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Mouse liver sinusoidal endothelium 
eliminates hiV-like Particles from 
Blood at a rate of 100 Million per 
Minute by a second-Order Kinetic 
Process
Jessica M. Mates1, Zhili Yao1, Alana M. Cheplowitz1, Ozan Suer1, Gary S. Phillips2,  
Jesse J. Kwiek3, Murugesan V. S. Rajaram4, Jonghan Kim5, John M. Robinson6,  
Latha P. Ganesan1 and Clark L. Anderson1*

1 Departments of Internal Medicine, The Ohio State University, Columbus, OH, USA, 2 Center for Biostatistics, Department of 
Biomedical Informatics, The Ohio State University, Columbus, OH, USA, 3 Department of Microbiology, The Ohio State 
University, Columbus, OH, USA, 4 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 
USA, 5 Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA, 6 Physiology and Cell Biology, 
The Ohio State University, Columbus, OH, USA

We crafted human immunodeficiency virus (HIV)-like particles of diameter about 140 nm, 
which expressed two major HIV-1 proteins, namely, env and gag gene products, and 
used this reagent to simulate the rate of decay of HIV from the blood stream of BALB/c 
male mice. We found that most (~90%) of the particles were eliminated (cleared) from the 
blood by the liver sinusoidal endothelial cells (LSECs), the remainder from Kupffer cells; 
suggesting that LSECs are the major liver scavengers for HIV clearance from blood. 
Decay was rapid with kinetics suggesting second order with respect to particles, which 
infers dimerization of a putative receptor on LSEC. The number of HIV-like particles 
required for saturating the clearance mechanism was approximated. The capacity for 
elimination of blood-borne HIV-like particles by the sinusoid was 112 million particles 
per minute. Assuming that the sinusoid endothelial cells were about the size of glass- 
adherent macrophages, then elimination capacity was more than 540 particles per hour 
per endothelial cell.

Keywords: liver sinusoidal endothelial cell, Kupffer cell, pinocytosis, endocytosis, clearance

nOn-Technical sUMMarY

We have engineered a small particle that resembles a human immunodeficiency virus (HIV) in size 
and surface structure in order to learn how HIV travels in the blood circulation. We use the mouse 
as a model of the human. These particles, when infused into the blood stream, are removed from 
blood very rapidly, within minutes, mostly by a particular kind of cell that lines the blood vessels of 
the liver, a cell referred to as liver sinusoidal endothelial cell (LSEC) (ell-seck). The rate of removal 
from blood suggests complex details of the mechanism of removal. The capacity of LSEC to remove 
HIV-like particles is astonishingly high, namely, about 100 million HIV-like particles per minute. We 
can estimate that a single blood vessel-lining cell (LSEC) removes more than 500 particles per hour. 

Abbreviations: LSECs, liver sinusoidal endothelial cells; KC, Kupffer cells; DIC, differential interference contrast; IF, immuno-
fluorescence; RFI, relative fluorescence intensity; VLP, HIV-like particle.

4

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00035&domain=pdf&date_stamp=2017-01-24
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00035
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:anderson.48@osu.edu
http://www.andersonlab.com
https://doi.org/10.3389/fimmu.2017.00035
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00035/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00035/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00035/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00035/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00035/abstract
http://loop.frontiersin.org/people/406137
http://loop.frontiersin.org/people/401619
http://loop.frontiersin.org/people/406147
http://loop.frontiersin.org/people/88256


2

Mates et al. Liver Endothelium Eliminates HIV

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 8 | Article 35

Our findings have yet to be integrated into the understanding of 
the natural course of an HIV infection.

inTrODUcTiOn

A readily apparent but poorly understood aspect of the innate 
immune response is the rapid and copious removal (or clear-
ance) and subsequent degradation of blood-borne virus by the 
endothelium of the liver sinusoids (LSEC). This capacity of LSEC 
to remove virus is far more robust than like clearance by Kupffer 
cells (KC), which instead appear responsible mostly for the 
removal of larger particles such as bacteria and autologous cel-
lular material (1). LSEC clear small particles other than virus in 
a similar manner, particles such as virus-like particles expressing 
polyoma virus proteins (2), small immune complexes made of 
ovalbumin and IgG antibody (3), lipopolysaccharide (4), and very 
likely other nanoparticles. The LSEC thus constitutes an outpost 
of the innate immune system with which cytokines have been 
associated only rarely (5). The rapid elimination of such particles 
has prompted the liver to be referred to in common parlance as 
the “garbage dump” of the body.

The molecular mechanism by which these small particles are 
cleared by LSEC is only beginning to be known: Fc receptors for 
IgG on LSEC are required, we have found, for the clearance from 
blood of small immune complexes (1, 3). Scavenger receptor B-1 
(SRB1) binds and likely facilitates the removal of hepatitis virus 
C (HVC) from circulation (6, 7). More mechanistic details are 
needed.

We now continue these studies by characterizing carefully 
the rate and extent of removal of a virus-surrogate, i.e., a non-
infectious HIV-like particle that expresses the translation prod-
ucts of the env and gag genes of HIV and thus has structural and 
antigenic characteristics suitable for recognition by the immune 
system, both innate and adaptive. This reagent will give us the 
opportunity later to study the effects of anti-HIV-1 antibody on 
virus or VLP removal by the LSEC (8).

resUlTs

We engineered a small particle the size of a virus (HIV-like par-
ticle) that consisted of a viral membrane derived from cultured 
HEK-293 cells and expressed features of HIV, namely, the HIV 
CXCR4 envelope protein (gp160) and the gag protein p24, but 
lacked nucleic acid and accessory proteins required for replica-
tion (M&M). We refer to the particle as an HIV-like particle. The 
diameter of the particles, measured by high-resolution analysis 
of Brownian diffusion, was ~140 ±  5  nm, mode ±  SE, n =  43 
(M&M). The concentration of suspensions of HIV-like particles 
we measured using a p24 ELISA.

To ascertain the rate of removal (or clearance) of HIV-like 
particles from the mouse circulation, we infused HIV-like parti-
cles intravenously and assessed their concentration in peripheral 
blood periodically over the course of 30  min (Figure  1). The 
decay curve was plotted in four ways. First, plotting simply using 
linear measurements for both the vertical axis showing concen-
tration of HIV-like particles in blood (mean  ±  SD) versus the 
horizontal axis showing time in minutes, the decay curve showed 

two phases, a sharp drop followed by a lengthy near-plateau, with 
nearly all HIV-like particles (~97%) being cleared within 10 min. 
The second phase showed a plateau suggesting nil or negligible 
clearance. It represented only ~3% of the infused dose and thus 
was not included in further analysis (Figures 1D,E). As the SD of 
the first data point at 1 min was large, we additionally show decay 
curves of three mice that represent the SD splay (Figure  1B). 
Plotting the data in the conventional log-linear manner, the decay 
was curvilinear, not at all characteristic of the anticipated pseudo-
first order reaction, which would show a straight line relationship 
(Figure 1C). However, showing the data as log–log and inverse 
linear–linear plots, we see straight lines (Figures  1D,E) (see 
Discussion).

We found experimentally that the liver is the major organ 
clearing Cy3-HIV-like particles from blood (Figure 2): the organ 
distribution experiment showed that, in 10 min, the majority of 
total recovered Cy3-HIV-like particles was associated with liver 
(~80%), whereas less than 2% of the total recovered dose associ-
ated with spleen and kidney. The fraction of the dose of HIV-like 
particles that associates with blood shown in the bar graph is not 
statistical significantly different (p > 0.05) from the amount that 
we have estimated in the clearance curves using the unlabeled 
HIV-like particles (Figure 1). In addition, an experiment com-
paring the clearance of unlabeled HIV-like particles with that of 
the Cy3-HIV-like particles (data not shown) suggests that the 
clearance kinetics were not significantly different, assuring that 
the labeling of HIV-like particles with Cy3 did not change the 
clearance property of the particle. These data, indicating strongly 
that the liver is the major organ clearing circulating HIV-like 
particles, are in concert with several published studies showing 
liver to be the major site of removal of a variety of blood-borne 
viruses and virus-like particles, with minimal uptake occurring 
in the lung, spleen, and kidney (1, 2, 9–12).

Also, 3 min after the intravenous infusion of a dose, we deter-
mined the cellular localization within the liver of fluor-labeled 
HIV-like particles by examining 5  µm sections of mouse liver 
using immunofluorescence confocal microscopy, distinguishing 
LSEC with fluor-tagged anti-mannose receptor antibody, and KC 
with fluor-tagged anti-macrophage antibody. Visual microscopic 
inspection indicated that the HIV-like particles were situated on 
or in sinusoidal cells and were absent from the lumens of cross-
sectioned sinusoids. The particles were much more abundantly 
associated with LSEC than with KC (Figure 3A). We have earlier 
illustrated the validity of these markers (1, 3). Substantiating 
this disparity quantitatively by estimating pixel fluorescence 
numbers and intensity, we found that 88% of HIV-like particles 
associated with LSEC while 12% associated with KC (Figure 3B). 
HIV-like particles were not found associating with hepatocytes. 
Additionally, the HIV-like particles associated with KC appeared 
aggregated while virus-like particles associated with LSEC 
appeared as fine puncta.

To ask whether liver uptake of HIV-like particles is saturable, 
we observed in Figure  1 that nearly the entire dose (2  ×  1010 
HIV-like particles) was removed from blood in 10 min (~97%), 
which suggests that the clearance mechanism was not saturated. 
Further, increasing the dose to 4 × 1010 did not saturate the clear-
ance mechanism as, again, nearly the entire dose was cleared 
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FigUre 1 | hiV-like particles are cleared rapidly from murine circulation. Approximately 2 × 1010 HIV-like particles were intravenously infused by tail vein. The 
concentration of particles remaining in blood of the suborbital plexus over time was estimated using a p24 ELISA. (a) Shows a plot of mean ± SD of the decay 
curves. The curve was drawn using asymmetric sigmoidal five parameters simulation to smooth the connection of data points. (B) Shows decay curves of three 
different mice illustrating the splay of the SD in (a); one high, one mid-level, and one low. (c) Shows a log–linear plot of the data illustrating no straight line. (D) Plots 
the data in log–log fashion to reveal a straight line of pseudo second order kinetics. (e) Shows a reciprocal plot of the same data, showing also a straight line. The 
30-min data points that did not fall on the straight line are not shown; they represent less than 3% of the dose. Each data point represents mean ± SD of 26 BALB/c 
wild-type mice.
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in 10  min. Re-evaluating a published study of ours showing 
decay curves of human recombinant adenovirus (rAd5) in 
mice, saturation was not achievable with an intravenous dose of 
1.6 × 1011 rAd5 particles (1). Specifically, plotting vertically on 
a log scale three doses of rAd5 over a 2-log range versus, on the 
horizontal axis, the number of rAd5 removed in 10 min showed 
a straight line with a positive slope, indicating that the uptake 
mechanism was not saturated [curve not shown; data presented 
in Figure 1A of our paper (1)]. For technical reasons, we were 
unable to achieve higher doses of HIV-like particles; thus, with 
our present strategy failing to show saturation of the uptake 
mechanism, we can only assume that we are near saturation. For 
practical purposes, we assume, then, that a saturation dose is 
near 2 × 1010.

Proceeding, we reasoned that the removal from circulation of 
a large dose of HIV-like particle (2 × 1010) would leave the liver 
unable to remove a second dose as efficiently as the first; i.e., the 
liver may require time to recover its native removal ability. To cal-
culate this refractory period that follows a first dose, we infused 
a second dose at varying times (1.5–12 h) after the first dose and 
plotted decay curves of the second dose, comparing the two decay 
curves performed simultaneously, the second with the first. As 
measures of differences both in the extent and rate of decay, we 
compared the numbers of HIV-like particle cleared at every point 
on the two curves, experimental, and control (Figure 4).

The decay curves performed 12 and 6 h after a first dose were 
fully superimposable on the initial control decay curves and were 
not statistically significantly different from the control decay 
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FigUre 2 | The liver is the major organ clearing cy3-hiV-like particles 
from blood. Mice were infused with 1010 Cy3-human immunodeficiency 
virus-like particles and, after 10 min of infusion, the Cy3 fluorescence was 
quantified in various organs as described in M&M. The bar graph expresses 
the percentage means and SDs of total Cy3 fluorescence that was recovered 
from the six organs studied. The asterisk represents data points where the 
p-Values were determined to be less than 0.05 using Student’s t-test.
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curves (Figures 4A,B). The decay curve at 3 h after the initial 
dose appeared to show disparity of later points, but the experi-
mental and control points throughout the entire curves were not 
statistically significantly different (Figure 4C). However, at 1.5 h 
after the initial dose, the decay curve plateaued earlier than the 
control curve (Figure 4D); the two curves were statistically and 
significantly different at the 5 and 10 min points (asterisks).

DiscUssiOn

The HIV-like particle used in this study was crafted to express 
multiple copies of two major HIV gene products, the surface-
expressed gp160 env protein for eventual use as an antibody 
target, and the gag protein p24 for use with an immunoassay.

We have learned from these data that the rate and extent of 
removal of blood-borne HIV-like particle in the mouse shows 
a biphasic decay curve with a very rapid and extensive first 
phase and a negligible second phase. Thus, decay is similar to 
the removal of blood-borne virus as studied by us and others 
[see our paper (1) for brief review]. However, we perceive a 
distinct difference from the decay of Ad5. By analogy with 
standard chemical reactions, the straight lines of the graphs of 
Figures  1D,E are characteristic of pseudo-second order reac-
tions with respect to HIV-like particle concentrations, assum-
ing a constant concentration of the sinusoidal binding site for 
HIV-like particles. In standard chemical parlance, the reaction is 
represented as 2A + B → AAB. In contrast, adenovirus clearance 
using data from an earlier study plotted in log-linear fashion 
showed a straight line characteristic of a pseudo first order reac-
tion (1).

We can only speculate what the apparent second order of 
VLP decay might mean. At face value, the data would suggest 
that two HIV-like particles are interacting as a unit with an 
LSEC target. We know of no reason why HIV-like particles 
should dimerize, and in fact, according to our Brownian motion 
detector, the HIV-like particles were monodisperse. Whether 
they dimerize in blood, we have no way of determining. It is 
also possible that the binding site on LSEC is a dimer, although 
we know of no evidence that CD4 or L-SIGN, both known to 
be expressed on LSEC (13, 14), dimerize. However, there is 
precedence for LSEC to express dimeric receptors; i.e., SRB-1, 
a receptor for HDL and HCV envelope protein E2 expressed 
on LSEC (6, 7, 15), is known to dimerize and oligomerize (16). 
What precisely second order means in the case of our Figure 1 
data awaits additional study.

We attempted to saturate the clearance mechanism of LSEC 
but were not at all successful. Doses of HIV-like particles as 
high as practicable, 4  ×  1010, were cleared nearly completely 
(97%) in 10 min, indicating that saturation had not yet been 
reached. Nor did we reach a saturating dose in our prior stud-
ies of human adenovirus clearance where doses equally high, 
1.6  ×  1011, were infused (1). For technical reasons, we were 
unable to study higher doses; thus, we assume that saturation 
is 2 × 1010.

Failing to find a saturating dose, we nevertheless were able to 
estimate a recovery time by examining closely the shape of the 
decay curves after a second dose of HIV-like particles. The decay 
curve of a second dose 1.5 h after the first was clearly different 
from the control, indicating, albeit tenuously, that the clearance 
mechanism was still recovering at 1.5 h. At 3 h, moreover, the 
decay curve looked abnormal in that it diverged from the control 
curve, but statistically it was no different than the control curve. 
By 6  h, however, the clearance mechanism had returned to 
superimposable on the normal curve and remained superimpos-
able at 12 h. We have not calculated half-lives because half-life 
is a function of dose in second order reactions; we did not vary 
the dose substantially. For practical purposes, we arbitrarily let 
recovery time be 3 h.

Assuming that the greatest dose used in our experiments 
(2 × 1010) is close to the saturation dose (S), and that the recov-
ery time (R) is 3 h, we can then calculate the capacity (C) of 
the liver to remove HIV-like particles from circulation in an 
on-going, continuous fashion. We define capacity in units of 
particles per day as the saturation dose divided by the recovery 
time R (C = S/R). Specifically, every 3 h, 2 × 1010 HIV-like parti-
cles were removed from circulation. The capacity for clearance, 
therefore, is 6.7 × 109 (2 × 1010/3) HIV-like particles per hour 
per mouse.

Is this a biologically realistic number? Capacity expressed as 
functions of hourly or daily clearance are numbers too large for 
us to conceptualize. However, converting to clearance per minute 
gives an everyday number that most workers will appreciate; i.e., 
112 million HIV-like particles per minute (6.7  ×  109/60  min). 
This number sounds realistic and substantial. In fact, the number 
sounds remarkably potent when compared to a lethal dose of an 
arbitrarily chosen widely known virus (influenza virus) which, 
given intratracheally, has been shown to be on the order of 104 
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FigUre 3 | The majority of human immunodeficiency virus (hiV)-like particles cleared by liver is localized to the liver sinusoidal endothelial cell 
(lsec). (a) Four-color fluorescence microscopic images of 5 µm liver sections, 3 min after intravenous infusion of 2 × 1010 Cy3-HIV-like particles. (a) Red puncta 
show Cy3-HIV-like particles. (b) rabbit anti-mannose receptor (CD206) labeling of LSEC shown in green. (c) rat mab F4/80 labeling of KC shown in magenta. (d) 
Cy3-VLP (red) merged with LSEC marker. (e) Cy3-HIV-like particles (red) merged with KC marker. (f) Merged image showing Cy3-HIV-like particles (red), LSEC 
marker (green), and KC marker (magenta) plus DIC and DAPI staining of the nuclei (blue). Panels shown are representative of 160 images from three different mice. 
The scale bar in panel (c) signifies 5 µm. (B) Quantified association of HIV-like particles with cells of the liver. All HIV-like particles in the liver were associated with 
either LSEC or KC, indicating no association with hepatocytes. The total HIV-like particles was calculated as the pixel area × mean fluorescence intensity (red). 
HIV-like particles associated with the KC was subtracted from the total HIV-like particle to calculate LSEC association of HIV-like particle. The graph represents the 
mean ± SD of KC- and LSEC-association within liver. One hundred sixty images, roughly 50 from each of the three mice, were examined. The area totaled 30 mm2 
of sectioned liver tissue.
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virus particles (personal communication, Ian Davis, The Ohio 
State University).

Can we put the clearance capacity into perspective by ask-
ing how large is the sinusoid area responsible for clearing 112 
million particles/min? Calculating from the rat sinusoid area 
(17), assuming that mouse liver weight is 1 g, we find that the 
surface area of the mouse sinusoidal network is 5.8 × 1010 μm2, 

or roughly half the area of the face of a tennis racquet.1 Another 
way of rendering realistic the magnitude of the sinusoidal surface 
area is by thinking of it as covered by confluent adherent mac-
rophages. Assuming that the area of an adherent macrophage 

1 http://officialtennisrules.com/official-dimensions-for-tennis-rackets/.
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FigUre 4 | clearance capacity of human immunodeficiency virus 
(hiV)-like particles is fully recovered in about 3 h. Mice were infused 
intravenously with 2 × 1010 HIV-like particles, allowed to recover for the 
indicated time (1.5, 3, 6, and 12 h) and then were infused with an additional 
bolus of 2 × 1010 HIV-like particles. The blood concentration of HIV-like 
particles was determined as described in Figure 1; the (sample) curves are 
to be compared with decay curves performed simultaneously on mice that 
had not received the initial dose of HIV-like particles (control). Each data point 
represents mean ± SD of several BALB/c wild-type mice. The number of 
animals used at each time period 1.5, 3, 6, and 12 h was 6, 3, 3, and 4, 
respectively. The raw data were log10-transformed prior to running the 
random-effects linear regression model, described in M&M. The 
corresponding points on the two curves in panels (12, 6, and 3 h) were not 
statistically different, even the apparently divergent points at 3 h. However, 
the corresponding points on the curves in panel (1.5 h) were statistically 
significantly different at the 5 and 10 min points, but not at the others. Thus, 
the recovery time was estimated to be between 1.5 and 3 h.
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is 4.5 × 103 μm2 (Figure 5 of publication PMC3488130), then 
the mouse sinusoid would be covered by 13 million confluent 
glass-adherent macrophages. Assuming further that the area 
of the adherent macrophage is about the same as a sinusoidal 
endothelial cell, then we find that 540 HIV-like particles are 
cleared per LSEC per hour (calculations in Supplementary 
Material).

What is the fate of the HIV-like particles once cleared from 
blood and bound to the LSEC? We interpret our data to indicate 
that HIV-like particles, cleared from blood, associate mostly 
(88%) with LSEC, to a small extent with KC (12%), and not at all 
with hepatocytes. At 3 min after infusion (Figure 3), they appear 
on or within the endothelium but not luminal as evidenced by 
their absence in luminal cross-sections. At 10 min after infusion, 
we find virtually no HIV-like particles associating with LSEC or 
KC (data not shown). We presume, based on the fate of immune 
complexes (18, 19), that most bound particles are internalized and 
degraded, although we have not yet embarked on a formal study 
of HIV-like particles. The literature indicates that endocytosed 

particles of many sorts are degraded (2, 11); other studies suggest 
that a fraction of the endocytosed particles is degraded and a 
fraction is expressed back onto the surface of the endocytosing 
cell (18, 20). The general impression that endocytosed particles 
are disposed of quickly is consistent with the novelty of our sug-
gestion; virus particles internalized by LSEC are not ordinarily 
described during the course of virus infections. In our recent 
study of LPS clearance from blood, we found no evidence that 
cleared LPS moved from LSEC to KC (4). A systematic study of 
the fate of cleared particles is needed.

A remarkable implication of this robust clearance capacity 
is that clearance may be fast enough to avoid detection in the 
blood by culture or nucleic acid assay while allowing hematog-
enous spread of infection. It would follow that blood cultures 
and nucleic acid assays would not become positive until the 
clearance capacity of the liver is saturated. These implications 
are testable.

Further, we would propose that two different viruses may com-
pete for a single clearance mechanism, although to date no such 
evidence is available. Such studies will require a keener analysis of 
the clearance mechanism and its discrimination among various 
bound particles. In support of this speculation, it has been known 
for decades that small particles in blood such as thorotrast will 
block the LSEC uptake of virus (10).

Finally, this astonishingly rapid and robust removal of 
blood-borne virus would appear to have been overlooked by all 
but a few modern and early biologists studying virus turnover 
during infection (10–12, 21). To us, this mechanism appears to 
be a subdivision of the innate immune system that has received 
little attention but might very well be of immense value to the 
organism. Many additional consequences of our observation, we 
anticipate, will become clear with appropriate study.

As a postscript, we point out that the rapidity of particle 
clearance described herein is remarkably similar to the classical 
“distribution” phase of the decay curves of protein and drug 
clearance from blood, a phenomenon well described in the phar-
macokinetics literature.2 However, beyond rapidity, the similarity 
stops. Virus leaving the plasma compartment bound to the LSEC 
surface does not appear to be in equilibrium with the plasma 
compartment, which by definition it must be if the rapid portion 
of decay is to be considered “distribution” of kinetic decay. We 
imagine that the rapidity seen in our studies is simply quick clear-
ance on a pathway toward ultimate degradation or processing by 
the sinusoidal cells.

MaTerials anD MeThODs

animals
Wild-type male BALB/c mice of age 10–15 weeks were obtained 
from Taconic Biosciences. All studies were performed in accord-
ance with appropriate guidelines and were approved by The Ohio 
State University Institutional Animal Care and Use Committee. 
All in vivo mouse procedures were performed under Isoflurane 
anesthesia.

2 http://sepia.unil.ch/pharmacology/?id=93.
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Plasmids
The pGag-EGFP plasmid (NIHARP cat #11468) used to pre-
pare HIV-1 VLP, which directs Rev-independent expression 
of HIV-1 Gag-EGFP fusion protein (tier 1 clade B) to form 
VLP, was obtained from Dr. Marilyn Resh through the NIH 
AIDS Reagent Program, Division of AIDS, NIAID, NIH. The 
pGag-EGFP plasmid was constructed by cloning Gag from 
pCMV55M1-10 (22) into the pEGFP-N1 plasmid (Clontech) 
(23). Plasmid DNA was amplified in Escherichia coli DH5α; 
DH5α-containing pGag plasmid was grown in LB medium 
supplemented with 25 µg/mL kanamycin. The pHXB2 envelope 
plasmid (NIHARP cat#1069), containing HXB2 gp160 under an 
SV40 promoter, was obtained from Dr. Kathleen Page and Dr. 
Dan Littman through the NIH AIDS Reagent Program, Division 
of AIDS, NIAID, NIH. Plasmid DNA was amplified in E. coli 
DH5α; DH5α-containing pHXB2 env plasmid was grown in LB 
medium supplemented with 50 µg/mL ampicillin. Plasmid puri-
fication used the BenchPro 2100 Plasmid Purification System 
(Invitrogen).

Preparation of VlP-containing hXB2 env
VLP were propagated using human embryonic kidney, 293T cells 
(ATCC). Cells were maintained in Dulbecco’s Modified Eagle 
medium with 10% Fetal Bovine Serum. VLP-containing HXB2 
envelope was produced by transient transfection of HEK 293T 
cells with pGag-EGFP and pHXB2 env using Lipofectamine 
2000 transfection reagent (Life Technologies). Also, 107 cells in 
T175 flasks were transfected with 30 µg HXB2 envelope, 60 µg 
pGag-EGFP, and 360 µL Lipofectamine 2000 transfection reagent 
in serum/antibiotic-free medium. After 3–4  h of incubation at 
37°C, the culture medium was replaced with DMEM + 10% FBS. 
VLP-containing supernatant was collected 72 h after transfection 
and clarified by centrifugation at 2,000 × g for 10 min. Clarified 
supernatant was further purified of cellular debris by 0.45  µm 
filtration. Purification of assembled VLP was completed by ultra-
centrifugation through a 20% sucrose pad at 122,000 × g for 2 h 
at 4°C. The VLP pellet was resuspended in filtered PBS.

Quantification of VlP
Two methods were used to quantify VLP concentrations, p24 
ELISA and Nanoparticle Tracking Analysis (NTA). p24, a viral 
protein component Gag, was used to determine VLP concentra-
tion with the commercially available Zeptometrix p24 ELISA kit 
in accordance with the manufacturer’s instructions. The lower 
limit of detectability in the assay was 107–2 × 107 particles/mL. 
Additionally, NTA was performed using a Nanosight NS300 
(Malvern). VLP samples resuspended in filtered PBS were diluted 
to approximately 108–109  particles/mL; 1  mL of diluted VLP 
sample was injected into the Nanosight apparatus. Nanosight 
NTA 3.0 software was used to analyze nanoparticle tracking 
data. Five individual videos ranging from 30 to 60 s each were 
recorded and analyzed based on the VLP Brownian motion at 
room temperature. NTA analysis determined both particle size 
and concentration of VLP per milliliter. A ratio of p24 concentra-
tion (picograms per milliliter) to NTA (VLP per milliliter) was 
calculated for each VLP preparation.

cy3 labeling of VlP
VLP in PBS, pH 7.4, at a concentration of 1012  VLP/mL was 
adjusted to pH 9.4 by the addition of 0.5 M sodium carbonate 
bicarbonate. The Cy3 monoreactive dye pack (Amersham) was 
dissolved in 1 mL of VLP solution, pH 9.4, and incubated at room 
temperature for 30 min with constant stirring. The addition of 
0.2% glycine stopped the labeling reaction, and the Cy3-labeled 
VLP was dialyzed against two changes of PBS, pH 7.4, at 4°C for 
18 h. The efficiency of Cy3-conjugation was assessed by compar-
ing the protein concentration (micrograms per microliter) of 
the dialyzed Cy3-conjugated VLP with the concentration of Cy3 
(picomoles per microliter). The Cy3 concentration was converted 
to micrograms per microliter using the formula weight; the dye to 
protein ratio of Cy3-conjugated VLP was 0.02.

immunofluorescence
BALB/c mice 11–14 weeks old were intravenously infused with 
2  ×  1010 Cy3-labeled VLP in PBS, pH 7.4. BALB/c livers were 
excised, cut into ~5 mm pieces, and fixed in 4% paraformalde-
hyde-PBS for 2 h at room temperature. Fixed tissue was washed 
with PBS and saturated with 20% sucrose-PBS overnight at 4°C. 
Upon sucrose saturation, tissue was embedded in tissue-freezing 
medium and stored at −80°C. Fixed and frozen tissue was sec-
tioned at 5 µm thickness by Cyrostat sectioning and collected on 
Superfrost microscope slides. Tissue sections were rehydrated, 
blocked in 5% milk blocking solution for 1 h, and then incubated 
with primary antibodies in 5% blocking solution overnight at 4°C. 
Unconjugated primary antibodies were visualized using a 1:200 
dilution of fluor-tagged secondary antibodies in 5% blocking 
buffer for 1 h at room temperature. DAPI staining was executed 
for 10 min and then tissue sections were mounted under cover-
slips with Prolong Gold Solution (Invitrogen). Isotype controls 
along with secondary antibodies were used to assess primary and 
secondary immunostaining.

Primary antibodies included rabbit polyclonal IgG anti-
CD206 mannose receptor (Santa Cruz) and rat monoclonal IgG 
anti-F4/80 (Abserotec). Secondary antibodies from Invitrogen 
included Alexa 488-conjugated goat anti rabbit IgG and Alexa 
680-conjugated goat-anti rat IgG.

Images were acquired using 405, 488, Cy3, and 680 laser set-
tings on an Olympus Fluo View 1000 Laser Scanning Confocal 
microscope with a spectral detection system designed for finer 
separation of fluorochromes (FV 1000 Spectral).

Quantification of hiV-like Particles  
in Various Organs
Approximately 1010 Cy3-labeled HIV-like particles were infused 
via the retro–orbital plexus of anesthetized mice and were sacri-
ficed at 10 min. The mice were bled of ~20 μL via the retro–orbital 
plexus, and organs (liver, kidney, lung, spleen, and heart) were 
removed and weighed. The weighed portions of the organs were 
homogenized and lysed with organ lysis buffer (0.1% SDS, 10 mM 
Tris, pH 7.4, and 1 mM EDTA) (3). The Cy3 fluorescence in organ 
lysates and blood was measured using fluorimeter (2300 Enspire 
multimode reader). The amount of Cy3 fluorescence associated 
with each organ was estimated by factoring the total organ weight 
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and after subtracting both the blood volume of that particular 
organ (24) and the background organ fluorescence from un-
infused age matched mice.

Quantification of the association  
of cy3-labeled VlP with liver cells
Based on 4-color immunofluorescence analysis of liver sections, we 
determined that Cy3-labeled VLP associated with LSEC and KC, 
but not hepatocytes or large vessel endothelium. The association 
of VLP with LSEC and KC was quantified with Image J software 
as described previously in our work (1). Briefly, quantification 
was determined in a three-step process: (1) image threshold was 
adjusted to account for background intensity not associated with 
Cy3 VLP, and the total Cy3 fluorescence intensity was recorded 
for the image; (2) each Kupffer cell (KC) within the image, identi-
fied by anti-F4/80 staining, was partitioned, and the fluorescence 
intensity of Cy3 associated with individual KC was recorded; the 
VLP intensity associated with individual KC was summed to total 
KC-associated VLP; and (3) the total KC-associated VLP intensity 
was subtracted from the total VLP intensity of the entire image 
to give the total LSEC-associated VLP intensity. KC and LSEC 
association was averaged for a total of 160 technical replicates of 
the images over the three mice. Within each mouse, the technical 
replicates were averaged producing three KC and three LSEC 
associations. The mean and SD of the three KC- and the three 
LSEC-association observations are presented and no statistical 
testing was done since these observations are not independent 
of each other.

clearance of VlP from the Bloodstream
Clearance is defined as elimination from blood. BALB/c male 
mice at age 14 weeks were infused intravenously via tail vein with 
2 × 1010 VLP in PBS, pH 7.4. After infusion, 20 µL of blood was 
obtained via the retro–orbital plexus at 1, 5, 10, 20 (or 15), and 
30 min using heparinized capillary tubes. The calculation of VLP 
concentration at the time of infusion (time 0) was based on the 
mouse weight and assumed total blood volume of ~2.58 mL/25 g 
mouse (25). Blood obtained at each time point was diluted  
and VLP were quantified using p24 ELISA (Zeptometrix)  
per the manufacturer’s instructions. The concentrations of p24 
in picograms per milliliter were converted to VLP per mil-
liliter using the calculated conversion rate between pictograms 
per milliliter and NTA. Clearance kinetics were plotted as  
concentrations of VLP per milliliter of blood versus time. The 
curve was biphasic with a fast phase, an inflection at about 

10 min, at which most of the VLP had been cleared (97%), and 
a second phase, a virtual plateau.

statistics
The following method was used for the recovery time experiments. 
VLP concentration was log10-transformed, and all analyses were 
run on the transformed values. A random-effects linear regres-
sion model where log10-transformed VLP concentration was the 
dependent variable while group (study versus control mice), 
recovery period (1.5, 3, 6, 12, and 24 h), test time [0, 1, 5, 10, 20 
(or 15), and 30 min], and all two-way interactions were included 
in the model as independent categorical variables. Random-
effects regression was used due to the longitudinal nature of the 
observations where the outcomes (log10 VPL concentration) were 
nested within specific mice over time. Additionally, this method 
uses all of the results from all of the mice used in the study. After 
running the random-effects linear regression model, linear con-
trast statements were used to estimate differences between study 
and control mice for specific test times and recovery periods of 
interest. In addition to these differences, the 95% confidence 
interval of the differences and the p-Values are also produced by 
the linear contrast statements. All analyses were run using Stata 
14.1, StataCorp LP, College Station, TX, USA.
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Persistence of activated and 
adaptive-like nK cells in hiV+ 
individuals despite 2 Years of 
suppressive combination 
antiretroviral Therapy
Anna C. Hearps1,2, Paul A. Agius3,4, Jingling Zhou1, Samantha Brunt5, Mkunde Chachage1, 
Thomas A. Angelovich1, Paul U. Cameron6,7, Michelle Giles2,7, Patricia Price8,  
Julian Elliott2,7 and Anthony Jaworowski1,2*

1 Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia, 2 Department of Infectious Diseases, Monash 
University, Melbourne, VIC, Australia, 3 Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, 
VIC, Australia, 4 Centre for Population Health, Burnet Institute, Melbourne, VIC, Australia, 5 Pathology and Laboratory Medicine, 
University of Western Australia, Perth, WA, Australia, 6 Department of Microbiology and Immunology, Doherty Institute for 
Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia, 7 Infectious Diseases Unit, Alfred Hospital, 
Melbourne, VIC, Australia, 8 School of Biomedical Science, Curtin University, Perth, WA, Australia

Innate immune dysfunction persists in HIV+ individuals despite effective combination 
antiretroviral therapy (cART). We recently demonstrated that an adaptive-like CD56dim 
NK  cell population lacking the signal transducing protein FcRγ is expanded in HIV+ 
individuals. Here, we analyzed a cohort of HIV+ men who have sex with men (MSM, 
n = 20) at baseline and following 6, 12, and 24 months of cART and compared them 
with uninfected MSM (n = 15) to investigate the impact of cART on NK cell dysfunction. 
Proportions of NK cells expressing markers of early (CD69+) and late (HLA-DR+/CD38+) 
activation were elevated in cART-naïve HIV+ MSM (p = 0.004 and 0.015, respectively), 
as were FcRγ− NK cells (p = 0.003). Using latent growth curve modeling, we show that 
cART did not reduce levels of FcRγ− NK cells (p = 0.115) or activated HLA-DR+/CD38+ 
NK cells (p = 0.129) but did reduce T cell and monocyte activation (p < 0.001 for all). 
Proportions of FcRγ− NK cells were not associated with NK cell, T cell, or monocyte acti-
vation, suggesting different factors drive CD56dim FcRγ− NK cell expansion and immune 
activation in HIV+ individuals. While proportions of activated CD69+ NK cells declined 
significantly on cART (p = 0.003), the rate was significantly slower than the decline of 
T cell and monocyte activation, indicating a reduced potency of cART against NK cell 
activation. Our findings indicate that 2 years of suppressive cART have no impact on 
CD56dim FcRγ− NK cell expansion and that NK cell activation persists after normalization 
of other immune parameters. This may have implications for the development of malig-
nancies and co-morbidities in HIV+ individuals on cART.

Keywords: nK cell, hiV, adaptive-like nK cell, immune activation, combination antiretroviral therapy

inTrODUcTiOn

Effective combination antiretroviral therapy (cART) suppresses HIV replication and prevents 
AIDS-related illness but does not eliminate HIV or fully restore immune function. Virologically 
suppressed HIV+ individuals show phenotypic and functional evidence of persistent immune 
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dysfunction, particularly within the innate immune system (1). 
We and others have demonstrated that heightened HIV-related 
activation of NK cells (2, 3) and monocytes (4–8) persist in cART-
treated individuals despite undetectable levels of HIV viremia 
(<20 HIV RNA copies/mL plasma). Markers of innate immune 
activation/inflammation are associated with co-morbidities 
such as cardiovascular disease, neurocognitive impairment, and 
malignancies in HIV+ individuals [reviewed in Ref. (9)] and also 
predict mortality in this population (10). This suggests persistent 
innate immune activation may have a detrimental effect on the 
long-term health of HIV+ individuals on cART. Elucidating the 
underlying mechanism of this effect is essential for preserving 
the health of the estimated 17 million HIV+ individuals world-
wide currently receiving cART.

Acute HIV infection triggers a short-lived expansion of the 
mature CD56dimCD16+ NK  cell subset (which declines during 
progressive infection) and the emergence of a population of 
functionally anergic CD56− NK cells (11–13), but these defects 
are largely reversed by cART (14). In contrast, our cross-sectional 
study demonstrated increased NK cell activation and heightened 
spontaneous degranulation in both viremic and virologically 
suppressed HIV+ individuals (2), indicating NK  cell activation 
persists despite effective cART. However, the duration of this 
effect and its impact on co-morbid disease remain unknown.

Although considered innate immune cells, increasing evidence 
indicates NK cells also possess adaptive, memory-like properties 
similar to cytotoxic CD8+ T  cells (15). A rapid expansion of 
NK cells able to target murine cytomegalovirus (MCMV)-infected 
cells has been demonstrated following primary MCMV infection 
(16). Furthermore, NK cells exhibiting memory-like properties 
persisted in tissue for several months after MCMV infection and 
displayed rapid degranulation upon subsequent stimulation. 
A similar expansion and persistence of specific populations 
of NK  cells also occurs in response to human CMV (HCMV) 
infection; HCMV seropositivity is associated with expansion of 
CD56dim NK cells expressing the activating receptor NKG2C and 
a pattern of killer cell immunoglobulin-like receptors consistent 
with clonal expansion (17–19). Recent studies associate HCMV 
infection with expansion of multiple subsets of adaptive-like 
NK cells, including (but not limited to) those expressing NKG2C 
(20–22). These “imprinted” populations are stably maintained for 
at least 15 months following infection (23) and show enhanced 
antibody-dependent activation (21), consistent with an impor-
tant role in protective immunity against viral infections. Clonal 
expansion of NK cells is also observed early after Chikungunya 
(24) and Hantavirus (25) infections; and we have previously 
reported expansion of adaptive-like FcRγ− NK cells in HIV infec-
tion (3); however, it remains unclear whether pre-existing CMV 
infection is a prerequisite for the observed expansion of specific 
NK cell populations in these settings.

NK  cell receptor profiles are perturbed in viremic HIV+ 
individuals, with increased expression of the activating recep-
tor NKG2C and reduced expression of the inhibitory receptor 
NKG2A on NK cells (26, 27). The proportion of NKG2A+ NK cells 
is restored in cART-treated HIV+ individuals in some (27, 28) but 
not all studies (26); however, expansion of NKG2C+ NK cells can 
persist in aviremic individuals (29) despite at least 2 years of viral 

suppression (27). HIV-associated expansion of NKG2C+ NK cells 
appears to occur only in individuals seropositive for HCMV (27, 
29), and HCMV seropositivity is also a prerequisite for NKG2C+ 
NK cell expansion induced by other chronic viral infections such 
as hepatitis B and C infection (18). These findings suggest chronic 
viral diseases such as HIV and HCMV may act synergistically 
to heighten immune dysfunction. Accordingly, HCMV+/HIV+ 
individuals with >12 years of successful cART have higher levels 
of HCMV-reactive antibodies and T cells than HCMV+/HIV− 
individuals (30, 31). These findings highlight the necessity to 
consider HCMV antibodies in studies of NK cell dysfunction and 
underscore the requirement for appropriate HIV− comparison 
groups when analyzing these defects in HIV+ populations who 
carry a higher burden of HCMV than the general population.

In a recent cross-sectional study, we made the novel discovery 
that a population of CD56dim NK cells lacking the intracellular 
signal transduction protein FcRγ is expanded in both viremic 
and virologically suppressed HIV+ individuals (3). FcRγ is an 
immunoreceptor tyrosine-based activation motif-containing 
adaptor protein responsible for transducing signals through 
activating NK  cell receptors such as CD16, and acting as a 
chaperone for these receptors. These CD56dimFcRγ− NK  cells 
have reduced expression of CD16 and the natural cytotoxicity 
receptors NKp30 and NKp46, but enhanced antibody-dependent 
cell-mediated cytotoxicity (ADCC) activity, and represent up 
to 90% of the NK  cell population in some HIV+ individuals 
(3). An analogous population of CD56dimFcRγ− NK  cells has 
previously been characterized in HIV−/HCMV+ individuals 
and shown to possess a memory-like phenotype with adaptive 
immune features including enhanced ADCC against target 
cells infected with HCMV or herpes simplex virus, implying a 
specialized role in antibody-dependent cross-protection (22, 32). 
We therefore investigated the HIV-related expansion of adaptive-
like CD56dimFcRγ− NK cells in a contemporary cohort of HIV+ 
men who have sex with men (MSM). Given the abovementioned 
effect of HCMV infection on NK  cell imprinting and the near 
ubiquitous HCMV seropositivity of HIV+ MSM, we used a novel 
longitudinal MSM cohort to study the effect of HIV and cART on 
the prevalence of FcRγ− NK cells by comparison with appropri-
ately matched HIV− MSM. Furthermore, we used latent growth 
curve modeling to quantify the rate at which NK cell activation is 
reversed following viral suppression as compared to activation of 
other immune cell compartments.

MaTerials anD MeThODs

study Participants
Participants were identified from the Melbourne HIV Cohort, 
a prospective study of HIV-positive and HIV-seronegative 
men who self-report having sex with men. Participants in the 
Melbourne HIV Cohort were reviewed annually to assess co-
morbidities. Peripheral blood mononuclear cells (PBMC) and 
plasma were prepared and archived from each visit. Baseline 
samples were analyzed from 20 cART-naïve HIV+ MSM and 
15 HIV− MSM matched for age with the HIV+ MSM at the 
baseline time-point. HIV+ individuals were recruited when 
they were cART-naïve and followed-up every 3  months for 
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12  months following cART-initiation, then annually thereafter. 
Of the 20 HIV+ MSM, one initiated a cART regimen consisting 
of efavirenz, festinavir and lamivudine. The other 19 participants 
received a cART regimen of tenofovir and emtricitabine, plus 
either efavirenz (n = 6), rilpivirine (n = 5), raltegravir (n = 3), 
ritonavir + atazanavir (n = 4), or ritonavir + neviripine (n = 1); 
two individuals had their regimen altered (from raltegravir to 
dolutegravir and from efavirenz to raltegravir) during the follow 
up period. At the time of the study, 10 of the HIV+ MSM had 
reached the 24-month post-cART initiation time-point and were 
included in the analysis. Exclusion criteria included co-morbid 
disease (e.g., cardiovascular disease, diabetes) and current use 
of statins, steroids, or other anti-inflammatory medications. For 
selected experiments, an additional 14 HIV− men of a similar age 
were recruited from the general community. Ethical approval for 
this study was obtained from the Alfred Hospital Research and 
Ethics Committee.

sample Processing and 
immunophenotyping
Cells and plasma were prepared from whole blood collected 
into acid citrate dextrose tubes. PBMC were collected fol-
lowing Ficoll density gradient centrifugation of blood and 
stored in liquid N2. Cells were stained with LIVE/DEAD® 
fixable dead cell stain (ThermoFisher Scientific, Waltham, MA, 
USA) prior to immunophenotyping. Expression of surface 
receptors on NK  cells, monocytes, and T  cells were detected 
by staining with the following antibodies: CD56 APC (clone 
NKH-1) from Beckman Coulter (Brea, CA); CD14-V500 
(clone M5E2), CD16 PE-Cy7 (clone 3G8), CD3 PerCP-Cy5.5  
(clone UCHT1), CD38-PE (clone HB7), HLA-DR FITC or 
APC-H7 (clone G46-6), CD4 PE-Cy7 (clone RPA-TA), CD8 
APC-H7 (clone SK1), all from BD Biosciences (San Jose, CA, 
USA); CD3 BV510 (clone OKT3), CD56 AF700 (clone HCD 
56), CD57 Pacific Blue (clone HCD57), CD355 PerCP-Cy5.5 
(NKp46, clone 9E2), CD337 AlexaFluor 647 (NKp30, clone 
CD337), all from Biolegend (San Diego, CA, USA). Expression 
of intracellular FcRγ was detected after labeling of surface anti-
gens and following permeabilization with Perm/Wash buffer 1 
(BD Biosciences), then staining with anti-FcRγ FITC (FcεR1, 
γ subunit, rabbit polyclonal, Millipore, Darmstadt, Germany). 
The specificity of the polyclonal anti-FcRγ FITC antibody has 
been previously demonstrated (3). Cells were acquired on a 
Fortessa LSR flow cytometer (BD Biosciences) and data ana-
lyzed using FlowJo software (version 10, FlowJo LLC, Ashland, 
OR, USA). Gating strategies for each cell type are depicted in 
Figure S1 in Supplementary Material.

Measurement of Plasma inflammatory 
Markers and hcMV antibody
Plasma concentrations of soluble CD163 (sCD163) and CXCL10 
were measured using commercial ELISA kits as per manu-
facturer’s instructions (Macro 163, IQ Products, Groningen, 
Netherlands and DIP-100, Quantikine ELISA, R&D Systems, 
Minneapolis, MN, USA, respectively). IgG reactive with HCMV 
was quantified using HCMV lysate, HCMV glycoprotein B (gB), 

and HCMV IE-1 antigens as previously described (3). CMV 
seropositivity was defined as >2 SD above the mean antibody 
levels for HCMV lysate derived for a set of 11 samples that had 
been deemed seronegative by the ARCHITECT CMV IgG assay 
(Abbott Diagnostics, IL). Data are presented in arbitrary units 
(AU) defined relative to a standard plasma pool run on each plate. 
Cross-reactivity of the CMV ELISA with other herpes viruses has 
not been formally assessed. Samples were measured over a range 
of dilutions to ensure accurate quantitation in the high range.

statistical analyses
Cross-sectional comparisons of marker levels between groups 
were made using Mann–Whitney U-test, while differences 
between baseline and post-cART time points in HIV+ MSM were 
made using Wilcoxon matched pairs signed rank test (GraphPad 
Prism software, version 6.05). Multilevel modeling was used 
to estimate latent growth-curve models exploring the subject-
specific nature of the association between each marker and time. 
Latent growth-curve models were also estimated on the natural 
log of each immunological marker and post-estimation non-
linear equations using exponentiated model coefficients were 
estimated to provide proportional rates of immunological change 
at specific time-points. Latent growth-curve models comprised 
two-levels, HIV+ individuals at level-2 (i.e., random intercept 
and coefficient for time) and their marker responses over-time 
at level-1 (see Supplementary Eq. 1 in Supplementary Material). 
Latent growth-curve modeling was extended to incorporate more 
complex bivariate outcome models (i.e., two outcomes), enabling 
simultaneous estimation of log-marker rates of change and 
post-estimation inference comparing rates of change between 
different markers (i.e., modeling the comparative mean per-
cent change between two markers over-time, and accounting 
for the correlation between individuals’ responses to these two 
markers across time). In these models, typically, random effects 
for heterogeneity in both participants’ baseline marker levels  
(i.e., random intercept) and the nature of any change in marker 
level over time (i.e., random coefficient/slope) were estimated, 
with an unstructured covariance estimated between each random 
effect. A limitation of these analyses was that for markers meas-
ured using a binomial statistical understanding (i.e., outcomes 
where cell proportions were determined) the distributional 
assumptions of the linear mixed models used in longitudinal 
modeling were not entirely met. Nested model-based likelihood-
ratio statistics were used to provide statistical inference for 
model fit when relaxing model constraints (random effects and 
the functional form of fixed effects for time). To assess the fit 
of the estimated latent growth-curve models, diagnostic plots 
comparing participants observed marker levels with Bayesian 
model-based (best linear unbiased predictions) predicted levels 
over time were produced and inspected. Contemporaneous  
(i.e., both outcome and factor variable responses from the same 
time-period were regressed) unadjusted longitudinal associa-
tions between selected factors and participant CD56dim FcRγ−  
NK cell proportions were estimated using multilevel modeling. In 
these multilevel models, factors were estimated as time-varying 
fixed effects with a random intercept (level-2) to account for the 
dependency in the data given an individual’s repeated marker 
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FigUre 1 | CD56dim FcRγ− NK cell expansion and increased human CMV (HCMV) antibodies are associated with MSM-related factors. (a) Plasma antibodies to the 
HCMV glycoprotein B (gB) were quantified by ELISA in plasma from HIV− male controls recruited from either the community (n = 14) or from the Melbourne HIV 
Cohort consisting of men who have sex with men (MSM, n = 14). (B) The proportion of CD56dimCD16+ NK cells lacking the FcRγ− signal transduction protein was 
measured in peripheral blood mononuclear cells from the same individuals as in (a) using intracellular staining and flow cytometry. Graphs show Tukey plots of 
median (bar), IQR (box), and 1.5x IQR (whiskers); outliers are indicated by squares. p values shown were determined by Mann–Whitney U test. AU, Arbitrary units.
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level measurement over-time. Statistical inference was assessed at 
the 5% level. Stata version 13.1 statistical package (StataCorp LP, 
College Station, TX, USA) was used for multilevel modeling and 
bivariate latent growth-curve modeling was undertaken using 
the user-written Stata program generalized linear latent mixed 
modeling (gllamm) [(33)].

resUlTs

MsM show expansion of Fcrγ− nK cells 
and elevated Plasma levels of hcMV 
antibodies as compared to non-MsM 
individuals
In many developed countries, the HIV epidemic is concentrated 
in at-risk populations such as MSM, yet demographic and clinical 
differences that exist between these populations and the general 
community [i.e., prevalence of smoking, sexually transmitted 
infections, HCMV seropositivity (34)] are rarely considered in 
immunological studies. Given the association between HCMV 
infection and adaptive-like NK cell expansion in HIV seronega-
tive individuals shown by ourselves and others (3, 22), we first 
asked whether proportions of FcRγ− NK  cells were influenced 
by MSM status. We compared samples from 14 non-MSM 
males (median age [IQR] 31.0 [30.0–39.0] years, 78.6% or 11/14 
CMV-seropositive), and 14 MSM of a comparable age (35.0 
[29.3–43.5] years, 85.7% or 12/14 CMV-seropositive) who were 
all HIV seronegative. MSM had higher levels of IgG antibod-
ies reactive with the HCMV envelope protein gB (Figure  1A, 
p = 0.047) but also showed significantly increased proportions 
of FcRγ− NK  cells (median [IQR] 14.4% [4.8–17.8] for MSM 
vs 4.0% [1.8–6.8] for non-MSM; p  =  0.006, Figure  1B). These 
differences persisted when only CMV seropositive individuals 
were compared (p = 0.012 and 0.037 for gB antibodies and FcRγ− 
NK cells, respectively, not shown). These findings confirmed the 
importance of controlling for MSM sexual exposure and HCMV 

burden in our subsequent analyses of NK  cell immunology in 
HIV infection.

Viremic hiV infection in MsM is 
associated with a Further expansion of 
adaptive-like Fcrγ− nK cells with a 
similar Phenotype to Those in hiV-
seronegative MsM
To assess the impact of untreated HIV infection on FcRγ− NK cell 
expansion in an appropriately controlled study population, 
we analyzed baseline samples from cART-naïve HIV+ and 
HIV− MSM of similar age (n  =  20 and 15, respectively) from 
the Melbourne HIV cohort. Demographic characteristics and 
relevant clinical parameters are detailed in Table 1. Proportions 
of FcRγ− NK cells were expanded in HIV+ MSM, with a median 
of 28.6% (IQR: 24.6–38.3%) compared to 14.4% (4.8–17.8%) in 
HIV− MSM (p  <  0.0001, Figure  2A). The phenotype of these 
cells in the two groups was similar; CD56dim FcRγ− NK cells had 
very low expression of the natural cytotoxicity receptors NKp30 
and NKp46 and heightened expression of the maturation/ 
differentiation marker CD57, which was statistically significant in 
HIV+ individuals; however, there was substantial inter-individual 
variation in the pattern of CD57 expression on FcRγ− and FcRγ+ 
NK cells (Figure S2A–C in Supplementary Material). To further 
explore the phenotype of these cells and investigate whether they 
were the result of proliferative expansion, we analyzed expression 
of the chemokine receptor CXCR6 [indicative of tissue-homing 
NK cells (35)], and a proliferation marker (Ki-67) on FcRγ− and 
FcRγ+ CD56dim NK cells in a subset of HIV+ donors. Compared 
to FcRγ+ CD56dim NK  cells, FcRγ− cells had significantly lower 
expression of CXCR6 (0.7 vs 5.8%; p = 0.004, data not shown) 
while both populations showed equal, low expression of Ki-67 
(0.5 vs 1.0%, p = 0.945, data not shown). These data indicate that 
the proportion of adaptive-like FcRγ− NK  cells is expanded by 
HIV infection (in addition to the effects of MSM-related factors) 
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TaBle 1 | Demographic and clinical characteristics of HIV− and HIV+ MSM at baseline and longitudinally post-combination antiretroviral therapy (post-cART) initiation.a

hiV− MsM hiV+ MsM

Post-carT follow-up time point

Median (IQR) Baseline Baseline 6 months 12 months 24 months
n 15 20 20 20 10
Age (years) 34.0 (29.0–43.0) 32.0 (29.0–43.5)
Current smoker, n (%) 1 (6.6%) 4 (20%)
HCV+ (antigen and PCR+), n (%) 0 2 (10%)
Human CMV seropositive 13 (86.7%) 20 (100%)b

Nadir CD4 T cell count (cells/μL) NA 385 (329–656)
CD4 T cell count (cells/μL) ND 452 (382–711) 580 (507–752)* 605 (480–942)* 741 (588–1037)*
ΔCD4 T cell count (cells/μL) NA 135 (16–203) 129 (−22–209) 205 (53–462)
Viral load (RNA copies/mL)c NA 41,050 (17,219–148,606) 20 (20–44)*** 20 (20–20)*** 20 (20–20)**
Undetectable viral load, n (%) NA 0 13 (65%) 19 (95%) 10 (100%)

NA, not applicable; ND, not determined.
aLongitudinal analysis was performed on HIV+ MSM only.
bNot statistically different to HIV− MSM as determined by Chi-squared test.
cValues of <20 copies/mL were designated as 20 for the purpose of statistical analysis.
*p < 0.05, **p < 0.01, ***p < 0.001 vs baseline from Wilcoxon matched pairs signed rank tests.

FigUre 2 | Combination antiretroviral therapy (cART) reverses T cell and monocyte activation, but not NK cell dysfunction or human CMV (HCMV) antibody levels. 
The proportion of FcRγ− NK cells (a), activated HLA-DR+CD38+ (B), and CD69+ (c) NK cells, plasma levels of HCMV-specific antibodies to either whole HCMV 
lysate (D) or gB antigen (e), the percentage of activated HLA-DR+CD38+ CD4+ (F) and CD8+ (g) T cells and the proportion of intermediate (CD14++CD16+) 
monocytes (h) was determined in HIV-uninfected MSM (n = 15) and HIV+ MSM (n = 20) at baseline (cART-naïve) and after 6, 12, and 24 months of cART. Graphs 
show median and IQR. +, ++, and ++++ denote p < 0.05, 0.01, and 0.0001, respectively, as compared to HIV− MSM determined by Mann–Whitney U test. *, **, 
and **** and denote p < 0.05, <0.01, and <0.0001, respectively, as compared to the corresponding cART-naïve value determined by Wilcoxon matched pairs 
signed rank test. AU, arbitrary units.
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and that this cell population does not appear to be the result of 
heightened proliferation or show increased expression of tissue-
homing receptors but may represent a more mature NK cell subset.

Viremic hiV infection is associated with 
increased nK cell activation and elevated 
levels of hcMV antibodies
Given our findings regarding the influence of MSM-related fac-
tors on FcRγ− NK cell expansion, it was important to confirm the 

effect of HIV on NK cell activation and other immune parameters 
in an adequately controlled cohort. Compared to HIV− MSM, 
viremic, cART-naive HIV+ MSM had significantly increased 
levels of NK cell activation as indicated by proportions of either 
HLA-DR+/CD38+ (median [IQR] 4.5% [2.5–5.9%] in HIV+ MSM 
vs 2.3% [1.4–3.0%] for HIV− MSM, p = 0.015) or CD69+ NK cells 
(7.4% [4.5–10.8%] vs 3.2% [2.2–6.2%], p = 0.004) (Figures 2B,C, 
respectively). In addition to the increase in HCMV antibody 
levels associated with MSM status shown in Figure  1, viremic 
HIV infection was associated with a further increase in antibody 
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levels to both whole HCMV lysate (p = 0.046, Figure 2D) and 
the gB antigen (p = 0.011, Figure 2E), while antibody levels to 
HCMV IE-1 did not differ with HIV status (data not shown).

Analysis of T  cell and monocyte activation markers con-
firmed the well-established effect of viremic HIV infection on 
heightened CD4+ and CD8+ T  cell activation (as assessed by 
HLA-DR/CD38 coexpression; p  <  0.0001 for both vs HIV− 
MSM, Figures 2F,G), expansion of inflammatory intermediate 
CD14++CD16+ monocytes (p < 0.0001 vs HIV− MSM, Figure 2H), 
and concomitant reduction in classical CD14++CD16− mono-
cyte proportion (p =  0.008, data not shown). Taken together, 
data from this unique MSM cohort confirm that untreated HIV 
infection is associated with increased NK  cell activation and 
generalized adaptive and innate immune activation, and indi-
cate that this occurs in addition to the effects related to MSM 
status shown in Figure 1. Although HCMV seropositivity was 
near-ubiquitous in this cohort and not significantly different 
between HIV+ and HIV− MSM (Table 1), a sub-analysis of only 
HCMV+ MSM indicated the proportion of activated HLA-DR+/
CD38+, CD69+, and FcRγ− NK cells was significantly higher in 
HIV+ vs HIV− MSM (p = 0.032, 0.012, and 0.001, respectively, 
data not shown), indicating an effect of HIV independent of 
HCMV serostatus.

Viral suppression associated with carT 
Does not reverse nK cell activation or 
the expansion of Fcrγ− nK cells
We undertook longitudinal analyses of pre- and post-cART sam-
ples from HIV+ MSM to determine the extent to which cART was 
able to reverse HIV-associated defects to NK cells as compared to 
other cellular/immunological compartments. Sixty-five percent, 
95%, and 100% of individuals achieved undetectable viral load 
(<20 copies/mL) after 6, 12, and 24 months of cART, respectively 
(Table 1), and significant increases in CD4+ T cell counts observed 
at all post-cART time-points (p < 0.05 for all vs baseline, Table 1) 
confirmed the efficacy of cART in this cohort. The relatively high 
nadir CD4+ T cell count of 385 [329–656] (median [IQR]) and 
baseline CD4+ T cell count of 452 [382–711] cells/μL are typical 
of a contemporary HIV cohort where individuals initiate cART 
at higher CD4+ T  cell counts prior to experiencing significant 
immunological damage.

Descriptive statistical analysis revealed that cART had no 
impact on proportions of FcRγ− NK cells, which remained simi-
lar to pre-cART levels at 6, 12, and 24 months post-cART initia-
tion (Figure 2A). Levels of activated HLA-DR+/CD38+ NK cells 
were also unaltered by cART and remained similar to levels in 
viremic, cART-naïve individuals at all follow-up time-points 
(Figure  2B). However, the proportion of NK  cells expressing 
the early activation marker CD69 at 6, 12, and 24 months post-
cART time-points were significantly lower than pre-cART levels 
(p  =  0.004, 0.036, and 0.008, respectively; Figure  2C). Viral 
suppression associated with cART did not alter levels of HCMV 
antibodies to either whole lysate or gB antigens (Figures 2D,E, 
respectively). The lack of an effect of cART on NK cell dysfunc-
tion and HCMV antibody levels was in contrast to its effect on 
T cells and monocytes, where HIV-related CD8+ T cell activation 

and intermediate monocyte expansion were reversed to levels 
observed in uninfected MSM within 6 months of cART initia-
tion (Figures 2G,H, respectively), while CD4+ T cell activation 
was resolved within 24  months of cART (Figure  2F). These 
descriptive analyses indicate cART is less effective at decreasing 
activation of NK cells compared to T cells and monocytes and 
demonstrate the persistence of NK cell dysfunction and elevated 
HCMV antibodies in HIV+ individuals despite 24  months of 
viral suppression.

carT reverses hiV-related activation of 
T cells and Monocytes More rapidly Than 
nK cell activation
To fully and quantitatively model the differential effect of 
cART on individual immune cell types indicated by the above 
descriptive analyses, we employed a mixed effects modeling 
framework to compare the rate of decline of HIV-related 
NK  cell activation with other cellular compartments. This 
analytical approach has the additional benefit of accounting 
for the inherent variation in each individual’s initial immu-
nological status and the way they subsequently respond to 
therapy, permitting a more accurate modeling of the change 
to specific immunological parameters over time in response 
to cART than is achievable with simple descriptive statistical 
analyses.

Latent growth-curve modeling confirmed cART had no 
significant effect on proportions of activated HLA-DR+/CD38+ 
NK cells [Wald χ2(1) = 2.3, p = 0.129] or FcRγ− NK cells [Wald 
χ2(1) = 2.5, p = 0.115], while the HIV-related increase in activated 
CD69+ NK  cell proportion declined significantly over time on 
cART [Wald χ2(1) = 9.1, p = 0.003, Table 2]. Our modeling also 
confirmed that T  cell activation [Wald χ2(2)  =  32.5 and Wald 
χ2(2) = 68.1 for CD4+ and CD8+ T cells, respectively, p < 0.001 
for both, Table  2] and inflammatory intermediate monocyte 
subset expansion [Wald χ2(2) = 61.2, p < 0.001] were significantly 
reduced over time on cART.

