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Editorial on the Research Topic

Fresh Ideas, Foundational Experiments: Immunology and Diabetes

The Fresh Ideas, Foundational Experiments (FIFE): immunology and diabetes research topic is a
collection of 13 articles ranging from perspectives, reviews, to hypothesis, and theories all focused
on diabetes. The global rise in incidence of Type 1 Diabetes (T1D) does not correlate with genetic
drift and indicates that environmental exposures are playing an increasingly significant role. The
FIFE:Immunology and diabetes group would like to use this research topic to share their data and
ideas to promote collaborations and accelerate the development of novel therapies with the goal of
a cure for T1D.

The multidisciplinary FIFE mini-symposium brought together young researchers from across
North America investigating various interconnected contributors to T1D onset, progression,
interventions, and put forthmultiple concepts for further examination. Its members have convened
annually for the past 3 years to share their perspective and research updates and establish new
collaborations unified by the universally held goal of finding a sustainable, life-long cure. The
first perspective in this series by Mouat et al. “Fresh Ideas, Foundational Experiments (FIFE):
Immunology and Diabetes 2016 FIFE Symposium” describes the group, its goals, and summarizes
the inaugural FIFE mini-symposium held at the University of British Columbia in Canada under
the vision and leadership of Dr. Horwitz.

The inaugural FIFE symposium led to 12 additional publications from members of the FIFE
collaborative research team. This includes a perspective from Chen et al. entitled “The Role of NOD
Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future.”
The authors describe the usefulness of the non-obese diabetic (NOD) mouse for the past 35 years
as a primary model for studying autoimmune diabetes. They focus on the similarities to the human
disease, polymorphisms, gene perturbations of a disease that targets similar biological pathways,
tissues, and islet antigens. They also address the reasons why immune therapies have failed to
translate from mice to humans. Finally, they propose new strategies to edit the NOD genome to
improve a better understanding of human diabetes.

With a better understanding of the NOD mouse, we next focus on the complex mechanisms
and pathways involved in disease pathogenesis. Our journey begins with a review by Newby
and Mathews entitled “Type I Interferon Is a Catastrophic Feature of the Diabetic Islet
Microenvironment.” In this review they provide a detailed understanding of the molecular and
cellular pathways resulting in islet beta cell destruction. T1D develops from a complex interaction
between genetics, the immune system, and environmental factors. The authors focus on type
1 interferons as the link between these critical pieces and review the evidence supporting the
diabetogenic potential of IFNα/β within the islet microenvironment for the development of T1D.
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At the heart of autoimmune-mediated T cell diseases lies
the recognition of self-proteins being presented by the human
leukocyte antigen (HLA) complex to the T cell receptor (TCR).
The next contribution by Bettini and Bettini address this
critical interaction in their review: “Understanding Autoimmune
Diabetes through the Prism of the Tri-Molecular Complex.”
The strongest susceptibility alleles for T1D reside within
the HLA loci, which supports the role for T cells as the
critical drivers of T1D. This review provides a summary of
autoimmune T cell development, the significance of the antigens
targeted in T1D, and the relationship between TCR affinity and
immune regulation.

The era of genome-wide association studies (GWAS) has
yielded the discovery of ∼57 independent loci contributing to
the overall genetic risk for T1D development. This next review
by Wallet et al. is entitled “Isogenic Cellular Systems Model the
Impact of Genetic Risk Variants in the Pathogenesis of Type
1 Diabetes.” In this review, they provide a comprehensive list
of single nucleotide polymorphisms associated with T1D risk
and summarize the functional impact of several candidate risk
variants on host immunity in the context of T1D. They also
discuss the potential for an “isogenic disease-in-a-dish model
system” to interrogate the biological role of risk variants, with the
goal of expediting precision therapeutics in T1D.

The next article in our series is a review by Wagner entitled:
“Overlooked Mechanisms in Type 1 Diabetes Etiology: How
Unique Costimulatory Molecules Contribute to Diabetogenesis.”
CD28 is the classical co-stimulatory molecule while CTLA-4
is the classical inhibitory counterpart. This review is focused
on additional co-stimulatory molecules such as TNF-receptors
I and II, CD40, mucin, ICOS, and immunoglobulins. Wagner
proposes that inflammation driven by interactions between CD40
with CD154 results in the loss of Foxp3 expression and the
generation of pathogenic TH40 (CD4+CD40+) effector cells.
Thus, targeting the CD40/CD40L pathway creates a potentially
new therapeutic avenue for T1D.

The topic for the next review is focused on environmental
stressors, namely virus infections, as triggers of T1D in genetically
susceptible individuals. The review by Morse and Horwitz,
“Innate Viral Receptor Signaling Determines Type 1 Diabetes
Onset” focuses on the observation that heritable susceptibility
alone cannot explain the rising incidence of T1D. The authors
discuss that the recognition of viral antigens via innate pathogen-
recognition receptors could trigger inflammatory events which
ultimately result in the destruction of insulin-secreting beta cells.
They further discuss that activation of innate pathways and
inflammatory molecules, including type I and III interferon, can
differentially prime the immune system to produce a protective
response or a diabetogenic response. The authors conclude by
hypothesizing that the increase in incidence of T1D may be due
to changes in how the immune system senses and responds to
viral antigens.

We close the review sections with discussions of both the
immune systems’ response to transplanted islets and the health
of the islet transplant itself. Barra and Tse discuss “Redox-
Dependent Inflammation in Islet Transplantation Rejection.” In
this review the authors discuss the main challenges associated

with transplant rejection and islet viability, thus preventing long-
term β-cell function. Redox signaling and the production of
reactive oxygen species (ROS) by recipient immune cells and
transplanted islets themselves are key players in the demise of the
beta cell and contribute to graft rejection. The authors focus on
redox signaling, the process in which ROS are generated during
graft rejection as well as new strategies to limit or modulate ROS
synthesis during islet cell transplantation.

Transplants containing insulin-producing cells are vulnerable
to both recurrent autoimmunity and conventional allograft
rejection. Burrack et al.’s review “T Cell-Mediated Beta Cell
Destruction: Autoimmunity and Alloimmunity in the Context
of Type 1 Diabetes” discuss this complex topic. Current
immune suppression acts globally, but ideally, a successful
approach would limit T cells targeting the transplanted
islets. First, they describe the current understanding of
autoimmune destruction of beta cells including the roles of
CD4 and CD8T cells and several possibilities for antigen-
specific tolerance induction. Second, they outline diabetic
complications necessitating beta cell replacement. Third,
they discuss transplant recognition, potential sources for
beta cell replacement, and tolerance-promoting therapies
under development.

The next review steps outside of the autoimmune field to focus
on patients with type 2 diabetes (T2D) as the largest population
of patients who experience post-sepsis complications and rising
mortality in the review by Frydrych et al. “Diabetes and Sepsis:
Risk, Recurrence, and Ruination.” Patients with T2D have an
increased risk of developing infections and sepsis. T2D also
worsens infection prognosis and showing increased morbidity
and mortality from sepsis. The authors propose that T2D causes
a functional immune deficiency that directly reduces immune
cell function. T2D patients display diminished bactericidal
clearance, increased infectious complications, and protracted
sepsis mortality. This comprehensive review explores immune
dysfunction including: metabolic regulation, inflammation,
molecular pathways, cellular defects, cytokines, and immune
modulatory therapies.

In this hypothesis and theory: “The Folate Cycle As a
Cause of Natural Killer Cell Dysfunction and Viral Etiology
in Type 1 Diabetes” Bayer and Fraker pose an interesting role
of natural killer cells (NK) in T1D development. The authors
describe a link between inefficient folate metabolism and poor
antiviral responses from NK cells to the establishment of chronic
viral infections. They hypothesize that defects in the folate
cycle within genetically susceptible individuals could lead to
immune dysfunction, create a permissive environment allowing
for chronic or cyclical latent/lytic viral infections, a dampened
NK response, and beta cell death.

The next hypothesis and theory article: “The Four-Way
Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer
Cells in Type 1 Diabetes Progression” by Semeraro et al.
outlines a new idea that incorporates early antiviral immune
effectors, NK cells, with proinflammatory processes involving 12-
lipoxygenase occurring in the pancreatic beta cells. The authors
hypothesize that the activation of NK cell lipoxygenase through
viral infections could contribute to T1D initiation by affecting the

Frontiers in Endocrinology | www.frontiersin.org May 2019 | Volume 10 | Article 3155

https://doi.org/10.3389/fendo.2017.00351
https://doi.org/10.3389/fendo.2017.00276
https://doi.org/10.3389/fendo.2017.00208
https://doi.org/10.3389/fendo.2017.00249
https://doi.org/10.3389/fendo.2018.00175
https://doi.org/10.3389/fendo.2017.00343
https://doi.org/10.3389/fendo.2017.00271
https://doi.org/10.3389/fendo.2017.00315
https://doi.org/10.3389/fendo.2017.00246
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Spanier et al. Editorial: Immunology and Diabetes Research

normal balance of activating and inhibitory NK cell receptors,
ultimately leading to autoimmunity and islet destruction.

Finally, the series concludes with a final hypothesis and theory:
“Environmental Factors Contribute to β Cell Endoplasmic
Reticulum Stress and Neo-Antigen Formation in Type 1
Diabetes” by Marre and Piganelli. This article summarizes the
current knowledge regarding endoplasmic reticulum (ER) stress
and protein post-translational modifications that can occur
in islet beta cells, and it proposes a role for environmental
factors in the breakdown of immunologic tolerance to beta cell
antigens. The authors describe a number of factors including
virus infection, dysglycemia, inflammation, chemical exposure,
and ROS synthesis that can lead to ER stress in beta cells, neo-
antigen formation, and priming autoreactive T cell responses.
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Fresh ideas, Foundational 
experiments (FiFe): immunology  
and Diabetes 2016 FiFe symposium
Isobel C. Mouat†, Zachary J. Morse†, Virginie S. E. Jean-Baptiste, Jessica R. Allanach  
and Marc S. Horwitz*

Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada

The first Fresh Ideas, Foundational Experiments (FIFE): Immunology and Diabetes sym-
posia workshop took place in 2016 and exemplified the active interest of a number 
of several investigators interested the global rise in the incidence of type 1 diabetes 
(T1D). This increase does not correlate with genetic drift and indicates that environmental 
exposures are playing an increasingly significant role. Despite major biomedical and 
technological advances in diagnosis and treatment, treatments are frequently insufficient 
as they do not inhibit the progression of the underlying autoimmune response and often 
fail to prevent life-threatening complications. T1D is the result of autoimmune destruction 
of the insulin-producing beta cells of the pancreas, and the precise, mechanistic contri-
bution of the immune system to disease pathogenesis and progression remains to be 
fully characterized. Ultimately, the combinatorial effect of concurrent factors, including 
beta cell fragility, exogenous stressors, and genetic priming of the innate and adaptive 
immune system, work together to induce T1D autoimmunity. Thus, T1D is the result of 
immunological defects and environmental pathogens, requiring the sustained attention 
of collaborative research teams such as FIFE: I & D with varied perspectives, unified by 
the universally held goal of finding a sustainable, life-long cure. Herein, the authors pro-
vide perspective on various fields in T1D research highlighted by speakers participating 
in the inaugural FIFE symposium.

Keywords: type 1 diabetes, islet encapsulation, intestinal epithelial cells, self-peptide complexes, t-cell 
pathogenicity, t-cell metabolism, dendritic cell activity, type 2 diabetes

iNtrODUctiON

Type 1 diabetes (T1D) is an autoimmune disease of unclear etiology that results in the destruction 
of the insulin-producing beta cells of the pancreas, causing loss of systemic blood glucose regulation 
and hyperglycemia, insulin resistance and chronic joint pain (1–3). When left untreated, T1D can 
lead to defects in wound healing and diabetic retinopathy (4, 5), but on a daily basis, even a person 
with managed T1D must make significant lifestyle changes to constantly monitor blood glucose and 
navigate the financial burdens of insulin supplementation, medications and proper diet. Current 
T1D diagnostics and standard therapeutics typically address hyperglycemia without targeting the 
underlying autoimmune response and are thus insufficient in predicting prognosis and reducing 
pathogenesis long term (6–8). Damage to the pancreas is mediated by infiltrating innate and adaptive 
immune cells that induce pancreatic tissue pathology and disrupt molecular pathways involved in 
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insulin regulation; however, the early events of disease initia-
tion are still poorly understood, hindering the development of 
targeted immunological treatments (9–13). The steady increase 
in the incidence of T1D over time is not accounted for entirely 
by population genetics, indicating that geographic and environ-
mental agents are important contributors to the pathogenesis of 
T1D (14–18). Understanding the mechanisms of the pathogenic 
components and their interactive roles will require the collabora-
tion of many research teams with a variety of perspectives and 
approaches to tackle central questions in TID research.

Our lab focuses on researching the contribution of viral 
pathogens to T1D development and pathogenesis. Infection by 
picornaviruses such as coxsackievirus B (CVB) promotes T1D 
development through the stimulation of pancreatic inflamma-
tion, resulting in the release of islet antigens and the develop-
ment of autoantigens. CVB antigens are recognized by pattern 
recognition receptors, which stimulate a type I and III interferon 
response (19, 20). A multifaceted immune cascade develops, 
characterized by the activation of innate cells, disruption of regu-
latory cells, and increased antigen presentation and memory cells. 
CVB infection is a T1D initiating influence that works in concert 
with other environmental factors as well as genetic variance. We 
aim to incorporate a perspective using models with multifacto-
rial autoimmunity triggers by examining the contribution of gut 
microbiome and virome, pancreatic viral persistence, and T1D-
risk genes, to determine impact on inflammation, innate sensing, 
and loss of regulatory mechanisms leading to onset of T1D.

As scientists work to elucidate the complex and multifactorial  
nature of T1D, they continue to voice a strong need for collabora-
tion in new and innovative areas of research. With the aim to 
foster such collaborative endeavors, Dr. Marc Horwitz of the 
University of British Columbia’s Department of Microbiology 
and Immunology organized the first Fresh Ideas, Founda-
tional Experiments (FIFE): Immunology and Diabetes mini- 
symposium, named and themed affectionately after Dr. Brian 
Fife, a cherished member of the JDRF nPOD network. The event 
centered around immunological T1D research, though this mini-
symposium pushed beyond those boundaries by examining shared 
characteristics with multiple sclerosis (MS), defects in cellular 
metabolism, immunodeficiencies in type 2 diabetes (T2D), and 
the contribution of the microbiome to autoimmunity. A variety of 
approaches and experimental methods were discussed, ranging 
from therapeutic applications based on innovative biomaterials 
to translation and complementation of mouse models and clinical 
data for a more complete understanding of the immunological 
underpinnings of T1D.

isLet trANsPLANtAtiON UsiNG  
A NOveL eNcAPsULAtiON strAteGY

To kick-off the symposium, Dr. Hubert Tse of the Department 
of Microbiology-Comprehensive Diabetes Center, School of 
Medicine University of Alabama, Birmingham, discussed his 
group’s work on engineering and applying biomaterials for 
effective transplantation of functional insulin-secreting beta 
cells in T1D patients (21). A major hindrance to successful 

islet transplantation is rejection due to reactive oxygen species 
(ROS)-induced oxidative stress and non-specific inflammation 
in the pancreatic microenvironment. To address this problem, 
the Tse lab has constructed a semipermeable, anti-oxidative 
material which encapsulates and protects the islets from immune 
destruction, while maintaining interactions between the islets 
and host microenvironment. The encapsulating material is 
formed by a layer-by-layer polymerization of anti-coagulant 
poly(N-vinylpyrrolidone) (PVPON) and the natural antioxidant 
tannic acid (TA), resulting in an ultra-thin, neutral and non-toxic 
polymeric PVPON/TA capsule (22). Preliminary in vitro studies 
using rat, non-human primate, and human islets demonstrated 
that PVPON/TA-encapsulated islets were able to sense glucose 
and secrete insulin. In addition to preserving islet function, the 
capsules decreased the immunoreactivity of the local microenvi-
ronment by reducing effector T-cell infiltration, chemotaxis, and 
synthesis of pro-inflammatory cytokines and chemokines (23). 
In the streptozotocin NOD.scid mouse model of pancreatic beta 
cell destruction, transplantation of PVPON/TA-encapsulated 
islets into the epididymal fat pad restored euglycemia as early 
as 2 days post-transplantation, with effects lasting up to 30 days. 
Hyperglycemia was then restored if the fat pads containing the 
transplanted islets were removed. Overall, the data demonstrate 
that PVPON/TA-encapsulated islets are viable, functional, and 
immunoprotective both in vitro and in vivo.

Rejection of allogeneic islets or pluripotent stem cells persists 
as the most significant challenge in transplantation treatments 
necessitating life-long immunosuppression which also reduces 
the overall functional competency of the transplanted beta cells 
(24). Rather than utilizing broadly acting immunosuppressive 
drugs, coating transplanted islets in a nano-polymer allows 
the islets themselves to be partially immune privileged and 
escape destruction from autoreactive T  cells while maintain-
ing glucoregulatory abilities. However, encapsulation strategies 
unfortunately also tend to limit oxygen and nutrient diffusion 
necessary for cell viability and also render the transplant vulner-
able to cytokine-mediated toxicity and antibody recognition (25). 
Consequently, Dr. Tse’s work represents inventive progress in an 
islet transplantation packaging strategy in efforts to preserve the 
therapeutic effects for long-term treatment success and providing 
suitable islet microenvironment. However, we feel that a limita-
tion of this project is that it does not address the inflammatory 
cascade induced by genetic and environmental contributors to 
T1D, including virus infection. Undoubtedly, treating a disease 
as complex as T1D will require a multifaceted approach and 
this research provides significant advancement in modulating 
local pancreatic immune responses with biomaterials in order to 
achieve successful islet transplantation in patients with T1D.

tHerAPeUtic Use OF BUtYrAte tO 
ALter iNNAte ePitHeLiAL ceLL 
HOMeOstAsis

To further the discussion in emerging areas of T1D research, 
Dr. Shannon Wallet, Associate Professor at the University of 
Florida’s Department of Periodontology, offered insight into the 
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importance of the intestinal tract in development of autoimmun-
ity. Dr. Wallet proposed that disruption of immune homeostasis 
in the gastrointestinal tract (GI) tract may elicit autoreactive 
T-cell development, activation and expansion. To examine the 
role of the GI tract in T1D, the Wallet group isolated and charac-
terized immune cells in the intestinal crypts of T1D patients (26). 
They observed a marked expansion of the pro-inflammatory type 
1 innate lymphoid cell population as well as an increase in pro-
inflammatory cytokines compared to healthy controls. Dr. Wallet 
hypothesized that intrinsic defects in innate sensing of intestinal 
epithelial cells (IECs) may be responsible for the inflammation in 
the gut. IECs isolated from T1D patients expressed higher levels 
of IL-17c, an autocrine cytokine that increases pro-inflammatory 
responses in epithelial cells. With the aim of correcting IL-17c 
signaling dysregulation in the IECs of TID patient, Dr. Wallet 
examined the influence of administering commensal bacteria-
derived butyrate to IECs as a means to promote immune regula-
tion and suppress inflammation. In vitro experiments revealed 
that IECs from T1D patients were far less responsive to butyrate 
compared to controls. Specifically, butyrate was more effective 
at increasing the oxygen consumption rate and TSLP (thymic 
stromal lymphopoietin) production of IECs from control than of 
IECs from T1D samples. The Wallet lab is continuing to investigate 
the contribution of innate immune signaling and dysregulation 
of the GI tract on T1D and the therapeutic potential of butyrate 
treatment to modify pro-inflammatory IECs.

It is our perspective that an inflammatory cascade is pro-
moted through a variety of dysregulated immune responses 
that interact and amplify one another. Aberrant innate sensing 
significantly contributes to disease through a variety of mecha-
nisms and through multiple cell types. Innate receptors that are 
less experienced in some individuals due to reduced exposure to 
typical environmental antigens, likely cause an exaggerated or 
prolonged inflammatory response upon novel recognition. This 
prolonged inflammatory response in turn contributes to activa-
tion of autoreactive B and T cells, some with pancreatic tropism. 
Type 1 interferonopathies represent an example of how defects 
in innate sensing can lead to disease. Type 1 interferonopathies, 
characterized by a dysfunctional production of type 1 interferons, 
are often associated with autoinflammation and autoimmune 
phenomena (27, 28). It is the view of our lab that localized type 1  
interferonopathies in pancreatic microenvironments caused by 
environmental, as well as genetic influences, significantly con-
tribute to T1D (29).

Innate sensing can be altered by genetic variation, virus 
infections, and microbiome dysbiosis; all of which have been 
implicated in T1D (30, 31). Certain differences in both the gut 
microbial communities and virome have recently been identified 
to be correlated with T1D development (32, 33). For instance, 
butyrate- and acetate-producing bacteria have been associated 
with protection from spontaneous T1D in non-obese diabetic 
(NOD) mouse model of T1D (30). Bacterial metabolites, such as 
butyrate and acetate, can act on various inflammatory pathways 
to alter immune homeostasis (30, 34). Specifically, stimulation 
of the innate sensor, TLR5, induces the expression of butyrate 
receptor GPR43 on IECs enhancing T regulatory responses and 
modulating inflammation (35). In parallel, Gp43-deficient mice 

present with heightened inflammatory responses (36). In light 
of these findings, we believe that innate sensing is essential in 
priming the immune system during exposure to environmental 
antigens. As such, we hold that changes in innate immunity/
sensing may indeed contribute to altered commensal microbiota 
as well as influence cellular permeability, all affecting the develop-
ment of autoimmune disorders such as T1D. As such, Dr. Wallet’s 
research re-emphasizes the importance of innate signaling and 
commensal microorganisms and their respective influences on 
disease states.

Our lab has previously exhibited how differences of innate 
sensing in virus infections can trigger the onset of T1D autoim-
munity. Polymorphisms in the interferon induced with helicase 
c domain 1 (IFIH1) gene have been strongly associated with 
T1D risk among patients (37). The virus sensor melanoma 
differentiation-associated protein 5 (MDA5) is expressed from 
IFIH1 and recognizes ssRNA from viruses like CVB. NOD mice 
heterozygous for the MDA5 allele and thus expressing roughly 
half as much of the receptor as WT-NOD are protected from 
developing T1D following CVB4 infection whereas about 50% of 
the WT mice become autoimmune within 7 days post-infection 
(19). These MDA5 heterozygous mice produce a particular 
type 1 IFN response that appears to be protective for T1D and 
display an increased regulatory T-cell response. We have found 
that another ssRNA sensor, toll-like receptor 3 (TLR3), is critical 
for host defense to CVB4 and NOD mice deficient for TLR3 are 
highly susceptible to CVB4 infection (38). However, the mice that 
survive typically become diabetic, indicating that differences in 
TLR3 signaling may also contribute to T1D development (38). 
Thus, reduction of MDA5 but not TLR3 signaling is sufficient to 
down-regulate excessive inflammation that may subsidize auto-
immunity. This work further exhibits how modulation of innate 
receptor activation alters the inflammatory profile and resulting 
adaptive response that induces or protects from T1D onset.

Use OF tetrAMers FOr t1D 
DiAGNOstics AND tArGeteD 
tHerAPeUtics

Continuing the focus on immune mechanisms in disease pathol-
ogy, assistant professor of Rheumatic and Autoimmune Disorders 
at the University of Minnesota and namesake of this symposium, 
Dr. Brian T. Fife, discussed the contribution of T cells to autoim-
mune pathology in T1D. The Fife group works on identifying 
and targeting autoreactive T cells in T1D using self-peptides and 
MHC II molecules conjugated in tetramer complexes (pMHCII 
tetramers) (39). This work aims to identify prediabetic indi-
viduals at risk of progressing to clinical disease, and to develop 
therapeutics against specific autoreactive T-cell subsets.

Using insulin peptide:MHCII tetramers, the Fife group dem-
onstrated that the number of insulin-targeting CD4+ T cells in 
peripheral blood of T1D patients correlates with insulin autoan-
tibody titers. These findings substantiate the feasibility of using 
pMHCII tetramers as a tool for early detection of autoreactive 
T  cells in T1D. The Fife lab is currently developing an arsenal 
of tetramers against various diabetogenic targets, such as PD-1, 
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which can be multiplexed to either eliminate or induce tolerance 
in autoreactive T cells (40). Theoretically, coupling the tetramers 
to toxins could selectively target particular subsets of autoreac-
tive T  cells for destruction, aiding in the re-establishment of 
self-tolerance. The Fife lab is also looking to use tetramers for 
antigen-specific-coupled cell tolerance, similar to insulin-
coupled antigen-presenting cell (APC) therapy as previously 
published (41). Current efforts in the group are now focused on 
using pMHCII tetramers and T-cell receptor mimetic peptides as 
new T1D therapeutics that induces T-cell tolerance. The aim is for 
pMHCII tetrameric compounds to be used to specifically delete 
pathogenic T cells in patients.

The ability to identify and distinguish virus-specific and 
autoimmune-specific T cells is an especially advantageous pro-
cess that has been universally utilized by many research groups.  
Tetramer technology has become an incredibly valuable and mul-
tifaceted biological tool which in this instance holds a two-sided 
benefit: not only may this technology be used for diagnostics 
but it also allows for therapeutics to be precisely delivered to 
the desired cells and the microenvironments in which they are 
harbored. Early detection of disease onset or predisposition of 
autoimmunity provides opportunity for early intervention to 
preserve beta cell mass and potentially even reverse presence of 
disease utilizing therapies such as those reviewed by Ludvigsson 
(42). Creating methods for heightened specificity and efficiency 
of tetramer identification for very distinct cells allows precise 
intervention and minimization of non-target destruction. Toxin-
coupled tetramers provide opportunity to directly potentiate or 
eliminate the cell subsets responsible for self-reactivity. Recent 
work has shown that beta cells secrete neoantigens which further 
enhance the local T-cell response (43). Therefore, the Fife group is 
positioned to detail a comprehensive understanding and identi-
fication of what types of T1D-related self-antigens are produced, 
as well as which ones are critically targeted by pathogenic T cells 
allowing for the ability to provide intervention necessary for 
inducing antigen-specific T-cell tolerance.

receNtLY iDeNtiFieD th40 t ceLLs 
PrOMOte AUtOiMMUNitY

Dr. David Wagner, from the University of Colorado, Denver 
Department of Medicine, discussed the role of CD40 in autoim-
mune inflammation. The recent discovery that the CD40 co-
stimulatory molecule is expressed on T cells, not only APCs as 
previously thought, led to the hypothesis that CD40+CD4+ T cells, 
termed by Wagner as Th40 cells, could contribute to pathogenesis 
in autoimmunity. Impressively, Dr. Wagner examined the role of 
Th40 cells in both T1D and MS using murine models and patient 
data. In a CD40-reporter BDC2.5 T-cell transgenic murine model 
of T1D, hyperglycemia exacerbated CD40 expression in the 
pancreas (44). Adoptive transfer of CD40-depleted cell suspen-
sions to NOD mice demonstrated that CD40-expressing cells are 
necessary and sufficient for the development of TID. Moreover, 
diabetogenic CD4+ T  cells in the periphery of T1D patients 
expressed high levels of CD40, in contrast to T cells from healthy 
individuals. To examine the role of Th40 cells in MS, Dr. Wagner 

used the murine experimental autoimmune encephalomyelitis 
(EAE) model, an established immune-mediated model of MS. 
Adoptive transfer of splenic Th40 cells from EAE mice induced 
EAE in recipient naive mice, demonstrating the pathogenic 
capacity of Th40 cells (45). These results were then substantiated 
by the fact that the Th40 population is increased in MS patients 
irrespective of HLA haplotype, compared to age matched controls. 
Finally, Dr. Wagner’s team examined the therapeutic effects of 
inhibiting the interaction between CD40 and its ligand, CD154, 
using a KGYY15-blocking peptide. Blocking the CD40–CD154 
interaction reversed hyperglycemia in new onset diabetic NOD 
mice and improved clinical scores in EAE mice. Importantly, the 
KGYY15 peptide bound to human T cells and reduced the ability 
of the T cells to produce IFN-γ. This research indicates that CD40 
is a cellular pathologic marker in multiple autoimmune diseases 
and can be modulated for treatment of disease.

Overall, we feel Dr. Wagner’s research further substantiates 
not only the value of CD40 functionally, but also as a biomarker in 
viral and autoimmune pathology. Our lab has previously identi-
fied that APC expression of CD40 is a mechanism by which viral 
infection contributes to EAE by diminishing responding regula-
tory T-cell populations (46). Similarly, we propose that further 
examination of CD40 on both T  cells and APCs in relation to 
viral infections in T1D onset is worthwhile. When exposed to 
neo-self-antigens in a transgenic OVA beta cell autoimmunity 
mouse model, Th40 cells lose the ability to express the immu-
noregulatory molecule, CTLA-4, as opposed to when in their 
naive state (47). Furthermore, transfer of antigen experienced 
CD40-expressing CD4+ T cells are able induce T1D in NOD.scid 
recipients (47). Increased CD40 expression leads to heightened 
secretion of inflammatory molecules and T-cell activation push-
ing immune homeostasis toward an inflammatory state instead of 
a tolerogenic one. Enteroviruses such as CVB have been strongly 
linked to T1D development; and blocking CD40 engagement 
in CVB3-induced inflammatory myocarditis has been shown 
to slow disease progress (48). Accordingly, CD40 may be con-
tributing to an inflammatory state following infection that leads 
to autoimmunity and can potentially be used as a biomarker 
for pathogenic T cells. Determination of whether other viruses 
positively associated with T1D onset may be eliciting CD40-
expressing immune cells could be important for understanding 
how these environmental pathogens are promoting development 
of autoimmunity.

LAG-3-MeDiAteD iMMUNOreGULAtiON 
PrOtects FrOM t1D

Given that T-cell overamplification contributes to autoimmune 
disease etiology, attenuation of the effector functions, activation, 
and proliferation of diabetogenic T cells may impede the progres-
sion of T1D. Dr. Jon Piganelli, from the University of Pittsburgh’s 
Department of Immunology, examines homeostatic factors in 
relation to cell metabolic profiles to elucidate mechanisms of 
autoreactive T-cell development and persistence. Cleavage of the 
MHC II inhibitory receptor LAG-3 is a negative regulatory mech-
anism of immune cell activation; however, LAG-3 cleavage also 
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prompts the metabolic transition from oxidative phosphoryla-
tion to glycolysis necessary for the activation and proliferation 
of T cells. Dr. Piganelli hypothesized that lack of LAG-3 results in 
T-cell overamplification, as fewer T cells are deleted during devel-
opment and peripheral maturation, resulting in more aggressive 
autoimmunity. Indeed, LAG-3 knock-out NOD mice experience 
accelerated T-cell-mediated T1D (49). The group showed that 
LAG-3-deficient CD4+ T  cells exhibit enhanced oxidative and 
glycolytic metabolism and increased mitochondrial biogenesis, 
supporting the hypothesis that overactive T cells lacking regula-
tion contribute to T1D. Furthermore, inhibition of LAG-3 cleav-
age results in decreased T-cell proliferation and activation, as well 
as inhibition of metabolic switching in antigen-educated T cells. 
Ultimately, modification of LAG-3 is a potential therapy to 
prevent and treat effector T-cell-mediated autoimmune diseases 
such as T1D.

It is our view that virus infection shifts important checkpoints 
in cell regulation mechanisms in the development of T1D, by 
increasing local activation and stimulation. Rather than simply 
removing cell subsets involved in T1D pathogenesis, the work of 
Dr. Piganelli exhibits how immune cell factors may be targeted 
and can potentially be programmed to adopt a more tolerogenic 
state. Recent literature has shown that environment early on in 
life is important for incidence of T1D in NOD mice and exposure 
to a “diabetogenic environment” is sufficient to promote inci-
dence (32). It was also determined that composition of certain 
bacterial pathobionts can induce immunophenotypic changes 
in mice weaned in this “diabetogenic environment” and harbor 
B  cells in gut-related lymphoid organs which are intrinsically 
more easily activated by local stimulation (32). Environmental 
modification of homeostatic cell regulation pathways can neces-
sarily predispose for increased microenvironment inflammation 
and cell activation that may be sufficient to induce autoreactivity. 
Therefore, determining pathways which may be safely targeted 
via drugs and therapeutics could point to effective disease treat-
ments and prevention.

MONOcYte eXPressiON OF PtPN22 
POteNtiAtes t-ceLL recrUitMeNt 
AND ActivAtiON

Type 1 diabetes is traditionally considered a T-cell-mediated 
disease and as such the bulk of T1D research is focused on the 
role of T  cells (50–52). However, T  cells require priming by 
myeloid professional APCs like dendritic cells (DCs) and mac-
rophages. The upstream interaction between APCs and T  cells 
is the focus of Dr. Mark A. Wallet’s research at the University of 
Florida, particularly the potential molecular mechanisms of DC 
regulation by the cytosolic phosphatase PTPN22. This protein, a 
known negative regulator of T-cell signaling, is expressed in DCs 
as well as monocytes and macrophages. Additionally, studies have 
shown that a coding variant polymorphism in human PTPN22 is 
associated with increased risk of T1D (53, 54). In mice, a similar 
polymorphism in PTPN22 leads to macrophage hyperactiva-
tion (55). To study the mechanisms of PTPN22 in regulation of 
human myeloid APCs, the Wallet team innovatively generated 

PTPN22-deficient monocytes from induced pluripotent stem 
cells where PTPN22 expression was ablated using CRISPR/
Cas9-mediated gene targeting. When the PTPN22-deficient 
monocyte-derived DCs were treated with the TLR-stimulator 
zymosan, there was reduced expression of chemokines involved 
in recruitment of T cells, including CXCL10. This result indicated 
that PTPN22 may be involved in the recruitment of autoreactive 
T cells to the pancreas and enhance progression of T1D. However, 
lack of PTPN22 had no effect on amount of CD8+ T-cell prolifera-
tion or on downstream signaling following zymosan treatment. 
Meanwhile, the research remains to identify which receptor or 
receptors are driving CXCL10 and may be regulated by PTPN22. 
Overall, Dr. Wallet’s research shows that PTPN22 regulates the 
secretion of T-cell-recruiting chemokines by monocytes/DCs, 
shedding light on potential molecular mechanisms of T-cell 
priming and subsequent T1D pathogenesis.

We contend that the role of PTPN22 is incredibly complex and 
more work is necessary to determine how exactly this enzyme 
impacts T1D pathogenesis and whether genetic variation in 
PTPN22 affects viral induction. APC interaction with T  cells 
with regard to antigen presentation, stimulation, and chemical 
signaling can be detrimental for producing an autoreactive adap-
tive response to beta cells in T1D. PTPN22 has multiple roles 
in both the innate and adaptive immunity, affecting myeloid cell 
activation, T-cell proliferation and effector capacity, and secretion 
of type 1 interferons (56). The role of PTPN22 in various mouse 
models of T1D has been controversial (57). For instance, both 
diminishing and overexpressing PTPN22 were shown to reduce 
incidence of T1D in NOD mice (58, 59). Using a virus-mediated 
T1D mouse model (RIP-LCMV), PTPN22-deficient mice had 
increased incidence of T1D and resulted in an enhanced effec-
tor T-cell response to virus (60). Thus, it seems that PTPN22 
deficiency positively affects virus-induced T1D but can protect 
in spontaneous disease. PTPN22 contributes to exhaustion of 
both CD4+ and CD8+ T lymphocytes and aids in establishment 
of chronic virus infections (61). We believe that chronic and 
persistence of certain types of viruses such as CVB are providing 
low-grade inflammation via interferon production in the pancre-
atic microenvironment that is triggering self-reactivity resulting 
in T1D. Dr. Wallet’s research further exemplifies how molecular 
mechanics for cell function can contribute to pathogenesis of 
T1D and immune disorder.

sePsis cOMPLicAtiONs iN t2D is  
A resULt OF iMPAireD BActeriAL 
cLeArANce

Dr. Matthew Delano, from the Department of Surgery at the 
University of Michigan, wrapped up the event by discussing 
T2D and susceptibility to infection. Dr. Delano approaches 
immunological diabetes research from the perspective of an 
acute trauma surgeon who has witnessed an abhorrent number 
of cases of sepsis among T2D patients. T2D, a disease caused 
by unresponsiveness to endogenous insulin, functions as an 
immunodeficiency that predisposes patients for infection (62). 
Dr. Delano hypothesized that defects in neutrophil function, 
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previously linked to T2D-associated infections, directly contrib-
ute to bacterial persistence and death from sepsis (63). To examine 
the role of neutrophils in T2D, the Delano lab developed a novel 
diet-induced obesity (DIO) murine model with septic infection 
caused by cecal ligation and puncture. Neutrophils and monocytes 
in septic DIO mice failed to adequately phagocytose invading 
bacteria, resulting in increased bacterial persistence compared 
to their lean counterparts. The decreased phagocytic activity was 
caused in part by reduced ROS production. The group profiled 
the gene expression of neutrophils and monocytes and identified 
seven genes that were significantly and differentially expressed 
between septic DIO mice and lean controls. Most of these genes 
encoded receptors in pathways for phagocytosis, including par-
ticle recognition and engulfment. This work provided evidence 
that defects in neutrophil and monocyte function in T2D patients 
could account for persistence and/or susceptibility to sepsis fol-
lowing bacterial challenge. Dr. Delano is looking to target these 
identified genes to enhance phagocytosis and ROS production by 
neutrophils and monocytes as a therapeutic approach.

It is our perspective that understanding the contribution of 
viral infection in T2D is paramount to developing immuno-
therapies. Sepsis causes significant changes in nearly every type 
of innate and adaptive immune cells which persist well after septic 
acute phase and efforts are being made to develop immunothera-
pies to combat this dysfunction (64). By considering T2D as an 
immunodeficiency that predisposes patients to secondary infec-
tions due to defects in neutrophil function, Dr. Delano’s work 
reestablishes the importance of investigating innate immune 
processes in disease development and progression, simultane-
ously proposing a parallel to T1D pathogenesis and defects in 
innate sensing. Overall, this research emphasizes the necessity 
of examining other pathogenic exposures and the extent of their 
effect on disease priming, especially within the context of cross-
reactivities and heterogeneous disease presentations.

cONcLUsiON

The multidisciplinary FIFE mini-symposium brought together 
young researchers from across North America investigating various 
interconnected contributors to TID onset and progression and 
put forth multiple concepts for further examination. Common 
themes of interest included autoreactive T-cell expansion and 
persistence, T-cell activity alteration and loss of homeostatic 
mechanisms, and environmental exposures, including infections 
and the microbiota. Immunotherapeutic targets, and methods 
for delivering treatments to the pancreatic microenvironment or 
specifying them to specific autoreactive subsets, were proposed. 
Moving forward, the first 2016 FIFE symposium provided a foun-
dation from which investigators can exchange ideas and form 
collaborations to advance diabetes research. It is our goal that 
future FIFE collaborative efforts be planned to provide a positive 
environment and forum for communication and idea generation 
with a goal to aid in the prevention and cure of T1D. Next year, 
we will see you in Gainesville, Florida!
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For more than 35 years, the NOD mouse has been the primary animal model for studying 
autoimmune diabetes. During this time, striking similarities to the human disease have 
been uncovered. In both species, unusual polymorphisms in a major histocompatibility 
complex (MHC) class II molecule confer the most disease risk, disease is caused by 
perturbations by the same genes or different genes in the same biological pathways and 
that diabetes onset is preceded by the presence of circulating autoreactive T cells and 
autoantibodies that recognize many of the same islet antigens. However, the relevance 
of the NOD model is frequently challenged due to past failures translating therapies 
from NOD mice to humans and because the appearance of insulitis in mice and some 
patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune 
diabetes research for its usefulness as a preclinical model and because it provides 
access to invasive procedures as well as tissues that are rarely procured from patients 
or controls. The current article is focused on approaches to improve the NOD mouse by 
addressing reasons why immune therapies have failed to translate from mice to humans. 
We also propose new strategies for mixing and editing the NOD genome to improve the 
model in ways that will better advance our understanding of human diabetes. As proof of 
concept, we report that diabetes is completely suppressed in a knock-in NOD strain with 
a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports 
that similar non-aspartic acid substitutions at residue 57 of variants of the human class 
II HLA-DQβ homolog confer diabetes risk.

Keywords: NOD mouse, type 1 diabetes, preclinical, congenic, genetics, gene editing

iNtrODUctiON

Since becoming available to the scientific community, the NOD mouse has been used extensively 
and has provided significant contributions to our mechanistic understanding of autoimmunity 
and type 1 diabetes (T1D). Indeed, the NOD mouse has been used to understand many facets of 
human T1D and has been the preferred model for invasive, preclinical/translational studies. While 
the NOD mouse has a number of critics, this model should be viewed as an important component 
of a comprehensive approach to understanding T1D. The NOD remains a standout model because 
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it develops spontaneous T1D with genetic and environmental 
components that are relevant to the human disease. Further, as 
recent studies have demonstrated and as we describe below, new 
protocols to specifically modify single base pairs can generate 
loci that contain risk alleles that are orthologous to the human 
on the NOD background. Therefore, the NOD mouse remains 
a powerful and valuable implement in the investigator’s toolbox.

A major strength of the NOD model is the existence of spon-
taneous autoimmunity and T1D. Similar to the human condition, 
NOD mice develop autoantibodies (1) and exhibit increases in 
circulating autoreactive T cells (2, 3) prior to the onset of T1D. 
The β cell antigens that are targeted are also similar between these 
species (4). However, in the NOD mouse, the initiating antigen 
appears to be insulin (1), whereas in human T1D it is thought to 
result from several initiating antigens (5, 6). These autoimmune 
phenotypes are followed by the onset of hyperglycemia (7). A 
progressive loss of β cell function is present in both human and 
NOD mice suggesting similarities in β cell loss or dysfunction. 
While hyperglycemia in NOD females and males begins close to 
12 and 15 weeks of age, respectively (8), immune infiltration into 
the pancreatic islets, insulitis, begins much earlier. Pathogenic 
T  cells have been isolated from the islets of 5-week-old NOD 
mice (9). By 12 weeks of age, insulitis is present throughout the 
pancreas of NOD mice. A dissimilarity of the diabetes when 
comparing human and NOD mice is the appearance of insulitis. 
Studies from the nPOD bio-repository have been critical in defin-
ing insulitis in humans where this pathogenic lesion is less severe 
and less frequent than what can be observed in NOD mice (10). 
This may result from the fact that the autoimmunity in parental 
NOD mice is very aggressive and disease onset occurs over an 
abbreviated timeline (weeks) compared to the decidedly more 
attenuated onset in humans (i.e., years after the appearance of 
autoantibodies). Insulitis and T1D incidence in NOD mice can be 
reduced through genetic modification. While hundreds of variant 
NOD mice have been made that represent less intense forms of 
T1D, the idea of improving the NOD as a model for human T1D 
by decreasing the potency of the autoimmune response remains 
largely unexplored. The potential of this strategy is discussed 
below.

Genetics play a significant role in autoimmunity and impor-
tant similarities exist when equating T1D-risk loci in human 
and NOD mice. The disease is polygenic in both species with 
over 50 loci linked to risk in human and NOD diabetes (11). 
However, a single locus is responsible for the majority of the risk: 
major histocompatibility complex (MHC) class II. Early papers 
were critical in establishing that NOD mice encode a T1D-risk 
MHC haplotype that has important resemblances to the HLA 
risk alleles in human. Since these publications, genetic and 
biochemical studies have linked risk to amino acid residue 57. 
The high-risk DQ2 and DQ8 alleles of human as well as the Ag7 
molecule of the NOD have small polar amino acids substituted 
for an aspartic acid at position 57. The importance of this amino 
acid substitution is discussed in detail by Bettini and Bettini in 
this issue of Frontiers in Endocrinology (Co-published in the 
same edition of FiE). The genetic variations that impart risk in 
HLA/MHC arise from single-nucleotide polymorphisms that 
change the amino acid sequence. Similarly, other genes such as 

Ctla4 and mt-Nd2 are linked to risk in both humans and NOD 
mice. A single leucine to methionine substitution in mt-Nd2 
as well as the human homolog, mt-ND2, provides β cells with 
enhanced resistance to autoimmune destruction (12, 13). While 
HLA/MHC and mt-ND2/mt-Nd2 represent genes with protein 
and biochemical differences, these non-synonymous changes in 
T1D are more the exception than the rule. Only seven of the >50 
single-nucleotide polymorphisms associated with T1D arise in 
coding regions (14). The polymorphism in Ctla4 of NOD mice 
results in altered splicing. While the polymorphism in CTLA4 
is not in an identical location, the risk variant is similarly 
associated with altered splicing of CTLA4 (15–17). Therefore, 
genes such as CTLA4 can be modeled in the NOD mouse to 
aid in understanding the role of non-coding genetic variation 
in pathogenesis of T1D. Recent advances in genetic editing have 
further promoted the use of NOD to understand how specific 
SNPs can affect protein function. Editing of the NOD genome 
has been used to swap T1D risk or resistance alleles allowing 
for the role of specific SNPs, such in MHC Class II (described 
below) or Ptpn22 (18), in the regulation of autoimmunity to be 
identified.

Another concept that holds true across species is that T1D 
onset results from the sum of the genetic parts. In human subjects, 
T1D risk increases as the haplotype of an individual contains 
more credible T1D susceptibility SNPs (19, 20). Similarly, by 
subtracting risk loci from the NOD genome through backcross-
ing or genetic modification, T1D risk can be altered (11). As 
discussed in detail below, the NOD represents a powerful tool to 
study epistasis.

In the current review, we highlight past contributions NOD 
mice have made to T1D research and outline strategies to better 
utilize this model in future. Included is an overview of NOD 
mouse’s track record as a preclinical model for developing T1D 
therapies and a discussion about the impact NOD congenic 
mice have made to understanding the genetic basis of T1D. Also 
discussed is a strategy to develop panels of NOD congenic mice 
from existing congenic stocks to better mimic the spectrum of 
human autoimmune diabetes subtypes. Finally, we summarize 
existing and emerging technologies for editing the NOD genome 
that should greatly enhance the NOD mouse as a research 
tool, especially for identifying genes that contribute to T1D 
development.

PrecLiNicAL PerFOrMANce  
OF tHe NOD MOUse

While the NOD mouse has proved useful in many preclinical 
research areas, significant tension has arisen over the perfor-
mance of this mouse strain in bench-to-bedside efforts due to 
a failure to translate therapies developed in the NOD model to 
humans. The NOD model has been used for at least 30 years to 
identify agents or protocols that delay, prevent, or reverse disease. 
In general, investigators apply three approaches: early prevention 
(treatment is initiated at 3–4 weeks of age), late prevention (begin 
treatment at 10–12 weeks of age), or intervention after onset of 
T1D (reversal). Most preclinical successes in NOD have come in 
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early prevention, where a wide array of agents or protocols can 
block disease. It should be noted that in most cases the impact of 
the drug/agent under investigation on autoimmunity (i.e., insulin 
autoantibodies or the presence of β cell reactive T cells) was not 
assessed. Further, many of these have seen little to no confirma-
tion by independent laboratories. A recent NIH funded effort to 
confirm the effects of specific agents was unsuccessful at repeat-
ing the majority of the successes that were previously published 
(21). Late prevention represents a modality that is similar to trials 
established in humans where autoantibody positive individuals 
are identified and enrolled, such as the Diabetes Prevention Trial 
1 or the recent oral insulin trial (22–24). To date, there has been 
a failure to translate late prevention successes in the NOD to 
prevention of human T1D.

At time of writing, very few therapies have resulted in T1D 
reversal in new-onset NOD mice and fewer still in NOD mice 
with established disease. Of the agents that have shown ben-
efit, anti-CD3, and the combination of antithymocyte globulin 
(ATG) and granulocyte-colony stimulating factor (G-CSF) 
have been used in clinical trials. Preclinical studies using these 
modalities demonstrated an ability to reverse T1D in 39% of 
NOD females after onset (25). Multicenter preclinical efforts 
using anti-CD3 produced similar results, with less than 50% 
of the treated NOD mice exhibiting long-term T1D reversal 
(26). The rates of T1D reversal were significantly different when 
comparing sites, where anti-CD3 efficacy ranged from 10 to 
80% among the four locations. Similarly, trials with anti-CD3 
resulted in a minority of patients responding to therapy (i.e., 
preservation of c-peptide responses), yet none of the efforts 
with anti-CD3 resulted in insulin-free status for the patients 
(27–29). Likewise, use of ATG + G-CSF in a small multicenter 
clinical trial (25 total patients: 17 receiving ATG + G-CSF and 
8 placebo) established that this combination did not induce 
T1D-remission but was effective in preventing erosion of β cell 
function 12  months after treatment (30). The 2-year data for 
ATG + G-CSF were less promising. At 24 months only 50% of 
the individuals who received therapy had preservation of β cell 
function (31). This is similar to the ATG + G-CSF reversal rates 
in NOD mice (32).

These data provide caution for moving agents forward for 
clinical trials that have been developed using NOD mice. A 
recent paper in Science Translational Medicine (33) has called 
for standards in clinical diagnosis as well as timing of therapy 
initiation in NOD mice. In preclinical studies, it is well estab-
lished that NOD mice should be treated immediately after onset 
of T1D for maximal therapeutic response. Most groups have 
now established protocols for checking mice every other day 
for T1D onset allowing for initiation of therapy as soon as 1 day 
after diagnosis (21, 27, 28). In humans, trials enroll participants 
much more slowly and this delay in therapeutic administra-
tion likely postpones protection of the β cell mass allowing for 
further β cell loss. Additionally, it is clear that prior to agents 
or protocols moving to clinical trial there must be independent 
replication. The lack of a systematic understanding of T1D in the 
NOD and humans also impacts success. Comprehensive studies 
in comparative immunology and endocrinology are needed to 
mechanistically detail T1D reversal in NOD mice.

rOLe OF NOD cONGeNic Mice  
iN t1D GeNetics

Since researchers first started mapping insulin-dependent diabetes 
(Idd) loci by outcrossing NOD mice to mouse strains that do not 
develop T1D [i.e., C57BL/6 (B6), C57BL/10 (B10), NOR, and 
C3H], considerable effort has been spent creating recombinant 
congenic mouse strains to delineate genetic intervals containing 
diabetes loci and identifying the genes within each interval that 
are responsible for T1D susceptibility or protection. Several 
regions have been refined through the generation of subcongenic 
stocks that encode different subregions of the original confidence 
interval. These strains have revealed how several of the original 
Idd regions are composed of multiple susceptibility and/or resist-
ance alleles. Notable examples include Idd3 that was dissected 
into Idd3, Idd10, Idd17, and Idd18 (34–37), Idd5 that was dis-
sected into Idd5.1, Idd5.2, Idd5.3, and Idd5.4 (38–41), and Idd9 
that was dissected into Idd9.1, Idd9.2, Idd9.3, Idd9.4, and Idd9.5 
(42–46). While many of the dominant Idd regions are now well 
delineated, relatively few of their underlying genes have been 
firmly established. This is because validation has been techni-
cally challenging, in large part because even small Idd intervals 
often contain large numbers of candidate genes. Slow progress in 
improving candidate gene identification has led to reduced sup-
port for large-scale mouse genetic studies, forcing many in the 
field to decommission their congenic stocks. A new generation 
of genetic tools discussed in Section “Strategies for Improving 
Candidate Gene Identification” may reverse the fortunes of some 
of these strains. Nevertheless, even without discovering the 
causative genes, congenic mice have provided valuable insight 
about the genetic causes of human T1D that no other resource 
could have delivered. Some of their most important contributions 
are described below.

epistasis and Gene–Gene interactions
Intercrossing congenic stocks has revealed that an individual’s 
disease risk is ultimately determined by the interactive effect 
of multiple Idd resistance and susceptibility loci. The challenge 
of disentangling these complex networks was taken up by a 
few courageous groups who, over decades, have detailed how 
different combinations of disease resistance and susceptibility 
loci modulate diabetes and various disease sub-phenotypes on 
the autoimmune-permissive NOD background. The advantage 
of this approach is that eliminating genetic variability between 
Idd loci allows for the detection of gene-masking and gene–gene 
interaction effects that are normally concealed in conventional 
genetic association studies with human subjects as well as mouse 
studies involving F2 and backcross one generation for segregation 
analysis (47).

There are several examples of how interactions between indi-
vidual Idd susceptibility and resistance alleles gives rise to graded 
levels of diabetes on the NOD background (48–51). Among the 
best characterized is the interplay between the Idd3 and Idd5 con-
genic intervals from C57 strains when introgressed into the NOD 
genome. Combining Idd3 and Idd5 confers almost complete pro-
tection from T1D and insulitis on the NOD background (38). Yet, 
combining Idd3 with individual Idd5 subloci results in a spectrum 
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of diabetes protective effects [reviewed elsewhere (11, 47, 52)]. At 
one end of the spectrum, Idd3/Idd5.1 NOD mice were found not 
more protected against T1D than Idd3 mice (41). Hunter et al. 
posited that the lack of protection in NOD-Idd3/Idd5.1 mice may 
result from T1D resistance alleles at Idd3 increasing the expres-
sion of CTLA-4 on the surface of CD4+ and CD8+ T cells that may 
render higher levels of inhibitory ligand-independent CTLA-4 
induced by protective alleles at Idd5.1/Ctla-4 somewhat redun-
dant (41, 53). On the other end of the spectrum, Idd3/Idd5.1/
Idd5.3 and Idd3/Idd5.3 recombinant congenic strains were found 
to exhibit T1D resistance equal to NOD-Idd3/Idd5 mice. The lack 
of T1D initiation in the presence of severe insulitis observed in 
the Idd3/Idd5.1/Idd5.3 and Idd3/Idd5.3 strains indicates that the 
interaction between Idd5.2/Nramp1 and Idd3 is not important for 
T1D protection, but does contribute to the marked reduction in 
insulitis (41, 54). Continued studies of these strains will provide 
models to address the knowledge gap in additive and synergistic 
genetic effects.

Gene–gene interactions also exist among the various Idd5 
subregions, including between Idd5.1 and Idd5.4. Idd5.4 encodes 
a B10-derived susceptibility allele without a known responsible 
gene product. Idd5.4 significantly accelerates T1D in the presence 
of Idd5.2 and Idd5.3, but has no impact on disease if Idd5.1 is also 
present (41). This suggests that Idd5.4 can neutralize the protec-
tive effects of Idd5.2 and Idd5.3 and that Idd5.4 is in turn masked 
by the protective effects of Idd5.1. A plausible explanation for this 
phenomenon is that immune events regulated by the B10-derived 
susceptibility allele at Idd5.4 are counteracted by Idd5.1/CTLA-4 
signaling in one or more cell types. Similar masking effects have 
been detected among other congenic regions including between 
Idd19 and Idd6 on Chr.6 (49), Idd19 and Idd20 on Chr.6 (51), 
Idd21.2 and Idd21.1 on Chr.18 (50), and Idd14 and Idd31 on 
Chr.13 (55).

Evidence for epistatic interactions in humans include a study 
by Winkler et al. that genotyped 12 non-HLA susceptibility genes 
(ERBB3, PTPN2, IFIH1, PTPN22, CLEC16A, CD25, CTLA4, 
SH2B3, IL2, IL18RAP, IL10, and COBL) in high-risk HLA positive 
children of parents with T1D that were prospectively followed 
from birth to the development of autoantibodies and disease 
(19). An analysis was performed to determine the combinations 
of genes that most accurately predicted T1D development. The 
results showed that T1D progression in high-risk HLA carriers 
was best predicted by a collection of 8 genes (ERBB3, IFIH1, 
PTPN22, CLEC16A, CTLA4, SH2B3, IL18RAP, and COBL) rather 
than all 12 SNPs. These results suggest the presence of gene–gene 
interactions that mask the effect of individual diabetes suscepti-
bility alleles. Another study searched for interactions between 38 
T1D-associated non-HLA loci and different HLA class II geno-
types in a large collection of T1D samples (20). It was found that 
SNPs within two T1D-associated genes, PTPN22 and CTLA4, 
alter the predicted diabetes risk of various HLA haplotypes, 
partly confirming earlier reports that the effect of a susceptibility 
allele at PTPN22 is greater in individuals expressing low-risk than 
high-risk HLA class II genotypes (56–58). These and other GWAS 
studies show how some T1D genes but not others are strongly 
influenced by gene-gene interactions and masking effects.

cellular expression of  
Diabetes-Associated Genes
Congenic mice offer a powerful tool to determine how different 
T1D genes modulate diabetogenic immune responses within spe-
cific cell types, which cannot easily be accomplished by experi-
mentation with human samples. Previous studies have used a 
variety of adoptive transfer or bone marrow chimerism methods 
to observe that T1D genetics regulate immune dysfunction. A 
good illustration is the use of the B6, B10, or NOR derived Idd9/
Idd11 resistance locus to inhibit diabetes. One set of studies found 
that complex genetic interactions within Idd9/11 regulate how 
B cells contribute to disease by engrafting syngeneic bone mar-
row and B cells purified from different Chr. 4 subcongenic donors 
into lethally irradiated B  cell-deficient and diabetes-resistant 
NOD.IgHnull mice (59, 60). Diabetes development was then 
monitored to determine if B cells expressing separate subcongenic 
intervals from the NOR strain protected recipient mice from T1D 
compared to standard NOD B cells. The results established that 
at least four adjacent intervals interactively contribute to how 
diabetogenic B  cells become tolerized or cause T1D, including 
processes that increase the efficiency of B  cell anergy or B  cell 
hyperresponsiveness to B cell receptor stimulation.

We used a similar strategy to show that genes within the 
Idd9/11 locus control pathogenic CD4 T cells responses in T1D 
(61). Lethally irradiated CD4-deficient NOD.CD4null mice were 
reconstituted with syngeneic bone marrow and CD4+ T  cells 
isolated from NOD.NOR-(D4Mit31-D4Mit310)/DvsJ: (NOD-
Idd9/11NOR) NOD mice congenic for NOR genome on Chr. 4. 
In this system, transfer of CD4+ T  cells isolated from NOD-
Idd9/11NOR mice caused less diabetes than CD4+ T cells isolated 
from NOD. It was also shown that CD4+ T cells from BDC2.5 
TCR transgenic mice have a reduced capacity to transfer T1D to 
immunodeficient NOD.CB17-Prkdcscid (NOD-Scid) mice when 
they express protective alleles at Idd9 (62). Hamilton-Williams 
et al. found that CD4+ T cells that express protective B10 alleles at 
Idd9.2 and Idd9.3 suppress the expansion of diabetogenic CD8+ 
T cells (63). Their approach involved reconstituting NOD-Scid 
mice with purified CD4+ T cells from NOD or NOD.Idd9 con-
genic mice co-transferred with CD4-depleted spleen and lymph 
node cells from NOD donors. After reconstitution, mice were 
infected with a vaccinia virus encoding the H-2Kd-restricted 
IGRP206–214 epitope to measure the expansion of CD8 T  cells 
specific for the islet antigen IGRP. High and low frequencies of 
IGRP-specific CD8 T cells were detected in mice, respectively, 
reconstituted with NOD and NOD.Idd9 CD4 T  cells indicat-
ing that Idd9 protective alleles restore tolerance to islet IGRP 
through CD4 T cells.

Other cell types besides B cells and conventional CD4+ T cells 
have been found to regulate diabetes through Idd9. Regulatory 
T cells (Tregs) expressing B10-derived Idd9.1 genes have sig-
nificantly higher suppressive activity than Tregs from standard 
NOD mice (64). The Idd9.1 sub-locus has also been reported to 
increase the capacity for DCs to engage and potentiate natural 
killer T  cells, which are required for Idd9-mediated diabetes 
protection (65). Reciprocal transfers of NOD and NOD.Idd9 
congenic mouse spleen and lymph node cells into NOD-Scid 
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and NOD.Idd9-Scid recipients identified that non-lymphoid 
cells possess some component of Idd9 protection (63). Another 
finding was that transplanted islets from NOD-Idd9 mice are 
more resistant to destruction by CD8+ T  cells, suggesting that 
an element of Idd9-mediated T1D protection maps to insulin-
producing β cells (66).

Studies dissecting the effects of Idd9 and other T1D loci have 
demonstrated that diabetogenic immune responses develop 
from a complex interplay of genes in multiple cell types. Further, 
evidence suggests that different cell types can be affected by a 
single diabetes locus/gene with sometimes opposing effects on 
disease. Determining how individual Idd loci contribute to T1D 
by affecting immunoregulatory pathways in specific cells offers a 
useful strategy for identifying the genes underlying these regions.

Genetic control of insulitis
Congenic mice have revealed that non-MHC Idd loci can be 
separated into two classes; one that supports T1D by modulat-
ing the virulence of insulitis and/or the intrinsic resistance of β 
cells to cytotoxic stress, and a second class that supports T1D 
by regulating diabetogenic immune responses before insulitis 
occurs (67). In the first class, replacement of individual NOD 
susceptibility loci with resistance alleles from non-diabetes prone 
strains reduces the incidence of T1D but has no quantifiable effect 
on insulitis at the gross histological level compared to NOD mice 
of the same age. Idd loci that fall into this category include Idd9 
where introgression of B10-derived resistance alleles did not alter 
the cellular composition of insulitis. Instead this locus changed 
the pathogenic properties of leukocytes that accumulated in islets 
and shifted cytokine production from IFNγ and TNFα to an IL-4 
response (43). The overlapped B6-derived Idd11 interval also 
reduces the pathogenic effects of β cell-specific lymphocytes in 
islet infiltrates without affecting the overall amount of insulitis 
(44). Another example is Idd6 where C3H-derived resistance 
alleles confer protection against T1D but not islet infiltration. 
However, subtle differences exist in the invading leukocyte popu-
lations including that CD4+ T cells and B cells are slightly reduced, 
which is counterbalanced by an increase in non-lymphoid cells 
such as macrophages and dendritic cells (68).

Disease protection is highly variable among the second class 
of non-MHC Idd loci where resistance alleles protect against 
both T1D and insulitis. Some regions including Idd10/18, Idd16, 
and Idd21 cause a mild reduction in pancreatic infiltration but 
only during the early phases of insulitis (34, 50, 69, 70). Most 
of these loci confer relatively modest protection against T1D. In 
contrast, loci such as Idd3 and Idd5 that each provide substantial 
diabetes protection also cause a considerable delay in insulitis, 
although almost all NOD.Idd3 and NOD.Idd5 congenic mice 
eventually develop significant islet infiltration (34, 38). Other Idd 
loci, including Idd4 and Idd13, appear to change the distribution 
rather than the amount of insulitis (71, 72). NOD mice expressing 
either of these loci develop non-destructive peri-ductal infiltrates 
where invading cells remain mostly confined to the peri-islet zone 
until well after the age most NOD mice develop diabetes. As dis-
cussed above, none of the non-MHC Idd loci that block insulitis 
and T1D are sufficient on their own to substantially reduce islet 
inflammation. However, almost complete protection can be 

achieved when individual regions are combined, indicating that 
genetic interactions exist between specific loci that confer greater 
protection against islet inflammation than the collective effects of 
each separate region.

Together, these findings suggest that insulitis among patients 
is also under complex genetic control and that, in some people, 
combinations of T1D genes could cause high levels of non-
destructive islet inflammation long before the onset of overt 
disease. In contrast, the degree of insulitis may correlate closely 
with progression to overt diabetes in patients that carry T1D 
genes that give rise to more virulent forms of insulitis.

MODeLiNG tHe GeNetic DiversitY  
OF HUMAN t1D

A major criticism of the NOD mouse has been that this model 
represents the equivalent of a single human case of T1D. 
Consequently, immune modulation protocols developed in the 
NOD mouse could be limited to a few subtypes of the human 
disease, which may partially explain why some interventions that 
have shown promise in NOD mice fail to preserve β cell function 
in patients (73). Better predictions from mouse models might 
be possible if future treatment protocols were screened using 
multicenter efforts with heterogeneous populations of NOD-
derived mice to mimic the genetic variation among patients. Such 
a strategy could employ a panel of NOD-related recombinant 
congenic strains carrying different combinations Idd loci where 
each strain would express a unique set of genetic variants that 
give rise to a specific subtype of T1D (41). This is analogous to 
the different subtypes of T1D that arise in patients from various 
segregating combinations of susceptibility and resistance alleles. 
The potential of this strategy is that therapies capable of inhibiting 
diabetes across a panel of congenic strains are more likely to be 
successful in genetically heterogeneous humans. There are also 
advantages to finding treatments that only work in congenic mice 
with specific combinations of Idd loci, including that this could 
provide valuable information about the cellular and molecular 
mechanisms through which an immune modulation treatment 
affects disease. It may also help to identify specific subsets of 
patients that have less or more potential for responding to a 
particular immune therapy.

Choosing which congenic mice to include in a future drug 
testing panel presents a challenge because of the large number of 
Idd loci it is possible to combine. It is logical that strain selection 
should consider the nature of the immune modulation protocol 
being tested. For therapies like probiotic treatment and immune 
suppression protocols, where the mode of action is poorly under-
stood or where multiple cell types and molecular pathways are 
involved, it may be best to test mice with a diverse array of con-
genic intervals designed to emulate the genetic variation in human 
T1D. Some of the NOD-related congenic stocks described in the 
Section “Epistasis and Gene–Gene Interaction” may be suitable 
candidates, especially those that develop NOD-like levels of T1D 
due to introgression of susceptibility loci from non-NOD mouse 
strains. A more targeted panel could be employed for therapies 
known to act through particular cellular or molecular pathways. 
For instance, immune modulation protocols designed to enhance 
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Tregs, such as low-dose IL-2 and combined ATG + G-CSF ther-
apy, could be tested on congenic mice expressing different allelic 
variants of Idd3, Idd6, Idd9.1, and Idd9.3 that each separately 
affect the suppressive properties of Tregs (64, 68, 74, 75). Another 
example is antigen-specific immunotherapy where autoantigens 
could be screened in NOD congenic mice expressing different 
variants of Il2/Il21 (Idd3) (74, 76), B2m (Idd13) (72), and Ptpn22 
(Idd18.2) (77) that, respectively, modulate T  cell activation/
effector function, peptide presentation, and TCR signaling. All 
of these factors contribute to the fate of self-reactive T cells that 
encounter autoantigen and may affect the outcome of autoantigen 
immunotherapy.

An obvious drawback to testing diabetes therapies using con-
genic mouse panels is the additional time and resources involved. 
Even so, the investment is worthwhile if therapies that are ineffec-
tual in humans could be recognized before progressing to clinical 
trials. An example of how testing the appropriate NOD congenic 
strain might have produced a different result to standard NOD 
mice and predicted the failure of a T1D treatment is low-dose 
IL-2 therapy, which increases the frequency of Tregs but has not 
been able to produce positive effects on diabetes in patients (78). 
A chief reason that this treatment advanced to clinical trials is 
that low levels of IL-2 potently suppresses T1D development 
and reverses recent onset T1D in NOD mice, presumably by 
enhancing Treg function and/or development (79). However, it 
is possible that NOD mice are particularly sensitive to this type 
of immune modulation because this strain carries a variant of 
Il2 that reduces IL-2 gene expression and Treg function (74). An 
interesting question is whether the outcome of IL-2 treatment 
would be different in NOD.Idd3 mice that express the B6 variant 
of Il2 and results in higher levels of Il2 gene expression (74). The 
answer might address whether low-dose IL-2 therapy has poten-
tial for improving immune regulation and result in enhanced β 
cell function in patients without an IL2/IL2R signaling deficiency. 
This is important because it is still unclear whether defects in the 
IL2/IL2R pathway play a significant role in most cases of human 
diabetes; although a gene variant of IL2RA (CD25) has been 
associated with T1D risk in people, it is protective but rare (80). 
Furthermore, the causative gene has yet to be identified for the 
chromosome 4q27 region containing IL2 and IL21 that is linked 
with T1D susceptibility (81).

Another limitation of testing T1D therapies with NOD 
congenic mice is that many Idd loci strongly suppress diabetes, 
which will require that some experiments be performed with 
large numbers of animals to achieve sufficient power. Indeed, 
only 10–20% of female NOD.Idd3 mice develop T1D by 30 weeks 
of age (74, 76, 82). As mentioned above, the unique insights from 
congenic mice will often justify using strains with very low levels 
of disease. However, there is also potential to alter the genetic 
composition of congenic strains in ways that will increase the 
rate of diabetes. For instance, it may be feasible to use NOD mice 
heterozygous instead of homozygous for the Idd3 locus, which 
develop 40% diabetes (76). These mice still produce more IL-2 
than standard NOD mice and would presumably be less sensitive 
to IL-2 therapy. Another strategy could be to breed T1D-resistant 
congenic strains with NOD mice carrying congenic intervals that 
accelerate diabetes. For example, NOD.Idd3 could be crossed to 

NOD mice carrying B6 alleles at Idd18.2/Ptpn22 that are more 
diabetogenic than the corresponding NOD alleles (77).

strAteGies FOr iMPrOviNG 
cANDiDAte GeNe iDeNtiFicAtiON

Although genetic studies using inbred mice are costly because 
of the large number of mice required, they remain a powerful 
method of detecting rare T1D susceptibility alleles that are 
impractical to identify through GWAS analyses, which require 
tens or hundreds of thousands of human subjects (83, 84). Thus, 
for the reasons outlined above, the question is not whether pur-
suing the identity of T1D susceptibility and resistance alleles is 
worthwhile, but rather how to make this process more efficient by 
employing a comprehensive approach that utilized both human 
and mouse systems. Considerable encouragement comes from a 
new generation of genetic tools that may circumvent many of the 
most intractable obstacles that traditionally limited the identifica-
tion of Idd candidate genes. Some of these are described in the 
following sections in the order of their development.

rNA interference (rNAi)
RNA interference has proven useful for manipulating gene expres-
sion in NOD mice without introducing genetic contamination 
from other strains. This approach is based on a well-established 
transgenesis methodology that entails the direct introduction of 
short hairpin RNA (shRNA) containing constructs into NOD 
zygotes by viral transduction (85, 86). The shRNA-containing 
constructs are designed to silence genes that impact T1D. shRNA 
is a sequence of RNA that contains a tight hairpin turn. This 
structure is cleaved by intracellular machinery into small interfer-
ing RNA that knocks down any mRNA bearing a complementary 
sequence (87). Several companies are developing viral libraries 
that produce shRNA that integrate into the host genome and 
ensure stable gene silencing after integration. The silencing cas-
sette can be incorporated into many different types of vectors, 
including lentiviral, adenoviral, or retroviral vectors. Using the 
NOD model, RNAi has already provided valuable insight into how 
expression of the T1D candidate genes IL17 (88), PTPN22 (89), 
CTLA4 (90), CLEC16A (91), RGS1 (92), and Slc11a1 (Nramp1) 
(93) contribute to diabetes development. It is conceivable that 
T1D susceptibility genes can regulate disease progression in an 
age-dependent manner. Establishment of inducible RNAi has also 
enabled temporal control of target gene knockdown to determine 
their functions at different stages of disease progression (94).

Zinc Finger Nuclease (ZFN)
Zinc finger nucleases are fusion proteins containing a sequence-
specific DNA-binding zinc finger domain and a nuclease domain 
(95, 96). Engineered ZFNs specifically recognize and bind a 
defined target gene sequence within the nucleus of a cell and 
introduce a double-strand break (DSB) (97, 98). The cellular 
DNA repair machinery fixes these breaks, most frequently via 
the non-homologous end joining (NHEJ) mechanism resulting 
in small deletions or insertions of the gene sequence (few to 
hundreds of base pairs) and disruption (knockout) of the target 
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FiGUre 1 | Differential staining of the major histocompatibility complex 
(MHC) class II molecule in wild-type NOD and NOD.Abg7-S57D mice. Total 
splenocytes were stained with anti-CD11c, anti-CD19, and the indicated I-Ab 
antibody clone at different titers. Shown is the I-Ab staining on B cells (CD19+ 
CD11c−) of NOD (dashed line) and NOD.Abg7-S57D (solid line) mice. The 
shaded area is the negative control staining using splenocytes isolated from 
I-Ab deficient NOD mice (NOD/ShiLtJ-H2-Ab1em1Ygch/J, JAX stock no. 
027057). Similar results were obtained in two independent experiments.
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gene (97, 98). Injected as synthetic mRNAs, ZFNs typically work 
at the one-cell fertilized embryo stage, resulting in single-step, 
whole animal gene disruption, and infrequent mosaics (99). More 
precise genetic engineering can be achieved as well because a DSB 
also stimulates DNA repair via homology-directed repair (HDR) 
mechanism if a homologous DNA template is co-introduced 
into the cell (100). Because ZFN-mediated genetic manipulation 
can be done directly in NOD embryos, the resulting knock-in or 
knockout can be generated on a pure NOD genetic background. 
Thus, it eliminates carryover of closely linked passenger DNA 
that occurs when the induced mutation is introduced in non-
NOD embryonic stem cells (129 or B6) and then the targeted 
allele is backcrossed onto NOD. This is particularly concerning 
when targeting genes within known Idd regions. To study the role 
of the Idd9.3 candidate gene Tnfrsf9 (encoding CD137/4-1BB), 
we used ZFN to disrupt this gene directly in NOD embryos (101). 
The NOD allele of CD137 is hypofunctional when compared to 
the B10 protein that is expressed within the Idd9.3 congenic 
strain (102). Thus, it was thought that T1D development would 
be accelerated in the absence of CD137. Surprisingly, CD137-
deficient NOD mice were less susceptible to T1D, indicating that 
this co-stimulatory molecule has a diabetogenic role. This conclu-
sion could not have been made with certainty if CD137-deficient 
NOD mice were created by backcrossing the previously reported 
knockout alleles generated using 129 embryonic stem cells. We 
further established an important role of CD137 in promoting the 
accumulation of β cell autoreactive CD8+ T cells (103). In addi-
tion, CD137 had a diabetes protective function when expressed 
in CD4+ T cells, likely due to the immunosuppressive activity of 
soluble CD137 produced by Tregs (103).

