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Editorial on the Research Topic

Experience with quantum annealing computation

This Frontiers Research Topic comprises 13 peer-reviewed papers published in the

period August 2023 through June 2024. These papers are cross-listed with Frontiers in

Computer Science.

The call for submissions invited papers that address all aspects of empirical experience

with annealing-based quantum computers, including: best practices in performance

tuning; new approaches to hybrid computation (combining classical and quantum

methods); estimation of resource usage; new application areas; and software tools and

infrastructures. Original research papers as well as tutorials and surveys are within scope.

The submitting authors stepped up to the challenge, submitting works that cover a

broad variety of Research Topics and formats. Here is a brief synopsis of each paper.

Early steps toward practical subsurface computations with quantum computing: Greer

and O’Malley describe an application of quantum annealing to the problem of seismic

inverse analysis, which arises in subsurface hydrology (geoscience). They show how to

formulate the problem as a QUBO and present demonstration of the method using

two real-world problems. They observe that the approach works well on low-contrast

inputs but is challenged by higher precision requirements in problem representation for

high-contrast inputs.

Tutorial: calibration refinement in quantum annealing: Chern et al. present a tutorial

for calibration refinement, also known as shimming, to improve performance of quantum

annealers, which are susceptible to crosstalk, device variation, and environmental noise.

Explanations and code are supplied showing how to find symmetries for suppressing bias

in outputs. Examples are provided for finding small subgraphs in the connectivity graph

and finding symmetries of an Ising model via generalized graph automorphism. Other

methods, implementations, and limitations are discussed.

Posiform planting: generating QUBO instances for benchmarking: Hahn et al. use

planted-solution techniques to develop input generators to be used for benchmarking

quantum annealers. Using a technique called posiform planting, they demonstrate that it is

possible to construct large QUBO problems with known optimal solutions, thus allowing

an evaluation of success probability on large problems. These instances are run on D-Wave

quantum annealers to test performance.

Quantum image denoising: a framework via Boltzmannmachines, QUBO, and quantum

annealing: Kerger and Miyazaki examine applications relating to image de-noising for

Boltzmann machines. This work is interesting because it presents two steps where

annealers can potentially be used: in the training of the network, and in a separate de-

noising step that is formulated as a QUBO. In experimental tests with D-Wave platforms
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these methods were indeed found to be successful in reducing the

noise in images.

Individual subject evaluated difficulty of adjustable mazes

generated using quantum annealing: Ishikawa et al. consider the

application of quantum annealing to the problem of generating

maze puzzles that are difficult for humans to solve. They develop

a cost function Qupdate that scores problem difficulty for a given

individual, and show how to formulate the cost function as a

QUBO. They present an analysis of computation time, and describe

empirical comparisons to a standard classical approach and a

hybrid solver. The quantum annealer is efficient at generating

mazes with difficulty tailored to individuals.

Benchmarking quantum annealing with maximum cardinality

matching problems: Vert et al. aim to tackle the Maximum

Cardinality Matching problem with both quantum and simulated

annealing. There exist classical algorithms for this problem that can

solve it efficiently, although the authors show that the problem is

challenging for both simulated and quantum annealing.

Exploring performance on both original inputs and embedded

inputs (after compilation onto the connection topology of

the quantum annealer), the authors look at the effects of

various parameters such as chain strength and annealing

time on performance. These experiments are replicated for

quantum annealers with both the Pegasus and Zephyr topologies,

highlighting their differences.

Moreover, small-scale classical simulations of the quantum

annealing process by solving the Schrodinger equation are used to

present the ideal behavior of the quantum processing units. As an

interesting observation, the authors note that classical algorithms

exhibited worse scaling performance in the embedded version of

the problems than the quantum annealer. They show that although

this is a native limitation of the quantum hardware, it has less

impact on quantum performance than on other solution methods.

Exploration of new chemical materials using black-box

optimization with the D-Wave quantum annealer:Doi et al. address

an application in screening materials using black-box optimization,

which describes cases where a subset of constraints or objectives

in an optimization problem cannot be fully encoded as part of the

model and must be accessed by an oracle.

One way to address these problems is via Bayesian

optimization, where samples are drawn iteratively from a

solution space aiming to balance exploration of the black-box

function and exploitation toward an optimal solution given by an

objective. To balance these two goals and determine which point

to sample next, an acquisition function is proposed such that the

function maximum indicates where to draw the next sample.

The authors apply this approach to the problem of exploring

a discrete space of chemical materials to find the binding of

substituents to specific sites of the molecular frame as the

composition of chemical materials. The objective function is

considered black-box as it encodes a Density-Functional Theory

(DFT) computation. The authors formulate the acquisition

function as a QUBO and tackle it using quantum annealing. Their

experiments show how the proposed method varies with respect

to the variance of the probability distribution represented by the

acquisition function, which aims to represent the exploration-

exploitation trade-off.

Software techiques for training restricted Boltzmann

machines on size-constrained quantum annealing hardware:

Salmenperä and Nurminen study software techniques to train

restricted Boltzmann machines using quantum annealers. The

main focus of this work is how to make use of hardware with

limited size. They describe dropout techniques that allow the

annealer to be applied to a subnetwork, and an approach to

processing multiple small networks in parallel on the same chip.

The authors present results of empirical tests of these methods.

Pneumonia detection by binary classification: classical, quantum,

and hybrid approaches for support vector machine (SVM):Guddanti

et al. develop a machine learning tool that can accurately classify

chest X-ray images as belonging to normal or pneumonia-infected

individuals. Classical, quantum (D-Wave), and hybrid annealing

methods are explored. The results of these methods are compared

and contrasted.

Quantum annealing research at CMU: algorithms, hardware,

applications: Tayur and Tenneti present a mini-review of

quantum annealing research at Carnegie Mellon University. A

highlight of this work is the study of Graver-basis-based hybrid

optimization methods using quantum annealers. Other work

includes developments of efficient minor-embedding strategies

and development of photonic Ising machines. This work includes

studies on more abstract benchmark-related problems like Max

Cut, as well as real-world problems in cancer genomics.

Adiabatic quantum computing impact on transport optimization

in the last-mile scenario: Sales and Araos apply a hybrid quantum-

classical approach to transport optimization in the ever-evolving

landscape of global trade and supply chain management. They look

at the Vehicle Routing Problem (VRP) which is to find an optimal

set of routes for multiple vehicles to service a given set of customers.

The VRP implementation uses a 2-phase approach: first clustering

(grouping the customers), and then finding the optimal routes

inside each cluster. This research offers contributions to logistics

optimization techniques and their potential for enhancing supply

chain efficiency.

Experimenting with D-Wave quantum annealers on prime

factorization problems: Ding et al. present a detailed report of

experimental decisions that led to the largest prime number

factorization (8,219,999 = 32,749 * 251) performed with a pure

quantum computational approach reported in the literature to

date (doi: 10.1038/s41598-024-53708-7). The authors describe their

experiences and experimental results, to develop guidelines for

best-use of D-Wave quantum annealers. They address tradeoffs

arising in algorithmic questions such as minor-embedding and

handling of flux biases. This report provides guidance to

other practitioners about improving performance for their own

applications.

ILP-based resource optimization realized by quantum annealing

for optical wide-area communication networks: Witt et al. apply D-

Wave quantum annealers to the problem of resource allocation

within communication networks. This work focuses on developing

a framework that uses neural networks to refine the solutions

returned by the quantum annealer; the authors also perform

a detailed study of parameter setting. They observe that

improvements using the network were possible in some cases, but

not in others.
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We are pleased to report that this broad collection of

contributions to better understanding of quantum annealing

processors is now available to the research community.
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Early steps toward practical
subsurface computations with
quantum computing

Sarah Greer1,2 and Daniel O’Malley1*

1Computational Earth Science (EES-16), Los Alamos National Laboratory, Los Alamos, NM, United States,
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

Quantum computing exploits quantum mechanics to perform certain

computations more e�ciently than classical computers. Current quantum

computers have performed carefully tailored computational tasks that would

be di�cult or impossible for even the fastest supercomputers in the world. This

“quantum supremacy” result demonstrates that quantum computing is more

powerful than classical computing in some computational regimes. At present,

it is unknown if any computational problems related to the Earth’s subsurface

fall within these regimes. Here, we describe an approach to performing seismic

inverse analysis that combines a type of quantum computer called a quantum

annealer with classical computing. This approach improves upon past work on

applying quantum computing to the subsurface (via subsurface hydrology) in

two ways. First, the seismic inverse problem enables better performance from

the quantum annealer because of the Earth’s relatively narrow distribution of

P-wave velocities compared to the broad distribution of hydraulic conductivities.

Second, we develop an iterative approach to quantum-computational inverse

analysis, which works with a realistic set of observations. By contrast, the previous

method used an inverse method that depended on an impractically dense set

of observations. In combination, these two advances significantly narrow the

gap a quantum-computational advantage for a practical subsurface geoscience

problem. Closing the gap completely requires more work, but has the potential

to dramatically accelerate inverse analyses for subsurface geoscience.

KEYWORDS

quantum computing, hydrology, seismic, subsurface, iterative

1. Introduction

Computation has played a critical role in subsurface geoscience for decades. It has

been used to simulate ocean circulation (Pinardi et al., 1997), flow in subsurface fractures

(Kosakowski and Berkowitz, 1999), mantle flow in stunning detail (Stadler et al., 2010),

and has been instrumental to the modern developments in seismic imaging (Bednar, 2005),

among many other examples. Computers are also widely used to estimate subsurface

properties that are difficult to observe directly using inverse analysis (Khan et al., 2000; Lu

and Robinson, 2006). Massive performance improvements have buoyed the widespread use

of computers.

Recent computer performance trends indicate that performance improvements are

diminishing, suggesting that the rising tide of improving computational performancemay be

coming to an end. This trend has led to increased use of novel computational methods such

as graphical processing unit computing (Fatemi and Poppe, 2018) and machine learning

(Gentine et al., 2018), either together or separately. Approaches such as these have the
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potential to improve performance significantly, but only by a

constant factor. That is, they might provide a speed-up of a

factor of, e.g., 10 or 100, but the speed-up does not depend

on the problem size. Quantum computing, on the other hand,

opens the doors to fundamentally different algorithms that give

larger and larger speed-ups as the problem becomes larger. This

improved scaling behavior is crucial in subsurface geoscience.

Solving equations, such as the groundwater flow equation or the

seismic wave equation, might require a highly-refined mesh to

resolve heterogeneity. This is because heterogeneities can be very

small.

The improved scaling behaviors of certain quantum algorithms

is what made possible the recent demonstration of quantum

supremacy, where a quantum computer performed a calculation

that would push the fastest classical supercomputers beyond their

limits (Arute et al., 2019; Zhong et al., 2020; Morvan et al., 2023).

While it is known that some problems related to cryptography

and quantum chemistry are well-suited to quantum computers,

the picture is much less clear for computational science broadly.

There are efficient algorithms that could theoretically be used to

solve large systems of equations (Harrow et al., 2009; Subaşı et al.,

2019), but these efficiencies may be undone by the implementation

details needed to use these algorithms for a particular application

(Aaronson, 2015). Current work in the geosciences utilizes a more

empirical approach—trying different problems and observing the

performance (O’Malley, 2018; Sarkar and Levin, 2018; Greer and

O’Malley, 2020; Dukalski, 2021; Henderson et al., 2021; Souza

et al., 2022; Dukalski et al., 2023). Generally, the performance

on current quantum computers lags behind the performance of

classical computers using the best algorithms. Nonetheless, it is a

critical first step to establish whether or not a quantum computer

can solve a problem before trying to establish a performance

advantage.

This work, which does not attempt to show any quantum

advantage, explores two applications—seismic inverse analysis and

hydrologic inverse analysis. It improves upon previous work by

enabling the solution of more realistic problems. Our approach

enables 2D seismic inverse analysis, whereas previous work focused

on a 1D, layered approach (Souza et al., 2022). Past work in

hydrology required the use of an unrealistic set of observations

(O’Malley, 2018), whereas the approach used here can handle

arbitrary, realistic sets of observations. While we study this

approach in the context of hydrologic and seismic inverse analysis,

it can be applied to other subsurface applications where the goal

of the inverse analysis is to segment the subsurface into two

separate facies. Traditionally, a seismic inverse problem of this

nature could be solved using imaging methods such as reverse time

migration (Baysal et al., 1983) or full waveform inversion (Virieux

and Operto, 2009). Hydrologic inverse problems are usually solved

using variants of the geostatistical approach such as the principal

component geostatistical approach (Kitanidis and Lee, 2014) and

sometimes more modern techniques leveraging machine learning

are used (Kadeethum et al., 2021; Wu et al., 2023).

This work also goes a step beyond the empirical observation

of the performance and identifies problem characteristics that

enable better performance for the quantum computer. These

insights can help guide future work to find an advantage for

quantum computers in applications to the subsurface. However,

since quantum annealing hardware is still in its early stages, the

problems we look at are still relatively simple compared to similar

problems solved using classical computing techniques. These

problems are scaled according to current quantum-computing

hardware’s computational size, and advances in hardware will allow

for more complex problems to be addressed.

If the long-term goals of this research are successful,

subsurface geoscience will be able to exploit the theoretical

advances that have been demonstrated for calibrating models to

data (Wiebe et al., 2012). Some quantum algorithms show an

exponential speed-up (e.g., Harrow et al., 2009; Wiebe et al.,

2012) which could be transformational in this context. A quadratic

speedup [often built upon Grover’s algorithm (Grover, 1996)]

is more common and could still be impactful for subsurface

inverse analysis, which is often computationally expensive. These

algorithms could open doors to solve subsurface geoscience

problems with unprecedented resolution and accuracy. After

decades of research, the improvements that can be made in classical

computational methods are becoming marginal (Shalf, 2020).

Novel computational architectures, of which quantum computing

is arguably themost promising, remain largely unexplored and have

tremendous potential. Now is the time to do this exploration.

The remainder of this manuscript is organized as follows. In

Section (2), we describe quantum annealing, which is the quantum

algorithm that we leverage, and our approach to formulating

inverse analysis as a problem suitable for quantum annealing.

Section 3 describes the results of applying this approach to seismic

and hydrologic problems. A discussion of various aspects of

our approach, including a problem characteristic that improves

performance and possibilities with future quantum hardware and

methods is presented in Section 4. Finally, concluding remarks are

made in Section 5.

2. Methods

2.1. Quantum annealing

Quantum annealing is a heuristic optimization algorithm,

similar to simulated annealing (Kirkpatrick et al., 1983), that seeks

to find optimal solutions faster than classical methods by exploiting

quantum fluctuations (Kadowaki and Nishimori, 1998). There are

theoretical guarantees of convergence to the optimal state under

certain conditions (Morita and Nishimori, 2008). In practice, these

assumptions are generally violated. For example, with the D-Wave

quantum annealers (Johnson et al., 2011) that we use here, the

anneal process is often performed quickly, whereas the theoretical

guarantees generally require the anneal to be performed slowly. In

the language of quantum annealing, this means that the adiabaticity

is violated, since the fast annealing process means the system will

often leave the ground state.

The input to a D-Wave quantum annealer is a vector h = (hi)

and amatrix J = (Jij). Thematrix, J, is sparse with a sparsity pattern

defined by the connectivity graph associated with the annealer’s

qubits. The size of the matrix, N, is determined by the size of the

problem. For existing D-Wave quantum annealers, this is based on

a so-called Chimera graph (Boothby et al., 2016).
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From a practical perspective, the quantum annealer can be

thought of as minimizing a function of the form

g(s) =

N
∑

i=1

hisi +

N
∑

i,j=1

Jijsisj , (1)

where each spin, si, is either −1 of +1, and is called the Ising

formulation. On the D-Wave annealer, there are additional sparsity

constraints on the matrix Jij. That is, some of the Jij are constrained

to be zero. Further, the D-Wave hardware limits the range of

values—called the dynamic range—that can be set for hi and

Jij, and problems with coefficient outside these ranges have to

be rescaled to fit. This rescaling can have the effect of pushing

small coefficients into the hardware’s noise range. A more accurate

description of the behavior of the annealer is that it is drawing

from a distribution that preferentially samples values of s that

make f (s) small. This distribution can often be well-approximated

by a Boltzmann distribution where Equation 1 defines the energy

subject to a temperature or “effective temperature” that is a

characteristic of the hardware. Equation 1 can be formulated as a

quadratic unconstrained binary optimization (QUBO) problem,

g(q) =

N
∑

i=1

aiqi +

N
∑

i,j=1

bijqiqj (2)

where each bit, qi, is either 0 or 1, and is related to the formulation

in Equation 1 via si = 2qi−1. This change, from inverting values of

si ∈ {−1, 1} as in Equation 1 to qi ∈ {0, 1} as in Equation 2, is what

differentiates the Ising model from the QUBO model. The values

of hi and Jij can also be transformed into the values of ai and bij by

associating like terms in Equations (1) and (2). Equations (1) and

(2) are two equivalent ways of formulating the same problem. We

will use the formulation in Equation 2 throughout.

2.2. Inverse approach

We consider an inverse approach where the goal is to divide the

subsurface into two different materials with constitutive properties

based on measurements obtained on the boundary of the domain,

which aligns well with the quantum annealer’s ability to perform

binary optimization. Using standard variable names from seismic

inversion, the objective function used in the inverse analysis takes

the form

F(c) =

N
∑

i=1

|[U(c)]i − ûi|
2 , (3)

where U is a non-linear forward modeling operator such that

U(c) = u is a solution to the relevant governing equation (wave

equation for the seismic problem, groundwater flow equation

for the hydrology problem), c is the subsurface model, û is the

measurements (wavefield in the case of the seismic problem and

hydraulic head in the hydrology problem), and i represents the

index of the N different observations. Note that each component of

c can take only two values, either clow or chigh, which will correspond

to the low and high values of the relevant parameter field (P-

wave velocity for the seismic problem, or hydraulic conductivity

for the hydrology problem). We attempt to minimize this global

objective function using an iterative process, where each iteration

involves solving a related optimization problem that is suited to

the quantum annealer. We begin with an initial guess, c(0), and

iteratively produce c(k+1) from c(k).

During an iteration, we find the model update by creating

a quadratic unconstrained binary optimization (QUBO) problem

that approximates Equation (3). This QUBO problem can then be

solved with the quantum annealer. The QUBO objective function

takes the form

F(q) =

N
∑

n=1

|[Ũ (q)]n − ûn|
2 (4)

where Ũ (q) is a linear approximation to U at the current best

estimate c(k). This estimate is given by

Ũ(q)(k) = U (c(k))+

M
∑

m=1

qmBm (5)

where q is a binary vector that indicates how the model should be

updated, and M is the size of the model, which is the number of

parameters that we estimate. The vector Bm is defined to be

Bm =

{

U(c(k) + [clow − chigh]ei)− U(c(k)) if c
(k)
i = chigh

U(c(k) + [chigh − clow]ei)− U(c(k)) if c
(k)
i = clow

(6)

where ei is the i
th standard basis vector of size M consisting of all

zeros except for a 1 in the ith component. Essentially, Bm is an

operator that flips the value of its input and then forward models

it. This makes the computational cost of each iteration equal to the

cost ofM forward model runs. When updating the model, if qi = 0

then c
(k+1)
i takes the same value as c

(k)
i . On the other hand, if qi = 1

then c
(k+1)
i takes the same opposite value as c

(k)
i . That is, if qi = 1

then

c
(k+1)
i =



















chigh if c
(k)
i = chigh and qi = 0

clow if c
(k)
i = clow and qi = 0

clow if c
(k)
i = chigh and qi = 1

chigh if c
(k)
i = clow and qi = 1

(7)

The least-squares objective function for iteration k is then

equivalent to

F(q) = ||U(c(k))− û||22 + 2(U(c(k))− û)TBTq+ qTBBTq . (8)

Note that this equation has a constant term, a term that is linear in

q, and a term that is quadratic in q. The constant term is irrelevant

to the optimization process, and neglecting it results in a function

of the form in Equation (2). After creating the QUBO for a given

iteration (Equation 8), Los Alamos National Laboratory’s D-Wave

2000Q quantum annealer does the (forward) annealing and returns

1,000 possible solutions. We analyze the first several solutions

that minimize the local objective function (Equation 8), select the

update among those that minimizes the global objective function

(3), and update the model accordingly. The selected update, q ∈

{0, 1}M , is used to update the model, c(k+1), using Equation (7).

We used default values for the annealing time, thermalization time,

and post-processing. D-Wave’s heuristic embedder was used to

embed the problem graph on the D-Wave, which generally involves

embedding a complete graph.
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2.2.1. Hydrologic inverse analysis
We study the steady-state groundwater flow equation,

∇ ·
(

k(x)∇h
)

= f (9)

where h represents the hydraulic head, k(x) denotes the

heterogeneous hydraulic conductivity, and f represents fluid

sources or sinks. Note that throughout, we will assume that f = 0

(i.e., there are no fluid sources/sinks) and that k(x) is either kh or kl
where kh is a high conductivity value and kl is a low conductivity

value. The inverse analysis’s goal is, given a set of hydraulic head

observations, to infer the spatially variable hydraulic conductivity,

k(x). That is, to determine at each location, x, whether k(x) = kh
or k(x) = kl. This process corresponds to determining where two

different materials exist in the aquifer. If the highly conductive

material were sand and the low conductivity material were clay, the

inverse analysis would answer the questions: where is the sand? and

where is the clay?

To obtain a hydrologic inverse problem, we generate two

hydraulic conductivity fields based on two real-world examples

where the hydraulic conductivity at each location is either kh or

kl. We first look at the example from Lu and Robinson (2006),

which includes two low-permeability zoned embedded in a high

permeability background medium. Our second hydrology example

includes a slurry wall in our domain of interest. The hydraulic

conductivities are distributed on a grid that is coarse compared

to the finite volume grid on which the Equation (9) is solved.

This use of these two grids reduces the number of hydraulic

conductivity variables so that they can all be fit on the quantum

annealer and the finite volume grid remains sufficiently resolved

to produce a physically accurate simulation. Given these hydraulic

conductivities, Equation (9) is solved to obtain a set of hydraulic

head observations. These observations and the current estimate

of the hydraulic conductivities are then used to formulate a

QUBO using the previously discussed approach. Effectively, the

PDE solver used to solve Equation (9) provides the function

F(c) in Equation (3). After approximations, this results in the

QUBO given in Equation (8). The quantum annealer is then used

to optimize the QUBO, providing an updated estimate of the

hydraulic conductivities. This iterative process continues until the

convergence criteria are satisfied.

We have a 700 × 700 meter domain in this application, with

seven discrete permeability blocks in the x-direction and seven in

the y-direction. We place 24 receivers across the surface of the

domain in a checkerboard pattern. Our computational mesh grid

is dx = dy = 10 meters. Our goal is to invert for the locations of

the two different facies, which each have permeabilities of kl or kh.

Given this problem geometry, there are 249 ≈ 5.6 × 1014 possible

solutions. The exact model we use is shown in Figure 1.

2.2.2. Seismic inverse analysis
In this application, our goal is to find the distribution of P-wave

velocity values that give rise to a set of wavefield measurements

from receivers on the surface of the domain. We study the acoustic

wave equation,

(

1

c(x)2
∂2

∂t2
−∇

)

u = f , (10)

where c(x) is the P-wave velocity, u is the measured wavefield, and

f is the forcing, or source term. Similar to the hydrology example,

we assume that c(x) is either chigh or clow, so this problem can be

thought of as locating two different materials in the subsurface. We

look at two different examples: one is a salt body in an constant

FIGURE 1

The two hydrology permeability models used in this experiment, where yellow locations are high permeability and green locations are for low

permeability values. We place seven discrete permeability block locations in the x-direction and seven in the y-direction. The domain is 700× 700 m,

so each discrete permeability block is 100 × 100 m. The computational mesh grid is dx = dy = 10 meters. We have 24 receivers, denoted by red

triangles, which are spread in a checkerboard pattern across the top of the domain.
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FIGURE 2

The seismic velocity models used in this experiment, where yellow locations are high velocity and green locations are for low velocity values. We

place ten discrete velocity block locations in the x-direction and five in the z-direction. The domain is 1, 000 m wide and 500 m deep, so each

discrete velocity block is 100 × 100 m. The computational mesh grid is dx = dz = 10 meters. We have seven receivers, denoted by red triangles,

which are spread evenly across the top of the domain. The source is located at the top center of the domain.

FIGURE 3

The convergence of our quantum annealing inverse approach for 10 low (left) and high (right) contrast hydrologic inverse problems is shown using

the same initial value of c0 = klow . The numbers at the end convergence point represent the number of model runs that converged to that model

value. The approach works well in the low contrast regime, but there are problems in the high contrast regime due to the quantum annealer’s limited

dynamic range. Realistic hydrologic inverse problems have a high contrast, so this is problematic.

background medium, and the other is a two-layer faulted example.

In this application, our domain of interest is 1 kilometer wide and

0.5 km deep and includes 50 possible velocity value locations: 5

in the vertical direction and 10 in the horizontal direction. To

keep computational costs similar to that of the hydrologic inverse

analysis, our experiment only uses one source, and we choose our

source f to be a 25 Hz Ricker wavelet at the top center of the

domain. We also spread seven receivers evenly across the surface

of the domain to record the wavefield measurements. We use a

1 millisecond sampling interval and record for 0.4 s at all sensor

locations for the wavefield measurements. We use the observations

recorded at the receiver locations to formulate a QUBO using the

method discussed in this paper. As in the hydrology problem, the

PDE solver used to solve Equation (10) provides the function F(c)

in Equation (3). After approximations, this results in the QUBO

given in Equation (8). The exact velocity model we use is in

Figure 2. Given this problem geometry, there are 250 ≈ 1.1 × 1015

possible solutions.
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FIGURE 4

The convergence of our quantum annealing inverse approach for 10 low (left) and high (right) contrast seismic inverse problems is shown using the

same initial value of c0 = clow . The numbers at the end convergence point represent the number of model runs that converged to that model value.

The approach works well in the low contrast regime, but there are problems in the high contrast regime due to the quantum annealer’s limited

dynamic range. Realistic seismic inverse problems have a low contrast, so these problems are well-suited to the quantum annealer.

3. Results

We applied the approach to inverse analysis previously

discussed to seismic and hydrologic problems. For each of these

physical problems, we consider a case where chigh/clow is large and

another where chigh/clow is relatively small. For the seismic problem,

the case where chigh/clow is relatively small is realistic. On the other

hand, the case where chigh/clow is large is realistic for the hydrologic

problem.

Figure 3 shows the convergence behavior of the inverse analyses

for the hydrologic problem. The left panel shows the convergence

pattern when there is low contrast between the high hydraulic

conductivity and low conductivity, while the right panel shows the

convergence pattern when there is a large contrast. For the low

contrast case, we use klow = 1×10−3m/s and khigh = 2×10−3m/s,

and for the high contrast case, we use klow = 5 × 10−8m/s and

khigh = 5 × 10−3m/s. In both cases, the initial model c0 = klow.

The stopping criteria for iterations is when the same model output

was selected for two iterations in a row. There is a strong tendency

to converge to a good result when the contrast is low. In the

low contrast setting, the inverse approach gets all the hydraulic

conductivities correct in four analyses and at most 5 incorrect in

the remaining six analyses. On the other hand, there is a strong

tendency to converge to a lackluster result in the high contrast

case. In the high contrast setting, the inverse approach gets all the

hydraulic conductivities correct three times, but gets 12 or more

incorrect in the remaining seven analyses. The performance in

these two settings indicates that the high contrast case is more

challenging for the inverse method than the low contrast case.

TABLE 1 Variability in permeability in unconsolidated sediments (Fetter,

2018).

Materials Hydraulic conductivity
(m/s)

Clay 10−11–10−8

Silt, sandy silts, clayey sands, till 10−8–10−6

Silty sands, fine sands 10−7–10−5

Well-sorted sands, glacial outwash 10−5–10−3

Well-sorted gravel 10−2–10−4

Note the extreme variability between sediment types (nine orders of magnitude) and the

variability within sediment types (typically two orders of magnitude).

Figure 4 shows the convergence behavior of the inverse analyses

for the seismic problem. The left panel shows the convergence

pattern when there is a low contrast between the high velocity and

low velocity, while the right panel shows the convergence pattern

when there is a large contrast.

For the low contrast case, we use the same velocity values

and contrast as used in the initial example: clow = 4, 250m/s

and chigh = 4, 750m/s. In the high contrast case, we use clow =

2, 000m/s and chigh = 5, 000m/s. In both cases, the initial model

c0 = clow. The stopping criteria for iterations is when the same

model output was selected for two iterations in a row. Like the

hydrologic inverse analysis, the low contrast problem shows better

convergence behavior than the high contrast problem. In the low

contrast setting, the inverse approach gets all the velocities correct

five times, between one and four velocities incorrect four times,
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FIGURE 5

The cumulative distribution function for an Ising problem in (A) the seismic inverse analysis and (B) the hydrologic inverse analysis are shown. Note

that the high contrast problem is more likely to have small coe�cients that get lost in the noise of the quantum annealer.

and seven velocities incorrect once. Again, the performance of the

inverse approach declines as the contrast increases. In the high

contrast setting, the inverse analysis never obtains all the velocities

correctly. The number of incorrect velocity values tends to cluster

around seven, which was the worst result in the low contrast case.

Due to the inconsistent nature of the convergence pattern in low vs.

high contrast cases and seismic vs. hydrologic examples, we choose

to not provide an algebraic form for the convergence patterns.

4. Discussion

Inverse analysis in subsurface flow problems is challenging for

a variety of reasons. One source of challenges is the high variability

in hydraulic conductivity and permeability found in the Earth’s

subsurface. Table 1 shows hydraulic conductivity ranges for a set

of unconsolidated sediments (Fetter, 2018). Note that even within

one class ofmaterials, the hydraulic conductivity can vary by several

orders of magnitude. Since different materials often coexist in the

same region of the subsurface, the variability can be even larger

than this. For example, the widely used SPE 10 model exhibits

variation in the permeability over 8–12 orders of magnitude from

10−7 milliDarcy to 104 milliDarcy (Lie, 2019).

This extreme variability adds to the challenges for the quantum

annealer because high contrasts in the parameters result in

more variability in the QUBO coefficients. Figure 5 shows the

distribution of the coefficients in one iteration of the seismic and

hydrologic inverse analysis for both the low and high contrast cases.

The coefficients that are small in magnitude tend to be lost in the

noise associated with the quantum annealer (Golden and O’Malley,

2021). This is caused by the rescaling that is necessary to fit the

coefficients within the dynamic range allowed by the quantum

annealer. The quantum annealer has little or no information

about qubits whose linear and quadratic coefficients are below the

hardware’s analog noise level. Since the iterative model updates

are determined by solving this QUBO problem, which may be

inaccurate in high contrast cases due to its coefficients being below

the threshold of hardware noise, the model updates selected from

this method may diverge from minimizing the original problem’s

objective function, as seen in Figure 3.

While different geologic units may have large contrasts in

hydraulic conductivity, there is much less variability in P-wave

velocity values both between and within rock types than in

hydraulic conductivity, as seen in Table 2. In general, the P-wave

velocity of a given unit will increase with depth since the material

becomes more compact. Because of this, units close to each other in

depth are likely to have a more similar velocity than units far from

each other in depth. This allows for a lower impedance contrast

under the assumption of a constant-density acoustic model. The

high-contrast case, where the performance is not as good, would be

uncommon in real examples of subsurface velocity models with the

notable exception in areas with salt bodies, such as in the Gulf of

Mexico. Because of the difficulties with QUBO coefficients being

lost in the noise, quantum annealing appears more suitable for

seismic inverse analysis than hydrologic inverse analysis using the

method we propose.

One of the most notable limitations of the current work

is that the resolution of the subsurface parameterization is

limited. The hydrologic inverse problem had a 7 × 7 grid of

hydraulic conductivities, and the seismic problem had a 5 × 10

grid of P-wave velocities. This work was done with D-Wave’s

older generation 2000Q hardware. D-Wave’s current generation

Advantage hardware uses a Pegasus graph (Dattani et al., 2019).

This hardware significantly increases the number of qubits on

the quantum annealer chip and the number of connections per

qubit. The effect of this will be to approximately triple the number

of parameters that can be calibrated. Approximately tripling the

number of parameters will significantly increase the resolution of
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TABLE 2 Variability in P-wave velocity in common rock types in

exploration seismology (Bourbié et al., 1987).

Materials P-wave velocity (m/s)

Wet sands 1, 500 – 2, 000

Saturated shales and clays 1, 100 – 2, 500

Porous and saturated sandstones 2, 000 – 3, 500

Limestones 3, 500 – 6, 000

Salt 4, 500 – 5, 500

Note that there is much less variability in P-wave velocity values both between and within rock

types than in Hydraulic Conductivity of unconsolidated sediments in Table 1.

the inverse model that the quantum annealer can handle. The

Advantage hardware also reduces the noise on the system, which

could improve the performance of high contrast problems.

It should also be noted that further methodological

developments could improve the resolution of the inverse

model. The full domain could be explored by moving through the

domain in a tiling fashion. Another possibility would be to use

an alternative to Equation (4) that has some natural sparsity. For

example, parameters associated with regions that are physically

distant from each other might tend to have a small quadratic term,

which could be neglected in some cases. Many possibilities cannot

be explored here – this is just the beginning of using quantum

computing for subsurface applications.

5. Conclusion

We have considered the application of noisy, intermediate-

scale quantum computing to subsurface geoscience. In particular,

we have used a quantum annealer to solve seismic and hydrologic

inverse problems. We found that the seismic inverse problem is

better suited to the quantum annealer than the hydrologic inverse

problem. This is because the ratio between a fast P-wave velocity

and a slow P-wave velocity is small compared to the ratio between

a high hydraulic conductivity and a low hydraulic conductivity.

This ratio ultimately influences the variability of the coefficients

in the Hamiltonian used to program the quantum annealer, with

a large ratio resulting in higher variability. High variability in the

Hamiltonian coefficients leads to poor performance because the

small coefficients effectively get lost in the noise.

In addition to identifying a subsurface problem that is well-

suited to the quantum annealer, we also developed methods that

enable the quantum annealer to solve inverse problems with a

realistic set of observations. This is a significant step forward

because previous work, which focused on the hydrologic inverse

problem, was limited to an unrealistic set of observations. In

particular, it required that the hydraulic head be observed at

every point on the computational grid. This was consistent with

early methods that were used in computational hydrology—called

direct inverse methods (Yeh, 1986). The transition to an iterative

approach for inverse analysis with quantum annealing brings it in

line withmodernmethods for inverse analysis that also use iterative

methods and can handle realistic observation sets.

By transitioning from hydrology to seismology and from a

direct inverse method to an iterative inverse method, we have

taken two significant steps toward enabling the use of quantum

annealing for practical applications in subsurface geoscience. One

significant hurdle remains, and that is increasing the resolution

of the subsurface image that the quantum annealer can handle.

This would be aided by adding additional qubits to the quantum

annealer and increasing the qubits’ connectivity, both anticipated

in D-Wave’s next quantum annealer.
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Tutorial: calibration refinement in
quantum annealing

Kevin Chern, Kelly Boothby, Jack Raymond, Pau Farré and

Andrew D. King*

D-Wave, Burnaby, BC, Canada

Quantum annealing has emerged as a powerful platform for simulating and

optimizing classical and quantum Ising models. Quantum annealers, like other

quantum and/or analog computing devices, are susceptible to non-idealities

including crosstalk, device variation, and environmental noise. Compensating

for these e�ects through calibration refinement or “shimming” can significantly

improve performance but often relies on ad-hocmethods that exploit symmetries

in both the problem being solved and the quantum annealer itself. In this

tutorial, we attempt to demystify these methods. We introduce methods

for finding exploitable symmetries in Ising models and discuss how to use

these symmetries to suppress unwanted bias. We work through several

examples of increasing complexity and provide complete Python code. We

include automated methods for two important tasks: finding copies of small

subgraphs in the qubit connectivity graph and automatically finding symmetries

of an Ising model via generalized graph automorphism. We conclude the

tutorial by surveying additional methods, providing practical implementation

tips, and discussing limitations and remedies of the calibration procedure.

Code is available at: https://github.com/dwavesystems/shimming-tutorial.

KEYWORDS

quantum computing, quantum annealing, D-Wave, calibration, quadratic unconstrained

binary optimization, Ising

1. Background

1.1. Introduction to quantum annealing

Quantum annealing (QA; Kadowaki and Nishimori, 1998; Johnson et al., 2011) is a

computing approach that physically realizes a system of Ising spins in a transverse magnetic

field. A common application of QA is to find low-energy spin states of the Ising problem

Hamiltonian as follows:

HP =
∑

i

hiσ
z
i +

∑

i<j

Jijσ
z
i σ

z
j . (1)

Here, {σ z
i }

N
i=1 ∈ {−1, 1}

N is a set of Pauli z-operators, which can be thought of as a

vector of classical±1 Ising spins; hi denotes a longitudinal field (bias) on spin i, and Jij (used

interchangeably with Ji,j depending on context) denotes a coupling (quadratic interaction)

between spins i and j. MinimizingHP is intractable, i.e., NP-hard (Barahona, 1982).

QA adds toHP to an initial driving Hamiltonian as follows:

HD = −
∑

i

σ x
i . (2)

The ground state of HD, which is a uniform quantum superposition of all classical states, is

easy to prepare. QA guides a time-dependent HamiltonianH(s) fromHD toHP by linearly

combiningHD andHP as follows:

H(s) = Ŵ(s)HD + J(s)HP, (3)
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FIGURE 1

Annealing schedule for Hamiltonian (3) in a D-WaveTM AdvantageTM

processor. Ŵ(s) and J(s) control the magnitude of quantum

fluctuations and the Ising energy scale, respectively. These values

vary from one processor to another.

where s is a unitless annealing parameter ranging from 0 to 1.

Unless stated, s is simply t/ta: time normalized by annealing time.

The functions Ŵ(s) and J(s) define the annealing schedule: Ŵ(s)

decreases toward 0 as a function of s, and J(s) increases as a

function of s; Ŵ(0) ≫ J(0). Units are GHz, convertible to Joules

by multiplication by h̄ (reduced Planck constant). An example is

shown in Figure 1.

1.2. Calibration imperfections and
refinement

Quantum processing units (QPUs, in this case quantum

annealers) are typically made available with a single one-size-fits-

all calibration. Non-idealities in the calibration can arise from

a number of sources. For example, small fluctuations in the

magnetic environment can bias qubits in one direction or the

other. Moreover, crosstalk, in which a Hamiltonian term, e.g., a

programmed coupler Jij, can cause an undesired perturbation in

another Hamiltonian term corresponding to a physically nearby

device, e.g., a bias field hi.

In short, no calibration is perfect. Oftentimes, in-depth studies

of a single system (Isingmodel) or ensemble of systems (e.g., a set of

realizations of a spin-glass model) can be improved by suppressing

crosstalk and other non-idealities. This is achieved by “shimming:”

inferring statistical features of an ideal annealer and tuning the

Hamiltonian to produce these features. An ideal annealer, in this

study, is defined simply as one that respects symmetries in the

Hamiltonian—each qubit behaves identically and each coupler

behaves identically.

Variations on the methods described herein have been used in

many studies (King et al., 2018, 2021a,b,c, 2022, 2023; Kairys et al.,

2020; Nishimura et al., 2020). Often, when behavior of the system

relies on precise maintenance of energy degeneracy between states,

or energy splitting from the transverse field, the results are highly

sensitive to these tunings. Particularly for the simulation of exotic

magnetic phases, calibration refinement is an essential ingredient

of successful experiments. However, so far the discussion of these

methods has mostly been relegated to Supplementary material.

Here, our aim is to provide an accessible guide that will encourage

the use of these powerful but simple methods.

Specific visual demonstrations of the benefit of these methods

“in the wild” include:

• Frustrated 2D lattice, King et al. (2018), Extended Data

Figure 7.

• Diluted ferromagnet, Nishimura et al. (2020), Figures 34–35.

• 1D quantum Ising chain, King et al. (2022), Supplementary

Figures S3, S4.

• 3D quantum spin glasses, King et al. (2023), Supplementary

Figures S8–S9.

The tutorial is organized as follows. In the remainder of this

section, we introduce concepts that form the bases of the QPU

calibration procedure. In Section 2, we illustrate the essence of

our approach through a toy example. In Section 3, we extend

the method and improve calibration efficiency by exploiting

symmetries in a given model. In Section 4, we introduce a non-

trivial system to demonstrate additional concepts useful for realistic

applications. Collectively, these sections provide a comprehensive

walkthrough of the calibration procedure. In Section 5, we survey

additional methods for narrower use cases of the QPU. Finally, we

provide practical tips and considerations in Section 6 and conclude

the tutorial in Section 7.

1.3. Inferring statistical features: qubit and
coupler orbits

The approach described in this tutorial can be stated simply

and generically. In theory, two observables of a QPU output are

expected to be identical due to symmetries in the Ising model

being studied. In experiment, they can differ systematically. We

tune Hamiltonian terms to reduce these differences. In theory,

symmetries in an Ising model admit identical expectation values of

observables.1 However, empirical averages over many realizations

of these observables (from a QPU) may differ systematically.2

We tune Hamiltonian terms to reduce the discrepancy between

the expected value and observed averages. For example, given a

Hamiltonian consisting of a single qubit with no bias, HP = 0(s1),

we expect to observe a mean spin of 0 for s1. However, this observed

quantity may deviate from 0 systematically; we, thus, attempt to

correct this deviation by perturbing the Hamiltonian.

In this study, we only consider one- and two-spin observables—

spin magnetizations and frustration probabilities—in part because

they can be fine-tuned easily using the available programmable

terms in the QPU. A call to the QPU typically results in a number of

classical samples, which we set to 100 for all examples. From these

1 An observable is a quantity that one can physically measure and observe.

For example, the spin of a qubit.

2 Here, “di�er systematically” refers to discrepancies between the expected

value and the observed average as a result of biases in the physical system

and not discrepancies due to finite samples.
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FIGURE 2

(A) Ferromagnetic loop (periodic 1D chain) on L spins. (B) Frustrated

loop, with one antiferromagnetic coupler. The FM loop has a 2-fold

degenerated ground state (all spins up or all spins down) with no

frustration; the frustrated loop has 2L ground states, each with one

frustrated bond. When h = 0, all qubits trivially have zero average

magnetization in an ideal annealer.

samples, we can compute a magnetization as follows:

mi = 〈si〉 ∈ [−1, 1] (4)

For each spin si, a frustration probability is as follows:

fi,j =
1+ sign(Ji,j)〈sisj〉

2
∈ [0, 1] (5)

For each coupler Ji,j; fi,j is the observed probability of the

coupler having a positive contribution to the energy inHP.

This raises the first question: how do we identify observables

that should be identical in expectation? The answer is through

symmetries of the Ising model under spin relabelling and

gauge transformation (discussed below).3 We understand and

formalize these symmetries—and automate their detection—

through graph isomorphisms (especially automorphisms) and

generalizations (Godsil and Royle, 2001). We understand and

formalize these symmetries—and automate their detection—

through graph isomorphisms (especially automorphisms)

and generalizations. We briefly introduce the concept of

graph automorphisms and orbits below (see Godsil and

Royle, 2001 for a more complete treatment). Notably, the

symmetries we find and exploit here are a subset of all possible

symmetries.