To compare the rate at which cART reversed CD69+ NK cell, 
T  cell and monocyte activation, the proportion of pre-cART 
immune activation, which remained after 6 and 12 months on 
cART, was calculated for each cell type (Table 3). After 12 months 
of cART, 60% (95% CI:53–67%) of activated CD4+ and 30% 
(21–39%) of activated CD8+ T  cells remained, indicating a 
respective 40 and 70% reduction in T cell activation. Similarly, 
12 months of cART was associated with a 53% (44–62%) and 85% 
(54–138%) reversal of the HIV-related alterations to intermedi-
ate and classical monocyte subset proportions, respectively. In 
contrast, reversal of activated CD69+ NK cells was substantially 
slower, with only 20% (13–27%) of HIV-related activation 
reversed following 12 months of cART.

To determine whether differences in the rates at which cART 
reversed HIV-related activation of NK  cells as compared to 
T  cells and monocytes were significant, we estimated bivari-
ate latent-growth curve models regressing each of the marker 
outcomes on respective functions of time simultaneously 
and allowing each individual’s treatment responses in marker 
levels to correlate. This revealed significant differences in the 
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TaBle 3 | Exponentiated regression coefficient indicating percent change in log 
immunological parameters from baseline after 6 and 12 months of combination 
antiretroviral therapy from latent growth-curve modeling (n = 20).

6 months 12 months

immune parameter outcome exp b (95% ci)a exp b (95% ci)a

nK cell activation/function
NK cell (% CD69+) 0.89 (0.85,0.93) 0.80 (0.73,0.87)
NK cell (% HLA DR+/CD38+) 0.94 (0.88,1.01) 0.89 (0.76,1.02)
CD56dim FcRγ− NK cells 0.94 (0.88,0.99) 0.88 (0.77,0.99)

T cell activation
CD4+ (% HLA DR+/CD38+) 0.77 (0.73,0.82) 0.60 (0.53,0.67)
CD8+ (% HLA DR+/CD38+) 0.50 (0.41,0.60) 0.30 (0.21,0.39)

Monocyte subsets
% Classical monocytes 1.36 (1.23,1.51) 1.85 (1.54,2.38)
% Intermediate monocytes 0.56 (0.46,0.66) 0.47 (0.38,0.56)
% Non-classical monocytes 0.74 (0.64,0.84) 0.55 (0.40,0.70)

aExponentiated regression coefficients (Exp b) and 95% confidence intervals (95% CI) 
from non-linear combined (i.e., linear and quadratic terms) effect estimation based 
on log-normal latent growth-curve models—coefficient (Exp b) represents the ratio of 
expected geometric mean difference in a marker for a specific length of time taking 
account of the functional form of the effect of time (i.e., % change in a marker per 
specified time-period). Ratios <1 indicate a percent decrease. Values in bold indicate 
marker levels exhibiting significant change over-time.

TaBle 2 | Latent growth-curve modelinga showing associations between 
immune parameter outcomes and time (linear and quadratic) post-combination 
antiretroviral therapy (post-cART) initiation in HIV+ individuals (n = 20).

immune parameter 
outcome

b (se) 95% ci Wald χ2 p-Value

activated/adaptive-like nK cells
NK cell (% CD69+) χ2(1) = 9.1 0.003

Linear −0.12 (0.04) −0.21; −0.04
Quadratic – – – –

NK cell (% HLA DR+/
CD38+)

– – χ2(1) = 2.3c 0.129

Linear −0.05 (0.03) −0.11; 0.01 – –
Quadratic – – – –

CD56dim 
FcRγ− NK cells

χ2(1) = 2.5 0.115

Linear −0.22 (0.14) −0.50; 0.05 – –
Quadratic – – – –

T cell activation
CD4+ T cell (% HLA 
DR+/CD38+)

– – χ2(2) = 32.5b <0.001

Linear −0.23 (0.05) −0.34; −0.13 – –
Quadratic 0.004 (0.002) 0.0004; 0.01 – –

CD8+ T cell (% HLA 
DR+/CD38+)

– – χ2(2) = 68.1 <0.001

Linear −1.08 (0.16) −1.38; −0.77 – –
Quadratic 0.03 (0.01) 0.01; 0.04 – –

Monocyte subsets
% Classical 
monocytes

χ2(2) = 28.5 <0.001

Linear 1.49 (0.39) 0.72; 2.26 – –
Quadratic −0.07 (0.03) −0.13; −0.01

% Intermediate 
monocytes

χ2(2) = 61.2 <0.001

Linear −0.78 (0.11) −1.00; −0.56 – –
Quadratic 0.03 (0.01) 0.02; 0.05 – –

% Non-classical 
monocytes

χ2(1) = 10.9 0.001

Linear −0.30 (0.09) −0.48; −0.12 – –
Quadratic – – – –

Table shows regression coefficient (b), SE, 95% confidence intervals (95% CI), Wald 
tests (Wald χ2) and probability value (p-value).
aLatent growth-curve modeling specifying a random intercept (baseline marker level) 
and coefficient (linear time) and unstructured covariance terms for random effects.
bIntercept and slope covariance term not able to be computed for this model.
cRandom intercept model only—random coefficient model did not converge.
Note: Where a quadratic coefficient is not shown for an outcome, nested likelihood 
ratio tests did not reject the null hypothesis that the functional form of time on cART 
was linear.
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expansion of adaptive Fcrγ− nK cells is 
not associated with hcMV antibody 
levels or Other immune activation 
Markers in hiV+ individuals
Given the persistence of both FcRγ− NK cells and elevated HCMV 
antibody levels in cART-experienced HIV+ MSM, and our previ-
ous observation of an association between these two parameters 
in HIV-uninfected individuals (3), we extended the modeling 
to investigate associations between FcRγ− NK cells and elevated 
HCMV antibody levels in HIV+ MSM. Contemporaneous time-
varying associations between individuals’ FcRγ− NK  cell levels 
and other key markers were estimated from longitudinal data 
obtained up to 12  months post-cART initiation using linear 
mixed modeling, which permitted the analysis of repeated meas-
ures data from the same individuals. This analysis indicated that 
FcRγ− NK cell levels were not associated with levels of antibody 
to either HCMV lysate [Wald χ2(1)  =  0.23, p  =  0.631] or gB 
[Wald χ2(1) = 0.89, p = 0.345, Table 4]. Significantly, there was 
no association between the proportions of FcRγ− NK cells and 
NK cell activation (either HLA-DR+/CD38+ or CD69+ NK cells, 
p = 0.705 and 0.182, respectively, Table 4), nor with any other 
cellular or soluble immune activation marker measured. This 
lack of association was also observed when only baseline samples 
from cART naïve individuals were analyzed (data not shown). 
These findings are consistent with our previous cross-sectional 
study that indicated an association between HCMV antibody 
levels and adaptive-like FcRγ− NK cells in HIV− but not HIV+ 
individuals (3).

In contrast to levels of FcRγ− NK cells, NK cell activation, meas-
ured as either HLA-DR+/CD38+ or CD69+ NK cells, was signifi-
cantly associated with CD4+ T cell activation [Wald χ2(1) = 5.31, 
p = 0.021 and Wald χ2(1) = 9.55, p = 0.002, respectively] and the 

rate of reversal of CD69+ NK  cell activation as compared to 
inflammatory intermediate monocyte expansion [6  months: 
Wald χ2(1) = 42.6; 12 months: Wald χ2(1) = 28.0; p < 0.001 for 
both, Figure 3A]. Similarly, the proportion of activated CD69+ 
NK  cells declined significantly more slowly after cART initia-
tion than activated (HLA-DR+/CD38+) CD4+ T-cells [6 months: 
Wald χ2(1) = 13.7; 12 months: Wald χ2(1) = 16.1, p < 0.001 for 
both, Figure 3B] or CD8+ T-cells [6 months: Wald χ2(1) = 58.3; 
12 months Wald χ2(1) = 47.8, p < 0.001 for both, Figure 3C]. 
These analyses indicate that cART has a differential effect on 
different arms of the immune system, and robustly confirm that 
NK cell activation resolves more slowly than T cell or monocyte 
dysfunction following cART initiation.
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FigUre 3 | NK cell activation decays more slowly following combination antiretroviral therapy (cART) initiation than T cell or monocyte activation. Bivariate latent 
growth curve models comparing the modeled rate of decline in the proportion of activated CD69+ NK cells (blue lines) vs inflammatory intermediate CD14++CD16+ 
monocytes [red lines, (a)], activated HLA-DR+/CD38+ CD4+ [red lines, (B)] or CD8+ [red lines, (c)] T cells for 12 months after cART initiation. Mean exponentiated 
effects and 95% confidence intervals are shown (solid and dashed lines, respectively). Note: Plots show mean exponentiated linear/quadratic effects by time after 
cART initiation and 95% confidence intervals. Values <1 indicate a reduction in marker level over time.
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proportion of intermediate [Wald χ2(1)  =  4.29, p  =  0.038 and 
Wald χ2(1) = 6.02, p = 0.014, respectively] and classical [Wald 
χ2(1) = 5.71, p = 0.017 and Wald χ2(1) = 4.36, p = 0.037, respec-
tively] monocyte subsets (Table S1 in Supplementary Material). 
Activated CD69+ NK cells were also significantly associated with 
CD8+ T cell activation [Wald χ2(1) = 9.24, p = 0.002] and plasma 
levels of CXCL10 [Wald χ2(1) = 6.66, p = 0.010], whilst neither 
HLA-DR+/CD38+ or CD69+ activated NK cells were associated 
with HCMV antibody levels (p  >  0.05 for all). These findings 
suggest that whilst NK  cell activation is associated with other 
markers of adaptive and innate immune activation in HIV+ 
individuals, the expansion of adaptive-like FcRγ− NK  cells is a 
discrete phenomenon.

DiscUssiOn

HIV infection has a profound impact on NK  cells including 
heightened cellular activation, imprinting of the NK cell receptor 

repertoire and expansion of NK  cell subpopulations with an 
adaptive, memory-like phenotype (2, 3, 26–28). Studies investi-
gating the impact of HIV infection and cART on immunological 
parameters are often limited by cross-sectional study designs 
and inappropriate HIV− comparator populations that do not 
adequately control for confounders such as heightened HCMV 
seropositivity. In this study, we used a unique and carefully 
controlled longitudinal cohort of HIV+ MSM initiating cART 
with HIV-seronegative MSM recruited from the same primary 
care sites to investigate the impact of HIV infection and cART 
on NK  cell dysfunction. We found the proportion of CD56dim 
FcRγ− NK cells was significantly increased in cART-naïve HIV+ 
MSM as compared to HIV− MSM, who in turn were immunologi-
cally distinct from community controls. Viremic HIV infection in 
MSM was also associated with significant activation of CD56dim 
NK  cells, as assessed using HLA-DR/CD38 co-expression as 
described previously (2) or CD69 expression as phenotypic 
markers of activation. CD69 ligation induces cytolytic activity in 
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TaBle 4 | Mixed modelinga showing unadjusted longitudinal associations between FcRγ− CD56dim FcRγ− NK cell levels and immune parameters in  
HIV+ individuals (n = 20).

immune parameter b(se) 95% ci Wald χ2 p-Value

T cell activation
CD4+ (% HLA DR+/CD38+) 0.33 (0.66) −0.96, 1.62 χ2(1) = 0.26 0.613
CD8+ (% HLA DR+/CD38+) 0.01 (0.21) −0.40, 0.41 χ2(1) = 0.00 0.977

nK cell activation/function
NK (% CD69+) 0.62 (0.46) −0.29,1.52 χ2(1) = 1.78 0.182
NK (% HLA DR+/CD38+) −0.24 (0.63) −1.46, 0.99 χ2(1) = 0.14 0.705

Monocyte subsets
% Classical monocytes −0.13 (0.20) −0.51, 0.26 χ2(1) = 0.42 0.519
% Intermediate monocytes 0.35 (0.46) −0.55, 1.25 χ2(1) = 0.59 0.444
% Non-classical monocytes 0.14 (0.30) −0.44, 0.72 χ2(1) = 0.23 0.631

soluble markers
HCMV lysate IgG (AU) 2.4 × 10−5 (4.9 × 10−5) −7.3 × 10−5, 1.2 × 10−4 χ2(1) = 0.23 0.631
HCMV gB IgG (AU) 2.7 × 10−5 (2.9 × 10−5) −2.9 × 10−5, 8.4 × 10−5 χ2(1) = 0.89 0.345
CXCL10 (pg/mL) 2.7 × 10−3 (0.01) −0.02, 0.03 χ2(1) = 0.05 0.828
sCD163 (ng/mL) 3.5 × 10−3 (2.2 × 10−3) −8.7 × 10−4, 7.9 × 10−3 χ2(1) = 2.47 0.116

Regression coefficient (b), SE, 95% confidence intervals (95% CI), Wald test (Wald χ2), and probability value (p-value).
aLinear mixed modeling specifying a random intercept for study participant to account for the dependency associated with repeated measurements (i.e., all participant observations 
were used in analyses).
AU, arbitrary units.
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NK cells (36), but it is also involved in retention of lymphocytes 
in lymphoid tissue (37) and is highly expressed on tissue-resident 
NK  cells (38), suggesting HIV infection may be associated 
with greater trafficking of NK  cells between blood and tissues. 
Expression of the maturation marker CD57 on CD56dim NK cells 
was also unaltered by cART in this cohort (data not shown), 
which is consistent with our previous findings (31).

To robustly quantify the effect of virologic suppression on 
NK cell dysfunction, we used mixed effects modeling to account 
for inherent differences in each individuals’ immunological 
response to HIV infection and subsequent therapy. Importantly, 
unlike T lymphocyte and monocyte activation, which declined 
significantly following cART initiation, the expansion of FcRγ− 
NK cells in HIV+ MSM was not affected by cART and appeared 
to represent a stable population present in the setting of HIV 
infection. Similarly, Brunetta et  al. found that proportions of 
NKG2C+ NK cells (a population analogous to the FcRγ− NK cells 
described here (3)) remained consistently elevated despite 
2 years of cART, while HIV-associated changes to the ratio of 
NKG2A+/NKG2C+ NK cells were normalized during this period 
(27). Together, these data indicate an enduring effect of HIV 
infection on NK  cell dysfunction in virologically suppressed 
HIV+ individuals, which persists for at least 2  years following 
cART initiation and long after normalization of other immune 
parameters.

The persistence of activated HLA-DR+/CD38+ NK  cells 
in cART-treated HIV+ MSM demonstrated by our latent 
growth curve modeling unequivocally confirms observations 
from our cross-sectional studies, which found heightened 
NK  cell activation (measured using phenotypic markers or 
spontaneous degranulation) in virologically suppressed HIV+ 
individuals (2, 3). This implies NK cell activation is driven by 
factors other than HIV viremia, although it is still possible that 
NK cells are more sensitive to residual viral replication (<20 

RNA copies/mL detected using validated clinical assays) than 
other leukocyte types. The association between NK  cell and 
monocyte activation observed here suggests monocyte activa-
tion, potentially resulting from endotoxemia, may contribute 
to NK cell activation in viremic HIV infection. However, the 
persistence of NK cell activation but not monocyte activation 
in cART-treated individuals implies either that other fac-
tors maintain NK  cell activation in virologically suppressed 
individuals or that NK  cells are more sensitive indicators of 
persistent immune dysfunction. Interestingly, we did not 
observe an association between NK cell activation and HCMV 
antibody levels, although HCMV antibody levels alone are an 
imperfect metric of an individual’s HCMV burden and the 
frequency and magnitude of reactivation events, particularly in 
HIV infection, as antibody levels in individuals with advanced 
HIV disease can initially rise following cART-initiation, and 
then subsequently fall (39, 40). Quantitation of the burden of 
HCMV remains problematic as the virus replicates in tissue 
cells, so viral DNA may not be detectable in blood. Thus, it 
remains possible that HCMV replication may contribute to 
persistent NK cell activation in cART-treated HIV infection.

In contrast to HLA-DR+/CD38+ NK  cells, there was a slow 
but significant decrease in CD69+ NK  cells following cART 
initiation, consistent with CD69 being an early marker of cellular 
activation known to decline during the convalescent stage of viral 
infections such as Hantavirus (41). However, the rate at which 
activated CD69+ NK  cells declined on cART was significantly 
slower than that observed for T  lymphocyte and monocyte 
activation, indicating NK cells are a cell population very sensitive 
to inflammatory or immune stimulatory factors that remain after 
antiretroviral therapy. Monitoring NK activation may therefore 
be a robust indicator of residual immune dysfunction in cART-
treated individuals and could also be a useful biomarker for 
monitoring the efficacy of future functional cure strategies aimed 
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at supressing HIV viremia and related immune activation in the 
absence of cART.

In HIV-uninfected individuals, FcRγ− NK cells are generated 
in response to HCMV infection (22, 42). We have reported that 
the frequency of these cells correlates strongly with HCMV anti-
body levels in HIV− individuals recruited from the community 
(3), suggesting that in the general population, levels of HCMV 
infection and/or reactivation (to the extent indicated by antibody 
responses) are driving the expansion of NK cells with adaptive 
immune properties. In contrast, we have shown both here and 
previously (3) that HCMV antibody levels do not correlate with 
FcRγ− NK  cell frequencies in HIV+ MSM. It remains possible 
that HCMV infection is a prerequisite for the HIV-associated 
expansion of FcRγ− NK cells observed here, similar to the effect 
of HIV on NKG2C+ NK cell expansion, which is only observed 
in HCMV+ individuals (27). Furthermore, HCMV reactivation 
may in fact be a primary driver of FcRγ− NK cell expansion in 
HIV infection, but the abovementioned limitations with HCMV 
antibody levels as indicators of HCMV burden may preclude 
detection of this relationship. We have previously shown the 
phenotype of adaptive-like NK  cells expanded in response to 
HCMV infection in renal transplant patients differs from those 
expanded in HIV infection (31, 43), implying that HIV-related 
factors may drive expansion of adaptive-like NK cells in addition 
to the effects of HCMV. The lack of an association between FcRγ− 
NK  cells and immune activation found in this study suggests 
adaptive-like NK cell expansion is driven by mechanisms distinct 
from immune cell activation.

Adaptive-like NK populations are characterized phenotypi-
cally by reduced expression of the inhibitory receptor NKG2A 
and signaling molecules such as FcRγ, Syk, and Siglec-7 and 
increased expression of the activating receptor NKG2C (23, 32). 
FcRγ− NK cells lack the cytotoxic receptors NKp30 and NKp46 
(3) and have poor cytotoxic activity against tumor targets (32); 
thus, the increased proportion of these NK cells may contribute 
to the increased prevalence of non-AIDS malignancies seen in 
HIV+ individuals, although this requires formal investigation. 
As NKp46 is required for killing of HIV-infected CD4+ T cells 
by natural cytotoxicity (44), the accumulation of NKp46− FcRγ− 
NK cells in HIV+ individuals may impair NK-mediated clearance 
of HIV-infected T cells, although this may be counteracted by their 
enhanced ADCC activity. The enhanced ability of FcRγ− NK cells 
to produce inflammatory factors such as TNF and IFNγ following 
antibody stimulation (22, 32) may also perpetuate inflammation 
and immune activation in cART-treated individuals. Given that 
adaptive-like NK cells are expanded and persist in response to 
chronic viral infection it is reasonable to speculate that they play 
a role in protective immunity, although their contribution to this 
process in vivo remains to be determined. Consistent with this, 
NKG2Cbright (45) and FcRγ− (22) NK cells expanded in HCMV+ 
individuals show heightened antibody-mediated degranulation, 
cytokine production, and ADCC against not only HCMV but 
also HSV-1 targets, implying a role in antibody-dependent cross-
protection. However, HIV+/HCMV+ individuals have higher lev-
els of HCMV antibodies than individuals infected with HCMV 
alone (31), implying poor HCMV control. It is plausible that 
abundant antibody and FcRγ− NK cells together compensate for 

poor protective T-cell responses in HIV+ individuals. We found 
FcRγ− NK  cells isolated from HIV+ individuals have increased  
ex vivo ADCC activity when stimulated by HIV peptides in the 
presence of heterologous HIV+ serum (3), but whether this trans-
lates to enhanced killing of HIV-infected cells ex vivo or in vivo, 
and whether this affects HIV reservoirs, is an important question 
that warrants investigation.

This study presents unique longitudinal data examining HIV-
related immune activation specifically in MSM by comparison 
to matched HIV− MSM controls. The concentration of the HIV 
epidemic in MSM populations in many developed countries 
including Australia (46) means that MSM are overrepresented 
in clinical HIV studies conducted in these settings, but MSM-
related factors are rarely considered as potential confounders. Our 
finding of increased proportions of FcRγ− NK cells and elevated 
HCMV antibody levels in HIV-uninfected MSM as compared 
to community controls underscores the importance of using 
appropriately matched, MSM controls to study immunological 
changes in HIV+ MSM.

This study has a number of limitations, including a relatively 
small sample size, although this cohort size was chosen since, 
with 20 participants, the study provides a minimum number of 
level-two units to reliably estimate fixed model parameters in 
longitudinal mixed modeling (47–49). Other limitations include 
the absence of female participants, the use of an exclusively MSM 
cohort, and a follow-up of only 2 years. Follow-up of the cohort 
is ongoing and future analysis of later post-cART time-points will 
be critical for determining whether periods of cART >2 years are 
able to mitigate FcRγ− NK cell expansion. This study has however 
highlighted a significant and enduring effect of chronic, virologi-
cally suppressed HIV infection on the activation and imprinting 
of NK cells. Identification of the mechanisms responsible for the 
creation and maintenance of the expanded adaptive-like NK cell 
population in HIV+ individuals, and the clinical consequences 
of their expansion, will inform adjunct immunotherapies to 
adequately address persistent immune dysfunction in cART-
treated HIV infection.
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A modified vaccinia Ankara-based HIV-1 vaccine clade B (MVA-B) has been tested for 
safety and immunogenicity in low-risk human immunodeficiency virus (HIV)-uninfected 
individuals and as a therapeutic vaccine in HIV-1-infected individuals on combined 
antiretroviral therapy (cART). As a therapeutic vaccine, MVA-B was safe and broadly 
immunogenic; however, patients still showed a viral rebound upon treatment interrup-
tion. Monocytes are an important part of the viral reservoir and several studies suggest 
that they are partly responsible for the chronic inflammation observed in cART-treated 
HIV-infected people. The CD300 family of receptors has an important role in several 
diseases, including viral infections. Monocytes express CD300a, c, e, and f molecules 
and lipopolysaccharide (LPS) and other stimuli regulate their expression. However, 
the expression and function of CD300 receptors on monocytes in HIV infection is still 
unknown. In this work, we investigated for the first time the expression of CD300 mole-
cules and the cytokine production in response to LPS on monocytes from HIV-1-infected 
patients before and after vaccination with MVA-B. Our results showed that CD300 recep-
tors expression on monocytes from HIV-1-infected patients correlates with markers of 
HIV infection progression and immune inflammation. Specifically, we observed a positive  
correlation between the expression of CD300e and CD300f receptors on monocytes 
with the number of CD4+ T cells of HIV-1-infected patients before vaccination. We also 
saw a positive correlation between the expression of the inhibitory receptor CD300f and 
the expression of CD163 on monocytes from HIV-1-infected individuals before and after 
vaccination. In addition, monocytes exhibited a higher cytokine production in response 
to LPS after vaccination, almost at the same levels of monocytes from healthy donors. 
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Furthermore, we also described a correlation in the expression of CD300e and CD300f 
receptors with TNF-α production in response to LPS, only in monocytes of HIV-1-infected 
patients before vaccination. Altogether, our results describe the impact of HIV-1 and of 
the MVA-B vaccine in cytokine production and monocytes phenotype.

Keywords: human immunodeficiency virus, monocytes, cD300, cD300c, cD300f, therapeutic vaccine, 
lipopolysaccharide, hiV-1 vaccine

inTrODUcTiOn

The development of combined antiretroviral therapy (cART) has 
significantly improved the clinical outcome in human immuno-
deficiency virus (HIV)-infected patients. However, long-term 
cART poses considerable side effects and costs, and stopping 
the treatment generally causes rapid viral rebounds, mostly 
due to the latent viral reservoirs (1, 2). For this reason, several 
strategies are being studied in order to achieve a permanent 
control of HIV replication inducing an effective antiviral T cell 
response. Among the most immunogenic approaches for induc-
ing HIV-specific CD8+ T cell responses have been poxvirus vec-
tor boost vaccines (3, 4). Recently, a modified vaccinia Ankara 
vector expressing HIV-1 antigens clade B (MVA-B) was tested 
as a therapeutic vaccine. MVA-B was first tested with healthy 
volunteers (RISVAC02), which demonstrated that this vaccine 
was safe, well tolerated (5) and induced polyfunctional and 
durable T cell responses in most individuals (6). Importantly, it 
has also been tested as a therapeutic vaccine in a phase-I clini-
cal trial in HIV-1-infected individuals on cART (RISVAC03), 
and the vaccination with MVA-B vaccine was also safe and 
broadly immunogenic. Nevertheless, HIV-1-infected patients 
still showed a viral rebound upon treatment interruption, and 
vaccination did not affect the viral reservoir even in combina-
tion with disulfiram, a drug able to reactivate latent HIV-1  
(7, 8). The viral rebound after removal of cART has been linked 
to the fact that vaccination with MVA-B tips the balance between 
activation and regulation toward regulation of the response of 
HIV-specific CD8+ T cells (9). Nevertheless, in order to design 
more effective therapeutic vaccines, more studies are required 
to completely understand the effects on the host of the MVA-B 
vaccination.

Although latently infected CD4+ T cells comprise the major-
ity of the HIV reservoir, monocytes (mainly CD16+ monocytes) 
provide an important part of this reservoir and also perpetuate 
HIV replication through ongoing cell-to-cell transfer of virions 
and efficient infection of CD4+ T cells, even in the presence of 
cART (10). In addition, recent studies suggest that monocytes 
are also responsible for the chronic inflammation in cART-
treated HIV-infected people (11). In fact, it has been described 
that monocytes of chronically HIV-infected subjects differ 
from monocytes of healthy people in subsets distribution (12), 
expression of different markers (e.g., CD163) (13), and cytokine 
production (e.g., IL-6) (11). All these findings emphasize the 
importance of studying the mechanisms that regulate the activa-
tion of monocytes in HIV-infected patients.

The human CD300 molecules (a, b, c, d, e, f, g, h) are type 
I transmembrane proteins that, with the exception of CD300g 

which is expressed on endothelial cells, are found in both 
lymphoid and myeloid cell lineages. CD300a and CD300f are 
inhibitory receptors while CD300b, CD300c, CD300d, CD300e, 
and CD300h are activating receptors (14–16). Inhibitory recep-
tors contain a long cytoplasmic tail with immunoreceptor 
tyrosine-based inhibitory motifs (ITIMs) which are required 
for the inhibitory signaling. Activating receptors have a short 
cytoplasmic tail with a charged transmembrane amino acidic 
residue, that allows their association with adaptor proteins 
containing immunoreceptor tyrosine-based activating motifs 
and other activating motifs which induce activation signals  
(14, 16). CD300 molecules have an important role in several 
diseases, including viral infections (14, 16, 17). In the context 
of HIV infection, there are few publications describing the role 
of CD300 family. In HIV-infected patients, the expression of the 
CD300a inhibitory receptor is down-regulated on B lymphocytes, 
which may help to explain the hyperactivation and dysfunction 
of B cells observed in these individuals (18). Another important 
detail about CD300a involvement in the pathogenesis of HIV 
infection is given by the description of a positive correlation 
between mRNA levels of CD300a and the expression of BATF, a 
transcription factor that inhibit T cell function, in HIV-specific 
CD8+ T cells (19).

At least, monocytes express four members of this fam-
ily: the CD300a and CD300f inhibitory receptors, and the 
CD300c and CD300e activating receptors. Among others, 
age and lipopolysaccharide (LPS) regulate the expression of 
these receptors (14, 16, 20). However, in HIV infection, the 
expression and function of CD300 receptors on monocytes 
is still unknown. In this work, we have analyzed the expres-
sion of CD300 molecules on monocytes from chronically 
HIV-1-infected patients and calculated the correlation with 
markers of HIV-1 infection progression (CD4+ T cell count) 
and immune inflammation (CD163 expression). Moreover, 
we investigated the effect of the vaccination with MVA-B in 
the cytokine production of monocytes stimulated with LPS 
in HIV-infected subjects and we studied the correlation with 
the CD300 family of molecules expression. Our results may 
contribute to a better knowledge of monocytes dysfunction in 
HIV-1 infection and the influence of the MVA-B therapeutic 
vaccine in these cells.

PaTienTs anD MeThODs

Patients and samples
Samples were obtained from HIV-1-infected patients enrolled 
in the RISVAC03 clinical trial (NCT01571466) (8). RISVAC03 
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TaBle 1 | Clinical data of HIV-1-infected patients.

Patient Undetectable 
Vl (years)

cD4+ T cells nadir 
(cells/mm3)

cD4+ T cells 
before arT 
(cells/mm3)

cD4+ T cells 
baseline (cells/mm3)

age sex Weight 
(kg)

coinfection 
hepatitis c 

virus

Time of known hiV 
infection (years)

101 9 179 368 541 49 M 74 No 14
103 1 290 489 530 50 M 69 No 10
107 2 274 274 866 41 M 68 No 12
108 2 396 396 823 33 M 73 No 12
109 4 645 688 1,179 39 M 65 No 6
110 12 376 376 1,238 40 F 56 No 15
111 3 296 396 632 44 M 78 No 6
112 2 507 680 794 39 M 60 No 3

VL, viral load; ART, antiretroviral therapy; HIV, human immunodeficiency virus.
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is a double-blinded randomized phase-I trial in which cART-
treated HIV-1-infected individuals received four intramuscular 
injections of MVA-B vaccine at weeks 0, 4, 16, and 36, combined 
with disulfiram for 3 months after the last dose of the vaccine. 
Specifically, in this study we have analyzed available frozen 
peripheral blood mononuclear cells (PBMCs) from eight HIV-
1-infected patients before (week 0) and after last vaccination 
(week 48). Clinical data of HIV-1-infected patients are shown in 
Table 1. Frozen PBMCs from seven healthy donors (HD) avail-
able from the phase-I trial RISVAC02 (NCT00679497) (5) were 
also studied. Only cells from non-vaccinated healthy individuals 
were analyzed. The means of the percentages of viable cells after 
thawing were: 69.4 ± 4.55% (HD), 70.0 ± 3.33% (HIV-infected 
patients before vaccination), and 67.3  ±  3.59% (HIV-infected 
patients after vaccination). This study was approved by the 
Research Ethics Committee of Hospital Clìnic, Barcelona, 
Hospital Germans Trias i Pujol, Badalona and Hospital Gregorio 
Marañón, Madrid, Spain. All subjects that participated in 
RISVAC02 and RISVAC03 clinical trials provided written and 
signed informed consent (5, 8).

Flow cytometry analysis
The following anti-human fluorochrome conjugated antibodies 
were used for flow cytometric analysis: PE-Cy7 mouse anti-
CD14 (clone MφP9), PerCP-Cy5.5 mouse anti-HLA-DR (clone 
G46-6), PE mouse anti-IL-1α (clone 364-3B3-14), and FITC 
rat anti-IL-6 (clone MQ2-13A5) from BD Biosciences; FITC 
mouse anti-CD16 (clone B73.1), BV421 mouse anti-CD163 
(clone GHI/61), and APC mouse anti-TNFα (clone Mab11) 
from Biolegend; PE mouse anti-CD300a (clone E59.126) from 
Beckman Coulter; eFluor660 mouse anti-CD300c (clone TX45) 
from eBioscience; and APC mouse anti-CD300e (clone UP-H2) 
and PE mouse anti-CD300f (clone UP-D2) from Miltenyi Biotec. 
To test the viability of the cells, the 633–635 nm excitation LIVE/
DEAD Fixable Near-IR Dead Cell Stain Kit (Life Technologies) 
was used. Frozen PBMCs from HD and HIV-1-patients were 
thawed, washed, and incubated at 37°C for 1–2  h in R10  
(10% FBS and 1% Penicillin/Streptavidin in RPMI-1640 medium) 
medium with 10U of DNase (Sigma-Aldrich), in a concentration 
of 2 × 106 cells/ml. Afterward, cells were stained first with the 
LIVE/DEAD kit in order to detect dead cells, and then, they were 
incubated with different fluorochrome conjugated antibodies. 

Both steps were carried out for 30  min on ice protected from 
the light. PBMCs were fixed with 4% of paraformaldehyde 
(Sigma-Aldrich) for 15 min at 4°C and washed two times with 
PBS. A FACSCanto II flow cytometer (BD Biosciences) was used 
for sample acquisition and data was analyzed with FlowJo 10.0.7 
software (TreeStar).

lPs stimulation and intracellular cytokine 
staining (ics)
Peripheral blood mononuclear cells from HD and HIV-1-
infected patients were cultured (106 cells/ml) in R10 medium with  
1  ng/ml of LPS (Sigma) for 5  h at 37°C, in the presence of 
GolgiStop protein transport inhibitor containing monensin, 
following manufacturer’s indications (BD Biosciences). After 
the stimulation, PBMCs were stained with LIVE/DEAD kit, 
followed by incubation with different fluorochrome conjugated 
antibodies for extracellular staining. In order to accomplish the 
ICS, cells were first permeabilized with Cytofix/Cytoperm Plus 
Kit following the manufacturer’s protocol (BD Biosciences) and 
then they were incubated with different fluorochrome conjugated 
antibodies for the detection of cytokines. Sample acquisition and 
data analysis were carried out as described before.

Data representation and statistical 
analysis
GraphPad Prism software (version 6.01) was used for graphical 
representation and statistical analysis. Data were represented 
in dot plot graphs and bar graphs showing the mean with 
SEM, and pie chart graphs. Values obtained from different 
subject groups were compared with non-parametric tests; the 
comparison between HD and HIV-1-infected patients’ data was 
made with the unpaired Mann–Whitney test; and differences 
between HIV-1-infected patients before and after vaccination 
were evaluated with the Wilcoxon matched-pairs signed rank 
test. Correlation analyses were done using the same software. 
In the case of cytokine production data, percentages of poly-
functional, mono-functional, and non-functional cells were 
obtained by a Boolean gate analysis with FlowJo software and 
the representation of these data were done using GraphPad 
Prism software.
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resUlTs

cD300 receptors expression on 
Monocytes from hiV-1-infected Patients 
correlates with Markers of hiV infection 
Progression and immune inflammation
We first determined the expression of CD300a, CD300c, CD300e,  
and CD300f molecules on monocytes from HD and chronically 
HIV-1-infected subjects that are receiving cART at baseline, 
i.e., just before starting the RISVAC03 clinical trial. Monocytes 
were electronically gated based on their forward and side 
scatter properties, and the expression of CD14 and CD16; con-
cretely, classical (CD14++ CD16−), intermediate (CD14++ 
CD16+), and non-classical (CD14+ CD16++) monocytes 
were analyzed (Figure S1A in Supplementary Material). As it 
has been described before (10, 12), the percentages of inter-
mediate and non-classical monocytes were slightly increased in 
HIV-1-infected patients in comparison with HD (Figure S2 in 
Supplementary Material). The expression of four members of 
the CD300 receptor family was tested: the inhibitory receptors 
CD300a and CD300f, and the activating receptors CD300e and 
CD300c. We did not observed significant differences in the 
expression of CD300 receptors on monocytes of HIV-1-infected 
patients compared with HD (Figure  1A), not even when we 
separately analyzed each monocyte subpopulation (Figure S3 
in Supplementary Material). In spite of that, we observed a ten-
dency, although not statistically significant, of CD300c expres-
sion to decrease on monocytes of HIV-1-infected subjects [HD 
median fluorescence intensity (MFI) = 2,717 ± 630.4 vs HIV 
MFI = 1,596 ± 465.5] (Figure 1A), especially in non-classical 
monocytes (data not shown).

Next, we investigated the association between CD300 recep-
tors expression and patients’ clinical features. Clinical data, which 
consists mainly of CD4+ T cell numbers, are shown in Table 1. 
CD300a and CD300c receptor expression on monocytes did not 
correlate with the number of CD4+ T cells at baseline (data not 
shown); however, the expression of CD300e (p < 0.05, r = 0.7820) 
and CD300f (p < 0.05, r = 0.7592) receptors was positively cor-
related with the CD4+ T cell numbers (Figure 1B).

Afterward, the expression of the CD163 receptor was analyzed 
and calculated the correlation with CD300 molecules expression 
in monocyte subpopulations. CD163 is a scavenger receptor, 
expressed exclusively on monocytes and macrophages, that has 
been investigated as a potential inflammation marker in differ-
ent infectious diseases (13). In fact, sCD163 plasma levels are 
elevated in chronically HIV-1-infected patients and this has been 
related to a higher risk of comorbid disorders (11). We saw that 
CD163 expression of classical (HD MFI = 1,025 ± 106.7 vs HIV 
MFI = 1,744 ± 243.8) and intermediate (HD MFI = 1,079 ± 175.3 vs  
HIV MFI  =  1,200  ±  158.2) monocytes was higher in HIV-
1-infected subjects than in HD; unlike non-classical mono-
cytes, which exhibited a very low expression in both groups 
(Figure 1C). Correlation analysis showed that in monocytes of 
HD, CD163 and CD300 receptors expression were not associated 
(data not shown). In contrast, there was a positive correlation 
between CD163 and CD300c expression (p < 0.05, r = 0.7234) on 

monocytes of HIV-1-infected subjects, and also between CD163 
and CD300f expression (p <  0.01, r =  0.9559) in intermediate 
monocytes of HIV-1-patients (Figure 1D).

effects of MVa-B Vaccination on 
Monocytes from hiV-infected subjects
The safety and immunogenicity of the MVA-B vaccine in chronically  
HIV-1-infected patients and healthy people has been previously 
tested (6–8). This vaccine improves the magnitude of HIV-specific 
T  cell responses (6, 7), although it does also tilt the balance 
between activation and regulation of T  cell specific responses 
toward regulation (9), somehow explaining the viral rebound 
after removal of cART in patients that has received the vaccine. 
However, the effects of vaccination in other immune cells have 
not been studied. Considering that monocytes play an important 
role in chronic inflammation characteristic of HIV-1-infected 
subjects (11), we studied the phenotype and cytokine production 
of monocytes in HIV-1-infected patients after vaccination with 
MVA-B and we compared them with monocytes from the same 
patients before vaccination.

First, the expression of CD163 and CD300 surface receptors 
was determined in HIV-1-infected patients before and after 
the vaccination with MVA-B. The percentages of monocyte 
subpopulations in vaccinated HIV-1-infected individuals were 
very similar to the percentages found before the vaccination 
(Figure S2 in Supplementary Material). The expression of CD300 
molecules was determined and we observed that the expression 
pattern in monocytes of HIV-1-infected patients before and after 
vaccination was almost identical (Figure 2A, left panel). CD163 
expression on monocytes was not significantly different when 
compared before and after vaccination. However, on intermediate 
monocytes (HIV before vaccination MFI = 1,103 ± 153.4 vs HIV 
after vaccination MFI = 793.6 ± 173.8), CD163 tended, although 
not statistically significant, to be down-regulated in patients 
after vaccination, while in classical and non-classical monocytes 
CD163 expression was very similar before and after vaccination 
(Figure  2A, middle panel). Lastly, we analyzed the correlation 
between the expression of CD300 receptors and CD163 receptor, 
and no significant values were observed in any case, except for 
a positive correlation between the levels of CD300f and CD163 
(p < 0.05, r = 0.9275) on intermediate monocytes, as it was found 
before vaccination (Figure 2A, right panel).

Afterward, PBMCs from HD and HIV-1-infected patients, 
before and after vaccination, were stimulated with 1  ng/ml of 
LPS for 5 h, followed by ICS in order to study IL-6, IL-1α, and 
TNFα production in monocytes. These were gated according to 
their forward and side scatter properties, and they were defined 
as CD14++ HLA−DR+. In our hands, monocyte subpopulations 
were not distinguished due to the down-regulation of CD16 
receptor after LPS stimulation (data not shown). Positive cells 
for each cytokine were determined based on non-stimulated 
cells. First, we checked the level of cytokine production by the 
stimulated cells by MFI of cytokine staining, a value known to be 
correlated with the amount of cytokine produced by cells (21).  
We observed that monocytes from HIV-1-infected subjects pro-
duced less IL-6 and TNFα than monocytes from HD in response 
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FigUre 1 | CD300 receptors expression in human immunodeficiency virus (HIV)-1-infected patients. (a) Dot plot graph presenting the median fluorescence 
intensity (MFI) of CD300a, CD300c, CD300e, and CD300f receptors expression on monocytes from healthy donors (HD) and HIV-1-infected patients. Each dot 
corresponds to an individual and the mean with the standard error of the mean (SEM) is shown. (B) Correlation between CD4+ T cell number at baseline of the 
study and the MFI of CD300f and CD300e receptors expression on monocytes from HIV-1-infected patients is represented; the linear regression is shown. (c) Dot 
plot graph representing the MFI of CD163 receptor expression on classical, intermediate, and non-classical monocytes from HD and HIV-1-infected individuals. 
Each dot corresponds to an individual and the mean with SEM is shown. (D) Correlation between the MFI of CD163 and CD300c receptors expression on total 
monocytes and CD163 and CD300f receptors expression on intermediate monocytes from HIV-1-infected patients; the linear regression is shown. *p < 0.05, 
**p < 0.01.
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to LPS. Interestingly, monocytes of vaccinated HIV-1-infected 
patients produced higher levels of IL-6, IL-1α, and TNFα in 
response to LPS after vaccination. Although IL-6 levels in vac-
cinated patients remained lower than in HD, TNFα production 
in vaccinated subjects reached the same levels as those from HD 
(Figure  2B). Moreover, analysis showed that the percentage of 
triple positive (IL-6+IL-1α+TNFα+) monocytes in response to 
LPS was higher in vaccinated HIV-1-infected subjects compared 
with the percentage of triple positive monocytes from the same 
patients before vaccination. On the other hand, the percentage 

of only double positive (IL-6-IL-1α+TNFα+) monocytes was 
higher in patients before the vaccination. These results indicate 
that monocytes of HIV-1-infected subjects were more poly-
functional in response to LPS stimulation after vaccination than 
before vaccination. As expected, although differences were not 
significant, probably due to the small sample, it was observed 
a higher percentage of non-cytokine (IL-6−IL-1α−TNFα−) 
producing monocytes from patients before vaccination than in 
monocytes after vaccination and from HD (HD = 7.63% vs HIV 
no vaccinated = 9.23% vs HIV vaccinated = 6.45%) (Figure 2C). 
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FigUre 2 | Continued
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FigUre 2 | Continued  
Phenotypical analysis and cytokine production of monocytes from HIV-1-infected patients after vaccination with MVA-B vaccine. (a) Dot plot graph (left panel) 
displaying the median fluorescence intensity (MFI) of CD300a, CD300c, CD300e, and CD300f receptors expression on monocytes from HIV-1-infected patients 
before (HIV before vaccination) and after (HIV after vaccination) vaccination. Each dot corresponds to an individual and the mean with SEM is shown. Dot plot graph 
(middle panel) representing the MFI of CD163 receptor expression on classical, intermediate, and non-classical monocytes from HIV-1-infected individuals before 
and after vaccination. Each dot corresponds to an individual and the mean with SEM is shown. The correlation between the MFI of CD163 receptor and the MFI of 
CD300f on intermediate monocytes of HIV-1-infected patients is represented (right panel); the linear regression is shown. (B) Dot plot graphs showing the MFI of 
positive monocytes for each cytokine; the mean with SEM is represented (left). Contour plots representing the percentage of positive monocytes for each cytokine 
after stimulation with lipopolysaccharide. Data from a representative healthy donor (HD) and an HIV-1-infected patient before and after vaccination are shown (right). 
(c) Boolean gate analysis representing the percentages of monocytes producing IL-6, IL-1α, and TNFα, in HD and HIV-1-infected patients before and after 
vaccination. Bar graphs showing the mean with SEM and pie charts are represented. *p < 0.05, **p < 0.01.
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In conclusion, monocyte cytokine production in response to 
LPS in HIV-1-infected patients was higher after vaccination and 
resembled that observed in HD.

relationship between cD300 receptors 
expression and cytokine Production by 
Monocytes of hiV-1-infected Patients 
Before and after Vaccination
The last step of the work was to investigate if the expression levels 
of CD300 molecules could have a correlation with the increased 
functionality found after the MVA-B vaccination in monocytes 
of HIV-1-infected individuals. We performed correlation analysis 
between CD300 receptors expression and cytokine production in 
response to LPS. The expression of CD300 molecules was not 
correlated with the percentage of IL-6+ monocytes in any case. 
In contrast, the expression of CD300e and CD300f correlated 
with IL-1α and TNFα production. The correlation with IL-1α 
production was only observed in monocytes from HD (data not 
shown); however, the expression of CD300e (p < 0.05, r = 0.7505) 
and CD300f (p < 0.01, r = 0.8873) was positively correlated with 
TNFα production in monocytes of HIV-1-infected patients before 
vaccination (Figure 3B). The percentages of TNFα+ monocytes 
of HD and vaccinated patients were not correlated with the MFI 
of CD300e and CD300f (Figures  3A,C). In fact, as it can be 
observed in the graphical representation (Figure 3), monocytes 
from HIV-1-infected patients are more similar to those from 
HD than to the monocytes from the same patients before vac-
cination. Taking altogether, we could propose that the monocyte 
phenotype and functional pattern in response to LPS stimulation 
of HIV-1-infected patients after vaccination with MVA-B are 
more similar to those found in monocytes from HD than from 
monocytes from HIV-1-infected subjects before vaccination.

DiscUssiOn

Monocytes have been described as one of the cell types involved 
in the chronic inflammation characteristic of cART-treated HIV-
1-infected people, which is currently the cause of death of the 
majority of HIV-1-patients (11). High numbers of circulating 
intermediate and non-classical monocytes have been associated 
with inflammation and immune activation during HIV infection 
(10). Furthermore, inflammatory mediators (e.g., IL-6) secreted 
by monocytes predict serious non-AIDS events in virologically 
suppressed HIV-infected subjects (11). Three main mechanisms 

have been proposed to explain the monocyte activation and con-
sequently, the inflammation found in cART-treated HIV-infected 
patients: the microbial translocation, which augments LPS levels 
in plasma, the residual HIV viremia, and coinfection with human 
cytomegalovirus or some herpesviruses (11).

Since the CD300 family of receptors are able to modulate 
monocytes function (20, 22–24), our first objective was to inves-
tigate the CD300 receptors expression in monocytes from cART-
treated chronically HIV-1-infected patients. Our results revealed 
that the expression pattern of CD300 molecules in monocytes 
from HD and in monocytes from HIV-1-infected people were not 
significantly different. However, we observed that the expression 
of CD300c tended, although not statistically significant, to be 
down-regulated in monocytes from HIV-1-infected patients, in 
comparison with monocytes from HD. This could be explained in 
part with the increase of the percentage of non-classical monocytes 
in HIV-1-infected patients, which express lower levels of CD300c 
than classical monocytes (Figure S3 in Supplementary Material) 
(20). It is important to keep in mind that many immunological 
abnormalities observed during the course of HIV infection can 
be reversed by cART, and therefore it is possible that the expres-
sion of CD300 molecules is altered in non-cART-treated patients 
with detectable viremia. More studies with blood samples from 
viremic patients are needed to obtain a more complete picture on 
the expression of the CD300 molecules during HIV infection. We 
did found a significant correlation between the expression of the 
activating receptor CD300e and the inhibitory receptor CD300f 
in monocytes with CD4+ T cell count in patients whose viremia 
is controlled by undergoing cART. These results may suggest that 
the levels of expression of CD300e and CD300f on monocytes 
could potentially be used as biomarkers of disease progression 
in combination with the well know predictive value of CD4+ 
T cell count (25, 26). Prospective studies with larger cohorts will 
confirm the predictive value of CD300e and CD300f expression 
on monocytes from HIV-infected patients.

We have not seen a significant increase in the expression of 
CD163 on monocytes from HIV-infected patients compared with 
monocytes from HD. Somehow, our results are different from 
those reported by others (13). We believe that this discrepancy is 
due to the low number of patients we have studied, since it is pos-
sible to observe a tendency, although not statistically significant, to 
increase CD163 cell surface expression on monocytes from HIV-
infected individuals. Interestingly, there was a positive correlation 
between the expression of CD300f and CD163 in intermediate 
monocytes, a subset with a significant role in inflammation (27). 
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FigUre 3 | Correlation analysis of TNFα production with the expression of CD300 receptors in human immunodeficiency virus (HIV)-1-infected patients before and 
after vaccination with MVA-B. Representation of the correlation between the percentage of TNFα positive monocytes and the median fluorescence intensity of 
CD300f and CD300e receptors expression, in healthy donors (a) and HIV-1-infected patients before (B) and after (c) vaccination with MVA-B; the linear regression 
is shown in each graph. *p < 0.05, **p < 0.01.
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The positive correlation between the expression of CD300f and 
CD163 was maintained after vaccination. These results also sug-
gest that the expression of CD300f, along with other markers, 
could be used as a biomarker of inflammation in HIV-infected 
patients. Human and mouse CD300f is commonly considered 
an inhibitory receptor because of the presence of ITIMs motifs 
in its intracellular tail (14). Several publications have shown its 
inhibitory role on monocyte cell lines (28–30). However, it has 
also been demonstrated that CD300f is able to deliver activat-
ing signals through motifs reported to bind the p85α regulatory 

subunit of PI3K (YxxM) (31–33). In vivo models in mice have 
shown that CD300f both inhibits and promotes the development 
of autoimmune diseases and allergic and inflammatory responses 
(34–39). This dual role of CD300f somehow may depend, not 
only on the cell type this intriguing receptor is expressed, but 
also on its described association with other receptors and adaptor 
proteins (33, 38, 40, 41). It would be of great interest to determine 
the signaling pathways of CD300f on monocytes during HIV 
infection, and determine if this receptor has different roles in 
monocytes from HD and HIV-1-infected patients.
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Several therapeutic vaccines have been tested with the  
objective of controlling viral replication and to avoid viral 
rebound after treatment interruption in chronically HIV-1-
infected patients (42, 43). MVA-B is an immunogenic vaccine 
which induces a T cell response in HIV-1-infected patients (7, 
8). As expected, we did not observe any significant differences 
in the expression of CD300 molecules in monocytes of HIV-1-
infected patients before and after vaccination. The most intrigu-
ing finding of this study was that the response of monocytes to 
LPS stimulation from patients after vaccination was different 
from the response before the vaccination, and at the same time 
similar to the response of monocytes from HD. Monocytes 
from non-vaccinated HIV-1-infected patients produced less 
cytokines in response to LPS than HD. This is in agreement 
with previous findings showing that HIV impairs TNFα pro-
duction by human macrophages in response to Toll-like recep-
tor 4 stimulation (44). Furthermore, this lower production of 
cytokines could also be due to the fact that monocytes when 
are chronically stimulated in vivo during chronic HIV infection 
become refractory to further stimulation with LPS in vitro (45), 
and it has been published that ART-treated infected patients 
exhibit higher levels of LPS in plasma than HD (46).

Vaccination with MVA-B induced higher levels of IL-6, 
IL-1α, and TNFα by monocytes in response to LPS. In fact, 
monocytes of vaccinated subjects exhibited a functional pat-
tern more similar to the one of HD than to non-vaccinated 
HIV-1-infected patients. Furthermore, when we investigated if 
the expression of CD300 receptors might be correlated with the 
cytokine production levels, we also observed that the results 
were comparable between HD and HIV-1-infected patients 
after vaccination, and not between patients before and after vac-
cination. For example, the expression of CD300e and CD300f 
was positively correlated with TNFα levels in monocytes of 
HIV-1-infected subjects before vaccination, but not after vac-
cination or in monocytes of HD. We do not know the causes of 
this increase in the production of pro-inflammatory cytokines 
by monocytes in response to LPS after vaccination and if our 
results have some role in the lack of efficacy of the MVA-B vac-
cine as shown by a viral rebound after treatment interruption. 
It is possible that tipping the balance between activation and 
regulation toward regulation of the response of HIV-specific 
CD8+ T cells is not the only factor responsible for the lack of 
efficacy of the MVA-B vaccine. On the one hand, and consider-
ing our results showing lower CD163 expression on monocytes 
after vaccination, it seems that the administration of MVA-B 
vaccines may favor a less inflammatory environment. However, 
on the other hand, monocytes after vaccination have the poten-
tial to produce higher levels of pro-inflammatory cytokines and 
therefore could help to explain the lack of efficacy of the vaccine 
due to higher inflammation (10, 47–49). Also, it is important 
to remember that these patients have received disulfiram along 
with the MVA-B vaccine. Although the effect of disulfiram in 
monocytes of HIV-1-infected patients is unknown, several 
publications suggest that this drug have a role in decreasing 
the production of inflammatory mediators by monocytes. For 
example, it has been described that this compound diminishes 
the number of inflammatory cells and TNFα levels in the 

aqueous humor, in rats with endotoxin-induced uveitis (50). 
Furthermore, diethyldithiocarbamate, the active compound 
produced in vivo from disulfiram, impairs the release of oxygen 
metabolites and prostaglandins of human monocytes, two major 
pathways related to inflammatory processes (51). Undoubtedly, 
further research is required to delineate the role of monocytes 
in the efficacy of therapeutic vaccines.

In conclusion, our results have shown that vaccination with 
MVA-B, in addition to induce a specific T cell response, has also 
an effect on monocytes phenotype and their ability to produce 
cytokines after stimulation with LPS. We acknowledge that the 
number of patients included in this study is low and that it is 
very possible that a higher number of patients will provide 
more robust results. Clearly, more studies would be required to 
determine if the MVA-B mediated effect on monocytes favors the 
efficacy of the vaccine, or by the contrary is counterproductive. 
However, we believe that the results obtained with this work may 
form the basis of future studies to determine the functionality and 
phenotype of monocytes from patients enrolled in clinical trials 
testing therapeutic vaccines.
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Natural Killer (NK) Cell education 
Differentially influences Hiv 
Antibody-Dependent NK Cell 
Activation and Antibody-Dependent 
Cellular Cytotoxicity
Nicole F. Bernard1,2,3,4*, Zahra Kiani1,2, Alexandra Tremblay-McLean1,2, Sanket A. Kant1,2, 
Christopher E. Leeks1,2 and Franck P. Dupuy1

1 Research Institute of the McGill University Health Centre, Montreal, QC, Canada, 2 Division of Experimental Medicine, McGill 
University, Montreal, QC, Canada, 3 Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada, 
4 Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada

Immunotherapy using broadly neutralizing antibodies (bNAbs) endowed with Fc-mediated 
effector functions has been shown to be critical for protecting or controlling viral replica-
tion in animal models. In human, the RV144 Thai trial was the first trial to demonstrate 
a significant protection against HIV infection following vaccination. Analysis of the cor-
relates of immune protection in this trial identified an association between the presence 
of antibody-dependent cellular cytotoxicity (ADCC) mediated by immunoglobulin G (IgG)  
antibodies (Abs) to HIV envelope (Env) V1/V2 loop structures and protection from infec-
tion, provided IgA Abs with competing specificity were not present. Systems serology 
analyses implicated a broader range of Ab-dependent functions in protection from 
HIV infection, including but not limited to ADCC and Ab-dependent NK cell activation 
(ADNKA) for secretion of IFN-γ and CCL4 and expression of the degranulation marker 
CD107a. The existence of such correlations in the absence of bNAbs in the RV144 trial 
suggest that NK cells could be instrumental in protecting against HIV infection by limiting 
viral spread through Fc-mediated functions such as ADCC and the production of antiviral 
cytokines/chemokines. Beside the engagement of FcγRIIIa or CD16 by the Fc portion of 
anti-Env IgG1 and IgG3 Abs, natural killer (NK) cells are also able to directly kill infected 
cells and produce cytokines/chemokines in an Ab-independent manner. Responsiveness 
of NK cells depends on the integration of activating and inhibitory signals through NK 
receptors, which is determined by a process during their development known as edu-
cation. NK cell education requires the engagement of inhibitory NK receptors by their 
human leukocyte antigen ligands to establish tolerance to self while allowing NK cells to 
respond to self cells altered by virus infection, transformation, stress, and to allogeneic 
cells. Here, we review recent findings regarding the impact of inter-individual differences 
in NK cell education on Ab-dependent functions such as ADCC and ADNKA, including 
what is known about the HIV Env epitope specificity of ADCC competent Abs and the 
conformation of HIV Env on target cells used for ADCC assays.

Keywords: natural killer cells, antibody-dependent cellular cytotoxicity, antibody-dependent natural killer cell 
activation, natural killer cell education, CD16, inhibitory natural killer cell receptors, non-neutralizing antibodies, 
broadly neutralizing antibodies
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iNTRODUCTiON

There is great interest in developing an effective vaccine against 
HIV infection. It is generally acknowledged that inducing broadly 
neutralizing antibodies (bNAbs) would be a desirable goal for 
prophylactic HIV vaccines. The most potent bNAbs have been 
shown to protect against virus infection or to suppress viral 
replication in humanized mouse models and in rhesus macaques 
(1–6). Clinical trials conducted in HIV-infected humans, using 
the bNAbs VRC01 and 3BNC117, reduced HIV viral load by up 
to 2.5 logs (7, 8) and delayed viral rebound after antiretroviral 
therapy (ART) interruption (9, 10). However, there are still 
significant challenges to inducing such antibodies (Abs) through 
vaccination. BNAbs are rarely elicited in natural HIV infection 
and many exhibit high levels of affinity maturation (11–15). 
Despite this, progress has been made producing bNAbs in animal 
models using sequential cycles of boosting with defined immu-
nogens (16). It is interesting to note that bNAbs able to protect 
humanized mice or rhesus macaques against challenge with HIV 
or simian/human immunodeficiency virus (SHIV) require an Fc 
region able to interact with Fc receptors (FcRs) on innate immune 
cells (17–19). One of these FcRs, FcγRIIIa, also known as CD16, 
is found on natural killer (NK) cells, macrophages, and monocyte 
subsets (20–22).

The HIV vaccine tested in the RV144 Thai trial is the only 
vaccine to date that conferred modest (approximately 31%) but 
significant protection against HIV infection (23). Protection was 
not associated with the presence of bNAbs or cytotoxic T  cell 
responses (24). Rather, protection from HIV infection in trial 
participants was associated with the presence of anti-HIV enve-
lope (Env) specific immunoglobulin G (IgG) non-neutralizing 
Abs (nNAbs) able to mediate Ab-dependent cellular cytotoxic-
ity (ADCC) provided no potentially competitive IgA Abs were 
present (24–27). Follow-up analyses using systems serology 
approaches confirmed findings from correlation analyses and 
identified links between anti-Env V1/V2-specific IgG, IgG3, and 
IgG1, and Ab-dependent functions such as ADCC, Ab-dependent 
cellular phagocytosis, Ab-dependent complement deposition, 
and Ab-dependent NK  cell activation (ADNKA) for secretion 
of IFN-γ and CCL4, and expression of CD107a in recipients of 
the RV144 vaccine (28). This raised the possibility that anti-HIV 
Env-specific nNAbs able to mediate ADCC and ADNKA activity 
may play a protective role against HIV infection.

Natural killer cells can be activated through Ab-dependent 
pathways that involve CD16 engagement by the Fc region of 
IgG1 and IgG3 Abs (29–35). They can also be activated by 
Ab-independent missing self recognition mechanisms based 
on how they were educated during development. Activating 
NK cells by either mechanism leads to secretion of chemokines 
and cytokines and to the release of cytotoxic granules that lyse 
target cells. ADNKA is the term used to describe the activation 
of NK cells for chemokine/cytokine secretion and degranulation 
by Ab-dependent stimuli. ADCC, on the other hand, denotes the 
lysis of target cells by NK cells in the presence of an Ab bridge. 
In the literature, these two activities have often been incorrectly 
referred to as ADCC. NK  cells are important effector cells for 
these two Ab-dependent functions. Here, we will review recent 

findings on Ab-dependent functions mediated by NK cells and 
explore what is known regarding the influence of NK cell educa-
tion on ADNKA and ADCC.

NK CeLL eDUCATiON

Tolerance to self and the state of activation of NK  cells is 
determined by an ontogenic process termed education. NK cell 
education requires the interaction of inhibitory NK receptors 
(iNKRs) with their cognate human leukocyte antigen (HLA) 
ligands on neighboring cells (36, 37). The education of NK cells 
determines how these cells will respond to infected, transformed, 
stressed, and allogeneic cells in an Ab-independent fashion. 
Education is a complex process whereby functionality is tuned 
by the number of iNKRs engaged, the strength of interactions 
between iNKRs and their ligands, and whether activating NK cell 
receptors are also engaged (38–44). NK cells lacking iNKRs for 
self-HLA ligands remain uneducated and hyporesponsive (45). 
iNKRs involved in NK cell education include NKG2A and the 
killer immunoglobulin-like receptors (KIR)3DL1, KIR2DL1, 
KIR2DL2, and KIR2DL3 (see Table 1). NKG2A is a C-type lectin 
receptor that forms a heterodimer with CD94 (46, 47). It inter-
acts with non-classical major histocompatibility complex class 
I (MHC-I) HLA-E antigens presenting 9-mer peptides cleaved 
from the leader sequence of several MHC-I proteins (48,  49). 
Both NKG2A and HLA-E have limited sequence variability and 
their effects on NK cell education were initially reported to be 
similar from one person to another (50). The inhibitory KIRs 
(iKIRs) recognize subsets of HLA antigens together with peptides 
(51). KIR3DL1 interacts with a subset of HLA-A and -B antigens 
belonging to the HLA-Bw4 (Bw4) group (52–54). Bw4 antigens 
differ from the remaining HLA-Bw6 (Bw6) HLA-B variants at 
amino acids 77–83 of the HLA heavy chain (55). Bw6 isoforms 
do not interact with KIR3DL1 receptors such that KIR3DL1+ 
NK cells from individuals carrying no Bw4 alleles are not edu-
cated through this receptor. KIR2DL3 and KIR2DL2 are encoded 
at the same locus and interact with HLA-C group 1 (C1) variants 
that have an asparagine at position 80 of the HLA heavy chain 
(56–58). The remaining HLA-C variants, belonging to the C2 
group, have a lysine at this position and are ligands for KIR2DL1 
(56). The KIR2DL3 receptor can also bind certain C2 variants, 
though with a lower affinity than either KIR2DL1 or KIR2DL2 
(57, 59, 60). Therefore, KIR2DL3+ NK  cells from individuals 
expressing a C1 ligand are educated, but remain uneducated or 
modestly educated through this receptor in individuals who are 
negative for C1 ligands. By contrast, KIR2DL1+ NK cells require 
the expression of a C2 ligand for education.

