-treated group while UDP-
glucose levels increased. This intriguing observation prompts an
exploration of the potential relationship and interplay between
D-glucose and UDP-glucose under the effect of ozone therapy.
D-glucose, also known as dextrose, serves as a primary energy
source for the body and is essential for numerous biological
processes. In contrast, UDP-glucose is a nucleotide sugar

FIGURE 3
Differential gene expression profiles in the brainstem and hypothalamus following ozone treatment. (A) Volcano plot representing the significantly
expressed genes in the brainstem. (B) Volcano plot illustrating the significantly expressed genes in the hypothalamus. (C) Top 15 most significant genes in
the brainstem identified by random forest Mean Decrease Gini analysis, with DCST1 being the most prominent gene. (D) Top 15 most significant genes in
the hypothalamus identified by random forest Mean Decrease Gini analysis, with AIF1L as the most significant gene.
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involved in glycosylation and acts as a glucose donor in various
biosynthetic pathways. The observed decrease in D-glucose
levels could suggest a heightened metabolism or utilization of
glucose, potentially triggered by the oxidative stress induced by
ozone therapy. In response, cells might activate compensatory
mechanisms to maintain glucose homeostasis, including the
conversion of D-glucose to UDP-glucose, which would explain
the increase in UDP-glucose levels. This elevation in UDP-
glucose may be a protective mechanism where cells aim to
mitigate the potential damage caused by oxidative stress, given
the role of UDP-glucose in biosynthetic processes such as the
synthesis of glycogen and glycosylated proteins, both crucial
for cell survival and function under stress conditions. While
this discussion provides a plausible explanation for the
observed changes in D-glucose and UDP-glucose levels in
response to ozone therapy, it’s important to note that
further studies are needed to fully understand these complex
interactions and to validate these hypotheses. It would also be
worthwhile to explore the role of other regulatory pathways in
this context.

L-Glutamic acid, an excitatory neurotransmitter, was found
to be significantly decreased in the brainstem after ozone
treatment. This reduction may lead to a decrease in excitatory
signaling and, consequently, a reduction in pain perception
(Eagle et al., 1956; Wei and Wu, 2008). Tyrosine, an amino
acid involved in the synthesis of various neurotransmitters, was
also found to be significantly decreased in the brainstem and
hypothalamus following ozone exposure. This decrease may
indicate a reduction in the production of pain-related
neurotransmitters, further supporting the analgesic effect of
ozone treatment. (Paul and Mukhopadhyay, 2004; Levitzki and
Mishani, 2006).

The distinct gene expression and metabolite changes in the
brainstem and hypothalamus highlight the complex and region-
specific mechanisms by which ozone treatment may alleviate
neuropathic pain. In comparing our findings with existing
literature, it becomes evident that our study contributes unique
insights to the field. Our discovery of decreased D-glucose levels and
increased UDP-glucose levels in the ozone-treated group
diverges from previously reported results, underlining the novelty

FIGURE 4
Key gene expression andmetabolite changes in the brainstem and hypothalamus following ozone treatment. (A) Boxplot of DCST1 expression levels
in the brainstem, showing a significant increase in the ozone-treated group. (B) Boxplot of AIF1L expression levels in the hypothalamus, demonstrating a
significant decrease in the ozone-treated group. (C) Changes in the four key metabolites in the rat brainstem, with Aconitic acid and UDP-glucose levels
significantly increased, and L-Glutamic acid and Tyrosine levels significantly decreased in the ozone-treated group; (D) Changes in the four key
metabolites in the rat hypothalamus, Aconitic acid and Tyrosine levels were significantly reduced, L-Glutamic acid levels showed no significant difference,
and UDP-glucose levels were significantly increased. **, p < 0.01.
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of our research. This apparent interplay between D-glucose and
UDP-glucose under the influence of ozone therapy, as far as we
know, has not been reported in earlier studies. Our findings provide
a foundation for future studies aimed at validating these molecular
targets and further elucidating the therapeutic potential of ozone
treatment for neuropathic pain. Additionally, these results may
contribute to the development of novel pharmacological
interventions targeting these key genes and metabolites,
ultimately improving the management and treatment of
neuropathic pain.
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Transcriptomic and metabolomic
analysis of peri-tumoral hepatic
tissue in hepatocellular
carcinoma: unveiling the
molecular landscape of immune
checkpoint therapy resistance

Huaqiang Bi, Kai Feng*, Xiaofei Wang, Ping Zheng, ChengmingQu
and Kuansheng Ma

Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China

Background:Hepatocellular carcinoma (HCC) often resists traditional treatments,
necessitating new therapeutic approaches. With immune checkpoint therapy
emerging as a promising alternative, understanding its resistance mechanisms
becomes crucial.

Methods: Using 22 samples from 11 HCC patients, we conducted a
comprehensive transcriptomic and metabolomic analysis of peri-tumoral
hepatic tissues from those treated with Atezolizumab.

Results: We identified significant metabolic alterations and a correlation between
the COMMD3-BMI1 gene and Dephospho-CoA metabolite. Findings suggest
these as potential markers for therapeutic resistance, as evidenced by
upregulated COMMD3-BMI1 and downregulated Dephospho-CoA in non-
responsive patients, with animal models further supporting these observations.

Discussion: The study highlights COMMD3-BMI1 and Dephospho-CoA as critical
actors in immune checkpoint therapy resistance in HCC, providing insights and
potential pathways for more effective therapeutic strategies.

KEYWORDS

hepatocellular carcinoma, immune checkpoint therapy, Atezolizumab, COMMD3-BMI1,
Dephospho-CoA, therapy resistance, transcriptomics, metabolomics

Introduction

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related
deaths globally, with an alarming incidence rate of approximately 905,677 new cases and
830,180 deaths in 2020 alone (Gao et al., 2023). The incidence is particularly pronounced in
Eastern Asia and sub-Saharan Africa due to the high prevalence of chronic hepatitis B and C
infections, which contribute to approximately 80% of HCC cases (Nordenstedt et al., 2010).
The molecular mechanism underlying HCC is intricate, involving a cascade of genetic and
epigenetic alterations leading to the deregulation of crucial cellular pathways controlling cell
proliferation, apoptosis, and DNA repair (Herceg and Vaissière, 2011). Diagnostics of HCC
primarily relies on a combination of imaging techniques—like ultrasound, CT, and
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MRI—and serum biomarkers, chiefly alpha-fetoprotein (AFP).
Nevertheless, AFP’s sensitivity ranges from 41% to 65%, and
specificity from 80% to 94%, thereby limiting its diagnostic
efficacy, especially in the early stages of the disease (Galle et al.,
2019). Treatment modalities are diverse, ranging from surgery,
radiotherapy, and chemotherapy to targeted therapies and
immunotherapy. Surgical methods, including resection and
transplantation, are often constrained by the tumor’s size and
stage, patients’ liver function, and overall health status. The 5-
year survival rate for localized HCC is approximately 31%, which
plummets to a meager 2% for distant metastasis (Jariwala and
Sarkar, 2016).

In recent years, immunotherapy has burgeoned as a promising
alternative, with agents like Atezolizumab heralding significant
clinical benefits. Immune checkpoint inhibitors (ICIs) function
by revitalizing the host’s immune response against tumor cells.
Agents like Atezolizumab have been at the forefront, heralding
significant clinical benefits by meticulously targeting and
inhibiting the PD-L1 checkpoint receptor. The mechanism
encompasses reinvigorating the immune system, thereby
facilitating the identification and subsequent destruction of
cancer cells, which usually adeptly camouflage themselves from
the body’s immune surveillance (Rizzo et al., 2021).
Atezolizumab, a fully humanized, engineered monoclonal
antibody of IgG1 isotype, is specifically designed to bind to PD-
L1 and block its interactions with both PD-1 and B7.1 receptors
(Cheng et al., 2019). This interference restores anti-cancer immune
responses by enabling the activation of T-cells and the influx of
activated T-effector cells into the tumor microenvironment, thereby
promoting the death of tumor cells. Clinical trials have evidenced
that Atezolizumab improves the overall survival rates and exhibits a
favorable safety profile in a subset of HCC patients.

However, immunotherapy, while groundbreaking, is not devoid
of challenges. One of the prominent hurdles is the heterogeneity in
response rates among patients. Statistics reveal that a significant
proportion of patients—approximately 70%–85%—do not respond
effectively to immune checkpoint inhibitors, including
Atezolizumab (Ganesh et al., 2019). This non-responsiveness
could be attributed to various factors including genetic
mutations, expression levels of PD-L1, and the overall tumor
microenvironment. Moreover, resistance to immune checkpoint
therapy, both inherent and acquired post-treatment, poses a
substantial impediment to the success of immunotherapy in
HCC. The mechanisms underpinning this resistance are complex
and multifaceted, encompassing alterations in antigen presentation,
defects in the interferon signaling pathway, and the expression of
alternative immune checkpoints (Hack et al., 2020; Shukla et al.,
2021). Understanding these mechanisms is paramount as it provides
a foundation for developing strategies to overcome resistance, thus
enhancing the efficacy of immune checkpoint therapy in HCC.

Notably, while prior research endeavors have provided
invaluable insights into the tumor tissues themselves, the peri-
tumoral hepatic tissue—a pivotal yet often overlooked
component—has not been meticulously explored (Tang et al.,
2016). Given its crucial role and dynamic nature, understanding
the molecular and cellular alterations within the peri-tumoral
hepatic tissue is imperative. Our study aims to shed light on this
uncharted territory, offering an in-depth transcriptomic and

metabolomic analysis of peri-tumoral hepatic tissue in HCC
patients resistant to Atezolizumab, thereby unveiling novel
mechanisms of resistance and paving the way for innovative
therapeutic strategies and interventions.

Methods

Sample collection

Initially, 21 patients diagnosed with hepatocellular carcinoma
(HCC) were prospectively enrolled in the study over a 12-month
period. Out of these, 11 patients, providing a total of 22 samples,
were selected for further analysis. Moreover, the study protocol was
reviewed and approved by the Institutional Review Board (IRB) of
our hospital, ensuring adherence to ethical guidelines and standards.
Patient inclusion was meticulously adhered to specific criteria: ages
between 18 and 75, a histopathological confirmed diagnosis of HCC,
no previous exposure to immune checkpoint inhibitors or related
immunotherapy, adequate organ function demonstrated through a
comprehensive metabolic panel, and an expected survival timeframe
extending beyond 12 weeks. Additionally, our experiment received
ethical approval from our hospital’s review board. Concurrently,
exclusion parameters were set to omit pregnant or breastfeeding
women, individuals with autoimmune diseases or
immunodeficiency, and those with malignancies other than HCC.
Upon the application of these stringent inclusion and exclusion
parameters, the initial cohort was refined down to 12 patients who
met the criteria robustly. From these selected participants, peri-
tumoral hepatic tissue samples were diligently collected both prior to
the administration of Atezolizumab and following the manifestation
of resistance to the therapy. The collection timeline was diligently
designed to allow for a nuanced understanding of the molecular
shifts occurring in response to the treatment and subsequent
resistance development. For the preservation of the integrity of
the collected tissue samples, each specimen was immediately
submerged in liquid nitrogen upon extraction. This rapid-
freezing process was crucial for preventing the degradation of
RNA, proteins, and other vital cellular components, thereby
ensuring that the samples would be viable for the subsequent
transcriptomic and metabolomic analyses planned for the study.
Each frozen sample was then carefully transferred and stored in
a −80°C freezer until the commencement of the analysis phase.

Evaluation of immunotherapy response

The response to immunotherapy was meticulously assessed
based on established clinical criteria to discern between
responders (Response) and non-responders (Non-Response) to
the Atezolizumab treatment.

Patients were categorized as responders if they exhibited a
partial or complete response to the treatment, as delineated by
the Response Evaluation Criteria in Solid Tumors (RECIST) version
1.1 (Eisenhauer et al., 2009). Specifically:

Complete Response (CR): Total disappearance of all target
lesions, with no new lesions identified. No evidence of non-target
lesion progression is noted, and tumor marker levels are within the
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normal range. Partial Response (PR): At least a 30% decrease in the
sum of diameters of target lesions, taking as reference the baseline
sum diameters, with no evidence of progression in non-target
lesions or the emergence of new lesions. For Non-Response
Criteria, patients were identified as non-responders in cases of
progressive disease or stable disease as follows: Progressive
Disease (PD): A minimum 20% increase in the sum of diameters
of target lesions, with an absolute increase of at least 5 mm, or the
appearance of one or more new lesions. Alternatively, progression in
non-target lesions also constitutes PD. Stable Disease (SD): Neither
sufficient shrinkage to qualify for PR nor sufficient increase to
qualify for PD, taking as reference the smallest sum diameters
while on the study.

RNA extraction and RNA-seq sequencing

Upon the commencement of sample analysis, RNA extraction
from the meticulously collected peri-tumoral hepatic tissues
initiated, deploying the TRIzol Reagent method due to its efficacy
in yielding high-quality RNA. Each frozen tissue sample was
homogenized in TRIzol, and RNA was subsequently isolated
following a series of centrifugation steps that segregated RNA
from DNA and proteins, thus ensuring the acquisition of pure
RNA. For RNA-seq sequencing, the extracted RNA underwent a
quality check using the Agilent 2100 Bioanalyzer to ascertain the
integrity and concentration of RNA. Following verification, libraries
were prepared using the Illumina TruSeq RNA Sample Preparation
Kit, adhering strictly to the manufacturer’s protocol. The prepared
libraries were then sequenced on the Illumina HiSeq 2000 platform,
which facilitated the generation of paired end reads, providing
comprehensive coverage and depth for accurate transcriptome
profiling.

RNA-seq quantification
For the RNA-seq data quantification, the study employed the nf-

core/rnaseq pipeline, a highly efficient and reproducible tool
designed for the analysis and quantification of high-throughput
RNA-sequencing data (Ewels et al., 2020). This sophisticated
pipeline is open-source and supports the latest tools and formats
which facilitate a flexible and reproducible analysis of the RNA-seq
data. Upon receiving the raw sequencing data, the initial step
involved quality control checks using FastQC to ensure the
integrity and quality of the raw reads (Brown et al., 2017). The
nf-core/rnaseq pipeline was then configured to align the reads to the
reference genome using the STAR aligner due to its high accuracy
and efficiency in mapping reads to a reference genome. The aligned
reads were then quantified at the gene level using the featureCounts
function incorporated within the pipeline (Dobin et al., 2013).
featureCounts is a highly efficient general-purpose read
summarization program that counts mapped reads for genomic
features such as genes, exons, promoter, gene bodies, genomic bins,
and chromosomal locations. Following the quantification, the RNA-
seq count data underwent normalization to adjust for sequencing
depth and RNA composition. Normalization is crucial for removing
biases that could affect the comparison between samples. After
normalization, differential expression analysis was conducted to
identify genes that were expressed differently between sample

groups. The DESeq2 package was utilized for this purpose due to
its robustness in analyzing count data and identifying differentially
expressed genes (Love et al., 2014).

Metabolomic analysis

The process initiated with the meticulous homogenization of the
hepatic tissue samples, employing a 1:3 (v/v) cold methanol-water
mixture from Sigma-Aldrich (St. Louis, MO, USA). This mixture
efficaciously facilitated the extraction of a wide array of metabolites.
Following this, a chloroform (Fisher Scientific, Hampton, NH, USA)
and water phase separation technique was applied, effectively
segregating hydrophilic and lipophilic metabolites. Post-
centrifugation, both aqueous (containing hydrophilic metabolites)
and organic (harboring lipophilic metabolites) layers were isolated
and carefully collected. After the extraction, the acquired layers were
evaporated under nitrogen conditions using a gentle nitrogen
evaporator (Organomation, Berlin, MA, USA). The residues were
then reconstituted meticulously; acetonitrile-water (ACN-H2O)
mixture from Honeywell (Charlotte, NC, USA) was used for
hydrophilic metabolites, while a combination of isopropanol-
acetonitrile (IPA-ACN) from Thermo Fisher Scientific (Waltham,
MA, USA) was employed for lipophilic ones. The liquid
chromatography-mass spectrometry (LC-MS) analysis engaged an
Acquity UPLC system (Waters Corporation, Milford, MA, USA)
paired with a Synapt G2-Si HDMS mass spectrometer (Waters
Corporation, Milford, MA, USA). Hydrophilic metabolites were
channeled through a BEH Amide column (Waters Corporation,
Milford, MA, USA) with a gradient mixture of water and
acetonitrile, each containing 0.1% formic acid from Sigma-
Aldrich (St. Louis, MO, USA). Lipophilic metabolites utilized a
BEH C8 column (Waters Corporation, Milford, MA, USA) with a
gradient of acetonitrile and isopropanol, both containing 0.1%
formic acid. The mass spectrometer operated in both positive
and negative ion modes to ensure a comprehensive detection of
metabolites. The subsequent data processing, including peak
detection and alignment, utilized the Progenesis QI software
(Nonlinear Dynamics, Newcastle upon Tyne, UK). Identified
metabolites were annotated, verified against the Human
Metabolome Database (HMDB) and METLIN, ensuring a
thorough and accurate metabolomic profile for each sample in
the study.

Experimental animals and hepatocellular
carcinoma model

FVB mice were acquired from the Institute of Zoology, Chinese
Academy of Sciences (Beijing, China), and were housed under
specific pathogen-free conditions, with free access to food and
water. All animal experiments were conducted in accordance
with the guidelines approved by the Animal Ethics Committee of
our institution. After a standardized acclimatization period,
hepatocellular carcinoma (HCC) induction commenced. To
induce HCC, mice were subjected to a carefully calibrated dose
regimen of diethylnitrosamine (DEN, Sigma-Aldrich, St. Louis, MO,
USA), a potent hepatocarcinogen. DEN was administered through
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intraperitoneal injection starting with a dose of 20 mg/kg body
weight when the mice were 15 days old, followed by a dose of
30 mg/kg in the third week, and then 50 mg/kg for the last 6 weeks.
For the administration of immunotherapy, the anti-PD-
L1 monoclonal antibody Clone 10F.9G2, Bio X Cell, West
Lebanon, NH, USA was selected, with intraperitoneal injections
of 100 µg per mouse administered twice a week.

RT-PCR analysis

Complementary DNA (cDNA) synthesis was performed with 1 µg
of total RNA using the High-Capacity cDNAReverse Transcription Kit
(Applied Biosystems, Foster City, CA,USA). For the PCR amplification,
specific primers designed for the BMI1 gene were utilized. The forward
primer sequence was 5′-ACTACACGCTAATGGACATTGCC-3′, and
the reverse primer sequence was 5′-CTCTCCAGCATTCGTCAGTCC
A-3′. The PCR conditions were set with an initial denaturation step at
95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 30 s,
annealing at 60°C for 30 s, and extension at 72°C for 30 s, with a final
extension step at 72°C for 5 min. The relative expression levels of
COMMD3-BMI1 were quantified using the 2−ΔΔCTmethod, normalized
to the expression of the housekeeping gene GAPDH, the forward
primer sequence was 5′-CATCACTGCCACCCAGAAGACTG-3′,
and the reverse primer sequence was 5′-ATGCCAGTGAGCTTC
CCGTTCAG-3′.

Statistical analysis

A comprehensive statistical analysis was meticulously
conducted to discern significant differences and patterns within
the accumulated data. The Python3.7 programming language,
renowned for its versatility and the extensive library support for
data analysis and statistics, was deployed for this crucial phase of the
study. PCA was carried out using the HiPlot visualization tool, a
robust Python library designed for high-dimensional data (Li et al.,
2022). PCA facilitated the reduction of dimensionality of our dataset
while retaining the variance in the data. This approach allowed for
the identification and visualization of patterns and clusters within
the data, thereby providing an initial understanding of the
underlying structure and relationships within the observed
variables. HiPlot was selected for its interactive visualization
features, enabling more efficient exploration and interpretation of
PCA results. The paired T-test was chosen for its appropriateness in
analyzing the means of two related groups. The assumption of
normality was tested and confirmed, and subsequently, the T-test
was applied to evaluate whether the mean difference between paired
observations was statistically significant. Variable Importance in
Projection (VIP) Scores were calculated to identify significant
variables contributing to the variation and classification in the
PCA model. The VIP value for each variable was computed as a
weighted sum of the squared correlations between the variable and
the principal components. A variable with a VIP scores greater than
1.0 was considered important for the projection. This calculation
facilitated the prioritization of significant metabolites and genes in
the dataset, providing insight into the elements driving the
separation and classification observed in the PCA plots.

Results

Patient clinical information and
metabolomics

The study incorporated a cohort comprising 22 distinct samples,
originating from 11 patients, with each patient contributing a pair of
samples collected before and after Atezolizumab treatment
(Supplementary Table S1). This cohort featured a varied patient
demographic with ages ranging from 40 to 64 years, involving both
genders (six males and five females). Tumor sizes in these patients were
diverse, ranging from 1.17 to 9.49 cm,with tumor grades spanning from
G2 to G4, indicative of the tumor’s heterogeneity. All patients exhibited
non-responsiveness to Atezolizumab treatment, with varying levels of
PD-L1 expression, ranging from low tomedium, and tumormutational
burden (TMB) ranging from low to high. The microsatellite status
within the cohort predominantly showcased microsatellite stability
(MSS), with a few instances of high microsatellite instability (MSI-
H). Previous treatments the patients underwent before the study were
diverse, including chemotherapy, surgery, radiation, or none, and
comorbidities like diabetes and hypertension were also recorded,
with some patients having a smoking history. In the metabolomic
assessment of peri-tumoral hepatic tissues collected pre- and post-
Atezolizumab treatment, a revealing volcanic plot was elucidated in
Figure 1A, visually representing the significant metabolic alterations
observed. The plot designated metabolites that were upregulated
(depicted in red) and those that were downregulated (illustrated in
blue), providing a clear demarcation of the metabolic shifts post-
treatment. The subsequent categorization of these significantly
altered metabolites, as delineated in Figure 2A, presented a
predominant group of Glycerophospholipids accounting for a
substantial 56.25% of the changes. Carboxylic acids and their
derivatives also held a significant portion, constituting 12.5% of the
altered metabolic profile. Meanwhile, other categories such as Purine
nucleotides, Organoxygen compounds, and Organonitrogen
compounds each comprised 6.25% of the total, collectively
contributing to the intricate metabolic landscape observed in the
hepatic tissues following treatment. In a further nuanced
examination showcased in Figure 1C, the study focused on the
expression profile and Variable Importance in Projection (VIP) of
metabolites. Here, the heatmap vividly displayed the variance in
expression levels, with the three most significant metabolites
emerging as PC (14:0/18:1 (9Z)), PG (18:1 (11Z)/18:1 (12Z)-O
(9S,10R)), and Dephospho-CoA (Supplementary Table S2).