Given a graph G = (V ,E) with vertex and edge sets V ,E,

a graph automorphism is a mapping π :V 7→ V such that

(π(u),π(v)) ∈ E if and only if (u, v) ∈ E. Intuitively, a graph

automorphism is an adjacency-preserving relabelling of vertices.

Two vertices u, v ∈ V are said to belong in the same vertex orbit if

there exists an automorphismmapping u to v (or v to u). If u, v ∈ V

belong in the same vertex orbit, the edges incident to u or v also

belong to the same edge orbit.

We now relate the definitions of graph automorphisms and

orbits back to our goal of detecting and exploiting symmetries.

These symmetries admit two types of equivalence relations on an

Ising model HP: one on the qubits and the other on the couplers.

We call the equivalence classes qubit orbits and coupler orbits,

respectively. We use notation O(si) for a qubit orbit containing

spin si, and O(si, sj) for a coupler orbit containing coupler (si, sj).

3 A gauge transformation is also known as a spin reversal transformation, in

which a subset of spins have their sign flipped.

We define them as having the following properties guaranteed by

symmetry in an ideal annealer:

• All qubits in the same orbit have the same expected

magnetization.

• All couplers in the same orbit have the same frustration

probabilities.

Formally, a set O is said to be a qubit orbit if

si, sj ∈ O, then mi = mj. Similarly, a set O is

said to be a coupler orbit if (si, sj), (sk, sl) ∈ O, then

fi,j = fk,l.

For example, consider the Hamiltonian HP = hs1 − hs2 +

hs3 for h 6= 0. The two independent spins s1, s3 can be trivially

relabeled (permuted) by each other, thus the two qubits belong to

the same qubit orbit; s2 belongs in its own qubit orbit as it does

not have the same magnetization as s1, s3. Now, let us consider

the Hamiltonian HP,2 = HP + Js1s2 + Js2s3 for J 6= 0. In this

case, (s1, s2) and (s2, s3) exist in the same coupler orbit because

s1, s3 can be swapped while preserving the couplers in HP,2; the

permutation preserves adjacency structures. As a non-example, let

us consider the Hamiltonian HP,3 = HP + Js1s2 − 2Js2s3. In

this case, (s1, s2) and (s2, s3) no longer exist in the same coupler

orbit because swapping s1, s3 no longer preserves the couplers

inHP,3.

Due to spin-flip symmetries, or spin reversal transformations

(SRTs; described below), each qubit and coupler orbit

can additionally have up to one non-empty orbit that

is opposite.

• If qubit orbitsO(si) andO(sj) are opposite,

• We writeO(si) = −O(sj) and−O(si) = O(sj).

• If O(si) = −O(sj), hi = −hj and, in an ideal annealer,

mi = −mj.

• If coupler orbitsO(si, sj) andO(sk, sℓ) are opposite,

• We writeO(si, sj) = −O(sk, sℓ) and−O(si, sj) = O(sk, sℓ).

• Ji,j = Jk,ℓ and, in an ideal annealer, fi,j = fk,ℓ. Ji,j = −Jk,ℓ
and, in an ideal annealer, fi,j = fk,ℓ.

An SRT, as its name suggests, flips the sign of a spin. For

example, consider the Hamiltonian with a single qubit HP = hs.

An SRT transforms on s yields an identical Hamiltonian HP =

−hs̃ where s̃ = −s. Similarly, for a Hamiltonian consisting of

both biases and coupling terms such as HP = h1s1 + h2s2 +

J1,2s1s2, we can apply an SRT on one (or multiple) variable(s)

to obtain HP = −h1 s̃1 + h2s2 − J1,2 s̃1s2 = h1s1 − h2 s̃2 −

J1,2s1 s̃2 = −h1 s̃1 − h2 s̃2 + J1,2 s̃1 s̃2, where s̃1 = −s1, s̃2 =

−s2.

In the earlier example HP = hs1 − hs2 + hs3, qubit s2
belongs to the orbit opposite of s1, s3’s orbit. We will sometimes

overload notation, conflating O(si) with O(i) and O(si, sj) with

O(i, j).

Qubit and coupler orbits are related to, but not identical to,

automorphism orbits of an auxiliary graph. In particular, qubit and

coupler orbits are not unique: putting each qubit and each coupler
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FIGURE 3

Construction of signed Ising model. To detect exploitable symmetries, we search for automorphisms of an auxiliary Ising model in which each spin is

duplicated into itself and its negation; each coupler is, then, expanded to four copies of itself, two of them negated. Automorphisms of the auxiliary

Ising model can be detected by conversion into an equivalent automorphism-finding problem on an edge-labeled graph. Here, vertex labels indicate

the identities of spins and show how each spin is duplicated for the signed Ising model.

FIGURE 4

Orbits of signed and original Ising model. By computing automorphism groups of the edge- and vertex-labeled graph of the signed Ising model

[Figure3 (right)], we can construct orbits of qubits and couplers that should behave identically by symmetry in S(h, J) (left). Here, vertex and edge

labels indicate orbits. By identifying equivalent orbits (e.g., coupler orbits 0 and 5) and reducing back to the original Ising model (h, J), we determine

e�ective qubit and coupler orbits of (h, J) and their opposite relations (right).

in a separate orbit is sufficient to meet the definition but does not

provide any useful information. We seek large orbits that satisfy

the requirements.

Notably, in the commonly arising situation where hi = 0

on all qubits, each qubit orbit is its own opposite, so all qubits

have mi = 0. The analogous situation does not exist for couplers

because we do not consider symmetries between pairs of qubits

with zero coupling between them. Two simple examples are

shown in Figure 2: a frustrated loop and an unfrustrated loop.

In each case, all qubits are expected to have magnetization

and all couplers are expected to have the same probability of

frustration, but this is less obvious in the frustrated case than in

the ferromagnetic case. In each case, all qubits and couplers have,

respectively, identical magnetization and frustration probabilities.

The unfrustrated case is trivially true. The frustrated scenario is less

obvious but can be verified by computing frustration probabilities

for each edge.

Having defined qubit and coupler orbits, we now consider how

to find them.

1.3.1. Automorphisms of the signed Ising model
We proposed a strategy for identifying exploitable symmetries

for calibrating a QPU by finding qubit and coupler orbits. We

now introduce a method for identifying these orbits and begin by

defining the signed Ising model.

Let (h, J) denote an Ising model with fields h = {hi|vi ∈ V} and

J = {Ji,j|ei,j ∈ E}, with an underlying graph G = (V ,E) with vertex

and edge sets V and E. We construct a signed Ising model S(h, J) as

follows:

• For each spin vi ∈ V , S(h, J) has two spins vi and v̄i, with fields

hi and−hi respectively.

• For each coupler (vi, vj) ∈ E, S(h, J) has four couplers: two

couplers (vi, vj) and (v̄i, v̄j) with coupling Ji,j and two couplers

(v̄i, vj) and (vi, v̄j) with coupling−Ji,j.

Informally, we simply replace each spin with two: itself and

its negation and replace each coupler with four couplers with

appropriate parity-based sign flipping. Figure 3 shows an example

of this construction applied to a four-spin Ising model.

Our aim is to find large qubit and coupler orbits for (h, J),

and we will begin by finding the automorphism group of S(h, J),

which can be considered as a vertex- and edge-labeled graph. Our

aim is to find qubit and coupler orbits. Because automorphisms

of the underlying graph of an Ising model are symmetries of

the Ising model, we can generate qubit and coupler orbits by

considering the graph symmetries alone. In other words, finding
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graph automorphisms of the Ising model effectively give us qubit

and coupler orbits. We can stop here and perform calibration based

on these qubit and coupler orbits extracted from these symmetries

(spin relabelling symmetries). However, we can similarly extract

and exploit spin-flip symmetries by finding the automorphisms of

the graph of S(h, J). These additional automorphisms give rise to

qubit and coupler orbits opposite to the original. Intuitively, S(h, J)

enumerates and concatenates all SRT configurations to the original

Ising model. As a consequence, by finding its automorphisms, we

are able to further identify symmetries due to SRTs. In other words,

if a negated vertex is in the same orbit as a non-negated vertex, they

exhibit symmetries through an SRT. In short, the automorphism

group of S(h, J) naturally generates one equivalence relation

defining qubit orbits and another equivalence relation defining

coupler orbits (see Figure 4).4 Our orbits ofS(h, J) immediately give

us orbits of (h, J) and constructed by simply discarding the qubits

and couplers that do not exist in (h, J).

There is more usable information held in the orbits of S(h, J).

First, we can combine coupler orbits of S(h, J) such that for each

coupler ei,j ∈ E, (v̄i, vj) and (vi, v̄j) are in the same orbit, and

(vi, vj) and (v̄i, v̄j) are in the same orbit. Second, we can, then,

easily derive opposite orbits: O(vi) = −O(v̄i), and O(vi, vj) =

−O(v̄i, v̄j).

These orbits are already very useful, but we can combine

some to make even larger orbits. As demonstrated in the example

in Figure 3, in S(h, J), the couplers between pairs (v̄i, vj) and

(vi, v̄j) are not necessarily automorphic. However, they are clearly

equivalent under a flip of all spins. Thus, we combine the coupler

orbits containing these two couplers. Likewise, the same applies to

couplers between pairs (v̄i, v̄j) and (vi, vj). This is all demonstrated

in the accompanying code example0_1_orbits.py and

shown in Figure 4.

We now consider how to exploit orbits to improve performance

in quantum annealers, building up a set of tools in the following

worked examples.

2. Worked example: ferromagnetic
loop

Code reference: example1*.py.

For our first example of calibration refinement, we study the

ferromagnetic (FM) loop (Figure 5) in which each coupling J1,2 =

J2,3 = · · · = JN,1 is equal and each field hi is zero. In this case,

by rotation, it is obvious that all qubits are in the same orbit and all

couplers are in the same orbit. Furthermore, the orbit containing all

qubits is its own opposite. Thus, we will perform two refinements.

First, we will balance each qubit at zero magnetization mi ≈ 0.

Second, we will balance the couplings so that each coupler is

frustrated with approximately equal probability.

Since the FM loop has no frustrated bonds in the ground state,

the latter condition is only interesting if we sample excited states.

4 Since the automorphism-finding code nauty, McKay and Piperno (2014)

only handles vertex-labeled graphs and not edge-labeled graphs, and we

need to construct a vertex-labeled graph G′′ from S(h, J), which gives us the

appropriate automorphism group.

FIGURE 5

Ferromagnetic loop.

To ensure abundant excitations, we study a reasonably long loop

with weak couplings: L = 64 and Jij = −0.2.

2.1. Finding multiple embeddings of a small
Ising model

Code reference: embed_loops.py.

The first task is to find a copy of the FM loop in the qubit

connectivity graph AQPU of the QPU being used. This is an

embedding—a mapping of spins of an Ising model to qubits in a

QPU. In an Advantage processor, a 64-qubit loop can be embedded

many times on disjoint sets of qubits, so we can run many copies in

parallel for a richer and larger set of measurements.

To find these embeddings, we use the Glasgow graph solver

(McCreesh et al., 2020), which has been incorporated into the

embedding finding module minorminer (D-Wave, 2023). To

make the embedding search faster, we raster-scan across 2×2 blocks

of unit cells in the QPU’s Pegasus graph (Boothby et al., 2020) and

then greedily construct a large set of non-intersecting embeddings.

The file embed_loops.py provides a code example that finds

multiple disjoint copies of a 64-qubit loop in AQPU.

2.2. Balancing qubits at zero

Code reference: example1_1_fm_loop_balancing.py.

We will use simple parameters for the experiment, running

1 µs anneals forward anneals (where s increases linearly in time

as t/ta) and drawing 100 samples for each QPU call. We

set auto_scale=False to ensure that the QPU will not

automatically magnify the energy scale.

InD-Wave’s annealingQPUs, each qubit si can be biased toward

−1 or +1 in two ways: first, with a programmable longitudinal

field hi as in Equation 1; second, with a programmable flux-bias

offset (FBO)8i (Harris et al., 2009; D-Wave, 2022). In the quantum

annealing Hamiltonian (3), the bias conferred by the hi term is

scaled by J(s), meaning that it changes as a function of s. The FBO

8i, in contrast, confers a constant bias that is independent of s.

We prefer to mitigate biases using FBOs, in part, because they are

programmed independently of hi.

We employ an iterative gradient descent method for

minimizing |mi| with a step size α8. For a given iteration,

we consider the observed magnetization mi = 〈si〉. If mi < 0, we

adjust the FBO to push si toward +1; if mi > 0, we adjust the FBO

to push si toward−1. This is done by updating as follows:
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FIGURE 6

Balancing qubits in a FM chain with flux-bias o�sets. Iterative correction of qubit biases is demonstrated using three step sizes α8 for 100 iterations:

10−4 (left), 10−5 (middle), and 10−6 (right). Step size is set to zero for the first 10 iterations. (Top) Evolution of flux-bias o�sets for 64 qubits in an FM

chain. (Middle) Qubit magnetization averaged over first 10 iterations and last 10 iterations. (Bottom) Standard deviation of qubit magnetizations per

iteration.

8i ← 8i − α8(mi − m̄) (6)

where m̄ is the average observed magnetization across all qubits. In

this case, we can simply replace m̄ with 0 since hi = 0 for all qubits.

The choice of a step size α8 has a strong influence on the

convergence of the calibration procedure. In Figure 6, we show

the resulting FBOs for a single copy of the 64-qubit chain, as

well as magnetization statistics. We show experiments for three

choices of α8. One (flux 1 × 10−4, in units of 80) is too large and

creates oscillations in 8i and mi. One (1 × 10−6) is too small and

takes many iterations to converge. One (1 × 10−5) is in between

and performs well. The choice of step size is a common concern

in gradient descent applications, and we will consider automatic

tuning of α8 in a later section (Section 4.4). For best results, we

should ensure:

• The calibration refinement appears to have converged to the

vicinity of a fixed point.

• The parameters do not oscillate wildly.

When seeking evid ence that qubit bias is improved by the

FBOs, we should not just look at qubit statistics over a single

QPU call, since fluctuations can be large. Rather, we should look

at the average magnetization of a qubit over multiple calls, which

indicates systematic bias. The middle row of Figure 6 shows the

average magnetization of each qubit across the first and last 10

iterations. For each step size, the shim results in a significant

improvement in variation of mi from one qubit to another.

However, the standard deviation among qubit magnetizations for

individual iterations shows that the case α8 = 1 × 10−4 causes
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FIGURE 7

Balancing qubits and couplers in an FM chain with flux-bias o�sets and coupler adjustments. This experiment is similar to that shown in Figure 6 but

with αJ > 0 for the last 100 iterations. Couplers remain distributed about the average value of J = −0.2.

broad spreading of biases, so we need to be careful with our step

sizes.

2.3. Balancing spin-spin correlations

Code reference:

example1_2_fm_loop_correlations.py.

Having balanced qubits at zero with linear terms with an FBO

shim, we now address homogenizing the spin-spin correlations on

adjacent qubits, which by symmetry should be equal for all coupled

pairs. The couplings Ji,i+1 are all nominally −0.2; we will fine-tune

the couplings in the vicinity of this value. This is similar to how we

fine-tuned the FBOs but with the added constraint that we do not

change the average coupling.

For a given iteration, we take the observed probability fi,i+1 of

the coupler being frustrated as follows:

fi,i+1 = (1+ sign(Ji,i+1)〈sisi1 〉)/2. (7)

Let f̄ denote the average frustration across all couplers in all

disjoint embeddings of the chain, in general, we will compute f̄

across all couplers in the union of a coupler’s orbit and its opposite

orbit. We, then, adjust couplings based on the residual frustration

fi,i+1 − f̄ :

Ji,i+1 ← Ji,i+1(1+ αJ(fi,i+1 − f̄ )). (8)

Figure 7 shows data for the same experiment as Figure 6 but

with the “coupler shim” added, with αJ = 0.001. To show the effect

of the two shims, we run 100 iterations with α8 = 0 and αJ = 0,

then 100 iterations with α8 = 1× 10−5 and αJ = 0, then 100 with

α8 = 1× 10−5 and αJ = 0.001. In this particular case, the coupler

shim is small but some systematic signals can be observed. We will

show more impactful cases later in the tutorial.

3. Worked example: frustrated loop

Code reference: example2*.py.

FIGURE 8

Frustrated loop.

Taking the ferromagnetic loop considered in the previous

example, the sign is flipped of a single coupler J1,2 (Figure 8). It is

again obvious that all spins should have zero average magnetization,

since there is no symmetry-breaking field (i.e., hi = 0 everywhere).

Less obvious is the fact that we can have two coupler orbits: one

containing all FM couplers and one containing the AFM coupler,

and they are opposite. Consequently, every coupler should be

frustrated with equal probability in an ideal annealer.

3.1. Finding orbits

Code reference:

example2_1_frustrated_loop_orbits.py.

We can derive this fact as follows. Flipping the sign of s2, and

the sign of both couplers incident to it, is a gauge transformation

and, as such, will not change the probability of any coupler

being frustrated in an ideal annealer. The result of this gauge

transformation is again a frustrated loop with a single AFM coupler

J2,3; this is equivalent to the original loop by a cyclic shift of qubit

labels. From this, we can infer that J1,2 and J2,3 should have the

same frustration probability; repeating this argument tells us that

all couplers should have the same frustration probability.

For more complicated examples, we would prefer to find such

statistical identities programmatically as described in Section 1.3.

We do this in the file

example2_1_frustrated_loop_orbits.py
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FIGURE 9

Coupler orbits of frustrated loops. The code example2_1_frustrated_loop_orbits constructs three disjoint frustrated loops and

programmatically generates qubit and coupler orbits. All qubits are in the same orbit. There are two signed coupler orbits, O1 and O2, and in this

example, they form an opposite pair, meaning that a coupler in O1 and a coupler in O2 have opposite sign (J = −1 and J = 1 in this case) but equal

probability of frustration in an ideal annealer.

by computing automorphisms of an auxiliary graph. The result is a

mappingO of qubits and couplers to orbits. If spins si and sj satisfy

O(si) = O(sj), then in an ideal annealing experiment mi = mj.

Similarly, if couplers sisj and sksℓ satisfy O(sisj) = O(sksℓ), they

have identical frustration probabilities fi,j = fk,ℓ. The code also gives

us a mapping of orbits to “opposite” orbits, such that if spins si and

sj are in opposing orbits,mi = −mj, and if couplers sisj and sksℓ are

in opposing orbits, fi,j = fk,ℓ and Ji,j = −Jk,ℓ.

Running the code on three disjoint copies of a frustrated six-

qubit loop tells us that all AFM couplers are in one coupler orbit

O1 = {si, sj | O(sisj) = 1}, and all FM couplers are in its opposite,

O2 = −O1 (see Figure 9).

We point out an obvious but useful fact: If we are usingmultiple

embeddings of an Ising model, all copies of a given qubit are in the

same orbit, and all copies of a given coupler are in the same orbit.

Here, we use disjoint embeddings, but they need not be disjoint:

the embeddings could overlap, and be annealed in separate calls

to the QPU.

3.1.1. Shimming
We can now approach the frustrated loop similarly to the

unfrustrated loop: all qubits should have average magnetization

zero, and all couplers should be frustrated with the same probability.

Again, tuning FBOs and individual couplings helps to reduce bias in

the system. This example shows how to exploit orbits for our shim.

There is one detail worth pointing out. In Equations 6, 8, the

terms m̄ and f̄ can be computed as averages over an orbit. If we are

dealing with opposing qubit orbitsOq and−Oq, we can simply use

m̄ = 0, as we do in the first example. For opposing coupler orbits

Oc and −Oc, we can compute f̄ across the union of the two orbits.

In this case, that means that f̄ is the average frustration probability

across all couplers.

Figure 10 shows the results of shimming FBOs and couplings

for 165 parallel embeddings of a 16-qubit frustrated loop, using

nominal coupling strength |Ji| = 0.9. Here, both components of

the shim show a marked improvement of statistical homogeneity.

Taking moving means for 10 iterations at a time, we see that both

σm (standard deviation of qubit magnetization) and σf (standard

deviation of coupler frustration probability) decrease as a result of

turning on the FBO shim and the coupler shim, respectively.

3.1.2. Finding orbits of an arbitrary Ising model
Code reference: example2_3_buckyball_orbits.py.

Here we present an example of an Ising model that is read from

a text file and run through our orbit-finding code. The user may

want to edit this code to analyze other Ising models of interest.

Consider another antiferromagnetic Ising model (Jij = 1) with

a Buckyball graph as its underlying structure and no linear fields

(hi = 0). We apply the same methodology described in Section 1.3

to find its orbits. Figure 11 visualizes the Buckyball model with its

orbits labeled by text, as well as its signed Ising counterpart with

coupling values encoded by color.

4. Worked example: triangular
antiferromagnet

Code reference: example3*.py.

In the previous examples we demonstrated several key

methods:

• Finding qubit and coupler orbits.

• Homogenizing magnetizations with FBOs.

• Homogenizing frustration by tuning couplers.

We can now apply these tools to a non-trivial system: the

triangular antiferromagnet (TAFM; Figure 12). This is a classic

example of a frustrated 2D spin system. Moreover, the addition

of a transverse field to a TAFM leads to order-by-disorder at low

temperature (Moessner and Sondhi, 2001; Isakov and Moessner,

2003). For this and other reasons, including qualitative similarity

to real materials, the TAFM has been simulated extensively using

quantum annealers (King et al., 2018, 2022). We will use it as an

example to showcase several concepts in calibration refinement for

quantum simulation:

• Truncating and renormalizing Hamiltonian terms.
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FIGURE 10

Shimming a frustrated loop. Three hundred iterations are performed. A flux-bias o�set shim is used after iteration 100, and a coupler shim is used

after iteration 200. Nominal couplings are ±0.9. The third panel shows the standard deviation of qubit magnetizations taken as a moving mean over

10 iterations, σm. The fourth shows the corresponding quantity σf for frustration probability.

FIGURE 11

An antiferromagnetic Ising model with a Buckyball graph structure.

The node and edge colors encode the resulting qubit and edge

orbits respectively. All qubits are in the same orbit since the graph is

vertex-transitive. There are only two coupler orbits: those couplers

sitting between two hexagons, and those sitting between a hexagon

and a pentagon.

• Simulating logical vs. embedded systems.

• Simulating an infinite system vs. faithfully simulating

boundary conditions. When simulating an infinite system,

we use the same geometry but suppress effects of any open

boundaries, which otherwise cause statistics such as nearest-

neighbor correlations to vary depending on distance from the

boundary. To do this we determine our qubit and coupler

orbits assuming an inifinite lattice, instead of computing them

from the finite lattice at hand.

4.1. Embedding as a square lattice

Code reference: example3_1_tafm_get_orbits.py.

In D-Wave’s Advantage systems, we can minor-embed the

TAFM using two-qubit FM chains. First, we will embed a 12 ×

12 square lattice with cylindrical boundary conditions, then we

ferromagnetically couple pairs of qubits with a strong coupling JFM .

The cylindrical boundaries are very helpful in providing rotational

symmetries that we can exploit in our calibration refinement

methods (as in the 1D chains already studied).

The provided code uses the Glasgow subgraph solver to find

embeddings of the 12×12 square lattice, but note that this can take

several hours. For larger square lattices, up to 32×32 or even larger

depending on the location of inoperable qubits, one can inspect

embeddings of smaller lattices and generalize the structure, since

subgraph solvers are unlikely to be efficient at that size. We proceed

with 10 disjoint 12× 12 embeddings generated by the code.

In this example we will set AFM couplers to JAFM = 0.9, and all

FM couplers to JFM = −2∗ JAFM. Since FM couplers are very rarely

frustrated in this system, we will only shim the AFM couplers.

4.2. Annealing with and without shimming

Code reference: example3_2_tafm_forward_anneal.py.

As in the previous example, we will compare performance of

three methods: no shim, FBO shim only, and FBO and coupler

shims together. We perform 800 iterations, turning on the FBO

shim after 100 iterations and the coupler shim after 300 iterations.

Figure 13 shows data for this experiment, and we can see that as

with the frustrated loop example, shimming improves statistical

homogeneity of magnetizations and frustration. Note, however,

that there is no appreciable impact on the average magnitude of the

order parameter 〈|ψ |〉. This will change when we vary boundary

conditions (see Figure 16).

4.3. Manipulating orbits to simulate an
infinite system

Code reference: example3_2_tafm_forward_anneal.py.
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FIGURE 12

A 12× 12 square lattice with cylindrical boundary conditions (periodic top/bottom). Contracting two-qubit FM chains into single spins results in a

triangular antiferromagnet.

FIGURE 13

Shimming an embedded cylindrical triangular antiferromagnet. Eight hundred iterations are performed. A flux-bias o�set shim is used after iteration

100, and a coupler shim is used after iteration 300. For clarity, we only show FBOs for 12 qubits, and couplings for 12 couplers in the same orbit.

Standard deviation of frustration probabilities, σf , is computed for the couplers in each orbit, and the average over all orbits is taken.

FIGURE 14

Shimming an isotropic, infinite triangular antiferromagnet. The experiment from Figure 13 is repeated, but with all AFM couplers placed in the same

orbit. For clarity, we only show FBOs for 12 qubits, and every 5th coupling from the AFM orbit.

The shim shown in Figure 13 used coupler orbits for the square

lattice with cylindrical boundaries, which are naturally different

for couplers that are different distances from the boundary, or

different orientations with respect to the boundary (and to FM

chains). But what if we want to simulate, to the extent possible, an

infinite TAFM? In that system, a coupler’s probability of frustration

is independent of its orientation and position, unlike in the square-

lattice embedded system. We can simulate this case by putting all

AFM couplers in one orbit, and all FM couplers in a second orbit,

and proceeding as before. The coupler orbits no longer reflect the

structure of the programmed Ising model, but rather the structure

of the Ising model we wish to simulate.

Results for the “infinite triangular” shim are shown in Figure 14.

This experiment is performed just like the previous one, but with
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the parameter

shim[’type’]=’triangular_infinite’

instead of

shim[’type’]=’embedded_finite’.

The coupler shim deviates significantly from nominal values

(note axis scale), and has not converged even after 500 iterations.

4.3.1. Truncating and renormalizing couplers
In this code example (and others) we use an important method

in the coupler shim: truncation. Programmed couplings must be

in the range [−2, 1], so AFM couplers must remain < 1, which is

1.11 ∗ JAFM. Therefore, when couplers go out of range, we truncate

them to within the range. To avoid persistent shrinking of the

couplings due to truncation, we renormalize to the correct average

coupling value (0.9) before truncation—this prevents cumulative

shrinkage over many iterations.

4.3.2. Better initial conditions
Looking at the data, we can see that the most reduced couplers

are those on the boundary. This suggests that if we want to simulate

the infinite TAFM, we should start with a thoughtful setting of

couplers. In this case, setting the AFM couplers on the boundary

to JAFM/2 reduces the need to shim enormously. This makes

sense, since doing so maximizes the ground-state degeneracy of the

classical system, as previously noted (King et al., 2018).

This shim is shown in Figure 15. The experiment is performed

just like the previous one, but with the parameter

param[’halve_boundary_couplers’]=True

instead of

param[’halve_boundary_couplers’]=False.

We can see that now, the coupler shim only deviates a few

percent from nominal, at most.

4.3.3. Complex order parameter
Order in the TAFM can be characterized by a complex order

parameter ψ , which we define now. Let c : S → {0, 1, 2} be a

3-coloring of the spins of the TAFM, mapping them onto three

sublattices so that no two coupled spins are in the same sublattice

(this coloring is unique, up to symmetries). Then for a spin state S

we can define

ψ(S) =

√
3

N

N
∑

ℓ

(

sℓe
cℓ2π/3

)

, (9)

where ci = c(si) and i =
√
−1. Due to symmetries among the

sublattices arising from the cylindrical boundary condition, as well

as up-down symmetry of spins since h = 0, we expect sixfold

rotational symmetry (among other symmetries) in the distribution

of ψ in an ideal annealer. Thus ψ can serve as a good indicator of

any biases in the system, as well as global ordering.

We can use ψ to compare the “embedded finite” shim

and “triangular infinite” shim, as seen in Figure 16. Although

we are simply forward-annealing the system, and therefore not

sampling from the mid-anneal Hamiltonian, we expect the same

characteristic ring histogram—without a peak near ψ = 0—that is

seen in the quantum system (cf. King et al., 2018, Figure 3C). This

is seen only after the “triangular infinite” shim.Wemainly attribute

this to the halving of the boundary couplings. In all cases, the shim

improves the theoretically expected sixfold rotational symmetry

of ψ .

4.4. Adaptive step sizes

Code reference: example3_2_tafm_forward_anneal.py.

It is often difficult or impractical to determine appropriate step

sizes a priori. Here we demonstrate a simple method for adapting

step sizes based on statistics of the shim. Note that due to noise

in the QPU’s surrounding environment, there is no well-defined

asymptote or steady state for a shim. However, we act as though

such a state exists: we expect high-frequency fluctuations in the

environment to be small compared to low-frequency fluctuations

and static cross-talk.

If the step size is sufficiently small and we are sufficiently close

to the steady state, we can expect fluctuations of the Hamiltonian

terms (FBOs, couplers, or fields) to behave like unbiased random

walks. In an unbiased random walk with position x(t) at time t =

0, 1, . . ., the probability distribution of x(t) approaches the normal

distribution with mean 0 and variance t.

If the shim is far from the steady state and has a relatively small

step size, the randomwalks will be biased in one direction, and thus

the variance of fluctuations will grow superlinearly in t. Finally, if

the step size is very large, then it will tend to overshoot the steady

state, and oscillate. This leads to variance of fluctuations growing

sublinearly in t. Thus we can periodically adjust the step size of a

shim as follows, using a 20-iteration lookback and a tuning term

ε = 0.1:

1. For d ≤ 20, x(t)− x(t− d) is the difference between the current

shim value for a term (e.g. FBO) and the value d iterations

previous. Let Xd be the set of all x(t) − x(t − d) for all x being

tuned.

2. Find a best-fit exponent b describing var(Xd) ∝ db.

3. If b > 1.1, multiply the step size α by 1+ ε.

4. If b < 0.9, divide the step size α by 1+ ε.

In the example code example3_2_tafm_forward_

anneal.py, this method is applied by setting

adaptive_step_size = True.

This check is done every iteration, but this is not necessary.

Adaptive step sizes are so far a largely unexplored research

area, and various approaches could be taken. Using different step

sizes for each orbit is certainly worth exploring; note in Figure 14

that different coupler orbits have hugely varying deviations from
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FIGURE 15

Shimming an isotropic, infinite triangular antiferromagnet, starting with halved boundary couplers. The experiment from Figure 14 is repeated, but

with all AFM couplers on the boundary halved (to JAFM/2 = 0.45) as an initial condition. For clarity, we only show FBOs for 12 qubits, and every 5th

coupling from the AFM orbit.

FIGURE 16

Complex order parameter ψ . For the three shims shown in Figures 13–15, we plot the evolution of the average magnitude 〈ψ〉, as well as complex

histograms of ψ (showing only data for one of the ten embeddings) before and after shimming.
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the mean. More general frameworks like “Adam” (Kingma and Ba,

2014) could also be useful in this context.

5. A survey of additional methods

We have provided detailed demonstrations and free-standing

Python implementations for several worked examples. These

cover the basics of calibration refinement. Here we discuss

some additional methods that have been used successfully in

recent works.

5.1. Shimming a system in a uniform
magnetic field

Certain Ising models in a uniform magnetic field are of interest

to physicists, and these have been simulated in quantum annealers

both at equilibrium (Kairys et al., 2020) and out of equilibrium

(King et al., 2021a). If we want to simulate an infinite system, we

would ideally study a large system with no missing spins, and with

fully periodic boundaries. However, this is often not possible, so

we wish to make the magnetization mi independent of the spin’s

position relative to the boundary (although it may depend on the

spin’s position in a unit cell of the lattice being simulated). In a

typical experiment, we want to measure a system under an average

field h̄ for each value in an increasing set of equally spaced values

{h̄(1), h̄(2), . . . , h̄(m)}.

To deal with this, we can shim individual longitudinal field

terms, hi, such that all spins of a given type (i.e., in the same

position of the unit cell) are in the same orbit. We can then shim

all hi terms for each simulated field magnitude h̄(k) that we want

to study, and denote each individual term h
(k)
i . After each iteration

we renormalize the fields so the average value 1
N

∑N
i=1 h

(k)
i remains

equal to h̄(k) throughout the shim, perhaps with an adjustment

arising from boundary spins.

To shim the case h̄ = 0, we use FBOs (as in the worked

examples) instead of tuning hi. To shim the case h̄(k) = 0, we use

FBOs (as in the worked examples) to set a zero point instead of

tuning h
(k)
i . In doing so, we can compensate for time-dependent

flux drift, particularly when determining the location (in h̄) of a

phase transition.

We can additionally ensure that each hi is a locally smooth

function of h̄ by adding a smoothing term. For example, if hi has

values h−i and h+i for the next lower and higher values of h̄ being

simulated, we can make the adjustment.

We can additionally ensure that each sequence {h
(1)
i , . . . , h

(m)
i }

is a smooth function of h̄ by adding a smoothing term.5 For

example, we can add make an adjustment in two steps. First, set all

h̃
(k)
i ← (1− ε)h

(k)
i + ǫ

(

h
(k−1)
i + h

(k+1)
i

)

/2, (10)

5 A smooth function is desirable because a shim is a perturbation of the

Hamiltonian intended to compensate for small non-idealities in the quantum

annealer.

for intermediate values of k and some smoothing constant 0 < ǫ <

1. Second, set all h
(k)
i ← h̃

(k)
i .

5.2. Shimming an Ising model with no
symmetries

In King et al. (2021b), a qubit spin ice was implemented

using a checkerboard Ising model. The system had open boundary

conditions and missing spins due to inoperable qubits, so no

geometric symmetries were available. However, due to the rich

automorphism group of the qubit connectivity graph (ignoring

unused qubits), it was possible to generate many distinct

embeddings of the same system, using different mappings of qubits

to spins. Therefore we could simulate a collection of distinct

embeddings (in this case, 20) and shim in the same way we did in

the worked examples. The only difference is that in the qubit spin

ice example, the embeddings are not disjoint and therefore must

be sampled from using separate calls to the QPU. However, once

we have a set of samples from each embedding, we can analyze the

data as though the embeddings are disjoint, whether or not this is

actually the case. The benefit remains the same: by simulating with

20 distinct embeddings, we get qubit and coupler orbits of size at

least 20.

5.3. Shimming a collection of random
inputs

In King et al. (2023), shimming was used to study spin-

glass ensembles—collections of random problems with certain

parameters. As we have seen, we can spend hundreds of iterations

shimming a single problem, and this becomes impractical when

studying ensembles of thousands of instances.

The approach used was to exploit a common symmetry: all

problems in the ensembles had h = 0. Shimming the couplers

was abandoned as being impractical for such a large set of inputs.

Shimming FBOs, however, is straightforward. By cycling through

300 spin-glass realizations using the same set of qubits and couplers,

simulating each realization several times, it is possible to combine

the work and arrive at a good set of FBOs that mitigates themajority

of systematic offsets.

5.4. Shimming anneal o�sets for fast
anneals

As described in the Supplementary material to King et al.

(2022), D-Wave quantum annealing processors have recently

demonstrated the capacity to anneal much faster than currently

generally available, at an anneal time of 10 nanoseconds or less

(King et al., 2022, 2023). This speed exceeds the ability of the

control electronics to synchronize the annealing lines (eight in

the Advantage processor, four in D-Wave 2000QTM) satisfactorily.

Therefore, frustration statistics can be used to infer which lines

are out of sync with the others, and in which direction. Anneal

offsets, which allow individual qubits to be annealed slightly ahead
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of or behind other qubits, were used to synchronize the qubits on

each annealing line. These fast anneals are not currently generally

available, but they may be in the future.

6. Additional tips

6.1. Limitations

The shimming techniques we have discussed in this tutorial

are efficient to perform and are simple to justify theoretically.

However, we note a couple of its limitations here. First, there

exists a potential computational bottleneck in the full shimming

paradigm. The method partly relies on identifying qubit and

coupler orbits. Identifying these orbits can be reduced to the

problem of identifying the automorphism group of a graph,

which can usually be done quickly in practice even though

no general polynomial-time algorithm is known. Second, shims

inherently exhibit time-dependent fluctuations due to noise in the

environment. These fluctuations tend to be smaller than the shim

terms themselves, so do not significantly diminish the potential

benefit of calibration refinement.

6.2. Making calibration refinement more
e�cient

As we have seen, shimming can take many iterations to

converge. Naively repeating the process across many combinations

of parameters (e.g., annealing time, energy scale, etc.) can be

extremely time consuming. However, there are ways to improve the

efficiency of the process. Here we outline some important things to

bear in mind.

6.2.1. Adjustments are often continuous functions
of other parameters

If we determine a set of adjustments for a given experiment,

then slightly vary some parameters of the experiment, we can

generally expect that the adjustments will not change much. For

example, FBOs and coupling adjustments are expected to vary

smoothly as functions of annealing time, energy scale, and various

perturbations to the system (for example the ratio between FM and

AFM couplers in an embedded triangular antiferromagnet). This

assumption is natural outside the vicinity of a phase transition, and

near a phase transition we adhere to the principle that we should

not make discontinuous compensations to a simulator which is

itself under smooth parametric modulation. An important example

of a smoothly tuned parameter is the annealing parameter s, in cases

where we simulate a system at 0≪ s≪ 1 (King et al., 2018, 2021a,

2022, etc.).

As an example of how this can help speed up a shim, if we

double the annealing time, FBOs and coupling adjustments will

remain relatively stable. Thus, rather than starting our shim anew

from the nominal Hamiltonian, we can start from an adjusted

Hamiltonian that was determined using similar parameters. One

could go further than this, and extrapolate or interpolate based on

multiple values.

6.2.2. Predictable adjustments should be
programmed into the initial Hamiltonian

As shown in Figures 14, 15, starting with halved boundary

couplings can immediately bring the couplings close to their

converged values. If we are aware of such adjustments, using them

as initial conditions can make shims converge far faster.

6.3. Damping shim terms

It is sometimes useful to gently encourage a shim to remain

close to the nominal values, for example to prevent drifting

Hamiltonian terms. This issue can be particularly important near

a phase transition, where statistical fluctuations can be very large.

Drift can be suppressed by adding a damping term to the shim. For

example, we can set a damping constant 0 ≤ ρ ≤ 1, and after

every iteration we can move each coupler Jij toward its nominal

value Ĵij:

Jij → Jij − ρ(Jij − Ĵij). (11)

Doing this can discourage random fluctuations, but

can also lead to under compensation of biases. It is only

recommend to use damping when the shim is otherwise badly

behaved. In practice, a suitable value for ρ is determined

through trial and error, i.e., by assessing whether shims

have converged (see Section 2 for discussion on shim

convergence).

7. Conclusions

In this document we have presented several basic examples

that introduce the value of calibration refinement or “shimming”

in quantum annealing processors. These methods should be

applied to any detailed study of quantum systems in a

quantum annealer, and will generally provide a significant

improvement to the results. Depending on the sensitivity of

the system under study, these methods can mean the difference

between an unsuccessful experiment and an extremely accurate

simulation.

We have provided fully coded examples in Python, which

should be easy to generalize and adapt. As part of these examples,

we include methods for embedding many copies of a small Ising

model in a large quantum annealing processor. This is a valuable

and straightforward practice that can enormously improve both

the quantity and the quality of results drawn from a single QPU

programming.

Another important perspective, which has been introduced

here for the first time, is the notion of constructing an auxiliary

Ising model and using automorphisms of it to infer qubit and

coupler orbits automatically. We encourage users to experiment

with this method and report on any challenges or benefits found.

The examples in this document are written for use in an

Advantage processor, but are not specific to that model, or even

to D-Wave quantum annealers in general. These results may

prove useful in diverse analog Ising machines, both quantum

and classical.
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Software techniques for training
restricted Boltzmann machines
on size-constrained quantum
annealing hardware

Ilmo Salmenperä* and Jukka K. Nurminen

Department of Computer Science, University of Helsinki, Helsinki, Finland

Restricted Boltzmann machines are common machine learning models that can

utilize quantum annealing devices in their training processes as quantum samplers.

While this approach has shown promise as an alternative to classical sampling

methods, the limitations of quantum annealing hardware, such as the number

of qubits and the lack of connectivity between the qubits, still pose a barrier to

wide-scale adoption. We propose the use of multiple software techniques such

as dropout method, passive labeling, and parallelization techniques for addressing

these hardware limitations. The study found that using these techniques along

with quantum sampling showed comparable results to its classical counterparts in

certain contexts, while in others the increased complexity of the sampling process

hindered the performance of the trained models. This means that further research

into the behavior of quantum sampling needs to be done to apply quantum

annealing to training tasks of more complicated RBM models.

KEYWORDS

machine learning, quantum annealing, restricted Boltzmann machines, quantum

sampling, dropout method

1. Introduction

When training a well-known machine learning model called restricted Boltzmann

machine (RBM), the gradient estimation process for the weights and biases requires the

taking samples from a probability distribution called the Boltzmann distribution. While

there are classical methods for this process, such as the Contrastive Divergence (CD)

algorithm, they are known to grow computationally expensive as the model grows in size

(Adachi and Henderson, 2015). An interesting alternative for this classical sampling process

is generating these samples using quantum computation devices called quantum annealers

(Hauke et al., 2020). While most of the contemporary use cases for these devices are focused

on finding low-energy states for quantum systems, these devices have shown promise for

sampling data points from the Boltzmann distribution of Hamiltonian energy functions

(Adachi and Henderson, 2015; Dixit et al., 2021). This feature of quantum annealing

devices has wide applicability in training of classical machine learning models, such as

RBM (Restricted Boltzmann Machine) or layer-wise pretraining of more complicated deep

learning algorithms. While these models are not on par with the leading industry-level

machine learning models, they provide a task where it is quite simple to compare the

performance of these quantum techniques with classical techniques, which are of high

academic interest.

Quantum sampling have some advantages, such as being faster on large layer sizes

or showing improved performance on learning tasks, over the conventional sampling

algorithms, such as Gibbs sampling or the contrastive divergence algorithm (Hinton, 2002).

These algorithms, especially Gibbs sampling, are relatively slow and do not produce accurate
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estimations of the underlying probability distribution (Carreira-

Perpiñán and Hinton, 2005). While these algorithms have been

deemed good enough for classical use cases, it is still vital to

compare them with novel quantum sampling-based approaches to

determine whether the switch from classical to quantum can be

deemed practical.

The quantum sampling approach does have its own set of

issues as follows: (1) The accuracy of the technique is highly

dependent on device parameters related to the annealing

process, and no known way of determining these parameters

exists properly yet; (2) it is not known whether the technique

can even produce proper samples from the Boltzmann

distribution; and (3) size limitations imposed on the machine

learning model by the hardware itself cause the problem

space to be limited to toy examples, instead of actually useful

real-world problems.

This article will focus mostly on the last issue and proposes

and evaluates several techniques to circumvent some obstacles

caused by hardware limitations. First of these is the use of extreme

rates of unit dropout to reduce the effective layer width of RBMs

during the sampling process. The second technique is to use passive

labeling schemes to reduce the total width of the visible layer, by

disabling all labeling units during the training and adding their

influence to the hidden layer as a modifier to the bias of the

hidden unit during sampling. Finally, the article will take a look

into the inherent parallelism of the quantum annealing device

and provide insight into how this technique can have wide use

cases on quantum sampling. It is important to note that this

last technique does not allow training our models in smaller

hardware, but it shows ways that RBMs could take advantage of

hypothetical future hardware, especially in tandem with the unit

dropout method.