Genome-wide association studies (GWAS) confirm that genes 
influencing HIV viral load set point map to the MHC-I region 
on chromosome 6 (61, 62). MHC-I antigens encoded in this 
region form complexes with peptides, which are recognized by 
the T cell receptors on CD8+ T cells (63). It is well established that 
CD8+ T cells play an important role in HIV viral control (64–66). 
However, NKG2A and iKIR on NK cells also recognize MHC-I 
peptide complexes (48, 49, 52, 53, 56). Both epidemiological and 
functional studies have implicated iKIRs, particularly KIR3DL1, 
in combination with certain Bw4 variants in protection from HIV 
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TAbLe 1 | Inhibitory natural killer (NK) cell receptors involved in NK cell education.

Receptor Ligand aa at position 80 of the 
human leukocyte antigen 
(HLA) heavy chain

effect on education 
when ligand is present

Ligand levels in  
Hiv-infected cells

Reference

NKG2A HLA-E + leader peptide from 
HLA-A, -B, -C, and -G

Enhanced Maintained (48, 49)

Killer immunoglobulin-like 
receptors (KIR)3DL1

HLA-B*Bw4, HLA-A*23,  
*24, and *32

Isoleucine (*80I) or threonine 
(*80T)

Enhanced Downmodulated (52–54)

KIR2DL1 HLA-C2 Lysine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)

KIR2DL2 HLA-C1 (some HLA-C2) Asparagine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)

KIR2DL3 HLA-C1 (some HLA-C2) Asparagine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)
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infection and slow disease progression in those already infected 
(67, 68). For example, individuals who are homozygous for 
KIR3DL1 *h/*y genotypes and co-carry HLA-B*57 (*h/*y + B*57) 
progress to AIDS more slowly and control HIV viral load better 
than Bw6 hmz (67). KIR3DL1 *h/*y genotypes encode receptors 
expressed at high levels (69) while HLA-B*57 is a Bw4 variant 
that is also expressed on the cell surface at a high density and 
is a potent ligand for KIR3DL1 (44). The effect of this KIR/
HLA combination on NK  cell education is illustrated by the 
observation that KIR3DL1+ NK cells from *h/*y + B*57 carriers, 
compared to those from Bw6 hmz, have a superior functional 
potential upon stimulation with HLA null cells and inhibit HIV 
replication more potently in autologous-infected CD4+ T  cells 
through mechanisms that involve secretion of CC-chemokines 
(41, 70, 71). An upstream region of HLA-C that plays a role in 
determining HLA-C expression levels was also associated with 
HIV control in individuals of European American origin in 
GWAS studies (61, 62). While the mechanism underlying this 
association is related to HLA-C expression levels and the potency 
of CD8+ T cell recognition of HLA-C-HIV peptide complexes, 
the potential involvement of NK cells has not been excluded (72).

A dimorphism at position −21 in the leader peptide of HLA-B 
antigens influences the delivery of peptides to either an NKG2A 
or iKIR focused NK cell response (73). The amino acid at this 
position corresponds to the HLA leader peptide’s position 2, 
which is an anchor residue for HLA-E binding. A minority of 
HLA-B and all HLA-A and HLA-C antigens have a methionine 
at position −21 (−21M) of the leader sequence. −21M contain-
ing 9-mer peptides form stable complexes with HLA-E that are 
recognized by NKG2A. It is notable that the haplotypes carrying 
the −21M HLA-B alleles rarely encode Bw4 or C2 isoforms that 
are KIR3DL1 and KIR2DL1 ligands, respectively (73). By con-
trast, 9-mer peptides that have a threonine at the −21 (−21T) 
residue present in most HLA-B antigens, form poor complexes 
with HLA-E. Consequently, this −21M/T dimorphism defines 
two types of HLA haplotypes. One haplotype group, encoding 
−21M variants, is biased toward providing ligands for NKG2A 
and other group, encoding −21T variants, preferentially provides 
ligands for iKIR. This dimorphism appears to be clinically rel-
evant in the context of HIV infection since the presence of −21M 
HLA-B antigens is associated with higher susceptibility to HIV 

infection in HIV-discordant couples and with poorer NK  cell-
mediated killing of HIV+ cells than are −21T HLA-B antigens 
(74, 75). Together, these findings prompt a reconsideration of 
epidemiological and NK cell functional studies in the light of the 
contribution of NKG2A versus iKIR responses to the activation of 
NK cell populations expressing defined patterns of iNKR.

THe iNFLUeNCe OF NK CeLL 
eDUCATiON iN ADNKA

Antibody-dependent NK cell activation measures NK cell acti-
vation following incubation with Ab opsonized targets cells. 
Even though ADNKA depends on the presence of Ab, NK cell 
education can also influence NK cell activation through ADNKA. 
Many of the earlier reports describing a role for NK cell educa-
tion in ADNKA used the CEM.NKr.CCR5 (CEM) cell line coated 
with recombinant HIV Env gp120 as target cells (76). CEM cells 
express the CCR5 co-receptor for HIV entry and are resistant to 
direct NK cell killing (77–79). CEM cells are negative for Bw4 and 
C2 antigens but express C1 antigens (80).

A higher frequency of KIR3DL1+, than KIR3DL1− NK cells, 
from carriers of KIR3DL1/Bw4 genetic combinations secrete IFN-
γ and express CD107a in responses to anti-HIV Ab opsonized 
gp120-coated CEM. This differential activation of KIR3DL1+ and 
KIR3DL1− NK cell populations also occurs when the stimulus is 
HIV-infected or gp120-coated allogeneic primary CD4+ T cells 
(76). As well, a higher frequency of KIR2DL1+ than KIR2DL1− 
NK  cells from carriers of educating KIR2DL1/HLA-C2 combi-
nations secrete IFN-γ in response to HIV-infected autologous 
targets and gp120-coated CEM cells in the presence of anti-HIV 
Env-specific Abs in plasma from HIV+ individuals (81). By 
contrast, if NK cells are from carriers of the non-educating KIR/
HLA pair KIR2DL1/C1 hmz, KIR2DL1+ and KIR2DL1− NK cells 
respond to anti-HIV Ab-dependent stimulation equivalently 
(81). These observations implicate NK cell education in NK cell 
responses to anti-HIV Ab opsonized gp120-coated CEM cells, 
infected allogeneic CEM cells, and gp120-coated primary CD4+ 
T cells. CD16 engagement is also important in ADNKA activity as 
NK cell activation is always higher in the presence versus absence 
anti-HIV-specific Abs.
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Gooneratne et al. have speculated that ADCC activity directed 
at allogeneic HIV-infected cells may play a role in protecting 
against infection with allogeneic HIV-infected cells. Secretion of 
CCL4 from activated NK cells can bind the CCR5 HIV co-receptor 
and block HIV entry into new target cells (82). Activated NK cells 
also secrete cytotoxic granules that can lyse HIV-infected target 
cells (83). It is plausible that ADCC activity directed at allogeneic 
HIV-infected cells contributed to the modest protection conferred 
by the RV144 HIV vaccine trial, in which ADCC competent anti-
Env-specific Abs were generated and to the protection conferred 
to infants who remain uninfected despite exposure to breast milk 
from HIV-infected mothers (24, 84).

There is a lack of consensus regarding whether educated 
NK cell populations respond more robustly than their uneducated 
counterparts to stimulation with anti-HIV opsonized autologous 
gp120-coated cells. KIR3DL1+ and KIR2DL1+ NK  cells from 
carriers of KIR/HLA combinations able to support education 
through these receptors have been reported to respond better 
that their uneducated counterparts to HIV Ab-dependent activa-
tion (81, 85). These findings are consistent with results reported 
by Lang et al. (86). These observations have been interpreted as 
evidence that Ab-dependent activation of NK cells can overcome 
inhibitory signals mediated by the interaction of HLA ligand 
binding to self iKIR. However, this is not a general finding in that 
others have noted that ligands on autologous target cells to iNKR 
on educated NK cells suppress the activity of educated NK cells 
compared to that of their uneducated counterparts (87,  88). 
Further research is needed to understand what accounts for these 
discrepant results.

The experiments describing ADNKA in this section have used 
an inclusive gating strategy to compare how NK cell populations 
expressing, or not, one iNKR respond to anti-HIV opsonized 
target cells. When NK cells are stained inclusively for the pres-
ence of a single iNKR, the targeted population includes NK cells 
expressing other iNKRs not stained for. These other iNKRs could 
influence NK  cell responses to HIV Ab opsonized target cells 
depending on which iNKR/HLA receptor ligand pairs contrib-
uted to the education of the NK  cells studied. By using an Ab 
panel detecting KIR3DL1, KIR2DL1, KIR2DL3, and NKG2A on 
CD3−CD56dim NK  cells, it will be possible to focus on NK  cell 
populations expressing one of these iNKR to the exclusion of the 
others. Such Ab panels that also detect multiple NK cell functions 
using Abs conjugated with different fluorochrome have been 
designed (89, 90). In future studies, these Ab panels should be 
used to exclusively gate on NK cell populations expressing single 
iNKRs that detect functions induced by anti-HIV Ab opsonized 
target cells. Such an experimental approach will allow for a more 
precise definition of NK cell responses within population express-
ing single educating receptors to activation through missing self 
recognition of the ligands for these iKIR on allogeneic CEM cells 
in addition to signals received via ligation of CD16 (91).

The frequency of NK  cells responding to stimulation in 
ADNKA assays displays inter-individual variation. One possible 
mechanism underlying the range of NK cell effector responses 
in ADNKA assays is likely related to inter-individual differences 
in iNKR/HLA ligand effects on NK  cell education. KIR3DL1 
allotypes differ in their cell surface expression levels, with high, 

low, and null expression allotype groups (69, 92–95). These 
KIR3DL1 allotypes also differ in their affinity for particular 
HLA-B allotypes (44, 96). KIR2D receptors differ in their 
affinity for C1 and C2 antigens (57, 60). HLA-A, -B, and -C 
antigens also differ in their cell surface expression levels (44, 
72, 97). Thus, these factors, the number of iNKR/HLA pairs 
participating in NK  cell education in each study subject, and 
the presence of ligands on CEM cells that provide, or that fail to 
provide, inhibitory signals to NK cells may all influence NK cell 
activation levels in ADNKA assays. Several authors have tested 
expression levels for HLA-B and C allotypes and have examined 
the avidity of interactions of high and low expression KIR3DL1 
receptor groups for HLA-B antigens with either an isoleucine or 
a threonine at position 80 of the HLA heavy chain (44, 69, 72, 98, 
99). The putative influence of inter-personal immunogenetics 
on ADNKA activity could be explored by correlating ADNKA 
activation levels with KIR3DL1/HLA-B, KIR2DL1/HLA-C2, 
and KIR2DL3/HLA-C1 affinity and expression levels as has 
been described by Boudreau et al. (44). For ADNKA, activation 
through education-dependent missing self-recognition and 
CD16 signaling influence NK  cell activation while for ADCC 
the effect of education-dependent missing self-recognition 
is minimized due to the low frequency of single positive (SP) 
iKIR+ NK  cells positive for CD16. The comparison of assay 
results where one or more of these receptor ligand interactions 
is blocked may provide further insights into the role of signaling 
through iNKR or CD16 in ADNKA and ADCC.

MeASURiNG ADCC ACTiviTY

As opposed to ADNKA, ADCC measures target cell phenomena 
arising from the bridging of effector and target cells by an Ab 
whose Fc portion binds CD16 on effector cells and whose Fab 
portion recognizes an antigen on target cells. In the context of 
ADCC function-directed HIV Env gp120-coated target cells, the 
target antigens recognized by ADCC competent Abs are HIV Env 
(30, 78, 100). ADCC activity directed to HIV infected may also 
recognize Tat (100).

Early versions of anti-HIV ADCC assays measured 
51Chromium release from target cells (101–103). These have been 
replaced by flow cytometry-based assays using either CEM cells 
coated with gp120 or gp140, HIV-infected CEM or HIV-infected 
primary CD4+ T cells as target cells. Primary HIV-infected target 
cells have included reactivated CD4+ T cells from HIV-infected 
subjects or CD4+ T cells infected with transmitted/founder (T/F) 
HIV isolates (104–106). The GranToxiLux ADCC (GTL-ADCC) 
assay measures the delivery of granzyme B (GzB) to target 
cells, an early step in the pathway leading to target cell lysis (83, 
107, 108). In the GTL-ADCC assay, target cells are labeled with 
fluorescent and viability dyes before incubation with effector 
cells, either peripheral blood mononuclear cells (PBMCs) or 
NK cells in the presence of HIV-specific ADCC competent Abs 
and a GzB substrate. If ADCC is induced following incubation 
with HIV-specific Abs, effector cells will release GzB that will 
enter target cells and hydrolyze the GzB substrate, activating its 
fluorescence, which can be detected by flow cytometry. Thus, 
the GTL-ADCC assay provides an estimate of ADCC activity 
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by measuring the number of viable targets that are positive for 
proteolytically active GzB.

Read outs for ADCC assays include the loss of target cells 
loaded with a fluorescent marker, infected with green fluorescent 
protein-tagged HIV, luciferase tagged HIV, or Gag p24+ cells (105, 
106, 108–113). The lactate dehydrogenase (LDH) release ADCC 
assay measures the loss LDH from dying target cells by ELISA 
(76, 114). The widely used rapid and fluorometric ADCC has 
been shown to not measure ADCC but rather the uptake of the 
membrane dye PKH-26 used to label target cells by monocyte-
mediated trogocytosis (115, 116).

THe SPeCiFiCiTY OF ANTi-Hiv  
ADCC COMPeTeNT Abs

Both bNAbs and nNAbs can mediate ADCC activity provided 
they can stably bind to target cells (105, 106, 113, 117–121). HIV 
Env epitopes targeted by nNAbs include the immunodominant 
region of gp41 (122) and CD4-induced (CD4i) epitopes exposed 
by CD4 ligation of HIV Env on infected cells (111, 123, 124). 
Examples of prototypic anti-Env-specific Abs specific for a CD4i 
epitope is A32, which belongs to the anti-cluster A Ab group 
targeting the C1/C2 region and 17b, which recognizes the co-
receptor binding site (CoRBS) (119, 125). Other nNAbs have 
been reported to recognize the CD4bs and the V3 loop of gp120, 
which are also targeted by bNAbs, though the nNAbs bind these 
epitopes in a manner that does not prevent HIV entry (126–130). 
At least some of the epitopes targeted by ADCC competent 
nNAbs are poorly exposed on CD4 unliganded cell surface Env 
trimers. This is mainly due to accessory proteins Nef and Vpu that 
downregulate cell surface CD4 making CD4i epitopes unavail-
able for Ab recognition (111, 120, 131, 132). Bruel et al. found 
that CEM cells infected with two laboratory-adapted HIV strains 
bound Abs from several classes of bNAb and nNAbs epitope 
specificity. If binding occurred, these Abs usually also mediated 
ADCC activity against these infected cells (106). However, when 
reactivated, HIV-infected cells from the reservoir of ART-treated 
HIV+ individuals or CD4+ T cells infected with T/F strains were 
used as target cells, several monoclonal nNAbs bound a lower 
frequency of infected cells with a lower affinity than did bNAbs. 
Furthermore, nNAbs, compared to bNAbs, exhibited poor ADCC 
activity against targets infected with such primary HIV strains 
(105, 106, 113, 117, 133). This phenomenon is likely related to 
the inability of nNAbs to access epitopes in the closed unliganded 
conformation of HIV Env (134).

Non-neutralizing Abs, particularly those specific for CD4i 
epitopes, preferentially bind HIV-uninfected bystander cells 
present in cultures with HIV+ CD4+ T cells (106, 135, 136). HIV-
infected CD4+ T cells can shed HIV Env gp120 leaving behind 
gp41 stumps (136). The shed gp120 binds CD4 on the surface 
of uninfected bystander CD4+ T  cells. This interaction has the 
potential to open the closed Env conformation exposing CD4i 
epitopes, making bystander enhanced targets for CD4i-specific 
ADCC competent Abs.

Strategies to improve the targeting of the open Env conforma-
tion by ADCC competent nNAbs has prompted exploring the use 

of CD4 mimetics to increase the susceptibility of HIV-infected 
cells to ADCC (106, 135, 137, 138). Richard et al. worked with 
CD4 mimetics that were unable to enhance the recognition of 
HIV-infected cells to A32 Abs by themselves (138). However, 
these small molecules initiated the opening of Env trimers 
enough to permit the binding of Abs such as 17b with specificity 
for a conserved epitope overlapping the CoRBS. Once 17b bound, 
the trimeric Env structure opened sufficiently to allow binding of 
A32 and susceptibility to ADCC activity (138).

It should be noted that most studies measuring anti-HIV 
ADCC activity have used gp120- or gp140-coated CEM cells as 
targets. While such targets are easy to prepare and convenient 
to use, the HIV Env on coated cells is monomeric and differs 
quantitatively and conformationally from trimeric Env found on 
the surface of HIV-infected cells. On coated cells, CD4 remains 
on the target cell surface while it is downregulated on infected 
cells unless Nef and/or Vpu HIV deletion mutants are used for 
infection. This needs to be kept in mind when interpreting the 
results of studies using coated cells as targets.

THe iNFLUeNCe OF NK CeLL 
eDUCATiON ON ADCC ACTiviTY

The GTL-ADCC assay using gp120-coated CEM cells as targets 
was used to show that education of effector populations through 
KIR3DL1 had no significant effect on the percent of GzB+ 
(%GzB+) target cells generated in a GTL-ADCC assay (139). 
There may be several explanations for this observation. One 
possibility is that NK cells are not the main effector cell in the 
GTL-ADCC assay. A drawback of using PBMCs as effector cells 
in ADCC assays is that it is difficult to draw conclusions regarding 
which effector population is responsible for GzB delivery to the 
target cells. Several Fcγ receptor-expressing cell types, including 
NK cells, monocytes/macrophages, and γδ T cells, are capable of 
mediating ADCC (107, 115, 140–144). To confirm that NK cells 
are the source of ADCC activity in the GTL-ADCC assay, Pollara 
et al. used effector PBMCs depleted of CD56+CD16+ NK cells and 
observed that ADCC responses declined by over 66% (145, 146). 
Purified NK cells and PBMCs from the same donors produced 
similar %GzB+ target cells (107). Together, these findings indicate 
that the GTL-ADCC assay is measuring NK cell-mediated ADCC 
responses.

In the GTL-ADCC assay, PBMC effector cells are a heteroge-
neous population that includes NK cells educated through 1, 2, 
or more iKIR and/or NKG2A. An Ab panel detecting KIR3DL1, 
KIR2DL1, KIR2DL3, and NKG2A on CD3−CD56dim NK cells was 
used to gate exclusively on SPiNKR+ NK cells. NK cells SP for 
iKIR had significantly lower frequencies of CD16+ cells than did 
SPNKG2A+ or NKG2A−iKIR− NK cells (147). iKIR+ NK cells are 
educated if they develop in a setting in which the iKIR’s ligand is 
co-expressed. The implication of this observation is that educated 
SPiKIR+ NK cells would be poor ADCC effector cells as a median 
of <5% of them are CD16+ (Figure 1). This could account for the 
lack of an effect of KIR3DL1-mediated NK cell education on the 
%GzB+ target cells generated in the GTL-ADCC assay (139, 147). 
Thus, it would be expected that NKG2A+ NK cells are superior 
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FiGURe 1 | Comparison of the frequency of CD16+ cells among CD3−CD56dim natural killer (NK) cells stained for antibodies with NKG2A, KIR3DL1 (3DL1+), 
KIR2DL1 (2DL1+), and KIR2DL3 (2DL3+). Comparison of single-positive (SP)NKG2A with SP3DL1 (A), SPNKG2A with SP2DL1 (b), and SPNKG2A with SP2DL3 
(C). Each point represents a single individual, bar height, and error bars represent median and interquartile range for the data set. Wilcoxon matched pairs tests 
were used to determine the significance of between group differences (****p < 0.0001).
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to iKIR+NKG2A− NK  cells as effector cells in the GTL-ADCC 
assay. NKG2A/HLA-E interactions educate NKG2A+ NK  cells 
and these receptor ligand pairs are widely expressed with limited 
inter-individual variation. Their influence on NK cell education 
would have limited between-subject variation. If ADCC activity 
is an important correlate of protection against HIV, these find-
ings suggest that inter-individual variation in NK effector cell 
education based on which iKIR/HLA receptor/ligand pairs are 
present would have a minimal impact on ADCC potency at the 
level of HIV-infected target cell lysis or suppression of replica-
tion. Together, these findings illustrate that the potency of NK cell 
education and functional activation of NK effector cells does not 
predict the %GzB+ generated by ADCC.

In summary, factors important in determining ADNKA 
and ADCC activity differ from each other. The role of NK cell 
education in ADCC activity is limited by the low frequency of 
CD16+ NK cells among SPiKIR+ NK cells that have the potential 
to be educated through iKIR/HLA ligand interactions. Thus, 
a higher frequency of either uneducated NK  cells or NK  cells 
educated through NKG2A than those educated through iKIR 
are CD16+ and able to mediate ADCC. On the other hand, both 
CD16 engagement and missing self-recognition contribute to 
ADNKA. The consequences of these findings for HIV vaccines 
is that NK cell education should contribute minimally to inter-
individual differences in target cell lysis by ADCC. Furthermore, 
NK cell activation by Ab-dependent HIV-infected cell stimuli will 
vary depending on how NK cells are educated, the nature of the 
stimulatory cell and effect of HIV infection on cell surface MHC-I 
expression (90, 148).

CONCLUDiNG ReMARKS

Arguing for a role for anti-HIV ADNKA and/or ADCC activity 
in protection from infection are the findings from the RV144 
vaccine trial, which identified ADCC activity as a correlate 
of protection that was frequently linked to ADNKA activity 
(24, 27, 28). Moreover, antigenic drift from ADCC targeting Env 
epitopes has been documented, highlighting a role for ADCC 
being able to exert anti-HIV immune pressure (149). Of note, it 
is unlikely that bNAbs contributed to either of these findings as 

neither RV144 vaccinated individuals (24) nor most HIV+ per-
sons make HIV-specific bNAbs. Suppression of HIV viral load in 
HIV-infected persons receiving the bNAb 3BNC117 is likely not 
solely due to virus neutralization as this treatment also appears to 
clear infected cells (133). Also, the beneficial effect of treatment 
with several bNAbs depends on IgG Fc region effects (17–19). On 
the other hand, several attempts to show that nNAbs can protect 
against infection in rhesus macaques infected with SHIV have 
failed, though passive transfer of these Abs may have suppressed 
viremia or restricted the number of T/F viruses in some cases 
(122, 150–152). By contrast, the passive transfer of the most active 
bNAbs mediates sterilizing protection in primate models (1–6). 
The protective role of anti-HIV nNAbs and/or how to manipulate 
the ability of these Abs to protect from HIV infection or how to 
use them therapeutically is an active area of research with several 
questions left to answer.
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HIV-1 is the single most important sexually transmitted disease in humans from a global 
health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved 
pandemic levels of human-to-human transmission. The requirement to transmit between 
hosts likely provides the strongest selective forces on a virus, as without transmission, 
there can be no new infections within a host population. Our perspective is that evolution 
of all of the virus–host interactions, which are inherited and perpetuated from host-to-
host, must be consistent with transmission. For example, CXCR4 use, which often 
evolves late in infection, does not favor transmission and is therefore lost when a virus 
transmits to a new host. Thus, transmission inevitably influences all aspects of virus 
biology, including interactions with the innate immune system, and dictates the biological 
niche in which the virus exists in the host. A viable viral niche typically does not select 
features that disfavor transmission. The innate immune response represents a significant 
selective pressure during the transmission process. In fact, all viruses must antagonize 
and/or evade the mechanisms of the host innate and adaptive immune systems that they 
encounter. We believe that viewing host–virus interactions from a transmission perspec-
tive helps us understand the mechanistic details of antiviral immunity and viral escape. 
This is particularly true for the innate immune system, which typically acts from the very 
earliest stages of the host–virus interaction, and must be bypassed to achieve successful 
infection. With this in mind, here we review the innate sensing of HIV, the consequent 
downstream signaling cascades and the viral restriction that results. The centrality of 
these mechanisms to host defense is illustrated by the array of countermeasures that 
HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We 
consider evasion strategies in detail, in particular the role of the HIV capsid and the viral 
accessory proteins highlighting important unanswered questions and discussing future 
perspectives.

Keywords: capsid, coevolution, Hiv, innate immunity, restriction factors, sensing, transmission, vpr

iNTRODUCTiON

The primacy of transmission as a selective pressure favoring viral evasion of innate defenses is empha-
sized and reinforced by our understanding of the origins of HIV. The human lentiviruses HIV-1 and 
HIV-2 are zoonoses from simian ancestor viruses (1, 2). Antagonism of species-specific restriction 
factors likely determined the ability of the non-human primate viruses to cross into human hosts 
[reviewed in Ref. (3, 4)]. Indeed, innate effectors from both humans and non-human primates show 
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differential patterns of restriction for simian immunodeficiency 
viruses (SIVs) from divergent species, as well as for HIV-1 and 
HIV-2 [reviewed in Ref. (5, 6)]. SIV has been transmitted from 
apes to humans on at least four occasions, giving rise to the M, N, 
O, and P groups of viruses, but the distribution and incidence of 
these groups vary greatly and only HIV-1 M group is pandemic 
(7, 8).

In the case of HIV-1, crossing a mucosal surface during sexual 
transmission accounts for the vast majority of new infections. 
However, it is not clear whether the HIV-1 ancestral viruses, in 
chimpanzees and gorillas, or the HIV-2 parental viruses in Sooty 
Mangabeys (SIVsm), are sexually transmitted diseases (STDs), 
and it may be that HIV-1 M has uniquely adapted to be a highly 
effective STD. If, as we propose, the strongest evolutionary selec-
tive forces on a virus are applied during transmission then all 
conserved HIV-1–host interactions must favor sexual transmis-
sion across a mucosal surface. Importantly, we consider transmis-
sion to mean the events that lead to sustained infection in the 
new host and not, what we imagine are frequent, cases of viral 
replication after exposure, which do not lead to systemic viral 
dissemination and peak viremia. We expect this to be the window 
in which the innate immune response is particularly important 
in protecting the host. It is our view that there is a distinction 
between the forces driving viral evolution within a host, for 
example, usage of the co-receptor CXCR4 in 50% of all hosts, that 
do not favor transmission and are therefore do not become fixed 
from host-to-host, and those that do favor transmission, and are 
therefore inherited. We believe that viewing HIV pathogenesis 
and transmission from this evolutionary perspective is essential 
to fully understand the antagonistic interactions between HIV-1 
and the intracellular innate immune system.

Evidence for a significant genetic bottleneck during sexual 
HIV-1 transmission comes from the low frequency of transmis-
sion per exposure (9). Furthermore, the identification of HIV-1 
founder viruses reveals that sexual transmission is established 
by a surprisingly low number of transmitted viral sequences 
(10–12). In the case of heterosexual transmission, single founder 
clones are typically responsible for infection, whereas several 
clones are usually transmitted between men who have sex with 
men (MSM) (13). Larger numbers are observed in intravenous 
transmission by injecting drug users consistent with needle 
use bypassing protective barriers (14). A prominent feature 
of acute HIV-1 infection in vivo is a dramatic interferon (IFN) 
and pro-inflammatory cytokine response (15). The sensitivity of 
HIV-1 to the effects of IFNs is well-established in vitro (16, 17). 
Intriguingly, characterization of transmitted founder (T/F) clones 
has revealed that they are less sensitive to IFN as compared with 
viruses isolated during the chronic phase of infection (18–22). 
The molecular details of the IFN-induced restriction of HIV-1 are 
incompletely understood, and discussed later, but an important 
role for the interferon-induced transmembrane protein (IFITM) 
family during transmission has recently been proposed (20) and 
is reviewed in this issue. Together, these data show how IFN and 
the immune response can apply powerful selective pressures dur-
ing mucosal transmission.

The primary cellular targets of HIV-1 infection during trans-
mission remain unclear. Given their high frequency in mucosa 

and high permissivity to infection, macrophages are likely can-
didates, although recent work has revealed that T/F clones are 
particularly poorly tropic for macrophages (23). Transmission 
studies of SIVmac in rhesus monkeys have suggested that 
inflammatory responses lead to T-cell influx and early infection 
of activated CD4+ T cells [reviewed in Ref. (24)]. More recent 
work has implicated Th17 cells as the primary target of SIVmac 
during vaginal inoculation (25). However, we worry that studying 
mucosal transmission with an unnatural virus–host pair, such as 
SIVmac in rhesus monkeys, in which natural sexual transmission 
does not occur efficiently, might be misleading. Nonetheless, the 
tropism of T/F sequences for CD4+ T cells is good evidence for 
this cell type being among the earliest targets for infection (23). 
Dendritic cells (DCs) and Langerhans cells (LCs), both highly 
abundant in mucosal surfaces, have also been implicated as 
primary targets during transmission (26). However, these cells 
are unlikely to be productively infected by HIV-1 but can capture 
the virus via uptake dependent on C-type lectins, for example, 
DC-SIGN and Siglec-1 (27, 28). Subsequent migration of DC to 
lymph nodes is thought to promote infection of CD4+ T cells by 
transfer of the virus, in a process called trans-infection. Despite 
DC not being productively infected, it is thought that these cells, 
particularly plasmacytoid DC (pDC), generate the high levels of 
systemic type 1 IFNs and pro-inflammatory cytokines in the days 
immediately following HIV-1 infection (15, 29–33).

Despite the success of HIV-1 transmission, even the permis-
sive host cell is a hostile environment for a virus. For example, the 
journey across the cytoplasm and into the nucleus is fraught with 
danger in the form of the cell-autonomous innate immune system. 
This intracellular immune arsenal entails a series of molecular 
tripwires that can mount an immediate response to invading 
pathogens if they are detected. Central to this defense system are 
pattern recognition receptors (PRRs): a diverse array of germline-
encoded sensors that recognize pathogen-associated molecular 
patterns (PAMPs) and trigger a potent response to counteract 
infection, via activation of innate signaling pathways. This in turn 
induces the expression of a plethora of proteins with widespread 
antiviral functions that restrict infection at all stages of the viral 
lifecycle (Figure 1). For retroviruses such as HIV, the hazards of 
the cell-autonomous immune system are initially focused on the 
need to convert single-stranded RNA to double-stranded DNA 
between cell entry and integration: HIV must effectively smug-
gle a range of nucleic acid PAMPs past the host cell detection 
system. If HIV cannot negotiate these hazards it cannot replicate 
(Figure  2). The success story of HIV transmission therefore 
depends on its ability to antagonize or evade these host defenses. 
Every component of HIV can be defined by its individual role 
in the evolutionary arms race against human immunity: virus 
adaptation to host defenses is countered by evolution of the host 
cell proteins, and so on in cycles of counterevolution, described 
by the Red Queen Hypothesis (34), that are recorded in the genes 
of both organisms [reviewed in Ref. (35)].

In our view, all the host–virus interactions discussed in this 
review are driven by the selective forces at play during transmis-
sion. We invite the reader to consider all of the host–virus interac-
tions we describe in the context of this perspective. Knowledge 
and understanding of the interactions between HIV-1 and the 
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FigURe 1 | HIV life cycle. The HIV life cycle comprises a complex series of immune evasion strategies that allow successful infection of host cells and transmission 
between them and between individuals. To enter cells, HIV engages its envelope glycoprotein gp160 trimers with cell surface protein CD4 and co-receptor (CXCR4 
or CCR5). Co-receptor usage allows conformational masking of conserved binding domains of gp120 and avoids their exposure to neutralizing antibodies. Upon 
fusion, capsid is released into the hostile environment of the cell where it encounters numerous innate restriction factors. However, HIV employs several mechanisms 
to overcome the cellular assault. While the capsid traverses the hostile cytoplasm, nucleotides are transported into the capsid cone through an electrostatic 
nucleotide transporter to fuel reverse transcription. Encapsidated DNA synthesis shields the viral genome from DNA sensors as well as exonucleases, e.g., TREX1. 
Capsid recruits cellular proteins cyclophilin A (blue) and CPSF6 (yellow), which have a role in preventing detection of the viral reverse-transcribed DNA by DNA 
sensors, e.g., cyclic GMP–AMP synthase (cGAS). Uncoating of successfully infectious cores may happen late, at the nuclear pore complex, or in the nucleus, in an 
organized manner and the viral DNA is released. The viral DNA integrates close to the edge of the nucleus to perhaps prevent activation of DNA damage responses. 
Once integrated, the provirus is invisible to the host cell defenses and may become transcriptionally silent, or latent. Transcription and translation of the provirus 
result in viral protein expression. Viral assembly occurs at the cell surface. Immature virions bud off and are released. During maturation, the protease enzyme 
cleaves the structural polyprotein to form mature Gag proteins, resulting in the production of new infectious virions. SERINCs: prevent fusion of viral particles with 
target cells. Antagonized by Nef. IFITMs: impair virus entry into target cells. Antagonized by evolving IFITM3 insensitive Env proteins. TRIM5: forms a hexagonal 
lattice around the capsids. Targets them for proteasomal degradation and activates innate signaling. Antagonized by evolving TRIM5 insensitive viral capsid proteins. 
APOBEC3: suppresses viral DNA synthesis and induces mutations in the viral DNA. Antagonized by Vif-mediated degradation. SAMHD1: restricts infection by 
lowering nucleotide concentrations below those, which support viral DNA synthesis. Antagonized by Vpx-mediated degradation (SIVsm/HIV-2) or infection of inactive 
phospho-SAMHD1 positive cells (HIV-1). MxB: restricts HIV-1 nuclear entry and possibly integration. Schlafen 11: restricts HIV-1 protein translation. Tetherin: inhibits 
virus release from infected cells. Antagonized by Vpu-mediated degradation.
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FigURe 2 | Key innate sensing pathways activated by HIV-1 particles that do not establish productive infection. (1) HIV-1 disassembly may be stochastic. Some 
particles remain intact, perhaps through appropriate recruitment of cofactors. We envisage encapsidated DNA synthesis and uncoating in complex with the nuclear 
pore complex or even in the nucleus (33, 36–40). (2) Many particles disassemble, or are disassembled, by cellular defenses that are proteasome dependent (38, 41).  
(3) In macrophages and T cells, cytosolic exonuclease TREX1 digests escaped HIV-1 DNA that would otherwise trigger innate DNA sensing (42). (4) In TREX1-depleted 
cells, escaped HIV-1 DNA is sensed by DNA sensor cyclic GMP–AMP synthase (cGAS) (42, 43). (5) In monocyte-derived dendritic cell, after SAMHD1 degradation by 
viral protein x (Vpx), HIV-1 DNA products are sensed by polyglutamine-binding protein 1/cGAS (44). (6) Similarly, in the presence of co-transduced Vpx, interferon-γ 
inducible protein 16 (IFI16) may also sense HIV-1 DNA in monocyte-derived macrophages (45). (7) HIV-1 virions in endosomal compartments of myeloid cells may not 
lead to productive infection but may be sensed by toll-like receptor (TLR) 7 to trigger an innate immune response that may also drive interferon (IFN) production (30).  
(8) HIV-1 infection of monocytic cells may also lead to TLR8-dependent assembly of NLRP3 inflammasome to activate caspase-1, which cleaves pro-interleukin-1β 
(IL-1β) into bioactive IL-1β (46). (9) All sensing pathways described converge on activation of transcription factors IRF3 and NF-κB that drive IFN production.
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TAble 1 | PRR detection of HIV in HIV target cells.

Cell type PRR How was the PRR implicated? PAMP Consequence Reference

pDCs TLR7 TLR7 antagonist Purified genomic RNA IFN, pro-inflammatory cytokines (54)

Immature DCs TLR8 Depletion by siRNA ssRNA during infection NF-κB activation, transcription of the integrated 
provirus

(55)

MDDC cGAS Depletion by shRNA, cGAMP 
production, and depletion by siRNA

RT products CD86 expression, IFN and ISG induction (32, 43, 44)

PQBP1 Depletion by siRNA RT products ISG induction (44)

DDX3 Depletion by siRNA Abortive RNA transcripts IFN induction (56)

MDM cGAS cGAMP production RT products NF-κB and IRF3 activation, IFN and ISG induction (33, 43)

IFI16 siRNA RT products Reduced replication and ISG induction (45, 57)

DDX3 Depletion by siRNA Abortive RNA transcripts IFN induction (56)

Monocytes NLRP3 Depletion by siRNA Post-integration step IL-1β and IL-18 production (46, 58)

GECs TLR2 and 
TLR4

Neutralizing Abs to TLRs gp120 NF-κB activation and pro-inflammatory cytokine 
production

(59)

HLACs IFI16 Depletion by shRNA Abortive RT products Pyroptosis (60)

CD4+ T cells DNA-PK Chemical inhibitors Viral integration Cell death (61)

cGAS Depletion by shRNA Post-integration step IFN and ISG induction (62)

cGAS cGAMP production Not determined cGAMP production but no IFN response (63)

TLR7 Depletion by shRNA Viral RNA Anergy (64)

IFN, interferon; DC, dendritic cell; pDC, plasmacytoid DC; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; ISG, IFN-stimulated gene; TLR, toll-like 
receptor; MDDC, monocyte-derived dendritic cell; MDM, monocyte-derived macrophage; RT, reverse transcription; cGAS, cyclic GMP–AMP synthase; PQBP1, polyglutamine-
binding protein 1; HLACs, human lymphoid-aggregated cultures; IFI16, interferon-γ inducible protein 16; GECs, Genital epithelial cells.

TAble 2 | PRR detection of HIV in other cell types.

Cell type PRR How was the PRR implicated? PAMP Consequence Reference

THP-1 cGAS Depletion by shRNA RT products IRF3 activation, IFN and ISG induction (43, 57)

IFI16 Depletion by shRNA RT products IRF3 activation, IFN and ISG induction (57)

PQBP1 siRNA and hypomorphic mutation by CRISPR RT products ISG induction (44)

NLRP3 Depletion by shRNA Post-integration step IL-1β production (46)

Huh7.5 RIG-I Cell line is defective for RIG-I Purified secondary-structured 
genomic RNA

ISG induction (65)

IFN, interferon; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; ISG, IFN-stimulated gene; RT, reverse transcription; cGAS, cyclic GMP–AMP 
synthase; PQBP1, polyglutamine-binding protein 1; IFI16, interferon-γ inducible protein 16.
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cell-autonomous innate immune response have rapidly expanded 
in recent years, and as such have been the subject of numerous 
reviews (47–49). Here, we provide an overview to highlight recent 
developments with a focus on the intracellular arms race between 
HIV-1 and the cell-autonomous innate immune response, from 
the events that determine sensing, to the downstream signaling 
cascades, through to the mediators of intracellular restriction, 
and evasion and antagonism strategies of HIV-1. For an extensive 
review of the extracellular interactions between HIV-1 and the 
innate immune system, including the IFITMs, SERINCs, and 
tetherin, we refer the reader to another review in this edition by 
the Neil group.

iNTRACellUlAR DeTeCTiON OF Hiv bY 
PRRs

Pattern recognition receptors fall into several families, defined 
either by their structure or the type of PAMP that they detect, 
and located in most cellular compartments including the plasma 

membrane, endosomes, the cytoplasm, and the nucleus (50). 
The PRRs implicated experimentally in the intracellular innate 
response against HIV are summarized in Tables  1 and 2 and 
Figure  2. Engagement of PRRs by PAMPs initiates a complex 
cascade of protein interactions leading to activation of the inhibi-
tor of κB kinases (IKK) and the IKK-related/TBK1 kinases (51). 
These activate transcription factors of the NF-κB and interferon 
regulatory factor (IRF) families, which together coordinate the 
expression of antiviral type I IFNs, pro-inflammatory cytokines, 
and other chemokines. IFN is secreted and signals back through 
the IFN receptor on the surface of the infected cell and bystander 
cells. This causes upregulation of so-called IFN-stimulated genes 
(ISGs) that encode numerous proteins with direct antiviral 
activity (52). Importantly, a subset of ISGs is activated directly by 
IRFs/NF-κB allowing a more rapid activation of their expression, 
which is then boosted by the wave of IFN receptor-dependent 
signaling (53). In addition to establishing the frontline antiviral 
state, triggering of innate immunity is crucial for the subsequent 
activation of a pathogen-specific adaptive immune response. 
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The release of pro-inflammatory mediators recruits professional 
antigen presenting cells to the site of infection and aids their 
maturation. Upon migration to the local lymph nodes, these cells 
then prime adaptive T and B cell responses.

DeTeCTiON OF Hiv RNA

To date, endosomal members of the toll-like receptor (TLR) 
family including TLR3, TLR7, and TLR8 as well as the cytoplas-
mic RIG-I-like receptors (RLRs) have been described to sense 
RNA during infection with a range of viruses. TLR7 and TLR8 
recognize ssRNA and are potent activators of NF-κB, acting via 
the signaling adaptor MyD88, whereas TLR3 recognizes dsRNA 
and engages the adaptor TRIF, allowing it to activate both NF-κB 
and IRF3. Members of the RLR family such as RIG-I and MDA-5 
utilize MAVS to activate the IKK and TBK1 complexes, thus 
activating both the NF-κB and IRF3 arms of innate signaling 
[reviewed in Ref. (66)] (Figure 2).

Most studies implicating RNA sensing in the detection of 
HIV-1 have been based on transfection of either purified full-
length HIV RNA or genome-derived oligos (Table 1). Evidence 
for whether these sensors are engaged during viral infection 
of target cells is lacking. In our view, a significant limitation 
of transfection-based sensing experiments is that they deliver 
naked RNA or genome-derived oligos directly into host cells, 
whereas during infection the virus uses complex evasion 
strategies, including wrapping the genomic RNA tightly into 
complexes with the nucleocapsid and other viral replicase pro-
teins, and/or delivering it into the cell in intact protective viral 
capsids. Depending on the transfection method, the RNA may 
also be delivered to cellular compartments where it would not 
normally encounter sensors during infection. It remains unclear 
whether HIV-1 genomic RNA is accessible and can be sensed 
in the cytoplasm during infection. One study has indicated this 
is possible in monocyte-derived dendritic cells (MDDCs) and 
monocyte-derived macrophages (MDMs), as the RNA helicase 
DDX3 was able to detect abortive HIV-1 RNAs, which induced 
DC maturation and type I IFN responses dependent on the adap-
tor MAVS (56).

Using transfection methods, HIV RNA has been reported 
to be detected by members of both the TLR and RLR families. 
Guanosine- and uridine-rich ssRNA oligonucleotides derived 
from the HIV-1 LTR were found to stimulate both pDCs and 
macrophages to secrete IFNα and pro-inflammatory cytokines 
such as TNFα (67). Using murine cells deficient for various 
TLRs as well as TLR overexpression in 293T  cells, the authors 
concluded that TLR7 and TLR8 were responsible for the sens-
ing of HIV-1-derived ssRNA (67). TLR7 antagonists have been 
shown to inhibit cytokine release by pDC incubated with purified 
HIV-1 RNA (54).

The cytoplasmic RLRs have also been implicated in the 
detection of HIV-1 RNA through transfection-based studies. 
Secondary-structured genomic RNA induced ISG expression 
in peripheral blood mononuclear cells (PBMCs), independ-
ent of endosomal TLR signaling (65). MAVS and RIG-I were 
implicated in this study using murine bone-marrow derived 
macrophages deficient for MAVS, and Huh7.5 cells with 

defective RIG-I function. Purified monomeric and dimeric 
forms of HIV-1 genomic RNA were further shown to be potent 
PAMPs and inducer of ISGs in PMA-differentiated THP-1 cells 
(68). Using deficient MEFs, detection of this genomic RNA 
was shown to be RIG-I- but not MDA-5-dependent, although 
detection of HIV-1 RNA by these sensors was not demonstrated 
in human cells.

DeTeCTiON OF Hiv ReveRSe 
TRANSCRiPTiON (RT) PRODUCTS

A recently discovered and rapidly expanding arm of innate 
immunity research is the detection of viral DNA by cytoplasmic 
DNA sensors. Our knowledge of cytoplasmic DNA sensing has 
lagged behind that of RNA sensing, perhaps because, while a large 
proportion of tissue culture adapted cell lines are competent for 
sensing via RLRs and TLRs, the DNA-sensing pathways are gen-
erally defective in cell lines. For 293T and HeLa cells, some of the 
most transfectable cell lines, this has been attributed to expression 
of the viral oncoproteins E1A and E7, respectively, involved in 
transformation of the cell lines, which bind and inhibit STING, 
a central component of DNA signaling pathways, Figure 2 (69). 
Indeed, transfectability may be dependent on defective DNA 
sensing. As a result, the use of primary cells, and the few cancer 
cell lines that are competent for DNA sensing (e.g., monocyte-like 
THP-1 cells), has been crucial to the expansion of our knowledge 
in this area. While cells such as THP-1s respond to a range of 
innate immune PAMPS and agonists, it remains unclear, even 
for these cells, whether they are as responsive to stimulation as 
primary macrophages.

Most DNA sensors that have been described to date utilize 
the ER resident signaling protein STING to activate NF-κB and 
IRF3 (70), Figure  2. STING is a direct sensor of cyclic dinu-
cleotides (71), the best characterized of which, 2′–3′ cGAMP, is 
synthesized by the sensor cyclic GMP–AMP synthase (cGAS) 
upon binding to DNA in the cytoplasm (72–74). Upon engaging 
cGAMP, STING translocates via the Golgi to distinct perinuclear 
regions where it can activate the IKK and TBK1 complexes and 
thus drive a type I IFN response (75).

Some of the earliest evidence that HIV-1 produces a stimula-
tory DNA PAMP during infection was obtained in human CD4+ 
T cells and macrophages that had been depleted for the cytosolic 
exonuclease TREX1 (42). In this study TREX1 was suggested 
to digest unencapsidated HIV-1 DNA that would otherwise 
activate a type I IFN response in a STING-dependent manner. 
The sensor responsible for the detection of HIV DNA was later 
described by multiple groups to be cGAS (32, 33, 43, 57). Two 
groups measured cGAS- and STING-dependent ISG responses 
in monocyte-like THP-1 cells infected with VSV-G-pseudotyped 
HIV-1 vector, which were dependent on RT but independent 
of integration (43, 57). Gao et al. were able to measure cGAMP 
production in primary MDMs and MDDCs infected with HIV-1 
in the presence of SIV virus-like particles (VLPs). SIV VLPs were 
used to deliver SIV accessory protein viral protein x (Vpx) to 
inhibit the restriction factor SAMHD1, thereby allowing HIV-1 
infection. cGAS-dependent sensing of HIV-1 and HIV-2 has also 
been implicated in MDDCs pretreated with Vpx (32).
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The function of cGAMP as a second messenger goes beyond 
the infected cell, as it can also pass through gap junctions and 
activate an antiviral response in neighboring cells in a STING 
dependent, but cGAS-independent manner (76). cGAMP can 
also be packaged in lentiviral virions themselves and is spread in 
this way to neighboring cells with infection (77, 78).

Interferon-γ inducible protein 16 (IFI16), a member of the 
PYHIN family, was originally described as a STING-dependent 
DNA sensor for transfected DNA and herpes simplex virus-1 (79). 
However, this sensor may be capable of detecting both single- and 
double-stranded HIV-1-derived DNA in THP-1 cells and primary 
MDMs (57). Depletion of IFI16 by siRNA in primary MDM led 
to enhanced replication of HIV-1, implicating this protein in the 
innate detection of HIV, although IFN or ISG induction in these 
cells was not measured in this study (57). Reduced ISG induction 
in IFI16-depleted primary MDM infected with HIV-1 BaL in the 
presence of SIV VLPs was, however, demonstrated in a follow-up 
study (45).

Polyglutamine-binding protein 1 (PQBP1) was recently 
identified in a targeted RNAi screen in MDDC and described as 
a DNA sensor that directly bound to reverse-transcribed HIV-1 
DNA and interacted with cGAS to activate an ISG response (44). 
A role for this protein was also demonstrated in THP-1 cells, as 
silencing of PQBP1 led to reduced innate immune activation 
induced by HIV-1 VSV-G pseudotyped vector. In these experi-
ments, co-infection with SIVmac VLPs antagonized SAMHD1. 
In both cell types, the authors measured a significant reduction 
in cGAMP production upon infection after PQBP1 depletion, 
leading them to conclude that it was required for an optimal 
cGAS/STING response to HIV-1 DNA in myeloid cells (44).  
A similar proximal role in augmenting the cGAS/STING pathway 
has now also been suggested for IFI16. In THP-1 cells, IFI16 
enhanced cGAMP production upon DNA stimulation and aided 
the recruitment of TBK1 to STING to enhance IRF3 activation 
(45). Furthermore, IFI16 enhanced STING activation and signal-
ing complex formation in keratinocytes, although in this study 
the authors did not find a role for IFI16 in cGAMP production, 
suggesting that cell type-specific roles for this protein may exist 
(80). These recent studies suggest that cGAS and STING consti-
tute a central pathway that senses HIV-1 DNA in the cytoplasm, 
with proteins including PQBP1 and IFI16 somehow enhancing 
this signaling rather than acting independently as DNA sensors 
themselves (Figure 2).

An outstanding question in the field is which HIV-1 RT 
products are the major PAMP during infection. During RT, 
both single-stranded and double-stranded DNA are generated, 
as well as RNA:DNA hybrids. While both forms of DNA were 
recognized in an IFI16-dependent manner when transfected into 
THP-1 cells, Jakobsen and colleagues were not able to measure 
a significant innate response to RNA:DNA hybrids (57). By 
contrast, transfection of murine DCs and human PBMCs with 
RNA:DNA hybrids induced robust IFN and pro-inflammatory 
cytokine release, which was dependent on TLR9 (81). cGAS has 
also been implicated in the detection of RNA:DNA hybrids in 
PBMCs and PMA-differentiated THP-1 cells (82). Whether these 
transfection experiments reproduce the PAMP production and 
exposure seen during infection, and whether these sensors detect 

RT-derived hybrids during infection of relevant primary human 
target cells, remains to be determined.

DeTeCTiON OF NON-NUCleiC ACiD 
COMPONeNTS OF Hiv

In addition to the detection of nucleic acids, some studies have 
suggested HIV proteins may act as PAMPs. The E3 ubiquitin 
ligase tripartite motif protein 5 (TRIM5α), is a capsid-binding 
restriction factor. A seminal study by Pertel et al. proposed that 
this protein also functions as a PRR to induce innate signaling 
upon recruitment of retroviral capsids (described in more detail 
below) (83). The restriction factor tetherin, which prevents newly 
synthesized virions from budding from the infected cell, has also 
been reported to act as a PRR that activates innate immune sign-
aling cascades (84, 85), this is reviewed elsewhere in this edition.

ACTivATiON OF iNFlAMMASOMeS  
bY Hiv

Inflammasomes are multiprotein complexes, found in myeloid 
cells and T cells, and activated by a wide variety of PAMPs and 
host-derived danger-associated molecular patterns. The innate 
sensors capable of activating inflammasomes include members 
of the NOD-like receptor family, the RLRs, and the DNA-
sensing-associated proteins AIM2 and IFI16. Engagement of 
these receptors leads to the formation of a platform for caspase-1 
activation and subsequent proteolytic maturation and secretion 
of the pro-inflammatory cytokines such as interleukin-1β (IL-1β) 
and IL-18, or induction of pyroptosis, an inflammatory form of 
programmed cell death [reviewed in Ref. (86)].

Two studies to date have described inflammasome activa-
tion in monocytic cells by HIV-1 (46, 58). IL-18 production by 
monocytes exposed to HIV-1 was dependent on endocytosis 
rather than infection, and both studies found that TLR-8 activa-
tion was required for induction of pro-IL-1β whereas cleavage 
into its active form and release was dependent upon NLRP3 
and the inflammasome adaptor protein ASC (46, 58). Guo et al. 
further demonstrated that inflammasome activation occurred 
post-integration leading them to suggest HIV transcripts as 
potential PAMPs.

SeNSiNg OF Hiv DNA iN CD4+ T CellS

In contrast to the classical ISG and pro-inflammatory cytokine 
response observed in HIV-infected cells of myeloid origin, innate 
immune sensing in CD4+ T cells has been described to lead to 
cell death. It is clear that HIV-1 replication in CD4+ T cells leads 
to massive cell death, but there are conflicting reports regarding 
the role of innate immune sensing and the mechanisms of this 
process (61, 87). One possible explanation for these discrepancies 
relates to the origin and activation status of the T cells used in 
each study.

Studies from the Greene lab using human lymphoid-
aggregated cultures (HLACs) from tonsillar tissue showed that 
abortive HIV-1 infection of these cultures led to significant cell 
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death, which did not require viral integration (88). This study 
suggested that in many of the T  cells in an infected culture, 
viral DNA synthesis occurred, but that the infection arrested 
before integration. The authors proposed that sensing of HIV-1 
DNA in these abortively infected cells was responsible for the 
T  cell death that drives T  cell loss and eventually AIDS. A 
follow-up study demonstrated that death by apoptosis occurred 
only in the small percentage of cells in the culture that were 
productively infected and that the vast majority of cells died 
via caspase-1-mediated pyroptosis after abortive infection (87). 
They reported that IFI16 was the DNA sensor responsible for 
detecting the incomplete RT products in the abortively infected 
T cells (60). This group subsequently demonstrated that, in con-
trast to CD4+ T cells in HLACs, PBMC-derived CD4+ T cells 
are resistant to death by pyroptosis (89). They attributed this 
to the resting status of peripheral blood-derived CD4+ T cells, 
which could be overcome by coculture with lymphoid-derived 
cells, resulting in pyroptosis on HIV-1 infection (89). In contrast 
to these studies, the Nabel lab used PBMC-derived primary 
CD4+ T  cells and found that, in these cells, HIV-1 induced 
cell death was associated with productive HIV-1 infection and 
dependent on integration (61). Cell death was accompanied by 
DNA-PK activity and phosphorylation of p53 and H2AX. The 
authors proposed that HIV-1 integration was detected by the 
DNA repair enzyme and DNA sensor, DNA-PK, as chemical 
inhibition of DNA-PK prevented cell death.

Interestingly, more recent publications are now beginning 
to address whether CD4+ T  cells can in fact sense HIV-1 RT 
products in a manner more similar to myeloid cells. Again there 
are conflicting reports, with some studies measuring a type I IFN 
response after HIV-1 infection of T cells (60, 62, 88), while others 
have been unable to detect such a response (63, 90). Vermeire 
and colleagues observed an IFN and ISG response in PHA/IL-2-
activated primary CD4+ T cells that was cGAS dependent and 
required provirus integration (62). In another study, cGAMP 
production was also detected in CD4+ T  cells but in this case 
cGAMP did not lead to IFN production by the infected cells 
(63). Interestingly, the authors found that the cGAMP from 
the infected T cells could be transferred and activate a STING-
dependent ISG response in macrophages through Env-induced 
membrane fusion sites, identifying an alternative mechanism by 
which T cell infection can contribute to local IFN production via 
macrophages.

iNTRACellUlAR ReSTRiCTiON OF Hiv

Interplay between cellular restriction factors and HIV-1 occurs 
at every stage of its lifecycle and the virus uses a combination 
of evasion and antagonism strategies to achieve infection and 
replication (Figure  1). Our advancing understanding of the 
mechanisms of viral replication and innate immunity mean 
that any strict criterion for defining restriction factors rapidly 
becomes outmoded. It would be a shame for poorly thought out 
nomenclature to constrain creative thinking and understand-
ing of innate immunity. We take the view that any protein 
with well-characterized antiviral activity can be considered 
a restriction or resistance factor. A current exciting research 

focus is the intersection between traditional direct-acting 
restriction factors and innate immune signaling. An emerging 
and important feature of restriction factors is to act a sensor for 
the presence of infection, as has been demonstrated for TRIM5, 
tetherin, and TRIM21 (83, 84, 91).

TRiM5α
TRIM5α targets incoming retroviral capsids soon after they enter 
the host cell to block infection before integration (Figure 1). It 
belongs to the large TRIpartite Motif (TRIM) family of proteins, 
encoded by over 100 genes in humans, which are involved in 
diverse cellular processes. Many TRIM proteins, including 
TRIM5α, are upregulated by type I and II IFNs and have direct 
antiviral and antimicrobial roles, in addition to less well defined 
regulatory roles in innate immunity in general [reviewed by 
Rajsbaum et  al. (92)]. Among the TRIM family members, the 
TRIM5 locus exhibits the greatest rate of positive selection across 
primate genomes, probably due to selective pressure from direct 
interactions with retroviruses (93). TRIM5α has been extensively 
reviewed since it was discovered in 2004 (94, 95); however, recent 
reports have extended ideas on restriction specificity and have 
shed significant light on its antiviral mechanism and the role of 
ubiquitin in this process (96).

TRIM5α represents an important barrier to zoonotic retroviral 
transmission. It was first identified as an important contributor to 
the innate resistance of Old World Monkeys to HIV-1 infection, 
targeting incoming viral capsids to prevent RT (97). Further study 
of TRIM5 antiviral specificity revealed that each primate TRIM5 
restricts a different subset of lentiviruses (97, 98). The importance 
of TRIM5α for species-specific restriction of HIV-1 is illustrated by 
the observation that the only monkeys permissive for SIV/HIV-1  
chimeras bearing HIV-1 capsid are pigtailed macaques that are 
homozygous for a TRIMCyp protein that cannot restrict HIV-1 
(99, 100).

The defining tripartite domain architecture of the TRIM fam-
ily, comprises an N-terminal RING domain with E3 ubiquitin 
ligase activity, a B-box domain and a coiled-coil region that both 
mediate multimerization through protein–protein interactions 
(83, 101). TRIMs have various domain types at the C-terminus 
and, like many TRIMs, TRIM5α has a C-terminal PRYSPRY, also 
called a B30.2 domain, which is not present in splice variants 
that lack retroviral restriction activity. Restriction specificity is 
dependent on direct interaction between the viral capsid protein 
and the TRIM5α PRYSPRY (102–104). In an intriguing evolu-
tionary arms race, TRIM5α has been modified independently in 
several simian species by swapping the PRYSPRY for a lentivirus-
targeting cyclophilin A (CypA)-like domain. This is derived 
from retrotransposition of a CypA cDNA (99, 105–110). These 
observations indicate the importance of CypA to the virus and 
the plasticity of TRIM5α antiviral evolution.

Until recently, human TRIM5α has been thought to have 
poor restriction activity against HIV-1. This has been explained 
by a lack of interaction between the human TRIM5α PRYSPRY 
and the HIV-1 capsid. Indeed, human TRIM5α can be modified 
to restrict HIV-1 by a single point mutation in the PRYSPRY 
(104) or by replacing the whole domain with the rhesus 
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macaque TRIM5α PRYSRY (102). Certain primary isolates of 
HIV-1 have been found to be more sensitive to TRIM5α than 
lab strains. Indeed, it has been suggested that T  cell escape 
mutations in the capsid target of TRIM5α may drive HIV-1 to 
be TRIM5α sensitive (111). Likewise, TRIM5α polymorphisms 
and expression levels have been associated with differential rates 
of HIV-1 acquisition and disease progression, supporting a role 
for human TRIM5α in HIV-1 transmission and pathogenesis 
in  vivo (112, 113). Whether these observations are explained 
by direct TRIM5α restriction of HIV-1, or by its role in innate 
immune signaling (83) remain unclear.

A landmark study from the Geijtenbeek lab recently demon-
strated that human TRIM5α contributes to restriction of HIV-1 
in a cell type, and entry pathway, specific manner (114). LCs, 
resident in mucosal surfaces, are innately resistant to HIV-1 due 
to their unique C-type lectin receptor langerin, which mediates 
uptake of HIV-1 but directs virus into Birbeck granules for 
degradation (115). By investigating the specific mechanism of 
langerin-dependent restriction, Ribeiro et  al. discovered a role 
for TRIM5α (114). Depletion of TRIM5α in primary LCs, or a 
Langerhans-like cell line (MUTZ-LCs), resulted in increased 
infection and enhanced transmission to cocultured CD4+ T cells. 
Critically, expression of langerin in a cell line (U87) allowed 
endogenous TRIM5α to restrict HIV-1, but only when langerin, 
and not the VSV-G receptor, was used as the virus entry receptor. 
Association of langerin and TRIM5α in cells was suggested by 
co-immunoprecipitation. This receptor mediated targeting to 
TRIM5α-dependent restriction was specific to langerin and was 
not observed when HIV-1 entered MDDC via the C-type lectin 
receptor DC-SIGN, or, of course, T cells via CD4 (114).

The study went on to show a role for autophagy in human 
TRIM5α-mediated restriction of HIV-1. TRIM5α was associated 
with components of the autophagy machinery in steady state 
conditions by co-immunoprecipitation and restriction led to 
an increase in autophagosome formation. Silencing autophagy 
proteins Atg16LI and Atg5 ablated the langerin-dependent 
TRIM5α-mediated restriction of HIV-1 (114). In our view, these 
data do not conflict with previous reports demonstrating receptor 
independent, PRYSPRY dependent, interaction between TRIM5α 
and capsid to define antiviral specificity. Rather, they provide evi-
dence for a role for TRIM5α in restriction of HIV-1 by autophagy 
when langerin is utilized as an entry receptor. We expect that 
as the details of this restriction mechanism are uncovered the 
differences between this autophagy dependent, and previously 
described proteasome dependent, mechanisms will be clarified 
and a novel role for TRIM5α in autophagy defined.

Structural studies have shed significant light on the classical 
antiviral mechanism of TRIM5α. There is evidence that TRIM5α 
forms hexagonal assemblies on the surface of retroviral capsids, 
mimicking the organization of the hexameric capsomeres (116). 
Hexagonal lattice formation may position multiple C-terminal 
PRYSPRY domains, which interact with the capsid with low 
affinity and specificity, so as to promote binding through avidity 
effects. This observation was recently recapitulated using elec-
tron microscopy with recombinant full-length rhesus macaque 
TRIM5α proteins and purified native intact HIV-1 capsid 
cores. The B-box 2 domain appears responsible for mediating 

TRIM5α–TRIM5α interactions that drive higher order assembly 
of TRIM5α into multimers and are essential for restriction activity. 
The hexagonal TRIM5α nets are thought to have conformational 
flexibility enabling them to form on divergent retroviral capsid 
sequences, with different capsomere curvature and conforma-
tion. This model could explain the broad recognition of divergent 
viruses associated with TRIM5α antiviral activity (116, 117).

Formation of TRIM5α complexes on an incoming virion is 
reported to promote rapid capsid disassembly and premature 
uncoating (118). However, it is clear that the process of viral 
disassembly and disruption of viral DNA synthesis is dependent 
on ubiquitin-dependent recruitment of the proteasome (96, 119). 
Indeed, the fact that preventing proteasomal degradation of the 
TRIM5α–virus complex restored restricted viral DNA synthesis 
was the first hint that viral DNA synthesis occurs inside an intact 
capsid, a model that is gaining increasing traction (40). HIV-1 
capsid uncoating is normally a highly regulated process and so 
premature uncoating by TRIM5α/proteasomes likely accounts 
for the observed block to RT.