Metabolites PCA and KEGG enrichment
analysis

In the exploratory PCA of metabolites, Figure 2A unveils a SCREE
plot, with the y-axis denoting “ExplainedVariation” and the x-axis listing
15 Principal Components (PCs). The explained variation descends
progressively with each subsequent PC, exhibiting a moderate slope
rather than a sharp decline, indicative of the distribution of variance
across the PCs. Figure 2B presents a Pairs plot incorporating PC1
(explaining 47.83% of the variance), PC2 (25.27%), and PC3 (11.63%).
The plot visually exemplifies the relationships and distribution of data
points in the space defined by these principal components, providing
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insight into the structure and variance within the metabolomic data.
Furthermore, the PCA bi-plot illustrated in Figure 2C identifies the four
metabolites that are most prominent within the principal component
analysis: Dephospho-CoA, PC (14:0/18:1 (9Z)), DL-Glycerol 1-
phosphate, and PC(18:2 (9Z,12Z)/20:4 (8Z,11Z,14Z,17Z)). Figure 2D,
the Loadings plot, graphically represents the importance of each variable
(metabolites) to the principal components, with the y-axis indicating
“Principal Component” and the x-axis signifying “Component Loading”.
The previously mentioned four metabolites maintain their significance
in this representation, further emphasizing their importance in the
observed metabolic alterations. Lastly, Figure 2E delineates the PC

Clinical Correlates, depicting the relationships between the 10 PCs
and various clinical factors including Smoking History,
Comorbidities, Previous Treatments, MSI, TMB, PD-L1 Expression,
Grade, Tumor Size, Sex, and Age. Notably, within PC1, PC2, and PC3,
only MSI and Sex display negative correlations, while the remaining
factors exhibit positive correlations.

The KEGG Topology analysis is depicted in Figure 3A,
presenting a comparative perspective between the pre-treatment
(T1) and post-treatment (P) samples. On the x-axis, the graph
displays the impact value while the y-axis represents −log (p
value). Remarkably, one specific category within the Topology

FIGURE 1
(A) Volcano Plot ofMetabolites: Displays significantmetabolic alterations between pre- and post-treatment samples. Upregulatedmetabolites are in
red, and downregulated ones are in blue, with the x-axis showing fold change and the y-axis depicting −log10 (p-value). (B)Metabolite Classification Pie
Chart: Visual representation of significantly expressedmetabolites, segmented into categories. Glycerophospholipids comprise 56.25%, Carboxylic acids
and derivatives 12.5%, with Purine nucleotides, Organoxygen compounds, and Organonitrogen compounds each constituting 6.25%. (C) Heatmap
of Expression Profile and VIP of Metabolites: Depicts expression profiles and VIP scores of metabolites, emphasizing PC (14:0/18:1 (9Z)), PG (18:1 (11Z)/18:
1 (12Z)-O (9S,10R)), and Dephospho-CoA.
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analysis demonstrates extreme significance, standing out
prominently in the visual representation of the data, signaling its
potential importance and impact on the metabolic changes observed
post-treatment. Following, Figure 3B provides a visual summary of
the KEGG enrichment analysis, spotlighting the pathways that are
most significantly enriched with the identified metabolites. Notably,
the analysis reveals that the most significant pathways enriched are
“Choline metabolism in cancer”, “Glycerophospholipid
metabolism”, and “Retrograde endocannabinoid signaling”.

Transcriptomic analysis of peri-tumoral
hepatic tissues pre- and post-treatment

Through rigorous PCA analysis, a discernible shift in the
transcriptomic landscape of peri-tumoral hepatic tissues from
pre-to post-treatment stages is observed. The SCREE plot
(Figure 4A) sharply delineates a marked explained variation,
predominantly encapsulated within the initial principal
components, illustrating the dynamic alterations occurring in the
transcriptomic profile post-treatment. In our observation from the
Pairs plot (Figure 4B), a massive 92.63% of variance is encompassed
by PC1, with PC2 and PC3 accounting for 1.86% and 1.36%,

respectively. This substantial variance within PC1 significantly
influences the overall transcriptomic landscape, underlining the
pivotal role of elements contributing to PC1 in delineating the
transcriptomic disparities observed. Our findings reveal six
genes—COMMD3-BMI1, FAM72C, TAF1A, LOC101928318,
LOC102546298, and RHCE—emerging as notably significant in
Figure 4C’s PCA bi-plot (Supplementary Table S3). The Loadings
plot (Figure 4D) reaffirms the significance of these six genes,
consolidating their relevance and importance in understanding
the intricate transcriptomic changes unfolding post-treatment.
Finally, an analysis of PC Clinical Correlates (Figure 4E) reveals
intriguing correlations. Within PC1, a positive correlation is noted
with Previous Treatments, MSI, and PD-L1 Expression, while other
factors showcase a negative correlation.

Correlation analysis between significantly
expressed genes and metabolites & animal
experimental validation

In an endeavor to elucidate the relationship between
significantly expressed genes and metabolites, the top
10 significantly expressed genes and metabolites were selected for

FIGURE 2
(A) SCREE Plot: Displays the explained variation across 15 Principal Components (PCs), showcasing amoderate decline in variation explained by each
subsequent PC. (B) Pairs Plot: Illustrates the distribution of data points in the space defined by PC1 (47.83%), PC2 (25.27%), and PC3 (11.63%). (C) PCA Bi-
plot: Highlights four prominent metabolites in the PCA—Dephospho-CoA, PC(14:0/18:1 (9Z)), DL-Glycerol 1-phosphate, and PC(18:2 (9Z,12Z)/20:4
(8Z,11Z,14Z,17Z)). (D) Loadings Plot: Presents the component loadings for each metabolite, with the significant four metabolites still notable in
contributing to PCs. (E) PC Clinical Correlates: Visualizes correlations between 10 PCs and various clinical factors, with only MSI and Sex negatively
correlated in PC1, PC2, and PC3.
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correlation analysis. Figure 5 showcases a chord plot that delineates
the correlations uncovered during this process. A striking positive
correlation was identified between COMMD3-BMI1, one of the
most significantly expressed genes, and Dephospho-CoA, a
prominently expressed metabolite. This compelling association
hinted at potential interplay between these molecular entities in
the context of hepatocellular carcinoma. To further substantiate

these findings, an animal experiment was conducted. For this
purpose, six FVB mice were selected and categorized into two
groups: CDH and CDL. Noteworthy, the CDH group exhibited a
significant overexpression of the BMI1 gene and, conversely, a
marked under expression of Dephospho-CoA (Figures 6A,B).
Post-immunotherapy, a discernible difference in the hepatic
tumors of the subjects from each group was observed.

FIGURE 3
(A) KEGG Topology Analysis: Visualizes a comparison between pre-treatment (T1) and post-treatment (P) samples, with the x-axis indicating the
Impact Value and the y-axis showing −log (p value). A specific category within the Topology analysis is extremely significant, highlighting its potential
importance in the observed post-treatment metabolic changes. (B) KEGG Enrichment Analysis: Presents the pathways significantly enriched with the
identified metabolites, with “Choline metabolism in cancer,” “Glycerophospholipid metabolism,” and “Retrograde endocannabinoid signaling”
emerging as the most significant.
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Specifically, mice within the CDH group demonstrated heightened
sensitivity to immunotherapy (Figures 6C–F).

Discussion

Hepatocellular carcinoma (HCC), a predominant form of liver
cancer, continues to present a formidable challenge to public health
globally due to its intricate pathogenesis and frequently late
diagnosis (Tsuchiya et al., 2015). Immune checkpoint therapies
have emerged at the forefront of innovative treatments, revealing
a newfound hope for patients struggling with this relentless
malignancy (Leone et al., 2021). These groundbreaking therapies
function by reinvigorating the immune system, thereby enabling a
robust and targeted assault on tumor cells.

However, not all sunshine and roses, the therapeutic landscape
of HCC is punctuated by instances of resistance to immune
checkpoint therapies. This phenomenon of immunotherapy
resistance is both intricate and multifaceted, often serving as a
significant bottleneck to realizing the full therapeutic potential of
these novel interventions (Zhang et al., 2021; Aria et al., 2022). It is

within this challenging context that our study attempts to shed light
on the molecular actors that might play pivotal roles in determining
treatment outcomes.

In the realm of liver cancer immunotherapy, TMB and PD-L1
expression have garnered significant attention as potential
predictors of therapeutic response. TMB, quantifying the number
of mutations within tumor genomes, hints at the neoantigen load,
which in turn can influence the ability of the immune system to
recognize and combat cancer cells. A higher TMB often translates to
increased neoantigens, rendering tumors more susceptible to
immune checkpoint therapies. On the other hand, PD-L1
expression serves as a key immune checkpoint molecule, with its
overexpression indicating an immunosuppressive tumor
microenvironment, thereby providing rationale for therapies
targeting the PD-L1 pathway (Li et al., 2019).

Yet, the interplay between TMB and PD-L1 expression is not
straightforward. While both markers can independently predict
response to immunotherapies, their combined predictive power,
especially in the context of HCC, remains an active area of research.
For instance, some patients with high TMB but low PD-L1
expression may still benefit from immune checkpoint therapies,

FIGURE 4
(A) SCREE Plot: This plot visualizes the explained variation by each of the 22 Principal Components (PCs). A precipitous decline in explained variation
is evident, with a steep slope indicating that the major proportion of the variation is captured by the first few components, underscoring the dynamic
changes in the transcriptomic profiles from pre-to post-treatment. (B) Pairs Plot: In (B), a Pairs plot is showcased, highlighting the distribution of variance
with PC1 accounting for a substantial 92.63%, followed by PC2 with 1.86%, and PC3 with 1.36%. The significant concentration of variance within
PC1 illuminates its importance in encapsulating the transcriptomic variations observed. (C) PCA Bi-plot: (C) depicts a PCA bi-plot pinpointing six
significant genes, namely COMMD3-BMI1, FAM72C, TAF1A, LOC101928318, LOC102546298, and RHCE. (D) Loadings Plot: (D) presents a Loadings plot,
reaffirming the significance of the six identified genes. (E) PC Clinical Correlates Plot: (E) elucidates the correlations between ten PCs and various clinical
factors. Within PC1, only Previous Treatments, MSI, and PD-L1 Expression show positive correlations, with all other factors exhibiting negative
correlations.
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while others with low TMB and high PD-L1 might not derive the
expected benefit (Sholl et al., 2020). This underscores the necessity of
a more nuanced understanding and perhaps a combinatorial
approach to predicting treatment response. Our investigation into
the tumor microenvironment and its metabolic intricacies, as
detailed in the present study, adds another layer to this complex
puzzle. We believe that a holistic approach, integrating insights from
TMB, PD-L1 expression, and tumor microenvironmental factors,
will pave the way for a more precise and effective deployment of
immune checkpoint therapies in HCC.

The gene COMMD3-BMI1 has emerged as a figure of interest
within our investigative lens due to its conspicuous upregulation in
the pre-treatment samples (López-Nieva et al., 2019a). COMMD3-

BMI1 is not merely a bystander in the cellular microcosm; it is
implicated in various biological processes, including cell
proliferation and survival. Its overexpression has been previously
documented in different types of malignancies, suggesting its
potential role as an oncogene (López-Nieva et al., 2019b;
Umbreen et al., 2019). The heightened expression of COMMD3-
BMI1 in our cohort might be indicative of its contributory role in
fostering an environment conducive to immunotherapy resistance,
warranting its further exploration as a therapeutic target or
biomarker.

On the other side of the molecular spectrum resides Dephospho-
CoA, a metabolite that has drawn our attention due to its significant
downregulation in the CDH group. Dephospho-CoA is a crucial

FIGURE 5
Chord Plot for Gene-Metabolite Correlation: This plot visually delineates the significant correlations between the top 10 significantly expressed
genes and metabolites.
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player in cellular metabolism, participating actively in fatty acid
synthesis and energy production (Naquet et al., 2020). Its reduced
levels might be reflective of altered metabolic states within the tumor
microenvironment, potentially influencing the efficacy of immune
checkpoint therapies (Longo et al., 2022). The downregulation of
Dephospho-CoA suggests a metabolic reprogramming that might
favor tumor survival and proliferation, providing a shield against the
onslaught of immune cells activated by immunotherapy.

The dance between COMMD3-BMI1 and Dephospho-CoA,
choreographed within the confines of hepatocellular carcinoma
cells, paints a complex picture of immunotherapy resistance. This
delicate molecular tango, unveiled through our study’s lens, offers
tantalizing hints towards understanding the underpinnings of
immunotherapy resistance in HCC. With each step and twirl,
these molecules might be subtly altering the cellular stage,
influencing the unfolding drama of immune-tumor interactions,
and ultimately dictating the climax of therapeutic success or failure.

In conclusion, our study adds valuable brush strokes to the
canvas of HCC immunotherapy, highlighting the roles of
COMMD3-BMI1 and Dephospho-CoA in this intricate tableau.
As we continue to decipher the molecular signatures and stories
penned within tumor cells, it is imperative to acknowledge and

explore the potential of these actors in steering the narrative towards
a finale of therapeutic triumph over hepatocellular carcinoma. The
path is long and winding, yet with each discovery, we inch closer to
understanding and eventually overcoming the challenge of
immunotherapy resistance in HCC.
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Machine learning in
onco-pharmacogenomics: a path
to precision medicine with many
challenges
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Over the past two decades, Next-Generation Sequencing (NGS) has
revolutionized the approach to cancer research. Applications of NGS include
the identification of tumor specific alterations that can influence tumor
pathobiology and also impact diagnosis, prognosis and therapeutic options.
Pharmacogenomics (PGx) studies the role of inheritance of individual genetic
patterns in drug response and has taken advantage of NGS technology as it
provides access to high-throughput data that can, however, be difficult to
manage. Machine learning (ML) has recently been used in the life sciences to
discover hidden patterns from complex NGS data and to solve various PGx
problems. In this review, we provide a comprehensive overview of the NGS
approaches that can be employed and the different PGx studies implicating the
use of NGS data. We also provide an excursus of the ML algorithms that can exert
a role as fundamental strategies in the PGx field to improve personalized
medicine in cancer.

KEYWORDS

pharmacogenomics, machine learning, omics, targeted therapy, drug toxicity, drug
efficacy, drug repurposing

1 Introduction

Pharmacogenetics is a branch of molecular biology and pharmacology that studies the
relationships between the genetic background of individuals and the effects of a particular
treatment (Nebert, 1999). In recent years, thanks to rapid access to high-throughput
sequencing technologies, commonly referred to as Next-Generation Sequencing (NGS),
pharmacogenetic studies have seen an upsurge in the identification of variants associated
with differential patient response to drugs, leading to an evolution from pharmacogenetics
to pharmacogenomics (Auwerx et al., 2022). Although these terms have subtle differences,
they are generally used as synonyms and will be referred to as PGx in the following.

In many clinical trials, the primary endpoint is not met because of inadequate patient
cohort selection, stratification criteria, or genotype and phenotype characterization, which
in turn can introduce confounding factors and reduce the statistical power of the study
(Fogel, 2018). Despite demonstrated benefit for a few patients, failure to meet the primary
endpoint may reduce success rates of anticancer drugs entering clinical practice, with only
about 5% of drugs approved by the Food and Drugs Administration (FDA) (Harrison,
2016). These issues are critical in cancer therapy because drugs can be ineffective for a
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variety of reasons, including altered expression of target genes by
cancer cells and development of resistance to treatment, as well as
inappropriate selection for clinical study design. As a result, many
patients with advanced disease may lose access to potentially
effective treatments. For these reasons, identifying the genetic
factors responsible for drug response and resistance in cancer is
mandatory for better patient management and treatment.

The Human Genome Project is considered a milestone in the
context of sequencing experiments, and has contributed to an
upsurge in both the genetic characterization of tumors and the
development of sequencing technologies where NGS has become
mainstream. The application of NGS technology has enabled the
detection of multiple genetic mutations or altered gene expression in
many samples and in a few runs, providing a large amount of data in
a short turnaround time and at a competitive cost (Hussen et al.,
2022). In addition, NGS allows researchers to identify somatic and
germline variants within the same experiment, both of which are
important in the context of cancer, drug response, and drug toxicity.
Somatic variants are mutations that arise de novo in tissue-specific
cells due to environmental stress and errors in DNA replication, and
are divided into driver and passenger mutations. Driver mutations
have the effect of conferring proliferative advantages, whereas
passenger mutations occur in cells that already carry a driver
mutation and are a consequence of genomic instability (Bozic
et al., 2010). In contrast, germline mutations are inherited
changes that affect reproductive cells and are present in all
somatic cells; they may be common or rare in a given
population. Of note, not only are somatic variants important for
cancer treatment and mainly used as molecular targets, but germline
mutations may also contribute, at least in part, to tumor
development, progression, and resistance (Chen X et al., 2023;
Wang et al., 2023).

Genetic variations in genes related to pharmacokinetic processes
(PK, i.e., absorption, distribution, metabolism and excretion), or in
genes related to pharmacodynamics (PD, mechanisms of action and
post-target signaling), can lead to drug inefficacy or toxicity, making
treatment unavailable to patients. The most commonly inherited
genetic variants include single nucleotide polymorphisms (SNPs),
insertions/deletions (INDELs), copy number variations (CNVs) and
a variable number of tandem repeats (Ismail and Essawi, 2012; Yu
et al., 2021). The frequency of these variants also plays a role in
adverse drug reactions and inefficacy, as not only common variants,
but also low-frequency and rare variants should be considered for
drug-specific functional alterations (Lauschke et al., 2018).
Processing the high-throughput data obtained by NGS in PGx
approaches is challenging. To cope with this huge amount of
omics data, numerous bioinformatics pipelines have
been developed.

Machine learning (ML) is a branch of artificial intelligence based
on statistical learning that is able to predict a response or recognize
relationships between complex data structures. Thanks to its
flexibility, ML is also used in medical and biological sciences
(Handelman et al., 2018). So far, many efforts have been made to
improve ML algorithms for cancer diagnosis, prognosis
and treatment.

Existing reviews mainly address the use of omics data in cancer
and pharmacogenomics, but to our knowledge very few of them
focus on the use of machine learning in cancer pharmacogenomics.

For these reasons, although the topics covered here are quite
extensive and are not addressed in detail, this review aims to
highlight emerging research trends and underlying critical issues
that may be encountered by new researchers approaching ML and
pharmacogenomics in cancer. In this review, we provide a
comprehensive overview of NGS applications and PGx studies in
personalized medicine. The first chapters are dedicated to
sequencing applications (e.g., genome, exome, transcriptome),
with a focus on targeted and whole sequencing approaches. We
also provide an overview of omics data generated by NGS in cancer
research and its application to PGx studies, focusing on targeted
therapy, efficacy, and toxicity. We next analyze the types of ML
algorithms and their application in cancer research. Finally, we
discuss about the challenges faced by the ML approach in PGx
studies and make suggestions for further improvements.

2 NGS approaches

It is widely acknowledged that NGS has been groundbreaking in
cancer research. Over the past two decades, many NGS technologies
have been developed to meet multiple needs and have become even
more sophisticated. Figure 1 provides an overview of NGS
technologies and strategies for investigating the molecular
background of cancer.

2.1 Whole genome, whole exomes and
whole transcriptome sequencing

From a theoretical standpoint, characterization of the entire
genetic background of the tumor should be considered the most
comprehensive strategy to gain insight into tumor biology. Whole
genome sequencing (WGS) and whole exome sequencing (WES) are
NGS approaches in which virtually the entire genome (WGS) or the
protein-coding regions (exons) of the genome (WES) are sequenced.
Both approaches can be used in cancer research to sequence normal
tissue (e.g., blood) and tumor tissue to discover new targets for
therapies and biomarkers of cancer stage, predisposition, and
response to therapy. In addition, sequencing of paired tumor and
normal tissues allows unambiguous identification of individual
germline and somatic variants as well as loss of heterozygosity
and the “second hit” mutations (Mandelker and Ceyhan-
Birsoy, 2020).

In the clinical setting, somatic and germline variants can be
identified using both WGS and WES approaches but some
important aspects should be highlighted. There are two main
advantages of WGS: first, the discovery of novel genomic
variants, including single nucleotide variants (SNVs) and
structural variants (SVs) such as CNVs, INDELs, variable
stretches in tandem repeats and balanced chromosomal
translocations; second, the sequencing result includes coding,
non-coding and mitochondrial DNA (Sims et al., 2014). On the
other hand, WES highlights coding variants that are easier to study
and whose phenotypic effects are more functional to assess.

Although it could be considered an advantage to sequence the
whole genome at once, since different types of variants can be found
with the same sequencing library, some limitations should be
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considered. First, we need to distinguish between two key
parameters in sequencing, coverage depth and coverage itself.
Coverage depth is a measure of how often a particular base in a
sequence is seen during sequencing and can be an indicator of the
reliability of the results, while coverage is the percentage of the
genome that is sequenced during the experiment. These parameters
are closely related and must be weighed when researchers define the
goal of their studies (Sims et al., 2014; Meienberg et al., 2016).
Although the coverage of WGS is higher than that of WES, the
average depth of coverage in WGS experiments may be low. In
contrast, WES has a higher average depth of coverage compared to
WGS because WES only covers the exons that account for about 2%
of the genome. Another limitation is related to the data generated by
sequencing, as WGS data are very huge, and processing and storing
such amount of data requires adequate computational resources,
which may be a limit in some contexts. Finally, the cost of WGS

experiments is usually higher than WES, especially in
clinical settings.