The study shows that while classical methods require fewer

epochs for well-behaving models, the end result after a longer

period of training can be closely the same, or sometimes even

better, which is in line with previous research. The unit dropout

method further accentuates this effect and, in our experiments,

performs demonstrably worse compared with classical dropout

techniques. The reasons for this are analyzed in the Section 7

of the article. The parallelization schemes seem to somewhat

lower the performance of the training but decrease the time-

to-solution of each round of estimating the model distribution

drastically. Finally, the passive labeling strategy shows promise for

evaluating the performance of quantum sampling, without any

hardware-related costs.

The key contributions of this article are as follows:

• Proposing these techniques for alleviating the

presented hardware-related issues and evaluating

the effects and the limitations to use a theoretical

setting (Section 4).

• Developing an experimental setup to evaluate how these

techniques perform when training RBMs against classical

methods in similar contexts and showing their benefits and

restrictions (Sections 5, 6).

• Providing discussion on the results and how current

generation quantum annealing hardware needs to scale to be

usable in these sampling tasks (Section 7).

2. Related research

Restricted Boltzmann machine has been studied extensively

for a very long time (Hinton and Sejnowski, 1983), but their

usefulness has become more apparent in the last decade (Hinton,

2012). Research on classical sampling methods gained traction

when the Contrastive Divergence algorithm was discovered, which

allowed RBMs to be trained more efficiently compared with the

older sampling methods (Carreira-Perpiñán and Hinton, 2005).

The dropout algorithm featured in this article has been researched

quite extensively, showing improvements on performance and also

working as a weight regularization method for many different

machine learning models (Srivastava et al., 2014).

The use of quantum annealing in sampling tasks has been

researched widely, and it has shown some advantages over classical

sampling methods, despite the stated issues. In the study by Adachi

and Henderson (2015), quantum annealing was used to pretrain

a deep belief network, which showed increased performance over

classical sampling methods on a Bars and Stripes dataset. In the

study by Dixit et al. (2021) quantum annealing was shown to be

as effective as classical sampling methods when training the RBM

on a cybersecurity ISCX dataset. Pelofske et al. (2022) presented the

technique for parallelizing QUBO problems for quantum annealing

devices, which is particularly useful for training RBMs as presented

in this study.

There is also a study conducted on a purely quantum version

of the more general Boltzmann Machines that are called QBMs

(QuantumBoltzmannMachines) (Amin et al., 2018). There are also

Quantum Born Machines, which have shown quite a bit of promise

in various generativemachine learning tasks, that share a lot of their

underlying math with Boltzmann Machines (Coyle et al., 2020). It

is important to note that these quantum machine learning models

are most often implemented in gate-based quantum hardware, as

opposed to quantum annealing hardware.

3. Theoretical background

Restricted Boltzmann Machines are simple neural networks

that can be applied to various machine learning tasks (Hinton,

2012). In practice, they are mostly used in the pretraining phase

of more complex machine learning models such as deep belief

networks (Hinton et al., 2006). They are characterized by a visible

and a hidden layer of units connected bilaterally, and the units are

activated using the sigmoid function.

These models are based on the Ising model: a mathematical

representation of ferromagnetic system, where the stochastic

behavior of the system is governed by a Hamiltonian energy

function E. With this function, the probability P, often also referred

to as the Boltzmann distribution, of a system being in a certain

configuration can be computed using the following equations:

E(v, h) = −
∑

i

bihi −
∑

i

civi −
∑

i,j

wi,jvihj (1)

P(v, h) = Z−1eE(v,h)/T (2)

where σ is the collection of units in an RBM with possible states

{0, 1}. bi and ci are the bias values of the hidden and visible units
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FIGURE 1

Restricted Boltzmann machines have a hidden and a visible layer of units with biases bi and ci, connected by weights wij.

hi and vi. wi,j is the weight of the connection between units vi
and hj. Z is the partition function over all possible combinations

of σ that normalizes the probability to be between 0 and 1. T is

the temperature of the system, which is often normalized as 1. The

structure of a RBM is visualized in the Figure 1.

Training these models requires finding a set of parameters

θ , which makes the model distribution P mimic an unknown

data distribution Q that characterizes the problem. These

parameters can be found by minimizing the Kullback-Leibler

divergence between these two distributions, which, in turn, can be

approximated by minimizing the average negative log-likelihood of

the model distribution (Joyce, 2011; Hinton, 2012). This ultimately

results in the following training rules for weights and biases which

can be used for gradient descent:

∂wij = η
(〈

vihj
〉

data
−

〈

vihj
〉

model

)

(3)

∂bi = η
(〈

hi
〉

data
−

〈

hi
〉

model

)

(4)

∂ci = η (〈vi〉data − 〈vi〉model) (5)

where η is the learning rate and < .. >data and < .. >model,

respectively, are the data and model distributions of the system.

The important thing to notice here is the fact that estimating

the data distribution of an RBM can be done easily using classical

algorithms, but estimating the model distribution is considered to

be analytically intractable. This is due to the partition function,

which requires the algorithm to compute the total energy of the

system for all possible configurations of σ . This requires O(2n)

computations where n is the number of units in the system, which

means that alternative methods for estimating this distribution

are needed.

Instead of computing an exact solution for the model

distribution, sampling methods are used to get an estimate of

the model distribution. If it is possible to draw accurate samples

from the probability distribution P, the average of these samples

can form a proper estimate of the model distribution. This is

usually done using the Contrastive Divergence (CD) algorithm,

where the states of the visible and hidden layers are inferred

repeatedly from each other, starting from the initial data vector

v assigned to the visible units (Carreira-Perpiñán and Hinton,

2005). The number of cycles in this process can influence the

accuracy of the resulting model depending on the problem at hand.

Even one iteration has been found to converge toward the correct

solution, more iterations can result in improved accuracy of the

resulting model (Carreira-Perpiñán and Hinton, 2005). Increasing

the number of cycles is a very expensive process, which is why

more efficient sampling methods can provide more benefits in tasks

that require training RBMs. Contrastive divergence is often marked

by appending the number of cycles after the CD abbreviation, i.e.,

contrastive divergence with one cycle becomes CD-1.

3.1. Sampling from the Boltzmann
distribution using quantum annealing

Quantum annealing is a novel alternative to universal quantum

computing, where, instead of using gate operations to modify

the states of the qubits in the device, it implements a physical

system that corresponds to the Ising Model (Hauke et al., 2020).

Mathematically, the quantum annealing process implements a

Hamiltonian function as follows:

H(τ ) = A(τ )HD + B(τ )HP (6)

HD = −
∑

i∈V

σ x
i (7)

HP =
∑

ij∈E

Jijσ
z
i σ z

j +
∑

i∈V

hiσ
z
i (8)

where HD is the initial Hamiltonian of the system, and HP is the

target Hamiltonian which describes the problem at hand. σ x
i and

σ z
i are Pauli matrices localized to qubit i, A(τ ) and B(τ ) are time-

dependent monotonic functions, which describe the schedule in

whichHD is transformed intoHP, when normalized annealing time

τ moves from 0 to 1. Ji,j and hi are the parameters that describe the

interactions between the qubits of the system.

Quantum annealing devices are capable of finding ground

states for Hamiltonian systems, due to the adiabatic theory of

quantum mechanics. While this has been contested before, after

years of research, it has become quite evident that these devices

can be also used to sample from the Boltzmann distribution of the

given Hamiltonian (Benedetti et al., 2016). This could benefit the

process of training RBMs drastically, as the model distribution of

an RBM can be approximated by an average of samples taken from

the Boltzmann distribution of the model.
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Sampling from the Boltzmann distribution of the model

requires small changes to the quantum annealing process. The

control parameters of the system have to be scaled down by a

parameter called the effective temperature Beff , which allows the

system to thermalize more freely during the annealing (Benedetti

et al., 2016). Choosing the correct value for this parameter can

be difficult, as it seems to be dependent on multiple factors,

like the size of the system and the parameters of the system

itself. This choice is often done before the training process by

evaluating the performance of the parameter against classical

methods on similarly sized models and keeping it constant during

the training process.

There is also research suggesting that only using Beff to scale the

parameters of the model can be insufficient while using alternative

annealing schedules provided by current generation quantum

annealing devices can help to alleviate these issues (Marshall et al.,

2019). For example, pausing the annealing in the middle of the

process can improve the accuracy sampling process, provided that

the pause happens on a correct region, which is again dependent

on the model parameters. The process of reverse annealing has also

shown promise for improving the sampling accuracy.

While the sampling capabilities of quantum annealing devices

are promising, the limited device sizes and the constraint they

impose on the layer sizes of RBMs are still the key limiting factors

on applying quantum annealing to machine learning problems

(Dumoulin et al., 2013). As the connectivity between qubits

is very limited in the current generation quantum annealing

devices, embedding fully connected RBMs requires chaining qubits

together. This imposes a maximum layer width on the trained

RBMs, which is still far away from conventionally used layer

sizes, which can have easily over 1,000 units in a single layer.

The quantum annealing device DWave 2000Q has a theoretical

maximum layer width of 64 units, and while DWave Advantage

does not yet have a known theoretical maximum layer width, the

modern embedding heuristics are capable of finding embeddings

with a layer width of 128 units.

4. Materials and methods

This section describes various methods which can be used

to circumvent limitations that arise due to maximum layer sizes

imposed by the small qubit counts and the effects of limited

topology of current generation quantum annealing hardware.

4.1. The unit dropout method

Unit Dropout is a widely adopted weight regularizationmethod

for neural networks, originally developed for RBMs (Srivastava

et al., 2014). In this method, during training, units from the model

are dropped out with probability p, usually referred to as the

dropout rate. It is also possible to keep the amount of dropped-out

units constant, in which case we can describe the dropout process

using a variable called Smax, which is the amount of units kept in

the RBM Layer. This process is presented in Figure 2. The training

will, then, resume for the pruned network for the duration of a

single batch, and the parameter updates will be computed for the

pruned network. After this, the units that were dropped out are

returned to normal, and the process can repeat until the training

has been completed. This has been shown to regularize the weights

very efficiently and to be resilient against overfitting during training

(Srivastava et al., 2014).

This method is very convenient for the purpose of training

Restricted Boltzmann Machines using quantum annealing, as it

automatically prunes the model to a smaller subset of the original

one. This means that the new model will be easier to fit inside

a contemporary quantum annealing device. The dropout rate can

also be tweaked to control the size of the model that will be

embedded into the quantum annealing device, allowing for a lot

of control over the resulting model.

When using this method in tandem with quantum annealing,

small modifications need to be made to the original algorithm to

take into account the limits imposed by the quantum annealing

device. Instead of using a probabilistic dropout rate p, constant Smax

number of units should be picked from the model with uniform

probability. In this way, it is easier to ensure that the model can still

be embedded into the device, and it also allows us to reuse the same

embedding scheme for the duration of the training, which is useful

as computing an embedding scheme for a problem is an expensive

process (Cai et al., 2014). If Smax/Nunits ≤ 0.5, multiple subsets

of size Smax can be chosen from the units of the model, making

the training more efficient, as these models can be sampled in

parallel. Existing research places the optimal value for the dropout

rate approximately 0.5, but this rate can be pushed further to allow

larger layer sizes to be trained using existing quantum annealing

devices, as shown in Section 5.

4.2. Passive labeling

While RBMs are often used for unsupervised learning tasks,

they are also capable of supervised learning by adding predictive

label units to the hidden layer of the network. Because these

additional units can be treated as additional visible units in the

system, it is often convenient to use different activation functions,

like the softmax activation function, for them, as this can improve

the predictive capabilities of the network. Though this works quite

well for classical sampling algorithms, the core assumption of

quantum annealing assumes the likelihood of a unit coming from

the Boltzmann distribution. This means that alternative activation

functions are not viable for quantum-sampled RBMs.

Adding labeling units into the RBM is useful, as they provide

a clear metric for the fitness of the training process, as opposed to

measuring the reconstruction error of the model or evaluating the

generative capabilities of the model by eye. For quantum sampled

RBMs, this can be difficult, as adding labels to the system takes

valuable space in the embedding map, increases total chain length

of the system, and breaks the symmetry of the total area required

by the model. We have developed a novel technique of adding

labels to RMBs called the passive labeling technique to address

these inconveniencies.

In passive labeling, an average influence of the label units on

the hidden units is computed classically before the sampling starts

using any activation function. This influence can, then, be added
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FIGURE 2

Example of the dropout process. Here, the total layer width is 4 units and before sampling half of the units are dropped out from the model. The

remaining weights are shown using bolded lines between the units.

to the bias of the hidden unit for the duration of the sampling

procedure, while all the labeling units are kept out from the

sampling process.

h
passive
i = hi + softmax(

∑

k∈l

lkw
label
i,k ) (9)

where l is the set of labeling units, andwlabel
i,k

is the weight associated

with the hidden unit hi and labeling unit lk.

After the states of the units are sampled, the states of the

labeling units can be inferred from the hidden states classically,

and these states can be used to compute the parameter gradients

of the label units. This should cause only a slight cost for the

accuracy of the learning process, with no requirements imposed on

the sampling compared with the unsupervised learning methods. If

the purpose of the labeling is to evaluate the effectiveness of the

sampling techniques for the quantum annealing algorithms, this

cost should be more than reasonable, compared with the apparent

cost of adding multiple label units to the system.

4.3. Inherent parallelism of quantum
annealing

Whenever quantum annealing is used for sampling from

systems, it is possible that many of the qubits that are not connected

to the embedded model are left unused during the sampling. This

is especially wasteful when the problem size is much smaller than

the maximum allowed. As shown in the study mentioned in the

reference (Pelofske et al., 2022), smaller problems can be embedded

into quantum annealing device multiple times, as shown in

Figure 3, which reduces the time-to-solution of the problem greatly.

This technique is especially interesting for quantum sampling, as

using novel annealing control techniques, such as mid-annealing

pauses, can increase the overall sampling time by a large margin.

This means that the overhead of embedding the problem multiple

times into the annealing device will become quite negligible, as the

time of taking each sample can increase from the default value of

20µs to even 1, 000µs.

There are two main ways in which this parallelism technique

can help in the process of quantum sampling. The first one is

reducing the number of samples to 1/N of the original size,

where N is the number of times in which the problem will fit

into the sampling device (Pelofske et al., 2022). The other way

is an intersection between using the dropout technique and the

inherent parallelism of the quantum annealing device, taking the

pruned networks from the dropout process, embedding them all

into the quantum annealing device, and producing samples for

them in parallel. This method of parallelism should outperform the

original one in relation to time, as the time-consuming calls to the

quantum sampling device will be reduced to the 1/N of the original

amount, negating a lot of unnecessary networking overhead while

also increasing the amount of work that can be now done in parallel

by the classical processes.

While this technique does not address the issue of limited

hardware, a reasonable assumption is that if these techniques

become viable in future, the growth of the possible hardware will

allow us to further take advantage of the computational resources

we have. Even on current generation hardware, this technique

managed to save a lot of computational resources and time, as

shown in the Section 6 of the article.

5. Experimental setup

The techniques presented were evaluated by training restricted

Boltzmann machines on a custom-made generated bars and stripes

dataset, which is presented in Figure 4. This allowed for strict

control over the overall sizeNproblem of the dataset and the difficulty

of the machine learning task itself, as a variable amount of noise

was introduced to the dataset to make the task more difficult. Using

these rules, a labeled training set of 10,000 images, a prediction set

of 2,000 images, and an evaluation set of 2,000 images were created.

The training dataset is, then, divided into 20 batches for training,

and the relatively large batch size was chosen to save computational

resources. Two distinct datasets were created for evaluating the

different qualities of the algorithm: the 64-pixel dataset and the

256-pixel dataset.

The 64-pixel bars and stripes problem was formulated for

testing out how embedding one RBM multiple times into the

quantum annealing device compares to embedding it a single

time performance-wise. This dataset allowed us to also test how

parallel embedding of RBMs affects the performance of the training

algorithm.

The 256-pixel bars and stripes problem was formulated for

looking into the effects of drastic rates of dropout used in tandem

with quantum annealing. Multiple RBMs were trained with various

rates of unit dropout, using the CD-1 sampling and quantum
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FIGURE 3

Example of problem parallelization on quantum annealing devices: On the left, a single 64 × 64 RBM is embedded into the device, leaving many of

the qubits unused during sampling. On the right, the 64 × 64 RBM has been embedded into the device four times, allowing these RBMs to be

sampled simultaneously. These RBMs can be identical or distinct from one another depending on the use case. An image is created using DWave

visualization tools.

FIGURE 4

Examples 8x8 images generated for testing the learning methods of this study from noise level p = 0.0 to p = 1.0. The dataset is divided into images

of bars (vertical stripes) and stripes (horizontal stripes), after which noise is introduced to the image by randomizing each pixel with the probability of

p. The choice of this probability p determines how di�cult this learning task will be. These images for the study were created with p = 0.7.

annealing. The effects of embedding multiple RBMs into the device

and sampling them at the same time were also tested.

The RBM implementation was written in python, and

the quantum sampling was implemented using the APIs of

the DWave Leap platform and AWS platform. The quantum

sampling implementation targeted the DWave Advantage quantum

annealing device, for which the embedding schemes were

precomputed using the DWave MinorMiner tool (Cai et al., 2014).

The parameters of the annealing procedure were chosen manually

by evaluating the L1 distance between the gradients of the quantum

sampling approach and classical Gibbs sampling with 1,000 cycles.

Additional evaluation of techniques was done by classical means.

An effective temperature of 1.0 was chosen for annealing by

evaluating the accuracy of the gradient estimation for different

values. A pause of 10µs was introduced in the middle of the

annealing process, which improved the sampling accuracy by a

sizeable margin. Five spin reversal transforms were used to ensure

that the device-specific errors would not affect the learning process

that much. Each gradient update was computed from 100 samples

taken from the annealer. Finally, the strength of the chain between

logically coupled qubits was set to 1, which was essential for

achieving well-trained models during the training.

Classical machine learning parameters were chosen by training

various models classically and picking the best one for quantum

sampling approaches. This was hardly the ideal method for

choosing parameters, as there is no guarantee that the ideal classical

parameters for the quantum sampling method mirror the classical

methods, but as training the models using quantum annealing

was very time-consuming and expensive, this way was chosen due

to convenience.

The experimental setup was affected by the fact that while

the process of sampling from the quantum annealer itself is very
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fast, the API calls to the cloud platforms for each of the quantum

annealing tasks were very slow, as most of the time was spent on

queues waiting to get access to the annealing device.

6. Results

Figure 5 shows results for training multiple RBMs using

different sampling approaches. As can be seen, quantum sampling

performs similarly or worse than classical sampling approaches. It

has to be noted that this performance could be improved with more

careful choices for the annealing parameters.

In the 64-pixel dataset, quantum annealing managed to achieve

higher prediction rates compared to the classical approach, but the

training process required more epochs. This result is in line with

previous findings on the performance of the quantum annealing

in these sampling tasks (Adachi and Henderson, 2015; Benedetti

et al., 2016; Dixit et al., 2021). Initially, the parallel and non-parallel

sampling approaches were in line with one another, but in the end,

the non-parallel approach outperformed the parallel one. In the

classical training case, the passive labeling scheme was completely

identical compared to the traditional sampling approach, but in

othermore complex problems, it showed consistent slight decreases

in accuracy. Parallelizing sampling reduced the time that it took to

generate the samples from around 98 ms to 84 ms, which is not

a huge decrease, but this gap could widen, if advanced annealing

control schemes would be used during the annealing.

In the 256-pixel dataset, the classical sampling methods

outperformed the quantum ones quite consistently. Only one of

the classical sampling methods with the largest rate of the dropout

was in line with the quantum sampling approach. The results of

these quantum-sampled RBMs also were a lot noisier compared

to classical RBMs. The effects of dropout on the prediction rates

were quite consistent with existing research for about halfway into

the training (Srivastava et al., 2014), as the lower dropout rates

seemed to outperform the higher ones until the quantum sampling

approaches seemed to converge into the same region of prediction

rates. The parallel and non-parallel quantum sampling approaches

were again very similar to the 64-pixel dataset until the difference

converged in the end. Here the real difference is in the time-to-

solution of the parallel and non-parallel sampling methods, which

is quite drastic. Taking 100 samples for four different RBMs at

the same time would take about 110 ms, compared to about 390

ms when taken subsequently. This does not take into account the

overhead from networking-related tasks with the communication

with the classical computer and quantum platforms, which could

take anywhere from a couple of seconds to a couple of minutes

of real-time when conducting this study, further widening the gap

between the parallel and non-parallel sampling methods.

7. Discussion

Quantum sampling seems to perform similarly to classical

sampling methods in the 64-pixel bars and stripes problem.

While classical sampling methods find the well-performing model

parameters faster, quantum sampling seems to catch up with the

classical methods after some additional training. The prediction

rates of quantum sampled RBMs seem to be sometimes more

unstable during training, probably due to the noisiness of the

gradient estimation. These results indicate that quantum sampling

can at least be considered to be a good alternative for estimating

the model distribution of a Hamiltonian energy function, to the

contemporary classical method of CD-1.

The largest issue with using the quantum sampling approach

comes from the larger parameter space, which needs to be

controlled for the duration of the training (Benedetti et al., 2016).

Device parameters need to be chosen well enough for the training

to be effective and there are no known heuristics for choosing them

correctly, other than applying some commonly used default values

for them. The optimal values for these parameters can be dependent

on the embedded problem, which makes constantly evaluating new

values for them during the training an intractable task. Finding

a heuristic for estimating these parameters could be vital for the

commercial viability of the quantum sampling approach.

The passive labeling strategy seemed to perform well in this

learning task when comparing the prediction rates for conventional

classical training methods and using the passive labeling scheme

classically, though its performance can suffer when using it onmore

complicated machine learning tasks. This means that this method

of attaching labels without any increase to the effective size of the

embedded problem can be used to evaluate the performance of

quantum sampling methods. As most often RBMs are used only

for pretraining more complicated deep neural networks like deep

belief networks (Hinton et al., 2006), attaching labels this way is

probably not needed in industry-level machine learning tasks. It

provides a more concrete way of looking into the effectiveness of

quantum sampling, compared to reconstruction rate or evaluating

generated sampled images out of the network.

The dropout method, when used in tandem with quantum

sampling, seems to produce more volatile results as shown in

Figure 5B. As both techniques introduce some noise in the gradient

estimation process, the resulting quantum sampled models ended

up performing worse than their classical counterparts. This could

be because of poor parameter choices for many of the quantum

annealed RBMs, as the only model that behaved similarly to the

classical equivalent was the Smax = 64 model, which was also

incidentally the model size which was used for determining the

hyperparameters for the training. It is also possible that the use

of the dropout technique is not compatible with these quantum

sampling techniques. Further research on the topic of unit dropout

and quantum annealing should be done, but this was not possible

to do here due to a lack of access to quantum hardware. The key

takeaway is that better heuristics for device parameters could allow

introducing dropout into quantum sampling in actual use cases.

Parallelizing quantum sampling tasks into the quantum

annealing device showed a slight decrease in performance but

lowered the time-to-solution of the problem by a good margin.

This is especially true when using these parallelization techniques

in tandem with the dropout technique, allowing us to sample

from all the sub-RBMs at the same time. Likely, the upper limit

of the number of different RBMs that could be embedded into

the quantum annealing device is two, as the optimal value for

the dropout rate dictates that going beyond 0.5 will only hinder

the training process. This can still give us results about two

times faster than normal, and these two distinct sub-RBMs can
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FIGURE 5

Prediction rates of RBMs that have been trained for 20 epochs. QS indicates quantum sampling and CD-1 contrastive divergence with one sampling

step (A) results of 8 × 8 Bars and Stripes problem trained on RBM with 64 visible and hidden units. (B) Results of 16 × 16 Bars and Stripes problem

trained on RBM with 256 visible and hidden units with various rates of dropout.

be further parallelized, assuming that the device size itself is

large enough.

Quantum annealing devices have already grown quite large

from the point of view of qubit counts, and further advances in

hardware will bring us new ways quantum computing can be used

to benefit existing computational methods. The importance of this

study can be seen at two points in time in relation to hardware

advancements: (1) in the near term these techniques can be used to

train up to two or three times wider networks than normally would

be possible due to hardware limitations and (2) in long term these

techniques allow for parallelizing the training process of pruned

networks, reducing the number of API calls or samples needed for

completing quantum sampling tasks. Both of these possibilities are

dependent on whether exploring the rather large hyperparameter

space of quantum sampled RBMs becomes convenient in the future.

8. Conclusion

While the current generation quantum annealing devices are

still quite small in the context of using them for quantum

sampling, the industry leader of quantum annealing devices

DWave has already envisioned creating larger devices with more

advanced connectivity schemes (DWave, 2021). But despite the

rapid development of hardware, it is still important to try to bridge

the gap between it and the software side, as reaching applicability

as early as possible can be vital for adoption on larger scales. It

also has to be noted that whether quantum annealing can provide

a proper quantum advantage in computational problems is still a

highly debated topic (Hauke et al., 2020).

The unit dropout method can be seen as a convenient

way of pruning RBM layers into more palatable chunks

for next-generation quantum annealing devices, while the

parallelization techniques can be used to compute these chunks

in parallel on the same annealing device, saving precious

computational time, especially on the classical side of things.

The passive labeling scheme instead should be thought of as

a convenient way of adding labels to RBMs without having to

think about their effect on the embedding of the RBM into the

hardware itself.

Some possible pitfalls of adopting quantum sampling as

a method of evaluating the model distribution function of a

Hamiltonian is the increased parameter space caused by the device

parameters related to the annealing process. Quite a lot of work

shows that choosing the effective temperature of the model can be

an intractable task, which is why a lot of research ends up choosing a

fiat default value for the duration of the training. Also moving away

from the API model of quantum computing to a more integrated

model, where the classical computer and the quantum computer

work closely together will be vital for any of these speed-ups

to matter.
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We investigate a framework for binary image denoising via restricted Boltzmann

machines (RBMs) that introduces a denoising objective in quadratic unconstrained

binary optimization (QUBO) form well-suited for quantum annealing. The

denoising objective is attained by balancing the distribution learned by a trained

RBM with a penalty term for derivations from the noisy image. We derive

the statistically optimal choice of the penalty parameter assuming the target

distribution has been well-approximated, and further suggest an empirically

supported modification to make the method robust to that idealistic assumption.

We also show under additional assumptions that the denoised images attained

by our method are, in expectation, strictly closer to the noise-free images than

the noisy images are. While we frame the model as an image denoising model,

it can be applied to any binary data. As the QUBO formulation is well-suited

for implementation on quantum annealers, we test the model on a D-Wave

Advantagemachine, and also test on data too large for current quantum annealers

by approximating QUBO solutions through classical heuristics.

KEYWORDS

denoising, quantum annealing, machine learning, image processing, quadratic

unconstrained binary optimization

1. Introduction

Quantum annealing (QA) (Kadowaki and Nishimori, 1998; Das and Chakrabarti,

2008; Albash and Lidar, 2018) is a promising technology for obtaining good solutions to

difficult optimization problems, by making use of quantum interactions to aim to solve

Ising or quadratic unconstrained binary optimization (QUBO) instances. Since Ising and

QUBO instances are NP-hard, and many other combinatorial optimization problems can be

reformulated as Ising or QUBO instances (see e.g., Glover et al., 2018), QA has the potential

to become an extremely useful tool for optimization. As the capacities of commercially

available quantum annealers continue to improve rapidly, it is of great interest to build

models that are well-suited for this emerging technology. Furthermore, QA has promising

machine learning applications surrounding Boltzmann Machines (BMs), as both QA and

BMs are closely connected to the Boltzmann distribution. Boltzmann Machines are a type of

generative artificial neural network that aim to learn the distribution of some training data

set by fitting a Boltzmann distribution to the data, as described thoroughly in (Goodfellow

et al., 2016, §20). On the other hand, QA aims to produce approximate minimum energy
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(maximum likelihood) solutions to a Boltzmann distribution via

finding the ground state of the associated Hamiltonian that

determines the distribution. Hence, maximum likelihood type

problems on BMs are a natural candidate for applying QA in

a machine learning framework. We contribute to the goal of

furthering useful applications of QA in machine learning in this

paper by building an image denoising model particularly well-

suited for implementation via QA.

The task of image denoising is a fundamental problem in

image processing and machine learning. In any means of collecting

images, there is always a chance of some pixels being afflicted

by noise that we wish to remove; see e.g., Boyat and Joshi

(2015) for a good overview. Accordingly, many classical and data-

driven approaches to the image denoising problem have been

studied in the literature (Greig et al., 1989; Rudin et al., 1992;

Buades et al., 2005; Tang et al., 2012; Cho, 2013). This paper

studies a quantum binary image denoising model using Restricted

Boltzmann Machines (RBMs henceforth) (Goodfellow et al., 2016,

§20.2) that can take advantage of QA by formulating the denoising

problem as a QUBO instance. Specifically, given a trained RBM,

we introduce a penalty-based denoising scheme that admits a

simple QUBO form, for which we derive the statistically optimal

penalty parameter as well as a practically-motivated robustness

modification. The denoising step only needs to solve a QUBO

admitting a bipartite graph representation, and so is well-suited

for QA. As QA has also shown promise for training BMs (Adachi

and Henderson, 2015; Dixit et al., 2021), our full model lends itself

well for denoising images using quantum annealers, and could thus

play a role in the their future applications since QA can then be

leveraged for both the training and denoising steps. The model also

shows promise in absence of QA, and our insights presented are

not limited to the QA framework, as the QUBO formulation of the

denoising problem and its statistical properties we prove may be of

independent interest.

The paper is organized as follows. Section 2 gives a

summary of background on quantum annealing and Boltzmann

Machines. Section 3 describes our main contribution of the image

denoising model for QAs, and Section 4 shows some practical

results obtained.

Remark 1.1. We frame our work as a binary image denoising

method, although the framework does not depend on the data being

images, and can be applied to the denoising of any binary data.

This is because the framework does not use any spatial relationships

between the pixels, and instead treats the image as a flattened vector

whose distribution is to be learned. Hence, the denoising scheme

can be applied as-is to any other binary data setting.

1.1. Contributions and organization

We provide QUBO-based denoising method for binary images

(applicable to general binary data) using restricted Boltzmann

machines in Section 3. This is done by formulating the denoising

objective in equation 6 by combining the energy function of the

distribution learned by the RBM with a (parameterized) penalty

term for deviations from a given noisy image. This objective turns

out to have an equivalent QUBO formulation, which is shown

in claim 1. In Theorem 3.4, we derive the optimal choice for

the penalty parameter under the assumption that the true images

follow the distribution learned by the RBM, which also recovers

the maximum a posteriori estimate per Corollary 3.5, though our

model is more flexible, and this flexibility allows for useful practical

modifications. Theorem 3.6 shows that the denoising method

yields a result that is strictly closer (in expectation) to the true

image than the noisy image is, under some additional assumptions.

Given that these idealistic assumptions won’t be met in reality,

we propose a robustness modification in Section 3.3 that improves

performance empirically. In Section 4, as the method lends itself

well to quantum annealing, we then implement the method on a

D-Wave Advantage 5000-qubit quantum annealer, demonstrating

strong empirical performance. Since only small datasets can be

tested on the D-Wave machine due to the relatively low number

of qubits, we also test the method on a larger dataset, for which

we use simulated annealing on a conventional computer in place

of quantum annealing to find good solutions the QUBO denoising

objective. Though we highlight the method being well-suited for

quantum annealers, we emphasize that it may be of independent

interest to themachine learning and image processing communities

at large.

1.2. Related work

Closely related work of Koshka and Novotny (2021) uses a

similar model as ours for the image reconstruction task, also solving

QUBO formulations via quantum annelaing. In the reconstruction

task, some subset of pixels is unknown (or obscured or missing),

and needs to be restored, whereas our work considers denoising,

where which pixels are noise-afflicted is unknown. Greig et al.

(1989) derives a maximum a posteriori (MAP) estimator for the

noise free image as a denoising method in a particular model of

binary images that is less general than ours, though we would

recover their estimator under a particular choice of our penalty

parameter if we were to apply our framework to their model

(since we recover MAP in a more general setting). Further, RBMS

and quantum annealing have been studied for the classification

problem, for instance in Adachi and Henderson (2015) and

Krzysztof et al. (2021). Other research in the machine learning

communities has also studied handling label noise, such as related

work in Vahdat (2017), which studies the problem of training

models in the presence of noisy labels, whereas our approach

is entirely unsupervised (the data need not have any labels to

begin with).

2. Background

Quantum Annealers make use of quantum interactions with

the primary goal of finding the ground state of Hamiltonian by

initializing and then evolving a system of coupled qubits over

time (Johnson et al., 2011). In particular, we may view QA

as implementing the Ising spin-glass model (Nishimori, 2001)

evolving over time. As the QUBO model is equivalent to the Ising

model (Glover et al., 2018), and QUBO instances can be efficiently

transformed to Ising instances, a QA is well suited to provide good
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solutions to QUBO problems. A QUBO cost function, or energy

function, takes the form

fQ(x) : =
∑

i,j

Qijxixj (1)

where xi ∈ {0, 1}, and Q is a symmetric, real-valued matrix.

We will occasionally refer to Qij as the weight between xi and

xj. QUBO is well-known to be NP hard (Barahona, 1982), and

many combinatorial problems can be reformulated as QUBO

instances. See Lucas (2014) and Glover et al. (2018) for thorough

presentation of QUBO formulations of various problems. A

Boltzmann Distribution using the above QUBO as its energy

function takes the form

Pmodel
Q (x) =

1

z
exp

(

−fQ(x)
)

, (2)

where z is a normalizing constant. Note that a parameter called

inverse temperature has been fixed to unity and is not explicitly

shown in the above expression. In this paper, we will focus on

making use of Boltzmann Machines, a type of generative neural

network that fits a Boltzmann Distribution to the training data via

making use of latent variables. Specifically, we consider Restricted

Boltzmann Machines (RBMs), which have seen significant success

and frequent use in deep probabilistic models (Goodfellow et al.,

2016). RBMs consist of an input layer of visible nodes, and a

layer of latent, or hidden nodes, which each have zero intra-group

weights. Let v ∈ {0, 1}v and h ∈ {0, 1}h denote the visible and

hidden nodes, respectively. It will be convenient for us to write

x = (v, h) ∈ {0, 1}v+h as their concatenation. The probability

distribution represented by a RBM is then

Pmodel
Q ((v, h)) =

1

z
exp

(

−fQ(v, h)
)

(3)

with the restriction that Qij = Qji = 0 if i, j ∈ {1, . . . , v} or

i, j ∈ {v + 1, . . . , v + h}. Hence, we have the simplified energy

function

f ((v, h),Q) =
v+h
∑

i=1

v+h
∑

j=1

2Qij(v, h)i(v, h)j =
v
∑

i=1

v+h
∑

j=v+1

Qijvihj

+

v
∑

i=1

Qiiv
2
i +

v+h
∑

i=v+1

Qiih
2
i

= hTWv + bTv v + bTh h = : fW,bv ,bh (v, h)

(4)

where W is the v × h matrix consisting of the Qij weights between

the visible and hidden nodes, and bv and bh are vectors of the

diagonal entries Qii, i ∈ {1, . . . , v} corresponding to visible nodes,

and Qii, i ∈ {n + 1, ..., v + h} corresponding to hidden nodes,

respectively. We will write the Boltzmann distribution with this

energy function as PW,bv ,bh , noting that this is also Pmodel
Q for the

appropriate Q.

It is well-known that RBMs can universally approximate

discrete distributions (Goodfellow et al., 2016), making them a

powerful model. They are also more easily trained than general

Boltzmann Machines, usually through the contrastive divergence

algorithm as described in Hinton (2002), or variants thereof.

2.1. Training Boltzmann Machines

We first devote some discussion to the training of RBMs.

Subsection 3.1 then describes how to denoise images via QUBO

given a well-trained RBM.

Continuing with the notation as in Equation (4), the probability

distribution represented by a RBM is

Pθ (v, h) =
1

zθ
exp

(

−fθ
)

.

For simplicity, denote θ = (W, bv, bh) as the model parameters

henceforth. The normalizing constant zθ above is

zθ =
∑

v∈{0,1}v

∑

h∈{0,1}h

exp
(

−fθ (v, h)
)

which is becomes intractable quickly even for relatively small values

of v and h. The common training approach aims to maximize

the log-likelihood of the data. At a high-level, this will be done

by approximating gradients and following a stochastic gradient

scheme. However, since our data consists only of the visible nodes,

we need to work with the marginal distribution of the visible nodes.

This is given by

Pθ (v) =
∑

h

Pθ (v, h) =
∑

h

exp
[

−fθ (v, h)
]

zθ

Denote our set training data samples by V : = {v1, ..., vN}. We

will use superscripts to indicate training data samples, and reserve

subscripts to denote entries of vectors. Then the log-likelihood is

given by

lθ (V) =

N
∑

k=1

logPθ (v
k) =

N
∑

k=1

log
∑

h

Pθ (v
k, h)

=

(

∑

k

log
∑

h

exp
(

−fθ (v
k, h)

)

)

− N · log zθ

=

(

∑

k

log
∑

h

exp
(

−fθ (v
k, h)

)

)

− N · log
∑

v

∑

h

exp
(

−fθ (v, h)
)

(5)

Now we can calculate the gradient with respect to θ as

∇lθ (V) =

N
∑

k=1

∑

h exp
(

−fθ (vk, h)
)

∇(−fθ (vk, h))
∑

h exp
(

−fθ (vk, h)
)

− N ·

∑

v,h exp
(

−fθ (v, h)
)

∇(−fθ (v, h))
∑

v,h exp
(

−fθ (v, h)
)

=

N
∑

k=1

EPθ (h|vk)

[

−∇fθ (v
k, h)

]

− N · EPθ (v,h)
[

−∇fθ (v, h)
]

=
1

N

N
∑

k=1

EPθ (h|vk)

[

(vk)Th+ vk + h
]

− EPθ (v,h)

[

vTh+ v + h
]
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The first term can be computed exactly and efficiently from

the data, since the conditional Pθ (h|v) admits the simple form

P(hj = 1|v) = logistic(bh + (vTW)j); we refer the interested

reader to Goodfellow et al. (2016) or Dixit et al. (2021) and will

focus on the second term. Due to its intractability to compute

(one would have to sum over all possibilities of v and h), the
most promising approach is to approximate it by sampling from

Pθ (v, h). Classically, this is done via Gibbs sampling as described

in Hinton (2002). However, recent research has also investigated

using quantum annealers to sample from the relevant Boltzmann

distribution, as suggested in Benedetti et al. (2015) and Dixit et al.

(2021), which would make QAs useful in the training process

since obtaining good Gibbs samples can be expensive. We note

that together with our framework, QAs show promise to become

useful for both the RBM training and the denoising process in the

implementation of our method.

3. Image denoising as quadratic
unconstrained binary optimization

This section is devoted to showing how one can naturally frame

the image denoising problem as a QUBO instance over a learned

Boltzmann Distribution fit to the data.

3.1. Denoising via QUBO

Let us assume we are given a trained Restricted Boltzmann

Machine described in Section 2. The model prescribes to each

vector x ∈ {0, 1}v+h the cost fQ(x) and corresponding likelihood

Pmodel
Q (x) defined in Equations (1) and (3), respectively. We will

here make the assumption that Pmodel
Q describes the distribution of

our data. Hence, high likelihood vectors in Pmodel
Q correspond to

low cost vectors of fQ. In particular, note that finding the maximum

likelihood argument in Equation (2) corresponds to finding a

solution to the QUBO instance in Equation (1).

Now, supposing this model, our goal is to reconstruct an image

that has been affected by noise. The visible portion of our vector

will be considered to be a flattened image with v pixels, black or

white corresponding to 0 or 1, respectively, in the binary entries of

the vector.

3.1.1. Noise model
We now describe the noise assumptions we will conduct our

analysis under.

Definition 3.1. For x ∈ {0, 1}v, we define x afflicted by salt-and-

pepper noise of level σ as the random variable X̃x,σ : = (x+ǫ)mod2,

where ǫi = Bi(p) ∼ Bern(σ ), independently.

In other words, a binary image afflicted by salt-and-pepper

noise has each pixel independently flipped with probability σ . In

particular, we are interested in X̃X,σ , where X ∼ Pmodel
Q , which is

the compound random variable obtained by sampling X from the

learned distribution of the data and then afflicting it with salt-and-

pepper noise. For notational simplicity, will simply write X̃ when

the intended subscripts are clear from context.

We remark here that this salt-and-pepper noise model, also

sometimes called impulse valued noise, is a natural choice for

binary data and can occur in image processing through faulty

sensors or pixel elements in cameras; see e.g., Boyat and Joshi

(2015) for discussion of noise models in digital image processing.

Since the pixels (or binary data entries for non-image binary data)

only take the values 0 or 1, individual entries can only be corrupted

by the value being flipped. Hence, continuous noise models such as

Gaussian noise are not appropriate. Further, since the data we can

work with on currently available quantummachines are very small,

imposing additional structure on the noise does not seem fitting.

However, the related problem of image reconstruction, in which

some known set of pixels is damaged, is another model appropriate

for such data, as studied in Koshka and Novotny (2021). We

emphasize that in our noise model, which pixels are affected by

noise is random and unknown, leading to the denoising problem.

Suppose we are given a realization x̃ ∈ {0, 1}v of X̃X,σ . The

reconstruction process aims to retrieve this original X using x̃ and

the trained model through Q. The approach we will take begins

from the intuition that X is likely to be a high-likelihood image that

is close to x̃. To enforce this “closeness” to x̃ while searching for

higher likelihood images in our model to remove noise, we add to

the cost in Equation (1) a penalty for deviations from x̃ to formulate

the following natural denoising cost function:

fQ,x̃,ρ(x) = fQ(x)+ ρ
∑

i,j

(xi − x̃i)
2 (6)

for some ρ > 0 that determines the penalty level. The intuition is

that the minimizer of this function for a well-chosen ρ will change

a restricted number of pixels to find an image that is similar to the

noisy image, but has a lower cost, i.e., higher likelihood, under the

model, in hopes of removing the noise.

We show next that this minimizing Equation (6) corresponds

to solving a QUBO instance.

Claim 1. Defining Q̃ρ,x̃ ∈ R
(v+h)×(v+h) by setting Q̃

ρ,x̃
ij = Qij if

i 6= j and Q̃
ρ,x̃
ij = Qii + ρ(1− 2x̃) if i = j, we have

argminxfQ,x̃,ρ(x) = argminxfQ̃ρ,x̃ (x). (7)

Proof.

fQ,x̃,ρ(x) = fQ(x)+ ρ
∑

i

(xi − x̃i)
2 =

∑

i,j

Qijxixj

+ ρ
∑

i

x2i − 2xix̃i + x̃2i

=
∑

i6=j

Qijxixj +
∑

i

Qiix
2
i + ρ(x2i − 2x2i x̃i + x̃2)

=
∑

i6=j

Qijxixj +
∑

i

(Qii + ρ(1− 2x̃i))x
2
i + ρx̃2i

= fQ̃ρ,x̃ (x)+
∑

i

ρx̃i

Noting that xi = x2i for the above derivation since they are in {0, 1}

here. Since the x̃i terms do not depend on x, the claim follows.