A consequence of TRIM5α-capsid binding is activation of its 
RING domain E3 ubiquitin ligase activity (83). This results in 
complex TRIM5α autoubiquitination and enhanced proteasomal 
turnover, suggesting that TRIM5α targets capsids for proteasomal 
degradation (96, 120). Recent mapping of sequential TRIM5α 
autoubiquitination steps using a combination of biochemical 
and genetic approaches has implicated a series of E2 conjugation 
enzyme and ubiquitin linkages. Ube2W first attaches single Ub 
molecules to TRIM5α, which are then extended into polyUb 
chains through Lys63-linkages catalyzed by the heterodimeric 
E2 enzyme complex Ube2N/Ube2V2. Each of these steps was 
required for human TRIM5α restriction of murine leukemia 
virus (MLV) RT (96).

TRIM5α appears to serve as capsid PRR activating transcrip-
tion factors NF-κB and AP-1 and resulting in pro-inflammatory 
cytokine synthesis that could contribute to the antiviral state and 
modulate adaptive responses (83). Inhibitors of TAK1 signaling, 
or depletion of pathway components, rescues some degree of 
TRIM5α restricted infections in myeloid cells suggesting this 
is a component of TRIM5α activity. A recent study further cor-
related the ability to induce signaling with retroviral restriction 
activity, although this was demonstrated using murine TRIM5α 
orthologs modified to be able to target HIV-1 capsids (121). It 
will be interesting to test whether activation of NF-κB and AP-1 
pathways occurs after human TRIM5α inhibition of HIV-1 in 
LCs, and whether this contributes to restriction in this cell type.

Finally, it has recently been proposed that as well as amplify-
ing the innate immune response, TRIM5α directly enhances 
the potency of CD8+ T  cell responses to infected cells. Rhesus 
macaque TRIM5α restriction of HIV-1 boosted HIV-1 specific 
T cell activation and inhibition of infected cells in vitro. It is possible 
that TRIM5α mediated recruitment of virus to proteasomes may 
lead to increased peptide availability for MHC presentation (122).

SAMHD1

Sterile alpha motif and histidine–aspartate domain contain-
ing protein 1 (SAMHD1) was identified as the restriction 
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factor targeted by the SIV accessory protein Vpx in myeloid cells  
(123, 124). Shortly after this SAMHD1 was found to be a deoxy-
nucleoside triphosphate triphosphohydrolase (dNTPase) that 
restricts infection by lowering nucleotide concentrations below 
those which support viral DNA synthesis (125). In the case of 
viruses such as SIVsm and HIV-2, Vpx directs proteasomal 
degradation of SAMHD1 by recruitment of the host cell cullin-4 
ligase substrate receptor DDB1- and CUL4-associated factor 1, 
DCAF1, also known as Vpr-binding protein, for polyubiquitina-
tion (123). In this way, Vpx provided either packaged into VLPs 
for co-transduction or stably expressed in cell lines, is able to 
counteract SAMHD1 restriction of HIV-1 infection.

SAMHD1 comprises three main regions: the N-terminus, a 
catalytic core HD domain, and the C-terminus. Most reports 
attribute HIV-1 restriction to the dNTPase activity of the HD 
domain, which inhibits viral DNA synthesis by reducing the 
dNTP supply for RT (126). Mutations of key residues in the HD 
region cause SAMHD1 to lose its ability to restrict HIV-1 (124). 
Depletion of SAMHD1, using siRNA or by delivering SIV Vpx in 
trans, boosts both intracellular dNTP pools and HIV-1 replication. 
Indeed, SIV VLPs have regularly been used as a tool to deplete 
SAMHD1 thereby allowing the study of antiviral properties that 
would otherwise be masked by SAMHD1 activity. HIV-1 reverse 
transcriptase mutants with reduced dNTP affinity are consist-
ently more sensitive to SAMHD1 restriction (127). Some studies 
have proposed additional antiviral activities for SAMHD1. For 
example, Ryoo et al. showed that overexpression of RNAse-active 
but dNTPase-inactive SAMHD1 mutants, identified through 
biochemical assays, are able to restrict HIV-1 (128). They also 
observed modest increases in HIV-1 RNA stability following 
transient SAMHD1 depletion. Other groups have suggested 
that RNase activity may be an artifact of contaminated samples  
(129, 130). Certainly, the SAMHD1 structural work is consistent 
with its role as a dNTPase (125).

SAMHD1 is widely expressed in diverse human tissues but 
in vitro appears to only restrict HIV-1 infection in non-dividing 
cells, perhaps because they typically have low nucleotide levels 
within the range of SAMHD1 control. Conversely, most rapidly 
dividing cell lines have high nucleotide levels that may exceed the 
inhibitory capacity of SAMHD1.

Unlike other restriction factors, where expression alone is 
typically sufficient to block infection, SAMHD1 antiviral activity 
is often not measurable in dividing cell lines. This may be because 
it is regulated by cell cycle-dependent phosphorylation as well 
as dNTP levels. SAMHD1 is inactivated by cyclin-dependent 
kinase (CDK)-mediated phosphorylation at C-terminal residue 
T592 (131). Structural studies have associated this inactivation 
with unstable tetramer structure and increased dissociation 
to catalytically inactive monomers and dimers (127, 129). The 
local dNTP environment also regulates SAMHD1 structure 
and function. Binding of dNTPs to the C-terminal allosteric 
regulation domains is required to activate tetramerisation and 
optimal catalytic activity (125, 132–134). SAMHD1 mutants that 
are unable to oligomerize are unable to restrict HIV-1 and this 
correlates with their inability to reduce dNTP pools (127, 133). 
One model to explain SAMHD1 activity in non-dividing cells is 
that the absence of CDK-mediated phosphorylation means that 

the small available dNTP pool is directed toward the C-terminal 
allosteric sites (127), leading to durable tetramer formation, 
dNTPase activity and HIV-1 restriction.

Recent work has revealed a crucial role for the CDK-mediated 
regulation of SAMHD1 in determining permissivity of myeloid 
cells to HIV-1 infection. Mlcochova et al. showed that T592 phos-
phorylation and thus SAMHD1 antiviral activity are dynamic in 
primary human MDM (135). They propose that macrophages, 
and likely other myeloid cells, exist in two states through which 
all of the cells periodically cycle. The first, a typical G0 state, 
characterized by active dephosphorylated SAMHD1, lack of 
the cell-cycle marker minichromosome maintenance complex 
component 2 (MCM2) and resistance to HIV-1; and the second, 
described as a G1-like state, permissive to HIV-1 and charac-
terized by expression of MCM2 and inactive phosphorylated 
SAMHD1. Critically, though SAMHD1 phosphorylation in this 
model is CDK1 dependent and linked to MCM2 expression, both 
states exist without measurable DNA synthesis or cell division 
(135). These observations provide a plausible explanation for 
the ability of HIV-1 to infect myeloid cells despite the apparent 
presence of active SAMHD1 within the cell population. They may 
also explain the lack of an HIV-1 encoded SAMHD1 antagonist, 
though the question of why other viruses may have evolved one 
in Vpx remains open.

Inhibition of SAMHD1 restriction activity by phosphorylation 
is widely accepted, but some studies in non-permissive differenti-
ated U937 cells or using biochemical assays have suggested that 
dephosphorylation does not affect dNTPase activity (136, 137). 
We note that the technical challenges of measuring intracellular 
dNTP levels, and, more particularly, direct enzyme activity across 
cell populations with unsynchronized cell-cycle status are con-
sistently highlighted in the literature (127, 130).

There is consensus that SAMHD1 binds single-stranded 
nucleic acids (129, 138). However, whether there is specificity for 
this interaction remains unclear. In macrophages, HIV-1 RNA 
co-immunoprecipitates with SAMHD1 (128) and in biochemical 
assays ssRNA binds monomeric and dimeric SAMHD1 to inhibit 
oligomerization and dNTPase activity (130). This has not been 
recapitulated in cells but leaves open the possibility that binding 
of SAMHD1 to nucleic acids may represent a further restriction 
mechanism.

A number of SAMHD1 mutations are implicated in some 
cases of Aicardi–Goutieres syndrome, a condition characterized 
by elevated systemic IFN levels, dependent on innate sensing of 
endogenous retroviruses (139). This has been attributed to loss 
of SAMHD1-mediated restriction of LINE-1 (long interspersed 
element-1) retrotransposition that generates a DNA PAMP (140). 
Intriguingly, restriction of endogenous retroviruses was not 
sensitive to Vpx and was retained in the presence of a SAMHD1 
catalytic site mutant, leading some to propose that SAMHD1 may 
sequester ssRNA to prevent sensing during homeostasis (141).

Unlike other restriction factors, SAMHD1 expression is not 
induced by type I IFN in human DCs, macrophages or CD4+ 
T  cells (142, 143), the main target cells of HIV-1. SAMHD1 
induction has been reported in HEK 293T and HeLa cells (144). 
It is possible that SAMHD1 is activated in response to type I IFNs, 
which have been shown to reduce phosphorylation at residue 
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T592 in MDMs and MDDCs, which would promote SAMHD1 
tetramerization and catalytic activation (131). Together, these data 
implicate SAMHD1 as a component of a typical IFN-inducible 
antiviral response.

Lentiviral accessory proteins are often not conserved in their 
functions. For example, tetherin is antagonized by HIV-1 Vpu but 
the parental virus SIVcpz uses nef for this purpose. In a similar 
way, several viruses use Vpr, rather than Vpx, to antagonize 
SAMHD1. SAMHD1-degrading Vpr proteins are encoded by 
SIV syk (SIV that infects Sykes’ monkey), SIV deb (De Brazza’s 
monkey), and SIV agm (African green monkey) lineages (145). 
It is tempting to suggest that HIV-1 has gained advantage from 
avoiding a SAMHD1 degradation phenotype. Some have pro-
posed that HIV-1 transmission in vivo is enhanced by avoiding 
sensing and activation of antiviral intracellular innate responses 
in dendritic and myeloid cells, perhaps evidenced by fewer cases 
of Vpx encoding HIV-2 than HIV-1 (146, 147). The model is that 
abrogation of SAMHD1 leads to HIV-2 DNA synthesis, which 
can then activate innate immune DNA sensing, particularly in 
DC. Consistent with this theory, HIV-1 infection of MDDC and 
MDM only results in cGAMP production when SAMHD1 is 
inhibited by pretreatment with VLPs containing Vpx (43, 148). 
Further, chronic HIV-2 infection is often characterized by stable 
CD4+ T cell counts, which may reflect an inability to efficiently 
establish high levels of infection in these cells in  vivo (149). 
However, there are likely to be many differences between HIV-1 
and HIV-2 that lead to the lower pathogenicity and transmission 
rates of HIV-2 as compared with HIV-1 and the role of Vpx in 
these differences remains poorly defined. Furthermore, there is 
as yet no good evidence that Vpx enhances replication in myeloid 
cells in vivo.

APObeC3

Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-
like 3 proteins (APOBEC3 or A3) belong to the family of 
single-stranded DNA deaminases. A3s are IFN-inducible and 
restrict HIV-1 primarily by suppressing viral DNA synthesis 
and inducing mutations in the viral DNA leading to replication 
incompetent proviruses (148, 150–152). Seven A3 enzymes have 
been identified: A3A A3B, A3D, A3F, A3G, and A3H are all active 
against HIV-1, and A3C may be inactive (4, 153). A3G is the most 
well defined anti-HIV APOBEC3 protein and was the first to be 
described to have a role in innate immunity through its ability to 
block HIV-1 replication (150). It is expressed in CD4+ T cells and 
MDM (154). The importance of APOBEC3 proteins in transmis-
sion and species-specific replication of HIV-1 is underlined by 
the observation that HIV-1 can be made to replicate in pigtailed 
macaques by changing only the APOBEC3-antagonizing HIV-1 
accessory gene Vif (100).

To restrict HIV-1, A3 proteins must be packaged into viral 
particles and access the viral DNA in the infected cell (155). 
For example, A3A is not packaged but can be made to restrict 
HIV-1 by forcing incorporation into virions by fusing it to the 
packaged viral accessory protein Vpr (156). A3G is packaged into 
virus particles through its interaction with cellular or viral RNAs 
bound to the nucleocapsid domain of the Gag polyprotein (157). 

In the absence of the antagonistic viral accessory protein Vif 
(described below), A3G suppresses DNA synthesis and catalyzes 
the deamination of cytosines to form uracils in the minus strand 
of the reverse-transcribed single-stranded DNA, resulting in G to 
A mutations in the plus strand of the viral DNA (158, 159). The 
hypermutated proviral DNA that results is defective and unable 
to produce infectious progeny (160).

A3G disruption of HIV-1 DNA synthesis occurs at several 
steps. A3G prevents tRNA binding to the primer binding site in 
the viral RNA (161), minus and plus strand transfer (162), and 
primer tRNA processing and DNA elongation (152, 163). The 
studies reporting lack of HIV-1 restriction by the deaminase inac-
tive A3G mutant (E259Q) should be considered in light of reports 
that show that the A3G E259Q mutant is also defective for RNA 
binding and therefore unable to inhibit HIV-1 DNA synthesis to 
the same extent as the wild-type A3G (164).

SUN2

SUN2 (also known as UNC84B) was originally identified as a 
potential innate immune effector with specific antiretroviral 
activity in an overexpression screen for ISGs against a range of 
different viruses (165). SUN2 is an integral membrane protein 
that spans the inner nuclear membrane and forms part of a 
multiprotein complex (LINC) that physically bridges the nucle-
oskeleton and cytoplasm (166). Several recent studies published 
in quick succession have suggested that manipulation of SUN2 
can either inhibit or promote HIV-1 infection, depending on the 
level of expression (167–169).

Studies have found that SUN2 is constitutively expressed in 
human cells and is in fact not upregulated by IFNs (167–170). 
Several groups have confirmed that SUN2 overexpression leads to 
a block to HIV-1 infection and replication, as originally reported 
in Ref. (165). However, endogenous levels of SUN2 did not have 
antiviral activity. This suggests that SUN2 overexpression has 
antiviral activity through a dominant negative effect rather than 
through having specific innate antiviral properties.

SUN2 was included in the original ISG screen based on 
microarray data from primary chimpanzee PBMCs treated with 
IFNs (165, 167, 171). It is therefore possible that SUN2 could 
exert anti-HIV activity if induced in other species, although this 
remains to be tested. When overexpressed in human cells, SUN2 
exerted strain-specific antiviral activity as T/F HIV-1 viruses 
were less susceptible (167). Infection was blocked after DNA 
synthesis, before or at the point of nuclear entry, and was associ-
ated with drastic changes in nuclear morphology resulting from 
SUN2 overexpression. It is not clear why evidently global effects 
on nuclear morphology, should specifically inhibit certain 
HIV-1 strains and not others. Serial passage of HIV-1 in the 
presence of overexpressed SUN2 resulted in resistant viruses, 
largely conferred by the single capsid mutation P207S (167). The 
host cell cofactor CypA, that is recruited to incoming virions, 
was also implicated in targeting the capsid to SUN2 restriction, 
as CypA inhibitors partially relieved the block to infection in 
the presence of overexpressed SUN2, consistent with the notion 
that capsid–CypA interactions guide virion nuclear import 
pathways (37, 172).
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While silencing or depletion of SUN2 in cell lines has been 
shown to have either no impact or very modest impact on HIV-1 
infection (167, 170), silencing in primary T cells inhibited infec-
tion and produced a large defect in replication assays, leading the 
authors to surmise that SUN2 acts as a cofactor for HIV-1 (168). 
This was again proposed to be dependent on CypA recruitment to 
the capsid, as CypA inhibitors had no additive effects with SUN2 
silencing (168). However, the defect in primary T cells has since 
been convincingly attributed to defects in T cell proliferation, acti-
vation status and viability resulting from SUN2 silencing (169). 
Discrepancies in cell viability between the two studies could be 
explained by depletion efficiencies and the duration of silencing 
experiments. In summary, endogenous SUN2 appears to play a 
central role in T cell proliferation and activation, which indirectly 
makes it essential for HIV-1 infection of activated primary T cells 
in culture. Due to difficulties in infecting resting primary CD4+ 
T cells in vitro, it will be difficult to establish whether SUN2 has 
additional cofactor roles in infection.

Mxb

MxA and MxB (Mx1 and Mx2 in mice) are ISGs that belong to 
the dynamin-like GTPase superfamily. Human MxA has broad 
antiviral activity against both RNA and DNA viruses, best char-
acterized against influenza A viruses (173). By contrast, MxB 
has only been shown to have antiviral activity against certain 
retroviruses. Three different groups simultaneously reported that 
MxB is a potent inhibitor of HIV-1 and contributes to IFNα-
induced anti-HIV-1 activity in a range of cell types (174–176). 
Nonetheless, type 1 IFNs typically suppress HIV-1 DNA syn-
thesis, whereas MxB appears to act after HIV-1 has completed 
viral DNA synthesis. This suggests that MxB can act against 
HIV-1 but that in a typical type 1 IFN response, another, as yet 
unidentified factor(s) restricts HIV-1 before the MxB induced 
block. Consistent with this notion, some studies have shown that 
MxB knock out does not reduce the antiviral activity of type 1 
IFN against HIV-1 (177).

Human MxB is active against various HIV-1 strains, including 
different subtypes and T/F viruses (178). In comparison, HIV-2 
and some SIV strains are less susceptible, and unrelated retrovi-
ruses including MLV, feline immunodeficiency virus, and equine 
infectious anemia virus appear resistant to the human protein 
(174). Divergent primate MxB orthologs have been shown to 
have different patterns of restriction indicating some degree of 
species specificity (179), although this is not as clearly defined as, 
for example, for TRIM5α. Differences in viral susceptibility map 
to the capsid protein, suggesting it is the target of MxB antiviral 
activity. MxB resistant capsid mutants have been identified in 
naturally occurring primary isolates (180). The fact that MxB 
resistance mutations exist naturally, but are not universal, suggest 
uneven or incomplete selection pressure on HIV-1 from MxB, 
consistent with it having a minor role in the IFN response against 
HIV-1.

Most studies have reported that MxB expression inhibits 
nuclear entry, evidenced by a reduction in 2-long terminal repeat 
(2-LTR) circles, which are likely only formed in the nucleus by the 
uniquely nuclear non-homologous end joining pathway (181).  

A subsequent defect, implying a second block, can also be 
observed in the level of integrated proviral DNA (174, 175). 
Liu et al. reported a defect in integration, but not nuclear entry 
(176). These discrepancies prompted a thorough investigation 
by Busnadiego et al. who showed that MxB expression reduced 
2-LTR circles, but that this defect did not fully account for the 
greater defect observed in infectivity (179). They suggested that 
MxB may therefore inhibit subsequent stages of infection in the 
nucleus. While they concluded that integrase activity was unaf-
fected, MxB expression significantly altered the distribution of 
integrated proviral DNA away from gene-dense regions, although 
it is not clear if this also accounted for the remaining defect in 
infectivity. Similar effects on integration targeting have been 
observed for capsid cofactor binding mutants that are thought 
to have altered nuclear import pathways (37). Interestingly, the 
genomic position of integrated proviruses has recently been 
linked to differences in proviral expression and latency (182), 
although no study has yet demonstrated how retargeted integra-
tion by MxB may impact infectivity or replication in spreading 
infections. We speculate that the restriction activity of factors 
like MxB could have a greater impact on HIV-1 infection in vivo 
by retargeting integration, the full consequences of which may 
not be apparent in single round HIV-GFP infection assays in 
cultured cells.

The antiviral activity of MxB appears dependent on HIV-1 
cofactors, including CypA, which are recruited to the incoming 
capsids. Like naturally occurring resistance, MxB resistance 
mutations, generated by repeat passage of HIV-1 in the presence 
of MxB, were found to map to the capsid, for example, to the CypA 
binding loop residue A88 (176). We note that HIV-1 CA A88 is 
very conserved in HIV-1 M isolates (183). RNAi mediated silenc-
ing of CypA and chemical inhibition of capsid–CypA interactions 
with cyclosporine rescue the MxB-mediated block to infection, 
consistent with a role for CypA (184). The N74D capsid mutant, 
which cannot bind the cytoplasmic cofactor CSPF6, or nuclear 
pore component Nup153, is also less susceptible to inhibition 
by MxB (175). Current thinking is that recruitment of cofactors 
to the incoming virion targets it into a pathway where it may 
encounter MxB in the context of an IFNα response, potentially 
at the cytoplasmic face of the nuclear pore where MxB is local-
ized (185). Based solely on in vitro binding assays, the cofactors 
are not thought to be required for binding of MxB to the capsid 
as MxB-capsid interactions are not affected by cofactor binding 
mutations (184, 186). However, whether HIV-1 cofactors have a 
role in recruitment of MxB to the capsid during infection has yet 
to be determined.

The capsid residues that are targeted by MxB have not yet been 
mapped. Sites associated with resistance, found throughout the 
capsid, are thought to affect capsid stability suggesting they might 
not be directly targeted (179, 180). In vitro-binding assays suggest 
that MxB can only interact with capsid hexamers, rather than 
monomers, suggesting avidity effects and leading to suggestions 
that MxB may recognize hexameric capsid patterns (186).

The mechanistic details of MxB antiviral activity are therefore 
not yet fully understood. In trying to gain insight into the mecha-
nism, numerous studies have probed the importance of each MxB 
domain through comparisons to MxA and structure-guided 
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mutagenesis. Like MxA, MxB has a GTPase domain, which is 
linked by a bundle signal element (BSE) to a carboxy terminal 
stalk domain (186). Surprisingly, and unlike MxA, neither the 
GTPase activity nor conformational communication through 
the BSE is required for MxB antiviral activity (175, 186, 187). 
MxB has an extended N terminal domain, not present in MxA, 
which is essential for in vitro binding to the capsid and antiviral 
activity (175, 179, 184, 187). Transfer of the human MxB N 
terminal domain (25 amino acids) onto canine MxB orthologs, 
and unrelated proteins, confers anti-HIV-1 activity, providing 
the chimeric protein is able to dimerize (188). This is consistent 
with structure-guided mutagenesis studies that have confirmed 
that MxB dimer or trimer formation, mediated by residues in the 
stalk domain, is required for anti-HIV-1 activity by increasing the 
avidity of MxB–capsid interactions (184, 189), much like TRIM5. 
A triple arginine motif in the N terminal domain has been sug-
gested to directly bind to the capsid. This sequence is essential 
for restriction and introduction of the motif into non-restrictive 
MxB orthologs confers anti-HIV-1 activity (190).

The N terminal domain of MxB also contains a nuclear 
localization sequence (NLS), and MxB is able to shuttle between 
the nucleus and cytoplasm (191). Early studies with N-terminal 
truncation mutants that were unable to restrict HIV-1 led to 
conclusions that MxB nuclear localization is essential for activ-
ity (188). However, it is now thought that these studies were 
confounded by deletion of the MxB N-terminal capsid-binding 
motif. To deconvolute the two functions of the MxB N-terminus, 
a recent study made point mutations in the NLS, which did 
not compromise HIV-1 restriction, but prevented nuclear rim 
localization (188). This study also used leptinomycin B to prevent 
MxB nuclear export leading to an accumulation in the nucleus. 
This did not disrupt HIV-1 restriction. However, it is possible 
that residual cytoplasmic MxB was able to inhibit infection in 
these experiments and further studies are required to clarify these 
apparently contradictory reports and determine exactly where in 
the cell MxB restriction of HIV-1 takes place.

The N-terminal domain of MxB has been shown to be under 
diversifying positive selection in primates, consistent with a role 
in directly binding pathogens and with pathogen-driven evolu-
tion (192). However, the four amino acids found to be under posi-
tive selection did not include the triple arginine motif, or the NLS 
implicated in HIV-1 restriction. This suggests that MxB evolution 
may have been driven by other viral pathogens, implying broader 
antiviral activity (192). An alternative explanation is that we do 
not yet fully understand the interactions and mechanisms of 
inhibition of MxB against different lentiviruses. The N-terminal 
residues under selection were targeted by alanine scanning 
mutagenesis in a separate study with no apparent effect on HIV-1 
inhibition (190). However, making evolutionary analysis-guided 
changes in MxB, rather than simply mutations to alanine, and 
testing antiviral specificity, may prove more informative.

An outstanding question regards the fate of MxB-restricted 
capsids in the infected cell. It has been proposed that MxB binding 
prevents uncoating, as accumulation of p24 capsid proteins has 
been observed with MxB expression (184). This was also based 
on indirect biochemical measurements using a “fate of capsid” 
assay, which compares the amount of “intact” viral cores that 

can be pelleted from infected cells in different conditions (193).  
Measuring uncoating in cells remains challenging and somewhat 
controversial, due to the rarity of infectious events and the pos-
sibility that the majority of events measured biochemically do not 
represent those leading to infection. Nonetheless, these experi-
ments can be informative and understanding the effect of MxB 
on viral capsids as a whole is certainly worth pursuing.

SCHlAFeN (SlFN) 11

Schlafen genes are unique to mammalian cells; there are six human 
SLFN genes and all possess motifs shared with nucleic acid sen-
sors RIG-I and MDA-5 (194). SLFN11 was originally suggested 
to restrict HIV-1 replication at the level of protein translation 
in human cell lines and activated primary CD4+ T cells (195). 
They suggest that SLFN11 counteracts HIV-1-induced changes 
in tRNA composition, which is presumed to relate to initiation of 
viral protein synthesis. These authors proposed that SLFN11 may 
exploit differential codon usage between viral and host proteins: 
lentiviral genomes have high frequencies of A nucleotides and 
favor rare codon usage, relative to host cells, with A/U in the third 
position. Thus, SLFN11 may exploit viral codon preferences to 
specifically attenuate viral protein synthesis. Electrophoretic 
mobility shift assays implied that SLFN11 might achieve this by 
binding and sequestering tRNA on which HIV-1 is dependent 
(195). More recent evidence suggests that overexpression of 
SLFN11 in HEK 293T cells reduces all protein production, includ-
ing host protein translation in the absence of infection, with a bias 
toward genes that have not been codon optimized for the relevant 
host cell (196). SLFN11 gene expression is IFN induced and it 
may be more appropriate to consider SLFN11 as a broad-acting 
ISG that contributes to the antiviral state by mediating host cell 
translational shut-off, rather than a restriction factor specific to 
any particular virus or virus family (195, 197). The other human 
SLFN paralogs remain to be explored in this context.

iMMUNe evASiON STRATegieS OF Hiv

In comparison to large DNA viruses, such as herpes or pox 
viruses, which carry an armory of proteins capable of disabling 
all branches of the innate immune response, HIV-1 travels light, 
with just nine viral genes. The HIV accessory proteins, which are 
dedicated to antagonizing host defenses, are multifunctional and 
able to manipulate activity or expression of many target proteins 
(198–200). However, without the genetic capacity to initiate 
a global shutdown of host responses, evasion of detection is 
thought to be important for HIV-1 replication and particularly 
for transmission. As such HIV-1 has evolved a stealth strategy 
that operates throughout its lifecycle.

evASiON OF NUCleiC ACiD iNNATe 
iMMUNe SeNSiNg bY THe Hiv-1 CAPSiD

Studies from our lab and others have demonstrated that HIV-1 
infection is silent in MDM and does not activate NF-κB or IRF3 
signaling, or a type I IFN response, if the viral prep is purified 
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from inflammatory cytokines made by the viral producer cells 
(16, 33). This stealthy replication is in part dependent on the 
cytoplasmic exonuclease TREX1, which degrades HIV-1 reverse 
transcripts that would otherwise be sensed by cGAS leading to 
a type I IFN response (33, 42). In this way, HIV-1 exploits the 
negative regulatory role of TREX1 in modulating innate immune 
activation, which may have evolved to prevent sensing of mobile 
endogenous retrovirus genomes (201). Genetic polymorphisms 
that inactivate TREX1 cause some cases of Aicardi–Goutieres 
syndrome (mentioned earlier), a serious autoinflammatory con-
dition characterized by high systemic levels of IFN (202).

The HIV-1 capsid plays a central role in evasion of cytoplasmic 
DNA sensing in MDM. The capsid recruits the cellular cofactors 
CypA and CPSF6, which somehow cloak HIV-1 replication and 
prevent detection of newly synthesized viral DNA during transit 
across the cytoplasm (33). CypA is a highly abundant cytoplasmic 
protein with prolyl-peptide isomerase activity, whose function is 
not well understood despite having been implicated in a range 
of cellular processes including innate immune signaling (203). 
CPSF6 is involved in mRNA processing in the nucleus, but can 
also be found in the cytoplasm (204). Both CypA and CPSF6 tar-
get the virus to particular nuclear import cofactors and influence 
integration site selection (37, 205). Both cofactors are essential 
for HIV-1 replication in MDM, as capsid mutants that are unable 
to recruit either CypA (P90A) or CPSF6 (N74D) trigger a type I 
IFN response that completely suppresses infection (33). RNAi-
mediated depletion of CPSF6, or pharmacological inhibition of 
CypA, has the same effect. Blockade of IFN signaling rescues 
infection in each case, confirming the importance of innate 
immune evasion for successful infections. Sensing of the CypA 
binding mutant (P90A) was dependent on viral DNA synthesis 
and resulted in production of cGAMP. Non-immunosuppressive 
derivatives of cyclosporine A, which block CypA–capsid interac-
tions, also triggered a type I IFN response that suppressed infec-
tion, demonstrating the potential for therapeutic intervention to 
promote innate immune responses.

We do not yet fully understand the mechanisms by which 
cofactor recruitment helps to cloak the incoming capsid and 
prevent sensing of viral DNA. An attractive hypothesis is that 
sequential cofactor binding acts as a “satnav,” by regulating the 
coordinated processes of DNA synthesis and uncoating, ensuring 
they happen in the right intracellular location, and at the right 
time, to avoid detection. This hypothesis is supported by struc-
tural studies that revealed that pairs of cytoplasmic and nuclear 
cofactors, for example, CypA/Nup358 and CPFS6/Nup153, have 
overlapping binding sites on the surface of the capsid (39), sug-
gesting that an exchange of cofactor binding may happen at the 
nuclear pore to control uncoating and protected DNA synthesis.

Structural analysis has also revealed that the CPSF6/Nup153 
binding site spans multiple subunits within capsid hexamers, 
suggesting that interactions with Nup153 can only take place 
with intact capsid cores. Taken altogether, these studies have 
added to growing evidence that the capsid stays intact until 
it reaches the nuclear pore, contrary to dogma that proposes 
uncoating occurs soon after the capsid enters the cytoplasm. 
Encapsidated DNA synthesis would allow RT to occur within 
the safety of the core, shielded from cytoplasmic DNA sensors 

and from TREX1 degradation (40). Indeed, intact capsids have 
been observed docked at the nuclear pore by electron and light 
microscopy (36, 38).

For in-core RT to be possible, dNTPs must be able to enter 
intact cores to fuel DNA synthesis. Jacques et al. recently discov-
ered that capsid hexamers form an electrostatic transporter that 
can transport dNTPs (40). They demonstrated that the channel, 
with its electrostatic core comprising a ring of positively charged 
arginines, allowed RT within intact cores in  vitro. Mutation of 
the key arginine at position CA18 led to decreases in dNTP bind-
ing, RT, and infectivity. On the outside of the CA, the channel is 
opened and closed by a dynamic molecular iris formed by a beta-
hairpin structure. The beta-hairpin exists in different conforma-
tions in X-ray structures, suggesting its acts as a lid to regulate the 
electrostatic channel. This could provide the virus with a means 
of controlling entry of dNTPs and DNA synthesis by CA binding 
cofactors. Of course, linked processes, such as uncoating, could 
also be controlled in this way. However, it remains to be defined 
as to whether and how the channel is regulated in the host cell 
cytoplasm. The contribution of the channel and beta-hairpin 
in encapsidated RT and the mechanisms of evasion of innate 
immune sensing also require further study.

ANTAgONiSM OF iNNATe iMMUNiTY bY 
Hiv-1 ACCeSSORY PROTeiNS

viral infectivity Factor (vif)
HIV-1 Vif is essential for viral replication in CD4+ T cells and 
some T-cell lines (206, 207). Importantly, in  vivo studies show 
that SIV lacking Vif is less infectious, with reduced pathogenic-
ity (208). One of the reasons for this reduced infectivity is that 
Vif-deleted viruses are restricted by APOBEC3 proteins (150). 
The best characterized function of Vif is its ability to counteract 
the antiviral effects of APOBEC3 proteins by targeting them for 
degradation in infected cells. This prevents them from being 
packaged into nascent virions and circumvents their antiviral 
activity (209). To do so, Vif hijacks the Cullin5 (Cul5) E3 ubiqui-
tin ligase complex by mimicking its cellular substrate recognition 
subunit, SOCS2 (210). As such, it links A3s to the Cullin5 E3 
ubiquitin ligase complex containing elonginB, elonginC, and 
Rbx-2 for polyubiquitination and subsequent degradation by the 
proteasome. Structural studies have revealed that interactions of 
Vif with different A3 proteins are mediated by its N terminus, 
whereas the C-terminus recruits the Cul5 E3 ubiquitin ligase 
complex proteins (211). In crystal structures, Vif adopts an 
elongated cone-like shape, with two domains surrounding the 
zinc-binding region, when bound to the Cul5 E3 ligase complex 
(212). The zinc-binding region stabilizes Vif structure by coor-
dinating zinc through an HCCH motif. Vif uses three distinct 
regions in its N terminus to bind A3 proteins, which affords it 
broad specificity. The 14DRMR17 motif is used to interact with 
A3F, A3C, and A3D (213, 214). The 40YRHHY44 motif is used 
to interact with A3G (215) and residues 39F and 48H are used to 
interact with A3H (216).

Although proteasomal degradation is the primary mecha-
nism by which Vif antagonizes A3G, there is evidence that Vif 
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can also decrease translation of A3G mRNA (217), prevent A3G 
packaging into virions (218), and inhibit cytidine deamination 
activity of A3G (219). Various strategies used by Vif certainly 
hinder A3G packaging into virions; however, low levels of 
enzymatically active A3G can be detected in wild-type HIV-1 
virions (220), resulting in sublethal deamination of the viral 
DNA (221). Several lines of research convincingly show that 
non-catastrophic increases in HIV-1 mutation rates, induced by 
low level A3G expression, may be beneficial for the virus and 
allow, for example, generation of antiretroviral resistance (222), 
escape from cytotoxic T  lymphocytes (223) and co-receptor 
switching (224, 225).

Like other lentiviral accessory proteins, interaction of Vif 
with A3 proteins is species specific and is thought to present a 
cross-species transmission barrier. HIV-1 Vif degrades human 
but not simian A3G. Specificity can be determined by a single 
residue, for example, at position 128 of A3G, which dictates 
binding of Vif and therefore species-specific A3G antagonism 
(224). Species specificity of antagonism of A3G by Vif is indica-
tive of the arms race between pathogens and their hosts, result-
ing in continuous selection pressure that drives evolution of this 
protein (226, 227).

Additional functions for Vif have recently been proposed by 
proteomic studies seeking additional targets for Vif degradation. 
Greenwood et al. identified host cell protein PP2A, which belongs 
to the B56 family of serine/threonine phosphatases involved in 
numerous cellular processes, as a novel Vif target (199, 228). By 
studying changes in the proteome of an HIV-1 infected T-cell line, 
they found that PP2A had the same pattern of temporal loss as 
APOBEC3 proteins suggesting PP2A as a Vif target. Subsequently, 
the authors confirmed that, indeed, Vif targets all five members of 
the B56 family for Cul5-dependent proteasomal degradation. In 
contrast to APOBEC3 antagonism by Vif, targeting of PP2A was 
found to be a conserved function of lentiviral Vif proteins as Vif 
proteins from different primate and non-primate lineages could 
target human PP2A. Currently, it is unclear why Vif targets the 
PP2A complex.

vpr
Vpr, an accessory protein of around 96 amino acids, is packaged 
into viral particles via interactions with Gag derived p6 (229). 
Virion incorporation suggests it functions during viral entry 
or egress from infected cells. Although present in all primate 
lentiviruses, its sequence is highly variable between viruses 
and even within species. Numerous functions have been pro-
posed for Vpr (230); however, its role in HIV-1 infection has 
remained poorly defined and its function remains enigmatic. 
This is partly because, while Vpr is typically dispensable for 
replication in cultured CD4+ T cells, there are reports of Vpr-
dependent HIV-1 replication in MDMs (231), suggesting that 
its function might only be apparent under certain conditions. 
Here, we discuss only the proposed functions of Vpr relating 
to innate immunity.

Various studies have shown that Vpr modulates innate immune 
activation by regulating activation of transcription factors, IRF3 
and NF-κB, during early stages of the HIV-1 life cycle. In TZM-bl 
cells reconstituted with STING, Vpr was found to inhibit sensing 

of HIV-1 by blocking translocation of IRF3 into the nucleus (232).  
On the other hand, in PBMCs, and the Jurkat T-cell line, Vpr was 
found to degrade IRF3 (233). In contrast to the effects of Vpr on 
IRF3, NF-κB has been described to be activated by Vpr, potentiat-
ing innate sensing of HIV-1 in CD4+ T cells and DCs (62, 234).

Like the Vpr related protein Vpx, Vpr usurps the Cul4-DCAF1 
E3 ubiquitin ligase complex to target proteins for proteasomal 
degradation (235). The most extensively studied function of 
Vpr is to cause cell-cycle arrest at the G2 to mitosis (G2/M) 
transition. A 2014 study showed how Vpr can manipulate an 
endonuclease complex to arrest cell cycle and proposed that 
this prevents innate immune sensing of the viral DNA (236). 
The data suggested that Vpr interacts directly with SLX4, which 
is implicated in DNA damage repair pathways. SLX4 recruits 
structure-specific endonucleases (SSEs) MUS81-EME1, 
ERCC1–ERCC4, and SLX1 to form a complex (SLX4com) that 
repairs DNA damage. The activity of SSEs is kept under tight 
control during cell cycle. They are only activated at the G2/M 
transition, for example, by kinases such as polo-like kinase 
1 (PLK1) leading to resolution of stalled replication forks 
and maintenance of genomic integrity (237). Laguette et  al. 
proposed that Vpr recruits PLK1 to the SLX4com before the 
G2/M transition. PLK1 then prematurely activates SLX4com 
by phosphorylating EME1 resulting in abnormal processing of 
replication forks that eventually leads to replication stress and 
cell-cycle arrest at the G2/M transition. This function of Vpr is 
dependent on Cul4-DCAF1 ubiquitin E3 ligase complex as the 
DCAF1 binding mutant, VprQ65R, is unable to cause cell-cycle 
arrest. Furthermore, SLX4 was found to bind HIV-1 reverse 
transcripts only in the presence of Vpr suggesting that Vpr may 
recruit SLX4 to process HIV-1 reverse transcripts and prevent 
innate sensing.

These findings raise important questions of how Vpr manipu-
lates the SLX4 complex to degrade viral DNA and evade innate 
sensing without suppressing productive infection. Importantly, 
the significance of SLX4 activation by Vpr during HIV-1 
replication was not demonstrated in this study. The relevance 
of the Vpr interaction with SLX4 is undermined by the recent 
suggestion that Vpr from certain HIV-1 isolates are unable to 
interact with SLX4 (238). However, species-specific Vpr–SLX4 
interactions support the importance of this interaction. SIV Vpr 
proteins from African green monkeys that do not arrest cell cycle 
in human cells can interact with the SLX4com in African green 
monkey cells and cause cell-cycle arrest (239). The role of SLX4 
in HIV-1 replication and Vpr activity certainly warrants further 
investigation. It is also likely that Vpr targets, as yet unidentified, 
factors and pathways as evidenced by recent proteomic screens 
identifying putative Vpr targets (200, 240). A major challenge is 
to identify a reliable assay for Vpr function and a corresponding 
replication assay that links target degradation to viral replica-
tion as was the key to understanding the relationships between 
HIV-1 Vif and APOBECs, Vpu/Nef and Tetherin, and Nef and 
SERINC3/5 (241, 242).

vpu
A detailed description of the roles of Vpu as an antagonist of the 
restriction factor tetherin, which prevents viral budding and 
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release from infected cells, and in the regulation of host trans-
membrane proteins, are described elsewhere in this edition 
(Neil lab review). Its anti-tetherin activity also implicates Vpu 
in innate intracellular signaling pathways, because tetherin also 
acts as a PRR that activates signaling cascades upon recruitment 
of HIV virions (84, 85). Intriguingly, another study examining 
tetherin signaling demonstrated that tetherin has a long and 
a short isoform, that are, as for MAVS, derived from alternate 
start codons (243, 244). Also like MAVS, the long form can acti-
vate an innate immune signal whereas the short form cannot. 
Intriguingly, Vpu preferentially targets the long signaling form 
of tetherin, despite the fact that the short form is competent 
for tethering newly formed virions (243). In the light of these 
data, we consider that the name tetherin is rather misleading, 
in fact, being tethered may not be disadvantageous to HIV-1, 
particularly given this feature aids cell-to-cell spread in T cells 
(245). Indeed, preferential targeting of the long form of tetherin 
by HIV-1 suggests that it is signaling and its consequences that 
exert the dominant pressure on the virus. This is consistent 
with a model in which the most important feature of restric-
tion factors is their PRR function, which can protect many cells 
through initiating IFN responses, rather than their restriction 
function, which is focused on individual viral particles. Having 
said this, tetherin signaling may be a recent adaptation given 
that simian tetherin variants were found to be unable to activate 
signaling when expressed in 293T cells (84). Of course, these 
proteins may signal in their cognate species and the role of 
signaling in viral restriction by tetherin requires further study. 
Furthermore, cell-free virus is required for transmission and 
therefore antagonism of tetherin by Vpu is critical. Tethered 
viruses may also enhance antibody-dependent cell-mediated 
cytotoxicity (246).

In contrast to other accessory proteins, Vpu is exclusively 
encoded by HIV-1 lineage viruses and is absent from HIV-2 
clades. It is not packaged inside the virion, and its Rev-dependent 
expression occurs late in the viral lifecycle (49). Vpu potently 
inhibits NF-κB activation and ensuing ISG expression; this 
likely requires viral integration in primary myeloid and CD4+ 
T cells (62, 247, 248). As mentioned earlier, activation of NF-κB 
occurs downstream of multiple innate sensing pathways to drive 
antiviral gene expression. Paradoxically, NF-κB activation is also 
implicated in driving HIV-1 and HIV-2 proviral transcription 
(249). Thus, primate lentiviruses may encode factors to closely 
regulate NF-κB activation at different stages in the lifecycle to 
strike a balance between shutting down antiviral responses and 
augmenting viral gene expression. In particular Nef and Tat, 
expressed at high levels early in the viral lifecycle, have been 
shown to increase virus replication by promoting NF-κB activa-
tion (250, 251). Intriguingly, Vpu’s role as an antagonist of innate 
immune signaling is independent of tetherin antagonism and 
is apparently conserved between all lineages of SIV and HIV-1 
containing Vpu (except HIV-1 group N) (62, 248). Several reports 
show that Vpu disrupts NF-κB activation downstream of a range 
of exogenous and overexpression stimuli that are not specifically 
related to innate signaling (62, 84, 85, 248). Besides NF-κB, there 
are also conflicting data regarding antagonism of IRF3 by Vpu 
(248, 252, 253). It seems likely that host cell type and activation 

status may significantly impact the role of Vpu in the context of 
intracellular innate immune responses to HIV, which has yet to 
be fully elucidated.

FUTURe PeRSPeCTiveS

The last decade has seen an extraordinary expansion in 
our understanding of HIV and its interaction with the cell-
autonomous innate immune system, especially pertaining to 
the field of DNA sensing. We are beginning to understand the 
complexities of the cellular responses to HIV-1 and the subtleties 
of HIV evasion strategies in different cell types. Viruses are the 
masters of compromise, able to switch roles between viral acces-
sory proteins or finely tune their behavior with as little as single 
amino acid changes. In our view, particularly pertinent studies 
are those that explain the differences in cofactor requirements 
or innate evasion strategies in cell lines versus primary cells. Of 
course, cell lines make tractable models for HIV infection, but we 
must remember that, in many cases, this is because of defects in 
cell-autonomous innate immunity related to their cancer origins, 
and so we must be cautious in interpreting experiments studying 
tropism in cells that cannot mount authentic responses. Also 
important are studies that take into account the fact that cells 
communicate through cytokine and cGAMP secretion (63, 72). 
Humanized mouse models are now allowing sophisticated and 
relatively cheap in  vivo investigation of HIV therapeutics and 
innate responses (254–256). Similar studies considering innate 
immunity may eventually be more informative for HIV-1 than 
simian models given that simian lentiviruses, such as the Vpx 
encoding SIVmac, have different cellular tropisms and likely 
innate immune relationships with their hosts. Mouse models may 
be particularly effective for the study of HIV-1 tropism in human 
T  cells in  vivo, which must be activated for HIV-1 replication 
in vitro, thereby masking innate responses and cytokine secretion 
profiles in response to the virus itself.

It is clear that HIV adaptation to host defenses influences the 
HIV-1 lifecycle at every stage. As our understanding of HIV-1 
innate immune evasion increases, comparative studies between 
the different SIV and HIV strains are becoming increasingly 
informative and may shed light on the determinants of pande-
micity. Manipulation of these critical host–virus interactions 
offers tantalizing opportunities for development of novel 
therapies. However, excitement at the prospect of translation 
of our rapidly expanding knowledge base must be tempered 
by the contradictions and uncertainties in the field; there is 
still much to be understood. The literature tells us that there is 
great diversity in the innate immune capacities of each cell type 
relevant to HIV infection. One major and evolving challenge is 
understanding the dynamic relationship between intracellular 
immunity and the specific circumstances of each individual 
cell or cell population: cell location, cell-cycle status, relative 
cytokine exposure, for example, will variegate each cell’s interac-
tion with HIV. We view HIV as the ultimate tool for molecular 
cell biology, which, correctly deployed, will teach us a great deal 
of fundamental human biology and continue to transform our 
understanding of health and disease leading to innovative new 
tools and therapeutics.
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Human cytomegalovirus (HCMV) has been closely associated with the human race 
across evolutionary time. HCMV co-infection is nearly universal in human immunode-
ficiency virus-1 (HIV-1)-infected individuals and remains an important cofactor in HIV-1 
disease progression even in the era of effective antiretroviral treatment. HCMV infection 
has been shown to have a broad and potent influence on the human immune system 
and has been linked with the discovery and characterization of adaptive natural killer (NK) 
cells. Distinct NK-cell subsets, predominately expressing the activating receptor NKG2C 
and the marker of terminal differentiation CD57, expand in response to HCMV. These 
NK-cell populations engaged in the long-lasting interaction with HCMV, in addition to 
characteristic but variable expression of surface receptors, exhibit reduced expression of 
signaling proteins and transcription factors expressed by canonical NK cells. Broad epi-
genetic modifications drive the emergence and persistence of HCMV-adapted NK cells 
that have distinct functional characteristics. NKG2C+ NK-cell expansions have been 
observed in HIV-1 infected patients and other acute and chronic viral infections being 
systematically associated with HCMV seropositivity. The latter is potentially an important 
confounding variable in studies focused on the cellular NK-cell receptor repertoire and 
functional capacity. Here, focusing on HIV-1 infection we review the evidence in favor of 
“adaptive” changes likely induced by HCMV co-infection in NK-cell subsets. We highlight 
a number of key questions and how insights into the adaptive behavior of NK cells will 
inform new strategies exploiting their unique properties in the fight against HIV-1.

Keywords: human immunodeficiency virus, human cytomegalovirus, natural killer cells, nKG2C, CD57, adaptive

inTRODUCTiOn

Natural killer (NK) cells are a diverse group of innate lymphocytes residing at the crossroads of innate 
and adaptive immunity (1). Their remarkable effector agility is achieved via expression of a wide 
array of receptors and integration of signals that are finely attuned to ensure self-tolerance, while per-
mitting effective responses against viral assaults and tumor transformation. In addition to important 
immunoregulatory functions (2, 3), a number of murine studies support that NK cells can acquire 
immunological memory similarly to B and T cells (4–7). While antigen-specific NK responses have 
been documented in mice and more recently in primates (8), clear evidence for NK-cell memory 
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in humans is lacking. The NK-cell compartment in humans 
displays phenotypic and functional heterogeneity encompassing 
populations at various stages of maturation with distinct receptor 
combinations (9–11). In recent years, it has become apparent that 
variegated expression of inhibitory and activating receptors at the 
single cell level leads to a more diverse NK-cell repertoire than 
previously envisaged. Cytometry by time-of-flight has enabled 
us to profile the healthy human NK-cell repertoire, uncovering 
between 6,000 and 30,000 unique NK-cell subsets per individual 
(12). This observed diversity is generated by a combination of 
factors including genetic contributions (13, 14), along with dif-
ferentiation in reprogramming in response to local tissue milieu 
(15) and infections/environmental factors (12). The substantial 
influence of environmental factors is supported by twin studies 
demonstrating that non-heritable factors exert a more profound 
and cumulative influence compared to heritable traits (16, 17). 
One such factor is human cytomegalovirus (HCMV), a wide-
spread β-herpesvirus with a prevalence ranging from 40 to 100% 
depending on age, socioeconomic factors, and geographical 
region (18). In immunocompetent hosts, HCMV infection is usu-
ally subclinical leading to latency, whereas in immunosuppressed 
patients, including human immunodeficiency virus-1 (HIV-1)-
infected and transplant patients, it remains a significant cause 
of morbidity and potentially life threatening complications (18). 
HCMV has a broad impact on immunity (16) and has recently 
been associated with the expansion of adaptive or memory-like 
NK-cell subsets (19, 20).

In the context of HIV infection, HCMV is a highly prevalent 
(21) and well-recognized opportunistic pathogen responsible 
for significant morbidity and mortality prior to the introduction 
of antiretroviral treatment (ART) (22, 23). However, despite the 
roll-out of effective ART, HCMV remains a significant cofac-
tor in HIV-1 disease progression (24–26), displaying a strong 
association with systemic inflammation (27, 28), cardiovas-
cular disease (29, 30), reduced immune resilience (31), and 
immune senescence (27). A recent report has highlighted the 
role of HCMV replication in intestinal barrier dysfunction in 
asymptomatic HIV-1 infection and contribution to persistent 
immune activation (32). It is thus highly relevant to increase 
our understanding of the complex inter-relationship between 
HCMV and HIV-1 and of the effects that it bears on the effector 
immune response. The recent identification of distinct NK-cell 
subsets with adaptive properties induced by HCMV has raised 
a number of intriguing questions, including the ability of other 
viruses to induce them and their physiological relevance in 
different disease settings. Here, we summarize findings on the 
molecular signature of HCMV-adapted NK  cells and discuss 
how NK-cell phenotypic and functional features described in 
HIV-1 infection could partly reflect the immunological finger-
print of HCMV.

FeATUReS OF CMv-ADAPTeD nK 
CeLLS—eMPHASiS On HCMv

Evidence from both murine and human studies has demon-
strated an important role for NK cells in antiviral defense against 

herpesviruses, in particular HCMV (33), reinforced by elaborate 
viral evasion strategies (34).

Although NK cells have been originally described to repre-
sent short-lived innate lymphocytes, they can exhibit persistent 
memory in response to infections. This is best exemplified by 
mouse CMV (MCMV) infection, where naive NK  cells that 
express Ly49H, recognizing the virally encoded glycoprotein 
m157, were reported to clonally expand and to subsequently 
contract forming a pool of long-lived memory cells (6). MCMV-
primed memory NK cells mount a robust response upon second-
ary challenge with enhanced interferon-γ (IFN-γ) secretion and 
cytotoxicity (6), but display reduced “bystander” functionality to 
heterologous infection suggesting the specialized nature of these 
cells (35).

Congruent with animal models, HCMV infection has been 
shown to induce an adaptive reconfiguration of the NK-cell 
compartment. Seminal work by Lopez-Botet’s group described 
a higher proportion of NK cells expressing the DAP-12 coupled 
NKG2C receptor in healthy individuals seropositive for HCMV 
(36, 37). These observations have been extended to hematopoietic 
stem cell transplantation (38, 39) and solid organ transplantation 
(40). Expansion of these subpopulations of NK  cells and their 
subsequent longevity resembled clonal expansion of adaptive 
immune cells. Expanded NKG2C+ NK cells display a differenti-
ated phenotype characterized by expression of CD57, increased 
expression of the inhibitory CD85j (38, 40), and a preferential 
oligoclonal pattern of inhibitory killer immunoglobulin receptors 
(KIRs) for self HLA-C1 and/or C2 allotypes (41, 42). In addition, 
they lack NKG2A, the inhibitory counterpart of NKG2C sharing 
specificity for HLA-E, and express lower levels of natural cyto-
toxicity receptors (NCR: NKp30 and NKp46) (36), CD161, CD7, 
and Siglec-7 (43–45) and have higher expression of CD2 involved 
in their activation (46, 47). Expression of other receptors such as 
NKG2D is maintained (36). The phenotypic hallmarks of adaptive 
NK cells are summarized in Figure 1. Of note, the magnitude of 
the HCMV imprint on NK-cell subsets varies within seropositive 
individuals (i.e., the NKG2Cbright phenotype is found in 50% of 
HCMV+ individuals) and the adaptive NKG2C+ compartment 
can persist in high frequencies for years (41). Subclinical or tissue 
specific reactivations of HCMV during latency may contribute 
to the maintenance of NK+NKG2C+ pool in addition to NKG2C 
copy number and age-related changes in NK-cell differentiation 
(48, 49). The exact ligand involved in recognition and the cellular 
mechanisms driving the expansion of NKG2C+ NK cells are yet 
to be elucidated. It remains unclear whether this is mediated 
through interaction with its cellular ligand HLA-E alone, HLA 
viral loaded peptide or an unknown ligand of host or viral origin 
(41, 50–52).

The large phenotypic heterogeneity of adaptive NK  cells 
extending beyond the NKG2C+ subset, is illustrated by the 
detection of NK-cell subsets sharing numerous attributes of 
adaptive NK  cells in individuals independent of NKG2C or in 
the absence of NKG2C (KLRC2-deficient individuals) and in 
transplant recipients of NKG2C null grafts (41, 47, 53). Strikingly, 
these HCMV-driven expansions encompass activating KIRs (53), 
suggesting their potential role in the recognition and response to 
HCMV.
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FiGURe 1 | The phenotypic, functional and molecular attributes of human cytomegalovirus (HCMV)-adapted natural killer (NK) cells. (A) As CD56dim NK cells go 
through the spectrum of differentiation they gradually lose expression of the inhibitory receptor NKG2A, natural cytotoxicity receptors and sequentially acquire more 
specific inhibitory receptors, such as inhibitory killer immunoglobulin receptors (KIRs) and CD85j. KIR acquisition is important in determining the functional fate of the 
NK cells. CD57 expression represents a terminal step in the differentiation process. Fully mature NK cells gain cytolytic ability and are efficient in mediating 
antibody-dependent cellular cytotoxicity (ADCC) (B) NK cells with adaptive features expanded in response to HCMV infection are distinct from conventional NK cells 
on the basis of expression of surface receptors, such as high expression of NKG2C, lower expression of the inhibitory Siglec-7, and down-regulation of the 
transcription factor promyelocytic leukemia zinc finger and key signaling molecules (FcεRI-γ, Syk, and EAT-2). Different combinations of expression patterns result in 
considerable heterogeneity among adaptive NK cells. Epigenetic diversification leads to altered target cell specificities and functional specialization that includes 
enhanced ADCC (increased IFN-γ and TNF-α against opsonized HCMV-infected targets) but reduced responsiveness to cytokine stimulation and reduced 
degranulation against autologous T cells. Red = inhibitory receptors; green = activating receptors.
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Further reports described a subset of human NK cells defi-
cient for the adaptor protein FcεRI-γ, which was strongly associ-
ated with HCMV seropositivity (54). FcεRI-γ− NK cells share a 
lot of the characteristics of adaptive NK cells, respond robustly 
to CD16 stimulation (55) and similar to NKG2C+ cells display 
more vigorous effector responses to HCMV-infected targets, 
but only in the presence of HCMV-specific antibodies (54, 56). 
NK cells lacking FcεRI-γ expand in response to HCMV-infected 
targets accentuated by the presence of anti-HCMV antibody, 
highlighting the role of specific humoral immunity in also 
favoring their preferential expansion (57–59). Interestingly, 
these cells also responded to herpes-simplex virus-1 (HSV-
1)-infected targets in the presence of HSV-1 plasma (54) 
demonstrating cross-protection to other viruses. The enhanced 
effector function of this subset was attributed to selective 
and more potent signaling through the CD3ζ chain, which 
has three immunoreceptor tyrosine-based activation motifs. 
Subsequently, CD2 has been identified as a key co-stimulatory 
receptor synergizing with CD16 to stimulate increased cytokine 
production in adaptive NK cells (47). Global epigenetic profil-
ing has identified commonalities between adaptive NK  cells 

and memory CD8 T cells (58, 60). These adaptive NK cells are 
marked by DNA methylation silencing of the transcription 
factor, promyelocytic leukemia zinc finger (PLZF), as well as 
stochastic down-regulation of several signaling molecules, such 
as Syk, EAT-2, and DAB-2 (58, 60). PLZF is known to interact 
with several target genes, including IL12RB2, IL18RAP, and 
KLRB1 (61), explaining the lack of responsiveness to IL12/
IL18 stimulation (58). However, in comparison to conventional 
NK  cells, adaptive NK  cells display augmented IFN-γ and  
TNF-α production when triggered via antibody-dependent 
cellular cytotoxicity (ADCC); the hypomethylated IFN-γ and 
tumor necrosis factor (TNF) regulatory regions in adaptive 
NK cells provide a mechanism for increased cytokine produc-
tion (58, 60). Interestingly, adaptive NK  cells display reduced 
degranulation toward activated autologous T cells (58), which 
may impact on the regulation of immune responses.

Taken together, these results suggest the heterogeneity and 
functional specialization of adaptive NK  cells in the immuno-
surveillance of infected cells and functional bias toward ADCC 
(Figure 1). Whereas the expansion of adaptive NK cells may serve 
as a strategy to control HCMV, during its life long interaction 
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with the host, it remains unclear whether other viral infections 
can induce adaptive properties in NK cells. Although potential 
cross-reactivity of adaptive NK cells could confer an advantage 
in the tumor setting such as reduced relapse risk in leukemia 
patients (62, 63), their role in the control of heterologous infec-
tions or post vaccination is less well defined (64, 65).

SKewinG AnD ADAPTATiOn OF nK 
CeLLS TO Hiv-1 inFeCTiOn: THe 
COnFOUnDinG eFFeCT OF HCMv

Accumulating data support an important role for NK cells in 
the control of HIV-1 infection and protection against disease 
acquisition (66–68). These stem from elegant genetic studies 
linking specific KIR/HLA combinations with HIV-1 outcome 
(66, 67), functional studies where protective KIR alleles are 
associated with enhanced NK-cell cytolytic function in  vitro 
(69) and evidence of KIR-facilitated immune pressure on 
HIV-1 to escape NK-cell recognition (70). However, chronic 
HIV-1 infection is known to alter NK-cell composition and 
effector function. This has been documented by a number of 
studies with often conflicting results, which can be attributed 
to a number of factors including the influence of immunogenet-
ics, disease state, and the cross-sectional nature of studies. The 
latter have not always adequately controlled for a number of 
confounding factors such as age, gender, ethnicity, and HCMV 
serostatus among HIV-1-infected and HIV-1-negative controls. 
Given the high prevalence of HCMV co-infection within HIV 
cohorts and the profound skewing and adaptation of NK cells 
to HCMV, this is an important variable to consider when inter-
preting findings.

HIV-1 viremia is associated with a significant and pathologi-
cal redistribution of the NK compartment with the emergence 
of an aberrant CD56−CD16+ NK-cell subset (71, 72). This rare 
population displays phenotypic perturbations, including down-
regulation of the activating NCRs, and features in common 
with mature CD56dim NK  cells (72, 73). It has been proposed 
to represent an activated subset generated from chronic target 
engagement with impaired function. Recent studies have 
demonstrated that a decreased expression of the c-lectin-type 
inhibitory receptor, Siglec-7, on NK  cells occurs early during 
HIV-1 infection and precedes the loss of CD56 (74). Expression 
of Siglec-7 is not affected in long-term non-progressors (LTNP), 
and ART leads to a progressive restoration of NK-cell subsets 
(74). Paralleling the observations in HIV-1 infection, HCMV 
reactivation in patients undergoing umbilical cord blood 
transplantation has been shown to induce the expansion of the 
CD56−/CD16+/Siglec-7− NK-cell subset (38). The expansion of 
hypofunctional CD56− NK cells following HCMV reactivation 
likely occurs when T-cell immunity is impaired and may also 
reflect the modulating effects of HCMV. It remains to be deter-
mined whether the CD56−/CD16+ subset represents a subgroup 
of NK cells with adaptive features that has become anergic fol-
lowing repeated stimulation.

A number of other studies have reported a variable degree 
of perturbations in the NK-cell repertoire consistent with a 

dichotomous effect of viremia, including down-regulation of 
activating NK-cell receptors and up-regulation of expression 
of inhibitory NK receptors (iNKRs) (75–77). Collectively, these 
changes have been described to contribute to defective NK-cell 
function described in HIV-1 infection (76, 77). Although the 
HCMV serostatus is not always considered in these studies, it is 
plausible that these changes are biased by HCMV co-infection 
and possible reactivation with increasing immunosuppression. 
Along these lines, the observed down-regulation of NCRs, 
stable expression of NKG2D, and higher levels of CD85j and 
skewing of inhibitory KIRs (although not consistently reported) 
bear phenotypic resemblance to NK-cell subsets with adaptive 
features described in HCMV infection. NK cells in HIV-1 infec-
tion exhibit a higher ratio of CD57+ to CD57− due to the loss 
of CD57− cells in comparison to healthy controls; however, this 
comparison may be confounded by the HCMV status of these 
individuals, which was not reported (78). A shift toward a more 
mature terminally differentiated NK-cell phenotype is none-
theless supported by a study of HIV-1 infected individuals on 
effective ART, demonstrating that HCMV accelerates age-related 
increases in CD57 expression (79).