For these reasons, WES has long been considered the gold
standard for detecting genetic variants. However, comparative
WGS and WES studies have recently shown that WGS is more
powerful than WES in exome variant detection, providing broader
coverage and better variant detection, and costs are now decreasing
(Belkadi et al., 2015). In addition, the latest WGS library preparation
methods are PCR-free, while the WES library preparation methods
still rely on PCR amplification. This could lead to GC content bias
and misidentification of variants (Meienberg et al., 2016). In
addition, WES does not really cover the whole exome, so some
deleterious coding SNVs might be missed. As mentioned earlier,
WES is not validated for the detection of structural variants,
including CNVs and translocations, and finally, by definition, it
does not include non-coding intron regions. Therefore, WGS has

FIGURE 1
Omic data. Overview of NGS technology and applications in cancer research. Abbreviation: Ac, acetylation; ADP-ribo, ADP ribosylation; CNV, copy
number variation; Glyco, glycosylation; Lipid, lipidation; lncRNA, long non-coding RNA; Me, methylation; miRNA, microRNA; ncRNA, non-coding RNA;
OH, oxidrylic group; P, phosphorylation; SNV, single nucleotide variants; S-S, disulphide; Sumo, Sumoylation; TFs, transcription factors; Ub,
ubiquitination.
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become more attractive than WES for diagnostic purposes in recent
years (Belkadi et al., 2015; Lionel et al., 2018; Hou et al., 2022).

Whole transcriptome sequencing (WTS) is an RNA-based
sequencing strategy that captures the transcriptome repertoire,
and its applications include quantification of gene expression,
detection of alternative transcripts resulting from splice variants,
detection of chromosomal rearrangements leading to chimeric gene
fusions, and identification of the ever-growing family of non-coding
RNAs (Lakhotia et al., 2020; Li and Wang, 2021). Depending on the
research interest, total RNA extracted from samples should be
treated to remove unwanted RNA species, which may be a
limitation, especially in terms of time. On the other hand, the
loss of valuable reads and the management of background noise
are problems faced when no depletion is performed. Bulked WTS
has been used in cancer research to identify pathways and genes
involved in cancer development and, thanks to spatial
transcriptomics and single-cell sequencing, also to understand
tumor organization and interactions with the microenvironment
(Chen TY et al., 2023).

2.2 Whole vs. targeted sequencing

Many companies that have developed high-throughput
technologies have now launched numerous tumor-specific panels
to study cancer. Targeted panels sequence only a small part of the
genome because they are designed with probes targeting specifically
regions of interest, such as sets of genes, in a specific/custom fashion.
Depending on the size of the panel, they can achieve the depth of
coverage required to highlight specific pathogenic variants (Lenahan
et al., 2023). Targeted panels offer many advantages over WGS and
WES approaches, including reduced hands-on time, ease of
translation of raw data, profiling of specific tumor-associated
genes and customization of the panel. These advantages can
support the therapeutic decision-making process while reducing
the time required (Bewicke-Copley et al., 2019).

For their part, WGS and WES approaches can be extremely
useful in exploratory research and clinical trials, as they do not
require “a priori” knowledge of disease mechanisms and can reveal
novel molecular biomarkers. In this sense, the COGNITION study
has shown that comprehensive molecular profiling using WGS and
WES identifies a genomic signature in a subset of breast cancer
patients at high risk of recurrence after neoadjuvant treatment, for
whom targeted therapy solutions may be available (Pixberg
et al., 2022).

On the other hand, targeted panels can also be employed in
clinical trial design. In this case, panels could be used for many goals.
First, to stratify the cohort according to known biomarkers, as in the
case of the REGISTRI phase II clinical trial, in which a customized
DNA panel was developed to specifically identify KIT/PDGFRA
wildtype GIST patients eligible for regorafenib therapy (Martin-
Broto et al., 2023); second, to support the discovery of new specific
positive biomarkers, associated with response to therapy, as in the
RELAY phase III trial, in which a targeted approach was used to
assess ctDNA mutations and EGFR mutation dynamics after
erlotinib with or without ramucirumab treatment in NSCLC
patients (Garon et al., 2023); and finally, to identify actionable
tumor alterations and candidate genes for molecular targeted

therapies, as demonstrated in the MATCH study (Parsons et al.,
2022). Of note, many targeted panels, known as PanCancer panels,
are designed to cover many cancer-related genes, so the applications
of these panels are widespread for many different goals.

Whole and targeted sequencing approaches can also be
combined in clinical trials, as in the EVOLVE phase II study in
which WES of tumor tissue and a targeted panel of cell-free DNA
from blood were matched to discover novel genomic alterations
responsible for resistance to PARP inhibitors in high-grade serous
ovarian cancer (Lheureux et al., 2023).

In the clinical setting, things are different, as the cost of analysis
is one of the limiting factors for sequencing. In this scenario, targeted
panels are preferred because they have a lower cost per sample and
an easier data management (Bewicke-Copley et al., 2019). Targeted
panels are often designed to provide information on known
biomarkers such as genomic instability score (GIS), loss of
heterozygosity (LOH), microsatellite instability (MSI), and tumor
mutation burden (TMB). The latter biomarker is of great interest in
clinical practice, as pembrolizumab is the first FDA-approved
agnostic cancer therapy that can be used in tumors with high
TMB (Marcus et al., 2021); however, the sequencing method
used to assess TMB may impact clinical outcomes, by excluding
patients who might otherwise benefit from this treatment. Indeed,
WGS, WES, and targeted-based panels have been used to measure
TMB in cancer patients, with not only primary tumors but also
circulating DNA in blood proposed as an alternative source material.
In this context, WES of tumor and paired normal tissues is currently
considered the most accurate approach to determine TMB, although
this approach is both costly and time-consuming in the clinical
setting (McGrail et al., 2021). On the other hand, an approach that
uses targeted sequencing assays enriched in genes known to be
involved in cancer appears to be more feasible in the clinic,
particularly because these assays do not require paired tumor and
normal samples to determine TMB. However, the type of cancer
tested and the type of panel used to assess TMB can significantly
affect the outcome (Merino et al., 2020). Among the many examples
of targeted panels used in the clinical setting there are MyeloSeq, a
40-gene targeted panel used to determine variant and allele
frequencies in patients with suspected hematologic malignancies
(Barnell et al., 2021), the Oncomine Precision Assay, which tests
45 cancer-related genes (such as EGFR, KRAS, ALK, RET, BRAF,
and others) used in screening for genomic alterations that can be
treated with targeted therapy in NSCLC, colorectal cancer,
melanoma, breast cancer, and other malignancies (Werner et al.,
2022; Nindra et al., 2023), and other targeted panels such as the
TruSight Oncology, the AmpliSeq, the FusionPlex, the QIASeq
Multimodal Lung, which have demonstrated expertise in
identifying genetic variants, and the NTRK gene fusion panel
used to identify tumors sensitive to larotrectinib, an NTRK
inhibitor (Drilon et al., 2018; Stockley et al., 2023).

In addition, there is also an ethical aspect to consider, as
sequencing a larger portion of the genome may lead to the
identification of unsolicited findings that should be better
communicated to physicians and patients (Schoot et al., 2021).
Targeted panels therefore have a lower chance of discovering
new unsolicited findings, which facilitates clinical reports.

In summary, although WGS and WES sequencing are accurate
and do not require “a priori” knowledge of disease mechanisms,
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their introduction into clinical practice may not be feasible, mainly
because of coping with the volume of data and the cost per sample.
On the other hand, targeted sequencing may facilitate the
introduction of bulk sequencing into routine clinical practice
where testing of multiple molecular biomarkers has become
common practice, as has been the case with TMB and NTRK
gene fusions. Again, the best choice between the two strategies
must be balanced between cost and application.

2.3 Epigenomics

Epigenomic sequencing has proliferated in recent years.
Epigenetics is a branch of biology that studies the causal
interactions between genes and their products. Basically,
epigenetics studies all changes and phenotypes in gene expression
that cannot be attributed to genetic causes. The most important
changes can occur directly at the DNA, e.g., cytosine methylation, or
at the chromatin proteins, e.g., acetylation, methylation,
phosphorylation, and others (Kouzarides, 2007). The
consequence of these changes is the modulation of the
accessibility of the DNA sequence to enzymatic complexes, which
determines the state of gene activation.

Sequencing of epigenetic modifications (epigenomics) identifies
specific cancer signatures involved in tumorigenesis as well as cancer
metastasis and recurrence (Huang et al., 2018; Malta et al., 2018;
Sengupta et al., 2021). In particular, some histone modifications,
such as reduced lysine acetylation and methylation, may act as
prognostic biomarkers in breast cancer (Elsheikh et al., 2009; Zhou
et al., 2022) or they may predict response to treatment, as in the case
of immunotherapy (Peng et al., 2015; Hoffmann et al., 2023). In
addition, dysregulation of genes involved in chromatin remodeling
can also be a hallmark of a particular tumor. This is the case with
mutations of histone deacetylase (HDAC) in multiple myeloma and
lymphoma. HDAC inhibitors and DNA methylation inhibitors are
anticancer drugs developed to target the aberrant activity of these
molecules (Blumenschein et al., 2008; Galanis et al., 2009).

2.4 Proteomics and metabolomics

Proteomics and metabolomics are high-throughput screening of
protein expression and metabolite abundance, respectively.
Proteomics data can be considered a readout of the
transcriptome, but it has been reported that only 40% of protein
expression can be explained by a corresponding gene expression
profile (Ideker et al., 2001; Vogel et al., 2010). Proteomic studies take
pictures of the cellular protein repertoire that include protein
abundance and turnover, post-translational modifications,
subcellular localization, interactions with other proteins and
structures, and finally protein involvement in metabolic pathways
(Altelaar et al., 2013).

On the other hand, metabolomics studies investigate the
presence of metabolites, their concentration and their interactions
with biological systems. Unlike other “omics” approaches,
metabolomics can reflect the actual biochemical activity and the
state of cells and determine the true cellular phenotype (Patti et al.,
2012; Tan et al., 2012).

In cancer research, proteomics and metabolomics strategies
have been used not only to identify novel biomarkers involved in
tumor resistance and signature that predicts treatment outcome
(Dytfeld et al., 2016; Shrestha et al., 2021; Robles et al., 2022), but
also to uncover cancer metabolic pathways and oncometabolites that
may drive tumorigenesis and sustain tumor progression (Xu et al.,
2011; Drusian et al., 2018).

3 Omics data in cancer
personalized therapy

Over the past 20 years, molecular assessment of tumors has
entered routine clinical practice and has been incorporated into the
WHO classification criteria for tumor diagnosis, grading and
prognosis (Organisation mondiale de la santé and Centre
international de recherche sur le cancer, 2020; Sbaraglia et al.,
2020; Louis et al., 2021).

As a result, the treatment of patients shifted mainly towards
tailored therapies, and the development of new classes of anticancer
drugs increased, defining the beginning of the molecular era of
targeted therapy. The so-called “targeted therapy” refers to drugs
that are aimed at interfere with specific molecular target that is
thought to play an important role in tumor development and
progression. One of the first and most successful examples of
targeted therapy is imatinib, a small molecule receptor tyrosine
kinase (RTK) inhibitor that targets a variety of RTKs. The use of
imatinib in tumors harboring activating mutations of RTKs (e.g.,
gastrointestinal stromal tumors, dermatofibrosarcoma protuberans)
or oncogenic RTK fusion proteins (e.g., chronic myeloid leukemia
positive for the BCR::ABL fusion, myelodysplastic/
myeloproliferative disorders associated with PDGFR gene
rearrangements), leads to increased life expectancy for patients
whose prognosis was previously very poor (Druker et al., 1996;
Druker et al., 2001; Demetri et al., 2002).

The specificity of targeted therapies usually gives these drugs
particularly high efficacy while reducing off-target toxicity to normal
cells, but it is also responsible for mechanisms of tumor resistance. It
is noteworthy that not only the presence of a mutated drug-
responsive gene, but also the type of mutation on the same gene
can play a role in drug response. The EGFR gene in particular can
serve as an example. Most glioma tumors are dependent on EGFR
signaling, making approved drugs targeting this gene attractive for
precision oncology of gliomas. However, most clinical trials have
failed to demonstrate the benefit of EGFR-targeted therapies in
gliomas, as approved EGFR therapies have mainly focused on
NSCLC EGFR gene alterations that are, however, distinct from
those driving gliomagenesis (Lin et al., 2022). On the other hand,
secondary resistance occurs when a fraction of cancer cells develops
new acquired mutations or alterations in antigen presentation,
which can also drastically affect the efficacy of targeted therapies.
Transcriptional deregulation and de-repression of alternative RTK
are also common strategies to facilitate adaptive evasion signaling,
which is likely promoted by epigenetic changes (Jun et al., 2012;
Akhavan et al., 2013). The presence of resistant cells forces clinicians
to dose escalate with the risk of increased toxicity or to switch
molecular targets with the risk of no new therapeutic options
being available.
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FIGURE 2
Personalizedmedicine and PGx studies. (A) Aims of personalizedmedicine. Patient data frommultiple sources (health records, medical imaging and
omics data) are combined to identify a patient-specific fingerprint that determines response to therapy, efficacy and toxicity. (B) PGx study design
strategy. Three drug phenotypes will be identified (responders, non-responders and toxicity) and different populations will be studied to identify the
genetic traits involved in particular drug phenotype. The strategies are divided into candidate genes, GWAS and NGS. The aim of PGx studies is to
stratify the population based on genetic background to maximize drug efficacy and reduce toxicity. Abbreviations: GWAS, Genome-wide Association
Study; NGS, Next-Generation Sequencing.
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In the scenario of personalized cancer therapy, the assessment of
the individual status of the tumor immune system also plays an
important role and has led to the development of nanoparticles,
monoclonal antibodies, and chimeric antigen receptor T-cell
therapies (CAR-T) as well as antibody-drug conjugates. Some
examples include the generation of third-generation CAR-T cells
against the oncoembryonic antigen ROR1 (Meng et al., 2023) and
the study of the chemokine expression signature that correlates with
the characteristics of T-cell inflammation and potential response to
immune checkpoint inhibitors in various cancers (Romero
et al., 2023).

Another goal of precision medicine is to identify new molecular
biomarkers that can monitor both disease stage and the efficacy of
selective therapies. In this context, tumor molecules secreted in the
bloodstream, such as microRNAs, non-coding RNAs, exosomes,
and circulating tumor DNAs (ctDNAs) are of particular interest and
can be detected without invasive procedures thanks to liquid biopsy.
For example, the expression of circulating miR-221/222 correlates
with response to and resistance to tamoxifen in the luminal subtype
of breast cancer patients (Patellongi et al., 2023), circRNA_
047733 can be used as a biomarker for risk assessment of lymph
node metastasis in patients with oral squamous cell carcinoma
(Deng et al., 2023), and baseline ctDNA mutation frequency can
be used as a prognostic marker in patients with metastatic colorectal
cancer (Bachet et al., 2023). In addition, measurement of ctDNA at
specific time points by liquid biopsy can also be used as a biomarker
of efficacy and toxicity to guide the dose and schedule of
radiotherapy in cancer patients (McLaren and Aitman, 2023).

Finally, several cancer hospitals have interdisciplinary teams of
experts, called molecular tumor boards, that recommend a patient-
specific therapeutic strategy based on data from NGS profiling. A
retrospective study of biliary tract tumor patients showed that
comprehensive genomic profiling along with molecular targeted
therapy discussed by the molecular tumor board resulted in a higher
response rate and better overall survival for patients who received
the recommended treatment (Zhang D et al., 2023). In addition,
these molecular tumor boards can bridge the gap between research
and the clinic by recruiting patients early for clinical trials (Weiss
et al., 2023).

As discussed in the following section, various genetic
polymorphisms that can be studied using omics experiments and
that are located in genes associated with drugs PK and/or PD, can
influence efficacy and toxicity.

3.1 Omics data in PGx studies

In addition to targeted therapy, NGS approaches can support the
concept of personalized medicine by being included in PGx studies
and linked to drug safety profiles (Figure 2A). Sequencing results can
thus be associated with the identification of novel biomarkers related
to drug efficacy and toxicity.

The three main research strategies for PGx biomarker discovery
are candidate gene studies, Genome-Wide Associated Studies
(GWAS), and NGS (Figure 2B). Candidate gene studies are based
on genotyping or sequencing of genes known to be involved in PK
and PD processes to uncover potential variants; this is the main
approach taken so far. This approach is based on “a priori”

knowledge, as genes are selected based on their membership in
specific pathways (Malta et al., 2018; Kwok et al., 2022; Maeda et al.,
2023). A limitation of this approach is that polymorphisms that are
part of unexplored pathways and may alter the phenotype of the
drug response are not detected. However, this approach may have
higher statistical power than other approaches even with few
samples (Chan et al., 2019).

On the contrary, GWAS discovers millions of SNPs across the
genome and has the potential to find variants in unexplored genes
and intergenic regions not previously thought to affect drug
response (Uffelmann et al., 2021). One example is the germline
variants in the PRUNE2 and BARD1 genes, which have prognostic
potential in advanced colorectal cancer and ovarian cancer,
respectively. In addition, the variants in the AGAP1 gene may
affect patient response to bevacizumab (Quintanilha et al.,
2022b). Moreover, most of the SNPs detected are not the causal
variants responsible for the observed phenotype, but are instead
associated with the presence of functional variants in high linkage
disequilibrium in a given population (Bei et al., 2010). One of the
major limitations of this technique is the low statistical power in
detecting associated signals for rare polymorphisms and thus the
inability to find variants with small effect sizes, especially when a
drug effect trait is not directly associated with drug effect or is
population/region specific (Wang et al., 2019).

Finally, NGS approaches offer the possibility of generating a
large amount of information on novel, common, or rare variants
potentially associated with drug response, such as GWAS, but suffer
less from the requirement of a large number of samples to achieve
statistical power, overcoming the drawbacks of the other two SNP
approaches (Sharma et al., 2014; Auwerx et al., 2022). However,
NGS is not a panacea for identifying all inheritance patterns in PGx.
The lack of standardization of NGS techniques and limitations in
sample quality or quantity are issues that should be addressed to
achieve comprehensive and robust detection and association of
somatic and germline variants involved in individual drug
response (Mu et al., 2019).

Although candidate gene studies, GWAS, and NGS enable the
identification of variants potentially involved in individual drug
response, the results obtained in these studies require internal and
external validation before they can be adopted in clinical practice.
Validation strategies include case/control studies, cross-validation
based methods, and an independent series of patients to confirm
results. In addition, orthogonal technical validation using low-
throughput methods is required, with real-time PCR with
TaqMan assay and pyrosequencing often being the first choice
(Arbitrio et al., 2021; Hertz et al., 2021).

3.1.1 PGx in drug response: focus on efficacy
The efficacy of a drug is related to its plasmatic concentration,

which is a surrogate for measuring the percentage of the
administered dose that can reach the molecular target. Genetic
variants in genes involved in PK or/and PD can affect the
efficacy of a drug, as discussed below. Although much of the
variation is due to PK (Roden et al., 2019), PD variations may
also be important for treatment efficacy.

Classic examples of PGx in drug response involving PK
mechanisms include glutathione S-transferase, cytochrome P450
genes and MDR1 gene polymorphisms. Glutathione S-transferase
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(GST) is a class of metabolic enzymes that conjugates glutathione to
xenobiotics for detoxification purposes. GST substrates include
anthracyclines and cyclophosphamide, anticancer drugs used in
breast cancer protocols. In particular, the GG genetic variant in
the GSTP1 gene (c.313A>G) appears to be associated with a lower
risk of chemoresistance in breast cancer patients treated with
doxorubicin (Romero et al., 2012) and a lower risk of death in
patients treated with cyclophosphamide compared to patients with
proficient-GST (Sweeney et al., 2003). One possible mechanism to
explain these observations is that decreased GST activity leads to an
increase in the systemic dose of active metabolites, which in turn
results in a better therapeutic effect, even if this increases the risk
of toxicity.

Cytochrome P450 is one of the most important enzyme classes
involved in the metabolism of xenobiotics. This group includes the
enzyme CYP2D6, which is involved in the conversion of tamoxifen
to its more active metabolites, 4-hydroxytamoxifen and endoxifen.
Genetic variants in the CYP2D6 gene (*4, *5, *10 and *41) result in
impaired enzyme activity, leading to lower production of active
tamoxifen metabolites and shorter overall survival in cancer patients
taking tamoxifen (Schroth et al., 2007).

Genetic variants affecting transporters may also play a role in
altered drugs response. A silent polymorphism in the MDR1 gene,
one of the best-known efflux pump proteins involved in drug
resistance mechanisms, has been shown to affect the timing of
MDR1 mRNA translation into folded protein, thereby reducing
total protein levels (Kimchi-Sarfaty et al., 2007).

Novel PK-related genetic variants have also been discovered.
Germline polymorphisms in the NT5C2 gene (e.g., rs72846714)
were recently discovered in a GWAS study, and some of them have
been linked to 6-mercaptopurine (6-MP) metabolism in patients
with acute myeloid leukemia, as they are responsible for differential
activation of 6-MP and thus its bioavailability (Jiang et al., 2021).

At PD, it can be speculated that any variant (germline or
somatic) that affects the accessibility of the drug to its target or
the affinity of the drug binding may result in altered drug efficacy.
These scenarios include variants that alter the amino acid sequence
at the core binding site between the drug and the target, thereby
affecting binding affinity, variants that alter the spatial conformation
of the protein and may lead to partial misfolding, and alterations in
weakly bound bridges between individual nucleic bases. In NSCLC
patients treated with the EGFR inhibitor gefitinib, patients with
specific in-frame indel mutations in the EGFR gene were more
sensitive to gefitinib, as these mutations increase the tumor’s
dependence on growth factor signaling, compared to patients
without such mutations. Therefore, patients with these mutations
respond better to gefitinib than patients who have other mutations
(Lynch et al., 2004).

In glioblastoma, EGFR mutations and amplifications account
for at least 50% of molecular alterations (Brennan et al., 2013).
The EGFR variant III (EGFRvIII) is the product of the most
common deletion in GBM, resulting from the deletion of exon 2-
7 of the extracellular domain (ECD). This alteration occurs
predominantly in cancer cells and in approximately one-third
of GBM, making this variant an ideal epitope for
immunotherapy. Rindopepimut is a peptide-based cancer
vaccine that targets EGFRvIII. Although EGFRvIII is an
extremely attractive therapeutic target, tumor cells escape this

immune-mediated therapy by losing the EGFRvIII expression as
a resistance mechanism (Binder et al., 2018).