As discussed earlier, the H2g7 haplotype is essential for T1D 
development in NOD mice. A key component of the diabetogenic 
H2g7 haplotype is the unique Abg7 allele. The Abg7 allele includes 
five nucleotide polymorphisms resulting in the conversion of 
two usually conserved proline and aspartic acid residues at posi-
tions 56 and 57 to histidine and serine (104). Significantly, the 
non-aspartic acid substitutions at residue 57 also characterize 
diabetogenic variants of the human class II HLA-DQβ homolog, 
such as DQ8 (105). While transgenic analyses have shown both 
histidine and serine, respectively, at positions 56 and 57 amino 
acid residues of Aβg7 to be important for T1D progression in 
NOD mice (106–108), their diabetogenic function has not been 
tested under a more physiological condition. To further study the 
role of amino acid residue at position 57 in Aβg7, we created a 
knock-in NOD strain by replacing the serine with an aspartic acid 
(Aβg7-S57D). This was achieved by co-injecting Abg7-specific ZFN 
coding mRNA and a plasmid construct for HDR into one-cell 
fertilized NOD embryos, which were subsequently transferred 
into pseudopregnant mothers, and live-born pups were screened 
for founders. We successfully established a knock-in NOD stock 
(formal name: NOD/ShiLtJ-H2-Ab1em2Ygch/Ygch) with the precise 
3 base pair alteration resulting an aspartic acid at position 57 in 
the MHC class II Aβ chain. The knock-in allele was confirmed at 
both the genomic DNA and cDNA levels. We used two different 
antibody clones (AMS-32.1 and 10-3.6) to determine if MHC 
class II expression was altered in NOD.Abg7-S57D mice. The expres-
sion level of MHC class II on B cells and dendritic cells was found 

to be comparable in wild-type NOD and NOD.Abg7-S57D mice 
when 10-3.6 was used to stain their splenocytes (Figure 1 and 
not shown). Interestingly, the level of MHC class II staining was 
found to be lower on B cells and dendritic cells from NOD.Abg7-S57D 
than those from wild-type NOD mice when AMS-32.1 was used 
(Figure 1 and not shown). These results indicate that the aspartic 
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FiGUre 2 | NOD.Abg7-S57D mice are completely resistant to type 1 diabetes. 
NOD and NOD.Abg7-S57D mice were monitored for diabetes development 
weekly for 30 weeks by testing urine glucose. Diabetes onset was defined by 
two consecutive readings of >250 mg/dl.
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acid substitution at position 57 in the Aβ chain alters the binding 
of AMS-32.1, presumably due to a conformational change of 
the antibody-binding epitope. Strikingly, diabetes development 
was completely suppressed in homozygous NOD.Abg7-S57D mice 
(Figure  2), confirming the importance of the aspartic acid 
residue at position 57 of the Aβ chain in T1D. The availability 
of this novel strain will allow studies aimed to understand how 
diabetogenic MHC class II molecules select and activate β-cell 
autoreactive CD4 T cells.

clustered regularly interspaced short 
Palindromic repeat (crisPr) and 
crisPr-Associated Protein 9 (cas9)
Due to its high efficiency, the CRISPR/Cas9 system has become 
the top choice when considering gene targeting in a variety of 
animal models. Similar to ZFN mediated mutagenesis, CRISPR/
Cas9 also introduces a DSB, followed by repair through NHEJ 
and HDR dependent mechanisms (109). Cas9 nuclease is 
recruited to a specific DNA sequence by a single-guide RNA 
that can be easily designed using publically available online tools 
(109). Several groups, including ours, have successfully used the 
CRISPR/Cas9 approach to disrupt genes directly on a pure NOD 
genetic background (18, 110–112). The importance of affinity 
maturation processes of B  cells (class switch recombination 
and somatic mutation) for T1D development in NOD mice was 
demonstrated by ablation of the activation-induced cytidine 
deaminase gene (Aicda) (111). It was recently shown that IL-2 can 
indirectly enhance FOXP3 expression through downregulating 
the level of Flicr, a long non-coding RNA (112). The function 
of Tregs is impaired in NOD mice partly due to reduced IL-2 
production by activated T  cells in this strain (74). Deletion of 
Flicr decreased accumulation of FOXP3low Tregs in pancreatic 
islets and suppressed T1D in NOD mice, likely by enhancing 
the stability and function of Tregs (112). Ptpn22 has also been 
targeted in NOD mice using the CRISPR/Cas9 system (18). A 
nonsynonymous single nucleotide polymorphism resulting in an 
amino acid substitution (R620W) in human PTPN22 has been 
linked to numerous autoimmune diseases, including T1D (113). 

Ptpn22 has been identified as a top candidate gene for the Idd18.2 
region in NOD mice. To further study the role of PTPN22 in T1D, 
the Sherman laboratory generated a Ptpn22 knockout NOD mice 
as well as a knockin strain that has the R619W amino substitution 
to mimic the human variant (18). Ptpn22 knockout NOD females 
developed more rapid onset of T1D (18). Similarly, NOD females 
expressing the Ptpn22 KI allele (encoding 619W) also developed 
accelerated T1D (18), providing direct evidence to support the 
diabetogenic function of this variant.

testing Human t1D candidate Genes  
in NOD Mice
As noted above, the NOD mouse has been criticized for its 
usefulness as an animal model for human T1D, largely due to 
disappointing outcomes of clinical trials based on agents that 
showed therapeutic and/or preventive effects for mouse diabetes. 
The increased availability of human samples allowing direct 
examination of pancreata and lymphoid tissues isolated from 
organ donors at different stages of T1D progression has further 
decreased the enthusiasm of the NOD model (114). However, 
it remains a challenge to identify and to mechanistically study 
T1D susceptibility genes in human. The effect of a single gene 
on a phenotype is more difficult to detect due to heterogeneity 
in humans. Many genetic variations associated with T1D have 
a low phenotypic impact that overlaps when comparing carri-
ers and non-carriers. In addition, human studies are mostly 
association in nature and strategies that allow investigators 
to directly analyze the diabetogenic function of a single SNP 
alone or in combination are limited. The CRISPR/Cas9 system 
makes it possible to engineer isogenic cell systems that can be 
used to specifically address the role of a SNP in gene expression 
and function (115). When combined with the ability to generate 
patient-derived iPSC and the advance of in vitro differentiation 
of iPSC into insulin-producing β-cells and hematopoietic stem 
cells, it may be possible to test the function of a SNP in cell types 
relevant to T1D (116, 117). However, these studies are not likely 
to overcome the difficulty to understand the course from altered 
gene expression/function to T1D development, which can only 
be dissected with in vivo experimental systems as disease progres-
sion is a consequence of combined effects that a variant elicits in 
different cell types in a time-dependent fashion. Combinational 
approaches using both mouse and human experimental systems 
are thus required to have a comprehensive understanding of the 
genetic control in T1D. The ability of nuclease based technology 
to efficiently and precisely modify the genome directly in NOD 
mice has opened a new door for current and future T1D genetic 
studies using this model.

Because T1D is a complex disease influenced by a large number 
of genes and ill-defined environmental factors, the NOD mouse 
remains an ideal animal model that provides a disease susceptible 
genetic background to test the diabetogenic function of a human 
candidate gene. For this reason, we have used both ZFNs and 
CRISPR/Cas9 systems to target mouse orthologs of human T1D 
candidate genes nominated by GWAS. As discussed above, the 
availability of the nuclease based technologies made it possible 
to do a relatively small scale but focused screening for genes that 
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can regulate T1D progression in NOD mice. We have successfully 
targeted more than 40 genes directly in NOD mice. While these 
studies are still ongoing, the results obtained from this screen-
ing will allow us to provide additional evidence to support their 
roles in human T1D and prioritize them for future mechanistic 
studies. The eventual goal is to identify a pathway that could be 
pharmaceutically targeted for clinical translation.

cONcLUsiON reMArKs

Despite some shortcomings, NOD mice and NOD-derived 
recombinant congenic strains provide many advantages for T1D 
research. As discussed above, the NOD mouse continues to be an 
important tool for dissecting the genetic control of T1D. As will 
be discussed below, we also describe T1D research areas where 
NOD mice and related strains can provide critical information 
in the next decade.

Previous studies have generated NOD mice transgenically 
expressing HLA class I and II molecules associated with human 
T1D (118–121). While HLA class II molecules in NOD mice 
are not able to promote T1D, expression of the HLA A2.1 allele 
accelerates diabetes development, providing a model for identi-
fying peptides targeted by A2.1-restricted CD8+ T cells and for 
testing antigen-specific immunotherapy (122, 123). When com-
bined with various versions of the severe immunodeficient NOD 
mice (e.g., NSG mice), expression of HLA class I or II molecules 
in the absence of murine counterparts provides a superior host 
for primary human T cells and hematopoietic stem cell-derived 
immune system (124). NSG mice that also express high-risk 
HLA class I or II molecules have been transplanted with human 
peripheral blood mononuclear cells or β-cell autoreactive T-cell 
clones/lines isolated from T1D patients to test the diabetogenic 
potential of the presumably pathogenic effectors (125–127). 
Although much progress has been made, overt diabetes has 
not been observed in HLA class I or II expressing NSG mice 
transfused with human T cells in various settings. The eventual 
goal is to reconstitute a T1D prone human immune system 
that targets β cells derived from the same subject in a mouse 
for studying “human” T1D. Recent advance in differentiating 
human iPS cells into functional insulin-producing β-cells and 

hematopoietic stem cells has brought us one step closer to this 
goal (116, 117).

Gut microbiome has emerged as an important component 
that modulates the progression of T1D in both humans and NOD 
mice (128–134). Longitudinal studies in humans showed that 
alteration of the diversity and species of gut microbiota preceded 
T1D onset (133). Studies in NOD mice have shown that manipu-
lation of gut microbiota by means of antibiotics, fecal transfer, or 
co-housing can either suppress or promote diabetes development 
(128, 135–138). Collectively, these studies demonstrate that the 
NOD mouse can provide an excellent experimental platform 
for understanding the roles of gut microbiota in T1D. Recent 
studies also suggest that T1D modulation by gut microbiota is 
not likely to be caused by a single species but rather due to the 
balance of diverse species within the bacterial community. While 
it remains to be tested, experiments that utilize germ-free NOD 
mice reconstituted with fecal samples from T1D patients, at risk 
individuals, and healthy subjects may provide some information 
regarding the “good” and “bad” gut bacterial community. This 
knowledge can then be used to develop methods to alter the gut 
microbiota for T1D prevention and set the foundation for future 
clinical trials.
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A detailed understanding of the molecular pathways and cellular interactions that result 
in islet beta cell (β cell) destruction is essential for the development and implementation 
of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events 
that define the pathogenesis of human T1D have remained elusive. This gap in our 
knowledge results from the complex interaction between genetics, the immune system, 
and environmental factors that precipitate T1D in humans. A link between genetics, 
the immune system, and environmental factors are type 1 interferons (T1-IFNs). These 
cytokines are well known for inducing antiviral factors that limit infection by regulating 
innate and adaptive immune responses. Further, several T1D genetic risk loci are within 
genes that link innate and adaptive immune cell responses to T1-IFN. An additional 
clue that links T1-IFN to T1D is that these cytokines are a known constituent of the 
autoinflammatory milieu within the pancreas of patients with T1D. The presence of 
IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found 
in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk 
between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic 
β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in 
the islet microenvironment.

Keywords: type 1 diabetes, type 1 interferons, humans, CD8+ T cell, beta cells

iNTRODUCTiON

Type 1 diabetes (T1D) results from an autoimmune-mediated attack that specifically targets 
insulin (INS)-secreting pancreatic beta (β) cells. Through the interactions of β cell antigen-specific 
T cell receptors (TCR) with MHC-peptide complexes, β cells are destroyed leading to aberrant 
glucose homeostasis and persistent hyperglycemia. Critical to T1D pathogenesis is the targeted 
destruction of pancreatic β cells mass by autoreactive cytotoxic CD8+ T  lymphocytes (CTLs) 
(1–6). Although responses in T1D are directed toward autoantigens, the activation of the β cell 
specific CTLs is expected to be similar to activation of CD8+ T cells observed during a typical 
response to infectious agents. Following activation, autoreactive CTLs clonally expand, home 
into the pancreatic islets, and survey the surface of β cells for antigen presented in the context 
of MHC class I (MHC-I). Recognition of the specific cognate peptide- human leukocyte antigen 
(HLA) class I complex results in the induction of TCR signaling, formation of the immunological 
synapse, and targeted destruction of β cells. While the immune system plays a significant role in 
perpetuating disease pathology, a large body of literature supports the notion that development 
of T1D is dependent upon a complex network of determinants including those of genetic and 
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environmental etiologies (7–15). Tissue microenvironments 
influence immune responses in models of tumor biology and 
infectious disease. However, this notion remains largely been 
unexplored in the target tissues of autoimmune diabetes.

Type 1 interferons (T1-IFNs), classically known for interfer-
ing with viral infection, have been implicated in the early stages 
of T1D autoimmunity (16–21). Transcriptome analysis reveals 
a T1-IFN signature in the peripheral blood of patients prior 
to the development of autoantibodies (16, 17). Additionally, 
these cytokines have been identified as being expressed in the 
pancreata of deceased tissue/organ donors with T1D versus 
non-diabetic donors (18, 19, 21). GWAS studies reveal several 
T1D-associated genes that are involved in the production, sign-
aling, and regulation of the T1-IFN pathway (12, 22). Moreover, 
induction of T1D has been reported in patients receiving T1-IFN 
therapy for various conditions including hepatitis C, multiple 
sclerosis, and hairy cell leukemia (23–30) supporting the idea 
that these cytokines may actively exacerbate T1D progression. 
Despite the growing evidence for the role of T1-IFNs in T1D, 
little is known about how these cytokines contribute to the 
inflammatory environment of the human autoimmune diabetic 
islet (16, 17, 31–36). This review will consider the current para-
digms in the natural history of T1D as well as T1-IFN action 
while summarizing the published literature regarding a role for 
T1-IFNs in T1D pathogenesis. Additionally, we highlight the 
exciting new avenues of research suggesting that T1-IFNs may 
be a catastrophic feature within the diabetic microenvironment.

SeTTiNG THe STAGe FOR 
AUTOiMMUNiTY: ROLe OF GeNeTiC 
SUSCePTiBiLiTY

Genetic predisposition constitutes a primary risk factor for the 
initiation of β cell autoimmunity and can be attributed to the 
complex interplay of more than 50 genetic loci that may impact 
immune function, INS expression, and β cell function (11, 37, 38).  
Identified as the first genetic locus associated with T1D in the 
1970s, the HLA region on chromosome 6p21 confers approxi-
mately 50% of the genetic risk for disease development (39). This 
region, also referred to as (it) IDDM1 (it), is highly polymorphic, 
containing over 200 identified genes that can be categorized as 
class I, II, or III genes that play an important role in antigen 
presentation as well as regulation of this process. Particularly, 
class I and II genes encode the classical HLA cell surface proteins 
that are involved in presenting antigen to CD8+ and CD4+ 
lymphocytes, respectively. In fact, the strongest association is 
found in patients harboring the specific HLA class II haplotypes, 
DR3-DQ2 (DRB*301-DQB*201) and DR4-DQ8 (DRB*401-
DQA*301-DQB*302) with the highest risk seen in DR3/DR4 
compound heterozygotes (40, 41). Conversely, strong protec-
tion from T1D is observed in individuals with the DQB*602 
allele, which is reported in less than 1% of patients with T1D  
(42, 43). Comparison of high- and low-risk DQ alleles in humans 
and mouse models reveal key differences in peptide binding, 
as predisposing alleles contain a substitution of non-charged 
amino acids (alanine, valine, or serine) for aspartate at position 

57, which destabilizes binding of antigenic epitopes (44–46). 
While most studies assessing HLA risk haplotypes have been 
carried out in Caucasian individuals, recent efforts have begun 
to characterize HLA susceptibility in other ethnic groups. For 
example, HLA genotyping in African American patients found 
that the African-specific DR9 (DRB1*09:01-DQA1*03:01-
DQB1*02:01g) haplotype in combination with DR4 mimics 
risk for T1D seen in patients with DR3/DR4 heterozygosity in 
European populations. Alternatively, the African-specific “DR3” 
haplotype (DRB1*03:02-DQA1*04:01-DQB1*04:02) confers 
significant protection (47). Future studies in this area should 
be geared toward understanding HLA risk haplotypes in indi-
viduals of diverse ethnic backgrounds. Although not as widely 
studied, HLA class I alleles, HLA A*24 and HLA B*39, appear 
to be associated with increased susceptibility for T1D, decreased 
age of onset, and fulminant β cell destruction (48–50).

Numerous additional loci outside of the HLA region summate 
the remaining genetic risk for diabetes development, although 
the individual odds ratios conferred by these regions are modest 
(11, 12). Several of these genes are thought to influence tolerance 
mechanisms facilitating the escape of autoreactive T cells into 
the periphery. For instance, variants within the INS gene are 
known to modulate thymic INS expression, which comprises 
about 10% of the genetic risk for T1D and carry an odds ratio of 
2.2 (51–53). Extensive mapping of this region associates variable 
number of tandem repeats in the 5′ promoter of INS with diabe-
tes risk (53–55). Shorter class I alleles [23–63 repeats] predispose 
for diabetes, while longer class III alleles [140–210 repeats] are 
protective (55). The number of tandem repetitions determines 
INS transcription in the thymus through interactions with the 
autoimmune regulator, AIRE, which is essential for appropri-
ate T cell education and provides strong evidence that central 
tolerance to INS, the primary autoantigen in T1D, is impaired in 
patients who harbor this risk variant (56).

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) 
is another well-known example, as this locus confers the third 
highest genetic association for T1D and is also known to 
be a regulator of signaling in a variety of immune cell types 
including lymphocytes, monocytes, dendritic cells (DCs), and 
neutrophils (57). Case-control and association studies show 
that this coding variant causes a non-synonymous substitution 
from an arginine to a tryptophan (R620W) located within the 
protein-binding domain of PTPN22. Biochemical studies in 
lymphocytes demonstrate the PTPN22*W620 allele behaves as 
a gain-of-function mutant with dampened TCR signaling (58). 
In contrast, the same variant in myeloid derived cell types is 
highly controversial with some models demonstrating hyper-
responsive DC phenotypes with increased T  cell activation 
while others exhibit reduced function and selective impairment 
of T1-IFN responses following TLR stimulation (59, 60). How 
might seemingly paradoxical functions be contributing to onset 
of T1D? On one hand, diminished TCR signaling by the risk 
variant could impair central and peripheral T  cell tolerance, 
while reduced T1-IFN production by TLRs may hinder effec-
tive clearance of β-cell tropic viruses triggering self-reactivity 
(61). Studies remain ongoing to determine the full gamut of 
functional consequences induced by this variant.
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Like PTPN22, many T1D-associated genes play multiple roles 
in immune sensing and signaling especially in response to envi-
ronmental ques, which supports the hypothesis that genetic risk 
coupled to permissive environmental determinants collectively 
contribute to diabetes progression. Diabetogenic viruses signify 
a highly postulated candidate for initiation and potentiation of 
islet autoimmunity. Critical for the innate immune response to 
viral infection are T1-IFNs. Several identified genetic loci for 
T1D also have prominent roles in the induction and signaling of 
this pathway, including IFIH1 (rs1990760), TYK2 (rs2304256), 
and STAT4 (rs7574865) (62–64). TYK2 is a tyrosine kinase 
involved in proximal TI-IFN signal transduction as well as regu-
lation of IFNAR1 surface expression (65–67). Similarly, STAT4 
is a key mediator of T1-IFN signaling essential for the genera-
tion of Th1 responses, which contribute to the T cell-mediated 
pathology observed in diabetes (68, 69). Also associated with 
several other autoimmune disorders, protective variants for 
each of these genes is associated with reduced T1-IFN signal-
ing (67, 70). IFIH1 encodes the protein MDA5, a cytoplasmic 
sensor of viral double-stranded RNA. The non-synonymous 
SNP found in IFIH1 results in alanine to threonine amino acid 
substitution at position 946 (A946T) and may diminish ATPase 
activity of MDA5 activity leading to deranged constitutive prov-
ocation of T1-IFN as well as blunted viral sensing (62, 71, 72).  
Compelling evidence in primary human islets reveals that pres-
ence of the homozygous risk allele decreases the autonomous 
innate response to Coxsackievirus B3 (73). Collectively, these 
data suggest that the A946T risk variant in IFIH1 may act as a 
double-edged sword, predisposing β cells to persistent enterovi-
ral infection while concurrently promoting deleterious T1-IFN 
production in and around the islet microenvironment.

evOLUTiON OF iSLeT DeSTRUCTiON  
iN HUMAN DiABeTeS

Human β cells act as quintessential metabolic sensors working 
to integrate environmental cues for rapid and efficient glycemic 
control (74). Reports of decreased C-peptide responses and 
reduced glucose tolerance in autoantibody positive individuals 
suggest that ongoing inflammation precipitates the deterioration 
of β cell function prior to diabetes onset (75–77). Additionally, 
β cells are also widely believed to be active participants in pro-
moting a diabetogenic islet microenvironment. For example, 
MHC-I is known to be hyperexpressed within the islets of T1D 
patients, suggesting that β cells may be more visible to infiltrat-
ing CTL (1, 20, 21, 78). Increasing data insinuates that signals 
arising from the islet microenvironment, such as T1-IFNs, could 
trigger such disease promoting adaptations. Additionally, active 
inflammatory signals within the islet microenvironment prompt 
substantial variation in the β cell transcriptome and proteome 
as well as augmenting the capacity for cytokine and chemokine 
production by islet or β cells (79).

The conceptual model proposed by George Eisenbarth for 
the natural history of T1D has shaped theories regarding the 
evolution of T1D pathogenesis (80, 81). Many facets of this 
paradigm have been tested and updated over the past 3 decades.  

The amalgamation of genetic pre-disposition and initiating  
environmental triggers create the framework for models that 
describe the insurgence of β cell autoimmunity. Though the 
nature of the instigating insult is not completely understood, 
once initiated, active immune-onslaught can be indicated by 
the presence of autoantibodies and histological detection of the 
pathognomonic lesion termed insulitis (82). Found in or around 
the islets, insulitis is a heterogeneous inflammatory infiltrate 
comprised of T  lymphocytes, B lymphocytes, macrophages, 
and DCs, however CD8+ T cells form the primary constituent 
[(1, 2, 83) and Figure 1A]. First noted by German pathologist 
Martin Schmidt in the early 1900s, this lesion was not consid-
ered a prominent feature of T1D until the landmark paper by 
Willy Gepts in 1965 where the presence of insulitic lesions were 
observed in 15/22 recent onset T1D cases (82, 84, 85). Further 
evaluation of these samples using immunohistochemical tech-
niques and additional data from subsequent studies revealed 
that inflammation was primarily observed in islets with INS 
immunoreactivity. Further, in cases with long-standing disease, 
many islets appear to be devoid of INS containing β cells without 
active insulitis, alluding to the role of these cells as the inciting 
antigen in T1D (1, 2, 20, 82, 86–88).

Until recently, efforts aimed at characterizing the nature, 
composition, and frequency of insulitis have been challenging. 
This is due to the anatomical inaccessibility of the pancreas for 
direct study in living subjects as well as a dearth of well-preserved 
human cadaveric tissues for analysis (84, 89). The inception 
of the Network for Pancreatic Organ Donors with Diabetes 
(nPOD) has dramatically advanced our understanding of β 
cell/Islet autoimmunity (89–92). Moreover, studies of human 
pancreata have allowed for the emergence of new paradigms 
in T1D, including the current consensus definition of insulitis, 
defined as the presence of more than 15 peri- or intrainsulitic 
CD45+ cells within a minimum of three islets (93). The most 
comprehensive screening and characterization of insulitis to date 
was recently described using the nPOD collection where a total 
of 159 pancreata were screened (61 controls, 18 autoantibody 
positive cases without a diagnosis of T1D, and 80 T1D cases) 
(88). Investigators presented confirmatory findings that insulitis 
is present most frequently in recent-onset patients within INS-
containing islets and inversely correlates with disease duration. 
The presence of adaptive-immune infiltration into the islets of 
individuals with autoantibodies is a rare event, observed only in 
individuals with multiple antibodies (94). Additionally, patients 
with T1D display tremendous heterogeneity in terms nature, 
distribution, and severity of insulitis in addition to the amount 
of residual β mass present following diagnosis (88, 95).

A critical cell-to-cell interaction during the development of 
T1D occurs when β cells and islet-antigen specific CTLs come into 
contact. Strong evidence has supported a crucial role for CD8+ 
T cells in T1D. First reported by Bottazzo in 1985, histological 
characterization of pancreas sections from T1D cases demon-
strated that CTL are the most abundant immune cell type found 
in human insulitis [(20) and Figure 1A]. Additional studies have 
confirmed that CD8+ T cells have a prominent role in T1D as well 
as recurrent T1D that occurs after transplantation of islets, pan-
creas (pancreas alone, or SPK recipients) into patients with T1D. 
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FiGURe 1 | CD8 T cells are the major leukocyte component of the insulitis lesion in type 1 diabetes (T1D) as well as recurrent disease. Pancreatic sections [courtesy 
of Network for Pancreatic Organ Donors with Diabetes (nPOD)] were examine histologically for the presence of islet invading immune cells. (A) Section taken from a 
pancreas organ donor with T1D (nPOD case 6052). The tissue section was immunofluorescently stained for glucagon (yellow) to identify the islet, CD4 
T lymphocytes (red), and CD8 T lymphocytes (green). Within this islet cytotoxic CD8+ T lymphocytes (CTLs) are the predominant T cell type observed. Image 
courtesy of Martha Campbell-Thompson, DVM/PhD (University of Florida). (B) Section taken from a pancreas transplant biopsy, from an simultaneous pancreas and 
kidney (SPK) recipient who had developed recurrence of T1D. Tissues were stained for insulin (red), CD4 T lymphocytes (blue), and CD8 T lymphocytes (teal). Within 
the insulitic lesions, CTLs represented the dominant T cell found. Figure shows islets with both CD8 than CD4 T cells, but most islets were primarily infiltrated by 
CD8 T cells. Green/yellow bright stains represent non-specific fluorescence from red blood cells. Image courtesy of Alberto Pugliese, MD, Francesco Vendrame, 
MD, and George Burke, III, MD, University of Miami.
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Biopsy and histological examination of the transplanted pancreas 
demonstrate the accumulation of high numbers of CD8+ T cells 
into INS positive islets in patients who are undergoing active islet 
autoimmunity (Figure 1B).

Regarded as the final executioner in T1D, CTLs mediate 
direct β cell destruction through the recognition of epitopes 
from proteins that are selectively expressed in β cells and are 
presented by these INS-producing cells the context of MHC-I. 
Following recognition of cognate antigen, CTLs create a close 
contact with the target β cell by forming an immunological 
synapse, where several cytotoxic mechanisms are employed to 
induce death of β cells. These include the induction of molecules 
involved in the granule exocytosis pathway such as perforin, 
granzyme, or granulysin as well as increased surface expression 
of death ligands such as Fas Ligand and TNF-related apoptosis 
inducing ligand (96–98). The presence of CTLs specific for well-
known autoantigens such as IGRP, preproinsulin, and IA-2, have 
been documented in islets with augmented MHC-I expression  
(1, 2, 88). CD8+ T cells bearing TCR that are specific for β cell 
antigens have been detected in circulation of patients. These 
TCRs imbue CTL with the ability to destroy human β cells 
in vitro (99–102). In patients undergoing recurrent autoimmun-
ity following islet transplantation, autoreactive CD8+ T cells are 
associated with β cell destruction resulting in graft failure (103). 
This evidence for an essential role of CTL in T1D in humans is 
further bolstered by studies in mice. Spontaneous diabetes fails 
to develop in non-obese diabetic (NOD) mice lacking MHC-I or 
β2 microglobulin (4, 6), while diabetes onset can be accelerated 
by adoptive transfer of diabetogenic CTL (104, 105).

Mounting evidence suggests that stimuli from the diabetic 
islet microenvironment likely contribute to autoreactive CTL-
mediated β cell cytotoxicity. For example, using NOD adoptive 
transfer systems with IGRP-specific NY8.3 CD8+ T cells, it has 
been demonstrated that CD8+ T cells acquire greater cytolytic 

capacity and an effector-memory phenotype upon migration 
into the NOD islet (106–108). As T1-IFNs are linked to increased 
HLA expression in the pancreatic islets of patients with T1D, 
suggesting that these cytokines contribute to autoimmune 
surveillance and promote insulitis. While the effect of T1-IFNs 
on human islets have only recently begun to emerge, evidence 
suggests that T1-IFNs are involved in the cross talk between the 
adaptive immune effectors and the microenvironment of the 
diabetic islet (16, 17, 31–36, 109, 110).

TYPe 1 iNTeRFeRONS

Type 1 interferons belong to a large family of cytokines that were 
originally described by Alick Issacs and Jean Lindenmann in 
1957 as soluble factors responsible for mediating viral interfer-
ence following a primary virus exposure (111–113). Since then, 
this large family of cytokines has been further categorized into 
three distinct classes that play essential roles in cellular-mediated 
defense against viral and microbial infections as well as in auto-
immunity (113–116). Differing in structural homology and sign-
aling receptor complexes, these categories include the T1-IFNs 
as well as the type 2 interferon [interferon gamma (IFNγ)] and 
the recently identified type III IFNs including IFNλ1 (IL-29), 
IFNλ2 (IL-28A), IFNλ3 (IL-28B), and IFNλ4 (114, 117–121).  
T1-IFNs signal through the heterodimeric IFNAR1-IFNAR2 
receptor [IFNAR] and comprises the largest class of IFN includ-
ing thirteen IFNα subtypes in addition to IFNβ, IFNε, IFNκ, 
and IFNω. Though multiple T1-IFN subtypes may appear 
redundant, these distinct entities display unique binding affini-
ties to the IFNAR that result in diverse functional outcomes with 
respect to antiviral, immunomodulatory, and growth inhibitory 
activity (122–128). While all T1-IFN subtypes contain several 
conserved “anchoring” residues that are important for receptor 
binding, the contribution of residues flanking these anchor 
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points determine the overall binding of these polypeptides to 
IFNAR1/2 (126–130). As such, IFNβ exhibits the strongest 
interaction with the receptor out of all T1-IFN subtypes (130).

Type 1 interferons represent an early line of defense against 
viral infection and can be produced by virtually every cell in the 
body (131–134). Induction of T1-IFNs are initiated by stimula-
tion of pattern recognition receptors (PRRs) that recognize 
conserved motifs found on viruses, including toll-like recep-
tors (TLR3, TLR4, TLR7, and TLR9), cytosolic RNA helicases 
(RIG-I and MDA-5), and cytosolic DNA sensors (131, 133, 134). 
Following activation of these distinct pathways, the adaptor 
molecules MAVS (cytosolic RNA sensors), STING (cytosolic 
DNA sensors), TRIF (TLR3/4), and MyD88 (TLR7/8/9) trans-
duce signals that converge on the activation of TBK-1, which 
phosphorylates IRF-3 leading to transcription of T1-IFN and 
IRF-7 that engage in a positive feedback loop for amplification 
of this response (134–136).

Following production, T1-IFNs signal in an autocrine or 
paracrine fashion through IFNAR. Engagement of the receptor  
leads to trans-phosphorylation as well as activation of the tyros-
ine kinases TYK2 and JAK1 that are constitutively associated 
with the IFNAR subunits, IFNAR1 and IFNAR2, respectively. 
Signaling downstream of IFNAR can lead to the activation 
of several pathways that contribute to the widespread range 
of effects by T1-IFNs depending upon the cell type and the 
context in which the TI-IFN signal was received (117, 133, 
137, 138). Classically, T1-IFN signaling invokes the activa-
tion of STAT1-STAT2 heterodimers that rapidly translocate 
to the nucleus and complex with IRF9 to form the interferon-
stimulated gene factor 3 (ISGF3) complex. Formation of ISGF3 
leads to binding of the interferon response element (consensus 
sequence: TTTCNNTTTC) for the transcription of interferon-
stimulated genes (ISGs) that mediate a diverse range of functions  
(117, 133, 139). Alternatively, T1-IFNs are capable of activat-
ing all seven members of the STAT family that can manifest as 
homodimers or heterodimers to induce downstream signal-
ing and transcription. For instance, T1-IFN induced STAT1 
homodimers are known to bind IFNγ activated sequences (GAS; 
consensus sequence: TTCNNNGAA) to initiate proinflamma-
tory programs similar to IFNγ, whereas T1-IFN induced STAT3 
homodimers have been reported to interact with the corepressor 
complex SIN3A to indirectly counteract inflammatory responses  
(133, 140–142). Utilization of these alternative T1-IFN signaling 
pathways is partially determined by the expression of individual 
STAT family members (143). This concept is clearly evident in 
lymphocytes. The balance between STAT1 and STAT4 dictates 
T cell responses following T1-IFN exposure (144). This is highly 
dependent upon STAT4 expression within the T cell, which is ini-
tially induced through activation of TCR signaling. This induces 
a switch from the “classical” anti-proliferative and proapoptotic 
actions of STAT1 signaling to STAT4 that promotes T cell prolif-
eration, differentiation, and survival (143–145).

In addition to JAK-STAT signaling, several other non-
canonical pathways are known to be induced by T1-IFNs. For 
example, activation of JAK1 and TYK2 after T1-IFN engagement 
has been shown to induce the PI3K-AKT pathway that leads 
to activation of mTOR, which leads to downstream control of 

protein translation, regulation of cellular division, and prolifera-
tion, in addition to activation of IKKβ resulting in NF-κB activity 
(117, 137). In lymphocytes, the MAPK pathway mediates cross-
talk between T1-IFN signaling and the TCR complex resulting 
in growth inhibition (117). While studies are still ongoing to 
unmask the complex signaling networks induced by T1-IFNs, 
the ability of these cytokines to induce a wide array of signaling 
pathways explains their pleiotropic and sometimes paradoxical 
biological activities.

Type 1 interferons signaling culminates in the induction of 
a robust antiviral program. Several key components required 
for T1-IFN signaling, including STAT1 and IRF9, are also well-
known ISGs that act to reinforce and amplify the IFN response. 
T1-IFNs also act to enhance host defense and pathogen detection 
by increasing the expression of several PRRs involved in viral 
sensing, expression of 2,5 oligoadenylate synthetase (OAS) that 
facilitates eradication viral RNA, as well as upregulation of pro-
teins that interfere at various steps of the viral life cycle, including 
viral entry, replication, and viral egress from infected cells (146).

Type 1 interferons dynamically regulate the actions of innate 
and adaptive immune cells, including the ability to enhance 
NK cell cytotoxicity as well as the production of IL-1β and IL-18 
by macrophages (147). These cytokines are also well known for 
directly and indirectly influencing T  cell responses that assist 
in the eradication of invading pathogens or malignant cells  
(132, 138, 147, 148). IFNα/β promote the differentiation and 
maturation of DCs by enhancing the expression of MHC-I and II 
along with costimulatory molecules (CD40, CD80, CD83, CD86, 
4-1BBL) required for efficient CD4+ and CD8+ T  cell priming 
(138, 149–151). These cytokines promote trafficking of DCs to 
lymphoid organs, stimulate expression of adhesion molecules, 
and induce the secretion of chemoattractant molecules that 
promote communication between DCs and T  lymphocytes  
(138, 152–154). In line with their effects on DCs, T1-IFNs 
promote the activity of antigen-exposed CD8+ T cells, by incit-
ing proliferation, enhancing survival, and increasing effector 
function. Conversely, in antigen-inexperienced CD8+ T cells the 
T1-IFNs prevent growth and differentiation in an effort to direct 
a specific T  cell response toward the inciting pathogen (138). 
While T1-IFNs act to implement numerous mechanisms aimed 
at thwarting the spread of infection, aberrant activation of this 
pathway, as seen in autoimmunity, can lead to overactivation of 
immune cells and perpetuation of tissue damage.

T1-iFNs AND PATHOGeNeSiS OF T1D

evidence in Humans
The characterization of insulitis in seminal studies by Gepts and 
Foulis altered the landscape regarding the pathogenesis of T1D 
to one of an immune etiology. Soon after, it was reported that 
there was a striking genetic association between the HLA DR 
locus and T1D onset (155). These findings, along with the notion 
that class II antigens could be expressed abnormally in other 
organ-specific autoimmune diseases prompted investigators 
to hypothesize that altered antigen presentation by pancreatic 
β cells in T1D might explain activation and infiltration of 
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autoimmune T  cells found within insulitic lesions (156–158). 
In 1985, Bottazzo et  al. reported that residual β cells found 
in a 12-year-old recent onset donor were selectively positive 
for HLA-DR. In addition to noting enhanced expression of 
HLA-DR, this was also the first report to note enhanced HLA 
class I expression in insulitic islets the same donor (20). Since 
the aberrant expression of MHC-II molecules could be induced 
by IFNγ on thyroid follicular cells in autoimmune thyroiditis, it 
was postulated that IFNγ could be acting in a similar manner 
to induce this uncharacteristic expression in pancreatic β cells. 
While subsequent studies showed that interferons were incapable 
of directly inducing ectopic expression of MHC-II on pancreatic 
β cells, they were found to be potent inducers of MHC-I expres-
sion (21). Subsequent analyses confirmed that MHC-I expres-
sion was a prominent phenotype found in patients undergoing 
islet autoimmunity, especially in normal appearing or inflamed 
islets containing residual β cells (1, 78, 159–162). Based on the 
heterogeneity of insulitis in T1D, it was hypothesized that β cells 
could be actively generating soluble mediators that are capable of 
acting in a paracrine manner to exert affects within the diabetic 
microenvironment. IFNα represented a prime candidate, as it 
was known to induce MHC-I in islet tissue and was known to be 
produced by a wide range of cells (21). The first report to correlate 
the presence of IFNα in the islets of patients with recent-onset 
T1D diabetes was published in 1987. Investigators examined 
37 pancreata from cadaveric donors with T1D and found that 
34 of 37 samples displayed MHC-I hyperexpression. Further, 
97% of patients displaying this feature concurrently exhibited 
positivity for IFNα by immunocytochemistry (18). Transcript 
expression of various cytokines, including IFNα, IFNβ, IFNγ, 
IL-1β, TNFα, were compared in diabetic and control pancreata. 
Among the panel of cytokines tested, only IFNα displayed a clear 
and consistent pattern of augmented expression in patients (19).

Additional lines of evidence implicate a pathogenic role for 
T1-IFNs in human autoimmune diabetes. The presence of β 
cell-specific autoantibodies signifies the preclinical phase of T1D 
and serves as an essential biomarker for identifying at-risk indi-
viduals (163). Long-term follow up of at risk children enrolled 
in the BABYDIET and DIPP longitudinal studies reveal T1-IFN 
inducible signatures in the peripheral blood, which was positively 
correlated with episodes of upper respiratory infections. The 
signature was strongest immediately prior to seroconversion and 
began to decline after the detection of autoantibodies. This time 
course suggests that activation and production of T1-IFNs may 
be involved in the early stages of islet autoimmunity (16, 17).  
In accordance with these findings, IFNα in the plasma of patients 
with T1D was shown to be elevated when compared to controls 
(10.1 U/mL; 69.6% positivity vs. 0.4 U/mL, 0% positivity, respec-
tively) and plasmacytoid dendritic cells (pDCs), well known for 
producing T1-IFNs, were observed in the peripheral blood of 
new-onset patients during diagnosis (164, 165). Furthermore, 
enterovirus RNA, particularly Coxsackievirus B, was identified 
in 50% of patients who displayed positivity for IFNα (165).

The half-life of cytokines within the T1-IFN family is relatively 
short (IFNα: 4–16 h; IFNβ 1–2 h) and serum levels of IFN begin 
to decline very rapidly once secreted (166, 167). Due to rapid 
clearance, detection of IFNs in circulation can prove challenging. 

To circumvent this, investigators have attempted to use T1-IFN 
induction pathways, such as Poly(I:C), or the measurement 
of ISGs in PBMC as surrogate markers for T1-IFN activation 
when comparing patients and controls (168, 169). For example, 
patients display a higher basal expression of the ISG OAS, as well 
as increased sensitivity to IFNα exhibited by maximal induction 
at lower IFNα concentrations when compared to control subjects 
(168). T1-IFN production was higher from PBMC isolated from 
patients with T1D compared to controls, whereas IFNγ produc-
tion by isolated PBMC in response to concanavalin A was not 
different between control and T1D patient samples (169). With 
respect to the IFNα response, there was no correlation to blood 
glucose levels, HbA1c, age of onset, disease duration, or ICA 
positivity, which may point to the importance of genes associated 
with T1D that are involved in signaling of this pathway (169).

Initiation of islet autoimmunity has been noted in individuals 
following T1-IFN therapy for chronic hepatitis, multiple sclero-
sis, as well as hematologic malignancies (23, 24). First reported 
in 1992, T1-IFN-induced autoimmune diabetes was described 
in a patient with Hepatitis C, who was seropositive before treat-
ment for autoantibodies against both GAD and INS (30). While 
this complication occurs in a minor subset of patients, half of 
all cases reporting T1D following IFN therapy were positive 
for autoantibodies. This suggests that T1-IFNs may precipitate 
loss of tolerance and self-reactivity in at-risk patients (170). 
Studies investigating β cell function in these patients suggest 
that T1-IFNs can reduce INS secretion, impair carbohydrate 
metabolism during an oral glucose challenge, and induce INS 
dependency over the course of treatment (171, 172). Patients 
who incur T1-IFN-induced autoimmune diabetes to not exhibit 
normoglycemia when T1-IFN therapy is arrested suggesting that 
in these patients β cell mass is lost to an extent that metabolic 
control cannot be reestablished.

evidence in Animal Models of T1D
Animal models have been indispensable for ascertaining 
knowledge regarding the cellular and molecular events involved 
in T1D pathogenesis. Likewise, these models have also been 
instrumental in elucidating how T1-IFNs contribute to diabetes 
pathogenesis. One example includes the diabetes prone bio-
breeding rat (BB-DP rat). These animals emulate some patho-
logic features observed in human diabetes including polygenic 
inheritance [including the MHC], peripubescent onset, and 
β cell destruction characterized by mononuclear infiltration  
(173, 174). Initial studies conducted in this model demonstrate 
a dose dependent stimulation of IFNα production by Poly(I:C) 
that correlates with accelerated diabetes incidence and severity 
(175, 176). Conversely, elevation of serum IFNα in non-diabetes 
prone Wistar rats did not instigate diabetes, suggesting that 
T1-IFNs are not pathogenic without an inherent risk for diabetes 
(175, 176). Additionally, investigation into the natural history 
of diabetes in BBDP rats revealed spontaneous expression of 
IFNα in the islets of Langerhans prior to insulitis proposing that 
induction of T1-IFNs in the islet microenvironment may disrupt 
self-tolerance in this preclinical model (177).

The NOD mouse model has served as the principal animal 
model for the investigation of causative mechanisms leading 
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to autoimmune diabetes (178). Several lines of evidence in the 
NOD support an association for T1-IFNs in T1D. One of the 
most striking is the presence of a T1-IFN signature in NOD islets 
prior to diabetes onset, reminiscent of the signature observed in 
humans and BBDP rats (31). In 4- to 6-week-old NOD females, 
T1-IFNs serve as one of the first distinctive signs of pathol-
ogy in these animals followed by lymphocytic infiltration and 
synchronized elevation of activation markers in the islet tissue 
(31). Elevated levels of IFNα and pDC in the pancreatic drain-
ing lymph nodes are also reported in 2- to 3-week-old NOD 
mice (36). This argues that aberrant activation of pDCs, a DC 
subset that specializes in T1-IFN production, may contribute to 
the development of this signature, perhaps through ineffective 
clearance of islet cell debris (36, 179, 180). Moreover, innate 
sensing by TLRs represents an essential pathway for the stimula-
tion of T1-IFNs. Accordingly, ablation of MDA-5 (encoded by 
Ifih1) in NOD mice results in protection from spontaneous T1D 
development, while NOD mice carrying a single allele of MDA-5 
experience slowed progression and reduced incidence (181). 
MDA-5+/− animals also displayed protection from Coxsackie B4 
virus-induced T1D when compared to MDA-5+/+ littermates that 
developed disease despite being able to efficiently clear the virus 
(181). Further investigations have revealed that CB4 infection 
of MDA-5+/− mice resulted in a transient increase in IFNβ that 
returned to baseline by 7 days postinfection, while IFNβ levels 
in MDA-5+/+ mice remain consistently elevated after infection 
(181). These data suggest that protective allotypes of MDA-5 
may act in a similar manner to tightly regulate IFN produc-
tion while keeping antiviral defense mechanisms intact (181). 
Accordingly, stimulation of TLR7, which recognizes ssRNA to 
promote T1-IFN production, results in accelerated T1D onset in 
NOD animals, whereas abrogation of TLR9 signaling, important 
for the response to unmethylated DNA, retards progressive islet 
destruction (182, 183). Inhibition of T1-IFN signaling through 
the heterodimeric IFNAR has presented conflicted results. 
Incidence in NOD and NOD.IFNAR1−/− was indistinguishable, 
however short-course administration of an IFNAR1 blocking 
antibody to NOD animals 15–25 postpartum significantly 
delayed the onset of diabetes (36, 184, 185). Recently, CRISPR-
Cas9 deletion of the IFNAR1 subunit in LEW.1WR1 rats, a 
newly described animal model for T1D, caused delayed onset 
and frequency of Poly(I:C) induced diabetes (186, 187). Taken 
together, these data support the idea that coordinated activa-
tion of T1-IFN is an early event in autoimmune diabetes but 
its role in disease progression is likely heavily influenced by the 
immune response to environmental cues and inheritance of 
risk/resistance alleles in genes that impact T1-IFN production 
or signaling.

Utilization of transgenic model systems during the late 20th 
century provided strong evidence that T1-IFNs may act to accel-
erate diabetes pathogenesis. Overexpression of IFNα or IFNκ in 
pancreatic β cells of mice not normally prone to T1D leads to onset 
of diabetes with severe insulitis, hypoinsulinemia, and diabetes 
(35, 188). Transgenic mice expressing of IFNβ under the control 
of the rat INS promoter display various phenotypes depending 
on genetic background. For example, C57BL6/SJL mice with the 
RIP-IFNβ transgene do not develop overt diabetes, but display 

mild hyperglycemia with decreased glucose-stimulated INS 
secretion and impaired glucose tolerance characteristic of a pre-
diabetic state (34). However, overexpression of IFNβ in the islets 
of other mouse strains that are not prone to developing T1D, 
including the non-obese diabetes resistant, induced spontane-
ous diabetes development (34, 189). Moreover, NOD RIP-IFNβ 
mice had accelerated and fulminant onset of T1D (189). Taken 
together, these data demonstrate that T1-IFNs can act as a spark 
leading to autoimmunity but only in individuals that possess 
an inherent risk for development of T1D. Further, these data 
demonstrate that T1-IFNs in the islet microenvironment result 
in deleterious effects on β cell function and viability by promot-
ing islet inflammation.

T1-iFNs ARe MAJOR PLAYeRS iN T1D

Although T1-IFNs have been associated with the induction 
of T1D and have been identified as a consistent component of 
the islet autoinflammatory milieu, the direct impact of these 
cytokines on the pancreatic β cell, cytotoxic T-lymphocytes, and 
other cellular constituents within the islet that facilitate ongoing 
islet autoimmunity have only recently been studied using human 
systems (18, 19, 160, 190). The defining feature observed in T1D 
is the hyper expression of MHC-I in the islets of patients with 
T1D, suggesting enhanced β cell immunogenicity and increased 
susceptibility for targeting by CTLs (1, 2, 18, 19, 190). T1-IFN 
represent a likely candidate within the local microenvironment 
capable of mediating this effect, as IFNα/β have been shown 
to directly induce MHC expression on primary human islet 
cells [Figure  2 and (21, 109)]. Recent findings by Marroqui 
et al. demonstrate that IFNα induced HLA is dependent upon 
canonical T1-IFN signaling, with TYK2, STAT2, and IRF9 being 
critically required for induction of HLA class I (109). Another 
notable finding within the islets of new onset T1D patients is 
elevated levels of the chemoattractant, CXCL10 (191, 192). 
Touted as a well-known ISG, CXCL10 is induced by IFNα in 
primary human islets (109). Our laboratory has corroborated 
these data, showing that exposure of primary islets to T1-IFN 
results in significant increases in cell surface Class I HLA by flow 
cytometry as well as increased mRNA expression of MHC-I and 
CXCL10 by transcriptome analysis (193). Furthermore, we also 
find upregulation of transcripts critically required for the MHC-I 
antigen processing and presentation. Enhanced expression of 
immunoproteasome subunits PSMB8 and PSMB9 (Figure  2) 
along with proteasome activator subunits PSME1 and PSME2 
by T1-IFN suggests an increased efficiency of peptide genera-
tion under conditions of inflammatory stress and ATP depletion 
(194–196). Analysis of constituents of the peptide loading com-
plex following T1-IFN exposure reveal a significant increase 
in TAP1, TAP2, TAPBP, chaperones, and the editing enzyme 
ERAP1 suggesting increased transport, stable processing, and 
loading of peptides onto MHC-I within the endoplasmic reticu-
lum (ER) [(196) and Figure 2]. Additionally, there is a global 
augmentation of antigen processing and enhanced surface 
MHC-I with functional reductions in β cell mass, as priming of 
β cells with T1-IFN results in enhanced CTL-induced lysis by 
chromium release assay [(193) and Figure 2].
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FiGURe 2 | Type 1 interferons (T1-IFNs) are a catastrophic feature of the islet microenvironment in type 1 diabetes (T1D). Based on previous literature and current 
findings, T1-IFNs are consistently found in the islet autoinflammatory milieu and represent a viable signal that may precipitate diabetogenicity in T1D. With respect to 
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mitochondrial bioenergetics. Whole transcriptome analysis reveals decreased expression of genes involved in the regulation of ATP production and transport, 
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Two recent studies have noted the impact of IFNα on β cells. 
Using IFNα both groups determined that this cytokine induced 
the unfolded protein response (UPR) leading to ER stress. 
However, neither publication reported negative impacts on β 
cell viability, suggesting that ER stress induced by IFNα did not 
impact cell death, and there was no reported functional changes 
(109, 110). While these two studies demonstrate increased 
expression of markers that signal ER stress, the induction of this 
response differed in timing and severity, which likely points to 
differences in experimental design and methodology (109, 110).  
Indeed, these reports utilized different culture conditions 
including different media formulations as well as very different 
time courses of study. For instance, Marroqui et  al. revealed 
an elevated expression of ATF3 and CHOP in primary human 
islets following 24 h of IFNα (2,000 U/mL) exposure (109). The 
study conducted by Lombardi and Tomer more widespread 
induction of the UPR and also assessed INS secretory function 
in primary human islets and EndoC-βH1 cells after 2 days of 
exposure to 1,000 U/mL of IFNα. They detected no alterations 
in glucose stimulated INS secretion, but did correlate the induc-
tion of ER stress with reductions in INS content, increased 
proinsulin to INS ratio, in addition to reduced expression of 
prohormone convertases, PC1, and PC2 (110). Although ER 

stress has been a frequently hypothesized explanation for β cell 
dysfunction in T1D, the idea that IFNα elicits expression of 
genes involved in the UPR presents a conundrum (197, 198). 
Previous reports demonstrate that ER stress actually impairs 
MHC-I expression. These differences in findings of these two 
recent publications with the discordance of coexisting ER stress 
and enhanced ER antigen processing highlight the need for a 
greater understanding of how the numerous signals provoked 
by T1-IFN alter the β cell in T1D (199–201). Further inspection 
of metabolic pathways responsible for coordinating INS secre-
tion in β cells by transcriptome analysis revealed a decreased 
expression ATP5A1, a subunit required for ATP production 
by ATP synthase; decreased expression of adenine nucleotide 
translocases 2 and 3 (SLC25A5 and SLC25A6), responsible for 
regulating mitochondrial ATP export, and decreased expression 
of the mitochondrial phosphate carrier, SLC25A3 [(193) and 
Figure  2]. A reduction in these genes will likely have major 
implications on regulation of glucose-stimulated secretion as 
they directly alter ATP/ADP ratios that are required to trigger 
islet cell depolarization that leads to release of INS secretory 
granules.

Another very important component of the islet microenvi-
ronment is vascular endothelial cells that facilitate delivery of 
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oxygen and enable the rapid exchange of nutrients and hormones 
between the blood and the endocrine pancreas. These cells also 
act as a barrier to intricately regulate trafficking and extravasation 
of autoreactive immune cells into the islet microenvironment. 
Several studies have shown that endothelial cells in and around 
the islets display an activated phenotype that likely contributes to 
increased homing and recruitment of autoreactive T cells (202). 
Immunohistochemical studies examining endothelium within 
the pancreata of recent onset patients with T1D reveal elevated 
expression of ICAM-1 as well as hyperexpression of MHC-I and 
-II (83, 190, 203). Expression of these molecules has also been 
associated with concomitant expression of IFNα (190). In line 
with these studies, IFNα is known to directly induce MHC-I and 
expression of ICAM-1 in endothelial cells, suggesting that these 
cytokines may increase the capacity for antigen presentation 
required for autoreactive CTLs to gain entry into the islet (204, 
205). Additionally, human pancreatic islet endothelial cells are 
able to be infected by coxsackievirus B resulting in the production 
of IFNα, induction of adhesion molecules, and increased interac-
tion with immune cells (206). Mounting evidence suggest that the 
crosstalk between β cells and the endothelium is important for 
INS secretory function (207). However, more investigation into 
the role of T1-IFNs in modulating this interaction is warranted.

It is well known that tissue microenvironments are key determi-
nants in driving local immune responses models of cancer and infec-
tious disease. While armed with the ability to modulate the innate and 
adaptive arms of the immune system, the impact of T1-IFN within 
the islet microenvironment has not been fully elucidated. Known to 
contribute to T cell priming and activation through their effects on 
DCs, T1-IFNs have been directly shown to mediate DC maturation 
and migration even in the absence of PPR engagement (208, 209). 
Specifically, they facilitate the metabolic switch from oxidative phos-
phorylation to glycolysis through regulation of the transcription fac-
tor HIF-1α, inducing the upregulation of MHC-I in these cells as well 
as costimulatory molecules (208, 209). In the case of the autoimmune 
diabetogenic microenvironment, the presence of T1-IFNs may act 
to promote DC immunogenicity skewing toward proinflammatory 
immune activation in addition to augmenting the function of islet 
infiltrating immune cells, such as CD8+ T cells. Studies completed in 
our laboratory suggest that T1-IFN drastically augment cytotoxicity 
elicited by human islet-reactive CTLs. Extensive characterization 
of T1-IFN signaling mechanisms within these cells show that these 
cytokines can induce a remarkably rapid acquisition of effector func-
tion through induction and direct binding of pSTAT4 to the promoter 
of Granzyme B (Figure 2). In accordance with studies exhibiting full 
acquisition of autoreactive CTL effector function within the pancreatic 
microenvironment, these novel studies implicate T1-IFN as a putative 
innate signal capable of driving CTL differentiation in the islet (106).

CONCLUSiON AND MODeL DeTAiLiNG 
HOw iFNα CAN wReAK HAvOC iN THe 
DiABeTiC MiCROeNviRONMeNT

Several determinants predict an individual’s susceptibility to 
T1D. It is well appreciated that the immune system plays a 
critical role in diminishing β cell mass, precipitating the onset 

of persistent hyperglycemia. Critical to this destruction is 
the presence of CD8+ T  cells within the diabetic microenvi-
ronment. These cells enter the pancreas where they directly 
target and kill β cells through interactions of the TCR with 
elevated MHC-I expression on β cells. Soluble factors, such 
as T1-IFNs, act to promote islet autoimmunity. In addition 
to being linked to the hallmark HLA class I hyper-expression 
observed in islets of patients with T1D, T1-IFNs are also 
well known for their wide-ranging effects including modula-
tion of innate and adaptive immune responses, especially in 
T lymphocytes. However, until now, few studies to date have 
focused on elucidating how T1-IFN signaling transforms the 
islet to an environment that promotes diabetogenicity. The 
work reviewed here demonstrates that T1-IFNs are stimuli 
that promote dysfunction and increased visibility of target β 
cells alongside enhanced CTL effector function leading to β 
cell destruction.

Association of T1-IFN with T1D reported in previous stud-
ies together with our current findings makes a strong case that 
these cytokines play some role in the complexity of the diabetes 
puzzle (summarized in Figure 2). It is likely that a genetic pre-
disposition skewed toward dysfunctional T1-IFN responses 
create an islet environment permissive to enhanced autoantigen 
presentation, augmented human β cell-specific cytotoxicity by 
autoreactive CTLs and resulting β cell dysfunction. While the 
pleiotropic actions of T1-IFNs are designed to strengthen the 
immune response to viral pathogens, this response proves detri-
mental in the case of autoimmunity where the immune response 
is misdirected toward self and in this way can promote β cell death 
in T1D.
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Houston, TX, United States

The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen 
(HLA), which supports a central role for T cells as the drivers of autoimmunity. However, 
the precise mechanisms that allow thymic escape and peripheral activation of beta cell 
antigen-specific T cells are still largely unknown. Studies performed with the non-obese 
diabetic (NOD) mouse have challenged several immunological dogmas, and have made 
the NOD mouse a key experimental system to study the steps of immunodysregulation 
that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 
and HLA-DQ8 have revealed the stability of the T  cell receptor (TCR)/HLA/peptide 
tri-molecular complex as an important parameter in the development of autoimmune 
T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, 
we will provide a summary of the current understanding with regard to autoimmune 
T cell development, the significance of the antigens targeted in T1D, and the relation-
ship between TCR affinity and immune regulation.

Keywords: T cell, autoimmunity, type 1 diabetes, human leukocyte antigen, regulatory T cell, thymic selection

iNTRODUCTiON

Autoimmunity is generally associated with polygenetic susceptibility, while the initial precipitating 
event is likely triggered by an environmental stressor (1–4). The major alleles associated with most 
autoimmune disorders are the human leukocyte antigen (HLA), and several alleles are shared 
among autoimmune conditions (5–8). This suggests that a common T cell-dependent mechanism 
is the underlying cause of tissue-specific autoimmunity irrespective of the organ or tissue being 
targeted. Although several hypotheses have been put forth to explain the HLA-mediated suscep-
tibility, the exact mechanisms are still largely unknown. HLA structure selects for a particular 
peptide sequence motif and can affect the stability of the peptide:HLA complex (9). It is likely that 
autoimmune epitopes are not efficiently presented within the susceptible HLA molecules during 
thymic selection, or alternatively are presented with increased stability or at a higher concentra-
tion in the target tissue (10). Clearly, HLA allele structure is not the only parameter that might 
affect the stability of the tri-molecular complex [T cell receptor (TCR)/HLA/peptide], and not all 
individuals with T1D possess susceptible HLA alleles. Lower level of tissue antigen expression in 
the thymus, the relative abundance of self-antigen at the tissue site, an increase in immunogenicity 
of self-peptides either via post-translational modifications (PTMs) or molecular mimicry could 
all influence the stimulatory capacity of peptide:HLA complexes in periphery (Figure  1). How 
these changes in epitope immunogenicity could affect disease development will be discussed in 
this review.
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FigURe 1 | Abundance and stability of the tri-molecular complex at the interface of tolerance and autoimmunity. During thymic development, rare or unstable 
self-peptide: major histocompatibility (MHC) complexes can lead to escape of autoimmune T cells. Human leukocyte antigen (HLA)-DQ8 and H2-IAg7 susceptible 
alleles form unstable complexes with insulin epitope B:9-23. INS-VNTR susceptible allele results in lower level of insulin presentation in the thymus. Post-translational 
modifications (PTM) of self-epitopes can lead to more stable complexes in periphery. Increase in antigen availability in periphery or presence of structurally similar 
peptides in the context of infection (molecular mimicry) leads to priming of autoimmune T cells.
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The spontaneously diabetic non-obese diabetic (NOD) 
mouse model has been a useful system for identification of the 
key mechanisms important in the development of autoimmun-
ity due to its significant similarity to human T1D (11, 12). Nearly 
6 years after HLA was first associated with T1D in humans (13, 
14), the spontaneously generated NOD diabetic strain was 
obtained by the Jackson Laboratory from CLEA Japan, where 
it quickly became an invaluable tool in the etiology of T1D (11, 
15). The importance of the major histocompatibility (MHC) 
locus was originally traced by congenic approach, where MHC 
locus was introgressed onto the NOD background (16, 17). 
Further analysis of mice that received a non-NOD MHC class 
II transgene confirmed the important contribution of I-Ag7 to 
diabetes susceptibility (18). Although MHC II confers most of 
the susceptibility, there are over 50 genetic loci that make up the 
NOD diabetic phenotype (19). The polygenetic susceptibility 
of the NOD mouse strain mirrors human disease, and further 
underlies the complexity of T1D (20). Importantly, the I-Ag7 
MHC II variant has structural similarities with human suscepti-
ble DQ8 (DQA1*0301/DQB1*0302) (9, 21, 22). Moreover, many 
of the antigens targeted in autoimmune diabetes are shared 
between the two species (19). The similarities of the shallow 
and positively charged peptide-binding groove characteristic of 
both human DQ8 and mouse I-Ag7, and significant concordance 
in antigenic targets have made it possible to uncover sequence 
characteristics of autoimmune epitopes that are relevant to 
human disease (23, 24). Nevertheless, the precipitating events 
that lead to T  cell priming and beta cell destruction remain 
unclear (4, 25). While the NOD mouse model has been a pro-
lific tool for mechanistic insight into the many facets of T1D 
pathogenesis, recent expansion of HLA-humanized mouse 
models now allow direct interrogation of human autoimmune 
tri-molecular complex (TCR/HLA/peptide) and its role in loss 
of self-tolerance.

eviDeNCe FOR T CeLL-MeDiATeD T1D

A large body of evidence accumulated over several decades has 
implicated beta cell-specific immune response and, in particular, 
beta cell-specific T cells as the main drivers of autoimmune tis-
sue damage and development of T1D (12, 26, 27). Progression to 
disease in humans is associated with islet antigen-specific anti-
body responses, and T cells specific to islet antigens are found at 
higher frequencies in T1D patients (28–31). Importantly, both 
CD4 and CD8 T cells were observed directly in the pancreatic 
lesions, and islet antigen-specific T cells have been cloned from 
pancreatic islets of T1D organ donors (32–38). HLA, being the 
major risk allele, implies that inherent structural differences in 
HLA and, consequently, TCRs selected on those HLA alleles lead 
to erroneous T cell reactivity to self (5, 39, 40). While class II HLA 
alleles confer the majority of the genetic susceptibility, certain 
class I alleles have been shown to impose a separate risk (41). 
Multiple antigens are targeted by both CD4 and CD8 T cells in 
T1D. Beta cell-specific antigens presented by Class II molecules 
include preproinsulin (PPI), insulinoma-associated antigen 
(I-A2), glutamic acid decarboxylase (GAD) 65, heat shock 
protein (HSP)-60, HSP-70, islet-specific glucose-6-phosphatase 
catalytic subunit-related protein (IGRP), and zinc transporter 
(ZnT8) (42–44). While MHC class I responses display similar 
wide range of antigenic targets, including PPI signal peptide, 
IA2, ZNT8, human islet amyloid polypeptide (IAPP), IGRP, and 
GAD65 (45). The progression to T1D in humans is associated 
with accumulation of islet antigen antibody reactivity to IAA, 
GAD65, IA-2, and ZnT8, which mirrors the intra- and inter-
molecular “antigenic spread” of T cell responses (46, 47). Other 
non-HLA allelic risk variants are associated with pathways 
involved in T cell development, activation, and function, further 
highlighting the importance of T  cells are the key drivers of 
autoimmunity (19).
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FigURe 2 | T cell receptor (TCR) affinity for self dictates autoimmune T cell fate decisions. (A) TCR affinity for self-ligands and antigen availability dictate thymocyte 
fate choices during thymic selection. While autoimmune T cells can be selected with a range of TCR affinities, increased antigen availability and relatively stronger 
self-reactivity will preferentially result in the development of regulatory Foxp3+ T cells. (B) In peripheral tissues, self-reactive T cells are activated in response to 
increased concentrations of tissue antigen or highly immunogenic PTM antigens. While autoimmune T cells can possess a range of TCR affinities for self-antigen, 
lower affinity TCRs are less susceptible to peripheral mechanisms of tolerance. Ag, antigen; AICD, activation induced cell death; PTM, post-translational 
modification.
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HLA MeCHANiSMS OF AUTOiMMUNiTY

While the precise mechanisms that lead to loss of tolerance 
are multifaceted, HLA-DQ8 susceptibility implies that the 
stability of the tri-molecular complex is an important aspect 
that underlies autoimmune T  cell responses (Figure  1). The 
inbred NOD mouse model that possesses a single susceptible 
MHC class II allele I-Ag7 (I-Adα/I-Ag7β) has played a vital role 
in uncovering the mechanisms involved in the development 
of T1D. The structural similarities characterized by the shal-
low peptide-binding groove and the positive charge in the 
p9 peptide-binding pocket present in both I-Ag7 and human 
HLA-DQ8 point to a similar mechanism of autoimmune suscep-
tibility (22). The potential mechanisms include altered thymic 
selection due to peptide:MHC instability, and/or preferential 
binding and presentation of beta cell neo-antigens formed via 
post-transnational modifications in the periphery (Figure  1). 
Biochemical analyses revealed a propensity for both DQ8 and 
I-Ag7 to bind peptides with negatively charged C-terminus (48). 
In the case of celiac disease, which is also associated with DQ8 
susceptibility, gluten peptides targeted in disease have a negative 
charge at the C-terminus, which results in their stable binding to 
DQ8 (49). Although this observation suggests that key epitopes 
targeted in T1D should similarly contain negatively charged 
residues at p9, most beta cell antigenic epitopes lack this trait. 
Moreover, the dominant insulin epitope B:9-23 has a positively 
charged arginine at the C-terminus. Nevertheless, in support of 
this hypothesis, a mutation of InsB9–23 at presumptive p9 to a 
negatively charged glutamic acid increased the immunogenicity 
of the epitope and augmented the activation of insulin-specific 
T cells (50). In addition, a recent study has identified IAPP and 
Chromogranin A (ChgA) epitopes in beta cells that have been 
modified by peptide fusion to acquire a negative charge at the 

C-terminus (35). The modified peptides were significantly more 
immunogenic compared to unmodified wild-type epitopes. This 
groundbreaking finding offered a potential explanation for lack 
of efficient thymic selection under conditions of unstable tri-
molecular complex formation in the thymus, followed by prim-
ing and activation of autoreactive T cells in response to modified 
and stable peptide:MHC complexes in peripheral tissue.

THYMiC DeveLOPMeNT OF 
AUTOReACTive T CeLLS—wHAT iS THe 
eviDeNCe FOR ALTeReD THYMiC 
SeLeCTiON iN AUTOiMMUNiTY?

A body of evidence suggests an important role for altered thymic 
selection in the development of autoimmunity. Negative selec-
tion of autoimmune lymphocytes depends on sufficient amount 
of self-antigen available for presentation in the thymus, which 
is regulated by intra-thymic and extra-thymic sources, genetic 
variation in tissue antigen promoters, and effective antigen pres-
entation on certain HLA alleles (Figures 1 and 2A). Normally, 
tissue-specific antigens are presented by Autoimmune regulator 
(Aire) and Fezf2 expressing thymic medullary epithelial cells 
(mTECs) to aide in the deletion of self-reactive thymocytes 
(51, 52). MTECs can also transfer antigens, including beta cell 
antigens, to thymic resident dendritic cells (DCs), which in turn 
delete self-reactive T cells (53). Both DCs and Aire expressing 
mTECs are also essential in generating thymically derived 
Foxp3+ regulatory T  cells (Tregs), a critical population for 
the establishment and maintenance of self-tolerance (54, 55). 
Indeed, there appears to be a correlation between a reduction 
in DC numbers and residual β cell function in T1D subjects 
(56), while the NOD mouse exhibits an overall reduction in 
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DCs (57, 58). These observations suggest a relationship between 
self-tolerance and the absolute number of DCs present in the 
thymus and periphery. However, not all peripheral antigens are 
expressed by mTECs and, therefore, negative selection must also 
rely on peripheral antigen retrieval and delivery to the thymus 
by DCs. Importantly, studies have shown that the generation of 
thymic regulatory T cells by antigen-presenting mTECs and DCs 
early in life (neonatal) is critical in maintaining tolerance to self 
(55, 59). The idea of peripheral antigen exposure generating tis-
sue-specific Tregs was elegantly demonstrated by Scharschmidt 
et. al., where skin colonization of S. epidermidis allowed for 
the development and trafficking of microflora-specific Tregs to 
the skin. Using sphingosine-1-phosphate receptor antagonist, 
FTY720, the authors blocked Treg egress and pinpointed the 
thymus as the main source for Treg development (59).

There is no direct evidence for thymic selection deficiencies 
in individuals with T1D; however, several key observations 
suggest that there is a role for altered selection in the develop-
ment of autoimmune responses to insulin. The level of thymic 
insulin expression in humans is controlled in part by the 
polymorphic variable number of tandem nucleotide repeats 
found in the region proximal to the promoter region of the 
insulin gene (INS–VNTR) (60). It has been shown that VNTR I 
alleles express 26–63 tandem repeats while the VNTR III carries 
141–209 repeats. This difference translates into higher thymic 
transcript levels for the VNTR III individuals and a threefold 
to fourfold relative protection from T1D (61, 62). It appears 
that the number of repeats affects AIRE binding to the insulin 
promoter region, thus controlling transcriptional regulation of 
insulin in the thymus (51, 62, 63). In support of alterations in 
thymic selection, analysis of human peripheral blood from T1D 
patients and healthy controls revealed that subjects expressing 
the INS-VNTR I (T1D-predisposing) allele displayed elevated 
frequencies of high affinity proinsulin-specific T cells compared 
to INS–VNTR I HLA–DR4 subjects (64). INS-VNTR allelic 
expression appears to determine insulin reactivity rather than 
the total number of insulin-reactive T  cells, as both VNTR I 
and VNTR III groups displayed similar total number of insulin-
reactive T cells in peripheral blood (64). However, it has only 
been hypothesized that the differences in thymic insulin expres-
sion between VNTR I and VNTR III subjects influence positive 
and negative selections of insulin-reactive T cells, but this has 
never been formally demonstrated in vivo due to a lack of VNTR 
mouse models.

The role of thymic insulin expression in the establishment of 
central tolerance has been addressed in the NOD mouse model 
by both deletion and overexpression of insulin in the thymus. 
Deletion of insulin specifically in thymic Aire expressing mTECs 
enhanced diabetes development in both male and female mice 
(65). In addition, transgenic overexpression of proinsulin, but 
not GAD65 (66) or IGRP (67), significantly delayed (68) or 
prevented (69) diabetes progression in NOD mice. However, 
in these studies overexpression of insulin was targeted to all 
MHC class II expressing APCs and, therefore, the relative role 
of central compared to peripheral tolerance was not determined 
(68, 69). A more recent set of experiments determined that a 
narrow window of ectopic proinsulin expression in APCs (from 

birth until weaning) could prevent the development of diabetes 
in NOD mice (70). This timeframe fits with a previous study 
that showed organ specific autoreactive T cell escape from the 
thymus is greatest during the first 10 days of life in NOD mice 
(71). In the former study by Jhala et. al., protection was due 
in part to the deletion of insulin-specific T  cells, but also the 
inability of the remaining insulin-specific T  cells to respond 
to cognate antigen in periphery (70). In our recent study, we 
tested two TCRs (4-8 and 12-4.1, Table 1) with defined affinities 
for InsB9–23 for their ability to escape negative selection in the 
presence of ectopic overexpression of insulin. Surprisingly, we 
did not observe any increase in thymic deletion of the relatively 
high (4-8) or low (12-4.1) TCRs, although the increase in insulin 
expression did protect mice from developing autoimmune dia-
betes. Protection from disease appeared to be due to an increase 
in Treg development with a significant increase in thymic, 
splenic, and pancreas-residing insulin-specific Tregs (72). These 
findings pose an intriguing possibility that the amount or stabil-
ity of self-peptide:MHC complexes during thymic selection is 
more important for Treg development rather than deletion of 
self-reactive T cells (Figure 2A).

Chromogranin A is the only other currently known beta cell 
antigen necessary for the initiation of autoimmune diabetes 
in NOD mice; however, expression of ChgA in the thymus 
has not yet been detected (73). Therefore, tolerance to ChgA 
may rely in part on transport of antigen by peripheral DCs to 
the thymus. Whether islet-derived antigens are carried to the 
thymus to promote islet-specific Treg development has not been 
explored; nevertheless, the divergent TCR repertoire between 
islet-infiltrating effector and regulatory T cells suggests a lack of 
local Treg conversion in favor of thymic lineage being the pre-
dominant Treg population in the pancreas (74). The thymic Treg 
niche was thought to be highly specialized and restricted (75); 
however, a recent study has demonstrated that the manipulation 
of either the number of antigen-presenting cells or an increase 
in antigen exposure within the thymus can expand the Treg 
niche (54).