The most convincing evidence of the impact of HCMV co-
infection on the NK-cell repertoire in HIV-1 infection comes 
from reports on NKG2C expression. Guma et  al. originally 
proposed that HCMV co-infection is responsible for the 
expansions of NKG2C+ NK cells encountered in HIV-1 infected 
individuals (80). These findings were further supported by 
additional studies when the HCMV serostatus was taken into 
consideration (81, 82). The dramatic expansion of NKG2C+ 
NK  cells in HIV-1 infected individuals was accompanied 
by a decrease in the expression of NKG2A leading to a low 
NKG2A/C+ NK-cell ratio; these changes were attributed to 
concomitant infection and/or HCMV reactivation rather than 
being a consequence of HIV-1 infection alone (82). A number 
of reports describe NKG2C+ NK-cell expansions in several 
acute and chronic viral infections, being systematically associ-
ated with HCMV co-infection (83–86). Although the relative 
increase in the proportions of NKG2C+ NK  cells between 
HIV-1-infected and HIV-1-uninfected HCMV seropositive 
individuals varies between studies and cohorts (80, 81), the 
data suggest that the impact of HCMV exposure is potentially 
greater in HIV-1 infection. It has been suggested by animal 
models that the differentiation of adaptive NK cells is driven 
by inflammation (87). Thus, it is plausible that adaptive NK-cell 
expansions may be inflated in HIV-1 infected individuals, as a 
result of lack of immune control, ongoing immune activation 
and higher infectious burdens, including HCMV. One could 
speculate that the size of the HCMV imprint represents a 
compensatory mechanism in antiviral defense especially when 
T-cell-mediated control is impaired (88). It remains uncertain 
whether HCMV reactivation occurs alongside acute infection 
or alternatively whether pre-existing HCMV primed NK-cell 
subsets expand in response to secondary viral infection alone. 
HIV-1 causes down-regulation of HLA-A, B while retaining 
HLA-E expression (89, 90), similar to HCMV maintaining/
stabilizing HLA-E expression (91, 92). Thus, a direct effect 
of HIV-1 on NKG2C+ NK-cell expansion is conceivable. The 
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FiGURe 2 | Proposed model of the cumulative effect of human 
cytomegalovirus (HCMV) and ongoing immune activation on natural killer (NK) 
cells. Pre-existing HCMV-adapted NK cells expand during human 
immunodeficiency virus-1 infection to a variable degree depending on the 
tempo of HCMV reactivation, underlying level of immune activation, 
decreased T-cell-mediated control, and host genetics. HCMV co-infection 
accelerates NK-cell maturation and partly underlies the expansion of NK 
subsets with adaptive features in addition to the emergence of an aberrant 
CD56−CD16+ NK-cell subset. Whether these subsets become progressively 
dysregulated or exhausted remains to be determined.
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recently reported down-regulation of HLA-C by most primary 
HIV-1 clones (93) raises questions about the ability of HCMV 
expanded NKG2C+ NK  cells, preferentially expressing self-
HLA-C KIRs, to recognize “missing-self ” on HIV-infected 
targets compared to mature educated NK cells.

Open questions remain regarding not only the mechanism 
but also the clinical implications of such HCMV-NK-cell 
interaction in terms of protection against acquisition and 
HIV-1 disease progression. NKG2C deletions have been linked 
to a higher risk of contracting HIV-1, in addition to acceler-
ated disease progression and elevated pre-treatment viral load 
(94). Although these findings are interesting, this study did not 
report and correct for the influence of HCMV co-infection. 
One could speculate that the expansion of NKG2C+ NK cells in 
HCMV seropositive individuals may confer protection against 
primary HIV-1; this notion is however not supported by some 
older observations that prior infection with HCMV is associ-
ated with low CD4 count, progression to AIDS and increased 
mortality (95). It has been suggested that maturation leads to 
divergence and increased NK-cell receptor diversity was found 
to be associated with an increased risk of HIV-1 acquisition in 
a small cohort of high-risk women (96). Given that viral chal-
lenge may increase receptor diversity, further work is required 
to determine whether this represents reduced plasticity to new 
challenging pathogens or whether it is linked to other immune 
characteristics such as exhaustion. Recently, a subpopulation 
of PD1+ NK cells, mainly composed of fully mature NK cells, 
has been described in HCMV+ individuals (97). It would be 
of interest to assess whether NK  cells expanded in HCMV/
HIV-1 co-infection succumb to continuous stimulation and 
examine the factors that may contribute to the induction of PD1 
in this setting. PD1 signaling could therefore down-regulate 
not only T-cell-mediated responses but also innate responses, 
and this mechanism may be particularly prominent in HIV-1  
infection (98).

Conversely, a link between a mature NK-cell compartment 
(CD57+) and decreased levels of viral load and immune activa-
tion at the time of the primary HIV-1 infection has been reported. 
Those patients with a mature NK profile at inclusion showed a 
better early response to ART in comparison to patients with 
an immature NK profile (99). However, the HCMV serostatus 
of these individuals is not recorded and the status of NK  cells 
at the point of infection is not known. Whether mature CD57+ 
or NKG2C+CD57+ NK  cells represent adaptive NK  cells that 
contribute directly to better virus control during acute HIV-1 
infection and how their role evolves during chronic infection 
remain unclear.

In agreement with the findings in HCMV seropositive indi-
viduals, an NK-cell population that lacks FcεRI-γ expression and 
has superior ADCC activity has been identified in HIV-1 viremic 
individuals and shown to persist following virological suppres-
sion with ART (100, 101). This subset shares some phenotypic 
characteristics with adaptive NK cells induced by HCMV (100). 
Although this subset is associated with HCMV antibody levels in 
the general population, in HIV-1-infected individuals correlates 
with inflammatory markers (100). The long-term effects of expan-
sion of FcεRI-γ-deficient NK cells in HIV-1 infection needs to 

be further elucidated given a possible role in tumor surveillance. 
Nonetheless, the identification of a subset with enhanced ADCC 
activity in HIV-1 infection has potentially important implications 
for the design of vaccine strategies aimed at generating ADCC-
promoting antibody responses.

These collective data demonstrate that a number of the phe-
notypic NK-cell features described in HIV-1 bear the trademarks 
of HCMV infection (Figure 2). With increased definition of the 
assortment of NK-cell subsets with adaptive features driven by 
HCMV infection and the increased appreciation of HCMV in 
driving ongoing immune activation even during effective ART, 
it would be important to reassess the NK-cell repertoire com-
position, their response potential in different phases of infection 
and stimulus-dependent functional properties. A comprehen-
sive analysis of the transcriptional signatures and epigenetic 
modifications of NK cells in HIV-1 infection is lacking and worth 
exploring.

COnCLUDinG ReMARKS AnD FUTURe 
PeRSPeCTiveS

The potent effector function of NK  cells and the rapidity of 
NK-cell response have identified them as key areas for research. 
Recent reports about the diversity of NK-cell repertoire and abil-
ity to assume adaptive features in response to HCMV infection 
and even display memory-like responses to cytokines (102) and 
antigen-specific responses in primates (8) have opened up pros-
pects for the generation of new therapies. HCMV co-infection 
is highly prevalent in HIV-1 infected cohorts and remains an 
important cofactor in disease progression even in the era of ART. 
Both HIV-1 and HCMV as well as immune activation can further 
shape NK-cell responsiveness and differentiation. It is therefore 
important to capture the diversity of the NK-cell repertoire 
and identify potentially novel adaptive signatures of NK-cell 
subsets with preserved activation pathways. Whereas a number 
of questions remain regarding the epigenetic diversification, 
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development, and persistence of NK cells with adaptive proper-
ties, elucidating how clonal NK-cell populations can be directed 
or reshaped will critically inform our ability to harness NK cells 
toward a therapeutic goal.
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The innate immune response constitutes the first cellular line of defense against initial 
HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades 
that induce antiviral defenses to control or eliminate infection. Professional antigen- 
presenting cells located in mucosal tissues, including dendritic cells and macrophages, 
are critical for recognizing HIV-1 at the site of initial exposure. These cells are less 
permissive to HIV-1 infection compared to activated CD4+ T-cells, which is mainly due 
to host restriction factors that serve an immediate role in controlling the establishment 
or spread of viral infection. However, HIV-1 can exploit innate immune cells and their 
cellular factors to avoid detection and clearance by the host immune system. Sterile 
alpha motif and HD-domain containing protein 1 (SAMHD1) is the mammalian deoxy-
nucleoside triphosphate triphosphohydrolase responsible for regulating intracellular 
dNTP pools and restricting the replication of HIV-1 in non-dividing myeloid cells and 
quiescent CD4+ T-cells. Here, we review and analyze the latest literature on the antiviral 
function of SAMHD1, including the mechanism of HIV-1 restriction and the ability of 
SAMHD1 to regulate the innate immune response to viral infection. We also provide 
an overview of the dynamic interplay between HIV-1, SAMHD1, and the cell-intrinsic 
antiviral response to elucidate how SAMHD1 modulates HIV-1 infection in non-dividing 
immune cells. A more complete understanding of SAMHD1’s role in the innate immune 
response to HIV-1 infection may help develop stratagems to enhance its antiviral 
effects and to more efficiently block HIV-1 replication and avoid the pathogenic result 
of viral infection.

Keywords: Hiv-1, sterile alpha motif and HD-domain containing protein 1, infection, innate immunity, myeloid cells

inTRODUCTiOn

Innate immunity is the cell-intrinsic defense mechanism that senses incoming pathogens and is 
characterized by type-I interferon (IFN-I) induction and the release of inflammatory cytokines that 
upregulate antiviral IFN-stimulated genes (ISGs) (1, 2). The activation of the innate response to 
pathogens is dependent on cellular pattern recognition receptors (PRRs) that detect pathogen-asso-
ciated molecular patterns (PAMPs), including viral structures or nucleic acids. Interferon-inducible 
protein IFI16 and cyclic GMP-AMP synthase (cGAS) are cytosolic sensors of HIV-1 that detect viral 
DNA (3, 4). Recognition of PAMPs results in induction of IFN-I and ISGs to control initial infection 
and spread, while the concomitant induction of the inflammatory response and cytokines can initiate 
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adaptive immune responses (5, 6). Modulation of IFN-I activa-
tion is essential for viral clearance. However, overstimulation of 
IFN pathways can lead to inflammatory autoimmune disease (7).

HIV-1 is sensitive to ISGs and the IFN-induced antiviral 
response; so it is not surprising that HIV-1 is a poor inducer of 
IFN (8). HIV-1 benefits from evading innate immune activa-
tion and utilizes a variety of tactics to escape detection (9, 10). 
Professional antigen-presenting cells located in mucosal tissues, 
including dendritic cells (DCs) and macrophages, are critical 
for recognizing HIV-1 at the site of initial exposure. However, 
these cells are less permissive to HIV-1 infection compared to 
activated CD4+ T-cells, mainly due to host restriction factors that 
control the establishment or spread of viral infection. Several host 
proteins can restrict HIV-1 at various points in the viral lifecycle, 
including APOBEC proteins, TRIM5α, and tetherin (11–13). 
However, HIV-1 can exploit innate immune cells and their cel-
lular factors to avoid detection and clearance by the host immune 
system (13).

SAMHD1 is host protein capable of blocking replication of 
retroviruses and several DNA viruses in cells (14–18). SAMHD1 
is constitutively expressed at various levels in all cell types and 
highly expressed in myeloid lineage and resting CD4+ T-cells 
(14, 15, 19). IFN-I treatment increases SAMHD1 expression 
in certain cell types with low endogenous SAMHD1 levels  
(20, 21). SAMHD1 has been implicated as a negative regulator of 
the IFN-I inflammatory response (22–24), however, the under-
lying mechanism is not fully understood. While HIV-2 encodes 
the SAMHD1 antagonist Vpx, the more pathogenic HIV-1 does 
not. It was hypothesized that HIV-1 lacks a countermeasure 
against SAMHD1 because it is beneficial for infection. In this 
review, we will discuss the contributions of SAMHD1 to both 
the direct restriction of HIV-1 and to the modulation of the 
antiviral innate response and to analyze the hypothesis that 
HIV-1 restriction by SAMHD1 leads to a diminished induction 
of innate immunity.

innATe iMMUne SenSinG OF Hiv-1

Although HIV-1 can be sensed by the innate immune system, 
the prevailing theory is that HIV-1 avoids immune surveillance 
through poor replication in immune cells causing ineffective 
triggering of innate cytosolic sensors (25). Several studies have 
identified the molecular basis of cytosolic sensors important 
for targeting viral pathogens. Here, we focus on HIV-1 DNA 
as a trigger of the innate antiviral response. After sensing viral 
DNA, cGAS generates the second messenger, cyclic guanosine 
monophosphate-adenosine monophosphate (26–28), that acti-
vates the stimulator of IFN genes (STING) (6). STING activation 
leads to phosphorylation of TANK-binding kinase 1 (TBK1) 
and the subsequent phosphorylation and dimerization of IFN-
regulatory transcription factors IRF3 and IRF7. Nuclear trans-
location of the IRF3/IRF7 homo-or-hetero dimers will activate 
IFN-I gene expression (Figure 1). This signaling cascade results 
in an upregulation of IFN-I and ISGs as a defense against viral 
infection (29, 30). Reverse transcribed HIV-1 DNA was identi-
fied as the trigger to the cGAS-STING pathway (3). Although 
cGAS is the primary sensor of cytosolic viral DNA, IFI16 can also 

act as a sensor of HIV-1 single-stranded DNA that induces an 
IFN-β response in macrophages by a cGAS-STING-dependent 
pathway (4).

inTRODUCTiOn TO SAMHD1

Human SAMHD1 is a 626-amino acid protein containing an 
N-terminal nuclear localization signal followed by a sterile-alpha 
motif and histidine/aspartic acid (HD) domain. SAMHD1 is a 
deoxynucleoside triphosphate triphosphohydrolase (dNTPase) 
(33, 34) that converts dNTPs into the constituent deoxynucleo-
side and inorganic triphosphate upon stimulation by dGTP or 
GTP (33–35). SAMHD1 and ribonuclease reductase, the enzyme 
responsible for de novo dNTP synthesis through the conversion 
of ribonucleotide diphosphates to deoxyribonucleotides (36), 
are allosterically regulated to achieve balanced intracellular 
dNTP levels in a cell-cycle-dependent manner (37). During G1 
to S-phase transition in actively proliferating cells, ribonuclease 
reductase expression increases, leading to expansion of the 
dNTP pool to facilitate DNA synthesis (38, 39). The activity of 
SAMHD1 is activated by high dNTP levels, and degradation 
of nucleic acids in the absence of DNA replication protects the 
cell from innate immune activation and cancer development 
(40, 41). Mutations in SAMHD1 that affect its enzyme activity 
are associated with Aicardi-Goutières syndrome (AGS), an 
encephalopathic autoimmune disease characterized by symp-
toms mimicking chronic viral infection (22). The accumulation 
of intracellular dNTPs caused by mutations in the genes encod-
ing proteins involved in nucleic acid metabolism, including 
SAMHD1 and TREX1 (42), are sensed by PRRs, resulting in 
aberrant production of IFN-I (43). AGS patients present with 
increased production of IFN-α, the chemokine most character-
istic of congenital virus infection. AGS patients with SAMHD1 
mutations can present with signs of lupus erythematosus, with 
many symptoms mimicking those of HIV-1 infection (22, 44). 
Furthermore, cells isolated from AGS patients with homozygous 
SAMHD1 mutation revealed that SAMHD1-deficient monocytes 
supported productive infection by HIV-1 (20), suggesting a 
link between SAMHD1 function in both autoimmunity and  
HIV-1 restriction.

Long interspersed element 1 (LINE-1) is the only autono-
mous and active human retroelement capable of producing new 
genomic insertions through its endogenous endonuclease and 
reverse transcriptase activities (45, 46). A study on AGS-related 
SAMHD1 mutations indicate that all disease-related mutations 
reduced LINE-1 inhibition in dividing cells (47). Recent work 
suggests that SAMHD1 potently blocks LINE-1 transposition in 
cycling cells by triggering the sequestration of LINE-1 ORF1p 
into stress granules (48). Impaired inhibition of LINE-1 retro-
transposition may lead to triggering of the autoimmune response 
by stimulating toll-like receptors (TLRs) (49), although this has 
not been confirmed. Impaired dNTPase activity and LINE-1 
suppression by mutant SAMHD1 could explain the chronic 
inflammatory response characteristics of AGS disease. These 
studies outlining the pathogenic effect of SAMHD1 deficiency on 
autoimmune disease implicate SAMHD1 as a negative regulator 
of the innate immune system.
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FiGURe 1 | Innate immune sensing of HIV-1 DNA. HIV-1 undergoes uncoating through the interaction between viral capsid and host factors (31, 32). Reverse 
transcribed HIV-1 DNA, mainly abortive transcripts, activates cytosolic DNA sensors IFI16 and cyclic GMP-AMP synthase (cGAS) resulting in TANK-binding kinase 1 
(TBK1)-mediated phosphorylation and nuclear translocation of hetero-or-homo dimers of interferon regulatory factor-3 (IRF3) and IRF7 and induction of type-I IFN 
response. Expression of ISGs allows for immune activation and the induction of an antiviral state of the cell. gRNA, HIV-1 genomic RNA; cDNA, complementary 
DNA; vRNA, viral RNA; dsDNA, double-stranded DNA; STING, stimulator of IFN genes; the letter P indicates phosphorylation.
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SAMHD1-MeDiATeD Hiv-1 ReSTRiCTiOn

HIV-1 replicates inefficiently in non-diving cells, such as quies-
cent CD4+ T-cells, DCs, and monocytes. HIV-1 infection can be 
enhanced in these cells by Vpx, an accessory protein encoded by 
HIV-2 and certain lineages of simian immunodeficiency viruses 
(SIVs) (50, 51). This hinted at the existence of a cellular restriction 
factor counteracted by Vpx (50). SAMHD1 was identified as the 
mystery HIV-1 restriction factor by a mass spectrometry analysis 
of cellular proteins immunoprecipitated from cells express-
ing Vpx (14, 15). Vpx interacts with the C-terminal domain of 
SAMHD1, thereby initiating proteasomal degradation by an 
E3 ubiquitin ligase complex, and relieving SAMHD1-mediated 
lentiviral restriction (14, 15, 52, 53).

The mechanism and modulation of SAMHD1-mediated 
HIV-1 restriction is an area of intense scrutiny (Figure  2). 
Overexpression of SAMHD1 in PMA-treated monocytic U937 
cells results in a depletion of dNTP levels (54). It was later 

confirmed that SAMHD1 restricts the replication of retrovi-
ruses and several DNA viruses by depleting the concentration of 
intracellular dNTPs to levels insufficient to support viral DNA 
synthesis (14–18, 54, 55). Structural studies strengthened a 
model of nucleotide-dependent tetramer assembly of SAMHD1 
(56–58), where GTP binds to guanine-specific allosteric sites 
and dNTP binds to non-specific activator sites, initiating the 
formation of enzymatically active tetramers with the catalytic 
core of the HD domain (33, 34, 37, 59). Moreover, binding 
of single-stranded nucleic acids (ssNAs) to the dimer–dimer 
interface of SAMHD1 inhibits the formation of the catalytically 
active tetramer (60).

As SAMHD1 is also highly expressed in activated CD4+ T-cells 
that support productive infection, several studies demonstrated 
posttranslational modification as a means of mechanistic regula-
tion of SAMHD1 function in restricting HIV-1. SAMHD1 is 
phosphorylated at several residues; however, phosphorylation 
of threonine 592 was identified as essential for the negative 
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FiGURe 2 | SAMHD1 negatively regulates the innate immune sensing of HIV-1 DNA. SAMHD1 blocks HIV-1 infection through intracellular dNTP depletion, thus 
preventing the accumulation of viral DNA accessible to sensing by IFI16 and cyclic GMP-AMP synthase (cGAS) and the activation of the type-I interferon (IFN-I) 
response. The dNTPase activity of SAMHD1 is structurally regulated. Consecutive binding of dGTP/GTP and any dNTP to two allosteric sites provokes formation  
of the catalytically active tetramer, which can be destabilized by phosphorylation, oxidation, or the binding of single-stranded nucleic acids (ssNAs). dN, 
deoxynucleosides; PPPs, triphosphate; two linked letters S indicate the disulfide bond.
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modulation of its HIV-1 restriction activity (61–65) and tetramer 
formation (66, 67). SAMHD1 is phosphorylated by cyclin-
dependent kinase 1 (CDK1) and CDK2 in complex with cell 
cycle regulatory protein cyclin A. This regulation of SAMHD1 
function is associated with the cell cycle, as CDK1 and cyclin 
A are highly expressed in dividing cells. Furthermore, S-phase 
requires elevated dNTP levels, indicating modulation of the dNT-
Pase activity of SAMHD1 during the cell cycle (64). SAMHD1 
protein levels may be altered during various stages of the cell 
cycle depending on different cell types (68, 69). Interestingly, 
proliferation-induced oxidation of SAMHD1 by hydrogen perox-
ide reversibly inhibits its dNTPase activity through the formation 
of tetramer-inhibiting disulfide bonds (70), suggesting a dynamic 
structure-based regulatory mechanism of SAMHD1’s dNTPase 
activity that is influenced by the cell cycle (Figure 2).

Although the accepted consensus is that SAMHD1 restricts 
HIV-1 infection through the depletion of intracellular dNTPs, 
several studies suggested the existence of an additional yet-undis-
covered mechanism of SAMHD1-mediated retroviral restriction. 
This undefined antiviral activity appears to be dependent on 

phosphorylation (61, 63, 65) and is not fully dependent on low 
dNTP levels (71). SAMHD1 acts as a ssNA binding protein that 
degrades single-stranded DNA and RNA via a metal-dependent 
3′–5′ exonuclease activity in vitro (72–74). It has been suggested 
that SAMHD1 utilizes its nucleic acid binding potential to exert 
a ribonuclease activity against incoming HIV-1 genomic RNA 
in a phosphorylation-dependent manner (75). SAMHD1 was 
shown to restrict retroviruses though degradation of HIV-1 RNA 
in human monocyte-derived macrophages (MDMs), monocytes, 
and CD4+ T-cells (75, 76). It was proposed that SAMHD1 
degrades incoming HIV-1 gRNA, thereby restricting infection 
and preventing innate immune sensing of viral nucleic acids. 
However, recent studies have been unable to confirm the contro-
versial findings (55, 77–79). As a nuclear-localized protein (80), 
incoming viral genomic RNA would be inaccessible by SAMHD1 
for hydrolysis. Additional studies showed that dNTPase inac-
tive SAMHD1 mutant retained exonuclease activities in  vitro, 
indicating the exonuclease activity could not be attributed to 
the known dNTP-binding active site (77). Seamon et  al. (77) 
suggested that the nuclease activity attributed to SAMHD1 was 
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due to contamination during purification. Cell-based assays also 
failed to recapitulate the findings, thereby confirming the lack 
of SAMHD1 RNase activity to restrict HIV-1 in infected cells  
(55, 78). Ryoo et al. suggested that the differences in experimental 
conditions are responsible for the conflicting results, including  
a shorter infection time and the use of RNaseH-defective reverse 
transcriptase (81). They further identified SAMHD1 as a phos-
phorolytic not hydrolytic ribonuclease (82).

THe inTeRSeCTiOn OF Hiv-1, SAMHD1, 
AnD THe innATe AnTiviRAL ReSPOnSe

SAMHD1 cDNA was originally identified as a ortholog of the 
mouse IFN-γ-induced gene Mg11 in human DCs (83). A link to 
the innate immune response was strengthened by the discovery 
that cytokines, including toll-like agonists and IFNs, can induce 
SAMHD1 expression (84, 85). Cell lines treated with IFN-I  
(21, 86) and human primary monocytes treated with IFN-α  
and IFN-γ (20, 84, 87) show enhanced expression of SAMHD1. 
While SAMHD1 is highly expressed in MDMs, monocyte-
derived dendritic cells (MDDCs), and primary CD4+ T-cells, 
IFN treatment does not increase SAMHD1 protein levels further 
(21, 88–90). However, treatment of MDMs and MDDCs with 
IFN-I results in reduced phosphorylation of SAMHD1 at residue 
T592 (61), indicating a shift from catalytically inactive to active 
SAMHD1. Interestingly, the SAMHD1 promoter is a direct target 
of IRF3. The overexpression and activation of IRF3 enhances 
SAMHD1 promoter activity in HeLa cells (86).

HIV-1 does not trigger a sterilizing immune response (91) and 
is a poor activator of inflammatory pathways (8), resulting in an 
impaired response to HIV-1 and the development of persistent 
infection. The DC response to HIV-1 infection contributes to this 
dysfunctional immune response (92). Myeloid cells constantly 
sample the cellular environment to identify pathogens and send 
out danger signals in the form of IFN-I. DCs are essential for 
activating the adaptive immune response to infection, as matura-
tion leads to T-cell responses through antigen priming (91, 93). 
Interestingly, HIV-1 infects DCs without activating an effective 
antiviral response. As SAMHD1 limits HIV-1 cDNA synthesis 
in myeloid cells (14, 54), it was hypothesized that degradation 
of SAMHD1 by Vpx in DCs would result in productive HIV-1 
infection and the synthesis of viral proteins that would directly 
enter antigen presentation, thereby strengthening the T-cell 
response to infection (94). This could be why the vpx gene was 
lost from the ancestor of HIV-1 during the coevolution of pri-
mate SAMHD1 and lentiviruses (95).

Vpx-mediated degradation of SAMHD1 in DCs leads to 
enhanced HIV-1 infection, and studies in primary MDMs and 
MDDCs indicate that Vpx-mediated SAMHD1 degradation 
results in cGAS stimulation and IRF3 activation (3). Early work 
suggested that enhanced infection by SAMHD1 depletion leads 
to DC maturation (94). A study utilizing coculture of autologous 
activated CD4+ T lymphocytes with SAMHD1-deficient MDDCs 
infected with primary clinical HIV-1 isolates indicated enhance-
ment of both infection and IFN response (96). Interestingly, 
cocultured primary T-lymphocytes, but not HIV-1, trigger a 

decrease in SAMHD1 expression in MDDCs independent of 
dNTP levels (96). This study suggests that crosstalk between 
lymphocytes and DCs induces downregulation of SAMHD1 
expression, a requirement for stimulation of HIV-1 production 
in DCs, thereby inducing the innate sensing of HIV-1 and DC 
maturation (96).

Conversely, recent work indicates that DC maturation, 
measured by CD83 and CD86 expression, does not occur in 
SAMHD1-deficient cells due to additional manipulation of the 
innate immune system by HIV-1 (97). HIV-1 suppresses TLR-
induced maturation of DCs independent of SAMHD1 expres-
sion, although Vpx-mediated depletion of SAMHD1 enhanced 
the effect of HIV-1 infection on lipopolysaccharide-induced 
DC maturation (97). Vesicular stomatitis virus G-protein-
pseudotyped HIV-1 suppressed maturation similar to strains 
containing HIV-1 envelope protein, suggesting that viral replica-
tion, not envelope-receptor interactions, is required for suppres-
sion of maturation (97). Removing the SAMHD1-mediated block 
of reverse transcription resulted in a stronger suppression of 
maturation. Although infection and subsequent innate immune 
sensing in DCs is blocked by SAMHD1, HIV-1 maintains an 
additional SAMHD1-independent mechanism of suppressing 
DC maturation through downregulation of TLRs (97).

Two additional models suggest that, in MDDCs, HIV-1 
attempts to hide its genomic RNA and newly synthesized cDNA 
from cytosolic sensors by obstructing the nucleic acids using viral 
capsid. The models differ with respect to the effect of recruitment 
of cellular cyclophillins and cleavage and polyadenylation-
specific factor 6 (CPSF6) by capsid. One model suggests increased 
cyclophillin A (CypA) binding to the capsid increases sensitivity 
to innate sensing (94), while another proposes CypA binding 
coordinates uncoating, reverse transcription, and nuclear import 
of the preintegration complex (98), all to minimize the exposure 
of viral nucleic acids to cytosolic sensors. Future work is needed 
to clarify the contribution of CypA and SAMHD1 to the negative 
regulation of the innate immune response in myeloid cells to 
provide insight into HIV-1 mechanisms of evasion.

Non-cycling CD4+ T-cells and macrophages are less permissive 
to HIV-1 because of SAMHD1. However, during HIV-1 infection 
in vivo, activated CD4+ T-cells and macrophages are infected due 
to phosphorylation of SAMHD1. Although cytosolic HIV-1 
DNA is abundant in these permissive cells, a cell-autonomous 
IFN response is not triggered (99). This is due at least in part 
to host protein TREX1. As a single-stranded DNA exonucle-
ase, TREX-1 digests cytoplasmic DNA from retroviral DNA 
intermediates, thereby preventing the activation of mislocalized 
DNA by an innate immune sensor (99). Cytosolic HIV-1 DNA 
is accumulated in HIV-1 infected TREX1-deficient CD4+ T-cells 
and macrophages, which leads to inhibition of TBK1-dependent 
IFN-I response (99). This suggests a competition between two 
DNA sensors: cGAS leading to antiviral effects, and TREX1 lead-
ing to enhanced viral replication (100).

ReMAininG QUeSTiOnS

Although it is clear that HIV-1 utilizes a variety of mechanisms 
to evade myeloid cell activation, controversial questions still exist. 
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Conflicting reports could be due to the use of different cell types, 
and the differential use of clinical HIV-1 isolates, replication-
competent lab strains, or pseudotyped virus. It is essential to 
confirm experimental findings with primary cells that accurately 
recapitulate in vivo mucosal infection sites. Further understand-
ing of the strategies HIV-1 utilizes to evade the innate response 
will allow for better ideas on how to increase the innate immune 
response to HIV-1.

The existence of a yet-undiscovered mechanism of HIV-1 
restriction that is dependent on phosphorylation cannot be 
overlooked (63). Pretreatment MDMs with Vpx enhances the rate 
of HIV-1 cDNA synthesis (101), suggesting that the decrease in 
reverse transcription kinetics conferred by SAMHD1-mediated 
modulation of dNTP levels negatively regulates the rate of pro-
viral DNA synthesis in non-dividing cells. When transcription 
is silenced, integrated proviral DNA can lead to latency (102). 
Although SAMHD1 is highly expressed in cells purported to 
harbor latent provirus (19, 103) and the HIV-1 proviral promoter 
is activated by transcription factors (104), the effect of SAMHD1 
expression on latency development or reversal has not been 
explored. It is possible that SAMHD1 utilizes its nucleic acid bind-
ing ability to restrict HIV-1 infection postintegration, although a 
recent study confirmed SAMHD1 exerts no effect on HIV-1 Gag 
synthesis, viral particle release, and virus infectivity in 293T cells 
transfected with a proviral DNA construct (55). SAMHD1 may 
exert a direct effect on proviral DNA through binding, as purified 
recombinant SAMHD1 was shown to bind in vitro transcribed 
fragments of gag and tat cDNA (72), or indirect effects may occur 
due to SAMHD1 modulation of inflammatory pathways. It is 
plausible that suppression of latency reactivation by SAMHD1 
would further prevent activation of the innate antiviral response. 
Although viral nucleic acids can be sensed by IFI16 or cGAS in 
the absence of SAMHD1 (24, 105), whether other pro-inflam-
matory pathways are affected by SAMHD1 expression remains  
unknown.

Discovering the mechanisms used by HIV-1 to avoid innate 
immune sensors is critical for the design of new therapies to 
eradicate HIV-1 infection. Therapeutic strategies aiming to 
inhi bit host factors that promote HIV-1 replication and to stimu-
late the immune response could diminish viral infection and  
transmission. Current work aims to determine whether a role 
exists for drugs targeting SAMHD1. Expression of SAMHD1 can 
increase the susceptibility of HIV-1 to nucleoside reverse tran-
scriptase inhibitors by reducing the levels of competitive dNTPs 
(106–109), suggesting modulation of SAMHD1 function may be 
a means to enhance drug effectiveness. Conversely, as SAMHD1 
expression enables immune evasion by HIV-1 (13), it is tempting 
to hypothesize that SAMHD1 could be used as a drug target to 

enhance the innate immune response to viral infection. However, 
research is just beginning to uncover mechanisms to modify the 
dNTPase activity of SAMHD1 (110, 111). Importantly, as an ISG 
and a negative regulator of the innate immune system, SAMHD1 
may be involved in an unknown negative feedback loop aimed 
at modulating the complex and delicate system of inflammatory 
pathways.

The effect of SAMHD1 on IFN-I induction during viral infec-
tion should be further studied in vivo. Although initial robust 
IFN-I responses can lead to an upregulation of antiviral genes 
and a block in infection, chronic immune hyperactivity could 
lead to desensitization of IFN-I and an eventual suppression of 
antiviral gene expression. This phenotype was observed when 
Sandler et al. manipulated the IFN-α2a response to SIV infec-
tion in rhesus macaques (112). The dismantling of the antiviral 
state after long-term IFN-α2a treatment led to an increase in 
SIV reservoir size and an accelerated CD4+ T-cell loss (112). 
Studies are necessary to determine whether stimulation of the 
IFN-I response through inhibition of SAMHD1 function leads to 
chronic inflammation and progression to AIDS in vivo.

COnCLUSiOn

The identification of SAMHD1 as a regulator of the innate 
immune response to viral infection has led to the development 
of an exciting field of research. The structural and functional 
studies of SAMHD1 connect the physiology of HIV-1 infection 
to the innate antiviral response and the dynamic regulatory 
mechanisms in cells. Further work will aid in the development 
of stratagems to enhance the antiviral effects of the intrinsic 
immune system.
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Natural killer (NK) cells are effector lymphocytes of the innate immune system that are 
able to mount a multifaceted antiviral response within hours following infection. This is 
achieved through an array of cell surface receptors surveilling host cells for alterations 
in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral 
infection, malignant transformation, and cellular stress. This interaction between HLA-I 
ligands and NK-cell receptor is not only important for recognition of diseased cells but 
also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I 
ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, 
over the past years, various HIV-1 evasion strategies have been discovered to target 
NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. 
While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C 
molecules, less is known about how HIV-1 affects the more conserved, non-classical 
HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress 
in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition 
of HIV-1-infected cells.

Keywords: Hiv-1, innate immunity, natural killer cells, killer cell immunoglobulin-like receptor, human leukocyte 
antigen class i, human leukocyte antigen-F, human leukocyte antigen-e

iNTRODUCTiON

Untreated HIV-1 infection will lead to progressive, severe, and mostly fatal immune deficiency in 
the vast majority of individuals. Protective HIV-1 immunity is observed in a small subset of subjects 
whose immune system can naturally control HIV-1 infection and who are termed “elite controllers.” 
Despite intense research in this area over the past decades, the correlates leading to protective immu-
nity are still insufficiently understood. Host genetics alone can only explain approximately 20% of the 
variable outcomes between individuals observed in the natural course of infection (1). Nonetheless, 
a consistently documented key genetic determinant of HIV-1 control is the presence of particular 
human leukocyte antigen (HLA) class I alleles. This strong association between classical HLA-I alleles 
and HIV-1 disease outcome has been identified in genome-wide association studies (1, 2) as well as in 
large cohorts studying the immunogenetics of HIV-1 disease (3, 4). The protective effects of certain 
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HLA-I alleles have mostly been attributed to enhanced CD8+ 
T  lymphocyte-mediated immunity (5–7). HLA-I presentation 
of HIV-1 epitopes derived from conserved sequences of HIV-1 
to CD8+ T  cells can pressure the virus to select for mutations 
in these epitopes, but viral escape can be associated with costs 
in viral fitness (8). Indeed, early CD8+ T-lymphocyte responses 
contribute to the initial drop in HIV-1 peak viremia and with this, 
first HIV-1 escape mutations arise (9). Other protective factors 
in HIV-1 infection include enhanced proliferation potential of 
T  lymphocytes (10, 11), polyfunctional immune responses (12, 
13), variations in host restriction factors (14), and variants in 
HIV-1 coreceptors, in particular, of CCR5 (15, 16).

Over the past years, the role of antiviral innate immune 
responses mediated by natural killer (NK) cells in HIV-1 infection 
has been increasingly appreciated (17, 18). In vitro, NK cells can 
inhibit HIV-1 replication in autologous CD4+ T cells as effectively 
as CD8+ T  cells (19). Additionally, the strong protective effect 
of host HLA-I alleles on disease progression has been linked to 
receptor families recognizing HLA-I. These include killer-cell 
immunoglobulin-like receptors (KIRs), predominantly expressed 
on NK cells (20), and leukocyte immunoglobulin-like receptors 
(LILRs), expressed on professional antigen presenting cells such 
as dendritic cells (DCs), monocytes, macrophages, and B cells, 
but also on T cells and NK cells (21). Indeed, accumulating data 
from population studies have identified certain KIR, LILR, and 
HLA-I allele combinations associated with slower HIV-1 disease 
progression (22–24), which has helped decipher a further piece of 
complex host genetics in HIV-1 disease variability.

Natural killer cells comprise 5–15% of the circulating lym-
phocytes (25) and their role in controlling viral infections has 
been long established (26). Two major subsets exist: CD56bright 
CD16dim/neg and CD56dimCD16pos NK  cells (25). These differ in 
their expression of key NK-cell receptors, response to soluble fac-
tors and cellular targets, capacity for cytotoxicity, and production 
of immunomodulatory cytokines (27). NK cells are a crucial first 
line of defense that detect infected cells before antigen sensitiza-
tion has occurred (28, 29), and therefore, they precede adaptive 
immunity in the early phases of HIV-1 infection. Indeed, there 
is evidence that the early events following infection prior to 
the development of a specific immune response can determine 
the viral set point and influence the clinical course of infection 
(30). In acute HIV-1 infection, a rapid expansion occurs in 
predominantly cytotoxic CD56dim NK cells, prior to CD8+ T cell 
expansion (31). On the other hand, in chronic HIV-1 infection, 
a redistribution of NK  cells toward less functional subsets can 
be observed (32–35) and the presence of persistent viremia 
appears to deteriorate NK-cell function (19, 34, 36). Overall, the 
full extent of receptor-ligand interactions between NK cells and 
HIV-1–infected target cells in HIV-1 infection leading to either 
NK-cell expansion/killing or exhaustion is highly complex and 
not yet fully understood.

Natural killer cells, as members of the innate immune system, 
express a plethora of germline-encoded receptors, and their 
effector function is determined by integration of inhibitory and 
activating NK-cell receptor signaling, whereby inhibitory signals 
tend to be dominant (27). Major NK-cell receptor families are (i) 
natural cytotoxicity receptors (i.e., NKp46, NKp44, and NKp30), 

which deliver mainly activating signals, (ii) the KIR family, 
encompassing inhibitory and activating members and monitor-
ing HLA-I, (iii) the C-type lectins with activating natural killer 
group 2D (NKG2D) and the heterodimers NKG2A-CD94 and 
NKG2C-CD94, and (iv) the FcγRIIIa receptor (CD16), which 
can bind to the Fc-region of IgG antibodies. Critical activating 
signals can also be delivered by other coreceptors including 2B4, 
DNAM-1, or CD2 (37, 38). Differential expression of activating 
and inhibitory receptors allows for a certain degree of specificity 
and shaping of NK-cell function in response to different stimuli. 
Ultimately, the stochastic expression of receptors on each NK cell 
leads to substantial NK-cell diversity and determines the differen-
tial response to target cells (39, 40).

HIV-1–infected cells can become vulnerable to NK  cell-
mediated killing by upregulation of stress signals recognized by 
activating NK-cell receptors and/or by downregulation of inhibi-
tory NK-cell-receptor ligands. Of note, signaling via the FcγRIIIa 
receptor (CD16), which mediates antibody-dependent cellular 
cytotoxicity (ADCC), is sufficient to induce NK-cell activation 
on its own (37). However, the strength of CD16-mediated activa-
tion is dependent on tuning of NK-cell responsiveness through 
inhibitory interactions of KIR or NKG2A with HLA class I (41, 
42). Stress ligands upregulated on HIV-1–infected cells are the 
major histocompatibility complex (MHC) class-I-chain-related 
proteins (MIC-) A and -B, the UL16-binding proteins (ULBPs) 
1–3, which are the ligands for the activating NKG2D receptors 
(43, 44), and a yet unknown ligand for NKp44 (45, 46). In turn, 
HIV-1 encodes for multiple accessory proteins with pleiotropic 
functions to overcome host restriction factors and host immune 
responses (47–49). The upregulation of stress ligands such as 
ULBPs and MIC-A/B is counteracted via HIV-1 Nef (50) and the 
ligands for coactivating receptors such as NTB-A and DNAM-1 
are downregulated via HIV-1 Vpu and partially Nef (51–53). The 
impact of HIV-1 Nef and Vpu on HLA class I expression will be 
discussed later. In this review, we will focus on the recent progress 
in understanding the interplay of HLA-I with HLA-I binding 
NK-cell receptors, and how this interaction either limits HIV-1 
replication or is exploited by the virus to enhance pathogenesis.

KiR–HLA interactions in Hiv-1 Disease 
Progression and Acquisition
Classical and non-classical HLA-I genes (also known as HLA-Ia 
and HLA-Ib, respectively) are located within the MHC region 
p21.3 on chromosome 6, the most polymorphic region of the 
human genome. An extensive amount of allelic variation occurs 
within the region encoding for classical HLA-I genes (54). In 
contrast, non-classical HLA-I alleles display varying degrees 
of oligomorphism. To date, the classical HLA-A, HLA-B, and 
HLA-C loci comprise >10,000 alleles encoding for 8,662 distinct 
proteins, whereas the non-classical HLA-E, HLA-F, and HLA-G 
loci combined encode for 101 alleles and only 30 proteins (The 
Immuno Polymorphism Database, as of July 2017) (55, 56).

Classical HLA-I is ubiquitously expressed on nucleated cells. 
Given that the primary function of HLA-I is to present peptides 
derived from degradation of intracellular proteins (57), it is not 
surprising that variations mainly occur in regions surrounding 
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the peptide-binding groove (58) so as to maximize diversity of 
peptides presented across different gene and allele products. 
Under pathologic conditions such as malignant transforma-
tion or infection with intracellular pathogens, HLA-I presents 
antigenic peptides and thereby can elicit an immune response 
via HLA-I restricted cytotoxic CD8+-T cells. Historically, it was 
thought that NK cells only respond to changes in surface levels of 
classical HLA class I [to missing-self (59)], but there is increasing 
evidence that KIR can bind differentially depending on the HLA-
class I presented peptide (60–65).

In 2007, the first genome-wide association studies reported 
three protective single-nucleotide polymorphisms (SNPs) in 
HIV-1 disease (2). The presence of these SNPs was associated with 
lower viral set point in chronically HIV-1–infected subjects and 
together explained almost 15% of interindividual disease vari-
ability. Strikingly, all three SNPs were located in the MHC region 
of chromosome 6, emphasizing the crucial role of HLA class I in 
HIV-1 infection. The first SNP is in high linkage disequilibrium 
with HLA-B*57, a second SNP was located 35bp upstream of the 
HLA-C locus, and results in higher HLA-C expression levels. The 
last SNP was linked to an RNA polymerase subunit, ZNRD1 and 
affected the time to AIDS progression. Subsequent genome-wide 
association studies confirmed the first two SNPs and identified 
six additional SNPs associated with HIV-1 disease control in 
two different ethnic cohorts. Again, all SNPs were concentrated 
around the HLA-I region (1). Accordingly, the strongest HLA 
class I protective effects so far are reported for HLA-B*57 (66, 
67) and HLA-B*27 (4, 68); two HLA class I alleles carrying the 
serologically defined Bw4 motif (determined by the amino acids 
77–83). There is a strong association of HLA-Bw4 homozygosity 
with the ability to suppress viral replication of HIV-1 and with 
delayed time to AIDS progression (69).

The genes encoding for KIRs are located within the leukocyte 
receptor cluster on Chromosome 19q13.4, which additionally 
encodes Ig-like transcripts (ILTs) [also termed leukocyte Ig-like 
receptors (LIRs)], and leukocyte-associated inhibitory receptors 
(70). The KIR locus exhibits substantial polymorphism, in its 
degree only second to the MHC region in the human genome 
(71). KIRs can be subdivided into two different classes: KIRs with 
two extracellular Ig-like domains (KIR2Ds) and those with three 
domains (KIR3Ds). These Ig-like domains are classified as D0, 
D1, or D2. Type 1 KIR2Ds contain a D1 domain distal to a D2 
domain, type 2 KIR2Ds (KIR2DL4 and KIR2DL5) have a D0–D2 
domain organization, and KIR3Ds have all three domains as 
D0–D1–D2. In general, KIR2Ds bind to HLA-C and KIR3D bind 
to HLA-A and B-ligands (72, 73). Regarding signaling capacity, 
a long cytoplasmic tail (KIR-L) renders the KIR inhibitory as it 
contains immune tyrosine inhibitory motifs (ITIMs), whereas a 
short cytoplasmic tail (KIR-S) associates to adaptor molecules 
such as DAP12 and delivers activating signals (74). An exception 
to this is KIR2DL4, which holds an ITIM in its long cytoplasmic 
tail, but also associates with activating adaptor elements (73). KIRs 
are a major receptor family on NK cells, but are also expressed on 
CD4+ and CD8+ T cells (both αβ and γδ T cells) (75–80). Of note, 
expression of inhibitory KIR on T  cells is increased following 
chronic immune activation, as was observed in the case of CMV 
reactivation in a posttransplantation setting (81, 82). Increased 

KIR expression on bulk CD8+ T cells in HIV-1 infection has been 
reported, but barely detectable KIR expression was described, 
when investigating HIV-specific CD8+ T cells (83, 84). Overall, 
little is known about a modulation of KIR-expression on T cells 
with or without CMV reactivation in HIV-1–infected subjects.

KiR3DS1/KiR3DL1 and HLA-Bw4i80

The first study associating KIRs to HIV-1 control came from the 
laboratory of Mary Carrington in 2002. This study showed that 
possessing KIR3DS1 and an HLA-B allele with a Bw4 motif and 
an isoleucine at position 80 (HLA-Bw4I80) was associated with 
slower progression to AIDS, when compared to patients having 
only one or none of these alleles (22). A follow-up analysis by the 
same group reported a protective effect of combined KIR3DS1 
and HLA-Bw4I80 against development of certain opportunistic 
infections in HIV-1–infected patients, also after controlling for 
presence of protective (e.g., HLA-B*57 and HLA-B*27) and del-
eterious (HLA-B*35) alleles (85). The KIR3DS1/KIR3DL1 locus 
is unique in that it encodes functionally divergent alleles (86). 
The inhibitory KIR3DL1 binds to HLA-I allotypes that possess a 
Bw4 motif (HLA-Bw4, which can derive from HLA-A or HLA-B 
alleles). Polymorphisms in position 80 of these HLA-Bw4 mol-
ecules have been shown to modulate the strength of binding to 
KIR3DL1 (87, 88). In addition, the interaction of KIR3DL1 with 
HLA-Bw4 is sensitive to the sequence of the HLA-Bw4–presented 
peptide (61). Contrary to KIR3DL1, a ligand for its activating 
counterpart, KIR3DS1, remained initially unknown.

In a cohort of recently infected individuals, Barbour et al. did 
not detect a synergistic protective effect of KIR3DS1 and HLA-
Bw4I80 assessing viral load and CD4+ T  cell loss. Nonetheless, 
encoding for at least one KIR3DS1 allele was associated with 
higher CD4+ T cell counts and encoding for HLA-Bw4I80 alleles 
correlated with lower viral load, suggesting a protective, but 
independent effect of KIR3DS1 and HLA-Bw4I80 (89). A further 
epidemiologic study reported that HIV-1 viral load at set point 
correlated positively with the number of KIR3DS1 gene copies in 
the presence of HLA-B Bw4I80 ligands. Higher copy numbers of 
the KIR3DL1 gene also correlated with lower viral set point in the 
presence of HLA-Bw4I80 and at least one copy of KIR3DS1 (90). In 
addition, a study by Jiang et al. (91) in a Chinese cohort showed 
that KIR3DS1/KIR3DL1 heterozygotes were enriched in HLA-
Bw4I80–bearing long-term non-progressors with higher CD4+ 
T cell counts and decreased viral loads as compared to KIR3DL1 
homozygotes or individuals without HLA-Bw4I80 (91).

As KIRs are predominantly expressed on NK  cells, Martin 
et  al.’s first report associating a KIR to an outcome in HIV-1 
infection (22) triggered multiple studies on NK-cell functional-
ity attempting to elucidate the underlying protective mechanism 
of KIR3DS1 in combination with HLA-Bw4I80 in HIV-1 disease. 
In line with the epidemiological data, functional studies reported 
that NK  cells derived from donors possessing KIR3DS1 com-
bined with HLA-Bw4I80 inhibited viral replication in infected 
autologous CD4+ T  cells more potently than NK  cells from 
donors having either or neither allele. Sorted KIR3DS1+ NK cells 
degranulated significantly more in response to HIV-1–infected 
HLA-Bw4–expressing CD4+ T  cells compared to infected 
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HLA-Bw6+ CD4+ T  cells (92). A second study showed that 
NK  cells from individuals encoding for KIR3DS1 displayed 
enhanced cytotoxic function compared to NK  cells from 
individuals without KIR3DS1, but this was independent of the 
presence of HLA-Bw4I80 (93). Also, in acutely HIV-1–infected 
subjects a preferential expansion of KIR3DS1+ NK  cells—and 
to a lesser extent KIR3DL1+ NK  cells—was observed, which 
persisted only in subjects bearing HLA-Bw4I80 (94). Morvan 
et al. reported an expansion of KIR3DS1+ NK cells in response 
to various non-specific stimuli, but KIR3DS1+ NK-cell function 
was not influenced by the presence of HLA-Bw4 in this setting. 
Nonetheless, the frequency of KIR3DS1+ NK cells and KIR3DS1 
expression levels on NK cells were higher in healthy subjects 
with HLA-Bw4I80 than in those without HLA-Bw4I80 (95). 
Furthermore, HIV-1 viral inhibition assays demonstrated that 
in individuals encoding HLA-Bw4, having one copy of KIR3DS1 
and one or more copies of KIR3DL1 resulted in increased 
antiviral capacity of bulk NK  cells compared to individuals 
containing either KIR3DS1 or KIR3DL1 alone, which displayed 
the lowest amounts of viral inhibition (90). No differences were 
seen in HLA-Bw6 homozygous donors, whose NK cells had poor 
antiviral capacity. Having increasing copy numbers of KIR3DL1 
was correlated with elevated KIR3DS1 transcript and frequency 
of KIR3DS1 expression on NK  cells. Interestingly, this hinted 
at a KIR3DL1-related mechanism regulating the peripheral 
expansion and functionality of KIR3DS1+ NK cells (90). A more 
recent study reported that NK  cells from KIR3DS1 and HLA-
Bw4I80 cocarriers produced higher levels of chemokines after cell 
contact with infected CD4+ T cells than NK cells derived from 
HLA-Bw6 homozygous donors, leading to superior inhibition of 
viral replication (96).

Understanding the mechanistic basis of the protective effect 
of KIR3DS1 has proven difficult, as multiple attempts had failed 
to demonstrate a functional interaction of KIR3DS1 with its 
putative HLA-Bw4 ligand (74, 97) or for that matter, an interac-
tion with any ligand. To add an additional layer of complexity, 
the combined genotype of high expressing KIR3DL1*h alleles 
and HLA-Bw4I80 (in particular HLA-B*57) conferred strong 
protection toward HIV-1 disease progression (23, 98). Indeed, 
increased target cell cytotoxicity was observed in NK cells derived 
from elite controllers with protective KIR3DL1*h/*y receptor 
genotypes along with its HLA-Bw4I80 ligand (99). As KIR3DS1 
homozygosity is rare, in the majority of studies investigating 
KIR3DS1 and HLA-Bw4 epistasis, KIR3DS1-bearing subjects 
possessed also KIR3DL1 as a potential confounding variable.

Protection by an inhibitory KIR in HIV-1 disease seems 
counterintuitive, but might be mediated through a process called 
NK-cell licensing or education. Expression of an inhibitory KIR 
during NK-cell development provides strong inhibitory signals in 
response to its specific HLA-I ligand, ensuring self-tolerance. This 
allows NK cells to acquire enhanced cytotoxic function, which 
becomes apparent once exposed to missing or altered self (100). 
KIR3DL1 allotypes indeed differ in their inhibition of NK-cell 
function, with an overall trend toward increasing inhibitory capac-
ity in high-expressing KIR3DL1 allotypes (101). Thus, a potential 
explanation is that presence of high-expression KIR3DL1*h alleles 
together with HLA-Bw4I80 determines the increased cytotoxicity 

of KIR3DL1+ NK cells toward HIV-1–infected targets (taking into 
account that HLA-B is downregulated via actions of the HIV-1 
accessory protein Nef) (23). Indeed, a study in slow progressors 
to AIDS reported increased polyfunctionality of NK cells from 
donors carrying the KIR3DL1*h/*y allele together with its HLA-
B*57 ligand compared to HLA-Bw6 homozygous donors (102). 
Boudreau et al. recently demonstrated functionally that killing of 
HIV-1–infected targets via KIR3DL1+ NK-cells was dependent 
on the strength of NK-cell education via distinct combinations 
of KIR3DL1 and HLA-Bw4, with highest cytotoxicity mediated 
by high-expressing KIR3DL1 and HLA-Bw4I80 interactions (103). 
Moreover, NK cell education not only leads to enhanced func-
tionality (104), but signaling through inhibitory KIRs on NK cells 
can additionally promote NK-cell survival (105), potentially lead-
ing to accumulation of educated NK cells expressing inhibitory 
receptors in chronic viral infection.

Supplementary evidence comes from studies in highly exposed 
HIV-1 seronegative individuals. One study reported a significant 
overrepresentation of KIR3DS1 homozygosity in high-risk 
uninfected individuals compared to seroconverted individuals, 
independent of HLA-Bw4I80 (106). This group also reported an 
association of the KIR3DL1*h/*y-HLA-B*57 combined genotype 
with protection from HIV-1 acquisition (107). Another study 
showed enrichment of the HLA-Bw4 carrier–KIR3DS1 homozy-
gous genotype in HIV-1-exposed seronegative subjects (108). In 
summary, whereas the results from epidemiological studies are 
not clear-cut, these studies point toward a potential dual effect 
of KIR3DS1 (with or without HLA-Bw4I80) on both the course of 
HIV-1 infection and HIV-1 acquisition.

HLA-C and KiR2Ds
Genome-wide association studies have clearly implicated the 
HLA-C locus in HIV-1 control, identifying a protective SNP asso-
ciated with higher HLA-C expression levels (1, 2). Interestingly, 
HLA-C surface expression levels are only 10% of surface levels 
of HLA-A and -B (109), and HLA-C alleles demonstrate less 
polymorphism compared to HLA-B (56). Nonetheless, indi-
viduals with high HLA-C expression levels have been shown 
to have a higher likelihood of mounting an HLA-C-restricted 
CD8+ T-cell response (110) and exhibit higher mutation rates 
in HLA-C–presented HIV-1 epitopes, indicating CD8+ T-cell 
pressure via HLA-C (111). However, given that virtually all 
individuals encode for KIRs (i.e., KIR2Ds) able to recognize 
cognate HLA-C molecules, it was proposed that NK cells might 
play an additional role in mediating the protective effect of higher 
HLA-C expression. Inhibitory KIR2DL1 binds to HLA-C group 
2 allotypes (HLA-C2, which contain Asn77 and Lys80), whereas 
inhibitory KIR2DL2 and KIR2DL3, which are allelic products 
of the same KIR2DL2/3 locus, bind to HLA-C group 1 allotypes 
(HLA-C1, which contain Ser77 and Asn80). Notably, KIR2DL3 
also recognizes HLA-B*46:01 due to an intergenic miniconver-
sion between HLA-B*15:01 and HLA-C*01:02 (65). It was long 
believed that while HIV-1 Nef downregulated HLA-A and HLA-B 
surface expression to avoid recognition by cytotoxic CD8+ T cells 
(112), it spared HLA-C surface expression to ensure inhibition 
of NK cells via engagement of KIR2DL. This paradigm—which 
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initially arose from studies performed with lab-adapted HIV-1 
strains—was recently revised, when Apps et al. demonstrated that 
HLA-C is downregulated by HIV-1 Vpu variants derived from 
most primary HIV-1 isolates. HIV-1 Vpu-mediated downregula-
tion of HLA-C was shown to subsequently impair the ability of 
HLA-C–restricted CD8+ T cells to inhibit viral replication (113). 
Regarding NK-cell function, it was reported earlier that expres-
sion of HLA-C (and HLA-E) on activated, HIV-1–infected CD4+ 
T  cells impaired NK-cell killing, whereas blocking the HLA-C 
interaction with KIR2D enhanced NK-cell cytotoxicity toward 
HIV-1–infected CD4+ T-cell blasts (114, 115). During primary 
HIV-1 infection, KIR2DL+ NK-cell frequencies increased with 
the presence of their cognate HLA-C ligand (e.g., KIR2DL1+ 
NK  cells expanded in HLA-C2 homozygous individuals) and 
exhibited more polyfunctional responses, presumably due to a 
licensing effect (116). Downmodulation of HLA-C by various 
HIV-1 strains resulted in reduced binding of KIR2Ds to HIV-1–
infected cells. Moreover, NK cells were able to sense alterations 
in HLA-C expression as measured by differing degrees of HIV-
1-replication inhibition. Yet, remaining HLA-C surface levels 
were sufficient to inhibit antiviral function of licensed KIR2DL+ 
NK cells (encountering their cognate HLA-C ligand) compared 
to unlicensed NK cells (117). Thus, although NK cells licensed 
through inhibitory KIR2D exhibit increased functionality against 
HLA-I–deficient target cells, first reports indicate that this subset 
does not have superior antiviral function against HIV-1–infected 
targets expressing self-HLA-C.

The Role of Hiv-1 Peptides in KiR:HLA-i 
interactions
HIV-1 exhibits an extraordinary ability to adapt to and evade 
host immune responses. The constant battle of the immune 
system attacking the virus and the virus evading leads to an 
extremely rapid accumulation of HIV-1 variants and quasispe-
cies that, at least partially, escape from immune pressure (118, 
119). Analyzing the major mechanisms of HIV-1 evasion and 
sites of sequence mutations provides direct insights into where 
the human immune system is able to apply critical pressure on 
the virus. A particular example is the rapid increase in HIV-1 
mutations in HLA-I presented epitopes recognized by cytotoxic 
CD8+ T cells (CTL), which allows the virus to overcome adaptive 
immune pressure. These mutations can abrogate CTL recogni-
tion, but sometimes also impair viral replication (120). By now, 
a substantial body of evidence from structural (62, 63) and 
functional studies (60, 61, 65, 121–123) shows that KIR binding is 
modulated by the sequence of HLA-I–presented peptides, and in 
particular, C-terminal residues of these peptides. Unlike T cells, 
NK cells have germ-line encoded receptors that do not undergo 
recombination nor are they “specific” at discriminating self from 
non-self peptides (27). Instead, they have a moderate degree 
of peptide “sensitivity,” mediated in large part by KIR:HLA-I 
interactions, which allows NK  cells to monitor for changes in 
the peptide repertoire expressed by target cells. In fact, common 
HIV-1 sequence variants can modulate binding of inhibitory 
KIR to HLA-I, and by this means modulate NK-cell function 
(61, 124, 125), which has also been demonstrated in the case of 

SIV (121). Alternatively, NK cells may respond to altered MHC-I 
peptide processing following induction of the immunoprotea-
some in response to viral infection. IFN-γ stimulation results 
in increased cleavage of peptides after hydrophobic and basic 
residues. Thereby, it alters the C-terminus of available peptides 
for HLA class I presentation [reviewed in Ref. (126)], which 
may ultimately affect KIR binding to HLA-I:peptide complexes 
presented on the cell surface of stressed cells.

Viral variants arising due to CTL-mediated pressure can in 
turn impact KIR recognition by (i) impairing binding to inhibi-
tory KIRs (61, 127), (ii) reducing HLA-C surface levels (128), or 
(iii) enhancing binding to inhibitory KIRs directly, a mechanism 
termed as “double-escape” (129). Furthermore, several amino 
acid polymorphisms in the viral genome, which showed a sig-
nificant enrichment in subjects having a specific KIR gene, have 
been identified (130). As one example, a polymorphism in the 
overlapping reading frame of vpu and env was associated with the 
presence of KIR2DL2 in HIV-1–infected subjects. Antiviral activ-
ity of KIR2DL2+ NK cells against this viral variant was reduced 
in vitro (130). However, a role for HLA-I in this process could not 
be determined due to small sample size. A subsequent study in 
a larger cohort of HIV-1 clade C–infected individuals identified 
two viral sequence variants, that were significantly enriched in 
individuals in the presence of the combined KIR2DL3–HLA-
C*03:04 genotype. One of the variants (Tgag303V) was contained 
within a CTL epitope and located at the C-terminal end of the 
nonamer (YVDRFFKVL), but did not mediate escape from 
recognition by HLA-C*03:04-restricted CTLs compared to the 
wild-type sequence (131). This viral variant, however, enhanced 
binding to KIR2DL3 and inhibited KIR2DL3+ NK cells in vitro 
(132). Overall, these studies support the concept of KIR-mediated 
selection pressure on HIV-1 as an additional source driving viral 
evolution. Furthermore, a recent report showed that binding of 
KIR2DL2/3 to HLA-C1 allotypes is more selective to presented 
peptides than KIR2DL1 binding to HLA-C2 (60), further 
enhancing our mechanistic understanding of KIR:peptide:HLA-I 
interactions. Moreover, this study showed that certain peptides 
(including an HIV-1 Gag peptide) allow for binding of KIR2DLs 
to non-canonical HLA-C molecules (60). Taken together, 
whereas NK cells are not able to distinguish between self- and 
non-self peptides, KIR binding to HLA-I is certainly sensitive to 
changes in the peptide sequence presented on HLA-I molecules. 
This may in turn facilitate recognition of HIV-1–infected cells, 
potentially not only via presentation of viral peptides but also 
due to stressed-induced changes in the HLA-I-presented peptide 
repertoire.

Of note, the majority of studies evaluating the peptide 
sensitivity of KIR:HLA-I interactions to date have relied on 
external labeling with peptides, but overall, the abundance of 
viral peptides eluted from HLA-I compared to self-peptides is 
low (133, 134). Yet, antagonist peptides (i.e., peptides that are 
presented by HLA-I but abrogate KIR binding) can significantly 
interfere with KIR clustering at immune synapses and override 
NK-cell inhibition (135, 136). Therefore, HIV-1 infection may 
lead to NK-cell activation by causing a shift between antagonist 
and agonist peptides. Consequently, further investigations on 
how HIV-1 infection changes the HLA-I–presented peptide 
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repertoire and how this impacts NK-cell function are needed. 
Nonetheless, CTL pressure on viral sequence appears to be 
dominant, as the first escape mutations arise after peak viremia 
and following expansion of HIV-1–specific CTLs (9). KIR are 
also expressed on T cells and can modulate CTL activity (75, 
83); therefore, a potential role of KIR+ T  cells in explaining 
KIR/HLA disease associations has to be considered. Overall, 
studies suggest a complex interplay between innate and adap-
tive immune pressures in driving HIV-1 sequence evolution, 
with HLA-I being central to the interaction with KIRs and 
TCRs.