Hence, solving the QUBO in on the right hand side of Equation

(7) gives us the solution to Equation (6). Claim Equation 1 thus
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tells us that we simply need to modify the diagonal of the original

matrixQ of our model by adding diag(1−2x̃1, ..., 1−2x̃n) and then

solve the resulting QUBO to get the denoised image. We can then

make use of quantum annealing to solve the resulting QUBO of

7, or use classical methods and heuristics like simulated annealing

instead.We formally spell out the denoising procedure in algorithm

QUBO_Denoise.

QUBO_Denoise

Input: A matrix Q, a noisy image x̃ sampled from the

distribution of X̃X,σ with X ∼ Pmodel
Q , and a penalty parameter

ρ > 0.

Output: A denoised image X∗
ρ,x̃,Q.

1. Set Q̃
ρ,x̃
ij = Qij if i 6= j and Q̃

ρ,x̃
ij = Qii + ρ(1− 2x̃) if i = j.

2. Set X∗
ρ,x̃,Q

: = argminxfQ̃ρ,x̃ (x).

For the remainder of the paper, X∗
ρ,x̃,Q will denote the denoised

image obtained by applying QUBO_Denoise with noisy image x̃,

penalty parameter ρ, and the distribution-defining matrix Q.

Remark 3.2. Considering the entire process of sampling a noisy

image and then denoising it, the measurability of X∗

ρ,X̃X,σ ,Q
is

inherited from the measurability of X̃X,σ , which in turn inherits

its measurability as compound random variable of the measurable

noise and original image X ∼ Pmodel
Q .

3.2. Optimal choice of penalty parameter ρ

The choice of the parameter ρ for the proposed image

denoising model is clearly crucial to its success, since different

choices will result in different solutions. If ρ is chosen to be too

small, there is very little cost to flipping a pixel, and then many

pixels may be flipped and the solution may not resemble the noisy

image at all anymore. If ρ is too large, we may be too heavily

penalizing flipping pixels, and thus may not be able to get rid of

noise effectively. Hence, we now turn toward finding the optimal

choice for ρ. We will evaluate the choice of ρ via expected overlap:

Definition 3.3. The expected overlap between two distributions P

and a P′, is defined by

d(P, P′) : = EPEP′
[

n−
∥

∥X − X′
∥

∥

1

]

,

where X ∼ P,X′ ∼ P′.

We will consider X ∼ Pmodel
Q , and X′ as X∗

ρ,X̃X,σ ,Q
the corresponding

denoised image, and will also call d(P, P′) the expected overlap

between X and X′. To keep notation simple, for the remainder of

this section allow us to write X̃ in place of X̃X,σ , with X and σ being

clear from context.

Our main positive result concerning the choice of ρ is

summarized in the following theorem:

Theorem 3.4. Let X ∼ Pmodel
Q as in Equation (2) and X̃ be the noisy

image. Then choosing ρ = log
1− σ

σ
to obtain X∗

ρ,X̃,Q
is optimal

with respect to maximizing the expected overlap between X and

X∗

ρ,X̃,Q
.

Proof. Let X dist Pmodel
Q , and X̃ be X afflicted by salt-and-pepper

noise of level σ . Then since X̃X,σ is obtained by flipping pixels with

probability σ , we have the conditional probability

Pσ (X̃ = x̃|X = x) =

v
∏

i=1

{

σ (x̃i − xi)
2 + (1− σ )[1− (x̃i − xi)

2]
}

=
exp

[

−βσ

∑v
i=1(x̃i − xi)

2
]

(1+ e−βσ )v
,

(8)

where βσ : = log 1−σ
σ

. In order to infer the original image X from

the noisy one X̃, we utilize the Bayes formula and calculate the

conditional probability P
post
βσ ,Q

(X = x|X̃ = x̃).

P
post
βσ ,Q

(x|x̃) =
Pσ (X̃ = x̃|X = x)Pmodel

Q (x)
∑

{x} Pσ (x̃|x)P
model
Q (x)

=
exp

[

−βσ

∑v
i=1(x̃i − xi)

2 −
∑v+h

i,j=1 Qijxixj

]

∑

{x} exp
[

−βσ

∑v
i=1(x̃i − xi)2 −

∑v+h
i,j=1 Qijxixj

] .

(9)

Note that x includes pixels for hidden nodes, which is fine here. Our

approach finds the state which is most likely under this distribution,

which is realized by annealing for the above QUBO with the

βσ term.

The overlap of two vectors x∗ and x is given by

m(x, x∗) : =
1

v+ h

v+h
∑

i=1

(2xi − 1)(2x∗i − 1), (10)

the proportion of shared entries. We consider the average (over the

noise) of solutions, X̄ρ,x̃,Q with

(X̄ρ,x̃,Q)i = θ





∑

{x}

Pmodel
Q̃

(x)xi −
1

2



 , (11)

where θ(x) = 1 if x > 0, otherwise 0, noting that the right hand side

represents the inferred pixel value based on the expectation from

Pmodel
Q̃

. We have formally distinguished Pmodel
Q̃

(x) from P
post
ρ,Q (x|x̃),

but in fact they are the same. Note that

2(X̄ρ,x̃,Q)i − 1 = sign





∑

{x}

Pmodel
Q̃

(x)(2xi − 1)



 , (12)

where sign(x) is the sign of x. Let ασ ,Q : = −βσ

∑

i(x̃i − xi)
2 −

∑

i,j Qijxixj for conciseness. In order to evaluate the statistical

performance of our method with coefficient ρ of penalty term, we

calculate the average of overlap as

Mβσ ,Q(ρ) : =
∑

{x̃},{x}

Pσ (x̃|x)P
model
Q (x)m(X̄ρ,x̃,Q), x)

=
1

(1+ eβσ )v
1

z

1

v+ h

∑

i

∑

{x̃},{x}

eασ ,Q [2(X̄ρ,x̃,Q)i − 1]

(2xi − 1).

(13)
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A sum in the right hand side of the above equation holds

∑

{x}

eασ ,Q [2(E(X∗
ρ,x̃,Q)i − 1](2xi − 1)

≤

∣

∣

∣

∣

∣

∣

∑

{x}

eασ ,Q [2(E(X∗
ρ,x̃,Q)i − 1](2xi − 1)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

{x}

eασ ,Q (2xi − 1)

∣

∣

∣

∣

∣

∣

=
∑

{x}

eασ ,Q (2xi − 1)

∑

{x′} e
−βσ

∑

i(x̃i−x′i)
2−
∑

i,j Qijx
′
ix
′
j (2x′i − 1)

∣

∣

∣

∑

{x′} e
−βσ

∑

i(x̃i−x′i)
2−
∑

i,j Qijx
′
ix
′
j (2x′i − 1)

∣

∣

∣

=
∑

{x}

eασ ,Q (2xi − 1)sign





∑

{x′}

Pmodel
Q̃

(x′)(2x′i − 1)





=
∑

{x}

eασ ,Q [2(X̄ρ,x̃,Q)i − 1](2xi − 1).

(14)

Hence, the averaged overlap holds

Mβσ ,Q(ρ) ≤
1

(1+ eβσ )v
1

Z1,Q

1

v+ h

∑

i

∑

{x̃},{x}

e
−βσ

∑

i(x̃i−xi)
2−
∑

i,j Qijxixj [2(X̄ρ,x̃,Q)i − 1](2xi − 1)

=Mβσ ,Q(βσ ).

(15)

This inequality means that the averaged overlap is maximized when

ρ = βσ = log 1−σ
σ

.

This theorem is based on a known fact in statistical physics

of information processing (Nishimori, 2001) and translates the

fact into the setting of our problem. Notably, the optimal choice

of ρ does not depend on the distribution of the data, but only

on the noise level, for which in many real world cases one may

have good estimates. The proof of the theorem also reveals the

following corollary:

Corollary 3.5. Under the same assumptions of Theorem 3.4,

setting ρ : = log 1−σ
σ

makes X∗

ρ,X̃,Q
the maximum a posteriori

estimator for the original noise-free image X.

The corollary follows from observing that the energy function in

the numerator of the posterior distribution Equation (9) is exactly

Equation (6) with ρ : = 1−σ
σ

, noting that minimizing Equation (6)

is equivalent to maximizing Equation (9). However, this framework

allows for additional flexibility in choosing the ρ parameter that is

absent in standard MAP estimation. In fact, in Sections 3.3 and 4.1

we go on to demonstrate that in practice, choosing a larger ρ may

be beneficial for robustness of the method.

Though Theorem 3.4 derives the optimal choice of ρ, it

does not give any guarantees that the method will yield an

improvement in expected overlap, even under its assumptions.

Next, we prove a theorem to show that in the case of visible units

being independent of one another, our image denoising method

produces in expectation strict denoising improvements with respect

to the expected overlap. For c > 0 and a model distribution Pmodel
Q

as in Equation 2, let Ic be the set of indices i such that |Qii| > c.

These indices correspond to components of X that are either 0 or

1 with probability at least
1

1+ e−c
, depending on whether Qii is

positive or negative, respectively.

Theorem 3.6. Suppose that Q is diagonal, X ∼ PQ, and that X̃ is

X afflicted by salt-and-pepper noise of level σ . With Ic as defined

above for c > 0, setting ρ ≥ log
(

1−σ
σ

)

, and assuming that Iρ 6= ∅,

the expected overlap of the denoised image and the true image is

strictly larger than the expected overlap of the noisy image and the

true image, i.e.,

E

[

∑

I((X∗

ρ,X̃,Q
)i = Xi)

]

> E

[

∑

I(X̃i = Xi)
]

. (16)

Proof. Let I0
c : = {i ∈ Ic :Qii > 0},I1

c : = {i ∈ Ic :Qii < 0}.

Intuitively, these are the indices which are likely to be zero or

one, respectively. Further, letting x† i denote the vector obtained by

flipping entry i of x, we have that |fQ(x) − fQ(x
† i)| = Qii > c if

and only if i ∈ Ic. Hence, this reveals that x∗ solves Equation (6) by

setting x∗i = 1 ∀i ∈ I1
ρ , x

∗
i = 0 ∀i ∈ I0

ρ , and x∗i = x̃i otherwise,

since the value of fQ of Equation (1) is reduced by more than ρ, so

that the overall penalized objective Equation (6) improves despite

the ρ penalty accrued by the pixel flips.

Now, let X ∼ Pmodel
Q . Let us compute P((X∗

ρ,X̃,Q
)i = Xi). The cases

where this happens are: i ∈ I0ρ and Xi = 0, i ∈ I1ρ and Xi = 1, or

i /∈ Iρ and pixel i was not flipped by the noise.

We know that if i ∈ Ib
ρ , P(Xi = b) ≥

1

1+ e−ρ
, for b ∈ {0, 1}, so

P((X∗

ρ,X̃,Q
)i = Xi) ≥

1

1+ e−ρ
for these. For i /∈ Iρ , P((X

∗

ρ,X̃,Q
)i =

Xi) = 1 − σ , where σ is the probability that the pixel was flipped

by the noise. On the other hand, P(X̃i = Xi) = 1 − σ ∀i. We

characterize

E

[

∑

I((X∗

ρ,X̃,Q
)i = Xi)

]

> E

[

∑

I(X̃i = Xi)
]

(17)
∑

P((X∗

ρ,X̃,Q
)i = Xi) >

∑

P(X̃i = Xi) = n · (1− σ ) (18)

For the left-hand side, assuming Iρ 6= ∅, we have

∑

P((X∗

ρ,X̃,Q
)i = Xi) >

∑

i∈Iρ

1

1+ e−ρ
+
∑

i/∈Iρ

(1− σ )

= |Iρ | ·
1

1+ e−ρ
+ (n− |Iρ |)(1− σ )

so that Equation (17) holds when

|Iρ | ·
1

1+ e−ρ
+ (n− |Iρ |)(1− σ ) ≥ n(1− σ )

⇐⇒ |Iρ | 6= 0

and
1

1+ e−ρ
≥ 1− σ ⇐⇒ ρ ≥ log(

1− σ

σ
) and Iρ 6= ∅, (19)

and the theorem is proven.

The assumption that matrix Q is diagonal is equivalent to the

components of X being independent, which is not realistic with

real data. However, since in the RBM model the visible units are

independent conditioned on the hidden units, we still consider
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this independent case to be informative to the denoising method.

In fact, if the hidden states were fixed (or known, or recovered

correctly), Theorem 3.6 would apply. We leave it as a tantalizing

open question to generalize this result beyond the independent

case. The assumption of nonemptiness of Iρ is a natural one for

the denoising task; indeed, when Iρ is empty, no entries of Q are

large in magnitude, which is equivalent to the entries of X being

close to uniformly distributed. In that case, intuitively of course it

should not be possible to guarantee that we can denoise an image

well if it looks like noise to begin with.

3.3. Robust choice of ρ

The optimal choice of ρ as derived in Theorem 3.4 relies on

the assumption that the observed data comes from the learned

distribution, or equivalently that the distribution generating our

data has been perfectly learned by the RBM. However, in practice

we will always only approximately learn the data distribution.

Hence, we do not want to rely too heavily on the exact distribution

we have learned when we denoise the images. One may hope to

have a more robust method by only changing the value of a pixel

when there is some confidence in the model that the pixel should

be flipped. We may thus want to penalize flipping pixels slightly

more than we should under the idealistic setting of Theorem 3.4,

which corresponds to choosing a larger ρ value than log 1−σ
σ

, or

equivalently using a smaller σ ′ < σ value when setting ρ : =

log 1−σ ′

σ ′ . We opt for the latter as a means of intentionally biasing

ρ to make the approach more robust for application. Figures 2, 3

in Section 4 show the effect this proposed robustness modification

has, demonstrating indeed that choosing a larger ρ via intentionally

using a smaller σ yields positive results. If the true noise level is σ ,

our experiments demonstrate that setting to roughly ρ : = 1−0.75σ
0.75σ

has a positive effect on performance.

4. Empirical results

This section contains results from implementing the previously

described method and comparing it against other denoising

approaches. Datasets and code are available on the first author’s

GitHub1 for the purpose of easy reproducibility.

4.1. Datasets and setup

In this subsection, we present empirical results obtained

by implementing our model on a quantum annealer, D-

Wave’s Advantage_system4.1, which has 5,000 qubits and enables

embedding of a complete bipartite graph of size 172× 172. Hence,

we use 12 × 12 pixel images here so that the visible layer is of

size 144. We test the method on two different datasets with very

differently structured data.

The first dataset is a 12× 12 version of the well-known MNIST

dataset (LeCun et al., 2010), created by downsizing the original

dataset with nearest-neighbor image downscaling and binarizing

1 https://github.com/PhillipKerger

FIGURE 1

Examples of the denoising process using our method showing the

true, noisy, and denoised images across di�erent noise levels.

pixels. The second dataset we use is a 12×12 pixel Bars-and-Stripes

(BAS) dataset, as has been used in closely related work (Dixit et al.,

2021; Koshka and Novotny, 2021), in which the authors used a

smaller 8×8 version of BAS in order to accommodate a 2,000 qubit

machine, so we implement a larger 12 × 12 version for the 5,000

qubit machine we use. Each image consists of binary pixels with

either each row or each column sharing the same values, so that

each image consists of either “bars” or “stripes”. Some examples of

noise-free, noisy, and denoised images across different noise levels

are presented in Figure 1.

For both datasets we train the RBM by using the classical

Contrastive Divergence algorithm first presented in Hinton (2002),

and as described in Section 2.1. The number of hidden units was set

to 50 and 64 for BAS and MNIST, respectively. For both datasets,

we used learning rate of 0.01, batch size of 50, and 150 epochs

as the training hyperparameters. For the BAS data, 4,000 images

were generated as training data, and 1,000 as test data, while for

MNIST, we simply used the full MNIST provided training set of

60,000 images and test set of 10,000 images. Noisy images were

generated by adding salt-and-pepper noise of level σ to images

from the test dataset. Given a noisy image, we are then able to

embed and solve the resulting denoising QUBO of 7 onto a D-Wave

quantum annealer, Advantage_system4.1. A function of D-Wave’s

Ocean software, find_embedding, is utilized to find appropriate
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mappings from variables in a QUBO to physical qubits onD-Wave’s

Pegasus graph. A variable in QUBO is often mapped to multiple

physical qubits, called chain, that are strongly connected to each

other to behave like a single variable. A mapping can be used for

every noisy images for each dataset, since their QUBO have the

same graph structure. We have prepared in advance 50 sets of the

different mappings for each dataset and choose a mapping from

the pool at random to embed QUBO of each image. This random

selection is done to avoid possible artificial effects on the denoising

performance from using only a particular mapping. Parameters for

embedding and annealing, i.e., chain_strength and annealing_time,

are tuned to maximize the performance. In particular, we set

chain_strength as the product of a coefficient c0 and the maximum

abstract value among the elements of each QUBOmatrix, where we

tune c0. The adopted values of the parameters are different between

MNIST and BAS but the same values for all the range of σ . We

set (c0, annealing_time) = (0.6, 50 µs), (0.5, 40 µs) for BAS and

MNIST, respectively. The number num_reads of reads of annealing

is 100 for each noisy image. We calculate the average of solution of

each pixel over the reads to approximate Equation (11) and use it to

evaluate the overlap that is proportion of pixels in denoised images

that matched the original image. We denoise 200 noisy images for

each σ , which are randomly selected from the pool of test images

for each sigma. Note also that for each value of sigma, the different

methods compared use the same set of (randomly selected) noisy

test images.

4.2. Results with quantum annealing

Figures 2, 3 first investigate the robust choice of ρ as discussed

in Section 3.3. This is done by using a biased value of σ when

setting ρ = log 1−σ
σ

, instead setting ρ : = log 1−bσ
bσ

for some bias

factor b. The denoising performance for b ∈ {1.25, 1, 0.75, 0.5} are

shown, with 95% confidence intervals obtained by bootstrapping.

Note that using a bias factor b = 1 means using the true value of σ

for determining ρ.

Based on the empirical performance, using a bias factor of

around 0.75 seems to give an improved performance compared

to using a bias factor of 1 in both data sets. A bias factor of 0.5

seems to perform quite well-across most noise regimes as well,

with largely overlapping confidence regions to the 0.75 parameter

setting, though in the low-noise setting for the BAS dataset we

observe an adverse effect. The authors thus suggest a setting of 0.75

for the bias factor.

Next, in Figures 4, 5, we compare our method to popular other

denoising methods for binary images on the 12 × 12 MNIST and

bars-and-stripes datasets, respectively, across different noise levels.

When comparing to other methods, a crucial factor is that we

choose ρ based off of σ , but in practice σ may be unknown.

In light of this, we include two versions of our method in these

comparisons. First, we use our method with ρ : = log 1−σ
σ

, using

the true value of σ without introducing the recommended bias

factor. Secondly, we simulate the situation in which the true σ is

unknown, and instead we only have a guess for σ . To simulate

having an approximate guess for σ , for each image afflicted by noise

of level σ , we sample σ ′ uniformly from an interval of size σ/2

FIGURE 2

Proportion of pixels in denoised MNIST images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

FIGURE 3

Proportion of pixels in denoised BAS images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

centered at sigma.We then set ρ : = log 1−0.75σ ′

0.75σ ′ , using a bias factor

of 0.75 on with this “guessed” value of σ . This is a significantly

more realistic way of testing our method, since it gives an idea

of how well the method may perform when the true noise level

present in the noisy images is unknown and must be guessed. Our

implementation here only assumes that the practitioner roughly

knows the magnitude of the noise. For example, if the true noise is

σ = 0.2, here we sample σ ′ uniformly from [0.15, 0.25] to simulate

the guess.

We compare our method to Gibbs denoising with an RBM

(Tang et al., 2012, Section 3.2), median filtering (Huang et al.,

1979), Gaussian filtering (Stockman and Shapiro, 2001, Chapter

5), and a graph-cut method (Greig et al., 1989) for denoising.

For the Gibbs denoising, we use the same well-trained RBM as
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FIGURE 4

Proportion of pixels in denoised MNIST images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

FIGURE 5

Proportion of pixels in denoised BAS images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

for our QUBO-based method, and parameters of the method

were carefully tuned for best performance to use 20 Gibbs

iterations to then construct the denoised image as the exponentially

weighted average of the samples with decay factor 0.8. Notably,

as Gibbs-based denoising also requires a well-trained RBM, this

method incurs the same computational overhead of training an

RBM as our method does. However, it has the disadvantage of

requiring careful tuning of the hyperparameters of the number of

Gibbs iterations and decay factor to use, whereas our method of

picking ρ is much more straightforward and shows good results

without tuning. For the graph-cut method, the recommended

parameter setting in the reference of β = 0.5 is used. The

median filter, Gaussian filter, and Gibbs denoising (excluding the

overhead of training the RBM) each have complexity O(n), where

n is the number of pixels, whereas the graph-cut method has

complexity O(n3) since a maximum-flow problem is solved on

a graph whose nodes are the pixels of the image. Keeping the

annealing time and number of reads as constant, the scaling of

our method is also O(n). We forego wall-time here, since the

software implementations we compare against are specialized for

large problems, so comparing walltime for the small problems that

can be implemented on current quantum annealers may not be

representative. However, we note that for the QUBO denoising

as we use up to 50µs annealing time and 100 reads per image,

denoising an image only takes a total of 5ms of annealing time in

our case.

Results are summarized in Figures 4, 5. Overall, the QUBO-

based method performs quite strongly. Across all noise regimes

in the MNIST data, and in most noise regimes in the bars-and-

stripes dataset, the method outperforms the others. In particular,

for the MNIST data the 95% confidence region for the QUBO

method entirely dominates the others. Indeed, we see the good

performance that our analysis from Section 3 suggests, even when

the true σ is unknown and instead guessed. Using a guessed σ

and the robustness modification of Section 3.3 makes the method

perform as well (if not slightly better) as knowing the true σ

without the robustness modification. Only in the noise regime

of σ ≥ 0.2 in the BAS data does Gibbs denoising outperform

our method.

4.3. Testing on larger images

Though we see the the straightforward implementability of

our method on quantum annealers as a strong positive, a current

drawback on using QAs is the limited data size that can be handled

to accomodate their still small qubit capacities. Of course we

can still instead test our method on larger datasets by obtaining

solutions to the denoising QUBO 6 using other means. In

Figure 6, we implement our method on a binarized version of the

popular MNIST dataset (LeCun et al., 2010) by using simulated

annealing (Kirkpatrick et al., 1983) to find solutions to (6). We

particularly choose to test on the full-size MNIST dataset since

we could only use a downscaled version on the QA due to size

limitations on the input data, so this experiment serves to test our

method without this downscaling. All methods are implemented

as described in Section 4.1, and again for our method we use a

guessed σ to simulate the unknown σ case and bias the guess

for robustness.

5. Conclusion and future work

We investigated an image denoising framework via a

penalty-based QUBO denoising objective that shows promise

both theoretically through its statistical properties and

practically through its empirical performance together with
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FIGURE 6

Proportion of pixels in denoised images that were correctly

denoised, for di�erent denoising methods on the MNIST dataset,

with 95% confidence intervals shaded.

the proposed robustness modification. The method is well-suited

for implementability on a quantum annealer, providing an

important application of QAs within machine learning through

the fundamental image denoising task. Good results are still

obtained on larger datasets when the QUBO is only classically

approximated by simulated annealing instead, revealing the

approach to be promising even in the absence of QAs. As RBMs

form a core building block of many deep generative models such

as deep Boltzmann machines or deep belief networks (Goodfellow

et al., 2016), a natural next step is to attempt to incorporate

this approach into these more complex models, though current

hardware limitations on existing quantum annealers are restrictive.

Further, since our method takes advantage of QAs for the denoising

step, further research into making use of QAs for the training

process of RBMs would yield a full image denoising model

where both the model training and image denoising make use

of QA.
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(UPM), Madrid, Spain

In the ever-evolving landscape of global trade and supply chain management,

logistics optimization stands as a critical challenge. This study takes on the Vehicle

Routing Problem (VRP), a variant of the Traveling Salesman Problem (TSP), by

proposing a novel hybrid solution that seamlessly combines classical and quantum

computing methodologies. Through a comprehensive analysis of our approach,

including algorithm selection, data collection, and computational processes, we

provide in-depth insights into the e�ciency, and e�ectiveness of our hybrid

solution compared to traditional methods. The results after analysis of 14 datasets

highlight the advantages and limitations of this approach, demonstrating its

potential to address NP-hard problems and contribute significantly to the field of

optimization algorithms in logistics. This research o�ers promising contributions

to the advancement of logistics optimization techniques and their potential

implications for enhancing supply chain e�ciency.

KEYWORDS

quantum computing, quantum annealing, quadratic unconstrained binary optimization

(QUBO), vehicle routing problem (VRP), traveling salesman problem (TSP), supply chain,

last mile

1 Introduction

The quantum computing industry is in a bustling emerging phase, and many around the

world are determining its applicability in real-life business scenarios. Enthusiasts, startups,

academia, and governments are rushing to find “quantum advantage” and funding mid-

to long-term research and development in this area. Many companies are working hard to

develop and mature current quantum hardware, plus there is an increasing growth in areas

related to software and services aiming to reap the benefits of quantum computing.

We have been investigating how to bridge the gap between scientific developments and

current industry trends and needs. The process we followed is shown in Figure 1.

Current quantum computing technology is focused on problems such as simulation,

optimization, factorization, linear algebra, andmachine learning. Through these, it promises

to deliver value in many different areas: life sciences, transport and logistics, financial

services, and telecommunications, just to name a few.

2 Market analysis

The case for quantum computing in transport optimization is quite compelling. Current

world trade is based on a strong and healthy supply chain, where logistics plays a key role

in producing and providing key assets and goods to keep societies and economies going.

One facet of the transport optimization problem is the vehicle routing problem (VRP). This
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FIGURE 1

Research flowchart.

problem attempts to find an optimal set of routes for a fleet of

vehicles to service a given set of customers; the business impact of

the VRP is well measured.

The goal of last-mile delivery is to transport an item to its

recipient in the quickest way possible. This has been driven by

the continuously evolving market and demand for a convenient

customer experience across industries such as e-commerce, food,

retail, and many more. The last-mile delivery market has been

steadily growing in the last decade, and the forecast opportunity

follows the same path. The last-mile delivery market in Europe is

expected to grow from USD 677.0 Mn in 2018 to USD 2,491.8 Mn

by the year 2027, with a compound annual growth rate of 16.1%

from 2019 to 2027,1 while in Latin America, the level of investment

for the last five years is close to USD 300 Mn, leaving countries

like Mexico, Colombia, Chile, and Argentina without a leading

independent last-mile logistics company, where 60% of the last-

mile delivery market is dominated by small, informal companies.

This results in inefficiencies due to a lack of technologies such as

route optimization as well as a lack of operating scale. These issues

are quickly becoming more pronounced as e-commerce in Latin

America has taken off at a compound annual industry growth rate

of 16% over the past five years. In the case of Latam, the biggest

e-commerce companies and retailers have made last-mile logistics

the key value differentiator for growth, leveraging the technology

tools and analytics processes to make investments and plans in

advance.2 The situation for Europe is quite similar, given the

importance of optimization in last-mile transportation. Key factors

driving the region’s market growth include rapid industrialization,

the growth of the e-commerce sector, and the presence of large

and established logistics players. While Germany is a predominant

player in the European market, the main segment responsible for

its growth is the business-to-consumer (B2C) sector. In Spain, the

last-mile market is mainly indexed to the B2C sector, which is

accountable for over USD 40 Bn e-commerce market size, where

last-mile represents around 40% of total costs of logistics operations

1 https://techcrunch.com/2021/07/22/last-mile-delivery-in-latin-

america-is-ready-to-take-o�/

2 https://www.mundomaritimo.cl/noticias/mercado-libre-amplia-

brecha-con-falabella-y-se-prepara-para-enfrentar-la-irrupcion-de-

amazon

in a market dominated up to 80% by small or micro-enterprises

(Deloitte, 2020).

The fact that there are common components in the last-

mile market makes the proposal in this paper appealing for

a close-term application of the technology and solution. In a

rough estimate, for a market of USD 27 billion in Spain, with

an average of 10% margin, where the Last Mile may represent

something between 30 and 40% of the total cost, we aim for

a USD 15 billion market, split in a granular small to micro

enterprise sector, with close to 2,000 companies (de los Mercados

y la Competencia, 2021). Any 1% savings in optimization can prove

to be worth a very competitive return on investment; this is shown

in Table 1.

Our work is focused on the applicability of transport

optimization for the last-mile scenario. Transport optimization

is the process of finding the best way to move assets from

one place (the source location) to another (the destination). It

is impacted by many distinct factors, like shipment analysis,

transport cost structures, rates, and schedules, cargo, routes,

delivery requirements and needs, etc. Combining all these different

factors makes this problem extraordinarily complex and demands

high computing power to find viable solutions. The problem

is categorized as an NP-hard problem. Transport optimization,

may be rephrased as finding the optimal value for a transport

function; this is where it becomes a high-prospect match for current

quantum technologies, specifically quantum annealing (Farhi et al.,

2000).

3 Implementation

In order to find the best approach in terms of technology

and time-to-market applicability, we solve the VRP using a hybrid

approach (Feld et al., 2019), which exploits both classical and

quantum techniques to find an optimized solution. The hybrid

algorithm models the VRP problem using a 2-phase approach: first

clustering or grouping the customers, and then finding the optimal

routes inside each cluster. This approach is known as a cluster-first,

route-second algorithm. For each of the two phases, we developed

both a quantum and a classical algorithm to compare them and

determine the most effective combination. The algorithms used are

shown in Table 2.
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TABLE 1 Preliminary return on investment estimations.

Annual market size $ 27,000,000,000

Estimated costs $ 810,000,000

Gross yearly inv. estimate $ 5,000,000

Return on investment ≈ 62%

TABLE 2 Algorithms developed for solving the VRP problem with a

cluster-first, route-second approach.

Clustering Routing

Classical K-Medoids Combinatorial optimization

Quantum QUBO clustering QUBO routing

3.1 Clustering phase

During the clustering phase, the objective is to find clusters

of customers such that the intra-cluster distances are minimized.

The clustering problem has additional constraints imposed so the

sum of the demand of each customer inside each cluster does

not exceed the available transport capacity of the vehicles; thus,

the problem is a constrained clustering problem with cluster-

level constraints. To solve it, we developed a modified version

of the K-Medoids algorithm that takes into account the capacity

constraints as the classical approach and a quadratic unconstrained

binary optimization (QUBO) formulation of the problem as the

quantum approach.

The QUBO formulation (Bauckhage et al., 2019; Date et al.,

2021; Matsumoto et al., 2022) for the clustering phase shown

below (Equation 4) is composed of the main objective function

M (Equation 1) subject to two additional constraints. The main

formula M tries to find an assignment of customers in clusters

such that the total distance between customers inside each cluster

is minimized. The first constraint C1 (Equation 2) adds a penalty

for each customer not included in a cluster; the second constraint

C2 (Equation 3) adds a penalty for each cluster in which the total

customer demand is greater than the available vehicle capacity.

M =
∑

k∈K

∑

i,j∈Ij>i

disti,j ∗ xi,k ∗ xj,k (1)

C1 =
∑

k∈K

xi,k = 1 ∀i ∈ I (2)

C2 =
∑

i∈I

di ∗ xi,k ≤ C ∀k ∈ K (3)

H = M + C1 ∗M1 + C2 ∗M2 (4)

K is the total number of clusters, while I indicates the customer

nodes. distij represents the distance matrix between all the possible

customer nodes; this matrix is pre-computed beforehand. xik is a

binary decision variable that indicates if the customer i is assigned

to cluster k. C represents the available vehicle capacity, and di is

the demand of customer i. The multipliers M1 and M2 are used

to assign the weight of the corresponding penalty for each of the

two constraints.

The developed K-Medoids algorithm is based on the

Partitioning Around Medoids algorithm with an added capacity

constraint. The steps of the algorithm are the following:

1. Select K data points with the highest demand as the medoids.

2. Determine the clusters by associating each data point to its

closest medoid.

3. Compute the initial cluster costs by adding the distances from

every point in each cluster to their medoid, add a penalty cost if

the total demand of the cluster exceeds the vehicle capacity.

4. While the cluster costs decrease and the maximum number of

iterations has not been reached:

(a) For each medoidm and for each non-medoid data point: n

i. Swapm and o and recompute the cluster costs.

ii. If the new cluster cost is higher than the previous one,

undo the swap.

(b) Increase number of iterations.

5. Return the clusters.

3.2 Routing phase

Once the clusters have been established, the routing phase

attempts to find the shortest routes starting from the depot, which

travel through all the nodes and finally return to the depot. This

problem is very similar to the Traveling Salesman Problem.

To solve the routing phase, we developed a combinatorial

optimization algorithm as the classical approach and a QUBO

formulation of the problem as the quantum approach. The

QUBO formulation (Lucas, 2014), shown below (Equation 10), is

composed of two different QUBO equations. The first equation

(8) attempts to solve the Hamiltonian cycle problem, while the

second equation (9) minimizes the route distances, thus solving the

Traveling Salesman problem.

C1 =
∑

j∈N+1

(1−
∑

i∈N+1

xi,j) (5)

C2 =
∑

i∈N+1

(1−
∑

j∈N+1

xi,j) (6)

C3 = (1− x0,0) (7)

HA = C1 + C2 + C3 (8)

HB =
∑

h∈N+1

∑

i∈N+1,h6=i

∑

j∈N

dh,ixj,hxj+1,i (9)

H = HA ∗mA +HB ∗mB (10)

xi,j is a binary variable where i represents the order and j

represents the customer. xi,j is equal to 1 if the customer with index

j is visited in position i in the cycle, i, j ∈ 0, . . . ,N where N is
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FIGURE 2

Silhouette score and number of demand errors obtained with

K-Medoids and QUBO clustering algorithms on the CMT 01-14

data-sets. (A) Silhouette score and dip P value. (B) Number of

demand errors.

equal to the total number of customers. d is the distance matrix,

which contains the distance between every customer; the depot is

included as customer 0. The multipliers mA and mB are used to set

the penalties for the distinct parts of the equation.

The first constraintC1 (Equation 5) ensures that every customer

can only appear once in the cycle. The second constraint C2

(Equation 6) ensures that each position in the cycle must be

assigned to only one customer. The third constraint C3 (Equation

7) is added so that every cycle starts at the depot.

The combinatorial optimization algorithm models the

Traveling Salesman Problem using Google’s OR-Tools framework.3

The search strategy used to find the solution is a meta-heuristic

strategy called Guided Local Search (GLS). It is built on top of a

local search algorithm while gradually adding penalties to certain

features of the solutions to help the local search escape from local

minima and plateaus.

3 https://acrogenesis.com/or-tools/documentation/user_manual/

manual/tsp/routing_library.html

FIGURE 3

Total distance obtained with OR-Tools and QUBO routing

algorithms on the CMT 01-14 data-sets.

4 Analysis

The experiments conducted in this study involved the

utilization of a diverse range of datasets (Mendoza et al.,

2014), featuring varying numbers of customers and vehicles.

It is noteworthy that these datasets exhibit a wide spectrum

of clusterability (Ackerman et al., 2016) rates regarding

customer positions.

To evaluate the performance of our clustering algorithms, we

employed two different metrics: the silhouette score (Rousseeuw,

1987) and the error count. The silhouette scoremeasures the quality

of the generated clusters by comparing the similarity of objects with

their own cluster and with the other clusters. Its value ranges from

–1 to +1; a higher value indicates the elements are well clustered.

The number of errors generated by each clustering algorithm is the

number of clusters where the total demand of its members exceeds

the available vehicle capacity. The results, presented in Figure 2,

focus on the application of these metrics to the datasets presented

by Christofides, Mingozzi, and Toth (CMT) (Christofides et al.,

1979).

In Figures 2A, B, we observe that both algorithms perform

comparably when the data exhibits a high level of clusterability

(as indicated by a low dip P value Hartigan and Hartigan,

1985). However, in scenarios where the data exhibits a lower

rate of clusterability, the QUBO formulation generally excels

in producing more robust clusters when contrasted with the

traditional K-Medoids algorithm. This success can be attributed

to the enhanced flexibility inherent in the QUBO formulation

compared to the classical K-Medoids algorithm. Furthermore,

the quantum approach typically demonstrates a lower error rate,

underscoring its adaptability and efficiency.

To assess the quality of the routing algorithms, we focused on

measuring the total route distance generated by each algorithm.

Figure 3 presents a comparison of the results obtained by both

algorithms when applied to the CMT datasets used in the

clustering phase.
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Figure 3 highlights a notable trend, specifically that the QUBO

formulation for the routing problem typically yields longer route

distances when compared to those produced by the combinatorial

optimization algorithm. This observation underscores the need

for further refinement of the quantum approach to match the

optimization efficiency demonstrated by the classical algorithm.

The experiments with the quantum algorithms were performed

using D-Wave’s Advantage System 6.1 quantum annealer, offered

by Amazon Braket. The size of the QUBO formula generated by the

clustering algorithm is too large to embed on the available quantum

annealers, so QBSolv (Booth et al., 2017) is used to split it into

smaller sub-problems.

All the code necessary to run the experiments is available at

https://github.com/punkyfer/vrpc.

5 Conclusions

During our research, we found that classical algorithms

typically perform better than their quantum counterparts. This is

not a totally fair comparison since, on the one hand, we have fine-

tuned algorithms running on classical computing hardware, and on

the other hand, we have QUBO formulations running on quantum

annealers in noisy intermediate-scale quantum era hardware. Both

technologies are on wildly different edges of the technology

maturity ladder. Despite this disadvantageous situation, we have

found that under certain circumstances, the quantum clustering

algorithm presents an advantage over its classical counterpart,

mainly in scenarios where the clusterability rate of the data is

lower. When the data presents a lower rate of clusterability or a

higher degree of randomness, the quantum clustering approach

delivers better results than the K-Medoids algorithm. This is

an outstanding finding, as it proves the potential for quantum

computing in real business scenarios and sets the basis for future

research into developing quantum algorithms for the constrained

clustering problem. A bigger advantage may be achievable in future

versions of quantum hardware, where more qubits and a more

interconnected topology may provide better results at larger scales.

For the business analysis, we identified the potential for a

cost-effective relationship between the cost of running a quantum

algorithm and the quality of the results obtained. This cost-

effectiveness is especially true when the data shows a higher

degree of randomness, as is usually the case with real customer

location data. This demonstrates a theoretical advantage for the

quantum computing approach when applied to the constrained

clustering problem.
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We are interested in benchmarking both quantum annealing and classical

algorithms for minimizing quadratic unconstrained binary optimization (QUBO)

problems. Such problems are NP-hard in general, implying that the exact

minima of randomly generated instances are hard to find and thus typically

unknown. While brute forcing smaller instances is possible, such instances are

typically not interesting due to being too easy for both quantum and classical

algorithms. In this contribution, we propose a novel method, called posiform

planting, for generating random QUBO instances of arbitrary size with known

optimal solutions, and use those instances to benchmark the sampling quality

of four D-Wave quantum annealers utilizing di�erent interconnection structures

(Chimera, Pegasus, and Zephyr hardware graphs) and the simulated annealing

algorithm. Posiform planting di�ers from many existing methods in two key

ways. It ensures the uniqueness of the planted optimal solution, thus avoiding

groundstate degeneracy, and it enables the generation of QUBOs that are

tailored to a given hardware connectivity structure, provided that the connectivity

is not too sparse. Posiform planted QUBOs are a type of 2-SAT boolean

satisfiability combinatorial optimization problems. Our experiments demonstrate

the capability of the D-Wave quantum annealers to sample the optimal planted

solution of combinatorial optimization problems with up to 5, 627 qubits.

KEYWORDS

quantum annealing (QA), QUBOproblem,MAX-2-SAT, planted solution, time-to-solution,

combinatorial optimization problem, boolean satisfiability (SAT), quadratic unconstrained

binary optimization

1 Introduction

Many important NP-hard optimization problems can be easily expressed in a QUBO

(quadratic unconstrained binary optimization) or an Ising form (Lucas, 2014), given by the

quadratic function

Q(x1, . . . , xn) =

n
∑

i=1

aixi +
∑

i<j

aijxixj (1)

in n ∈ N binary variables. In Equation (1), the linear weights ai ∈ R and the quadratic

couplers aij ∈ R define the problem under investigation and are chosen by the user. The

assignments of the variables xi for i ∈ {1, . . . , n} are unknown, and we seek a configuration

of (x1, . . . , xn) minimizing Equation (1). If xi ∈ {0, 1}, then Equation (1) is called a QUBO

problem, and if xi ∈ {−1,+1}, then it is called an Ising model.
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Since many NP hard problems can be formulated as QUBO

models, it is of interest to efficiently compute the optimal

solution(s) of general QUBO problems. To this end, researchers

have developed a variety of classical approaches (Kirkpatrick et al.,

1983; Boros et al., 2006, 2007) to compute solutions of high

quality that minimize Equation (1). Quantum annealing offers an

experimental route to sample combinatorial problems. Quantum

annealing is a type of analog quantum computation that uses

quantum fluctuations to attempt to arrive at an optimal (or a very

good) minimum of Equation (1) (Kadowaki and Nishimori, 1998;

Das and Chakrabarti, 2008; Morita and Nishimori, 2008; Hauke

et al., 2020). The quantum annealing algorithm has been physically

instantiated in a number of ways, including superconducting flux

qubit hardware that is manufactured by D-Wave Systems, Inc.

The D-Wave quantum annealers have been evaluated for sampling

a large number of different types of problems, typically focusing

on combinatorial optimization problems or Hamiltonian dynamics

(Boixo et al., 2013, 2014, 2016; Lanting et al., 2014; Venturelli

et al., 2015; Harris et al., 2018; King et al., 2021, 2022, 2023;

Tasseff et al., 2022). D-Wave quantum annealing devices offer on

the scale of hundreds to thousands of qubits, but are still subject

to connectivity constraints, control errors, and noise from the

environment (Pearson et al., 2019; Lanting et al., 2020; Nelson et al.,

2021; Zaborniak and de Sousa, 2021; Grant and Humble, 2022;

Pelofske et al., 2023). Tomap a QUBOQ of Equation (1) directly on

the hardware chip of a quantum annealer, its connectivity structure

should be consistent with the connectivity structure of the quantum

device. Specifically, each variable xi is mapped to a distinct qubit qi.

For each non-zero coefficient aij, there should be a coupler (direct

link) between qubits qi and qj. If a direct embedding is not possible,

then a minor embedding of the graph representing the sparsity

structure of the QUBO Q onto the graph defined by the hardware

structure can be used (Choi, 2008, 2011; Könz et al., 2021; Marshall

et al., 2022). However, the number of qubits required in that case

may grow quadratically with the size of Q.

To better assess the capabilities of both classical and

quantum approaches for sampling (approximate) solutions of

combinatorial optimization problems, methods are needed that

generate benchmark problems with (ideally) known solutions.

Two strategies exist to achieve this goal. First, one can generate

problems of the type of Equation (1) with randomly sampled

linear and quadratic weights, and then brute force them. However,

brute forcing is only feasible for problems with a relatively small

number of variables (roughly 30 variables for full brute force

computations). Second, methods have been developed that allow

one to generate QUBO problems with planted solutions, that is,

problems generated to have a solution that is specified a priori.

A detailed overview of such methods is given in Section 1.1.

Importantly, existing methods often have two shortcomings.