While highly self-reactive T cells are removed from the T cell 
repertoire by negative selection, the quality and the quantity 
of self-reactive Tregs that develop from the moderately self-
reactive thymocyte pool is a critical component of peripheral 
self-tolerance (Figure 2A). This idea is consistent with the obser-
vation that healthy individuals possess significant frequencies of 
self-reactive T cells, but are free from autoimmunity (76, 77). The 
escape of self-reactive T cells in itself is not just a byproduct of 
Treg development, but seems to serve an important immunologi-
cal purpose, since some level of self-reactivity is associated with 
enhanced responsiveness to foreign pathogens (78–80). It is likely 
that the fine balance between beneficial self-reactivity and self-
tolerance is uniquely perturbed in individuals with a susceptible 
genetic background. A slight change in thymic antigen expression 
or the overall stability of the tri-molecular complex could shift the 
T  cell development spectrum toward Treg insufficiency, rather 
than escape of higher affinity cells. Therefore, the ratio of beta 
cell antigen-reactive Tregs vs. effector or memory T cells might 
be a better predictive biomarker of autoimmunity than the overall 
frequencies of self-reactive cells.
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TABLe 1 | Pathogenicity of beta antigen-reactive T cells.

T cell receptor Restriction epitope Model infiltration % Diabetes Reference

Mouse

Chromogranin A (ChgA)
BDC2.5 IAg7 ChgA 359–372 Tg/Rg Insulitis 75/100 (83, 96)
BDC10.1 IAg7 ChgA 359–372 Rg Insulitis 100 (83)
insulin
12.4-1 IAg7 InsB 9–23 Tg/Rg Insulitis 5/50/72 (82, 83, 103, 104)
12.4-4 IAg7 InsB 9–23 Rg Insulitis 51 (82)
12.4-4m1 IAg7 InsB 9–23 Rg Peri-insulitis – (82)
8-1.1 IAg7 InsB 9–23 Rg Insulitis 27 (82)
P2 IAg7 InsB 9–23 Rg No – (82)
1-10 IAg7 InsB 9–23 Rg Peri-insulitis 48 (82)
4-8 IAg7 InsB 9–23 Rg Insulitis 59 (82)
3-4 IAg7 InsB 9–23 Rg Insulitis 21 (82)
G9C8 Kd/Db InsB 15–23 Tg Mild insulitis – (105)
2H6 IAg7 InsB 9–23 Tg Prevents diabetes – (97)
8F10 IAg7 InsB 9–23 Tg Insulitis 100 (100)

glutamic acid decarboxylase (gAD)
PA17.9G7 IAg7 GAD65 284–300 Rg no – (83)
PA15.14B12 IAg7 GAD65 206–220 Rg no – (83)
PA19.5E11 IAg7 GAD65 206–220 Rg Peri-insulitis – (83)
PA18.10E1 IAg7 GAD65 524–538 Rg n/d – (96)
PA18.9H7 IAg7 GAD65 524–538 Rg Peri-insulitis – (83)
IA4 IAg7 GAD65 217–236 Rg Peri-insulitis – (83)

Protein tyrosine phosphatase-like (iA2)
Phogrin 13 IAg7 IA2 640–659 Rg Peri-insulitis – (83)
Phogrin 18 IAg7 IA2 755–777 Rg Mild insulitis – (83)
10.23 IAg7 IA2 676–688 Rg Peri-insulitis – (83)

iselt-specific glucose-6-phosphatase (igRP)
8.3 Kd IGRP 206–214 Tg Insulitis 33 (95)

islet amyloid polypeptide (iAPP)
BDC6.9 IAg7 DLQTLAL-NAAR (Ins-IAPP fusion) Tg/Rg Insulitis 56 (35, 83)

Unknown islet antigen
NY4.1 IAg7 Tg/Rg Insulitis 72/60/71 (83, 95, 96)
AI4 Db Tg Insulitis 100 (98, 102)

Human

glutamic acid decarboxylase (gAD)
164 DR4 GAD65/67 555–567 Tg Insulitis – (101)
T1D4 DR4 GAD65 115–127 Rg Mild to no insulitis – (99)
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TCR PARAMeTeRS OF T CeLL 
PATHOgeNiCiTY

Autoimmune T  cell responses in general, as well as, the T  cell 
population that infiltrates the NOD pancreatic islets, are com-
posed of cells with different T  cell lineages, diabetogenic or 
regulatory capabilities, antigenic specificities, and TCR affinities 
(10, 81–83). All of these parameters are directly influenced by the 
TCR (84). Therefore, TCR sequence, specificity, and affinity hold 
the key to understanding the dynamics of diabetogenic T  cell 
responses during chronic progressive autoimmune disorders, 
such as T1D. The antigenic specificity of each TCR is dictated by 
the highly variable CDR3 region found within the α and β chains 
of the TCR heterodimer. The variability is the result of random 
genetic recombination events that bring together one of many 
variable (V) genetic segments with a joining (J) region. The large 
number of TCR sequences infiltrating an organ, their variability 
among individuals, and the heterodimeric structure of the TCR 

has been a significant roadblock in a comprehensive functional 
analysis of TCRs. In this section, we will summarize the studies 
that have investigated beta cell-specific TCR parameters for their 
ability to predict T cell pathogenic potential.

TCR Sequence As a Biomarker of 
Pathogenicity
One of the main hurdles in the identification and functional 
analysis of beta cell-reactive T cells in humans with T1D is the 
breadth of antigens and epitopes that are targeted among affected 
individuals. Peptide/MHC tetrameric reagents have been the 
most effective approach to identify T  cells with autoimmune 
potential; however, beta cell-reactive cells comprise a small 
population of peripheral blood, which makes such approaches 
technically challenging. Moreover, tetramers detect only the 
highest affinity subpopulation of T cells specific for a particular 
epitope, while the majority of autoimmune responder T cells are 
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often overlooked, as was effectively demonstrated in the mouse 
model of multiple sclerosis (85). As such, the field is currently 
lacking sufficient approaches to perform in depth tracking of 
antigen-specific T cells over time. Recent technological advances 
in high-throughput sequencing have opened new avenues for 
tracking self-reactive T  cells and could be easily applicable to 
studies of human tissue-infiltrating T  cells (86). A promising 
biomarker approach could be based on high-throughput TCR 
sequencing with focus on TCR motifs known to be associated 
with a specific target epitope. While human CD4 responses have 
proven to be highly diverse (87, 88), CD8 T cells are generally 
more clonotypic (86). A recent study was able to identify a public 
CDR3 motif associated with IGRP265–273 specific memory T cells in 
antibody-positive subjects and individuals diagnosed with T1D 
(89). Their findings suggest that dominant clonotypes persist in 
the same individual over time, and some TCR sequences could 
be shared among individuals. Interestingly, the public TCR motif 
was also identified in healthy controls, although it was restricted 
to the naïve T cell compartment. While promising as a potential 
biomarker, such deep sequencing approaches necessitate knowl-
edge of multiple TCR sequences associated with reactivity to 
several beta cell antigens.

Antigen Specificity of Pathogenic TCRs
Although, T  cells of multiple antigenic reactivities have been 
isolated from pancreatic islets of T1D donors (35–38), it does not 
necessitate that these cells are equally pathogenic or are actively 
involved in beta cell destruction. In order to identify potentially 
important initiating antigens in T1D, multiple beta cell proteins 
have been mutated on the NOD background, including IAPP, 
GAD65, insulin, IGRP, and islet Ag-2 (90–94). Interestingly, only 
the mutation of insulin and chromogranin resulted in protec-
tion against diabetes (73, 94). This suggests that insulin and 
chromogranin-reactive T cells are either critical for the initiation 
of autoimmunity, or are necessary for further propagation of the 
disease and the ultimate destruction of beta cells.

Over the years, pathogenic potential of T  cells reactive to 
various islet antigens was directly assessed in single TCR systems. 
Multiple mouse and a few human TCRs reactive against various 
beta cell proteins have been expressed in mice utilizing both 
transgenic and retrogenic approaches (82, 83, 95–105) (Table 1). 
Importantly, the observed tissue infiltration and spontaneous 
disease development were highly variable among the antigenic 
specificities (Table 1). Single TCR mice expressing either insu-
lin, chromogranin, or IGRP reactive mouse TCRs developed 
spontaneous diabetes, supporting the important pathogenic role 
for these reactivities in autoimmune diabetes. The majority of 
phogrin (IA2b) and I-A2 reactive mouse TCRs can induce islet 
infiltration, albeit without overt diabetes. Reactivity to multiple 
GAD epitopes, however, results in no disease and very limited 
infiltration for both human and mouse TCRs (Table 1). Based on 
these observations, it is likely that TCRs with select beta cell anti-
genic specificities are central to disease pathogenesis. Moreover, 
certain specificities might be important at different stages of 
disease, while others might not have a pathogenic but rather a 
regulatory effect, as was observed for GAD-reactive mouse T cells 
(106–109). Nevertheless, our ability to effectively extrapolate 

contribution of T  cell specificities to disease in a polyclonal 
multi-antigen specific environment by analyzing their behavior 
in single TCR systems is limited. NOD mouse models exhibit 
a single MHC II restriction; therefore, pathogenic responses to 
antigens presented in alternative susceptible HLA class II or class 
I alleles might be overlooked. Alternatively, it is possible that 
inflammation induced by T cells specific for the initiating antigen 
results in exposure or modification of secondary antigens, leading 
to pathogenic activation of a distinct repertoire of T cells specific 
to the newly displayed epitopes.

The molecular determinants of pathogenic TCRs in autoim-
munity are still largely unknown. Antigen availability, immuno-
genic modification of T cell epitopes, and TCR avidity could all 
shape the responses of beta cell-specific T cells (Figure 2). While 
it is still unclear whether antigen reactivity is an absolute pre-
requisite for tissue entry, several experimental approaches have 
shown that T cell accumulation in NOD pancreatic islets is driven 
by antigen recognition (110–112). The difference in antigen avail-
ability could explain relative importance of T cell specificities in 
the development and progression of autoimmunity. For example, 
reduced pathogenicity of GAD65-reactive T cells in NOD mouse 
model might be due to insufficient antigen availability in the 
pancreas. T cell reactivity to GAD65 and GAD67 can be observed 
early in NOD mice (113, 114), and antibodies specific for GAD 
are associated with progression to T1D in humans (115), which 
suggests a role for GAD reactivity in T1D. However, relative to 
other beta cell antigens, GAD T cells exhibit reduced pathogenic-
ity in mouse models compared to other antigens (Table 1), with 
only one study showing diabetogenic activity of GAD65-reactive 
T  cells (116). The rather mild pathogenic potential of GAD-
reactive T cells in NOD model could be attributed to relatively 
low levels of both GAD65 and GAD67 expressed in the mouse 
islets compared to rat or human pancreas (117). In support of 
this, overexpression of GAD65 under the rat insulin promoter 
enhanced pancreatic infiltration of GAD-reactive T cells (110). 
Although, this observation serves as a proof of principle for the 
importance of antigen availability for islet infiltration, overex-
pression of GAD65 in polyclonal NOD mice does not result in 
enhanced insulitis or diabetes (118). Therefore, other parameters 
in addition to islet antigen availability must regulate T cell patho-
genic potential.

TCR Affinity of Pathogenic T Cells
It is logical to assume that TCR affinity for antigen is associated 
with increased pathogenicity; however, that is not always the case, 
as we have shown for insulin-reactive TCRs. When eight NOD 
CD4 T cell-derived TCRs with variable affinity for insulin InsB9–23 
epitope were compared for their ability to drive spontaneous 
diabetes, high- and low-affinity T  cells were similarly patho-
genic (82) (Table 1). This is consistent with observations that a 
polyclonal autoimmune T  cell response can encompass a wide 
range of TCR affinities, and low-affinity T cells are important con-
tributors to the immune response (85, 119). However, it appears 
that there are certain functional distinctions between high- and 
low-affinity insulin-reactive T  cells. Compared to high-affinity 
TCRs, low-affinity TCRs were less sensitive to thymic negative 
selection pressures, exhibited lower frequencies of Foxp3+ T cell 
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development, and had a reduction in negative regulators of T cell 
activation (82). Their inability to reach the threshold for engage-
ment of regulatory elements could allow the low-affinity cells to 
exert effector functions and induce beta cell damage even under 
relatively low level of TCR stimulation (Figure 2B).

PeRiPHeRAL PRiMiNg OF AUTOiMMUNe 
T CeLLS

Molecular Mimicry
The mechanisms behind self-reactive T cell priming and ensu-
ing loss of self-tolerance are complex and poorly understood. 
Autoimmune T  cells exhibit a level of reactivity for self-
antigens, but are somehow able to escape negative selection 
in the thymus. In the periphery, these cells encounter cognate 
self-antigen with enough affinity and in the right context 
to become activated and cause tissue damage. In the case of 
T1D, studies have implicated molecular mimicry as a potential 
trigger, where beta cell-reactive T  cells could undergo initial 
priming and activation in response to structurally similar 
microbial epitopes (120) (Figure 1). While the direct evidence 
for molecular mimicry as a cause for autoimmunity is lacking, 
recent work exposing the previously unrecognized propensity 
of T cells for cross-reactivity reinforces molecular mimicry as 
a valid hypothesis (87, 121, 122). Islet-specific glucose-6-phos-
phatase catalytic subunit-related protein (IGRP)-reactive CD8 
T cells were shown to recognize a transporter protein peptide 
of Fusobacteria. Importantly, activation of IGRP-specific 
NY8.3 T  cells by Fusobacteria contributed to enhanced dia-
betes development (123). Microflora composition in general 
has been implicated in both human and mouse T1D. In mice, 
gender hormones influence microbiota and subsequent T1D 
development (124, 125), while autoantibody-positive children 
have distinct microbiota signatures (126). It has yet to be seen 
whether specific microbiota species drive activation of islet-
reactive T cells leading to beta cell destruction.

Unusual Orientation of the Tri-Molecular 
Complex
It is hard to reconcile exceedingly lower reactivity of autoimmune 
T  cells to their cognate antigen, compared to non-self-reactive 
TCRs, with their capacity to exert significant tissue damage. For 
example, insulin-reactive TCR 12-4.1 isolated from pancreatic 
islets of NOD mice exhibits barely detectable reactivity to insulin 
in  vitro (82), but causes spontaneous diabetes in 50–80% of 
mice (82, 103) (Table 1). As we alluded to earlier, lower affinity 
self-reactive TCRs are to some degree resistant to central and 
peripheral tolerance mechanisms, which might explain their 
ability to persist in an activated state (82). However, it is still 
unclear how self-reactive T cells with very low affinity for antigen 
are capable of causing beta cell destruction and highly penetrant 
diabetes. It is possible that the inherent unusual TCR structural 
and signaling characteristics are potential contributing factors 
that lead to unique responsiveness of autoimmune T cells. Crystal 
structures of autoimmune TCR:pMHC complexes have uncov-
ered an unconventional docking of self-reactive TCRs on pMHC 

(127–129). Moreover, self-reactive human and mouse TCRs form 
unusual disorganized T cell synapses, exhibit slower kinetics of 
TCR signaling pathways, and yet they are still able to undergo 
activation and exert effector functions (130, 131). Conceivably, 
these characteristics allow autoimmune T cell escape from thymic 
selection, while in the target tissue high level of antigen is suf-
ficient to elicit effector response.

Tissue-Specific PTM of Target epitopes
In the case of autoimmune T1D, beta cell fragility characterized 
by increased susceptibility to oxidative and ER stress may be 
a critical factor in loss of self-tolerance. A consequence of the 
cellular stress is the altered processing and changes in PTM of 
proteins. The changes in beta cell epitopes can lead to the genera-
tion of tissue-specific neo-antigens that are not expressed in the 
thymus. T cells specific for neo-antigens can evade mechanisms 
of central tolerance and initiate an autoimmune response once 
exposed to PTM antigens in periphery (Figure 1). Interestingly, 
insulin containing granules are highly immunogenic compared 
to artificially synthesized protein, which suggests some manner 
of PTM takes place within the NOD beta cell granules (10). In 
the case of the dominant insulin epitope targeted in the NOD 
mice (InsB9–23), the modification likely affects the MHC-binding 
residue of the peptide, resulting in stable binding of peptide in a 
register that is normally unstable and very likely presented at low 
levels in the thymus (10, 50, 132). In support of this idea, studies 
have shown that a mimotope of the InsB9–23 insulin peptide with 
a change in the MHC anchor residue (R22E) was highly stimula-
tory for insulin-reactive T cells, and R22E peptide:MHC tetram-
ers identified insulin-reactive cells within the islet-infiltrating 
T cell population (50, 133). Just in the last few years, it has been 
demonstrated that neo-antigenic PTM epitopes can form by 
fusion of either ChgA or IAPP peptide with a pro-insulin peptide 
(35). These fusion peptides were highly stimulatory to IAPP- and 
ChgA-reactive diabetogenic NOD T cell clones, as well as CD4 
T  cells isolated from the islets of T1D donors (35, 37). While 
the fusion peptides were identified in beta cells, it is unknown 
whether their formation is increased during inflammation or ER 
stress. More recent work has identified immunogenic peptides 
generated from an alternate insulin reading frame, the translation 
of which was further increased under ER stress (134). CD8 T cell 
clones isolated from peripheral blood of T1D subjects and specific 
for these defective ribosomal products (DRiPs) were able to cause 
direct beta cell damage in  vitro, supporting a potentially criti-
cal role for DRiPs in T1D. This is yet another PTM mechanism 
within a mounting evidence for connection between beta cell ER 
stress and generation of immunogenic PTMs. Nevertheless, it is 
still unknown exactly to what extent PMT antigen-specific T cells 
contribute to T1D.

At the moment, we have very little insight into the functional 
concentration of PTM antigens vs. wild type epitopes presented in 
the inflamed tissue, the relative frequency of PTM-reactive T cells 
vs. T  cells that recognize the wild-type epitopes, or how these 
parameters change over the course of chronic autoimmune tissue 
damage. It is likely that some T cells have a restricted specificity 
to either PTM or wild-type antigens, while others respond to both 
with different levels of activation. Addressing these questions 
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will lead to our better understanding of the triggers that induce 
autoimmune response, as well as identification of the initiating 
antigens and the key pathogenic T cell populations. It is currently 
unknown whether tissue-specific PTM antigens are transported 
and expressed in the thymus. In order to model how the presence 
of post-translationally modified peptides in the thymus could 
alter the selection of insulin-reactive TCRs (4-8 and 12-4.1) that 
normally escape negative selection, we ectopically expressed the 
R22E insulin mimetope in bone marrow-derived APCs (72). In 
the presence of R22E, the high-affinity 4-8 TCR bearing thymo-
cytes were efficiently deleted, while the low affinity 12-4.1 popula-
tion was affected to a lesser degree, albeit still showing an increase 
in negative selection based on Annexin V staining. Nevertheless, 
the ectopic expression of R22E significantly reduced peripheral 
T cells and halted any islet infiltration in both the 4-8 and 12-4.1 
retrogenic mice. These results suggest that unlike expression of 
wild-type antigen, expression of PTM epitopes in the thymus 
results in efficient deletion of autoimmune T cells.

Accumulating evidence indicates PTMs as the key to our 
understanding of autoimmune disease development (35, 
135–140). Importantly, T  cells specific for PTM GAD65 and 
ChgA epitopes have been identified in individuals diagnosed 
with T1D (35, 139). Although the evidence so far is limited, PTM 
epitope expression is likely restricted to peripheral tissue and is 
absent from the thymus. While wild-type self-proteins presented 
in the thymus successfully limit development of high-affinity 
self-reactive T cells, lower affinity T cells evade central tolerance 
to be able to respond to PTM antigens in periphery (Figures 1 
and 2B). Moreover, it is conceivable that the lack of PTM antigen 
expression in the thymus could lead to holes in the Treg reper-
toire. While multiple studies have shown that modification of 
beta cell epitopes increases their immunogenicity, it is unclear 
what proportion of antigens in the pancreas has been modified. 
Presumably, relatively low concentrations of immunogenic PTM 
epitopes are sufficient to prime autoimmune T cells, while pres-
ence of wild-type epitope is adequate for propagation of chronic 
autoimmune response. Further biochemical analyses of the pan-
creatic beta cells are necessary to identify the predominant PTM 
epitopes and the stress conditions that lead to their development.

HLA-HUMANiZeD MiCe TO MODeL T1D 
ANTigeN ReSPONSeS

While we have learned a great deal from the NOD mouse, there 
are certain limitations to the conclusions and parallels we can 
draw to human T1D. In order to improve the model, several 
HLA transgenic mouse strains expressing susceptible or pro-
tective alleles have been generated, some of these on the NOD 
background. Surprisingly, NOD mice expressing susceptible DQ8 
or DR4 alleles do not develop spontaneous diabetes (141–143). 
However, HLA-DQ8 humanized mice do develop spontaneous 
autoimmune cardiomyopathy (144). Still, both DR4 and DQ8 
alleles support the development of beta cell-reactive autoim-
mune T cells but require an additional trigger to initiate beta cell 
targeted autoimmunity. When DR4 and DQ8 mice were crossed 
with transgenic mice expressing B7.1 co-stimulatory molecule on 

beta cells, both HLA-humanized strains developed spontaneous 
diabetes (141). The main utility for HLA-humanized mice has 
been realized by performing systematic identification of the key 
antigenic epitopes presented on human HLAs (24). Future stud-
ies should be extended to assess the in vivo functional potential 
of human autoimmune TCRs specific for key immunogenic 
epitopes. To date only one beta cell antigen-reactive human TCR 
transgenic mouse with specificity for GAD65 has been described 
(101). In vivo functional analysis of TCRs, and human TCRs in 
particular, has been hindered due to limited access to patient sam-
ples, labor, and time involved in generating TCR transgenic mice. 
We have overcome the limitation of TCR transgenic system by 
utilizing a TCR retrogenic approach that allows rapid functional 
analysis of multiple TCRs through retroviral gene delivery (110, 
145, 146). Using this approach, we have expressed a GAD65115–127 
reactive TCR isolated from peripheral blood of an individual diag-
nosed with T1D (99). Although we observed robust development 
of GAD-reactive T cells in this system, similar to the transgenic 
expression, we detected a low level of islet infiltration. Future 
analyses should be expanded to other beta cell protein epitopes 
targeted in human T1D, including PTM epitopes. The human-
ized TCR retrogenic approach will allow efficient and relatively 
high-throughput analysis of autoimmune antigens important in 
human disease, and can be utilized as a platform for develop-
ment of antigen-specific immunotherapies. It is likely that many 
questions pertinent to our understanding of autoimmune T cell 
development and pathogenicity will be eventually addressed in 
the context of human susceptible HLA alleles and human TCRs.

CONCLUSiON

The biology of low-affinity autoimmune T cells has been perplex-
ing due to the seeming contradiction between suboptimal in vitro 
responses and robust in vivo pathogenicity. In many cases, self-
reactive autoimmune T cells do not follow the dogma prescribed 
by studies performed with T cells specific for infectious or model 
antigens. In addition to unusual TCR:pMHC interactions and 
downstream signaling, autoimmune antigens themselves can have 
atypical characteristics. Over the years, it has become clear that 
antigens targeted in autoimmunity, and particularly in T1D, are 
often modified versions of self-peptides that are presented during 
thymic selection. These exceptions to the rule characteristic of 
autoimmune T cell responses are often centered on the stability 
of the tri-molecular complex as a master switch from tolerance 
to autoimmunity.
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At least 57 independent loci within the human genome confer varying degrees of risk 
for the development of type 1 diabetes (T1D). The majority of these variants are thought 
to contribute to overall genetic risk by modulating host innate and adaptive immune 
responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. 
Early efforts to link specific risk variants with functional alterations in host immune 
responses have employed animal models or genotype-selected individuals from clinical 
bioresource banks. While some notable genotype:phenotype associations have been 
described, there remains an urgent need to accelerate the discovery of causal variants 
and elucidate the molecular mechanisms by which susceptible alleles alter immune 
functions. One significant limitation has been the inability to study human T1D risk loci 
on an isogenic background. The advent of induced pluripotent stem cells (iPSCs) and 
genome-editing technologies have made it possible to address a number of these out-
standing questions. Specifically, the ability to drive multiple cell fates from iPSC under 
isogenic conditions now facilitates the analysis of causal variants in multiple cellular 
lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a 
limited number of immune signaling pathways, yet the relevant immune cell subsets and 
cellular activation states in which candidate risk genes impact cellular activities remain 
largely unknown. In this review, we summarize the functional impact of several candidate 
risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model 
system for interrogating risk variants, with the goal of expediting precision therapeutics 
in T1D.

Keywords: type 1 diabetes, autoimmunity, induced pluripotent stem cells, gene editing, genome-wide association 
studies, expression quantitative trait loci

iNTRODUCTiON

The combined genetic and environmental factors that result in type 1 diabetes (T1D) are reflected in 
the heterogeneous clinical presentations of the disease (1). This autoimmune process results from a 
complex cross-talk between cells of the innate and adaptive arms of the immune system and the target 
β cells within the islet microenvironment (Figure 1) (2). The era of genome-wide association studies 
(GWAS) has heralded discovery of approximately 57 independent loci conferring some component 
to the overall genetic risk for the development of T1D (3). This vast discovery effort has reinforced 
prior notions of an autoimmune basis for disease development and also has shed new light on the 
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FiGURe 1 | Isogenic modeling facilitates the investigation of multiple cell types important in the pathogenesis of type 1 diabetes (T1D). A combination of 
environmental and genetic factors influences the overall risk for T1D. Genes conferring risk for T1D may affect the functions of β cells, immune cells, and vascular 
endothelium. For β cells, risk variants of some genes may alter the response to environmental triggers such as inflammatory or viral sensing, or they may alter the 
way that β cells cope with stress from bioenergetic demands. For immune cells, gene variants my alter the way that T and B cells are selected in primary (1°) 
lymphatic tissues during central tolerance, or they may alter several key events that occur during antigen-specific priming and effector differentiation in the peripheral 
(2°) lymphatics. Immune destruction of β cells requires homing of innate and adaptive effector populations into the pancreatic islets, so alterations to endothelial 
function could affect disease at this late stage. Isogenic cellular modeling can be applied to complex multifactorial diseases to facilitate a more complete 
understanding of which genes are expressed in any given tissue/cell type and at which developmental stage they may exert their influence on disease progression.
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etiology of T1D, including support for cellular stress within β 
cells contributing to their demise (4). Despite these advances, 
there remain numerous questions regarding the mechanisms 
by which causal gene variants, both individually and in concert, 
impact immune checkpoints and β cell responses throughout the 
natural history of the disease. Thus, there remains a critical need 
in the field to address some fundamental questions regarding the 
single-nucleotide polymorphisms (SNPs) identified by GWAS 
including (1) What are the causative variants within any given tag 
SNP locus? (2) In what cell type(s) and developmental stage(s) are 
the candidate genes actively expressed? (3) What environmental 
stimuli modify candidate gene expression or activity? And 
ultimately, (4) what variants and/or pathways are amenable to 
therapeutic interventions?

A number of large-scale mechanistic studies to discern the 
impact of specific genotypes on resulting phenotypes are under-
way from population-based studies (5). These investigations 
often utilize clinical material derived from bioresource banks 
(i.e., genotyped clinical samples capable of recall or recovery from 
cryopreservation) (6). While promising results have emerged, the 
number of well-characterized genotype:phenotype interactions 
remains limited to a small fraction of the putatively identified risk 
loci. The paucity of functional studies validating causative SNPs 
can be attributed to a number of challenges including the need 
to acquire sufficient clinical blood volumes for functional test-
ing, limited access to biological replicates to account for human 
heterogeneity (particularly with low minor allele frequency 

variants), and the clear potential for epistatic genetic influences. 
In sum, these confounding factors constitute a considerable dis-
covery bottleneck limiting human studies by the larger research 
community.

Immunodeficient mouse models, so-called “humanized” 
mice, capable of being engrafted with primary human lympho-
cytes or hematopoietic stem cells (HSCs) have been proposed as 
a means to fill the translational gap between in vitro human stud-
ies and clinical trials. These rodent models display full organism 
level complexity yet can still be manipulated experimentally 
(7). Despite the powerful tool humanized mice provide when 
used appropriately, they still present significant constraints as 
a model system. Mice hold notable differences when compared 
to human biology, particularly when considering host immune 
responses in the context of TLR ligands, responses to cytokines 
and growth factors, and cellular trafficking (8). These factors 
present challenges in modeling autoimmune T1D in xenogeneic 
systems, where there are essential homology requirements for 
full effector function. These requirements include the need for 
lymphocyte trafficking from circulation to secondary lymphoid 
organs, auto-antigen priming and activation, and eventual 
extravasation to target β cells within islets (9). The emergence 
of induced pluripotent stem cell (iPSC) technologies offers an 
attractive alternative to humanized mice that allows the inter-
rogation of underlying genetic defects using a vast array of 
relevant biological tissues and cell types avoiding both allo- and 
xenogeneic responses.
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Isogenic cellular systems constitute a powerful experimental 
platform for conducting precision gene editing to create a “dis-
ease-in-a-dish” model to interrogate multifactorial diseases such 
as T1D. This methodology provides an opportunity to under-
stand specific molecular mechanisms and pathways in humans 
to thereby derive rational therapeutics using a precision medicine 
approach. In this review, we describe some of the emerging tech-
nologies for generating and manipulating iPSC-derived cells and 
tissues to interrogate causative genes and pathways in T1D.

iSOGeNiC CeLLULAR SYSTeMS

Investigations into the etiopathogenesis of T1D have historically 
been dominated by studies of peripheral blood. Over the last 
decade, the Network for Pancreatic Organ donors with Diabetes 
(nPOD) program has provided essential access to the pancreas 
and lymphoid tissues from donors with T1D. Emerging studies 
from this program have already challenged many of the precon-
ceived notions of the disease. Of note, nPOD tissues have high-
lighted disease heterogeneity across T1D donors and remarkable 
variability even at the level of adjacent islets within a single T1D 
donor (10–14). For example, early histological observations from 
nPOD led Dr. George Eisenbarth to refer to T1D as “vitiligo of the 
pancreas,” in reference to intact insulin-containing islets being 
observed in close proximity to pseudo-atrophic islets completely 
devoid of insulin (15). Despite the transformative resource that 
nPOD provides, donor and programmatic limitations necessitate 
systematic prioritization of access to tissues. Hence, there is a 
paramount need within the field to derive cell types from renew-
able human cellular sources. The capacity for pluripotent and 
renewable cells to undergo reprogramming to generate immune 
subsets, endothelial cells, and neuroendocrine lineages will facili-
tate the modeling of cellular interactions involved in T1D disease 
pathogenesis (Figure 2).

GeNeTiC SUSCePTiBiLiTY iN T1D

The autoimmune destruction of insulin-producing pancreatic  
β cells in T1D shares complex etiology with a collection of organ-
specific disorders (i.e., juvenile idiopathic arthritis, alopecia 
areata, rheumatoid arthritis, and celiac disease, among others) 
(3). Though each of these diseases demonstrates unique immu-
nopathologic mechanisms, they all share two common features: 
specifically, inheritance with a significant genetic contribution 
coming from the human leukocyte antigen (HLA) region of chro-
mosome 6 and additional genetic risk conferred by loci dispersed 
throughout the genome (Table 1). While no single risk haplotype 
accurately predicts whether or not a person will develop T1D (or 
another autoimmune disease), there is clear genetic evidence 
that T1D is primarily an inherited disease with an autoimmune 
pathogenesis (Figure  3) and with additional poorly defined 
environmental contributions. Discordant incidence of T1D in 
monozygotic twins is often cited as evidence for a greater envi-
ronmental role in T1D (16, 17); however, the early studies likely 
underestimated the concordance rates. It is now better under-
stood that childhood-onset T1D and latent autoimmune diabetes 
of the adult (LADA) share overlapping genetic risk (18). Thus, 

long-term monitoring is essential to capture the total genetic risk 
for disease development. For example, one study of monozygotic 
twins found that by the age of 60 years, there was greater than 
65% concordance for T1D—i.e., when one twin is afflicted, it is 
more likely that the other twin will eventually develop the disease 
(19). In the same study, concordance of autoantibody positivity 
in the non-diabetic twin was nearly 80%, again supporting the 
notion of genetic risk controlling the loss of immune tolerance 
to β cell antigens.

The lack of complete concordance may indicate an additional 
role for epigenetic and/or stochastic influences due to antigenic 
receptor gene recombination events. In addition, epidemiologi-
cal studies support a role for environmental factor(s) influencing 
disease progression. A number of large consortium studies have 
been conducted or are currently underway around the world 
(e.g., TrialNet, TEDDY, DAISY, BABYDIAB, and Pre-Point) to 
monitor disease progression and potentially, intervene in those 
identified as being at high-risk for disease development (27–31). 
From these studies, environmental influences have been reported 
to affect disease incidence or rate of progression, including 
enteroviral triggers, lack of protective exposures, and the influ-
ence of various components of Westernized diets. Many of these 
modifying factors impact pathways with associated genetic risk 
variants (e.g., Tyk2 and IFIH1 in response to viral infections), 
further supporting their potential importance (32). Thus, T1D 
is principally a genetic disease with environmental exposures 
influencing progression. These combined influences support the 
notion of a complex multifactorial disease, yet ultimately beg 
the question: Why do we not better understand the etiology and 
pathogenesis of human T1D? Even though the human genome 
is complex, it is still a finite collection of variables. In principle, 
utilization of “big data” approaches involving GWAS, biomarker 
studies, and expression profiling, when paired with robust com-
putational capabilities, should be able to reveal a clear molecular 
signature, and from this signature, we should be able to progress 
through reductionist approaches to reveal pathways of disease.

This theoretical solution to the problem of complex autoim-
mune diseases is hindered by a number of fundamental chal-
lenges. Foremost, heretofore there have been no experimental 
systems available to study individual risk variants in human 
subjects. For T1D, where approximately 57 different genetic 
regions confer some portion of genetic risk (immunobase.org, 
July 2017) (3, 20–26), it is not possible to study one gene at a 
time without incurring significant epistatic effects from other 
risk genes. The likelihood of finding two individuals differing at 
only one risk gene (i.e., one person with the protective allele and 
one person with the risk allele) while having identical variants 
at the remaining 56 risk regions is infinitesimally small. A more 
practical approach would be to reduce the number of genetic loci 
being studied to include only those with the largest odds ratios 
(ORs). Even here, the problem is magnified by the fact that some 
of the most highly associated risk genes beyond the HLA [e.g., 
protein tyrosine phosphatase, non-receptor type 22 (PTPN22)] 
have a low minor allele frequency, even among T1D subjects. For 
North American and European T1D subjects, the frequency of 
individuals with homozygosity for the risk variant of PTPN22 
(1858T at rs2476601) ranges from 0.6 to 3.7% (33). Moreover, 
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FiGURe 2 | A hypothetical outline for establishing an isogenic disease-in-a-dish workflow. Induced pluripotent stem cell (iPSC) stable cell lines can be generated 
from several different somatic cell types depending on specimen availability. Traditionally, dermal fibroblasts from skin biopsy were utilized; however, this is being 
replaced by less invasive samples such as freshly isolated or cryopreserved peripheral blood mononuclear cells (PBMCs). PBMCs can be enriched for various 
populations such as CD34+ hematopoietic stem cells, CD14+ monocytes, T cells, or reprogrammed as a bulk population. Where a pre-re-arranged T-cell receptor 
(TCR) is desired, antigen-specific CD4 or CD8 T cells can be used so that iPSC-derived T cells will clonally express the desired TCR with a naive T-cell phenotype. 
Several commercial platforms for iPSC reprogramming are currently available. Non-integrating Sendai virus vectors provide a safe and efficient means for iPSC 
reprogramming of human primary cells. Following reprogramming into iPSC, gene modification enables researchers to investigate disease-associated risk variants 
and/or over-express or knockdown genes to modulate pathways. Once gene modifications are confirmed, validated protocols for differentiation of immune, 
endothelial or neuroendocrine lineages are utilized to interrogate the specific effects of each gene variant in several disease-relevant cell types.
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genes associated with T1D risk encode proteins that cluster 
within biological processes and/or pathways, posing a consider-
able challenge when analyzing the impact of a given risk variant.

Currently, 57 genomic regions that are defined by 104 SNPs 
[some SNPs identify the same linkage disequilibrium block] are 
significantly associated with T1D according to immunobase.org. 
The set of 64 T1D candidate gene variants from 57 SNP-tagged 
regions listed in Table 1 was analyzed using the Protein ANalysis 
THrough Evolutionary Relationships gene ontology tool (pant-
herdb.org) (34, 35). Not surprisingly, pathway analysis revealed 
a significant enrichment for genes involved in immune processes 
(P = 9.9E−11), where 26 of the 64 candidate genes contribute to 
immune function. The immune system is highly dynamic and 
integrates signals from antigenic receptors, adhesion molecules/
integrins, costimulatory molecules, and cytokine/chemokine 
receptors. These events in turn lead to signal transduction events 
that are also significantly enriched as a defined pathway. Based on 
our analysis, 32 of the 64 T1D candidate genes are implicated in 
cellular signaling (P = 9.25E−03) (Data File S1 in Supplementary 
Material). Considering the role of cross-talk between signaling 
pathways, it is evident that heterogeneous genetic risk will result 
in complex downstream effects on cell signaling and functions.

As a specific example of immune signaling pathway cross-talk, 
we consider one gene that encodes a protein with known effects on 
cytokine receptor signaling. SH2B3 encodes a protein phosphatase 
Lnk that regulates Janus kinase/signal transducers and activators 
of transcription (JAK/STAT) signaling. The risk variant of SH2B3 
(T at rs3184504) encodes a modified Lnk protein where arginine 
at amino acid 262 is replaced by tryptophan (R262W). Lnk is a 
regulator of Jak2 signaling in myeloid cells (36–38), and the T1D 

risk SNP for SH2B3/Lnk is associated with altered expression 
of key elements of IFNγ signaling including signal transducer 
and activator of transcription 1 (STAT1) (39). Furthermore, the 
target of Lnk, Jak2, is a cytosolic protein that transduces signals 
from a variety of cytokine receptors including IL-6, IL-13, G-CSF, 
IL-12, IL-23, granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), EPO, IL-3, and IL-5 (40, 41). Thus, the specific 
effect(s) of LnkR262W upon immune cell function are difficult to 
predict. Adding to this inherent complexity, additional T1D risk 
genes/proteins are likely to co-regulate the same pathways as Lnk. 
For example, at least three T1D candidate genes, Tyk2, SOCS1, 
and IL10, encode proteins with known roles in modulating JAK/
STAT signaling. The interplay of different alleles of each protein 
will likely modify the effect of Lnk. This example highlights the 
need for an experimental system that mitigates the epistatic 
effects of related genes/proteins so that observed phenotypes are 
attributed to the gene of interest alone.

In addition to the number of variants and overlapping pathways 
noted above, there are additional layers of complexity at the cellular 
level. Specifically, it is poorly characterized how a given risk variant 
may impact function within various innate or adaptive immune 
subsets. For example, a gene that regulates JAK/STAT signaling in 
antigen-presenting cells (APCs) such as dendritic cells (DCs) may 
have an entirely different biological effect in lymphocytes. Moreover, 
the impact of a gene variant may be combinatorial to multiple cell 
types that conspire to drive autoimmunity. Furthermore, some genes 
may affect the β cells themselves, endothelial cells, or other cells such 
as neurons (42).

The central pathophysiological mechanism of T1D entails 
at least three major tissue types—immune, endothelial, and 
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TABLe 1 | Genetic variants associated with type 1 diabetes and other common autoimmune diseases.

Chromosome Marker Gene Feature Coding 
variant

Amino acid 
variation

Additional notes Region Other associated 
diseases

1 rs2476601 PTPN22 Exon Y R620W  1p13.2 ATD/CRO/JIA/RA/
SLE/AA/VITrs6679677 3′ region—intergenic N   

rs6691977 CAMSAP2 Intron N   1q32.1  
rs3024505 IL10 3′ region—intergenic N   1q32.1 CRO/SLE/UC/IBD
rs3024493 Intron N   

2 rs35667974 IFIH1 Exon Y I923V  2q24.2 PSO/SLE/UC/
IBD/VITrs2111485 3′ region—intergenic N   

rs1990760 Exon Y A946T  
rs11571316 CTLA4 5′ region—intergenic N   2q33.2 ATD/CEL/RA
rs3087243 3′ region—intergenic N   
rs4849135 ACOXL Intron N   2q13  
rs478222 EFR3B Intron N   2p23.3  
rs9653442 AFF3 5′ region—intergenic N   2q11.2 RA

3 rs113010081 CCR5 and 
CCRL2

3′ region—intergenic N   3p21.31 CEL/UC

4 rs2611215 LINC01179 5′ region—intergenic N   4q32.3  
rs75793288 CTNNB1 Intron N  5′ of ADAD1 and 3′ 

of IL2
4q27 CEL/CRO/UC

rs6827756 Intron N  5′ of ADAD1 and 3′ 
of IL2

rs4505848 Intron N  5′ of ADAD1 and 3′ 
of IL2

rs17388568 ADAD1 Intron N  3′ of IL2
rs10517086 No gene Intergenic—H3K27Ac rich N   4p15.2  

5 rs11954020 IL7R 3′ region—intergenic N   5p13.2  

6 rs9388489 CENPW Intron N   6q22.32  
rs1538171 Intron N   
rs9375435 Intron N   
rs597325 BACH2 Intron N   6q15 ATD/MS/RA
rs11755527 Intron N   
rs72928038 Intron N   
rs924043 No gene Intergenic N   6q27  
rs6920220 TNFAIP3 5′ region—intergenic N   6q23.3 RA/SLE/UC/IBD
rs1738074 TAGAP Exon N SYN  6q25.3 CEL/MS

7 rs7804356 SKAP2 Intron N   7p15.2  
rs4948088 COBL 3′ region—intergenic N   7p12.1  
rs62447205 IKZF1 Intron N   7p12.2  

9 rs10758593 GLIS3 Intron N   9p24.2  
rs7020673 Intron N   
rs6476839 Intron N   

10 rs722988 NRP1 3′ region—intergenic—H3K27Ac rich N   10p11.22  
rs11258747 PRKCQ Exon N SYN  10p15.1  
rs61839660 IL2RA Intron N   10p15.1 MS/RA
rs2104286 Intron N   
rs12251307 IL2RA and 

RBM17
5′ of RMB17 and 3′ of IL2RA N   

rs41295121 5′ of RMB17 and 3′ of IL2RA N   
rs7090530 5′ of RMB17 and 3′ of IL2RA N   
rs10795791 5′ of RMB17 and 3′ of IL2RA N   
rs12416116 RNLS Intron N   10q23.31  
rs10509540 3′ region—intergenic N   

11 rs72853903 INS 5′ region—intergenic—H3K27Ac rich N   11p15.5  
rs689 Intron N   
rs7111341 5′ region—intergenic N   
rs7928968 3′ region—intergenic N   
rs694739 BAD 5′ region—intergenic N  5′ of CCDC88B and  

3′ of PRDX5
11q13.1 CRO/MS/AA
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Chromosome Marker Gene Feature Coding 
variant

Amino acid 
variation

Additional notes Region Other associated 
diseases

12 rs11170466 ITGB7 Intron N   12q13.13  
rs11171739 ERBB3 5′ region—intergenic N   12q13.2 AA
rs11171710 RAB5B Intron N  5′ of IKZF4
rs705705 IKZF4 3′ region—intergenic N   
rs705704 3′ region—intergenic N   
rs2292239 ERBB3 Intron N   
rs3184504 SH2B3 Exon Y R262W  12q24.13 CEL/CRO/JIA/

PBC/RA/AA/PSC/
VIT

rs653178 ATXN2 Intron N   
rs17696736 NAA25 Intron N   
rs10492166 CD69 3′ region—intergenic N   12p13.31  
rs4763879 Intron N   

13 rs9585056 GPR183 5′ region—intergenic—H3K27Ac rich N   13q32.3  

14 rs4900384 LINC01550 5′ region—intergenic N   14q32.2  
rs1456988 5′ region—intergenic N   
rs911263 RAD51B Intron N   14q24.1 PBC
rs1465788 ZFP36L1 5′ region—intergenic—H3K27Ac rich N   14q24.1  
rs56994090 DLK1 3′ region—intergenic N  Intron of MEG3 14q32.2  
rs941576 3′ region—intergenic N  Intron of MEG3

15 rs12148472 CTSH Intron—splice site N   15q25.1 CEL/NAR
rs3825932 Intron N   
rs34593439 Intron N   
rs12908309 RASGRP1 5′ region—intergenic N   15q14 CRO
rs72727394 Intron N   

16 rs4788084 IL27 5′ region—intergenic N   16p11.2 AS/CRO/IBD
rs9924471 5′ region—intergenic N  Intron of SGF29
rs151234 CLN3 Intron N  5′ of APOBR and 3′  

of IL27—K3K27Ac  
rich

rs12708716 CLEC16A Intron N   16p13.13 MS/PBC
rs12927355 Intron N   
rs193778 SOCS1 5′ region—intergenic—H3K27Ac rich N  3′ of CLEC16A,  

Intron of RMI2
rs8056814 CTRB1 5′ region—intergenic—H3K27Ac rich N   16q23.1  
rs7202877 5′ region—intergenic—H3K27Ac rich N   

17 rs1052553 MAPT Exon N SYN  17q21.31  
rs7221109 CCR7 5′ region—intergenic—H3K27Ac rich N   17q21.2  
rs2290400 GSDMB Intron N   17q12 CRO/UC/IBD
rs12453507 3′ region—intergenic N   

18 rs763361 CD226 Exon Y G307S  18q22.2 MS
rs1615504 3′ region—intergenic N   
rs2542151 PTPN2 3′ region—intergenic N   18p11.21 CEL/CRO/UC/IBD
rs1893217 Intron N   

19 rs602662 FUT2 Exon Y G258S  19q13.33 CRO/IBD
rs516246 Intron N   
rs402072 PRKD2 Intron N   19q13.32  
rs425105 Intron N   
rs12720356 TYK2 Exon Y I684S  19p13.2 CRO/JIA/MS/PBC/

PSO/RA/IBDrs34536443 Exon Y P1104A  

20 rs2281808 SIRPG Intron N   20p13  
rs6043409 Exon Y V263A  

21 rs11203202 UBASH3A Intron N   21q22.3 RA/VIT
rs11203203 Intron N   

22 rs4820830 HORMAD2 Intron N   22q12.2  
rs5753037 3′ region—intergenic N   
rs229533 C1QTNF6 5′ region—intergenic N  3′ of RAC2 22q12.3  

X rs2664170 GAB3 Intron N   Xq28  

Genes and markers were derived from immunobase.org (3, 20–26). The genes indicated in blue text were imputed from information derived from the University of California Santa Cruz genome 
browser (genome.ucsc.edu). Amino acid variations (red text) were identified for single nucleotide polymorphism (SNP) variants by downloading the spliced coding sequences from genome 
browser and translating in SnapGene software. SYN (green text) indicates synonymous variation in an exon. Genomic region and disease information displayed were derived from Immunobase.
ATD, autoimmune thyroid disease; CRO, Crohn’s disease; JIA, juvenile idiopathic arthritis; RA, rheumatoid arthritis; SLE, systemic lupus erythematous; AA, alopecia areata; VIT, 
vitiligo; UC, ulcerative colitis; IBD, inflammatory bowel disease; PSO, psoriasis; CEL, celiac disease; MS, multiple sclerosis; PBC, primary biliary cirrhosis; PSC, primary sclerosing 
cholangitis; NAR, non-allergic rhinitis; AS, ankylosing spondylitis.

TABLe 1 | Continued
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FiGURe 3 | Genetic susceptibility risk variants identified in type 1 diabetes (T1D). The current list of gene regions that have been associated with T1D through 
genome-wide association studies were collected from the ImmunoBase resource (www.immunobase.org). Individual single-nucleotide polymorphisms (SNPs) 
corresponding to candidate genes were identified from the ImmunoBase T1D data set. In addition, every SNP tag was queried on the University of California Santa 
Cruz Genome Browser (GRCh38; genome.ucsc.edu) to identify additional genes in each SNP-tagged region. The complete list of regions and genes are compiled in 
Table 1. Each SNP-associated gene was queried on the GeneVestigator database to identify the top 10 tissues with highest expression of each gene (genevisible.
com/search). For each gene it was determined if high-expressing tissues included any one or combination of relevant tissues: immune (blue), endothelial (purple), or 
pancreatic islets (green). The size of regions in Venn diagram represents the relative abundance of genes expressed in each tissue type. Five genes were not highly 
expressed by any of the relevant tissue types (indicated as none, gray).
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pancreatic (Figure 1). To better understand which cells are likely 
to be affected by each T1D candidate gene, we analyzed all genes 
from Table 1 for cell/tissue expression profiles using the online 
GeneVisible tool (genevisible.com) (43) that queries tens of thou-
sands of curated human gene expression experiments. As seen in 
Figure 3, the majority of T1D candidate genes are expressed most 
highly in immune cells, but a small number of genes are preferen-
tially expressed in endothelial or pancreatic cell lineages. Notably, 
13 genes are highly expressed in multiple lineages. Isolating the 
effect of candidate genes in relevant cell types should be a goal 
for the isogenic cellular experimental system described herein.

A number of T1D-associated SNPs encode missense muta-
tions within gene exons, presumably altering protein stability, 
interactions, or function (Table 1); here, the path to dissect the 
impact of variants on biological processes is straightforward. 
However, the vast majority of risk loci reside in non-coding 
regions of the genome and careful studies must be undertaken 
to first dissect the causative variant(s) from each tag SNP locus 
and then determine whether any given SNP exerts its impact 
in a cis or trans manner to alter gene expression (5). One such 
study by Ram et al. recently applied a systems genetics approach 
to dissect the impact of putative risk SNPs on gene expression in 
purified and activated cell lines. The authors mapped cis-acting 
expression quantitative trait loci (eQTL) and found 24 non-HLA 
loci that significantly affected the expression of 31 transcripts 
in at least one cell type from Epstein–Barr virus-transformed 

B cells and CD4+ or CD8+ T cells (44). They went on to describe 
an additional 25 trans-acting loci that impacted 38 transcripts. 
Of note, many of the SNPs associated with risk are located within 
promoter or enhancer regions of their candidate gene (3). These 
studies provide a framework from which additional mechanistic 
studies can now be conducted in isogenic cellular systems.

To begin to address these challenges, the research community 
needs robust platforms to study the effects of individual risk 
alleles in various cell types under controlled conditions. With the 
advent of iPSC technologies and genome-editing tools, this once 
theoretical approach now provides an efficient method to analyze 
disease mechanisms and identify causal gene variants (Figure 4). 
By creating a disease-in-a-dish experimental platform, we and 
others have started to dissect the individual contributions of 
T1D risk genes in specific cell types. Harnessing this information 
will allow researchers to derive rational therapeutics targeting 
checkpoints in key pathways.

DeFeCTive iMMUNe TOLeRANCe iN T1D

Autoimmune diseases, including T1D, result from a breakdown 
in the pathways that maintain a state of immune homeostasis, 
commonly referred to as immune tolerance (1). The mechanisms 
controlling this process involve both central and peripheral 
tolerance mechanisms (e.g., thymic selection and immune 
checkpoints, respectively). Effective immunity requires the 
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FiGURe 4 | Gene modification strategies for use in induced pluripotent stem cell (iPSC) lines. Three basic strategies can be employed for gene editing. To create 
single allele homozygous expression (hemizygous) lines, Module A targets a single allele of the gene of interest (GOI) in iPSC lines that are heterozygous for the risk 
variant. Targeting efficiency for hemizygous clones is approximately 20% of green fluorescent protein positive puromycin resistant clones, and allele targeting is 
random so that either the protective or risk allele can be modified. Module B generates complete knockout of the GOI on a background of homozygous protective 
alleles. Module C utilizes GOI-knockout lines to re-express either the protective or risk variant of the GOI using a CRISPR/Cas9 platform that targets integration into 
the adeno-associated virus integration site 1 (AAVS1) on chromosome 19.
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capacity to respond to a vast array of antigens from pathogens, 
all while functionally limiting host responses to self-tissues and 
commensal microorganisms. In health, the adaptive immune 
system consisting of T and B lymphocytes is edited to eliminate 
portions of the repertoire that acquire somatically re-arranged 
receptors with high binding affinity for self-antigens through 
clonal deletion. For T  cells, this process is carried out in the 
thymus under the control of the autoimmune regulator (AIRE) 
(45). Medullary thymic epithelial cells (mTECs) expressing AIRE 
are thought to coordinate the expression of a select number of 
tissue-specific self-antigens (TSAs). These TSAs, when expressed 
by mTEC work in concert with APCs to eliminate high-affinity 
autoreactive T-cell receptors (TCRs) through negative selection. 
The thymus is also the site for the emergence of thymic CD4+ 
regulatory T cells (tTregs), a population of cells that express the 
master Treg-transcription factor FOXP3 (46). These tTregs seed 
the periphery, playing a key role in reinforcing immune toler-
ance. Rare monogenic mutations in AIRE and FOXP3 result in 
profound autoimmune conditions, referred to as autoimmune 
polyglandular syndrome-1 and immunodysregulation polyendo-
crinopathy enteropathy X-linked syndrome (IPEX), respectively 
(47). T1D is a common clinical manifestation of patients present-
ing with these severe mutations, supporting the essential role for 
these transcription factors in regulating immune tolerance to β 
cells. To date, studies of thymic T-cell selection have largely been 
restricted to animal models. The development of isogenic cellular 
systems provides a unique opportunity to investigate molecular 
pathways that shape the human adaptive immune repertoire.

iSOGeNiC MODeLS FOR STUDYiNG 
THYMiC SeLeCTiON

As noted earlier, the HLA region constitutes the major genetic 
risk locus in T1D (48). While this region has been known to 
confer risk for over four decades, the exact mechanisms by which 

variants in HLA influence disease pathogenesis remain poorly 
characterized. In addition to shaping the T-cell repertoire through 
the processes of positive and negative selection, the thymic devel-
opmental niche controls the composition and relative proportion 
of naive conventional T cells (Tconv) and tTregs that emerge to 
form the mature CD4+ T cell population (49). Little is currently 
known about how high-risk HLA haplotypes (e.g., HLA-DR3/
DR4-DQ8) shape the resulting T-cell repertoire, or for that 
matter, why the HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 
haplotype is so dominantly protective in Caucasian populations 
(OR ~0.03) (50). A prevailing theory presented by Eisenbarth and 
colleagues suggests that the key might lie within the tri-molecular 
complex of HLA class II molecules presenting peptides of insulin 
(specifically, the insulin B-chain9-23) for recognition by autoreac-
tive TCRs (51). T1D DQ8 risk alleles and I-Ag7 of the non-obese 
diabetic (NOD) mouse tend to share non-polar residues in place 
of Asp at β57 and preferentially bind peptides with acidic side 
chains in the P9 pocket of the MHC class II binding groove (52). 
Thus, these molecular interactions within distinct peptide bind-
ing pockets may either allow escape of potentially pathogenic 
autoreactive T-cell clones from the thymus or potentially fail 
to generate the proper repertoire of protective tTregs capable of 
maintaining tolerance.

Together with HLA, additional candidate risk genes could also 
have an impact on thymic T-cell development. Specifically, at least 
three independent variants within the INS-IGF2 locus have been 
associated with risk for T1D (3). This region confers the second 
highest risk for disease following the HLA locus. Risk associ-
ated with the INS gene on chromosome 11p15.5 has been most 
commonly attributed to a variable number tandem repeat locus 
situated 596 bp 5′ of INS (53). Protection from the class III allele 
has been attributed to a markedly higher level of insulin being 
expressed within the thymus (54). Insulin has been proposed as a 
primary or triggering auto-antigen in the NOD mouse model (55) 
and more recently in human T1D (56). Notably, T cells reactive 
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to both native and hybrid insulin peptides, insulin conjugated 
with other β cell antigens, were discovered within the islets of 
subjects with T1D (56–58). When considered in addition to the 
dominance of genetic risk conferred by the HLA, these significant 
observations lend additional support to the dominance of insulin 
epitopes as a primary auto-antigen in disease pathogenesis.

These reports highlight the need for mechanistic studies 
to ascertain how susceptibility alleles impact the process of 
thymic selection. Through the creation of isogenic systems 
involving human bone marrow progenitors, thymic orga-
noids, mTECs, and APCs, novel avenues can now be explored 
to investigate genetic control of the human adaptive T-cell 
repertoire. Key polymorphisms may be altered by gene edit-
ing and genes and/or pathways may be “switched” on or off 
in a temporal fashion by the addition of chemical enhancers 
or repressors in either T-cell precursors or thymic stroma. 
Not only will this provide key insight into pathogenic versus 
regulatory receptors but could also potentially provide an 
opportunity for the ex vivo education of T  cells in isogenic 
thymic organoids for auto- and/or allo-tolerance induction 
strategies following β cells regenerative or replacement thera-
pies in T1D.

MODeLiNG ANTiGeN-SPeCiFiC T-CeLL 
ReSPONSeS

Type 1 diabetes is most often described as a T-cell-mediated 
organ-specific autoimmune disease. This notion emanates from 
seminal experiments including the strong linkage to HLA, early 
animal model adoptive transfer experiments (59, 60), and the 
presence of autoreactive memory T cells within the insulitic lesion 
of organ donors with T1D (12, 14). Studies have been conducted 
to investigate and monitor autoreactive T cells in peripheral blood 
mononuclear cell (PBMC) of T1D subjects. To date, none of the 
commonly employed techniques have approached the sensitivity/
specificity and level of standardization observed for autoanti-
body assays validated by the diabetes antibody standardization 
program now known as the islet autoantibody standardization 
program (61–66). We would speculate that the major reason(s) 
for this inability to identify robust T-cell biomarkers results from 
both technical limitations of the current assays, along with the 
inherent biology of T  cells. Our data profiling the TCR reper-
toire in T1D nPOD organ donors demonstrated only modest 
overlap in high frequency clonotypes between the pancreatic 
lymph nodes and spleen (as a surrogate of PBMC) (67). This was 
particularly striking for CD4+ T cells (mean ± SD; 9.2 ± 7.0% 
of clones shared), with CD8+ T cells demonstrating significantly 
more TCR-β complementarity determining region 3 amino acid 
sequence overlap among different tissues (36 ± 21%).

Studies to quantify antigen-specific T  cells with ELISpot or 
MHC-multimer reagents have demonstrated the rare nature of 
these cells in PBMC (in the range of 1:50,000–1:1,000,000) (68). 
This presents a number of challenges when trying to identify key 
auto-antigen targets and peptides important during the natural 
history of disease. To address this particular limitation, we have 
co-opted an approach pioneered in the cancer immunotherapy 

field to generate large numbers of tumor-antigen-specific T cells. 
Specifically, we have generated lentiviral contructs that express 
full TCR-α and β chains in multi-cistronic expression cassettes. 
This technique is effective for redirecting the specificity of 
primary human Tconv and Tregs as well as CD8+ T  cells (69). 
Recent advances in gene editing and receptor engineering have 
advanced this field to create programmable circuits for studying 
T-cell specificity and effector functions (70). Importantly, we have 
recently employed TCR gene transfer to directly test the cyto-
toxic activity of glucose-6-phosphatase-reactive CD8+ T cells to 
target and lyse β-Lox5 cells or primary β cells in vitro (71). From 
a therapeutic perspective, our current efforts demonstrate that 
human Tregs can be redirected to recognize β cell auto-antigens 
in the context of DR3/DR4-DQ8 and remain highly suppressive 
in vitro to Tconv recognizing a shared peptide or in a bystander 
fashion (72). The application of novel single cell/clone analysis 
platforms, when used in concert with isogenic cellular systems, 
will allow researchers to quickly move from in  silico TCR-α/β 
sequence information to unlimited numbers of antigen-specific 
T cells to expedite auto-antigen discovery and functional studies.

iPSCs can be used for yet another approach to generate a large 
number of antigen-specific T cells and to further study mecha-
nisms of thymic selection. A small number of groups have suc-
cessfully differentiated iPSCs into functional T cells. iPSC derived 
from a single CD8+ T-cell clone have been re-differentiated into 
naive and eventually highly functional CTLs (73). This application 
has emerged as a particularly potent means to not only bolster the 
number of antigen-specific T  cells but also correct the anergic 
and senescent phenotype common to tumor-infiltrating T cells 
in cancer, and while early studies were focused on generation of 
CD8+ CTLs for targeting virus-infected cells (73) or tumors (74), 
the methods could be adapted to focus on auto-antigen-specific 
T  cells. When iPSC derived from non-T  cells (not bearing re-
arranged TCR genes) are used for T-cell differentiation, a broad 
diversity of TCR rearrangement events is possible (75).

Differentiation protocols for iPSC-derived T  cells require 
culture on the murine stromal cells line OP9 expressing the Notch 
ligand protein DL1 (74). The quality of iPSC-derived T cells has 
been incrementally improved by altering culture conditions, 
for example activating CD4/CD8 double positive iPSC-derived 
thymocytes via CD3 to enhance CTL killer activity (76). Today, 
detailed protocols are available for the differentiation of antigen-
specific CD8+ T cells from iPSC (73). To date, advances in single-
positive CD4+ T cells have not approached the same progress as 
CTLs, yet efficient protocols to generate CD4+ TH-cell populations 
are expected. For example, advances in deriving human thymic 
epithelial cells from iPSCs (77) could enhance in vitro differentia-
tion of CD4+ and CD8+ T cells by providing the full repertoire 
of human soluble and membrane-associated growth factors. In 
addition, iPSC-derived thymic epithelia will enable more precise 
studies of how disease-associated gene variants impact thymic 
selection by regulating specific processes such as auto-antigen 
expression during negative selection. The capacity to grow and 
differentiate large numbers of isogenic antigen-specific T  cells 
(>109 cells), without the typical constraints of primary human 
T-cell clones opens up the potential for gene editing and extensive 
functional studies. Thus, we are nearing the point where isogenic 
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iPSC systems can be used to study human T-cell development at 
a mechanistic level that was previously only attainable in animal 
models.

MODeLiNG iNNATe iMMUNe ReSPONSeS

Development of auto-antigen-specific T cells requires more than a 
failure of thymic negative selection. Naive T cells in the periphery 
must be primed by professional APCs. DCs are specialized APCs 
with potent abilities to initiate antigen-specific CD4+ and CD8+ 
T-cell responses. To elicit CD4+ T cells priming, activation, prolif-
eration, and effector function, DCs must first capture antigens via 
phagocytosis or micropinocytosis. It can be envisioned that this 
antigen capture in T1D manifests through DCs phagocytosing 
dead/dying β cells or exosomes derived from β cells.

Several genes associated with T1D risk are expressed in myeloid 
lineages including monocytes, macrophages, and DCs, and it is 
likely that at least some of the immune pathogenesis of T1D arises 
from the innate end of the immune system. Differences in innate 
immune function could emanate from dysregulated antiviral or 
type 1 interferon (T1-IFN) responses, altered co-stimulation, 
changes in antigen acquisition, or enhanced expression of pro-
inflammatory cytokines. As an example, a T1-IFN response 
signature has been observed preceding T1D onset in high-risk 
populations (32). The NOD Rip-LCMV mouse model corrobo-
rates this finding, where IFN-α is critical for progression of T1D 
(78). Furthermore, some enteric viral infections have been asso-
ciated with risk for T1D. In NOD mice, rotavirus infection can 
accelerate T1D in a T1-IFN-dependent manner (79). In humans, 
a growing number of studies have reported associations between 
enterovirus infection and T1D (80–84). Thus, genes that regulate 
the innate response to viruses including T1-IFN expression or 
signaling could mediate T1D risk by altering innate immune 
function.

T1D RiSK GeNeS THAT MODULATe 
ANTiviRAL iMMUNiTY

PTPN22, commonly associated with modifying receptor signal-
ing in T and B cells, is also reported to alter the way that DCs 
respond to danger signals such as bacterial lipopolysaccharide 
by modulating TRAF3 signaling and T1-IFN production (85). In 
lupus, the risk variant of PTPN22 tagged by rs2476601, the same 
variant that is associated with T1D (Table 1), is associated with 
altered TLR7-induced T1-IFN production (86).

A major counter-regulator of IFN signaling is the regulatory 
cytokine IL-10. Indeed, IL-10 is so potent for protection of host 
cells from CTL-mediated killing that many DNA viruses have 
evolved viral homologs of IL-10 to protect them from antiviral 
immunity (87). The T1D risk locus defined by the SNPs rs3024504 
and rs3024493 includes IL10 (Table 1). A protective role for IL-10 
in murine T1D has been established through transgenic NOD 
mice that over-express IL-10 or where exogenous administration 
of recombinant IL-10, plasmid DNA encoding IL-10, or cells 
expressing IL-10 have been used (88–90). Moreover, in  vitro, 
IL-10 protects human islets from the cytotoxic effects of inflam-
matory cytokines (91).

From the innate arm of the immune system, variant alleles 
of the T1-IFN receptor downstream signaling protein Tyk2, the 
cytosolic viral RNA sensor IFIH1 (MDA5), the macrophage 
lysosomal enzyme cathepsin H, and the phosphatase SH2B3 are 
also associated with risk for T1D (Table  1). Collectively, these 
genes along with PTPN22, IL10, SOCS1 and potentially others 
signify a major role for innate immune responses in T1D patho-
genesis. Similar to T-cell responses, isogenic systems are critical 
for understanding how each risk variant affects innate immune 
function.

iSOGeNiC MODeLiNG OF iNNATe-
ADAPTive iMMUNe iNTeRACTiONS

Innate APCs participate in the initiation of immune responses; 
however, they also play an important role in sustaining an 
ongoing adaptive immune response. Interaction of APCs with 
antigen-specific CD4+ T cells provides bi-directional signals to 
both cell types. CD4+ T helper type 1 (TH1) cells are important 
enhancers of macrophage function. Secreted cytokines (e.g., 
IFN-γ) and membrane-associated so-stimulatory molecules [e.g., 
CD40 ligand (CD40L)] expressed by TH1 cells arm macrophages 
to more effectively kill microbes or infected cells. In T1D patho-
genesis, there are essential roles for TH1 T cells, IFN-γ, CD40-
CD40L, and intra-islet macrophages. Where IFN-γ-secreting 
TH1 cells encounter macrophages in the islets of NOD mice, 
the macrophages become activated and produce inflammatory 
cytokines and reactive oxygen species that kill β cells (92).

Most human studies of macrophages and DCs rely on two 
sources of cells—transformed monocytic leukemia cell lines 
or peripheral blood monocytes isolated from venipuncture. 
Some studies utilize alveolar macrophages derived from bron-
cioloaviolar lavage or other specialized macrophages that are 
collected and studied ex vivo; however, sample number and 
size are limiting. PBMCs, while plentiful in number, easy to dif-
ferentiation into macrophages or DCs, and available from large 
cohorts due to the low risk of venipuncture, are not ideal for all 
genetotype:phenotype studies where as discussed above, isogenic 
systems are key. This is further complicated in monocytes, 
macrophages and DCs because they are non-dividing cells in 
culture and generally difficult to modify genetically. iPSCs offer 
a solution to both problems because they are relatively simple to 
modify by lentiviral gene delivery or CRISPR/Cas9 and they are 
effectively immortal in culture. Differentiation of monocytes from 
iPSC offers the opportunity to study individual T1D risk genes 
in macrophages and DCs with unprecedented clarity. Protocols 
for differentiation of iPSC-derived monocytes vary widely from 
a simple two-cytokine mix of IL-3 and macrophage colony-
stimulating factor (MCSF) (93) to a complex mix of cytokines 
and growth factors (94). Both protocols yield monocytes that can 
be differentiated into macrophages or DCs using standard condi-
tions (MCSF for macrophages; GM-CSF  +  IL-4 for DCs), and 
the differentiated cells retain functional properties of peripheral 
blood monocyte-derived cells. Thus, isogenic systems now allow 
researchers to study the effects of a gene variant in either adap-
tive or innate immune cells alone, but more importantly, we can 
now determine how T1D risk variants impact innate/adaptive 
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immune interactions, which are more representative of in  vivo 
disease etiology.

THe β CeLL AND iSLeT 
MiCROeNviRONMeNT

While the immune system is thought to serve as the primary 
pathogenic mediator of T1D, there are events leading up to that 
cytotoxic cell–cell interaction that must occur to facilitate auto-
reactive T-cell destruction of β cells. Specifically, autoreactive 
CD8+ T  cells must home from the bloodstream and tether to 
inflamed endothelium creating firm adhesion contacts, extrava-
sate through the endothelial membrane into the extracellular 
matrix (ECM), and eventually survey the microenvironment for 
their cognate antigens presented by HLA class I hyperexpress-
ing islets (95). To completely model the events driving immune 
destruction of β cells in vitro¸ culture systems are needed where 
both β cells and endothelium can be derived. Extensive research 
has focused on the differentiation of functional, glucose-
responsive, insulin-secreting β cells from human embryonic 
stem cells (hES) (96–98) as well as iPSC (99–103). Established 
protocols rely upon multistage culture of pluripotent cells to 
derive definitive endoderm followed by progressive differentia-
tion of pancreatic endoderm. Often the β cells (or β-like cells) 
are transplanted to immunodeficient mice where further matu-
ration and functional development continue in vivo (104–106). 
More recently, methods have been developed to convert human 
fibroblasts into β-like cells by compressing the differentiation 
protocol so that iPSC reprogramming and differentiation of 
endoderm occur simultaneously (107). Many of these efforts 
are being carried out with the eventual goal of replacing β cell 
mass in T1D patients or utilizing xenotransplantation into 
humanized mice to model T1D pathogenesis. An alternative 
is to use β-like cells and immune cells from syngeneic iPSC to 
model immune destruction of β cells in vitro. This process could 
include endothelial layers (108–110), or ECM barriers that 
mimic key structures involved in immune homing in vivo. The 
advantage of this specific approach would include the ability to 
test novel strategies for blocking cellular adhesion, chemotaxis 
to inflammatory chemokines (e.g., IP-10), as well as potentially 
blocking degradation of the ECM needed for T-cell migration 
into the islet microenvironment.

iSOGeNiC CeLLULAR SYSTeMS: A TOOL 
FOR eXPeDiTiNG TRANSLATiONAL 
THeRAPieS

The emerging fields of iPSC and isogenic cellular systems, when 
coupled with genome-editing technologies, hold great potential 
for elucidating causative genes in complex disorders such as T1D. 
With at least 57 independent genetic variants contributing to 
overall risk, the need for experimental platforms to expedite vali-
dation of causal variants is paramount to the field of functional 
genomics. Before starting an iPSC project, a few considerations 
must be made: (1) What will be the source material for iPSC 
reprogramming (i.e., risk gene profile)? (2) Which of several 

available iPSC reprogramming methods will be utilized? and 
(3) What differentiation protocols are available for the cells of 
interest?

Each investigator must determine starting cell source and 
reprogramming method based on available cells and the ultimate 
research plan. Our group has found that CD34+ HSCs isolated 
from peripheral blood can be efficiently reprogrammed into 
iPSCs using Sendai virus (Figure  5). This method has a few 
advantages over the use of PBMCs. First, CD34+ progenitor 
cells can be isolated from fresh, non-mobilized peripheral blood 
and expanded in vitro (111). Second, the efficiency to generate 
iPSCs is higher with this approach versus non-sorted PBMC. We 
have observed that as few as 2,000 isolated CD34+ HSCs yielded 
several iPSC colonies. Finally, the resultant iPSC will have native 
genetic configurations at both the TCR and immunoglobulin 
loci. However, CD34+ cells may not always be the best source of 
donor material. Where a re-arranged TCR with known antigen 
recognition is desired, CD4+ or CD8+ T cells from T1D patients 
could be used. In addition, it is known that T-cell-derived iPSCs 
differentiate back into T cells more efficiently, putatively due to 
epigenetic memory of the lineage (73).

In addition to cell type, it is particularly important to know 
the T1D risk genotype(s) of donor materials. One initiative at 
the University of Florida Center for Cellular Reprogramming is 
building an iPSC resource for genomic medicine. Samples from 
50 healthy donors (25 males/25 females) with genome-wide SNP 
typing performed using the ImmunoChip platform are being 
utilized to generate iPSC lines. The SNP library will include all 
known T1D risk variants making this cell library and others 
like it (e.g., the Helmsley Cellular Research Hub, cellhub.org) 
powerful tools for studying complex genetic traits. Such an iPSC 
library with SNP database will provide an extremely useful com-
mon platform for SNP validation studies in combination with 
conventional gene editing technologies (Figure 4). For example, 
starting from iPSC clones harboring heterozygous status for a 
particular SNP (Figure 4, Module A), an investigator can obtain 
SNP hemizygous clones through CRISPR/Cas9-mediated allele 
targeting. Using such clones, one can study the effect of SNP vari-
ations within isogenic conditions in a relatively short timeframe.

Reprogramming somatic cells into iPSC is no longer limited 
to the investigators who have developed various methods in their 
own labs. Since the initial discovery of the “Yamanaka Factors” in 
2006 where four minimal genes (Oct3/4, Sox2, c-Myc, and Klf4) 
were identified as key iPSC reprogramming factors (112), numer-
ous advancements in reprogramming gene delivery have been 
made: these include delivery of reprogramming genes as lentiviral 
transgenes, plasmid DNA, or messenger RNA. Each of these plat-
forms has become commercially available in reprogramming kits 
so that most labs can reprogram iPSC from a variety of tissues. 
Our group has found most success with a Sendai virus repro-
gramming vector. This non-integrating and self-limiting murine 
parainfluenza virus delivers the four essential iPSC genes in a 
single polycistronic message (Figure 5B) (113–115). Regardless 
of the method used, iPSCs take on a highly pluripotent phenotype 
and can be used to differentiate numerous lineages.