KiR3DS1 and the Non-Classical HLA-F—A 
Non-Classical Stress Ligand?
Genetic evidence and functional data not only implicate KIR3DS1 
in HIV-1 disease but indicate a widespread effect of KIR3DS1 in 
autoimmunity, transplantation, cancer, and other viral infections 
(137). Yet, for years, a definite ligand for this receptor that could 
account for these effects remained elusive. Only recently, we 
and others discovered that KIR3DS1 can bind open conformers 
(OCs) of HLA-F, a non-classical HLA-I molecule (138, 139). 
This was confirmed via surface plasmon resonance (SPR), 
pull-down experiments, HLA-F tetramer binding studies, as 
well as KIR3DS1+ reporter cell assays (138, 139). Functionally, 
HLA-F OCs led to degranulation of KIR3DS1+ NK cells, as well 
as cytokine production in response to HLA-F (138). HLA-F 
is a non-classical HLA-I molecule with a unique combination 
of features. It is (i) highly conserved with one dominant allele 
(140) [similar to KIR3DS1 (71)], (ii) displays tight tissue specific 
regulation, with a mostly intracellular localization (141, 142), 
and (iii) is expressed on the cell surface of activated lymphocytes 
(143). HLA-F is known to bind to inhibitory KIR3DL2 (138, 
144), as well as inhibitory LILRBs (145, 146), whereas the results 
on binding of HLA-F to KIRDS4 are conflicting (138, 139, 144, 
146). In HLA-F, 5 of 10 residues, which are highly conserved 
in other HLA class I molecules, are substituted, resulting in 
an altered peptide groove (146). To date, there has been no 
structural data published describing the OC of HLA-F. Given 
that KIR3DS1, KIR3DL2 and KIR3DL1 (albeit weaker), bind to 
HLA-F, one could imagine a role of the D0 domain in contacting 
HLA-F OC as the D0 domain enhances KIR3DL binding to HLA 
class I and mediates binding to a non-HLA class I ligand (72, 
147). Nevertheless, the contact residues of KIR3DS1 to OCs of 
HLA-F conferring specificity and high-affinity of the interaction 
are entirely unknown to date. SPR data suggest that KIR3DS1 
additionally binds to OCs of classical HLA class I, but so far, the 
functionality of this binding remains to be demonstrated (139).

We previously demonstrated that HIV-1 infection causes 
upregulation of HLA-F at a transcriptional level in stimulated 
CD4+ T cells. Therefore, KIR3DS1 binding to HLA-F expressed 
as a “stressed self ” signal on HIV-1–infected cells might explain 
the superior ability of KIR3DS1+ NK cells to inhibit viral replica-
tion in autologous CD4+ T cells (92, 138). Thus, the interaction 
between KIR3DS1 and HLA-F upregulated on HIV-1–infected 
cells may have similarities to the well-reported upregulation 
of stress ligands such as ULPBs and MIC-A/MIC-B in HIV-1 

infection, which are in turn recognized by the activating NK-cell 
receptor NKG2D (43).

Given the identification of HLA-F as a KIR3DS1 ligand, the 
following question remains unsolved: why is the strong genetic 
protective effect of KIR3DS1 observed preferentially in combina-
tion with HLA-Bw4I80 in HIV-I infection? We can conceive four 
potential models that are not mutually exclusive and may explain 
this phenomenon (Figure 1):

 (A)  KIR3DS1 binds to HLA-B*57:01 expressing particular HIV-1 
peptides: Only six residues differ in the extracellular domain 
of KIR3DS1 and KIR3DL1 (*013 versus *001 allele products, 
respectively) and one of these substitutions (L166R) abolishes 
binding to HLA-B*57:01. Nonetheless, one recent modeling 
study identified two HIV-1 derived peptides that can over-
come the steric hindrance of R166 with HLA-B*57:01 R83 
and allow for binding of KIR3DS1 to the HLA-B*57:01–pep-
tide complex. Binding was of sufficient avidity to activate 
KIR3DS1+ Jurkat reporter cells (148). Thus, a change in the 
peptide repertoire resulting from HIV-1 infection might 
therefore allow KIR3DS1 to engage certain HLA-Bw4I80 mol-
ecules and trigger KIR3DS1+ NK-cell cytotoxicity. However, 
further studies are needed to confirm this and assess the 
functional relevance in natural HIV-1 infection.

 (B)   HLA-Bw4I80 enhances HLA-F expression at the cell surface 
of HIV-1–infected cells: HLA-I gene products differ in their 
ability to form homodimers on the cell surface. In particular, 
the protective HLA-B*27:05 allotype is commonly expressed 
as a β2m-free disulfide-bonded homodimer (149, 150). 
Formation of HLA-I dimers in turn can affect recognition 
by immune receptors (151–153). HLA-F was reported to 
bind to OCs of other HLA-I to varying degrees and form 
heterodimers (154). Goodridge et al. discuss that the vary-
ing potential of different HLA-I gene products to interact as 
OCs with HLA-F may modulate HLA-F surface expression 
levels (144). Protective HLA-B allotypes (e.g., HLA-B*57:01) 
indeed demonstrate a higher degree of tapasin-dependent 
assembly and less stability as an OC compared to HLA-B allo-
types associated with rapid progression (e.g., HLA-B*35: 03)  
(155). Thus, protective allotypes might differ from suscepti-
ble allotypes in their ability to interact as HLA-I OCs with 
HLA-F in a setting of HIV-1 infection, in turn enhancing or 
diminishing recognition by KIR3DS1+ NK cells. This would 
indicate a KIR3DS1: HLA-Bw4I80:HLA-F protective axis in 
HIV-1 infection that is independent of KIR3DL1.

 (C)  KIR3DS1:HLA-F and KIR3DL1:HLA-Bw4I80 interactions 
are independently, but synergistically protective: Martin 
et al. identified the protective effect of combined KIR3DS1 
and HLA-Bw4I80, but the vast majority of individuals bear-
ing KIR3DS1 in this study were heterozygous and thus 
also encoded for KIR3DL1 (22). Furthermore, Jiang et  al. 
demonstrated that KIR3DS1/KIR3DL1 heterozygosity in 
HLA-Bw4I80–carrying individuals conferred superior HIV-1 
disease control. Therefore, it might be the heterozygous state 
of KIR3DS1/KIR3DL1 in the context of HLA-Bw4I80 that 
confers protection in HIV-1 infection, rather than KIR3DS1 
alone with HLA-Bw4I80 (91). Thus, protection could derive 
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FigURe 1 | Four models with potential mechanisms to explain the underlying 
protective effect of the combined KIR3DS1–HLA-Bw4 genotype in HIV-1 
infection. (A) Viral peptides allow for KIR3DS1 binding to HLA-B*57:01 and 
trigger natural killer (NK)-cell activation. Presentation of viral peptides (in red) 
on HLA-B*57:01 upon HIV-1 infection of target cells (blue) enables binding of 
KIR3DS1 on NK cells (yellow). The short cytoplasmic tail of KIR3DS1 
associates to the adaptor molecule DAP12, which bears two ITAMs.  
(B) HLA-Bw4 enhances human leukocyte antigen F (HLA-F) expression  
at the cell surface of HIV-1–infected cells. Open conformers of HLA-F exist as 
heterodimers with open conformers of HLA-Bw4 on the cell surface of 
HIV-1–infected cells. This enhances binding and triggering via KIR3DS1 on 
NK cells. (C) KIR3DS1:HLA-F and KIR3DL1:HLA-Bw4 interactions have 
independent but synergistic protective effects in HIV-1 infection. HIV-1 
infection of target cells leads to downregulation of HLA-Bw4 from the cell 
surface via action of the accessory protein Nef. Loss of HLA-Bw4 on the 
infected cells leads to loss of inhibition via KIR3DL1. Simultaneously, cell 
stress induced by HIV-1 infection leads to upregulation of open conformers of 
HLA-F, which bind to KIR3DS1 and trigger NK-cell activation. A potential 
epistatic regulation of KIR3DS1 gene expression via the KIR3DL1 gene is 
depicted. (D) KIR3DL1:HLA-Bw4I80 interactions limit KIR3DS1:HLA-F-
mediated immune activation. HIV-1 infection directly (and indirectly) causes 
cellular stress, which in turn upregulates surface expression of HLA-F open 
conformers on CD4+ T cells and other cell types. OCs of HLA-F bind to 
KIR3DS1 and trigger NK-cell activation. On the other hand, KIR3DL1 binds 
to HLA-Bw4 molecules, which are present on HIV-1–infected cells, although 
at low levels due to HIV-1 Nef-mediated downregulation. Inhibitory signaling 
via KIR3DL1 limits NK-cell activation and inflammatory cytokine production, 
thus limiting activation via KIR3DS1.
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from a synergistic but independent effect of KIR3DS1–
HLA-F and KIR3DL1–HLA-Bw4I80 interactions. Long et al. 
showed that possessing KIR3DS1 confers greater NK-cell 
functionality, also in absence of HLA-Bw4I80 (93). Under this 

model, the most effective NK cells against HIV-1–infected 
target cells would express both KIR3DS1 and KIR3DL1 and 
undergo activation via KIR3DS1-mediated engagement of 
HLA-F and KIR3DL1-dependent loss of inhibition due to 
HLA-B downregulation.

Yet, there is evidence that KIR3DS1 expression and 
function is not completely independent from KIR3DL1, 
as KIR3DS1 mRNA, and KIR3DS1+ NK-cell frequency 
increases with more gene copies of KIR3DL1 (90). 
Additionally, KIR3DS1/KIR3DL1 individuals display supe-
rior viral inhibition activity than individuals with either 
KIR alone in the presence of HLA-Bw4 (90). Thus, there is 
a possibility of KIR3DL1-mediated epistatic regulation of 
KIR3DS1 expression and function. However, the existence of 
a KIR3DS1+KIR3DL1+ coexpressing NK-cell subset has not 
yet been definitively proven due to the limitations of current 
anti-KIR antibody cross-reactivity.

 (D)  KIR3DL1:HLA-Bw4I80 interactions are necessary to limit 
KIR3DS1-HLA-F-mediated immune activation: As chronic 
viral infections can drive inflammatory processes resulting 
from persistent immune activation (156), downmodulation 
of the immune response is important for host homeostasis 
and preventing immunopathology; especially in HIV-1 
infection where immune activation can accelerate disease 
progression (157). Thus, it is conceivable that inhibition of 
NK cells via KIR3DL1:HLA-Bw4 interactions may be impor-
tant to counteract an exuberant immune response mediated 
by KIR3DS1+ NK  cells recognizing HLA-F on “stressed”/
infected cells. Moreover, education through inhibitory KIRs 
has been shown to promote increased survival of iKIR+ NK 
cells (105). Increased survival of educated KIR3DL1+ NK 
cells might counteract chronic immune activation that can 
result in disease progression. In line with this, the study of 
Martin et al. showed that KIR3DS1 homozygosity without 
HLA-Bw4I80 was modestly associated with rapid progression 
to AIDS (22). Therefore, as supported by mouse models that 
implicate NK cells as “rheostats” in chronic viral infections 
(158), combined stimulatory and inhibitory signaling may 
result in a tunable antiviral response that confers optimal 
HIV-1 disease control without causing immunopathology.

In summary, our mechanistic understanding of how protec-
tion in HIV-1 disease is mediated in the context of combined 
KIR3DS1 and HLA-Bw4 is still limited and requires further 
study. Although we focus on NK cells, a potential role for HLA-
Bw4I80-restricted CD8+ T cells expressing KIR3DS1 has also to be 
considered (84). So far, genetic studies of disease susceptibility 
have been extremely resourceful in guiding our understanding 
of the mechanisms involved in HIV-1 control. Therefore, HIV-1 
disease association studies that are able to tease out the effect of 
KIR3DS1 homozygosity in the context of HLA-Bw4I80 would be 
of great utility, but will require large sample sizes.

The Role of Peptide:HLA-F Complex
Major histocompatibility complex class I exists in two biologi-
cally relevant conformations on the cell surface: (i) as a mem-
brane-bound heavy chain lacking peptide and β2-microglobulin 
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FigURe 2 | The potential impact of HIV-1 infection on expression of 
non-classical human leukocyte antigen class I (HLA-I) molecules on a target 
cell and effect on natural killer (NK)-cell receptor binding. (A) HLA-E. HIV-1 
infection of target cells leaves HLA-E surface levels either unchanged or 
slightly upregulated. HLA-E can present self-peptides (in black) that bind to 
the NKG2A:CD94 receptor complex, and inhibit NK-cell function. In the 
context of HIV-1 infection, HLA-E can present viral or “stress”-self-peptides 
(in red) that abrogate (or reinforce) binding to NKG2A:CD94 and modulate 
NK-cell activity. The potential role of viral or “stress” peptides presented on 
HLA-E that could trigger the activating NKG2C:CD94 receptor complex on 
NK cells is currently unknown. NKG2C associates to DAP12, an adaptor 
molecule containing two ITAMs. (B) HLA-F. The exact impact of HIV-1 
infection on HLA-F surface expression in different cell types needs yet to be 
established. In general, HLA-F is expressed on activated or stressed cells, 
potentially in distinct functionally relevant conformations: (i) an open 
conformer that binds to the activating NK-cell receptor KIR3DS1 or (ii) a 
β2m-bound complex presenting peptides of unusually long length for HLA-I, 
which allows binding of the inhibitory receptor LILRB1. (C) HLA-G: one 
study showed downregulation of HLA-G in monocyte-derived macrophages, 
potentially via HIV-1 Vpu, although this has not yet been confirmed in 
primary cells. Moreover, the functional relevance of HLA-G downregulation in 
antiviral immune responses has not been established to date, although 
HLA-G is thought to play a predominantly immunoregulatory role given its 
interaction with inhibitory receptors. HLA-G can form dimers on the cell 
surface via an interchain α1 disulfide bond, which enhances recognition by 
inhibitory LILRB1 on NK cells. KIR2DL4 binding to HLA-G remains 
controversial. KIR2DL4 has a dual activating and inhibitory effect on 
NK cells, given that its cytoplasmic tail contains an ITIM and it associates to 
ITAM-bearing FcRγ.
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(β2m) termed open conformer (OC) or (ii) as a trimeric heavy 
chain:β2m:peptide complex (159). Recently, thermal denatura-
tion assays demonstrated that OCs of HLA-F are more stable 
(146) than OCs of other HLA-I gene products (160). Earlier 
findings assessing stability after cold treatment suggested an 
increased stability of HLA-F OCs compared to open conform-
ers of classical HLA-I (141, 142). This—and the fact that no 
canonical peptides could be eluted from HLA-F—supported 
the notion that HLA-F is mainly expressed as an OC devoid of 
peptide (142, 154).

Recently, the crystal structure of HLA-F (in complex with β2m 
and peptide) was solved, shedding first light onto the molecular 
structure of HLA-F (146). Surprisingly, this work showed that 
HLA-F has a unique peptide-binding grove that resembles the 
groove of classical HLA-I but does not anchor peptides at their 
N-terminus, allowing for binding of longer peptides. Indeed, pep-
tides eluted from HLA-F and characterized by mass spectrometry 
had an extended length distribution compared to classical HLA-I 
molecules, peaking at 12 amino acids and with peptides up to 
30 amino acids observed. This unconventional length rather 
resembles the length of HLA class II-presented peptides.

Moreover, new insights into the structure and docking mode 
of LILRB1 interacting with the HLA-F:β2m:peptide complex 
were gained. The LILR family (also termed LIR, ILT, or CD85) 
are encoded on chromosome 19 within the leukocyte receptor 
complex along with the KIR locus. In total, 13 different LILRs 
have been identified. Similar to KIRs, LILRs can provide an either 
inhibitory (LILRB) or activating (LILRA) signal, depending on 
the presence of an ITIM or the association to ITAM-containing 
adaptor molecules, but also depending on the cellular context 
(161). LILRB2 is not expressed on NK  cells and its implica-
tions in HIV-1 disease are reviewed elsewhere (24). LILRB1 
recognizes most classical and non-classical HLA-I molecules, 
except for HLA-E (162–164), given that it binds to the conserved 
α3 domain of the HLA-I heavy chain as well as β2m (165, 166). 
Intriguingly, the affinity of LILRB1 to peptide-bound HLA-F:β2m 
is the highest observed so far compared to other HLA-I ligands 
(146, 167). LILRB1 is expressed on NK cells in varying percent-
ages (0–50% with high interindividual variability), as well as on 
T  cells and professional antigen presenting cells such as DCs, 
monocytes/macrophages, and B cells (146, 168). Engagement of 
LILRB1 in vitro leads to inhibition of cytotoxicity and cytokine 
production in a subset of NK cells (151, 169, 170), but interest-
ingly, LILRB1+ (but not LILRB1–) NK cells are able to markedly 
suppress HIV-1 replication in infected monocyte-derived DCs 
in a manner independent of classical HLA-I (171), hinting at a 
possible role of HLA-F.

Looking at the binding footprint of LILRB1 on HLA-F, it is 
improbable that the interaction is sensitive to the nature of the 
presented peptide—in contrast to certain KIRs. In the case of 
KIR3DS1, it was shown that KIR3DS1+ reporter cells responded 
to HLA-F OCs, but were not triggered by peptide-bound HLA-F 
complexes (146). This could be due to peptide-induced confor-
mational changes in HLA-F structure or direct steric inhibition 
by the bound peptides. Furthermore, inhibitory KIR3DL2 
recognizes OCs of HLA-F or HLA-I and posssibly heterodimers 
of HLA-F with HLA-I heavy chains, with the latter also being 

increasingly expressed on activated lymphocytes (144). This raises 
interesting possibilities for a cell-stress induced conformational 
change in HLA-F allowing binding to activating receptors, such 
as KIR3DS1, while abrogating binding to inhibitory receptors, 
such as LILRB1. Thus, although HLA-F is not expressed on the 
surface of lymphocytes in a resting state (143), it potentially can 
exist in various conformations on stressed cells (154) with dif-
ferential impact on NK-cell function (Figure 2).
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The Non-Classical HLA-g—An  
immune Modulator?
Human leukocyte antigen-G is a non-classical HLA-I that dis-
plays a high degree of tissue restriction. It was first discovered in 
extravillous trophoblast cells in the fetal placenta (172), where 
HLA-G protein is abundant (173) and since then has been 
extensively studied in the context of reproduction. Further stud-
ies showed that under healthy conditions, HLA-G is expressed 
in other immune-privileged sites including the cornea (174), 
thymus (175), nail matrix, and on mesenchymal stem cells (176, 
177). Under inflammatory conditions such as CMV infection or 
within a tumor microenvironment, HLA-G can be expressed on 
DCs and monocytes/macrophages (178, 179), and is reported to 
be upregulated in monocytes treated with IFN-γ (a potent inducer 
of HLA-I and -II expression) as well as IL-10 (180–182). Also, 
an increasing number of studies shows aberrant HLA-G mRNA 
expression by tumors (183, 184) [reviewed in Ref. (185)], but 
some of these findings remain controversial as in other studies no 
HLA-G protein was identified (179, 186) [reviewed in Ref. (187)]. 
Overall, there is evidence that HLA-G expression is induced on 
various immune cells under inflammatory conditions resulting 
from infections, allergies, or allogeneic stimulation following 
transplantation (188–191).

As a result of a premature stop codon in exon 6 (192), the 
cytoplasmic tail of HLA-G is truncated and the heavy chain has 
a molecular weight of only 39  kDa, compared to the 45  kDa 
weight of classical HLA class I heavy chain. In total, seven 
splicing variants of HLA-G have been described (193, 194). The 
predominant splice variant in  vivo is HLA-G1, which encodes 
for the full-length, membrane-bound HLA-G protein (195, 196). 
Alternatively, soluble HLA-G (sHLA-G) can be generated from 
three splice variants or via proteolysis of the HLA-G1 isoform 
(197). Interestingly, sHLA-G can confer a protective effect to 
cells normally permissive to NK-cell killing (197). Apart from 
HLA-G1, three other alternatively spliced transcripts encode 
membrane-bound HLA-G, albeit in a truncated form: HLA-G2 
lacks the α2 domain, HLA-G4 lacks the α3 domain, and HLA-
G3 lacks both the α2 and α3 domains (198). These transcripts 
were reported to inhibit NK-cell function, although it remains 
unclear through which NK-cell receptors this occurs (198–200). 
Moreover, it was suggested that isoforms HLA-G2 and -G3 are 
expressed in individuals homozygous for the HLA-G*0105N null 
allele (201), possibly explaining the existence of healthy adults 
lacking full length HLA-G1 (201). Of note, all splicing variants 
encode the leader sequence enabling HLA-E expression (202) 
and thereby their expression in target cells can indirectly inhibit 
NK cells via NKG2A:CD94 (163).

To date, 18 distinct functional proteins of HLA-G have 
been identified, with the HLA-G gene encoding a total of 54 
HLA-G alleles (including two HLA-G null alleles) (56). While 
most of the polymorphism of classical HLA-I genes lies in the 
α1 and α2 domains that bear the peptide-binding groove (203), 
HLA-G has a relatively conserved peptide-binding groove 
and has allelic variability occurring within the 3′UTR, which 
is important for posttranscriptional regulation of HLA-G 
(203, 204). Peptides eluted from HLA-G thus far appear to be 

derived from a restricted number of proteins (205) and a crystal 
structure demonstrates that these presented peptides are buried 
deep within the peptide-binding groove (206). The induction 
of an HLA-G-restricted CD8+ T cell response against a human 
cytomegalovirus peptide in mice was described, but the cytol-
ytic capacity of these T cells was limited (207). Overall, it seems 
that the immune modulatory functions of HLA-G mediated 
through binding of inhibitory receptors expressed on a variety 
of immune cells dominates over a potential role in presenting 
peptides.

NK-Cell Receptors Recognizing HLA-g
Human leukocyte antigen-G is recognized by LILRs with 
greater affinity than HLA-A, -B, or -C molecules (208). In 
addition, HLA-G is unique in possessing a cysteine at position 
42 of its α1 domain, which allows for an unusual conforma-
tion of HLA-G as a homodimer of two β2m-associated HLA-G 
complexes (152, 209, 210) (Figure  2C). This conformation 
dramatically enhances recognition and signaling of LILRB1 
(151) and has been demonstrated to occur naturally on tropho-
blasts (173). Indeed, inhibition of LILRB1+ NK-cell function is 
sensitive to the conformation of HLA-G, as the heavy chain of 
HLA-G alone does not inhibit LILRB1+ NK cells (211). Studies 
measuring inhibition of LILRB1+ NK-cell cytolytic function 
via HLA-G have to account for HLA-E expression as it is 
upregulated through the HLA-G leader peptide—an exception 
being the K562 cell line, which does not express HLA-E (212). 
Independent of HLA-E, HLA-G interferes with immunological 
synapse formation and inhibits NK-cell cytotoxicity (212, 213). 
Additionally, Riteau et al. demonstrated that HLA-G expression 
has a major inhibitory effect on NK cell lysis through LILRB1, 
also when coexpressed with other HLA-I ligands (214). 
Besides the inhibitory effect of HLA-G expression on NK-cell-
effector function itself, HLA-G can impair NK-DC crosstalk. 
Pretreatment of DCs with sHLA-G leads to reduced activation 
and IFN-γ production by NK cells (215), while IFN-γ in turn 
triggers HLA-G surface expression (180, 181). This again sup-
ports the notion that HLA-G has tolerogenic properties.

In addition to LILRB1, HLA-G has been proposed to 
modulate NK-cell function via binding KIR2DL4. KIR2DL4 
is a framework gene within the KIR locus and thus is present 
in virtually all haplotypes, but there is a high frequency of 
alleles lacking the transmembrane domain or having truncated 
cytoplasmic tails (216). In peripheral blood, expression of 
KIR2DL4 is weak and restricted to the CD56bright subset, but can 
be induced on NK  cells in  vitro with stimulation (217, 218). 
KIR2DL4 has unique functional properties compared to other 
receptors of this family. A positively basic arginine residue in the 
transmembrane domain allows for association with the activat-
ing Fc receptor gamma protein (219), while the long cytoplasmic 
tail contains one immunoreceptor tyrosine-based inhibitory 
motif (ITIM). This results in mixed activating and inhibitory 
signaling, which has been shown to occur in vitro (219–222). 
In line with this, crosslinking of KIR2DL4 on peripheral blood 
NK cells induces IFN-γ production, and (albeit weaker) NK-cell 
cytotoxicity (217, 218, 223).
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Newer reports provide conflicting evidence regarding the 
interaction of HLA-G with KIR2DL4 (224, 225). Although 
several groups reported binding using various techniques 
including cellular transfectants, SPR, and functional assays (169, 
226–230), others have failed to reproduce KIR2DL4 binding via 
SPR, tetramers, or functional IFN-γ responses to sHLA-G (210, 
231, 232). The crystal structure of the extracellular domains of 
KIR2DL4 solved by Moradi et al. (233) demonstrated oligomeri-
zation of KIR2DL4, uncharacteristic of other KIRs. In this study, 
no binding of KIR2DL4 to HLA-G was detected via SPR (233). 
An explanation might be that signaling via KIR2DL4 only occurs 
upon concentration of the ligand in endosomes [as discussed in 
Ref. (187)], since sHLA-G endocytosed into KIR2DL4-containing 
compartments was shown to induce cytokine secretion of 
NK cells (229, 234). Regardless of its binding to HLA-G, higher 
copy numbers of KIR2DL4 have been linked to better survival of 
CD4+ T cells and increased IFN-γ responses from NK cells during 
acute SIV infection in rhesus macaques (235).

HLA-g expression in Hiv-1
Only a low percentage of immune cells in healthy subjects 
expresses HLA-G, whereas in HIV-1 infection a substantial 
upregulation of HLA-G has been observed in both peripheral 
blood monocytes and T-cell subsets (236). This was later partly 
attributed to antiretroviral treatment, as frequencies of HLA-G+ 
monocytes decreased after treatment interruption (237). In fact, 
nucleoside reverse transcriptase inhibitors were found to increase 
HLA-G expression, whereas protease inhibitors did not (238). A 
role for HLA-G+ HIV-1–restricted CD8+ T cells has furthermore 
been described in HIV-1–infected subjects (239). Contrary to 
in vivo studies of high HLA-G expression levels on monocytes 
of patients undergoing HAART (236–238), one study showed 
downregulation of HLA-G1 surface expression in HIV-1–infected 
monocyte-derived macrophages in vitro (240). This downregula-
tion was suggested to be mediated via HIV-1 Vpu (240), given 
that the truncated tail of HLA-G renders it resistant to HIV-1 Nef-
mediated downregulation (241). Yet, this needs to be confirmed 
in primary cells. Overall, how HIV-1 directly impacts HLA-G 
expression in different cell types remains unclear.

In addition to inhibiting DC function via LILRB2 (242) and 
regulating CD4+ T-cell proliferation (243), sHLA-G can inhibit 
NK-cell killing in  vitro and may therefore suppress NK-cell 
function in vivo (197). sHLA-G plasma levels change during the 
course of HIV-1 infection and treatment, as two groups reported 
high sHLA-G levels in early infection (244) with a significant 
decrease after treatment initiation (245). In rapid progressors, 
however, levels of sHLA-G were persistently elevated even 
despite treatment initiation, while this was not the case for 
untreated normal progressors and long-term non-progressors 
(244). Furthermore, sHLA-G levels were higher in patients with 
opportunistic infections, indicating a potential role of sHLA-G 
as a surrogate marker of disease progression (246). In a cohort 
of female commercial sex workers from Benin, HIV-1–infected 
subjects were reported to have lower levels of sHLA-G in plasma 
(247) but higher levels of sHLA-G in the genital mucosa (248). 
Of note, levels of sHLA-G are also in part determined genetically 
by distinct HLA-G alleles (249). Thus, data on sHLA-G levels in 

HIV-1 infection need to be carefully controlled for confounding 
factors such as HAART (237, 238), HLA-G genetic background 
(249), sampling site (247, 248), or coinfections (246, 248). In 
summary, it is not known whether higher sHLA-G levels have 
direct functional consequences on HIV-1 disease progression via 
modulation of NK and other immune cells, or whether sHLA-G 
levels are rather a reflection of viremia and the antiviral immune 
response.

genetic evidence for a Role of HLA-g  
in Hiv-1 infection
Although HLA-G polymorphisms are limited, certain HLA-G 
alleles have been suggested to be involved in susceptibility to 
HIV-1 infection. In 2004, Matte et  al. reported that the HLA-
G*0105N allele, a null variant which does not encode functional 
HLA-G1, was protective in HIV-1 acquisition, whereas the HLA-
G*01:01:08 allele encoding for full-length HLA-G increased the 
risk of HIV-1 infection. They formulated the hypothesis that 
non-functional HLA-G proteins may allow for better NK-cell 
killing of HIV-1–infected cells (250). This observation was not 
consistent with findings of subsequent studies, which reported 
either enrichment of HLA-G*0105N in HIV-1–positive women 
(251) or did not identify HLA-G*0105N allele as a disease 
modifying factor (252). Other HLA-G alleles identified were 
HLA-G*01:04:04, which associated with susceptibility to HIV-1 
infection, and HLA-G*01:01:01, which was enriched in HIV-1–
resistant women (252). One study states that these conflicting 
findings may be explained by variation of HLA-G polymorphisms 
among different ethnic populations and reports no association 
of HLA-G polymorphisms to HIV-1 susceptibility except in 
African-American cohorts (253).

As HLA-G is an important player involved in maternal-fetal 
tolerance, HLA-G polymorphisms have been studied in the 
context of vertical HIV-1 transmission from mother-to-child. 
Mothers bearing the HLA-G*01:03 allele were less likely to 
perinatally transmit HIV-1 (254). Upregulation of the functional 
isoform HLA-G1 mRNA in the placenta has been associated with 
increased risk of HIV-1 mother-to-child transmission (255). 
Further studies have assessed the risk of variants in the 5′ and 
3′UTR of HLA-G, and in particular, the impact of the 14-bp 
insertion/deletion in the 3′UTR of HLA-G on mother-to-child 
transmission. In healthy subjects, the 14-bp insertion genotype 
(ins/ins) correlates with lower plasma levels of sHLA-G (256). 
In vitro, transfection of the 14-bp ins/ins HLA-G into K562 cells 
resulted in increased levels of membrane-bound HLA-G1 expres-
sion with higher mRNA stability and lower sHLA-G1 ratio (257). 
However, studies on the impact of the 14-bp insertion on HIV-1 
vertical transmission risk report conflicting results (258–260). 
In horizontal transmission, the frequency of the 14-bp ins/ins 
genotype was enriched in HIV-1–infected patients in African 
(but not European) subjects (261). Overall, population studies 
attempting to shed light on the question whether functional 
versus non-functional HLA-G alleles are associated with HIV-1 
susceptibility have painted an inconsistent picture. Moreover, 
posttranscriptional regulation of the HLA-G gene through 
variations in the 3′ and 5′ LTR and alternative splicing has to 
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be considered as an important genetic factor modulating HLA-G 
expression levels in these studies.

The Oligomorphic interaction between 
HLA-e and NKg2:CD94—A Contrast  
to the Diversified HLA-KiR System
Inhibition of NK  cells can be achieved either through highly 
diversified KIR:HLA-I interactions or through a second inhibi-
tory system indirectly monitoring the level of overall HLA-I 
expression. This latter inhibitory mechanism is achieved via the 
well-conserved NK-cell receptor–ligand interaction of NKG2A/
CD94 with HLA-E (262). Contrary to other non-classical HLA-I 
gene products, HLA-E is ubiquitously expressed (263), but at sub-
stantially lower levels as compared to classical HLA-A, -B, and -C 
(264). Its expression is dependent on the expression of other 
HLA-I, as it presents a nonamer peptide derived from the signal 
sequence of several HLA-A, -B, and -C gene products as well 
as HLA-G. HLA-F and HLA-E itself lack an HLA-E– presented 
leader peptide (265).

Human leukocyte antigen-E has restricted polymorphism with 
to date only 25 known alleles (56), of which two—HLA-E*01:01 
and *01:03—are the most frequent in the human population and 
are believed to be in balancing selection (266, 267). HLA-E*01:01 
encodes for an arginine at position 107 (HLA-ER), whereas HLA-
E*01:03 encodes for a glycine at this position (HLA-EG). This 
substitution leads to higher surface expression levels of the latter, 
despite similar intracellular protein levels (160). HLA-E is highly 
relevant to innate immune responses due to its interaction with 
heterodimeric NKG2/CD94 type II transmembrane-anchored 
receptors, which are expressed on a large proportion of NK cells 
as well as on a subset of CD4+ and CD8+ T cells (268–270).

Natural killer group 2 receptors are a family of C-type lectin 
receptors encoded within the NK gene complex on chromosome 
12p12-13 (271). Almost all NKG2 gene products heterodimerize 
with CD94, a non-signaling invariant glycoprotein also encoded 
within the NK gene complex. These include NKG2A [which pro-
duces NKG2A and NKG2B gene products via alternative splicing 
(272)], NKG2C, NKG2E, NKG2F, and NKG2H. The NKG2D 
gene is also located within the NK gene complex, but its gene 
product has low sequence homology to other NKG2 receptors 
and forms an NKG2D:NKG2D homodimer (without CD94) that 
binds to the stress ligands MIC-A, MIC-B, and ULBPs, but not 
to HLA-E (273). Unlike KIR genes, NKG2 genes exhibit limited 
polymorphism (262, 274). Aside from being expressed widely on 
NK cells, they can also be expressed on subsets of T cells (275). 
Here, we focus on NKG2A:CD94 and NKG2C:CD94 receptor 
complexes, both of which bind HLA-E but have opposite effects 
on NK-cell function. While NKG2A signaling inhibits NK-cell 
cytotoxicity via two ITIMs in its cytoplasmic tail (276), NKG2C 
delivers activating signals through its associated adaptor mol-
ecule DAP12 (277).

Despite their similarity, the two major alleles of HLA-E differ 
in the subset of peptides they present (278). An example is the 
HLA-B*27–derived leader peptide, which stabilizes HLA-EG, 
but does not bind detectably to HLA-ER (160, 279). Similar to 
KIR:HLA interactions, binding of the NKG2:CD94 heterodimer 

to HLA-E is sensitive to the presented peptide (279, 280). The 
crystal structures of NKG2A:CD94 and NKG2C:CD94 receptor 
complexes bound to HLA-E presenting the HLA-G leader pep-
tide (VMAPRTLFL; VL9) illustrate that both subunits (NKG2 
and CD94) intimately interact with the peptide-binding domains 
(α1 and α2) of HLA-E. Interestingly, CD94 occupied the majority 
of the binding site, yet despite this, the NKG2A:CD94 complex 
had six times stronger binding affinity to HLA-E:VL9 than 
NKG2C:CD94 (280). Consequently, it is believed that CD94 is 
the main driver of HLA-E binding and peptide sensitivity, while 
the NKG2 subunit modulates affinity (and possibly sensitivity 
to some extent). Leader peptides of classical HLA-I presented 
on HLA-E do not trigger NK-cell activation through NKG2C, 
whereas NKG2A+ NK cells are potently inhibited by a wide range 
of different HLA-I–derived leader peptides (281). Therefore, the 
NKG2A:CD94–HLA-E interaction allows NK cells to indirectly 
monitor for changes in overall HLA-I expression without caus-
ing aberrant immune activation through NKG2C:CD94. An 
exception to this is HLA-E in complex with the HLA-G leader 
peptide, which can engage NKG2C:CD94 and trigger activation 
(279, 281). As HLA-G displays high tissue-specific restriction, 
this nonetheless allows for tight regulation of NKG2C triggering. 
The amount of surface stabilization of HLA-E by various leader 
peptides does not strictly correlate with the level of inhibition 
through NKG2A:CD94, which emphasizes the role of specific 
peptides in the binding of NKG2A:CD94 to HLA-E (282).

Peptide Presentation by HLA-e in the 
Context of viral infections
Like classical HLA-I, HLA-E can also present virus- or “stress”-
derived peptides. The leader sequences of heat shock protein 
60 (HSP60), which is induced under stress conditions (283), 
stabilizes HLA-E, but disrupts binding to NKG2A:CD94 and 
thus disinhibits NK-cell function (284). HLA-E can also be the 
target of viral immune evasion. CMV, for example, encodes for 
a sequence identical to the HLA-C*03 leader peptide that can 
increase HLA-E expression and inhibit NK-cell cytotoxicity 
(285). Additionally, an HCV-derived epitope (HCV Core35-44) 
stabilizes HLA-E and inhibits NK-cell lysis (286). Cheent et al. 
showed that viral- or heat shock protein-derived peptides in 
isolation did not inhibit NK-cell lysis. However, these peptides 
enhanced inhibition in the presence of HLA-E–presented leader 
peptides and therefore were termed “synergistic peptides.” 
Confocal microscopy has shown that these synergistic peptides 
act by recruiting non-signaling CD94 (without NKG2A) to the 
immunological synapse (262). Similar to peptide antagonism in 
KIR-HLA interactions (135, 136), this adds an additional layer of 
complexity to peptide-dependent modulation of NK-cell-effector 
function.

For HIV-1, the capsid-derived p24 aa14–22 epitope 
AISPRTLNA (AA9) has been described to stabilize HLA-E. 
One study by Natterman et al. demonstrated that AA9 inhibited 
NK cell-mediated cytolysis of peptide-pulsed HLA-E–transfected 
K562 cells (287), and that NK-cell killing could be restored via 
antibody blockade of either HLA-E or NKG2A. Contrary to this 
study, however, Davis et al. reported that HLA-E:AA9 tetramers 
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did not bind to NKG2A+ CD56bright NK cells (while HLA-E:VL9 
tetramers did). Thus, the authors suggest a potential role for the 
AA9 peptide in abrogating HLA-E binding to NKG2A:CD94 
on NK  cells, explaining enhanced degranulation of NKG2A+ 
NK cells against HIV-1–infected cells as compared to NKG2A− 
NK cells (288). In line with a role of HLA-E in HIV-1 infection, 
a genetic study in a cohort of Zimbabwean women demonstrated 
a four-fold reduced risk of HIV-1 acquisition in individuals 
homozygous for HLA-E*01:03 (HLA-EG) alleles compared to het-
erozygous or HLA-E*01:01 homozygous individuals. Given that 
HLA-EG is a high-expression allele, the authors speculated that 
increased presentation of HIV-1 peptides by HLA-E enhances 
NK cell cytotoxicity against HIV-1–infected target cells during 
the initial stages of infection (289).

Besides the role of HLA-E in innate immunity, increasing 
evidence demonstrates that HLA-E presentation of viral peptides 
derived from CMV, EBV, and HCV can elicit HLA-E–restricted 
CD8+ T-cell responses (290–292). Furthermore, Hansen et  al. 
(293) showed that inoculation of rhesus CMV-based SIVgag 
vectors leads to presentation of surprisingly diverse epitopes 
on MHC-E, inducing a broadly directed and protective CD8+ 
T cell response in rhesus macaques (293). So far, HIV-1–specific 
HLA-E–restricted CD8+ T cells have not been shown in humans 
(294), but the conserved nature of HLA-E alleles among different 
populations, its ability to present viral peptides, and its dual role 
in innate and adaptive immunity renders HLA-E an important 
target for future research.

NKg2A+ NK Cells—A Subset with 
enhanced (Not Reduced) Antiviral 
Capacity in Hiv-1
Chronic HIV-1 viremia leads to a decrease in the proportion of 
NK cells expressing NKG2A (32, 295–297), and normal NKG2A 
levels are restored only after prolonged times of antiretroviral 
therapy (297). Subset analyses show, however, that NKG2A+ cell 
frequency increases within the CD56dimCD16bright NK-cell subset 
over the course of HIV-1 disease progression, whereas NKG2A+ 
cell frequency is decreased in the dysfunctional CD56− NK cell 
subset (298). Given that this highly dysfunctional CD56− NK cell 
subset with poor cytotoxic capacity expands in viremic subjects 
(33, 34), bulk NKG2A+ NK-cell frequencies are reduced (298). 
Presence of viremia in patients with low CD4+ T-cell counts 
correlated with significantly higher NKG2A+ frequencies on 
CD56dimCD16bright NK cells compared to aviremic patients with 
low CD4+ T  cell counts (298), which may suggest a potential 
effect of long-term HIV-1 exposure itself on modulating NKG2A 
expression.

On the other side of the equation, HLA-E levels on CD4+ 
T  cells from HIV-1–infected patients increase with declining 
CD4+ T  cell counts in  vivo (299). Upon HIV-1 infection or 
reactivation in  vitro, HLA-E surface levels remain unchanged 
(36, 114, 288) or increase (287, 299). Functionally, blocking of 
the inhibitory NKG2A:CD94 interaction with HLA-E increases 
the ability of NK  cells to kill HIV-1–infected CD4+ T  cells 
in  vitro (114, 287). Similarly, blocking of NKG2A enhances 
ADCC of NK cells toward antibody-coated HIV-1–infected 

CD4+ T cell blasts (115). Although these initial data implied the 
notion that HLA-E–NKG2A:CD94 interactions were inhibitory 
and detrimental to elimination of HIV-1–infected cells, recent 
experimental data demonstrated a superior ability of the NKG2A+ 
NK-cell subset to degranulate in response to HIV-1–infected 
CD4+ T-cell blast compared to NKG2A− subsets (288). Moreover, 
NKG2A+ NK cells showed the highest polyfunctional responses 
with increased IFN-γ and MIP-1β, as well as higher CD107a 
expression against HIV-1–infected CD4+ T cell blasts (300). This 
suggests that HLA-E-mediated inhibition of NK-cell function via 
engagement of NKG2A:CD94 is incomplete, potentially due to 
a skewed peptide repertoire in infected cells (288) (Figure 2A). 
Moreover, the increased functionality of NKG2A+ NK cells high-
lights the concept that the inhibitory NKG2A:CD94 receptor is 
important in NK-cell education (301), as described later in more 
detail. Taken together, the factors driving an overall decline in 
NK-cell function in HIV-1–infected individuals are not entirely 
clear, although decreased frequency of NKG2A+ NK  cells may 
play a role.

NKg2C+ NK Cells—A Role in Hiv-1 
independent (or Dependent) of CMv?
It is conceivable that ligation of activating NKG2C:CD94 via 
HLA-E may enhance cytotoxicity toward HIV-1–infected cells, 
but this has not been demonstrated. In healthy subjects, NKG2C 
is expressed only at low-to-moderate frequencies depending on 
NKG2C zygosity and CMV status (288, 302). In HIV-1–infected 
subjects, an increased frequency of NKG2C+ NK  cells can be 
detected (295), independent of HIV-1 disease stage or presence 
of viremia (298), leading to a reversed NKG2A+-to-NKG2C+ 
NK-cell ratio in HIV-1–infected subjects compared to healthy 
controls (296). Additionally, NKG2C+ NK cells form part of the 
dysfunctional CD56−CD16+ NK-cell population in HIV-1–posi-
tive viremic patients (303). Thus, NKG2C expression appears to 
be modulated by HIV-1 infection, but differences in NKG2C+ 
NK-cell activity toward HIV-1–infected cells have not been 
demonstrated (Figure 2A).

It is important to note that CMV infection substantially skews 
the NK-cell repertoire toward NKG2C-expressing NK  cells 
(304, 305). Furthermore, NK cells of CMV seropositive patients 
display enhanced cytotoxicity against target cells expressing 
HLA-E, which can be blocked by anti-NKG2C (306). Therefore, 
coinfection of CMV in HIV-1–infected patients is a highly 
relevant confounding factor when assessing NKG2C+ frequen-
cies and function on NK  cells. In a cohort of HIV-1–positive 
aviremic individuals, the association between increased NKG2C 
expression and HIV-1 infection disappeared when accounting 
for CMV seropositivity (307). Furthermore, Brunetta et  al. 
showed that NKG2C+ NK-cell frequencies are higher in CMV 
seropositive individuals with HIV-1 infection compared to CMV 
seropositive HIV-1–negative subjects (297). Overall, the leading 
notion is that HIV-1 infection may render individuals more 
susceptible to CMV reactivation and impair immune control of 
CMV, potentially explaining the higher degree of CMV-driven 
expansion of NKG2C+ NK-cell subsets in HIV-1–infected 
subjects (308, 309). Additional evidence for a potential role of 
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NKG2C comes from HIV-1 disease association studies, where 
homozygous deletion of NKG2C in a cohort of HIV-1–infected 
subjects was associated with increased risk of HIV-1 infection. 
Moreover, a genotype with two functional copies of NKG2C was 
significantly enriched in long-term non-progressors compared 
to normal progressors. This indicates a functional role for the 
NKG2C receptor in HIV-1 infection (310), which remains to be 
established experimentally.

CMV-driven expansion of NKG2C+ NK  cells has received 
great interest as it has been implied in conferring adaptive, mem-
ory-like functions to NK cells (311). Briefly, first evidence came 
from a study in hematopoietic stem cell transplantation (HSCT), 
where infusing NK  cells from CMV-seropositive donors into  
CMV-seropositive HSCT recipients led to expansion of donor 
NKG2C+ NK cells and production of increased amounts of IFN-γ 
in comparison to donor NKG2C+ NK cells infused into CMV 
seronegative HSCT recipients (312). This hinted at a previous 
priming of donor NKG2C+ NK  cells leading to an enhanced 
antiviral response upon re-challenge with CMV in the CMV 
seropositive HSCT recipient (312). Additional evidence of adap-
tive NK-cell function in a rhesus macaque model demonstrated 
that splenic NK  cells derived from previously SIV-infected 
macaques specifically lysed DCs pulsed with SIV Gag or Env 
in vitro. Remarkably, antigen-specific NK-cell cytotoxicity against 
Gag- or Env-pulsed DCs was reduced by blocking NKG2A and 
NKG2C, which suggests a potential role of these receptors in 
NK-cell memory (313). Taken together, in humans, the role of 
activating NKG2C:CD94 receptors in HIV-1 infection, either for 
increased recognition of HIV-1–infected target cells via HLA-E 
(independent of CMV) or for a potential HIV-1 specific NK-cell 
response remains to be further investigated.

HLA-e is Affected by Dimorphism in the 
Leader Peptide of HLA-B
An additional factor impacting HLA-E surface expression is a 
dimorphism in the leader peptide of HLA-A, -B, and -C. HLA-A 
and HLA-C alleles encode for a methionine at position 2 of the 
leader sequence, whereas HLA-B alleles can either encode for 
methionine (-21M) or threonine (-21T) at this position. Leader 
sequences with threonine at P2 do not allow for stable induction 
of HLA-E surface levels and consequently fail to confer protection 
from NK cells through engagement of inhibitory NKG2A:CD94 
(279). In HIV-1 infection, HLA-B alleles containing a Bw4 motif 
are associated with protection from AIDS (69) and all HLA-Bw4 
alleles (with the exception of HLA-B*38:01) encode for the −21T  
polymorphism (42), whereas HLA-Bw6 alleles encode for 
either −21T or −21M. In a large cohort of serodiscordant 
Zambian couples, Merino et  al. aimed to elucidate the impact 
of HLA-B leader peptide dimorphism independent of the Bw4 
motif. Compound carriage of either Bw6/−21T or Bw4/−21T 
alleles displayed similar levels of protection in comparison to 
Bw6/−21M alleles, which were associated with increased risk of 
seroconversion. This indicates an independent protective effect 
of the −21T dimorphism on HIV-1 acquisition (314). Moreover, 
NK cells lysed HIV-1–infected CD4+ T cells or HIV-1–infected 
monocyte-derived macrophages preferentially when target cells 

encoded for −21T/T over a range of various HIV-1 strains. 
Antibody-mediated blockade of HLA-E on −21M/M target 
cells increased NK-cell cytotoxicity, whereas no change was 
observed for −21T/T target cells. Surprisingly, in this study mean 
fluorescence intensity of HLA-E surface expression did not dif-
fer between the −21T/T, T/M, or M/M subsets (315). However, 
recent analyses employing mass cytometry revealed that donors 
with at least one copy of −21M displayed increased surface 
HLA-E levels compared to −21T homozygous donors. NK cells 
of −21M donors displayed reduced amounts and frequencies of 
NKG2A:CD94, but a higher phenotypic diversity (42). In this 
study, Horowitz et  al. additionally showed that the increased 
availability of HLA-E peptides in −21M donors is important for 
NK-cell functionality (42).

Shaping of NK cell function via self-reactive inhibitory NK-cell 
receptors is a well-described process termed licensing or educa-
tion (316). It is governed by two independent systems, the well-
conserved interaction of NKG2A with HLA-E and the diversified 
interaction of HLA-I and inhibitory KIR (301). The presence  
of −21M leader peptides available for HLA-E stabilization indeed 
correlated with an increased polyfunctional NK-cell response in 
terms of ADCC, IFN-γ production and degranulation against 
the missing-self K562 target cell line compared to NK  cells 
derived from donors with a −21T/T genotype (42). Based on 
the dimorphism in the HLA-B leader peptide, Horowitz et  al. 
described the evolution of two distinct HLA-I haplotypes, which 
can be distinguished by the inhibitory receptor system operating 
in NK-cell education. The first, more ancient haplotype encod-
ing the HLA-E permissive −21M and HLA-C1 alleles is skewed 
toward the supply of ligands for NKG2A:CD94, whereas the 
second haplotype encodes the non-HLA-E–permissive −21T 
dimorphism, HLA-B with a Bw4 motif and HLA-C2/C1 allotypes, 
hence being more skewed toward encoding strong KIR ligands 
(42). Studying the two potential routes of licensing, Bernard et al. 
reported that the NKG2A+ NK cell subset mounted the highest 
polyfunctional response against infected CD4+ T cells, without 
further modulation through coexpression of inhibitory KIR3DL1 
(300). An earlier study reported a dual effect of NKG2A and 
inhibitory KIR coexpression in promoting NK cell education as 
well as survival (105). Coexpression of inhibitory KIR (with the 
presence of cognate ligand) with the activating NKG2C receptor 
following CMV reactivation after hematopoietic cell transplanta-
tion was required for robust cytokine production by NK  cells 
(317). This raises the question of which combination of KIR and 
NKG2 receptors results in best possible NK-cell functionality and 
survival in combating HIV-1 infection. Overall, HLA-E—aside 
from presenting peptides—has clearly an additional function in 
NK-cell education through NKG2A. This in turn may explain 
the antiviral capacity of NKG2A+ NK cells as observed in vitro 
following HIV-1 infection.

CONCLUDiNg ReMARKS

Studies from the preantiretroviral treatment era suggest that 
early events in acute HIV-1 infection influence the rate of HIV-1 
disease progression. NK cells, as first-responding innate effector 
cells, have been shown to expand in early HIV-1 infection and 
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kill HIV-1–infected cells, with genetic studies robustly linking 
variants in NK-cell receptors to HIV-1 acquisition and disease 
progression. Additionally, according to mouse models of chronic 
viral infections, NK cells have the potential to regulate adaptive 
immune responses, possibly even impairing an effective adaptive 
response (158, 318). Notably, the antiviral effector potential of 
NK cells is closely linked to HLA-I. HLA-I allows not only for 
effective NK-cell education, but also modulates NK-cell activity 
toward HIV-1-infected cells via changes in HLA-I surface expres-
sion and peptide presentation. While numerous studies have 
established a role for the KIR interaction with classical HLA-I 
in HIV-1, recent advances have increased our understanding 
of non-classical HLA-E, -F, and -G in HIV-1 infection. First, 
HLA-F was identified as a ligand for KIR3DS1, which is promi-
nently associated with HIV-1 disease control. HLA-F may serve 
as a “stress” signal on HIV-1–infected cells, at best enhancing 
KIR3DS1+ NK-cell killing of infected cells, and at worst mediat-
ing HIV-1–associated immunopathology (Figure  2B). Second, 
HLA-E expression levels are not downregulated in HIV-1, which 
is important as HLA-E is capable of presenting viral peptides. 
Moreover, HLA-E can tune NK-cell function through NKG2A 
in virtually all individuals, and is linked to a superior antiviral 
capacity of NKG2A+ NK  cells (Figure  2A). Third, HLA-G has 
predominantly immunomodulatory properties (rather than a 
peptide-presenting function), and although genetic studies are 

teasing apart the link between HLA-G polymorphisms and HIV-1 
disease, the impact of HLA-G on NK-cell function in HIV-1 has 
yet to be determined (Figure 2C). Eventually, the unique proper-
ties of these non-classical HLA-I molecules and their conserva-
tion between individuals renders them an ideal target for new 
approaches aimed at harnessing innate immunity against HIV-1.
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innate Lymphoid Cells in Hiv/Siv 
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Spandan V. Shah, Cordelia Manickam, Daniel R. Ram and R. Keith Reeves*
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Over the past several years, new populations of innate lymphocytes have been 
described in mice and primates that are critical for mucosal homeostasis, microbial 
regulation, and immune defense. Generally conserved from mice to humans, innate 
lymphoid cells (ILC) have been divided primarily into three subpopulations based on 
phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 
have overlapping functions with TH2 cells; and ILC3 that share many functions with 
TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly 
one of the earliest responders during viral infections besides being involved in the 
homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial bar-
rier integrity. Burgeoning evidence also suggests that there is an early and sustained 
abrogation of ILC function and numbers during HIV and pathogenic SIV infections, 
most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal 
barrier and dysregulation of the local immune system. A better understanding of the 
direct or indirect mechanisms of loss and dysfunction will be critical to immunothera-
peutics aimed at restoring these cells. Herein, we review the current literature on ILC 
with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the 
significance of disrupting the ILC niche during HIV and SIV infections.
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inTRODUCTiOn

Innate lymphoid cells (ILC) encompass a broad diversity of cell types including the nominal 
subtypes ILC1, ILC2, ILC3, and in some descriptions also include traditional natural killer (NK) 
cells and lymphoid tissue inducer cells, all of which arise from a common lymphoid progenitor. 
A common consensus in the field favors grouping of these cells based on the dependence on 
transcription factors, as well as by production of major cytokine classes (1–4). ILC1 and NK cells 
rely on the transcription factor T-bet and produce type I cytokines, such as IFN-γ and TNF-α, 
but notably ILC1 lack the complex cytotoxic functions inherent to NK cells. ILC2 are classified by 
their dependence on GATA3, and their production of IL-5 and IL-13 (5, 6), and finally ILC3 are 
generally identified by their dependence on RORγt and AHR, and secretion of IL-17 and IL-22 (7). 
Interestingly, through the expression of their respective cytokines and dependence on transcription 
factors for their development, the three ILC groups (1–3) show strong commonalities with TH1, 
TH2, and TH17/TH22 cells, respectively (8). It is important to note that the classification scheme 
remains somewhat fluid and grouping is not absolute, as NK cells and ILC1 do not always require 
T-bet (9), and ILC2 and ILC3 can both convert to ILC1 (10), underscoring the inherent plastic-
ity of these cell types. To further complicate matters, innate subsets of lymphoid cells may also 
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TabLe 1 | Phenotypic markers and tissue distribution for innate lymphoid cell (ILC) groups.

iLC1 iLC2 iLC3 Reference

Mousea Lin−CD127+RORγt−T-bet+IL-1R+IL-
12Rb2+

Lin−CD25+CD127+ICOS+THY1+SCA1+ST
2+IL-17Rb+

Lin−CD25+CD127+CD117+THY1+NKp46+/−RORγt+

IL-1R+IL-23R+

(13, 20, 28–31)

Humanb Lin−CD127+ICOS+RORγt−T-bet+IL-
1R+IL-12Rb2+

Lin−CD25loCD127+CD161+ICOS+CRTH2+ 
ST2+IL-17Rb+

Lin−CD127+CD161+/−CD117+NKp46+/−NKp44+/−ROR
γt+IL-1R+IL-23R+

(13, 20, 32–36)

Tissues 
distribution

Lungs, small intestines, blood, 
bone marrow, liver

Lungs, blood, bone marrow, skin, small 
intestines

Colon, small intestines, oral mucosae, lymph node, 
bone marrow, skin, spleen, thymus

(20, 25, 30, 32, 
33, 35–39)

aLineage markers for mouse are CD3, CD4, CD8, CD11b, CD11c, CD14, CD19, B220, FcεRI, TER119 antigen, and GR1.
bLineage markers for humans are CD1a, CD3, CD11c, CD14, CD16, CD19, CD34, CD123, TCRαβ, TCRγδ, BDCA2, and FcεRI.
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include mucosal-associated invariant T cells (11), which express 
a semi-invariant T cell receptor and defined phenotypically as 
CD3+Vα7.2 TCR+CD161high cells in humans (12, 13). In addi-
tion to their cellular and functional plasticity, ILC have a wide 
tissue distribution and thus are thought to be some of the earliest 
responders to infections and other inflammatory stimuli, but the 
full mechanisms involved are still poorly understood. Striking 
observations have revealed that lentiviral infection leads to 
the depletion of functional ILC3 in gut mucosae (14–16), and 
increased microbial translocation from the gut lumen and an 
overt disruption of epithelial tissue integrity in HIV+ individu-
als is linked to a massive loss of IL-17-producing gut-resident 
lymphocytes (17). It is now becoming increasingly clear that 
reduced IL-17 and IL-22 production during infection cannot be 
attributed solely to the loss of TH17/TH22 cells and that early 
depletion of ILC may also contribute to this process.

iLC PHenOTYPeS anD DiSTRibUTiOn

Although ILC are typified by their unique plasticity and their 
descriptive definitions are somewhat fluid, some generally 
accepted phenotypic nomenclatures have been established. 
ILC are usually identified as negative for common lymphocyte 
lineage markers (Lin−) that are otherwise distinct from NK cells 
and can usually be distinguished as such by higher expression of 
the IL-7 receptor, CD127 (1–4). However, even these definitions 
can vary significantly as “Lin” markers differ depending on the 
animal species (Table  1). For instance, in mice the Lin group 
may include CD3, CD4, CD8, CD11b, CD11c, CD14, CD19, 
B220, FcεRI, TER119 antigen, and GR1, whereas in humans, the 
Lin group may include CD1a, CD3, CD11c, CD14, CD16, CD19, 
CD34, CD123, TCRαβ, TCRγδ, BDCA2, and FcεRI. Burkhard 
et al. (18) recommends using CD5 marker in order to exclude 
small levels of contaminating T  cells, especially for analyzing 
ILC3 populations. Regardless, these exclusion criteria remove T, 
B, NK, and dendritic cells, as well as other myeloid/granulocyte-
derived cells and stem cells. ILC in rhesus macaque models align 
most closely to patterns seen in humans, but partly due to vari-
ability in cross-reactive reagents, may be more simply defined by 
excluding CD3, FcεRI, CD14, CD20, and NK cell-related mark-
ers, such as NKG2A or NKp46 (15, 16, 19). It is also important to 
note that exclusion of Lin markers may vary significantly between 
laboratories. Several other factors are used to characterize ILC, 
including the presence of various cytokines mentioned above and 

utilization of key transcription factors and receptors (1–5, 20).  
The co-expression of NKp46 and NK1.1 classifies mouse ILC1 
subsets including related NK  cells from other ILC groups 
whereas the expression of transcription factors, namely T-bet 
and Eomes, can be used to distinguish ILC1 and NK cells from 
each other (21–23). Loosely, in mice, NK cells are T-bet+Eomes+ 
while ILC1 are T-bet+Eomes− cells, although exceptions to this 
classification occur (9). Based on the nomenclature proposed 
by different reports (1, 2), ILC1 can be more comprehensively 
phenotyped as Lin−CD127+RORγt−T-bet+IL-1R+ cells in mice, 
and Lin−CD127+ICOS+RORγt−T-bet+IL-1R+ cells in humans. 
ILC2 are described as Lin−CD25+CD127+ICOS+THY1+SCA1+

ST2+ cells in mice and Lin−CD25loCD127+CD161+ICOS+CRTH
2+ST2+ in humans. Similarly, ILC3 may be identified as Lin−CD
25+CD127+CD117+THY1+NKp46+/−RORγt+IL-1R+ in mice and 
Lin−CD127+CD161+/−CD117+NKp46+/−NKp44+/−RORγt+IL-
1R+IL-23R+ in humans. ILC may also be partially identified by 
receptors of cytokines to which they are responsive—IL-12Rβ2+ 
(ILC1), IL-17RB+ (ILC2), and IL-23R+ (ILC3), but due to issues 
with antibody specificity may best be shown molecularly or in 
functional assays. Collectively, these phenotypic descriptions of 
ILC populations continue to evolve, and while there is generally 
a good consensus about the definition of ILC2 and ILC3, what 
truly defines ILC1 is still somewhat unclear. Currently there 
are no unique markers or complete phenotypes that uniquely 
identify ILC1, and the field is still limited to their identification 
via exclusion criteria—i.e., cells that are not NK  cells, ILC2, 
or ILC3. Functionally ILC1 are identified as IFN-γ-producing 
cells that are distinct from NK cells through their low cytotoxic 
potential. Understandably, these factors make the study of ILC1 
particularly cumbersome. Indeed, a recent profiling of ILC across 
tissues using mass spectrometry by Simoni et al. (24) indicated 
lack of ILC1 as described previously by other groups (25, 26). 
Instead, they described a unique intra-epithelial ILC1-like cells 
(ieILC1) that matched the description by Fuchs et al. (27).

Although ILC are generally found systemically, they are dispa-
rately distributed by subpopulation and are particularly enriched 
in mucosal sites and secondary lymphoid organs (Table 1). ILC 
have been identified in the lungs (ILC1, ILC2), colon (ILC3), small 
intestine (ILC1, ILC3), oral mucosae (ILC3), as well as in bone 
marrow, blood (ILC1, ILC2), lymph nodes (ILC3), liver (ILC1), 
and even in embryonic tissues (40), although the ILC-related 
NK cells tend to be much more broadly distributed (8). How ILC 
populations are maintained and replenished is unfortunately not 
well defined. Tissue-resident ILC predominantly replenish by 
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self-renewal (40), though evidence suggests that common precur-
sor cells from the bone marrow, or elsewhere, may also contribute 
to ILC homeostasis via cell recruitment (22, 41).

ROLe OF iLC in GaSTROinTeSTinaL 
(Gi)-ReLaTeD DiSeaSeS anD RePaiR

Innate lymphoid cell populations are constitutively present in  
the GI tract and lymphoid tissues but differ in their compart-
mental distribution (42, 43). In healthy humans, ILC1 are the 
major population in the upper compartment of the GI tract while 
ILC3 are elevated in ileum and colon (44). The local distribution 
of ILC within the GI tract also differ—ILC1 predominate the 
intra-epithelial compartment of the intestine (27, 41, 42), while 
ILC2 are present in fat-associated lymphoid clusters in the intes-
tinal mesentery and in significant numbers in lamina propria of 
small intestine where ILC3 is the dominant population (44–46). 
ILC3 are also enriched in the isolated lymphoid follicles, crypto- 
patches, and perifollicular area of Peyer’s patches at steady state 
(20, 47).