Epigenetic changes may also affect PGx. Hypermethylation of
MLH1, which is involved in the mismatch repair system, may affect
the response to cancer therapy targeting this pathway (Wu F et al.,
2015; Bukowski et al., 2020; Loukovaara et al., 2021). In addition,
altered histone modifications that may occur during tumorigenesis
and other pathological conditions may lead to heterogeneous
expression of drug efflux proteins and thus affect PK (Kondo
and Issa, 2004; Baker et al., 2005; Wu L-X et al., 2015). In
particular, demethylation of the ABCB1 gene in cancer cells can
lead to a reduction in the accumulation of anticancer drugs in cancer
cells, resulting in the acquisition of a resistant phenotype (Toth
et al., 2012).

3.1.2 PGx in drug response: focus on toxicity
Drug toxicity refers to a variety of adverse effects associated with

the use of a particular drug. The mechanisms of drug toxicity can
vary widely and include four main aspects: on-target toxicity, off-
target toxicity, hypersensitivity reactions and idiosyncratic reactions
(Guengerich, 2011). Genetic polymorphisms may enhance or
attenuate these reactions.

On-target toxicity refers to the adverse effect of a particular drug
depending on its mechanism of action. This phenomenon is related
to the binding of the drug to its therapeutic receptor, but in a
different body compartment. Polymorphisms that enhance this type
of response include rs9501929 of the TUBB2A gene, which encodes
the β-tubulin protein. Although there are conflicting opinions about
its clinical utility, rs9501929 may alter the toxicity profile of
paclitaxel, an antimitotic drug that binds specifically to β-tubulin
to arrest cell cycle progression. Patients carrying this variant have a
higher risk of developing paclitaxel-induced neuropathy, a disease
characterized by abnormal aggregation of microtubules in neurons
(Abraham et al., 2014). This effect can be explained by the fact that
β-tubulin is also targeted by paclitaxel in normal neurons, which is,
by definition, an on-target toxicity. The lack of a selective and
specific target for cancer cells is one of the major limitations of
conventional chemotherapy such as paclitaxel.

Off-target toxicity refers to the adverse effects of a drug that
binds to both its therapeutic and nontherapeutic receptors and is
also related to mechanisms that are independent of the mechanisms
of action (Rudmann, 2013). Some of these issues can be addressed in
the preclinical stages of drug development by altering the structure
of the drug to modulate its affinity to undesirable receptors. In
addition, local administration, if applicable, may also partially help
(Li M et al., 2022). Hypersensitivity reactions and idiosyncratic
reactions depend on the activation of the immune system and the
intrinsic characteristics of patients, respectively (Doña et al., 2014).

The best characterization of adverse reactions involves genes
from PK processes. Individual variants in transporters and
metabolic enzymes are responsible for most differences in drug
response. In particular, polymorphisms in the gene SLCO1B, which
encodes the OATP1B1 transporter responsible for cellular uptake of
multiple substrates, can impair the availability of irinotecan and lead
to drug toxicity (Nozawa et al., 2005; Di Martino et al., 2011). In
addition, part of irinotecan is oxidized by CYP3A4, while another
part of irinotecan is activated to SN-38 and its glucuronide conjugate
SN-38G. These reactions are catalyzed by carboxylesterase and
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UGT1A1, respectively. The genetic variantUGT1A1*28 is associated
with decreased glucuronidation activity, which in turn prolongs the
mean half-life of the metabolite SN-38 and increases patient
susceptibility to gastrointestinal and hematologic toxicity (Iyer
et al., 2002; Innocenti et al., 2004; Peeters et al., 2023). Similar
toxicities to irinotecan have been noted in patients carrying
polymorphisms in the ETS1 and ABCG2 genes, which encode
carboxylesterase and a membrane transporter, respectively (De
With et al., 2023). The UGT1A1*28 polymorphism, together with
the UGT1A1*60, UGT1A1*6, and UGT1A1*27 polymorphisms is
associated with the metabolism of several anticancer drugs such as
belinostat, an HDAC inhibitor, nilotinib and pazopanib, two RTK
inhibitors. Thus, loss-of-function alleles are responsible for
increased toxicities, such as neutropenia, thrombocytopenia and
prolonged QTc intervals in patients treated with belinostat (Goey
et al., 2016; Balasubramaniam et al., 2018).

Another example is 5-fluorouracil (5-FU), an antimetabolite
that has long been used to treat tumors of the stomach, colon and
rectum. Approximately 80% of 5-FU is converted to the inactive
metabolite 5,6-dihydrofluorouracil by the rate-limiting enzyme
DihydroPYrimidine Dehydrogenase (DPYD). Genetic mutations
in the DPYD gene associated with lower DPYD activity, such as
*2A, *13 and rs67376798, can lead to fluoropyrimidine toxicity
(Caudle et al., 2013; Glewis et al., 2023; Lešnjaković et al., 2023).

Germline mutations in the TPMT gene, as well as in the
NUDT15 gene, may otherwise affect the metabolism of the
thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG).
In thiopurine metabolism, TPMT is a key enzyme that converts 6-
MP and 6-TG to their inactive metabolites. Patients with loss of
function alleles have higher circulating thiopurines levels, which
increases the risk for developing myelosuppression, a common
adverse effect of these drugs. In these patients, a lower starting
dose is recommended to minimize toxicities (Wang et al., 2010). The
same precautions should be observed in patients with loss-of-
function alleles of the gene NUDT15, which is also involved in
the metabolism of thiopurines (Moriyama et al., 2016). Genetic
testing for TPMT and NUDT15 genes has entered clinical practice
and is strongly recommended for cancer patients who are to receive
thiopurine therapeutics (Relling et al., 2019).

Some of the classic gene polymorphisms such as cytochrome
P450, DPYD, UGT, TPMT, and HLA have already entered clinical
practice. Panels of specific genes are routinely used to determine the
optimal therapeutic window in cancer patients and their utility has
been demonstrated. A recent multicenter implementation study
evaluated a panel of 12 genes for pharmacogenetic testing in
several European countries. The most important finding of this
study, in addition to demonstrating that genotyping of this 12-gene
panel leads to a reduction in the incidence of relevant adverse drug
reactions, is the cross-national feasibility of these genetic tests, which
paves the way for harmonization of genotyping (Swen et al., 2023).

In summary, PGx testing offers a number of benefits, including
enhancing intended treatment benefits, reducing the likelihood of
adverse effects and risk of dependence, reducing healthcare
expenditures and the need for hospitalization in the event of
severe adverse events, and shortening the time to achieve
therapeutic effect. Although researchers and clinicians are
increasingly aware of the importance of genetic testing for
personalized oncology, global clinical implementation is still

lacking, in part due to the need for standard procedures, cost
reduction, but also support from healthcare systems, especially in
less affluent countries.

4 Machine learning in cancer research

Machine learning (ML) is a subfield of artificial intelligence that
aims to make predictions and inferences within a certain range of
accuracy by analyzing multiple variables in input data, such as
clinical and/or molecular data (Mitchell, 2013). In addition, without
explicitly programming, ML can find hidden patterns and identify
relationships between multiple variables to correctly predict
the outcome.

Machine learning has indeed proven to be a powerful tool in
cancer research, as it has the potential to improve cancer diagnosis,
classification and prognosis (Kourou et al., 2015; Cui et al., 2022a).
An example of the use of ML in cancer research is the study of
medical imaging, where large amounts of data are available that are
difficult to analyze. In particular, the emerging field of radiomics
uses images routinely produced in clinical settings to evaluate
patients undergoing treatment to develop a ML approach to
disease detection (Lambin et al., 2012). Another example is
radiogenomics, where key features extracted from radiological
images can be linked to the genetic profile of the tumor. Thanks
to the linkage of image and genotype highlighted by ML,
radiogenomics offers the possibility of becoming a noninvasive
surrogate for genetic testing (Meißner et al., 2022).

Other important approaches of ML in cancer research focus on
treatment. Predicting how a particular tumor will respond to
therapy, or which patient characteristics better predict response
to therapy, is a fundamental goal of modern oncology that should
ultimately lead to tailored treatment. For example, genetic profiles
and clinical information of breast cancer patients from a complete
study dataset were used to train a ML algorithm to predict the 5-year
survival rate of these patients who underwent a specific medication
(Tabl et al., 2019). In this context, genomic profiling can provide
information about the role of biological pathways in cancer cells and
their relationship with a specific medication, thus helping clinicians
to tailor treatment for patients based on their molecular background.

4.1 Machine learning at a glance

A detailed description of ML is beyond the scope of this review;
however, we provide here an overview of the main features of the
algorithms of ML.

Supervised learning, unsupervised learning and reinforcement
learning are three main types of machine learning approaches (Van
Der Lee and Swen, 2023). Amore classical classification based on the
model built using this approach is divided into supervised,
unsupervised and semi-supervised models based on the type of
input data, i.e., whether it is labeled, unlabeled or a combination of
both (Koteluk et al., 2021; Naik et al., 2023). A graphical
representation of the concept is shown in Figure 3A.

In supervised models, which account for the majority of
published ML methods, each data point contains an associated
label (correct/expected response) for which a ML model must be
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FIGURE 3
Machine learning algorithms. (A) ML main classification based on input data labels and possible outputs. (B) Trade-off between accuracy and
interpretability for MLmodels grouped by supervised, unsupervised or both types of algorithms (C)ML fusion modeling. The light blue box represents the
input data (health records, medical imaging and omics data), the green box represents the type of ML fusion: early fusion (top) computes a single ML
model; intermediate ML fusion (middle) computes two or more ML models, with the final model using the output of previous model as input; late
fusion (bottom) creates multiple MLmodels and then fuses the outputs of eachmodel to produce the data output. The light red box represents examples
of the outputs obtained through ML, from the top to the bottom: Classification, Decision Tree, Regression, Clustering. Abbreviation: LVM, latent variable
model; SVM, support vector machine.
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developed. Typically, the data is split into two subsets: the training
data and the testing data. The training data is used to tune and train
the model (Shahin et al., 2023). The testing data is used to evaluate
the generality of the model. In addition, supervised learning can be
used to solve regression and classification problems. In regression
problems, the labels are continuous values, while in classification
problems labels are discrete values. Finally, the metrics used to assess
the quality of the model depend on the nature of the problem and
the type of application (Boyd, 2010; Sra et al., 2012; Orozco-Arias
et al., 2020; Woodman and Mangoni, 2023).

In unsupervised models, the output label measurement is usually
not available. In this case, the algorithm learns relationships from
data structures to provide latent patterns that need to be evaluated
for utility. However, this process still requires human intervention to
validate the output variable. In general, unsupervised methods deal
with clustering and dimensionality reduction, leading to the
identification of subgroups with common features, which is one
of the main applications of unsupervised ML (Sajda, 2006;
Handelman et al., 2018).

Reinforcement learning is a type of learning where an agent
learns to make decisions by interacting with an environment.
The agent receives feedback in the form of rewards or penalties
for its actions and learns to maximize the cumulative reward
over time (Woodman and Mangoni, 2023). Unlike supervised
and unsupervised learning, reinforcement learning does not
require labeled data or a training set. This type of learning is

often compared to a scenario where an agent learns through trial
and error (Shahin et al., 2023). Reinforcement learning can be
used to solve problems that deal with complex dynamics that are
influenced by changing stimuli and conditions, such as in the
real clinical world (Eckardt et al., 2021; Ryan et al., 2023). In
particular, reinforcement learning could help physicians to
select the right therapeutic regimens for a patient, and it is
able to correct its predictions based on the observation of the
adverse reaction resulting from the interaction between the
agent and the environment (Niraula et al., 2021; Ryan
et al., 2023).

Semi-supervised approach is a method in which there is a
mixture of labeled and unlabeled data (Ge et al., 2020; Shi et al.,
2021; Roy et al., 2022). There have been significant developments in
the field of semi-supervised learning, as researchers have proposed
various techniques to make effective use of the combination of
labeled and unlabeled data. These techniques aim to overcome the
challenges posed by the limited amount of labeled data and the
growing volume of unlabeled data (Eckardt et al., 2022; Dou
et al., 2023).

In ML it is important to note the differences between prediction
and inference. These two terms, often used as synonyms, are used
differently in ML algorithms. Prediction is about estimating or
predicting unknown outcomes, while inference is about
understanding the factors and relationships that contribute to
those predictions. Both aspects are crucial in ML, as prediction

TABLE 1ML algorithms in cancer research in the last 2 year. In this table, we summarize themost important research topics in cancer research usingML. For
each publication, we describe the type of the ML algorithm used and the research outcome of the selected study. Publication years: 2021–2023.

Research topic ML
algorithm

Outcome References

IC50 value NN In silico model that estimates IC50 values Ma et al. (2022)

Structure-activity
relationship

Decision tree Analysis of SAR of HDAC1 inhibitors Li et al. (2023)

Drug target prediction SVM Ligand- and structure-based identification of novel CDK9 inhibitors Zhang et al. (2022)

Synergistic effect RF Synergistic drug combinations in CRC tumors using metabolomic data Lv et al. (2022)

Pathway alteration SVM Identification of biological pathways involved in cancer drug response Zhu and Dupuy
(2022)

Treatment outcome SVM FOLFOXai signature identifies mCRC patients for whom oxalilplatin-containing therapies are less
beneficial

Abraham et al.
(2021)

Drug repurposing SVM Molecular simulation with approved drugs to identify molecules with RET inhibition profile Ramesh et al. (2022)

Prognostic factors LVM Identification of somatic oncogenic mutations Liu Y et al. (2022)

Prediction of benefits Decision tree Mutation signature predictive of the benefit of immunotherapy in NSCLC Liu Z et al. (2022)

Efficacy predictors SVM Regression Prediction of the efficacy of anticancer drugs based on clinical and molecular features of OSCC Brindha et al. (2022)

Toxicity predictors RF Identification of SNPs in the PI3K/AKT pathway associated with toxic effects during chemotherapy
in LACC patients

Guo et al. (2023)

Multi-omics data
integration

RF Prediction of tumor recurrence and survival in PDAC patients based on multi-omics data from
metastatic and non-metastatic microbiome patient signatures

Li S et al. (2022)

Medical imaging
(radiomics)

Regression Prediction of OS and PFS in patients with ESCC based on CT image radiomics signatures Cui et al. (2022a)

Abbreviations: CRC, colorectal cancer; CT, computer tomography; ESCC, esophageal squamous cell carcinoma; FOLFOXai, folinic acid, fluorouracil, oxaliplatin artificial intelligence; LACC,

locally advanced cervical cancer; LVM, latent variable model; mCRC, metastatic colorectal cancer; NN, neural network; NSCLC, non-small cell lung carcinoma; OS, overall survival; OSCC, oral

squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; PFS, progression free survival; RF, random forest; SAR, structure-activity relationship; SNPs, single nucleotide

polymorphisms; SVM, support vector machine.
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enables useful forecasts, while inference helps to gain insights into
the underlying mechanisms and to learn from the trained models
(James et al., 2013). Depending on the objective, ML algorithms have
been developed to make predictions, inferences or a
combination of both.

An important issue to address when discussing ML is the trade-
off between model accuracy and interpretability. Some approaches
are easier to interpret, but are more rigid and less accurate, because
they may be based on linear functions such as linear regression.
Conversely, other ML models are more flexible in estimating the
functional form of the function but can be difficult to explain
(Eckardt et al., 2022; Kang et al., 2023). Figure 3B illustrates the
trade-off between flexibility and interpretability for some of themost
commonly used ML approaches.

ML input data can be of different origins, e.g., clinical data,
medical imaging, omics, time series. The use of a single type of input
data is characteristic of unimodalML, while the use of different types
of input data is a feature of multimodal ML. Each type of data can be
modeled in different ways, resulting in early, intermediate and late
fusion (Figure 3C). In early fusion, the input data types are merged at
the beginning to create a single ML model. In intermediate fusion,
ML models are created interlocked, each refining the previous
model. Late fusion creates separate unimodal models that are
combined into a final model. The multimodal ML provides more
comprehensive and accurate predictions than unimodal models.
Moreover, within the multimodal approaches, the intermediate and
late fusion strategies achieve better results because they take
complementarity information into account when training the
model (Steinberg et al., 1999; Kline et al., 2022). In cancer
research these multimodal approaches are considered very useful,
but their application is not so obvious. ML late fusion strategies can
be used to improve the oldest diagnosis criteria, tumor classification
and subtype identification, as in the case of NSCLC, where a study
shows that fusion of 5 different sources of information achieves the
better performance in classification compared to algorithms using
only single source information (Carrillo-Perez et al., 2022). In

addition, they can be used to develop software for cancer
theranostics, a cancer control strategy that combines early
diagnosis, accurate molecular imaging, and personalized radiation
treatment (in terms of chosen agent, dose, and timing) based on the
individual omics profile.

4.2 Machine learning algorithms and deep
learning applications

Numerous ML methods have been developed for medical
research and recent applications of ML are summarized in
Table 1. Here we give an overview of the main algorithms used
in the field of oncology (Figure 4), namely, k-means clustering and
hierarchical clustering, latent variable model, support vector
machine, decision tree learning, and neural networks. For neural
network algorithms, we focus on Deep Learning (DL), which is
becoming increasingly important in cancer research.

In unsupervised learning, ML methods are not task-specific
(i.e., they are not based on a specific predicted outcome, such as
survival), provide general insights, and include methods such as
k-means clustering and hierarchical clustering. These methods have
been used in oncology to identify cancer subtypes, stratify patients,
and create clusters from gene expression data to identify patterns
and groupings (Eckardt et al., 2023). Another example of
unsupervised learning is the latent variable model (LVM), which
can capture unobserved variables that may affect the outcome. LVM
can therefore be used to regress variables into one or more classes
that would best explain the heterogeneity in the data (Miettunen
et al., 2016).

Supervised methods include the support vector machine (SVM),
which divides data into categories (two or more) to solve both
regression and classification problems. It is based on kernel
algorithms that can expand the feature space to make data more
accessible. It is considered one of the most robust models to date
(Tate et al., 2006; Pacurari et al., 2023).

FIGURE 4
Main uses of ML algorithms in cancer research. Light yellow box represents preclinical studies where ML has been demonstrated to be effective.
Light blue box represents the phases of drug utilization in target populations where ML has taken improvements. In the green light column, different ML
algorithms that can be used for each research topic. Abbreviations: LVM, latent variable model; SVM, support vector machine.
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Decision tree learning is a supervised model that is commonly
used in clinical practice for decision-making processes. In this case,
ML can help identify which variables have the highest separability to
the desired categories and is used for both classification and
regression (Podgorelec et al., 2002). Random Forest (RF) is an
extension of decision tree learning that combines multiple
randomly generated decision trees to improve decision making.
Given the complexity of biology, data scientists usually prefer RF to
decision tree (Breiman, 2001; Cui et al., 2022b).

Finally, neural networks (NNs) are models used in all three types
of learning. NNs, which mimic the neural architecture of the human
brain, can integrate multiple sources of information and process
them in nodes and layers. Each node represents a specific feature
with a specific weight, and nodes of the same level represent a layer.
Moreover, nodes of different layers can be connected to each other.
If the information stored in the node is valuable, the node weight
exceeds a certain threshold, which means that the node is triggered
and the network is active. During the training, the weight values and
threshold are continuously adjusted to form the best combination of
nodes and weights that results in the most informative NN
(Kriegeskorte and Golan, 2019).

Deep Learning (DL) is one of the NN algorithms where the
number of hidden layers and nodes is increased and the overall size
of the network is very large, which allows better representation of
complex relationships. The main advantage of DL is that it identifies
hidden features as part of the learning process, making DL faster and
more automated compared to ML (Erickson et al., 2017). These
features also correlate with sensitivity and availability of cheaper
computing power. Therefore, DL is now referred to as a specific
subset of ML with its own algorithms and applications, and has
become one of the most widely used approaches in cancer research.
Thus, in the following part of this section, we discuss some
applications of DL in cancer research.

The use of DL in oncology began with the analysis of medical
images, because it is particularly good at identifying pathogenic
features of the observed cells, and in certain cases the performance of
DL is almost equal to human performance (LeCun et al., 2015;
Jalloul et al., 2023). For example, the application MIA was developed
to analyze images from microscopy and can be used for
classification, object recognition, segmentation, and tracking
(Körber, 2023). In addition, medical images of histopathological
tumor sections were used to test whether DL can predict response to
therapy in patients with adenocarcinoma of the gastroesophageal
junction. In this work, researchers found that DL is able to
distinguish patients who respond to neoadjuvant chemotherapy
from those who do not by extracting certain features on the
images before therapy initiation (Hörst et al., 2023). A Swedish
study has developed a DL tool for detecting lymph node metastases
in colorectal cancer that has excellent accuracy compared to human
performance. This tool reduces the time required to assess lymph
nodes, which in turn improves the diagnostic process and treatment
decisions (Kindler et al., 2023). Another DL tool has been developed
to assist clinicians in digital pathology by assessing the tumor
cellularity of histopathologic hematoxylin and eosin sections
(Altini et al., 2023). Apart from the importance that this
algorithm may have in the clinical setting, it is important to
point out that its use may also be useful in research, as it allows
pathologists to share valuable information with researchers in an

automatedmanner. A high percentage of tumor cells is an important
requirement for researchers to perform NGS sequencing, as the
biological material taken from the slice must be representative of the
tumor in order to reduce the contribution of normal adjacent tissue,
thereby reducing background noise and improving sequencing
quality. In addition, DL has been successfully developed to
predict optimal radiotherapy for patients with brain metastases
using CT images and non-image clinical information (Cao et al.,
2023). It has also been developed to predict pneumonitis risk in lung
cancer patients treated with immune checkpoint inhibitors and to
identify morphologic features that predict ERBB2 status and
trastuzumab efficacy in breast cancer patients (Bychkov et al.,
2021; Cheng et al., 2023). In a retrospective multicenter study, a
DL algorithm was developed to help radiologists diagnose breast
cancer lesions and differentiate axillary lymph node metastases
based on radiological features (Zhou et al., 2023).