We have highlighted earlier progress in differentiating 
iPSC into key immune, endocrine, and endothelial cell types. 
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FiGURe 5 | Induced pluripotent stem cell (iPSC) reprogramming schematic from CD34+ cells using Sendai virus. (A) CD34+ progenitor cells are transduced with 
Sendai virus on day 0 and are cultured in feeder-free conditions on Matrigel-coated plates with CD34+ expansion medium (e.g., StemSpan SFEMII plus StemSpan 
CD34+ Expansion Supplement) for the first 3 days. Medium to support reprogramming (e.g., ReproTeSR) is added on days 3 and 5. Starting on day 7, medium is 
replaced daily until colonies are sufficiently large to isolate clonally, typically on day 21. After isolation, cells are cultured in PSC maintenance medium (e.g., mTeSR1) 
for 4–6 weeks of expansion. After expansion, iPSCs undergo assessment for pluripotency and normal karyotype and can be cryopreserved for later use. (B) 
Replication defective Sendai virus (SeVdp KOSM) contains Sendai genes NP (nucleocapsid), P (Phosphoprotein), L (large protein), C protein, V protein, and 
Yamanaka reprogramming genes KLF4, OCT4, SOX2, and c-MYC.
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Without doubt, future applications of this approach will 
continue to expand as the community derives additional cell 
types from iPSC progenitor populations. The ability to switch 
between protective and susceptible variants and effectively turn 
genes on/off or up/down will allow the reductionist types of 
mechanistic studies previously only possible in gene knockout 
or transgenic animal models. One can certainly envision 
future models employing iPSC that layer increasingly complex 
admixtures of cells to recapitulate tissue micro-environments 
complete with multiple endocrine cell types, acinar tissues, 
microvasculature, and perhaps even innervation. We, along 
with others, are beginning to print living cells into liquid-like 
solid matrices allowing for exquisite control of cellular distribu-
tion in 3D space (116). The preliminary transcriptional profiles 
that have emerged from the transition from 2D culture in plastic 
wells to 3D cell culture have already suggested a distinct gene 
expression signature, more akin to that extracted from native 
tissues. Specific investigations using such 3D culture systems 
together with isogenic cellular models are needed to examine 
T1-IFN signaling with modulation of IFIH1 and TYK2 risk 
alleles as well as costimulatory pathways known to confer 
T1D risk (e.g., CD28/CTLA4 and CD226/TIGIT) (Table  1). 
Moreover, there will certainly be applications to reconstruct 
immune developmental niches to recapitulate key elements of 
hematopoietic development in the bone marrow, thymus, and 
secondary lymphoid organs. Such studies are expected to afford 

novel drug discovery through identification of new therapeutic 
targets.

The most obvious applications for stem cells in the T1D field 
reside in the ongoing need to replace the loss and functional 
inactivity of endogenous β cell mass that precipitates glucose 
dysregulation [reviewed in Ref. (117)]. To date, this has been 
accomplished through both hES- and iPSC-derived insulin-
producing β cells. The capacity to model and recreate not only β 
cells but also functional immune populations will allow the testing 
of therapies to close the translational loop and prevent recurrent 
auto- or allo-immune rejection of transplanted β cells. Indeed, 
this might be accomplished by introducing genes to protect iPSC-
generated β cells against apoptosis (e.g., GLIS3) (118) or to shield 
them from immunological attack, representing key objectives for 
iPSC-derived treatments in the regenerative medicine space.

Interventional trials to restore or preserve β cells in T1D have 
largely been driven by individual investigator sponsored trials in 
the context of larger consortiums (e.g., TrialNet and the Immune 
Tolerance Network). These efforts have largely taken the form of 
repurposing clinically approved drugs from other diseases or have 
been based on preliminary studies generated in the NOD mouse 
model of T1D. While these efforts are beginning to demonstrate 
some transient preservation of C-peptide (the serum marker co-
secreted in equimolar amounts with insulin), no current therapy 
has yet resulted in an FDA-approved intervention capable of 
demonstrating long-term efficacy (119–128). We propose that 
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additional dose finding studies using human isogenic cellular 
systems to screen for desired mechanistic outcomes could poten-
tially inform clinical trial agent selection and dosing.

From a patient perspective, the notion of equipoise limits 
experimental testing of many novel and/or high-risk combinato-
rial agents. By adopting isogenic cellular systems, those limita-
tions could be mitigated by testing and optimizing prior to trial 
validations. Moreover, despite some demonstration of efficacy in 
preliminary trials (e.g., teplizumab, abatacept, alefacept, and ATG 
with or without G-CSF), no clear marker has emerged a priori 
that effectively predicts clinical responders or non-responders to 
any particular agent beyond basic cohort demographics of age, 
residual C-peptide, and disease duration (127–129). The use of 
isogenic cellular systems and personalized testing could facilitate 
drug selection and dose optimizations with clearly defined 
mechanistic readouts (e.g., phosphorylated-STAT5 response 
following low-dose IL-2) (130–133). Ultimately, the advent of 
genomic editing and isogenic cellular systems will not only enable 
a deeper understanding of disease pathogenesis but should also 
expedite the speed of discovery and clinical translation with the 
hope of both restoring β cell mass and inducing durable antigen-
specific immunological tolerance.

CONCLUSiON

The emergence of genomic medicine has accelerated the rate of dis-
covery with regard to the genetic basis of T1D. Multidimensional 
datasets now make it possible to overlay components of genetic 
variation, epigenetics, and transcriptional control of gene expres-
sion. Unfortunately, the vast number of associated SNPs, hetero-
geneity in human disease, and limits of clinical resources present 
a new set of challenges. There remains a paramount need to move 
beyond discovery of associated SNPs to a deeper understanding 
of causative variants to elucidate the molecular mechanisms 
and pathways of disease. The advent of iPSC technologies and 
precision gene editing now allows researchers to expedite the 
discovery and validation of these disease-associated variants.

Induced pluripotent stem cell technologies were initially met 
with great enthusiasm with the prospect of offering the capacity 
for regenerative medicine applications, including autologous 
β cell replacement in T1D. While the robustness and efficiency 
of these approaches will continue to advance, the current 

technologies exist to derive these cells, enabling researchers to 
build more powerful models of disease pathogenesis. Specifically, 
isogenic cellular systems now allow modeling of target β cells, 
effector T-cell populations, and the innate and stromal compo-
nents that interact with both the target organ and effector arms 
of the immune system. The capacity to rapidly derive these highly 
limited and rare populations at scale, all while targeting genomic 
loci in a high-throughput manner is expected to expedite func-
tional genomics in a manner heretofore not observed. A detailed 
understanding of the mechanisms by which gene variants confer 
susceptibility or protection to disease will undoubtedly identify a 
number of key immunological lynchpins that can be therapeuti-
cally targeted in a rational approach to restore immune tolerance 
to β cells in individuals with T1D.
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Type 1 Diabetes (T1D) develops when immune cells invade the pancreatic islets resulting 
in loss of insulin production in beta cells. T cells have been proven to be central players 
in that process. What is surprising, however, is that classic mechanisms of tolerance 
cannot explain diabetogenesis; alternate mechanisms must now be considered. 
T cell receptor (TCR) revision is the process whereby T cells in the periphery alter TCR 
expression, outside the safety-net of thymic selection pressures. This process results in 
an expanded T cell repertoire, capable of responding to a universe of pathogens, but 
limitations are that increased risk for autoimmune disease development occurs. Classic 
T cell costimulators including the CD28 family have long been thought to be the major 
drivers for full T cell activation. In actuality, CD28 and its family member counterparts, 
ICOS and CTLA-4, all drive regulatory responses. Inflammation is driven by CD40, not 
CD28. CD40 as a costimulus has been largely overlooked. When naïve T cells interact 
with antigen presenting cell CD154, the major ligand for CD40, is induced. This creates 
a milieu for T  cell (CD40)–T  cell (CD154) interaction, leading to inflammation. Finally, 
defined pathogenic effector cells including TH40 (CD4+CD40+) cells can express FOXP3 
but are not Tregs. The cells loose FOXP3 to become pathogenic effector cells. Each 
of these mechanisms creates novel options to better understand diabetogenesis and 
create new therapeutic targets for T1D.

Keywords: autoimmunity, T cell receptor revision, costimulation, type 1 diabetes, etiology of willful acts

Medical advances in infectious diseases have been extraordinary, completely changing human his-
tory. The polio vaccine, small pox vaccine, and measles vaccine among others changed modern 
medicine. Success with infectious diseases has influenced and created a generalized approach to 
most medical problems. Unfortunately, using that approach for autoimmune disease has fared much 
less well. Diseases like type 1 diabetes (T1D) and multiple sclerosis (MS) have seen unpredictable 
and steady increases in incidence over the last half-century, with only limited treatment options and 
no cure options on the horizon (1). World-wide incidence of T1D has doubled over the past two 
decades (2). Examples of how diabetes is expanding can be described in former Soviet-Bloc countries 
where T1D incidence was virtually unheard of decades ago, but now has increased substantially 
in all age groups examined. Incidence in adults is now surprisingly high, but the highest increase 
was seen in children aged 0–4 years (2). Speculation as to why the incidence rate is so drastically 
expanding focused on the introduction of Western-Style diet, in other words high-fat, high-glucose 
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diets (3). Other parameters, such as genetics, could not account 
for the increases. Like T1D, MS incidence is increasing (4), as 
is inflammatory bowel disease (IBD) (5), even the more rare 
Hashimoto’s Thyroiditis is seeing steady incidence increase (6). 
Another alarming trend is autoimmune comorbidities. Once 
thought to be unlikely, different autoimmune diseases now are 
being diagnosed in the same patient; MS and T1D (5); MS and 
IBD (7); rheumatoid arthritis and T1D (8); psoriasis and T1D 
(9); and alopecia areata and T1D (10). This is partially due to 
improved diagnostic techniques, and due to longer survival of 
patients with autoimmune conditions.

Each autoimmune disease is disparate in symptoms and 
effect; nonetheless, they share immunologic mechanistic simi-
larities. The integral components of autoimmune disease like 
infectious disease involve classic immune reactions. During an 
immunological event, foreign antigens, including viruses, bacte-
ria, funguses, etc., are processed and presented as antigens that 
lead to T and other cell type activation. This process collectively 
creates an inflammatory microenvironment. Macrophages or 
dendritic cells (DCs) at the infection site take up the invading 
pathogen that then is processed. The pathogen is internalized 
by engulfment or receptor-mediated uptake, and associates with 
proteasomes to create antigen fragments. The order of antigenic-
ity is protein ≫ DNA/RNA > carbohydrate >  lipid. There are 
very few lipid antigens, although CD1-bearing cells are able to 
present lipids through the CD1 complex to activate T cells (11). 
Once generated, the antigen associates with MHC/HLA in the 
Golgi–endoplasmic reticular compartment. MHC  +  antigen 
then is exported and maintained on the cell surface. Professional 
antigen presenting cells (APCs) include B cells, macrophages, 
and DC that express the class II version of MHC. CD4+ lympho-
cytes interact with professional APC to create localized inflam-
mation. CD8+ cells interact with MHC-class I type molecules. 
Under normal immune conditions, CD8+ cells respond to 
virally infected cells. In autoimmune conditions including T1D 
and MS, CD8+ cells can play a role in pathogenesis (12, 13). 
T cells that carry a specific and unique T cell receptor (TCR) 
recognize and respond to a specific antigen creating localized 
inflammation. Under septic conditions, the initial response is 
pro-inflammatory including activation of TH1 and/or TH17 
type cells (14). Under non-septic, autoimmune conditions, the 
pro-inflammatory phenotype also occurs (15–18). In both sce-
narios, an appropriately expressed TCR is required, the problem 
being that in autoimmune diseases T cells arise that recognize 
and respond to self-antigens. The thymic microenvironment 
is responsible for generating mature T  cells with appropriate 
TCRs; this means generating T  cells that respond to foreign/
invader antigens but do not respond to self-antigens. There 
are, however, medical conditions where self-antigen response 
is desirable. Transformed cells that result in cancers need to be 
targeted, and self-antigen reactive T  cells perform that func-
tion. Maintaining the fine-line homeostatic balance, however, 
becomes the tricky part.

The interaction of TCR and MHC-Antigen is a crucial aspect 
of immune function, never more so than during autoimmun-
ity. Autoaggressive T  cells have been predicted to slip through 
the selective pressures of the thymus (19). Alternatively, it has 

been shown that autoaggressive TCRs can be generated in the 
periphery through a process termed TCR revision (20–23), 
thereby subverting central tolerance. It is possible that peripheral 
negative selection occurs and may be dysfunctional in T1D and 
other autoimmune diseases. TCR revision contributing to auto-
immune disease development has been discussed in a previous 
review (24). A defining feature to peripherally generated, autoag-
gressive T cells is expression of CD40 (20, 21, 24–28). Relative to 
CD40 expression on T cells is what function(s) does it perform? 
A surprising outcome was the potential role as a costimulus 
molecule (29–31). Relative to the accepted two-signal model for 
T cell activation (32, 33), costimulation can play a critical, even 
decisive, role during autoimmunity.

THe ROLe OF COSTiMULATiON AND 
AUTO-AGGReSSiON

The necessity of costimulatory molecules for T cell activation was 
described in the two-signal model by Bretscher (32). Signal 1 is 
antigen specific, mediated by TCR interaction with an antigen/
MHC complex. Signal 2 is antigen independent, mediated by 
receptor–ligand interactions that occur between the T cell and 
APC. The TCR/CD3–MHC/Ag complex with the assistance of 
adhesion and addressin molecules expressed on each cell type 
act in a velcro-like manner to adhere the cells together during 
antigen recognition creating what is known as the immunologic 
synapse (34). Signaling within the synapse is bidirectional with 
each cell contributing to the others full activation. Therefore, 
dysfunction involving either cell could result in pathogenesis. 
From the T cell perspective, Jenkins and Swartz suggested that 
TCR-mediated signals alone, without appropriate costimulus, 
results in a permanent non-responsive condition called anergy 
(35). While stimulatory signals are sent from T cell to APC within 
the synapse, the type of costimulation toward the T  cell often 
dictates the immunologic outcome.

iMMUNOGLOBULiN “ig” COSTiMULUS

One of the first described T  cell costimulatory molecules was 
CD28, which turned out to be a member of a subfamily of 
proteins that includes ICOS and CTLA-4. This subfamily was 
categorized as “Immunoglobulin-family costimulus” due to the 
biochemical structure of the proteins. CD28 is expressed on 
most naïve, activated, and memory T cells; ICOS and CTLA-4 
are expressed on activated T cells and subsets of memory cells 
(36). CD28 and CTLA-4 interact with CD80 (B71) and CD86 
(B72) found primarily on professional APCs. ICOS interacts 
only with B7H expressed constitutively on naïve B  cells but 
expression extinguishes after antigen engagement and IL-4 
cytokine exposure (37). CD40 stimulation of B  cells restores 
B7H expression (37). The fact that ICOS is limited to only 
B7H stimulation provides possible unique signaling outcomes. 
CTLA-4, unlike its counterparts, plays a role in cell regulation 
as opposed to cell activation (36). CTLA-4 is constitutively 
expressed on Tregs and is inducible on effector cells (38), 
including potential pathogenic effector cells (39). Study of 
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CTLA-4-mediated tolerance demonstrated interesting outcomes 
relative to endogenous and exogenous antigens. Using double 
transgenic mouse models, a more definitive role for CTLA-4 
was determined. Mice genetically manipulated to express an 
ovalbumin peptide directly on islet beta cells, RIPmOVA mice 
on a BALB/c background, and exposed to OVA-peptide-specific 
T cells, DO11.TCR-transgenics, only developed diabetes if the 
cells originated from RAG−/−.DO11.TCR.Tg donor mice and if 
OVA peptide was injected (40). If donor T cells further included 
a CTLA-4−/− background, then disease occurred independently 
of injected OVA. Because of CTLA-4’s role as potential tolerance 
inducer, it was considered an ideal candidate for therapeutic 
development. A CTLA-4 analog was developed as a therapeutic 
in T1D, but has had only limited success (41, 42).

Given the potential prominence of CD28 signaling, 
considered crucial for T  cell activation, it was assumed that 
CD28 would be a useful target for controlling autoimmunity. 
The assumption being that induced anergy, as suggested by 
Jenkins and Swartz, would prove therapeutic. This rationale 
applied to T1D and other autoimmune diseases. CD28 and B7 
knockout mice were created but the results were unanticipated. 
CD28−/− and B7−/− mice developed extensive autoimmunity (36, 
43–48). One study showed that in the experimental autoimmune 
encephalomyelitis model of MS, CD28−/− mice developed very 
rapid, more severe disease when challenged with disease caus-
ing MOG antigen (46). If, however, the CD40–CD154 signaling 
pathway was blocked, no disease development occurred (46). 
CTLA-4−/− mice likewise experience extensive, systemic auto-
immunity (49, 50). Collectively these data suggested that CD28 
plays a more prominent role in regulatory T cell development. 
In fact, CD28 is required for Treg development (43). Rather than 
CD28 being the “all-purpose” T cell costimulus it was originally 
thought to be, its part in autoaggressive T cell stimulation comes 
in to question.

MUCiN COSTiMULUS

Given that the Immunoglobulin family (CD28/ICOS specifically) 
knockouts still experienced classic T  cell responses; the only 
viable explanation was “other” costimulatory molecules. A series 
of T  cell potential costimulatory molecules was discovered in 
relation to Asthma that were defined as T-cell-immunoglobulin-
domain/mucin-domain (TIM) proteins. The family is comprised 
of eight members, two of which occur directly on T cells (51). 
Only TH2 cells express TIM-1 where it plays a pro-regulatory 
role while TIM-3 preferentially is expressed on TH1, TC1 cells, 
and DC (52). TIM-3 engagement results in inhibitory signals 
that lead to apoptosis (52). Polymorphisms within the TIM 
family were examined in T1D and no positive correlations were 
discovered (53). The ligand for TIM-3 is galectin-9 (51). NOD 
mice that were treated with a plasmid encoding galectin-9 were 
significantly protected from diabetes (54). In another model, 
galectin-9 treatment induced aggregation and cell death of TH1 
cells, selective loss of IFNγ producing cells and suppression of 
TH1 autoimmunity (55). Treating mice with anti-TIM-3 resulted 
in increased fatty streak formation and increased atherosclerotic 
plaque formation in mice (56). The problem with identifying 

galectin-9 as the ligand for TIM-3 is that galectins are proteins 
that non-specifically interact with carbohydrates. Galectin-9 for 
example interacts with β-galactoside sugars on proteins includ-
ing CD44 (57) and CD40 (58), both of which are associated with 
pathogenic T cells. In addition, Galectin-9 interaction with CD40 
is independent of TIM-3 (58). A study showed that activation 
of human T  cells is not affected by the presence of galectin-9 
nor to antibodies to TIM-3 (59). That result is logical given that 
galectin-9 can bind to any β-galactoside. Given these findings, 
many of the TIM-3 studies must be reconsidered in relation to 
autoimmunity. Galectin-9 for example can interact with any 
β-galoctoside and, therefore, may impact a large number of 
signaling pathways not just TIM-3.

TNF-ReCePTOR-SUPeRFAMiLY 
COSTiMULUS

A perhaps somewhat surprising subgroup of T cell costimulatory 
molecules involves members of the TNF-receptor-superfamily 
(TNFRSF). The initial understanding of TNFRSF costimulation 
was from the perspective of APCs. The early assumption was 
based on the determination that TNFRSF ligands or TNF-super 
family members largely are expressed on activated T  cells and 
the receptors, TNF-receptors I and II, and CD40, etc., were 
first described on APC. TNFα is a pro-inflammatory cytokine 
produced by TH1 cells and macrophages (60); it occurs both as 
a secreted cytokine, the major form, and as a cell surface mol-
ecule (61). Both the soluble and transmembrane forms of TNFα 
interact with TNFR I and II (61). CD154, one of the ligands for 
CD40, is activation induced on T cells where its expression is 
temporal (18). CD154 also is expressed on APC (62), astrocytes 
in the CNS (63), and its major source is platelets (64). Like TNFα, 
CD154 occurs as both a cell surface molecule and a secreted form 
(65–67). Soluble CD154 is significantly increased in serum of 
T1D (68), and other autoimmune diseases; it may behave as a 
highly pro-inflammatory cytokine.

Members of the TNFRSF that act as T  cell costimulatory 
molecules include 4-1BB and OX40. Both OX40 and 4-1BB are 
activation induced and promote cell survival, potential T  cell 
memory formation, and cytokine production (69–71). In addi-
tion to expression on effector T  cells, OX40 was detected on 
CD25+, potential Tregs in T1D patients (72). 4-1BB performs 
similar function on T cells (73, 74). 4-1BB mapped to the Idd9.3 
locus in NOD mouse studies, and reportedly increases IL-2 
production and improves CD3 stimulated-activation-outcomes 
(75–77). These data suggest that OX40 and 4-1BB are more 
directed toward regulatory outcomes. In that same vein, another 
TNFRSF member is glucocorticoid-induced-TNF-receptor-
protein, GITR known as TNFRSF18. GITR is predominately 
associated with Tregs (38). Like OX40 and 4-1BB, GITR increases 
IL-2 production, and improves CD3 activation, developing the 
MAPK signaling cascade (38, 78). Tregs have been discriminated 
into innate, those that arise during thymic development (79, 80), 
and induced, Tregs that are created in the periphery often after 
exposure to IL-10, GITR expression associates with induced 
Tregs (38, 79–82).
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CD40 (TNSFR5)

Unlike the other TNF-receptor costimulatory molecules on 
T cells, CD40 acts in a predominant pro-inflammatory manner 
(18, 27, 31, 58, 83–99). CD40 expression was first described on 
B  cells, and when associated with IL-4, CD40 signals induce 
antibody class switching. While this action could be involved in 
autoantibody generation, such function has not been described 
in T1D or other autoimmune diseases. Like other TNFRSF mem-
bers, CD40 signals ablate cell death and promote cell survival in 
B cells, performing similar function in T cells (22, 100). A major 
problem in understanding the scope of CD40-mediated inflam-
mation has been a gross underestimation of CD40 expression. 
As studies of CD40 evolved, its expression was identified in 
numerous cell types. CD40 is expressed on all professional APC, 
B cells, but also DCs and macrophages. On DCs, it plays a central 
role in T cell licensing. CD40 engagement on DC switches the 
DC’s interactions with T  cells (101). DCs that are high CD40 
expressers promote TH1 cell development while CD40-low 
or CD40-negative DCs favor Treg development (102). CD40 
induces iNOS in macrophages (103), thus contributing to the 
innate immune arm and it induces pro-inflammatory cytokines, 
including TNFα, IL-1α, IL-1β, and IL-6 (17, 18, 104). CD40 
expression has been described on endothelial cells (105); neural 
cells (106); and surprisingly on islet β cells (107–109). On each 
of those cell types, CD40 engagement leads to pro-inflammatory 
cytokine production.

While initially unexpected, CD40 expression occurs on 
T  cells, including CD4+ and CD8+ cells (20–23, 26–28, 31, 39, 
58, 100, 110–113). Like OX40 and 4-1BB, CD40 on CD8+ cells 
is associated with memory cell generation (114). On CD4+ 
cells, CD40 has been reported on naïve, effector, central, and 
effector memory cells (29–31), in both murine and human 
studies. CD40 engagement works independently of CD28 or 
other costimulatory molecules, inducing predominantly TH1 
phenotype cytokines including TNFα and IL-6 (29), as well as 
GM-CSF and IL-1β (31). CD40 costimulus also induces the TH17 
phenotype cytokines IL-17 and IL-21. Interestingly, the TH1 and 
TH17 cytokines express concomitantly in TH40 cells after CD40 
engagement. Because TH40 cells produce both TH1 and TH17 
cytokines, post CD40-mediated costimulus these helper cells do 
not fit the paradigm of either TH1 or TH17 cells, and thus have 
been termed TH40 cells (20–22, 27, 28, 39, 100, 112, 113).

TH40 CeLLS: CD40 SeRveS AS A 
BiOMARKeR FOR AUTOAGGReSSive  
T CeLLS

When isolated from diabetic or pre-diabetic NOD mice TH40 
cells transfer diabetes readily and without any manipulations; 
thus CD40 constitutes a diabetogenic T cell biomarker (20–22, 
26–28, 100). A panel of highly pathogenic, autoaggressive T cell 
clones, including the well described BDC2.5 and BDC6.9 clones, 
express CD40 (20, 21, 28). Non-diabetogenic T cell clones includ-
ing BDC2.4, isolated from the same NOD spleen as BDC2.5 
cells, do not express CD40 (28). Primary TH40 cells increase to 

significantly greater percentages and cell numbers during auto-
immunity (20–22, 26, 27, 100). However, like Tregs, some CD40-
expressing CD4 cells arise in the thymus (39). In NOD mice that 
develop spontaneous diabetes, substantial thymic increases in 
numbers of CD40+ thymocytes were observed (111). Likewise, 
in a double transgenic, neo-self-antigen model, DO11.RIPmOVA 
mice, where TCR.Tg T cells that are specific for OVA encounter 
OVA on thymic medullary epithelial cells, thymic CD40 express-
ing CD4+ cells were significantly expanded in number (39). The 
percentage of developing TH40 thymocytes in NOD mice was 
identical to that of DO11.RIPmOVA mice, suggesting that auto-
antigen drives the expansion of TH40 cells in the thymus. During 
T1D, the percentage of TH40 cells expands proportionately with 
increasing insulitis over time in NOD mice (29). In fact, TH40 
cells proved to be diagnostic for T1D. In female NOD mice, 80% 
develop T1D by 18–22 weeks of age, while only 20–50% of male 
mice develop disease. Observations reveal that diabetic male 
NOD had peripheral TH40 cell numbers equivalent to that of 
diabetic female mice (Wagner Lab observations). Likewise, in 
NOD female mice that did not develop diabetes, TH40 cell num-
bers remain at numbers found in non-autoimmune mice. These 
observations suggest that breach of tolerance involves TH40 cell 
number expansions.

Primary TH40 cells isolated directly from the pancreatic 
lymph nodes or spleens of pre-diabetic and diabetic NOD 
mice transferred progressive insulitis and diabetes to NOD.scid 
recipients (21, 28). CD40− T cells did not transfer disease, even 
after removal of Tregs and additional ex vivo activation (20–22, 
28). T cell CD40 expression is long-lived unlike classic activation 
molecules, i.e., CD69, CD25, or CD154. Furthermore, classic 
TCR-mediated activation of naïve CD40− T cells does not induce 
CD40 expression. Interestingly, in murine studies, TH40 cells 
are less susceptible to Treg suppression than non-CD40 express-
ing T cells (22). TH40 cells are able to express CTLA-4, one of 
the immunoglobulin family, pro-regulatory molecules. Using 
the neo-self-antigen model of T1D, TH40 (DO11 TCR+) cells 
isolated from diabetic mice did not express CTLA-4, while the 
vast majority of CD40− T cells (also DO11 TCR+) were CTLA-4+ 
(39). CTLA-4 is activation induced, requiring TCR engagement 
(38); therefore CTLA-4 expression may be regulated by CD40-
mediated signals as was demonstrated (39). Observations further 
show that in diabetes prone NOD mice expression of CTLA-4 is 
deficient (39).

BATTLe OF THe COSTiMULATORY 
MOLeCULeS

Clearly, T cells express an array of costimulatory molecules and 
while each can contribute to activation, the reality is that differ-
ent costimulators drive the T cell in different directions. CD28, 
for many years, was considered the central T cell costimulatory 
molecule. Virtually all in vitro T cell stimulation/activation pro-
tocols utilized CD28 costimulation. What became a surprise was 
that CD28 interaction with B71 or B72 drives a more regulatory 
phenotype leading to production of IL-4, IL-10 and especially 
IL-2 (Figure 1). The role of IL-2 will be discussed further below. 
One reason that CD28− only costimulation became universally 
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accepted as pro-inflammatory is that the coincident response 
of CD40–CD154 interaction was overlooked. When CD40 is 
engaged on T cells, independently of CD28 (29–31, 110) or in 
combination with CD28 (30, 31, 110), a TH1/TH17 pro-inflam-
matory phenotype results (Figure  1). When T  cell activation 
occurs, signals through the synapse lead to induction of CD154 
expression (115). Therefore, in the microenvironment a source 
for CD40–CD154 interaction in addition to CD28, costimula-
tion is developed. In T1D compared to controls, CD40-bearing 
T cells, TH40 cells in particular, are over represented (20–22, 24, 
27–29, 31, 39, 90, 100, 110–112, 116). The overlooked issue is 
T  cell–T  cell interactions (Figure  1). An activated T  cell is an 
abundant source of CD154 and can, therefore, interact with CD40 
on APC, within the immune synapse; but it also can interact with 
CD40 on TH40 cells. That interaction leads to inflammatory 
cytokine production (23, 29–31, 39, 58, 110–112), as represented 
in Figure 1. Importantly, the CD40 signal can override the CD28-
mediated signal (29, 30), to drive inflammation.

THe UNiNTeNTiONALLY 
MiSUNDeRSTOOD ROLe OF iL-2

IL-2 discovery began from an accidental, but important happen-
stance involving the kidney bean extract, phytohemagglutinin 

(PHA). When cells in culture were treated with the extract, 
there was lymphocyte cellular expansion (117). The expansion 
was temporary, however. Over time, the substances induced by 
PHA that caused leukocytes to proliferate were identified as 
interleukins and the interleukin associated with T cell expan-
sion specifically became known as IL-2. After this discovery, the 
addition of IL-2 to all T cell cultures was considered essential. 
To better understand T  cells and IL-2 responses specifically 
promoting autoimmunity, IL-2 knockout mice were generated. 
The a  priori hypothesis was that autoimmune disease would 
be completely negated, since theoretically IL-2 would be the 
cornerstone T cell survival cytokine. Surprisingly, IL-2−/− mice 
demonstrated that IL-2 was not the crucial cytokine for T cell 
development that it was thought to be (118, 119). Effector T cells 
develop normally in the thymus in the absence of IL-2 (120) 
and in fact, autoimmunity is abundant and spontaneous in those 
mice (121). IL-2 is, however, required for Treg development 
and homeostasis (120). Further study demonstrates that IL-2 
promotes Treg development but does not promote pathogenic 
effector cell development (120). This observation creates unique 
problems for the vast array of T cell in vitro experiments where 
IL-2 has been added as the T  cell costimulus for pathogenic 
effector cells. Those studies require re-visiting given that IL-2 
promotes regulation.
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ALTeRNATe MeCHANiSMS FOR 
eFFeCTOR T CeLL ReGULATiON: TH40 
CeLLS eXPReSSiNG FOXP3

The BDC2.5 T  cell clone rapidly and efficiently transfers dia-
betes to NOD.scid recipient mice (20, 28, 122). When the TCR 
transgenic (TCR.Tg) version of BDC2.5 was created, only about 
22% of mice became diabetic in the time frame considered 
(123). This outcome was surprising, given the strong diabe-
togenicity of the BDC2.5 clone. Longitudinal studies revealed 
a different outcome, however. If BDC2.5.TCR transgenic mice 
were followed for 45  weeks, disease incidence achieved 100% 
(111). That finding suggests that eventual breach of tolerance 
occurs. TH40 cells expand rapidly in the BDC2.5.TCR.Tg mouse 
model, but disease kinetics are much slower than in classic 
NOD mice (111). The unexpected finding was that TH40 cells 
at younger ages contained high levels of FOXP3 (111). In this 
circumstance TH40 cells were not Tregs; the BDC2.5.TCR.Tg 
mice maintained classically defined Tregs, CD4+CD25hiFOXP3+. 
Tregs but not TH40-FOXP3+ cells performed regulatory func-
tions (111). The disease defining parameter was loss of FOXP3 
in TH40 cells. TH40 cells isolated from young animals had high 
FOXP3 levels and could not transfer diabetes; TH40 cells that 
rapidly and efficiently transferred diabetes were FOXP3 negative 
regardless of the age of the donor (111). Not only were TH40 
cells disease instrumental, but CD40 itself proved to be a dis-
ease master switch. BDC2.5.TCR.Tg mice bred onto the CD40 
knockout background did not develop diabetes at any age (111) 
and equally impressive, those mice did not exhibit insulitis (29). 
In addition, BDC2.5 T cells isolated from the CD40 KO mice 

maintained high levels of FOXP3 even after 45  weeks. These 
findings indicate that when CD40 levels are sufficiently con-
trolled, effector cells are able to express FOXP3. Furthermore, 
that expression is independent of Treg status. If systemic CD40 
levels and CD154 levels are substantially elevated, just as occurs 
in T1D, then effector cells loose FOXP3 to become pathogenic 
effector cells (Figure 2).

CONCLUSiON

Failure of central tolerance cannot be excluded as an autoim-
mune mechanism. Numerous studies demonstrate that negative 
selection failure gives rise to peripheral pathogenic T  cells. 
However, the overlooked mechanism of TCR revision also must 
be considered. This process that increases overall T cell reper-
toire to pathogens likewise increases risk for autoimmunity. If 
appropriate selective pressures are not applied in the periphery 
following TCR revision, then autoaggressive T cells necessarily 
will arise. For autoimmune disease to commence, additional 
criteria must be met, including perhaps HLA haplotype, CTLA-
4, FOXP3 or other mechanisms of tolerance failure, etc. Within 
these bounds the role of costimulation is becoming evident 
as contributory for autoimmunity. The classic CD28 family 
has been thought essential for driving T  cell expansions, but 
overlooked costimulation, CD40 in particular, is emerging as 
diabetogenic. TH40 cells become prominent in the NOD mouse 
model of T1D as well as in human T1D (20, 21, 26, 27). These 
cells have clearly proven to be important disease drivers. Of 
significance is that the CD40 molecule itself acts as a highly 

FiGURe 2 | FOXP3 as a static T cell regulator independent of Treg status. Cells other than classic Tregs express FOXP3. In the BDC2.5 T cell receptor transgenic 
mouse model effector, T cells express FOXP3 but in the inflammatory environment where IFNγ, etc., is produced, CD40 is induced on those cells. CD40 interaction 
with CD154 leads to loss of FOXP3 expression and full effector status.
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Heritable susceptibility of the autoimmune disorder, type 1 diabetes (T1D), only partially 
equates for the incidence of the disease. Significant evidence attributes several envi-
ronmental stressors, such as vitamin D deficiency, gut microbiome, dietary antigens, 
and most notably virus infections in triggering the onset of T1D in these genetically 
susceptible individuals. Extensive epidemiological and clinical studies have provided 
credibility to this causal relationship. Infection by the enterovirus, coxsackievirus B, 
has been closely associated with onset of T1D and is considered a significant etio-
logical agent for disease induction. Recognition of viral antigens via innate pathogen- 
recognition receptors induce inflammatory events which contribute to autoreactivity 
of pancreatic self-antigens and ultimately the destruction of insulin-secreting beta 
cells. The activation of these specific innate pathways and expression of inflammatory 
molecules, including type I and III interferon, prime the immune system to elicit either 
a protective regulatory response or a diabetogenic effector response. Therefore, 
sensing of viral antigens by retinoic acid-inducible gene I-like receptors and toll-like 
receptors may be detrimental to inducing autoreactivity initiated by viral stress and 
resulting in T1D.

Keywords: type 1 diabetes, autoimmunity, innate immunity, toll-like receptors, RiG-i-like receptors, MDA5, type i 
and iii interferon, coxsackievirus B

iNTRODUCTiON

Characterized by the destruction of the insulin-secreting beta cells of the pancreas and subsequent 
loss of blood glucose regulation, type 1 diabetes (T1D) is an autoimmune disorder whose onset is 
triggered by a combination of both genetic and environmental factors. Virus infections, vitamin 
D deficiency, dietary antigens, and disruption in the gut microbiota all have been implicated in 
eliciting T1D development in genetically susceptible individuals (1–4). Significant evidence suggests 
a strong causal association between genes involved in host–virus interactions and susceptibility to 

Abbreviations: CVB, coxsackievirus B; DC, dendritic cell; dsRNA, double-stranded RNA; GWAS, genome-wide association 
studies; IFIH1, interferon induced with helicase C domain 1; IFN, interferon; IFNAR, type I interferon receptor; IFNλR, type 
III interferon receptor; IRF7, interferon regulatory factor 7; LCMV, lymphocytic choriomeningitis virus; MDA5, melanoma 
differentiation-associated protein 5; MYD88, myeloid differentiation primary response gene 88; NOD mice, non-obese diabetic 
mice; pDC, plasmacytoid dendritic cell; poly I:C, polyinosinic:polycytidylic acid; PRR, pattern-recognition receptor; RA, 
rheumatoid arthritis; RIG-I, retinoic acid-inducible gene I; RLR, RIG-I-like receptors; SLE, systemic lupus erythematosus; SNP, 
single nucleotide polymorphism; ssRNA, single-stranded RNA; T1D, type 1 diabetes; TLR, toll-like receptor; TREG, regulatory 
T cell; VP1, viral protein 1.
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T1D. Using genome-wide association studies (GWAS), single 
nucleotide polymorphisms (SNPs) and gene variants conferring 
risk for T1D have been identified in multiple sites including 
the interferon induced with helicase C domain 1 (IFIH1), HLA 
class II, CTLA-4, insulin, and PTPN22 genes (5–7). The precise 
mechanisms leading to a loss of self-tolerance experienced in 
T1D are not adequately understood. Virus-mediated activation 
of T1D has been proposed to be caused by several different 
processes including direct islet infection, increased exposure 
to self-antigens which may have been previously sequestered, 
bystander activation, and molecular mimicry (8, 9).

Natural drift of genetic predisposition cannot adequately 
explain why the incidence of T1D has increased approximately 
1.8% annually from 2002 to 2012 worldwide (10, 11). The con-
cordance rate for T1D among monozygotic twins is about 35% by 
age 60, signifying significant contributions from environmental 
factors ultimately leads to the onset of autoimmunity (12). 
Indeed, epidemiological evidence indicates a link between virus 
infections and development of T1D as well as multiple other 
autoimmune disorders, including multiple sclerosis (MS), sys-
temic lupus erythematosus (SLE), and rheumatoid arthritis (RA).  
Studies have demonstrated geographical and seasonal differences, 
as well as disease outbreaks, correlate with increased incidence 
of T1D (11, 13–17).

Upon virus infection, initial innate sensing likely primes 
genetically susceptible or protected individuals for an effec-
tor or regulatory immunological response, respectively (18). 
Therefore, signaling from pattern-recognition receptors 
(PRRs) that identify pathogen-associated molecular patterns 
(PAMPs) associated with certain viruses could determine 
whether infection will promote T1D induction. The produc-
tion of interferon (IFN) from this PRR–PAMP interaction 
is a prominent immunological response for defense of virus 
infections. All three types of IFN, type I (IFN-α, -β, -ε, -κ, 
and -ω), type II (IFN-γ), and type III (IFN-λ1, -2, -3, and -4), 
stimulate the production of pro-inflammatory molecules from 
the interferon-stimulated genes (ISGs) to induce a strong anti-
viral state to prevent spreading of the infection to surrounding 
cells and also to establish an adaptive immune response (19, 
20). Accordingly, alterations in signaling stemming from PRR 
activation represent the foundational mechanisms leading to 
T1D development by producing an IFN signature which is 
conducive for autoimmunity.

iNNATe viRAL ReCePTORS

Genome-wide association studies indicate heritable differences 
in viral receptors and their related genes influence T1D suscepti-
bility. Functional diversity of innate PRRs due to genetic variants 
may push the immune homeostasis toward an imbalance between 
pathogen hypersusceptibility and autoimmunity. In conjunction 
with an inherent variation, several different viruses have been 
implicated in causing inappropriate responses leading to T1D 
(4, 21). Among these viral candidates, enteroviruses such as 
coxsackievirus B (CVB) have been the most notable etiological 
agent attributed to T1D (22–24).

Dependent on the signals received from PRRs, innate immune 
cells including dendritic cells (DCs) macrophages, monocytes, 
natural killer cells and innate lymphoid cells can contribute to  
establishing either an effector inflammatory response or a more  
tolerogenic response by secreting cytokines, chemokines, and 
through priming of naïve T  cells. While cross-reactivity of 
lymphocytes due to homology between viral and endogenous 
antigens and have been proposed in the establishment of T1D, 
non-specific immune stimulation causing persistent and low-
grade inflammation are more likely underlaying the cause of 
pathogen-induced triggering of autoimmunity (25). The scale of 
an immune response is reliant on tightly regulated activation and 
inhibitory signals which may tip into an exaggerated or improper 
response causing the loss of self-tolerance (26).

Innate immunity and PRRs represent the first line of defense 
to coordinate the immune system for pathogen clearance and sets 
the stage for ensuing cellular and molecular pathway activation. 
The initial inflammatory state established with innate recognition 
of viral products induces beta cell damage and is then followed 
by apoptotic events and an effector T lymphocyte response killing 
the beta cells. Therefore, placing emphasis on the PRRs is critical 
for understanding the pathogenesis of autoimmune diabetes. 
There are three primary families of PRRs involved in detecting 
viral products: toll-like receptors (TLRs), retinoic acid-inducible 
gene I (RIG-I)-like receptors (RLRs), and nucleotide oligomeriza-
tion domain-like receptors (27). Summarized in Figure  1, this 
review will focus on the contribution of RLRs and TLRs to T1D 
following engagement with their respective viral PAMPs.

RLRs iN T1D

The RLR family consists of RIG-I, melanoma differentiation-
associated protein 5 (MDA5), and Laboratory of Genetics and 
Physiology 2 (LGP2), which are cytosolic receptors that recog-
nize pieces of viral RNA from picornaviruses, flaviviruses, and 
paramyxoviruses (28). RLRs primarily bind viral replication 
intermediates [i.e., double-stranded RNA (dsRNA)] in infected 
cells and promote recruitment of transcription factors and adap-
tor molecules to restrict virus replication and prevent spread to 
other cells. Among a diverse range of effects, activation of MDA5 
and RIG-I induce a potent type I and III IFN expression which 
go on to stimulate antiviral gene expression and increase antigen 
presentation (29, 30). LGP2 can bind short pieces of dsRNA and 
acts as a negative regulator for both RIG-I and MDA5; however, 
it lacks N-terminal caspase activation and recruitment domains 
necessary for signaling (31).

Expressed from the IFIH1 gene, MDA5 is a cytosolic helicase 
which binds long viral dsRNA to induce a type I and III IFN 
response (18, 32). MDA5 has been identified as an important 
part of the host immune response to CVB and is necessary for 
preventing early replication of the virus and potentiating tissue 
damage (33). Various SNPs in the IFIH1 gene have been found 
to confer either greater or reduced susceptibility for the onset of 
T1D (7). These SNPs likely alter the expression and activation 
of MDA5 when challenged with pathogenic stress. The A946T 
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FiGURe 1 | Summary of toll-like receptor (TLR)- and RIG-I-like receptors virus-associated ligands and the relationship between interferon (IFN) expression, genetic 
susceptibility, and autoimmunity. Upon ligand binding, cytosolic MDA5 and RIG-I receptors induce activation of the adaptor molecule, VISA (also called MAVS, IPS1, 
and CARDIF), endosomally located toll-like receptor 3 (TLR3) recruits TRIF (also known as TICAM), and TLR2, -4, -6, -7, -8, and -9 interact with myeloid 
differentiation primary response protein 88 (MYD88) in order to provide IFN expression stimulation in the cell nucleus. IFN induces expression of various interferon-
stimulated genes (ISGs) which perform positive feedback on IFN genes. IFN is released from the cell to establish an antiviral state in surrounding cells and act in an 
autocrine and paracrine manner by binding to its cell surface receptors, IFNAR1/2 and IFNλR. Individuals exhibiting heightened genetic susceptibility to type I 
diabetes (T1D) can have increased basal and pathogen-elicited expression of IFN causing the immune system to skew toward a self-reactive state. Conversely, 
significantly diminished IFN expression would render a host unable to mount a proper response to virus infection. Thus balance of receptor stimulation between 
autoimmunity and virus hypersusceptibility is tightly regulated and pathogenic stimuli which exacerbates inflammation in genetically susceptible individuals may  
result in loss of tolerance.
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(rs1990760) mutation in IFIH1 has been implicated in the 
development of multiple autoimmune diseases, including T1D, 
SLE, and MS (34, 35). Individuals which exhibit loss-of-function 
SNPs on even a single allele in RLR genes including E627* 
and I923V in MDA5 generally benefit from protection to T1D 
(35, 36). Hyperexpression or constitutive activation of MDA5 
by mutagenesis has been shown to promote development of 
type I interferonopathies including SLE and Aicardi-Goutières 
syndrome (37–39). Diabetic patients which are heterozygous for 
the A946T SNP have a more robust ISG expression and immune 
response to CVB challenge when compared to healthy controls, 
potentially signifying an enhanced ability to promote IFN and 
ISG signal transduction during infection (40, 41). Accordingly, 
mutations in IFIH1 causing gain-of-function are associated with 
hyperexpression of both IFN-I and -III (32, 39). Gorman et al. 
recently found that mice homozygous for the 946T variant as well 
as mice simultaneously exhibiting two IFHI1 risk alleles (843R 
and 946T) have increased basal activation of IFIH1-related genes, 
enhanced protection from encephalomyocarditis virus infection, 

increased incidence of autoimmunity, and are inherently more 
sensitive to self RNA ligands (42). These mutations conferring 
T1D risk may be altering the homeostatic intensity of inflamma-
tory molecule expression and/or the kinetics of target binding 
and activation—causing ligands to produce more potent or 
prolonged IFN responses. For example, the E627* mutation in 
MDA5 causes loss of a portion of the protein’s C-terminal region 
and consequently forfeiture of dsRNA ligand binding (36). The 
A946T risk variant is also associated with heightened sensitivity 
to IFN-α in SLE patients so this mutation may allow receptors 
to become more easily activated (43). This evidence supports 
the notion that pathogen-mediated T1D is likely similar to the 
described type I interferonopathy disorders.

Our lab has previously exhibited the importance of MDA5 
signaling by demonstrating reduced expression of the receptor 
can be protective for T1D. Non-obese diabetic (NOD) mice 
which were heterozygous for a null IFIH1 allele (MDA5+/−) and 
expressed roughly half as much MDA5 as wild-type NOD mice 
were shown to have decreased incidence of spontaneous disease 
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(18). More importantly, upon CVB4 infection, these heterozygous 
mice were completely protected from diabetes onset while about 
50% of homozygous NOD mice carrying a full complement of 
IFIH1 developed T1D within 7 days of infection. MDA5 knock-
out mice were also completely protected from spontaneous T1D 
onset; however, they were highly susceptible to virus. Compared 
to homozygous mice, the MDA5+/− mice displayed a specific type 
I IFN response characterized by a large spike in IFN-β occur-
ring three days post-infection. It appears this particular IFN 
signature provides a succinct signal from IFN-β that is sufficient 
to clear the virus without inducing autoimmunity. Furthermore, 
MDA5+/− mice had decreased CD4+ and CD8+ effector T  cells 
as well as a robust CD4+CD25+Foxp3+ regulatory T cells (TREG) 
response that suppressed IFN-γ-producing CD4+ T cells, thereby 
preventing T1D.

TLRs iN T1D

Toll-like receptors are broadly expressed PRRs in both immune 
and non-immune cells which detect microbial- and viral-
associated PAMPs (44). Upon recognition of pathogenic and/
or foreign material, TLRs influence a number of immunologic 
mechanisms including activation and maturation of antigen-
presenting cells (APCs), antibody production, downregulating 
TREG responses, and inducing a pro-inflammatory environment 
through secretion of various cytokines and chemokines (45). 
Each of the TLRs may be stimulated with endogenous DNA or 
RNA antigens produced during cell death that may be a result 
of virus infection (46). However, those specifically recognizing 
viral-associated ligands: toll-like receptor 3 (TLR3), TLR7, TLR8, 
and TLR9 (and to a lesser extent TLR2, TLR4, and TLR6), have 
all been implicated in having a role in the diabetogenic potential 
of certain viruses (45, 47).

Toll-Like Receptor 3
Binding short pieces of dsRNA, TLR3 is an endosomal receptor 
heavily expressed in classical DCs and a variety of epithelial 
cells (47). Unlike all other TLRs, TLR3 is MYD88-independent 
and instead utilizes the adaptor molecule TRIF for signal 
transduction following activation (44). The dsRNA mimetic 
polyinosinic:polycytidylic (poly I:C) is recognized by TLR3 and 
has been shown in various mouse studies to either protect or 
induce and increase severity of T1D depending on dose and 
administration (48–50). NOD mice deficient for TLR3 have 
high mortality from CVB4 infections and the few that survive 
develop T1D (51). However, in some instances, TLR3-KO NOD 
mice can show less severe insulitis as well as some reduced 
susceptibility to T1D induction following CVB4 infection, but 
experience no difference in spontaneous disease development 
(52). TLR3 signaling within resident macrophages is critical 
for antiviral host defense to CVB4 as well as altering marginal 
zone B cell composition in NOD mice (50, 51). This indicates 
that enhanced TLR3 activation may participate in T1D devel-
opment as a result of virus infection. Certain polymorphisms 
in the TLR3 gene have shown to be associated with increased 
risk of T1D and more aggressive pathology (rs3775291 and 

rs13126816) while others impart protection (rs5743313 and 
rs11721827) (53).

Toll-Like Receptors 7 and 8
Expressed in the endosome, TLR7 and TLR8 recognize single-
stranded RNA (ssRNA) while TLR9 is typically activated by 
binding unmethylated CpG DNA ligands from DNA viruses and 
microbial pathogens (54). TLR9-KO NOD mice have significantly 
lower rates of spontaneous diabetes, reduced activation of diabe-
togenic CD8+ cytotoxic T cells (CTLs), and elevated expression 
of the immunosuppressive marker CD73, particularly on TREG 
cells (55–57). Thus, activation of TLR9 induces a less tolerogenic 
immunological state that contributes to the pathogenesis and 
acceleration of T1D.

Using rat insulin promoter mice expressing lymphocytic cho-
riomeningitis virus glycoprotein (LCMV-GP), researchers have 
shown that LCMV infection produced IFN-α via stimulation of 
TLR3 and TLR7; this in turn increased the expression of MHC 
class I molecules in the insulin-secreting beta cells of the pancreas 
(58). This mechanism, where TLR-mediated expression of IFN-α 
upregulates MHC-I in the islets, was shown to be vital for the 
diabetogenic potential of LCMV and subsequent progression 
toward an overt autoreactive response. LCMV-GP-specific CTLs 
in the pancreas were unable to cause disease without hyperex-
pression of MHC-I (58). Stimulation of TLR7 in conjunction 
with CD40 activation of DCs can induce diabetogenic CTLs in 
the pancreatic lymph nodes of NOD mice to promote onset of 
autoimmunity (59). Even the repeated topical administration of a 
TLR7 agonist, imiquimod, is sufficient to promote T1D develop-
ment while inhibition using IRS661 can significantly decrease 
onset (59). TLR7 signaling in plasmacytoid DCs (pDCs) primes 
B and T cell activation via IFN-I secretion in rotavirus infections; 
however, inhibition of TLR7 is able to block this process from 
occurring and prevent acceleration of T1D following infection 
(60). The role of TLR7 and TLR8 in promoting autoimmunity 
has also been indicated in CVB3-induced self-reactivity toward 
myocardial tissue (61).

environmental inducers of TLRs
Previously, therapeutics for T1D prevention and treatment in 
the past have been primarily aimed at modifying or suppressing 
the adaptive immunity. Today, a shift in perspective of clinical 
methodology points toward targeting innate components to 
tolerize early pathogen-stimulated mechanisms as an effective 
strategy. Bednar and colleagues demonstrated that a TLR4-
agonist monoclonal antibody, TLR4–MD-2, was able to halt and 
reverse fulminant T1D by inducing APC tolerance to pathogen 
in NOD mice (62). TLR4 is typically activated by lipopolysaccha-
rides and other microbial products; however, envelope proteins 
from viruses including CVB can also stimulate its activation (63). 
Although it is uncertain whether CVB interaction with TLR4 is 
involved in T1D.

The natural route of enteroviral infection is through the gut, 
where the biodiversity of bacteria, viruses, fungi, and other 
microorganisms are significant mediators of immune homeo-
stasis and autoimmunity (64). Accordingly, stimulation of the 
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innate immunity and signaling on the mucosal surfaces from 
environmental pathogens could be detrimental to T1D onset. 
All TLRs other than TLR3 use the adaptor molecule MYD88 for 
signal transduction. Deletion of MyD88 in specific pathogen-free 
NOD mice confers resistance to diabetes (65). T1D resistance 
through loss of MYD88 is attributed to disruption in the gut 
flora since these MYD88-KO mice develop autoimmunity when 
housed in germ-free facilities (65). A “balanced signal hypoth-
esis” has been suggested where microbiota-derived stimulation 
of TLR4 signaling through the adaptor molecule, TRIF, provides 
a tolerogenic effect on T1D pathogenesis, while TLR2 signaling 
promotes diabetogenesis (66). Commensal virus communities 
likely contribute similarly to innate stimulation through PRR 
recognition of viral ligands. A recent study has determined the 
intestinal virome is significantly altered prior to onset of autoim-
munity in T1D-susceptible children (67). The overall diversity 
of the gut virome is reduced preceding disease development and 
certain viruses, such as Circoviridae and various bacteriophages, 
are significantly associated with either negative or positive T1D 
risk (67). This signifies a complex host–microbiome–virome 
relationship contributes to T1D and further studies are necessary 
to understand how these interactions alter disease and inflam-
mation to skew genetically susceptible individuals toward either 
a protective or disease-causing state.

T1D DiSPLAYS iNTeRFeRONOPATHY-
LiKe QUALiTieS

Type i iFN
Pattern-recognition receptor activation and signaling remain the  
predominant inducer for IFN signatures that can protect as well  
as portend onset of not only T1D, but are also typical of rheu-
matic disorders such as SLE and RA (68, 69). The synergistic 
effects of type I and III IFNs are significant mediators for the 
adaptive immune system that promote lymphocyte maturation 
and mediate antigen presentation (19, 70). Accordingly, the IFN 
expression elicited by PRR activation is essential to autoimmune 
development. As such, it has been proposed that virus infections 
including CVB may be inducing localized interferonopathy-like 
characteristics within the islet microenvironment to trigger auto-
reactivity (71). Islets from patients recently experiencing onset of 
T1D exhibit heightened expression of certain ISGs in the islet and 
peri-islet regions in a manner which is similar to islets infected 
with virus (72). Knocking out the type I IFN receptor (IFNAR) 
in the T1D-susceptible rat strain, LEW.1WR1, protects from 
T1D, reduces insulitis, and delays onset following poly I:C or 
virus challenge (73). Originating with PRR stimulation, aberrant 
activation of pDCs and genetic mutations in the IFN signaling 
pathway likely contribute to the IFN signature evident in T1D 
induction (74).

Transient upregulation of type I IFN can be seen in genetically 
predisposed children preceding the seroconversion of T1D-
related autoantibodies (75). Nearly all cells produce and respond 
to type I IFN; however, pDCs secrete a considerable amount 
of systemic IFN-α. Indeed, the secretion of IFN-α through 

TLR7- and TLR9-stimulated pDCs in the PLN of NOD mice is 
critical for onset of T1D (76). Blocking IFN-α signaling through 
IFNAR1 of young NOD mice (2–3 weeks old) significantly delays 
onset and incidence of diabetes as well as promote secretion of 
immunoregulatory cytokines, IL-4 and IL-10, in splenic CD4+ 
T cells (76). Treating human islet cells with IFN-α in vitro triggers 
endoplasmic reticulum stress which disrupts insulin production 
by hindering the conversion of proinsulin to insulin signifying a 
potential mechanism by which IFN-α may be prompting devel-
opment of T1D (77). Using a neutralizing antibody against IFN-α 
or using a specific agonist for S1PR1, an immune regulatory 
receptor which mediates IFN-α autoamplification, protects T1D 
onset in a Rip-LCMV mouse model by limiting the infiltration 
of autoreactive T cells into the islets and by inducing expression 
of tolerogenic receptor genes, such as Pdcd1, Lag3, Ctla4, Tigit, 
and Btla (78). This immunomodulation is able to prevent the 
autoreactive T cells from harming the insulin-secreting beta cells 
thus preserving the glucoregulatory function of the pancreas. 
Accordingly, the progression from prediabetes to full-onset 
disease requires signaling from IFN-α.

The transcription factor, interferon regulatory factor 7 (IRF7), 
is constitutively expressed in pDCs and is expressed in most 
other cells upon IFNAR activation (79). IRF7 is involved in signal 
transduction from MYD88-dependant endosomal TLRs (TLR7, 
TLR8, and TLR9) as well as RLRs to trigger IFN gene expression. 
A study by Hienig et al. used rat tissues to elucidate the IRF7-
driven inflammatory network (IDIN) to relate that genetic map-
ping with known viral response genes and disease GWAS (80).  
It was determined that an rs9585056 SNP (on chromosome 
13q32), located in the orthologous human genes controlling 
IDIN, was significantly associated with susceptibility to T1D 
and promoted expression of the IRF7-driven signaling network. 
Similar to gain-of-function mutations in IFIH1, this type of 
genetic predisposition would cause vigorous antiviral engage-
ment resulting in an IFN and immune response which may be 
more pathogenic than the actual virus.

Type iii iFN
While all nucleated cells respond to type I IFN, the type III 
IFN receptor (IFNλR) is primarily only expressed on pDCs and 
epithelial cells including pancreatic islet cells. Type III IFNs 
bind to the IFNλR consisting of dimer of IFNLR1 and IL10R2 
domains. There is significant overlap in signaling pathways and 
activation between IFN-III and IFN-I; however, non-redundant 
roles for IFN-III in host antiviral responses exist (70, 81). Islets 
from humans exhibiting a protective IFHI1 rs1990760 (946A/T) 
polymorphism produce an increased IFN-III response following 
CVB3 infection, likely through IRF-1 signaling, when compared 
to individuals with a risk-associated genotype (946T/T) (32). 
It is uncertain whether this additional expression of IFN-λ 
has protective qualities or whether it is simply a compensatory 
mechanism for lower IFN-I signaling from MDA5. However, 
IFN-λ-treated DCs are able to promote the specific proliferation 
of TREG cells in  vitro and IFN-λ treatment has been exhibited 
to improve pathology of RA in mice by reducing inflammatory 
neutrophils (82, 83). Collectively, this signifies IFN-III may be 
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contributing to diabetes pathogenesis and should be further 
studied.

TiMiNG iS iMPORTANT FOR THe  
viRAL eTiOLOGY OF T1D

Acute versus Persistent infections
With regards to T1D induction, it is unclear whether virus 
infections are being sustained or acute infections are initiating 
mechanisms which go on unregulated even after viral clearance. 
If the virus becomes persistent, remnants of the infection linger 
within tissue-specific microenvironments to provide continuous 
stimulation of innate receptors to produce chronic inflammation 
as illustrated in Figure 2. Some picornaviruses such as Theiler’s 
murine encephalomyelitis virus have been shown to persist 
in certain tissues to provide sufficient inflammation to drive 
autoimmunity (84). Conversely, acute infections may be priming 
the host and establishing events which direct an autoreactive 
effector response. Initial infections may be activating pathways 
which proceed with incessant positive feedback likely due to 
genetic differences which result in functional variations in innate 
compsonents, receptor activation/deactivation, and/or signaling 
pathway elements.

Coxsackievirus B is a positive sense ssRNA virus with a 
tropism for the pancreas, heart, and liver; however, it does not 
appear to establish cytolytic infections of pancreatic beta cells 
(85). Rather, CVB is likely promoting a pro-inflammatory 
environment within the pancreas to elicit autoimmunity (86). 

Infecting human islets with CVB3 induces potent expression of 
type I and III IFN, MDA5, RIG-I, and TLR3 along with a variety 
of inflammatory cytokines (32). Clinical evidence suggests some 
individuals who develop a loss of tolerance against insulin early 
in life (1–3 years) have an impaired capacity to mount a sufficient 
defense against the enterovirus viral capsid protein, viral protein 
1 (VP1), that may cause an inability to sufficiently clear CVB fol-
lowing infection (87). Correspondingly, persistent pancreatic cell 
CVB4 infections have been shown to induce epigenetic changes 
by promoting production of dysregulated microRNAs targeting 
T1D risk genes (88).

Prolonged viral infections may be providing sustained activa-
tion of PRR signaling for the expression of IFN-I, IFN-III, and 
inflammatory cytokines, leading to a robust lymphocyte response 
and induction of autoimmunity. Low-grade enterovirus infec-
tions have been demonstrated to be established and maintained 
within the pancreatic islets of patients recently experiencing 
onset of T1D (3–9  weeks prior) but rarely in healthy controls 
(89). Persistent enteroviral presence has also been detected in the 
gut mucosa of T1D patients, however, viral genomes seem to be 
maintained in the absence of viral protein expression or produc-
tion of infective particles (90). It is not clear whether defective 
replication is allowing production of the viral genes without 
assembly of virus particles or if virus components are simply 
persisting in the tissue after infections. However, conformational 
differences and modification of viral PAMPS may be dictating 
innate signaling. Stem-loop structures in long dsRNA are prefer-
entially recognized by MDA5, while 5′ di- or triphosphate motifs 
on dsRNA are sensed by RIG-I (28, 91). Deletion or alterations 
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in the structural composition of viral genomic PAMPs may be 
altering innate receptor signaling. CVB is known to persist in 
myocardial tissues following naturally occurring deletion of 
5′ end terminal genomic sequences resulting in reduced virus 
replication and loss of cytopathicity (92–94). A recent study has 
shown that 5′ terminally deficient CVB persists also in the pan-
creas of NOD mice for at least several weeks following an acute 
wave of infection (95). The 5′ end of the CVB genome includes a 
cloverleaf-like tertiary structure which may be favorably sensed 
by MDA5; however, it is unknown exactly how innate sensing 
is affected with these terminal deleted viruses. Persistence of 
modulated enteroviruses may be providing sustained innate 
activation for prolonged inflammatory responses in and/or 
around the islets that result in the loss of self-tolerance in T1D. 
Alternatively, loss of structurally relevant motifs for RLR sens-
ing may actually render receptors like MDA5 unable to bind the 
modified dsRNA ligands.

Temporal Determinants of T1D-Related 
virus infections
A systematic review compiling and analyzing clinical studies 
over approximately the last two decades, found that individuals 
had about 10 times higher odds of having enterovirus infec-
tions before or during onset of diabetes or prediabetes when 
compared to controls (24). Patients experiencing fulminant 
T1D directly following suspected enterovirus infection had 
strong expression of MDA, RIG-I, and VP1 in the islets when 
compared to T1D and non-diabetic control patients (96). 
Furthermore, mononuclear cells which infiltrate the pancreata 
of patients experiencing fulminant T1D had high expression of 
TLR3 and TLR4 (96). A recent study by Laitinen et al. screen-
ing systematically collected blood samples from birth through 
seroconversion for T1D-related autoantibodies and progression 
to clinical T1D, found that children were at higher T1D risk if 
infected with CVB1 (97). However, the patient was protected if 
exposed to either CVB3 or CVB6 prior to CVB1. Phylogenetic 
similarity between CVB1, CVB3, and CVB6 indicates the pos-
sibility that cross-protection between highly related enterovirus 
serotypes may be occurring. Additionally, CVB1 infection has 
been often followed by the appearance of islet autoantibodies 
about 6 months later (98, 99).

Characterizing temporal relationships between infection and 
autoimmunity onset are incredibly intricate due to the incred-
ibly multifactorial nature of the pathogen, the hosts, and the 
disease. The timing of pathogen exposure and an individual’s age 
likely has crucial impact on immunological development (100). 
It was recently determined that weaning pups from a colony 
of NOD mice with low incidence of T1D in a “diabetogenic 
environment” (i.e., with a colony of NOD mice with high T1D 
incidence) is able to transfer rates of diabetes development by 
adapting similar gut microbiota and promoting development of 
B cells in the mesenteric lymph nodes which are inherently more 
easily activated (101). This transmittance is only evident when 
the mice are weaned together, as this environmental exposure 
does not affect rate of diabetes onset when mice are co-housed 
starting at 3 weeks of age. Mustonen et al. performed a clinical 

analysis among children with HLA-dependent T1D genetic risk 
(exhibited DR3-DQ2 and/or DR4-DQ8 haplotypes) in Finland, 
Estonia, and Russian Karelia to determine disease trends in T1D 
susceptibility (102). Children who exhibited seroconversion of 
T1D-related autoantibodies had their first infection earlier and 
overall had more infections in the first year of their lives especially 
in the respiratory tract. Furthermore, those which progressed 
to T1D had twice as many infections in the first 3 years of their 
lives than non-diabetic children. It can be questioned, however, 
whether inherent susceptibility to T1D also confers lower toler-
ance to pathogens or whether the children experienced onset of 
T1D due to stress of the frequency of infections they experienced. 
A report from The Environmental Determinants of Diabetes in 
the Young study has confirmed that young children experienc-
ing recent respiratory infections withstand a heightened risk of 
developing T1D-related autoimmunity; however, more work 
is necessary to determine specific viral agents present in the 
preceding months before autoantibody seroconversion (103).

While enteroviruses remain the most likely candidate for 
T1D onset, numerous other viruses have been shown to have 
roles in promoting or protecting T1D (104). Links between 
many viruses, however, seem to be more circumstantial and 
less evident. For instance, a study was performed examining the 
spatio-temporal exposure of viruses using geographical disease 
incidence rates in France and relating that data with mapping 
of T1D patient residences and the timing of the patients’ T1D 
onset (105). This analysis indicates a positive correlation between 
summer diarrhea and influenza-like infections at 1–3  years of 
age with eventual development of T1D while there was negative 
relationship between varicella. Additionally, evidence suggests 
autoreactivity in NOD mice may be induced as a consequence 
of an immunological response against endogenous retrovirus-
secreted microvesicles in the islets (106). Recently, a study using 
high-throughput proteomic profiling of antibodies in new-onset 
T1D patients found serum antibodies exhibit a significant reac-
tivity against Epstein–Barr virus viral antigens (107). Ultimately, 
a multifactorial and heterogenous contribution from multiple 
environmental agents is likely for T1D pathogenesis.

CONCLUSiON

The increased incidence of autoimmunity witnessed in developed 
nations likely signifies a deleterious shift in pathogenic environ-
ment especially early in life. This may be due to modern altera-
tions in the host–pathogen paradigm developed over milleniums 
of co-evolvement. Epidemiological studies have not indicated 
an emergence of infections that could adequately explain such 
a significant increase in autoimmunity. Thus, it is likely caused 
by an alteration in how individuals respond to environmental 
and pathogenic stressors. One rationalization for this change, the 
“hygiene hypothesis,” states that a reduction in pathogenic and 
environmental antigen exposure particularly during develop-
ment has caused the immune system to produce over-exaggerated 
responses resulting in increased rates of autoimmunity. Decreased 
interaction with typical environmental antigens has fostered 
inexperience by innate host receptors, causing over-sensitization 
and improper stimulation of inflammatory pathways.
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Environmental induction of T1D via viral infection may 
essentially require a “perfect storm” of immune reactivity where 
genetic susceptibility allows PRR signaling to render a target 
organ susceptible to attack by self-reactive lymphocytes. A bal-
ance of signaling by different receptors including RLRs and TLRs 
is providing opposing forces to simultaneously promote and 
inhibit autoimmunity and certain environmental stressors may be 
sufficient to tip that balance toward autoimmunity by inducing 
pro-inflammatory signaling. Ultimately, the timing, pathogenesis, 
and target site of infection influences the likelihood of antigen-
non-specific bystander activation of autoreactive B and T  cells. 
Understanding these pathways may hold a high degree of therapeu-
tic potential to block onset of autoimmunity by mediating antigen 
exposure, developing relevant vaccines, and managing molecular 
pathogenesis mechanisms which confer disease development.
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Type 1 diabetes is an autoimmune disease that results in the progressive destruction 
of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this 
vital population leaves patients with a lifelong dependency on exogenous insulin and 
puts them at risk for life-threatening complications. One method being investigated to 
help restore insulin independence in these patients is islet cell transplantation. However, 
challenges associated with transplant rejection and islet viability have prevented long-
term β-cell function. Redox signaling and the production of reactive oxygen species 
(ROS) by recipient immune cells and transplanted islets themselves are key players in 
graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can 
protect transplanted islets from immune-mediated destruction. Here, we will discuss the 
newly appreciated role of redox signaling and ROS synthesis during graft rejection as 
well as new strategies being tested for their efficacy in redox modulation during islet cell 
transplantation.

Keywords: redox signaling, reactive oxygen species, type 1 diabetes, islet transplantation, immune rejection, 
immunology, encapsulation

iNTRODUCTiON

Type 1 diabetes (T1D) is an autoimmune disease characterized by chronic inflammation where 
self-reactive immune responses selectively target and destroy β-cells within the pancreas. In a 
majority of patients, insulin therapies can help regulate the rapid variations in blood glucose levels  
that result from this autoimmune attack, however, this is not a cure and for a relatively large number 
of patients, exogenous insulin treatment is not enough for them to maintain stable blood glucose 
levels (1). A major hurdle for insulin therapy is the ability to optimally sense and respond to glucose 
fluctuations as rapidly or precisely as a living β-cell. Therefore, the constant struggle to achieve 

Abbreviations: APC, antigen-presenting cell; CITR, Collaborative Islet Transplant Registry; CTLA-4, cytotoxic T lymphocyte 
associated antigen-4; DAMPs, danger-associated molecular patterns; DCs, dendritic cells; Del-1, developmental endothelial 
locus-1; ECs, endothelial cells; ER, endoplasmic reticulum; Gpx-1, glutathione peroxidase; GSH, glutathione; GSSG, glutathione 
disulfide; HIF, hypoxia-inducible factor; HO-1, heme oxygenase-1; H2O2, hydrogen peroxide; IBMIR, instant blood-mediated 
inflammatory reaction; IFN-γ, interferon gamma; IL-1β, interleukin 1 beta; iNOS, inducible nitric oxide synthase; JNK, Jun 
N-terminal protein kinase; LbL, layer-by-layer; MCP-1, monocyte chemoattractant protein-1; MDSCs, myeloid-derived sup-
pressor cells; MnSOD, manganese superoxide dismutase; MOMP, mitochondrial outer membrane permeabilization; MSCs, 
mesenchymal stem cells; NAD(P)H, nicotinamide adenine dinucleotide phosphate; NOD, non-obese diabetic; NOX, NAD(P)
H oxidase; O2

•−, superoxide; OH, hydroxyl radical; PAMPs, pathogen-associated molecular patterns; PARP, poly (ADP-ribose) 
polymerase; PRRs, pattern recognition receptors; PVPON, poly(N-vinylpyrrolidone); RNS, reactive nitrogen species; ROS, 
reactive oxygen species; SOD, superoxide dismutase; TA, tannic acid; Teff, effector T cell; TF, tissue factor; TGF-β, transforming 
growth factor-β; TNF-α, tumor necrosis factor alpha; Treg, regulatory T cell; T1D, type 1 diabetes; UPR, unfolded protein 
response; VEGF, vascular endothelial growth factor.
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efficient glucose homeostasis still persists. The death of these 
vital insulin-secreting cells within the islets of Langerhans and 
the resulting glucose dysregulation leaves patients at risk for 
developing serious life-threatening complications including 
cardiovascular disease, neuropathy, and renal failure (2).

Poor glucose control and the prevalence of secondary risks 
associated with T1D have lead researchers to investigate alter-
native treatment options for these patients. Unfortunately, in 
humans, there are currently no adequate metrics to detect these 
diabetic patients before the onset of autoimmunity. Usually, 
the presentation of symptoms, such as fatigue, extreme thirst, 
polyuria, or weight loss prompts a visit to a health professional, 
and only then does the presence of autoantibodies in their blood 
lead to their diagnosis. However, even at the time of diagnosis 
these patients still have some functioning β-cell mass remaining. 
Attempts have been made to delay or reverse the severity of T1D 
after diagnosis and to prevent further β-cell loss by utilizing 
immunotherapies to dampen autoreactive responses. A few of 
these therapies include the inhibitory cytotoxic T  lymphocyte 
associated antigen-4 (CTLA-4)-Ig to block effector T cells (Teffs) 
(3), anti-CD20 therapy to deplete functional B cell responses and 
increase regulatory T cell (Treg) responses (4), and interleukin 1 
beta (IL-1β)/IL-1R antagonists including anakinra and canaki-
numab to neutralize inflammatory signaling cascades including 
MAPK and NF-κB pathways (5). Clinical trials utilizing these 
treatments in early onset T1D patients displayed variable efficacy 
for maintaining higher C peptide levels with less reliance on 
exogenous insulin, however, any benefits were only temporary, 
and treatment was not successful in halting the progression of 
disease (3–5). The persistent challenges in early detection and 
the minimal effectiveness of immunotherapies have lead to a 
search for alternative treatment options to restore the functional-
ity of insulin regulation in individuals after the destruction of 
β-cells has already occurred. One such attractive therapy is islet 
transplantation.

Islet cell transplantation is a more permanent alternative to 
exogenous insulin therapies with fewer long-term complications. 
By restoring functional β-cells into these patients, they can more 
accurately modulate their blood glucose levels and diminish the 
risks associated with glucose fluctuations. Unfortunately, as with 
any other organ or tissue transplant, immune-mediated graft 
rejection as well as an initial loss in islet graft viability induced by 
oxidative stress and inflammation continue to pose challenges for 
the long-term success of this strategy. There is also damage associ-
ated with the recurrence of autoimmunity toward the graft in the 
T1D patient as well as islet-specific risks of immunosuppression. 
In addition to the low survivability of the islet graft, other barriers 
to widespread utilization of this therapy include the sensitivity of 
islets toward hypoxia, redox-associated mechanical and chemical 
damage during isolation, and poor viability and islet yield from 
human cadaveric donors (6, 7). Subsequently, efficient human 
islet transplantation normally requires more than one cadaveric 
donor per recipient and some patients require consecutive trans-
plants to prolong adequate blood glucose regulation (8).