Many approaches only ensure that the generated problem has

a minimum at the planted solution, but do not guarantee its

uniqueness. Moreover, for many methods, the sparsity structure of

the generated QUBO cannot be chosen, which means the QUBO

cannot directly be solved on certain hardware devices. Naturally,

since the minimization of Equation (1) is NP-hard, all methods

exploit some form of shortcut or mathematical device to generate

large problems with non-trivial structures and known solutions.

In this contribution, we introduce a new method to generate

QUBO problems of the type of Equation (1) with a single

planted solution. The method is called posiform planting, in

reference to the mechanism we exploit that generates a QUBO in

posiform representation. The posiforms are converted to QUBOs

only at a later stage when the solution has been planted. Two

features of our algorithm are noteworthy. First, it guarantees the

uniqueness of the planted solution. Moreover, the connectivity

structure of the QUBO can, in principle, be chosen freely.

Naturally, the generated QUBOs need to have at least a certain

number of quadratic terms to guarantee the uniqueness of the

planted solution and thus cannot be too sparse, although this

also depends on the solution being planted. In contrast to some

existing solution-planting methods, such as the tile planting or

deceptive cluster loops methods of the Chook toolbox (Perera et al.,

2021), posiform planting generates QUBO problems which include

linear terms.

The adaptation to an arbitrary connectivity structure is

of importance when generating problems that are tailored to,

for instance, the qubit connectivity structure of the D-Wave

quantum annealers. In particular, the physical qubits across

currently existing D-Wave generations use connections determined

by Chimera, Pegasus, or Zephyr graphs (Dattani et al., 2019;

Boothby et al., 2020). Being able to tailor the generated problems

to any arbitrary architecture allows one to generate much

larger benchmark problems compared to the case where the

problems cannot be directly embedded, thus necessitating the

computation of a minor embedding onto the D-Wave QPU

chip structure.

One of the properties of the transverse field driver in

quantum annealing and other approximate quantum optimization

algorithms is that degenerate ground states are not in general

sampled uniformly (Matsuda et al., 2009; Mandrà et al., 2017;

Zhang et al., 2017; Könz, 2019; Könz et al., 2019; Kumar et al.,

2020; Pelofske et al., 2021; Nelson et al., 2022). Posiform planting

guarantees the uniqueness of the planted optimal solution. Thus,

any use cases in which biased sampling of degenerate solutions

needs to be avoided could benefit from posiform planting. Some

use cases in which biased sampling of degenerate solutions

should be avoided include the estimation the ground-state entropy

of a degenerate physical systems, estimating the count of the

total number of solutions in combinatorics or the estimation

of ground state probabilities in industrial applications where

the problem has several solutions by design (Mandrà et al.,

2017).

This article is structured as follows. After a literature review

in Section 1.1, we introduce the idea of posiform planting

in Section 2. We evaluate the QUBO problems generated

by posiform planting on D-Wave devices using both native

connectivity (using the Chimera, Pegasus, and Zephyr hardware

graphs), and arbitrarily connected minor embedded problem

instances (Section 3). The hardware native QUBOs are also

sampled using the classical heuristics simulated annealing and

steepest gradient descent. The article concludes with a discussion

in Section 4. Data and extra figures generated from this

research are publicly available as a Zenodo dataset (Hahn et al.,

2023).
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1.1 Literature review

A variety of contributions in the literature focus on the

generation of QUBO or Ising models of the type of Equation (1)

that can serve as benchmark problems. These methods can be

grouped according to the underlying mechanism they use to

generate problems and the properties they guarantee. Originally,

this property of known planted solutions was introduced

from satisfiability problems (Barthel et al., 2002; Krzakala and

Zdeborová, 2009).

One popular way to generate problems is with the help

of frustrated loops, meaning Ising models of the form Q =
∑M

j=1 Qj, where each Qj only contains a subset of the variables. For

instance, Hen et al. (2015) and King A. D. et al. (2015) generated

frustrated Ising models with tunable hardness, though the authors

explicitly pointed out that they cannot guarantee uniqueness.

Similar methods are the so-called tile-planting (Perera et al., 2020)

and patch-planting for Ising models (Wang et al., 2017). In Pei et al.

(2020), the authors generate weighted MAX-2-SAT instances with

the help of frustrated loops that have known solutions. Notably, the

hardness of their problems can be tuned through a parameter called

the frustration index.

One major drawback of many published planted solution

methods is the fact that they do not guarantee the uniqueness

of the planted solution, meaning that the input configuration

is only guaranteed to be one of a possibly unknown number

of minima. A notable exception is Kowalsky et al. (2022), who

ensure the uniqueness of solution with an approach based on

equation planting. However, the resulting QUBOs have a very

special form as each linear equation is required to contain exactly

three binary variables.

Another route is called equation planting, that is, the generation

of QUBO problems from a set of (linear) equations. In Hen (2019),

the author considers a set of linear equations modulo 2 to pin

down the bitstring to be planted, and then recasts it as an Ising

model. Their method is based on the experimental observation

that although linear equations are easy to solve, they disguise the

solution well for machines when being recast as an optimization

problem. According to the author, equation planting guarantees the

uniqueness of the planted solution. However, tailoring the instances

to a given connectivity structure is not mentioned.

A popular tool for generating binary optimization problems

with planted solutions is the Chook toolbox of Perera et al. (2021).

Chook implements several approaches, such as “tile planting,”

“Wishart planting,” “equation planting,” and “k-local planting.”

However, none of those approaches guarantees uniqueness, and

some of them (such as Wishart planting) are not designed to tailor

to arbitrary connectivity structures. Notably, themethod “deceptive

cluster loops” is tailored to the D-Wave Chimera topology.

The software package dwig contains Python implementations

of several existing planted solution methods, specifically, RAN-

pr (Zdeborova and Krzakala, 2016), RAN-k (King J. et al., 2015),

FL-k (King A. D. et al., 2015), FCL-k (King et al., 2017), weak–

strong cluster network (Denchev et al., 2016), frustrated cluster loops

(Albash and Lidar, 2018), and corrupted biased ferromagnet (Pang

et al., 2021).

There are several studies which have examined the sampling of

MAX 2-SAT combinatorial optimization problems using quantum

annealing, some with an emphasis on generating MAX 2-SAT,

which are challenging for quantum annealing to sample (Crosson

et al., 2014; Santra et al., 2014; Hsu et al., 2018; Mehta et al., 2021,

2022; Mirkarimi et al., 2023).

The above methods have been used in a number of studies on

sampling characteristics of quantum annealers (King J. et al., 2015;

Zhang et al., 2017; Barash et al., 2019; Marshall et al., 2019).

2 Methods

This section introduces a novel method to generate QUBO

models of the type of Equation (1) for a customized connectivity

structure and with a guarantee of uniqueness for the planted

solution. The method is based on the generation of a posiform

representation of Equation (1), which is introduced in Section 2.1.

The construction of the posiform and the guarantee of uniqueness

are based on the fact that testing if a posiform attains the value

zero is equivalent to a 2-SAT problem, which can be solved

in polynomial time (Section 2.2). The complete algorithm is

summarized in Section 2.3. A note on how the generation can

naturally be adapted to a given connectivity structure is discussed

in Section 2.4.

2.1 Conversion from QUBO to posiform

A posiform is a quadratic function with positive coefficients

on an extended set of variables Z = {x1, . . . , xn} ∪ {x1, . . . , xn},

meaning that a posiform can contain either a variable xi ∈ {0, 1} or

its complement xi = 1 − xi, where i ∈ {1, . . . , n}. A posiform can

be expressed as

P(x1, . . . , xn) = P(x1, . . . , xn, x1, . . . , xn) =
∑

z∈Z

bzz +
∑

z,z′∈Z

bzz′zz
′,

(2)

where each z ∈ Z and z′ ∈ Z stand for one of the variables xi
or its complement xi, i ∈ {1, . . . , n} and the coefficients bz and bzz′

are non-negative.

Any QUBO of the form of Equation (1) can be written as a

posiform. To this end, consider first the linear terms. If ai > 0 for

some i ∈ {1, . . . , n} in Equation (1), it remains unchanged in the

posiform. If ai < 0, we rewrite aixi = ai(1 − xi) = ai + (−ai)xi.

The single summand ai is constant and can be omitted as it does

not impact the location of the minimum of Equation (1). The term

(−ai)xi complies with the posiform requirement as −ai > 0 given

ai < 0.

Similarly, any quadratic term aijxixj with aij > 0 in

Equation (1) remains unchanged in the posiform. If aijxixj with

aij < 0 in Equation (1), we rewrite it as either aij(1− xi)xj = aij +

(−aij)xj+(−aij)xixj or aijxi(1−xj) = aij+(−aij)xi+(−aij)xixj. Both

options are valid choices and none is preferable over the other. As

can be seen, apart from the constant term aij, which can be omitted,

the remaining summands have positive coefficients −aij > 0 given

aij < 0.

As a simple example, consider the following QUBO in three

variables, Q(x1, x2, x3) = 2x1 − x2 + x1x2 − 2x2x3. In posiform
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representation, it can be written as P(x1, x2, x3) = 2x1+ x2+ 2x3+

x1x2 + 2x2x3, where we omitted the offset −3 that results from the

conversion.

2.2 Connection to 2-SAT problems

The idea of posiform planting is to generate posiforms that

attain a value zero at a unique known (planted) combination

of values of the variables. Assume a posiform of the type of

Equation (2) is given. Clearly the minimum of Equation (2) is

bounded below by zero as all coefficients and variables are non-

negative. Moreover, we can test if there is a configuration x =

(x1, . . . , xn) that achieves P(x1, . . . , xn) = 0 in linear time.

This can be seen as follows. If P(x1, . . . , xn) = 0, then all

summands in Equation (2) must be zero. Therefore, we aim to

find x = (x1, . . . , xn) such that z = 0 for all linear terms, and

zz′ = 0 for all quadratic terms in Equation (2), where z, z′ ∈ Z .

For the quadratic terms, zz′ = 0 is equivalent to z ∨ z′ = True.

We thus rewrite all linear and quadratic terms in Equation (2)

without their coefficients into a 2-SAT problem, which can be

solved in linear time (Krom, 1967; Even et al., 1976; Aspvall et al.,

1979). Any solution to the constructed 2-SAT problem will satisfy

P(x1, . . . , xn) = 0 and vice versa. Importantly, if the 2-SAT problem

has a unique solution, so does the corresponding posiform.

2.3 QUBO generation with given
connectivity and planted unique solution

We are given a bitstring x∗ = (x∗1 , . . . , x
∗
n), denoting the

solution to be planted. The first step is to generate a 2-SAT problem

having x∗ as its unique solution. We aim to construct a 2-SAT

problem having x∗ as its unique solution with the help of an

exclusion argument, meaning that we add clauses to the 2-SAT

problem that exclude any bitstring other than x∗. This is achieved

as follows.

We select two random indices i, j ∈ {1, . . . , n} with i 6= j and

consider the two bits x∗i and x∗j in the solution to be planted. We

then randomly select one of the three possible binary tuples (x̂i, x̂j)

satisfying (x̂i, x̂j) 6= (x∗i , x
∗
j ). Depending on the choice of (x̂i, x̂j),

we add a clause to the current 2-SAT problem that excludes the

possibility of (xi, xj) = (x̂i, x̂j) in an optimal solution, precisely, the

clause

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (0, 0), (3)

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (0, 1),

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (1, 0),

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (1, 1).

After each added clause, we attempt to solve the generated 2-

SAT problem at its current stage. By construction, the choice of the

clauses added to the 2-SAT problem will never exclude the planted

bitstring x∗ from the solution set of the generated 2-SAT problem.

We continue in this fashion until we arrive at a 2-SAT problem

which has x∗ as its unique solution. Our procedure only requires

polynomial effort. Indeed, it is known that the phase transition in

2-SAT problems occurs for n variables at O(n) clauses (Gent and

Walsh, 1994; Coja-Oghlan and Panagiotou, 2016), thus we expect

to only add a linear number of clauses until x∗ remains as the

unique solution of the 2-SAT problem. Moreover, solving a 2-SAT

problem can be done in linear time (Krom, 1967; Even et al., 1976;

Aspvall et al., 1979). Note that, to save computational effort, it is not

necessary to solve the 2-SAT problem being generated each time

a new clause is added. Instead, it suffices to solve it after adding

a certain batch size B ∈ N of new clauses. In the experiments of

Section 3, we use theMiniSat solver of Eén and Sörensson (2023).

Once a 2-SAT problem is constructed with x∗ as its unique

solution, we construct a posiform from it. Thus, in the second step,

we convert each clause (z ∨ z′) = ¬(z ∧ z′) into the quadratic term

bzz′z z′, where z, z′ ∈ Z . The negation is necessary here as each

clause (z ∨ z′), that is, True (value 1) in the 2-SAT problem needs

to be zero in the posiform (see Section 2.2) as it is a function to be

minimized. Importantly, the coefficient bzz′ > 0 of the posiform

is actually freely choosable (as long as it is positive). Substituting

any complement xi as 1 − xi and multiplying out the expression

yields a QUBO with (typically) both positive and negative QUBO

coefficients.

As an example, suppose we aim to plant the solution x∗ =

(1, 0, 1) in n = 3 variables. For the random indices (i, j) = (2, 3),

we choose (x̂2, x̂3) = (1, 1), thus satisfying (x̂2, x̂3) 6= (x∗2 , x
∗
3).

According to Equation (6), we add the clause (x2∨x3) to the 2-SAT

problem being generated. By continuing in this fashion for other

randomly chosen variable pairs in x∗, we might obtain the 2-SAT

instance

(x2 ∨ x3) ∧(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3)

∧(x1 ∨ x3), (4)

which can easily be checked to have the unique solution x∗.

Rewriting Equation (4) into a posiform results in P = x2x3+x1x2+

x1x3+x1x2+x2x3+x1x3. Note that the coefficients of P (set here to

1) can be freely chosen as long as they are positive. Multiplying out

the posiform leads to the QUBO Q(x1, x2, x3) = x2 + x3 − 2x1x3,

which can easily be verified to have a unique minimum at x∗.

2.4 Adaptation to connectivity structures

Apart from the guarantee of uniqueness, the algorithm of

Section 2.3 allows one to adapt the generated QUBOs to a

given connectivity structure. This is possible since there are no

restrictions on the choice of tuples (x∗i , x
∗
j ) with i, j ∈ {1, . . . , n}

that are being used to narrow down the solution space to x∗ in the

2-SAT problem.

To be precise, instead of sampling i, j ∈ {1, . . . , n}, it is valid

to sample (i, j) ∈ E for some edge set E ⊆ {1, . . . , n} × {1, . . . , n}.

When converting the generated 2-SAT problem to a posiform, the

clauses become the quadratic terms, and when multiplying out the

posiform into a QUBO, no further couplers are being introduced.

Therefore, the edges in E will translate 1-to-1 to the quadratic

couplers in the posiform and in the QUBO. For instance, E can

be chosen as the fixed connectivity graph of one of the D-Wave

annealer generations. Naturally, if E is too sparse, it might not be

guaranteed anymore that enough clauses can be sampled to narrow
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TABLE 1 D-Wave quantum annealing processor summary.

D-wave QPU chip ID Topology Available Available Annealing time

name qubits couplers (min, max) microseconds

DW_2000Q_6 Chimera C16 2,041 5,974 (1, 2,000)

Advantage_system4.1 Pegasus P16 5,627 40,279 (0.5, 2,000)

Advantage_system6.1 Pegasus P16 5,616 40,135 (0.5, 2,000)

Advantage2_prototype1.1 Zephyr Z4 563 4,790 (1, 2,000)

down x∗ as the unique solution; however, this problem was not

encountered for any of the D-Wave hardware graphs.

3 Results

In this section, we investigate the performance of the posiform

planting methodology introduced in Section 2. The section starts

with an overview of the D-Wave devices and their parameters in

Section 3.1. In Section 3.2, we use posiform planting to generate

and solve QUBO instances on four D-Wave machines that fit their

hardware natively, thus allowing for very large instance sizes. The

hardness of the generated instances is assessed by computing the

ground state probability (GSP) and the time-to-solution (TTS)

metrics. In Section 3.3, we investigate instances with arbitrary qubit

connectivity, thus requiring a minor embedding of the problem

QUBO onto the D-Wave hardware.

3.1 Parameter settings

Table 1 shows the four generations of the D-Wave quantum

annealer used in the experiments of this section. Apart from the

Chip ID and the name of the D-Wave topology, Table 1 displays the

number of available qubits and couplers and the annealing times

supported by the device.

The posiform planting method requires solving a 2-SAT

problem repeatedly during the planting process to verify the

uniqueness of the planted solution (see Section 2.3). For

efficiency reasons, we add an initial batch of B clauses to

the 2-SAT problem before starting to check for uniqueness.

In Section 3.2, we employ the choice B = 2, 000 for the

Chimera hardware graph of DW_2000Q_6, B = 30, 000

for the Pegasus hardware graph of Advantage_system4.1

and Advantage_system6.1, and B = 1, 000 for the

Zephyr hardware graph of Advantage2_prototype1.1. In

Section 3.3, we employ B = 1 to generate the 52 variable all-to-

all graphs. These choices of B are arbitrary, they do not influence

the uniqueness of the solution but the runtime of the generation

process, and they were selected to correspond to the number of

variables in the hardware graph. Similarly, the posiform coefficients

can be chosen arbitrarily in posiform planting. We select the

posiform coefficients from the set {1, 2} for both the hardware

native QUBOs and the minor embedded QUBOs, which depending

on the hardware graph can result in highly variable QUBO

coefficients after converting the posiform to a QUBO. However, the

QUBOmodels can still be mapped onto the D-Wave hardware due

to the auto coefficient scaling and the maximum energy scale that is

programmable onto the chip. Choosing the posiform coefficients as

integers also ensures that the QUBO coefficients will be integers.

Visualizations of the hardware native QUBO coefficients can be

found in Appendix 1.

The hardware native QUBOs in Section 3.2 are sampled using

annealing times of 0.5 µs for the Advantage_system6.1

and Advantage_system4.1, and in the range {1, 2, . . . , 10}

and {20, 30, . . . , 1, 990, 2, 000} µs for all four D-Wave quantum

annealers. Each hardware native QUBO is sampled using two D-

Wave device calls, each having 400 anneal-readout cycles, resulting

in a total of 800 measurements made per annealing time and per

hardware native QUBO.

3.2 Results for hardware native QUBOs

We generate 100 unique QUBO problems tailored to the four

D-Wave quantum annealers outlined in Table 1. Those are being

solved as a function of the anneal time, using the D-Wave settings

described in Section 3.1. Since the unique solution and thus the

ground state of each QUBO is known, computing the ground state

success probability (GSP) is straightforward.

Figure 1 shows the GSP for the hardware native QUBOs

measured on the four D-Wave devices. Each subplot shows the

results of the 100 randomly generated QUBOs on each device, with

one line per QUBO visualizing probability of reaching the ground

state (among the 800 anneals) as a function of the annealing time.

Several observations are noteworthy. Since the GSP is mostly

non-zero, the D-Wave quantum annealers are able to sample

the optimal solution during some anneal. This even holds true

for QUBO instances with up to 5, 627 variables in the case of

Advantage_system4.1. Although it is difficult to see in the

plots, at small annealing times, in particular, 500 ns and 1 µs, the

two Pegasus chip devices fail to sample the optimal solution across

all 100 problem instances.

We observe an increasing trend in the measured GSP as

a function of the annealing time, but with diminishing returns

as annealing time increases. The results show a difference in

behavior between the four D-Wave devices. In particular, the

563 qubit system Advantage2_prototype1.1 samples the

optimal solution at a much higher rate than the other devices. This

finding can be attributed to the fact that the number of variables

on this device is less than on the other devices, while also being

the newest generation of the D-Wave annealer with reported lower

error rates than the previous generations.
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FIGURE 1

Ground state success probability (GSP) for hardware native QUBOs computed on the devices Advantage2_prototype1.1 (top left), DW_2000Q_6
(top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom right). Each subplot corresponds to one D-Wave annealer

and contains 100 separate lines which are showing GSP results for the 100 unique random hardware native posiform planted QUBOs. Each line

shows the probability of reaching the ground state (among the 800 anneals) as a function of the annealing time. The dashed black line denotes the

mean GSP computed at each evaluated annealing time.

We observe that the results for DW_2000Q_6 in Figure 1

show periodic variations of the measured GSP. This is because

the annealing time measurements in increments of 100 µs were

made several weeks apart from the measurements made for all

other annealing times in increments of 10 µs, and previous

studies (Pelofske et al., 2023) have shown that there are long-

term variations (in solution quality) of the computations carried

out on current D-Wave quantum annealing devices. Therefore, the

variations that have a periodicity of 100µs are due to variance of the

noise profile of the device, rather than variations that are a function

of the annealing time.

Next, we examine the time-to-solution (TTS) metric for the

100 QUBO instances that were generated for each of the four D-

Wave annealers. TTS is an estimate of the time it takes to reach an

optimum solution with a 99% confidence. It is defined as

TTS0.99 =
QPU-access-time

A
·
log(1− 0.99)

log(1− p)
, (5)

where QPU-access-time (in seconds) is the real compute

time used on the D-Wave backend (including the hardware

programming time, anneal-readout cycle, and anneal times),

A is the number of anneals and p ∈ (0, 1) is the success

probability observed among the A anneals, that is, the proportion

of anneals that found the ground state. The QPU-access-

time also includes all communication time with the device

on top of the annealing time used in the computation.

When p = 1, we set TTS0.99 = QPU-access-time/A.

When p = 0, TTS0.99 is undefined, and therefore is

not computed.

Figure 2 plots the TTS (computed with Equation 5) to reach

the optimal planted solution for the set of 100 randomly generated

hardware native QUBOs for each of the four D-Wave annealers.

We observe that for Advantage2_prototype1.1, the lowest

TTS is achieved for short annealing times, whereas for the other

three generations of the D-Wave annealer, both low and high

annealing times incur higher TTS values, with the lowest TTS being

achieved in-between.

In addition to solving the 100 native hardware QUBOs

sampled on each of the four D-Wave devices, we also investigate

how successfully classical heuristics can solve them. Figure 3

shows histograms for the achieved GSP when sampling the

same set of hardware native QUBO problems using the classical

heuristics Simulated Annealing (SA), implemented in the function

neal in the D-Wave SDK (D-Wave Systems, 2023b), and

greedy Steepest Descent (analogous to steepest gradient descent),

implemented in the function greedy in the D-Wave SDK (D-Wave

Systems, 2023a). Figure 3 demonstrates that the SA algorithm,

in particular, is able to find the optimal solution of the

QUBOs generated with posiform planting with very high success

probability.
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FIGURE 2

TTS as a function of the annealing time on the 100 hardware QUBO problems for each of the four D-Wave quantum annealers, in particular,

Advantage2_prototype1.1 (top left), DW_2000Q_6 (top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom

right). One line per QUBO instance. Log scale on both axes.

3.3 Results for minor embedded QUBOs

Posiform planting as introduced in Section 2.3 generates new

clauses to be added to the 2-SAT instance without any constraints

on the indices. Although clauses are arbitrary, the generated

QUBOs are usually not fully connected. Using generated QUBOs

with all-to-all connectivity require a minor embedding onto the D-

Wave quantum hardware before being solved, since the D-Wave

hardware graphs are (relatively) sparse. Despite the challenges

associated with minor-embedded QUBO instances, which require

chained qubits and pose issues such as selecting appropriate chain

strengths, utilizing such QUBOs enables a direct comparison of

D-Wave devices on the same set of input problems. A diagram

showing these complete minor embeddings on the four hardware

graphs is shown in Figure A4 in the Appendix.

We generate five QUBOs with varying density with the

aim to allow for a range of GSP rates among those planted

QUBOs. Each QUBO instance has 52 logical variables, which

is the largest problem size with an all-to-all connectivity that

can be minor embedded on the Advantage2_prototype1.1

device. Since Advantage2_prototype1.1 has the smallest

such embedding, the same QUBO instances are guaranteed to be

executed on all four D-Wave quantum annealers, thereby allowing

for a fair comparison. Note that these 52 variable QUBOs are

not fully connected, but they are arbitrarily connected in that the

generator can select arbitrary edges to include.

Figure 4 shows ground state success probability (GSP)

measurements as a function of the chain strength, computed for

the five fixed QUBO instances on the four D-Wave annealers

of Table 1. Each subplot additionally showcases the behavior

for different annealing times. The figure highlights several

observations. First, the DW_2000Q_6 device seems to achieve

a considerably lower GSP than the other devices, followed by

Advantage_system4.1 and Advantage_system6.1,

while Advantage2_prototype1.1 achieves highest GSP

across the instances. Second, the anneal times do influence the

solution quality throughout all instances, with longer annealing

times usually resulting in an increased solution quality. Third,

although the 5 QUBO instances were generated with the same

parameters, there seems to be a considerable range in difficulty,

with the instances in the left columns being harder to solve than

the ones in the rightmost columns.

4 Discussion

This study proposes a new method, called posiform planting,

to generate QUBOs with a unique planted solution. Apart from

guaranteeing the uniqueness, posiform planting can be adapted to

any arbitrary connectivity structure, meaning that it allows one

to generate tailored QUBO instances whose quadratic couplers

fit, for instance, the hardware connectivity of modern quantum

annealers. Therefore, posiform planting allows one to efficiently

generate QUBO instances with thousands of variables and a unique

planted solution. Posiform planting also generates QUBOs that

have linear terms, a property that not all of existing planted solution

methods have.

Frontiers inComputer Science 07 frontiersin.org64

https://doi.org/10.3389/fcomp.2023.1275948
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hahn et al. 10.3389/fcomp.2023.1275948

FIGURE 3

Histograms of the GSP for the same hardware native posiform planted QUBOs used in Figure 1 sampled using classical heuristics. Simulated

annealing and steepest descent heuristics applied to the QUBOs generated for the hardware graphs of DW_2000Q_6 (top left),

Advantage2_prototype1.1 (top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom right). The side-by-side

histogram bars correspond to each bin, so the sampling rates for simulated annealing are extremely high (usually at a proportion of 1).

FIGURE 4

GSP measurements as a function of the chain strength for the five minor-embedded QUBO instances. The five columns correspond to the five

QUBO instances being solved, and the four rows correspond to the four D-Wave quantum annealers (DW_2000Q_6, Advantage_system4.1,
Advantage_system6.1, and Advantage2_prototype1.1 from top to bottom). The annealing times are varied (see legends).
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Interestingly, our construction shows that, for the generation

of a QUBO with a planted solution, the coefficients in a posiform

representation do not matter and can be freely chosen (as long as

they are positive as required by definition of a posiform). Since

the choice of the posiform coefficients does not impact the planted

solution or its uniqueness, posiform planted allows for an efficient

generation of a set of QUBO instances having the same planted

solution. Posiform planting also allows for an arbitrary bitstring to

be chosen as the planted solution.

Posiform planting can be used to verify whether good classical

heuristic algorithms, such as simulated annealing, are able to

find the single optimal solution for extremely large QUBOs. This

not only applies to classical algorithms but also other emerging

computing technologies such as spiking neuromorphic computing

(Alom et al., 2017; Mniszewski, 2019) or the hybrid quantum-

classical gate model algorithm QAOA (Farhi et al., 2014; Hadfield

et al., 2019). We experimentally demonstrated that four D-Wave

quantum annealers, with a total of three different classes of

hardware graphs, can sample the unique planted solution for

hardware native QUBO problems that use the entire hardware

chip. Since we scaled our instances to the maximal size that can

be embedded on D-Wave, the current hardware limitations (of

maximally 5,627 qubits on D-Wave Advantage) somewhat limit us

from scaling our instances to sizes where D-Wave starts to struggle.

Posiform planting generates QUBOs of a special form to

guarantee the uniqueness of the planted solution. To be precise,

all QUBOs generated by posiform planting have the property that

when converted to a posiform representation, they are solvable

(meaning they attain a value of zero). However, not all QUBOs

have this property. Nevertheless, posiform planting is complete

in the sense that it can generate any QUBO whose posiform

representation is solvable.

The study leaves scope for further avenues of research. Most

importantly, it remains to investigate if posiform planting allows

one to tune the difficulty of the QUBO problems, for instance,

via the choice of the posiform coefficients (which can be tuned

without constraints other than being positive). Another topic for

future research is to be able to vary the ground state degeneracy

of posiform planted QUBOs, if there are specific use cases where

obtaining a QUBO with a specific number of ground states would

be advantageous.

Finally, posiform planting can enhance an existing planted

solution method, denoted asM, to guarantee the uniqueness of the

planted solution. For instance, given the desired solution x∗ to be

planted, we first use M to produce a QUBO Q1 with the planted

solution x∗, which may be non-unique. Subsequently, leveraging

posiform planting, we generate a QUBO Q2 that ensures x∗ is

a unique optimal solution. By forming the linear combination

Qnew = α1Q1 + α2Q2 with α1,α2 > 0, we obtain a problem

with a unique solution x∗, while potentially preserving any desired

properties ofM.
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Individual subject evaluated
di�culty of adjustable mazes
generated using quantum
annealing

Yuto Ishikawa1*, Takuma Yoshihara2*, Keita Okamura3* and

Masayuki Ohzeki4,5,6

1Department of Computer Science, Nagoya University, Nagoya, Japan, 2Department of Engineering,

Tokyo Denki University, Adachi, Japan, 3Department of Physics and Astronomy, Tokyo University of

Science, Noda, Japan, 4Graduate School of Information Sciences, Tohoku University, Sendai, Japan,
5Department of Physics, Tokyo Institute of Technology, Meguro, Japan, 6Sigma-i Co., Ltd., Shinagawa,

Japan

In this study, the maze generation using quantum annealing is proposed. We

reformulate a standard algorithm to generate a maze into a specific form of a

quadratic unconstrained binary optimization problem suitable for the input of the

quantum annealer. To generate more di�culty mazes, we introduce an additional

cost function Qupdate to increase the di�culty. The di�culty of the mazes was

evaluated by the time to solve the maze of 12 human subjects. To check the

e�ciency of our scheme to create themaze, we investigated the time-to-solution

of a quantum processing unit, classical computer, and hybrid solver. The results

show thatQupdate generates di�cultmazes tailored to the individual. Furthermore,

it show that the quantum processing unit is more e�cient at generating mazes

than other solvers. Finally, we also present applications how our results could be

used in the future.

KEYWORDS

quantum annealing, combinatorial optimization,maze generation, bar-tipping algorithm,

time-to-solution

1 Introduction

A combinatorial optimization problem is minimizing or maximizing their cost or

objective function among many variables that take discrete values. In general, it takes

time to solve the combinatorial optimization problem. To deal with many combinatorial

optimization problems, we utilize generic solvers to solve them efficiently. Quantum

annealing (QA) is one of the generic solvers for solving combinatorial optimization problems

(Kadowaki and Nishimori, 1998) using the quantum tunneling effect. Quantum annealing

is a computational technique to search for good solutions to combinatorial optimization

problems by expressing the objective function and constraint time requirements of the

combinatorial optimization problem by quantum annealing in terms of the energy function

of the Ising model or its equivalent QUBO (Quadratic Unconstrained Binary Optimization)

and manipulating the Ising model and QUBO to search for low energy states (Shu Tanaka

and Seki, 2022). Various applications of QA are proposed in traffic flow optimization

(Neukart et al., 2017; Hussain et al., 2020; Inoue et al., 2021), finance (Rosenberg et al.,

2016; Orús et al., 2019; Venturelli and Kondratyev, 2019), logistics (Feld et al., 2019;

Ding et al., 2021), manufacturing (Venturelli et al., 2016; Haba et al., 2022; Yonaga et al.,

2022), preprocessing in material experiments (Tanaka et al., 2023), marketing (Nishimura

et al., 2019), steel manufacturing (Yonaga et al., 2022), and decoding problems (Ide et al.,

2020; Arai et al., 2021a). The model-based Bayesian optimization is also proposed in

the literature (Koshikawa et al., 2021). A comparative study of quantum annealer was
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performed for benchmark tests to solve optimization problems

(Oshiyama and Ohzeki, 2022). The quantum effect on the case

withmultiple optimal solutions has also been discussed (Yamamoto

et al., 2020; Maruyama et al., 2021). As the environmental effect

cannot be avoided, the quantum annealer is sometimes regarded

as a simulator for quantum many-body dynamics (Bando et al.,

2020; Bando and Nishimori, 2021; King et al., 2022). Furthermore,

applications of quantum annealing as an optimization algorithm

in machine learning have also been reported (Neven et al., 2012;

Amin et al., 2018; Khoshaman et al., 2018; Kumar et al., 2018;

OḾalley et al., 2018; Arai et al., 2021b; Sato et al., 2021; Urushibata

et al., 2022; Goto and Ohzeki, 2023; Hasegawa et al., 2023). In this

sense, developing the power of quantum annealing by considering

hybrid use with various techniques is important, as mentioned in

several previous studies (Hirama and Ohzeki, 2023; Takabayashi

and Ohzeki, 2023).

In this study, we propose the generation of the maze by

quantum annealing. In the application of quantum annealing

to mazes, algorithms for finding the shortest path through a

maze have been studied (Pakin, 2017). Automatic map generation

is an indispensable technique for game production, including

rogue-like games. Maze generation has been used to construct

random dungeons in rogue-like games by assembling mazes

(mok Bae et al., 2015). Therefore, considering maze generation

as one of the rudiments of this technology, we studied maze

generation using a quantum annealing machine. Several algorithms

for the generation of the maze have been proposed. In this

study, we focused on maze-generating algorithms. One can

take the bar-tipping algorithm (Alg, 2023a), the wall-extending

algorithm (Alg, 2023b), and the hunt-and-kill algorithm (Alg,

2023c).

The bar-tipping algorithm is an algorithm that generates a

maze by extending evenly spaced bars one by one. For the sake

of explanation, we will explain the terminology here. A path

represents an empty traversable part of the maze and a bar a filled

non-traversable part. Figure 1 shows where the outer wall, bars,

and coordinate (i, j) are in a 3 × 3 maze. The maze is surrounded

by an outer wall, as shown in Figure 1. It requires the following

three constraints. First, each bar can be extended by one cell only

in one direction. Second, the first column can be extended in

four directions: up, down, left, and right, while the second and

subsequent columns can be extended only in three directions: up,

down, and right. Third, adjacent bars cannot overlap each other.

We explain the detailed process of the bar-tipping algorithm using

the 3 × 3 size maze. In this study, a maze generated by extending

the N × N bars is called N × N size maze. First, standing bars are

placed in every two cells in a field surrounded by an outer wall, as

shown in Figure 1. Second, Figure 2 shows each step of bar-tipping

algorithm. Figure 2A shows the first column of bars extended.

The bars in the first column are randomly extended in only one

direction with no overlaps, as shown in Figure 2A. The bars can

be extended in four directions (up, down, right, and left) at this

time. Figure 2B shows the second column of bars being extended.

Third, the bars in the second column are randomly extended in

one direction without overlap, as shown in Figure 2B. The bars can

be extended in three directions (up, down, and right) at this time.

Figure 2C shows the state in which the bars after the second column

are extended. Fourth, the bars in subsequent columns are randomly

FIGURE 1

Positions where outer wall, bars, and coordinate (i, j) are in 3× 3

maze.

extended in one direction, likewise the bars in the second column,

as shown in Figure 2. Figure 2D shows the complete maze in its

finished state. Following the process, we can generate a maze, as

shown in Figure 2D.

If multiple maze solutions are possible, the maze solution is not

unique, simplifying the time and difficulty of reaching the maze

goal. These constraints must be followed for the reasons described

below. The first constraint prevents a maze from generating a

maze with multiple maze solutions and closed circuits. Figure 3A

shows a maze state that violates the first constraint. The step

violating the first constraint because one bar in the upper right

corner is extended in two directions, as shown Figure 3A. The

second constraint prevents generating a maze from a maze with

closed circuits and multiple maze solutions. Figure 3B shows a

state that violates the second constraint. The second constraint

is violated, it has a closed circuit and multiple maze solutions,

as shown in Figure 3B. The third constraint prevents maze

generation from a maze with multiple maze solutions. Figure 3C

shows a state that violates the third constraint. The bars overlap

in the upper right corner, making it the third constraint as

Figure 3C.

Next, we describe the wall-extending algorithm. It is an

algorithm that generates a maze by extending walls. Figure 4 shows

the extension starting coordinates of the wall-extending algorithm.

Figure 5A shows the initial state of the wall-extending algorithm.

First, as an initial condition, the outer perimeter of the maze is

assumed to be the outer wall, and the rest of the maze is assumed to

be the path, as shown in Figure 5A. Coordinate system is different

from the bar-tipping algorithm, and all cells are labeled coordinates.

As shown in Figure 4, the coordinates where both x and y are even

and not walls are listed as starting coordinates for wall extending.

The following process is repeated until all starting coordinates
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FIGURE 2

Step of bar-tipping algorithm. (A) Step1: bars in first column are extended. (B) Step2: bars in second column are extended. (C) Step3: bars in

subsequent column are extended. (D) Step4: a complete maze through these steps.

FIGURE 3

Mazes violated the constraints. (A) A maze violate the first constraint. (B) A maze violate the second constraint. (C) A maze violated the third

constraint.

change to walls, as shown in Figure 5C. The coordinates were

randomly chosen from the non-wall extension start coordinates.

The next extending direction is randomly determined from which

the adjacent cell is a path. Figure 5B shows how the path is

extended. The extension will be repeated while two cells ahead

of the extending direction to be extended are a path, as shown

in Figure 5B. Figure 5C shows all starting coordinates changed to

walls. These processes are repeated until all the starting coordinates
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FIGURE 4

Red cells represent options of starting coordinates for the

wall-extending algorithm.

change to walls, as shown in Figure 5C. Figure 5D shows a maze

created by wall-extending. Following the process, we can generate

a maze, as shown in Figure 5D.

As a third, the hunt-and-kill algorithm is explained below.

It is an algorithm that generates a maze by extending paths.

Figure 6 shows the extension starting coordinates of the hunt-and-

kill algorithm. Figure 7A shows the initial state of the hunt-and-kill

algorithm. The entire surface is initially walled off, as shown in

Figure 7A. Coordinates, where both x and y are odd, are listed as

starting coordinates for path extension, as shown in Figure 6. As

with the wall-extending algorithm, all cells are set to coordinates.

Figure 7B shows the state in which the path is extended. A

coordinate is chosen randomly from the starting coordinates, and

the path is extended from there, as shown in Figure 7B. Figure 7C

shows the coordinate selection and re-extension after the path can

no longer be extended. If the path can no longer be extended,

a coordinate is randomly selected from the starting coordinates,

which are already paths, and extension starts again from it, as

shown in Figure 7C. This process is repeated until all the starting

coordinates turn into paths to generate the maze. Figure 7D shows

the complete maze with the hunt-and-kill algorithm. Following the

process, we can generate a maze, as shown in Figure 7D.

Of the three maze generation algorithms mentioned above, the

bar-tipping algorithm is relevant to the combinatorial optimization

problem. In addition, unlike other maze generation algorithms, the

bar-tipping algorithm is easy to apply because it only requires the

consideration of adjacent elements. Thus, we have chosen to deal

with this algorithm. Other maze generation algorithms could be

generalized by reformulating them as combinatorial optimization

problems. The wall-extending and hunt-and-kill algorithms will be

implemented in future studies, considering the following factors.

The former algorithm introduces the rule that adjacent walls

are extended and so are their walls. The number of connected

components will be computed for the latter, and the result will be

included in the optimization.

Using the bar-tipping algorithm, we reformulated it to

solve a combinatorial optimization problem that generates a

maze with a longer solving time and optimizes it using

quantum annealing. Quantum annealing (DW_2000Q_6 from

D-Wave), classical computing (simulated annealing, simulated

quantum annealing, and algorithmic solution of the bar-tipping

algorithm), and hybrid computing were compared with each

other according to the generation time of mazes, and their

performance was evaluated. The solver used in this experiment is

as follows: DW_2000Q_6 from D-Wave, simulated annealer called

SASampler and simulated quantum annealer called SQASampler

from OpenJij (Ope, 2023), D-Wave’s quantum-classical hybrid

solver called hybrid_binary_quadratic_model_version2 (BQM),

and classical computer [MacBook Pro(14-inch, 2021), OS: macOS

Monterey Version 12.5, Chip: Apple M1 Pro, Memory: 16

GB]. This comparison showed that quantum annealing was

faster. This may be because the direction of the bars is

determined at once using quantum annealing, which is several

times faster than the classical algorithm. We do not use an

exact solver to solve the combinatorial optimization problem.

We expect some diversity in the optimal solution and not

only focus on the optimal solution in maze generation. Thus,

we compare three solvers, which generate various optimal

solutions.

In addition, we generate mazes that reflect individual

characteristics, whereas existing maze generation algorithms

rely on randomness and fail to incorporate other factors.

In this case, we incorporated the maze solution time as

one of the other factors to solve the maze. The maze

solving time was defined as the time (in seconds) from

the start of solving the maze to the end of solving the

maze.

The study is organized as follows. In the next Section, we

explain the methods of our experiments. In Section 3, we describe

the results of our experiments. In Section 4, we summarize this

study.

2 Methods

2.1 Cost function

To generate the maze by quantum annealer, we need to

set the cost function in the quantum annealer. One of the

important features of the generation of the maze is diversity.

In this sense, the optimal solution is not always unique. Since

it is sufficient to obtain a structure consistent with a maze, the

cost function is mainly derived from the necessary constraints

of a maze, as explained below. Three constraints describe the

basis of the algorithm of the bar-tipping algorithm. The cost

function will be converted to a QUBO matrix to use the

quantum annealer. To convert the cost function to a QUBO,

the cost function must be written in a quadratic form. Using

the penalty method, we can convert various constraints written
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FIGURE 5

(A) Initial state for wall-extending algorithm. (B) Step 1 for wall-extending algorithm. (C) Step 2 for wall-extending algorithm. (D) Maze generated

using wall-extending algorithm.

in a linear form into a quadratic function. The penalty method

is a method to rewrite the equality constant as a quadratic

function. For example, the penalty method can rewrite an equation

constant x = 1 to (x − 1)2. Thus, we construct the cost

function for generating the maze using the bar-tipping algorithm

below.

The constraints of the bar-tipping algorithm correlate with each

term in the cost function as described below. The first constraint

of the bar-tipping algorithm is that the bars can be extended

in only one direction. It prevents making closed circuits. The

second constraint of the bar-tipping algorithm is that the bars

of the first column be extended randomly in four directions (up,

right, down, and left), and the second and subsequent columns

can be extended randomly in three directions (up, right, and

down). It also prevents the creation of closed circuits. The third

constraint of the bar-tipping algorithm is that adjacent bars must

not overlap. Following the constraint in the bar-tipping algorithm,

we can generate a maze with only one path from the start to the

goal.

The cost function consists of three terms

to reproduce the bar-tipping algorithm, according to

the three constraints, and determine the start and

goal.

E({xi,j,d,Xm,n}) =
∑

i,i′

∑

j,j′

∑

d,d′

Q(i,j,d),(i′ ,j′ ,d′)xi,j,dxi′ ,j′ ,d′

+λ1

∑

i

∑

j

(

∑

d

xi,j,d − 1

)2

+λ2

(

∑

m

∑

n

Xm,n − 2

)2

,

(1)

where xi,j,d denotes whether the bar in i-th row, j-th column

extended in direction d (up : 0, right : 1, down : 2, left : 3). When

the bar in coordinate (i, j) is extended in direction, xi,j,d takes 1,

otherwise takes 0. Due to the second constraint of the bar-tipping

algorithm, the bars after the second column cannot be extended

on the left side; only the first column has (d = 3). Furthermore,

Q(i,j,d)(i′ ,j′ ,d′) in Equation (1) depends on i, j, d, i′, j′, and d′ and is
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FIGURE 6

Red cells represent options of starting coordinates for the

hunt-and-kill algorithm.

expressed as follows

Q(i,j,d),(i′ ,j′ ,d′) =











1 (i = i′ − 1, j = j′, d = 2, d′ = 0)

1 (i = i′ + 1, j = j′, d = 0, d′ = 2)

0 otherwise.