Although medical imaging remains the foremost application of
DL, it is also used in the analysis of genomics and transcriptomics
data, including data from single-cell experiments that can improve
variant detection calling at cell-specific resolution. DL
improvements in single-cell sequencing could enhance the ability
of researchers to understand intratumoral heterogeneity and
identify previously unknown cell subpopulations, making this a
particularly attractive area for molecular oncology (Erfanian et al.,
2023; Halawani et al., 2023; Shen et al., 2023). DeepTTA is a DL
model that uses transcriptomic data to predict anticancer drug
response, which can shorten the preclinical phases of drug
development and drug screening. In addition, DL models which
can predict cancer drug response can also be used to identify new
potential clinical applications of known drugs based on target
affinity and mechanism of action (Douglass et al., 2022; Jiang
et al., 2022; Park et al., 2023). DeepTAP is another DL algorithm
capable of predicting sequence peptides that bind to tumor
neoantigens, which may be of interest to the field of cancer
immunotherapy (Zhang X et al., 2023). With this in mind, DL
algorithms are being used in precision medicine to predict
anticancer drug response in patient-derived cancer cell lines, as
in the case of the DeepDRK framework, which is freely available
(Wang Y et al., 2021). Amethod based onDLwas developed to study
the uptake of targeted nanoparticles in triple-negative breast cancer,
which could be useful for proper dosing in clinical practice (Ali et al.,
2022). A nanodiamond biosensor platform using DL was developed
to rapidly assess individual specific sensitivity to oxidative
phosphorylation inhibitors in patients with hepatocellular
carcinoma (Xu et al., 2023).

Finally, network pharmacology is a new approach in drug
development that aims to understand the network interactions of
multiple drug combinations. In this context, the network algorithms
of DL may be useful to identify synergistic combinations of multiple
drugs targeting a specific network that can be used to improve
cancer treatment (Noor et al., 2023). DeepDTnet, for example, is a
DLmethod for network-based target identification that reveals novel
therapeutic effects of known molecules, which in turn can accelerate
drug repurposing, a process aimed at finding new uses for drugs that
are approved or in trials (Zeng et al., 2020). The strategy of drug
repurposing offers numerous advantages over developing a
completely new drug, such as a lower risk of failure because
safety and risk assessment have already been tested, cost and
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time savings in the preclinical phases, and finally, phase I and II
results are already available, thanks to sophisticated algorithms such
as those used in DL and ML (Pushpakom et al., 2019). Based on this
approach, many oncology and non-oncology drugs have been
reviewed in recent years, and drug repurposing is particularly
valuable in rare or late-stage diseases where the development of a
new drug may be difficult in terms of patient recruitment and the
time required for a complete clinical trial may be unreasonable.

In PGx studies, DL has also been used to predict the toxicity of
specific medications. In recent works, DL methods were able to
predict the toxicity of radiation-based therapy in four different
cancer types (Tan et al., 2023) and identify SNP signatures
associated with urinary symptoms and overall toxicity in prostate
cancer patients treated with radiation therapy (Massi et al., 2020).
An important implementation of DL in PGx studies may interest
medical imaging with feature extraction that predicts drug response
based on SNP signatures. However, this task is very difficult to
accomplish because the DL algorithms used to scan medical images
are designed to extract “abnormal” features, and PGx often refers to
germline (i.e., “normal”) variants. However, in this way, it would be
possible to reduce the number of diagnostic tests a patient has to
undergo, also in the context of the most appropriate choice of
therapy after diagnosis.

The use of DL, as well as ML in general, can improve healthcare
and assist clinicians by shortening the time required for diagnosis
and staging and facilitating decision-making in drug selection and
administration of the correct dose, thus contributing to the clinical
translation of precision medicine in cancer.

4.3 Machine learning in PGx studies

PGx studies have gradually shifted from reactive testing on a
single gene to proactive testing on multiple genes to improve
treatment outcomes. This move has been made possible by the
implementation of high-throughput data generation and analysis.

With the advent of ML and computer science in cancer research,
it is now possible to discover previously unknown cancer-related
features and latent signatures that impact tumor development,
progression and recurrence. In addition, ML offers the
opportunity to gain insight into failed clinical trials to
understand their limitations and potential benefits, and to
prevent toxicity and other drug effects that can impact patient
quality of life and treatment efficacy (Harrer et al., 2019).

One of the first constraints in screening new drugs is selecting
candidate molecules from the initial bulk of drug libraries. By
combining genomic features of cell lines and chemical
information of molecular compounds, researchers have been able
to create in silico ML multi-drug models to predict IC50 values,
saving cost and time (Menden et al., 2013). Furthermore, these in
silico approaches enabled the identification of genomic events
associated with altered drug sensitivity, optimizing drug trial
design (Huang et al., 2017).

In cancer, multitherapy is often used not only to reduce the
toxicity of a single anticancer agent and achieve synergistic effects,
but also to overcome drug resistance (Dear et al., 2013; Lee et al.,
2019; Kim et al., 2020). Screening to predict synergistic drug
combinations is a computational approach that has been

explored using ML technology. For example, screening multiple
administrations of over 40 different drugs in melanoma cancer cells
led to the identification of 11 validated, previously untested drug
combinations that lead to different outcomes (Gayvert et al., 2017).

As mentioned earlier, there is growing evidence that optimal
prediction of drug response relies on individualized molecular
profiling (Bode and Dong, 2017). Many ML approaches in PGx
studies have been developed to predict the best match between
genetic alterations involved in the pathogenesis or recurrence of a
given cancer and drugs targeting these alterations (Chang et al.,
2018). From this perspective, therapeutic drug monitoring (TDM) is
an experimental procedure that measures the plasmatic
concentration of a given drug in a specific time window after
administration. Recent work has shown that ML methods applied
to TDM were able to predict the appropriate dosing for various
drugs, e.g., lapatinib dose for patients with metastatic breast cancer
(Yu et al., 2022) and cisplatin dose in cohort of patients with head
and neck cancer to avoid cisplatin-related toxicity (Cauvin
et al., 2022).

4.4 Multi-omics integration, ML and PGx

Integration of different omics information better captures the
complexity of cancer through different molecular layers and
therefore improves diagnosis, prognosis and treatment compared
to using a single “omic” alone (Heo et al., 2021).

There are many examples of successful integration of multi-
omics approaches. Whole genome and transcriptome data have
been used to quantify the extent of specific genetic alterations at the
mRNA level and derive quantitative trait loci (eQTLs). In this
context, polymorphisms associated with specific phenotypes are
found to be associated with eQTLs, and genetic risk factors
associated with eQTLs can bona fide predict the level of the
corresponding gene product (Nicolae et al., 2010).

Epigenomics and transcriptomics/proteomics data can be
aligned to explain how epigenetic changes can affect protein
turnover (Wang X et al., 2021). In addition, transcriptome
sequencing has often been combined with miRNome sequencing
to determine which microRNAs and non-coding RNAs may alter
gene expression andmodulate response to chemotherapy (Fazi et al.,
2015; Cuttano et al., 2022). Many consortia and catalogs have been
developed to promote the understanding of tumor processes with
high-throughput data, such as the Clinical Proteomic Tumor
Analysis Consortium (CPTAC), which integrates genomic and
proteomic data to create a proteogenomic portrait of cancer
toxicity and resistance (Ellis et al., 2013), the International
Cancer Genome Consortium (ICGC), which provides cancer
genomic, DNA methylation and gene expression data (Zhang
et al., 2011), and The Cancer Genome Atlas (TCGA) program,
which provides a collection of genomic, epigenomic, transcriptomic
and proteomic data on 33 different cancer types (The Cancer
Genome Atlas Research Network et al., 2013). These data
collections are the tip of the iceberg of the various omics data
consortia that have emerged to date, and they serve as a valuable
resource for omics and ML modeling studies of cancer.

The application of ML with the integration of multi-omics data
has resulted in several scores for risk prediction and diagnostic/
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therapeutic potential, such as the polygenic risk score. The polygenic
risk score considers all genetic inheritance variants known to be
associated with a particular disease and measures the risk associated
with the development of the disease under investigation, thereby
improving risk stratification and screening (Akdeniz et al., 2023).
Other examples include the BRECADA application, which uses
genetic and nongenetic risk factors for early detection of breast
cancer, and the OncoNPC signature, which classifies cancer of
unknown primary and accordingly tailors initial palliative
treatment intent, a strategy that often leads to better patient
outcomes compared with cancer treated without querying the
OncoNPC signature (Moon et al., 2023; Tao et al., 2023). In
addition, some radiomics features have been extracted from
images of brain metastases of extracranial primary tumors and
correlated with the expression level of PD-L1, allowing
stratification of patients according to their sensitivity to immune
checkpoint inhibitors using a ML noninvasive classifier (Meißner
et al., 2022).

The ability of ML to handle multiple data structures, namely,
clinical, molecular and imaging data, allows to discover hidden
correlations among different input data in PGx studies to make
more accurate predictions and inferences. However, there are several
crucial aspects to consider when managing and using multi-omics
data that should be examined. First, collection of multi-omics data
requires careful evaluation of the entire experimental workflow,
from tissue collection and high-quality extraction of nucleic acids
and proteins to sample preparation and sequencing. Second, data
analysis pipelines need to be developed to integrate individual omics
approaches. In this context, early, intermediate and late ML fusions
help to address the management of multimodal approaches with
positive impact on clinical cancer research. Third, the expertise
required for analytical and bioinformatics analyses often requires
the collaboration of multiple experts to properly mediate the
integration of multi-omics data. Thus, building a
multidisciplinary team is therefore challenging for the success of
multimodal data integration, but the positive outcomes of
multimodal approaches have already been demonstrated and
adopted (Kwon et al., 2015; Jing et al., 2020).

4.5 Use of ML in clinical trials

Clinical trials are later phases of drug development and incur
very high costs. Clinical trials in oncology have the highest overall
failure rate, mainly due to poor trial design (Wong et al., 2019).
Therefore, the use of ML in clinical trials could be an opportunity to
increase success. However, most applications of ML have focused on
preclinical studies rather than improving clinical trial design,
possibly due to the significant regulatory challenges associated
with the use of ML in a clinical context (Massella et al., 2022).

ML improvements in study design can be attributed to three main
strategies: cohort composition to improve suitability by reducing
cohort heterogeneity, patient recruitment to improve eligibility by
maximizing patient-study match, and patient monitoring to improve
adherence and endpoint detection to reduce dropout rates (Harrer
et al., 2019; Van Der Lee and Swen, 2023).

As mentioned earlier, oncology clinical trials often fail to meet
primary endpoints due to inadequate stratification criteria, poor

recruitment and evidence of severe drug toxicity (Hwang et al., 2016;
Kim et al., 2023). To address these issues, the RainForest algorithm
was developed. The CAIRO2 clinical trial investigated the use of
cetuximab in patients with metastatic colorectal cancer and
concluded that there was no benefit to using this agent in the
overall population. However, the RainForest algorithm was able
to identify a small subset of patients who actually benefit from
cetuximab treatment based on the SNP germline profile of patients
(Ubels et al., 2020). The use of the RainForest algorithm in clinical
trials can save enormous resources, as the cost of a single agent is
estimated to be around 2.8 million US dollars in the final stages of
approval (DiMasi et al., 2016).

Severe toxicity is another major issue in clinical trials, and
changes or interruptions to treatment schedules account for at
least 30% of failures in phases II and III (Harrison, 2016). ML
has also supported the design of clinical trials in term of drug safety.
A recent work has shown that SNPs signatures can serve as genetic
predictors of toxicity in personalized medicine. The germline variant
rs4864950 T>A in the KDR gene increased the risk of composite
toxicity (occurrence of any of hypertension, diarrhea and
dermatological reactions) in patients treated with the VEGFR
TKIs sorafenib and regorafenib (Quintanilha et al., 2022a). In
another work, the ABCB1 rs9282564 was the variant most
strongly associated with hypertension and nonhematological
toxicities in ovarian cancer patients treated with bevacizumab,
and SNPs in genes related to the biological oxidation pathway
(CYP3A4 rs28371763 and CYP1B1 rs9341266) were the most
significant variants associated with hematological toxicity in the
same cohort (Polano et al., 2023).

Clinically relevant predictors of toxicity have also been found in
many GWAS studies, e.g., SNPs predicting severe skin toxicity in
patients with colorectal carcinoma treated with cetuximab (Baas
et al., 2018) or predicting dysphagia in patients with nasopharyngeal
carcinoma treated with radiotherapy (Wang et al., 2022) or
predicting neurotoxicity and leukoencephalopathy in patients
with lymphoblastic leukemia treated with methotrexate
(Bhojwani et al., 2014). Many other correlations between SNPs
and toxicity can be found in the literature. Most importantly,
prediction of cancer-related toxicities can prevent deterioration in
patients’ quality of life and adherence to treatment and can be used
to manage chemotherapy-related adverse effects in the clinical
setting (On et al., 2022).

4.6 Challenges of ML in PGx

Incorporating assessment of somatic and germline variations
into treatment decisions with FOLFIRI in elderly patients with
metastatic colorectal cancer has been shown to be effective. This
regimen requires assessment of RASmutations as well as DPYD and
UGT polymorphisms prior to treatment with the FOLFIRI protocol
(Mathijssen et al., 2003; Morel et al., 2006; Sepulveda et al., 2017;
Battaglin et al., 2018). Although PGx test guidelines have already
been implemented in clinical practice, another important issue in
this context is the implementation of ML in clinical practice. ML has
demonstrated its usefulness in retrospectively classifying patients
during clinical trials to assess drug safety and prognosis (Chang
et al., 2018; Quintanilha et al., 2022a; Chen et al., 2022), but the
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incorporation of ML into clinical trials and clinical practice is still up
for debate. Standard guidelines and protocols need to be thoroughly
regulated to obtain comparable information and a precise
methodological approach, not only for the algorithms of ML, but
also for PGx studies. It is worth noting that different ML models can
be applied to the same given subject, as there is no universal
applicability of ML algorithms and this could lead to different
results in the same dataset.

Moreover, NGS has only recently been introduced into clinical
practice to assess diagnosis and prognosis and to evaluate therapeutic
strategies, but it is still a niche and there is room for improvement. In
addition, sequencing of some parts of the genome remains challenging,
e.g., highly polygenic regions, pseudogenes, triplet expansions, low
complexity regions, short repetitive sequences, regions of high-
similarity, and complex structural rearrangements (Treangen and
Salzberg, 2012; Rojahn et al., 2022). It is estimated that
approximately 14% of clinically relevant genetic tests are located in
these genomic regions (Lincoln et al., 2021), and correct variant
identification can be difficult. On the one hand, short tandem
repeats and complex structural variants known to play a role in the
pathogenesis of certain diseases can now be sequenced using a targeted
approach with long reads sequencing technology, as longer reads are
expected to generate appropriate sequence length that overlaps better
during assembly (Stevanovski et al., 2022). On the other hand, these
technical difficulties can be at least partially overcome by adapting NGS
analysis workflows accordingly (Rojahn et al., 2022). However,
detecting variants in these regions remains challenging and difficult
to validate. Detection of rare and very rare mutations with low allele
frequency should also be considered. Inclusion of all probes in the ML
learning datasets can be helpful, because some isoforms are more
informative than others, and pooling them into averages may lead
to dilution or loss of this information. NGS and ML can lead to great
improvements in PGx studies, as multiple samples and multiple genes
can be tested simultaneously, and clinically relevant hidden patterns can
be uncovered from complex data structures.

However, ML and DL also have their own limitations. In general,
ML algorithms are not error-free: one of the biggest challenges is the
learning model itself. Indeed, many ML approaches have problems
with underfitting or overfitting, where the data follows the trained
data or noise signals too closely, resulting in poor curve estimation.
An appropriate size of the training dataset is also important for ML
models to learn properly and make accurate predictions. The
reliance on large datasets for developing accurate models is also a
challenge due to the lack of sample availability. In addition, the
relationship between bias and variance also plays a role in obtaining
the best performance from ML models. On the other hand, the
accessibility of the code used for ML in PGx studies is low (Huang
et al., 2017). To further improve knowledge and sharing among
distant researchers around the world, platforms for sharing data and
code should be established. To this end, computer scientists could
have the opportunity to address underestimated problems and find
common resources to overcome them. In addition, the development
and improvement of multimodal ML methods, such as late ML
fusions, may encourage a more holistic view of specific patient
characteristics across different input data types.

As previously reported, PGx testing has demonstrated its utility
in many situations, and new variants of uncertain significance have
been reported thanks to GWAS and NGS PGx studies. On the one

hand, the impact of these new variants on PGx testing is still being
evaluated. On the other hand, the clinical implementation of
genotyping of genes known to be involved in individual drug
response needs to be monitored. In particular, the development
of genotyping panels should also be improved to enable the
translation of new relevant findings into the clinical settings. One
of the most important and unanswered questions related to the use
of these genotyping panels is how representative they are of
individual variability in drug response. Moreover, PGx studies
often suffer from a lack of homogeneous tumor samples, which
is particularly true for rare tumors and inconsistent sample ancestry
origins and incomplete data are also common complaints.
Harmonization of samples and data collection, as well as free
and easy access to sample datasets, could facilitate PGx studies
with ML. Finally, new and standardized scores to track NGS quality,
ML accuracy and significance of PGx variants could also be
developed to address new tasks.

5 Conclusions and future prospective

The molecular revolution in oncology continues to grow, with the
paradigm flowing from pathological oncology based on morpho-
histological assessment of tumor specimens to molecularly driven
oncology, where precise individual molecular features are considered
as part of diagnosis, grading and prognosis to tailor treatment to the
individual. In this context, not only are targeted molecular therapy and
patient genetic characteristics important factors in predicting
therapeutic response, but drug repurposing can also be a valuable
resource by using drugs approved for other diseases to treat cancer.

The therapeutic margin in cancer treatment is often small
because the dose-toxicity curve is often close to the dose-
response curve, so even small fluctuations in drug concentration
can lead to severe side effects (Lowe and Lertora, 2012). Therapeutic
drug monitoring (TDM) has already demonstrated its validity for
assessing correct dosing, although its application is still limited to a
small number of anticancer drugs (Knezevic and Clarke, 2020).
Assessing genetic polymorphisms that may alter drug response can
be beneficial for many reasons, including drug safety profile, patient
adherence, and cost savings, not only in oncology, where PGx testing
has been adopted more rapidly, but also in other areas (Roden et al.,
2019). Therefore, proactive testing is becoming increasingly
important for developing treatment strategies for patients based
on individual genetic variability and needs, from the perspective of
even more personalized medicine.

ML can improve understanding of data generated from PGx
studies, increase understanding of clinical trial results, predict clinical
outcomes, and discover new biomarkers even at very early stages of
drug development to identify subgroups of patients who actually
benefit from treatment, and subgroups of patients who do not benefit
and may experience toxicity. Although the results of ML models
derived from high-throughput data should be confirmed by classical
functional studies, they offer researchers the opportunity to explore
the extensive relationships that exist in biological processes.

Finally, ML can also be used in cancer theranostics, a combination
of diagnostic and therapeutic procedures in which radioactive drugs are
first used to identify the disease and then to deliver therapies. ML is a
very innovative and versatile tool but the adoption of ML into routine
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clinical practice is still unsettled and does not yet seem to be truly
welcome. On the one hand, this feeling can be explained by the lack of
standardization and the fact that specific guidelines for the use of ML
have not yet been established. On the other hand, the lack of
understanding of the hidden algorithms driving ML decisions may
be perceived as a barrier to clinicians’ skills and expertise. In addition,
there is no single ML model that can solve a particular problem, so the
use of a particular model is not tailored to the task at hand, which may
increase the risk of complications in ML harmonization. Finally,
patients should be informed and their data protected. Therefore,
ethical aspects related to the security of individual data and the
protection of privacy are a challenge and a mandatory requirement
to gain patients’ trust and prevent them from feeling threatened byML.
The innovation that the use of ML could bring to clinical practice is
unquestionable and could help to improve cancer treatment towards a
more personalized medicine.
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Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease,
often associated with poor outcomes and resistance to therapies. The racial
variations in the molecular and microbiological profiles of mCRC patients,
however, remain under-explored.

Methods: Using RNA-SEQ data, we extracted and analyzed actively transcribing
microbiota within the tumor milieu, ensuring that the identified bacteria were not
merely transient inhabitants but engaged in the tumor ecosystem. Also, we
independently acquired samples from 12 mCRC patients, specifically, 6 White
individuals and 6 of Black or African American descent. These samples underwent
16S rRNA sequencing.

Results: Our study revealed notable racial disparities in the molecular signatures
and microbiota profiles of mCRC patients. The intersection of these data
showcased the potential modulating effects of specific bacteria on gene
expression. Particularly, the bacteria Helicobacter cinaedi and Sphingobium
herbicidovorans emerged as significant influencers, with strong correlations to
the genes SELENBP1 and SNORA38, respectively.

Discussion: These findings underscore the intricate interplay between host
genomics and actively transcribing tumor microbiota in mCRC’s pathogenesis.
The identified correlations between specific bacteria and genes highlight potential
avenues for targeted therapies and a more personalized therapeutic approach.

KEYWORDS

mCRC, transcriptomics, intratumoral microbiome, multi-omics, racial variations,
bevacizumab

Introduction

Colorectal cancer, a global health challenge, ranks among the top causes of cancer-
related deaths (Xi and Xu, 2021). Specifically, metastatic colorectal cancer (mCRC)
represents a particularly aggressive form, often associated with poor prognosis (Mazzoli
et al., 2022). Recent data indicate that while treatment strategies for mCRC have evolved, the
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median survival for advanced-stage patients remains suboptimal,
hovering around 29 months (Lonardi et al., 2022). Amidst the
therapeutic arsenal available for mCRC, Bevacizumab, an
angiogenesis inhibitor targeting the vascular endothelial growth
factor (VEGF), has emerged as a frontrunner (Chionh et al.,
2022; de Rauglaudre et al., 2022). Clinical trials have
demonstrated its efficacy in prolonging survival and improving
response rates when combined with standard chemotherapy
regimens (Fang et al., 2023; He et al., 2023).