Despite the hurdles that still need to be overcome, islet trans-
plantation has come a long way in the last three decades. Prior to 
the late 1990s, islet transplantation into human patients had very 

little success in maintaining euglycemia and preventing hypo-
glycemic events, with few patients being insulin-independent 
beyond 1 week after transplantation (9). Since the 1980s, digestive 
enzymes and a mechanical shaking process known as the Ricordi 
method have been used to isolate islets (10, 11). Then, in 2000, a 
group led by Dr. James Shapiro at the University of Alberta pub-
lished what would come to be known as the Edmonton protocol 
(12). This small clinical trial followed seven patients beyond 1 year 
after intraportal islet transplantation. The Edmonton protocol 
revolutionized the way human islets were isolated by utilizing 
xenoprotein-free isolation media and transplanting the purified 
islets directly after isolation, eliminating the dangers of islet 
culture. The islets were infused into the portal vein and utilized 
a novel combination of immunosuppression including sirolimus, 
low dose tacrolimus, and daclizumab, a monoclonal antibody 
that recognizes CD25. All recipients attained insulin independ-
ence for nearly 5  months after transplantation. This marked a 
profound improvement in patient outcomes compared to previ-
ous reports, and the protocol was soon adopted worldwide. In the 
nearly two decades since the Edmonton protocol was reported, 
advancements in our understanding of islet biology, islet graft 
viability, methods to protect islets following isolation, in  vitro 
culture, and islet transplantation has improved. According to the 
2016 Collaborative Islet Transplant Registry 9th Annual Report, 
50% of recipients maintain insulin independence beyond 1 year 
posttransplantation, and around 20% of islet transplant recipients 
are insulin-independent after 5 years.

Ultimately, one challenge that still persists is the harmful 
side effects of immunosuppressive drugs to the patient as well as 
the islet graft (13). These anti-rejection medications inhibit the 
adaptive immune response; however, most of them do not protect 
the graft from redox-mediated destruction or direct autoimmune 
inflammatory interactions. In fact, the use of corticosteroids 
and tacrolimus can cause serious adverse effects including dia-
betogenicity and elevated extracellular reactive oxygen species 
(ROS) production in the islets themselves (14–17). It has been 
shown that immunosuppression with tacrolimus, sirolimus, and 
anti-IL-2R can even promote the proliferation of autoreactive 
memory T cells due to a chronic increase in serum IL-7 and IL-15 
levels (18), potentially leading to a recurrence of autoimmunity. 
Tacrolimus and sirolimus have also been shown to impair mito-
chondrial calcium uptake and ATP production (19, 20), which 
are key steps in the glucose responsiveness of β-cells (21, 22).

Although the mechanisms that contribute to autoreactive 
immune responses in T1D and islet transplantation are not fully 
understood, what has become clear is the significant impact 
inflammation and oxidative stress can have on immune responses, 
β-cell function, and β-cell survival. Genetic attenuation of super-
oxide O2

•−( ) synthesis in the non-obese diabetic (NOD) mouse 
model through a point mutation in the nicotinamide adenine 
dinucleotide phosphate [NAD(P)H] oxidase (NOX) complex 
can influence innate and adaptive immune responses necessary 
for spontaneous diabetes progression (23–25). The inability to 
produce superoxide through the NOX complex highlights the 
important role of ROS generation and inflammation in disease 
progression, induction of β-cell death, and β-cell dysfunction 
(26). The generation of free radicals is not inherently a detrimental 

93

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Barra and Tse Oxidative Stress in Islet Transplantation

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 175

biological process, as ROS control apoptotic pathways within the 
cell, and the NOX complex is involved in eradicating microbial 
infections. While both of these responses are vital to cellular 
turnover and health, elevated ROS levels can influence cellular 
proliferation, survival, and the induction of inflammatory signal-
ing cascades to mediate cellular damage (27). The dysregulation 
of ROS synthesis in an autoimmune setting can contribute to 
inappropriate activation of the immune system to recognize 
healthy tissue as foreign. This problem is particularly dangerous 
if an elevated level of ROS production overwhelms antioxidant 
defenses, which can result in oxidative stress, ROS-mediated 
damage, and eventual cell death (28).

In the context of islet transplantation, the role for redox signal-
ing is even more vital due to the relatively low levels of native 
antioxidant defenses within the β-cell including superoxide 
dismutase (SOD), catalase, and glutathione peroxidase (Gpx-1), 
leaving them highly susceptible to ROS-mediated damage (6, 7). 
The impact of redox signaling within the context of islet destruc-
tion is twofold. The presence of oxidative species such as hydrogen 
peroxide (H2O2) and superoxide anions O2

•−( ) can impact glucose 
sensing within the β-cell (29), but they can also serve as a third 
signal to promote the maturation and expansion of β-cell-specific 
autoreactive T cell subsets (30–32). These autoreactive immune 
responses can initiate the destruction of β-cells though either 
the induction of apoptosis using the FAS pathway or by necrosis 
through the release of pro-inflammatory cytokines, perforin, 
granzyme B, and ROS (33, 34).

As scientists begin to appreciate the role of ROS in mediating 
inflammation and promoting transplant rejection, dissipating 
oxidative stress is a prime target for immunotherapies during 
islet cell transplantation to reduce islet vulnerability, boost patient 
outcomes, and prolong insulin independence (35). One proposed 
method to address these persistent challenges is to target the 
production of these reactive species during different stages of islet 
transplantation. The hope is that attenuating the redox status of 
the islets themselves or the surrounding microenvironment will 
promote islet function and prolong graft viability without the 
need for toxic immunosuppressive drugs.

iMMUNe MeCHANiSMS iNvOLveD iN 
iSLeT TRANSPLANTATiON ReJeCTiON

Islet transplantation into patients with T1D comes with a risk for 
alloimmune responses as well as recurrent autoimmunity. Both 
responses can utilize redox signaling to facilitate their damaging 
effects on the islet graft. During allogeneic graft rejection, host 
immune responses can become activated through either direct 
or indirect recognition of donor tissues (Figure 1). Direct graft 
recognition involves the interaction of donor tissue-resident anti-
gen-presenting cells (APCs) and host T cells through an MHC-
mismatch interaction (36, 37). Indirect recognition involves the 
processing of donor graft peptides by host APCs to stimulate host 
T cells through the corresponding MHC interactions. Both direct 
and indirect recognition pathways require the involvement of 
co-stimulatory molecules to trigger and activate T cell responses. 
To understand why these aberrant signaling pathways and the 

corresponding redox responses are vital at various stages of islet 
transplantation, it is necessary to acknowledge the interplay 
between redox signaling and inflammatory responses. While 
others have examined certain specific pathways in great depth 
(38, 39), this review will highlight pathways involved in redox-
dependent inflammation.

Direct Recognition and Redox Signaling
In allogeneic transplantation, the direct recognition pathway 
involves donor APCs interacting with host effector CD4 and CD8 
T cells to facilitate contact-mediated allograft rejection (40, 41).  
During islet transplantation, the direct recognition pathway 
stimulates a cellular rejection response in which direct killing 
of the islet graft by T cells is the primary endpoint (37). Several 
studies indicate that there are two requirements to execute 
direct islet allograft recognition and damage: the production of 
interferon gamma (IFN-γ) by T cells (42) and the initiation of 
apoptotic pathways through perforin and/or the use of Fas/FasL 
interactions between activated T  cells and target tissues (43). 
Both of these mechanisms involved in islet allograft destruction 
have redox-dependent components that are intimately connected 
to their inflammatory responses.

The production of IFN-γ as well as other inflammatory media-
tors by APCs and by T cells is a tightly controlled process. One 
key regulator of inflammatory cytokine production involves the 
redox status of intracellular thiols. Reduced glutathione (GSH) is 
the most abundant free thiol in mammalian cells and is an impor-
tant regulator of multiple cellular processes (44, 45). During stress 
conditions, GSH is oxidized into glutathione disulfide, leading to 
the activation of damage responses within the cell including the 
unfolded protein response (UPR) and apoptosis (45). Dendritic 
cells and macrophages with elevated levels of intracellular GSH 
produce more IFN-γ than those with low intracellular GSH 
levels (46, 47). This increased inflammatory profile by APCs can 
skew T cell responses through the synthesis of T cell polarizing 
cytokines such as IL-12 (47) and in an autocrine fashion to further 
promote APC activation (48). Once macrophages are activated, 
they produce large amounts of ROS as well as IFN-γ and IL-1β 
(38). These inflammatory signaling molecules aid in macrophage 
killing of target pathogens or facilitate islet graft destruction by 
mediating phagocytosis of β-cell debris.

Interferon gamma, tumor necrosis factor alpha (TNF-α), and 
IL-1β not only perpetuate damaging innate and adaptive immune 
responses but they also interact with their cognate cytokine 
receptors on the surface of the β-cell. Engagement of these β-cell 
surface receptors can initiate the activation of the RAS signaling 
cascade (49). Through a string of downstream phosphorylation 
events, the RAS pathway leads to the activation of MAPK and 
Myc, which can enter the nucleus and induce the transcription 
of genes involved in cell division, survival, and the production 
of inflammatory mediators (50). This pathway is redox-mediated 
through mitochondrial hydrogen peroxide activation of the Jun 
N-terminal protein kinase (JNK), which activates MAPK and 
stress pathways to further propagate inflammatory cytokine 
synthesis and apoptotic cell death (51).

The presence of ROS such as superoxide and hydrogen 
peroxide can also play a role during contact-dependent damage 
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FigURe 1 | The direct and indirect recognition pathways of islet allograft destruction. After transplantation, islet-resident antigen-presenting cells (APCs) from the 
donor graft can present directly to host T cells with stimulatory signals provided by reactive oxygen species, such as O2

•−, OH, and H2O2 to promote the expansion 
and activation of alloreactive cytotoxic T cell subsets. This stimulation can then activate inducible nitric oxide synthase (iNOS), NAD(P)H oxidase, and mitochondrial 
oxidative pathways within the T cell to produce more nitric oxide (NO), hydrogen peroxide, and superoxide, eventually leading to cellular rejection via the direct 
pathway (A). Alternatively, islet antigens can be shed into the surrounding environment following transplantation to be engulfed and presented by host APCs and 
then indirectly presented to host T cells. Through co-stimulation and the release of O2

•−, OH, H2O2, and NO, those APCs promote a classical antibody response 
involving the activation and expansion of alloreactive T cells and humoral rejection (B).
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within the islet graft since the maturation of CD8 T  cells to 
become cytolytic is a redox-dependent process (31). As a 
consequence of CD8 T cell activation by donor APCs, contact-
mediated production of perforin and granzyme B by cytotoxic 
lymphocytes can permeabilize cells within the islet graft (52). 
Once these toxic molecules engage and enter the cell membrane, 
they initiate caspase-signaling cascades, which lead to either the 
direct initiation of cellular apoptosis through caspases-3 and -7 
or to the cleavage of pro-apoptotic Bcl-2 family member, Bid, by 
caspase-8 (53). Bid then binds to the mitochondrial membrane 
and activates mitochondrial outer membrane permeabilization, 
stimulating the release of cytochrome c to kill the cell (54).

Redox regulation of apoptotic pathways has many facets that 
are detailed elsewhere (45), however, it is important to note that 
the primary role for ROS during apoptotic cascades involves 
intrinsic pathways. Mitochondria inside the β-cell can initiate 
stress-induced production of superoxide, which can then be 
converted into hydrogen peroxide and hydroxyl radicals (OH) 
through the Fenton reaction (55). These radical ions are potent 
inducers of further redox-mediated DNA and protein damage 
inside the cell (56) and can lead to further apoptosis or inflam-
matory processes that negatively impact the viability of the graft.

indirect Recognition and Redox Signaling
Indirect recognition of allogeneic transplants involves the inter-
action between host APCs with host T cells. The host APC will 
process and present graft antigens on MHC II molecules to acti-
vate host CD4 T cells (40, 41). The indirect recognition pathway 
can promote two major forms of immune responses: the humoral 
B cell/antibody response through the interaction between CD4 
follicular helper T  cells with naïve B  cells and the continual 
activation of innate responses, namely macrophage-associated  
killing (37).

The transition of a B cell to a terminally differentiated plasma 
cell requires various cellular and metabolic changes, some of 
which have redox components. H2O2 is involved in B cell receptor 
signaling and activation (57). In addition, as a B cell transitions 
to a differentiated plasma cell, the endoplasmic reticulum (ER) 
undergoes drastic reorganization and expansion. During ER 
stress, a host of ER-based enzymes generate ROS as byproducts, 
leading to multiple changes in antibody production, i.e., the switch 
to IgM (58) and proliferation within these newly formed plasma 
cells (59, 60). Specifically, it has been demonstrated that oxida-
tion of Keap1, a negative regulator of the antioxidant response, 
allows for the nuclear internalization of Nrf2 and transcriptional 
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activation of various target genes involved in B cell differentiation 
and antioxidant defenses (61).

After differentiation, antibodies produced by activated 
plasma cells can bind to the islet graft and activate the comple-
ment system to induce apoptosis within the target cell and facili-
tate islet graft destruction by cytotoxic lymphocytes through Fc 
binding (62). Antibody responses by B  cells are not the only 
redox-dependent mechanism that can contribute to islet graft 
destruction. B  cells are also capable of producing inflamma-
tory cytokines including IL-6 that is redox regulated (63, 64).  
When a B  cell receives co-stimulation through the CD40 
surface receptor, the cross-linking of this receptor leads to the 
generation of ROS and subsequent activation of JNK pathways, 
resulting in the increased secretion of IL-6 into the surrounding 
environment (65, 66). IL-6 interacting with the cognate IL-6R 
can promote activation and proliferation of other immune cells 
by signaling through JAK2. This protein can initiate the MAPK 
cascade described above, or interact with STAT3, forming the 
JAK/STAT complex (67, 68). STAT3 is vital for optimal activa-
tion and effector function in T cells because it can directly enter 
the nucleus and initiate the transcription of inflammatory genes, 
or activate the NF-κB pathway and affect the cell cycle (69, 
70). Therefore, redox regulation of B  cell responses including 
antibody production and secretion of inflammatory cytokines 
can perpetuate damaging T cell responses to further destroy the 
islet graft.

ROLe OF FRee RADiCALS AND PRO-
iNFLAMMATORY MeDiATORS iNvOLveD 
iN iSLeT CeLL TRANSPLANTATiON 
ReJeCTiON

The interplay between free radicals and inflammatory mole-
cules modulates β-cell dysfunction and death during multiple 
stages of purification from the pancreas and transplantation. 
Islets are sensitive to hypoxic stress or damage signals that 
occur during isolation and culture including pro-inflam-
matory cytokines and free radicals. Stress or damage caused 
by hypoxia, cold ischemia, and reperfusion can activate 
downstream inflammatory cascades including the NF-κB 
signaling pathway (71–73). After transplantation, immune 
effector cells including macrophages, neutrophils, B  cells, 
and T cells migrate to the transplant site and target the islet 
graft for destruction by releasing pro-inflammatory cytokines, 
antibodies, and free radicals (74–76). Understanding the 
redox-dependent signaling pathways during islet isolation and 
following transplantation is vital to the development of novel 
interventions to improve transplantation success and prevent 
β-cell dysfunction.

Redox Signaling in islet isolation  
and Culture
Pancreatic islets in their natural setting have rather high oxy-
gen tension, with islets receiving more than 15% of the total 
pancreatic blood supply (77). This massive influx of blood and 
nutrients plays a key role in their rapid ability to regulate glucose 

levels, however, linked to their relatively low levels of antioxidant 
defenses, it also leaves them highly susceptible to ROS-mediated 
damage (6, 7). In addition, this sensitivity also further exacerbates 
their susceptibility to oxidative damage during isolation when 
they are deprived of that elevated oxygen supply, leaving them in 
a hypoxic state (78–80).

To separate islet cells from the surrounding tissue of the pan-
creas, harsh digestive enzymes and mechanical separation tech-
niques are utilized to break down exocrine tissue while leaving 
the islets mostly intact. These methods, while efficient, induce a 
level of oxidative and mechanical stress as vascularization and 
in turn, the nutritional stores of the islets are severed (81). This 
detachment from the extracellular matrix leaves islets reliant on 
passive diffusion to survive the isolation and transplantation 
process (82, 83). Consecutive days incubated under hypoxic 
conditions in  vitro can have serious impacts on islet function 
and survival. The increase in hypoxia and oxidative stress within 
in vitro cultured islets can induce DNA damage and the peroxida-
tion of proteins and lipids (84, 85). Mitochondrial-derived stress 
can cause larger islets to develop a necrotic core as less oxygen is 
able to diffuse to the cells in the center (86) as well as impacting 
insulin secretion through stress-associated decreases in mito-
chondrial Ca2+ uptake (87). Islets compensate for the low avail-
ability of oxygen in culture by upregulating transcription factors 
including hypoxia-inducible factors, which induce transcription 
of multiple genes including toll-like receptors (TLRs) and genes 
involved in vascular endothelial growth factor (VEGF) signaling 
(88, 89). Hypoxic conditions can also activate NF-κB to induce 
the upregulation of inducible nitric oxide synthase (iNOS) and 
monocyte chemoattractant protein-1 (MCP-1) expression (71), 
which can have significant impacts on local inflammation after 
the islets are transplanted.

Strides have been made in recent decades in an attempt 
to combat oxidative stress with the advent of less damaging 
enzymatic digestion methods (90) and isolation techniques to 
improve cadaveric human islet yield (91), but challenges persist 
that motivate researchers to find alternative strategies to dampen 
oxidative stress and hypoxia. One method to protect islets 
from redox-mediated damage following isolation is to increase 
expression of detoxifying or antioxidant enzymes. Under normal 
circumstances, redox scavengers are upregulated in response to 
inflammatory signals released from cells during times of dam-
age or stress. Unfortunately, the low levels of these scavenging 
enzymes in islets make it difficult for them to combat redox stress. 
A few of these key enzymes include SOD, manganese superoxide 
dismutase (MnSOD), and Gpx-1, antioxidant enzymes that are 
present at lower levels in islets than in other rodent tissues (7). 
Therefore, increasing endogenous antioxidant defenses or sup-
plementing with exogenous scavengers could protect isolated 
islets from oxidative stress.

Strategies to Dampen Redox-Mediated 
Damage in isolated islets
Mechanical and metabolic stress during islet isolation can 
significantly reduce the number of viable islets available for 
transplantation. To combat this early loss in islet mass, various 
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groups have attempted to protect purified islets by targeting the 
redox mechanisms underlying sources of cellular stress. There are 
two primary techniques utilized to dampen oxidative stress and 
redox-mediated damage in purified islets: either supplementing 
culture media with exogenous redox scavengers like MnSOD or 
genetic manipulation of the islets themselves.

The first method to decrease the oxidative damage that islets 
endure in culture is to treat with antioxidants after isolation. The 
activation of both NF-κB and poly (ADP-ribose) polymerase 
pathways contribute to islet damage during the isolation process 
(92, 93). Dissipating oxidative stress through the use of a SOD 
mimetic can decrease NF-κB activation, reduce the production of 
inflammatory MCP-1 and IL-6 by human islet cells during stress 
conditions, and reduce NO2

− and O2
•− production by macrophages 

(93, 94). This same antioxidant demonstrated protection from 
STZ-induced apoptosis during in  vitro human islet cultures 
as well as prolonged islet  allotransplant survival in MHC-
mismatched mouse models after purified islets were cultured in 
the presence of the SOD mimetic (95). Systemic administration 
of the SOD mimetic through the use of sustained release pel-
lets prolonged the viability of allogeneic islet grafts by reducing 
immune migration to the site of transplantation. The reduction 
in inflammation and increase in graft viability observed in the 
above studies is a key step in protecting islets from oxidative 
stress produced by immune cells and can promote long-term sur-
vival of an islet graft. Similarly, a naturally occurring antioxidant 
from the extract of Chinese bayberries, cyanidin-3-O-glucoside 
(C3G), was shown to increase expression of heme oxygenase-1, 
Bcl-2, and survivin, antioxidant, and anti-apoptotic regulators 
that protect islet cells from oxidative stress in  vitro (96, 97).  
In addition, C3G treatment of isolated islets prior to transplan-
tation demonstrated prolonged graft survival with fewer islet 
numbers required to induce euglycemia when transplanted 
either under the kidney capsule or into the hepatic portal vein 
(97). The use of soluble antioxidants, while somewhat protec-
tive, is a short-term treatment option, and once these islets are 
transplanted, they are still susceptible to immune-mediated 
damage. Genetic modifications of purified islets may provide a 
more permanent solution and supply antioxidant protection that 
can persist long after transplantation.

Viral transduction of isolated islets to overexpress antioxidant 
genes provides benefits to islet survival not only during in vitro 
culture but also following transplantation. Transgenic mice 
overexpressing SOD and Gpx-1 within islets displayed a marked 
resistance to redox-mediated damage in  vitro and improved 
glycemic control after transplantation under the renal capsule of 
syngeneic mouse recipients (98). One group genetically altered 
isolated murine islets to overexpress MnSOD and found that upon 
transplantation into immunodeficient recipients, the transgenic 
islets displayed a marked delay in graft failure following adoptive 
transfer with diabetogenic T  cells (99). Similarly, transfection 
of islets with a lentiviral vector containing thioredoxin, an ROS 
scavenger, reduced the toxic effects of H2O2 in  vitro and pro-
longed graft viability after transplantation into the kidney capsule 
of spontaneously diabetic NOD mice (100). Other groups have 
also shown protective effects of glutamylcysteine ligase and SOD 
overexpression on islet function (101, 102), further supporting 

the important role of antioxidant defenses and oxidative stress for 
the maintenance of islet graft function.

These studies have focused on the treatment of islets after 
isolation, however, in human islet isolation, another hurdle also 
exists. Most human islets isolated for transplantation are obtained 
from cadaveric or brain dead organ donors. Unfortunately, 
these donor conditions create an elevation of inflammatory and 
redox-mediated damage to human tissues that can negatively 
impact islet yield. Therefore, it is not surprising that human islet 
transplant recipients can require three or more donors to obtain 
sufficient islet equivalents for a single transplant (103). If human 
islets will continue to be used for transplantation, the state of 
the donor before isolation cannot be ignored. One group found 
that treatment of brain dead rats with exendin-4, a glucagon-
like peptide-1 analog that acts to increase insulin secretion and 
decrease glucagon production (104), served to prevent islet 
viability loss induced by brain death-related inflammation as 
well as increasing glucose-stimulated insulin secretion of these 
isolated islets (105). In addition, exendin-4 has also been shown 
to reduce hypoxia-related islet injury, reduce oxidative stress, 
and improved both syngeneic and xenotransplantation survival 
in mouse transplants (106).

While dissipation of oxidative stress during isolation and 
culture is important to improve islet yield, viability, and func-
tion from donors for transplantation, there are numerous other 
redox-dependent insults transplanted islets have to withstand to 
delay graft failure including immune-mediated inflammation. 
Therefore, defining how the two arms of the immune system 
facilitate islet transplant rejection, graft failure, and synergize 
with oxidative stress is important to prolong the survival of 
transplanted islets into patients with T1D.

Acute Responses and Redox Signaling 
After islet Transplantation
Following transplantation, islets are susceptible to acute mecha-
nisms of stress that lead to the loss of a large portion of islet cell 
mass and function (107). One such stress includes ischemia 
reperfusion injury as these islet cells are placed back into living 
tissue. The rapid influx of a multitude of nutrients as well as 
soluble factors not seen in culture media induces an inflamma-
tory response involving oxidative stress known as the instant 
blood-mediated inflammatory reaction (IBMIR). This reaction is 
a nonspecific response by the innate immune system that causes 
robust coagulation and immune infiltration into and around the 
islets (88, 108), which leads to the induction of cellular apoptotic 
signaling pathways and internal activation of oxidative stress 
within the β-cell.

During allogeneic transplantation into the hepatic portal vein, 
IBMIR-associated responses cause an instantaneous activation of 
complement pathways that can lead to thrombosis and significant 
loss of the islet graft (109, 110). One of the major initiating factors 
in this response is the expression of tissue factor (TF) by islet 
endothelial cells (ECs). This factor can lead to the activation of 
thrombin, platelet activation, and secretion of other inflamma-
tory mediators that can perpetuate inflammation and induce 
macrophage-directed killing (111–113). Once this cascade has 
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begun, upward of 60% of the islet graft is lost within the first 
few days (82, 107). This local inflammatory cascade at the site 
of transplantation can induce tissue-resident macrophages to 
produce superoxide and hydrogen peroxide to damage surround-
ing tissues (114, 115). The outflow of these reactive molecules 
can directly lead to DNA strand breakage and peroxidation of 
proteins or lipids while also activating a number of signaling 
pathways shown to induce apoptosis in the vulnerable islet graft 
(116). Not only can local redox signaling originating from the site 
of transplantation during IBMIR impact islet survival but also the 
functionality and glucose responsiveness of the β-cells. Therefore, 
targeting this reaction immediately after islet transplantation is a 
good technique to prevent the early loss of islet mass.

Another key innate immune mechanism of inflammation 
during this early stage of islet transplantation is the release of 
danger signals known as danger-associated molecular patterns 
into the extracellular space. These danger signals are highly 
pro-inflammatory, being recognized by pattern recognition 
receptors (PRRs) on innate immune cells as well as by epithelial 
cells (117). One key subset of PRRs are TLRs, which recognize 
specific pathogen-associated molecular patterns, including 
lipopolysaccharide, dsRNA, flagellin, and unmethylated CpG. 
Signaling through these TLRs can lead to downstream activation 
of MyD88, a myeloid differentiation adaptor protein that plays a 
key role in signal transduction associated with the activation of 
immune responses (118, 119). Once activated, MyD88 can initiate 
NF-κB-dependent transcription, one of the major transcription 
factors involved in the inflammatory response toward the islet 
graft (120). One group found that inhibition of MyD88 dimeriza-
tion with small molecule TJ-M2010-6 in NOD mice displayed 
reduced onset of diabetes, inhibited insulitis, and suppressed 
T cell activation (121).

Targeting Redox-Mediated Acute 
Responses After islet Transplantation
There are multiple ways to target these acute interactions and 
prolong graft survival. One of the major stages of IBMIR is 
coagulation and platelet aggregation around the islet graft. To dimi-
nish this damaging reaction, one group utilized α-1 antitrypsin, 
a serine protease inhibitor to reduce IBMIR coagulation and 
cytokine-induced inflammation in human islets transplanted 
into the portal vein of NOD.scid mice (122). Administration of 
α-1 antitrypsin reduced TF expression by the islets, inhibited 
neutrophil infiltration, and protected islet grafts from IBMIR-
mediated damage. Another strategy involves developmental 
endothelial locus-1 (Del-1), an endothelial-derived homeostatic 
factor that has anti-inflammatory properties due to its involve-
ment in leukocyte adhesion (123, 124). The overexpression of 
Del-1 reduced leukocyte-platelet aggregation, which protected 
islets from IBMIR-associated damage (124). Alternatively, target-
ing the production of TF by the islets themselves can be inhibited 
by nicotinamide treatment (113).

The damage from IBMIR can cause an outflow of cytokines 
from these early immune effectors that can activate redox-
sensitive signaling cascades within the islets. These redox-
dependent pathways induce apoptosis within the islet graft and 

compromise insulin secretion from β-cells (125). In human 
islets, it has been shown that IFN-α can participate in the early 
stages of T1D progression by triggering ER stress responses to 
reduce insulin production (126). This change in insulin produc-
tion was linked to a functional delay in the rate of proinsulin to 
insulin conversion within the ER. The role of oxidative stress in 
this ER response has also been investigated. In particular, it has 
been suggested that the production of iNOS and nitric oxide 
(NO) within isolated islets after cytokine exposure can lead to 
the activation of UPR within the ER (127, 128). During times of 
cellular stress, misfolded proteins can accumulate within the ER 
lumen. When this build up occurs, it can cause damage to cel-
lular functions as well as disrupt cell division and survival (129). 
The UPR cascade is designed to protect the cell by increasing 
protein degradation, upregulating transcription of protein fold-
ing machinery, and reestablishing proper ER function. However, 
if the UPR is incapable of compensating for the amount of cellu-
lar stress, such as in the case of chronic inflammation following 
islet transplantation, the cell can undergo apoptosis. This has 
been shown to occur during spontaneous T1D progression in 
the NOD mouse model. ER stress responses were demonstrated 
to precede the onset of hyperglycemia in the NOD mouse, estab-
lishing a link between redox signaling, ER stress, and the early 
wave of islet dysfunction seen in T1D models (130). Pre-diabetic 
NOD mice displayed β-cells with fewer secretory granules and 
a more fragmented ER when compared to β cells from diabetes 
resistant mouse strains.

It has been shown that UPR defects in β-cells from both animal 
models of T1D as well as from human patients can contribute to 
the pathogenesis of autoimmune diabetes (131). Blocking UPR 
hyperactivation through the use of tyrosine kinase inhibitors such 
as KIRA8 and imatinib displayed reductions in ER stress-induced 
apoptosis and even reversed autoimmune diabetes in the NOD 
mouse (132, 133). In addition to autoimmune diabetes, targeting 
the UPR during ER stress may be a potential therapeutic target 
to delay islet transplant rejection. Negi et al. provided evidence of 
ER stress being implicated in the high degree of human islet loss 
during isolation and during the early posttransplantation period 
when these islets were engrafted into a chronic hyperglycemic 
environment (134). To circumvent ER stress and apoptosis, one 
group found that pre-treatment of human islets with glial cell 
line-derived neurotrophic factor reduced ER stress and improved 
graft function after transplantation into the kidney capsule of 
diabetic immunodeficient mice (132, 133, 135).

In addition to ER stress, one of the major problems during islet 
transplantation is the early loss of functional insulin-producing 
cells due to hypoxia-related injury (107, 136). Redox reactions are 
tightly linked to hypoxic and reoxygenation conditions as the cel-
lular electron transport chain of the mitochondria become dam-
aged (136, 137). Due to the intimate link between mitochondrial 
function and insulin secretion, the mitochondrial stress induced 
by hypoxic or reoxygenation conditions can induce β-cell dys-
function. It has been demonstrated that even transient exposure 
to H2O2 can reduce β-cell glucose responsiveness by upward of 
40% long after the stress has been removed (138). This decrease in 
responsiveness correlated with increased mitochondrial ROS and 
decreased mitochondrial biogenesis, solidifying the link between 
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internal sources of oxidative stress and β-cell dysfunction.  
In addition, dissipating mitochondrial ROS through antioxidants 
such as MitoTempo or Mitoquinone can protect β-cells from 
oxidative damage and increase insulin responsiveness in diabetic 
conditions (139). Not only can mitochondrial ROS impact 
insulin secretion but it can also induce further DNA and protein 
damage (55). Therefore, potentially reducing mitochondrial 
ROS-mediated damage through the use of redox regulators could 
protect islets from this initial loss of functional β-cell mass in the 
few weeks after implantation (85).

To address this problem of reoxygenation, researchers have 
attempted to use gene delivery or co-culture methods to promote 
revascularization of these islets in the days after transplantation, 
thereby limiting oxidative damage and loss of early graft func-
tion. One popular method to achieve this is the use of VEGF. 
This particular growth factor gained attention due to its limited 
ability to cause secondary side effects as compared to cytokines 
like transforming growth factor-β (140). Using an adenovirus-
based delivery system, the induction of elevated levels of VEGF 
in human islets resulted in a protective effect from TNF-α and 
IFN-γ induced apoptosis (141). Researchers also found that the 
addition of VEGF promoted revascularization in human islets 
transplanted under the kidney capsule of mouse recipients by 
promoting the growth of new blood vessel formation (142). 
Co-expression of VEGF and an IL-1R agonist demonstrated sup-
pressive effects on cytokine- and consequently redox-mediated 
necrosis and apoptosis (143). Therefore, combinatorial therapies 
including VEGF expression and IL-1β-dependent signaling 
blockade demonstrate promise in maintaining stable islet 
engraftment and function.

Transplantation studies targeting these early immune responses 
demonstrate some protection for the islet graft; however, the 
islet graft is still susceptible to immune-mediated damage from 
adaptive immune effectors. Therefore, targeting one pathway 
may not be sufficient to prevent redox-mediated islet destruc-
tion. Dissipation of only one subset of free radicals provided a 
modest protective effect and negligible improvement in islet 
function (144, 145). Perhaps a more comprehensive blockade of 
redox signaling mechanisms during islet transplantation would 
improve the duration of islet viability. Support for this hypothesis 
is demonstrated through the use of cell-permeable catalytic anti-
oxidants, which are effective in delaying streptozocin-induced 
islet cell death, and decreasing the synthesis of inflammatory 
cytokines and free radical production by immune cells (31, 94, 95).  
Treatment of rat islets with metallothionein, a broad antioxidant 
involved in a wide array of protective stress responses (146), 
can restore and maintain euglycemia after subcutaneous islet 
transplantation, a result not seen in untreated control transplants 
due to the challenge of revascularization under the skin (147).  
An even more drastic effect was seen with the use of fusion 
proteins combining metallothionein and SOD to target multiple 
sources of free radical damage, leading to improved graft survival 
of syngeneic transplantation models in mice (148).

Taken together, redox-meditated destruction of islet cell 
grafts can be initiated and perpetuated by a multitude of dif-
ferent signaling pathways induced by immune cells and β-cells. 
With its multiple intersections with inflammatory responses as 

well as the production of redox molecules such as an increase in 
iNOS expression and production of O2

•−, the NF-κB pathway has 
become a major target for therapeutic intervention (Figure 2). 
Using two common NF-κB inhibitors, withaferin A, which inhib-
its IKKβ and NEMO complex formation (149), or an analog of 
resveratrol, which blocks the phosphorylation and subsequent 
nuclear localization of the p65 NF-κB subunit (150), Kanak et al. 
found that NF-κB blockade reduced the release of C-peptide 
and proinsulin as well as the production of pro-inflammatory 
cytokines and chemokines including TNF-α, MCP-1, IL-8, and 
IL-6 in in vitro human islet and blood co-cultures (88). The use of 
a natural NF-κB inhibitor, withaferin A, is another good example. 
The addition of withaferin A induced a decreased expression of 
five key inflammatory genes, RANTES (CCL5), IP10 (CXCL10), 
MIG (CXCL9), IL1B, and NOS2 when islets were cultured in the 
presence of a cytokine cocktail as compared to controls (151), 
indicating a strong anti-inflammatory response in addition to 
a reduction in redox mediators involved in this vital signaling 
cascade.

While the blockade of this vital pathway has shown some 
potential at reducing inflammatory responses, understanding 
the functional and redox-dependent mechanisms involved in 
activating these pathways at various stages of islet transplantation 
is critical to understanding the immune-mediated pathology of 
islet cell destruction and graft failure. With these overlapping 
mechanisms in mind, it is not surprising that targeting a single 
pathway may not be efficacious in eliminating the challenges fac-
ing the field of islet cell transplantation. One example is the use of 
imatinib, which hinders the non-receptor tyrosine kinase c-Abl. 
This drug was initially used to treat chronic myeloid leukemia; 
however, several clinical trials also demonstrated improvement 
or reversal of diabetes phenotypes (152, 153). In animal models, 
imatinib demonstrated protection from both spontaneous and 
drug-induced islet death and dysfunction (154–156), and when 
investigated further, imatinib treatment of human islets demon-
strated a decrease in islet inflammation following cytokine expo-
sure (157). There has also been some data indicating that imatinib 
treatment may be capable of reversing autoimmune diabetes in 
NOD mice by blunting the ER stress responses within pancre-
atic β-cells (132, 133). With these biological roles, researchers 
believed imatinib would be a potent inhibitor of redox-mediated 
apoptotic pathways. However, when used for in vivo transplanta-
tion studies, pre-treatment of islet cells or treatment of recipients 
posttransplantation did not improve islet transplant outcomes 
(158). The failure of imatinib treatment to protect islet grafts 
in  vivo serves as a reminder that oxidative damage and redox 
signaling is complex and a potent mediator of multiple pathways 
involved in graft failure.

While the above therapies are promising techniques for the 
reduction of inflammatory reactions, transplanting antigenic 
islets and delaying graft rejection into a recipient with established 
autoimmune diabetes is a herculean task. Not only will there be 
issues of MHC incompatibility in these allotransplant settings, 
which will potentially mark the graft for destruction, but also an 
inherent autoimmune response primed and ready to produce 
signaling molecules and oxidative species to immediately attack 
the transplanted β-cells is also present. The development of novel 
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FigURe 2 | Targeted therapeutic approaches for NF-κB inhibition. NF-κB can induce the transcription of various inflammatory and oxidative molecules to facilitate 
islet graft rejection. The NF-κB pathway can be triggered by pro-inflammatory cytokine signaling, pathogen-associated molecular patterns (PAMPs)-, danger 
associated molecular patterns (DAMPs)-, or reactive oxygen species (ROS)-initiated toll-like receptor (TLR)-dependent signals. TLR-signaling activates the 
MyD88-dependent or MyD88-independent signaling pathways, which results in IKK phosphorylation, IκB-α degradation in the proteasome, and NF-κB (p50/p65) 
nuclear translocation. Small molecule inhibitors like TJ-M2010-6 can prevent MyD88 activation and IκB-α degradation (A). Resveratrol inhibits the phosphorylation 
and subsequent nuclear localization of the NF-κB p65 subunit to prevent transcription (B). Signaling from cytokines like interleukin 1 beta (IL-1β) have been targeted 
through the use of monoclonal antibodies including anti-IL-1 canakinumab (C), which blocks binding of IL-1β to its receptor, and the use of IL-1R antagonist 
anakinra to block signaling through the receptor (D). The IKK complex is a target for NF-κB inhibition. Specifically, inhibition of IKKβ and NEMO complex formation 
by withaferin A can prevent the phosphorylation and release of IκB-α (e).

Barra and Tse Oxidative Stress in Islet Transplantation

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 175

therapies that can efficiently decrease adaptive immune responses 
involved in graft destruction is necessary if there is hope for dimin-
ishing graft rejection without the use of immunosuppressants.

Therapies Targeting Adaptive immune 
Rejection of islet grafts
There are multiple strategies being investigated to suppress the 
adaptive immune responses that contribute to islet graft destruc-
tion, however, two in particular have gained more attention in 
the last few decades: islet encapsulation strategies to provide a 
barrier between the sensitive islet graft and the immune system 
and co-transplantation methods using accessory cells to dampen 
inflammatory immune responses. Both seek to provide immuo-
protection to the islet graft while maintaining the ability for the 
β-cells to respond to environmental stimuli.

Current strategies for protecting the islet graft against adaptive 
immune rejection utilize inhibitors of some of the most com-
monly utilized pathways for inflammatory responses.

One method to provide protection from immune-mediated 
damage without perpetual dependency is encapsulation of isolated 
islets with materials designed to delay immune rejection. These 
materials have gained attention for their potential to provide an 
immunoprotective and physical barrier between the immune sys-
tem and newly transplanted islets. Encapsulation aims to produce 
a semi-permeable membrane around islet cells that allows insulin 
and other nutrients access across the membrane while excluding 
larger proteins like antibodies or interactions with immune cells 
(159). There are three common methods used for encapsulation: 
(1) an intravascular device, (2) macroencapsulation, and (3) 
microencapsulation (160–162).

The first category requires the use of a small chamber con-
taining multiple islets, that is, then directly connected to a 
blood supply (160), and while this type of intravascular device 
was capable of restoring euglycemia in mouse models (163), 
the threat of thrombosis made this method unreasonable for 
clinical use. Macroencapsulation of islets does not require direct 
attachment to a blood supply and is more attractive for clinical 
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application. However, the thickness of these capsules can impede 
the transfer of insulin, oxygen, and other nutrients, potentially 
harming the islets and limiting possible transplantation sites 
(164, 165). More recently, the development of new technologies 
including the subcutaneous implantation of islets held within a 
thin membrane-bound device by TheraCyte can protect insulin-
producing cells from the immune system and delay islet allograft 
rejection (166, 167). In addition, a device by ViaCyte utilizing 
PEC-01 precursor insulin-producing cells and a subcutane-
ous transplantation site is currently in a phase 1 clinical trial. 
Finally, microencapsulation is the encapsulation of a single islet, 
attempting to address the porosity and mass issues that plagued 
the earlier methods. Reducing the width and the number of 
encapsulated islets improves porosity and reduces redox-related 
injury, however, retrieval of transplanted islets is more difficult 
(161, 168). Finally, alginate is typically used for islet micro- and 
macroencapsulation, but is also innately immunogenic due to an 
inability to generate a completely pure form of this algae-derived 
compound (169, 170).

While each method above has shown some success in 
restoring euglycemia in animal models and clinical trials (171), 
the inability to consistently control the size, shape, and thick-
ness of these capsules continue to hamper long-term success.  

In addition, addressing the issue of reactive species, which may 
be small enough to cross these semi-permeable membranes, 
continues to pose a challenge and is a source of much debate 
(168, 172). In an attempt to address the setbacks associated with 
these encapsulation materials, the congregation of microspheres 
containing suppressive materials with or around these islets 
may provide a solution. Microspheres are specialized structures 
comprised from thin layers of cross-linked polymers, which can 
then be optimized for porosity to suit the desired cellular effect  
(173, 174). Because this method relies less on a bulky shell, 
microspheres offer the flexibility to address larger issues such 
as the cellular microenvironment, both within and outside the 
capsule. For example, the congregation of curcumin, an anti-
apoptotic drug containing free radical scavenging capabilities, 
with the polymer poly(lactic-co-glycolic acid) to form hetero-
spheroids can decrease oxidative stress and bolster insulin release 
in rat islets when used as an encapsulation material (174). This 
technique allows for a localized release of the redox-modulating 
drug directly at the site of transplantation without degradation 
in circulation.

Another novel method of redox-dependent protection that 
does not compromise size, permeability, or charge of the islets 
is the use of a layer-by-layer (LbL) polymer ultrathin coating. 

FigURe 3 | Therapeutic approaches to protect islet graft viability. Encapsulation of purified islets provides a physical and potentially immunomodulatory barrier 
between the islet graft and the host immune system (A). Co-transplantation of stem cells or regulatory immune cells with the islet graft can reduce immune 
infiltration to the graft (B). The use of immunosuppressive drugs such as monoclonal antibodies specific for immune cell subsets can suppress inflammatory 
responses in the host and prolong graft survival (C). Treatment of purified islets with antioxidants during culture can dissipate free radicals involved in islet 
dysfunction and viability, may enhance engraftment and delay graft rejection (D). Transfection of purified islets using a virus or viral vector to increase antioxidant 
defenses can promote islet graft viability and prolong survival after transplantation (e).
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These nanothin layers allow for the manipulation of surface 
area, permeability, and bioreactivity of the encapsulation mate-
rial while still providing protection to the encapsulated islets 
(175). This technique allows for the potential aggregation of 
different materials into a single, confluent capsule and opens 
the door for addressing multiple mechanisms of islet transplant 
destruction. Furthermore, in contrast to other methods, the LbL 
technique does not require a priming step for adherence of the 
biomaterial to the islet surface, which has been shown to be det-
rimental to the stability and viability of islet cells (176). Instead, 
these ultrathin coatings rely on hydrogen bonding between the 
lipid polymer and the lipid bilayer of the membrane to form an 
anchor point which binds the polymer to the surface of the cell 
(177).

Utilizing this LbL technique, capsules composed of poly  -
(N-vinylpyrrolidone) and tannic acid (TA), a powerful antioxidant, 
can suppress the production of IFN-γ and TNF-α, pro-inflam-
matory cytokines, which are key players in islet cell destruction 
(178, 179). These capsules can scavenge ROS as well as reactive 
nitrogen species produced by immune cells, demonstrating their 
redox-modulation capacity. The TA-containing capsules are also 
efficacious in suppressing pro-inflammatory chemokine produc-
tion by innate cells, leading to a decrease in T cell trafficking to 
the site of inflammation and a decrease in T cell activation (180). 
By reducing immune cell trafficking, these capsules not only serve 
as a physical barrier to immune destruction but also serve in a 
localized manner to suppress immune responses without eliciting 
global immunosuppression.

Other strategies to reduce early loss of β-cell mass include co-
transplantation with accessory cells that can enhance islet func-
tion, prevent apoptosis, promote vascularization, and provide 
immunoprotection, including mesenchymal stem cells (MSCs), 
ECs, Tregs, and myeloid-derived suppressor cells (MDSCs) (181). 
MSCs are mesodermal multipotent cells that have self-renewing 
properties and can be isolated from almost every adult tissue 
(182). They can surround purified islets in culture due to their 
strong adhesive capabilities and improve islet graft viability 
and revascularization in both rodent and non-human primate 
models of co-transplantation (183–185). MSCs can suppress 
inflammatory immune responses including the proliferation of 
cytotoxic T cell subsets in part through NO synthesis and inhibi-
tion of STAT5 phosphorylation (186). In islet transplantation, 
Mohammadi Ayenehdeh et al. demonstrated that congregation 
of adipose tissue-derived MSCs with isolated islets in a hydrogel 
could maintain euglycemia for more than 30 days during intra-
peritoneal allotransplant (187). This prolonged islet survival was 
in part due to an increase in Treg populations as well as a reduc-
tion in the inflammatory cytokines IFN-γ and IL-17A.

Another population being investigated for its resistance to 
IBMIR reactions is ECs. Co-culture of human ECs with isolated 
pig islets was shown to prevent IBMIR-mediated islet damage 
both in  vitro (188) as well as after co-transplantation into the 
kidney capsule of diabetic immunodeficient mice (189). Another 
group found that co-culturing isolated human islets with primary 
human ECs produced a protective coating that would surround 
the islets and protect them from IBMIR upon transplantation 
into the portal vein (190). This co-transplantation strategy also 

induced a reduction in CD11b+ innate immune cell infiltration 
into these islet grafts, indicating that the presence of ECs served 
as an immunoprotective barrier for transplanted islets.

An innate immune cell type that has gained attention for its 
contact-dependent immunosuppression is the MDSCs. Through 
their production of superoxide, iNOS, and elevated arginase 
activity, MDSCs can suppress Teff activation and function while 
promoting Treg development (191, 192). During allogeneic islet 
transplantation into the kidney capsule of diabetic mice, co-
transplantation of MDSCs increased the presence of Treg cells 
through the B7-H1/PD-1 pathway (192) and reduced CD8 T cell 
infiltration by activating iNOS (193).

Regulatory T  cells are an immune cell population with the 
potential to prevent islet graft rejection due to their suppressive 
effects on immune responses. A recent clinical trial demonstrated 
that ex vivo expansion and subsequent infusion of autologous 
human Treg cells in 12 patients with newly diagnosed T1D 
lowered the patients’ exogenous insulin requirements and 
prolonged endogenous islet survival (194). The use of Treg cells 
also show some promise in animal models of islet transplanta-
tion, however, due to the short half-life of expanded Tregs as 
well as challenges in migration from peripheral blood to the 
site of engraftment (195), alternative strategies to improve Treg 
localization have been attempted. The combination of CTLA-4, 
a key protein receptor that downregulates immune responses, 
and reparixin, which blocks against inflammatory neutrophil 
infiltration, resulted in lower serum IFN-γ as well as decreased 
T cell infiltration into the islet graft after transplantation under 
the kidney capsule (196). Other groups have investigated the 
use of fusion proteins and antibodies to promote graft survival. 
Zhang et al. utilized CTLA-4/Fc and demonstrated reduced local 
inflammation, a concomitant increase in Foxp3+ Treg cells, and 
improved engraftment (197). Treg cells have also been utilized in 
co-transplantation strategies where co-aggregation of syngeneic 
Treg cells with purified allogeneic islets within an agarose hydro-
gel displayed prolonged allograft survival after transplantation 
into the portal vein of mice (198).

CONCLUSiON

Due to the comprehensive role of oxidative stress on islet trans-
plantation, targeting redox-dependent inflammatory responses 
during islet isolation, in vitro culture, and after transplantation 
has the potential to increase islet viability and function (Figure 3). 
Utilization of a broad range of antioxidants including SOD 
mimetics to dissipate ROS synthesis can prolong islet viability and 
maintain function during islet isolation (93). The addition of a 
physical barrier as well as an immune modulator is likely the most 
promising combinatorial approach to protect islet transplants 
from immune-mediated rejection. Interventions including islet 
encapsulation with TA may be efficacious and safer in delaying 
allograft rejection than global immunosuppressive therapies  
(12, 15, 162, 180). In an effort to achieve stable islet engraftment in 
patients following islet transplantation, therapies that specifically 
target the removal of free radicals and redox-dependent signaling 
are highly warranted. It is apparent that synergistic interactions 
between redox biology and immune responses following islet 
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T Cell-Mediated Beta Cell 
Destruction: Autoimmunity and 
Alloimmunity in the Context  
of Type 1 Diabetes
Adam L. Burrack, Tijana Martinov and Brian T. Fife*

Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States

Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the 
immune system. Despite improvements in insulin analogs and continuous blood glucose 
level monitoring, there is no cure for T1D, and some individuals develop life-threatening 
complications. Pancreas and islet transplantation have been attractive therapeutic 
approaches; however, transplants containing insulin-producing cells are vulnerable to 
both recurrent autoimmunity and conventional allograft rejection. Current immune sup-
pression treatments subdue the immune system, but not without complications. Ideally 
a successful approach would target only the destructive immune cells and leave the 
remaining immune system intact to fight foreign pathogens. This review discusses the 
autoimmune diabetes disease process, diabetic complications that warrant a transplant, 
and alloimmunity. First, we describe the current understanding of autoimmune destruc-
tion of beta cells including the roles of CD4 and CD8 T cells and several possibilities for 
antigen-specific tolerance induction. Second, we outline diabetic complications necessi-
tating beta cell replacement. Third, we discuss transplant recognition, potential sources 
for beta cell replacement, and tolerance-promoting therapies under development. We 
hypothesize that a better understanding of autoreactive T cell targets during disease 
pathogenesis and alloimmunity following transplant destruction could enhance attempts 
to re-establish tolerance to beta cells.

Keywords: type 1 diabetes, immunology, autoimmune diseases, transplantation immunology, tolerance induction, 
T cells, alloimmunity

iNTRODUCTiON

Pancreatic beta cells are destroyed by T cells of the immune system, precipitating type 1 diabetes 
(T1D). Unfortunately, preventing beta cell destruction in at-risk individuals has proven challeng-
ing. Despite a working knowledge of genetic risk factors associated with T1D (1), determining 
specific beta cell targets and preventing beta cell destruction by autoreactive T cells remains elusive. 
To develop a successful approach to protect beta cells, we must understand how and why T cells 
are directed to specifically destroy insulin-producing cells in the pancreas while sparing adjacent 
hormone-producing cells including alpha, delta, and epsilon cells. There may be at least two paths 
to protect beta cells from T cell-mediated death. The first approach is to control or regulate effector 
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T cell responses, and the second is to enhance beta cell survival 
or resistance to T cell-mediated death.

The first section of this review outlines our current understand-
ing of the pathogenesis of autoimmune diabetes. We describe the 
process by which insulin-producing beta cells are destroyed and 
contrast the roles of CD4+ and CD8 T cells during autoimmune 
pathogenesis. We compare T1D pathogenesis in the non-obese 
diabetic (NOD) mouse to our current understanding of human 
disease. We also discuss an exciting recent development in the 
field of autoreactive T  cell biology: recognition of neoantigens 
generated through hybrid peptide fusion or response to neoan-
tigens formed through defective protein translation. Finally, we 
describe immune tolerance in several forms, including thymic 
central tolerance, T cell ignorance in the periphery, anergy, and 
regulatory T cell induction.

The second section of this review briefly describes the neces-
sity for pancreas or islet transplantation to treat severe diabetic 
complications. With improving glycemic control through insulin 
injections and continuous glucose monitoring, many T1D indi-
viduals live with minimal complications (2, 3). However, some 
T1D individuals develop life-threatening complications includ-
ing hypoglycemia unawareness and end-stage renal disease. 
Unawareness of severe hypoglycemia is a primary indicator for 
pancreas or islet transplantation and is often combined with 
kidney transplantation to treat renal failure.

The third section of this review focuses on islet replacement 
strategies and briefly outlines beta cell regeneration. The two 
primary avenues for beta cell replacement are transplantation of 
cadaveric islets or induced pluripotent stem cell (iPS)-derived 
beta cells. While there has been considerable progress in both 
strategies, a cure for established T1D must also involve targeted 
immunotherapy. This approach must inhibit memory autoreac-
tive T  cells and naive allograft-reactive immune responses. In 
the third section of this review, we describe allorecognition, 
or how T  cells “see” transplants, focusing on pancreatic islet 
transplantation. We describe two categories of allorecognition by 
T cells in transplant recipients: direct recognition of donor major 
histocompatibility complex (MHC) molecules and indirect rec-
ognition of transplant-derived peptides through recipient MHC 
molecules. We also discuss the challenges of transplant tolerance 
in the NOD mouse and human T1D islet  allograft recipients. 
Recent evidence suggests that the presence of autoimmunity acts 
as an “adjuvant,” accelerating and strengthening the conventional 
alloimmune response.

AUTOiMMUNe DiABeTeS PATHOGeNeSiS

Type 1 diabetes is a T cell-mediated autoimmune disease, whereas 
T2D is the result of peripheral cell resistance to endogenous insu-
lin. The best evidence supporting immune system involvement in 
T1D are studies reporting lymphocytic infiltrate in the islets of 
T1D cadaveric donors (4, 5), islet-specific autoantibody produc-
tion in individuals with T1D (6–8), and identical twin studies 
in which the twin with T1D rejected islet transplants from their 
non-diabetic twin (9). Analyses of pancreas sections harvested 
from individuals with T1D have shown fulminant immune 
infiltration within individual islets, corroborating a key role for 

CD4 and CD8 T cells in beta cell destruction (10–12). This is in 
sharp contrast to pancreas sections from individuals with T2D, 
who, despite having high levels of systemic inflammatory mark-
ers, do not have similar T cell infiltration within pancreatic islets 
(10–12). Virtually all individuals who develop T1D before the age 
of 5 years produce insulin-specific autoantibodies (IAAs), sug-
gesting an important role for peptides derived from the insulin 
molecule in disease pathogenesis (13, 14). Islet autoantibodies 
are a differential diagnosis marker for T1D versus T2D and arise 
from autoreactive B cell and autoreactive CD4 T cell interactions. 
Human leukocyte antigens (HLAs) class II alleles DR4, DQ8, and 
DQ2 confer the highest genetic risk for T1D in human patients 
(15). This strong HLA II allele association with T1D suggests that 
HLA II-restricted CD4 T cells play a key role in disease patho-
genesis. CD4 T cells can provide “help” to B cells and stimulate 
antibody production as noted above, as well as promote responses 
by effector CD8 T cells, and stimulate islet-resident macrophages 
(16, 17). With this in mind, autoreactive CD4 T cells represent 
an active area of research and clinical interest for therapies. 
Developing antigen-specific tolerance-promoting methods to 
inhibit autoreactive CD4 T cells is the focus of the first section 
of this review.

The NOD Mouse Model of T1D
The NOD mouse was first characterized at the Shionogi Research 
Laboratories in Aburahi, Japan, by Makino et al. (18). The NOD 
mouse was developed as a sub-strain of the JcI:ICR mouse 
strain, which was used to study cataract development (18). The 
NOD strain exhibited very high fasting blood sugar levels but 
not cataracts and has been an invaluable tool for T1D research. 
Depending on the colony, 50–90% of female NOD mice develop 
spontaneous autoimmune diabetes between 10 and 30 weeks of 
age (19). Generally, diabetes onset in male NOD mice is much less 
frequent (20% in the same age range); therefore the majority of 
studies of autoimmune diabetes utilizing this strain of mice use 
female diabetic mice (20). This review will focus on spontaneous 
autoimmune diabetes pathogenesis in NOD mice, although other 
models of beta cell destruction mediated by T cell receptor (TCR) 
transgenic T cells targeting ectopically expressed antigen such as 
in rat insulin promoter (RIP) driving lymphocytic choriomenin-
gitis virus (21) RIP-membrane-bound form of ovalbumin (22) or 
insulin hemagglutinin (23) have contributed extensively to our 
understanding of T1D and are discussed elsewhere (24). Studies in 
the NOD mouse demonstrate a strong dependence on MHC class 
II allele I-Ag7 and the requirement of CD4 T cells (25), CD8 T cells 
(26), and B cells (27, 28) for autoimmune diabetes. Interestingly, 
diabetes-associated MHC II, I-Ag7 does not precipitate diabetes 
when expressed in non-autoimmune-prone B6 mice (29), but 
NOD mice engineered to express MHC class II alleles other than 
I-Ag7 are protected from disease development (30). Collectively, 
these findings suggest that I-Ag7 is necessary, but not sufficient, for 
autoimmune diabetes. The roles of CD4 T cells, CD8 T cells, and 
B cells in diabetes pathogenesis are discussed below.

CD4 T cells are thought to provide help to effector CD8 T cells, 
stimulate antibody production by B  cells, and activate islet-
resident M1 macrophages (Figure 1). CD4 T cells are required 
for diabetes development in NOD mice (31), and either depletion 
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FiGURe 1 | Type 1 diabetes pathogenesis and potential therapeutic avenues. Type 1 diabetes arises due to failure of several key checkpoints. Defective central 
tolerance (1 and 2) allows islet-reactive CD4 and CD8 T cells to escape the thymus as naive cells and reach the pancreatic lymph node. In the pancreatic lymph 
node, autoreactive CD4 T cells interact with dendritic cells presenting islet antigen (3) and can become T helper 1 (TH1), TFH, pTreg, or anergic cells. TFH cells help 
B cells produce high affinity islet-specific antibodies (4). TH1 cells activate dendritic cells and enhance antigen presentation to islet-specific CD8 T cells (5) to induce 
effector CD8 T cell skewing (6). TH1 cells traffic to the pancreas (7), secrete pro-inflammatory cytokines interferon gamma (IFNγ) and TNFα, and induce beta cell 
death (8). TH1-derived IFNγ and TNFα stimulate M1 macrophages in the islets to produce ROS, TNFα, and IL-1β (9), which in turn amplify beta cell death cycle (10). 
Resulting inflammation leads to increased CD8 T cell infiltration and direct beta cell killing via perforin and granzyme B (11) and attempts by nTregs and pTregs to 
dampen this response via TGFβ and IL-10 (12). Potential therapeutic strategies include (A) infusion of ex vivo expanded (broadly reactive or pancreas-specific) Tregs, 
(B) re-educating TH1 cells through approaches like peptide-linked apoptotic splenocytes, and (C) promoting beta cell-intrinsic expression of defense molecules in situ 
or engineering transplanted beta cells to be more resistant to T cell-mediated attack.
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of CD4 T cells (32) or treatment with non-depleting anti-CD4 
antibodies prevents diabetes (33). Early research in the NOD 
mouse model demonstrated that T helper 1 cells transferred to 
neonatal NOD recipient mice could precipitate diabetes (34). 
Recent studies in NOD mice and human T1D patients have 
characterized the diabetogenic CD4 T cells as pro-inflammatory, 
capable of secreting interferon gamma (IFN-γ) and/or inter-
leukin 17 (35–39). Interestingly, HLA-matched healthy donors 
may also have CD4 T cells with islet antigen specificity, but in 
their case, the cell phenotype and functional output is regulatory, 
with a cytokine profile consisting mainly of IL-10 (35, 36). CD4 
T cell targets are peptides restricted to HLA or MHC II and are 
discussed in further detail below. In human T1D, the available 
evidence from studies of individual islets from the Network for 
Pancreatic Organ Donors with Diabetes suggests that beta cell 
destruction is mediated in large part through direct CD8 T cell 
contact with beta cells and CD4 T  cell-mediated polarization 
of M1 macrophages (4, 10, 40). CD4 regulatory T cells will be 
addressed below.

Autoreactive CD8 T  cells are activated through interaction 
with peptides presented by MHC class I and can mediate beta 
cell death in a contact-dependent manner through perforin and 
granzyme molecules (Figure 1) (41). MHC class I is required for 
T1D, with some reports suggesting that CD8 T cell/MHC class I 
interactions are required only early in disease development (42), 
whereas others have concluded that MHC class I is required late 
in diabetes pathogenesis (43). Insulin-specific CD8 T cells are key 
for diabetes onset in both mouse (44, 45) and humans (46). Even 
though CD8 T cells are required for disease pathogenesis, due to 
space limitations, the bulk of this review will focus on the biology 
of CD4 T cells.

Beta cell death can also be mediated through cytokine produc-
tion by both CD4 and CD8 T cells within pancreatic islets. Pro-
inflammatory cytokines such as TNF-α and IFN-γ are directly 
toxic to beta cells (Figure 1) (47, 48). These cytokines also activate 
macrophages to M1 phenotype and stimulate a positive feedback 
loop, further increasing cytokine production in situ and killing 
more beta cells (Figure  1) (49). In addition, data from mouse 
and human samples demonstrate that beta cells can express the 
IFN-γ-inducible chemokine CXCL10, which promotes T  cell 
infiltration and may accelerate beta cell destruction (50, 51). 
Data from adoptive CD4 T cell transfer model of diabetes in the 
NOD mouse model suggest that M1 macrophages are required 
for beta cell destruction in this setting (52). Indeed, it has been 
demonstrated in the NOD mouse that superoxide production 
by T cells or macrophages is critical to promote beta cell death 
and T1D (16) and that loss of superoxide production by mac-
rophages delays diabetes pathogenesis (53). Moreover, transient 
depletion of islet-infiltrating dendritic cells and macrophages 
using clodronate-loaded liposomes abrogated T cell infiltration 
and significantly delayed subsequent diabetes development in 
liposome-treated mice (54). More recent work has demonstrated 
a critical role for dendritic cells expressing the Batf3 transcription 
factor in autoimmune pathogenesis of NOD mice (55). Taken 
together, these results suggest that antigen presentation to CD4 
T cells by dendritic cells and macrophages within pancreatic islets 
plays a key role in promoting beta cell destruction.

Finally, our current understanding is that B  cells act as 
antigen-presenting cells to both CD4 and CD8 T cells and also 
produce IAAs (Figure 1) (56). Early studies established that NOD 
mouse production of IAA peaks between 8 and 12 weeks of age 
and gradually decreases afterward presumably as beta cell mass 
decreases (57, 58). In addition, >60% of mice which developed 
IAA at 3–5 weeks of age develop T1D by week 20, while >50% 
of IAA-positive mice at 8 weeks of age develop T1D by week 20 
(57–59). Translating these results to human patients, as pioneered 
by Eisenbarth (58), autoantibody responses against multiple 
different T cell antigens are highly predictive of diabetes onset 
within 12–36 months in human subjects (1, 8, 60). In addition, 
recent work from Finland has demonstrated that high propor-
tions of children with IAA and/or multiple autoantibodies against 
beta cell targets at ages younger than 5 years develop T1D (61). 
As shown by sibling studies (DAISY, TEDDY), the presence 
of one known autoantibody response confers a moderate risk 
level, with risk of imminent development of diabetes increasing 
exponentially with the detection of each additional autoantibody 
response.

While analogous experiments have not been performed using 
human autoreactive T cells and human beta cells in an in vitro 
setting or humanized mouse system, studies in the NOD mouse 
have elucidated potential mechanisms of beta cell destruction in 
human T1D, in particular key roles for CD4 and CD8 T  cells. 
However, there are important differences between NOD and 
human T1D. In particular, there is a gender bias in NOD mice, 
with higher incidence in female than male mice (19, 20). In 
contrast, human T1D does not show gender bias, unlike other 
autoimmune diseases. A full account of the physiology behind this 
discordance is outside the scope of this review, but may include 
(a) more synchronous T cell infiltration into pancreatic islets in 
NOD mice than in at-risk human subjects, (b) the potential for 
a greater dependence on CD8 T  cells in diabetes pathogenesis 
in human disease (10), and (c) confounding effects of multiple 
concurrent T  cell responses in human patients exposed to the 
“universe” of viral and bacterial pathogens as opposed to inbred 
specific pathogen-free NOD mouse colonies.

Autoimmune Diabetes Antigens  
and Neoantigens
Diabetes-relevant antigen targets have been defined through 
the presence of serum autoantibodies, ELISpot assays, prolifera-
tion assays, and mouse studies [reviewed in Ref. (62)]. In mice 
and humans, some of the B  cell and T  cell antigen targets of 
T1D are overlapping, but not identical (63). The majority of 
autoantigens identified in the NOD mouse are peptides from 
the insulin secretory granules. At the Barbara Davis Center in 
the late 1980s, Haskins et al. (64, 65) and Wegmann et al. (66) 
utilized the NOD mouse to generate a series of pancreatic islet 
secretory granule-specific autoreactive CD4 T  cell lines (67). 
Chief among these, the BDC2.5 CD4 T cell line has been studied 
extensively (68). Two key transgenic mouse lines were generated 
including the BDC2.5 TCR transgenic mouse (69) and the islet-
specific glucose-6-phosphatase catalytic subunit-related protein 
(IGRP)-specific CD8.3 transgenic mouse (70). The NOD mouse 

112

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABle 1 | Beta cell secretory granule-derived auto antigens.

Protein target NOD mouse 
and/or human 
T1D

CD4 and/or 
CD8 T cells

Reference

(Pre)proinsulin Mouse and 
human

CD4 and CD8 (36, 44, 46, 78)

Insulin Mouse and 
human

CD4 and CD8 (44, 45, 76, 83)

Defective ribosomal insulin 
gene product

Human CD8 (82)

Insulin hybrid peptides Mouse and 
human

CD4 (80, 81)

GAD65 Mouse and 
human

CD4 and CD8 (84–88)

ZnT8 Mouse and 
human

CD4 and CD8 (74, 75, 89–92)

Islet antigen-2 Human CD4 and CD8 (93–95)

Phogrin Mouse and 
human

CD4 (96–99)

Islet cell autoantigen 69 kDa Human CD4 (100–103)

Chromogranin A Mouse and 
human

CD4 and CD8 (71, 104, 105)

Islet amyloid polypeptide Mouse and 
human

CD4 and CD8 (72, 73, 106, 
107)

Islet-specific glucose-6-
phosphatase catalytic 
subunit-related protein

Mouse and 
human

CD4 and CD8 (70, 78, 108, 
109)

Burrack et al. Autoimmunity and Alloimmunity in the Context of T1D

Frontiers in Endocrinology | www.frontiersin.org December 2017 | Volume 8 | Article 343

has proven to be a useful “work horse” model system for study-
ing the pathogenesis and cellular immunology of spontaneous 
and adoptively transferred T1D. T cell-mediated destruction of 
beta cells represents an intricate coordination between innate 
and adaptive lymphocytes, with CD4 T  cells occupying a key 
node in this network, as described above. CD4 T  cell epitopes 
discovered to date include epitopes derived from the insulin B 
chain (45), chromogranin A (71), and islet amyloid polypeptide 
(Figure 1) (72, 73). CD8 T cell epitopes include peptides derived 
from preproinsulin (44, 46), IGRP (70), Zinc transporter 8 (74, 
75), and glutamic acid decarboxylase 65 (Figure  1) (76). Of 
particular importance in both the NOD mouse model system 
and for translation to the human disease is a peptide derived 
from amino acids 10–23 of the insulin B chain (InsB10:23). This 
peptide is required for the development of autoimmune diabetes 
in the NOD mouse (45). Nakayama et al. determined that a single 
amino acid substitution in a TCR contact site for both CD4 and 
CD8 T cells conferred complete protection by altering a domi-
nant immune target within the insulin protein (45). Similarly, we 
determined that insulin-specific T cell responses were critical in 
the spontaneous mouse model of diabetes (77). We demonstrated 
that blocking insulin-specific T cell responses could reverse and 
even cure diabetes in mice. In addition, re-establishing immune 
tolerance to proinsulin prevents diabetes onset in NOD mice, but 
re-establishing tolerance to IGRP206-214 does not prevent diabetes 
in NOD mice (78). Despite these fundamental discoveries, we still 
do not fully understand antigen hierarchy in T1D patients, likely 
because multiple different targets may be required for disease in 
different patients (79).

Exciting recent work from several groups has demonstrated 
the presence of neoantigens for diabetogenic CD4 T  cells. 
These comprise hybrid peptides or combinations of amino acid 
sequences derived from two different secretory granule proteins 
or peptide sequences (80, 81). The frequency of T cell priming 
events against hybrid peptides during autoimmune pathogenesis 
is not clear in vivo; however, compelling evidence in vitro suggests 
that these cells may play an important role in T1D pathogenesis. 
It is thought that hybrid peptides are generated exclusively in beta 
cells and not in the thymus, thus representing “new” targets in 
the periphery. These targets could be viewed as foreign peptides 
eliciting a strong immune response. Recent reports also suggest 
that pancreatic neoantigens could arise from defective ribosomal 
insulin gene products (DRiPs), which are produced by metaboli-
cally stressed beta cells (82). Similarly to hybrid peptides, central 
tolerance to DRiPs generated by stressed beta cells would be 
lacking in the thymus. In the presence of inflammation and cell 
death, T cell responses to such neoantigens would develop in the 
periphery and could contribute to disease pathogenesis. Table 1 
summarizes known autoantigens in T1D development in human 
subjects and NOD mice and if they are recognized by CD4 or CD8 
T cells in the context of the appropriate HLA/MHC molecule.

Mechanisms of immune Tolerance
There are four broad categories of immune tolerance that could 
protect beta cells from destruction by autoreactive T cells. First, 
negative selection during thymic development culls self-reactive 
T  cells during T  cell development. Due to this mechanism, 

autoreactive T cells generally do not survive thymic development. 
However, diabetes-associated MHC class I and II alleles facilitate 
the escape of self-reactive lymphocytes from the negative selec-
tion process. This escape could be due to several non-mutually 
exclusive reasons: low thymic expression of islet antigens (110), 
poor binding of native (non-transcriptionally modified) islet 
autoantigens to MHC I/II [as suggested in Ref. (111)], and 
T cell-intrinsic resistance to apoptosis (112) (Figure 1). GWAS 
studies link allelic variation at the insulin variable number tan-
dem repeat (INS-VNTR) IDDM2 locus with the level of thymic 
insulin expression and disease development. Protective alleles of 
the IDDM2 diabetes susceptibility locus promote higher levels 
of insulin expression in the thymus, which would promote more 
robust negative selection of insulin-reactive T  cells (113). In 
addition, mice genetically engineered to express lower levels of 
insulin in the thymus demonstrate correspondingly higher levels 
of peripheral T and B  cell reactivity against insulin (110), and 
published work indicates that pancreatic lymph nodes of NOD 
mice contain higher than expected levels of insulin mRNA at 
3–5 weeks of age (114). These observations suggest a direct link 
between the level of extra-pancreatic insulin expression and 
peripheral lymphocyte reactivity to insulin and point to ineffec-
tive negative selection in NOD mice and human patients. Second, 
immune ignorance occurs if an autoreactive lymphocyte survives 
thymic development, but does not encounter its cognate antigen 
in the periphery. The ignorance pathway appears to be an impor-
tant method for maintenance of B cell tolerance (115). Additional 
evidence of autoantigen-specific T cell ignorance can be found 
in the MHC-matched T1D-resistant B6.g7 mouse model (116). 
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A third mechanism of tolerance is a state of antigen-specific 
unresponsiveness called anergy. CD4 T cell anergy is defined as 
expression of folate receptor 4 and CD73 and hyporesponsiveness 
to TCR stimulation (117). While the majority of insulin-specific 
CD4 T cells in NOD mice are anergic, this form of tolerance is 
not sufficient o halt diabetes (Figure  1) (116). A fourth mode 
of immune tolerance relies on thymic-derived and peripheral 
regulatory CD4 T  cells (Tregs) expressing the transcription 
factor Foxp3 (Figure  1). Foxp3 is the master regulator of Treg 
fate, stability, and suppressive capacity (118). Mutations in 
the Foxp3 locus (IPEX in humans and Scurfy in mice) lead to 
multiorgan autoimmunity and demonstrate a non-redundant 
role of Foxp3 in maintaining tolerance (118). Recent evidence 
demonstrates that the augmentation of Treg activity specifically 
within pancreatic islets may ameliorate diabetes pathogenesis in 
NOD mice (119). This result suggests that promoting Treg activ-
ity specifically within the pancreas may be beneficial in human 
T1D as well. In addition, Tregs can inhibit effector T cells specific 
for the same or “linked” peptides. “Linked suppression” refers to 
the ability of regulatory T cells to suppress activation of effector 
T cells interacting with the same antigen-presenting cell at the 
time of Treg-APC interaction. This concept was originally dem-
onstrated by Davies et al. (120) and reviewed in Ref. (121) and has 
been shown to apply to the murine model of multiple sclerosis, 
experimental autoimmunity encephalomyelitis, as well (122). In 
addition, this mechanism has recently been shown to apply to 
a heart transplant model in mice, in which immune tolerance 
was induced to multiple distinct foreign MHC molecules (123). 
As such, we speculate that determination of “linked” peptides to 
promote CD4 T cell tolerance to islet allografts in autoimmune 
recipients represents a powerful opportunity to prevent islet allo-
graft rejection in autoimmune recipients.