(2)

The coefficients of λ1 and λ2 are constants to adjust the

effects of each penalty term. The first term prevents the bars from

overlapping and extending each other face-to-face. It represents

the third constraint of the bar-tipping algorithm. Here, due to the

second constraint, bars in the second and subsequent columns

cannot be extended to the left. Therefore, the adjacent bars in

the same row cannot extend and overlap. This corresponds to the

fact that d cannot take 3 when j ≥ 1. Thus, there is no need to

reflect, considering the left and right. In particular, the first term

restricts the extending and overlapping between the up and down

adjacent bars. For example, the situation in which one bar in (i, j)

extended down (d = 2) and the lower bar in (i + 1, j) extended up

(d = 0) are represented by xi, j, 2xi+1, j, 0 = 1 and Q(i, j, 2), (i+1, j, 0)

take 1. In the same way, thinking of the relation between the

bar in (i, j) and the upper bar in (i − 1, j), Q(i, j, 0), (i−1, j, 2) = 1.

Thus, Q(i, j, 0), (i−1, j, 2)xi, j, 0xi−1, j, 2 takes 1, and the value of the cost

function taken will increase. By doing this, the third constraint is

represented as a first term. The second term is a penalty term that

limits the direction of extending to one per bar. It represents the

first constraint of the bar-tipping algorithm. This means that for a

given coordinate (i, j), the sum of xi,j,d
[

d = 0, 1, 2(, 3)
]

must take

the value 1. Here, the bars in the second and subsequent columns

cannot extend to the left by the second constraint. Thus, d takes (0,

1, 2, 3) when j = 0, and d takes (0, 1, 2) when j ≥ 1. The third

term is the penalty term for selecting two coordinates of the start

and the goal from the coordinates (m, n). This means that for a

given coordinate (m, n), the sum of Xm,n takes 2. In other words,

two coordinates were selected as the start and the goal. The start

and the goal are commutative in the maze. They are randomly

selected from the two coordinates determined by the third term.

Xm,n denotes whether or not to set the start and goal at them-th row

and n-th column of options of start and goal coordinates. When

the (m, n) coordinate is chosen as the start and goal, Xm,n takes

1. Otherwise, it takes 0. There are no relations between Xm,n and

xi,j,d in Equation (1). This means that the maze structure and the

start and goal determination coordinates have no relations. Figure 8

shows the coordinates (m, n) that are the options of the start and

the goal. As Figure 8 shows, (m, n) is different from the coordinate

setting bars; it is located at the four corners of the bars, where the

bars do not extend. Xm,n and xi,j,d are different. Xm,n are options of

start and goal, and xi,j,d are options of coordinates and directions to

extend the bars.We have shown the simplest implementation of the

maze generation following the bar-tipping algorithm by quantum

annealer. Following the above a maze depending on randomness is

generated. To generate a unique maze independent of randomness,

we add the effect to make the maze more difficult in the cost

function, and the difficulty is defined in terms of time (in seconds).

2.2 Update rule

We propose an additional Qupdate term to increase the time to

solve the maze. We introduce a random term that takes random

elements to change the maze structure. It is added to the Equation

(1). First, Qupdate term, the additional term which includes the new

QUBOmatrix Qupdate, is given by

λupdate1

∑

i,i′

∑

j,j′

∑

d,d′

Qupdate(k,k′)xi,j,dxi′ ,j′ ,d′

+λupdate1

∑

i

∑

j

∑

d

∑

m

∑

n

Qupdate(k,l)xi,j,dXm,n

+λupdate1

∑

i

∑

j

∑

d

∑

m

∑

n

Qupdate(l,k)Xm,nxi,j,d

+λupdate2

∑

m,m′

∑

n,n′

Qupdate(l,l′)Xm,nXm′ ,n′ ,

(3)

where











k = d + (3N + 1)i (j = 0)

k = d + 3j+ 1+ (3N + 1)i (j 6= 0)

l = (3N + 1)N + (N + 1)m+ n.

(4)

Figure 9 shows the structure of Qupdate and roles. Here, k′, l′

are the replacement of i, j, m, n, and d in k, l with i′, j′, m′, n′,

and d′. N in Equation (4) is the size of the maze. The coefficients

λupdate1 and λupdate2 are constants to adjust the effect of terms. The

elements ofQupdate related to the relation between the start and goal

determination and the maze generation. This is located in part B, C

in Figure 9 and multiplied by the λupdate1. The elements of Qupdate

related to the relation between the start and goal determination

and the maze generation, part B, C in Figure 9 is multiplied by

the λupdate1. The elements of Qupdate related to the start and goal

determination, part D in Figure 9 is multiplied by the λupdate2.
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FIGURE 7

(A) Initial state for hunt-and-kill algorithm. (B) Step 1 for hunt-and-kill algorithm. (C) Step 2 for hunt-and-kill algorithm. (D) Maze generated using

hunt-and-kill algorithm.

These are to control the maze difficulty without breaking the bar-

tipping algorithm’s constraints. Equation (3) is represented by the

serial number k of each coordinate (i, j) at which bars can extend,

and the sum l of the total number of coordinates at which the bars

can extend and the serial number of coordinates (m, n), which are

options for the start and the goal. Furthermore, The second term

and the third term in Equation (3) allow the maze to consider the

relation between the structure of the maze and the coordinates of

the start and the goal.

Second, Qupdate, the new QUBOmatrix, is given by

Qupdate := p(t)Qupdate +
{

1− p(t)
}

Qrandom, (5)

whereQrandom is amatrix of random elements from−1 to 1 and p(t)

depends on time t (in seconds) taken to solve the previousmaze and

is expressed as follows:

p(t) =
1

1+ e−at
. (6)

TheQupdate is a matrix that was made with the aim of increasing

the maze solving time through the maze solving iteration. The

initial Qupdate used in the first maze generation is a random matrix,

and the next Qupdate that is used in the second or subsequent

maze generation is updated using Equation (5), the maze solving

time t, and the previous Qupdate. The longer the solving time t

of the maze is, the higher the percentage of the previous Qupdate

in the current Qupdate and the lower the percentage of Qrandom;

inversely, when t is small, the ratio of the previous Qupdate is

small, and the percentage of Qrandom is significant. In other

words, the longer the solving time t of the previous maze, the

more characteristics of the previous term Qupdate remain. Here,

a is a constant to adjust the percentage. The p(t) is a function

that increases monotonically with t and takes 0 to 1. Thus,

Qrandom, which the random element in Qupdate, increase as time

t increases. After the maze is solved, the next maze QUBO is

updated by Equation (5) using the time taken to solve the maze.

The update is carried out only once before the maze generation.

Repetition of the update will make the maze gradually difficult for

individuals.

The sum of Equations (1) and (3) is always used

to generate a new maze annealing from a maximally

mixed state.
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2.3 Experiments

2.3.1 Generation of maze
We generate mazes by optimizing the cost function using

DW_2000Q_6. Since the generated maze will not be solved, the

update term is excluded for this experiment. λ1 = 2 and λ2 = 2

were chosen.

FIGURE 8

Black cells represent outer walls and inner bars (i, j). Red cells

represent options of start and goal coordinates (m,n).

2.3.2 Computational cost
We compare the generation times of N × N maze in

DW_2000Q_6 from D-Wave, simulated annealer called

SASampler and simulated quantum annealer called SQASampler

from OpenJij, D-Wave’s quantum-classical hybrid solver called

hybrid_binary_quadratic_model_version2 (hereinafter referred to

as “Hybrid Solver”) and classical computer [MacBook Pro(14-inch,

2021), OS: macOS Monterey Version 12.5, Chip: Apple M1 Pro,

Memory: 16 GB] based on bar-tipping algorithm coded with

Python 3.11.5 (hereinafter referred to as “Classic”). The update

term was excluded from this experiment. We set λ1 = 2 and

λ2 = 2. DW_2000Q_6 was annealed 1,000 times for 20 µs,

and its QPU annealed time for maze generation as calculated

using time-to-solution (TTS). SASampler and SQASampler were

annealed with 1,000 sweeps. These parameters were constant

throughout this experiment. Regression curves fitted using the

least squares method were drawn from the results to examine the

dependence of computation time on maze size.

2.3.3 E�ect of update term
The solving time of 9 × 9 maze generated without Qupdate

and using Qupdate was measured. This experiment asked 12

human subjects to solve mazes one set (30 times). To prevent

the players from memorizing maze structure, they can only

observe the limited 5 × 5 cells. In other words, only two

surrounding cells can be observed. The increase rate from the

first step of simple moving average of 10 solving times was

plotted on the graph. For this experiment, λ1 = 2, λ2 = 2,

λupdate1 = 0.15, λupdate2 = 0.30, and a = 0.05 were chosen.

For two λupdate, we chose larger values that do not violate the

constraints of the bar-tipping algorithm. We chose a value in

which Equation (6) will be ∼0.8 (80%) when t = 30 s as

a constant a.

FIGURE 9

Structure of Qupdate. Part A is related to maze generation. Part B and part C are related to the relation between maze generation and the start and

goal determination. Part D is related to the start and goal determination.
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FIGURE 10

(Left) 9× 9 maze generated by DW_2000Q_6. (Right) 15× 15 maze generated by DW_2000Q_6. Red cells represent a start and a goal for the maze.

2.4 Applicatons

The cost function in this study has many potential applications

by generalizing it. For example, it can be applied to graph

coloring and traffic light optimization. Graph coloring can be

applied by allowing adjacent nodes to have different colors.

Traffic light optimization can address the traffic light optimization

problem by looking at the maze generation as traffic flow.

Roughly speaking, our cost function can be applied to the

problem of determining the next state by looking at adjacent

states.

Qupdate can be applied to the problem of determining the

difficulty of the next state from the previous result. The selection of

personalized educational materials is one of the examples. Based on

the solving time of the previously solved problems, the educational

materials can be selected at a difficulty suitable for the individual.

This is the most fascinating direction in future studies. As described

above, we should emphasize that Qupdate proposed in this study

also has potential use in various fields related to training and

education.

3 Results

3.1 Generation of maze

Figure 10 shows execution examples of 9 × 9 and 15 ×

15 mazes generated by optimizing the cost function using

DW_2000Q_6.

3.2 Computational cost

Fits of the form aN2 + bN + c is applied to each of the datasets

using the least squares method. The results are as follows. Figure 11

FIGURE 11

Time to reach the ground state with 99% success probability as a

function of the maze size in DW_2000Q_6. The error bars represent

a 95% confidence interval. The regression curve is given by

[(3.231± 0.076)N+ (11.40± 0.69)] for linear regression and

[(7.4± 1.8) · 10−2N2 + (2.05± 0.30)N+ (14.8± 1.0)] for quadratic

regression.

shows the relation between TTS for maze generation and maze

size on DW_2000Q_6. DW_2000Q_6 is O(N) or O(N2). Even

if it is quadratically dependent on the maze size, its deviation is

smaller than the other solvers. Figure 12 shows the relation between

maze generation time and maze size on Classic, SASampler, and

SQASampler. Classic
[

(0.855±0.090)N2+(0.6±1.5)N+(2.2±5.1)
]

,

SASampler
[

(28.8 ± 1.2)N2 + (36 ± 20)N + (129 ± 71)
]

, and

SQASampler
[

(172.8 ± 4.4)N2 + (287 ± 73)N − (1.5 ± 2.5) · 102
]

exhibit quadratic dependence on the maze sizeO(N2). Most of the
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FIGURE 12

(A) The time to reach the ground state as a function of the maze size in Classic. The error bars represent a 95% confidence interval. The regression

curve is [(0.855± 0.090)N2 + (0.6± 1.5)N+ (2.2± 5.1)]. (B) Time to reach the ground state as a function of the maze size in SASampler. The error bars

represent a 95% confidence interval. The regression curve is [(28.8± 1.2)N2 + (36± 20)N+ (129± 71)]. (C) Time to reach the ground state as a

function of the maze size in SQASampler. The error bars represent a 95% confidence interval. The regression curve is [(172.8± 4.4)N2 + (287± 73)N

−(1.5± 2.5) · 102].

FIGURE 13

Comparison of maze generation time between DW_2000Q_6 and

classic.

solvers introduced here areO(N2) since they are extending N × N

bars to generate a maze. Figure 13 shows the comparison of maze

generation time betweenDW_2000Q_6 and Classic. DW_2000Q_6

has a smaller coefficient N2 than the classical algorithm, and after

N = 5, DW_2000Q_6 shows an advantage over Classic in the maze

generation problem. The improvement using quantum annealing

occurred because it determines the direction of N × N bars at

once. Figure 14 shows the relation between maze generation time

and maze size on Hybrid Solver. Linear and quadratic fits applied

to the dataset indicate that the Hybrid Solver is O(1) or O(N)
[

(3.29±0.83)·102N+(2.99325±0.00090)·106
]

betweenN = 1 and

N = 18 and then shifted toO(N2)
[

(6.899±0.065) ·103N2− (0.4±

3.2) · 103N + (6.90 ± 0.39) · 105
]

. The shift in the computational

cost of Hybrid Solver may have resulted from a change in its

algorithm.

FIGURE 14

Time to reach the ground state as a function of maze size in the

Hybrid Solver. The error bars represent a 95% confidence interval.

3.3 E�ect of update term

Here, 12 human subjects are asked to solve the maze one set

(30 times), and the maze is shown to increase in difficulty as it

adapts to each human subject. Figure 15A shows the increase rate

from the first step of simple moving average of 10 solving time

of maze generated without Qupdate and individual increase rate.

The solving time of the maze without Qupdate was slightly getting

shorter overall. Figure 15B shows the increase rate from the first

step of simple moving average of 10 solving time of maze generated

using Qupdate and individual increase rate. The solving time of

the maze using Qupdate was getting longer overall. Most of the

players increased their solving time, but some players decreased

or did not change their solving time. In addition, nine players’

average of the solving time of the maze generated using Qupdate
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FIGURE 15

(A) Left: Increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated without Qupdate. The error bars

represent standard errors. Right: All players’ increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated

without Qupdate. (B) Left: Increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated using Qupdate. The

error bars represent standard errors. Right: All players’ increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze

generated using Qupdate.

increased than that of the maze generated without Qupdate. These

show that Qupdate has the potential to increase the difficulty of the

mazes.

4 Discussion

In this study, we show that generating difficult (longer the

maze solving time) mazes using the bar-tipping algorithm is

also possible with quantum annealing. By reformulating the bar-

tipping algorithm as the combinatorial optimization problem, we

generalize it more flexibly to generate mazes. In particular, our

approach is simple but can adjust the difficulty in solving mazes

by quantum annealing.

In Section 3.2, regarding comparing computational costs to

solve our approach to generating mazes using TTS, DW_2000Q_6

has a smaller coefficient of N2 than the classical counterpart.

Therefore, as N increases, the computational cost of DW_2000Q_6
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can be expected to be lower than that of the classical simulated

annealing for a certain time. Unfortunately, since the number of

qubits in the D-Wave quantum annealer is finite, the potential

power of generating mazes by quantum annealing is limited.

However, our insight demonstrates some advantages of quantum

annealing against its classical counterpart. In addition, we observed

that the hybrid solver’s computational cost was constant up to N =

18. This indicates that hybrid solvers will be potentially effective if

they are developed to deal with many variables in future.

In Section 3.3, we proposed Qupdate to increase the

solving time using quantum annealing. We demonstrated

that introducing Qupdate increased the time to solve the maze

and changed the difficulty compared with the case where

Qupdate was not introduced. At this time, the parameters

(λupdate1, λupdate2, and a) were fixed. Difficult maze generation

for everyone may be possible by adjusting the parameters

individually.

One of the directions in the future study is in applications

of our cost function in various realms. We should emphasize

that Qupdate proposed in this study also has the potential use

in various fields related to training and education. The powerful

computation of quantum annealing and its variants open the

way to such realms with high-speed computation and various

solutions.
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In materials informatics, searching for chemical materials with desired properties

is challenging due to the vastness of the chemical space. Moreover, the high cost

of evaluating properties necessitates a search with a few clues. In practice, there is

also a demand for proposing compositions that are easily synthesizable. In the real

world, such as in the exploration of chemical materials, it is common to encounter

problems targeting black-box objective functions where formalizing the objective

function in explicit form is challenging, and the evaluation cost is high. In recent

research, a Bayesian optimization method has been proposed to formulate the

quadratic unconstrained binary optimization (QUBO) problem as a surrogate

model for black-box objective functions with discrete variables. Regarding this

method, studies have been conducted using the D-Wave quantum annealer to

optimize the acquisition function, which is based on the surrogate model and

determines the next exploration point for the black-box objective function. In this

paper, we address optimizing a black-box objective function containing discrete

variables in the context of actual chemicalmaterial exploration. In this optimization

problem, we demonstrate results obtaining parameters of the acquisition function

by sampling from a probability distribution with variance can explore the solution

space more extensively than in the case of no variance. As a result, we found

combinations of substituents in compositions with the desired properties, which

could only be discovered when we set an appropriate variance.

KEYWORDS

quantum annealing, quantum computing, black-box optimization, combinatorial

optimization problem, materials informatics

1 Introduction

Black-box optimization is a method to optimize a function that does not have an

explicit objective function in the mathematical form. In the real world, this optimization

problem appears in various fields, including material informatics, robotics (Deisenroth,

2011), machine learning (Snoek et al., 2012), and recommendation systems (Vanchinathan

et al., 2014). Bayesian optimization is one of the solutions for black-box optimization

problems (Jones et al., 1998). Taking the exploration of chemical materials as an example, a

surrogate model is constructed using an existing dataset to predict the relationship between

the combinations of substituents in the chemical materials and the corresponding property
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values. Based on this surrogate model, an acquisition function

is defined. The combination of substituents obtained through

optimizing this acquisition function is then used as the next input

point for the black-box objective function, enabling the evaluation

of the actual property values. The relationship between the inputted

combination of substituents and the actual property value is

then added to the existing dataset, then updating the surrogate

model. Repeating this process is to explore the combinations

of substituents that yield the desired property values. Especially

for black-box optimization problems involving discrete variables,

discrete variables are included in both the surrogate model

and the acquisition function. Therefore, even optimizing the

acquisition function often proves to be NP-hard, and the solutions

obtained through optimization are generally approximate. In a

previous study, Bayesian optimization of combinatorial structures

(BOCS) was proposed as the promising algorithm for such

problems (Baptista and Poloczek, 2018). In this algorithm, the

acquisition function was assumed as quadratic unconstrained

binary optimization (QUBO) problem.

Quantum annealing (Kadowaki and Nishimori, 1998) is

a heuristic algorithm to solve QUBO problems by driving

binary variables through quantum fluctuations. Many well-

known combinatorial optimization problems can be encoded into

QUBO problems (Lucas, 2014). Practical applications of quantum

annealing can be found in various fields, including traffic flow

optimization (Neukart et al., 2017; Inoue et al., 2021; Shikanai

et al., 2023), manufacturing (Ohzeki et al., 2019; Haba et al., 2022),

finance (Rosenberg et al., 2016; Venturelli and Kondratyev, 2019),

steel manufacturing (Yonaga et al., 2022), decoding problems

(Ide et al., 2020; Arai et al., 2021), and algorithms in machine

learning (Amin et al., 2018; O’Malley et al., 2018; Urushibata

et al., 2022; Goto and Ohzeki, 2023; Hasegawa et al., 2023).

Furthermore, quantum annealing, which utilizes the quantum

tunneling effect, is expected to find the optimal solution for

several combinatorial optimization problems more rapidly than

algorithms such as simulated annealing (Kirkpatrick et al., 1983).

This advantage is investigated from the perspective of energy

landscape characteristics (Das and Chakrabarti, 2008) and through

numerical computation (Denchev et al., 2016). In addition, there

are discussions about the characteristics of solutions obtained

in cases where multiple optimal solutions exist (Yamamoto

et al., 2020; Maruyama et al., 2021). With these backgrounds,

quantum annealing has recently attracted attention, both for its

potential applications and for validating the fundamental aspects

of quantum effects.

Studies that employ quantum annealing in some algorithms

for black-box optimization problems involving discrete variables

exist. These include benchmark tests (Koshikawa et al., 2021) that

have examined the presence or absence of quantum superiority in

optimizing acquisition functions. In terms of practical applications,

there are case studies that have achieved significant screening in

the exploration of chemical materials within the search chemical

space (Hatakeyama-Sato et al., 2021; Tanaka et al., 2023), as well as

instances of designing complex metamaterials (Kitai et al., 2020).

In the exploration of chemical materials, it is necessary not only

to discovermolecules with the desired property values but also to be

concerned about scenarios in actual synthesis wheremolecules with

specific substructures may become entirely unfeasible to synthesize.

Drawing inspiration from previous studies and practical needs,

we demonstrate a method for proposing diverse compositions

of chemical materials with desired properties, targeting a black-

box optimization problem that includes discrete variables in

actual chemical material exploration. In more detail, we show

results that by obtaining parameters of the surrogate model and

acquisition function from sampling a probability distribution with

an appropriate variance and optimizing the acquisition function,

we explored the solution space more extensively while optimizing

the black-box objective function. The method used in this paper

is generally referred to as Thompson sampling (Thompson, 1933;

Chapelle and Li, 2011). In this sense, it can be said that our research

results evaluate the impact of the magnitude of the variance of the

posterior probability distribution in Thompson sampling.

The remaining sections of this paper are organized as follows:

In the next section, Section 2, we explain the problem setting in this

paper and the method we propose. In Section 3, we demonstrate

the results of the experiments related to the actual exploration of

chemical materials. Finally, Section 4 summarizes our research and

discusses this paper and future research directions.

2 Materials and methods

In this section, we introduce the problem settings based on

the search for chemical materials, which is the focus of this

paper. Subsequently, in Bayesian optimization, we explain the

construction of the surrogate model in the QUBO form, which is

well-known in prior research, along with the construction of the

acquisition function. We provide this explanation in conjunction

with our method aim.

2.1 Problem settings

In this paper, we define the binding of substituents to specific

sites of the molecular frame as the composition of chemical

materials. We aim to propose various combinations of substituents

through Bayesian optimization while maximizing a target material

property value. To align our description with other literature

focusing on black-box optimization problems, we define our goal

as a minimization problem, utilizing the fact that maximization

and minimization problems can be transformed into each other by

reversing the sign of the objective function.

2.2 Methods

We express the assignment of substituents using a binary

vector. In particular, for substituents that can bind to each

site, we encode them by converting the 0-indexed substituent

number to binary. Thus, we set a binary vector Ex(µ) ∈ {0, 1}N

as input, and the corresponding target material property value

y(µ) as output. We aim to find Ex that minimizes a black-box

objective function. Since we cannot know an explicit form of the

black-box objective function, we construct a surrogate model as
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QUBO form following the previous studies. We utilize an existing

dataset D = {Ex(µ), y(µ)}Dµ=1 to sample the parameters of the

surrogate model from a probability distribution we discuss later

and construct it. Based on the surrogate model, we construct an

acquisition function and propose a combination of substituents

that optimize the acquisition function using the D-Wave quantum

annealer. Subsequently, we input the proposed combination of

substituents as the next exploration point Ex(new) and obtain output

y(new) from the black-box objective function. Then we append

{Ex(new), y(new)} to the existing dataset as new data and reconstruct

the surrogate model. By repeating this process, we aim to obtain

diverse combinations of substituents with desired target material

property values.

2.2.1 Construction of surrogate model function
We construct the surrogate model fsurrogate(Ex) in the QUBO

form in this paper.

fsurrogate(Ex) = α0 +
∑

i

αixi +
∑

i<j

αijxixj (1)

For simplicity, we set the surrogate model parameters {αi,αij} =

Eα ∈ R
p. Note that p = 1 + N + N(N − 1)/2. Defining X ∈

{0, 1}D×p as the design matrix and denoting the µ-th row in the

design matrix X as X(µ), we have the following expression X(µ) =
(

1, x
(µ)
1 , ..., x

(µ)
N , x

(µ)
1 x

(µ)
2 , x

(µ)
1 x

(µ)
3 , ..., x

(µ)
N−1x

(µ)
N

)

. Furthermore, we

set the output vector Ey ∈ R
D and I as the identity matrix. Then,

we assume a prior distribution of surrogate model parameters

P(Eα) with a variance σ 2
α I and a likelihood function over the

surrogate model parameters Eα with a variance σ 2
y I. We give the

prior distribution and likelihood function as following multivariate

Gaussian distributions.

P(Eα) = N (E0, σ 2
α I) (2)

P(Ey|Eα,X) = N (XEα, σ 2
y I) (3)

At this time, the posterior distribution of the surrogate

model parameters Eα is computed and given by a multivariate

Gaussian distribution, similar to the prior distribution and the

likelihood function.

Eα|Ey,X ∼ N ( Eµ,6) (4)

Eµ = (XTX + λI)−1XTEy

6 = σ 2(XTX + λI)−1

s.t. σ 2 = σ 2
y , λ =

σ 2
y

σ 2
α

We sample the surrogate model parameters Eα ∈ R
p from

the multivariate Gaussian distribution described in (4). σ 2 is a

hyperparameter indicating the magnitude of fluctuations from the

mean vector Eµ when sampling the surrogate model parameters. λ

is also a hyperparameter. Note that λ corresponds to the coefficient

of the regularization term during ridge regression.

2.2.2 Construction of acquisition function
The acquisition function facquisition(Ex) is constructed in the same

QUBO form as the surrogate model, and the next exploration point

Ex(new) is proposed by optimizing the acquisition function.

Ex(new) = argmin
Ex

{facquisition(Ex)} (5)

facquisition(Ex) is a function with modified specific parameters

from the surrogate model fsurrogate(Ex) described in 2.2.1. This

modification is like a penalty method, designed to ensure that

binary vectors with substituent numbers that do not exist at

each site do not become the optimal points of the acquisition

function. Parameters that are not modified are identical to those

in the surrogate model fsurrogate(Ex). For example, when six potential

substituents can bind at a specific site, representing the 0-indexed

substituent numbers in binary requires three bits (x1, x2, x3). In

this context, x1x2x3 = (000, 001, 010, 011, 100, 101)2 corresponds

to valid substituent numbers from 0 to 5 in decimal. However,

each combination x1x2x3 = (110, 111)2 is equivalent to substituent

numbers 6–7 in decimal, rendering them inappropriate as optimal

point candidates. To prevent the substituent combinations with

substituent numbers 6–7 at this site from being proposed as the

optimal points of the acquisition function, we adjust the surrogate

model parameters. In this example, we modify the coefficient of

x1x2 in the surrogate model function to a positive constant C, and

the other coefficients are kept the same as in the surrogate model.

The next exploration point of the black-box objective function

is determined by the optimization of the acquisition function

facquisition(Ex).

The search space explored varies greatly depending on how

the acquisition function is constructed and how the acquisition

function is optimized. As described, our method samples the

parameters of the surrogate model and the acquisition function

from a probability distribution with variance. The hyperparameter

σ 2 indicates the magnitude of the variance. The larger this

hyperparameter σ 2 is, the more significant the variance of the

acquisition function, potentially allowing for exploration across

a broader solution space and avoiding resampling the previously

explored points.

3 Results

In this section, we describe detailed problem settings and

experimental conditions and then show the experimental results

obtained by applying our method. In particular, we compare and

discuss based on the magnitude of the hyperparameter σ 2. Our

discussion centers on two main points of interest in this paper.

The first point is whether our method has brought diversity to the

proposed substituent combinations. The second point is whether

our method has optimized the black-box objective function.

3.1 Detailed problem settings and
experimental conditions

We set the number of substituent binding sites as four, and

for convenience in the description, we call each binding site R1,
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R2, R3, and R4, respectively. The number of possible substituents

that can bind at each site is R1: 6, R2: 29, R3: 64, and R4: 64,

respectively. Therefore, the size of the chemical space is calculated

as 6 × 29 × 64 × 64 = 712704. Moreover, the number of bits

necessary to represent the number of each substituent is R1: 3, R2:

5, R3: 6, and R4: 6. Consequently, the binary vector Ex dimension

is calculated as N = 3 + 5 + 6 + 6 = 20. The substituent

number at R1 is represented in 0-indexed form using x1 to x3,

similarly, x4 to x8 represent the substituent number at R2, x9 to x14
represent the substituent number at R3, and x15 to x20 represent the

substituent number at R4. To illustrate with a concrete encoding

example, suppose the substituent numbers at each site are R1: 0,

R2: 2, R3: 10, and R4: 63. In this case, the binary vector Ex would be

represented as Ex = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1).

We set the hyperparameter λ at 10−2 and the hyperparameter σ 2,

which indicates the magnitude of fluctuation from the mean vector

Eµ when sampling surrogate model parameters, to {0, 4× 10−3, 8×

10−3, 12×10−3}.We set the surrogatemodel’s parameter correction

for R1 in the acquisition function as C = α12 = 2 × max(Eα)

at each after sampling Eα. We used D-Wave Advantage 4.1 as the

quantum annealer, setting the annealing time to 2,000 µs, and the

number of samples is 300. The quantum adiabatic theorem ensures

that it is possible to find the nontrivial ground state at the end of the

quantum annealing if the transverse field changes sufficiently slowly

(Suzuki and Okada, 2005; Morita and Nishimori, 2008; Ohzeki and

Nishimori, 2011). On the other hand, when quantum annealing

is carried out on a physical device D-wave quantum annealer, it

operates at a finite temperature and is subject to external noise. Due

to these factors, the annealing time is often short in many studies.

Considering these theoretical and experimental backgrounds, we

set the annealing time to be longer in our setting because we

observed a tendency for the results to stabilize, possibly due to the

effects of ambient temperature. The number of samples in the initial

dataset is 992. For comparison as a baseline, we also conducted an

experiment where the optimization part of the acquisition function

was replaced with random sampling. Due to the nature of this

study, which is conducted in the context of actual chemical material

exploration, the computational cost of the black-box objective

function is exceptionally high, resulting in an experiment of only

one instance. We defined one loop as carrying out the following

steps (i) through (v), and we performed 20 loops.

(i) By sampling the surrogate model parameters Eα from a

multivariate Gaussian distribution N ( Eµ,6) described in (4),

construct the surrogate model.

(ii) Construct the acquisition function by partially correcting the

surrogate model parameters as explained in 2.2.2

(iii) Optimize the acquisition function by quantum annealing and

select the top 10 points of the acquisition function as the next

exploration points for the black-box objective function. In the

random sampling used as a baseline, 10 sampling points are

randomly selected. Note that at this time, the top 10 points

exclude combinations of substituents that are already present

in the existing dataset and combinations of substituents that

include non-existent substituent numbers, such as substituent

numbers 6-7 in R1 and substituent numbers 29–31 in R2,

through screening.

(iv) Take the next exploration points obtained in (iii) as inputs

and get outputs, carrying out the evaluation of target material

property values, which is the computation of the black-box

objective function, through DFT (Density Functional Theory)

calculations. The detailed calculation method is described in

the Additional Requirements.

(v) Append the new samples {Ex(new), y(new)} obtained in (iv) to the

existing dataset and return to (i).

3.2 Experimental results

3.2.1 Histogram of substituent numbers in
combinations added by end of the experiment

We show the histogram of substituent numbers at the binding

sites R1, R2, R3, and R4 for the combinations of substituents

added to the dataset by the end of the experiment in Figure 1.

In the case of σ 2 = 0, we observed a tendency in R3

and R4 where specific substituent numbers were frequently

proposed. However, as σ 2 increases, it can be observed that

diversity is brought into the combinations of substituents proposed

for R3 and R4. This difference is particularly pronounced

when comparing σ 2 = 0 and σ 2 = 12 × 10−3. From

these results, we can infer that we realized the proposal of

various combinations of substituents by sampling parameters

of the surrogate model and the acquisition function from

probability distributions with variance. By sampling parameters

from probability distributions with larger variances, the optimal

points and the shape of the acquisition function change

significantly in each loop. We believe that this approach allowed

us to explore the solution space without getting trapped by

some specific approximate solutions and without resampling the

previously explored points.

3.2.2 Relationship between the number of loops
and the R

2 of the surrogate model
We show the transition of the coefficient of determination R2

in the surrogate model at each loop in Figure 2. The coefficient

of determination R2 is calculated from the initial dataset sample

points, 992 points, and the sample points appended up to each loop.

Note that R2, plotted in Figure 2, represents the results of mean-

based regression. This result is equivalent to the regression of the

maximum a posteriori (MAP) estimation. As σ 2 becomes larger, a

tendency for R2 at each loop to become smaller was observed. We

speculate that we can attribute this result to the tendency shown in

Figure 1, where the larger σ 2 is, the more diverse the combinations

of substituents that the optimization of the acquisition function

proposes become. When σ 2 is small, R2 improves by fitting to

similar input vectors and outputs. However, to improve R2 when

σ 2 is large, it is necessary to fit diverse input vectors and outputs.

We speculate that this difficulty is why there was the tendency

for the coefficient of determination, R, to be smaller when σ 2

is larger.
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FIGURE 1

Histogram of substituent numbers for combinations of substituents added to the dataset by the end of the experiment each σ 2. Top left is σ 2 = 0, top

right is σ 2 = 4× 10−3, bottom left is σ 2 = 8× 10−3, bottom right is σ 2 = 12× 10−3.

3.2.3 Analysis of target material property values
Finally, we show the target material property values evaluated

by DFT calculations, corresponding to the combinations of

substituents proposed through the optimization of the acquisition

function as the next exploration point of the black-box objective

function in Figures 3, 4. In Figure 3, we plot the transition of the

best target material property values in the existing dataset up to

each loop. Although we could only experiment once because of

the extremely high computational cost of the black-box objective

function, in the case of optimizing the acquisition functions,

we confirm that it is possible to search for combinations of

substituents with higher target material property values than the

best value in the initial dataset. Under the conditions set in

this study, using random sampling in the optimization part of

the acquisition function, we could not find any combination of

substituents that exhibited a property value exceeding the best

target material property value in the initial dataset. In Figure 4, we

show the histograms of the target material property values for all

combinations of substituents in the initial dataset and those added

to the dataset by the end of each experiment.

To reiterate, the objective of black-box optimization in

this study was to maximize the target material property value

while bringing diversity to the combinations of substituents.

Therefore, we listed the combinations of substituents whose

target material property values exceeded our criteria of 0.880 or

higher in Tables 1–4. From the perspective of the number of

combinations of substituents with property values that exceed

our criteria, the number of proposed combinations was the

highest at 25 combinations when σ 2 = 0. However, considering

the diversity of proposed combinations of substituents, which

is one of the aims of this paper, the advantage can be found

when σ 2 6= 0. Especially in the case of σ 2 = 4 × 10−3,

it was possible to discover combinations of substituents with

the property values that exceed our criteria, which have the

substituent number of R4:0, a combination not discovered in case

of σ 2 = 0.
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FIGURE 2

Relationship between the number of loops and the coe�cient of determination R2 in the surrogate model each σ 2 and random sampling.

FIGURE 3

The transition of the best target material property values in the existing dataset up to each loop.
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FIGURE 4

The histogram of the target material property values for the combinations of substituents in the initial dataset and those added to the dataset by the

end of each experiment. The red dotted line shows the cuto� value (0.880), which we defined as a desired target material property value.

4 Discussion

In this study, we achieved the exploration of diverse

approximate solutions in black-box optimization, which has the

background of new chemical material discovery, by considering

appropriate fluctuations in the parameters of the surrogate model

and the acquisition function. Although the validity of the result

is debatable because of the one-instance experiment, our result

indicates that quantum annealing can accelerate the discovery of

diverse chemical materials with desired material property values

in materials informatics. More generally, our results demonstrate

the advantages and disadvantages of varying the magnitude of

the variance when sampling the parameters of the surrogate

model from a probability distribution in optimizing a black-

box objective function. In this paper, we explored a broader

solution space by devising the construction of the surrogate model

and the acquisition function. As an alternative approach, we are

considering optimizing the acquisition function using a different

method from quantum annealing, such as simulated annealing. Our

method in this paper, which encodes combinations of substituents

as a binary vector, can be applied even in a more vast chemical

space. Future challenges include verifying the performance in such

cases and investigating the computational time advantage of using

quantum annealing.

5 Additional requirements

5.1 DFT (Density Functional Theory)
calculations

For the proposed substituents by the D-Wave quantum

annealer, the energy value of ground and excited states were

calculated by optimizing the geometry based on DFT calculation.

DFT calculations were performed using the supercomputer

TSUBAME 3.0 with Gaussian16, Revision C.01 software (Frisch
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TABLE 1 Desired target material property value in σ
2

= 0.

R1 R2 R3 R4 Target material property value

2 5 0 15 0.881

4 7 8 15 0.889

4 5 8 15 0.889

4 5 0 14 0.902

0 5 0 14 0.897

4 6 8 15 0.894

0 5 8 15 0.887

2 5 8 15 0.902

1 5 0 14 0.905

0 7 8 14 0.882

0 6 0 14 0.898

0 7 0 14 0.905

0 5 14 14 0.911

2 5 0 14 0.88

4 6 0 14 0.915

2 7 0 14 0.888

2 7 8 15 0.892

1 6 0 14 0.91

2 6 0 14 0.89

3 6 0 14 0.884

3 5 8 15 0.894

1 7 8 14 0.887

1 6 8 14 0.891

3 7 8 15 0.891

1 7 0 14 0.914

TABLE 2 Desired target material property value in σ
2

= 4 × 10−3.

R1 R2 R3 R4 Target material property value

0 5 0 15 0.894

3 5 0 14 0.882

3 5 0 15 0.88

2 5 0 15 0.881

4 7 0 0 0.895

3 5 0 0 0.882

1 5 0 14 0.909

0 5 0 14 0.901

3 6 8 15 0.899

3 7 0 0 0.881

2 7 0 0 0.883

et al., 2019), with the functional B3LYP and basis functions

6-31G.19 parameters from the DFT calculation were used to

reproduce the experimental values.Here, a prediction model was

created using random forest regression.

TABLE 3 Desired target material property value in σ
2

= 8 × 10−3.

R1 R2 R3 R4 Target material property value

2 5 0 15 0.881

2 5 0 14 0.88

4 5 0 15 0.88

4 5 8 15 0.886

0 5 0 14 0.897

1 5 0 14 0.906

TABLE 4 Desired target material property value in σ
2

= 12 × 10−3.

R1 R2 R3 R4 Target material property value

2 7 14 14 0.901
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Early diagnosis of pneumonia is crucial to increase the chances of survival and

reduce the recovery time of the patient. Chest X-ray images, the most widely

used method in practice, are challenging to classify. Our aim is to develop a

machine learning tool that can accurately classify images as belonging to normal

or infected individuals. A support vectormachine (SVM) is attractive because binary

classification can be represented as an optimization problem, in particular as a

Quadratic Unconstrained BinaryOptimization (QUBO)model, which, in turn,maps

naturally to an Ising model, thereby making annealing—classical, quantum, and

hybrid—an attractive approach to explore. In this study, we o�er a comparison

between di�erent methods: (1) a classical state-of-the-art implementation of

SVM (LibSVM); (2) solving SVM with a classical solver (Gurobi), with and without

decomposition; (3) solving SVM with simulated annealing; (4) solving SVM with

quantum annealing (D-Wave); and (5) solving SVM using Graver Augmented

Multi-seed Algorithm (GAMA). GAMA is tried with several di�erent numbers of

Graver elements and a number of seeds using both simulating annealing and

quantum annealing. We found that simulated annealing and GAMA (with simulated

annealing) are comparable, provide accurate results quickly, competitive with

LibSVM, and superior to Gurobi and quantum annealing.

KEYWORDS

quantum annealing, quantummachine learning, binary classification, Graver Augmented

Multi-seed Algorithm, support vector machine

1 Introduction

Pneumonia is a major disease which is prevalent across the globe. Caused by the bacteria

and viruses in the air we breathe, the illness affects one or both of the lungs, creating difficulty

in breathing. Pneumonia accounts for more than 15% of deaths in children younger than

5 years old (World Health Organization, 2022). Therefore, early and accurate diagnosis of

pneumonia is crucial to prevent death and ensure better treatment.

There are many widely used tests to diagnose pneumonia, such as chest X-rays, chest

MRI, and needle biopsy of the lung. Chest X-ray imaging is the most commonly used

method, as it is relatively inexpensive and non-invasive. Figure 1 shows examples of healthy

and pneumonic lung X-rays. However, the examination of chest X-rays is challenging and

sensitive to subjective variability. Machine learning (ML) techniques have gained popularity
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FIGURE 1

The image on the left shows a normal chest X-ray, whereas the one on the right shows lungs with pneumonia opacity (Breviglieri, 2019).

for solving the image classification problem and have found their

use in pneumonia diagnosis as well. Support vector machine

(SVM) is a widely used method for classification. We have the

added advantage of being able to reframe the SVM as a Quadratic

Unconstrained Binary Optimization (QUBO) problem, making it

especially suitable for studying annealing methods. In this study,

we computationally evaluate a variety of SVM methods, in the

context of X-ray imaging for pneumonia, and compare our results

against LibSVM, a state-of-the art implementation of SVM. Our

main contributions include:

1. Studying a QUBO formulation of an SVM using simulated

annealing (SA) and quantum annealing (QA).

2. Solving a QUBO with Gurobi and comparing with annealing

methods.

3. Combining multiple weak SVMs to get a strong classification

model to accommodate fewer qubits on NISQ quantum

annealers.

4. Studying a hybrid quantum-classical optimization heuristic

technique, Graver Augmented Multi-seed Algorithm (GAMA).

2 Related work with CNNs and SVMs

Nagashree andMahanand (2023) compared the performance of

an SVM with a few other classification algorithms, such as decision

tree, naïve Bayes, and K nearest neighbor. The comparison results

indicate a better performance of SVMs for diagnosing pneumonia.

Darici et al. (2020) and Kundu et al. (2021) developed an ensemble

framework and implemented it with deep learning models to boost

their individual performance.

Many researchers have explored, using different data sets,

comparing between classical and quantum machine learning

algorithms. Willsch et al. (2020) introduced a method to train an

SVM on a D-Wave quantum annealer and studied its performance

in comparison to classical SVMs for both synthetic data and

real data obtained from biology experiments. Wang et al. (2022)

implemented an SVM, enhanced with quantum annealing, for two

fraud detection data sets. They observed a potential advantage

of using an SVM with quantum annealing, over other classical

approaches, for bank loan time series data. Delilbasic et al. (2021)

implemented two formulations of a quantum support vector

machine (QSVM) using IBM quantum computers and D-Wave

quantum annealers and compared the results for remote sensing

(RS) images. Bhatia and Phillipson (2021) compared classical

approach, simulated annealing, hybrid solver, and fully quantum

implementations for public Banknote Authentication dataset and

the Iris Dataset.