As the era of personalized medicine takes center stage in
oncology, it becomes increasingly clear that traditional, broad-
spectrum approaches often fall short in addressing the unique
genetic and molecular profiles of individual tumors (Pauli et al.,
2017; LeSavage et al., 2022). The shift towards tailored therapies is
rooted in the growing recognition of the complexity and diversity of
the tumor microenvironment (Vitale et al., 2019). This intricate
milieu, rich in cellular interactions and molecular crosstalk, is a
testament to the dynamic nature of cancer (Lee and Schmitt, 2019).
A conglomerate of stromal cells, immune cells, signaling molecules,
and a diverse array of microorganisms, the tumor
microenvironment stands at the crossroads of cancer progression,
dictating not only the trajectory of tumor growth but also its
susceptibility or resistance to treatments (Wu and Dai, 2017;
Maacha et al., 2019). Pioneering investigations have cast a
spotlight on the tumor microbiome, unraveling its deep-seated
influence on cancer biology (Helmink et al., 2019; Wong-Rolle
et al., 2021). These microbial communities, often specific to
tumor types or even individual patients, have been linked to
various aspects of cancer development, ranging from
tumorigenesis to metastasis (Fu et al., 2022; Fu et al., 2023).
More intriguingly, emerging evidence points to the microbiome’s
role in modulating therapeutic responses, potentially by influencing
drug metabolism, modulating the host immune response, or even
directly interacting with therapeutic agents (Michaudel and Sokol,
2020; Nejman et al., 2020). Simultaneously, advances in genomics
have ushered in the age of transcriptomics, providing unprecedented
insights into the genetic orchestra that underpins tumor behavior
(Tian et al., 2023). The tumor transcriptome, a real-time snapshot of
gene expression, serves as a rich repository of information (Hunter
et al., 2021). It not only charts the active genetic pathways within the
tumor but also holds clues to potential points of vulnerabilities (Li
et al., 2020). As such, transcriptomic analyses can unmask patterns
of gene expressions that herald treatment resistances, or conversely,
pinpoint genetic signatures predictive of therapeutic responsiveness
(Casamassimi et al., 2017).

Nevertheless, while the intersections of the tumor microbiome
and transcriptome with mCRC treatments have been explored, a
significant blind spot remains: the influence of racial disparities
(Carethers and Doubeni, 2020). It’s well-documented that racial and
ethnic differences can drastically affect disease outcomes (de Klerk
et al., 2018). For instance, African Americans with colorectal cancer
have a 20% higher incidence rate and a 40% higher mortality rate
compared to their Caucasian counterparts (Cobb et al., 2022). Such
disparities could arise from a confluence of genetic variations,
environmental exposures, and even socio-economic factors (Zaki
et al., 2023). However, the specific molecular and microbial
underpinnings, especially in the context of mCRC and
Bevacizumab treatment, remain largely uncharted.

In this comprehensive study, we endeavor to bridge this
knowledge gap. We aim to dissect the interplay of racial
disparities with the tumor microbiome and transcriptome in
mCRC patients undergoing Bevacizumab treatment. By
unraveling the microbial and genetic nuances specific to different
racial groups, we aspire to pave the way for more tailored therapeutic
strategies, ensuring that the promise of personalized medicine is
extended across all racial and ethnic divides.

Materials and methods

Tumor microbiome profiling through RNA
sequencing

To delve deeper into the tumor microbiome, we embarked on an
analytical journey using high-throughput RNA sequencing (RNA-
seq) data, which was obtained from the renowned public repository,
GEO, under the accession number GSE196576 (Innocenti et al.,
2022). The initial step in our analytical pipeline emphasized the
significance of data quality. Thus, we applied FastQC, a widely
recognized quality control tool for high throughput sequence data,
ensuring that our RNA-seq reads were of optimal quality for
subsequent analyses. Recognizing the potential interference of
host-associated reads in our microbial profiling, it was imperative
to segregate them. This was adeptly accomplished using Samtools, a
suite that’s pivotal for intricate interactions with high-throughput
sequencing data. With the host reads meticulously filtered out, our
focus transitioned to the crux of our analysis—taxonomic
classification. For this intricate task, we employed Kraken2.
Renowned for its unparalleled precision and efficiency in
metagenomic classification, Kraken2 provided the granularity we
sought in our taxonomic assignments.

Transcriptome data processing using the nf-
core/rnaseq pipeline

In our quest to unravel the intricacies of the tumor
transcriptome, we leveraged the prowess of the “nf-core/rnaseq”
pipeline, a cutting-edge framework meticulously curated by the
nextflow community. This pipeline is not just a mere tool but an
embodiment of state-of-the-art practices in RNA-seq data
processing, harmonizing multiple essential processes into a
cohesive workflow. The “nf-core/rnaseq” pipeline commences
with quality control checks on raw sequencing data using
FastQC, ensuring the data’s integrity. It then proceeds to read
trimming, leveraging the capabilities of Trimmomatic to remove
any adapters or low-quality sequences, ensuring only high-fidelity
reads are retained for downstream processes. The trimmed reads are
subsequently aligned to the reference genome using the STAR
aligner, a tool celebrated for its speed and accuracy in RNA-seq
read mapping. Post alignment, featureCounts tallies the number of
reads associated with each gene, enabling a quantitative overview of
gene expression. Moreover, the pipeline integrates various quality
control metrics post-alignment using tools like RSeQC, ensuring
that the resultant data remains of the highest caliber for downstream
analyses.
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Clinical sample collection

Clinical tissue samples were meticulously collected from patients
diagnosed with metastatic colorectal cancer (mCRC). A total of
18 mCRC patients were enrolled in this study, with six individuals
identifying as White and six as Black or African American and six
Asian. Informed consent was obtained from all participants prior to
sample collection, following the ethical guidelines set by the
Institutional Review Board (IRB). Tissue samples were procured
during surgical resection of primary tumors. The collected tissues
were immediately snap-frozen in liquid nitrogen and stored at −80°C
until further analysis to preserve the RNA and microbial integrity.
Patient data, including age, sex, race, and clinical outcomes, were
anonymized and recorded. Through this standardized and ethically
compliant process, we ensured the reliability and validity of the
clinical samples used in our study.

16S rRNA sequencing

To meticulously decipher the microbiota landscape within
mCRC tissues, we employed 16S rRNA gene sequencing, a gold-
standard technique for studying microbial communities present
within biological samples. Tissue samples were diligently
collected from 12 patients diagnosed with mCRC, with six
identifying as White and the remaining six as Black or African
American. Each sample was immediately snap-frozen to preserve
the integrity of the microbial DNA. Subsequently, microbial DNA
was extracted using a PureLink™Microbiome DNA Purification Kit
(Thermo Fisher, United States), adhering strictly to the
manufacturer’s protocol to ensure consistency and reliability in
the extracted genetic material. The V3-V4 hypervariable regions
of the 16S rRNA gene were amplified using universal primers; V3-
V4 PRIMER-F 5′-CCTACGGRRBGCASCAGKVRVGAAT-3′and
PRIMER -R 5′-GGACTACNVGGGTWTCTAATCC-3′. The PCR
reaction was meticulously optimized to produce reliable and
reproducible results. Upon completion of the PCR process, the
amplified products were verified through agarose gel
electrophoresis. Thereafter, the PCR products were purified,
quantified, and pooled equimolarly for sequencing. The pooled
samples were then sequenced on an Illumina MiSeq platform,
utilizing a 2 × 300 bp paired-end configuration, thereby
generating comprehensive and high-resolution data of the
microbial communities present within each sample.

RT-PCR

Total RNA was extracted from the CRC tissue samples using the
RNeasy Mini Kit (Qiagen, Hilden, Germany), following the
manufacturer’s protocol. The quality and concentration of the
isolated RNA were meticulously assessed using the NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, United States). Quantitative PCR was
performed using the Power SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA, United States) on a 7,500
Fast Real-Time PCR System (Applied Biosystems). Primers for the
target genes, SELENBP1 and SNORA38, and the housekeeping gene

GAPDH were designed using the Primer Express Software (Applied
Biosystems). The specific primer sequences of SELENBP1 forward:
5′-ACCCAGGGAAGAGATCGTCTA-3′, reverse: 5′-ACTTGG
GGTCAACATCCACAG-3′; SNORA38 forward: 5′-CGTGTC
TGTGGTTCCCTGTC-3′, reverse: 5′- AGCAAGCTGGCCTCA
AAGTT-3′; GAPDH forward: 5′-CATGTACGTTGCTATCCA
GGC-3′, reverse: 5′-CTCCTTAATGTCACGCACGAT-3′. Each
reaction was conducted in triplicate, with the mean value used
for further analysis. The thermal cycling conditions were as follows:
initial denaturation at 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 15 s, and annealing and extension at 60°C
for 1 min.

Revisiting the clinical trial

In the vast tapestry of the CALGB/SWOG 80405 trial, our
present endeavor narrows its gaze on two specific regimens:
bevacizumab and the synergistic cetuximab/bevacizumab
combination. This refined focus stems from the quest to unravel
the intricacies of these treatments in a more granular context. To
discern the interplay of race and its potential influence on clinical
outcomes, bridging the gap between genetics and therapeutic
efficacy. Our investigation seeks to disentangle the nuanced
relationship between diverse racial backgrounds and their
respective clinical trajectories. By delving deep into the databank
of the trial, we meticulously sift through patient demographics,
juxtaposing them against an array of clinical parameters (Table 1).
This rigorous exploration is not just an academic exercise but an
attempt to unmask the subtle, often overlooked racial disparities that
might modulate treatment responses. While the original CALGB/
SWOG 80405 trial offered a broad panorama, our analysis is akin to
a magnifying glass, emphasizing the details, drawing correlations,
and aiming to enhance the personalized medicine paradigm. With
the guiding light of trial identifier NCT00265850, we embark on this
journey to understand better the racial tapestry in the context of
bevacizumab and cetuximab/bevacizumab treatments.

Statistical analysis and data interpretation

Navigating the complex interplay between transcriptomics, the
tumor microbiome, and racial disparities in metastatic colorectal
cancer necessitated a robust and comprehensive statistical
framework. Our analytical journey commenced with data
acquisition from the public repository GSE196576, part of the
GEO database. For differential expression analysis, we leveraged
Python’s “scipy.stats” library to perform the Student’s t-test,
ensuring a rigorous identification of genes with notable
expression differences. The threshold of significance was set
based on an adjusted p-value, incorporating the
Benjamini–Hochberg correction, and was set at less than 0.05.
All analyses were conducted using Python version 3.10. The
microbial dimension of our study called for both alpha and beta
diversity analyses. While alpha diversity provided a lens into the
richness and evenness of microbial entities within individual
samples, beta diversity was instrumental in highlighting the
compositional variations between samples, thus elucidating
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TABLE 1 Comprehensive clinical demographics and characteristics by ethnicity.

Characteristic/Attribute Black or African American White Asian Not reported

Total patients 33 314 7 5

Age (years)

Median 54 61.5 57 57

Range (32–79) (24–82) (25–74) (50–70)

Gender

Female 11 125 3 1

Male 22 189 4 4

Progression free survival time (months)

Median 8.9 8.7 11.1 11.9

Follow up time (months)

Median 22.7 22.2 16.9 26.3

ECOG performance status

Median 1 1 1 0

Number of metastatic sites

Liver (Median) 1 1 1 1

Adjuvant. Chemotherapy

YES 10 121 3 2

NO 23 193 4 3

Pelvic. Radiation

YES 2 32 0 0

NO 31 282 7 5

KRAS

wt 10 116 — 1

mut 7 33 —

Unknown 16 165 7 4

NRAS

wt 17 144 — 1

mut — 5 — —

Unknown 16 165 7 4

MSI status

MSS 13 128 — 1

MSI-H 2 12 — —

MSI-L 2 6 — —

Unknown 16 168 7 4

Side

Right 8 80 — 1

Left 8 55 — —

(Continued on following page)
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intergroup differences. For correlation assessments, the Pearson
correlation coefficients, derived using Python’s “scipy” and
“pandas” libraries, served as a beacon, revealing linear
associations between specific microbiota and gene expression
levels. Notably, only correlations with an absolute value of (|r| >
0.5) and a p-value below 0.05 were deemed significant. Survival
patterns, central to understanding treatment efficacy, were dissected
using Kaplan-Meier survival plots generated via the “lifelines”
Python package. Distinctions between survival curves underwent
rigorous statistical scrutiny via the log-rank test, while multivariate
Cox regression analyses fine-tuned our understanding, bringing
potential confounders into the analytical fold and pinpointing
independent predictors of outcomes. The art of data visualization
was paramount. With Python’s “matplotlib” and “seaborn” libraries
at our disposal, we crafted insightful visual representations,

spanning from heatmaps to boxplots. Given the dimensionality
of our transcriptomic data and the plethora of tests, the
Benjamini–Hochberg procedure was indispensable in controlling
the false discovery rate, cementing the statistical reliability of our
findings.

Results

Ethnicity-centric clinical and genetic
analysis of patients

In our comprehensive analysis of patient demographics and
clinical characteristics stratified by ethnicity, we observed distinct
patterns (Table 1). Most of the participants were of White descent

TABLE 1 (Continued) Comprehensive clinical demographics and characteristics by ethnicity.

Characteristic/Attribute Black or African American White Asian Not reported

Transverse — 7 — —

Unknown 17 172 7 4

FIGURE 1
Demographic and Clinical Characteristics of the Study Population. (A) Bar chart illustrating the distribution of patients across different ethnicities:
White, Asian, Black or African American, and American Indian or Alaska Native. (B) Bar chart displaying age distribution of the patients, providing insights
into the age range and median age of the participants. (C) Pie chart showcasing the gender distribution of the study participants, highlighting the
proportions ofmale and female patients. (D) Pie chart depicting the tumormetastasis status among the patients, signifying the proportion of patients
with and without tumor metastasis.
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(314), followed by Black or African American (33), Asian (7), with
5 individuals not reporting their ethnicity (Figure 1A). For age,
White participants presented the highest median age at 61.5 years,
while Black or African American and Not Reported groups both
shared amedian age of 57 years. The age ranges across the ethnicities
varied, with the White group demonstrating the broadest span from
24 to 82 years (Figure 1B). Regarding gender distribution, males
predominated in all ethnic groups except for the Asian cohort, where
the ratio was almost equal. Specifically, theWhite group consisted of

189 males and 125 females (Figure 1C). When analyzing the
Progression-Free Survival Time, Asian participants exhibited the
longest median duration of 11.1 months. In contrast, the White
group had a median of 8.7 months, slightly less than the Black or
African American group’s 8.9 months. Follow-up durations were
relatively consistent across groups, with the Not Reported group
having the longest median follow-up time at 26.3 months. The
ECOG Performance Status was generally consistent across the
groups, with a median score of 1, except for the Not Reported

FIGURE 2
Diversity and Composition of the Tumor Microbiome Across Ethnic Groups. (A) Alpha diversity representation across the four ethnic groups: White,
Asian, Black or African American, and American Indian or Alaska Native. No significant differences were observed among the groups (p = 0.755). (B) Beta
diversity illustrated via a PCoA plot, showingmicrobial community differences between samples among the ethnicities. (C) Relative abundance of the top
tenmicrobial species for the combined group of Asian, Black or African American, and American Indian or Alaska Native. The dominant species in this
group were Acidianus manzaensis, Staphylococcus aureus, Staphylococcus aureus S1, Acinetobacter baumannii, Haloglomus sp. ZY58, Halovivax
sp. CGA30, Rhizobium lentis, Pseudomonas sp. CIP-10, Escherichia coli, and Deinococcus geothermalis. (D) Relative abundance of the top tenmicrobial
species for the White ethnic group. The predominant species for this group were Acidianus manzaensis, Staphylococcus aureus, Staphylococcus aureus
S1, Acinetobacter baumannii, Pseudomonas sp. CIP-10, Haloglomus sp. ZY58, Halovivax sp. CGA30, Rhizobium lentis, Sphingomonas sp. R1, and
Actinomyces oris.
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FIGURE 3
Differential Microbial Abundance Across Ethnicities. The boxplots in this figure depict the variation inmicrobial abundance for specific species across
diverse ethnic groups. Each color represents a distinct ethnicity: red forWhite, green for Black or African American, blue for Asian, and yellow for Others. *,
p < 0.05; **, p < 0.01.
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group, which had a median score of 0. Genetic analyses revealed that
a notable proportion of the White group exhibited wild-type KRAS
(116) and NRAS (144). MSI status predominantly showed MSS
phenotype in most groups where data was available. Tumor location
displayed varied distributions across ethnicities, with the right side
being the most common location in the Black or African American
and White cohorts (Figure 1D).

Diversity of tumormicrobiome across ethnic
groups

In our detailed investigation into the tumor microbiome
diversity across various ethnicities, we uncovered consistent
patterns. The alpha diversity, which represents the variety of
species in individual samples, displayed no significant variations
among the White, Asian, Black or African American, and American
Indian or Alaska Native groups (p = 0.755, Figure 2A). Similarly, the
beta diversity, which underscores the microbial community
differences between samples, also showed no pronounced
distinction among the ethnicities, as illustrated in the PCoA plot
(Figure 2B). Taking a closer look at the relative abundances of
microbial species, for the combined group of Asian, Black or African
American, and American Indian or Alaska Native, the top ten
species were Acidianus manzaensis, Staphylococcus aureus, S.
aureus S1, Acinetobacter baumannii, Haloglomus sp. ZY58,
Halovivax sp. CGA30, Rhizobium lentis, Pseudomonas sp. CIP-
10, Escherichia coli, and Deinococcus geothermalis (Figure 2C). On
the other hand, for White individuals, the ten predominant species
were Acidianus manzaensis, S. aureus, S. aureus S1, Acinetobacter
baumannii, Pseudomonas sp. CIP-10, Haloglomus sp. ZY58,
Halovivax sp. CGA30, Rhizobium lentis, Sphingomonas sp. R1,
and Actinomyces oris (Figure 2D).

Differential microbial abundance across
ethnicities

In our comprehensive assessment of microbial diversity across
different ethnic groups, significant variations were identified in the
abundance of specific species (Figure 3). These disparities were
especially pronounced when comparing the White and Black
groups, as well as between the White and Asian cohorts, and the
Black and Asian cohorts. Among the White and Black cohorts,
species such as Tsukamurella tyrosinosolvens and Helicobacter
cinaediwere found to be more abundant in the White group,
with fold changes of 1.79 and 0.40, respectively. On the contrary,
Sulfolobus sp. A20 showed a substantial decrease in abundance in
the White group with a fold change of 0.081. For the White and
Asian cohorts, Haloarcula marismortui and Methanobacterium
formicicum were notably more abundant in the White
population, with fold changes of 23.16 and 8.98, respectively.
However, Shinella sp. PSBB067 demonstrated a decreased
presence in the White group, registering a fold change of 0.166.
Comparing the Black and Asian groups, there was an overwhelming
abundance of Haloarcula marismortui and Methanobacterium
formicicum in the Black cohort, with fold changes of 26.88 and
14.34, respectively. In contrast, Sphingobium herbicidovorans

recorded a diminished presence in the Black group with a fold
change of 0.074. The comprehensive list of microbial species and
their fold changes across ethnic groups can be found in
Supplementary Table S1.

Prognostic implications of differential
microbial abundance

Our analysis extended to understanding the potential prognostic
implications of the microbial abundance in tumor samples
(Figure 4). Of particular interest, two microbial species
demonstrated a significant association with progression-free
survival (PFS). Elevated expression of Helicobacter cinaedi was
associated with a poorer survival outcome, as evidenced by a
p-value of 0.0337. Similarly, higher levels of Sphingobium
herbicidovorans also indicated a worse prognosis with a p-value
of 0.0146. These findings underscore the potential prognostic value
of specific microbial species within tumor samples and warrant
further exploration into their role in patient outcomes.

Dissecting racial disparities: differentially
expressed genes and their interplay with
tumoral microbiota

In our comprehensive exploration of the racial differences in
gene expression and their potential interaction with the tumor
microbiome, we observed striking contrasts. Figure 5A presents a
Venn diagram detailing the overlap of differentially expressed genes
between the three racial groups. Remarkably, 39 genes were
commonly differentially expressed across all pairwise
comparisons. However, exclusive gene expression patterns also
emerged: 886 genes were uniquely altered between White and
Black populations, 640 genes between Black and Asian, and
475 genes between White and Asian. The heatmaps in Figure 5B,
delve deeper, visualizing these differentially expressed genes for the
Black vs. Asian, White vs. Asian, and White vs. Black comparisons,
respectively. For in-depth gene details and annotations, we refer
readers to Supplementary Tables S2–S4. Transitioning from the
genomic landscape to its interplay with the microbiome, we
analyzed the association between these racially differentiated
genes and the two microbial species previously identified to be
prognostically significant. Figure 6A showcases the top 10 genes
correlated with Helicobacter cinaedi. Among these,
SELENBP1 emerged as the most significantly associated gene.
Similarly, Figure 6B highlights the top 10 genes correlated with
Sphingobium herbicidovorans, with SNORA38 standing out as the
most notable. Upon meticulous examination of the independently
collected PFS survival data from 12 patients, it is evident that lower
expression levels of Sphingobium herbicidovorans correlate with
improved survival rates, as substantiated by a p-value less than 0.05
(Figure 6C). Conversely, while no significant disparity in survival
rates is observed between low and high expression levels of
Helicobacter cinaedi (p = 0.07), a conspicuous divergence trend
between the two expression levels is noticeable (Figure 6D;
Supplementary Figure S1D). Additionally, an in-depth analysis
revealed a significant upregulation of both Sphingobium

Frontiers in Pharmacology frontiersin.org08

Feng et al. 10.3389/fphar.2023.1320028

107

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1320028


herbicidovorans and Helicobacter cinaedi in the Black or African
American patient group (Figure 6E; Supplementary Figure S1E). In
synchrony with these findings, the expressions of SELENBP1 and
SNORA38—which are correlated with the respective bacterial
strains—were also validated. Remarkably, the expression of

SELENBP1 is significantly reduced in the Black or African
American group, as depicted in Figure 6F. On the other hand, no
significant difference was observed in the expression levels of
SNORA38 between the groups. According to the comprehensive
TCGA (COAD) dataset analysis, it was observed that

FIGURE 4
Prognostic Significance of Microbial Abundance in Tumor Samples. The survival curves depict the progression-free survival (PFS) based on the
expression of two microbial species. Elevated levels of Helicobacter cinaedi and Sphingobium herbicidovorans were associated with poorer survival
outcomes, with p-values of 0.0337 and 0.0146 respectively.
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SELEBP1 expression levels were the lowest in White individuals and
highest in Black or African American individuals, denoting a
significant disparity (Figure 6G). Intriguingly, the expression
levels in Asian individuals were intermediate, showing no
significant differences when compared to either group, in a study
encompassing 317 subjects (Asians = 11, Black or African
American = 65, and White = 241).