In the healthy gut, ILC3 are thought to be one of the major cell 
populations contributing to overall homeostasis. This is, in part, 
because ILC3 produce large quantities of IL-22 and IL-17 (48), 
and directly interact with intestinal epithelial cells to maintain 
an intact barrier and modulate inflammation (49, 50). IL-22 
protects intestinal epithelium from inflammation and promotes 
wound healing by inducing STAT-3 dependent increases in 
production of antimicrobials by epithelial cells and epithelial 
cell proliferation, thus maintaining barrier integrity (51–53). 
In a mouse model of dextran sulfate sodium-induced ulcerative 
colitis, microinjection-based gene delivery of IL-22 ameliorated 
local inflammation through activation of STAT-3 in colonic 
epithelial cells, stimulation of mucus production, and goblet cell 
restitution (54). In IL-22−/− mice, increased intestinal damage, 
bacterial burden, and mortality was observed on infection with 
Citrobacter rodentium (52), and in humans, IL-22 has been 
shown to protect intestinal epithelium in IBD (55). Specifically, 
IL-23 responsive, IL-17/22-producing ILC protected intestinal 
stem cells against intestinal inflammation leading to epithelial 
regeneration in graft versus host disease patients who underwent 
bone marrow transplantation (56).

Another mechanism by which ILC regulates intestinal 
homeostasis is through their interaction with the commensal 
and/or pathogenic microbiota (48, 50, 57). Several protective 
mechanisms exist in the gut for the containment of commensal 
bacteria within intestinal sites including tight epithelial junctions, 
production of mucus and antimicrobial peptides, and immuno-
logical mechanisms that include ILC- and IgA-mediated immune 
exclusion pathways (58–63). ILC3 prevent commensal bacterial 
dysbiosis by IL-22-mediated induction of antimicrobial proteins 
(RegIIIβ, RegIIIγ, and β-defensins), element-sequestering 
proteins (S100A8, S100A9, and lipocalin-2) and mucins in epi-
thelial cells leading to a strengthened intestinal epithelial barrier  
(49, 64–66). For example, depletion of ILC in mice led to selective 
peripheral dissemination of a commensal bacteria originating 
from host lymphoid tissues, namely Alcaligenes spp. and alcali-
gene-specific immune responses were found to be associated with 

Crohn’s disease and Hepatitis C virus-infected patients (63, 64). 
Further, ILC3 also are involved in the formation of gut-associated 
lymphoid tissues (GALT), including cryptopatches and isolated 
lymphoid tissues, which are important for protection against 
pathogens and act as niche areas of symbiosis for colonizing com-
mensal microbiota (63). In turn, microbial products and signals 
were also found to be necessary for epigenetic modifications of 
ILC contributing to their diversity, plasticity, and maintenance 
of intestinal homeostasis (48, 57). This was evidenced by a study 
conducted by Manuzak et al. (67), describing the beneficial effects 
of probiotic therapy in healthy rhesus macaques by toll-like recep-
tor (TLR) mediated downregulation of intestinal inflammatory 
markers and elevated ILC3 and T-follicular helper cells in colon.

Innate lymphoid cell can also act as a first line of defense at 
mucosal portals of entry due to their rapid production of cytokines 
following initial exposure to pathogens and recruitment of other 
innate and adaptive cells to sites of infection. ILC1 produce 
IFN-γ and TNF-α, both of which are important in the control of 
infections by intracellular pathogens such as Toxoplasma gondii 
(41) and Listeria monocytogenes (68). Furthermore, mice defi-
cient in ILC3 were susceptible to intestinal pathogens including 
Helicobacter spp. and Clostridium difficile (69, 70). In helminthic 
infections, IL-25-mediated activation of ILC2 promotes a TH2 
response which is important for an effective elimination of para-
sites (71). IL-17 is essential for the control of Candida albicans 
infection suggesting the importance of ILC3 in protection against 
oropharyngeal candidiasis in mice (72).

Given their critical roles in maintaining mucosal homeostasis, 
altered frequency or function of ILC during chronic disease 
could contribute to exacerbated intestinal inflammation. Indeed, 
intestinal ILC1 are elevated in IBD (73, 74), and production 
of IFN-γ by IL-15-activated ILC1 may play a major role in the 
pathogenesis of celiac and Crohn’s disease (25, 75). ILC2 along 
with NKT cells can also promote IL-13-mediated inflammation 
in an oxazolone-induced model of colitis (76). Interestingly, 
IL-23 responsive ILC3 can play a pathogenic role in intestinal 
inflammation through the production of IL-17A and IFN-γ and 
are also increased in patients with IBD (25, 28, 73, 74, 77–79). 
Given the significant protective roles ILC mediate in the GI tract, 
it may be important to take into account various interactions with 
intestinal epithelium and microbiota in achieving a balance of 
positive and negative ILC-related functions.

LOSS OF iLC in PaTHOGeniC 
LenTiviRUS inFeCTiOnS

One of the hallmarks of HIV and pathogenic SIV infection is 
early loss of gut integrity followed by massive and rapid trans-
location of microbial products from the lumen of the intestine 
into the lamina propria, blood, lymph nodes, and liver (80–83). 
Indeed circulating lipopolysaccharide (LPS), sCD14, and other 
microbial products are now well-established biomarkers for 
microbial translocation and immune stimulants associated with 
inflammation and chronic immune activation. Because ILC, 
particularly ILC3, play major roles in maintaining gut integrity, 
tissue modeling, and repair (53, 84–86), these cells are likely 
critical players in the pathophysiology of HIV/SIV disease. 
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Initial work in SIV-infected rhesus macaques by our group and 
others showed that ILC3 are generally restricted to mucosal tis-
sue, express high levels of RORγt, and produce IL-17 and IL-22 
much like their human counterparts, but they are depleted or 
otherwise dysfunctional in infection (15, 16, 87). Specifically, 
we showed that even 1 week following SIV infection there was 
up to a threefold reduction in ILC3 in colon and fourfold to 
ninefold reduction in jejunum and ileum (19) and that this loss 
was maintained during chronic infection. Surprisingly, SIV viral 
loads did not correlate with the loss of ILC3 (19), nor were ILC3 
infected in vivo (15).

Functionally, ILC3 from SIV-infected animals took on a 
more cytotoxic phenotype and produced greater quantities of 
TNF-α, IFN-γ, and MIP-1β, but reduced levels of IL-17 (14). 
This cytokine profile suggests lentivirus infection may drive 
ILC3 plasticity toward ILC1, as has been previously described for 
mice (10). Similarly, a study by Xu et al. (16) clarified the kinetic 
changes in IL-17-producing ILC3 from intestinal epithelium 
by showing a reduction during acute pathogenic SIV infection 
(7–14 days postinfection) is followed by an increase in the total 
numbers of ILC (14–21  days postinfection) and eventually a 
gradual decline of ILC3 with disease progression after 28  days 
postinfection (16). Klatt et al., (87) also noted a significant deple-
tion of all IL-17-producing lymphoid cells in rhesus macaques, 
but not in sooty mangabeys, where SIV replicates efficiently but 
does not cause significant mucosal barrier damage. This observa-
tion further underscores a potential role for ILC3 in maintaining 
gut homeostasis in HIV/SIV infections. Work in an HIV model 
of humanized mice by Zhang et al. (88) showed that persistent 
HIV-1 infection depleted ILC3 but effective antiretroviral therapy 
reversed this loss.

In human subjects, Kloverpris et al. (89) found that all three 
subgroups of ILC in blood were depleted during infection, but 
early administration of ART restored all ILC subsets. However, 
if ART was not administered within 5–14 days after infection, 
only ILC3 were partially restored while ILC1 and ILC2 remained 
depleted. Much like had been shown in SIV-infected macaque 
models (14), ILC3 loss did not occur in tonsil or other oral 
mucosal tissues (89). Surprisingly, they did not detect a reduc-
tion of ILC numbers in the gut, and a similar observation was 
made by Fernandes et al. (90). Although ILC levels in the gut 
during acute infection were not measured. The reason for this 
discrepancy between these studies and multiple macaque studies 
are not clear, but could be species specific. This could also be the 
reason for the contrasting observations made by Liyanage et al. 
(91), suggesting no restoration of NKp44+ cells in the rectum 
after ART. More recently, a study by Kramer et al. (92) showed 
that intestinal ILC distribution is significantly perturbed in 
patients even on effective antiretroviral therapy and that levels of 
colonic ILC3 were inversely correlated to markers of microbial 
translocation.

One of the proposed mechanisms leading to mucosal inflam-
mation in HIV infection is the interaction of viral envelope gp120 
with polarized epithelial cells directly disrupting epithelial tight 
junctions (93–95). A closer look at the effect of viral infection on 
epithelial cells showed that HIV-1 directly reduces transepithelial 
resistance, a measure of epithelial cell monolayer integrity by 

30–60% without affecting its viability (93). Furthermore, func-
tions of tight junction proteins, such as claudin 1, 2, 4, occludin, 
and ZO-1, were also disrupted and significantly increased inflam-
matory cytokines, such as TNF-α, IL-6, MCP-1, and IL-1β (93). 
The resulting increase in cytokine production following T  cell 
infection may also cause intestinal barrier breakdown [(96), 
reviewed in Ref. (97)].

The effect of HIV-2 on the other hand is less obvious. A 
previous study correlated both HIV-1 and HIV-2 with microbial 
translocation. However, a more recent study by Fernandes et al. 
(98) suggests no disruption of the epithelial tight junction by 
HIV-2 despite active replication. How ILC-mediated mucosal 
maintenance may differ in less pathogenic infections such as 
HIV-2 remains unstudied. Collectively, these data indicate that in 
both HIV-infected humans and pathogenic SIV-infected rhesus 
macaque models, ILC3 loss in the gut occurs early, is at least 
partially irreversible, and is linked to mucosal dysregulation and 
translocation of microbial products.

MeCHaniSMS OF iLC LOSS in 
PaTHOGeniC Hiv/Siv inFeCTiOnS

While the loss of ILC during HIV/SIV infection is well established, 
multiple groups have pursued molecular and cellular mecha-
nisms leading to this depletion. We had previously observed 
that the expression of IDO1, an enzyme upregulated during 
SIV infection [also observed in Ref. (99)] (Figure 1) correlates 
negatively with CD4+TH17 cells as well as ILC3 (15). In HIV, 
IDO has been implicated in immunosuppressive activity (100) 
and dysbiosis during disease progression (101). Although the 
source(s) of IDO1 are not totally clear, the ability of HIV-1 TAT 
to induce production of IDO catabolites by dendritic cells has 
been described previously (102). Interestingly, increased levels of 
IDO1 in the gut showed a negative correlation of CD4+ T cells 
and ILC3 but not with NK or CD8+ T cells (15). This suggested 
IDO1 expression could be a negative regulator of ILC3 but not 
other effector cells. Furthermore, we were able to confirm that 
IDO catabolites caused numerical and functional depletion of 
ILC3 through a similar mechanism described for TH17 cells (99). 
Increased apoptosis leading to massive loss in total numbers of 
ILC3 was observed; however, the loss was not due to direct infec-
tion as no detectable SIV RNA was present in these cells. This is 
not surprising, as ILC do not express receptors for SIV/HIV.

Further studies indicated that the loss of ILC3 in the mucosae 
during acute infection was due to increased apoptosis and RORγt 
suppression induced by inflammatory cytokines, such as TGF-β, 
IL-2, IL-12, and IL-15 (19). In pathogenic SIV infection, we also 
showed previously that plasmacytoid DC (pDC) accumulates 
in the gut mucosa producing large quantities of IFN-α (103) 
(Figure  1). HIV-1 infection in a humanized mouse model 
and in  vitro treatment of splenic ILC3 with IFN-α or HIV-1 
significantly upregulated CD95 expression on ILC3 leading to 
apoptosis dependent on pDCs (88). RNA-seq analysis of ILC 
in human subjects with acute HIV-1 infection showed that 
there was a downregulation of genes associated with viability 
(89), and gene array analysis (87) showed that mucosal IL-17+ 
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cells highly expressed TNF-receptor superfamily 4 (TNFRSF4,  
OX40), a co-stimulatory molecule involved in maintenance of 
mucosal lymphocytes, in comparison to IL-17− cells (104–106). 
Finally, ILC3 were shown to be depleted in lymphoid tissues 
mediated by TLRs in SIV-infected animals (107) (Figure  1). 
This study specifically showed that microbial translocation and 
resulting products like lipoteichoic acid or LPS via the TLR2/4 
pathway can directly cause apoptosis in ILC3, further increasing 
HIV-induced disruption of GALT.

Altogether, these data indicated that a primary mechanism of 
ILC loss is likely apoptosis due to dysregulation of homeostatic 
elements on which ILC depend. One potential avenue that 
could be explored to restore ILC and gut integrity is IL-7-based 
therapies. Indeed in mice, IL-7 promoted IL-22 production 
during chronic LCMV infection (108); and in macaques, IL-7 
therapy was shown to improve gut mucosal integrity in acute 
SIV-infected animals (109). Similarly, IL-7 immunotherapy in 
chronically infected HIV patients were associated with CD4+ 
T cell protective functions (108, 110, 111) and led to an overall 
reduced systemic inflammation (110). While these studies sug-
gest that IL-7 plays a key role in repairing gut immunity, the 
precise connection to ILC is clearly understudied and needs 
further evaluation. Interestingly, it was also recently shown 
that SIV-ALVAC in combination with multiple adjuvants could 

induce an expansion of ILC3 (112). Whether or not this modality 
could be used therapeutically to restore ILC or could contribute 
to protective vaccine efficacy remains to be elucidated.

COnCLUSiOn anD PeRSPeCTiveS

Innate lymphoid cell fill a unique and plastic niche of primarily 
tissue-resident cells that provide innate sources of typical T cell 
and NK cell produced cytokines, and although they clearly have a 
role in innate defense and homeostasis, many unknowns remain. 
Not the least of which being a recent report indicating that indi-
viduals lacking ILC may experience no obvious pathology as long 
as an intact T and B cell compartment remains (113). Specifically, 
regarding lentivirus infections, infection itself is not the source 
of depletion, but rather indirect or direct apoptosis, and while 
some potential mechanisms have been described herein this list 
is unlikely exhaustive or complete. It is also important to note 
that in several HIV studies no ILC depletion is observed in the 
gut. Regardless, whether loss is a virus-mediated subversion or an 
off-target effect of massive inflammation is unclear, and although 
ILC3 seemingly mediate gut homeostasis, their exact roles, both 
kinetically and functionally, in the perturbation and subsequent 
microbial translocation following HIV and pathogenic SIV infec-
tions are not obvious. And given the tight reciprocal relationship 
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between gut microflora and ILC3 in mice, it will be interesting to 
determine if ILC3 depletion also contributes to dysbiosis. Direct 
evidence for these phenomena will need to be confirmed by 
in vivo depletion strategies in macaques, should those reagents 
become available. Further, HIV/SIV clearly intersects with ILC3 
but whether ILC2 and ILC1 also contribute against viral patho-
genesis is less clear and will require further study. Nonetheless, 
despite a host of unknowns, the field as a whole can appreciate the 
novelty of these cell populations and conclude that manipulating 
ILC as early responders to infection could be an attractive target 
for multiple infectious as well as chronic conditions.
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United Kingdom

Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus 
relatives must enter cells in order to replicate and, once produced, new virions need 
to exit to spread to new targets. These processes require the virus to cross the plasma 
membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to 
deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of 
budding virions during release. This physical barrier thus presents a perfect location for 
host antiviral restrictions that target enveloped viruses in general. In this review we will 
examine the current understanding of innate host antiviral defences that inhibit these 
essential replicative steps of primate lentiviruses associated with the plasma membrane, 
the mechanism by which these viruses have adapted to evade such defences, and the 
role that this virus/host battleground plays in the transmission and pathogenesis of HIV/
AIDS.

Keywords: human immunodeficiency virus, type i interferons, antiviral restriction, plasma membrane, tetherin/
BST-2, serine incorporator, interferon-induced transmembrane

iNTRODUCTiON

A key feature of eukaryotic cells is the plasma membrane (PM), the single lipid bilayer that delimits 
the cytoplasm from the extracellular milieu (1). As well as acting as the physical boundary of the 
cell, the PM acts as a platform which plays a role in almost every cellular process, from regulating 
transport of small molecules and proteins in out of the cell, to cell mobility, and the response to its 
environment. As such, any infectious agent that seeks to gain access to the cell’s cytosol must breach 
the PM or the limiting membranes of intracellular compartments. In the case of enveloped viruses, 
this entails an entry step in which viral envelope glycoproteins engage specific cellular receptors 
on the PM or undergo low pH-induced conformational changes upon endocytic uptake (2, 3). As 
a result of either of these processes, mechanisms intrinsic to the glycoproteins themselves mediate 
fusion between the viral and host cell membranes, allowing the viral genetic material to enter the 
cell and initiate the replication cycle. For lentiviruses, the replication cycle culminates in newly 
synthesized RNA genomes and viral structural proteins being targeted to the inner leaflet of the 
PM (4). With the aid of a multitude of cellular factors, new virus particles assemble and bud into 
the extracellular space, acquiring their lipid envelope from the host cell. Budding ends in a scission 
event that separates the new virion from the cell, allowing it to be released and infect new targets.
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These unavoidable processes are common to all enveloped 
viruses. Moreover, the lipid envelope is the one component of the 
virus particle that is not encoded by the virus itself. It is perhaps 
unsurprising that the mammalian host has evolved multiple anti-
viral mechanisms whose role is to inhibit viral replicative processes 
that are associated with entry and exit (5–8), necessitating either 
the evolution of directly encoded countermeasures by the virus, 
or other mechanisms of resistance or avoidance. Furthermore, 
these mechanisms are often (but not always) regulated by type 
1 interferons (IFN-I) and pattern recognition responses, linking 
these factors to the wider antiviral immune response.

OveRview OF LeNTiviRAL  
eNTRY AND eXiT

The mediator of the entry of HIV-1 and its related viruses is 
the trimeric envelope spike [reviewed in Ref. (9)]. For HIV-1, 
this is comprised of three precursor Env proteins, gp160, that 
are proteolytically cleaved into a surface subunit, gp120, and a 
transmembrane subunit gp41. gp120 harbours the receptor bind-
ing components of the envelope spike whereas gp41 encodes the 
fusion machinery itself, buried within the trimer. gp120 consists 
of a series of conserved domains interspersed with variable loops 
and is heavily glycosylated on the outer faces of the trimer (10). 
There are surprisingly few spikes on the surface of the virion, 
with estimates of about 10–20 (11). Super-resolution microscopy 
imaging of HIV-1 particles has shown that these spikes cluster, 
which appears to be important for fusogenicity (12).

The Env trimer is a metastable structure, poised to mediate 
viral entry upon interaction with its receptor(s) (9). When gp120 
binds to its cognate receptor, CD4 (13–15), on the target T cell 
or macrophage, structural rearrangements “open” the envelope 
to reveal a coreceptor binding site (16–18). This interacts with 
either CCR5 (19–21) or CXCR4 (22), and occasionally additional 
CC chemokine receptors. Upon coreceptor binding, further con-
formational changes expose the hydrophobic fusion peptide of 
gp41, which rapidly inserts in the target membrane. The extended 
conformation of the gp41 trimer collapses back to form a six-helix 
bundle common to diverse type 1 enveloped virus fusion proteins 
(9). This pulls the viral and cellular membranes together, and is 
sufficient to locally destabilise the membranes, allowing lipid 
mixing, fusion, and the release of the viral core into the cell (9).

The use of CCR5 appears to be essential for sexual transmis-
sion of HIV-1. Viruses that use CCR5 alone (R5), or more rarely 
CCR5 and CXCR4 [R5/X4 or dual tropic (23)], predominate in 
early infection (24, 25). Individuals homozygous for a 32 base 
pair deletion in CCR5 that disrupts its expression are largely 
HIV-1 resistant (26, 27). X4-using viruses tend to arise later 
in infection in some, but not all, individuals, and are associ-
ated with more rapid progression to AIDS. Whilst they can be 
transmitted by intravenous drug-use/transfusion, it is not clear 
why X4 viruses are almost never transmitted sexually given that 
target CD4+ T  cells in the mucosa express CXCR4 (25). The 
selective pressures that produce the so-called coreceptor switch 
are not well understood, but it is associated with changes in 
the V3 loop of gp120 and perhaps arises through escape from 

certain classes of neutralizing antibody (28). Coreceptor usage 
in part determines the cellular tropism of the virus; R5 viruses 
infect predominantly subsets of antigen-experienced CD4+ 
T cells, whereas X4 usage expands this tropism to naïve cells (9). 
Macrophage-tropic viruses are almost exclusively R5 users, but 
importantly macrophage tropism is determined by changes in 
gp120 that allow it to use much lower cell surface concentrations 
of CD4 (29, 30). Thus most R5 isolates, including those transmit-
ted between individuals (the so called transmitted-founder (TF) 
viruses) can only infect T cells (31). Quite why the majority of 
X4 viruses cannot infect macrophages which express abundant 
CXCR4 is not known (32).

Where entry occurs in the cell has been of some controversy. 
The pH-independence of HIV-1 entry would suggest that it 
occurs at the cell surface (2, 33). This was reinforced by early 
studies showing that endocytosis of CD4 was not necessary 
for productive viral entry (34). However, more recent studies 
have shown that HIV-1 entry is sensitive to certain endocytosis 
inhibitors, particularly those targeting the GTPase dynamin-2 
(35). These effects may be cell-type dependent, as entry appears 
to be predominantly cell surface in T cell lines (36). Furthermore 
dynamin-2 may play a role in fusion, independent of its activ-
ity in endocytosis (37). Much further work, particularly with 
clinically relevant isolates, is required to fully rationalize many 
of these observations. However, the ability of certain membrane 
associated antiviral factors to differentially restrict HIV-1 entry 
dependent on their own subcellular localization may allow fur-
ther insight into these issues.

The next encounter of HIV-1 with the limiting membrane of 
the cell is viral assembly [reviewed in Ref. (4, 38)]. For lentiviruses, 
this occurs exclusively at the plasma membrane. Small amounts 
of Gag and Gag-Pol polyproteins are targeted to the inner leaflet 
of the PM, bringing with them two copies of the viral genomic 
RNA. This allows more Gag/Gag-Pol to nucleate around them, 
and in doing so form a budding virion. Small peptide motifs in 
the p6 portion of Gag (termed late domains) interact with several 
members of the ESCRT pathway, a multi component protein 
machinery that resolves membrane-bound entities budding away 
from the cell’s cytoplasm. The recruitment of the core ESCRT-I 
subunit TSG101 is the major event in initiating HIV-1 release, 
although other associated factors can also directly interact with 
Gag. This then leads to the recruitment of charged multivesicular 
protein (CHMP) subunits of ESCRT-III. The polymerization of 
these ESCRT-III subunits into filaments around the inside of the 
stem of the budding virions and their subsequent depolymeriza-
tion by the AAA-ATPase VPS4, leads to the contraction of the 
neck of the bud and the final scission of the virus from the cell. 
During the budding process, mature Env trimers are recruited 
into the assembling virion, as well as a number of other host 
membrane proteins; some beneficial, others, as described below, 
less so. Co-incident with the latter stages of budding, dimerization 
of the protease component of the Gag-Pol polyprotein, driven by 
interactions between reverse transcriptase moieties, activates its 
catalytic activity. This then leads to the sequential processing 
of the Gag and Gag-Pol to generate the mature structural and 
enzymatic components of the infectious virion.
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TYPe 1 iNTeRFeRONS AND THe 
ReSTRiCTiON OF Hiv-1 RePLiCATiON

A burst of systemic inflammatory cytokines driven by type 1 
interferons (IFN-I) is one of the earliest host responses detectable 
in HIV-1 infected individuals (39). Despite the virus being adept 
at avoiding host pattern recognition receptors in infected cells 
(see review by Sumner et  al. in this issue), the consequence of 
the rapid increase in viral replication is that systemic IFN-I levels 
are detectable as early as 7 days after infection. Both alpha and 
beta interferons activate the same receptor, IFNAR1/2, expressed 
on the majority of somatic cells, and via the Jak/STAT pathway 
induce the transcription of hundreds of so-called interferon-
stimulated genes (ISGs), many of which, like IFN-I themselves, 
are also activated directly by pattern recognition responses (40). 
In addition to the activation of systemic innate and adaptive 
immunity, a number of these ISGs have direct antiviral activity 
against the replicative stages of diverse mammalian viruses (7). 
These antiviral factors, sometimes called restriction factors, often 
target common pathways or structures that are essential for viral 
replication, and which cannot be simply mutated around. In the 
case of lentiviruses, several restriction factors have been identi-
fied that are targets of virally encoded accessory proteins (41), 
for example tetherin and Vpu described below. The evolutionary 
arms race between these countermeasures and species-specific 
orthologues of these restriction factors has shaped the adaptation 
of these viruses to new primate hosts, ultimately allowing chim-
panzee and sooty mangabey simian immunodeficiency viruses to 
cross into humans to become HIV-1 and HIV-2 respectively (42). 
However, ectopic expression of a number of ISGs have a direct 
antiviral activity against HIV-1 with no obvious virally-encoded 
countermeasure (43). HIV-1 replication can be inhibited in 
primary CD4+ T cells and macrophages in culture by IFN-I treat-
ment, indicating some of these ISGs may play a physiological role 
in early infection (43, 44). Furthermore, treating HIV-infected 
patients with pegylated-IFN leads to a transient reduction in 
viral loads (45). In macaques, although initial mucosal inflam-
masome activation may inhibit local ISG activation (46), early 
viremic control of SIVmac infection is dependent on systemic 
IFN-I responses (47). But perhaps the most powerful evidence of 
the importance of directly antiviral ISGs in HIV-1 pathogenesis 
comes from the observation that viruses that represent the most 
likely founder of an individual’s infection, called transmitted/
founder (TF) viruses, display a considerably higher resistance to 
the effects of IFN-I in their replication in primary CD4+ T cells 
than viruses isolated during the chronic phase (31, 48). While ini-
tially controversial in a replication study in subtype C infections 
using blood-derived viral sequences (49), these observations have 
been extended and now show that the TF virus sequence in a 
recipient partner is the most IFN-I resistant amongst the viral 
quasi-species that existed in the donor partners’ genital secre-
tions at the time of transmission in both clades B and C, thus 
indicating IFN-I resistance is a key attribute for transmission 
fitness (50). Curiously, as infection progresses, IFN-I resistance 
in circulating virus wanes (48). There are multiple molecular 
determinants of this difference in IFN sensitivity between TF and 
chronic viruses from the same the donor, suggesting a number of 

ISGs are involved (50). In the sections below, we will discuss host 
restriction factors and antiviral ISGs that target the entry and exit 
pathways of the virus.

THe iNTeRFeRON-iNDUCeD 
TRANSMeMBRANe (iFiTM)  
PROTeiN FAMiLY

The interferon-induced transmembrane (IFITM) proteins are 
a family of antiviral factors that restrict the fusion of a number 
of pathogenic enveloped viruses with their target cells, includ-
ing influenza A virus (IAV), Dengue virus (DENV), hepatitis C 
virus (HCV), Ebola virus (EBOV) and HIV (51–53). They are 
predominantly located at the PM and on endosomal membranes, 
the portals of entry for most viruses (54, 55). Recent studies have 
sought to identify the mechanisms of their antiviral restriction 
activities that may explain this broad spectrum activity, which 
primarily target the entry stages of the viral lifecycle.

Five members of the gene family have been identified in 
humans, ifitm 1, 2, 3, 5 and 10, all clustered on chromosome 11 
(56, 57). Unlike ifitms 1, 2 and 3, ifitm5 is not induced by type 1 or 
type 2 interferons but has been proposed to be involved in bone 
mineralization. A function for ifitm10 has not been identified. In 
the mouse genome, the orthologues of the human ifitm genes are 
located on chromosome 7, with the pseudogene ifitm4, also not 
functional in humans, located in close proximity to ifitm 1, 2 and 
5. Analogous genes have been identified in other mammals and 
in the avian species, where the IFITM proteins serve to inhibit 
influenza viruses.

iFiTM Structure and Localisation
IFITMs are members of a larger superfamily of proteins found in 
both eukaryotes and prokaryotes, known collectively as dispanins 
(58). Structurally, the IFITMs each contain two hydrophobic 
domains that are separated by a short conserved intracellular loop 
(CIL) containing a CD225-like domain; speculation has how-
ever surrounded the topological conformation of the domains 
within the membrane. The current biochemical and cell biology 
evidence suggest that the IFITMs adopt a topology in which the 
N-terminus and CIL reside in the cytoplasm, with the first hydro-
phobic domain existing as an intra-membrane domain whilst the 
second hydrophobic domain spans the membrane such that the 
C-terminus resides in the extracellular space (Figure  1A) (54, 
55, 59). The CIL domain also contains palmitoylation sites that 
likely stabilize this conformation (60–62). The intramembrane 
helices of the first hydrophobic domain are postulated to influ-
ence the curvature of the membrane in which the IFITM resides 
thus impacting the restriction activity (59). Evidence of self-
association and intramolecular interactions between the IFITM 
proteins, via residues within the first transmembrane domain, has 
been reported, suggesting that higher order multimers may have 
functional implications (63).

Mammalian IFITMs are highly homologous at the amino acid 
level, and in particular IFITMs 2 and 3 in primates display highly 
complex positive selection signatures (64) suggesting that they 
are continually adapting to target pathogenic viruses (65). Such 
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FigURe 1 | Schematic representation of IFITMS, SERINC 3/5 and tetherin within a model membrane. (A) A model of the IFITM protein, which adopts a type II 
transmembrane protein topology in the membrane. The N-terminal domain lies within the cytoplasm and connects to two short intramembrane α-helices. IFITMs 2 
and 3 possess a longer N-terminal domain that contains important trafficking motifs that determine protein localisation. The conserved intracellular loop (CIL) 
contains sites of palmitoylation that likely stabilise the conformation of the C-terminal transmembrane α-helix which spans the membrane, thus positioning the 
C-terminal domain within the extracellular space. (B) Very little information about the structures of SERINC proteins is currently known. SERINCs 3 and 5 are thought 
to possess between 10 and 12 transmembrane helices such that the N- and C-termini reside within the extracellular space. (C) Tetherin exists as a dimer anchored 
to the membrane via an N-terminal transmembrane domain and a C-terminal GPI anchor. The extracellular portion of tetherin is comprised of a coiled coil. The N 
terminal cytoplasmic tail contains a dual tyrosine motif that plays a role in both steady-state cycling of the protein and signal transduction following virus retention. 
Amino acid sequences of human and chimpanzee cytoplasmic tails are shown for comparison, highlighting the deletion of the DIWKK motif. The short isoform of 
human tetherin lacks the first 12 amino acids of the cytoplasmic tail.
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selection raises the notion that they may be under pressure to 
provide a continuous barrier across the entry portals into the 
cell. Consistent with this, human IFITMs localize to distinct but 
overlapping cellular membranes (54). While IFITM1 appears to 
be mainly associated with the PM, the longer N-terminal cyto-
plasmic tail of IFITMs 2 and 3 contain a YxxΦ endocytic motif 
that permits their localization to early/recycling (IFITM3) and 
late (IFITM2) endosomal compartments (66, 67). This sorting 
signal overlaps with an endosomal degradation motif (PPxY) that 
regulates their turnover (Figure 1A) (68). Importantly, therefore, 
both endosomal IFITMs dynamically traffic via the cell surface 
to reach their major sites of localization. This localization is a 
key determinant of the antiviral spectrum which a given IFITM 
restricts because the mechanism of entry of different viruses 
(receptor requirements, pH thresholds of fusion etc.) define their 
sites of access to the cell. For example, mutation of the endocytic 
motif in IFITM3 such that it redistributes to the cell surface 
abolishes its antiviral activity against IAV (67). This has major 
implications for the discussion of their effects on HIV below.

Mechanism of iFiTM Restriction
IFITMs appear to block the physical fusion of enveloped viruses 
with their target membranes, however the mechanism of action 
is not clear. It is widely postulated from the work of Brass, Liu 

and others particularly on IAV, that the mechanism of action is 
through modulation of the host cell membrane fluidity to block 
viral fusion (69–73). These “tough-membrane” models suggest a 
number of possible mechanisms: (1) Adjacent IFITM molecules 
may interact via their intramembrane domains thereby decreas-
ing the fluidity of the host membrane and limiting the lateral 
movement of host entry receptors and formation of productive 
receptor complexes. (2) These intramolecular interactions may 
prevent the effective viral envelope clustering that is required 
particularly for IAV fusion and (3) the IFITM multiplexes could 
also form a “meshwork” within the outer leaflet of the membrane 
that not only decreases fluidity and imposes rigidity but induces 
an outward membrane curvature that opposes the forces exerted 
by the viral fusion machinery. These general mechanisms may 
account for the diversity of viruses inhibited, including non-
enveloped viruses, such as reoviruses, that do not require fusion, 
but do need to disrupt the endosomal membrane to enter the cell 
(74). Such models are also consistent with observations of IAV 
and Semliki Forest virus (SFV) accumulating in endosomal com-
partments where the restricting IFITM resides, without affecting 
the pH-dependent exposure of the viral fusion machinery (70, 
71, 75). Studies have demonstrated that IFITM-mediated restric-
tions of fusion can be overcome by antifungal drugs that target 
cholesterol metabolism, and oelic acid treatment that is predicted 

121

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Foster et al. HIV Restriction at the Plasma Membrane

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1853

to reverse the positive membrane curvature exerted by the IFITM 
(72, 73). Dye-dequenching transfer experiments using labelled 
IAV virions suggest that hemifusion, the mixing of lipids from 
the outer leaflets of viral and cellular membranes, still occurs 
in the presence of the IFITM (70, 72). However, whether this is 
generalizable to all enveloped virions is not known.

One related mechanism, suggested by Amini-Bavil-Olyaee 
et al., is that the direct interaction of IFITM3 with vesicle mem-
brane protein associated protein A (VAPA) leads to a disruption 
of the VAPA-oxysterol binding protein (OSBP) function that 
acts to regulate intracellular cholesterol homeostasis (69). In the 
presence of IFITM3, endosomal membranes become cholesterol 
laden, less fluid and functionally impaired, thus blocking viral 
entry. However, other studies have failed to replicate the latter 
observation (70), and the lack of VAPA interaction with IFITM1 
or 2 is difficult to reconcile with their antiviral properties. Lastly, a 
recent study has suggested that a ubiquitous zinc metalloprotease, 
ZMPSTE24, previously implicated in processing nuclear lamins, 
is an essential cofactor for IFITMs independent of its catalytic 
activity (76). As yet, the mechanism for its role is not known.

Restriction of Hiv by iFiTMs
All three IFITM proteins have been demonstrated to affect 
HIV-1 entry and replication, albeit to a lesser degree compared 
to their effects on other viruses. However, there has been some 
controversy over their potency and mode of action. The initial 
study from the Liang group, based on T  cell lines ectopically 
expressing individual doxycycline-inducible IFITMs showed that 
IFITM2 and IFITM3 could block the entry of a model X4-using 
laboratory strain, but all three IFITMs could block spreading rep-
lication, suggesting multiple stages of the HIV-1 replication cycle 
were sensitive to IFITM restriction (53). While these differential 
effects on HIV-1 entry and replication were observed in the target 
cells, two further studies explored the role of IFITMs in HIV-1 
producer cells (77, 78). Both groups observed that IFITMs were 
incorporated into viral particles, making the particles less infec-
tious. They hypothesized that through cell-cell transmission, the 
virions were able to circumvent the effect of IFITMs in target cells 
but cell-free virus spread from infected producer cells is limited as 
the virions produced become increasingly less infectious through 
IFITM incorporation (Figure 2A). While IFITM3 was found to 
accumulate at sites of viral assembly on the PM, neither study 
reported a specific interaction with the envelope glycoprotein or 
an effect on envelope density due to IFITM incorporation. A third 
study reported that IFITM overexpression caused an infectivity 
defect to virions not because of their incorporation per  se, but 
because they appeared to directly interact with nascent gp160 and 
block its processing to its mature subunits (79). The major caveat 
to all these studies is that the majority of the mechanistic data 
are based on un-physiological overexpression mediated either by 
transient transfection or drug-induction. Whilst all the studies 
performed RNAi-mediated depletion of IFITM expression levels 
(which is challenging because of high homology between the 
IFITMs) to show that a prototypical HIV-1 isolate replicates better 
in target cells, that this phenotype is because of the mechanisms 
proposed is unclear. In particular, the block to gp160 processing 
has not been reproduced by others under more physiological 

IFITM expression levels (65, 80). However, virion incorporation 
of IFITMs as a mechanism of reducing viral infectivity has been 
suggested for diverse enveloped viruses (81).

The subcellular site at which HIV-1 enters has been controver-
sial. Recently, we wondered whether IFITM-mediated restriction 
might shed light on this controversy (80). Using a panel of model 
cell lines based on the neuroblastoma cell line U87-MG (long 
used in HIV-1 entry studies because they express no CD4 or 
endogenous major coreceptors), we expressed individual IFITMs 
at interferon-induced expression levels alongside CD4 and 
CXCR4 or CCR5. We found that IFITM restriction of HIV-1 was 
mediated by all three proteins but that there was a dependence on 
the viral co-receptor usage (Figure 2A). Virions that required the 
CCR5 co-receptor were more susceptible to inhibition by IFITM1 
at the plasma membrane whilst CXCR4-using virions were more 
sensitive to IFITMs 2 and 3 that are predominantly localised 
within endosomal compartments. We therefore hypothesized 
that both properties of the viral envelope and that of the IFITM, 
in particular its subcellular localisation, dictated this “specific-
ity” of inhibition. We showed that mutation of Y19/Y20 that 
mislocalises IFITMs 2 and 3 to the plasma membrane, or direct 
blockade of endocytosis, also modulates the restriction activity 
of these proteins against HIV-1 virus isolates that differ in their 
sensitivity to restriction by IFITM1 or IFITMs 2 and 3. HIV-1 
envelope glycoproteins that were usually sensitive to restriction 
by IFITMs 2 and 3 were now insensitive in both one-round entry 
assays and spreading replication. The observation that this did 
not impair virion incorporation of the IFITM indicated that the 
primary mode of restriction was the blocking of viral entry by 
the IFITM expressed on the target cell membrane. These data 
implied that the pattern of IFITM-mediated restriction of a given 
envelope indicated different sites of entry—some viruses may 
fuse at the PM; others in, or en route to, endosomal compart-
ments (Figure 2A). Three independent studies have also linked 
coreceptor use and IFITM sensitivity [(82, 83) #870] (81). In 
particular, Huang and colleagues (83) identified a putative splice 
variant (Δ20 IFITM2) of IFITM2 that lacks the N-terminal 20 
amino acids of the full-length protein. They report higher endog-
enous expression of this isoform in monocytes and in CD4+ 
T-cells compared to the full-length protein, with localisation 
of the variant both at the plasma membrane and in endosomal 
compartments. They found that several R5-tropic viruses were 
resistant to inhibition by Δ20 IFITM2 with the cytoplasmic tail 
of CCR5, containing the major trafficking and signaling motifs, 
being a major determinant of this resistance. By contrast a diverse 
range of X4-tropic viruses were highly susceptible to inhibition. 
Whilst confirming that coreceptor usage also affected sensitivities 
to full length IFITM2 and IFITM3-mediated entry restriction, 
they found this was cell-type dependent, further highlighting 
the complexities of IFITM-mediated restriction of HIV entry. 
Interestingly, the authors showed that IFITM2 knockdown in 
primary dendritic cells led to a 2-fold increase in their permissiv-
ity to X4 viruses. Whilst it is unclear if this was a significant gain 
in replication capacity for myeloid cells, it raises the possibility 
that X4 viruses might lack macrophage tropism in part through 
active host restrictions that R5 viruses avoid, something previ-
ously suggested by Schmidtmeyerova et al. 20 years ago (84).
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FigURe 2 | Restriction of HIV-1 entry at the plasma membrane. (A) IFITMs. The antiviral restriction activity of the interferon induced transmembrane (IFITM) protein 
family appears to be linked to the site of viral fusion. The current general mechanism of action proposed, i.e. the physical fusion of the viral and host cell membranes 
is blocked, accounts for the diversity of viruses that IFITMs restrict. The influence of complex cellular trafficking pathways on this mechanism is yet to be determined. 
IFITMs 1, 2 and 3 are localised in different membrane compartments; IFITM1 primarily at the plasma membrane and IFITMs 2 and 3 in overlapping intracellular 
endocytic compartments-the sites of enveloped virus fusion. HIV-1 entry requires the CD4 receptor and co-receptors CCR5 or CXCR4 and it appears that HIV-1 
sensitivity to IFITM restriction is influenced both by IFITM localisation and the site of fusion. Fusion that occurs at the plasma membrane is susceptible particularly to 
an IFITM1 mediated block. IFITMs 2 and 3 appear to restrict any fusion events that bypass the plasma membrane and occur within the intracellular compartments. 
IFITMs incorporated into viral particles during budding mediate their restriction on the target cell as the virus progeny become increasingly less infectious due to 
IFITM incorporation. (B) SERINC 3 and 5. The transmembrane proteins SERINC3 and SERINC5 are incorporated into budding HIV-1 particles from the membrane 
of the infected cell. In the absence of the Nef protein, HIV-1 infectivity in the target cell is restricted as delivery of the viral core is reduced due to a block to fusion. 
Conversely, in the presence of Nef, SERINC3/5 are relocalised from the plasma membrane through dynamin- and clathrin-dependent endocytosis, thus restoring 
viral infectivity and allowing for successful fusion of the progeny virions that lack SERINC3/5, with the target cell. (C) Other lentiviral restrictions at the plasma 
membrane. The post-entry restriction activity of lentivirus susceptibility factors 2 and 3 (Lv2/3) is dependent on the fusion events at the plasma membrane. Both 
envelope and capsid are determinants of Lv2 mediated restriction that blocks reverse transcription and nuclear entry. Likewise, RNA-associated early stage antiviral 
factor (REAF) which has been identified as a potent effector of Lv2, blocks reverse transcription in a similar manner dependent on the route of entry. The Lv3 block is 
a TRIM5α-independent process that is dependent on envelope interactions with viral entry receptors. The cell specific restriction factor TRIM5α, binds to capsid and 
forms a lattice leading to premature disassembly of the core. In Langerhans cells, HIV-1 uptake by the C-type lectin Langerin leads to recruitment of TRIM5α and a 
post-fusion block that occurs prior to integration. Conversely, in other DC subsets, interaction with DC-SIGN, induces a signalling cascade that facilitates reverse 
transcription and prevents TRIM5α restriction.
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The importance of iFiTM-Mediated 
Restriction in Transmission and  
Acute infection
Amongst the viruses tested in our study, we showed that envelopes 
from R5-tropic TF viruses were uniformally resistant to IFITM 
restriction (80). Intriguingly, matched virus clones representing 
the majority species from the same individual at 6 months had 
gained substantial sensitivities to IFITM2 and 3 in particular. 
Again this was envelope determined, and was lost upon relocali-
zation of the IFITM to the PM, suggesting that changes in Env 
during those 6 months had affected the route of viral entry, despite 
no change in coreceptor usage occurring. A major determinant 
of the IFITM-resistance of the TF virus was the cell surface level 
of CD4, suggesting that receptor engagement and density were 
key requirements. Consistent with this idea, selection of X4 
HIV-1 resistance to IFITM1 by the Liang group yielded viruses 

with lesions in Vpu and changes in the CD4 binding site of Env 
(85). Such adaptations in culture will lead to a modulation of the 
envelope structure during assembly (see tetherin section below). 
The differences in Env between TF and 6 month viruses varied 
between individuals. It is well known that gp120 and gp41 are 
the targets for both T  cell and antibody responses throughout 
infection in vivo. Hypothesizing that escape from such adaptive 
immune responses in Env might reveal IFITM sensitivity, we 
found that reversal of amino-acid changes in gp120 that arose 
through the escape of early neutralizing antibody responses 
(86) fully restored IFITM resistance to the 6-month virus. 
Furthermore, in primary human CD4+ T  cells, knockdown of 
IFITM2 and 3 rescued much of the 6 month virus’s replication 
after IFN-treatment. Thus it would appear that IFITM-resistance 
in Env is a major contributor to the overall IFN-I resistance of 
transmitted viruses, implying their evasion must be an important 
attribute for successful transmission. Moreover, once the virus 
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is systemically established, structural changes in Env that affect 
receptor/co-receptor interactions leading to IFITM sensitivity 
become tolerable if there is selective pressure applied by a com-
peting adaptive immune response. This suggests that even host 
restrictions with a relatively small magnitude [by comparison 
to say APOBEC3G (87)] can have a major determining effect 
at transmission or in the early stages of systemic replication. 
Furthermore, because IFITM sensitivity appears to be dictated by 
Env/receptor interactions, these data further suggest a constraint 
on the envelope at transmission that endows it with IFN resist-
ance, which itself may be an important consideration for vaccine 
design. Of note, recent studies on the adaptation of chimeric 
SIVs encoding HIV-1 envelopes (SHIVs) via sequential passage 
in macaques demonstrated a gain in IFN resistance mapping to 
Env, and particularly its level of virion incorporation (88, 89). 
Whether this is reflective of restriction by simian IFITMs, which 
do inhibit lentiviruses in culture (90), has yet to be determined.

The ifitm locus is complex and has not been well-annotated 
for genome wide association studies. However, SNPs in ifitm3 
have been implicated in the susceptibility to human disease. Of 
these, rs12252 has generated much interest. Homozygosity for a 
very rare minor allele, rs12252-C, was strongly associated with 
the severity of H1N1 Swine Flu in the UK (91). This synony-
mous polymorphism changes a serine codon in the N-terminal 
cytoplasmic tail of IFITM3 from AGT to AGC. Initially, this was 
thought to lead to an alternatively spliced message that would 
express a N-terminally truncated IFITM3 protein lacking its 
endocytic YXXϕ motif. Such a truncated protein localizes to the 
PM and does not restrict IAV entry (91). However, no evidence 
of such a splice variant has since been found, raising questions 
about how this SNP exerts its effects. Reproduction of rs12252-C 
association with IAV pathogenesis has been mixed, but in Han 
Chinese populations, where the allele frequency is much higher 
(30–40%), a clear association with flu severity has been confirmed 
(92–97). At present it is not known whether other SNPs in the 
locus are in linkage disequilibrium with rs12252-C that might 
explain such discrepancies. In the same Chinese population 
rs12252-C is also strongly associated with rapid progression 
during acute HIV-1 infection, and in particular elevated viral 
loads and CD4+ T cell loss (96). Unlike IAV pathogenesis, this 
association was also observed in heterozygotes, suggesting the 
effect of rs12252-C is dominant. These intriguing results further 
highlight the importance the IFITMs in HIV-1 pathophysiology. 
The elucidation of the molecular bases for these observations will 
provide mechanistic insight to their role in HIV restriction.

SeRiNe iNCORPORATORS 3 AND 5

The accessory protein Nef, common to all primate lentiviruses, 
has a multitude of functions in HIV-1 replication (42). Nef is 
myristoylated and associates with the inner leaflet of the PM 
and endosomal membranes. Here it promotes downregulation 
of various membrane proteins from the cell surface, predomi-
nantly to reduce the recognition of infected cells by adaptive 
immune responses. The most well-studied Nef targets are CD4, 
and class I and II MHC molecules, which protect infected cells 
from antibody-dependent cellular cytotoxicity (ADCC) (98) or 

recognition by antigen-specific T  cells respectively, although 
several others have been identified (42), particularly amongst 
SIV Nef alleles. However, one conserved function of lentiviral Nef 
proteins that until recently remained unexplained, was its ability 
to promote the infectivity of the lentiviral virion (99).

Cells infected with HIV-1 mutants lacking Nef produce viri-
ons with reduced infectivity, even in the absence CD4 which itself 
interferes with envelope folding and trafficking (99). The magni-
tude of this CD4-independent effect on virion infectivity is vari-
able amongst cell lines, but from lymphoid cells it can be reduced 
by as much as 50-fold (6). Pseudotyping virions with heterologous 
pH-dependent envelope proteins such as the glycoproteins from 
vesicular stomatitis virus or Ebola virus completely rescues the 
infectivity defect of HIV-1 Nef mutants (99). However, while this 
infectivity defect is manifest at an early entry or post-entry stage, 
it does not correlate with envelope incorporation into the virion. 
Furthermore, variations in gp120 variable domains, particularly 
the V1/V2 loops, affect the sensitivity of HIV-1 to Nef-dependent 
infectivity enhancement, implying that Nef regulates an intrinsic 
property of Env during the entry process (100). In keeping with 
this, Nef also affects the sensitivity of virions to certain neutral-
izing antibodies (101).

The first clue that this may be governed by a host restriction fac-
tor came from the observation that Nef interaction with dynamin 
2 (dyn2), the major cellular GTPase that controls endocytosis, was 
essential to regulate particle infectivity (102). The requirement 
for dyn2 by Nef was during viral production, and its knockdown 
reduced virion infectivity to that of the Nef-defective mutant. 
Since Nef mediates the removal of other membrane proteins from 
the cell surface, one attractive hypothesis was that it was targeting 
an inhibitor of virion infectivity. This was further evidenced by 
the demonstration that in heterokaryons between human cells 
that had a high and low dependence on Nef for virion infectivity, 
the requirement for Nef was dominant (6). Intriguingly, the acces-
sory protein of gamma retroviruses, a membrane-bound and gly-
cosylated form of their major structural protein Gag (GlycoGag), 
can substitute for Nef activity and vice versa (103). GlycoGag is 
generated from a weak in-frame translational start site upstream 
of the regular Gag initiation codon, producing a Gag with an 88 
amino acid N-terminal extension that results in its insertion in 
the ER membrane. As with Nef, GlycoGag promotes MLV infec-
tivity in a dyn2 and endocytosis dependent manner (104), thus 
indicating that they target a common factor or pathway.

In 2015 two groups cloned the factor(s) responsible for 
this phenotype by complementary approaches. In the first, 
Massimo Pizzato and colleagues performed a large scale gene 
expression analysis of cells where the virus dependence on Nef 
varied, looking for mRNAs whose abundance correlated with 
the magnitude of the infectivity enhancement (6). In the second, 
Heinrich Gottlinger’s group performed proteomic analyses of 
HIV-1 virions purified from human T  cells in the presence or 
absence of Nef and/or GlycoGag expression, hypothesizing that 
a Nef-regulated inhibitor of infectivity may be incorporated into 
virions of Nef-defective viruses (8). Both groups identified mem-
bers of the serine incorporator (SERINC) family of multi-pass 
membrane transporters, SERINC5 and SERINC3 respectively. 
Shortly afterward, a further proteomic study documenting global 
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changes to the cell surface proteome of HIV-1 infected T cell lines 
identified both SERINCs as differentially regulated by wild-type 
and Nef-defective viruses (105). Both proteins were shown to 
inhibit Nef-defective virus infectivity upon ectopic expression in 
“low Nef-responsive” cells, with SERINC5 being the most potent 
(6, 8, 106). Conversely, CRISPR/Cas9 knockout of both SERINC5 
and SERINC3 fully restored Nef-defective virus infectivity from 
CD4+ T  cells. In the presence of Nef, SERINC5 is relocalized 
from the PM to endosomal compartments dependent on Nef 
interaction with the clathrin adaptor AP-2 (Figure 2B). Moreover, 
SERINC5 was also counteracted by various SIV Nef alleles as 
well as MLV GlycoGag and VSV-G (6, 8), thus recapitulating the 
known features of the proposed restriction factor. Additionally, 
the S2 accessory protein of the distantly related lentivirus, equine 
infectious anemia virus (EIAV), also counteracts SERINC5 (107). 
Interestingly, unlike the IFITMs or tetherin (see below), SERINCs 
are neither significantly regulated by IFN-I, nor do they display 
evidence of positive selection in mammals (6, 108).

At the time of writing almost nothing is known about the mech-
anism by which SERINC5 exerts its antiviral activity. SERINCs 
are PM proteins with 12 predicted TM domains (Figure  1B). 
They are conserved from yeast to man, but only SERINCs 3 and 
5 restrict retroviral infectivity (6, 8). Whilst there are several 
predicted isoforms of SERINC5 derived from putative splice 
variants, the majority mRNA species encodes the longest form 
(109). SERINCs were originally named for their proposed ability 
to incorporate serine into membranes as phosphatidylserine or 
sphingolipids (110), although how they do this or even whether 
this activity is relevant for viral restriction is not known. Direct 
incorporation of SERINC5 into the virion seems to be essential, 
and as a result of Nef-mediated internalization, SERINC5 is 
excluded from the assembling virion (6, 8, 111). However, 
this is not sufficient to explain the antiviral activity as VSV-G 
pseudotyping of the virus confers complete SERINC5 resistance 
without blocking incorporation (6, 8). What has been shown is 
that the block mediated by SERINC5 occurs at the fusion stage 
(6, 8). Both particle-associated beta-lactamase (BLAM) or CRE 
recombinase transfer to target cells is reduced in the presence of 
SERINC5, however the magnitude of this block to fusion does not 
fully match that of the infectivity defect or levels of reverse tran-
scription. Whilst this has been interpreted as a potential block to 
fusion pore expansion rather than the initiation of fusion, it could 
also simply be a reflection of the difference in the dynamic range 
of assays that measure entry and post-entry events. Interestingly, 
SERINC5 sensitivity of primary R5 tropic viruses is variable in 
the absence of Nef (8). Exchange of the gp120 V1/V2 or V3 loops 
between these and prototypic X4 viruses swaps these phenotypes. 
This in part maps to variable N-linked-glycosylation sites in gp120 
that are thought to stabilize the envelope glycoprotein (100). A 
very recent study indicates that while there is no evidence yet 
of direct Env/SERINC5 interaction, sensitive envelopes appear 
to be inactivated, exposing epitopes that would normally require 
receptor interactions (112, 113). Thus SERINC5 may be affecting 
the intrinsic stability of the Env trimer, thus blocking fusion. It is 
interesting to note the potential parallels here with those of the 
restriction of HIV-1 by IFITMs, with the relative resistance of 
R5 envelopes again highlighting that constraints on the envelope 

glycoprotein may be driven by selection for their resistance to 
intrinsic antiviral restriction mechanisms.

As noted above, SERINC3/5 expression appear not to be 
regulated by inflammatory stimuli and there is no evidence of 
the positive selection in mammalian SERINCs that is a common 
feature of other viral restriction factors (6). There is no apparent 
species specificity in antagonism, with a given HIV-1, HIV-2 
or SIV Nef counteracting both human and primate SERINC5 
orthologues (114). This conservation of function in Nef would in 
itself imply its importance. However, further observations have 
hinted that the efficiency of Nef-mediated SERINC antagonism 
by HIV and SIV Nef alleles may correlate with prevalence of a 
given virus in its host primate species (114). If so, then the selec-
tive pressure on Nef that gives rise to this variation in activity 
will be more complex than simply Nef/SERINC5 interaction, and 
may reflect, for example, impacts of envelope variation in SIVs 
or other properties of SERINCs in lentiviral replication yet to be 
discovered.

OTHeR LeNTiviRAL “ROUTe OF eNTRY” 
ReSTRiCTiONS

Aside from IFITMs and SERINCs, other restrictions have been 
reported that affect post-entry events in lentiviral replication 
dependent on the route of viral entry. These restrictions, termed 
Lv2 and Lv3 [Lv1 being the name of the post-entry restriction 
activity later shown to be conferred by species-specific variants 
of TRIM5α (115, 116)], operate in human and primate cells 
respectively. Lv2 manifests as a block to reverse transcription 
and nuclear entry, and was originally demonstrated for HIV-2 in 
certain human cell lines and primary macrophages (Figure 2C) 
(117). The viral determinants of this restriction mapped both to 
the viral capsid and envelope proteins, but the entire restriction 
can be bypassed by VSV-G, suggesting that the post-entry block 
depends on where in the cell the virus fuses (118). Consistent with 
this, Lv2 restriction can be relieved by blocking endocytosis or 
mis-localizing CD4 at the PM (119). Moreover, these restriction 
patterns can also be seen for a variety of X4-using HIV-1 strains 
and be in part conferred to a heterologous core by envelope pseu-
dotyping (119), a phenotype that bears some similarity to those 
for IFITM-mediated restriction (80). However, more recently 
regulation of nuclear pre-mRNA domain-containing protein 2 
(RPRD2), termed by the authors REAF (RNA-associated early 
stage antiviral factor), has been proposed to be the effector of 
Lv2 restriction (120, 121). REAF appears to interact with the 
incoming genome to block reverse transcription, but is depend-
ent on the pseudotyping envelope (Figure 2C). Whether REAF is 
differentially localized along the endocytic network, or whether 
restrictions during fusion (or avoidance thereof) predispose the 
incoming virus to REAF-mediated restriction remains to be 
determined. Similarly, Lv3 is a post-entry block to HIV replica-
tion in macaque cells that is distinct from TRIM5α and again 
depends on the Env CD4/coreceptor interactions (122). Again, 
this bears superficial similarities to IFITM restrictions, but the 
block appears to be manifest at reverse transcription and can be 
saturated (Figure 2C).
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A third very recent example of “route of entry restrictions” 
has been described in a human dendritic cell subset, Langerhans 
cells (LCs), that are resistant to HIV-1 infection due to the inter-
action between the virus and the C-type lectin langerin (123). 
This mediates virion targeting to Birkbeck granules and prevents 
viral replication at an early post-entry stage. This turns out to 
be dependent on human TRIM5α, the capsid-binding restriction 
factor to which HIV-1 was thought to be resistant. In the presence 
of langerin, the authors propose that TRIM5α is recruited to the 
site of entry and targets the incoming virus to an autophagic deg-
radation pathway. In other DC subsets, virion engagement with a 
different lectin, DC-SIGN, prevents the recruitment of TRIM5α 
upon virion internalization (Figure 2C).

Type II IFNs (IFNγ) have an under-appreciated direct antiviral 
activity on HIV-1 (124). In part, this again maps to the envelope 
protein, and in particular the V1/V2 loop (124). The initial results 
suggest that TF viruses may be more resistant to the effects of 
IFNγ, but the factors involved are not yet known.

TeTHeRiN

At the other end of the viral lifecycle, the most prominent anti-
viral inhibitor of lentiviral replication associated with the plasma 
membrane is tetherin (also known as bone marrow stromal cell 
antigen 2—BST2 or CD317). Tetherin’s antiviral activity was 
discovered as the target of the HIV-1 accessory protein Vpu (125, 
126), long known to play a role in the efficient release of new 
retroviral particles from infected cells. Tetherin is an IFN- and 
pattern recognition-regulated gene and has a general antiviral 
function against diverse enveloped viruses [reviewed in Ref. (5)]. 
Amongst the primate lentiviruses, tetherin antagonism is a highly 
conserved attribute (127). Furthermore, the adaptation of HIV-1 
Vpu to target the human tetherin orthologue was a key event in 
the development of the HIV/AIDS pandemic. In this section we 
will focus only on the role of tetherin in lentiviral pathogenesis.

Tetherin-Mediated Restriction  
of viral Release
Tetherin is a type 2 membrane protein whose distinctive topol-
ogy is indicative of its primary mode of action: the retention of 
fully-formed virions on the PM of infected cells and their sub-
sequent removal to endosomes (128, 129). Tetherin exists in the 
PM as disulfide-linked dimers that constitutively recycle via the 
Golgi apparatus (130, 131). The extracellular domain of tetherin 
forms a rod-like coiled-coil, with a hinge towards its N-terminal 
transmembrane domain to allow a degree of rotational flexibility 
(Figure 1C) (132–134). The C-terminus is covalently attached to 
the lipid of the PM by a glycophosphatidyl-inositol (GPI) linkage, 
giving the mature protein two membrane anchors (Figure 1C) 
(128, 130). As the nascent virus buds through the PM, tetherin 
dimers are recruited to the virion membrane (128, 135, 136). The 
C-terminal GPI anchor appears to be preferentially incorporated 
into the virion whilst the N-terminal TM domain is retained 
outside the bud (Figure  3) (129). When the ESCRT pathway 
mediates the scission of viral and cellular membranes, tetherin 
dimers retain the new viral particle via a stable protease-sensitive 

crosslink (125, 129, 137, 138). Leaky scanning of the tetherin 
mRNA leads to two isoforms being expressed at apparently equal 
levels, differing in the length of their cytoplasmic tails (139). 
Depending on the species orthologue, the shorter isoform lacks 
the first 12–17 amino acids that encompass the major subcel-
lular trafficking signal—a dual tyrosine-based motif that engages 
clathrin adaptors AP1 and AP2 (131). Both isoforms can form 
homo- and heterodimers and both can potently restrict viral 
release (139, 140). However, the longer human isoform has a pro-
inflammatory signalling activity associated with it (see below), 
and is also more sensitive to Vpu (139, 140).

Tetherin expression is induced by both type I and II IFNs, as 
well as pattern recognition signals, in many cell types (141, 142). 
It is expressed on activated T cells and is constitutively expressed 
by plasmacytoid dendritic cells. Tetherin expression is upregu-
lated on peripheral blood mononuclear cells during the acute 
phase of HIV infection (143), and by treatment of HIV-infected 
individuals with IFNα (45). Its expression is enriched on tissues 
with barrier function, further suggesting an important role in 
host defence (144).

Tetherin Counteraction by Primate 
Lentiviruses and its Role in Limiting 
Cross-Species Transmission
Tetherin targets a part of the virus that it cannot mutate to evade 
restriction, therefore the virus must evolve a countermeasure. 
Although the virally-encoded protagonist and mechanism differ, 
the ability to counteract tetherin is conserved among primate 
lentiviruses (5).

SIVs are naturally prevalent in a wide range of African non-
human primates [reviewed in Ref. (145)]. For the most part each 
species is infected with a monophyletic strain of SIV (indicated 
by a suffix denoting the host species e.g. SIVsmm in sooty 
mangabeys), signifying predominantly within-species spread, 
with some notable examples of cross-species transmissions. Over 
40 primate lentiviruses have been identified, and of these three 
have crossed the species barrier into humans: SIVcpz, SIVgor 
and SIVsmm, from chimpanzees, gorillas and sooty mangabeys 
respectively (145).

The precursors to HIV-1 were transmitted from chimpanzees 
to humans on at least 2 separate occasions, giving rise to HIV-1 
groups M and N (146, 147), and twice from gorillas to humans 
resulting in HIV-1 groups O and P (148, 149). The precursors 
to HIV-2 crossed from sooty mangabeys into humans at least 8 
different times (or at least their sequence diversity suggests inde-
pendent cross-transmissions), resulting in HIV-2 groups A-H 
(150–152). These 12 groups of viruses have had vastly different 
impacts on the human population, ranging from single-case 
HIV-2 infections to the millions of people infected with Group M 
since its first predicted zoonotic infection in the early 1900s (145). 
While environmental and social factors inevitably played a role 
in the outcome of these zoonoses, extensive work dissecting host-
pathogen relationships reveals a role for tetherin in influencing 
the course of cross-species infections.