While several hundred protocols have prevented diabetes in 
NOD mice, very few of these have successfully reversed disease, 
and none have yet been translated to standard clinical practice 
(124, 125). Briefly, tolerance-promoting therapies have gener-
ally focused on inhibiting autoreactive T or B cells, decreasing 
inflammation prior to diabetes onset, or some combination of 
these approaches. In attempts to restore tolerance in the CD4 
T  cell compartment, we previously used whole insulin protein 
coupled to apoptotic cells through the chemical cross-linker 
ethylene carbodiimide, or ECDI (77). This approach reversed 
T1D in almost half of the treated mice. ECDI-coupled cells have 
been used in phase I safety trials for multiple sclerosis and have 
shown a desirable safety profile (Figure  1) (126). We predict 
that this approach could be tested for safety and efficacy in T1D. 
Adoptive transfer of regulatory CD4 T  cells can halt diabetes 
pathogenesis in mice through inhibition of IFN-γ production by 
islet-infiltrating CD4 and CD8 T cells and decreased islet infiltra-
tion by CD8 T cells (127). These findings were translated to the 
clinic, with encouraging results. Two separate research groups 
have demonstrated that deficiencies in IL-2 production (128) 
or the responsiveness of Treg cells to IL-2 (129) may be related 
to the development of autoimmune diabetes in NOD mice. Two 
separate groups have adoptively transferred autologous (self-
derived) Tregs into new-onset T1D patients to enhance function 
of endogenous Tregs (Figure 1). A European group isolated and 

expanded Tregs from T1D patients (130) and then went on to 
demonstrate preservations of C-peptide in 8 of 12 subjects and 
reversal of new-onset T1D in 2 patients (131). In addition, a group 
at UCSF led by Bluestone and colleagues developed a protocol to 
expand Tregs from T1D patients (132) and then proved safety 
in phase I clinical trials (133). Several groups have established 
that Tregs can be isolated, expanded ex vivo in the presence of 
CD3/CD28 stimulation and IL-2, and adoptively transferred into 
patients (132–134). Transferred Tregs were detectable in blood 
up to 12 months later, remained phenotypically stable, and had 
the potential to influence diabetes pathogenesis. Both of these 
Treg adoptive transfer clinical trials utilized in  vitro expanded 
Tregs, not Tregs specific for particular pancreatic target(s). It is 
not known if targeting particular autoantigens would provide 
additional protection compared to the current Treg transfer 
approach. Taken together, these recent clinical trials suggest that 
adoptive Treg therapy may help preserve residual beta cell mass 
in new-onset T1D patients. Whether this approach could prevent 
T1D onset in at-risk individuals is an open question and warrants 
future investigation.

DiABeTiC COMPliCATiONS iNDiCATiNG 
iSleT Cell RePlACeMeNT

Type 1 diabetes often results in large swings in blood glucose 
levels outside the normal physiologic range of 70–110  mg/dl. 
Studies of 50-year Joslin Medalists indicate that individuals with 
T1D can live for many decades with minimal or no diabetic 
complications (2, 3). In addition, recent advances in fast-acting 
synthetic insulin analogs, continuous glucose level monitoring 
technology, and early attempts at developing pump-like systems 
to deliver glucagon suggest that individuals with T1D would con-
tinue to see improvements in diabetes management and therefore 
in quality of life. However, even with adequate clinical control of 
blood sugar levels, long-term diabetic complications can develop 
in individuals with T1D. In addition, despite the technical and 
clinical advances noted above, some individuals with T1D none-
theless have labile blood glucose level control and are susceptible 
to severe and life-threatening disease-related complications. 
These chronic complications can affect essentially every organ 
system and are particularly pronounced in the microvasculature. 
Diabetes, T1D and T2D combined, is the leading cause of adult 
blindness [diabetic retinopathy (135)] and end-stage renal failure 
[diabetic nephropathy (136)], as well as a leading cause of lower-
leg amputations [diabetic peripheral neuropathy (137)] and heart 
disease [diabetic cardiomyopathy (138, 139)]. Perhaps the most 
debilitating diabetic complication is hypoglycemic unawareness. 
This occurs when an individual with T1D is not aware their blood 
glucose levels are dangerously low (<50 mg/dl). This condition 
can result in seizures, diabetic coma, and, in the most severe cases, 
death. The development of hypoglycemia unawareness is thought 
to result from frequent, severe swings in blood glucose levels in 
some long-term T1D patients. Why hypoglycemia unawareness 
develops in some individuals but not others with long-term T1D 
is an open question. One possibility is that, over time, some 
T1D patients develop autoreactivity against glucagon-producing 
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alpha cells. Glucagon-reactive CD8 T cells have been identified 
in NOD mice (140); therefore we speculate that some individuals 
with T1D may develop autoimmunity against alpha cells over 
time. Glucagon acts in opposition to insulin, promoting glyco-
gen breakdown in the liver and therefore promoting increased 
blood glucose levels. If glucagon-derived peptides are associated 
with inflammation and cell death within the pancreas, existing 
autoreactive T cells could become primed in pancreas-draining 
lymph nodes, proliferate, and mediate destruction of glucagon-
producing cells. In fact, there is emerging evidence that a small 
proportion of T1D patients develop antiglucagon antibodies (140). 
Another possibility is that destruction of autonomic innervation 
within pancreatic islets (141) leads to impaired communication 
with the hypothalamus, so that glucagon is not produced when 
signals are present based on blood glucose levels. If autonomic 
innervation of pancreatic islets is perturbed in individuals with 
T1D, the consequence could be a breakdown in communication 
with the hypothalamus. Interestingly, some T1D but not T2D 
subjects develop autoantibodies against the neuroendocrine 
protein tetraspanin7 from sympthatheic nerves within islets 
(142). In some patients with severe hypoglycemia, both of these 
scenarios, and others, could lead to impaired glucagon responses 
to hypoglycemia. Whole pancreas and isolated pancreatic 
islet transplantation are options to restore blood glucose level 
homeostasis for individuals with hypoglycemia unawareness. 
There are two potential sources of pancreatic beta cells for islet 
replacement, cadaveric (deceased) donors and iPS-derived beta 
cells (143), both of which are discussed below.

iSleT GRAFT AllOiMMUNiTY

islet Replacement Strategies
The current clinical strategy to replace the lost beta cell function 
is through whole pancreas or isolated pancreatic islet transplanta-
tion from genetically unrelated cadaveric donors. Because donors 
are limited, currently only T1D patients with hypoglycemia 
unawareness are considered for transplantation. This has created 
great interest in cell culture methods to produce large quantities 
of insulin-producing cells for transplantation. After more than 
10 years of development, the Melton laboratory became the first 
group to develop a reproducible protocol for iPS conversion to 
insulin-producing beta cells (143), quickly followed by several 
other groups (144–146). However, these methods are not yet 
suitable for large-scale production of patient-specific iPS-beta 
cells for transplantation studies since individuals require several 
hundred thousand individual pancreatic islets. Furthermore, 
a critical limiting factor of a “universal donor” beta cell line is 
conventional transplant recognition, described below. In addi-
tion, unlike whole pancreas or isolated islet transplantation, 
iPS-beta cells do not replace the lost alpha cell function. Until 
these challenges are addressed, transplantation from a cadaveric 
donor will likely remain the preferred approach in combination 
with immune suppression (147, 148). A recent phase III clinical 
trial demonstrated improved glycemic control in islet transplant 
recipients following multisite standardized processing protocols 
(149, 150). As less beta cell-toxic immune suppression treatments 

are developed, we can expect transplant function and long-term 
survival to continue to improve. In the absence of these treat-
ments, transplanted beta cells in autoimmune recipient patients 
would be subject to at least two categories of T  cell responses: 
(a) autoimmune (islet-specific) responses by T cells (151, 152), 
and (b) conventional anti-transplant-reactive T  cell responses. 
However, current immune suppression treatments do not pro-
mote immune tolerance as described above, must be continued 
indefinitely after transplantation, and can render the transplant 
recipient vulnerable to cancer and infectious agents. Therefore, 
transplant-specific tolerance-promoting treatments are a highly 
sought after goal in the islet transplantation field.

An alternative to replacing the lost beta cell mass would be to 
stimulate beta cell regeneration. Beta cell regeneration is based on 
the premise that if autoreactive T cells are removed or inhibited, 
existing beta cells could proliferate, alpha cells could convert into 
beta cells, or islet-resident stem cell populations could proliferate 
and differentiate into beta cells. There is little experimental evi-
dence to support these suppositions to date. Beta cells are excep-
tionally metabolically active, continuously producing insulin 
secretory granules. The less beta cell mass is available to produce 
insulin, the higher the metabolic stress is on each individual islet. 
Therefore, the ability to regenerate beta cells from existing beta 
cells could be a significant hurdle. Another theoretical option to 
replace lost beta cell mass is to promote trans-differentiation of 
existing alpha cells into beta cells. Recent evidence from Kim’s 
laboratory at Stanford suggests that alpha cell conversion to beta 
cells may be feasible (153). However, even if beta cell replacement, 
alpha cell trans-differentiation, or beta cell regeneration succeed, 
these strategies do not address the deficiency in alpha cell gluca-
gon production, which precipitates hypoglycemia unawareness, 
and as such do not represent a complete treatment for this life-
threatening diabetic complication on its own. Therefore, whole 
islet transplantation will remain the clinical standard-of-care over 
beta cell replacement until these concerns can be fully addressed.

Concurrent Autoimmune and Alloimmune 
Pathogenesis
There are two separate immune recognition pathways leading 
to the destruction of transplanted beta cells in the autoimmune 
recipient. As mentioned above, the first is autoimmunity due 
to antigen-specific memory T cells. Regardless of the source of 
beta cells transplanted into an individual with T1D, autoim-
mune T cells would target cells producing insulin and must be 
inhibited or removed to facilitate long-term transplant function 
(154). In contrast, autoreactive T cell targeting of a kidney trans-
plant in a diabetic individual would not likely occur, because 
there would be no pre-existing kidney-specific memory T cells 
(154). Alloimmunity is the second major concern leading to the 
destruction of transplanted beta cells. Transplant-reactive or 
alloreactive T  cell responses can target the genetic differences 
between the transplant donor and recipient (155). This category 
of immune response occurs against any organ or tissue transplant, 
in any individual, regardless of autoimmune disease status (156). 
Importantly, these transplant-specific responses focus primarily 
on the HLA molecule of the human transplant or MHC in mouse. 
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TABle 2 | Islet allograft recognition pathways and likely players in rejection in autoimmune diabetic recipients.

Direct or 
indirect

T cells Target Precursor frequency  
in recipients

Fold expansion 
posttransplant

Sufficient for 
rejection?

Required for 
rejection?

Reference

Direct CD4 
T cells

Donor MHC II + transplant-derived peptide 0.1–10% versus individual  
donor MHC

10–100 Yes No (162–164)

Direct CD8 
T cells

Donor MHC I + transplant-derived peptide 0.1–10% versus individual  
donor MHC

10–100 Yes No (162–164)

Indirect CD4 
T cells

Donor-derived peptide loaded in recipient 
MHC II

Less than 1 in 1,000,000 >100 Yes Appears likely (162–164)

Indirect CD8 
T cells

Donor-derived peptide loaded in recipient 
MHC I

Less than 1 in 1,000,000 >100 Yes Appears not (162–164)
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HLA molecules are the most polymorphic loci in the human 
genome, and each individual expresses multiple alleles of both 
class I and class II HLA (154–156). All the genetic differences 
in both alleles are potential antigens and could be targeted by 
T cells in transplant recipients. The differences in HLA class I are 
targeted by recipient CD8 T cells, and the differences in HLA class 
II are targeted by recipient CD4 T cells (156). Ironically, genetic 
diversity in HLA promotes diverse T cell responses to the same 
pathogen in different individuals, but unfortunately these genetic 
differences also promote strong T cell responses against any trans-
planted organ or tissue. In this section, we describe transplant 
recognition and alloimmunity separately from autoimmunity.

Transplant Recognition: Direct and 
indirect Pathways
Donor-derived MHC (or HLA) molecules are the most prevalent 
transplant-derived antigen seen by the immune system of a 
transplant recipient. Transplant recipient T cells can interact with 
donor MHC molecules in two ways termed direct and indirect 
recognition (157). Direct allorecognition results from T cell inter-
action with donor MHC (plus some peptide loaded in MHC), 
whereas indirect allorecognition results from T cell interactions 
with recipient MHC (plus peptide derived from donor MHC, 
or any other transplant-derived protein). It is estimated that 
1–10% of CD8 T cells or CD4 T cells will spontaneously respond 
to allogeneic MHC I or MHC II, respectively [reviewed in Ref. 
(158)]. In contrast, we hypothesize that the indirect precursor 
frequency is even smaller. In support of this hypothesis, recent 
evidence indicates that only 10% of allograft-reactive CD4 T cells 
in a mouse model of cardiac allograft rejection are indirect, while 
the remaining 90% are direct alloreactive CD4 T  cells (159). 
Due to the higher precursor frequency for direct allorecognition 
than indirect allorecognition [reviewed in Ref. (157)], immune 
suppression protocols appear to hold direct alloreactivity in 
check. However, indirect recognition, which leads to antibody 
formation, CD4 T  cell reactivity, and complement activation, 
is not completely inhibited using current immune suppression 
treatment regiments, as shown by complement deposition and 
antibody formation in chronic rejection models (160).

Importantly, both CD4 and CD8 T cells in the recipient can 
interact with donor MHC through either the direct or indirect 
pathway. The frequency and physiologic relevance of direct and 
indirect allorecognition varies with the nature of the transplanted 

organ or tissue. For islet allograft recognition, donor MHC class 
I and direct interaction with recipient CD8 T  cells is a high-
frequency event, because all cells in the graft express MHC class 
I. Since beta cells do not express MHC class II at baseline (161), 
direct recognition via CD4 T cells may not be as high frequency 
of an event. However, recent evidence suggests that beta cells may 
express MHC class II following T cell infiltration (161), which 
suggests that direct alloreactive CD4 T cells may be critical for 
anti-islet allograft responses. In contrast, indirect allorecognition 
by CD8 T  cells must be therapeutically addressed to prevent 
islet allograft rejection (see below discussion of CD154 blockade 
therapy). Table 2 summarizes the roles of direct and indirect CD4 
and CD8 T cells in islet  allograft rejection in the NOD mouse 
model.

islet Allograft Tolerance in Non-
Autoimmune Diabetic Mice
Unfortunately, islet transplants are subject to both autoimmune 
disease recurrence and allograft recognition in T1D mice and 
humans. To remove autoimmunity as a confounding variable 
from islet transplant tolerance studies, several labs have made use 
of the free radical generator streptozotocin (STZ) (165–167). STZ 
induces diabetes due to the relative lack of free radical scaveng-
ing enzymes expressed in pancreatic beta cells relative to other 
cell types (168). Following induction of diabetes with STZ, mice 
can be transplanted with allogeneic (MHC-disparate) pancreatic 
islets and treated with candidate transplant tolerance-promoting 
therapies. In experiments using non-autoimmune diabetic mice, 
untreated recipients serve as control groups to determine time to 
normal allograft rejection.

Multiple different general immune suppressive therapies 
have been tested in preclinical mouse models and are used 
clinically (168). These therapies can include anti-CD3, antithy-
mocyte globulin, calcineurin inhibitors, mTOR inhibitors, 
tacrolimus, or mycophenolate mofetil (169). Interestingly, one 
of the tolerance-promoting protocols, which reversed diabetes, 
ECDI-coupled splenocytes, can also promote islet  allograft 
tolerance in non-autoimmune mice (170). Of particular interest, 
monoclonal antibodies to block T cell co-stimulation (or signal 
2) have been tested by several groups (165, 171). For example, 
short-term monoclonal antibody therapy directed against the 
T  cell-expressed co-stimulation molecule CD154 (CD40L) has 
been shown by several groups (165, 171) to induce long-term 
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(>100 days) islet allograft tolerance across full MHC mismatch 
donor/recipient pairs (e.g., BALB/c islets transplanted into STZ-
treated B6 male mice). This tolerance resides in the CD4 T cell 
compartment and can be transferred from treated and tolerant 
mice to naive mice (165). It is controversial whether this therapy 
induces allo-specific regulatory T  cells de novo [suggested by 
Ferrer et al. (172)] or inhibits reactivity of naive alloreactive CD8 
T  cells through killing mediated by NK  cells (173), or if these 
effects are simultaneous. In addition, the combination of anti-
CD154 antibody with other therapies has been highly efficacious, 
in particular LFA-1 blockade. LFA-1 (CD11a) is an adhesion mol-
ecule expressed on most leukocytes, in particular on neutrophils, 
macrophages, and activated T cells. LFA-1 inhibition appears to 
delay and/or prevent islet allograft rejection as a single therapy. 
Similar to anti-CD154-induced transplant tolerance, uniform 
(100% of mice), long-term (>100 days) tolerance induced by the 
combination therapy of LFA-1 blockade and CD154 blockade 
resided in the CD4 T cell compartment and was serially trans-
ferable to multiple islet  allograft recipients (165). In summary, 
STZ-induced diabetes represents a useful, non-autoimmune 
model system to test candidate islet allograft tolerance-promoting 
therapies. However, the end goal is to induce islet tolerance in 
autoimmune recipients, such as the NOD mouse.

In islet transplantation studies, “indirect” (recipient MHC-
restricted) alloreactive CD4 T  cells are key perpetrators of 
islet  allograft rejection (174). As such, we hypothesize that co-
transfer of islet antigen-specific Tregs at the time of islet trans-
plantation would inhibit alloreactive T  cell responses. Indeed, 
immune tolerance to antigen-presenting cell-depleted islet allo-
grafts in non-autoimmune mice requires CD4 T cells in trans-
plant recipient mice (175). An alternative approach is to promote 
expression of T cell inhibitory receptor ligands on beta cells prior 
to transplantation (Figure 1). One example of this approach is 
beta cell expression of Fas ligand, which when combined with the 
immune suppressive drug rapamycin generated Tregs in recipient 
mice (176). Another example of this approach is a recent report 
which demonstrated that enforced beta cell-intrinsic PD-L1 and 
CTLA4 expression significantly delayed islet  allograft rejection 
in NOD mice (177). In conclusion, whether autoimmunity or 
alloimmunity drives islet transplant rejection, generation, or 
adoptive transfer of Tregs or pre-arming transplanted beta cells 
with co-inhibitory molecules represent two distinct strategies to 
protect beta cells.

Potential Role for Regulatory CD4 T Cells 
in the Autoimmune Recipient of an islet 
Allograft
Importantly, regulatory CD4 Foxp3+ T cells engage peptides through 
the indirect antigen recognition pathway. Therefore, therapies that 
promote the development of transplant-specific Tregs are highly 
desirable. One long-term goal of the islet transplantation and auto-
immunity field is to either deplete “indirect” autoreactive CD4 T cells 
or re-educate these CD4 T cells to become Foxp3+ regulatory CD4 
T cells, while also generating additional “indirect” Tregs specific for 
transplant-derived antigens. Based on the above considerations for 
beta cell MHC II expression in the inflamed transplant recipient, we 

hypothesize that regulatory CD4 T cells specific for donor MHC II 
would prolong islet allograft survival. In addition, we hypothesize 
that conventional self-reactive and “indirect” CD4 T  cells, which 
recognize autoantigens through the transplant recipient’s MHC 
class II molecule, would prolong graft survival. In combination, 
we speculate that adoptive transfer of both autoantigen-specific 
“indirect” Tregs as well as transplant MHC II-specific “direct” Tregs 
would synergize to significantly prolong islet  allograft survival in 
autoimmune recipients.

Failure of islet Transplant Tolerance  
in the NOD Mouse
Laboratories at the Barbara Davis Center (31), Vanderbilt (178), 
Harvard (179), University of Massachusetts (180), University of 
North Carolina (181), the University of Miami (182), and the 
St. Vincent’s Institute in Melbourne (78) have utilized the NOD 
mouse as a model system to study both autoimmune disease 
recurrence (rejection of NOD-background islets) or islet allograft 
rejection (rejection of islet from genetically unrelated donor 
strains including B6, C3H). Due to its autoimmune disease status, 
the diabetic NOD female islet transplant recipient is a difficult, but 
clinically relevant model to test islet transplant tolerance-promot-
ing therapies. Several studies have demonstrated the requirement 
for both CD4 T cells and CD8 T cells in diabetes recurrence in 
NOD mice (183, 184). Less data are available in the islet allograft 
scenario in NOD mice. Due to the sheer number of pancreatic 
islets required to reverse hyperglycemia and rapid T cell-mediated 
transplant rejection, diabetic female NOD mice are not frequently 
used to test transplant tolerance-promoting therapies.

The NOD mouse is an extremely stringent model to test 
transplant tolerance-promoting therapies. There are vanishingly 
few examples of long-term transplant tolerance in NOD mice. 
In particular, the combination of CD154 and LFA-1 in B6 mice 
resulted in long-term tolerance (180, 185). It is controversial 
whether this stringency results from resistance to therapeutic 
intervention in the autoimmune primed/memory T  cell com-
partment, the alloreactive T cell response in NOD mice, or both. 
Mouse models and human clinical reports have suggested that 
autoimmune T cells are less susceptible to conventional immu-
nosuppression (151, 185). In addition and in parallel, data from 
NOD mice support the existence of an accelerated and therapy-
resistant anti-allograft T cell response (162). Additional studies 
in the Bio Breeder rat further suggested that autoimmune T cells 
are strongly impervious to tolerance-promoting therapy in this 
animal model of T1D, whereas the anti-allograft response can 
be made tolerant (186–189). These differences between models, 
and a lack of peptide-MHC II reagents to separately track both 
autoreactive and alloreactive CD4 T cells in the same transplant 
recipient mouse, lead to a lack of consensus in the field and an 
incomplete understanding of auto- and allo-T cell tolerance, in 
particular when both immune responses occur simultaneously.

While global immune suppressive treatments promote sur-
vival of transplanted beta cells [with the exception of calcineurin 
inhibitors, which are toxic to beta cells (190)], it is challenging 
to interpret effects of immune-modulatory therapies on specific 
T  cell populations. Clinically, in the autoimmune recipient of 
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pancreatic islets, there are at least two concurrent immune 
responses. As such, a major limiting factor in this analysis is 
the quality and availability of reagents to reliably and separately 
track autoreactive and alloreactive T  cell responses in human 
patients. Lack of validated reagents to monitor these responses 
longitudinally in clinical samples presents a major challenge to 
interpret therapeutic effects on recurrent autoimmunity versus 
anti-allograft responses. Lack of reagents to separately assess these 
two categories of T cell responses in the NOD mouse prevents 
the development of reagents to preferentially influence either 
category of T cell response in the preclinical or clinical setting.

CONClUDiNG ReMARKS

To prevent diabetes onset in the NOD mouse or at-risk human 
patients, several goals must be achieved. The genetics of T1D 
risks are well established, but the field lacks a comprehensive 
panel of peptide-HLA II tetramers to specifically track disease-
associated CD4 T  cell populations. Several groups (191–193), 
including our own (194), are working to fill this gap. Reagents 
to track key pathogenic CD4 T cells, perhaps including hybrid 
peptide-specific or DRiP-specific CD4 and CD8 T cells, are being 
developed and validated for clinical use. In addition, predictive 
biomarkers to measure not only the presence of these autoreac-
tive T cells but also their activation status should be a focus of 
attention. Real-time monitoring of the activation status of rate-
limiting autoreactive T cells is required to measure the efficacy 
of any tolerance-promoting therapy. Finally, to establish beta 
cell protection, measurements of beta cell function are required, 
in combination with assessment of autoreactive T  cell biology. 
Non-invasive imaging methods represent one option (195, 196), 
but require specialized imaging technology and may not have suf-
ficient sensitivity. More recently, methods such as high-sensitivity 
C-peptide assays (46, 197) and quantification of demethylated 
insulin DNA in the circulation (198, 199) could accomplish this 
beta cell health surveillance goal.

Despite our understanding of diabetes pathogenesis and 
ever-improving clinical care for individuals with T1D, some 
individuals develop debilitating diabetic complications that 
necessitate whole pancreas or isolated islet transplantation. In 
the autoimmune recipient, two categories of T  cell responses 
must be prevented or inhibited to promote long-term transplant 
function. Both memory autoimmune T  cell responses and 

nascent T  cell responses against polymorphic MHC molecules 
occur after pancreas, islets, or iPS-beta cell replacement in T1D 
individuals. Therefore, a thorough understanding of not only 
autoimmune pathogenesis but also transplant recognition is 
required to develop methods to protect transplanted beta cells 
in autoimmune individuals. Intriguingly, Foxp3+CD4 regulatory 
T cells may represent a path toward developing antigen-specific 
tolerance in both autoimmunity and transplant recognition. As 
such, immunotherapies that promote the development of regula-
tory CD4 T cells in both autoimmune models and transplantation 
models are highly desirable.

Multiple challenges remain to achieve the elusive goal of 
preventing islet transplant rejection in autoimmune recipients. 
Chief among these is to more specifically define the roles of CD4 
and CD8 T  cells and to determine whether autoimmunity or 
alloimmunity represents the higher barrier to beta cell transplant 
survival. Additional challenges to establishing islet  allograft 
tolerance in the autoimmune recipient include (a) determining 
whether removing MHC from islet allografts would delay trans-
plant rejection, (b) investigating if there is overlap of autoimmun-
ity and alloreactivity on the individual T cell level, as has been 
shown for viral memory and transplant rejection (200, 201), (c) 
understanding if an MHC-matched “universal donor” beta cell 
line would avoid alloimmune T  cell responses, (d) determin-
ing if beta cells can be induced to express proteins that would 
protect a transplant, and (e) developing reagents to track “direct” 
alloreactivity (against donor MHC). We and others are working 
to determine answers to these and other critical questions. With 
coordinated work by many dedicated individuals, we anticipate 
further advancements in our understanding of autoimmune 
pathogenesis, beta cell biology, and transplant recognition.
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Sepsis develops when an infection surpasses local tissue containment. A series of 
dysregulated physiological responses are generated, leading to organ dysfunction and 
a 10% mortality risk. When patients with sepsis demonstrate elevated serum lactates 
and require vasopressor therapy to maintain adequate blood pressure in the absence 
of hypovolemia, they are in septic shock with an in-hospital mortality rate >40%. 
With improvements in intensive care treatment strategies, overall sepsis mortality has 
diminished to ~20% at 30 days; however, mortality continues to steadily climb after 
recovery from the acute event. Traditionally, it was thought that the complex interplay 
between inflammatory and anti-inflammatory responses led to sepsis-induced organ 
dysfunction and mortality. However, a closer examination of those who die long after 
sepsis subsides reveals that many initial survivors succumb to recurrent, nosocomial, 
and secondary infections. The comorbidly challenged, physiologically frail diabetic 
individuals suffer the highest infection rates. Recent reports suggest that even after 
clinical “recovery” from sepsis, persistent alterations in innate and adaptive immune 
responses exists resulting in chronic inflammation, immune suppression, and bacterial 
persistence. As sepsis-associated immune defects are associated with increased 
mortality long-term, a potential exists for immune modulatory therapy to improve 
patient outcomes. We propose that diabetes causes a functional immune deficiency 
that directly reduces immune cell function. As a result, patients display diminished bac-
tericidal clearance, increased infectious complications, and protracted sepsis mortality. 
Considering the substantial expansion of the elderly and obese population, global 
adoption of a Western diet and lifestyle, and multidrug resistant bacterial emergence 
and persistence, diabetic mortality from sepsis is predicted to rise dramatically over the 
next two decades. A better understanding of the underlying diabetic-induced immune 
cell defects that persist following sepsis are crucial to identify potential therapeutic tar-
gets to bolster innate and adaptive immune function, prevent infectious complications, 
and provide more durable diabetic survival.

Keywords: diabetes, sepsis, septic shock, infections, complications, resource utilization

iNTRODUCTiON

The Third International Consensus Definitions for Sepsis and Septic Shock Report defines sepsis 
as life-threatening organ dysfunction caused by a dysregulated host response to an infection. This 
is associated with a >10% in-hospital mortality. Septic shock is defined as sepsis associated with 
profound circulatory, cellular, and metabolic abnormalities. Patients with septic shock have serum 
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lactate levels >2 mmol/L (>18 mg/dL) and require vasopressors 
to maintain a mean arterial pressure of 65 mmHg or greater in 
the absence of hypovolemia. Compared to sepsis alone, it has a 
much higher in-hospital mortality rate of >40% (1).

Long-term sepsis mortality is abysmal at 60–80%. Despite 
substantial advances in immune pathophysiology, this number 
has not considerably improved (2). In intensive care units, 
sepsis remains the leading cause of death (3). Considering the 
rapidly expanding elderly population with extensive comorbid 
burdens, physiological frailty, and immune senescence (4), over 
the next couple of decades, sepsis mortality is predicted to rise 
at a frightening rate (5). Just as terrifying are the mounting costs 
associated with treating septic patients. The United States spends 
~$17 billion on sepsis-associated medical care (6).

Despite over 100 therapeutic clinical trials in sepsis, there 
are no current FDA-approved therapies that improve sepsis 
survival (7). In contrast, advancements in clinical treatment 
protocols (8) have resulted in increased in-hospital survival 
from life-threatening sepsis and organ dysfunction. However, 
a substantial portion of these in-hospital survivors will then die 
in the months to years following the acute event. A trimodal 
pattern of death during and after sepsis has been described. 
The first peak occurs at several days and is likely secondary to 
inadequate resuscitation. The second peak occurs at several 
weeks and is secondary to persistent organ injury and/or failure 
(9). The late (months to years) deaths comprise the largest 
mortality group and are speculated to be the consequence of 
improvements in intensive care medicine that keep elderly and 
comorbidly challenged patients alive despite persistent immune, 
physiological, biochemical, and metabolic aberrations (10). In 
2008, over 800,000 Medicare patients survived admissions for 
severe sepsis. This population of survivors is composed of indi-
viduals with significant comorbidities that are at risk for hospital 
readmission (11). Several reports suggest that it is the synergistic 
effect of patients’ advanced age, comorbidities, and persistent 
organ injury that create this damaging state of ongoing immune 
dysfunction, immune suppression, catabolism, and inflamma-
tion (12–14), leading to long-term sepsis mortality. Patients with 
Type II diabetes (T2D) are physiologically frail and comprise 
the largest population of patients who experience post-sepsis 
complications and rising mortality.

Type II diabetes is a common and devastating disease 
frequently encountered by clinicians who care for critically ill 
patients. With increasing globalization of the western diet and 
lifestyle, the worldwide incidence and prevalence of T2D is 
approaching pandemic proportions. In the United States, the 
prevalence has almost doubled from 11.9 million in 2000 to 21.9 
million people in 2014, and the incidence has more than tripled 
from 1980 to 2014 (15). Globally, T2D is no longer a disease of 
high-income countries. In 2014, an estimated 422 million adults 
worldwide had T2D, compared to 108 million in 1980. The 
largest growth in prevalence can be found in low- and middle-
income countries (16). From 1980 until 2014, China, India, and 
United States had the largest T2D patient populations. However, 
recently, the global share of people with T2D has dramatically 
increased in India and China while United States share has 
decreased. As the growth trends in T2D prevalence continue, the 

number of adults with T2D will surpass 700 million worldwide 
in the near future (17).

As medical management strategies improve, patients with 
T2D live longer with their disease. In addition, the increasingly 
young age at diagnosis results in prolonged exposure to glucoli-
potoxicity, low-grade inflammation, and increased oxidative 
stress, creating a metabolic milieu conductive to cancer growth 
(18). This represents a major public heath challenge. Delayed 
diagnosis, inadequate follow-up, and suboptimal care of T2D 
patients predisposes them to develop acute and chronic com-
plications, leading to further burden on the patient, health-care 
system, and society as a whole (19). A 2012 global systematic 
analysis of disease and injury epidemiology identified T2D as a 
leading cause of years lived with disability (YLD), with a 67.2% 
increase in YLD from 1990 to 2010 (20). Furthermore, T2D has 
been shown to be a significant cause of mortality. Stokes and 
Preston performed a cohort study of National Health Interview 
Survey and National Health and Nutrition Examination Survey 
participants between 1997 and 2010 and estimated the propor-
tion of deaths attributable to T2D to be 11.5–11.8% (21). These 
numbers underestimate the burden of T2D, as an estimated one 
in four people with T2D are unaware that they have the disease 
(22). As the sedentary, calorie-rich western lifestyle continues 
to infiltrate the global landscape, T2D will continue to become a 
more common comorbidity encountered in the hospital setting.

Patients with T2D have an increased risk of developing infec-
tions and sepsis. Although a few rare infections such as Klebsiella 
liver abscesses, malignant otitis externa, and emphysematous 
cholecystitis are strongly associated with diabetic patients, most 
infections that occur in diabetics are also common in the general 
population (23). T2D also worsens infection prognosis, with 
T2D patients showing increased morbidity and mortality from 
sepsis (24). The combination of increased incidence, prevalence, 
and life expectancy of individuals with T2D, combined with an 
increased risk of infections is resulting in a rapidly expanding 
patient population consuming more medical resources.

Some investigators have refocused their efforts to work on 
understanding the underlying innate and adaptive immune 
system derangements that facilitate the development of infectious 
complications, impair recovery from sepsis, and increase long-
term mortality (25, 26). However, little effort has focused on the 
interplay between T2D, sepsis, immunity, and their impact on 
overall survival. In this review, we highlight the immune system’s 
interdigitating role in the pathogenesis of T2D and sepsis. We focus 
on the clinical implications and then explore potential therapeutic 
interventions available to improve long-term survival in patients 
with T2D. To combat this pandemic, we hypothesize that disease-
modifying therapeutics that have the ability to alter the course 
of disease have to be utilized, instead of focusing on palliative 
treatments that merely treat the sequelae of disease. Immune-
modulatory therapy has been shown to improve patient survival in 
cancer, autoimmune diseases, and HIV. However, from these suc-
cessful therapeutic advances, it has been shown that these therapies 
need to involve multiple agents, given in combination and intro-
duced at the correct time to dampen disease progression, enhance 
patient immune responses, and affect host–pathogen interactions. 
We believe single-agent interventions are the reason why the sepsis 

125

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FigURe 1 | Immune dysregulation in Type II diabetes and sepsis. Diabetes is a functional immune deficiency with chronic inflammation and immune suppression 
that affects an individuals’ overall immune system homeostasis. The development of patient management protocols in sepsis has decreased early organ failure and 
sepsis mortality, allowing highly comorbid elderly patients to survive the initial insult. Furthermore, sepsis studies have demonstrated an enduring inflammatory state 
driven by dysfunctional innate and suppressed adaptive immunity that culminates in persistent organ injury and patient death. Subsequently, the highly comorbid 
elderly patient population that initially survived now experiences significant morbidity and mortality several months to a year later. Multiple hypotheses for these 
observations exist, with persistent derangements in the innate and adaptive immune system cellular functions as the main contributors to this long-term mortality.

Frydrych et al. T2D Increases Mortality in Sepsis

Frontiers in Endocrinology | www.frontiersin.org October 2017 | Volume 8 | Article 271

literature is littered with failed therapeutic interventions. Combine 
the immune aberrations in T2D with the immune dysregulation 
found in sepsis and there are multiple targets for modulatory 
therapy. We propose that combinations of tailored interventions 
that focus on specific immune system perturbations that exist in 
sepsis and T2D will result in a high probability of success.

iMMUNe DYSFUNCTiON iN T2D AND 
SePSiS

Type II diabetes is a complex clinical syndrome, depicted by 
persistent hyperglycemia in the setting of decreased insulin secre-
tion and sensitivity, which results in a compilation of aberrant 
metabolic changes (24). Key metabolic changes include increased 
formation of advanced glycation end products (AGEs), activa-
tion of protein kinase C isoforms, and increased flux through 
the polyol and hexosamine pathways (27). These changes lead to 
increase production of superoxide (28), which activates inflam-
matory pathways, linking T2D to perturbations of the immune 
system (28). In addition, individuals with T2D have been shown 
to have abnormal host responses, including disorders of humoral 
immunity, defects in neutrophil function, and response of T cells 
(23, 29, 30). A recent study looking at obese individuals with and 
without T2D showed that individuals with T2D have specific 
immunological perturbations compared to metabolically healthy 
obese individuals, supporting the notion that T2D itself contrib-
utes to this identified immune dysfunction (31).

There is considerable clinical evidence that T2D worsens 
prognosis of pathological infections, with increased mortality 
from infections and sepsis in patients with T2D (24, 30, 32). This 
raises the pivotal question: why? The hematopoietic compart-
ment constantly replenishes terminally differentiated innate and 

adaptive cells that are necessary for wound healing, successful 
tissue regeneration, and immune surveillance against offending 
pathogens (9). Sepsis impacts the immune system globally by 
affecting the lifespan, production, and function of innate and 
adaptive immune cells, leading to homeostatic perturbations in 
immune cell repletion (33, 34). In patients with T2D, this homeo-
stasis may be altered secondary to over-nutrition and increased 
adiposity (35). These metabolic-induced immune perturbations 
clearly play a substantial role in the increased frequency, severity, 
and duration of infections (24, 28, 36).

In sepsis, an ongoing debate persists as to whether inflamma-
tory/anti-inflammatory processes or innate/adaptive immune 
dysfunction are more detrimental to survival (37). Genomic 
studies on tissue samples from septic and severely injured trauma 
patients have provided more information (13). These studies 
have identified an enduring and simultaneous inflammatory and 
anti-inflammatory state, which is driven by dysfunctional innate 
and suppressed adaptive immunity. Together, these culminate 
in persistent organ injury (38), inflammation, and patient death 
(39, 40). Figure 1 illustrates how the immune system responds to 
an acute septic episode. At baseline, patients with T2D have an 
aberrant immune system. After the initial acute septic episode, 
T2D patients continue to experience significant morbidity and 
mortality several months to a year later. We believe that it is the 
enduring derangements in the innate and adaptive immune sys-
tem cellular functions that contribute to the long-term morbidity 
and mortality.

MeTABOLiC RegULATiON OF iMMUNiTY

The immune system protects against foreign microbial invad-
ers, maintains optimal tissue homeostasis, and facilitates wound 
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healing. These processes are dynamic in nature, changing to 
meet the needs of the organism. Most immune responses are 
fueled by cellular metabolism that is regulated by extracellular 
signals, which direct the uptake, storage, and utilization of glu-
cose, amino acids, and fatty acids (9). When the organism senses 
an invading pathogen or tissue insult, the innate immune cells 
secrete cytokines, chemokines, and inflammatory mediators, 
which influence the expansion of adaptive immune cells (9). 
Since immune cells do not store nutrients, immune responses 
are only upregulated and sustained when there is an increased 
uptake of nutrients from the surrounding microenvironment. 
Nutrients provide substrates for ATP, RNA, DNA, and protein 
synthesis, along with the membranes necessary for the immune 
cell’s proliferation and maturation (41). Over a century ago, it was 
shown that a successful innate effector response is dependent on 
glucose metabolism (42), and that mitogen-driven proliferation 
of adaptive immune cells requires the utilization of extracellular 
glutamine (43, 44). T2D is a disease characterized by aberrant 
glucose metabolism. Homeostatic conditions are altered with an 
environment now characterized by chronic hyperglycemia and 
an increase in free fatty acids (FFAs) (45). An overall change 
in glucose metabolism therefore contributes to the immune 
dysfunction seen in T2D and sepsis.

In homeostatic conditions, immune cells rely on oxidative 
phosphorylation and β-oxidation as energy sources for ATP pro-
duction (46). However, after stimulation, leukocytes shift their 
metabolism toward aerobic glycolysis in a process known as the 
Warburg effect (47). Subsequently, glycolysis produces cellular 
energy, followed by lactic acid formation in the cytosol instead 
of oxidation of pyruvate in mitochondria (48). Upon exposure to 
lipopolysaccharides (LPS), macrophages demonstrate a shift from 
oxidative phosphorylation to glycolysis and succinate and induce 
IL-1β production (49, 50). How T2D affects these processes is 
unknown, but clearly altering the substrates available for these 
pathways likely contributes to ongoing immune dysfunction.  
A better understanding of how hyperglycemic environments 
affect the metabolic checkpoints that control immune cell func-
tion, transition, and maturation is needed. In fact, delineating 
these pathways may provide targets for modulating systemic 
inflammation, cellular immunity, and recovery from infectious 
insults suffered by patients with T2D.

While several investigations have addressed the impact of 
hyperglycemia on sepsis and trauma outcomes in the critically 
ill in the ICU (51, 52), there is a paucity of studies that address 
the complications of T2D during infectious states and sepsis. 
The studies that do examine the association between T2D and 
sepsis outcomes are limited in their ability to account for all 
confounders (53, 54). It has been shown that adequate control 
of hyperglycemia is associated with improved outcomes and 
survival in times of critical illness; conversely, too tight of gly-
cemic control has been associated with decreased survival (52). 
This U-shaped curve between glycemic control and mortality 
suggest that the ideal glycemic control for T2D patients is at 
moderately elevated glycemic levels. However, it is unclear that 
this effect is actually due to moderately elevated glucose levels, 
instead of confounding variables that lead to both lower gly-
cemic levels and poor outcome (55). Although early glycemic 

control has been associated with risk reduction in the develop-
ment of heart disease, hypertriglyceridemia, nephropathy, and 
cataracts, the biochemical mechanisms responsible for these 
effects are unknown (56, 57). Therefore, the more important 
question is: does long-term glycemic control augment immune 
function, prevent infectious complications, and promote 
durable survival? Although it makes logical sense that early 
and improves glycemic control would result in better immune 
function and reduced infections and sepsis episodes, there are 
few if any studies investigating this assumption. Moreover, 
there is a paucity of literature investigating the biochemical and 
physiological pathways central to immune function that benefit 
from glycemic control. Much more scientific investigation is 
necessary to determine the biological effect of glycemic control 
on immune function to improve long-term T2D survival from 
sepsis.

iNFLAMMATiON

Once the host loses local containment of an infection, the body 
is systemically exposed to microbes, microbial components, 
and products of damaged tissue. This induces an inflamma-
tory response and initiates sepsis-like responses through 
the recognition of pathogens and damaged tissue by way of 
pattern-recognition receptors (PRRs), which are ubiquitous on 
immune cell surfaces. PRRs are expressed primarily on immune 
and phagocytic cells and on many types of somatic tissues. 
Microbial infections are recognized by pathogen-associated 
molecular patterns (PAMPs), which are expressed by patho-
genic and harmless microbes. PAMPs are recognized by PRRs 
such as toll-like receptors (TLRs), C-type and mannan-binding 
lectin receptors, NOD-like receptors, and RIG-I-like receptors 
(9). Proteins and cellular products released by tissue damage are 
similarly recognized as damage-associated molecular patterns 
(DAMPs) (58). During sepsis, systemic activation of the innate 
immune system by PAMPs and DAMPs results in severe and 
persistent inflammatory responses characterized by an exces-
sive release of inflammatory cytokines such as IL-1β, TNF, and 
IL-17, collectively known as the “cytokine storm” (38). This 
unregulated release of inflammatory cytokines occurs over a 
relatively short period of time (hours or days). Furthermore, 
instead of stimulating what should be a normal physiological 
response to an infection, intense complement activation and 
innate immune cell stimulation enhance an excessive inflamma-
tory response resulting in tissue damage, compromised cellular 
responses, and molecular dysregulation. The resulting damage 
incites organ dysfunction and even multiorgan failure (38).

Type II diabetes is an inflammatory disease within itself. In 
T2D, FFAs bind to TLR2, a receptor for pathogen lipoproteins, 
and TLR4, a LPS receptor, to activate the innate immune system 
(59, 60). In addition, there is indirect activation through TLR 
signaling (61). This elicits the inflammatory pathways activated 
in sepsis. In addition, AGEs are DAMPs that activate pro-
inflammatory pathways.

Several studies also show that the inflammatory response is 
altered in patients with T2D. For example, mononuclear cells 
and monocytes have been found to secrete less IL-1 and IL-6 
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in response to stimulation by LPS, all of which appears to be 
secondary to an intrinsic defect in cells (29, 62). Although 
some patients recover from the inflammatory state during an 
acute septic episode, for unknown reasons elderly patients with 
significant comorbidities fail to resolve this initial condition. 
They instead progress to a state of persistent inflammation, 
immune cell dysfunction, and catabolic metabolism, all of 
which degrade the immune system’s ability to clear infections 
and heal injured tissues (63). In individuals with T2D, the 
chronically inflamed environment may play a role. Adipose 
tissue serves as a site of inflammation (28), with an increase in 
adiposity being associated with upregulation of genes encoding 
pro-inflammatory molecules resulting in the aggregation and 
accumulation of immune cells (64). Macrophages then create a 
pro-inflammatory loop by forming crown-like structures, which 
promote differentiation to pro-inflammatory M1 macrophages 
(28) and the associated pro-inflammatory cytokines. Similar to 
the environment seen in adipocytes, pro-inflammatory condi-
tions have also been seen in the pancreas. In the pancreas, there 
is β-cell apoptosis from glucose-induced IL-1β (65), and β-cell 
dysfunction by lipoapoptosis from FFAs acting as effector mol-
ecules (28). This stress-induced β-cell death results in the release 
of autoantigens and alarmins, which are endogenous molecules 
released by necrotic cells resulting in stimulation of the immune 
system through self-antigen presentation (28). This leads to an 
enhanced adaptive immune response (66).

Given the growing knowledge in the field of metabolic-induced 
immune dysfunction in T2D, possible interventions that curb 
inflammation may offer therapeutic benefits in T2D. In sepsis, 
recent investigations have suggested that therapeutic interven-
tions that curb hyperinflammation, shift catabolism toward 
anabolism, and bolster immune function may be beneficial in 
combination, once the initial episode of sepsis has subsided (25, 
67, 68). Although in other disease states, such as severe burns, 
advanced cancers, and autoimmune diseases, combination 
therapies that reduce inflammation, optimize metabolism, and 
decrease infections are common-place, in sepsis there currently 
is no clear plan for the routine use of these or similar strategies 
(9). Combinations of immune modulators that target affected 
pathways in T2D and sepsis have the potential to offer clinically 
significant improvements in overall survival.

MOLeCULAR ALTeRATiONS iN T2D  
AND SePSiS

The pathogenesis of T2D can be described as insulin resist-
ance associated with inactivity, obesity, and aging (69, 70). 
Initially, the pancreatic islet cells respond to this decrease in 
insulin-stimulated glucose uptake by increasing cell mass and 
secretory activity. When functional expansion of the islet β cells 
fails to compensate for the insulin resistance, insulin deficiency, 
and subsequent T2D develop. The hypothesized mechanisms 
behind insulin resistance and islet β-cells dysfunction focus 
on molecular changes that influence the pathogenesis of T2D. 
Specifically, most research centers on lipotoxicity, glucotoxic-
ity, oxidative stress, endoplasmic reticulum stress, amyloid 

deposition in the pancreas, and ectopic lipid deposition in the 
muscle, liver, and pancreas (70). The contribution of each of 
these mechanisms remains unclear, but, interestingly, all of 
these cellular stresses can be caused by over-nutrition (71) and 
are induced or exacerbated by an inflammatory response (72).

Obesity-induced inflammation is chronic and indolent, differ-
ing from the more acute type of inflammation commonly associ-
ated with infections (70). Current observations in sepsis show 
that sepsis-induced organ dysfunction occurs primarily though 
cellular and molecular dysregulation of signaling pathways, as 
opposed to gross tissue damage. This may result in multiple organ 
failure even in the context of preserved cell morphology and in 
the absence of significant cell injury. Therefore, immune dysfunc-
tion in sepsis is associated with molecular alterations that alter 
cellular phenotype and function. How the molecular changes 
in T2D and sepsis interact and influence each other resulting 
in worse clinical outcomes is unclear. Below we outline several 
important pathways of cellular dysfunction that impact immune 
function in diabetics and sepsis, illuminating gaps in knowledge, 
which could influence why patients with T2D have infections that 
are difficult to treat and are associated with significant morbidity 
and mortality (70).

Complement Activation
Obesity and elevated insulin levels have been associated with 
elevations in plasma C3 (73), C5, and C8 (74). These increased 
levels are likely a result of glycated immunoglobulins activat-
ing complement (75). Elevated glucose may then attack the 
thioester bond of C3, making it functionally deficient and lead-
ing to a decreased ability to opsonize bacteria (76). In sepsis 
models, a robust and consumptive depletion of complement 
occurs, resulting in a sharp drop in the hemolytic activity of 
plasma complement and its activation products (77). There is 
also evidence that sepsis in humans causes shedding of the C5a 
receptor into plasma, likely due to release of microparticles 
from neutrophils (78). In addition to complement activation 
in sepsis, there is well-established evidence that activation 
of the complement system leads to activation of the clotting 
and fibrinolytic systems (79), resulting in activation of several 
clotting factors, including thrombin, which have C3 and C5 
convertase activities. These ultimately generate C5a and the ter-
minal membrane attack complex (MAC) (80). The progress in 
understanding how complement activation increases systemic 
inflammation, organ failure, and mortality have resulted in the 
development and randomized phase 2 trial of a C5a inhibitor, 
CaCP29 (EudraCT Number: 2013-001037-40). This C5a inhibi-
tor has shown great promise despite a historically large field of 
other failed antibody inhibitors (81).

The fact that glycated immunoglobulins affect complement 
could obviously play a role in T2D patients having an increased 
risk of infections. However, it is still unclear why these patients 
have worse outcomes during septic episodes. One hypothesis is 
that obese T2D patients have baseline elevations of C5, which 
then becomes activated by enzymatic cleavage during a septic 
episode, leading to more MAC generation. To date, there have 
been no published studies looking at C5a inhibitors in T2D 
patients with sepsis.
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Mitochondrial Dysfunction and Redox 
imbalance
Mitochondria are essential for maintaining an adequate supply 
of ATP for cellular processes. Mitochondria have a significant 
role in glucose-stimulated insulin secretion from pancreatic 
β cells (82), with decreases in mitochondrial oxidative activ-
ity and ATP synthesis leading to insulin resistance (83, 84). 
Mitochondrial dysfunction, or direct damage of mitochondria, 
can trigger cell death pathways through release of mitochondrial 
cytochrome c (9, 85) as well as directly affect the generation of 
ATP. Not only will the drop in ATP negatively affect intracel-
lular processes and cellular function, such as insulin secretion, 
but severe lack of ATP can also trigger cellular anergy. In this 
state, the cell does not necessarily die, but instead acquires a 
hibernation-like state resulting in tissue dysfunction and organ 
failure (86).

In addition, hyperglycemia itself has been shown to induce 
ROS. Obese and insulin-resistant T2D individuals have a hyper-
glycemic intercellular environment with elevated concentrations 
of FFAs (87). Hyperglycemia itself has been shown to induce ROS 
(88, 89) through enzymatic cascades in mitochondria, including 
activation of NADPH oxidase, uncoupling of NO synthesis, and 
stimulation of xanthine oxidase (90). Glycated proteins have also 
been shown to promote ROS formation (91). ROS may then lead 
to the formation of NLRP3 inflammasomes and caspase 1, which 
activates the IL-1, pro-inflammatory system (92, 93).

In sepsis, there is generation of excessive amounts of ROS 
and RNS, which can directly inhibit respiration and damage 
the respiratory chain components in mitochondria (94–96), 
leading to mitochondrial dysfunction (9). In addition to this 
pathway, sepsis-impaired tissue perfusion (due to fluid loss, 
both intrinsic and extrinsic, as well as reduced vascular tone) 
leads to tissue hypoxia. Loss of tissue oxygenation significantly 
impairs oxidative phosphorylation and may trigger cell death 
pathways (97). In T2D, microvascular dysfunction can lead to 
local tissue hypoxia. The degree to which local tissue hypoxia 
propagates cell death and enables ongoing infections in T2D 
has not been defined.

In both T2D and sepsis, mitochondrial dysfunction and 
redox imbalance plays an integral role in progression of disease. 
In human models, cellular ATP levels are correlated with sepsis 
survival (96, 98). In T2D, changes in cellular ATP levels lead to 
insulin resistance. In a T2D patient with sepsis, it is unclear if 
these altered pathways are synergist, antagonistic, or some com-
bination of both. Either way, given the oxidative stress, it seems 
clear that antioxidant therapies may have a therapeutic role.

Calcium (Ca2+) Homeostasis
Calcium homeostasis in T2D is ubiquitously impaired across tis-
sues, including but not limited to adipocytes, platelets, pancreatic 
β cells, kidney, and liver (99). The most consistent finding is an 
increase in intracellular Ca2+ levels, leading to tissue-specific 
dysregulation (99), such as glucose resistance. Glucose homeo-
stasis is determined by the rate of glycolysis, gluconeogenesis, 
glycogen synthesis, and glycogenolysis, all which are calcium-
regulated pathways (100, 101). When intracellular Ca2+ increases, 
glycogen synthase is inhibited causing glucose resistance (102). 

Clinical trial NCT00436475 examined how Ca2+ supplementa-
tion impacted pancreatic β cell function, but did not show any 
significant differences (103, 104).

Hypocalcemia in sepsis, hypothesized to be secondary to 
defective intracellular calcium homeostasis, is common and cor-
relates with disease-specific scores during critical illness (105). 
Although systemic Ca2+ levels are reduced during sepsis, there 
are increased cytosolic Ca2+ levels, similar to those observed in 
T2D. These heightened intracellular Ca2+ levels lead to elevated 
inflammatory responses, cellular dysfunction, and can even be 
cytotoxic (9). In addition, accumulation of Ca2+ in organs dur-
ing sepsis is associated with significant organ dysfunction (106).

Poly(ADP-Ribose) Polymerase 1 (PARP1) 
and PARP2 Activation
Poly(ADP-ribose) polymerase 1 and PARP2 are enzymes that 
catalyze poly(ADP-ribosyl)ation of proteins, after being stimu-
lated by DNA strand breaks. PARP activity is therefore viewed 
as a sensor of DNA damage. PARP1 activation and initiation 
of the inflammatory response occur simultaneously (107). 
PARP1 activity upregulates pro-inflammatory gene expression 
(108), which is attributed to PARP1-induced alterations in 
chromatin structure and in transcriptional regulation (107, 
109). Because PARP1 also directly contributes to cell death in 
affected tissues (107) it is hypothesized that PARP1 has a role in 
sepsis-associated immune cell death. Further data to elucidate 
the role of PARP enzymes suggests they play a role in metabolic 
regulation by affecting mitochondrial function and oxidative 
metabolism (9). PARP activation impacts cellular functions 
by diverse mechanisms. In general, PARP inhibition enhances 
oxidative metabolism and mitochondrial content. This suggests 
that reducing PARP activity may prevent metabolic-related 
diseases such as T2D, which are characterized by impaired 
mitochondrial function (110).

Inhibitors of PARP1 have been assessed in clinical trials as 
potential cancer therapeutics, but trials in sepsis and T2D have 
not been initiated. It is not clear whether inhibition of PARP1 
in humans would be beneficial in the case of T2D or sepsis. In 
addition, the practicality of long-term inhibition without nega-
tive effects on genomic stability is unknown (110).

CeLLULAR DeFeCTS

Below we will summarize the alterations seen in the majority 
of innate and adaptive immune cells in T2D. Furthermore, we 
highlight how these cells types are affected by sepsis and try to 
illustrate how T2D and sepsis together may interact to exacerbate 
long-term mortality.

innate immunity
Endothelium
The endothelium, a single cell semi-permeable barrier, is com-
posed of endothelial cells (ECs), which line all of the vasculature 
and lymphatic systems in the body. They also play a role in many 
innate and adaptive immune responses (9). They are one of the 
first cells to identify invading microbes in the bloodstream 
via endogenous metabolite-related danger signals (111). ECs 
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express TLR-2 and TLR-4, which enable them to be activated 
by LPS. Activation subsequently leads to the production of 
pro-inflammatory cytokines and chemokines. These boost the 
immune response through recruitment of further immune 
cells (112). Therefore, ECs function as innate force multipliers, 
cell mobilizers, and immune regulators by modulating cellular 
function (113). In addition, ECs also express both MHC I and II 
molecules, which allow them to serve as antigen presenting cells 
for T cells by presenting endothelial antigens (112).

Endothelial cells are very sensitive to blood glucose 
alterations, with hyperglycemia-induced ROS leading to EC 
damage (114). In T2D, increased concentrations of glucose 
and FFAs also activate ECs, leading to a pro-inflammatory 
and pro-thrombotic endothelial phenotype (115). There is 
increase production of plasminogen activator inhibitor-1, 
thromboxane, tissue factor, and von Willebrand’s factor (vWF), 
which promotes platelet aggregation and adhesion to the sub-
endothelial layer and the formation of pathological thrombi 
(116). In sepsis, EC dysfunction is present and manifests as 
several pathological processes including capillary leak, altered 
vasomotor tone, and microvascular thrombosis (117). An 
increased release of pathological quantities of vWF once again 
promotes platelet aggregation and adhesion to the subendothe-
lial layer and the formation of pathological thrombi. These 
findings show that ECs are key regulators of the physiological 
and immune dysfunction seen in both T2D and sepsis. It would 
make sense that worsened EC dysfunction would be present 
in a septic T2D patient compared to a septic non-T2D patient 
given the pathways involved, but how these pathways intercon-
nect is not understood. However, it is clear that EC modulation 
could be beneficial to improve survival outcomes in septic T2D 
patient cohorts.

Neutrophils
Neutrophils are the most prevalent and integral cell type of 
innate function and are critical for containment and eradica-
tion of microbes (9). Neutrophil dysfunction has been linked to 
hospital-acquired infections (118). Neutrophils are the majority 
cell in bone marrow and are the very first responders to microbial 
infections sites (119). One important aspect is their capacity to 
produce pro- and anti-inflammatory cytokines and growth fac-
tors, which regulate the inflammatory response (120).

In T2D, neutrophils show defects in almost all functions, 
including migration to inflammatory sites, phagocytosis, release 
of lytic proteases, production of ROS, and apoptosis (121). In 
addition, a study evaluating the release of TNF, IL-1β, and IL-8 
from neutrophils in individuals with T2D showed increased 
amounts of TNF, IL-1β, and IL-8 in both the basal state and after 
stimulation by LPS. This excessive release may lead to tissue 
injury and cell death (121), increased susceptibility to invasive 
microorganisms (122), and impairment of normal wound heal-
ing (123).

In addition to microbial eradication by phagocytosis, oxida-
tive burst, and degranulation, it has been shown that neutrophils 
can eliminate a wide range of microbes by forming neutrophil 
extracellular traps (NETs) (124). If a system is primed to produce 
NETs, a process termed NETosis, tissue damage can occur (125). 

NETosis requires a microenvironment with increased levels of 
TNF (126), upregulated PAD4 (127), elevated intracellular cal-
cium levels, and fasting serum glucose (128), which are all seen 
in T2D.

In sepsis, there is delayed neutrophil apoptosis (129), lead-
ing to ongoing neutrophil dysfunction. This delayed apoptosis 
is further complicated by the release of immature band-like 
neutrophils from the bone marrow that demonstrates clear 
deficits in oxidative burst (130), cellular migration patterns  
(131, 132), complement activation ability, and microbial eradi-
cation (133). These defective neutrophils play a signification role 
in the persistent inflammation and immune dysfunction seen 
in sepsis. These findings combined with TLR signaling deficits, 
chemokine-induced chemotaxis reductions, altered apoptosis 
signaling pathways, and neutrophil immune senescence, result 
in a sundry of functional deficits that endure long after sepsis 
symptoms have subsided (9). In addition, septic patients have 
been shown to have elevated NET concentrations compared 
to healthy controls, and that these increased NET levels were 
associated with sepsis severity and organ dysfunction (84).

Neutrophils clearly have a role in the immune dysfunction 
seen in both T2D and sepsis. The increased tendency to form 
NETs contributes to the pathogenesis of both diseases; however, 
how or if this contributes to the worsen outcomes in patients with 
sepsis and T2D is unclear.

Monocytes and Macrophages
Macrophages have important roles in immune response and 
homeostasis. They play a significant role in phagocytosis, effec-
tively killing microbes, and in clearing apoptotic and necrotic 
cells. In addition, they secrete pro- and anti-inflammatory 
cytokines and express MHC-II molecules, allowing them 
to activate CD4+ T-cells and promote differentiation into  
T helper subsets (9, 134). Just as important, they play a role in the 
regulation of glucose and lipid metabolism, and in the inflam-
mation of adipose tissue (135). Macrophages have the ability 
to display remarkable phenotypic heterogeneity depending on 
the biological situation (136), leading to the establishment of 
M1 pro-inflammatory (CD11C+) and M2 anti-inflammatory 
macrophages. First discovered in adipose tissue (64, 137), it 
was shown that accumulation of macrophages leads to elevated 
inflammatory cytokines. In addition, the accumulation of these 
inflammatory cytokines is associated with insulin resistance. The 
mechanism behind the accumulation of these pro-inflammatory 
M1 macrophages is thought to occur through two main pro-
cesses. First, the adipocytes and resident macrophages secrete 
increased levels of chemokines, LTB3, MIP, MIF, and MCP-3 
to promote recruitment of blood monocytes (138). Once the 
monocytes arrive to the area, the inflammatory signals within 
the adipose tissue push the monocytes to differentiate into the 
pro-inflammatory M1 phenotype.

In sepsis, blood monocytes have endotoxin tolerance, with 
the reduced ability to release pro-inflammatory cytokines after 
an LPS challenge (9). This has been suggested to facilitate poor 
short- and long-term sepsis outcomes (139, 140). Although 
a sundry of complex mononuclear cell signaling pathways 
are altered and contribute to the establishment of endotoxin 
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tolerance, the major implication on monocytes, and to a lesser 
extent macrophages, is reduced antigen presentation related to 
diminished HLA-DR cell surface expression (141). In addition, 
the reduced monocyte capacity to secrete pro-inflammatory 
cytokines suggest that intracellular signaling has shifted 
toward the production of anti-inflammatory mediators, which 
are associated with hospital-acquired, ongoing, and secondary 
infections that ultimately increase sepsis-associated mortal-
ity. Although the mechanisms accounting for monocyte LPS 
tolerance are not clear, sepsis-induced monocyte epigenetic 
reprogramming may play a pivotal role in the establishment 
of LPS tolerance, myeloid anergy, and the overall immune 
suppressive monocyte phenotype (142). Analysis of human 
monocyte mRNA clearly shows increased levels of inhibi-
tory cytokine genes and reduced levels of pro-inflammatory 
chemokine genes (143).

These findings make us question what happens to monocytes 
and macrophages in T2D individuals with sepsis. At baseline, 
obese T2D individuals have a shift toward pro-inflammatory 
macrophages; however, the fate of these recruited macrophages 
and their contributions to infection eradication remain less 
studied. Unlike in a resolving acute infection where homeostasis 
is restored, adipose tissue inflammation fails to resolve naturally 
(144). When a T2D individual is exposed to an acute infection, 
it is unclear how monocyte and macrophage populations change 
and if these changes are affected by the baseline obesity and 
chronic inflammation.

Natural Killer (NK) Cells
Natural killer cells act as immune complex regulators. NK cells 
have the ability to destroy target cells spontaneously, without 
prior exposure, and without MHC restrictions (145). In sepsis, 
NK cell cytotoxic function is greatly decreased (146) and specific 
subsets of NK cells are significantly altered. These changes have 
been associated with increased lethality (147). Recent studies 
show that individuals with T2D have abnormal NK cell pheno-
types, with a significant decrease in NKp46, a NK receptor that 
recognizes influenza hemagglutinins, and tumor ligand NKG2D, 
an activating receptor on NK and CK8+ lymphocytes. They also 
have functional defects with reduced degranulation (148). In 
T2D patients, it is unknown what happens when these altered 
NK phenotypes are further affected during a septic episode.

Dendritic Cells (DCs)
Dendritic cells are characterized as conventional DCs (cDCs) 
or plasmacytoid DCs (pDCs). cDCs secrete IL-12 and are com-
parable to monocytes. pDCs secrete IFNα and are comparable 
to plasma cells. cDCs and pDCs have enhanced apoptosis in 
patients with sepsis, as well as in patients who developed noso-
comial infections (9). In T2D, elevated glucose induces a pro-
inflammatory cytokine profile in DCs leading to their maturation 
(149). It addition, hyperinsulinemia promotes DC activation and 
upregulation of scavenger receptors including SR-A and CD36, 
a receptor found on many cells including ECs, cardiomyocytes, 
platelets, monocytes, and macrophages, all which are involved in 
the macrovascular complications of T2D (150). AGEs, through 
binding with SR-A, can also induce maturation of DCs (151).

In sepsis, just like monocytes, DCs have decreased HLA-DR 
expression and secrete increased amounts of IL-10, which 
is anti-inflammatory. In addition, when DCs are cocultured 
with T effector cells, T  cell anergy in induced and regulatory 
T cell (Treg) proliferation enhanced, both which correlate with 
sepsis-induced immune dysfunction (152). A couple of recent 
investigations have also demonstrated that inhibition of sepsis-
induced DC apoptosis or amplification of DC function improves 
sepsis long-term survival (153, 154). These observations reveal 
that adaptations in DCs contribute to the pathogenesis of T2D 
and sepsis and that targeted manipulation of DCs may provide 
a therapeutic strategy.

Myeloid-Derived Suppressor Cells (MDSCs)  
and Myelopoiesis
Myeloid-derived suppressor cells are a heterogeneous popula-
tion of undeveloped myeloid cells. They expand during trauma 
and sepsis, impede immune responses, and signal through 
TLR-mediated pathways (155, 156). MDSCs inhibit CD8+ T cell 
function; however, their impact during sepsis is uncertain. 
Current literature implies a beneficial role, by focusing on their 
ability to restore innate immune cell function and surveillance 
through “emergency” granulopoiesis (132). Prior to MDSC 
increase, there is a brief period of host vulnerability to second-
ary microbial infections. This brief period is associated with 
overall mortality secondary to reduced numbers of bone mar-
row cells and a reduction in neutrophil and monocyte numbers 
and function (130). It has also been demonstrated that robust 
MDSC expansion, via augmented granulopoiesis, imparts last-
ing immunity to secondary and nosocomial infections during 
sepsis (157). Given these findings, there is mounting interest 
in exploring myelopoiesis, MDSC expansion, “emergency” 
granulopoiesis, and hematopoietic stem cell (HSC) production 
and function (130, 155, 157–159). Due to the importance of 
efficiently regenerating functioning neutrophils, monocytes, 
and DCs during sepsis, MDSCs expansion is a necessity to 
replenish the pool of functional innate immune cells. However, 
in T2D and obese patients, hematopoiesis and myelopoiesis are 
significantly altered (9). This observation raises the question as 
to the combined impact of myelopoietic derangement promot-
ing ongoing infection, depressed wound healing, and increased 
mortality following sepsis.

It has been demonstrated that HSCs and myeloid lineage 
expansion all occur through c-KIT-, type-I IFN- (IFN-I), and 
CXCL10-dependent signaling that involves IFN-I-secreting 
B cells (158, 159). Impaired HSC proliferation, development, 
and function in human bone marrow transplant and diabetic 
models (160) is clearly associated with increased mortality from 
chronic, secondary, nosocomial infections (161). Humans with 
altered granulopoiesis ability undoubtedly experience more 
frequent, severe, and anomalous infections, demonstrating 
the essential requirement for effective neutrophil production 
especially in T2D (23). Recently, patients with sepsis have 
been shown to have persistently increased MDSCs that are 
functionally immune suppressive. These are associated with 
adverse outcomes including increased nosocomial infections, 
prolonged ICU stays, and poor functional status at discharge 
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(162). On the other hand, overabundant MDSC proliferation 
may provoke a physiological state of persistent inflammation, 
such as in adult respiratory distress syndrome, leading to 
septic patients having poor outcomes (12). Recent work has 
demonstrated that acute inflammation causes the reduction of 
peripheral lymphocytes and common lymphoid progenitors 
in the bone marrow, which has been connected with a pro-
found reduction in the number of osteoblasts (9). The specific 
contributions of lymphopoiesis, myelopoiesis, and MDSCs to 
sepsis recovery in T2D populations versus persistent inflam-
mation and catabolism remain poorly understood. However, 
new insights into these processes and their roles in sepsis 
resolution and recovery will hopefully present new targets for 
immune-modulatory therapy to improve sepsis outcomes in 
T2D cohorts.

Adaptive immunity
Lymphoid Apoptosis and Immune Suppression
Apoptosis plays a crucial role is tissue homeostasis and the size 
and duration of immune responses. Once an infection is success-
fully cleared, activated lymphocytes undergo apoptosis to curtail 
the immune response. In the periphery, lymphocyte numbers 
are tightly regulated. Increased lymphocyte apoptosis leads to 
immunodeficiency, whereas decreased lymphocyte apoptosis 
leads to cancer and autoimmune diseases (163). Lymphocyte 
apoptosis is accepted as a critical step in the pathogenesis of sepsis 
and contributes to septic immunosuppression (164). It has been 
shown that T2D patients have an overall leukocytosis; however, 
analyses of these leukocytes show an overall lymphocytosis (163). 
Given these findings, blockade of lymphocyte apoptosis may have 
a therapeutic benefit in septic T2D patients.

Gamma Delta T Cells (γδ T Cells)
Gamma delta T  cells are a diminutive subset of T  cells that 
have a T cell receptor made up of one γ chain and one δ chain. 
This uniquely distinct group of T cells exists in the skin, lungs, 
adipose tissue, peripheral blood, and intestinal epithelium. Once 
activated, γδ T cells release interferon gamma (IFNγ), IL-17, and 
other inflammatory chemokines (9).

Obese individuals have a decreased amount of γδ T  cells, 
which is inversely proportionate to body mass index. In addi-
tion, the remaining γδ T cells have a reduced ability to secrete 
IFNγ (165). This is significant because despite obesity being a 
pro-inflammatory condition, they have a decreased ability to 
mount an inflammatory response. The number of circulating γδ 
T cells is also significantly diminished when individuals have an 
episode of sepsis. Reductions in the γδ T  cell population have 
been correlated with high rates of sepsis lethality (166). These 
findings suggest that γδ T  cells represent a possible target for 
immune enhancement.

T Helper Cell (Th Cell) Subpopulations
T helper cells assist other cell types with immunological processes. 
APCs present peptide antigens to CD4+ cells through MHC class 
II molecules. The CD4+ cells are quickly activated, proliferate, 
and efficiently secrete cytokines, which modulate adaptive and 
innate immune responses. Upon activation, CD4+ cells have the 

capability to differentiate into specialized T cell subsets, includ-
ing Th1, Th2, Th3, Th17, Th22, Th9, or T follicular helper. These 
subsets promote monocyte stimulation, B  cell differentiation, 
and cytotoxic T cell activation through cytokine generation and 
secretion (9, 167).

It is hypothesized that adipocytes upregulate class II MHC 
molecules and play a direct immunological role in antigen 
presentation (168). Several clinical studies have shown that there 
is a decline in naïve CD4+ T  cells, as well as an imbalance of 
CD4+ Th cell subsets toward Th17 and Th22 pro-inflammatory 
subsets in obese individuals with T2D. This leads to a cytokine-
induced hyperinflammatory response leading to further innate 
immune system activation and response (169). This shift to a 
pro-inflammatory environment is of significant importance in 
patients with T2D, as it has been shown that Th cells contribute 
to the complications associated with T2D, such as coronary artery 
disease (169).

In sepsis, CD4+ populations undergo apoptosis (13, 170). 
Compared to individuals who survive an episode of sepsis, 
in humans who die from sepsis there is more lymphocyte  
(specifically CD4+ cells) apoptosis. When evaluating the CD4+ 
cells that survive, there is reduced Th1- and Th2-associated 
cytokine production both during and long after sepsis subsides 
(171). In addition, Th17 cytokine production is reduced in sepsis 
and probably negatively impacts long-term mortality (172). 
These Th populations play a significant role in both T2D and 
sepsis. The mechanism by how they contribute is still unclear 
but it may be that Th cells contribute to the development of the 
macrovascular complications of T2D, which then contributes to 
long-term mortality in T2D patients.

Regulatory T Cells
Regulatory T cells are master regulators of the adaptive immune 
system. They help maintain self-tolerance and suppress responses 
of effector T  cells subsets (9). An appropriate balance of pro-
inflammatory (Th1 and Th17) and anti-inflammatory (Treg) cells 
are critical to maintain homeostasis. In T2D, there is a loss of 
homeostasis with a decreased amount of Tregs (173, 174). This 
imbalance is hypothesized to contribute to the clinical complica-
tions of T2D (175). Tregs have also been shown to induce M2 
macrophage differentiation. Therefore, it has been speculated that 
the decrease in Tregs in T2D contributes to the known polariza-
tion toward M1 macrophages.

During the period of inflammation, such as sepsis and critical 
illness, Tregs enhance the deleterious effector T  cell suppres-
sion, which subsequently prolongs recovery and may dispose to 
increased complications. There is an increased Treg ratio present 
early after episodes of sepsis, which is either due to an absolute 
increase in Treg number or effector Th cell loss from apoptosis. It 
could be that Tregs are not susceptible to sepsis-induced apopto-
sis (176). The fact that hospitalized patients who died from sepsis 
and T2D patients both have alterations in their Treg amounts 
make Treg function a possible therapeutic intervention.

B Cells
B cells are a very diverse immune cell population. Historically, 
B  cell function was thought to only encompass producing 
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antibodies and plasma cells for long-term antibody responses; 
however, recent data have focused on the role of B  cells in 
chronic inflammatory disease and sepsis (9). In T2D, TLR 
ligands activate B cell cytokine production, most significantly 
IL-8. This pro-inflammatory response then augments T2D 
patient’s B  cell inability to upregulate IL-10 production in 
response to TLR ligands (177). In ex vivo studies in both aging 
and sepsis patients, B cells demonstrated significant reductions 
in supernatant IgM production, which may explain why older 
individuals are more vulnerable to Gram-negative bacteria and 
fungal infection (178). It is unclear what happens to the B cells 
in elderly patients with T2D during sepsis, but clearly B  cell 
physiology contributes to the worsened morbidity and mortality 
experienced by this patient cohort.

iNFLAMMATiON ReSOLUTiON

As related to infection, inflammation is generally followed 
by inflammation resolution. In sepsis, compensatory anti-
inflammatory pathways are activated shortly after sepsis initia-
tion (37). The hallmark cytokine in these anti-inflammatory 
pathways is IL-10. IL-10 suppresses IL-6 and IFNγ, while 
stimulating the production of soluble TNF receptor and 
IL-1 receptor antagonist (IL-1RA). At the subcellular level, 
autophagy eliminates DAMPs and PAMPs by packaging 
pathogen components, damaged organelles, and cellular 
proteins into vesicles targeted for lysosomal degradation. This 
results in reduced inflammation and cellular activation (179). 
After a severe infection, resolution of inflammation involves an 
interdigitating, complex, and coordinated array of cellular pro-
cesses and molecular signals. The offending pathogen needs to 
be eliminated from the host, while damaged tissues, cells, and 
leukocytes need to be removed. These processes occur through 
activation of anti-inflammatory pathways with production of 
IL-10 and transforming growth factor β.