Discussion

Metastatic colorectal cancer (mCRC) remains a significant
clinical challenge, with its heterogeneity and adaptability often
leading to therapy resistance and dismal outcomes (Xi and Xu,
2021; Mazzoli et al., 2022). Bevacizumab, an angiogenesis
inhibitor, has emerged as a promising therapeutic agent in the
treatment of mCRC (Garcia et al., 2020). By targeting vascular
endothelial growth factor (VEGF), Bevacizumab reduces tumor
blood supply, making it a cornerstone in the current mCRC
treatment paradigm (Chionh et al., 2022; de Rauglaudre et al.,
2022). A distinguishing feature of our study lies in the
methodological approach of extracting microbiota data from
RNA-SEQ. Unlike previous endeavors that sourced microbial
abundance data from genomic sequences, our approach ensured
that the microbial data we analyzed represented bacteria actively
transcribing within the tumor milieu. The utilization of RNA-seq
derived data for the training set and DNA-based 16S rRNA
sequencing for validation indeed introduces methodological
nuances. While RNA-seq offers insights into the active
microbial community by capturing expressed genes, 16S rRNA
sequencing identifies the broader microbial composition. The

potential discrepancy between these methodologies underscores
the importance of interpreting results within the context of the
chosen method. Though each approach has its strengths, their
combined use in our study seeks to provide a comprehensive view
of the microbial landscape, with RNA-seq highlighting functional
dynamics and 16S rRNA offering a snapshot of overall microbial
diversity. Essentially, this means that the bacteria identified are
not mere transient inhabitants but are actively participating in
the tumor ecosystem, potentially influencing tumor behavior and
treatment outcomes.

In our study, as delineated in Figure 2, we discerned a notable
distinction in alpha diversity, while beta diversity remained
relatively consistent. Alpha diversity primarily gauges the
richness and evenness of species within a single sample. The
marked difference suggests a variation in the number or
distribution of microbial species within individual
communities across different ethnic groups. On the other
hand, beta diversity evaluates the dissimilarity between
microbial communities from different samples. The lack of
significant difference in beta diversity implies that while the
individual communities might harbor varied species or their
distributions, the overall microbial community structures
across racial groups remain somewhat analogous.

This observation is of paramount importance. The pronounced
difference in alpha diversity could be indicative of unique microbial
species or strains that are predominant in one racial group but less
prevalent or absent in others. Such microbial distinctions can
potentially influence host metabolic activities, immune responses,
and even drug metabolism, thereby impacting the efficacy and
outcome of metastatic colorectal cancer treatments across
different racial groups.

FIGURE 5
Differential Gene Expression Across Racial Groups. (A) Venn diagram displaying the overlap of differentially expressed genes among White, Black,
and Asian populations. The shared and unique gene expressions are represented in their respective intersections. (B)Heatmap representing differentially
expressed genes unique to the Black vs. Asian comparison. Gene details can be found in Supplementary Table S2.
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Our comprehensive investigation, driven by the objective of
exploring racial variations in mCRC’s molecular and
microbiological profiles, has unearthed pivotal insights. Notably,
the intersection of microbiota and host genomics revealed the
potential modulating effects of specific bacteria on gene expression.
Of particular interest were the bacteria Helicobacter cinaedi and
Sphingobium herbicidovorans and their correlated genes
SELENBP1 and SNORA38, respectively. SELENBP1, or Selenium
Binding Protein 1, has been increasingly recognized in oncology
circles for its nuanced role in cancer biology (Pol et al., 2018).
Several studies have postulated its role as a tumor suppressor.
Reduced SELENBP1 expression has been linked to poor prognosis
in several cancers, including lung and ovarian cancers (Huang et al.,
2006;Wang et al., 2021). Its function is believed to be intricately linked
with selenium; an essential trace element known to have anti-
carcinogenic properties. SNORA38, on the other hand, is a part of
the small nucleolar RNAs (snoRNAs) family, which primarily
functions in the modification and processing of ribosomal RNA
(rRNA) (Song et al., 2022). Emerging evidence suggests that
dysregulation of snoRNAs can profoundly impact cellular

homeostasis and potentially drive oncogenesis (Schulten et al.,
2017). Particularly, SNORA38 has been identified as an oncogene
in certain cancer types, playing a role in cellular proliferation and
survival (Song et al., 2022). Helicobacter cinaedi, a bacterium
traditionally associated with gastrointestinal infections, has recently
been implicated in colorectal carcinogenesis (Liu et al., 2019). Its pro-
inflammatory attributes potentially drive the inflammatory cascade, a
recognized precursor to oncogenesis (Overacre-Delgoffe et al., 2021).
Sphingobium herbicidovorans, though less studied, has its ties with
xenobiotic degradation, which might have implications in carcinogen
detoxification within the gut (Qiu et al., 2014). The final section of our
study, focusing on the TCGA (COAD) data, reveals a remarkable
pattern in the expression levels of SELEBP1 across different racial
groups. This analysis underscores the nuanced interplay between
genetics and race, particularly in the context of colorectal
adenocarcinoma. The data unequivocally shows that
SELEBP1 expression is lowest in White individuals and highest in
Black or African American individuals, a finding that could have
significant implications for personalized medicine and understanding
racial disparities in cancer outcomes. However, it’s crucial to

FIGURE 6
Genomic-Microbiota Associations in Tumors. (A) Top 10 genes exhibiting significant correlation with Helicobacter cinaedi. The most notably
associated gene in this set is SELENBP1. (B) Top 10 genes displaying pronounced correlation with Sphingobium herbicidovorans Among these,
SNORA38 emerges as the gene with the highest significance. (C) Kaplan-Meier Survival Analysis of Patients with Varied Sphingobium herbicidovorans
Expression Levels. The figure illustrates the survival curves of mCRC patients with low (red line) versus high (blue line) expression levels of
Sphingobium herbicidovorans. A statistically significant improvement in patient survival is observed with lower expression levels of this bacterial strain, as
evidenced by a p-value of <0.05. (D) Survival Analysis of Patients Based on Helicobacter cinaedi Expression Levels. The Kaplan-Meier survival curves for
patients with low (red line) and high (blue line) expression levels of Helicobacter cinaedi are depicted. While there isn’t a statistically significant difference
in survival between the two groups (p=0.07), a noticeable trend of separation between the curves suggests potential implications ofHelicobacter cinaedi
expression levels on patient survival. (E) Differential Expression of Sphingobium herbicidovorans and Helicobacter cinaedi in Racial Groups. This figure
demonstrates the upregulation of Sphingobium herbicidovorans andHelicobacter cinaedi in Black or African AmericanmCRC patients compared to their
Caucasian counterparts. The Asian group shows no significant difference in the expression levels of these bacterial strains compared to both Black or
African American and Caucasian groups. Each bar represents the average expression level of the respective bacterial strain in each racial group, with error
bars indicating the standard deviation. (F) Expression Analysis of SELENBP1 and SNORA38 in Different Racial Groups. The bar graph illustrates the
expression levels of SELENBP1 and SNORA38 in Caucasian and Black or African American mCRC patients, with significant differences noted in
SELENBP1 expression between these two groups. The addition of the Asian group shows that there are no significant differences in the expression of
SELENBP1 and SNORA38 when compared to both the Caucasian and Black or African American groups. Error bars represent standard deviation. (G)
Expression Analysis of SELENBP1 in Different Racial Groups of TCGA (COAD).
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acknowledge the limitations of this study, primarily due to the
disproportionate representation of racial groups in the sample. The
notably lower number of Asian participants (N = 11) compared to
Black or African American (N = 65) andWhite (N = 241) individuals
may skew the interpretability and applicability of these findings to
broader populations. This underrepresentation underscores a
recurring challenge in genetic research: the need for more inclusive
and diverse population samples to ensure that conclusions drawn are
reflective of the global population.

In conclusion, our study underscores the intricate interplay
between host genomics, actively transcribing tumor microbiota,
and their collective role in mCRC pathogenesis. These findings
can pave the way for a more personalized and racially tailored
therapeutic approach, optimizing outcomes in the diverse mCRC
patient population.
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Identification of pivotal genes and
regulatory networks associated
with atherosclerotic carotid artery
stenosis based on comprehensive
bioinformatics analysis and
machine learning

Xiaohong Qin1,2†, Rui Ding1†, Haoran Lu1,2, Wenfei Zhang1,
Shanshan Wei3, Baowei Ji1, Rongxin Geng1, Liquan Wu1 and
Zhibiao Chen1*
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Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China

Objective: Bioinformatics methods were applied to investigate the pivotal genes
and regulatory networks associated with atherosclerotic carotid artery stenosis
(ACAS) and provide new insights for the treatment of this disease.

Methods: The study utilized five ACAS datasets (GSE100927, GSE11782, GESE28829,
GSE41571, and GSE43292) downloaded from the NCBI GEO database. The first four
datasets were combined as the training set (n = 99), while GSE43292 (n = 64) was
used as the validation set. Difference analysis and functional enrichment analysis
were then performed on the training set. The pathogenic targets of ACAS were
screened by protein-protein interaction networks and MCODE analyses, combined
with three machine learning algorithms. The results were next verified by analysis of
inter-group differences and ROC curve analysis. Next, immune-related function and
immune cell correlation analyseswere performed, and plaques of humanACASwere
applied to verify the results via immunohistochemistry (IH) and immunofluorescence
(IF). Finally, the competing endogenous RNAs (ceRNA) and transcription factors (TFs)
regulatory networks of the characterized genes were constructed.

Results: A total of 177 differentially expressed genes were identified, including
67 genes downregulated and 110 genes upregulated. Gene set enrichment
analysis revealed that five pathways were active in the experimental group,
including xenograft rejection, autoimmune thyroid disease, graft-versus-host
disease, leishmaniasis infection, and lysosomes. Four key genes were identified,
with C3AR1 being upregulated and FBLN5, PPP1R12A, and TPM1 being
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downregulated. The analysis of inter-group differences demonstrated that the four
characterized geneswere differentially expressed in both the control and experimental
groups. The ROC analysis showed that they had high AUC values in both the training
and validation sets. Therefore, a predictive ACAS patient nomogram model based on
the screenedgeneswas established. Correlation analysis revealed a positive correlation
between C3AR1 expression and neutrophils, which was further validated in IH and IF.
One or multiple lncRNAs may compete with the characterized genes for binding
miRNAs. Additionally, each characterized gene interacts with multiple TFs.

Conclusion: Four pivotal genes were screened, and relevant ceRNA and TFs were
predicted. These molecules may exert a crucial role in ACAS and serve as potential
biomarkers and therapeutic targets.

KEYWORDS

carotid artery stenosis, atherosclerosis, machine learning, pathogenic markers,
therapeutic targets

1 Introduction

As of 2019, stroke remains the second leading cause of death
worldwide and the third leading cause of death and disability (Feigin
et al., 2021). Ischemic stroke accounts for 87% of these cases (Saini
et al., 2021). The primary cause of ischemic stroke is ischemia and
even necrosis of brain tissue due to carotid artery stenosis (CAS),
occlusion, or detachment of carotid plaque (Feske, 2021). ACAS is a
narrowing of the carotid artery diameter due to the formation of
carotid atherosclerotic plaques, which is very common, affecting one
in five patients with stroke or transient ischemic attack (TIA), and
occurs mostly in the bifurcation of the common carotid artery and
the beginning of the internal carotid artery (Cheng et al., 2019; Heck
and Jost, 2021). Some stenotic lesions may even progress to complete
occlusion, resulting in severe neurological deficits, such as coma,
limb paralysis, speech disorders, sensory deficits, hemianopsia,
intellectual disability, and infarctions in certain areas, such as the
brainstem, may even result in sudden death (Kappelle, 2002;
Campbell et al., 2019). Treatment options depend on the degree
of CAS and the patient’s symptoms, and include medical, surgical, or
interventional therapy. Conservative medical treatment aims to
reduce the symptoms of cerebral ischemia and lower the risk of
stroke; controlling existing diseases such as hypertension, diabetes
mellitus, hyperlipidemia and coronary heart disease is the main
strategy (Bonati et al., 2022). The aim of surgical treatment is to
prevent the onset of stroke, followed by prevention and slowing of
the onset of TIA. The standard surgical procedure is carotid
endarterectomy (CEA), but CEA also carries potential risks of
stroke, heart attack, and hyperperfusion syndrome (Bonati et al.,
2022). Carotid angioplasty and stenting is an alternative to CEA,
especially in cases where the neck anatomy is not conducive to
surgery (White et al., 2022). It is a minimally invasive procedure in
which a stent is placed into the carotid arteries to increase blood
flow, but there are still problems with intraprocedural endothelial
tearing, postprocedural elastic regression of the vessel, and
restenosis (Bonati et al., 2022; White et al., 2022). In conclusion,
each of the three treatments has its own set of advantages,
disadvantages, and indications. With the advancements in
vascular imaging technology, the prevalence of ACAS is gradually
increasing, how to block or reverse the process of carotid
atherosclerotic plaque formation at an early stage and improve

the ACAS is the hot spot of current research. Therefore, an in-
depth and comprehensive investigation of the causes of carotid
atherosclerotic plaque formation and related pathogenic factors is
urgently required.

In recent years, machine learning (ML) has been continuously
applied to clinical diseases for disease diagnosis, target screening,
patient prognosis prediction, and therapeutic programmes due to its
powerful computational power, lower error rate and better
predictive performance (Swanson et al., 2023; Theodosiou and
Read, 2023). In this study, protein-protein interaction networks
(PPI) and molecular complex detection (MCODE) analyses were
combined with three ML algorithms, namely least absolute
shrinkage and selection operator (LASSO), support vector
machine-recursive feature elimination (SVM-RFE) and random
forest (RF), to screen out critical targets of ACAS, which can
offer a new theoretical reference for precise therapy of the illness.

2 Materials and methods

2.1 Retrieval and merging of datasets

We obtained five datasets from the NCBI GEO database (https://
www.ncbi.nlm.nih.gov/geo/): GSE100927 (12 controls + 29 carotid
atherosclerosis), GSE11782 (9 controls + 9 carotid atherosclerosis),
GESE28829 (13 controls + 16 carotid atherosclerosis), GSE41571
(6 controls + 5 carotid atherosclerosis), and GSE43292 (32 controls
+ 32 carotid atherosclerosis). The first four datasets were combined
as the training set (n = 99), while GSE43292 (n = 64) was used as the
validation set. We then applied the sva package for batch calibration
and visualized the pre- and post-correction results using principal
component analysis (PCA).

2.2 Patients and samples with ACAS

Twenty patients diagnosed with ACAS and admitted to Renmin
Hospital of Wuhan University between 2021 and 2023 were
included in the study. The control group consisted of 10 ACAS
patients who underwent CEA, and the experimental group consisted
of 10 ACAS patients who also underwent CEA. The study collected
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neighboring intima around atherosclerotic plaques in the control
group and atherosclerotic plaques in the experimental group,
resulting in a total of 20 cases. The atherosclerotic plaques and
adjacent intima were collected within 10 min of CEA and stored
at −80°C for future use. The study protocol was approved by the
Clinical Research Ethics Committee of Renmin Hospital of Wuhan
University (Ethics Approval No. WDRY2023-K123), and all
methods used complied with relevant guidelines and regulations.
Informed consent forms were signed by all participants.

2.3 Identification of differentially expressed
genes (DEGs)

To find the DEGs between the control and experimental groups,
the gene expression patterns of each group were normalized and
analyzed using the “limma” package. The filtering criteria for the
DEGs were set to a corrected p-value of < 0.05, |logFC| ≥ 1. A
heatmap was visualized using the “pheatmap” package.

2.4 Functional enrichment analysis

“ClusterProfiler,” “enrichplot,” and “org.Hs.eg.db” packages
were used to analyze important functions and pathways of DEGs,
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Qin et al., 2023). The reference genome file
“c2.cp.kegg.Hs.symbols.gmt” was used for gene set enrichment
analysis (GSEA) to understand the differences in pathways
between control and experimental groups (Qin et al., 2023). All
results were visualized by the “ggplot2” software package.

2.5 PPI and MCODE analysis

The DEGs were uploaded to the online website STRING (http://
string-db.org), and the PPI was constructed with a medium confidence
level of 0.400. The PPI was then beautified by applying the software
Cytoscape_3.8.0. MCODE analysis is to find out the key sub-networks
and genes based on the relationship of edges and nodes in a huge PPI
network, which facilitates downstream analysis to screen out the key
genes (Bader and Hogue, 2003). Thus, MCODE in Cytoscape was
chosen to calculate the information of each node in the PPI to produce
the final functional module. The parameters were set as follows: Degree
Cutoff: 2, Node Score Cutoff: 0.2, K-Core: 2, Max. Depth from
Seed: 100.

2.6 Three ML algorithms for screening
feature genes

We use the LASSO, SVM-RFE and RF algorithms (Qin et al., 2023)
to screen key genes in the above functional modules. The feature genes
were first screened using the LASSO algorithm to obtain a “LASSO
coefficient path” and a “LASSO regularization path” (also known as
Lasso regression analysis cross-validation curve). The former shows the
variation of feature coefficients for different values of the regularization
parameter (λ) in the LASSO algorithm. The latter shows the model

fitting effect for different values of λ in the LASSO algorithm. The results
of this figure allow us to find an optimal value of λ that gives the best
Lasso fit andminimizes the cross-validation error. The number of genes
corresponding to the point with the smallest cross-validation error is the
number of disease signature genes. Then SVM-RFE algorithm can
obtain a graph of cross-validation accuracy and a graph of cross-
validation error. The horizontal coordinates of the two graphs represent
the number of feature genes, and the vertical coordinates, “10 X CV
Accuracy” and “10 X CV Error,” represent the accuracy and error rate
of the curve changes after 10-fold cross-validation, respectively. In the
next RF algorithm, random forest trees were first constructed by setting
the number of trees ntree = 500, obtaining a random forest tree graph.
Find the number of trees corresponding to the point with the smallest
cross-validation error in the graph as the best tree value. And score the
importance of the genes based on the best tree value so as to rank the
genes and select the genes with gene importance greater than 1 for
subsequent analysis. Finally, the intersection of the three algorithm
screening results was taken and the Venn diagramwas plotted using the
“VennDiagram” R package. The R package “pROC” and “InpROC”
were also applied to plot the ROC curves and calculate the area under
the curve (AUC), respectively, to determine the predictive value of these
characterized genes in the training set and validation set.

2.7 Creation of ACAS nomogram

The R package “rms” “rmda” was applied to construct
nomogram of the identified signature genes and a calibration
curve was plotted to assess the accuracy of the nomogram. Then
the clinical impact curves of the model were plotted and evaluated.
Finally, the decision curve analysis was used to evaluate the clinical
utility of the nomogram.

2.8 Immune-related functions and immune
cell correlation analysis

The 59 ACAS samples in the training group were categorized
into high and low groups according to the expression of target genes.
The cited R packages “GSVA,” “GSEABase,” “ggpubr,” “reshape2,”
and “ggExtra” show the differences of different immune-related
functions between the high and low expression groups of the
characterized genes, as well as explore the correlation analysis of
the characterized genes with immune cells.

2.9 Immunohistochemistry and
immunofluorescence double-labeling

Twenty specimens were first paraffin-embedded and then sliced
into 5 µm thin slices using a paraffin slicer (Leica RM2235).
Immunohistochemistry steps: Briefly, the sections were first
dewaxed to water. Then antigen repair was performed under the
condition (citric acid solution, microwave medium heat for 8 min,
cease-fire for 8 min, turn to medium-low heat for 7 min).
Endogenous peroxidase was next blocked with a 3% hydrogen
peroxide solution. The tissue was covered evenly with drops of
3% BSA in the histochemistry circle and closed at room temperature
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for 30 min. Primary antibodies (C3AR1, GTX114293, 1:200,
GeneTex; MPO, GB12224, 1:1500, Servicebio; MCP7, GB12110,
1; 500, Servicebio) were added and incubated overnight at 4°C.
After cleaning, the slices were incubated with homologous
secondary antibodies for another 1 h. Freshly prepared DAB
solution was added to develop the color and then restained with
hematoxylin for about 3 min. Then, the sections were dehydrated
and sealed with xylene. Photographs were taken utilizing a
microscope (Olympus BX53) and quantified using ImageJ
(v1.8.0) analysis software.

Steps of homologous immunofluorescence double-labeling
staining: the preparation process of the paraffin section, including
antigen repair, was consistent with that of immunohistochemistry.
The slices were added with the first primary antibody (C3AR1,
GTX114293, 1:200, GeneTex) and incubated overnight at 4°C. After
washing, incubate with the secondary antibody for 1 h. Then TSA
dye was added and incubated for 10 min at room temperature away
from light. After washing, antigen repair was again performed. The
second primary antibody (MPO, GB12224, 1:4000, Servicebio) was
supplemented and incubated overnight at 4°C and then incubated
with the secondary antibody for another 1 h. Next, the nuclei were
restained with DAPI and incubated at room temperature away from
light for 10 min. Finally, images were captured using a fluorescence
microscope (Olympus BX53) and quantified utilizing
ImageJ (v1.8.0).

2.10 Construction of ceRNA and TF
regulatory networks

The software miRanda, miRDB and TargetScan were applied to
jointly predict miRNAs bound by characterized genes. miRNAs
identified by all three software were saved for subsequent analysis.
The spongeScan (Furió-Tarí et al., 2016) network was applied to
predict miRNA-bound lncRNAs. The results were then imported
into Cytoscape software to map the ceRNA regulatory network.
Meanwhile, NetworkAnalyst (Zhou et al., 2019) (http://www.
networkanalyst.ca) was utilized to construct the characteristic
gene TFs regulatory network.