Most SIVs counteract their host’s tetherin using the accessory 
protein Nef (127, 153, 154). Notable exceptions to this are SIVs 
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from greater spot-nosed, mustached and mona monkeys (SIVgsn, 
mus and mon respectively) which are unique among SIVs in 
possessing the accessory protein Vpu, capable of antagonising 
tetherin in a species-specific manner (127). Although SIVcpzPtt 
and SIVgor are also among the subset of SIVs that possess a 
vpu gene, their Vpus lack the ability to counteract chimpanzee, 
gorilla and human tetherin, although they still maintain function 
in the form of robust CD4 downregulation (127). These viruses 
use Nef as an antagonist, which stimulates the AP2-dependent 
clathrin-mediated endocytosis of tetherin, removing it from the 
site of virus assembly. The use of Nef rather than Vpu as a tetherin 
antagonist may be explained by the origins of SIVcpz—a chima-
eric virus originating from recombination between an ancestral 
strain of the SIVgsn/mus/mon lineage and red-capped mangabey 
SIV (SIVrcm) (155). Inheriting two tetherin antagonists appears 
to have resulted in SIVcpz losing counteractivity in one.

The deletion of a five amino acid stretch (G/DIWKK) in the 
cytoplasmic tail of tetherin (Figure 3) between 1 and 6 million 
years ago—after divergence from chimpanzees but before the 
divergence of Denisovans and Neanderthals—has rendered the 

human protein resistant to SIV Nef antagonism (127, 153, 154, 
156). Consequently, establishing a successful infection in humans 
requires an alternative mechanism of tetherin counteraction, 
either by adapting a different antagonist or adjusting the action 
of Nef. As detailed below, the mechanism and/or the extent 
of the adaptation differs in each known case of cross-species 
transmission.

HIV-1 group M Vpu efficiently deals with both tetherin’s 
physical virus restriction and subsequent antiviral signalling 
by escorting nascent tetherin into a defunct cellular pathway 
and triggering its degradation (5). Vpu and tetherin interact 
via their transmembrane domains, with the interactive face of 
Vpu consisting of highly conserved alanines and a tryptophan 
(Figure  3) (157–160). Moreover, it is this interacting face that 
was likely to have been the key adaptation that led to human 
tetherin counteraction by the prototypic group M HIV-1 as 
revealed by the Vpu sequences of its closest extant SIVcpzPTT 
relatives (161). Tetherin/Vpu complexes are then targeted to late 
endosomes for degradation (162). This complex process requires 
the phosphorylation of the Vpu cytoplasmic tail that facilitates 
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the formation of a ternary complex between tetherin, Vpu and 
the clathrin adaptor AP-1, and perhaps AP-2, promoting their 
targeting to late endosomes (163–165). This mechanism allows 
Vpu to engage both newly synthesized and recycling tetherin 
pools. Concomitant with this process, the dual-serine phos-
phorylation site of Vpu, a conserved DSGxxS motif, interacts 
with an SCF E3 ubiquitin ligase, predominantly through the 
adaptor protein βTRCP2 (162, 166–169). This leads to multiple 
ubiquitination events in the Vpu cytoplasmic tail (170–172) that 
target it for ESCRT-mediated degradation (164, 173–175). This 
final rerouting and degradation of tetherin requires the major 
endocytic motif in its cytoplasmic tail (163, 175). Thus the short 
isoform of tetherin cannot be degraded or downregulated from 
the surface by Vpu (140). However, physical interaction with Vpu 
does reduce its incorporation into virions, counteracting tetherin 
at lower expression levels.

Primary HIV-1 group M Vpus are highly active antagonists 
of tetherin and efficient inhibitors of tetherin-mediated NF-κB 
signalling, and these functions are conserved in transmitted 
viruses and throughout the course of infection, and across the 
clades (127, 176–178). Suboptimal Vpus are rapidly selected 
against in vivo, and robust anti-tetherin function is maintained 
even years after infection (177). Studies of viruses with mutations 
in Vpu rendering them specifically unable to counteract tetherin 
but otherwise unaffected, demonstrate that these viruses are 
compromised compared to wildtype viruses in the presence of 
high concentrations of IFN-I (179). Likewise, selective pressure 
provided by upregulated tetherin expression during IFNα treat-
ment of HIV-infected individuals may select for changes in Vpu 
(45). Thus, Vpu-mediated tetherin counteraction contributes to 
the overall viral interferon resistance.

Interestingly, it appears that Group M Nefs are able to acquire 
moderate ability to counteract human tetherin in certain cir-
cumstances (180). Although this does not represent a common 
activity amongst Group M Nefs, the association of a proportion 
of the active Nefs with viruses harbouring defective Vpus further 
underlines the importance of tetherin antagonism in vivo (180).

Fewer than 20 cases of Group N infections have been docu-
mented to date, and their adaptation to human tetherin represents 
a mixed and developing picture. For the most part they display 
some ability to counteract tetherin and enhance infectious virus 
release from cells, but activity is poor compared to the typical lev-
els of Group M Vpus (127). However, a highly pathogenic Group 
N virus isolated from a French individual—the first case of Group 
N infection found outside Cameroon—demonstrated Vpu activity 
on a par with that of Group M. This French/Togo Vpu contains 
functional domains known to contribute to activity in Group M 
Vpus, whilst these are lacking in other known weak Group N Vpus 
(181). The mixed success of Group N Vpus to combat human teth-
erin is counterbalanced by its total inability to perform another 
major function of Vpu, the downregulation of CD4.

HIV-1 Group O infections represent a substantial epidemic, 
with an estimated 100,000 people infected. The majority of Group 
O Vpus tested demonstrate poor tetherin antagonism (127, 182, 
183); instead, Group O Nef has adapted to target a different region 
of human tetherin, circumventing the 5 amino acid deletion that 
confers resistance to inhibition by SIV Nefs (184). The activity of 

the Group O Nefs is species-specific, being more efficient at down-
modulating human compared to gorilla tetherin. Interestingly, a 
single example of a Group O Vpu able to counteract tetherin has 
recently been reported (185).

HIV-1 group P viruses have been isolated from only two 
individuals to date, both from Cameroon (186, 187). These 
viruses appear to be poorly adapted to humans, with no tetherin 
counteractivity detected in either their Vpu, Nef or Env proteins 
(183, 188).

Like most SIVs, the SIVsmm precursor to HIV-2 uses Nef to 
antagonise tetherin in its sooty mangabey host (127). Similar to 
SERINC5 antagonism, SIV Nefs bind to their cognate primate 
tetherin dependent on the G/DWIKK motif and promote its 
AP-2-mediated endocytosis from the cell surface (189, 190). 
While HIV-1 Group M evolved efficient tetherin antagonism by 
Vpu, and Group O Nefs evolved to target a different region of 
tetherin (184), HIV-2 employs a different strategy of antagonism, 
using the Env protein (191). The extracellular domains of both 
proteins interact, and again this stimulates endocytic removal 
of tetherin from the cell surface through Env’s interaction with 
AP-2 (191–194). Tetherin antagonism appears to be a conserved 
attribute of HIV-2 isolates tested to date (195), although the 
potency of HIV-2 Env in enhancing virus release is weaker than 
that of HIV-1 group M Vpus, insofar as in vitro assays are a true 
reflection of activity. Whether there is a fitness and efficacy cost 
associated with using a major structural protein, also under 
pressure to evade antibody responses, to carry out a role more 
commonly performed by accessory proteins remains to be seen.

In Vivo Relevance—evidence from 
experimental infections
The importance of tetherin in vivo is demonstrated by the remark-
ably diverse strategies enlisted by viruses to overcome this barrier 
(5). Simple demonstrations of this arms race in action come from 
experimental infections of primates, of which there are several 
examples demonstrating pathogenesis associated with acquisition 
of tetherin counteractivity. Studies of chimpanzees infected with 
HIV-1 for the purposes of vaccine studies in the 1980s were revis-
ited in order to investigate readaptation to a previous host species. 
Examination of the readapted viruses revealed that, although the 
Vpu maintained function, tetherin antagonism was also acquired 
in Nef, with the virus using both proteins to overcome chimpan-
zee tetherin (196). The minimal changes required to restore anti-
chimpanzee tetherin activity to the HIV-1 Nef were just 2 amino 
acids, and the region of chimpanzee tetherin targeted by the 
adapted Nef was mapped to the DIWKK region deleted in human 
tetherin (196). It therefore appears that lost accessory gene func-
tions can be reacquired relatively easily. Similarly, serial passage 
of modified simian tropic HIV-1 in pigtail macaques resulted in 
a virus that could replicate efficiently and cause AIDS in these 
otherwise unsusceptible hosts (197). The modified virus used in 
the original inoculum was endowed with resistance to macaque 
APOBEC3 restriction factors, but unable to counteract monkey 
tetherins. Four passages resulted in a pathogenic virus that was 
able to efficiently counteract macaque tetherin while maintaining 
anti-human tetherin activity. The amino acid changes responsible 
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for this adaptation were mapped to the transmembrane region of 
the Vpu—the region that interacts with tetherin—and involved 
only two amino acid changes (197).

Infection of rhesus macaques with Nef-deleted SIV 
(SIVmacΔnef) usually results in attenuated infection, with per-
sistent but low-level viral replication. After serial passage these 
viruses can revert to pathogenicity, leading to high viral loads and 
progression to disease (198). Analyses of the pathogenic revertant 
viruses confirmed that these viruses had adapted to counteract 
rhesus tetherin, with determinants mapping to the cytoplasmic 
tail of the envelope protein gp41. The minimal changes required 
to endow Env with this Nef-like activity involved just five 
amino acids (199). Acquisition of tetherin counteraction in SIV 
envelopes has been documented in the SIVtan envelope, most 
likely through passage in human cells (200). More recently, such 
an adaptation has also been observed in an in vivo for a highly 
neurotropic SIVsm (201).

Studies in tetherin knock-out mice provide direct evidence 
of tetherin’s antiviral role in vivo, with increased replication and 
pathogenicity of a murine retrovirus observed in the absence 
of tetherin (202). Otherwise normal development of −/− mice, 
including no detectable adverse effects on the immune system, 
further support the primary function of tetherin as an antiviral 
effector protein. Indeed, most mammalian tetherin orthologues 
possess antiviral activity, and the role of tetherin as an ancient 
immune effector molecule is supported by the demonstration of 
identifiable tetherin orthologues with antiviral activity in reptiles 
and as far back as the coelacanths (203, 204).

Tetherin’s Role in Linking innate and 
Adaptive immunity
Tethering viruses to the producer cell membranes and prevent-
ing their release is an obvious obstruction to virus propagation. 
However, the major mode of HIV transmission in cultured T cells 
is via synaptic conjugations between infected and uninfected 
cells. These virological synapses are driven by Env/CD4 interac-
tions and result in polarized secretion of new virions across the 
synaptic cleft (205). While very potent at blocking cell free virus 
release, the inhibitory effects of tetherin on cell-to-cell spread 
via the virological synapse structures is weak. In primary human 
CD4+ T  cells, Vpu-defective viruses even spread faster due to 
tetherin-mediated cell-associated virus accumulation, despite 
lower cell-free virion release (206). Given the high selection 
pressure to maintain tetherin counteraction in lentiviruses, it has 
therefore been of particular interest to determine whether the 
consequences of restriction have wider ramifications than simply 
the physical prevention of dissemination. Viruses tethered to 
the cell surface are exposed to anti-Env antibodies, particularly 
those targeting CD4-induced epitopes, and this sensitizes the 
infected cell to ADCC-mediated elimination by Fc-receptor bear-
ing myeloid and NK cells (Figure 3) (98, 207–209). This effect 
is enhanced by treatment of cells with IFNα due to increased 
tetherin expression. In turn it is effectively suppressed by HIV-1 
Vpu and Nef, which play dual roles by counteracting tetherin and 
by degrading CD4, therefore protecting the nascent Env trim-
ers from exposing CD4-dependent epitopes and reducing the 

numbers of cell-associated virions (98, 207–209). Importantly, 
tetherin therefore acts as a link between innate and adaptive 
immunity, enhancing the potency of antiviral antibodies and 
increasing the pressure on the virus to maintain efficient tetherin 
antagonism.

The clustering of cell surface tetherin molecules due to virus 
retention triggers signalling events mediated by its cytoplasmic 
tail, leading to NF-κB activation and the release of pro-inflamma-
tory cytokines (139, 210, 211). These cytokines could potentially 
serve to further amplify tetherin’s role in ADCC by recruiting 
effector cells to the site of infection. Tetherin’s signaling activity 
is restricted to homodimers of the long isoform (139). In this 
context the major endocytic site, a dual tyrosine motif YDYCRV, 
acts as a hemi-immuno-tyrosine activation motif (212). Upon 
virion retention, tyrosines on both L-tetherin monomers 
become phosphorylated by Src-family kinases and present an 
SH2-domain for the recruitment of the kinase Syk (212). This in 
turn recruits a signaling complex including TRAF2, TRAF6 and 
TAK1, ultimately activating NF-κB (Figure 3) (211, 212). Thus 
in addition to retaining virions at the cell surface, tetherin acts 
akin to a pattern recognition receptor in sensing virus restric-
tion. This sensing is dependent on tetherin’s link to the cortical 
actin cytoskeleton via an adaptor protein RICH2 (AHRGAP44) 
(212, 213). There appears to be some primate species specific-
ity in tetherin’s signaling activity. The deletion that occurred in 
chimpanzee tetherin that rendered the human orthologue resist-
ant to Nef antagonism, and serves as a highly effective barrier to 
cross-species transmissions, also appears to have contributed to 
the efficiency with which human tetherin initiates proinflamma-
tory signalling (210). In human cells this correlates with primate 
tetherin phosphorylation efficiency and Syk recruitment (212). 
Whether this is truly an neofunctionalization of tetherin during 
primate evolution, or reflects species incompatibilities in experi-
mental cellular systems is not clear. However, in mice knocked-in 
for constitutive somatic human tetherin expression, runting and 
early lethality is observed consistent with chronic inflammatory 
signaling (214).

A further intriguing link between tetherin and innate sensing 
of viruses is its identification as a ligand for the leukocyte inhibi-
tory receptor, ILT7, expressed on plasmacytoid dendritic cells 
(pDCs). Interaction between tetherin and ILT7 induces an inhibi-
tory signal that dampens responses by TLR ligands (Figure  3) 
(215). Recent data from the Cohen group suggests that the ILT7/
tetherin interaction acts akin to a ‘missing self ’ signal when a 
pDC encounters a cell infected with a tetherin-sensitive virus 
(216). The recruitment of tetherin into budding virions occludes 
its ability to interact with ILT7 on the pDC, thereby enhancing 
the responsiveness of the pDC if simultaneously encountering 
extracellular RNA. The authors postulate that differential surface 
removal of long and short tetherin isoforms by HIV-1 group M 
Vpu (and some extent Group O Nefs) ensures a sufficient pool 
tetherin at the PM to deliver this inhibitory signal at the same 
time as counteracting its antiviral effects (216, 217). Whether this 
is a universal function of tetherin is unclear; mice lack an ILT7, 
and a functional orthologue has yet to be identified. However, the 
upregulation of tetherin on some cancers may suggest that ILT7 
interaction is important for tumor-cell immune evasion (215).
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Together these observations indicate that tetherin’s antiviral 
activity in vivo is not limited to the physical reduction in cell free 
virus produced from the infected cell. Rather, virion-tethering to 
the cell has important knock-on effects on how it is perceived and 
dealt with by both the innate and adaptive immune response. This 
linkage between direct antiviral activity and the augmentation of 
downstream immune responses would thus further explain the 
high level of selective pressure on viruses such as HIV-1 not only 
to counteract tetherin for efficient transmission, but to maintain 
this activity after the establishment of systemic infection where 
the physical impairment of viral release has only minor effects on 
spread to new target cells.

OTHeR iNHiBiTORS OF Hiv-1  
ReLeASe AND ASSeMBLY AT THe 
PLASMA MeMBRANe

Whilst the most prominent, tetherin is unlikely to be the only 
antiviral factor that targets HIV during the assembly and release 
stage. In principle many adhesion molecules or lectins could exert 
an antiviral effect on virus release provided they, or their ligand, 
are incorporated into viral particles. Indeed, in the absence of 
both Vpu and Nef, CD4/Env interactions can limit HIV release 
(218) as well as exposing epitopes for ADCC.

The T-cell immunoglobulin and mucin domain (TIM) family 
of phosphatidylserine (PS) receptors have been implicated as 
important attachment for a variety of enveloped viruses (219). The 
exposure of PS on the surface of the PM of apoptotic cells (220) 
is important for their clearance by phagocytes, and it is thought 
that diverse enveloped viruses hijack PS exposure to facilitate 
attachment and entry into target cells (219). TIM family members 
are variably expressed on myeloid and activated T cell subsets. In 
the case of HIV-1, expression of TIM-1 in target cells enhances 
virion entry. This may be by upregulating CD4/coreceptor levels, 
but very recent evidence has shown that PS exposure on the target 
cell is important for HIV-1 fusion. Conversely, overexpression 
of TIM family members restricts virion release by mediating a 
phenotype remarkably similar to tetherin (220). Of note, TIM-3 
silencing in primary macrophages enhances virion release 2–4 
fold, suggesting these observations maybe of relevance in vivo. 
Interestingly, the mucin domain of TIM-1 is highly polymorphic 
and homozygosity for a 6 amino acid in-frame deletion variant 
(delMTTTVP) has been associated with reduced HIV-1 disease 
progression (221) and replication in ex vivo cultured CD4+ 
T cells (222). Whether this is because of an inhibitory effect or a 
reduced entry-enhancing activity is yet to be determined.

The inhibition of processing and incorporation of Env into 
nascent virions was suggested as an antiviral mechanism of 
IFN-I against HIV-1 many years ago (223). Recent studies 
have implicated this process as a target for two ISGs (224, 225). 
LGALS3BP/90K, a cysteine rich secreted scavenger receptor that 
has a role in regulating cell adhesion, is strongly upregulated by 
IFN-I and IFN-II and is present at high concentrations in most 
bodily fluids. Expression of cell-associated 90K blocked envelope 
incorporation and gp160 processing dependent on its BR-C, ttk, 
BOZ/Poxvirus Zinc finger (BTB/POZ) domain (225). 90K does 

not generally inhibit furin-like proteases that cleave a number 
of viral glycoproteins, nor does it have antiviral activity against 
murine retroviruses. Neither was 90K found to directly associate 
with gp160 in the secretory pathway. However, 90K depletion 
in both T  cells and macrophages enhanced HIV-1 replication. 
A similar activity has been associated with guanylate binding 
protein 5 (GBP5), a member of a family of IFN-induced GTPases 
(224). As with 90K, expression of GBP5 blocked the processing 
and incorporation of gp160 as well as other retroviral envelope 
proteins. This required the ability of GBP-5 to localize to the 
Golgi network, but appears independent of its GTPase activity. 
Furthermore, GBP5 expression levels in primary macrophages 
inversely correlated with viral replication. Interestingly, Env 
expression levels were a key to HIV-1 GBP-5 sensitivity. 
Mutations in the start codon of vpu, which is expressed from the 
same mRNA, enhances Env expression levels and confers partial 
GBP5 resistance. Since Vpu is essential to counteract tetherin 
(see below), the authors speculate that balancing the expres-
sion of Vpu and Env allows for optimal viral replication in the 
face of these two IFN-induced restrictions. As yet, little further 
mechanistic understanding of 90K or GBP-5-mediated effects on 
Env are known, or indeed whether they are related given their 
phenotypic similarities.

The assembly and budding of the nascent virion at the PM 
has been suggested as a target for IFN-I-mediated restriction. 
2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) was identi-
fied in an overexpression screen of ISGs that restrict viral release 
(226). CNP, a membrane-associated enzyme, bound to Gag in 
membrane fractions and inhibited particle formation independ-
ent of its enzymatic activity. While most mammalian CNP ortho-
logues tested had antiviral activity against HIV-1, a single amino 
acid difference in murine CNP accounted for its lack of retroviral 
restriction. Selection of CNP-resistant viruses resulted in a single 
point mutation (E40K) in the matrix (MA) domain of the Gag 
polyprotein, which alongside the murine CNP species-specific 
difference, governed CNP/Gag interactions. Interestingly, the 
equivalent position in MA is a K in some HIV-2 and SIV isolates 
and this correlates with their resistance to CNP. However, whether 
CNP ever gets the opportunity to restrict HIV-1 in vivo is unclear. 
It is expressed mainly in oligodendrocytes and epithelial cells, 
with some expression in DCs, but is not detectable in primary 
CD4+ T cells.

Finally, the ESCRT-mediated release of the virus has been 
suggested as a target of IFN-mediated restriction. The interferon-
induced ubiquitin-like modifier, ISG15, has a broad role in 
antiviral defence (227). The ESCRT-III complex constricts the 
neck of the budding virion to the point of scission. This requires 
the polymerization of its charged multivesicular protein (CHMP) 
components into helical polymers on the internal surface of 
the neck, followed by their regulated disassembly by the AAA-
ATPase VPS4 and its cofactor, LIP5 (4). Direct conjugation of 
ISG15 (ISGylation) to various CHMPs blocks their interaction 
with VPS4/LIP5, thereby stalling retrovirus budding (228, 229). 
ISGylation of CHMP5 appears to be essential for this process 
as in its absence, no other CHMP becomes modified (228). 
CHMP5 is dispensable for ESCRT-III function itself, raising the 
possibility that it is a regulator that can rapidly inhibit ESCRT 
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function after IFN treatment. Whether CHMP5 ISGylation is a 
major mechanism of antiretroviral defence under physiological 
conditions is not yet clear. Another ESCRT-III regulating factor, 
CC2D1A, binds to the ESCRT-III CHMP4B and blocks polymer 
formation, thereby dominantly interfering with HIV-1 assembly 
(230, 231). CC2D1A itself is an ISG (7), although whether it acts 
in a directly antiviral capacity is not known given that it has also 
been identified as a regulator of TBK1, a major kinase in the pat-
tern recognition signaling cascade (232).

CONCLUDiNg ReMARKS

Negotiating the limiting membranes of the cell represent the first 
and last stages of HIV-1 replication. As analogous processes are 
common to all enveloped viruses, the evolution of antiviral fac-
tors that inhibit them present general first line defences against 
HIV-1 and related viruses. Their importance is reflected in the 

resistance mechanisms that primate lentiviruses have evolved 
to avoid them, and the evidence that their antiviral activities 
present significant barriers to viral transmission, systemic spread 
and augmentation of other immune responses. This suggests that 
targeting the virus’s resistance to PM-based host restrictions may 
have therapeutic or vaccine-relevant potential. Their study also 
reveals fundamental new understanding of the basic processes of 
viral entry and exit from the cell.
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As a rich source of CD4+ T cells and macrophages, the gastrointestinal (GI) tract is a 
major target site for HIV infection. The interplay between GI-resident macrophages and 
intestinal epithelial cells (IECs) constitutes an important element of GI innate immunity 
against pathogens. In this study, we investigated whether human IECs have the ability to 
produce antiviral factors that can inhibit HIV infection of macrophages. We demonstrated 
that IECs possess functional toll-like receptor 3 (TLR3), the activation of which resulted 
in induction of key interferon (IFN) regulatory factors (IRF3 and IRF7), IFN-β, IFN-λ, and 
CC chemokines (MIP-1α, MIP-1β, RANTES), the ligands of HIV entry co-receptor CCR5. 
In addition, TLR3-activated IECs release exosomes that contained the anti-HIV factors, 
including IFN-stimulated genes (ISGs: ISG15, ISG56, MxB, OAS-1, GBP5, and Viperin) 
and HIV restriction miRNAs (miRNA-17, miRNA-20, miRNA-28, miRNA-29 family mem-
bers, and miRNA-125b). Importantly, treatment of macrophages with supernatant (SN) 
from the activated IEC cultures inhibited HIV replication. Further studies showed that IEC 
SN could also induce the expression of antiviral ISGs and cellular HIV restriction factors 
(Tetherin and APOBEC3G/3F) in HIV-infected macrophages. These findings indicated 
that IECs might act as an important element in GI innate immunity against HIV infection/
replication.

Keywords: human intestinal epithelial cells, hiV, macrophages, toll-like receptor 3, interferons, iFn-stimulated 
genes, exosomes

inTrODUcTiOn

The gastrointestinal (GI) tract has the largest mucosal surface in the body and serves as an important 
barrier between pathogens in the external environment and the body’s sterile internal environment 
(1). Tight epithelial junctions together with the GI immune system protect the host from pathogenic 
invasion. The GI tract is rich in HIV target cells, mainly activated CD4+ T cells and macrophages. 
Therefore, the GI tract is a major site for HIV infection. As first layer cells in the GI tract, intestinal 
epithelial cells (IECs) constantly exposed to HIV or HIV-infected cells, which could have a profound 
impact on the immune and barrier functions of the GI tract (2). In addition, IECs express galactosyl-
ceramide and HIV co-receptor CCR5 (3), which facilitate translocation of CCR5-tropic HIV from 
the apical to the basolateral surface via vesicular transcytosis (4, 5).
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Central to the capacity of IECs to maintain barrier and 
immunoregulatory functions is their ability to act as frontline 
sensors to their microbial encounters and to integrate commensal 
bacteria-derived signals into antimicrobial and immunoregula-
tory responses (6). Studies have shown that the IECs express 
pattern-recognition receptors (PRRs) that enable them to act 
as dynamic sensors of the microbial environment and as active 
participants in directing mucosal immune cell responses (7). 
Among PRRs, toll-like receptor 3 (TLR3) in conjunction with 
TLR7 and TLR9 constitutes an effective system to monitor viral 
infection and replication. TLR3 is known to recognize viral 
double-stranded RNA (dsRNA), while TLR7 and TLR9 detect 
single-stranded RNA (ssRNA) and cytosine phosphate guanine 
DNA, respectively (8). Therefore, expressing functional TLR3, 
7 and 9 in IECs play a crucial role in virus-mediated GI innate 
immune responses (9).

Macrophages present in the GI system constitute a major 
cellular reservoir for HIV due to the abundance of these cells 
at mucosal sites. GI-resident macrophages represent the largest 
population of mononuclear phagocytes in the body (10). In 
the rectum, there are more than three times as many CD68+  
macrophages expressing CCR5 as those in the colon (4). The 
high expression of CCR5 on rectal macrophages suggests that 
the most distal sections of the gut may be especially vulner-
able to HIV infection. Macrophages constitute up to 10% of 
infected cells in HIV-infected individuals (11, 12). HIV-Infected 
macrophages can transfer virus with high-multiplicity to CD4+ 
T cells and reduce the viral sensitivity to antiretroviral therapy 
and neutralizing antibodies (13, 14). In mucosa infiltrating, 
macrophages also play a role in systemic HIV spread (5). 
Macrophage activation contributes to HIV-mediated inflamma-
tion, as they can produce and release inflammatory cytokines 
that induce systemic immune activation, a hall marker of HIV 
disease progression. Conversely, macrophages play an important 
role in the host defense against HIV infection. Macrophages are 
a major producer of type I interferons (IFNs). Our early inves-
tigations (15, 16) showed that TLR3 activation of macrophages 
produced multiple intracellular HIV restriction factors and 
potently suppressed HIV infection/replication. However, the 
ability of macrophages to produce type I IFNs are significantly 
compromised by HIV infection. HIV blocks IFN induction in 
macrophages by inhibiting the function of a key kinase (TBK1) 
in the IFN signaling pathway through viral accessory proteins 
(Vpr and Vif) (17). In addition, HIV infection downregulates the 
antiviral IFN-stimulated genes (ISGs) (ISG15, OAS-1, and IFI44) 
in primary macrophages (18).

Exosomes play a key role in intercellular communication 
and innate immune regulation. A recent study showed that 
exosomes are formed in an endocytic compartment of multi-
vesicular bodies (19). Exosomes are involved in many biological 
processes such as tissue injury and immune responses by trans-
fer of antigens, antigen presentation (20), and the shuttling of 
proteins, mRNAs, and miRNA between cells (21). As such, it 
has been postulated that exosomes mediate intercellular com-
munication by delivering functional factors to recipient cells 
(22). IEC lines also can secrete exosomes bearing accessory 
molecules that constitute a link between luminal antigens and 

local immune system (23). Studies have documented that the 
bystander cells can produce and release the exosomes, which 
contain multiple antiviral factors that can inhibit viral replica-
tion in target cells, including hepatitis B virus (24), HCV (25), 
and HIV (26, 27).

Evidently, the interplay between GI-resident macrophages 
and IECs has a key role in the GI innate immunity against viral 
infections. Unlike macrophages, IECs are not a host for HIV 
infection/replication, and it is unlikely that HIV has a direct 
and negative impact on functions of IECs. However, because 
IECs in the GI tract have to encounter a number of stimuli 
and immune cells, including HIV-infected macrophages (28), 
the activation of these non-immune cells in the GI tract is 
inevitable. Recent studies (19, 29) have shown that IECs can 
be induced to express and secrete specific arrays of cytokines, 
chemokines, and antimicrobial defense molecules, which is 
crucial for activating intestinal mucosal innate and adaptive 
immune responses. However, there is little information about 
whether the IECs are involved in the GI innate immunity 
against HIV infection. Specifically, it is unknown whether the 
IECs possess functional TLRs that can be immunologically 
activated to produce anti-HIV factors. Therefore, this study 
aimed to determine whether IECs have the ability to mount 
TLR3-IFN-mediated antiviral activities against HIV infection 
of macrophages.

MaTerials anD MeThODs

reagents
All culture plastic ware were obtained from Corning (Corning, 
NY, USA). Lyovec transfection reagent and Polyinosinic-
polycytidylic acid (Poly I:C) (TLR3 ligand), Imiquimod (TLR7 
ligand), ssRNA40 (TLR8 ligand), ODN2006 (TLR9 ligand) were 
purchased from InvivoGen (San Diego, CA, USA). All culture 
reagents were purchased from Gibco (Grand Island, NY, USA). 
Exosome-depleted fetal bovine serum (FBS) was purchased from 
System Biosciences, Inc. (Mountain View, CA, USA).

cell culture
The human intestinal epithelial cell line (NCM460), originally 
derived from the normal colonic mucosa of a 68-year-old Hispanic 
male, were expanded in RPMI-1640 medium (30). Cells were 
cultured at 37°C with 5% CO2 and 100% humidity, and culture 
medium was changed every 3 days. To polarize IECs, we used a 
transwell system (31, 32), in which IECs (1 × 105 cells/well) were 
grown on a 0.4 µm pore sized, 6.5 mm diameter transwell insert. 
The transepithelial electrical resistance was measured by Ohm 
meter. The cell cultures were considered to constitute a polarized 
epithelial monolayer when resistances were ≥600 Ω × cm2 and 
stable (33). Purified human peripheral blood monocytes were 
purchased from Human Immunology Core at the University 
of Pennsylvania (Philadelphia, PA, USA). The Core has the 
Institutional Review Board approval for blood collection from 
healthy donors. Freshly isolated monocytes were cultured in the 
48-well plate (2.5 × 105 cells/well) in DMEM containing 10% FBS. 
Macrophages refer to 7-day cultured monocytes.
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Tlrs activation
Lyovec was used for the transfection of the TLR ligands. IECs 
seeded on 48-well plates (5  ×  104/well) were transfected with 
Poly I:C (10  µg/ml), Imiquimod (10  µg/ml), ssRNA40 (10  µg/
ml), ODN2006 (5 µM). Lyovec-treated cells were used as a vehicle 
control.

exosome isolation
Intestinal epithelial cells were transfected with poly I:C (0.1, 1, 
10 µg/ml) for 4 h and fresh-culturing medium containing 10% 
exosome-free FBS was added. At 48  h post-transfection, IECs 
supernatant (SN) was collected and exosomes were isolated 
through multiple rounds of centrifugation and filtration as 
previously reported (24). Briefly, 10 ml of SN were centrifuged 
at 300 × g for 10 min to remove floating cells, then at 2,000 × g 
for 10  min, and 10,000  ×  g for 30  min to remove cell debris, 
shedding vesicles, and apoptotic bodies. Finally, exosomes pellet 
were collected by ultracentrifugation at 100,000 × g for 70 min. 
For further purification, the pellets were washed with phosphate 
buffered saline (1× PBS) (Gibco, NY, USA) and centrifuged at 
100,000 × g for 70 min. The pellet was resuspended in 100 μl 1× 
PBS, then immediately stored at −80°C until use.

immunofluorescence of exosome
Macrophages were cultured at a density of 2.0 × 105 cells/well in 
48-well plates. Isolated exosomes from IECs SN were labeled with 
PKH67 Fluorescent according to the manufacturer’s protocol 
(Sigma-Aldrich). Purified PKH67 exosomes were incubated with 
macrophages and cultured at 37°C for 18 h in a CO2 incubator. 
Macrophages were then stained with a PKH26 Fluorescent for 
membrane and Hoechst 33342 for nuclei and washed three times 
with 1× PBS. The cells were photographed under a confocal 
microscope (Nikon A1R, Nikon, Japan).

qrT-Pcr Quantification of mrna and 
mirna
Total RNA from cultured cells was extracted with Tri-Reagent 
(Molecular Research Center, OH, USA) as previously described 
(34). Total RNA (1  µg) was subjected to reverse transcription 
(RT) using reagents from Promega (Promega, WI, USA). The 
RT system with random primers for 1  h at 42°C. The reaction 
was terminated by incubating the reaction mixture at 99°C 
for 5 min, and the mixture was then kept at 4°C. The resulting 
cDNA was then used as a template for qPCR quantification. The 
qPCR was performed with iQ SYBR Green Supermix (Bio-Rad 
Laboratories, CA, USA) as previously described (35). Thermal 
cycling conditions were designed as follows: initial denaturation 
at 95°C for 3 min, followed by 40 cycles of 95°C for 10 s, and 60°C 
for 1 min. miRNA was extracted from IECs-derived exosomes 
using the miRNeasy Mini Kit (Qiagen, CA, USA) in accordance 
with the manufacturer’s instruction and reverse-transcribed with 
a miScript Reverse Transcription Kit (Qiagen, CA, USA). qRT-
PCR was carried out using miScript Primer Assays and miScript 
SYBR Green PCR Kit from Qiagen as previously described (36). 
Synthetic caenorhabditis elegans miRNA-39 (cel-miR-39) was 
used as a spiked-in miRNA for normalization.

Western Blot
Total cell lysates of IECs transfected with Poly I:C was prepared 
by using the cell extraction buffer (Thermo Fisher Scientific, 
MA, USA) according to the manufacturer’s instructions. Equal 
amounts of protein lysates (30  µg) were separated on 4–12% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
precast gels and transfected to an Immunobiolon-P membrane 
(Millipore, Eschborn, Germany). The blots were incubated with 
primary antibodies in 5% nonfat milk in PBS with 0.05% Tween 
20 (PBST) overnight at 4°C (IRF3, 1:1,000; Phospho-IRF3, 
1:1,000; IRF7, 1:1,000; Phospho-IRF7, 1:1,000; GAPDH, 1:5,000; 
β-actin, 1:5,000; EEA1, 1:1,000; CD63, 1:1,000; LAMP2, 1:2,000; 
Alix, 1:1,000; ISG15, 1:1,000; ISG56, 1:1,000; GBP5, 1:1,000; 
Viperin, 1:1,000; MxA, 1:1,000; MxB, 1:1,000; OAS-1, 1:1,000). 
All antibodies were obtained from Cell Signaling Technology 
(Cell Signaling Technology, MA, USA) Horseradish peroxidase-
conjugated appropriate second antibodies were diluted at 1:2,000 
to 1:8,000 in 2% nonfat milk PBST. Blots were developed with 
SuperSignal West Pico Chemiluminescent Substrate (Thermo 
Fisher Scientific, MA, USA).

elisa
Interferon-β and IFN-λ protein levels in IECs culture SN were 
measured with ELISA (IFN-β: Invitrogen; IFN-λ1/3, IFN-λ2: 
R&D system Inc., MH, USA). Assays were carried out according 
to the manufacturer’s instructions.

cytometric Bead array (cBa) assay
The CBA assay was performed to simultaneously measure CC 
chemokines (MIP1-α, MIP1-β, and RANTES) levels in cell culture 
supernatant, according to the instructions of the manufacturer 
(BD Biosciences, CA, USA).

Macrophage Treatment and hiV infection
Macrophages were pretreated for 24  h with SN (10%, v/v) or 
exosomes (2 µg/ml, equal to the amount of 10% SN) from IECs 
cultures collected at 48  h post-stimulation with Poly I:C. HIV 
Bal strain was obtained from the AIDS Research and Reference 
Reagent Program at the National Institution of Health (NIH). 
Macrophages were incubated with cell-free HIV Bal (p24, 20 ng/
ml) overnight, and cells were then washed three times with fresh 
DMEM. During the postinfection period, SN or exosomes were 
added to the macrophages where appropriate. At day 8 postin-
fection, cell and SN samples were collected for HIV GAG gene 
expression. To determine whether the polarized stimulation of 
IECs could mediate HIV inhibition in macrophages. Poly I:C 
(1  µg/ml) was added to the upper or lower chamber of IECs 
cultures. Culture SN was collected 48 h after Poly I:C transfec-
tion. Cell-associated HIV GAG gene expression in macrophages 
treated with 10% [volume to volume ratio (v/v)] of indicated SN 
was measured by qRT-PCR at 96  h post-infection. To deplete 
exosomes, the SN from Poly I:C-stimulated IECs were incubated 
with anti-CD63 antibody-conjugated Dynabeads overnight at 
4°C and then separated in a magnetic field. For detection of early 
products of Strong-Stop DNA in macrophages, SN from TLR3-
activated IECs cultures was added to macrophages cultures 24 h 
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FigUre 1 | Toll-like receptor 3 signaling induces interferon (IFN)-β and IFN-λ expression. (a) Intestinal epithelial cells (IECs) were transfected with Poly I:C (1 µg/ml) 
for the indicated times. Dose-dependent effect of Poly I:C on IFN induction of IECs at (B) mRNA and (c) protein levels. Data shown were the mean ± SD of three 
independent experiments. Asterisks indicate that the differences between the indicated groups are statistically significant (**P < 0.01).
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prior to infection with DNase I-treated HIV Bal for 3 h. Cellular 
DNA, including genomic and viral DNA products, was then 
isolated with the Tri-Reagent. Strong-stop DNA, the first product 
of HIV RT, was analyzed by the qPCR with primers specific for 
strong-stop DNA. The DNA concentrations of the each sample 
were normalized by equal DNA loading confirmed with primers 
for GAPDH.

Data analysis
Data were presented as the mean ± SD from at least three inde-
pendent experiments, and statistical significance was measured 
by Student’s t-test or one-way analysis of variance followed by the 
Newman–Keul’s test where appropriate. Statistical significance 
was defined as P < 0.05 or P < 0.01.

resUlTs

Tlr3 signaling of iecs induces iFns
Activation of TLRs 3, 7, and 9 could trigger intracellular 
IFN-mediated innate immunity against virus infections (37). 
Therefore, we first examined the expression of TLRs in IECs. 
As shown in Figure S1A in Supplementary Material, IECs 
expressed mRNAs for all known human TLRs except TLR5. 
To investigate whether the antiviral TLRs (TLR3, 7, 9) are 
biologically functional in IECs, we transfected the cells with 
the ligands to TLR3 (Poly I:C), TLR7 (Imiquimod), TLR8 
(ssRNA40), and TLR9 (ODN2006). As shown in Figure S1B in 
Supplementary Material, the IECs expressed functional TLR3 
and TLR8, as the ligands to these TLRs could induce the expres-
sion IFN-β and IFN-λ. In contrast, the ligands of TLR7 and 
TLR9 had little effect on IFN induction. TCI, a TLR3 complex 
inhibitor, could significantly block the effect of Poly I:C (Figure 
S2 in Supplementary Material). We thus focused on the impact 
of TLR3 signaling on IFN induction in IECs in the subsequent 
experiments.

As shown in Figure  1, TLR3 activation of IECs induced 
IFN-β and IFN-λ at both mRNA (Figure  1B) and protein 
(Figure 1C) levels. These effects of Poly I:C stimulation on IFN-β 
and IFN-λ expression in IECs were dose- and time-dependent 

(Figures 1A,B). We next examined whether IRF3 and IRF7, key 
regulators of the IFN signaling pathway, are involved in the TLR3 
action on IFN induction by IECs. As shown in Figure 2, TLR3 
signaling of IECs induced the phosphorylation of both IRF3 and 
IRF7, which were positively associated with the dose of Poly I:C 
transfected into IECs.

iecs-Derived exosomes can Be  
Taken up by Macrophages
Exosomes released from donor cells could deliver their cargo to 
recipient cells and subsequently modulate host cell function (21). 
We thus isolated and characterized the exosomes from activated 
IECs cultures by detecting the common exosome-carried proteins 
(Alix, CD63, and LAMP2) (Figure 3A). To determine whether 
macrophages (recipient cells) can take up the exosomes released 
from IECs, we incubated macrophages with exosomes labeled 
with green fluorescent dye PKH67. As shown in Figure  3B, 
PKH67-labeled exosomes were observed within macrophages 
treated with SN from activated IECs cultures.

iecs-isolated exosomes carry  
the antiviral isgs and mirnas
Next, we investigated whether the exosomes from activated 
IECs contained the antiviral ISGs and miRNA. As shown in 
Figures 4A,C, TLR3 signaling of IECs induced the expression 
of ISG15, ISG56, OAS-1, MxA, MxB, GBP5, and Viperin at 
both mRNA and protein levels. In addition, there were elevated 
levels of these ISGs in the exosomes isolated from Poly I:C-
stimulated IECs (Figure 4D). We also found that the anti-HIV 
miRNAs: miRNA-17, miRNA-20, miRNA-28, miRNA-29 
family members (miR-29a, 29b, and 29c) and miRNA-125b 
were increased in the exosomes (Figure  4B) from Poly I:C-
stimulated IECs.

Tlr3 signaling of iecs inhibits  
hiV infection of Macrophages
As shown in Figure 5A, macrophages treated with SN from Poly 
I:C-stimulated IECs cultures had less HIV infection-induced 
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FigUre 2 | Effect of toll-like receptor 3 activation on IRFs. intestinal epithelial cells were transfected with or without Poly I:C at indicated concentrations for 3 or 6 h. 
(a,c) For mRNA quantification, total cellular RNA was collected at 3 h post-transfection and subjected to the qRT-PCR. (B,D) For protein quantification, cellular 
proteins were collected at 6 h post-transfection and subjected to immunoblot. β-actin serves as the loading control. P-IRF3:Phospho-IRF3; P-IRF7:Phospho-IRF7. 
Data shown were the mean ± SD of three independent experiments. Asterisks indicate that the differences are statistically significant (**P < 0.01).
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syncytia than untreated cells. In addition, HIV GAG gene expres-
sion was suppressed in macrophages pretreated with SN from 
Poly I:C-stimulated IECs cultures (Figures  5B–E). This IECs 
SN-mediated HIV inhibition was positively associated with the 
concentrations of Poly I:C used to activate IECs (Figures 5B,D) 
and the percentage of IECs SN added to macrophage cultures 
(Figures 5C,E). To decipher the roles of each subtype of IFNs 
in IECs-mediated anti-HIV activity, we used the neutralization 
antibody against IFN-β to pretreat the IECs SN or antibody 
against IFN-λ receptor to pretreat macrophages, respectively. 
As shown in Figure 5F, antibody to IFN-β significantly reduced 
the anti-HIV activity of SN from activated IECs cultures. In 
addition, anti-IL10 receptor β (IL-10Rβ a subunit of IFN-λ 
receptor) antibody pretreatment of macrophages could also 
block the anti-HIV activity of the IECs SN. We then investigated 
whether ISGs could be induced in macrophages treated by IECs 
SN. As shown in Figure 5F, TLR3 signaling of IECs induced the 
expression of ISG (ISG15, ISG56, OAS-1, OAS-2, MxA, MxB, 
GBP5, and Viperin) and several known HIV restriction factors, 
including Tetherin and APOBEC3G/3F in macrophages.

To ensure the IECs cultures are polarized (38), we used the 
transwell system to determine whether the polarized stimula-
tion IECs could mediate HIV inhibition in macrophages. As 
shown in Figure 6, HIV GAG gene expression was suppressed 
in macrophages treated with SN from either upper (apical side) 
or lower (basolateral side) chambers of the transwell cultures. No 

significant difference in HIV inhibition was observed between 
SN from the upper level chambers and those from the lower level 
chambers.

iecs-Derived exosomes contribute  
to hiV inhibition in Macrophages
To evaluate the role of the exosomes in IECs-mediated anti-HIV 
activity in macrophages, we added the activated IECs-derived 
exosomes to macrophage cultures. As shown in Figures 7A–D, 
macrophages treated with the exosomes showed less expression 
of cell-associated as well as extracellular HIV GAG gene as 
compared with untreated macrophages. We then examined the 
anti-HIV potency of IECs SN with or without exosome depletion. 
As indicated in Figure  7E, SN from Poly I:C-stimulated IECs 
significantly suppressed HIV, while the depletion of exosomes 
from IECs SN diminished IECs-mediated anti-HIV activity in 
macrophages.

Tlr3 signaling of iecs induces  
cc chemokines
CC chemokines (MIP-1α, MIP-1β, RANTES) are the ligands 
of the HIV entry co-receptor, CCR5. We examined whether 
IECs upon the TLR3 activation can produce these CC 
chemokines. As shown in Figure 8, Poly I:C treatment of IECs 
dose-dependently induced the CC chemokines at both mRNA 
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FigUre 3 | Characterization of exosomes and delivery of intestinal epithelial cells (IECs) exosomes (Exo) to macrophages. (a) The expression of exosomal markers 
(Lamp2, Alix, CD63), and nonexosomal markers (EEA1, Cytochrome C, GAPDH) was determined by immunoblot. (B) The uptake of IECs exosomes labeled with 
PKH67 by macrophages. Macrophages were incubated with PHK67-labeled IECs exosomes (green) for 24 h and then stained with PKH26 for general cell 
membrane labeling (red) and Hoechst 33342 (blue) for nuclei. Data are representative of three independent experiments. Scale bar, 100 µm.
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(Figure 8A) and protein (Figure 8B) levels. We then examined 
the ability of IECs SN to block HIV entry into macrophages. 
As shown in Figure 8C, the pretreatment of macrophages with 
the IECs SN resulted in a marked decrease in strong-stop DNA 
of HIV.

DiscUssiOn

HIV infection provides ample pathogen-associated molecular 
patterns that can be detected by a variety of PRRs of the innate 
immune system (39). Among the PRRs, TLR3 is implicated in 
sensing dsRNA structures during viral infections, including 
HIV (40). While it has been reported that intestinal epithelial 
cell lines Caco-2 and HT-29 express functional TLR3 (41), there 
is little information about TLR3 activation of IECs and its role 
in antiviral activity against HIV infections of macrophages. We 
demonstrated that human IECs expressed functional TLR3, 
the activation of which resulted in the production of multiple 
antiviral factors, including the type I and III IFNs (Figure 1), 
ISGs, HIV restriction miRNAs (Figure 4), and CC chemokines 
(Figure 8). Importantly, we found that when added to primary 
human macrophage cultures, SN from the activated IECs cul-
tures could potently suppress HIV infection and replication. In 
our early work of studying factors that influence the activation 
efficiency of TLR3 by Poly I:C (15), we found that the direct 
addition of Poly I:C to the cultures of primary macrophages 
or a neuroplastoma cell line could effectively activate TLR3. 
However, the transfection was necessary and needed in order 

to have efficient TLR3 activation by Poly I:C in the human 
hepatic cell line (Huh7) and brain microvascular endothelial 
cell line (hCMEC/ D3). In addition, we demonstrated that the 
efficiency of TLR3 activation by high molecular mass Poly I:C 
was significantly higher than that by low molecular mass Poly 
I:C. These findings indicated that cell types and the size of Poly 
I:C are the crucial factors in Poly I:C-mediated TLR3 activation. 
As demonstrated in Figure S3 in Supplementary Material, we 
examined difference in the TLR3 activation efficiency between 
the direct addition and transfection of Poly I:C in IECs, show-
ing that the levels of induced IFNs were significantly higher 
in IECs transfected with Poly I:C as compared to direct Poly 
I:C treatment. Therefore, we used the transfection technique 
for Poly I:C stimulation of IECs in this study to conceptually 
prove that as non-immune cells in GI tract, IECs can produce 
antiviral factors that can be transported through exosomes to 
macrophages, inhibiting HIV replication. The HIV inhibition 
in macrophages was also seen in macrophages treated with 
SN from either apical side or basolateral side of the polarized/
activated IEC cultures (Figure  6). It was reported that there 
were little differences in TLR3 expression at different sites 
or between non-inflamed and inflamed mucosae in tissues 
from ulcerative colitis patients (42). Also, the polarized IECs 
responded to the TLR ligands, including TLR3, secreting IL-8 
into the basolateral chamber, either exclusively on basolateral 
stimulation, or on apical stimulation. In non-polarized IECs, 
as expected, there was no difference in the response to all of 
these ligands (33).
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FigUre 4 | Characterization of the antiviral factors in the cells and exosomes of toll-like receptor 3 signaling of intestinal epithelial cells (IECs). IECs were transfected 
with or without Poly I:C at indicated concentrations. (a) For IFN-stimulated genes (ISGs), mRNA quantification, total cellular RNA was collected at 12 h post-
transfection and subjected to the qRT-PCR. (B) IECs cultured in exosome-free media were transfected with or without poly I:C (1 µg/ml) for 48 h. miRNA in secreted 
exosomes from IECs supernatant were quantified by qRT-PCR. Synthetic caenorhabditis elegans miRNA-39 (cel-miR-39) was used as a spiked-in miRNA for 
normalization. Levels of miRNAs were plotted as fold of control. (c) For protein quantification, cellular proteins were collected at 24 h post-transfection and 
subjected to immunoblot. GAPDH serves as the loading control. (D) Exosomal protein was collected at 48 h and subjected to immunoblot with indicated ISGs 
antibodies. 20 μg of total exosome loaded. Data shown represent the mean ± SD of three independent experiments. Asterisks indicate statistically significant 
differences. (**P < 0.01).
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Although IECs are non-immune cells, they are able to 
produce IFN-driven antiviral factors, including ISGs. Studies 
have shown that the ISGs, including ISG15, ISG56, MxA, MxB, 
OAS-1, OAS-2, and GBP5 have anti-HIV activities (43–45). 
ISG15 plays a crucial role in the IFN-mediated inhibition of 
late stages of HIV assembly and release (46); MxB inhibits HIV 
infection by inhibiting the capsid-dependent nuclear import 
of subviral complexes (47); GBP5 reduces HIV infectivity by 
interfering with Env processing and incorporation (48). In 
addition to the ISGs, Poly I:C-stimulated IECs expressed HIV 
restriction miRNAs (Figure 4), including miRNA-17, miRNA-
20, miRNA-28, miRNA-29 family members (miR-29a, 29b, 
and 29c), and miRNA-125b. It is known that miRNA-28 and 
miRNA-125b can target the 3’UTR of HIV transcripts (49). 
miRNA-29 family members interfere with virus replication, as 
they can target a highly conserved site in various HIV sub-
types (50). Studies have shown that miRNA-17 and miRNA-20 
target p300/CBP associated factor (PCAF), a cellular cofactor 
of the HIV Tat protein (51). Furthermore, we found that CC 

chemokines (MIP-1α, MIP-1β, RANTES), ligands of HIV entry 
co-receptor CCR5, were induced in activated IECs (Figure 8). 
The observation evidenced the role of CC chemokines in IECs-
mediated HIV inhibition that SN from TLR3-activated IEC 
cultures could block HIV entry into macrophages. IFN-β and 
IFN-λ in IECs SN appeared to be responsible for the induction 
of these anti-HIV factors, as the antibodies to IFN-β and IFN-λ 
receptors could block the inhibitory effect of IECs SN on HIV 
(Figure 5).

The investigation on the mechanisms for the induction of 
IFNs showed that there was upregulation of IRF3 and IRF7 in 
activated IECs (Figure 2). IRF3 and IRF7 are the key regula-
tors of type I and III IFNs during viral infections (52). IRF3 
and IRF7 phosphorylation is a crucial step in activating type I 
and III IFNs-mediated antiviral response (53). Both IRF3 and 
IRF7 require phosphorylation-induced activation in order to 
translocate to the nucleus to activate IFNs (54). Specifically, 
during viral infections, IRF3 is important in the early phase of 
inducing the transcription of IFN-α and IFN-β, which then can 
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FigUre 5 | Effect of supernatant (SN) from intestinal epithelial cells (IECs) cultures inhibits HIV replication in macrophages. (a) Morphologic observations  
of HIV-infected macrophages with mock treatment or pretreated with either LyoVec/SN or Poly I:C/SN (arrows indicate syncytium, magnification × 100).  
(B,c) Cell-associated and (D,e) extracellular HIV GAG gene expression level in macrophages with 10% [volume to volume ratio (v/v)] of indicated SN pretreatments 
or with indicated volumes of 1 µg/ml Poly I:C-stimulated IECs SN pretreatments was measured by qRT-PCR at 8 days postinfection. (F,g) Roles of interferon (IFN)-β 
and IFN-λ in IECs SN-mediated anti-HIV activity and the effect of IECs SN on the expression of IFN-stimulated genes (ISGs) in macrophages. (F) Effect of 
neutralization antibodies (Abs) to IFN-β or IFN-λ receptor on IECs culture SN-mediated anti-HIV activity. IECs SN was preincubated with anti-IFN-β (10 µg/ml) for 1 h 
and then used to treat macrophages 24 h prior to HIV Bal infection (p24, 20 ng/ml). For IFN-λ receptor pretreatment, the anti-IL10Rβ neutralization antibody (10 µg/
ml) was added to macrophage cultures for 1 h prior to the addition of SN. HIV GAG expression was then measured by qRT-PCR for 8 days postinfection. (g) Effect 
of Poly I:C-stimulated IECs culture SN on ISG expression of macrophages. IECs were stimulated with Poly I:C for 48 h and culture SN was collected for treatment of 
macrophages (10% v/v) for 12 h. RNA was extracted, and the expression of ISGs was measured by qRT-PCR. Representative data were the mean ± SD of three 
independent experiments using macrophages of three donors. Asterisks indicate that the differences between the indicated groups are statistically significant 
(*P < 0.05, **P < 0.01).
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activate IRF7. Similar to IFN-β, IFN-λ1 gene is regulated by 
virus-activated IRF3 and IRF7, whereas IFN-λ2/3 gene expres-
sion is mainly controlled by IRF7 (55). IRF7 not only induces 
IFNs, but also actives many ISGs, among which PKR, OAS, and 
the Mx protein have been well characterized for their antiviral 
activities (56).

As one of the primary targets for HIV infection and persis-
tence, macrophages have been implicated as an important HIV 
reservoir. Our early investigations (26, 57) showed that TLR3 
activation of macrophages potently suppressed HIV infection 
and replication through multiple antiviral mechanisms at both 
the cellular and molecular levels. Despite being a major pro-
ducer of type I IFNs, the biological functions of macrophages 

are significantly compromised in IFN induction upon HIV 
infection (17, 18). In contrast to macrophages, IECs are not 
the target of HIV. Therefore, it is unlikely that HIV has a direct 
and negative impact on IECs. As the first line of cells in the 
GI system, the IECs have to encounter a number of stimuli 
and immune cells, including HIV-infected macrophages (58). 
Thus, the activation of these nonimmune cells in the GI tract 
is inevitable. We found that activated IECs SN could induce 
the expression of several key HIV restriction factors in mac-
rophages, including Tetherin and APOBEC3G/3F (Figure 5). 
Tetherin is a transmembrane protein that specifically inhibits 
HIV release from infected cells (59), APOBEC3G/3F are 
single-stranded DNA deaminases that inhibit HIV replication 
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FigUre 6 | Supernatant (SN) of polarized intestinal epithelial cells (IECs) cultures inhibits HIV replication in macrophages. IECs were seeded onto a transwell insert 
at a density of 1 × 105 cells/insert and cultured for 72 h prior to use. The integrity of the IEC monolayer in each well was assessed for the development of 
transepithelial electrical resistance (TEER). Poly I:C (1 µg/ml) was then added to the upper [(a), apical level] or lower [(B), basolateral level] chamber of the IECs 
cultures. The SN was collected 48 h after Poly I:C treatment. Cell-associated HIV GAG gene expression in macrophages treated with 10% [volume to volume ratio 
(v/v)] of indicated SN was measured by qRT-PCR at 96 h postinfection. Data shown were the mean ± SD of three independent experiments. Asterisks indicate 
statistically significant differences (**P < 0.01).
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through deaminating cytidine to uracil on the minus strand 
of the HIV proviral DNA (60). Thus, the activation of IFN-
mediated antiviral responses by IECs should be beneficial for 
GI protection. As a non-HIV target cell in the GI tract, it is 
unlikely that the ability of IECs to mount an IFN-mediated 
anti-HIV response would be compromised by HIV infection. 
We as well as others have shown that IFNs were produced not 
only by the immune cells but also by the nonimmune cells in 
the CNS, such as neurons and astrocytes (34, 61). In contrast 
to Poly I:C induction of both IFN-α and IFN-β in the immune 
cells, TLR3 signaling of IECs induced only IFN-β expres-
sion. This finding is consistent with the report by Starace 
et al. showing that Poly I:C induced IFN-β but not IFN-α in 
mouse Sertoli cells (62). These observations along with the 
findings of this study support the notion that IECs and other 
nonimmune cells in the GI tract could be important bystand-
ers in mounting effective antiviral responses, which may 
have a key role in restricting HIV infection/replication in the  
GI system.

To understand how IECs could transport the antiviral fac-
tors to macrophages, we examined whether IECs can produce 
and release exosomes which are known to have the ability to 
shuttle biologically active molecules. Exosomes have a vital 
role in a variety of biologic processes, such as cell proliferation, 
apoptosis, and immune responses (63, 64). A major recent 
study in the intestinal mucosa field unveiled the capacity of 
exosomes to mediate the functional transfer of genetic materials 
(mRNAs and miRNAs) between immune cells (65). We found 
that IECs-derived exosomes could be taken up by infected 
macrophages, inhibiting HIV replication (Figure 7). We also 
observed that exosomes from Poly I:C-stimulated IECs were 
enriched with antiviral cellular ISGs and miRNAs (Figure 4), 
including miRNA-17, miRNA-20, miRNA-28, miRNA-29 
family members (miR-29a, 29b, and 29c) and miRNA-125b. 
miRNA-28 and miRNA-125b are known to target 3’UTR of 
HIV transcripts (66). miRNA-29 family members interfere 
with virus replication, as they can target a highly conserved 
site in various HIV subtypes (50). Studies by several groups 
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FigUre 7 | Intestinal epithelial cells (IECs)-derived exosomes contribute to IECs supernatant (SN)-mediated HIV inhibition in macrophages. (a,B) Cell-associated 
and (c,D) extracellular HIV GAG gene expression in macrophages with 2 µg/ml of indicated exosomes pretreatments or with the indicated concentration of 1 µg/ml 
Poly I:C-stimulated IECs exosomes pretreatments were measured by qRT-PCR for 8 days postinfection, respectively. (e) The inhibition of HIV replication by IECs 
culture SN with or without exosome depletion. To deplete exosomes, the SN from Poly I:C-stimulated IECs were incubated with anti-CD63 antibody-conjugated 
Dynabeads overnight at 4°C and then separated in a magnetic field. Representative data were the mean ± SD of three independent experiments using 
macrophages of three donors. Asterisks indicate that the differences between the indicated groups are statistically significant (*P < 0.05, **P < 0.01).
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showed that miRNA-17 and miRNA-20 target p300/CBP 
associated factor (PCAF), a cellular cofactor of the HIV Tat 
protein (67).

Collectively, we have provided the experimental evidence 
that TLR3 activation-induced antiviral factors in IECs could 
be transported to macrophages through exosomes released by 
IECs and internalized by macrophages (Figure 9). Because HIV 
has evolved several mechanisms to evade TLR3 mediated intra-
cellular innate immunity in target cells, such as macrophages 
(68, 69), anti-HIV support from non-immune bystander cells 
is helpful in restoring the HIV-suppressed system in infected 
cells. Given that macrophage is an important cellular reservoir 
for HIV infection/persistence, to control and eradicate HIV 
in macrophages is clinically significant. Although the precise 

cellular and molecular mechanisms by which activated IECs 
could inhibit HIV replication in macrophages remain to 
be determined, the induction of IFNs, antiviral ISGs, HIV 
restriction miRNAs, and CC chemokines should account for 
much of IECs-mediated anti-HIV activity. However, further 
in  vitro and in  vivo investigations are necessary in order 
to determine whether the TLR3 signaling of IECs is indeed 
beneficial in protecting GI macrophages from HIV infection. 
Currently, the therapeutic TLR agonists are being developed 
for the treatment of cancer, allergies and viral infections. A 
number of TLR agonists are now in clinical or preclinical trails 
such as the anti-HIV TLR3 agonist (Poly I:C 12U) (70–72). 
These studies support the notion for further developing a TLR3 
agonist-based therapy for HIV disease in which host cell innate 

147

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 9 | Schema of the anti-HIV mechanism of toll-like receptor 3 (TLR3) signaling of intestinal epithelial cells (IECs). Stimulation of IECs with double-stranded 
RNA (Poly I:C) activates TLR3 pathway, which facilitates phosphorylation and translocation of IRF3 and IRF7, initiating the transcription of interferon (IFN)-β, IFN-λ, 
and CC chemokine and releasing exosomes in the IECs. CC chemokines bind to HIV entry co-receptor CCR5 and block HIV entry. In addition, IFN-β and IFN-λ 
released from IECs can bind to their receptors in macrophages, inducing anti-HIV IFN-stimulated genes (ISGs) (ISG15, ISG56, MxA, MxB, OAS-1, OAS-2, GPB5, 
Tetherin, and APOBEC3G/3F), and exosome delivery of ISGs and miRNA to HIV-infected macrophages, which inhibit HIV at different steps of viral replication.

FigUre 8 | Toll-like receptor 3 signaling of intestinal epithelial cells (IECs) induces CC chemokines. IECs were transfected with or without Poly I:C at indicated 
concentrations for 12 h (mRNA) or 48 h (protein). (a) Cellular RNA was collected and subjected to the qRT-PCR. (B) MIP-1α, MIP-1β, and RANTES proteins were 
analyzed by Cytometric Bead Array with the specific kits according to the manufacturer’s instructions. (c) HIV strong-stop DNA was detected in macrophages with 
10% (v/v) of supernatant from indicated doses of Poly I:C-treated IECs cultures. Representative data from at least three donor macrophages was shown. Asterisks 
indicate that the differences between the indicated groups are statistically significant (**P < 0.01).
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immune responses are significantly compromised by the virus. 
These future studies are critical for the design and development 
of TLR3 activation-based immune treatment for people with 
HIV infection.

eThics sTaTeMenT

In this in  vitro study, we obtained primary human monocytes 
from the Immunology Core at the University of Pennsylvania 
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School of Medicine. The Core has the Institutional Review Board 
approval for blood collection from healthy donors. Anyone who 
obtains human cells from the Core is considered as secondary 
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