Researchers have also studied convolutional neural networks

(CNN) in this context. Although it is not the focus of our study,

we mention the related literature. Sirish Kaushik et al. (2020)

implemented four models of CNNs and reached an accuracy of

92.3%. Nakrani et al. (2020) and Youssef et al. (2020) implemented

deep learning models (different types of CNNs) to classify the

data. Madhubala et al. (2021) extended the classification to more

than two types of pneumonia. They used CNNs for classification

and later performed augmentation to obtain the final results.

Ibrahim et al. (2021) considered bacterial pneumonia, non-COVID

viral pneumonia, and COVID-19 pneumonia chest X-ray images.

They performed multiple experiments with binary and multi-class

classification and achieved a better accuracy in identifying COVID-

19 (99%) than normal pneumonia (94%).

3 Background information

3.1 QUBO formulation of SVM

Recalling that SVM is a supervised machine learning model.

The hyperplane produced by the SVM maximizes its distance

between the two classes. Figure 2 shows the support vectors, and

the hyperplane classifies data into two classes (labels +1 and−1).

Given training data X ∈ R
N×d and training labels Y ∈

{−1,+1}N , where N is the number of training data points, we look

for a hyperplane determined by weights, w ∈ R
d, and bias, b ∈ R,

to separate the training data into two classes. Mathematically, the

SVM is expressed as (Date et al., 2021) follows:

min
w,b

1

2
‖w‖2, (1)

subject to yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . ,N.
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FIGURE 2

Representation of hyperplane in SVM separating two classes of data.

where, xi is the i-th row vector in X and yi is the i-th element in Y .

The Lagrangian function of this optimization problem is as follows:

L(w, b, λ) =
1

2
‖w‖2 −

N
∑

i=1

λi[yi(w
Txi + b)− 1], (2)

where λ is the vector containing all the Lagrangian multipliers, that

is, λ = [λ1, . . . , λN]
T , with λi ≥ 0, ∀i. Each Lagrange multiplier

or support vector corresponds to one image and represents the

significance of that particular image in determining the hyperplane.

Converting the above primal problem to its dual form yields a

QUBO (Date et al., 2021)

min
λ

L(λ) =
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyj(x
T
i xj)−

N
∑

i=1

λi, (3)

with the final weights determined as

w =

N
∑

i=1

λiyixi, (4)

N
∑

i=1

λiyi = 0, (5)

and λi, λj ≥ 0, ∀i, j. Since the data are linearly inseparable, we use

a kernel function to plot the input data to higher dimensions and

use the SVM on the higher dimensional data. The kernel matrix is

defined as follows

Kij = φ(xi)φ(xj), ∀i, j, (6)

where φ(xi) is some function of the input vector xi. In this study,

we have used the radial basis function (RBF) as it can project data

efficiently. Mathematically, the RBF is defined as follows:

K(x1, x2) = exp

(

−
‖x1 − x2‖

2

2σ 2

)

. (7)

The value of σ was chosen as 50 by trial. Substituting the RBF

from (7) in (3) yields the QUBO as follows:

min
λ

L(λ) =
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyj(Kij)−

N
∑

i=1

λi. (8)

The Lagrange multipliers should also satisfy the condition in

(5). Writing (8) as a matrix yields

min
λ

L(λ) =
1

2
λT(K ⊙ YYT)λ − λT1N , λ ≥ N . (9)

where, K is the kernel matrix whose elements are defined by (6).

1N and N represent N-dimensional vectors of ones and zeros,

respectively, and ⊙ is the element-wise multiplication operation.

This QUBOmatrix becomes the input to an annealer (Ising solver)

that solves the minimization objectives and returns the Lagrange

multipliers (binary) or the support vectors.

The precision vector is introduced to have integer support

vectors instead of only binary, and the dimension of the precision

vector depends on the range of integer values for the support

vector. The precision vector has powers of 2 as elements, and here,

we use p = [20, 21] to get the final QUBO matrix. Now, the

dimensions of the QUBO have doubled, and our support vectors

can be four integers (0,1,2,3) instead of just being binary. Let

λ̂ = [λ11, λ12, . . . , λN1, λN2] be the expanded Lagrange multiplier

vector, which gives us our final QUBO. We pass the QUBO matrix

to an annealer (Ising solver). The final λ̂ vector obtained minimizes

the QUBO

min
λ̂

L(λ̂) =
1

2
λ̂TPT(K ⊙ YYT)Pλ̂ − λ̂TPT1N , (10)

where P = In ⊗ p and λ = Pλ̂. The annealer returns expanded

Lagrange multipliers λ̂, which we use to calculate support vectors

λ. We can predict the labels for unseen data using λ as follows:

label(x) = sign

(

N
∑

i=1

λiyi(Kxi)+ b

)

, (11)

b = mean(yi − wTxi), where i ∈ [0, . . . ,N], (12)

wTxi =

N
∑

j=1

λjyjKji,

with Kxi being the kernel between the new test point x and training

data point i as defined in (6).

3.2 Graver Augmented Multi-seed
Algorithm (GAMA)

Let our binary optimization problem be of the form:

objective function:min f (x)

constraints: Ax = b.

Alghassi et al. (2019a) introduced a novel fusion of quantum

and classical methodologies for computation of Graver basis. In
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the study by Alghassi et al. (2019b), the heuristic was given the

acronym GAMA—Graver Augmented Multiseed Algorithm—and

the authors studied the application of Graver basis (computed

classically) as a means to attain good solutions. In this article, we

explore the performance of GAMA in the context of solving an

SVM.

GAMA is a heuristic algorithm, in which we compute a partial

Graver basis and obtain many feasible solutions using Ising solvers.

The motivation for GAMA comes from the theoretical foundation

that a complete Graver basis is a Test-Set for a wide variety of

objective functions (Graver, 1975; Murota et al., 2004; De Loera

et al., 2009; Lee et al., 2010; Hemmecke et al., 2011). Of course,

for most realistic size problems, it is not possible to identify a

complete Graver basis (Pottier, 1996), but in some cases, it is much

simpler to establish a partial Graver basis, especially when QUBOs

are solved using Ising solvers. We therefore rely on the existence

of several feasible solutions to compensate for this incompleteness

of the Graver basis. Consequently, the GAMA heuristic selects the

best among the (possibly) local optimal solutions by performing

a (partial) Graver walk from each of the possible solutions as the

seed (hence the term “multiseed”). For finding the Graver bases,

we consider the QUBO form of the constraint matrix Ax = 0.

The Ising solver gives us many kernel elements, and performing

conformal filtration on these kernel elements gives us the partial

Graver bases. To get feasible solutions, we take the QUBO form of

the constraint matrix Ax = b (and solve it using an Ising solver).

An alternative is to find kernel elements as differences of the feasible

solutions and thus partial Graver bases and augment every feasible

solution using the Graver bases to obtain solutions that are likely

only a local optimum. To be clear, we have the following steps:

1. Find (partial) Graver basis (either by finding several kernel

elements by solving a QUBO for Ax = 0 or taking differences

of feasible solutions found in step 2);

2. Find feasible solutions by solving a QUBO for Ax = b;

3. Augment the feasible solutions using partial Graver basis

elements, computing the objective function value f (x) at each

step, and choosing the best solution among all (potentially) local

optimal solutions.

4 Data and pre-processing

The data set used is from Kaggle (Breviglieri, 2019) (Kaggle,

RRID:SCR_013852): 1,000 images from each of the normal and

opacity classes are used for training the SVM, while 267 images

from the normal class and 1,000 images from the opacity class

are used to test the trained model for evaluation of performance.

Originally, the images are of different sizes and dimensions.

Therefore, the images are first resized to 200 × 200 pixels. The

resized images are then flattened to give 1-dimensional arrays of

40,000 pixels.

Although the original data set in Kaggle contains more than

4,000 images, we have considered only 2,000 training images. In

the dataset, we observed 1,082 normal images available for training,

while there are more than 3,000 images with signs of pneumonia.

To get unbiased results from the MLmodels, we began our training

with a balanced dataset. Thus, we considered 1,000 normal images

and 1,000 opacity images as the data set in our studies.

5 Methods

We begin with a discussion of each method.

5.1 Method 1: LibSVM (benchmark)

LibSVM is a state-of-the-art library that implements support

vector machine (Chang and Lin, 2011) using the input data sets

directly, without going through the formulation of a QUBO. The

results from LibSVM are typically considered to be a benchmark to

compare other newer methods.

5.2 Method 2: SVM using Gurobi

An SVM modeled as QUBO, as in (10), can be solved using a

state-of-the-art classical solver, such as Gurobi (version 9.5.0). This

is implemented in two ways as follows:

1. All 2,000 training images are taken at once and incorporated into

the QUBO. The solver returns expanded Lagrange multipliers

as an array of 4,000 elements, using which we construct 2,000

support vector values and make predictions on test data.

2. The training set is divided into 40 sets, each of 50 images. Every

set represents an SVM. The 40 SVMs are solved separately and

combined using majority voting bagging (Kim et al., 2002). This

approach is discussed in detail in Section 5.3.

5.3 Method 3: SVM using annealing

We used the D-Wave neal simulated annealer, digital annealer

from IITM, and the Advantage_system 6.2 fromD-Wave with 5614

qubits with the Pegasus connectivity between them (Dattani et al.,

2019) as our three Ising solver options. Among these, the first two

are simulated annealers, while the latter is a quantum annealer.

With additional lenience given for the Lagrange multipliers

using a precision vector, the QUBO matrix for 2,000 input images

has a size of 4000 × 4000. This is beyond the processing capacity

of simulated annealing using D-Wave neal and D-Wave quantum

annealing. To overcome this, we opted to partition the images into

20 distinct sets, each comprising 100 images, giving a QUBOmatrix

of size 200 × 200, which can be solved with simulated annealers

while still remaining challenging for quantum annealing platforms.

Subsequently, we refined our strategy by further dividing the

images into 40 sets, each encompassing 50 images (25 from each

class). As a result, there are 40 SVMs (40 QUBO matrices) of size

100× 100. These 40 SVMs are trained separately, and their outputs

are combined using the majority voting bagging technique (Kim

et al., 2002) to obtain the final decision boundary for classification.

This framework is presented in Figure 3.
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FIGURE 3

Flowchart of the steps involved in our proposed method for utilizing SVM using annealing.

5.3.1 Method 3(a): simulated annealing
5.3.1.1 Simulated annealing using the D-Wave neal

package

The 40 QUBOs corresponding to 40 SVMs are solved

individually using a simulated annealer, with 1,000 iterations each

per SVM. The output of the annealer is the set of expanded

Lagrange multipliers for all the 1,000 iterations. We filter the

one which gives the minimum energy among 1,000 iterations

for every SVM and thus obtain 40 sets of expanded Lagrange

multipliers for 40 SVMs, using which we get our final support

vectors. The 40 SVMs are combined using the majority voting

bagging technique, and the prediction of unseen test data is

carried out by (11). The simulated annealer was configured

using the default parameter values specified by D-Wave neal in

our study.

5.3.1.2 Simulated annealing using the digital annealer of

IITM

In the utilization of the Digital Annealer for simulated

annealing, it was essential to designate parameter values, that

is, the starting and ending temperature and iterations to

perform at every temperature while descending. We converted

all 40 QUBOs to Ising formulations and gave them as input

to the digital annealer. The annealer performs one round of

annealing from starting temperature to ending temperature with

a specified number of iterations at every step. We took the

initial temperature to be 6.4K, the final temperature to be

0.001K, and iterations at every step to be 20. The output we

get would be the final spin values of the Ising formulation and

its final energy value. We take the spin values output for all

40 SVMs which are expanded Lagrange multipliers and calculate

support vectors. These are combined using majority voting,

and prediction for unseen test data is done by using equation

(11).

5.3.2 Method 3(b): quantum annealing
The procedure resembles that of simulated annealing with D-

Wave neal. Here, instead of 1000, we have taken 500 iterations of

the D-Wave quantum annealer. It is important to note that, unlike

simulated annealing, quantum annealers often have substantial

queue times.

5.4 Method 4: SVM using GAMA

GAMA can be a very efficient method when the objective

function is complex but the constraints are simple (Alghassi et al.,

2019b). We give the simpler constraints to the annealer, obtain

partial Graver elements and feasible solutions, and do a walkback

using the initial objective function to obtain a final solution. The

constraint equation is given in (5).

To ensure that the algorithm does not get stuck in a

local minimum while performing augmentation, we implement a

Metropolis-Hastings version of GAMA. In this case, we consider

the probability of moving in any of the directions according to the

ratio in the objective function value and not just in the direction of

improvement. We end the augmentation iterations if the change

in objective function value remains constant for more than ten

iterations.

5.4.1 Method 4(a): GAMA using simulated
annealing

We tested simulated annealing from D-Wave and the Digital

Annealer from IITM. Similar to the method 3 (Section 5.3), the

images are divided into 40 sets (40 SVMs). Recalling that we use

the constraint mentioned in (5) to get Graver bases and feasible

solutions:

N
∑

i=1

λiyi = 0. (13)

Frontiers inComputer Science 05 frontiersin.org95

https://doi.org/10.3389/fcomp.2023.1286657
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Guddanti et al. 10.3389/fcomp.2023.1286657

TABLE 1 Confusion matrix values and time taken for the following methods, respectively: LibSVM (Classical state-of-the-art implementation of SVM),

Gurobi1 (Gurobi using all images at once), Gurobi2 (Gurobi with images split into 40 sets), SimAnn-Dn (Simulated Annealing using D-Wave neal),

SimAnn-Di (Simulated Annealing using the Digital Annealer from IITM), QuantumAnn (Quantum Annealing with D-Wave), Simulated Annealing using

D-Wave neal with GAMA (50 Graver + 50 feasible solutions), Simulated Annealing using D-Wave neal with GAMA (100 Graver + 100 feasible solutions),

Simulated Annealing using D-Wave neal with GAMA (200 Graver + 200 feasible solutions), Simulated Annealing using the Digital annealer from IITM with

GAMA (499 Graver + 499 feasible solutions), and Quantum Annealing with GAMA run on D-Wave quantum annealer (127 feasible solutions + 127 Graver

elements).

Method True +ve False +ve True −ve False −ve Time taken

LibSVM 917 19 248 83 3 min 30 s

Gurobi1 712 11 256 288 30 min

Gurobi2 860 111 156 140 2.44 s

SimAnn-Dn 927 22 245 73 6 min 29 s

SimAnn-Di 884 20 247 116 20 s

QuantumAnn 924 46 221 76 12 s

GAMA1 862 28 239 138 10 s (anneal) + 7 s (aug)

GAMA2 900 36 231 100 10 s (anneal) + 36 s (aug)

GAMA3 924 33 234 76 10 s (anneal) + 153 s (aug)

GAMA-Di 885 67 200 115 256 s (anneal) + 1,196 s (aug)

GAMA-Q 875 9 258 125 0.3 s (anneal) + 92 s (aug)

In the table, “aug” represents augmenting time. Quantum annealer time represents only quantum processor time. We are reporting the best of three runs for all annealing methods.

The constraint matrix (QUBO matrix framed from the above

equation) remains the same for all SVMs as the Y vector (labels

vector) remains the same for all 40 SVMs (each SVM has 25 normal

and then 25 opacity images). As the right-hand part of constraints

is zero, kernel elements and the feasible solutions are also the same.

This special structure implies that a single execution of the annealer

is sufficient to address the optimization requirements for all 40

SVMs. Thus, the Graver bases and feasible solutions are obtained

once and used for augmentation in all SVMs.

A total of 500 feasible solutions (also kernel elements) were

obtained by simulated annealing using the D-Wave neal package

(from dwave-ocean-sdk). For simulated annealing using the digital

annealer of IITM, we have taken the QUBO of constraint

mentioned above in (5) and converted it to an Ising formulation.

The annealer performs one round of annealing at a time as

mentioned in the method 3(a). We took the initial temperature to

be 6.4K, the final temperature to be 0.001K, and iterations at every

step to be 20. The entire annealing is performed for 500 times. Here,

500 feasible solutions (also kernel elements) are obtained. When

conformal filtration is performed, we obtained 499 partial Graver

bases.

Detailed experimentation of this method is performed using

D-Wave neal simulated annealing. We experimented with three

different sets of Graver bases and feasible solutions. The following

cases are considered for augmentation:

1. 50 Graver elements + 50 feasible solutions

2. 100 Graver elements + 100 feasible solutions

3. 200 Graver elements + 200 feasible solutions

We obtained 40 sets of Lagrange multipliers corresponding to

40 SVMs for each of the three cases above. The majority of voting

bagging is used to combine 40 SVMs, and the final output is tested

on the test data set according to equation (11). Using the digital

annealer from IITM, we have utilized all 499 partial Graver bases

and feasible solutions and performed the augmentation.

5.4.2 Method 4(b): GAMA using D-Wave quantum
annealing

The GAMA with quantum annealing process follows a

methodology akin to that of GAMA involving simulated annealing.

The number of feasible solutions was 127 (as compared with 500 in

the earlier method). Notably, out of 500 calls to D-Wave, only 127

gave the minimum energy solution. All 127 feasible solutions and

corresponding (partial) Graver elements (computed via conformal

filtration, which happened to also be 127, likely due to the fact that

the kernel elements are short to begin with) were included in the

augmentation process.

6 Results and analysis

The results of various methods are compared through

confusion matrix representation and associated metrics as we

mentioned below. A confusion matrix is a tabular representation

used to assess the performance of classification models. It provides

a comprehensive overview of how well the predictions of the model

align with actual outcomes for different classes or categories. The

matrix is constructed by comparing predicted class labels with

true class labels for data points. It represents a breakdown of

the predictions into four categories: True Positives (TP) represent

correctly predicted positive instances, True Negatives (TN)

represent correctly predicted negative instances, False Positives

(FP) represent instances that are incorrectly predicted as positive

when they are actually negative, and False Negatives represent

instances that are incorrectly predicted as negative when they are
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TABLE 2 Accuracy, precision, recall, and F1 score for all methods.

Method Accuracy Precision Recall F1 score

LibSVM 91.9 97.9 91.7 94.6

Gurobi1 76.4 98.4 71.2 82.6

Gurobi2 79.8 88.2 86 87

SimAnn-Dn 92.5 97.6 92.7 95

SimAnn-Di 89.2 97.7 88.4 92.8

QuantumAnn 90.3 95.2 92.4 93.7

GAMA1 86.8 96.8 86.2 91.2

GAMA2 89.2 96.1 90 92.9

GAMA3 91.3 96.5 92.4 94.4

GAMA-Di 85.6 92.9 88.5 90.6

GAMA-Q 89.4 98.9 87.5 92.8

We have highlighted the maximum values in each column in red for easy comparison.

actually positive. The confusion matrix helps in evaluating metrics

such as accuracy, precision, recall, and F1-score, which help with

a deeper understanding of the performance of the model across

various classes.

We evaluate various methods on four metrics as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
, (14)

Precision =
TP

TP+FP
, (15)

Recall =
TP

TP+FN
, (16)

F1 score =
2 TP

2TP+FP+FN
. (17)

For all the methods, the results are noted from the confusion

matrix, which is shown in Table 1 (Recalling that positive means

opacity and negative is normal). For quantum annealing, the

annealing time including queue time and post-processing for 40

SVMs is 3 h 16 min. In the table, we have removed all these and

only provided annealing time. The metrics of comparison for all

the methods are presented in Table 2.

6.1 Comparison of methods

Since the running time for each method is different, we cannot

draw direct comparisons based on the values of the four metrics.

However, Tables 1, 2 provide insight into some key points. All the

metrics from Table 2 are plotted in the graph in Figure 4 for visual

convenience. We use LibSVM as the classical solver to compare our

SVM implementations. As shown in Table 2, the results from other

methods, especially SimAnn-Dn, compare favorably against those

from LibSVM.

• Gurobi, when given data divided into 40 SVMs, takes the least

time (2.44 s), but the performance is weak. When all images

are input at once and trained for 30 min, there is no significant

improvement in the performance.

• Simulated annealing performed using D-Wave neal takes

approximately 6.5 min to run, and the results obtained are

good. The best accuracy (92.5%) and F1 score (95%) are

achieved with simulated annealing.

• In the case of GAMA, the performance improves as

we increase the number of Graver elements taken for

augmentation. The augmentation time taken also increases

accordingly (it reaches a threshold value of performance as in

Supplementary Figures 2, 4, See Appendix). Indeed, using 200

feasible solutions and 200 Graver elements appears sufficient

to reach good performance relatively quickly.

• GAMA when implemented using quantum annealing takes

approximately 8.5 min (including queue time) and provides

accuracy similar to that of SVM using quantum annealing

[Method 3(b)]. Here, we can observe a massive speed-up

as method 3(b) takes more than 3 h to run. Thus, despite

limited connectivity, GAMA provides a significant time

improvement for quantum annealing, without compromising

on the metrics.

• Quantum annealers often have a lower precision for encoding

QUBO coefficients. However, we found that this did not

affect the results because the QUBO matrix elements

ranged between 0 and 2 or between 0 and 4 when we

used GAMA.

Among our approaches, for a given time budget (of training),

the best methods are as follows:

1. 5 min: GAMA 3 (200 Graver elements + 200 feasible solutions).

2. 10 min: Simulated annealing [method 3(a)] and GAMA 3 (200

Graver elements + 200 feasible solutions).

3. 20 min: Simulated annealing [method 3(a)] and GAMA 3 (200

Graver elements + 200 feasible solutions).

Not much improvement is observed by increasing training

time.

6.2 Bagging and probability distribution

Majority voting bagging (Kim et al., 2002), the method used

to combine SVMs, also improve the performance of the combined

SVM. The accuracy of annealing methods [method 3(a) and

method 3(b)] without bagging and with bagging is compared in

plots (Figures 5, 6).

We can observe that the accuracy improved to 92.5% (Red line

in Figure 5) in the case of simulated annealing using D-Wave neal

and to 90.3% (Red line in Figure 6) in the case of D-Wave quantum

annealing using majority voting bagging.

Many iterations of annealing are taken to find the Lagrange

multipliers that best minimize the objective function value. It is

instructive to know how often we might get the parameters

that give the minimum objective function value. From

Figures 5, 6, we also observe that some of the individual

SVMs also give sufficiently good results. Thus, there maybe

an opportunity to reduce computational time (by only

solving a few SVMs rather than all 40) and obtain good

results.
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FIGURE 4

Comparative analysis of accuracy, precision, recall, and F1 score for all methods.

FIGURE 5

The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into. The red line shows the maximum accuracy achieved

using weighted average bagging as 92.5%. All the SVMs are solved with simulated annealing using D-Wave neal.

To understand the probability of obtaining the best solution,

we plot the probability distribution for best-performing SVMs

(for simulated annealing using D-Wave neal and quantum

annealing, respectively). Figure 7 shows the probability distribution

for all obtained solutions over 10,000 iterations of simulated

annealing for SVM number 31, which gave us the best individual

SVM accuracy. We can observe that although our desired

low-energy solution occurred with low probability, the median

solutions also give good accuracy. Figure 8 shows the probability

distribution for all obtained solutions over 8,000 iterations

of D-Wave for SVM number 27, which gave us the best

individual SVM accuracy. The distribution is similar to that of

simulated annealing but did not reach the quality of solutions of

simulated annealing.

7 Concluding remarks

In this study, we explored binary classification through

classical, quantum, and hybrid methods, using X-ray imaging data

for pneumonia, and used LibSVM as our benchmark. To have a

balanced data set for SVM, we selected 1,000 images, each, with

and without pneumonia as our input data set. We separated the

data into 40 sets. We formulated the SVM as a QUBO and solved

the QUBOs using simulated annealing and Gurobi and quantum

annealing. Additionally, we studied GAMA heuristic, where the

(different) QUBOs were solved using simulated annealing and

quantum annealing. Each of our data sets yielded an SVM. We

used bagging to combine the 40 SVMs, which improved the overall

accuracy.
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FIGURE 6

The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into. The red line shows the maximum accuracy achieved

using weighted average bagging as 90.3%. All the SVMs are solved using quantum annealing.

FIGURE 7

Probability distribution of simulated annealing solutions for SVM

number 31. The best solution has energy approximately −59.

For binary classification of X-ray images, SVM can be an

alternative to CNN, especially when considering pathways to

implementations on a quantum annealer. The classical solver,

LibSVM, shows a 92% accuracy in classification. However,

Simulated Annealing using D-Wave neal (SimAnn-Dn) has

comparable or better performance. GAMA provides a speed-up

over quantum annealing with the similar performance on metrics.

Quantum annealing is not competitive in terms of time taken

but provides solutions of quality that are near the best obtained.

We anticipate an enhancement in performance when quantum

FIGURE 8

Probability distribution of D-Wave quantum annealing solutions for

SVM number 27. Notably, the best solution has energy of

approximately −20, not as good as that found in simulated

annealing.

annealers with more qubits and better connectivity become

accessible. It is important to acknowledge that improvements in

classical hardware and software are also anticipated concurrently.

This suggests that periodic comparisons should be encouraged. We

hope that our study adds to the literature on the benchmarking

of quantum, classical, and hybrid approaches to solve a variety

of important combinatorial optimization problems arising from

practical applications (Metriq, 2023).
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Quantum annealing research at
CMU: algorithms, hardware,
applications

Sridhar Tayur* and Ananth Tenneti

Quantum Technologies Group, Carnegie Mellon University, Pittsburgh, PA, United States

In this mini-review, we introduce and summarize research from the Quantum

Technologies Group (QTG) at Carnegie Mellon University related to computational

experiencewith quantum annealing, performed in collaborationwith several other

institutions including IIT-Madras and NASA (QuAIL). We present a novel hybrid

quantum-classical heuristic algorithm (GAMA, Graver Augmented Multi-seed

Algorithm) for non-linear, integer optimization, and illustrate it on an application

(in cancer genomics). We then present an algebraic geometry-based algorithm for

embedding a problem onto a hardware that is not fully connected, along with a

companion Integer Programming (IP) approach. Next, we discuss the performance

of two photonic devices - the Temporal Multiplexed Ising Machine (TMIM) and

the Spatial Photonic Ising Machine (SPIM) - on Max-Cut and Number Partitioning

instances. We close with an outline of the current work.

KEYWORDS

quantum annealing, Combinatorial Optimization, Photonic Ising Machines, Graver basis,

cancer genomics

1 Introduction

Quantum annealing has emerged as a promising approach because a variety of

Combinatorial Optimization (CO) problems that arise in practical situations (Smelyanskiy

et al., 2012; Tanahashi et al., 2019; Hauke et al., 2020) can be formulated as a Quadratic

Unconstrained Binary Optimization (QUBO) problem, which maps naturally to an Ising

model, and solved on specially constructed quantum and semi-classical hardware (Wang

et al., 2013; Lucas, 2014; McMahon et al., 2016; Glover et al., 2018; Harris et al., 2018; King

et al., 2018; Chou et al., 2019; Wang and Roychowdhury, 2019; Mohseni et al., 2022). A lucid

introduction to quantum annealing can be found in McGeoch (2014).

At Carnegie Mellon University’s Quantum Technologies Group (QTG), we have been

working on several initiatives1 related to computational aspects of quantum annealing

(Figure 1).

1. While unconstrained optimization problems expressed as QUBO can be directly passed

to an annealer solver, it is also of practical interest to develop scalable decomposition

methods that solve general non-linear constrained optimization problems. We describe

a novel quantum-classical algorithm, Graver Augmented Multiseed Algorithm (GAMA)

(Alghassi et al., 2019b,c) for solving such optimization problems, building on previous

work on the use of algebraic geometry for Integer Optimization with a linear objective

1 QTG is also engaged in theoretical research on understanding speed up in adiabatic quantum

computing (Dridi et al., 2018b, 2019a), and other connections between algebraic geometry and Ising

models (Dridi et al., 2019b), topics not covered here.
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FIGURE 1

Some computational quantum annealing initiatives at Quantum Technology Group (QTG).

function (Tayur et al., 1995). GAMA is motivated by test sets,

and (a) uses partial Graver bases (Graver, 1975) instead of

the complete Graver basis and (b) many feasible solutions as

starting points (rather than just one) for augmentation. Both

the partial Graver basis and a number of feasible solutions are

obtained from the constraint equation expressed as QUBOs

(that is solved by an annealer). A particular advantage of this

algorithm is that it separates the constraints from the objective

function, allowing us to tackle situations where the computation

of objective function value may need an oracle call (such as a

simulation).

2. Many devices such as D-Wave have limited coupling

connectivity between qubits. For a dense problem graph,

it is therefore necessary to develop a mapping - minor

embedding—to the sparse hardware graph. We have developed

two methods, based on algebraic geometry and Integer

Programming (Dridi et al., 2018a; Bernal et al., 2020).

3. Building fully connected Ising hardware is another exciting

area of current research. We have re-constructed (with some

refinements) two Photonic Ising Machines (PIM), building on

the time-multiplexed coherent Ising machine (TMCIM) (Böhm

et al., 2019) and the spatial multiplexed Ising machine (SPIM)

(Pierangeli et al., 2020). We have studied the performance of

the annealers on Max-Cut and Number Partitioning Problem

with D-Wave (McGeoch, 2014) and Gurobi (LLC Gurobi

Optimization, 2023).

The rest of the review is organized as follows. In Section 2, we

describe GAMA. In Section 3, we illustrate the application

of the GAMA on identifying altered pathways in cancer

genomics as a proof-of-principle and recovering known

results. An algebraic geometry-based embedding algorithm

and its Integer Programming reformulation are outlined

in Section 4 and compared to the default heuristic that

is used by D-Wave. The performance of two Photonic

Ising Machines is discussed in Section 5. We conclude in

Section 6.

2 Graver augmented multiseed
algorithm (GAMA)

We begin with three definitions, taken verbatim from Alghassi

et al. (2019c).

Definition 1. A set S ∈ Z
n is a Test Set or an optimality certificate

if for every non-optimal, feasible solution, x0, there exists t ∈ S and

λ ∈ Z+ such that f (x0 + λt) < f (x0). The vector, t is called the

augmenting direction.

The following partial order is defined on R
n.

Definition 2. Given x, y ∈ R
n, we define x is conformal to y,

written as x ⊑ y, if xiyi ≥ 0 (x and y lie in the same orthant),

and |xi| ≤ |yi|, ∀ i ∈ {1..n}. A sum u =
∑

i vi is called conformal if

vi ⊑ u, ∀i.

For a matrix A ∈ Z
m×n, define the lattice

L∗(A) = {x|Ax = 0, x ∈ Z
n,A ∈ Z

m×n}\{0}. (1)

Definition 3. The Graver basis, G(A) ⊂ Z
n, of an integer matrix A

is defined as the finite set of⊑minimal elements in L∗(A).

The Graver basis (Graver, 1975) of an integer matrix, A ∈

Z
m×n is known to be a test set for integer linear programs. Graver

basis is also a test set for certain non-linear objective functions

including Separable convex minimization (Murota et al., 2004),

Convex integer maximization (De Loera et al., 2009), Norm p

minimization (Hemmecke et al., 2011), Quadratic (Murota et al.,

2004; Lee et al., 2010) and Polynomial minimization (Lee et al.,

2010). It has also been shown that for these problem classes, the

number of augmentation steps needed is polynomial (De Loera

et al., 2009; Hemmecke et al., 2011). Graver basis can be computed

(only for small size problems) using classical methods such as the

algorithms developed by Pottier (1996) and Sturmfels and Thomas

(1997).

At QTG, we are exploring (a) the effectiveness of computing

partial Graver basis using annealers by solving a QUBO (for kernel

elements) and (b) instead of relying on just one feasible solution

as the seed for augmentation, using multiple feasible solutions

(that are also obtained via annealing, by solving a second QUBO),

as parallel starting points. The GAMA heuristic (Alghassi et al.,

2019b,c) thus aims to find good solutions to constrained non-linear

optimization problems of the form in Equation 2, using multiple

seeds as starting points for augmentation, with partial Graver basis

elements as the augmenting directions:

(IP)A,b,l,u,f =















min f (x)

Ax = b l ≤ x ≤ n x, l, u ∈ Z
n

A ∈ Z
m×n b ∈ Z

n

(2)
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where f :Rn− > R is a real valued function.

2.1 QUBO for kernel calculation

In order to find a sample of the kernel elements for the

constraint matrix A, we solve the Quadratic Unconstrained Integer

Optimization (QUIO), given by

min xTQIx, QI = ATA, x ∈ Z
n

xT = [x1, x2...xn], xi ∈ Z.
(3)

Since the inputs to the annealer are binary variables, we create

a binary encoding of the integer variable. Writing

x = L+ EX, (4)

with L as the lower bound vector and E as the encoding matrix, the

QUIO is equivalent to the QUBO

min XTQBX, QB = ETQIE+ diag(2LTQIE),

X ∈ {0, 1}nk,QI = ATA.
(5)

The above QUBO is solved by an annealer to obtain kernel

elements. A partial Graver basis can be obtained from the kernel

elements in a classical post-processing step by ⊑-minimal filtering

(Alghassi et al., 2019b).

2.2 QUBO for feasible solutions

Similar to the kernel sampling, the Ax = b constraint can be

expressed in the QUIO form as

min xTQIx− 2bTAx

QI = ATA, x ∈ Z
n.

(6)

After binary encoding, we get the QUBO given by

min XTQBX, QB = ETQIE+ 2diag[(LTQI − bTA)E]

X ∈ {0, 1}nk,QI = ATA.
(7)

The above QUBO can be solved by an annealer to obtain a

sample of feasible solutions.

3 An application of GAMA: cancer
genomics

As a proof-of-principle testing of GAMA, we describe an

application (Alghassi et al., 2019a) to identify cancer pathways de

novo (Vogelstein and Kinzler, 2004; Haber and Settleman, 2007;

Ciriello et al., 2012; Vandin et al., 2012a,b; Zhao et al., 2012) from

mutation co-occurrence and mutual exclusivity (Leiserson et al.,

2013; Weinberg and Weinberg, 2013).

Data from The Cancer Genome Atlas (TCGA) are now

available for a variety of cancers, providing information about

which genes are mutated for which patient for any given cancer.

With this, we can create a matrix. The rows of the matrix are

patients, the columns are the genes, and the elements of the matrix

(row i, column j) are zero or one (a binary matrix), where “one” in

(row i, column j) means that gene j is mutated for patient i.

However, not all mutations matter. The mutations that do

not matter are called passengers. Those mutations that matter are

called drivers. We want to isolate drivers from passengers (Most

mutations are passengers). Furthermore, the same cancer can

manifest itself due to different driver mutations, because different

mutated driver genes can impact different cellular signaling and

regulatory pathways. This mutational heterogeneity complicates

efforts to identify drivers solely by their frequency of occurrence.

A pathway is a collection of genes. To find k pathways

means finding k different collections of genes. Each collection

of genes can be of a different size. To make the discovery of

these pathways computationally manageable, we also make two

commonly accepted simplifications:

Simplification 1: A pathway has at most one mutated driver gene.

This is because driver genes are quite rare. Thus, two different

pathways will not likely share a common driver gene. This is called

(mutual) exclusivity.

Simplification 2: A pathway should apply to many patients. This is

called coverage. The important thing to note is that even though

two patients share a pathway, they can have a different mutated

gene from that shared pathway as an explanatory reason for

their cancer.

Another complexity that we need to handle is that real data

are noisy because of measurement errors and passenger mutations.

This means that we cannot impose exclusivity as a hard constraint.

Instead, we allow for some overlap or “approximate exclusivity”

and this is a parameter in our formulation. Similar considerations

force a modification of Simplification 2 as well, in the sense that

we now can only reasonably hope that most patients have at least

one mutation in a pathway. Recall that mutual exclusivity problems

even without the modification above are NP-hard (Karp, 1972).

3.1 Multiple-pathway QUBO formulation
for GAMA

Alghassi et al. (2019a) developed a novel formulation tailored

for GAMA to discover the cancer pathways. Consider a hypergraph

Hg = (Vg ,Ep) with incidence matrix B, where each gene (gi) is

represented by a vertex vi ∈ Vg , i = 1, 2, ..., n and the mutation

list of each patient Pi is represented by a hyperedge ei ∈ Ep, i =

1, 2, ...,m.

The incidence matrix is mapped to its primal graph (G). This

is a graph with the same vertices as that of the hypergraph and

with edges between all pairs of vertices contained within the same

hyperedge. The primal graph can be expressed in terms of the

(positive) Laplacian matrix:

L+(G) = BBT = D(G)+ A(G). (8)

The weighted adjacency matrix A = [a(i, j)]n×n is symmetric

and has zero as the diagonal elements. The number of patients that

have gene pairs (gi, gj) mutated is given by a(i, j). The number of

patients with gene gi mutated is given by the element, di in the
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degree matrix, D = diag{d1, d2, ..., dn}, where di is the degree of

the vertex vi in the primal graph.

A k-pathway QUBO formulation simultaneously finds k

pathways in a single optimization run. The solution vector is

represented by the binary vector xi = [xi1, xi2, ..., xin]
T , i = 1, 2, ..., k

where, each element xij indicates if a vertex vj belongs to the ith

pathway. Let X = [x1, x2, ..., xk]
T . The QUBO formulation is given

by the following (where L = (D − A) is the negative Laplacian

matrix).

min XT(Qmain + αQorth)X

Qmain = −Ik ⊗ L

Qorth = (Jk − Ik)⊗ In

(9)

Note that Ik and In are k × k and n × n identity matrices. Jk is

the k× kmatrix with all entries equal to 1.

Rewriting the system of equations( 9) as

min XTQX

(1Tk ⊗ In)X ≤ 1n

Q = −Ik ⊗ L

(10)

brings it in the form suitable for GAMA (Alghassi et al., 2019b).

This is a non-linear (quadratic) non-convex integer problem

and of a Quadratic Semi Assignment Problem (QSAP) form. We

can alternatively extract Graver basis and generate feasible solutions

systematically, in this case, Alghassi et al. (2019b) instead of solving

QUBOs on a quantum annealer.

3.2 Numerical results

GAMA algorithm is used to solve the k-pathway problem using

the mutation data of 33 genes for Acute Myeloid Leukemia (AML)

for 200 patients (Network, 2013). By construction, the number of

binary variables required is lower than available methods (?). For

k = 3, the pathways discovered by GAMA are consistent with

those reported by the TCGA authors. For k = 6, three additional

pathways are discovered by GAMA albeit with lower coverage.

4 Embedding algorithms

If an annealer hardware is not fully connected (e.g. the D-Wave

system), it is necessary to map the logical graph, Y associated with

the optimization problem into the processor graph, X (Choi, 2011,

Boothby et al., 2016).We describe embedding algorithms2 based on

algebraic geometry (Dridi et al., 2018a).

Definition 4. Let X be a hardware graph. A minor-embedding of

the the graph, Y is a map, φ :Vertices(Y)− > connectedSubtrees(X)

such that, ∀(y1, y2) ∈ Edges(Y), there exists at least one edge

connecting the subtrees, φ(y1) and φ(y2).

2 Note that X can be any graph in general, not just the hardware graph,

which is the focus here.

Given an embedding of a logical graph, Y into a physical graph,

X, the Y minor is a subgraph of X given by

φ(Y) = ∪y∈Vertices(Y)φ(y) (11)

This is the input graph to the quantum processor. The

information regarding the mapping of each logical qubit is stored

in a hash map,

id × φ :Vertices(Y)× Vertices(Y)− > Vertices(Y)× Subtrees(X)

(12)

which can be used to unembed the desired solution returned by the

processor.

4.1 Algebraic geometry method

The set of embeddings can be viewed as an algebraic variety,

which is the set of zeros of a system of polynomial equations (Cox

et al., 2007). Given an embedding the mapping, π :Vertices(X)− >

Vertices(Y) ∪ {0}, where the pre-image (fiber) π−1(y) = φ(y),

∀y ∈ Vertices(Y) has the form:

π(xi) =
∑

j

αijyj

with
∑

j

αij = βi, αij(αij − 1) = 0

αij1αij2 = 0, for j1 6= j2

(13)

where βi ∈ {0, 1} is equal to 1, if the physical qubit xi is used, and

0 otherwise. The conditions on the embedding φ in Definition 4

along with a limit on the number of usable physical qubits can be

translated into a system of polynomial constraints on αij and βi.

This system defines an algebraic ideal I , and the embeddings can

be obtained using the Groebner basis of I .

4.2 Integer programming (IP) method

An IP formulation of the embedding algorithm (Bernal et al.,

2020) is developed by expressing the polynomial conditions in

Dridi et al. (2018a) as linear constraints involving integer variables.

This formulation includes constraints forMinimum andMaximum

size. Embeddings are obtained by optimizing the Embedding size

within the feasible region. A decomposition approach, iterating

between a qubit assignment master problem and a fiber condition

checking subproblem is also developed.

Bernal et al. (2020) tested these methods using random graphs

that vary in structure, size, and density. The results are compared

with the D-Wave default heuristic, minorminer (Cai et al., 2014).

The IP-based approaches are found to be slower whenever the

heuristic can find an embedding. However, it is possible to obtain

infeasibility proofs and bounds on solution quality with the IP

methods, but not from the heuristics. The decomposition approach

outperforms the monolithic IP approach.
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5 Hardware

Two fully connected Coherent Ising Machines (CIM) - the

Temporal Multiplexed Coherent Ising Machine (TMCIM) (based

on Böhm et al., 2019, 2021) and the Spatial Photonic Ising Machine

(SPIM) (an enhancement of that of Pierangeli et al., 2019)—were

built by collaborators at IIT-Madras (Prabhakar et al., 2023).

5.1 Temporal Multiplexed Ising Machine

The TMCIM was tested on the Max-Cut problem (Karp, 1972)

and the results on various instances are compared with Gurobi run

on an Intel Core i3 processor and also with a D-Wave machine. The

graph instances for the problem are generated using rudy (Rendl

et al., 2010). See Prabhakar et al. (2023) for details.

First, at a fixed graph size (100 nodes), and varying density,

TMCIM performed better than Gurobi up to a graph density of

40%. However, above 50%, the performance of TMCIM degraded.

Next, the results with a fixed graph density of 40% and varying size

of the graph from 100 to 1, 000 were obtained. For larger graphs,

the performance of TMCIM was found to be considerably lower

than Gurobi.

Second, the results are compared with the D-Wave Advantage

1.1 (DWA) annealer with the graph size varying from 20 to 100

nodes and the graph density fixed at 10%. For all the graph sizes,

TMCIM is able to always give aMax-Cut value which is at least 96%

of the value obtained using Gurobi (see Figure 6 in Prabhakar et al.,

2023). A solution accuracy of 99% can be attained up to 30 nodes.

For DWA, the solution accuracy degrades beyond 20 nodes. This

can be attributed to the limited connectivity of its Pegasus graph.

5.2 Spatial Photonic Ising Machine

The SPIMwas tested on a Number Partitioning Problem (NPP)

with instance sizes varying from 16 to 16, 384 variables. The

performance of the SPIM was compared with that of Gurobi and

DWA. See Tables 3, 4 in Prabhakar et al. (2023). For DWA, the

number of variables that can be embedded is limited to 11 × 11

fully connected graph and is not competitive. For problem sizes

up to 1024 variables, Gurobi performs better than SPIM. However,

Gurobi is unable to find solutions as the problem size gets larger

while SPIM can handle up to 16,384 variables.

6 Conclusion

We have developed GAMA (Graver Augmented Multi-seed

Algorithm), a novel hybrid quantum-classical algorithm for non-

linear constrained integer optimization. As an application, we have

explored a new formulation for the discovery of de-novo cancer

pathways. This tailored formulation is found to require fewer

binary variables when compared with existing methods, and the

pathways detected have been found to be consistent with previously

published results.