2.11 Statistical analysis

Statistical analysis was done using R version 4.2.3. The t-test was
used for normally distributed variables and the Wilcoxon test was
used for non-normally distributed variables. Linear relationships
were analyzed using Pearson analysis, while monotonic
relationships were analyzed using Spearman analysis. All
statistical p-values were two-sided and p < 0.05 was considered
statistically significant.

3 Results

3.1 177 DEGs were obtained

Before performing the analysis of variance, we performed a
batch correction. The PCA analysis showed that in the pre-

correction graphs, the samples from different experiments were
separated, meaning that there was a batch effect between these
samples (Figure 1A). After batch correction, these samples were
randomly distributed, eliminating the effect of batch effects
(Figure 1B). All gene volcanoes were then mapped (Figure 1C).
The final differential analysis yielded 177 DEGs, which contained
67 downregulated and 110 upregulated genes (Figure 1D).

3.2 Function and pathway exploration
of 177 DEGs

Next, functional enrichment analysis was performed on these
DEGs. The GO and KEGG results indicated that these genes were
primarily involved in leukocyte-mediated immunity, leukocyte
migration, collagen-containing extracellular matrix, and actin
binding functions (Figure 2A), as well as tuberculosis,
staphylococcus aureus infection, lysosome, and phagosome
pathways (Figure 2B). To understand the differences in pathways
between the control and experimental groups, GSEA analysis was
performed. The data demonstrated that these five pathways were
active in the control: arrhythmogenic right ventricular
cardiomyopathy, dilated cardiomyopathy, hypertrophic
cardiomyopathy, ribosome, and vascular smooth muscle
contraction (Figure 2C). In contrast, the experimental group
showed activity in five different pathways: allograft rejection,
autoimmune thyroid disease, graft versus host disease, leishmania
infection, and lysosome (Figure 2D).

3.3 MCODE analysis yielded 7 important
functional modules containing 63 genes

Next, the PPI map of the 177 DEGs was constructed (Figure 3A).
To further investigate the underlying mechanisms of ACAS, a
modular network was created applying the MCODE algorithm to
reveal the core therapeutic targets. The algorithm identified highly
relevant network targets from the PPI network, and a total of
7 significant modules were generated (Figures 3B–H), containing
63 genes. Table 1 provides specific information for each module.

3.4 Three ML algorithms screened for four
feature genes

Next, the study began with a LASSO analysis of 63 genes,
resulting in the identification of 9 genes: C3AR1, CTSB, CTSD,
FBLN5, FERMT2, MMP9, PPP1R12A, RHOB, and TPM1 (Figures
4A, B). Subsequently, the SVM-RFE algorithm was employed to
screen seven genes, namely PPP1R12A, FBLN5, C3AR1, MYL9,
HMOX1, MFAP4, and TPM1 (Figures 4C, D). Meanwhile, the RF
algorithm identified 15 feature genes with relative importance
greater than 1, including FERMT2, VCL, FBLN5, PPP1R12A,
PPP1CB, FCGR2A, CD68, TPM1, IRF8, LY86, HCK, TAGLN,
FCER1G, LMOD1, and C3AR1 (Figures 4E, F). Finally, we took
the intersection of the genes screened by the three algorithms
resulted in the identification of four characterized genes: C3AR1,
FBLN5, PPP1R12A, and TPM1 (Figure 4G).
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3.5 The four characterized genes had group
differences in the control and
experimental group

Adjacently, to probe into whether the expression of the four
characterized genes differed between the control and experimental
groups, violin plots and line plots were plotted. The results from both
the training and validation sets indicate that the four characterized genes
were differentially expressed in both the control and experimental groups
(p < 0.01, Figures 5A, B). Additionally, C3AR1 was highly expressed in

the experimental group, while FBLN5, PPP1R12A, and TPM1 were
expressed at low levels in the experimental group (Figure 5C).

3.6 ROC analysis of the four
characterized genes

ROC analysis was performed to verify the accuracy of the
screened feature genes. In the training set, C3AR1, FBLN5,
PPP1R12A and TPM1 had AUC values of 0.896, 0.908, 0.906,

FIGURE 1
Identification of DEGs. (A) Samples from four datasets were shown to exist with batch effects; (B) Samples from four datasets eliminated the effects
of batch effects; (C) Volcano plots of all genes; (D) Heatmaps of 67 downregulated genes and 110 upregulated genes.
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and 0.918, respectively (Figure 6A). In the validation set, the AUC
values for C3AR1, FBLN5, PPP1R12A and TPM1 were 0.801, 0.837,
0.824, and 0.756, respectively (Figure 6B).

3.7 Construction of nomogram for
predicting patients with ACAS based on four
characterized genes

Next, a nomogram was constructed as a diagnostic tool for ACAS
by combining the four characterized genes (Figure 7A). The scores
corresponding to each of the characterized genes were summed to
obtain a total score, which corresponded to the risk of prevalence of

ACAS. The calibration curve discovered that the accuracy of the
nomogram in predicting prevalence was high (Figure 7B). The
clinical impact curve also showed significant predictive power of the
nomogram model (Figure 7C). Decision curve analysis hinted that
patients with ACAS could benefit from the nomogram (Figure 7D).

3.8 Immune-related function and immune
cell correlation analysis of the four
characterized genes

Next, the immune-related function analysis displayed that
diverse immune-related functions differed to varying degrees

FIGURE 2
Functional enrichment analysis of 177 DEGs. (A)GO analysis results; (B) KEGG analysis results; (C) Five active pathways in the control group; (D) Five
active pathways in the experimental group.
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between high and low expression groups of the four characterized
genes (Figures 8A–D). We then explored the correlation analysis
between genes and immune cells. The results showed that
C3AR1 expression was positively correlated with neutrophils
and mast cells activated, and negatively correlated with B cells
memory, mast cells resting, and plasma cells (Figure 8E).
FBLN5 showed an inverse correlation with T cells follicular
helper (Figure 8F), whereas TPM1 was positively correlated
with T cells CD4 memory activated (Figure 8H). The
statistical significance of PPP1R12A’s result was
inconclusive (Figure 8G).

3.9 Immunohistochemical and fluorescent
dual-labeling validation of C3AR1 expression
in patients with ACAS

Based on the results presented in Figure 8E, there appears to
be a positive correlation between C3AR1 expression and
neutrophils and mast cells activated in carotid atherosclerotic
plaques. To verify this relationship, we examined the expression
levels of C3AR1, myeloperoxidase (MPO), a neutrophil marker
(Schmekel et al., 1990), and mast cell protease 7 (MCP7), a mast
cell marker (Matsumoto et al., 1995), in the carotid intima and

FIGURE 3
PPI and MCODE analysis. (A) PPI of DEGs; (B–H) seven important functional modules obtained from MCODE analysis. Red represents upregulated
genes and blue represents downregulated genes.
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plaque tissues of various patients with ACAS who
underwent CEA, using immunohistochemistry. Furthermore,
through quantitative analysis, correlation analysis and
immunofluorescence double labeling method, a close
connection between C3AR1 and MPO as well as MCP7 was
found in carotid atherosclerotic plaque tissues. More notably,
IH staining revealed significantly higher expression of C3AR1,
MPO, and MCP7 in plaques from patients with ACAS compared
to the intima (p < 0.001, Figures 9A, C–E). IF double-labeling of
plaques also revealed a significant co-localization relationship
between C3AR1 and MPO-positive neutrophils (Figure 9B).
Correlation analysis demonstrated a positive correlation
between C3AR1 and both MPO expression level (Figure 9F)
and MCP7 expression level (Supplementary Figure S1).

3.10 Construction of ceRNA and TFs
regulatory networks for four
characterized genes

Finally, to further explore the molecular mechanism of ACAS,
the present study constructed the regulatory networks of ceRNA
and TFs of four target genes. The ceRNA hypothesis reveals a new
mechanism for RNA interactions. The ceRNA is a newly
discovered mechanism to regulate gene expression, which
includes mRNA encoding proteins, lncRNA, miRNA and
circRNA (Salmena et al., 2011). We predicted the miRNAs
bound to each characterized gene and also predicted the
miRNA-bound lncRNAs. The results showed that seven
lncRNAs competed with C3AR1 to bind hsa-miR-361-3p
(Figure 10A). Thirty-nine lncRNAs competed with FBLN5 for
binding to eight miRNAs (hsa-miR-27a-3p, hsa-miR-518a-5p,
hsa-miR-939-5p, hsa-let-7a-3p, hsa-miR-888-5p, hsa-miR-615-
5p, hsa-miR-892a, and hsa-miR-214-3p) (Figure 10B). Eighteen
lncRNAs competed with TPM1 to bind four miRNAs (hsa-miR-
542-3p, hsa-let-7a-3p, hsa-miR-558 and hsa-miR-297)
(Figure 10C). While up to ninety-one lncRNAs competed with
PPP1R12A for binding to nineteen miRNAs (hsa-miR-20a-3p,
hsa-miR-450b-5p, hsa-miR-323a-5p, hsa-miR-767-3p, hsa-miR-
148a-3p, hsa-miR-1207-5p hsa-miR-377-3p, hsa-miR-129-5p,
hsa-miR-1227-3p, hsa-miR-561-3p, hsa-miR-182-5p, hsa-miR-
141-3p, hsa-miR-181a-2-3p, hsa-miR-186-5p, hsa-miR-140-

5p,hsa-miR-570-3p, hsa-miR-877-3p, hsa-miR-194-3p, and hsa-
miR-449c-5p), respectively (Figure 10D). Thus, one or more
lncRNAs would compete with the characterized genes to bind
miRNAs. In addition, this study also predicted the TFs bound to
each characterized gene. Among them, twelve transcription
factors could bind to C3AR1 (Figure 11A). Nineteen
transcription factors could bind to FBLN5 (Figure 11B). Forty-
one transcription factors were able to bind to PPP1R12A
(Figure 11C). And forty transcription factors were able to bind
to TPM1 (Figure 11D). Thus, each characterized gene possesses
multiple TFs.

4 Discussion

In recent years, due to hypertension, dyslipidaemia, diabetes,
tobacco, obesity and other factors, cerebrovascular disease in young
adults, especially ischemic stroke, has shown an increasing trend
(Goldstein, 2020). Its extremely high mortality rate, disability rate,
recurrence rate, and further complications bring a huge economic
burden to people. Here, we investigated its main etiology, ACAS,
and probed into the pivotal genes and regulatory networks
associated with carotid atherosclerotic plaques employing
bioinformatics methods.

Our study screened out four genes characterized by ACAS:
C3AR1, FBLN5, PPP1R12A, and TPM1. Of these, C3AR1 was
upregulated and FBLN5, PPP1R12A, and TPM1 were
downregulated. The results of the analysis of variance in both the
training and validation sets highlighted that the four characterized
genes were differentially expressed in both the control and
experimental groups. And the ROC analysis for the four genes
revealed that they had high AUC values in both the training and
validation sets, indicating the accuracy of our screening results. In
addition, immunohistochemistry and fluorescence double labeling
further confirmed that C3AR1 was highly expressed in
atherosclerotic plaques of patients with ACAS. Therefore, we
venture to hypothesize that these key diagnostic genes are tightly
intertwined with the pathogenesis of ACAS and deserve to be
explored in depth.

The C3AR1 gene encodes the C3a allergenic toxin
chemotactic receptor, which belongs to the G protein-coupled
receptor 1 family and stimulates chemotaxis, granzyme release

TABLE 1 The results of the MCODE analysis.

Cluster Score Nodes Edges Node IDs

1 17.895 20 170 LAPTM5, LY86, ITGB2, CD74, CD53, FCGR2A, IRF8, TYROBP, CSF1R, ITGAM, HLA-DRA, CCR1, C1QA, IL10RA,
HCK, FCGR3A, FGR, NCF2, C1QB, C3AR1

2 7.091 12 39 CCL4, IGSF6, CD14, TREM1, CD68, CCL3, FCER1G, MS4A6A, RNASE6, CTSS, C5AR1, TREM2

3 6.444 10 29 IFI30, CTSA, CTSD, CTSC, HLA-DPB1, HLA-DQA1, HLA-DMA, MMP9, LGMN, CTSB

4 3.75 9 15 RHOB, LMOD1, PPP1CB, PPP1R12A, TPM1, TAGLN, CNN1, FERMT2, VCL

5 3.2 6 8 APOE, MMP12, CCL18, MSR1, HMOX1, SPP1

6 3 3 3 MYH11, MYH10, MYL9

7 3 3 3 FBLN5, OGN, MFAP4
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FIGURE 4
Three ML algorithms to screen feature genes. (A) LASSO coefficient path diagram, each curve represents one gene; (B) Lasso regression analysis
cross-validation curve. When nine genes are used in the analysis, Lasso fits best and cross-validation error is minimized. (C) SVM-RFE algorithm
determined the highest accuracy (0.909) when there were 7 genes; (D) SVM-RFE algorithm determined the lowest error rate (0.0911) when there were
7 genes; (E) The relationship between the number of Random Forest Trees and the error rate; (F) Genes are arranged in descending order of
importance; (G) Venn diagrams of the genes obtained by the three algorithms.
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and superoxide anion production. This gene is not only a key
gene in carotid atherosclerosis (Meng et al., 2021), but
also its signaling pathway C3a/C3aR1/VCAM1 mediates
neuroinflammation in aging and neurodegenerative diseases
(Propson et al., 2021). In our study, this gene also showed a

positive correlation with the level of infiltrating neutrophils and
mast cells activated. Previous studies have discovered that
C3aR1 controls neutrophil mobilization after spinal cord
injury through physiological antagonism of CXCR2 (Brennan
et al., 2019). Besides, neutrophils can trigger atherosclerosis and

FIGURE 5
Intergroup difference analysis of the four characterized genes. (A) Differential analysis of the expression of the four feature genes in the training set
illustrated by Violin plots; (B)Differential analysis of the expression of the four feature genes in the validation set shown by Violin plots; (C) Line plots of the
expression levels of the four feature genes.
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promote atherosclerotic plaque destabilization and endothelial
detachment (Silvestre-Roig et al., 2020). Notably, the formation
of neutrophil extracellular traps (NETs) in neutrophils is one of
the mechanisms of early atherosclerosis (Herrero-Cervera et al.,
2022). Furthermore, activated diseased SMCs attract neutrophils
to form NETs, which cause the histone H4 they contain to bind to
and cleave SMCs, leading to plaque instability (Silvestre-Roig
et al., 2019). Therefore, in our future studies, it is necessary to
investigate how C3AR1 mediates the role of neutrophils in
atherosclerosis and the potential specific mechanisms, so as to
design neutrophil-targeted therapeutic strategies to stabilize
atherosclerotic plaques, reverse ACAS, and reduce the
incidence of stroke. In contrast, the interaction between
C3AR1 and mast cells in atherosclerotic plaques has been less
studied and needs to be explored in depth.

FBLN5 is a member of the fibronectin family and is essential
for elastic fiber formation. It was discovered that FBLN5 may play
an important role in carotid atherosclerosis via has-mir-128 and
has-mir-532-3p (Zheng et al., 2022). PPP1R12A, also known as
MYPT1, is a key regulator of protein phosphatase 1C. Evidence
suggests that ROS-mediated downregulation of MYPT1 in
smooth muscle cells is a potential mechanism for abnormal
myocyte contractility in atherosclerosis (Cheng et al., 2013).
TPM1, the pro-myosin α-1 chain, binds to actin filaments in
muscle and non-muscle cells. It has been shown to be
downregulated in unstable carotid atherosclerotic plaques
(Guo et al., 2022). In short, these previous studies further
support the reliability of our screening results. Hence, we

established a predictive ACAS patient nomogram model based
on the four characterized genes of our screening. This model can
lead to the joint diagnosis or prediction of the pathogenic risk of
patients with ACAS by the four characteristic gene indicators and
provide an accurate digitalized risk probability for each patient,
thus assisting clinicians in decision-making and individualized
medical treatment.

Importantly, GSEA analysis revealed that five pathways were
activated in the experimental group, encompassing xenograft
rejection, autoimmune thyroid disease, graft-versus-host
disease, leishmaniasis infection and lysosomes. It has been
shown that allograft vasculopathy is a special case of immune-
mediated atherosclerosis (Libby, 2012). Moreover, lysosomes are
key nodes connecting lipid degradation, autophagy, apoptosis,
inflammatory vesicles, lysosomal biogenesis and macrophage
polarization, and may play a predominant role in the
initiation, development and progression of atherosclerotic
plaques (Zhang et al., 2021). However, the remaining
pathways such as autoimmune thyroid disease, graft-versus-
host disease and leishmaniasis infection have not been
reported to be associated with atherosclerosis. Therefore,
future exploration of the role of these pathways in ACAS may
offer more effective and precise avenues for drug development
and therapy.

More intriguingly, with the completion of the human genome
sequencing project and the continuous optimization of
sequencing technologies, the richness of the RNA world and
the diversity of TFs have been continuously recognized, opening

FIGURE 6
ROC analysis of the four feature genes. (A,B) ROC analysis results of the four feature genes in the training set (A) and validation set (B), respectively.
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up new frontiers for the treatment of diseases. Therefore, to
further enrich future therapeutic strategies for ACAS, we
constructed the ceRNA and transcription factor regulatory
networks of four target genes.

The ceRNA include mRNA, miRNA, lncRNA and so on
(Salmena et al., 2011). Studies have shown that many miRNAs
are involved not only in atherosclerosis-related physiological and
pathological processes, but also in lipid processing, inflammation
and cellular behaviors (such as proliferation, migration and
phenotypic transformation) (Navarro et al., 2020). For example,
extracellular vesicles-derived hsa-miR-27a-3p promotes
M2 macrophage polarization, thereby promoting cell proliferation
and migration (Zhao et al., 2022). Inhibition of hsa-miR-140-5p
expression can induce upregulation of C-reactive protein, which is
involved in atherogenesis (Teng and Meng, 2019). In addition, one

or more lncRNAs compete with signature genes to bind miRNAs.
lncRNAs coordinate and integrate a variety of signaling pathways
and play important roles in development, differentiation and disease
(Navarro et al., 2020). lncRNAs affect the expression levels of genes
closely related to endothelial dysfunction, smooth muscle cell
proliferation, macrophage dysfunction, abnormal lipid
metabolism and cellular autophagy in atherosclerotic plaques,
and thus are involved in regulating the onset and progression of
atherogenesis (Ma et al., 2023). For example, the long non-coding
RNA HOXC-AS1 inhibits oxidized low-density lipoprotein (ox-
LDL)-induced cholesterol accumulation by promoting the
expression of HOXC6 in THP-1 macrophages (Huang et al.,
2016). LINC01123 is highly expressed in patients with CAS and
promotes cell proliferation and migration by regulating the ox-LDL-
induced miR-1277-5p/KLF5 axis in vascular smooth muscle cells

FIGURE 7
Alignment diagram model for predicting the risk of ACAS. (A) Alignment diagram for predicting ACAS. (B) Calibration curve to assess the predictive
accuracy of the model. (C) Clinical impact curve to assess the model. (D) Decision curve analysis showing benefit in patients with ACAS.
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(Weng et al., 2021). In addition, TFs can regulate macrophages in
atherosclerosis through mechanisms involved in cytokine signaling,
lipid signaling, and foam cell formation (Kuznetsova et al., 2020).
For instance, decreasing RUNX1 expression inmacrophages inhibits

ox-LDL-induced lipid accumulation and inflammation (Liu et al.,
2022). Endothelial Foxp1 inhibits atherosclerosis by regulating
Nlrp3 inflammasome activation (Zhuang et al., 2019). In
conclusion, these findings further support the accuracy of the

FIGURE 8
Immune-related functions and immune cell correlation analysis of characterized genes. (A–D) Box line plots of the differences between high and
low expression groups for immune-related functions in C3AR1 (A), FBLN5 (B), PPP1R12A (C), and TPM1 (D), respectively; (E–H) Lollipop charts of the
correlation of C3AR1 (E), FBLN5 (F), PPP1R12A (G) and TPM1 (H), respectively, with 22 immune cell types.
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ceRNA and TFs regulatory networks of the characterized genes
constructed in this study. Therefore, an in-depth understanding of
the mechanisms and functions of these ceRNA and TFs will help us
to better ravel out the mysteries of the regulation of these
characterized genes and provide new ideas for the future
treatment of ACAS.

Undeniably, there are some limitations to this study. First,
although this study identified four signature genes for ACAS
based on ML algorithms and validated their diagnostic efficacy
in an external dataset, prospective cohorts are needed to further
investigate the biological significance of these signature genes in
predicting ACAS. Second, we validated the high expression of

FIGURE 9
C3AR protein level in intima and plaques of patients with ACAS. (A) IH staining of C3AR1, MPO and MCP7 in the intima (left) and plaques (right) of
patients with ACAS. (B) IF staining for C3AR1 (red) andMPO (green) in plaques from patients with ACAS (magnification, ×400). (C–E) Significant difference
analysis of IH results for C3AR1, MPO and MCP7 present by box plots. ***, indicate p < 0.001. (F) Correlation plot of C3AR1 and MPO protein expression.
MPO: myeloperoxidase (neutrophil marker); MCP7: mast cell protease 7 (mast cell marker).
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C3AR1 in patients with ACAS only in human plaque tissue,
whereas the levels of FBLN5, PPP1R12A and TPM1 in plaques
need to be further clarified. In conclusion, further in vivo and

in vitro studies are needed to elucidate the potential
mechanisms of action of C3AR1, FBLN5, PPP1R12A and
TPM1 in ACAS.

FIGURE 10
ceRNA of characterized genes. (A–D) The ceRNA regulatory networks of C3AR1 (A), FBLN5 (B), PPP1R12A (C), and TPM1 (D), separately. Red
represents characterized genes, green represents miRNAs, and blue represents lncRNAs.

Frontiers in Pharmacology frontiersin.org15

Qin et al. 10.3389/fphar.2024.1364160

127

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1364160


5 Conclusion

Four pivotal genes were screened, and relevant ceRNA and TFs
were predicted. These molecules may play a crucial role in ACAS
and serve as potential biomarkers and therapeutic targets.
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