Sepsis differs from obesity and T2D since the latter has 
persistent inflammation that does not resolve. The secretion of 
pro-inflammatory adipokines [IL-6, TNF, and monocyte chem-
oattractant protein-1 (MCP-1)] is increased while the secretion of 
anti-inflammatory and insulin-sensitizing adiponectin is reduced 
(180). The formation of pro- and anti-inflammatory lipid media-
tors is also deregulated in obesity (181). In addition, deficiencies 
in IL-10 expression or IL-10 receptor signaling results in inflam-
matory diseases (182, 183). A recent study showed that T2D 
patients have decreased IL-10 function, through downstream 
signaling in the IL-10 pathway (184). Moreover, expression of 
IL-1RA is decreased in β cells from T2D patients, with an IL-1RA 
being a current FDA-approved therapeutic (185).

iMMUNe SUPPReSSiON

Type II diabetes patients have an increased susceptibility to 
pathological infections. These patients also have some of the 
worst long-term morbidity and mortality. This is secondary to the 
inability to eradicate pathological infections. In sepsis, in addition 
to immune activation, a component of immune suppression con-
comitantly exists, which enables individuals to develop recurrent, 

secondary, and nosocomial infections. This leads to worse 
outcomes and increased long-term mortality (26). The combina-
tion of chronic immune suppression from T2D, combined with 
sepsis-induced immune suppression, leads to innate and adaptive 
immune system changes that the human body cannot overcome. 
As illustrated in Figure 2, both the innate and adaptive immune 
systems are affected in T2D and sepsis, altering homeostasis. It is 
not known how these aberrant pathways interact when they are 
superimposed. However, we do know that these superimposed 
pathways lead to worsened morbidity and mortality.

When looking at immune suppression in the innate immune 
system, there are several key pathways to mention. Neutrophils 
are essential for bacterial eradication. In T2D and sepsis, 
neutrophils display defects in chemotaxis and recruitment to 
sites of infection (186, 187). This leads to the reduced ability 
to eradicate bacteria (99). T2D-associated hyperglycemia also 
increases cytosolic calcium in neutrophils, which inhibits the 
synthesis of ATP leading to reduced chemotactic, phagocytic, 
and bactericidal activity. The production and release of essential 
effector molecules, such as ROS and cytokines, is significantly 
impaired leading to bacterial persistence and the development 
of infectious complications (133, 187, 188). In addition, T2D is 
associated with elevated FFAs from dysregulated carbohydrate 
metabolism, which cause EC dysfunction and pathological 
cytokine fluctuations (189). In T2D, the antioxidant systems 
and humoral immunity are also depressed. Furthermore, T2D 
predisposes patients to micro- and macrovascular comorbidities 
leading to environments susceptible to infections (190).

In addition to diminished innate function, adaptive immu-
nity is similarly impaired. Splenocytes harvested from deceased 
sepsis patients demonstrate reduced numbers of CD4+ and CD8+ 
lymphocytes, due to substantial apoptosis (13). Apoptosis of 
lymphocytes and APCs (DCs, T cells, and B cells) is considered 
a hallmark of septic immune suppression (191, 192). Moreover, 
CD4+ cell loss is associated with a reduced ability to mount 
immune responses to viral infections after septic insults (193). 
However, reduced lymphocyte numbers are not just reflective 
of the risk for viral reactivation following sepsis. Lymphopenia 
4 days after the onset of sepsis is associated with the development 
of secondary infections and is predictive of long-term mortality 
at 1 year after sepsis (194).

Several studies have examined the link between increased 
infectious morbidity and T2D. It is hypothesized that T2D patients 
are predisposed to infection due to impaired neutrophil func-
tion, decreased adaptive immune response, and dysfunctional 
immune cell function through high serum levels of inflammatory 
mediators (195). The cellular alterations observed in T2D and 
sepsis combine to create a chronic state of immune suppression, 
characterized by recurrent, secondary, and nosocomial infectious 
complications (196). These infectious complications often result 
in hospital readmissions (197–199) and poor long-term survival 
(200). Compared to patients without sepsis, sepsis survivors 
require more antibiotics, have more ICU days, and consume more 
hospital resources (201). T2D patients are also associated with 
bacterial pathogens with increased antibiotics resistance, such as 
MRSA, Pseudomonas, and Acinetobacter, which are associated 
with ICU-related mortality (202).
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immune systems experience chronic derangements secondary to chronic inflammation, also placing these systems in constant flux. When these two systems 
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It is evident that sepsis induces a pathological state of immune 
suppression that prompts the development of secondary infec-
tions while still in the ICU setting (203). In addition, several 
reports demonstrate that sepsis survivors and T2D patients 
experience dramatically higher rates of subsequent infections 
long after the initial episode of sepsis has abated (204, 205). 
The increased hospital readmission rates due to infectious 
complications among T2D patients and sepsis survivors is a sign 
of ongoing immune suppression and dysregulation that if not 
corrected, diminishes life quality and durable survival. With the 
ever increasing, comorbidity challenged, elderly T2D population 
experiencing persistent inflammation, immune suppression, and 

immune senescence, the number of T2D sepsis survivors who 
develop subsequent infections is predicted to rise substantially in 
the next decades (200, 206).

iMMUNe-MODULATORY THeRAPieS  
iN T2D

Below we will address immune modulators/modulatory 
pathways that deserve further consideration as disease-
modifying therapeutics. These immune modulators, their 
proposed benefits, and some possible combinations are also 
listed in Table 1.
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TABLe 1 | Immune modulators.

immune 
modulators, 
diabetes

iL-1 inhibition TNF inhibition NF-κβ inhibition Diacerin MCP-1 antagonism iL-6 
inhibition

Sirtuins 
augmentation

PPAR-γ agonists

Proposed benefit ↓ acute phase 
inflammation

↓ risk of developing T2 ↓ release of TNF-α, 
IL-1B, IL-8, and MCP-1

↓ concentrations of  
TNF-α and IL-1B

↓ monocyte/macrophage 
migration/infiltration

↓ inflammation ↑ insulin secretion ↓ insulin resistance

↓ pancreatic β-cell 
apoptosis

↓ hemoglobin A1c ↑ insulin secretion ↓ insulin resistance ↑ insulin sensitivity ↓ hemoglobin A1c

↑ insulin secretion ↓ insulin clearane ↑ metabolic control ↓ macrophage 
concentration

Potential cells 
affected

T cells, 
Lymphocytes

Neutrophils, 
macrophages, 
endothelial cells

T cells, lymphocytes Neutrophils, 
macrophages

Monocytes, 
Macrophages

T cells, 
monocytes, 
neutrophils, 
lymphocytes

T cells, 
monocytes, 
neutrophils, 
lymphocytes

Macrophages

immune 
modulators, 
sepsis

g-CSF gM-CSF iFNγ PD-1 and PD-L1

Proposed benefit ↑ neutrophil and 
monocyte production 
and release

↑ neutrophil/monocyte 
production and function

↑ monocyte HLA-DR 
expression and function

↓ T cell exhaustion

↑ myelopoiesis and 
granulopoiesis

↑ monocyte/lymphocyte 
cytotoxicity

↓ infection and related 
complications

↑ lymphocyte 
proliferation

↑ T cell responses ↑ immunity against 
fungal infections

↑ neutrophil and 
monocyte cytotoxicity

↓ nosocomial infection 
acquisition

↑ opportunistic infections

↓ ventilator days

Potential cells 
affected

T cells, monocytes, 
neutophils, 
lymphocytes

T cells, monocytes, 
neutrophils, 
lymphocytes

T cells, monocytes, 
neutophils, 
lymphocytes

T cells, monocytes, 
neutrophils

Proposed 
combinations

PD-1 and MCP-1 PD-L1 and diacerin iFNγ and diacerin

Proposed benefit ↓ monocyte infiltration ↓ inflammation ↑ monocyte function

↑ lymphocyte 
proliferation

↑ neutrophil and monocyte 
cytotoxicity

↓ inflammation

↑ T cell function ↓ opportunistic infections ↓ fungal infections

Potential cells 
affected

Lymphocyte,  
T cells, monocytes

Neutrophils, monocytes Monocytes
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iL-1
IL-1 has long been given to patients after transplantation 
to enhance recovery (207). Since these patients developed 
symptoms and signs of a systematic inflammatory reaction 
during treatment, subsequent research focused on blocking 
IL-1 during sepsis by using anakinra, a naturally occurring 
IL-1RA. There have been multiple controlled trials of anakinra 
in human sepsis. In one placebo-controlled trial, there was a 
reduction in 28-day all-cause mortality, but the results did not 
reach statistical significance (208). Attention was then turned 
to focus on antagonism of IL-1 during noninfectious chronic 
inflammatory diseases, including myeloma and rheumatoid 
arthritis. IL-1β antagonism is now the standard of therapy in 
autoinflammatory diseases (209). T2D can be classified as an 
autoinflammatory disease, with the innate immune system 
inappropriately activated due to metabolic stress leading to 
a chronic inflammatory disease (210). IL-1 prevents insulin 
secretion while promoting pancreatic β-cell death via apoptosis 
(211). In patients with T2D, there is increased expression of 
IL-1 expression in pancreatic β-cells with subsequent reduction 
in IL-1RA (212). In these patients, anakinra lowered blood 
glucose levels and improves β cell secretory function and 
insulin sensitivity, as well as reducing evidence of systemic 
inflammation. Just as interesting, after withdrawal of anakinra 
treatment, improvement in insulin secretion lasted 39  weeks 
(212), suggesting that the therapeutic effect IL-1 antagonism is 
long-lasting, perhaps due to interruption of IL-1 autoinduction 
(213). However, anakinra has a short half-life requiring daily 
administration to maintain adequate suppression of IL-1β and 
often causes injection-site reactions, limiting its ability to serve as 
a long-term therapy option (214). Subsequent studies therefore 
focused on humanized monoclonal antibodies, Gevokizumab, 
Canakinumab, and LY2189102, against IL-1β. Gevokizumab 
improved glycemic control (potentially by restoring insulin 
production) and reduced inflammation in patients with T2D 
(210, 215). Given the half-life of around 3 weeks, preliminary 
studies indicated that monthly or longer administration might 
be possible. Clinical trial NCT00900146 utilized Canakinumab 
and showed a numerical reduction in hemoglobin A1C, with a 
trend toward improved insulin secretion rate (216). LY2189102 
improved glycated hemoglobin levels and corrected fasting and 
postprandial glycemia, as compared to placebo (217). In addi-
tion, just like the studies on anakinra, treatment effects were 
noted to be long lasting, even after treatment was stopped. These 
trials show the potential therapeutic benefit of inhibiting the 
IL-1 pathway. To further support this, a current diabetic sulfo-
nylurea medication Glibenclamide has actually been shown as 
a powerful inhibitor of IL-1β in islet cells (93).

TNF
The role of TNF in insulin resistance and T2D was first observed 
in 1993 (218). Numerous clinical trials have evaluated the ben-
efits of TNF antagonism but have failed to demonstrate advan-
tageous effects on glucose metabolism (219–221). However, 
these trials were underpowered, with limited patients over a 
short amount time, and did not account for inter-individual 
variations (genetic background, body weight, food intake, 

and exercise). Trials on TNF for other inflammatory diseases, 
including Crohn’s disease, rheumatoid arthritis, and psoriasis, 
implicate TNF blockade in altering insulin sensitivity (222, 
223). Large cohort studies in patients with rheumatoid arthritis 
and psoriasis showed that TNF inhibition is associated with a 
reduction in T2D rates (224, 225). Further clinical trials specifi-
cally focusing on T2D with prolonged antagonism of TNF will 
likely prove to be therapeutically beneficial.

Nuclear Factor-Kappa Beta (NF-κβ)
Lipopolysaccharides from bacterial cell walls and FFAs bind 
Fetuin-A to activate TLR2 and TLR4, leading to nuclear trans-
location of NF-κβ, which induces an inflammatory response 
(226, 227) through the release of TNF, IL-1β, IL-8, and MCP-1 
(93). Since 2001, we have known that salsalate, a prodrug 
form of salicylic acid, can ameliorate T2D via inhibition of 
NF-κβ (228). Multiple trials have been completed to evaluate 
the potential therapeutic role of salsalate. An initial proof-of-
concept study showed improvement in glycemia, decreased 
C-reactive protein levels, and higher adiponectin in plasma 
(229). Follow-up studies supported this initial observation 
(230, 231) with two multicenter, placebo-controlled studies, 
including clinical trial NCT00799643, showing that salsalate 
can decrease hemoglobin A1c and improve other markers of 
glycemic control (232, 233). However, salsalate also reduces 
the clearance of insulin, and thus lowers glucose concentra-
tions through a non-inflammatory mechanism (229, 232). 
Metformin, a current widely accepted diabetic drug, has 
been shown to inhibit release of pro-inflammatory cytokines 
via IL-1β mechanisms by antagonizing NF-κβ in cells of the 
vascular wall as well as in macrophages (234). Metformin also 
inhibits the maturation of IL-1β in macrophages (235).

Diacerein
Diacerein is a common medication for inflammatory joint 
disease. It decreases concentrations of cytokines such as TNF 
and IL-1β (236, 237). Given the benefits seen in long-term use 
in inflammatory joint disease, it was hypothesized that diacerein 
could provide benefit in T2D. The randomized, double-blind 
placebo-controlled clinical trial NCT01298882 showed increased 
insulin production and improved glycemic control after treat-
ment with diacerein in patients who were drug naïve. Further 
studies investigating the mechanism of action and the role it 
plays in immune dysfunction could reveal a therapeutic role for 
diacerein in T2D patients.

MCP-1 Antagonism
Monocyte chemoattractant protein-1 (or CCL2) is an essential 
chemokine active in the migration and infiltration of monocytes/
macrophages (238). MCP-1 levels are increased in patients with 
T2D (239, 240). The gene expression of MCP-1 and its recep-
tor CCR2 is elevated within visceral and subcutaneous adipose 
tissue of patients with obesity, as contrasted to lean controls 
(241). In addition, there is increased expression in omental fat 
with increased macrophage proliferation, when compared with 
the fat within the subcutaneous tissue (242). CCX140-B is a 
CCR2 antagonist. A pilot study in patients with T2D showed 
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that administration of CCX140-B decreased placebo-corrected 
glycated hemoglobin (93). Multiple studies have shown that 
downregulation of MCP-1 cooccurs with improvement in the 
symptoms of T2D. These results implicate a close relationship 
and support further studies that investigate the role of MCP-1 as 
a therapeutic target (240).

iL-6
IL-6 is a one of the main cytokines that is responsible for an 
inflammatory processes and responses. It is produced by mac-
rophages, T  cells, osteoblasts, kidney cells, muscle cells, and 
adipocytes (243). It has pleiotropic effect on glucose metabolism 
that is dependent on tissue type and the surrounding milieu. 
Increased levels of IL-6 are associated with obesity, T2D, and car-
diovascular disease (244). Under specific conditions, IL-6 may 
either decrease or enhance insulin resistance, as well as improve 
glucagon-like peptide-1-mediated insulin section. In the para-
digm of inflammation within obesity, it is hypothesized that IL-6 
enhances the prevailing inflammation, thus precipitating insulin 
resistance and leading to further micro- and macrovascular 
complications (245).

Sirtuins
Sirtuins represent a class of NAD+-dependent deacetylases 
that have a wide array of biological functions, one being to 
coordinate the body’s reaction to caloric intake. Sirtuins are 
associated with metabolic disorders (246) and play a critical 
role in restoring homeostasis during stress responses (247). 
Emerging evidence supports that failure to maintain homeo-
stasis during metabolism and bioenergy reprogramming result 
in acute and chronic inflammatory disease (247). In obesity, 
there is a decrease in sirtuin 1 levels and activity. This is likely 
secondary to upregulation of peroxisome proliferator-activated 
receptor gamma (PPAR-γ) genes that regulate fatty acid uptake 
and triglyceride synthesis in mature adipocytes (248). Increased 
sirtuin 1 expression and activation is associated with increased 
insulin secretion (249). There are substantial data to support 
that increased sirtuin 1 activity counters obesity, the metabolic 
syndrome, and T2D with or without obesity (247) making it a 
desirable therapeutic target.

Peroxisome Proliferator-Activated 
Receptor gamma
A current antidiabetic therapeutic group, the thiazolidinedi-
ones which include rosiglitazone and pioglitazone, are PPAR-γ 
agonists. PPAR-γ is a type II nuclear receptor found mainly 
in macrophages, adipose tissue, and in the colon. These drugs 
effectively improve insulin resistance and reduce hemoglobin 
A1c though multiple mechanisms. One mechanism is that they 
can inhibit pro-inflammatory pathways leading to decreased 
macrophage concentration in adipose tissue (250, 251). The 
overall clinical effect from the improved insulin resistance and 
anti-inflammatory effects of these agents are not clearly defined; 
however, they reveal multiple mechanistic pathways to further 
evaluate (252).

iMMUNe-MODULATORY THeRAPieS iN 
SePSiS

granulocyte Colony-Stimulating Factor 
(g-CSF) and gM-CSF
Granulocyte colony-stimulating factor stimulates the produc-
tion of stem cells, progenitors, and granulocytes (253). Two 
randomized controlled human trials with recombinant G-CSF 
were performed to test its effect on neutrophil production, 
maturity, and overall function. Although an increase in blood 
leukocyte counts was observed, there was no improvement in 
28-day patient mortality (254, 255). This makes one wonder if 
a longer study therapy or observation time would have changed 
the investigation outcomes. Given the ongoing and continuous 
alterations observed in granulocyte production, myelopoiesis, 
and neutrophil function in T2D and septic patients, prolonged 
G-CSF administration may be efficacious for improved immune 
surveillance, infection eradication, tissue regeneration, and 
survival during sepsis.

GM-CSF is an additional cytokine that enhances stem cells 
to differentiate into macrophages, monocytes, and neutrophils 
(256). In one study, ventilator-dependent septic patients who 
were prescribed GM-CSF during the immune suppressive phase 
had fewer days on the ventilator and within the ICU (257, 258). 
Recombinant GM-CSF treatment in septic children improved 
lymphocyte TNF production and significantly reduced hospital-
associated infections (259). Further evidence for GM-CSF 
therapy from a meta-analysis of over 12 clinical studies using 
GM-CSF or G-CSF showed that treatment with either reduces 
infectious complications (260). In light of the fact that 70–80% 
patients who succumb to sepsis harbor persistent, chronic, ongo-
ing, or secondary infections (13), G-CSF or GM-CSF combined 
with other immune regulators may bolster immune response 
and eradicate infection in septic T2D populations, potentially 
improving overall survival (254, 261).

interferon gamma
Interferon gamma is the sole protein within the family of type II 
interferons. Adequate IFNγ production and signaling is critical 
for appropriate immune targeting of microbial invaders. IFNγ is 
also a central inducer of macrophage activation, stimulating class 
I MHC expression (141). Patients with severe sepsis treated with 
recombinant IFNγ demonstrate reversal of sepsis-induced mono-
cytic dysfunction, as well as having better overall survival (262). 
It is important to note that even though the patient population of 
most trials involving IFNγ were mixed cohorts of severe trauma 
patients, the largest study reports a clear decrease in mortality 
due to infections (263). A recent report on severe trauma patients 
shows that 42 of 63 genes were within the interferon pathway and 
differentially expressed in patients with uncomplicated versus 
complicated outcomes. Recombinant IFNγ treatment was also 
able to partially restore immune metabolic defects associated 
with immune paralysis in humans after sepsis, further suggesting 
that IFNγ therapy after sepsis may benefit a multitude of cellular 
immune functions (264). IFNγ is a very promising agent if it is 
targeted to specific patient populations, such as T2D patients who 
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have immune suppression, adaptive immune dysfunction, and 
chronic inflammation.

Programmed Cell Death Protein-1 and 
Ligand (PD-1 and PD-L1)
The PD-1 protein is expressed on myeloid lineage cells and most 
B- and T-lymphocytes, while its ligand (PD-L1) is expressed 
universally on monocytes, macrophages, epithelial cells, ECs, and 
DCs (265). Its ultimate effect is inhibitory, reducing CD8+ T cells 
from proliferating or accumulating in lymphoid organs. PD-1 
becomes upregulated during viral infections and cancer states 
and is associated with “T cell exhaustion from prolonged periods 
of exposure to self-antigens” (266). Subsequently, patients in 
septic shock exhibit higher levels of PD-1 and PD-L1 on their 
monocytes and T-lymphocytes (267). Anti-PD-1 and anti-PD-
L1 have demonstrated encouraging results in clinical trials on 
human with viral infection or cancer (267). Studies have dem-
onstrated that upregulation of granulocyte PD-L1 potentiates 
lymphocyte apoptosis via contact inhibition, which correlates 
with outcome (268). Given PD-1 and PD-1L’s positive effect on 
adaptive immunity as well as tumor growth, they both could be 
used as biomarkers of immune suppression from sepsis. They are 
also potential targets to ameliorate adaptive immune dysfunction 
or increase overall survival in the long-term (9).

CONCLUSiON

Type II diabetes is a disease of altered immunity that results in 
protracted inflammation, immune suppression, and significant 
infection morbidity. Clinically, it is obvious that patients with 
T2D are more susceptible to infections. In sepsis, despite the best 

goal-directed therapies that control hyperglycemia, administer 
antibiotics early, and prevent organ damage, T2D patients still 
have worse morbidity and mortality for reasons that are poorly 
understood. However, the link between the two appears to be 
the dysregulated immune pathways. We believe that immune-
modulatory therapies that are strategically introduced and 
influence the interdigitating immune derangements between 
these two diseases have the potential to substantially improve the 
overall morbidity and mortality that these individuals experience.
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The folate pathway is critical to proper cellular function and metabolism. It is responsible 
for multiple functions, including energy (ATP) production, methylation reactions for DNA 
and protein synthesis and the production of immunomodulatory molecules, inosine and 
adenosine. These play an important role in immune signaling and cytotoxicity. Herein, we 
hypothesize that defects in the folate pathway in genetically susceptible individuals could 
lead to immune dysfunction, permissive environments for chronic cyclical latent/lytic viral 
infection, and, ultimately, the development of unchecked autoimmune responses to 
infected tissue, in this case islet beta cells. In the context of type 1 diabetes (T1D), there 
has been a recent increase in newly diagnosed cases of T1D in the past 20 years that 
has exceeded previous epidemiological predictions with yet unidentified factor(s). This 
speaks to a potential environmental trigger that adversely affects immune responses. 
Most research into the immune dysfunction of T1D has focused on downstream adap-
tive responses of T and B cells neglecting the role of the upstream innate players such 
as natural killer (NK) cells. Constantly, surveilling the blood and tissues for pathogens, 
NK cells remove threats through direct cytotoxic responses and recruitment of adaptive 
responses using cytokines, such as IL-1β and IFN-γ. One long-standing hypothesis 
suggests viral infection as a potential trigger for the autoimmune response in T1D. 
Recent data suggest multiple viruses as potential causal agents. Intertwined with this is 
an observed reduced NK cell enumeration, cytotoxicity, and cytokine signaling in T1D 
patients. Many of the viruses implicated in T1D are chronic latent/lysogenic infections 
with demonstrated capacity to reduce NK cell response and number through mecha-
nisms that resemble those of pregnancy tolerance. Defects in the folate pathway in T1D 
patients could result in decreased immune response to viral infection or viral reactivation. 
Dampened NK responses to infections result in improper signaling, improper antigen 
presentation, and amplified CD8+ lymphocyte proliferation and cytotoxicity, a hallmark 
of beta cell infiltrates in patients with T1D onset. This would suggest a critical role for 
NK cells in T1D development linked to viral infection and the importance of the folate 
pathway in maintaining proper NK response.

Keywords: diabetes, natural killer cells, virus, folic acid, folate cycle
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Figure 1 | The two major pathways in the cellular folate cycle. (a) It details the purinosome, DNA synthesis, cellular energy pathway (ATP synthesis), and immune 
system modulation. (B) It details amino acid synthesis (homocysteine–methionine).
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tHe CeLLuLar FoLate patHWay: roLe 
in energy produCtion, protein/
dna syntHesis, and iMMune 
FunCtion

Figure 1 depicts the cellular folate pathway and the importance 
of the vitamin (B9) for the maintenance of cellular energy, DNA 
manufacture and repair, protein production, single-carbon trans-
fers (methylation) and as a co-factor for numerous reactions. It is 
especially important for rapid cell growth and division, and critical 
to proper immune function. Particularly related to natural killer 
(NK) cell function, the production of inosine (Figure  1A, red 
box) is critical in maintaining NK cell cytotoxicity and prolifera-
tion in response to pathogens, while the production of adenosine 
will result in decreased NK cytotoxicity and proliferation, as well 
as generalized immunosuppression, as evidenced by adenosine 
deaminase (ADA) inhibitors, such as EHNA and drugs, such as 
Methotrexate. Literature demonstrates that increased activity 
of the enzymes associated with energy production (ATIC and 
GART), shown in Figure 1A (purple box) which (1) suppresses 
the function of ADA and the formation of inosine and hypoxan-
thine and (2) causes the internalization of the insulin receptor 
and an excess of intracellular ATP/adenosine (1).

In Figure  1B, important protein synthesis and methylation 
occurs, particularly the regeneration of the disease-associated 
homocysteine to methionine. Methionine is an essential amino 
acid critical to the formation of many biologically active proteins 

and the methylation of other critical products, such as S-adenosyl 
methionine, an important methyl donor to further methylation 
reactions. Defects in the folate pathway have been linked to 
numerous disease conditions, including fetal/infant neural tube 
defects, homocysteinemia, anemia, cognitive defects, cardio-
vascular disease, and cancer. It is clear that changes in the folate 
pathway could significantly impact functions throughout the 
whole body, including cell energy, protein/DNA synthesis, and, 
critically, immune function.

In 1992, the WHO recognized that there are over 2 billion 
people worldwide that suffer from micronutrient deficiencies, 
such as folate. In order to combat the increasing incidence of 
health conditions related to these deficiencies, 159 countries 
implemented a micronutrient/folic acid fortification plan in 
primarily, processed flour products. The flour fortification 
initiative became mandatory in these 159 countries in 1996 
(Figure 2) and was fully implemented by 1998. Intriguingly, this 
is the same time period that the incidence of diabetes, both Type 
1 and Type 2, began an upward trend that significantly exceeded 
epidemiological predictions (replotted from http://cdc.gov/
diabetes/statistics). Superimposed on the graphic of Figure 2 are 
results from the NHANES study examining serum folate levels 
in subjects over the age of 9 at specific time points within that 
same period (2). In the period from 1988 to 2000, there was a 
nearly 2.4-fold increase in the median serum folate of all sub-
jects. Another study examining folate and unmetabolized folic 
acid (UMFA) in 2007–2008 NHANES collected serum samples 
found UMFA in all subjects with 33.2% of the subjects having 
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Figure 2 | U.S. incidence of diabetes over the past 50 years (type 1 
diabetes and T2D) expressed as % of total population. The red arrow depicts 
the initiation point of mandatory fortification of flour  products with folic acid. 
The green bars are measurements of serum folate levels from NHANES 
subjects of the corresponding years.
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levels greater than 1 nmol/L (3). This increase in folate/folic acid 
levels supports the idea that micronutrient fortification may 
be unnecessary in developed countries and indicates a marked 
consumption of enriched flour products in the U.S. As well, 
the increase is superimposable on the rate of diabetes increase. 
Adding to this argument, in developing countries, comparable 
increases have been observed in autoimmune conditions in the 
past 10–15 years (4, 5). Given the importance of the folate cycle 
a broad, population-wide exposure to micronutrient fortifica-
tion could result in sudden, dramatic increases in unexpected 
pathologies, such as type 1 diabetes (T1D). There is evidence 
that in developed countries, where micronutrient deficiencies 
are much less evident, people may be consuming an excess of 
folic acid. This excess consumption, in genetically susceptible 
individuals, might result in adverse health and dysfunction 
of the innate immune system. As an example, a recent paper 
demonstrated that excess B vitamin intake, the family containing 
folate (B9), was correlated with increased obesity and diabetes in 
the studied populations (6).

Folic acid is a synthetic that works in the same pathways as 
naturally occurring folates because it is a substrate for the enzyme 
dihydrofolate reductase (DHFR), segment 1 of Figure 1. It is first 
processed into dihydrofolate (DHF). This reaction is up to 1,300 
times slower than the metabolism of non-synthetic folates in the 
liver of human subjects with an inherent fivefold variation in 
activity among subjects (7). This is the same pathway in which 
the immunosuppressant Methotrexate works, through competi-
tive inhibition of DHFR. The inefficient reaction of folic acid and 
DHFR could potentially mimic this immunosuppressive effect. 
The inhibition of DHFR by Methotrexate results in dysfunction 
in the purinosome (Figure 1A, purple box) and the accumulation 
of adenosine (Figure 1A, red box), which is immunosuppressive. 
This is likely due to a slow production of THF, which is the 
primary substrate for the cell energy/immune modulatory side 
of the folate cycle. Thus, high levels of folic acid and variations 
in DHFR activity could result in high levels of UMFA that could 
adversely modulate NK  cell and, furthermore, other immune 

cell activity. In support of this, malarial infection in mice fed a 
high folic acid (HFA) diet was associated with decreased NK cell 
activity, NK cell numbers, and survival; this was not observed in 
mice fed a control diet (8).

nK CeLLs: tHe First-Line deFense 
against patHogens

Natural killer cells respond to and directly kill pathogenic invad-
ers. Their name derives from their capacity to cause cytotoxicity 
in cells that do not properly present the major histocompatibility 
complex class I (MHC-I), bound with cytoplasmic peptides, to 
the surveillance of the immune system; either lacking expres-
sion, expressing non-self peptides, or hyper-expressing peptides. 
NK  cells lyse target cells directly unlike adaptive cells needing 
effector differentiation. Mature NK  cells reside in the body 
prepared to respond to invaders. Cytokines, such as INFγ, gran-
zyme, and perforin, are stored in preformed granules and rapidly 
released upon NK cell activation. This is different from cells of 
the adaptive system requiring post-activation gene transcription 
to achieve effector status.

In addition to direct killing, NK  cells are involved in the 
strength and finely tuned control of adaptive immune responses. 
In recent studies, it has been shown that NK cells control both 
effector and suppressive activities of downstream responses, 
including those of activate or kill antigen-presenting cells and 
regulatory T  cells, cytotoxic T  lymphocytes (CTLs) T-helper 
(Th) cells and B-cells (9–13). This is done through direct killing 
or by signaling through cytokines, such as TNF-a, IFN-y, and 
others. The role of NK cells is the modulation of cytotoxic CD8+ 
T lymphocyte response is to control aberrant/chronic inflamma-
tory responses avoiding unchecked cell/tissue destruction. In the 
context of autoimmunity and T1D, defects in NK cell function 
and number could play a bigger role in the observed CD8+ CTL 
infiltration of beta cells and the chronic destruction of self-tissue 
than originally thought. In a 2012 study by Ehlers et al., autoim-
mune diabetes was ameliorated by NK-cell-mediated destruction 
of CD8+ CTLs in the NOD model (13). In our preliminary work, 
there are stark differences in NK cell populations in NOD mice 
compared to age/sex-matched control strains, such as C57Bl/6 
and NOR mice; particularly, at the time prior to disease onset. In 
the Ehlers study, incubation of conventional NK cells with IL-18 
resulted in an increase in a CD117 positive subset that had a direct 
lytic activity against the CTLs in PD-1/PD-L1-dependent man-
ner suggesting the importance of NKs and, likely, specific subsets 
of NKs in adaptive immune responses in disease development. In 
a 2010 study by Olson et al., it was demonstrated that NK cells, 
reduced GVHD in an animal model by inhibiting alloreactive 
response by inducing apoptosis and reducing IFN gamma pro-
duction by cytotoxic T-cells (14). Although NK subpopulations 
were not studied, we would propose that the NK cells respon-
sible for this intricate control of the T-cell response are likely 
the mouse equivalent of the CD56 bright, CD117+ population 
observed in humans.

Natural killer cells constantly circulate through the blood 
monitoring the classical MHC-I, or human leukocyte antigen 
A, B, and C (HLA-A, HLA-B, and HLA-C). If classical HLA 
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self-antigens are properly presented, the effectors will also 
encounter HLA-E resulting in the inhibition of the cytotoxic 
activity. The non-classical human leukocyte antigen HLA-E 
has a specialized role in cell recognition by NK cells. HLA-E is 
expressed on the cell surface after binding a restricted subset of 
peptides, primarily those derived from leading sequence signal 
peptides of HLA-A, -B, and -C, and, most importantly, the non-
classical Class I, HLA-G. NK cells recognize the HLA-E peptide 
complex and produce an inhibitory effect on the cytotoxic activity 
of the effectors to prevent cell lysis.

Over the past 20  years, research into NK  cells has greatly 
expanded and analyses that typically was limited to bulk NK cells 
identified as CD3−, CD56+/CD16− or CD56dim/CD16+, has 
expanded to include other important clusters of differentiation 
for subpopulation analysis, such as CD11b, CD27, CD57, CD7, 
CD69, and others. Importantly, subpopulations have been clas-
sified in terms of strong cytotoxic capabilities (CD56dim/CD16+, 
CD11b+, CD27−, and CD57+) to the highly suppressive decidual 
phenotype (CD56+/CD16−, CD27−, and CD11b−) (15–19). This 
has expanded the understanding and research into the role of 
NK cells in numerous autoimmune pathologies, including T1D.

Viruses ModuLate tHe innate 
iMMune systeM tHrougH 
pregnanCy toLeranCe MeCHanisMs

One of the primary roles of NK cells is combatting viral infection 
through direct killing of infected cells and recruitment of adaptive 
responses, including memory responses, to prevent reinfection 
with re-exposure. Many viral pathogens have developed the abil-
ity to disrupt Class I and Class II presentation in order to avoid 
recognition of their antigens by the immune system (20–22). 
This is likely the reason why higher species evolved the adaptive 
immune system, as the innate system was inadequate to defend 
against the varied number of pathogens encountered and their 
capability to mutate. It is also likely that some viruses survived by 
exploiting pathways that impart tolerance in the placenta during 
pregnancy. When the innate system is functioning properly, there 
is a balance of effector and suppressive subpopulations of NK cells 
that recognize invaders through unique receptor mechanisms 
with both activating and inhibitory pathways. The inhibitory 
pathways recognize MHC-I antigen expression and preferentially 
shut down the effector subpopulation. If the Class 1 molecules are 
not present or if non-self-antigens are presented, the activating 
pathway is initiated and the unrecognized entity is destroyed.

During pregnancy, the mother’s innate immune response, 
particularly that of NK  cells is dampened through placental 
hyperexpression of membrane-bound HLA-G and elevated 
plasma levels of the circulating soluble isoform (23–26). The 
soluble form recruits decidual NK cells to the decidua forming a 
immunoprotective layer around the fetus, while the membrane-
bound isoform disables circulating NK effector cells by inducing 
apoptotic signaling and reducing cytotoxicity (24, 27). In addi-
tion, HLA-G serves to stabilize the membrane presentation of 
HLA–E to NK effectors another potent inhibitor of cytotoxicity. 
This induces cytokine and chemokine secretion conducive to 

tolerance induction in the placenta. HLA-G is constitutively 
expressed in several tissues within the adult body. Initially 
described in trophoblast cells of the placenta, it has subsequently 
been found in thymic epithelial cells, erythroblasts, corneal cells, 
mesenchymal stem cells, and most intriguingly, pancreatic islet 
beta cells (28–33). Through the flexibility of the effector and 
the suppressive subpopulations of NK cells, the innate immune 
system provides mechanisms for threat removal and self-
protection, much like the two arms of the downstream adaptive 
immune responses. It is clear why such mechanisms, if assumed 
by pathogens, could be utilized to escape detection and allow 
for unchecked persistence in a host. This long-term escape of a 
virus from the innate immune response could lead to ineffec-
tive viral clearance and presence in tissues normally uninfected 
by pathogens. This, in turn, could result in an aggressive and 
unchecked adaptive immune response resulting in the destruc-
tion of self-tissue, characteristic of all autoimmune conditions. 
The constitutive expression of pregnancy/immune modulatory 
factors, such as HLA-G on some somatic cells would provide 
an immune-privileged site for viral evasion, even from the 
moment of fetal development. This hypothesis would also help to 
explain the disparity in the female-to-male ratio of autoimmune 
pathologies, as every month, when a woman menstruates, she is 
temporarily immunosuppressed in preparation for implantation. 
This has been demonstrated in studies of NK cells during both 
pregnancy and the menstrual cycle (34–36). The one unique 
exception to this rule in autoimmune pathologies is T1D, where 
the age of onset is earlier than other autoimmunities, frequently 
earlier than puberty, and the female-to-male ratio is approxi-
mately 1:1. Given the constitutive expression of HLA-G on the 
surface of beta cells, this is easily explained as beta cells could be 
an immune-privileged site for viral infection (31).

Some viruses (and other somatic invaders, such as specific 
cancers) implement pregnancy mechanisms to avoid detection 
by the innate immune system. Particular whole families of viruses 
have the ability to lie dormant for years, integrated into the host 
genome, in a latent (“lysogenic”) phase of their life cycle. This 
behavior is characteristic of members of the Herpes and Coxsackie 
virus families. Members of these viral families utilize, much like 
cancer cells and trophoblast cells, the host’s own signaling path-
ways to disable the innate immune system. Particularly, HLA-E 
and HLA-G are modulated by viruses, such as Epstein–Barr 
virus (EBV), cytomegalovirus (CMV), parvovirus-B19 (Parvo 
B19), herpes simplex virus type 1, and RABV26 (37–45). Many 
of these viruses force surface expression of HLA-E, typically 
occurring only with self-peptide recognition, strongly inhibit-
ing the innate effector population (46–50). These findings have 
broad implications in clearance of viruses from host tissues and 
hint at a potential etiology for the development of many disease 
conditions. Viruses have been suggested as a causative agent in 
many autoimmune pathologies, including MS, T1D, Sjogren’s 
syndrome, rheumatoid arthritis, Crohn’s disease, and systemic 
lupus erythematosus (51–64).

Important to the theory of viral etiology and recent increases 
in prevalence of autoimmune pathologies, including T1D, is the 
passage of viruses through gametes. Originally thought to only 
occur with endogenous retroviral infections, there is growing 
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evidence that other viruses can be passed in gametes by means 
of episomal latency (65, 66). In episomal latency, viral genes 
are stabilized as both linear and lariat structures floating in the 
cytoplasm or the nucleus, without integrating into the genome. 
While this makes them more susceptible to viral defenses and 
cellular enzymes, there is the possibility that avoidance of enter-
ing the nucleus and integration with nuclear domain 10 thereby 
avoiding activation of interferon is beneficial to their survival 
and propagation. Coupled with our proposed environmental 
weakening of innate immune defenses, persistent viral infections 
cycling through latent and lytic phases and ineffectively cleared 
could progress to an aberrant immune response and development 
of autoimmune pathologies, including T1D.

Viruses, nK CeLLs, and t1d

A role for viruses as a cause for T1D has been controversial 
and hotly debated for decades but recent findings, the result of 
improved detection strategies and strong collaborative efforts, 
are increasing the likelihood that viruses have a greater role 
in the disease etiology than initially thought. Specific viruses, 
including but not limited to the Coxsackie family (B4, B6, and 
B1), the Herpes family (HHV-6, EBV, and CMV), and others 
(e.g., Parvo B19) have all been implicated in autoimmune disease 
development (45, 52, 55, 58, 60, 63, 64, 67, 68). Early discordant 
results were due to methodological issues (sample size, sampling 
frequency, assay sensitivity, and biology of viral infections) and 
have now been resolved through research networks and stand-
ardized protocols. Recent studies have linked genetic factors that 
influence T1D risk with viral infection (55, 60, 69–71). Others 
have demonstrated enteroviral infection can occur in beta cells 
resulting in cell death, in the case of acute lytic infections, and 
dysfunction, with more chronic infection. Acute and chronic 
viral responses in predisposed individuals could trigger chronic 
islet autoimmunity. Histological pancreatic specimens from a UK 
cohort of new-onset T1D patients were examined and found to 
have viral antigens and markers of inflammation in islets contain-
ing insulin-positive cells. This was found at a significantly higher 
frequency in this cohort compared to non-diabetic subjects of 
similar age and sex. Other clinical study data associated T1D with 
antibody responses to certain viral strains. One group recently 
utilized a high throughput immuno-proteomics methodology 
as a screening tool examining responses to seven viruses associ-
ated with T1D most frequently in the historical literature (72). 
Antibody responses to 646 viral antigens associated with the 
seven viruses were assessed in 42 long-standing patients relative 
to 42 sex and age-matched controls. Antibody response to EBV, 
a member of the Herpes family, was found to be significantly 
higher in case versus control subjects in both sex and age groups. 
There was also a trend toward earlier EBV infection in the case 
subjects. This platform is an example of improved detection 
methodologies that are helping to unravel the association of 
viruses with T1D and other autoimmune conditions. EBV is a 
virus that has been demonstrated in the literature to disable and 
suppress NK cells efficiently. This supports the idea that viruses 
could suppress innate response leading to unmodulated CD8+ 
T-cell responses.

Improper viral clearance and manipulation of innate response 
had been suggested in the development of T1D in other papers 
(68). This group examined donor pancreata from 6 T1D patients 
and 26 controls, performing histopathological analysis of the 
tissues looking for viral infection and lymphocyte infiltration. 
In 3 of the 6 T1D patients, Coxsackie B4 infection was detected 
through positive staining of viral capsid protein (VP1) and then 
DNA extraction and sequencing of infected regions. In the same 
patients, the islet infiltrates comprised primarily NK  cells. The 
islets cells in this group were intact and had positive staining 
for insulin. In the other 3 T1D patients, no virus was observed 
and infiltrates were NK free and represented mainly by CD8+ 
T cells. In this group, the islets were undergoing degranulation 
and destruction/apoptosis. It is unlikely that at the time of death, 
all three patients had ongoing Coxsackie B4 infection or that the 
cause of death was fulminant Coxsackie infection. Rather, these 
data offer additional compelling evidence for inefficient clearance 
of an enterovirus highlighted by subclinical/latent infection and 
the presence of nearby NK cells. Because subpopulation analysis 
was not performed, it is unclear whether those NK cells had cyto-
toxic function or were regulatory. Viruses, much like tumors, can 
recruit regulatory NK cells that are much like T-regulatory cells 
and are immunosuppressive in their function. The observed NKs 
could quite possibly be from this unique population; they could 
also be dysfunctional NK effectors. This speaks to the study by 
Ehlers et al., where CD117+/CD56bright NK cells, a known regula-
tory phenotype, destroyed CD8+ CTLs associated with diabetes 
onset in NOD mice. As further evidence for viral manipulation of 
innate immune function in T1D, a 2009 paper by Tanaka et al. (73) 
described MHC Class 1 hyperexpression in islet cells also positive 
for VP1 associated with enterovirus infection and coexpression of 
CXCL10 and IFN gamma. This demonstrates a persistent battle 
between viral suppressive mechanisms and cellular chemokine/
cytokine secretion recruiting immune response to the site of viral 
infection (73).

Despite these findings, the role of NK in T1D is not completely 
understood. This is likely because the majority of prior literature 
has examined bulk NKs ignoring multiple subsets with important 
and differing immunological functions (15, 18, 74). It is well 
established that NK dysfunction plays a role in the pathogensis of 
T1D. As an example, T1D patients and NOD mice have defective 
NKG2D signaling which is important in activation during viral 
response. This is present irrespective of disease duration. In addi-
tion, NK cells in T1D patients have been shown to have defective 
responses to IL-2 and IL-15, lipopolysaccharide, and reduced 
cytotoxicity and improper, often elevated, IFNγ secretion (75). 
At disease onset, it has been shown that the effector population, 
CD56dimCD16pos, is reduced (76–78), again suggesting manipula-
tion by viral entities or an environmental factor adversely affect-
ing the NK effector subpopulation.

In the NOD mouse, similar trends have been observed. In one 
study, NK infiltration into the pancreas of NOD mice was observed 
before T-cell auto-reactive infiltrates (74). These NKs displayed 
a more immature phenotype and reduced proliferative capacity, 
suggesting a dysfunction and turn over similarly observed by our 
group in long-standing and at-risk clinical patients. These could 
be equivalent to the suppressive subset observed in humans that 
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Figure 3 | (a) Differences in natural killer (NK) effector cell population 
expressed as % of total lymphocytes in 26 control subjects, 12 long-standing 
type 1 diabetes (T1D) patients and 7 multiple autoantibody positive at-risk 
subjects. (B) Randomized age/sex-matching sub-analysis between control 
subjects and long-standing T1D patients. No correlation was found between 
NK effector population and either age or sex. Peripheral blood samples from 
the subjects in this study were obtained after obtaining written informed 
consent. The study was reviewed and approved by the University of Miami 
Institutional review Board (protocol 1995-0119).
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inhibit DCs and CD8+ CTLs. One subset of these cells produced 
IFN-γ spontaneously, suggesting an ongoing response, perhaps 
to a pathogen, such as a virus. This suggests the presence of 
some pathogen and an NK dysfunction/pathogen clearance 
problem that ultimately results in an amplified T-cell response 
due to aberrant IFN-γ, inability of regulatory NK cells to balance 
CD8+ CTL response and eventual autoimmunity leading to β-cell 
destruction.

In our preliminary work, the lymphocytes of 26 control, 12 
long-standing T1D, and 7 recent T1D onset (<2 years) subjects 
were analyzed for NK  cell frequency and subpopulation type. 
Total NK cells and NK effectors were compared among the three 
groups using non-parametric Kruskal–Wallis analysis followed 
by Dunns post hoc testing. Our preliminary data in T1D patients 
with long-standing disease provide evidence for a significant 
defect of both bulk NKs and the same NK effector phenotype 
(CD3−, CD14−, CD19−, CD66b−, CD7+, CD56dim, CD16+, CD27−, 
CD11b+; expressed as % of total lymphocytes). Moreover, we 
find a similar defect in at-risk autoantibody positive subjects, 
suggesting diminished NK effector populations and activity 
before diabetes diagnosis that may be an important component 
of the disease pathogenesis (Figure 3A). Of note, this observa-
tion holds when long-standing T1D patients were compared 
to age/sex-matched control subjects using the non-parametric 
Mann–Whitney U test. (Figure 3B; P = 0.0026). Importantly, no 
significant correlation was found between subject age or sex and 
NK status.

Natural killer dysfunction in the literature is shown to lead 
to chronic, subclinical infection from many viruses that have 
high prevalence in the general population (46, 56, 79, 80). This 
is the result of an inefficient clearance that is further exacer-
bated by the ability of these viruses to manipulate NK cells. This 
combination of critical defects might lead to the hyper-inflam-
matory adaptive cell response observed in patients, which in 
those with HLA variants predisposing to T1D could lead to 

the triggering of islet autoimmune responses and the chronic 
destruction of pancreatic β-cells (81). Given the major role of 
NK cells in the innate immune system and their interplay with 
the adaptive system, modulating the activity and function of 
downstream role players, such as NK-T cells, CD8+ cytotoxic 
lymphocytes, and T-regs, it is not an unreasonable proposition 
that NK cells may have a much bigger, upstream function in 
the etiology of T1D and many other autoimmune pathologies 
(13, 81). Recently, it has been demonstrated that NK  cells 
have memory capabilities and with secondary exposures to 
pathogens increased IFN-γ secretion (82, 83). This suggests 
that the aberrant IFN-γ secretion observed in T1D and the 
hyper-inflammatory adaptive response drive by CD8+ CTLs 
could be the result of a cyclical response to lytic and lysogenic 
viral phases. This would correlate with the relapsing and remit-
ting cycles characteristic of multiple sclerosis as well. Defective 
NK function and receptor activation is critical to maintenance 
of innate/adaptive balance and proper immune function, as 
evidenced in a recent study by Cook et al. where NK dysregula-
tion lead to amplified aberrant responses, cytokine storm, and 
death (81). This further supports the potential greater role for 
NK cells in T1D development.

FoLiC aCid, nK ViraL response, and 
t1d: tying it aLL togetHer

Normal response to a primary viral infection occurs in three 
distinct phases. The first is an early, non-specific response charac-
terized by fever, inflammation, and the production of interferons 
(Type 1: alpha, beta, epsilon, kappa, and omega, produced by 
fibroblasts and monocytes; Type 2: gamma, NK  cells, and Th 
cells). There is a third interferon type with a role in specific types 
of infections, but primarily 1 and 2 are critical in both regulat-
ing, signaling, and activating the viral response. NK cells play a 
major role in this early response actively lysing cells recognized as 
non-self through the production/secretion of granules containing 
granzyme B and perforin. In addition, NK cells are intertwined 
with the activation and regulation of dendritic cell (DCs) activ-
ity in a positive feedback loop. They can directly activate DCs, 
dependent on TNF alpha and IFN gamma secretion. In turn, 
activated DCs can then further stimulate NK activity by secret-
ing IL-12, IL-15, and IL-18. NK cells also regulate DC antigen 
presentation by actively lysing immature DC cells while sparing 
mature/active DCs. NK effectors then work to directly lyse virally 
infected cells while DCs circulate to stimulate adaptive responses 
through either the T-cell receptor mediated MHC Class II antigen 
presentation pathway (CD4+ Th cells) or MHC Class I antigen 
presentation pathway (CD8+ CTL cells). In addition to control-
ling DCs and antigen presentation, the NK cells of the regulatory 
phenotype (CD56bright, CD117+) modulate CD8+ CTL activity to 
balance responses through acquisition of a lytic phenotype and 
destruction of the CD8+ CTLs. In the aforementioned work of 
Dotta et al., where NK cells were observed in T1D post-mortem 
pancreatic sections of islets with no evidence of T-cell infiltrate but 
the presence of VP1, this might be explained by viral manipula-
tion of innate responses. Recruitment of these CD56bright, CD117+ 

151

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Bayer and Fraker Folate, Innate Immunity and Diabetes

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 315

cells of a regulatory phenotype with lytic capacity would prevent 
CD8+ CTLs from tissue destruction through direct lysis of the 
infiltrating cells. This is further supported by the observation 
of islets containing CD8+ CTL infiltrates with no VP1 and no 
NK  cells. A defect in NK number and activity, particularly in 
this CD56bright, CD117+ population would also adversely affect 
antigen presentation as immature DCs would not be targeted as 
effectively. This could lead to improper or excessive presentation, 
a hallmark of T1D, and amplified CD8+ CTL responses.

In our preliminary data (Figures 3A,B), we observed a drop 
in bulk NKs in long-standing and at-risk T1D subjects relative 
to controls and in the effector population responsible for viral 
clearance. This could have a twofold consequence. The decreased 
number of NK effector cells would lead to persistent viral infec-
tions and improper innate response. Over time, we hypothesize 
that the adaptive response is still activated through constant 
cycling of viral activation and latency. Adaptive CD8+ CTLs are 
activated and respond to the sites of persistent infection. Given 
the drop in bulk NKs, we theorize there is also a shortage of 
the CD56bright regulatory cells that function to keep balance in 
this adaptive response. This likely leads to the infiltration and 
destruction of beta cells. The temporal progression to T1D onset 
is highly variable likely due to age of exposure to or reactivation of 
viruses, innate immune status at time of infection/reactivations, 
and exposure to environmental factors, in this case our proposed, 
folic acid. The folate pathway is instrumental in the production of 
molecules that fuel the activation and suppression of the immune 
response. Potential dysfunction in several segments of folic acid 
metabolism, detailed in the next paragraphs, could have direct 
impact on proper immune function and lead to T1D and T2D, 
if uncorrected.

Dysfunction in DHFR (Figures 1A,B) could result in dysfunc-
tion in the purinosome enzymes, resulting in increased intracel-
lular adenosine and in turn an immunosupressive effect similar 
to that imparted by Methotrexate. Furthermore, this would cause 
a decreased level of THF, the substrate for both sides of the folate 
cycle, through the formation of 5,10 methyltetrahydrofolate 
(5,10-CH2 = THF); this would also result in defects in the homo-
cysteine to methionine reaction and the associated enzymes. In 
critical support of this contention, metabolomic studies showed 
that plasma methionine was significantly lower in children at-
risk for T1D compared to age-matched controls (84). A potential 
defect in the folate pathway is one explanation for this. In similar 
metabolomic studies examining differences between diabetic and 
non-diabetic NOD mice, pathway analysis indicated a deficiency 
of methionine in diseased animals, coupled with significant dif-
ferences in several NK cell pathways, apoptosis pathways, purine 
and pyrimidine pathways and the DNA replication pathway, all 
important components of the folate pathway. This lack of THF 
would likely lead to increase in Betaine S-homocysteine methyl-
transferase (BHMT) activity, a redundant enzyme in the homo-
cysteine to methionine reaction and a concomitant decrease in 
methionine synthase (MTR, MTRR) activity (Figure 1B, red box). 
A study that examined hypomethylation in diabetic rats relative 
to age/sex-matched controls reported significantly higher levels 
of BHMT activity and significantly lower methionine synthase 
activity, further suggesting folate pathway defects in diabetes (85).

When DHFR activity is suboptimal, it is possible that THF, 
normally utilized by the two major components (Figures 1A,B) 
of the folate pathway, is not produced properly. This would result 
in aberrant increased purinosome activity (PPAT, GART, and 
ATIC) and dysfunction in ADA, as in immunosuppression with 
Methotrexate, as shown in a 2006 paper (86). Increased activity 
within this complex has several effects, including dyslipidemia, 
internalization of the insulin receptor, and suppression of ADA 
(6). In normal metabolism, these are necessary biofeedback 
sensors. In a dysfunctional state, this results in an accumulation 
of intracellular ATP and adenosine, both adverse to proper cell 
function. Intriguingly, insulin receptor internalization is an 
established characteristic of both Type 1 and Type 2 diabetes. 
An excess of adenosine and a significantly lower level of ADA in 
lymphocytes, present with Methotrexate use, is a potent immune-
suppressor of NK cell cytotoxicity and all immune cell function.

The production of inosine is stopped through the suppression 
of ADA, which also decreases NK cytotoxicity and proliferation. 
Intracellular ATP also increases. Studies have shown that high 
levels of intracellular ATP are a biofeedback signal driving apop-
totic pathways (87, 88). This, would in turn, result in elevated 
serum extracellular ATP (eATP) released from cells undergoing 
apoptosis and through signaling pathways. eATP, at sufficiently 
high concentrations is a well-established signaling molecule that 
drives cascades of inflammation through cellular P2 receptors 
and is indicated in both acute and chronic/autoimmune inflam-
matory pathologies (89). Preliminary data from our own group 
show a significant increase in eATP at the onset of diabetes in 
NOD females relative to earlier time points in disease progression 
and to non-progressing NOD females. Increased intracellular 
ATP in NK cells leading to increased eATP could be one pos-
sible explanation for the observed deficit in NK number in T1D 
subjects relative to age- and sex-matched controls.

The upsurge in diabetes prevalence seen in Figure 2 includes 
patients diagnosed with Type 2 DM. Although associative, this 
increase could also be related to consumption of folic acid, given 
the multiple cellular functions mediated by the folate cycle. This 
is supported by a recent paper that demonstrated that excess B 
vitamin intake, the family containing folate (B9), was correlated 
with increased obesity and diabetes in the studied populations, 
although not attributed to any particular B vitamin (6). As folic 
acid is critical in development and its deficiency is correlated with 
increased incidence of neural tube defects during fetal develop-
ment, it is one of the primary micronutrients in baby formula and 
prenatal vitamins. Folic acid and its derivatives are co-factors for 
the majority of cellular single-carbon reactions, including DNA 
methylation. Disruption of the folate cycle could, therefore, result 
in epigenetic changes from conception, onward.

Our preliminary data suggest that folic acid negatively affects 
glucose metabolism and confers a phenotype of insulin resistance 
both in vitro, in muscle cell lines and in animals supplemented 
with increased doses of folic acid. L6 rat myoblasts were cultured 
and differentiated into an insulin-responsive myotubular phe-
notype for 7 days (with and without increasing concentrations 
of folic acid) and utilized for insulin-mediated glucose uptake 
assays. The results are shown in Figure  4. With the exception 
of cells exposed to 25 and 50 µm folic acid, the cells displayed 
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Figure 5 | Decrease in blood glucose (mg/dL/min) in C57BL/6 mice after IP 
injection of insulin. Ten mice were supplemented with high-dose folic acid in 
their drinking water for 12 weeks prior to the insulin tolerance test. Blood 
glucose decrease was significantly slower in the group fed high-dose folic 
acid (P = 0.0125, non-parametric Mann–Whitney test).

Figure 4 | Insulin-stimulated glucose uptake of L6 myotubular cells 
exposed to sequential dosing of folic acid (n = 4). Insulin-stimulated glucose 
uptake was significantly different from basal uptake in all doses of folic acid 
(lowest dose 2.2 μM present in media) except 25 and 50 μM. Differential 
uptake decreased in a dose-dependent fashion.
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significant differences (P < 0.05) between basal and stimulated 
glucose uptake. Significance decreased in a dose-dependent 
fashion at concentrations greater than 7.5 µm FA (multiple paired 
t-test, n = 4 per group). This suggests that prolonged exposure 
of these muscle cells to elevated levels (>4× basal) of folic acid 
results in metabolic dysfunction indicative of an insulin resistant 
phenotype.

Female C57BL/6 mice (n  =  10 per group) were randomly 
assigned to two groups, control or HFA. HFA was solubilized 
in drinking water with dosing based on the average daily water 
consumption described in the literature (90). The RDA for mouse 
intake of folic acid per the American Institute of Nutrition is 2 mg/
kg. The average water intake in C57BL/6 is 6.67 mL. The HFA 
group received 20× the standard dose, or 40  mg/kg, per other 
published studies (91). The supplementation with HFA began at 
5–6 weeks of age and studies were performed at 20 weeks of age. 
Over the first 20 min after administration of insulin (3 U/kg body 
weight), the control group had a significantly faster decrease, 
shown in Figure 5, in plasma glucose levels relative to the group 
receiving the HFA treatment (5.23 ± 1.72 versus 3.51 ± 0.69 mg/
dL/min; P = 0.0125, two-tailed non-parametric Mann–Whitney 
test). These data suggest an insulin-resistant phenotype related 
to high folic acid (HFA) intake.

The cause of NK cell dysfunction and its increased prevalence 
among the population not only of the United States but also 
worldwide remains undiscovered. All of the findings detailed 
above suggest an environmental factor that still eludes research-
ers despite many suggestions over the years ranging from heavy 
metals to chemical toxins and including viruses, more recently. 
These are likely secondary to a primary causal agent that 
adversely affects cellular metabolic pathways, protein synthesis, 
proliferation, and immune function. It is our hypothesis that 
many of these pathologies can be tied to the synthetic form of 
vitamin B9, folic acid, as all of the critical cellular functions listed 
above are directly modulated by the cellular folate pathway.

The folate cycle is critical in the maintenance of numerous 
cellular pathways and is an important site of cellular one-carbon 
metabolism/methylation. Given the importance of methylation 

in phenotypic expression through mechanisms of epigenetic 
modification, the folate cycle may have a role in the etiology of 
multiple pathologies. As it broadly affects all cells in the body, 
it can adversely impact multiple systems by slowing cellular 
metabolism reactions, accumulating unwanted reaction byprod-
ucts and disrupting homeostasis. As our hypothesis suggests, this 
could result in immune dysfunction leading to viral reactivation, 
improper antigen presentation and cytokine production, and 
unmodulated/unbalanced adaptive-heavy, CD8+ CTL and B-cell 
autoimmune responses in subjects with genetic predisposition. 
Therefore, folic acid could have a role in the development of T1D, 
along with many other autoimmune pathologies. The defects in 
insulin-mediated glucose metabolism that we have observed in 
our preliminary data suggest that folic acid could be a contributor 
to the recent upsurge of dyslipidemia, insulin resistance, obesity, 
and T2D. It is clear that there is strong need for further research 
into the folate cycle, its metabolites and the role these cellular 
pathways may have in the maintenance of immune function, 
metabolism, and general health status. Importantly, research into 
the innate system, critical in viral immune response, should be an 
area of greater focus as the evidence for a viral etiology is growing. 
The innate system evolutionarily precedes and is the upstream 
initiator of most adaptive responses including those that result in 
beta cell destruction in T1D. Improper innate function is likely 
the cause of downstream adaptive abnormalities that are the 
subject of the majority of immunological research in T1D.

If folic acid is indeed an environmental contributor to autoim-
mune and metabolic pathologies, as increasingly suggested, fur-
ther research could tie this important cellular pathway to multiple 
disease etiologies and to conditions resulting from chronic innate 
immune deficiency such as cancer. It is encouraging to think that 
a simple dietary change may positively affect some of these condi-
tions but the caveat is that anything that simply restores the innate 
effector function may result in strong NK-driven responses to 
viruses that lead to cytokine storm and further autoimmunity, 
if viruses are indeed a causal agent (81). This could be one pos-
sible explanation for the autoimmunity observed with cancer 
immunotherapies as enhanced responses to cancer could awaken 
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innate responses once the immunosuppressive strategies of 
tumors are removed with cell destruction (92). Ideally, therapies 
to treat autoimmune conditions, particularly T1D, should not 
be immunosuppressive as this could lead to viral spread and the 
development of long-term pathologies, such as cancer. Rather, 
increased research into anti-viral strategies and gradual restora-
tion of the innate balance to prevent catastrophic inflammatory 
responses (cytokine storm) might have better long-term outcome 
than current clinical trials.
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the Four-Way stop sign: Viruses, 
12-Lipoxygenase, islets, and  
natural Killer Cells in type 1  
diabetes progression
Michele L. Semeraro, Lindsey M. Glenn and Margaret A. Morris*

Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States

Natural killer (NK) cells represent an important effector arm against viral infection, and 
mounting evidence suggests that viral infection plays a role in the development of type 1 
diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through 
a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, 
NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression 
of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor 
found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand 
protects mice from STZ-induced diabetes, but differential expression non-diabetic and dia-
betic donor samples have not been tested. Additional studies have shown that peripheral 
blood NK cells from human T1D patients have altered phenotypes that reduce the lytic 
and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have 
indicated that the presence of NK cells may be beneficial despite their infrequent detection. 
In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of 
the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of 
stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are 
protected from diabetes development, express significantly higher levels of stimulatory 
receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 
12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO 
is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing 
islets, showing a link between 12-LO expression and diabetes progression. Therefore, our 
hypothesis is that NK cells in those susceptible to developing T1D are unable to function 
properly during viral infections of pancreatic beta cells due to increased 12-LO expression 
and activation, which contributes to increased interferon-gamma production and an imbal-
ance in activating and inhibitory NK cell receptors, and may contribute to downstream 
autoimmune T cell responses. The work presented here outlines evidence from our lab, as 
well as published literature, supporting our hypothesis, including novel data.

Keywords: coxsackievirus infections, islets, natural killer cells, 12-lipoxygenase, type 1 diabetes

introdUCtion

Autoimmune destruction of the pancreatic beta cells leads to the development of Type 1 diabetes 
(T1D). The number of T1D cases is on the rise, with the relative risk for developing the disease 
ranging from 0.1% [no family history, protective human leukocyte antigen (HLA)] to up to 70% 
(monozygotic twin with susceptible HLA), and is dependent largely upon genetic susceptibility 
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(1). Importantly, the strongest genetic link to the development 
of T1D is the expression of certain HLA haplotypes. Class II 
HLA genes, especially DR3, DR4, and DQ8, are the strongest 
links; however, HLA Class I molecules also play a role in dia-
betes development (2, 3). Expression of both Class I and Class 
II molecules is the largest contributing factor in determining 
the immune response to a given pathogen, as peptides are 
processed and presented to T and natural killer (NK) cells via 
the proteins of the major histocompatibility complex (MHC) 
locus (4). Therefore, these molecules play a key role in directing 
immune responses, be they beneficial or detrimental. However, 
the genetic contributions to T1D development are unable to 
fully account for the increased rates, supporting the idea that 
environmental factors play a role in the development of T1D. 
Furthermore, susceptible siblings of T1D patients who are 
closely monitored frequently show signs of autoimmunity in the 
form of autoantibodies prior to metabolic dysfunction. Many 
believe, based on this evidence, that development of full-blown 
diabetes requires multiple insults to the system in order to 
manifest itself.

Patients with T1D currently depend upon treatment options 
that are limited to methods that replace the deficit in insulin pro-
duction, either via injection or transplantation [reviewed in Ref. 
(5), in press]. While technological advances have helped improve 
these methods, they still do not provide a cure for the disease. 
Therefore, determining the mechanisms leading to immune dam-
age of pancreatic beta (β) cells, and treatments to maintain β cell 
mass, are of the utmost importance.

Recently, perceptions of T1D development have evolved, 
with a greater attention being paid to islet inflammation as an 
important event propagating autoimmunity and further loss of 
β cell mass (6–8). Debates persist as to whether islets are inde-
pendently inflamed prior to the autoimmune response or the 
autoimmune response brings about the islet inflammation. One 
of these recent studies described the incorrect processing of the 
insulin protein that led to the generation of abnormal peptides 
recognized by circulating CD8+ T cells in T1D patients (8). This 
line of evidence certainly points to β cell defects contributing 
to diabetes pathogenesis; however, this study does not address 
what might cause β cells to produce this incorrectly processed 
protein. One study in non-obese diabetic (NOD) mice has sug-
gested that incorrect protein processing in these mice causes an 
increase in endoplasmic reticulum (ER) stress, and results in the 
development of autoimmunity (9). Given the lack of complete 
concordance among monozygotic twins, many believe external 
environmental factors, such as viruses, strongly influence the 
development of islet inflammation leading to T1D. Trying to 
understand all of these data in concert brings researchers in the 
field to ponder the chicken and egg scenario. Are either islets or 
immune cells in susceptible individuals causing the initial insults 
that spark diabetes development, or does an environmental factor 
trigger the disease? Do we see signs of virus infections in patients 
with T1D because the infection is what precipitates diabetes 
development, or are patients with diabetes more susceptible to 
developing virus infections because of defects in their bodies’ 
defense systems? With the data that are currently available, the 
order of events in the precipitation of T1D is unclear.

a neW HypotHesis

As we gather more evidence, it is becoming clear that we 
must look at the integrated physiology to fully understand the 
mechanism(s) of T1D development. Here, we outline an idea 
that incorporates early antiviral immune effectors, NK  cells, 
with proinflammatory processes involving 12-lipoxygenase (12-
LO) occurring in the pancreatic beta cells. We hypothesize that 
the activation of NK cell 12/15-LO (Alox15, in mice) or 12-LO 
(ALOX12, in humans) through environmental triggers, such as 
Coxsackievirus infection, contributes to T1D initiation by affect-
ing the normal innate immune interplay between NK cells and 
islets, which primes downstream autoimmune responses leading 
to islet destruction. This may occur, in part, due to the effects 
of inflammation (including 12-LO) on the balance of NK  cell 
receptor expression (10). Below, we will describe the evidence 
supporting this hypothesis, beginning with one of the suspected 
environmental triggers, enteroviruses.

direCt eVidenCe For VirUs 
inFeCtions in t1d

Over the past fifty years, there has been accumulating evidence 
linking viruses, and the patients’ responses to these viruses, to 
the initiation of T1D. This idea that viruses contribute to the 
initiation and development of T1D was first introduced in the 
1960s (11, 12). This is, of course, difficult to fully pinpoint, as 
the infection may occur long before disease onset, and scientists 
with access to human pancreas tissues are granted only a snap-
shot of the patient’s final day as their window into the disease 
process. Additionally, as mentioned previously, it is unclear 
whether or not patients susceptible to developing T1D are also 
more susceptible to developing virus-mediated infections in the 
pancreatic islets, which might increase the viral signature in 
the islets of patients with T1D. Therefore, this might not be a 
causal relationship, but merely coincidental. Since we cannot 
directly test whether viruses initiate T1D in humans, research-
ers have used animal models to test this theory. NOD mouse 
models have been used to show that Coxsackievirus B1 and B4 
(CVB1, CVB4) infection speeds diabetes pathogenesis (13), and 
is dependent upon host sensors of virus (14–16). Others have 
shown that these effects are highly age dependent, as infection 
at before 10 weeks of age can prevent diabetes development (17, 
18). Additionally, studies of immunodeficient mice engrafted 
with human islets have shown that human islets can become 
infected with CVB4, which causes direct damage to the β 
cells, and results in diabetes. Gene expression profiles of these 
infected islets indicated significant increases in genes related to 
the Type 1 interferon (T1-IFN) pathway, as well as genes related 
to ER stress (19). While these data support the idea of viruses 
contributing to diabetes development, they do not answer the 
question about which occurs first: islet dysfunction or immune 
activation.

To address the role of virus infections in human T1D, groups 
such as Persistent Virus Infection in Diabetes Network and the 
Network for Pancreatic Organ Donors with Diabetes—Viral 
Working Group (nPOD-V) have approached the question with 
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great coordination across multiple platforms (20) assessing the 
same donor samples (PCR, immunohistochemistry, proteomics, 
and ISH). These team science efforts have yielded results estimat-
ing that Coxsackievirus infections might contribute to diabetes 
development in over 50% of cases (21, 22). While certainly not 
causal, pancreas tissues, and specifically β cells, from T1D donors 
have been found to express viral VP1 proteins more frequently 
than non-diabetic (ND) donors (23, 24). These studies continue 
to progress, generating a wealth of information from human 
donor samples.

Mechanistically, enteroviruses can infect via a fecal/oral 
route, thereby implicating intestinal involvement during the 
infection process. Mounting evidence has shown a role for 
the gut microbiome as a contributing factor in autoimmune 
diabetes development. Viruses and microbiota are known 
to interact with one another, and shape the response of both 
parties, which may influence the development of T1D (25). 
Recent human studies of closely matched control and T1D 
experimental groups demonstrate both increased inflammation 
in the duodenum of T1D patients (26), and direct detection 
of enteroviruses (27). In the first study, donors were tested 
for markers of inflammation using histological techniques 
and PCR array, indicating significant inflammatory processes 
in T1D donors, including increased macrophage numbers in 
the duodenum of T1D (26). In the second study, T1D donors 
were much more likely to have markers of enterovirus infection 
than control donors independent of HLA haplotypes, as tested 
by in situ hybridization and histological techniques (27). This 
work could not conclude whether T1D patients were more 
susceptible to the virus infections, or the infections are per-
sistent. Coxsackievirus infection of β cells with strains B1 (28) 
and B4 (13) may occur via β cell expression of the Coxsackie 
Adenovirus Receptor (29, 30) following viral migration from 
the duodenum to the pancreas through the common bile duct 
or affiliated vessels (27). Pursuant to the role of islet inflamma-
tion following environmental insult, in  vitro studies indicate 
that infection could lead to ER stress in β cells, contributing 
to islet dysfunction that activates the autoimmune response 
(9, 31). Alternatively, the infection could also directly activate 
immune responses that become uncontrolled due to inherent 
immune defects. Until imaging of live T1D patients affords the 
ability to detect virus infection in real-time, other experimental 
avenues must be explored, including the use of cultured islets 
and mouse models.

indireCt eVidenCe For VirUs 
inFeCtions in t1d

While viruses themselves may be difficult to detect in our snapshot 
views of human T1D, there is ample “circumstantial” evidence 
that exists in the form of immune cells and mediators. Both 
mouse models and organ donors with T1D have provided clear 
evidence that islet inflammation is a key hallmark of this disease. 
Immune cells infiltrate the islets, albeit at different intensities, in 
both species. Many patients show signs of adaptive immunity 
against the pancreatic islets in the form of autoantibodies and 
islet-specific T cell clones.

Beyond cellular responses, cytokines and chemokines also 
contribute to islet demise and can stem from both innate and 
adaptive responses. T1-IFNs have recently gained more respect 
as effectors in the development of T1D (see the review by Newby 
and Mathews in this issue). Indeed, virus infections are strong 
stimulators of T1-IFN production, which leads to a subsequent 
upregulation of MHC Class I expression, another hallmark of 
T1D (32).

Downstream of this response, numerous proinflammatory 
cytokines and chemokines have been detected in patients with 
diabetes (33, 34). One of these, IFN-gamma (IFN-γ), has been 
shown to play an important, albeit controversial, role in T1D 
pathogenesis (7, 35). While absence of the cytokine itself leads 
to delayed disease development (36), absence of the receptor 
protects against the development of insulitis (37). IFN-γ has 
many points at which it can act in the development of T1D, 
from altering MHC/HLA expression on involved cells to altering 
endothelial cell function and signaling to immune cells to activate 
cytotoxic effectors (37). Diminished IFN-γ responses can prevent 
the recruitment of insulitic T  cells, as well as their ability to 
respond to antigens, which might prevent diabetes progression. 
However, increased IFN-γ production by CD4+ T cells can actu-
ally contribute to the resolution of CD8+ T cell responses (35). 
While it is appreciated that CD4+ T cells contribute to the IFN-γ 
production during T1D pathogenesis, this does not exclude the 
idea that NK cells may be the first producers of IFN-γ present in 
the islets. Interestingly, IFN-γ is also frequently detected follow-
ing virus infections, and is used by the immune system to combat 
viral replication. Given these data, it is unclear whether IFN-γ is 
serving in a proinflammatory capacity or an unsuccessful attempt 
at tolerance induction during the development of T1D (35).

nK CeLLs and tHeir roLe in t1d

Natural killer cells are large granular lymphocytes that are 
considered part of the innate immune system. While they do not 
react as quickly as neutrophils and macrophages against invading 
pathogens, they mount a response more quickly than do T cells 
from the adaptive arm of the immune system. NK cells are known 
as key players in fighting off both tumor cells and virus-infected 
cells. Despite their small number (only 5–10% of leukocytes in the 
spleen and 1–6% in peripheral blood) (38), NK cells are powerful 
cytolytic effectors. Upon stimulation by a variety of cytokines, 
including T1-IFNs and IL-12 (39), NK cells utilize several different 
mechanisms to lyse their targets: the combination of perforin and 
granzymes, signaling through death receptors (i.e., Fas/FasL), and 
antibody-dependent cellular cytotoxicity leading to either apop-
tosis or necrosis (40). NK cells can also produce potent cytokines, 
such as IFN-γ and TNF-α (41). IFN-γ production by NK cells 
might also serve an antigen presenting capacity (42–44), which, 
along with their potent cytokine production abilities, would give 
them the power to stimulate immune responses downstream of 
their own activation.

In order to recognize their targets, NK cells have developed an 
intricate system of check and balances. As NK cells are expected 
to determine aberrant “self ” cells (tumors and virus-infected 
cells), they must be able to distinguish which cells are healthy, and 
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which are not. NK cells respond to virus infections in both mouse 
and man (4) through signaling mechanisms involving a delicate 
balance of inhibitory and stimulatory receptors expressed by 
NK cells. Normal expression of MHC Class I molecules (HLA in 
humans) send “self ” signals to NK cells, inhibiting lytic responses 
(45). Virus infection can lead to the downregulation of MHC Class 
I molecules on the surface of infected cells. While this prevents 
CD8+ T cells from responding to viral peptides, it also diminishes 
the inhibitory signal transmitted to NK  cells [reviewed in Ref. 
(46)]. Subsequently, stimulatory signals to the NK cell are able 
to override inhibitory signals, leading to lysis of affected cells. In 
some instances, including during infection of pancreatic islets, 
viruses push the cellular machinery into overdrive and promote 
Type 1 IFN production (47), causing hyperexpression of the 
MHC Class I molecules (32). To circumvent this tactic, NK cells 
utilize receptors that recognize the upregulation of ligands for 
the natural cytotoxicity receptors, like NKp46, on the surface of 
infected cells (48, 49). Thus, NK cells can become “licensed to 
kill” through several mechanisms that allow them to detect altera-
tions in MHC Class I molecules, as well as increased expression of 
stimulatory ligands, making them versatile effectors during virus 
infections (50).

Typically, T1D is thought to be dominated by autoimmune 
T cell responses; however, growing evidence suggests that NK cells 
are also involved (51). NK cells take up residence throughout the 
body (52), providing immune surveillance and protection against 
viruses wherever they enter the body. NK cells are plentiful in the 
intestines as compared to other organs (53), comprising 20–40% 
of Intestinal Epithelial Lymphocytes in healthy children (54), as 
compared to about 10% of the blood and spleen. This provides 
NK cells ample opportunity to respond to Coxsackievirus infec-
tions, as well as others (Salmonella, Toxoplasma gondii, other 
parasites, viruses, and bacteria) (55), transmitted via the fecal/
oral route. Paired with the evidence of increased inflammation in 
duodenum of T1D patients, these data support our hypothesis. 
Furthermore, NK  cells have been detected in the pancreas of 
both diabetic mice and humans. In mice, the cells appear shortly 
after macrophages (56). In human pancreatic samples, although 
NK cells are not frequently detected (57), they have been found 
in insulitic lesions, and show indications of having a protective 
effect (58). When one considers the frequency of NK  cells in 
lymphocyte-rich organs (5–10% of leukocytes in the spleen), and 
also accounts for the number of cells required to define insulitis 
in humans [six or more CD3+ cells in at least three islets (59)], 
then perhaps it is not surprising that NK cells are rarely detected 
in donor samples. Alternatively, it is possible that NK cells may 
prime the pancreatic environment for the entry of diabetogenic 
T cells, and subsequently depart. As we only have access to one 
time point for each human donor, we cannot currently distinguish 
these hypotheses. However, the use of mouse models made aid in 
this differentiation.

Natural killer cells themselves have recently been directly 
implicated in the development of T1D through additional expres-
sion quantitative trait loci analysis following genome-wide asso-
ciation studies, which further suggests that NK cells play a key 
role in T1D pathogenesis (60). Interestingly, this study indicates 
that NK  cells may impact T1D development more than CD8+ 

T cells. The carefully designed and executed study is limited to 
only 105 Japanese subjects, which might not apply to other ethnic 
backgrounds. However, it is comprehensive, and provides a solid 
approach for other ethnic backgrounds to be tested. Another data 
set investigating NK  cell phenotypes from patients with T1D 
showed that NK  cells from these patients express significantly 
reduced levels of activating receptors on their surface as compared  
to healthy controls (10).

It is unlikely that NK cells act independently in T1D develop-
ment. Macrophages recognize environmental signals, and have 
been shown to enter pancreatic islets at 3–4 weeks of age in NOD 
mice (61, 62). Macrophage production of IL-12 and IL-18 can 
strongly activate NK  cells, which are found in the pancreas of 
diabetes-prone NOD mice as early as 4 weeks of age (56, 63), to 
produce high levels of IFN-γ (64). Indeed, serum levels of both 
IL-12 and IL-18 are higher patients with T1D (65, 66), and IL-18 
has been shown to participate in T1D pathogenesis of NOD mice 
(67). Despite a defect in IL-15 signaling in NOD mice (68), which 
affects NK cell development and function, others have shown in 
IL-15-deficient mice that increased IL-12 signaling may allow 
NK  cells to overcome this deficit when faced with pathogenic 
stimuli (69, 70). The early appearance of NK cells in the pancreas 
may enable them to activate diabetogenic T cell responses.

Perhaps most importantly, NK  cells can directly interact 
with pancreatic islets through expression of ligands for the NK 
activating receptors NKG2D and NKp46. Both of these receptors 
have been implicated in NK-mediated self-aggression in human 
NK  cells that can be triggered by signaling through NKG2D 
and NKp46 (71). The NKG2D ligand, RAE-1 (72), is one of 
these ligands. Some speculate that NKG2D ligands cause down-
modulation of the receptors, thereby making the NK  cells less 
active (73); however, others have failed to validate this hypothesis 
(74). They instead showed that differential expression of NKG2D 
ligands did not hinder NK cytotoxicity through methodical 
assessment of receptor and ligand levels using genetic tools to 
dictate the alteration of expression.

Pancreatic islets also broadly express ligands for the NKp46 
natural cytotoxicity receptor. NKp46 is a Type I transmembrane 
protein with two extracellular Ig-like domains followed by a short 
stalk region, a transmembrane domain containing a positively 
charged amino acid residue, and a short cytoplasmic tail (75, 76). 
However, the cellular ligands for NKp46 have not been identified 
or characterized. The only NKp46 ligands identified so far are 
the hemagglutinin of influenza virus and the hemagglutinin-
neuraminidase of parainfluenza virus (48), suggesting a role for 
sugars in NKp46 ligand recognition. Studies of NKp46 ligands 
have utilized the NKp46 Fc chimeric protein in flow cytometry 
and histological techniques to examine expression over time in 
the islets of mice and humans (63). Functional studies from the 
same group showed that blockade of NKp46 receptor/ligand 
interactions protects against streptozotocin-induced diabetes 
(63). Although these studies have assessed expression over time, 
differential expression of the NKp46 ligands in human ND con-
trols versus T1D donor samples has not been tested.

We recently studied ND, autoantibody positive (AAb+), 
and T1D donor samples from nPOD in order to determine 
whether there were expression differences in NKp46 ligands 
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FigUre 1 | Human islets express NKp46 ligands. (a) Representative images comparing donor pancreas tissues from Network for Pancreatic Organ Donors with 
Diabetes (nPOD) biorepository samples. Sections were stained with antibodies against glucagon (green) and the NKp46 Fc chimeric receptor (red). (B) Quantification 
of NKp46 Fc staining per islet area. Density of NKp46 Fc staining was determined for each islet area. Islets for each donor were assessed, and donors of the same 
group were averaged. N = 2 for non-diabetic (ND); N = 3 for both autoantibody positive (AAb+) and T1D. *p < 0.05 by one-way ANOVA.
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using the NKp46 Fc chimeric protein. Figure  1A highlights 
representative images from donors with different health statuses. 
Islet images from two ND, three AAb+, and three T1D donors 
were analyzed by NIH Image J to quantify the density of NKp46 
Fc staining (red) within the islet area as determined by glucagon 
staining (Figure 1B). Islets from T1D donors frequently retain 
alpha cell mass longer than insulin-positive beta cell mass  
(77, 78). Therefore, we used glucagon staining to more accurately 
determine the islet area for each donor in order to calculate the 
intensity of NKp46 Fc staining in islets. Interestingly, NKp46 Fc 
levels were significantly higher in the AAb+ donors as compared 
to ND donors. Although the difference was not statistically sig-
nificant when comparing T1D and AAb+ donors, there was a 

trend toward higher expression in the AAb+ donors. These data 
suggest that NKp46 ligands are upregulated during the develop-
ment of T1D, and diminish as the islet health and mass decrease 
over the course of the disease. While this may be the result of 
ongoing immune responses in these tissues, insulitis has only 
been detected in one each of the AAb+ and T1D donors. General 
characteristics of donors tested are listed in Table 1.

Mechanisms of NK  cell action in diabetes are not well 
understood, and phenotypic differences in NK cells residing in 
different tissues may confound the results reported to date (40). 
Increased expression of stimulatory receptors on NK  cells has 
been reported in both diabetic mice (79) and humans (80), while 
others maintain that a lack of NK cell activation contributes to 
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FigUre 3 | Pancreatic lymph node natural killer (NK) cell expression of 
NK cell markers. Ly49 receptors determine which targets NK cells recognize 
and respond to during interactions with potential targets. Several of the 
expression patterns are altered in the absence of Alox15, with Alox15null cells 
expressing higher proportions of the activating Ly49 receptors [*p < 0.05 
using a two-tailed Student’s t-test to compare receptor expression in 
non-obese diabetic (NOD) vs. NOD-Alox15null NK cells for each receptor or 
receptor pair]. n = 4 mice/group.

FigUre 2 | Natural killer (NK) cells express 12/15-lipoxygenase (12/15-LO). 
(a) Murine non-obese diabetic (NOD) natural killer cells express Alox15. 
mRNA levels of the Alox15 gene were tested in NK cells from NOD mice. 
These levels were compared to thioglycollate-induced peritoneal 
macrophages from 10-week-old NOD mice using the relative ratio of Alox15/
Actb. *p < 0.05 using a two-tailed Student’s t-test to compare NK vs. 
macrophages in age-matched NOD mice, n = 6 mice per group. (B) 
12-Lipoxygenase (12-LO) protein expression in human NK92 cells. The 
human NK92 cell line was tested for protein expression of 12-LO by western 
blotting. ALOX12S expression was most abundant in the cell line, which is 
the most abundant form found in human islets. Lanes 1 and 4 are nuclear 
proteins from the two pooled NK92 samples; lanes 2 and 5 are cytoplasmic 
proteins from one NK92 sample; lanes 3 and 6 are cytoplasmic proteins from 
different NK92 samples.

taBLe 1 | Donor profiles for NKp46 ligand staining.

npod 
case #

donor 
type

age aab+ diabetes 
duration (years)

insulitis

6048 ND 30 — — N
6073 ND 19.2 — — N
6151 AAb+ 30 GADA — N
6181 AAb+ 31.9 GADA — N
6197 AAb+ 22 GADA, IA2A — Y
6077 T1D 32.9 mIAA 18 N
6083 T1D 15.2 mIAA 11 N
6088 T1D 31.2 mIAA, GADA, 

IA2A, ZnT8
5 Y
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diabetes development (10, 68, 73, 81). This could be due in part to 
the type of analysis, as genomic studies do not always translate to 
protein expression. Several groups have studied NK cells in NOD 
mice. Both found that murine pancreatic NK cells exhibit a differ-
ent phenotype from those found in the spleen and lymph nodes 
and have increased proliferative capacity (56, 82); however, there 
is not a consensus on levels of IFN-γ production, as one indicates 
lower levels ex vivo, but normal levels in vivo (82). Depletion of 
NK1.1+ cells in NOD.NK1.1 congenic mice did not significantly 
affect disease onset, but the depletion protocol also removed 
NK/T  cells (82). These tissue-specific phenotypic differences 
may also alter the detectability of the NK  cells residing within 
the human pancreas using standard methodologies, but this has 
not yet been studied in humans. NOD mice have been shown to 
have a defect in IL-15 production, which contributes to NK cell 
dysfunction (68). IL-15 is required for NK cell maturation, and 
although NOD mice are not completely IL-15 deficient, they do 
show impaired NK cell development. Taken in concert with other 
systemic alterations in the NOD strain, the impact of this IL-15 
defect has not been fully explored. As mentioned previously, 
NK cells functionally adjust to the absence of IL-15 by respond-
ing to IL-12 and IL-18 in order to produce IFN-γ (83), and by 
responding to pathogenic stimuli in the presence of IL-12 (69).

tHe proinFLaMMatory Mediator, 
12-Lo, in t1d

12-Lipoxygenase [(12-LO) gene name ALOX12S in humans; 
12/15-lipoxygenase (12/15-LO), gene name Alox15 in 
mice] converts arachidonic acid to the proinflammatory 
12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) through a 
12-S-hydroperoxy-eicosatetraenoic acid (12-HPETE) inter-
mediate (84, 85). IL-12 signaling downstream of 12(S)-HETE 
production (86, 87) activates STAT4 [reviewed in Ref. (88)], 
contributing to additional inflammation. IL-12 signaling through 
STAT4 strongly activates NK cells and T cells and is also known 
to be a strong contributor to autoimmune conditions in general 
[reviewed in Refs. (89, 90)]. In addition to T1D, 12/15-LO has 
been implicated in many inflammatory processes, including 
cancers (91, 92), asthma (93), and Type 2 diabetes (94).

Several lines of evidence indicate a critical role for 12/15-LO 
in the pathogenesis of T1D. It has been shown that deletion of 
STAT4 signaling molecules, which are downstream of 12/15-
LO activation, in NOD mice protects the NOD strain from 

developing T1D (95). Subsequently, we published that the NOD 
mouse line congenic for the global Alox15 (NOD-Alox15null) 
deletion is >98% protected from developing spontaneous 
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FigUre 4 | (a) Model of natural killer (NK) cell activation leading to type 1 diabetes (T1D) in the presence of 12/15-lipoxygenase (12/15-LO) following virus infection. 
IL-12 production stimulates NK interferon-gamma (IFN-γ) response, feeds cycle of 12/15-LO activation and inflammation. (B) Model of NK cell activation in absence 
of 12/15-lipoxygenase following virus infection. NK cells respond to macrophage T1 IFN production following TLR signaling by using lytic mechanisms to rid 
virus-infected cells. Reduced inflammation prevents T1D development.
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T1D (61). This line boasts a narrow congenic region deline-
ated through extensive microsatellite mapping, and shows 
significantly reduced disease incidence (~2%). To understand 
the origin of the protection seen in these mice, wild-type NOD 
mice were tested for their expression 12/15-LO in islets, mac-
rophages, and lymphocytes. Islets and macrophages expressed 
the enzyme in appreciable amounts, while lymphocytes had 
either low or undetectable amounts (96). Additionally, Alox15null 
mice have been shown to express decreased levels of IL-12 (96) 
and IL-18 (97), which are cytokines that contribute to NK cell 
IFN-γ production (83). Since publication, this strain has been 
shipped to additional vivaria and maintained this phenotype. 
Subsequent studies of human islets have also indicated 12-LO 

expression under inflamed conditions (98, 99), which feeds into 
the detrimental cycle of inflammation.

Natural killer cell expression of 12/15-LO has not been 
extensively studied, although historical data suggest that NK cells 
expressed a member of the lipoxygenase family (100). Using 
more modern information and methods, we discovered that 
both mouse and the human NK92 cell line express 12/15-LO and 
12-LO, respectively (Figure  2). Surprisingly, this expression of 
12/15-LO in freshly isolated NOD mouse NK cells is significantly 
higher (3.3-fold more) than that seen in thioglycollate-induced 
NOD macrophages (61, 96). Since NK  cells are closely related 
to T cells, we expected that expression levels would be similar to 
those seen in T cells, which is almost undetectable (96). While 
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investigating the downstream effects of 12/15-LO expression in 
our NOD-Alox15null mice, we found that the pancreatic lymph 
node NK  cells of the NOD-Alox15null mice had an increased 
percentage of NK cells expressing activating markers (Figure 3), 
which are similar phenotypically to peripheral blood NK  cells 
from ND human controls (10). Taken together, it appears that 
activation of 12/15-LO, which leads to increased IL-12 levels (96), 
increases the inflammatory nature of the NK cells, presumably 
through the 12/15-LO pathway. We are currently testing whether 
NK cells are better able to resolve infections without contributing 
to the chronic inflammatory milieu in the absence of 12/15-LO.

Several additional lines of evidence suggest that NK cells are 
strongly influenced by 12/15-LO activity and that they have the 
capacity to play an important role in the development of diabe-
tes. As mentioned above, activation of 12/15-LO leads to IL-12 
production [reviewed in Ref. (94)], which activates the STAT4 
signaling cascade that is required for NK cells to respond func-
tionally (101–103), including production of IFN-γ (104, 105). This 
combination can exacerbate T1D, although IL-12 can also trigger 
the activation of different cytokine pathways in the absence of 
IFN-γ (106). The involvement of IL-12 in T1D pathogenesis is 
not without controversy. Deletion of the IL-12p40 subunit, which 
can heterodimerize with either IL-12p35 to form IL-12 or the p19 
subunit to form IL-23, did not protect against T1D development 
(107). This may be due to the effect of inhibiting both IL-12 and 
IL-23 generation simultaneously, although IL-23 had not been 
discovered at the time these results were published. Subsequently, 
the same group published work indicating that administration 
of exogenous IL-12 exacerbated diabetes development (106). 
Importantly, when key molecules in the 12/15-LO pathway (i.e., 
12/15-LO or STAT4), upstream of IL-12, are disrupted in NOD 
mice, diabetes is prevented (61, 95).

a neW ModeL oF t1d deVeLopMent

By bringing NK cell expression of 12/15-LO into the equation of 
diabetes initiation following virus infection, one can envision a 
model in which duodenal NK cells encounter some sort of patho-
gen- or virus-infected cells, such as Coxsackievirus-infected cells. 
As the pathogen is transmitted through the bile duct or related 
vasculature on the way to the pancreas, NK cells and macrophages 
are alerted. Under normal conditions, NK cells and macrophages 
quickly dispense of the virus, removing only the infected cells. 
In a patient susceptible to developing diabetes, the interactions 
are altered, perhaps due to activation of 12/15-LO either by the 
virus directly or due to increased stress placed upon the beta cells 
upon infection (19). This leads to abnormal interactions between 
the innate immune cells with islets expressing NK  cell ligands 
and prevents the resolution of the infection. 12/15-LO activation 
is known to feed into a vicious cycle of chronic inflammation, 
which in this instance, may be perpetuated by macrophages and 
NK cells (shown graphically in Figure 4). As mentioned earlier, in 
individuals with susceptible HLA haplotypes, or in mice (in was 
left out inadvertently) with susceptible MHC haplotypes, chronic 
inflammation signals the diabetogenic T  cells to join the fight. 
This leads to significant islet destruction. Both HLA Class I and 
II molecules strongly influence the T cell responses in humans, 

as they dictate the ability of the T cells to recognize and react to 
autoantigens during the T cell development process, as well as 
in the periphery (108). This autoreactivity can be precipitated by 
stress placed on the islets, perhaps due to inflammatory processes. 
Such stress may lead to HLA Class II-mediated recognition of 
hybrid insulin (109) or posttranslationally modified (110) pep-
tides by CD4+ T cells, thereby breaking peripheral tolerance to 
neoantigens and furthering the disease progression.

ConCLUsion

We have hypothesized that activation of NK  cell 12/15-LO (or 
12-LO, ALOX12, in humans) contributes to T1D initiation by 
affecting the normal innate immune interplay between NK cells 
and islets, which primes downstream autoimmune responses 
leading to islet destruction.

At best, our current understanding of T1D initiation is murky. 
It is appreciated that there is a role for cells of the mucosal-
associated lymphoid tissues, including NK cells, and it is quite 
likely that infectious initiation of T1D would occur through 
fecal-oral routes. However, T1D progression also requires the 
presence of macrophages, which produce 12/15-LO. Following 
the appearance of the macrophages in the pancreas of NOD 
mice, NK  cells, which also produce 12/15-LO, are found. This 
process in humans has not yet been delineated, and, therefore, it 
is unclear if NK cells are migrating from the gut to the pancreas 
following an infection, or if they are recruited by other means. 
Macrophages have both the ability to respond to virus infections 
through TLR signaling, as well as activate NK cells through IL-12 
and Type 1 IFN production. It is known that IL-12 production 
in macrophages is increased following 12/15-LO activation and 
that IL-12 signaling can feedback into the 12/15-LO signaling 
cascade (84). NK  cell 12/15-LO is then a target for activation 
following IL-12 stimulation. IL-12, in concert with IL-18, is also 
known to drive IFN-γ production by NK cells (83). Both IL-12 
and IL-18 are increased in mouse models of T1D (67, 96), as well 
as in patients with T1D (65, 66), and both are increased in the 
presence of 12/15-LO (96, 97). NK cell-derived IFN-γ could aid 
in expanding the effector T  cell population (111). Conversely, 
in the absence of 12/15-LO, normal IL-12 levels [as generated 
through TLR signaling (112)] and Type 1 IFNs from activated 
macrophages might play a stronger role in influencing pancreatic 
NK cell function, leading to upregulation of activating receptors, 
optimal cytotoxic activation, and clearance of viral pathogens 
with minimal residual inflammation.

Moving forward, it is important to understand mechanisms by 
which environmental factors might spark the activation of 12-LO 
in NK cells, macrophages, and islets, leading to the development 
of T1D. While some pieces of this puzzle remain to be placed, 
there is striking evidence that our hypothesis and model is pos-
sible. Many of the remaining questions can be answered in part by 
the use of novel global and conditional knock-outs of 12/15-LO 
on the NOD background in experiments with Coxsackievirus 
infections. By understanding the order in which these events 
occur, we will be better able to design selective therapies that 
might prevent the disease development and progression without 
resorting to global immunosuppression.

164

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Semeraro et al.  Four-Way Stop Sign in T1D

Frontiers in Endocrinology | www.frontiersin.org September 2017 | Volume 8 | Article 246

MetHods

Mice
Female NOD/ShiLtJ (NOD) mice were ordered from Jackson 
Laboratory (Bar Harbor, ME, USA); global NOD-Alox15null 
mice (bred on-site at EVMS) were housed in SPF conditions and 
treated in accordance with the AAALAC and IACUC guidelines 
at the Eastern Virginia Medical Center. Mice were euthanized by 
asphyxiation with CO2. Blood glucose levels were assessed follow-
ing euthanasia at 4 and 10 weeks of age. Spleens, lymph nodes, 
and islets were removed.

Cell isolations
Natural killer cells were isolated from spleen using cell isolation 
kits from Stem Cell Technologies (Vancouver, BC, Canada) per 
the manufacturer’s instructions. Purity of the isolated popula-
tions was assessed by flow cytometry (see below) after staining 
with antibodies against cell surface markers including anti-CD3, 
anti-CD19, anti-NKp46, and anti-CD11b. Cells were generally 
85–90% pure.

Flow Cytometry
Cells isolated from the pancreatic draining lymph nodes of 
NOD and NOD-Alox15null mice at 10 weeks of age were stained 
with antibodies against cell surface markers for T (CD3), 
B (CD19), and NK  cells (NKp46, Ly49A, Ly49G2, Ly49D, 
Ly49H). Gates were determined by using fluorescence minus 
one controls. All antibodies were purchased from Biolegend 
(San Diego, CA, USA).

qrt-pCr
mRNA was isolated from indicated cells and tissues using the 
RNeasy Kit from QIAgen (Germantown, MD, USA), and used 
to generate cDNA for use in qRT-PCR assays as described (96). 
12/15-LO expression in mouse cells was assessed by a SYBR green 
protocol, and compared to a newly available Alox15 Taqman 
probe (Thermofisher Scientific, Waltham, MA, USA). Expression 
was tested in two independent experiments using five mice per 
group for each experiment.

Western Blotting
Cell lysates from the NK92 human NK cell line was used as a 
source of proteins to measure level human 12-LO levels using 
the Odyssey LI-COR system (Lincoln, NE, USA) as previ-
ously described (61). Nuclear and cytosolic proteins were 
fractionated and tested separately. Duplicate samples were 
stained with antibodies recognizing tubulin, ALOX12S, and 
ALOX15-1.

immunofluorescence
Formalin-fixed, paraffin-embedded tissues sections from human 
pancreas tissues (obtained through nPOD) were stained as 
described with antibodies to glucagon (DAKO, Copenhagen, 
Denmark), and the NKp46 Ligand (using the NKp46 Fc chimera, 
R&D Systems, Minneapolis, MN, USA) as described previously 
(48), with a modification using tyramide amplification (Perkin 
Elmer, Waltham, MA, USA) to amplify NKp46 Fc staining. Islet 
area was determined, and the intensity of NKp46 Fc staining 
within the islet area was calculated using NIH Image J. Data are 
expressed as density of NKp46 Fc staining per islet area for ND, 
autoantibody positive, and T1D donor (n = 3 donors per group), 
which is calculated with the following equation: [Integrated den-
sity − (area of selected cell × mean fluorescence of background 
readings)]/total islet area = average fluorescence per islet.

statistical procedures
Statistically significant differences were determined by the use 
of Student’s t-test where appropriate, or ANOVA followed by 
post  hoc testing. Significant differences in all cases were deter-
mined by p < 0.05.

etHiCs stateMent

This study was carried out in accordance with the recommenda-
tions of “Principles of laboratory animal care” (NIH publication 
no. 85–23), AAALAC, and IACUC guidelines at the Eastern 
Virginia Medical Center. The protocol was approved by the 
IACUC at Eastern Virginia Medical Center. The studies of the 
nPOD human donor tissues were considered to be exempt and 
deemed “Non-Human Subjects Research” by the Eastern Virginia 
Medical School Institutional Review Board due to the nature of 
the donors. All donors are deceased and de-identified.
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Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and 
destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. 
There are many β cell proteins that are targeted by autoreactive T cells in their native state. 
However, recent studies have demonstrated that many β cell proteins are recognized 
as neo-antigens following posttranslational modification (PTM). Although modified neo- 
antigens are well-established targets of pathology in other autoimmune diseases, the 
effects of neo-antigens in T1D progression and the mechanisms by which they are gen-
erated are not well understood. We have demonstrated that PTM occurs during endo-
plasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to 
the high rate of insulin production in response to dynamic glucose sensing. In the context 
of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens 
may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress 
and protein PTM do not cause T1D in every genetically susceptible individual, suggesting 
the contribution of additional factors. Indeed, many environmental factors, such as viral 
infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the 
mechanisms by which these factors lead to disease onset remain unknown. Since these 
environmental factors also cause ER stress, exposure to these factors may enhance 
production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells 
and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological 
ER stress and the stress that is induced by environmental factors may lead to breaks 
in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This 
Hypothesis and Theory article summarizes what is currently known about ER stress and 
protein PTM in autoimmune diseases including T1D and proposes a role for environmental 
factors in breaking immune tolerance to β cell antigens through neo-antigen formation.

Keywords: type 1 diabetes, β cell, environmental factors, endoplasmic reticulum stress, posttranslation 
modification, neo-antigen, autoimmunity

introdUCtion

Type 1 diabetes (T1D) is a chronic autoimmune disease in which insulin-producing pancreatic 
islet β cells are targeted and destroyed by autoreactive immune cells. Autoimmune recognition of 
β cell antigens leads to decreased β cell mass and to the subsequent decline of insulin-mediated 
regulation of glucose levels in the blood. Eventually, too few β cells remain to meet the demand for 
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table 1 | β Cell autoantigens identified in murine and human T1D.

autoantigen species reference

Preproinsulin Mouse (10)
Human (20)

Glutamic acid decarboxylase 65 Mouse (11)
Human (17)

IGRP Mouse (12)
Human (22)

Chromogranin A Mouse (13)
Human (19)

Islet amyloid polypeptide Mouse (14)
Human (18)

Zinc transporter 8 Mouse (15)
Human (21)

78 kDa glucose-regulated protein Mouse (16)
Human (23)

IA-2, IA-2β Human (24, 25)

Islet cell autoantigen 69 Human (26)
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insulin to maintain normal blood glucose levels. This insufficient 
insulin secretion leads to chronic hyperglycemia and T1D.

Type 1 diabetes is strongly associated with a genetic predis-
position to autoimmunity that is conferred by single-nucleotide 
polymorphisms (SNPs) and gene variants found at many genetic 
loci. In particular, SNPs and variants in genes associated with 
both the innate and adaptive branches of the immune system 
cause failures of central and peripheral tolerance that eventu-
ally lead to autoimmune targeting of β cells. Of these loci, 
polymorphisms in the major histocompatibility complex (MHC) 
locus are most strongly associated with T1D onset (1–3). MHC 
proteins are crucial to central tolerance, because the antigens 
they present during T cell development in the thymus determine 
which T cells survive selection. This process directly shapes the 
mature adaptive immune repertoire. Strongly autoreactive T cells 
should be deleted upon encountering self-antigen presented by 
MHC during selection (4), but in individuals expressing MHC 
polymorphisms associated with autoimmunity, autoreactive 
T cells successfully mature and exit the thymus (5, 6). If peripheral 
tolerance mechanisms also fail, these autoreactive T cells become 
activated when they encounter β cell antigens in pancreatic 
lymph nodes. This autoimmune response destroys pancreatic  
β cells and ultimately causes T1D.

To better understand the processes by which the autoimmune 
response leads to T1D, and to identify the β cell proteins that 
are targeted by autoreactive T cells, researchers have studied the 
non-obese diabetic (NOD) mouse. These mice develop a spon-
taneous autoimmune diabetes that is similar in many ways to the 
human disease. These similarities include genetic susceptibility 
at the MHC locus and other immune-related loci, intra-islet 
infiltration of autoreactive immune cells as disease progresses, 
and ultimate β cell destruction (7–9). The β cell autoantigens 
identified using this murine model include preproinsulin (10), 
glutamic acid decarboxylase 65 (GAD65) (11), islet-specific 
glucose-6-phosphatase catalytic subunit-related protein (IGRP) 
(12), chromogranin A (CHgA) (13), islet amyloid polypeptide 
(14), zinc transporter 8 (15), and 78  kDa glucose-regulated 
protein (GRP78) (16) (Table 1). Subsequent studies confirmed 

the relevance of these autoantigens to human T1D (17–23) 
(Table  1). In addition, several additional autoantigens have 
been identified in humans but not yet confirmed in NOD mice, 
including tyrosine phosphatase-like insulinoma antigen 2 and 
IA-2β (also known as phosphatase homolog of granules from 
rat insulinomas) (24, 25), and islet cell autoantigen 69 (26) 
(Table 1).

The immunogenicity of these β cell autoantigens has long been 
attributed to failures in the mechanisms that govern immune 
tolerance to self-peptides. While this likely remains true, seminal 
studies conducted by several laboratories demonstrated that 
many of these β cell peptides undergo posttranslational modifica-
tion (PTM). These studies propose that aberrant PTM of these 
β cell proteins generates so called “neo-antigens” that are then 
recognized as non-self by immune cells (16, 19, 23, 27–32), 
hastening the break in tolerance and exacerbating immune tar-
geting and destruction of β cells. However, most of these studies 
did not explore the cellular processes that lead to PTM of these 
proteins in the context of β cell function and biology.

To address this question, our laboratory demonstrated that 
endoplasmic reticulum (ER) stress in the β cell leads to the acti-
vation of PTM enzymes and the modification of β cell proteins, 
which in turn leads to increased recognition of these β cells by 
diabetogenic T cells (32). ER stress in the β cell originates from 
various sources. For instance, the normal function of β cells  
(to produce and secrete insulin) causes ER stress (32–42).  
We demonstrated that this inherent physiological ER stress is suf-
ficient to activate PTM enzymes and to generate β cell immuno-
genicity (32) (Figure 1). In addition, many of the environmental 
factors associated with T1D onset such as viral infection (43–48), 
chemicals (32, 49–51), reactive oxygen species (ROS) (52–55), 
dysglycemia (56), and inflammation (57–59) may cause β cell ER 
stress (Figure 1). Therefore, any of these environmental factors has 
the potential to enhance autoimmune targeting of β cells through 
the generation of ER stress- and PTM-dependent neo-antigens  
(32, 60, 61). However, the mechanisms by which these factors 

Abbreviations: Aire, autoimmune regulator; APC, antigen-presenting cell; ATF6, 
activating transcription factor 6; ATP, adenosine triphosphate; Ca2+, calcium; 
CHgA, chromogranin A; DRiP, defective ribosomal product; EAE, experimental 
autoimmune encephalomyelitis; ER, endoplasmic reticulum; GAD65, glutamic 
acid decarboxylase 65; GFP, green fluorescent protein; GRP78, 78 kDa glucose-
regulated protein; IA-2, tyrosine phosphatase-like insulinoma antigen 2; IAPP, islet 
amyloid polypeptide; ICA69, islet cell autoantigen 69; IGF-2, insulin-like growth 
factor 2; IGRP, islet-specific glucose-6-phosphatase catalytic subunit-related 
protein; IFNγ, interferon gamma; IP3R, inositol 1,4,5-trisphosphate receptor; 
IRE1, inositol-requiring protein 1; JNK, c-jun N-terminal kinase; MAP, mitogen-
activated protein kinase; MHC, major histocompatibility complex; mTEC, medul-
lary thymic epithelial cell; NET, neutrophil extracellular traps; NF-κB, nuclear 
factor kappa-light-chain-enhancer of activated B cells; NOD, non-obese diabetic 
mouse; PAD2, peptidylarginine deiminase 2; PDI, protein disulfide isomerases; 
PERK, protein kinase RNA (PKR)-like ER kinase; Phogrin, phosphatase homolog 
of granules from rat insulinomas; PTM, posttranslational modification; ROS, 
reactive oxygen species; RyR, ryanodine receptor; SERCA, sarco/endoplasmic 
reticulum Ca2+ ATPases; SNP, single-nucleotide polymorphisms; T1D, type 1 
diabetes; Tgase2, tissue transglutaminase 2; UPR, unfolded protein response; 
ZnT8, zinc transporter 8.
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FigUre 1 | The roles of β cell physiology and environmental favors in the autoimmune targeting of β cells in type 1 diabetes (T1D). (a) Normal β cell secretory 
physiology causes inherent endoplasmic reticulum (ER) stress, which in turn results in a release of Ca2+ from the ER into the cytosol. We have previously 
demonstrated that ER stress and its Ca2+ efflux lead to increased activity of Ca2+-dependent posttranslational modification enzymes, formation of neo-antigens, and 
β cell immunogenicity (32). (b) In addition, many environmental factors are associated with T1D onset, such as viral infection, exposure to chemicals and reactive 
oxygen species, dysglycemia, and pancreatic inflammation. Although the mechanisms by which these factors lead to autoimmune targeting of β cells remain 
unknown, these environmental factors all cause β cell ER stress and Ca2+ efflux. Whether the ER stress and Ca2+ efflux caused by these environmental factors 
contributes to T1D onset, and whether this ER stress cooperates with physiological ER stress to generate neo-antigens, remain unknown.
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hasten T1D onset, and whether the ER stress they cause cooperates 
with that caused by β cell physiology, remain unknown (Figure 1).

Here, we review what is known about β cell ER stress, neo-
antigen formation, and the progression to pathology in T1D.  
We also review the role that the environmental factors associ-
ated with T1D may play in exacerbating β cell ER stress. Finally,  
we discuss the evidence supporting our novel hypothesis that 
environmental factors converge with β cell physiology to increase 
ER stress above a putative threshold. According to our “threshold 
hypothesis,” ER stress must be sufficiently severe or prolonged 
to allow for the generation of PTM-dependent neo-antigens.  
We hypothesize that the convergence between β cell physiology 
and exposure to environmental factors increases ER stress above 
this threshold, leading to neo-antigen formation, β cell immuno-
genicity, and ultimately to the onset of T1D.

er stress and tHe UnFolded 
protein response (Upr)

The ER is primarily responsible for the proper folding and 
modification of proteins that are membrane bound or destined 
for secretion. Therefore, the ER lumen contains the molecular 
chaperones and the environment necessary for protein folding 
and PTM, including sufficient levels of adenosine triphosphate, 
an oxidizing environment to support disulfide bond forma-
tion, and millimolar concentrations of calcium (Ca2+) (62). 
Proteins that are folded and modified properly exit the ER and 
are shuttled to their intended intra- or extracellular locations. 
However, proteins that become misfolded cannot exit the ER 

lumen. The accumulation of misfolded or aberrantly modified 
proteins causes ER stress.

Endoplasmic reticulum stress induces the UPR, which func-
tions in two main modes: the adaptive UPR and the terminal 
UPR (63, 64). The adaptive UPR occurs early in ER stress and 
functions largely to alleviate ER stress and restore normal cel-
lular homeostasis through three signaling cascades, each of 
which begins with the activation of protein sensors of stress in 
the ER membrane (65). First, protein kinase RNA (PKR)-like ER 
kinase (PERK) activates a signaling cascade that inhibits mRNA 
translation and reduces the protein burden in the lumen of the ER  
(66, 67). Second, activating transcription factor 6 signaling 
leads to increased production of new molecular chaperones to 
aid with the folding of accumulated misfolded proteins (68). 
And third, the signaling pathway initiated by inositol-requiring 
protein 1 increases expression of chaperones for protein folding 
and of proteins involved in lipid synthesis to increase ER volume 
(69, 70). Together, these branches of the UPR work to facilitate 
the proper folding of proteins that have accumulated, and also 
reduce the entrance of additional non-chaperone proteins into 
the ER lumen. In these ways, the adaptive UPR acts to allow the 
ER to return to normal homeostasis.

Although the adaptive UPR aims to protect the cell from the 
negative effects of ER stress, ER dysfunction that is excessive 
or extended may overcome these cytoprotective mechanisms. 
Under these conditions, the terminal UPR activates proapoptotic 
processes (71–73) leading to death of the affected cell. However, 
long before apoptosis pathways are activated, even temporary ER 
stress and the adaptive UPR may have important consequences 
for cellular function and physiology.
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FigUre 2 | Rising blood glucose increases misfolding of proinsulin and endoplasmic reticulum (ER) stress levels. When blood glucose levels are low, preproinsulin  
is translated, properly folded and modified in the ER, and secreted as mature insulin into the extracellular space. When blood glucose levels rise, β cells increase 
production of preproinsulin, flooding the ER lumen with one million molecules per minute that require folding and disulfide bond formation. This increased protein 
burden in the ER leads to misfolding of proteins and aberrant posttranslational modification, which further exacerbates ER dysfunction and activates the unfolded 
protein response (UPR).
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All cells undergo periods of increased protein production, 
which increases the ER burden, leading to misfolding or aberrant 
modification of nascent proteins, and ultimately to ER stress and 
UPR activation. However, secretory cells, due to their normal 
physiology, are uniquely susceptible to ER stress. These cells 
must produce not only the proteins necessary for normal cellular 
maintenance, but also the proteins to be secreted and the proteins 
that comprise the secretory pathway itself. Even with a larger ER 
volume and greater numbers of chaperones to account for this 
increased demand (74), the secretory function of these cells leads 
to significantly increased ER burden and stress.

Like other secretory cells, β cells undergo naturally high 
levels of ER stress due to their normal physiological role of 
insulin production and secretion (32–42). Indeed, increased 
ER stress, and its consequences for protein folding, occurs as a 
direct consequence of glucose sensing (37, 38). In response to 
increased glucose concentrations, β cells upregulate the transla-
tion of preproinsulin by 50-fold, reaching a production rate of one 
million molecules of preproinsulin per minute (75). These one 
million molecules of preproinsulin inundate the ER lumen for 
folding and the formation of three disulfide bonds per molecule, 
causing tremendous ER stress. Under these conditions, many of 
the insulin molecules produced by β cells become misfolded or 
incorrectly modified (75) (Figure 2). In addition to this inherent 
ER stress due to normal physiology, β cell ER stress may rise due 
to exposure to the environmental factors that are associated with 
T1D onset (32, 43–61) (Figure 1). Under these circumstances,  
β cell ER stress may rise above physiological levels.

Heightened β cell ER stress does not necessarily activate the 
terminal UPR or suggest β cell exhaustion or impending death 
as observed in some models (63, 76–80). Rather, β cells exhibit 
naturally high ER stress very early and activate the adaptive UPR 
long before β cell death. In a study using a reporter mouse in 
which green fluorescent protein is expressed with the activation 
of the UPR, the pancreas exhibited the highest ER stress of all 
tissues examined, and did so as early as day 16 of life (81). In spite 
of the observed ER stress and UPR activation, these mice (on the 
C57Bl/6 background) never succumbed to loss of β cell mass and 
diabetes (81). These data confirm that high levels of β cell ER 
stress does not necessarily activate the terminal UPR and lead 
to β cell failure and death. Indeed, the β cells in most individuals 
resolve ER stress through the proper function of the adaptive 
UPR and therefore maintain healthy and functional β cell mass 
throughout their lifetimes. Therefore, β cell death is not the only 
consequence of ER stress. We hypothesize that lower and more 
transient ER stress, and the activation of the adaptive UPR, may 
have consequences for β cell function and for the autoimmune 
targeting of β cells much earlier.

er stress aFFeCts Ca2+-dependent 
CellUlar FUnCtions

In addition to its role in the folding and modification of new 
proteins, the ER contains the largest store of intracellular Ca2+ 
and is an important organelle for regulating Ca2+ concentrations, 
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and therefore Ca2+-dependent processes, throughout the cell 
(82). One consequence of ER stress is the release of Ca2+ from 
the ER lumen into the cytosol. This Ca2+ efflux has important 
consequences for cellular physiology.

In the ER, millimolar concentrations of Ca2+ are necessary for 
proper protein folding and modification (62). Indeed, molecular 
chaperones that assist in protein folding and protein disulfide 
isomerases that facilitate the formation of disulfide bonds depend 
on these high Ca2+ concentrations (83, 84). These high concen-
trations of Ca2+ are maintained by sarco/endoplasmic reticulum 
Ca2+ ATPases (SERCA) pumps in the ER membrane that actively 
transport Ca2+ from the cytosol into the ER. When Ca2+ leaves 
the ER lumen during ER stress, the function of these proteins also 
decreases, further inhibiting protein folding and modification 
and contributing to greater ER dysfunction (85).

In the cytosol, Ca2+ is required for the regulation of normal cel-
lular processes such as metabolism, vesicular trafficking, protein 
secretion, mRNA transcription, and apoptosis (86). To achieve 
the necessary cytosolic concentrations, Ca2+ is released from the 
ER by the ryanodine receptor and inositol 1,4,5-trisphosphate 
receptor channels. Under conditions of ER stress, the efflux of 
Ca2+ from the ER lumen increases cytosolic concentrations above 
normal physiological levels. This increased cytosolic Ca2+ can 
be deleterious for cellular function. For example, increased 
cytosolic Ca2+ can initiate apoptosis through activation of 
caspase-dependent cell death pathways (87, 88) or mitochondria-
dependent pathways (89–92).

It is clear, then, that ER stress greatly affects Ca2+-dependent 
cellular functions. While the adaptive UPR works to relieve ER 
stress, cytosolic Ca2+ still increases before ER homeostasis is 
regained. β cells, which are particularly susceptible to ER stress, 
are therefore also prone to the dysregulation of cellular processes 
following even a temporary efflux of Ca2+ from the ER. In addi-
tion, the environmental factors associated with T1D onset  also 
lead to increased cytosolic Ca2+ (32, 43–61) (Figure 1). Therefore, 
we propose that the combination of physiological ER stress and 
that derived from environmental factors, even if transient, may 
have consequences for β cell health and function.

er stress aCtiVates CytosoliC  
ptM enZyMes

Transient ER stress and increased cytosolic Ca2+ concentrations 
can activate cytosolic Ca2+-dependent enzymes, including those 
that mediate PTM. Activation of these PTM enzymes can have 
significant implications for proteins being folded in the ER.  
In particular, two such PTM enzymes reside in the cytosol and 
are activated during the ER stress Ca2+ flux: tissue transglutami-
nase 2 (Tgase2) and peptidylarginine deiminase 2 (PAD2).

Tissue transglutaminase 2 is ubiquitously expressed and 
resides in the cytosol (93). When activated, Tgase2 translocates 
to several intracellular compartments (94), including the ER 
(95–97) and secretory granules (98) to modify proteins through 
two mechanisms (99): first, Tgase2 crosslinks proteins through 
the formation of ε(γ-glutamyl) isopeptide bonds between 
glu tamine and lysine residues, and second, Tgase2 mediates 

the deamidation of glutamine residues. Tgase2 plays important 
roles in the regulation of apoptosis (100, 101), gene expression  
(93, 102, 103), and cellular adhesion and wound healing (104–107).  
Of relevance to T1D, Tgase2 is expressed in and functions in  
β cells (32, 60).

Of the five mammalian PAD isoforms, PAD2 is the most widely 
expressed and is the isoform expressed in the pancreas (108). 
PAD2 also resides in the cytosol (109), and, similar to Tgase2, 
activated PAD2 is recruited to various subcellular compartments 
for the modification of proteins (110). PAD2 mediates the conver-
sion of arginine to citrulline. This amino acid conversion alters the 
overall charge and hydrophobicity of the protein (111), causing 
changes in protein folding and conformation (112). PAD2 plays 
roles in many cellular functions, including the negative regula-
tion of nuclear factor kappa-light-chain-enhancer of activated 
B cells activation (113), cytoskeleton disassembly (114), and in 
the formation of neutrophil extracellular traps (115).

While Ca2+-dependent activation of these enzymes is neces-
sary for normal cellular function, these enzymes also contribute 
to pathology in many diseases.

ptM generates neo-antigens  
in aUtoiMMUne diseases

Protein PTM is necessary for cellular viability and function. 
However, autoantigens in many different autoimmune diseases 
such as celiac disease (116), collagen-induced arthritis (117), 
multiple sclerosis/experimental autoimmune encephalomyelitis 
(118–121), rheumatoid arthritis (122–127), and systemic lupus 
erythematosus (128–131) contain PTM, suggesting that these 
modifications may contribute to breaks in tolerance that exac-
erbate disease.

Central tolerance is established during T  cell development 
in the thymus. In the thymus, medullary thymic epithelial cells 
(mTECs) express peptides normally found in peripheral tissues 
through the function of autoimmune regulator (132–134). When 
these peptides are presented to developing T cells in the context 
of MHC molecules, T  cells that respond too strongly to these 
self-peptides are deleted and are thus absent from the mature 
T cell population (4, 135–137). However, if self-proteins undergo 
PTM in peripheral tissues, as in the autoimmune diseases listed 
above, these proteins may be processed and presented differ-
ently by peripheral antigen-presenting cells (APCs) than by 
the mTECs (138). If such modified epitopes were not expressed 
and presented by mTECs, T cells that recognize these modified 
epitopes escape negative selection and are present in circulation 
as mature T  cells. When these T  cells encounter these neo-
antigens in peripheral tissues, they become activated and lead 
the autoimmune targeting of peripheral tissues.

As with all peripheral tissues, peptides from β cell proteins, 
including insulin and insulin-like growth factor 2, are presented 
by mTECs to developing T cells in the thymus (5, 6, 139–142). 
However, the presence of T cells in the periphery that recognize 
islet proteins and target β cells suggests the failure of crucial 
tolerance mechanisms. This failure in central tolerance mecha-
nisms may be explained by the growing body of literature that 
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table 2 | Posttranslational modification (PTM)-mediated neo-antigen formation 
in type 1 diabetes.

autoantigen ptM reference

Proinsulin Oxidation (28, 143)
Formation of hybrid insulin 
peptides

(23, 144, 145)

Chromogranin A (WE14) Crosslinking/isopeptide bond (19, 29)
Preproinsulin Deamidation (30)
Islet cell autoantigen 69 Deamidation (30)
Zinc transporter 8 Deamidation (30)
Phosphatase homolog of 
granules from rat insulinomas

Deamidation (30)

IA-2 Deamidation (30)
IGRP Deamidation (30)
Glutamic acid decarboxylase 65 Citrullination (31)

Deamidation (30, 31)
78 kDa glucose-regulated 
protein

Citrullination (16, 23)

Insulin Defective ribosomal product (146)

FigUre 3 | Endoplasmic reticulum (ER) stress increases the immunogenicity 
of several β cell autoantigens. The immunogenicity of NIT-1 insulinoma cells 
treated with 5 µM thapsigargin or control for 1 h was assessed by T cell 
assay. Briefly, T cells (2 × 104), NOD.scid splenocytes as antigen-presenting 
cells (4 × 105), and NIT-1 cells as antigen (1 × 103) were combined in 200 µl 
in triplicate in 96-well flat-bottom tissue culture plates and incubated at 37°C 
for 72 h. TH1 effector function was determined by measuring interferon 
gamma (IFNγ) secretion by enzyme-linked immunosorbent assay. Data are 
mean IFNγ secretion ± SD and are from one representative experiment of 
three independent experiments. For all specificities examined, NIT-1 cells 
undergoing ER stress elicited higher effector responses from the T cells, 
suggesting that ER stress contributes to the modification and greater 
immunogenicity of each of these proteins.
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abnormal PTM increases the immunogenicity of β cell peptides 
in both murine and human models of T1D (Table  2). These 
studies have demonstrated that some β cell proteins undergo 
various modifications including oxidation (28, 143), Tgase2-
mediated crosslinking by isopeptide bond (19, 29), Tgase2-
mediated deamidation (30–32), PAD2-mediated citrullination 
(16, 23, 31), the formation of hybrid peptides (144, 145), and the 
formation of a defective ribosomal insulin gene product (146). 
Furthermore, the neo-antigens formed by these PTM elicit 
stronger immune responses than the native proteins (16, 19,  
23, 28–31, 143, 145), suggesting an important role for these 
neo-antigens in precipitating disease onset. These findings have 
been of great importance to the understanding of T1D patho-
genesis, because these studies identified novel autoantigens that 
are targeted in T1D. However, the mechanisms by which these 
neo-antigens arise in β cells was not examined.

β Cell neo-antigens arise dUring 
er stress

To begin to elucidate how PTM neo-antigens might arise in β cells, 
our laboratory examined the consequences of β cell ER stress for  
β cell immunogenicity, since β cells inherently undergo high lev-
els of ER stress (32–42, 60, 81). To do so, we used a model system 
of β cell recognition by diabetogenic BDC2.5 CD4+ T cells. These 
particular T cells were chosen because they recognize a Tgase2-
modified peptide of CHgA (29) and secrete interferon gamma 
(IFNγ) when they encounter their PTM-dependent antigen.

Our studies demonstrated that, in primary murine islets, ER 
stress induced by thapsigargin [a widely accepted chemical inducer 
of ER stress (96, 147, 148)] contributed to heightened cytosolic 
Ca2+ concentrations, increased Tgase2 activity, and increased β 
cell immunogenicity (32). In fact, murine islets undergoing ER 
stress elicited greater IFNγ secretion from BDC2.5 T cells (32) 
and by all other β cell antigen-specific T cells examined (Figure 3), 
suggesting a role for Ca2+-dependent PTM in immunogenicity of 
many other β cell antigens. This increased immunogenicity was 
dependent upon both Ca2+ and Tgase2-mediated PTM, since 

chelation of cytosolic Ca2+ or decreased expression of Tgase2 
reduced this consequence of ER stress (32). These data show that 
β cell ER stress leads to β cell immunogenicity through Ca2+-
dependent PTM of endogenous proteins.

Since ER stress is inherent to β cell physiology and function 
(32–42, 60), we hypothesized that ER stress induced by normal 
physiology [e.g., dynamic glucose sensing and secretory function 
(33–42, 60)] may be sufficient to cause Ca2+- and PTM-dependent 
β cell immunogenicity. Indeed, a murine insulinoma (NIT-1) 
that exhibited low ER stress and immunogenicity was exposed 
to physiological milieu by transplantation into NOD.scid mice. 
After transplant, these cells exhibited insulin secretion, ER stress, 
Tgase2 activity, and immunogenicity (32). These data confirm 
that β cell physiology and insulin secretion contributes to the 
autoimmune targeting of β cells (60).

Many groups have demonstrated an increase in β cell ER stress 
long before β cell death and T1D onset (79, 81, 149, 150). In fact, 
relief of ER stress has been proposed as therapeutic opportunity 
for preventing β cell death and maintaining euglycemia (63, 80, 
151, 152). However, most researchers conclude that ER stress 
leads to β cell death through the terminal UPR and activation 
of apoptosis pathways (76, 77, 80). Ours was the first study to 
demonstrate that normal, physiological β cell ER stress and 
the adaptive UPR contribute to T1D through the formation of  
β cell neo-antigens. In doing so, we became the first to propose 
a mechanism by which β cell neo-antigens (Table 2) may occur 
(Figure 4).
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FigUre 4 | Endoplasmic reticulum (ER) stress increases the activation of Ca2+-dependent posttranslational modification (PTM) enzymes and the formation of 
PTM-dependent β cell neo-antigens. (1) Under homeostatic conditions, proteins are translated, folded, and packaged into secretory granules. Cytosolic Ca2+ and 
PTM enzyme activity remain low. (2) During β cell ER stress, Ca2+ stores are released from the ER, increasing cytosolic Ca2+. (3) Increased Ca2+ concentrations 
activated Ca2+-dependent enzymes tissue transglutaminase 2 (Tgase2) and peptidylarginine deiminase 2 (PAD2). (4) Active PTM enzymes modify nascent proteins.  
If presented to autoreactive T cells by antigen-presenting cell, modified β cell proteins break tolerance and facilitate immune recognition of β cells.
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β Cell iMMUnogeniCity reQUires  
a tHresHold oF er stress

Endoplasmic reticulum stress occurs along a gradient. The bur-
den of unfolded proteins in the ER lumen can vary from mild 
to severe, resulting in varying degrees of ER dysfunction and 
stress. This variance in levels of ER stress has important implica-
tions for the cellular consequences of ER stress. As discussed 
earlier, the strength and duration of ER stress-induced UPR 
signaling is a major factor in determining whether the adaptive 
UPR or terminal UPR is initiated (63, 64). One explanation 
may be that the severity and duration of ER stress affects the 
strength of the Ca2+ efflux from the ER lumen and determines 
whether cytosolic Ca2+ concentrations cross a putative threshold. 
Differ ences in cytosolic Ca2+ concentrations may significantly 
alter PTM enzyme activity, neo-antigen generation, and β cell 
immunogenicity.

This “threshold hypothesis” is further supported by literature 
that demonstrates that Tgase2 and PAD2 remain largely inactive 
in the cytosol, and activation requires significantly increased 
concentrations of cytosolic Ca2+. In fact, the activation of both 
enzymes requires Ca2+ concentrations up to 100-fold higher than 
what is necessary for normal cellular physiology and function. 
Therefore, these enzymes generally become activated only under 
conditions of cellular distress or dysfunction, such as ER stress 
(96, 97, 108, 109, 147, 153, 154). Since these PTM enzymes 
require particular levels of cytosolic Ca2+ to become activated,  

it follows that a particular level of ER stress must be achieved 
before PTM-dependent neo-antigen formation can occur.

Previous work in our laboratory examined whether varying 
levels of ER stress lead to different degrees of β cell PTM-dependent 
immunogenicity. NIT-1 cells were incubated with increasing 
doses of thapsigargin, which increases ER stress and cytosolic 
Ca2+ by inhibiting the SERCA pumps that transport Ca2+ from the 
cytosol into the ER. As expected, thapsigargin induced ER stress 
and UPR activity in a dose-dependent manner (Figure 5A). The 
immunogenicity of these cells was examined by the BDC2.5 
T cell clone, and T cell effector function was measured by IFNγ as 
previously described (32). Only the highest dose of thapsigargin 
elicited detectable IFNγ secretion from the T cells (Figure 5B). 
Therefore, although lower doses of thapsigargin induced ER 
stress, the stress (and consequences thereof) at these lower doses 
was not sufficient to result in β cell immunogenicity.

Tunicamycin is another chemical inducer of ER stress that 
blocks the initial steps of glycoprotein synthesis in the ER and thus 
increases the burden of unfolded proteins in the ER lumen (148). 
Increasing doses of tunicamycin increased ER stress in NIT-1 
cells (Figure 6A), but to lesser degrees compared with thapsigar-
gin (Figure 5A). Also, as with lower doses of thapsigargin, the 
lower ER stress induced by tunicamycin was not sufficient to elicit 
effector responses from BDC2.5 T  cells (Figure  6B). Together, 
these data serve as further evidence that a particular threshold 
of ER stress must be reached to achieve PTM-dependent β cell 
immunogenicity.
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FigUre 5 | Endoplasmic reticulum stress must increase above a threshold to induce posttranslational modification-dependent immunogenicity. (a) NIT-1 insulinoma 
cells were incubated with increasing concentrations of thapsigargin for 1 h and washed extensively. Cell lysates were analyzed for the phosphorylation of UPR 
proteins—protein kinase RNA (PKR)-like ER kinase (PERK) and eIF2α. Data are representative of two independent experiments. Densitometry data are 
phosphorylation levels normalized by total protein and relative to that in control (0 µM) treated cells. (b) The immunogenicity of NIT-1 cells treated with increasing 
concentrations of thapsigargin for 1 h was measured by BDC2.5 T cell assay. Data are mean interferon gamma (IFNγ) secretion ± SEM. *p < 0.05.
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enVironMental FaCtors assoCiated 
WitH t1d indUCe HeigHtened β Cell 
er stress

Every pancreas undergoes ER stress (32, 81), but this stress does 
not lead to T1D in every individual. In fact, even in those with 
a genetic predisposition to autoimmunity, T1D may never occur 

(155) or may occur much later than expected (156, 157). These 
observations suggest that environmental factors may precipitate 
disease onset. Indeed, T1D onset is associated with several 
environmental factors such as viral infection (43–48), chemicals 
(49–51), ROS (52–55), dysglycemia (56), and inflammation 
(57–59). Although these environmental factors are thought 
to exacerbate the autoimmune targeting of β cells and hasten 
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FigUre 6 | Endoplasmic reticulum stress below a threshold does not induce posttranslational modification-dependent immunogenicity. (a) NIT-1 insulinoma cells 
were incubated with increasing concentrations of tunicamycin for 4 h and washed extensively. Cell lysates were analyzed for the phosphorylation of UPR  
proteins—protein kinase RNA (PKR)-like ER kinase (PERK) and eIF2α. Data are representative of two independent experiments. Densitometry data are 
phosphorylation levels normalized by total protein and relative to that in control (0 µg/ml) treated cells. (b) The immunogenicity of NIT-1 cells treated with  
increasing concentrations of tunicamycin for 4 h was measured by BDC2.5 T cell assay. Data are mean interferon gamma (IFNγ) secretion ± SEM.
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FigUre 7 | Model. (a) Normal β cell secretory physiology causes inherent endoplasmic reticulum (ER) stress, which in turn results in a release of Ca2+ from the  
ER into the cytosol. This ER stress and Ca2+ efflux lead to increased activity of Ca2+-dependent posttranslational modification (PTM) enzymes, formation of 
neo-antigens, and β cell immunogenicity (32). However, neo-antigen formation and immunogenicity due to inherent physiological ER stress may not be enough to 
cause type 1 diabetes (T1D). (b) The environmental factors associated with T1D onset cause β cell ER stress and Ca2+ efflux. The ER stress induced by these 
environmental factors cooperates with the physiological ER stress to raise cytosolic Ca2+ concentrations above a threshold to activate PTM enzymes, generate 
neo-antigens, cause autoimmune targeting of β cells, and precipitate T1D onset.
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disease onset, the mechanisms by which these environmental 
factors advance pathology, and whether these factors contribute 
to PTM-mediated neo-antigen formation, remain unknown 
(Figure 1).

As discussed earlier, β cell ER stress and Ca2+ flux into the 
cytosol must cross a threshold before Tgase2 and PAD2 can 
modify β cell proteins to generate neo-antigens and elicit effec-
tor responses from diabetogenic T cells. While β cell physiology 
causes ER stress (32–42) and this ER stress can, under some cir-
cumstances generate neo-antigens and immunogenicity (32, 60)  
(Figure  1), the discrepancy in disease onset in those geneti-
cally predisposed to autoimmunity (155–157) suggests that 
this physiological stress alone may not be sufficient to generate 
neo-antigens. Interestingly, each of the environmental factors 
associated with T1D also lead to an increase in β cell ER stress 
and cytosolic Ca2+.

Coxsackie Virus
Coxsackie virus infection is associated with T1D onset. Recent 
onset T1D patients have viral RNA in their pancreas and higher 
titers of antibodies against Coxsackie virus (158, 159). Also, 
Coxsackie virus infection accelerates disease onset in NOD 
mice with established insulitis (46, 160–162), suggesting a role 
for Coxsackie virus in breaking immune tolerance. Studies with 
BDC2.5 TCR transgenic NOD mice attributed this acceleration 
to activation of bystander immune cells (46). These data provide 
a strong link between pancreatic viral infection and broken 
tolerance. Since BDC2.5 T cells do not recognize a viral protein 
(29) but rather modified CHgA, activation of BDC2.5 T cells in 
these mice suggests that Coxsackie virus infection may lead to 
PTM of endogenous β cell proteins and neo-antigen formation. 
Indeed, viruses cause neo-antigen generation and exacerbate 
pathology in other models of autoimmunity (163).

Moreover, Coxsackie virus protein 2B disrupts the ER mem-
brane (164–166), releasing Ca2+ from the ER into the cytosol 
and causing ER stress. We have shown that β cell ER stress 
contributes to neo-antigen formation and immunogenicity (32). 
Therefore, it is plausible that Coxsackie virus may raise β cell ER 
stress and cytosolic Ca2+ concentrations above the levels attrib-
uted to normal physiology, increasing neo-antigen production 
through Ca2+-dependent PTM.

exposure to Chemicals
Exposure of β cells to chemicals such as alloxan and streptozo-
tocin cause the loss of insulin secretion and β cell death (167). 
For each of these chemicals, β cells experience DNA damage, 
protein ADP ribosylation (168), and ROS generation (169–171), 
all of which ultimately lead to apoptosis and significant loss of 
β cell death. However, before apoptosis pathways are activated, 
ADP ribosylation and ROS cause misfolding and accumulation 
of nascent proteins in the ER lumen. As discussed earlier, the 
accumulation of misfolded and abnormally modified proteins 
leads to ER stress and release of Ca2+ into the cytosol (172, 173).

reactive oxygen species
Reactive oxygen species, which have the potential to cause irre-
versible damage to cellular proteins and organelles (174–176), are 
generated both during normal β cell function (52) and when β cells 
are exposed to other insults such as Coxsackie virus (177–179). 
Although antioxidant defenses work to prevent ROS-mediated 
damage, β cell mitochondria express very low levels of antioxidant 
enzymes (180–182), making these cells particularly susceptible 
to ROS-mediated damage. When ROS exceeds the capacity of 
the cell to scavenge these species, oxidative stress leads to β cell 
death (183, 184) and ultimately to T1D (52, 54, 180, 185–190). 
However, before the loss of β cell mass, ROS leads to oxidative 
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modification of proteins and lipids (191), and to the release of 
Ca2+ from the ER into the cytosol (192–194). Therefore, ER stress 
and Ca2+ efflux caused by ROS may lead to protein PTM and the 
formation for neo-antigens in β cells.

dysglycemia
As discussed earlier, increased glucose sensing by β cells during 
times of dysglycemia increases insulin production and secretion 
(75). Normal insulin secretion raises β cell ER stress (32–42), 
but when blood glucose rises too high, or the hyperglycemia is 
too prolonged, so called “glucotoxicity” further enhances β cell 
ER stress. At later stages of T1D, ER stress induced by glucotox-
icity is thought to be a major contributor to β cell death through 
the terminal UPR. However, fluctuation in blood glucose levels 
as β cell mass is gradually lost may also induce the adaptive 
UPR. In this way, glucotoxicity may, long before β cell death, 
contribute to Ca2+- and PTM-dependent neo-antigen forma-
tion and therefore to autoimmune targeting of β cells.

inflammation
As autoreactive immune cells infiltrate the islets to target their 
antigens, these activated immune cells secrete pro-inflammatory 
cytokines. In addition, β cells themselves release additional pro- 
inflammatory cytokines during viral infection (195), and cellular 
stress (196). These inflammatory mediators initiate signaling 
cascades in the β cells. For example, pro-inflammatory cytokines 
activate NF-kB in β cells, which inhibits the expression of 
other transcription factors necessary for normal β cell function 
(197). Also, inflammatory cytokines activate c-jun N-terminal 
mitogen-activated protein kinase signaling, which is associated 
with ER stress and Ca2+ release (198, 199). Finally, inflammatory 
cytokines reduce SERCA expression, effectively preventing the 
return of Ca2+ from the cytosol to the ER and further exacer-
bating ER stress (197, 200). Therefore, pancreatic inflammation  
may lead to β cell neo-antigen formation and exacerbate auto-
immune targeting of β cells.

Therefore, we hypothesize that the ER stress generated by these 
environmental factors may converge with the stress caused by 
normal physiology to allow cytosolic Ca2+ to cross the necessary 
threshold to activate PTM enzymes and generate neo-antigens 
long before the terminal UPR initiates apoptosis pathways. In this 
way, ER stress-mediated neo-antigen formation may be a com-
mon mechanism by which these environmental factors augment 
autoimmune targeting of β cells and hasten T1D onset.

ConClUsion

Type 1 diabetes is caused by the autoimmune targeting and 
destruction of pancreatic β cells. The autoreactive immune cells 
target many β cell proteins (Table 1) when central and peripheral 
tolerance fail. The mechanisms by which tolerance fails are still 
being elucidated, but a growing body of literature demonstrates 
that β cell peptides modified by Ca2+-dependent PTM elicit 
stronger responses from autoreactive T  cells than their native 
counterparts (16, 19, 23, 28–31, 143, 145). However, the mecha-
nisms by which these β cell peptides become modified during  
β cell physiology is only beginning to be explored (32, 60).

We have previously demonstrated that β cell ER stress leads 
to PTM-dependent immunogenicity (32). Although this ER 
stress may be derived from the natural secretory physiology of 
the β cell (32–42), inherent, physiological ER stress alone may 
not sufficient to precipitate T1D onset even in those individuals 
harboring a genetic predisposition to autoimmunity (155–157). 
We therefore propose a model in which β cell ER stress leads to 
neo-antigen formation and immunogenicity of β cells when this 
ER stress reaches a critical threshold. The ER stress induced by 
the environmental factors associated with T1D may combine 
with physiological ER stress to raise cytosolic Ca2+ above this 
putative threshold, allowing for the activation of PTM enzymes 
and the generation of PTM-dependent neo-antigens (Figure 7). 
This convergence of with physiological stress may explain how 
environmental factors hasten T1D onset.

It is important to note that, although physiological and 
environmental factor-derived ER stress likely occurs in the  
β cells of all individuals, autoimmunity predominantly occurs 
in the context of genetic predisposition to autoimmunity. For 
patients who express the MHC molecules that predispose them 
to autoimmunity, β cell neo-antigens generated during ER 
stress are presented by these MHC molecules and activate the 
T cells that escaped negative selection during development. The 
activation of these T cells ultimately leads to the autoimmune 
destruction of the β cells and to T1D onset. However, in those 
without this MHC predisposition, β cell ER stress may still result 
in the modification of β cell proteins without leading to disease. 
In these patients, these neo-antigens may not be presented by 
APC or may not be recognized if autoreactive T cells are cor-
rectly deleted from the repertoire during negative selection 
in the thymus. Therefore, β cell ER stress and the subsequent 
neo-antigen formation likely still require genetic predisposition 
to autoimmunity to lead to T1D.

Our model proposes a “threshold hypothesis” according to 
which cytosolic Ca2+ must cross a particular threshold to allow  
for the generation of PTM-dependent β cell neo-antigens. 
Additional studies are necessary to confirm the cooperation 
between physiological ER stress and that derived from exposure 
to environmental factors to reach this threshold. These studies 
will further advance our understanding both of how neo-antigens 
are formed in the β cell and the mechanisms by which environ-
mental factors hasten disease onset. Such studies may reveal novel 
opportunities for therapeutic intervention to prevent or delay 
T1D onset in at-risk patients.

Materials and MetHods

Mice
Mice were bred and housed under specific pathogen-free con-
ditions at Rangos Research Center of Children’s Hospital of 
Pittsburgh of University of Pittsburgh Medical Center. All experi-
ments were approved by Institutional Animal Care and Use Com-
mittee of the University of Pittsburgh.

Cell Culture
The NIT-1 insulinoma cell line was a gift from Clayton Mathews 
(University of Florida) and were maintained at 37°C in a 5% CO2 
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humid air incubator, in DMEM (Invitrogen) supplemented with 
10% heat-inactivated fetal bovine serum (Mediatech), 10  mM 
HEPES buffer (Gibco), 4 mM l-glutamine (Gibco), 200 µM non-
essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 
61.5  µM β-mercaptoethanol (Sigma-Aldrich), and 100  µg/ml 
gentamicin (Gibco).

CD4+, MHC class II-restricted BDC2.5, BDC5.2.9, PD12.4.4, 
and BDC6.9 T cells were a gift from Kathryn Haskins (University 
of Colorado). T  cell clones were maintained in supplemented 
DMEM as described previously (32, 201–203).

OT-II splenocytes were harvested and prepared in supple-
mented DMEM as described previously (204–208).

induction of er stress
NIT-1 cells were cultured in 25 cm2 tissue culture flasks (Greiner 
Bio-One) with various concentrations of thapsigargin or control 
for 1 h at 37°C or with various concentrations of tunicamycin 
or control for 4 h at 37°C. Before downstream analysis, the cells 
were washed extensively (50,000× original volume) to remove 
residual thapsigargin or tunicamycin, and removed from the 
flask with 0.05% trypsin–EDTA (Gibco).

t Cell assays
T cells (2 ×  104), NOD.scid splenocytes as APC (4 ×  105), and 
antigen (1 × 103 dispersed NIT-1 cells) were combined in 200 µl 
supplemented DMEM in triplicate in 96-well flat-bottom tissue 
culture plates (Greiner Bio-One) and incubated at 37°C for 72 h. 
TH1 effector function was determined by measuring IFNγ secre-
tion by enzyme-linked immunosorbent assay (ELISA).

splenocyte assay
OT-II splenocytes (1  ×  106) were combined with antigen 
(1 × 103 dispersed NIT-1 cells) in 200 µl supplemented DMEM 
in triplicate in 96-well flat-bottom tissue culture plates (Greiner 
Bio-One) and incubated at 37°C for 72 h as described previously 
(204–208). TH1 effector function was determined by measuring 
IFNγ secretion by ELISA.

enzyme-linked immunosorbent assay
Interferon gamma from T cell assays was measured with murine 
IFNγ ELISA antibody pairs (BD Biosciences) as described previ-
ously (32, 202–204, 208). Absorbance was measured at 450 nm 
with a SpectraMax M2 microplate reader (Molecular Devices). 
Data were analyzed with SoftMax Pro (Molecular Devices).

preparation of Cell lysates
Cells were lysed by sonication in 50 mM Tris pH 8.0, 137 mM 
NaCl, 10% glycerol, 1% NP-40, 1 mM NaF, 10 µg/ml leupeptin, 
10  µg/ml aprotinin, 2  mM Na3VO4, and 1  mM PMSF. Protein 

concentration was determined by bicinchoninic acid protein 
assay (Thermo Fisher Scientific).

Western blotting
Lysates were separated by SDS-PAGE with 10% polyacrylamide 
gels and transferred to PVDF membranes. Membranes were 
blocked in 5% BSA in TBST for 1 h, and probed with antibodies 
to phosphorylated PERK (Cell Signaling Technology; 1:200), 
phosphorylated eIF2α (Cell Signaling Technology; 1:1,000), total 
PERK (Cell Signaling Technology; 1:1,000), and total eIF2α (Cell 
Signaling Technology; 1:1,000) overnight at 4°C. Membranes 
were washed and incubated with HRP-conjugated goat anti-rabbit 
(Cell Signaling Technology; 1:2,000) for 1 h. Chemiluminescence 
was detected with Luminata Crescendo Western HRP Substrate 
(Millipore) and analyzed with Fujifilm LAS-4000 imager and 
Multi Gage Software (Fujifilm Life Science).

statistical analysis
For ELISA, data are mean IFNγ secretion  ±  SD or SEM  
(as indicated). For Western blotting, data are representative of 
two experiments. Densitometry data are phosphorylation levels 
normalized by total and relative to that in control-treated cells. 
Statistical significance was determined by Student’s t-test, and 
statistically significant differences are shown for *p < 0.05.
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