For minor embedding that is usually required in Ising

hardware that does not have an all-to-all connectivity, we have

developed algebraic geometry and IP-based algorithms. The

IP algorithm is found to perform well for highly structured

source graphs when compared with the currently employed

heuristic, minorminer and the Groebner basis method.

While slower overall when compared with the heuristic, the

algorithm can detect instance infeasibility and obtain bounds on

solution quality.

We have built two photonic Ising machines, TMCIM and

SPIM. We have studied their performance on Max-Cut and NPP

problems, respectively, by comparing them with D-Wave and

Gurobi. For the Max-Cut, TMCIM gave better results than Gurobi

at smaller graph sizes (< 100 nodes) and lower densities (<

40%), while its accuracy is lower for larger problems. However,

the performance is better than D-Wave, which can be attributed

to better connectivity. SPIM can solve NPP problems up to 16384

spins, which is larger than the problem sizes solved by D-Wave and

Gurobi. Gurobi’s performance is better at smaller sizes, but cannot

exceed more than 1024 spins.

We conclude by noting some current work in quantum

annealing. We are testing GAMA3 against state-of-the-art

classical approaches for an application in disaster preparation,

in collaboration with researchers at Koc University, as part

of an initiative of the Turkish Ministry of Transportation

and Infrastructure, focused on probable earthquakes in

Istanbul. As noted earlier, the performance of the annealers

depends crucially on connectivity in the hardware. We are

in the process of building another fully connected annealer,

based on Floquet Theory, collaborating with researchers at

Cornell University and Raytheon BBN Technologies, that

is implemented using superconducting circuits (Onodera

et al., 2020), adding to a growing set of devices with all-to-all

connectivity being developed on other technologies (such as

trapped ions or cold Rydberg atoms, such as QuEra processor).

Nevertheless, we expect the size of complete connectivity in any

hardware in the foreseeable future to be limited. It is therefore

necessary to develop additional decomposition techniques

for efficiently partitioning (and then recombining) large-scale

optimization problems, an area of active algorithmic research

at QTG.
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We benchmark Quantum Annealing (QA) vs. Simulated Annealing (SA) with

a focus on the impact of the embedding of problems onto the di�erent

topologies of the D-Wave quantum annealers. The series of problems we study

are especially designed instances of the maximum cardinality matching problem

that are easy to solve classically but di�cult for SA and, as found experimentally,

not easy for QA either. In addition to using several D-Wave processors, we

simulate theQA process by numerically solving the time-dependent Schrödinger

equation. We find that the embedded problems can be significantly more

di�cult than the unembedded problems, and some parameters, such as the

chain strength, can be very impactful for finding the optimal solution. Thus,

finding a good embedding and optimal parameter values can improve the

results considerably. Interestingly, we find that although SA succeeds for the

unembedded problems, the SA results obtained for the embedded version

scale quite poorly in comparison with what we can achieve on the D-Wave

quantum annealers.

KEYWORDS

quantum annealing, simulated annealing, benchmarking, maximum cardinality

matching problem, minor embedding

1 Introduction

In theory, quantum computing has the potential to yield significant, potentially even

exponential, speed-up compared with the best known algorithms of traditional computing.

Whether quantum computing can meet these high expectations is not yet clear. The

current technological state of the art only allows for rather modest results: Even though

some computing advantage has been shown on some corner cases (Arute et al., 2019;

King et al., 2021), no computing advantage that is relevant for practical applications has

been shown so far, and although successful application of quantum error correction has

been reported (Ryan-Anderson et al., 2022; Takeda et al., 2022; Acharya et al., 2023), the

threshold for fault-tolerant quantum computing has not yet been reached.

However, especially when focusing on the field of optimization, there exist quantum

processors that do not rely on quantum gates but on Quantum Annealing (QA)—

the natural time evolution of a “programmable” quantum system—to find a solution

of an optimization problem. The Canadian company D-Wave Systems Inc. builds and

commercializes such quantum processors comprising over 5,000 qubits. As these types

of quantum computers act as optimizing black boxes, an important aspect from a user

perspective is to characterize the quality of the outcome. Furthermore, such benchmarking
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activities are of high interest for commercial and scientific

prospects. There are several aspects of benchmarking:

(i) One aspect is the investigation of whether or not quantum

effects are at play in the annealing process of the D-

Wave processors. Studies with this aim were conducted by

comparing D-Wave data with (simulated) QA and classical

models often including, among others, Simulated Annealing

(SA). Such studies either showed that previously considered

classical models cannot reproduce the D-Wave results,

for instance for freeze-out time vs. temperature (Johnson

et al., 2011), for success probability distributions over many

random spin glass instances (Boixo et al., 2014), and for

the non-uniform probability of degenerate ground states of

specially crafted problem instances where the probability

of one ground state is suppressed in the quantum case

and enhanced for SA (Boixo et al., 2013; Albash et al.,

2015) or introduced another classical model such as noisy

Boltzmann distributions (Chancellor et al., 2022), classical

spin dynamics (Smolin and Smith, 2013), and spin-vector

Monte Carlo (SVMC, also called SSSV model—from Shin

Smith Smolin Vazirani) (Shin et al., 2014), which shows

agreement with the studied D-Wave data.

(ii) A second aspect is the comparison between different

generations of processors to judge possible improvements.

Previous studies compared D-Wave 2000Q and Advantage

system (Calaza et al., 2021; McLeod and Sasdelli, 2022;

Willsch et al., 2022a), D-Wave 2000Q, Advantage system and

Advantage2 prototype (Pelofske, 2023), and D-Wave Two, D-

Wave 2X, D-Wave 2000Q, and Advantage system (Pokharel

et al., 2021).

(iii) Another aspect is the search for quantum speedup (Rønnow

et al., 2014) and investigations of the performance of quantum

processors in comparison to classical algorithms. Studies

were performed for academic instances such as random spin

glasses (Rønnow et al., 2014), specially crafted problems with

or without planted solutions (Hen et al., 2015; King et al.,

2015; Albash and Lidar, 2018; Vert et al., 2020; McLeod and

Sasdelli, 2022), a variety of problems with different level of

difficulty (Jünger et al., 2021; McGeoch and Farre, 2023) and

problems with industrial application such as the multi-car

paint shop problem (Yarkoni et al., 2021), job shop scheduling

problem (Carugno et al., 2022), and Earth-observation satellite

mission planning problem (Stollenwerk et al., 2021). Studies

benchmarking QA against classical algorithms comprise

annealing-like algorithms such as SA (Rønnow et al., 2014;

Hen et al., 2015; King et al., 2015; Albash and Lidar, 2018; Vert

et al., 2020; Yarkoni et al., 2021; Carugno et al., 2022; McLeod

and Sasdelli, 2022; Ceselli and Premoli, 2023; McGeoch and

Farre, 2023), parallel tempering (McGeoch and Farre, 2023),

simulated QA and SVMC (Hen et al., 2015; Albash and Lidar,

2018), and heuristic algorithms such as Tabu search (McGeoch

and Wang, 2013; Yarkoni et al., 2021; Carugno et al., 2022),

Hamze-de Freitas-Selby algorithm (Hen et al., 2015; King

et al., 2015), or greedy algorithms (Yarkoni et al., 2021;

Carugno et al., 2022; McGeoch and Farre, 2023), as well as

exact solvers (McGeoch and Wang, 2013; Jünger et al., 2021;

Stollenwerk et al., 2021; Ceselli and Premoli, 2023).

Benchmarking QA by comparing it to SA is a common

approach since these two meta-heuristics share some similarities,

SA being inspired by statistical physics and QA relying on quantum

processes to achieve an optimization. In essence, SA (slowly)

converges toward a Boltzmann-like distribution with a high

probability of sampling low-cost solutions, whereas QA attempts

to converge toward a quantum state which contains with high

probability the low-energy states of an Hamiltonian. SA works well

for a variety of problems, including NP-hard problems, to obtain

a solution of reasonably good quality without spending too many

computational resources.

In this study, we extend previous study on earlier generations

of the D-Wave quantum processors in which QA was compared

with SA on a specially crafted series of problems that are known

to be asymptotically difficult for SA: the Gn series of the Maximum

Cardinality Matching (MCM) problem. In Vert et al. (2020) and

Vert et al. (2021), this problem was studied on the D-Wave 2X

processor and showed how the sparse connectivity of this particular

machine adds to the difficulty of solving this series of problem.

In McLeod and Sasdelli (2022), the same problem was studied,

and it was pointed out that the Gn series may be exponentially

difficult for the QA meta-heuristic as well, as preliminary results

indicated that the spectral gap could decrease quickly in this series

of problem. Indeed, the spectral gap is an important element in

deciding if a given problem requires a long annealing time to reach

the solution with a high probability.

In this study, we extend the study of the Gn series further:

• We added the results obtained from simulating the ideal QA

process on conventional computers to assess how problem

difficulty is affected by the embedding procedure even under

ideal conditions.

• We provide some order of magnitude estimation to

check that intrinsic precision limitations of the D-

Wave processor are not the main cause of error up to

the largest problem which was possible to map onto

these processors.

• We compare the results including improved embeddings

between several generations of the D-Wave quantum

processing units (QPUs), which have different levels of

connectivity, to investigate improvements between the

different generations and assess the performance gain due to

the higher connectivity.

• We show that the embedding is a sensitive parameter for the

quality of the results obtained from the QPUs by studying the

performance of SA using the same embedded instances on the

D-Wave processors.

Using several approaches (ideal QA, QA on different

generations of processors, and SA), we present a extensive study to

demonstrate that the minor embedding required to map a problem

instance onto the quantum processors can increase the difficulty of

the problem significantly.

The outline of the study is as follows: First, in Section 2, we

introduce the theoretical background and the applied methods

relevant for the study. Second, we show and discuss the results of

several experiments in Section 3 before concluding our study in

Section 4.
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2 Theoretical background and
methods

In this section, we introduce basic concepts to understand the

important ideas of this study and outline why a particular series of

problems aimed at theoretically probing the worst-case complexity

of SA which is relevant to test some aspects of QA. Therefore,

in this section, we briefly introduce the key concepts of SA, the

MCM problem, and QA with a focus on how it is implemented and

what are the concrete limitations of its implementation on D-Wave

quantum processors.

2.1 Simulated annealing

SA is a probabilistic meta-heuristic algorithm that is commonly

used for solving optimization problems (Kirkpatrick et al.,

1983). The name “annealing” comes from the annealing

process in metallurgy, and the idea is strongly inspired by

statistical physics.

In SA, an initial solution is randomly generated, and

the algorithm gradually explores the search space by making

small changes to the solution. The algorithm can even accept

these changes in detrimental cases with a probability that

decreases over time, i.e., with a parameter corresponding

to temperature, similar to a cooling process. This allows

the algorithm to escape local optima and search for

better solutions.

SA has been used to solve a wide range of optimization

problems, including the Traveling Salesman Problem (TSP),

scheduling problems, and other NP-hard problems. It is

particularly useful for problems where the search space

is large and the objective function is noisy or difficult

to evaluate.

One of the key advantages of SA is that it can find a

good solution even if the objective function has multiple local

optima. However, it can be slow to converge, and it may

require a large number of iterations to find a good solution.

Additionally, the performance of the algorithm can be sensitive

to its parameters, such as the cooling schedule and the acceptance

probability function.

As SA has been around for so long, there is no need to

further introduce the general method but rather to specify the key

free parameter choices for reproducibility. In our case, we have

used a standard cooling schedule of the form Tk+1 = 0.95Tk

starting at T0 = |c0| (c0 is the high cost of the initial random

solution) and stopping when T < 10−3. The key parameter of

our implementation, however, is the number of iterations of the

Metropolis algorithm running for each k at constant temperature

which we set to n and n2 (where n denotes the number of

variables in the QUBO). For n iterations per plateau of temperature,

the algorithm is very fast but the Metropolis algorithm has less

iterations to reach its stationary distribution, and hence, the

algorithm is expected to provide lower quality results. On the other

end of the spectrum, n2 iterations per plateau means that one can

expect high-quality results, but the computation time is then much

more important.

2.2 Quantum annealing principles and
D-wave processors

Like SA, QA is a meta-heuristic, but instead of being inspired

by statistical physics, QA lays its base on quantum physics. While

first intended as a variation of SA where thermal fluctuations are

replaced by quantum fluctuations (Finnila et al., 1994; Kadowaki

and Nishimori, 1998), in case of a closed system, QA can also be

understood by the adiabatic theorem of quantummechanics (Farhi

et al., 2000; Albash and Lidar, 2018). More accurately, a specific

utilization of the adiabatic theorem applies: If a quantum system is

prepared in an initial state that is the ground state of a Hamiltonian,

and if the Hamiltonian is slowly and continuously changed over

time, the system will remain in the instantaneous ground state of

the Hamiltonian throughout the evolution. The time of the total

process from the initial (or “driver”) Hamiltonian to the final one is

known as the annealing time tA.

Let H0 denote the initial (driver) Hamiltonian and Hf the

final one. For A(s) and B(s), respectively decreasing and increasing

functions of s = t/tA with support in the interval [0, 1] so that

A(0)≫ B(0) and A(1)≪ B(1),

H(t) = A(t/tA)H0 + B(t/tA)Hf

interpolates between H0 and Hf . A usual illustration is given by

using a linear ramp:

H(t) =

(

1−
t

tA

)

H0 +
t

tA
Hf

In QA, the system is initialized in the ground state of a

simple Hamiltonian H0, and the Hamiltonian is slowly changed

to Hf that encodes the cost function of interest. In theory, the

adiabatic theorem ensures that the system remains in the ground

state throughout this process, allowing the cost function to be

effectively minimized.

In the case of D-Wave quantum annealers,H0 andHf are given

as follows:

H0 =−

N
∑

i=1

σ x
i , (1)

Hf =

N
∑

i=1

hiσ
z
i +

∑

(i,j)

Ji,jσ
z
i σ

z
j , (2)

where σ x
i and σ z

i are the Pauli x- and z operators, N is the number

of qubits, and the summation index (i, j) indicates that the sum is

over pairs of qubits that are connected on the hardware. The initial

quantum state |ϕ0〉 =
⊗

i |+〉 is the uniform superposition of all

basis states in the z-basis or equivalently the state with all spins

aligned with the x-axis. The final solution is a vector of spins s with

si ∈ {−1, 1} aligned with the z-axis.

The Ising Hamiltonian Equation (2) is formally and bijectively

a Quadratic Unconstrained Binary Optimization (QUBO) problem

formulation. Therefore, finding the energy of the fundamental state

of Hf is equivalent to solving a QUBO problem, which is in the

general case an NP-hard problem. Since NP-complete problems

are polynomially reducible to one another (Garey and Johnson,

1979), many NP-hard problems such as the TSP or many logistics
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and other important optimization problems can be expressed as

a QUBO formulation. However, this is easier said than done as

finding quadratic reformulations allowing faster resolution for

some NP-hard problems is still an active domain of research in

the Operations Research community (see Anthony et al., 2017 for a

recent reference). A few important examples are further presented

in Lucas (2014).

A QUBO problem is defined as follows:

min
x∈{0,1}N

(C(x) = x
tQx) ,

where C(x) is the cost function to be minimized, x is a binary vector

with xi ∈ {0, 1}, and Q is a matrix inMN×N(R). It is worth noting

that Q is often expressed as an upper triangular matrix, although it

is not mandatory. Note that constrained quadratic binary problems

can also be transformed to QUBO if constraints are incorporated

into the cost function as soft constraints (Lucas, 2014).

2.2.1 The embedding problem on D-Wave
machines

Coupling coefficients of the Ising problem can only be set

to values different from zero if the physical connection between

the qubits exists. The connectivity between qubits on D-Wave

quantum processors is given by a sparse graph which is different

for the three generations of devices that we benchmark in our

present study. The architecture of the connectivity graph in the

DW_2000Q Quantum Processing Unit (QPU) is called “Chimera.”

The average number of connections per qubit is equal to 6, and

the number of qubits of DW_2000Q processors is slightly more

than 2,000. The topology on the current D-Wave Advantage series

is called “Pegasus,” and it has an average of 15 connections per

qubit. Advantage processors have more than 5,000 qubits (the

exact number varies between processors). The latest generation

topology, which will be available in the future Advantage2 QPU and

is already available in a prototype processor, is called “Zephyr” and

has an average of 20 connections per qubit. While the Advantage2

will have more than 7,000 qubits, the prototype only comprises

approximately 500 qubits.

As the number of connections per qubit is low compared

with the number of available qubits in any D-Wave QPU (e.g., 15

connections for over 5,000 possible destination qubits), the graph

defined by the connections of a given Ising or QUBO problem

is rarely isomorphic to (a subgraph of) the hardware topology.

To circumvent the connectivity problem of the QPU, it is often

required to combine several physical qubits to form a single logical

qubit with an effectively higher connectivity to represent a given

logical variable of the problem (Choi, 2008, 2010). These sets

of physical qubits, also called a qubit chain, have to act like a

single qubit to produce valid outputs. To achieve this, a strong

ferromagnetic coupling is applied between them. Such a procedure

in which multiple qubits of the QPU are used to constitute a

logical variable of the target problem is called minor embedding.

The D-Wave Ocean SDK (D-Wave Systems Inc, 2023a) provides a

heuristic algorithm to generate aminor embedding for a given Ising

(or QUBO) problem. The coupling strength of the ferromagnetic

coupling between the physical qubits of a qubit chain is called chain

strength, and this hyperparameter can be set by the user.

The value of the chain strength has to be chosen carefully (Choi,

2008; Raymond et al., 2020). If the chain strength is chosen too

weak, low-energy solutions of the embedded problem might favor

solutions where qubit chains are broken, i.e., physical qubits that

represent the same logical variable have different values. In such

a case, post-processing has to be applied to obtain a valid logical

variable from the physical qubits, but the resulting bitstring does

not necessarily have to be a low-energy solution of the original

problem. If the chain strength is chosen too strong, all qubit chains

act as one logical variable but their actual value might be random.

This is due to the limited range and precision of the hi and Jij values.

The problem has to be rescaled too much so that the hi and Jij
values become too small (i.e., below the precision limit) so that all

valid solutions get too close and, thus, difficult to separate, leading

to random outcomes. Moreover, in principle, the chain strength

should be optimized to find the sweet spot (Grant and Humble,

2022). The default procedure “uniform torque compensation” (D-

Wave Systems Inc, 2023b) provided in the Ocean SDK may (see

Chen et al., 2021) or may not (see Carugno et al., 2022) work

well enough.

Here, we use the relative chain strength r, i.e., we scan the chain

strength by setting it to sc = rm in relation to the maximum

value m = max(maxi |hi|, maxij |Jij|), occurring in the particular

problem instance.

2.2.2 Searching for better embeddings
Finding an optimal embedding generally is computationally

intractable in the worst-case: When both the application graph

and the hardware topology are part of its input, the problem is

NP-hard [even when the set of topologies is limited to subgraphs

of the Chimera or Pegasus graphs (Lobe and Lutz, 2021)]; when

the hardware topology is fixed, the problem becomes polynomial

but the large constants hidden in the big-O do not lead to

practical algorithms (Roberston and Seymour, 1995). Therefore,

generating an optimal embedding would annihilate any possible

quantum advantage a QPU would provide. Nonetheless, quickly

finding a good-enough embedding is required to try and solve any

given problem on a D-Wave quantum annealer. Finding a good

embedding can be advantageous because it reduces the complexity

of the problem to solve on the QPU and may reduce the number

of utilized qubits (Gilbert and Rodriguez, 2023) while taking

potentially more time on the classical computer to be generated.

From our experiments, we find that the embeddings generated

by the default heuristic provided in D-Wave’s Ocean library can be

quite far from optimal. Nonetheless, it has the advantage of ease of

use so that it does not overly complicate the procedure of solving a

problem on the QPU.

We try and probe what kind of gain can be achieved by looking

at better embedding results.We note that we do not aim for a highly

optimized embedding here but for a reasonably good one to assess

the performance improvement compared with a randomly picked

embedding of potentially poor or average quality. Themethodology

we utilize here is to use a large number of different seeds for

the Ocean’s embedding procedure to generate many different

embeddings (between 100 for the larger instances and up to 500

for the small ones) and select the best outcome of this process. For
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FIGURE 1

An illustration of the (A) G1, (B) G2, (C) G3 maximum cardinality

matching problems. The maximum matching is reached when all

edges are selected in the sparse parts of the graph (in green).

all except the smallest problem size, we utilized the most obvious

measure to estimate the quality of the embedding, namely, the

number of qubits required by the embedding. Another option

would be to also try to deduce the lengths of qubit chains. Trying

to avoid particularly noisy parts of the QPU could be an additional

consideration. For the smallest problem size, we could not apply

either of the first two measures as all embeddings require eight

physical qubits (on Pegasus and Zephyr topologies), which equal

the number of the logical variables (i.e., no minor embedding is

required). We show and discuss the results obtained from the QPU

with these improved embeddings in Section 3.2.2 below. Of course,

this modus operandi would not be considered for any consistent

quantum advantage as such because of the amount of required pre-

processing. However, used for benchmarking purposes, it can show

the influence of the quality of the embedding.

2.3 The maximum cardinality matching
problem

Given an undirected graph (V ,E) where V is a set of vertices

linked by a set of edges E ⊂ V × V , the MCM problem is a

combinatorial optimization problem aimed at finding the highest

number of edges |Ẽ|, Ẽ ⊆ E, such that each vertex V is linked by

at most one edge e ∈ Ẽ. While being a combinatorial problem, this

problem is polynomial.

To demonstrate explicitly the slow convergence of SA in some

cases, in 1988, Sasaki and Hajek (1988) devised a series of special

variants of this class of problem called the Gn series. This particular

series of problem instances is trivial to solve, but it is demonstrated

to be exponentially hard to solve by utilizing SA.

The simplest problem of the series is the G1 problem with only

eight edges and one densely connected subgraph. Each increment

in the series adds one new line of vertices and edges and one new

densely connected subgraph. Therefore, G2 adds 10 vertices and 19

edges resulting in 18 vertices and 27 edges. Only nine of these edges

constitute the optimal solution. To summarize, for each instance of

the Gn series, there are 2(n + 1)2 vertices and (n + 1)3 edges but

only (n + 1)2 edges in the optimal subgraph. Thus, the probability

of selecting an adequate edge in the random selection operated by

SA vanishes quickly. This provides a hint as to why this series of

problem instances is exponentially difficult to solve for SA. Figure 1

provides an illustration of the G1, G2, and G3 problems.

2.3.1 QUBO formulation
The MCM problem is a problem with constraints, and

therefore, the MCM problem and the Gn series have to be

transformed to a QUBO problem that can be executed on D-Wave

machines. There are three steps required for this transformation.

The first step is to associate relevant aspects of the original

problem with binary variables, the second step is to find the cost

function and constraints separately, and the third step is to add the

constraints as soft constraints by incorporating them as penalties in

the cost function.

The first two steps are usually closely related and also

performed when the problem is solved classically with linear

programming. The obvious choice for the binary variables, as we

aim to maximize the number of edges in the graph, is to associate

the binary variable xe with the fact that a given edge e ∈ E is selected

for the matching (xe = 1) or not (xe = 0). Then, the cost function

to be maximized would be C0(x) =
∑

e∈E xe, where E, as already

defined, is the set of the edges of the Gn graph. The constraints are

such that, for each vertex ν, at most one of its associated edges is

selected:
∑

e∈Ŵ(ν) xe ≤ 1, where Ŵ(ν) ⊆ E denotes the set of edges

associated to vertex ν. Under the additional assumption that any

maximum matching is a perfect one (which is the case for the Gn

family of graphs), the penalty terms added to the cost function are

then C1 = λ
∑

ν∈V

(

1−
∑

e∈Ŵ(ν) xe
)2

with λ > 0 and which are

zero if and only if all vertices are associated with one and only one

selected edge.

By constructing the total cost function Ct(x) = −C0(x)+ C1(x)

so that the cost is minimized when the solution is found, the

following is obtained for the coefficients of the Qmatrix:

qee′ =















−1− 2λ if e = e′

2λ if e 6= e′ ∧ ∃ν∈ V:(e ∈ Ŵ(ν) ∧ e′∈ Ŵ(ν))

0 else .

By choosing λ = |E| as |E| ≥
∑

e∈E xe, we ensure that the

configuration with the minimal cost satisfies the soft constraints.

As an illustration, Figure 1 shows the graph for G1, and the

associated QG1 matrix is given by:

QG1 =











−17 0 16 16 0 0 0 0
−17 0 0 16 16 0 0

−17 16 16 0 16 0
−17 0 16 0 16

−17 16 16 0
−17 0 16

−17 0
−17











.

It is easy to verify that the cost of the optimal solution is CGn (xopt) =

−(n + 1)2 − 2(n + 1)5, where −2n(n + 1)5 is an offset introduced

by neglecting the constant term of C1 which is irrelevant to

the optimization.
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FIGURE 2

Annealing schedules of the DW_2000Q_6 (light and dark blue,

dash-dotted), Advantage_system4.1 (light and dark green, solid), and

Advantage2_prototype1.1 (red and orange, dashed) QPUs as well as

a linear annealing schedule (pink and purple, dot-dash-dotted).

2.4 Principles of ideal quantum annealing
simulation

We simulate the (ideal) QA process by solving the time-

dependent Schrödinger equation (h̄ = 1)

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉

numerically, where |ψ(t)〉 denotes the state vector. For this, we

use the Suzuki-Trotter product-formula algorithm (Trotter, 1959;

Suzuki, 1976, 1985; De Raedt, 1987; Huyghebaert and De Raedt,

1990). This method yields a full state vector simulation of an

ideal, closed system, i.e., we have direct access to the theoretical

success probability, and we do not need to acquire an estimate

from sampling. For the decomposition of the Hamiltonian, we use

H(t) = A(t/tA)H0 + B(t/tA)Hf , with A(s = t/tA) and B(s = t/tA)

either linear annealing schedules or the annealing functions of

the particular D-Wave processor that we simulate. All annealing

schedules are shown in Figure 2, and H0 and Hf are given in

Equations (1, 2), respectively.

Since the memory requirement to store the full state vector

grows exponentially, specifically with 2N with N number of qubits,

we have to use supercomputers with distributed memory to

simulate systems withmore than 30 qubits. The communication via

the Message Passing Interface (MPI) follows the same scheme that

is used for the gate-based quantum computer simulator JUQCS (De

Raedt et al., 2007, 2019; Willsch et al., 2022b). The code utilizes

OpenACC and CUDA-aware MPI to be run on GPUs. To speed

up the simulation, we also run the 27-qubit cases on 4 GPUs (on

one node).

The ideal QA simulation can be used to compare aspects of the

D-Wave processors which are inaccessible on the real devices. For

instance, we can compare the different annealing schedules of the

processors without the need to apply minor embedding since in the

simulation, we have all-to-all connectivity between the qubits.

FIGURE 3

Success probability for the G1 graph (open markers) and the G2

graph (filled markers) as a function of annealing time for the

DW_2000Q_6 (blue squares), Advantage_system4.1 (green circles),

Advantage2_prototype1.1 (orange up-triangles), and linear (purple

down-triangles) annealing schedules. No embedding is used for

these simulation results.

3 Results and discussion

We present and discuss our results from QA simulation and

QA on three generations of D-Wave processors and compare them

with the results from SA. Note that most of the raw data utilized

here and program to generate them are available in Benchmarking

QA with MCM and problems (2023).

3.1 (Ideal) quantum annealing simulation

3.1.1 Influence of the annealing schedule
The shape of an annealing schedule influences the performance

of a QA device and optimizing the annealing schedule is an active

field of research (Farhi et al., 2002; Morita, 2007; Zeng et al.,

2016; Brady et al., 2021; Mehta et al., 2021; Susa and Nishimori,

2021; Venuti et al., 2021; Chen et al., 2022; Hegde et al., 2022,

2023). The D-Wave annealing schedules are partly dictated by the

hardware as the functions A and B cannot be chosen completely

independently (Harris et al., 2010). We illustrate the influence of

the annealing schedule on the difficulty of the problem exemplarily

for the G1 and G2 graphs.

Figure 3 shows the success probability as a function of

annealing time for four different annealing schedules. Three

annealing schedules are taken from the DW_2000Q_6,

Advantage_system_4.1, and Advantage2_prototype1.1 QPUs,

the fourth is a linear one, and they are shown in Figure 2.

Since the results are obtained from (ideal) simulation of the

QA process, no embedding is required regardless of the annealing

schedule. Thus, differences in success probability are only due to

the different annealing schedules. We find that using the linear

annealing schedule requires a much shorter annealing time to reach

the same success probabilities than using the D-Wave annealing
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FIGURE 4

Energy E1(s)− E0(s) between the ground state and the first excited

state for the G1 graph as a function of the anneal fraction s. (A) The

DW_2000Q_6 annealing schedule is used. (B) The

Advantage_system4.1 annealing schedule is used. (C) The

Advantage2_prototype1.1 annealing schedule is used. (D) The linear

annealing schedule is used.

schedules, which also show different performances: For the G1 and

G2 graphs, using the DW_2000Q_6 annealing schedule performs

better than using the Advantage2_prototype1.1 annealing schedule

which performs better than the Advantage_system_4.1 annealing

schedule. More subtle is the observation that by going from the

G1 to the G2 problem, the required annealing time to reach a fixed

success probability increases more for the DW_2000Q_6 annealing

schedule than for the others.

The influence of the annealing schedule onto the difficulty of

the problem can also be observed in the energy spectrum: The

energy gap between the ground state and the first excited state

can differ quite significantly between different annealing schedules.

This is presented for the G1 problem in Figure 4. The different

panels show the energy gap during the annealing process for the

DW_2000Q_6, Advantage_system4.1, Advantage2_prototype1.1,

and linear annealing schedules for the same problem instance.

Obviously, the energy gap between the ground state and the excited

state is much smaller for the Advantage_system4.1 annealing

schedule, which means the G1 problem is then harder to solve,

resulting in the longer annealing times required to achieve the

same success probabilities as with the other annealing schedules.

This might be different for other problems but especially for

small and/or sparse problems, it was observed that DW_2000Q

processors could achieve a better performance than Advantage

processors (Calaza et al., 2021; Willsch et al., 2022a).

3.1.2 Influence of the embedding
To study the influence of the embedding on the performance,

we consider three different embeddings for the G1 problem. To

exclude the influence of the annealing schedule, we only use the

DW_2000Q_6 annealing schedule for all embeddings. We perform

a scan of the relative chain strength and the annealing time.

The results are shown in Figure 5. On the left, we show the

results of a scan of the relative chain strength for three different

embeddings which require a different number of chains of different

lengths. The embeddings onto their respective topologies are shown

in Supplementary material. We normalize the problem to keep the

values for h in the range [−2, 2] and the values for J in the range

[−1, 1] as is the standard on DW_2000Q QPUs. Depending on the

embedding, the maximal relative chain strength rscalemax which does

not require further (compared with the unembedded problem)

rescaling of the h and J parameters can be different. The minimal

relative chain strength rsolmin for which the solution state is also

the ground state depends on the embedding too. The relation

between these two chain strengths is different for all three cases

that we consider. Thus, the curves exhibit different features. For

the embedding onto the Chimera topology with 4 chains of length

2, which we label by (i), rsolmin > rscalemax , the maximum success

probability is reached for relative chain strengths larger than rsolmin

and rscalemax . For the embedding onto the modified Chimera topology

with 2 chains of length 2, which we label by (ii), the solution state

is always the ground state and the success probability is maximal

for relative chain strengths smaller than rscalemax . For the embedding

onto the square grid with 2 chains of length 3, which we label by

(iii) rscalemax > rsolmin, the maximum lies between rscalemax and rsolmin. For

embeddings (i) and (iii), there is a minimal relative chain strength

one has to choose to achieve success probabilities significantly

larger than zero. Due to the rescaling of the h and J parameters,

one cannot choose an arbitrarily large relative chain strength as the

success probability also drops for large values.

The right column in Figure 5 shows the success probability as

a function of annealing time for different relative chain strengths.

We consider for the success probability only the solution state

without broken chains. This corresponds to discarding all samples

with broken chains. Here, we include chain break fixes by majority

vote (labeled by “mv” in the legend), i.e., we assign to the logical

variable the value of the majority of the qubits in a chain. If the

numbers in a chain is equal, we multiply the probability of this

particular state by 0.5 for each such chain. For the first and second

embeddings, the improvement by including chain break fixes is

marginal. For embedding (iii), however, the chain break fix by

majority vote can improve the performance a lot so that the success

probability after majority vote gets close to the success probability

without embedding. This might be surprising at first as the chain

length is largest for this case (3 compared with 2 for the other 2

embeddings). However, if only one qubit is flipped in a chain of

length 3, majority vote fixes it with 100%, while for the chains of

length 2, the probability to fix the chain correctly is only 50%.

3.2 The Gn series on D-Wave quantum
processors

The first instances of the Gn series were run on several

generations of the D-Wave quantum annealer. Here, we present

our results obtained with the default embeddings and the improved
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FIGURE 5

Success probability for the G1 graph (A–C) as a function of the relative chain strength for di�erent annealing times indicated in the legend and (D–F)

as a function of annealing time for di�erent chain strengths indicated in the legend. The DW_2000Q_6 annealing schedule is used, and the rows

show di�erent embeddings. Only the solution state is counted as success; the results with broken chains are not considered unless indicated by “mv”

which means chains are fixed by majority vote. In case of the chains of length 2, the chance to fix a chain is 50%. The success probability for the

unembedded case is shown in gray for comparison. (A, D): Embedding onto the Chimera topology with 4 chains of length 2. (B, E): Embedding onto

a modified Chimera topology with additional couplers yielding 2 chains of length 2. (C, F): Embedding onto a square grid with 2 chains of length 3.

ones. For reference, Table 1 shows the number of variables and the

optimal energy for the graphs G1 to G7.

3.2.1 Results with default embedding procedures
D-Wave’s Ocean SDK (D-Wave Systems Inc, 2023a) provides a

heuristic procedure to generate minor embeddings of the problem

graph onto the hardware’s topology. We use 5–10 different seeds

for this heuristic embedding procedure to avoid obtaining an

unluckily bad embedding. Since the chain strength can have a

strong influence on the success rate, we scan the relative chain

strength and the annealing time as well to achieve high success rates

on the different processors. The chosen relative chain strength and

annealing time values are shown in the Supplementary material.

The results are shown in Table 2 for the

processors Advantage_system4.1, Advantage_system5.2,

Advantage_system6.1, DW_2000Q_6, and

Advantage2_prototype1.1. We obtain the optimal solution up to

G3 on the Advantage processors. For DW_2000Q_6, we obtained

the solution for G1 and G2. The required number of physical qubits

is much higher on this processor due to the sparser connectivity of

TABLE 1 Number of variables and optimal energies for G1 up to G7.

# var Opt

G1 8 −68

G2 27 −495

G3 64 −2064

G4 125 −6275

G5 216 −15588

G6 343 −33663

G7 512 −65600

the Chimera topology, and since this processor has approximately

2,000 qubits, we are able to find an embedding only up to G4 while

we can embed problems until G7 onto the Pegasus topology of the

Advantage_system processors with approximately 5,000 qubits.

The Advantage2_prototype1.1 with its Zephyr topology has an

even higher connectivity than the Advantage_system processors,

but we can only find an embedding up to G4 due to the limited

number of qubits which is approximately 500.
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TABLE 2 Results obtained on various D-Wave processors for the Gn series.

#qbs #Opt Best Worst Mean Median Stdev

G1

8 1,000 −68 −68 −68 −68 0

8 1,000 −68 −68 −68 −68 0

8 993 −68 −52 −67 −68 1.3

8 1000 −68 −68 −68 −68 0

13 998 −68 −51 −68 −68 0.7

G2

42 840 −495 −335 −486 −495 21.3

41 951 −495 −388 −492 −495 12.5

43 863 −495 −387 −487 −495 19.4

37 912 −495 −388 −490 −495 15.4

84 849 −495 −387 −488 −495 19.1

G3

144 9 −2, 064 −1, 171 −1, 736 −1, 683 140.9

144 15 −2, 064 −1, 298 −1, 802 −1, 808 125.8

150 27 −2, 064 −1, 423 −1, 773 −1, 808 127.7

121 110 −2, 064 −1, 551 −1, 884 −1, 936 104.6

315 0 −1, 937 −1, 295 −1, 608 −1, 554 98.5

G4

427 0 −5, 527 −3, 526 −4, 766 −4, 776 308.5

424 0 −5, 526 −3, 775 −4, 947 −5, 024 279.2

396 0 −5, 527 −3, 278 −4, 514 −4, 527 358.7

322 0 −5, 775 −4, 030 −5, 042 −5, 027 227.5

917 0 −5277 −3774 −4785 −4775 232.0

G5

923 0 −12, 994 −8, 676 −11, 122 −11, 266 733.4

952 0 −13, 428 −9, 114 −11, 779 −11, 702 615.9

987 0 −12, 997 −7, 817 −11, 396 −11, 271 686.9

G6

2,018 0 −27, 487 −18, 574 −23, 302 −23, 374 1, 463.9

1,853 0 −27, 489 −19, 943 −24, 008 −24, 058 1, 309.0

1,880 0 −27, 488 −17, 883 −23, 136 −23, 373 1, 528.0

G7

3,573 0 −51, 266 −31, 819 −41, 678 −42, 048 2, 807.0

3,562 0 −52, 284 −36, 921 −44, 852 −45, 113 2, 413.0

3,410 0 −50, 239 −34, 883 −43, 029 −43, 072 2, 827.0

For each graph, rows show the results on Advantage_System4.1, Advantage_System5.2, and Advantage_System6.1 (until G7) and Advantage2_prototype1.1 and DW_2000Q_6 (until G4 , resp.

gray background and gray background with bold font). The columns show the graph, the number of physical qubits (after minor embedding), the number of optimal solutions found, the best,

worst, mean and median energies, and the standard deviation of the energies obtained. The sample size is 1,000, and the used annealing times and relative chain strengths are given in the

Supplementary material.

Taking into account the results on the older generation D-Wave

2X processor which can be found in the study mentioned in the

reference (Vert et al., 2021), we find significant improvement from

D-Wave 2X (5.1%) to D-Wave 2000Q (84.9%) for the G2 graph.

For the G1 graph, all processors perform quite well, and there

is no significant difference in success rates between the different

generations. Similarly, there is not much difference in the success

rates between the D-Wave 2000Q and newer generations for the G2

graph, although the embedding onto the DW_2000Q_6 requires

approximately twice as many physical qubits as embeddings onto

the newer processors. For the G3 graph, neither D-Wave 2X nor

D-Wave 2000Q returned the optimal solution in our case, but

the “best” energy returned by the D-Wave 2000Q is lower than

the D-Wave 2X. We note that in the study mentioned in the

reference (McLeod and Sasdelli, 2022), D-Wave 2000Q was able to

return the optimal solution at least once. Advantage_system and

Advantage2 prototype processors were able to sample the optimal

solution several times, and with improved embedding (see below),

Advantage2 prototype even reached a success rate of approximately

50%. For G4, none of the tested processors returned the optimal

solution, and surprisingly, D-Wave 2X and the Advantage_system

processors all achieved (almost) the same “best” energy (unless an

improved embedding was used on Advantage_system4.1). McLeod

and Sasdelli (2022) also found the same “best” energy on the
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DW_2000Q processor, and a slightly lower “best” energy on

Advantage_system4.1 is very close to the one which we obtained

with the Advantage2 prototype processor. For graphs G5 and

higher, only embeddings onto the Advantage_system processors

were possible, and the results are compatible with each other. We

note that the values of the energies and the standard deviation are

stretched due to the choice of λ = |E| = (n + 1)3. Division

by λ (as is also done to fit the values into the parameter ranges

of the QPUs) would give more compact values and especially

standard deviations, which are more comparable among the

different instances. However, we decided not to divide by λ to keep

the easy comparison to the previous studies in Vert et al. (2021);

McLeod and Sasdelli (2022).

3.2.2 Results with improved embeddings
Table 3 shows the results of the Advantage_system4.1 QPU

from G2 to G7 for a random embedding and the improved

embedding (cf. Section 2.2.2). Table 2 shows the results of the

Advantage2_prototype1.1. The annealing time was set to 500µs,

and the chain strength values are shown in Supplementary material.

The Advantage2 prototype is a preview of what will be available

for the future Advantage2 full system. Its main limitation, when

compared with the planned release QPU, is the number of available

qubits which is only approximately 500 compared with the over

7,000 that are planned for the release-ready QPU. This limitation

means we can only test the chip up to G4.

We find that usually the solution quality is comparable;

however, there are cases (for instance G3) where the improved

embedding also leads to a significant improvement in the

solution quality (increased probability of finding the solution). The

number of utilized qubits for an improved embedding is typically

approximately 7% to 17% lower than the random one.

At first glance of Table 4, we can observe the number of

qubits required for the random embedding comes close to the

number of qubits required for the improved embedding of the

Advantage_system4.1. As can be expected, the results become

much better than what can be achieved on systems 2X and 2000Q.

The fact that the Pegasus architecture provides more

connections means that any heuristic for generating a better

embedding has more options and therefore the chance of finding a

good embedding is much higher. This can decrease the complexity

of finding a better heuristic for this particular QPU, hence greatly

improving the overall quality of the solutions.

3.3 Comparison of SA, ideal QA, and QA on
D-Wave processors

As the Gn series was especially crafted to probe the SA meta-

heuristic, it is also a potential good candidate to probe the QA-

based meta-heuristics. In this study, we did so with an ideal QA

process simulated from the Schrödinger equation on a standard

supercomputer, and we also completed a full set of experiments

on several generations of D-Wave’s quantum annealers. The latter

requires to take into account several parameters that can have

significant impacts on the results such as relative chain strength,

annealing time, and the particular embedding.

As stated in the study mentioned in Vert et al. (2021), finding

the optimal solution without the embedding for the Gn series

up to G7 is not difficult for SA with a relatively low number of

iterations. Nonetheless, taking the embedding into account, D-

Wave QPUs compare very favorably to SA. When using the same

embedding of the Chimera topology for the cases up to G4 also for

SA, SA yields similar results as the 2X QPU only when utilizing

αcard(E)2 annealing steps (α being chosen around 1,000) per

plateau of temperature, which is considered a costly but usually

accurate parametrization of SA. Table 5 shows the results of SA

on the embeddings onto the Advantage_system4.1 QPU. As can

be observed, the D-Wave results remain mostly comparable to

the same high-quality SA heuristic with αcard(E)2 annealing steps

per plateau of temperature. Nonetheless, it is worth noticing that

obtaining these SA results with G7 costed more than 5 days of

computing time on a AMD 7,702 P, 2 GHz with 64 cores (C++

optimized SA code running in parallel with several instances per

core to obtain a statistical significance). In this regard, we can

conclude that even by taking the pre-processing into account,

the Advantage_system4.1 QPU compares well with SA on the

embedded versions of the Gn series.

Table 6 shows the same results with the embedding of

the Advantage2 prototype. In this case, we can too strong

observe that the Advantage2 prototype outperforms any reasonably

parameterized SA metaheuristic on embedded problems both in

quality and in processing time (which may also be transferable to

better energy performance).

We compare the results from ideal QA obtained by simulation

to the results obtained on the Advantage2_prototype1.1 processor.

In Figure 6, we show the success probability obtained by ideal QA

for the G2 problem instance.

Three cases are shown: The unembedded instance with the

maximum h-range on the Advantage processors (hmax = 4)

indicated by orange asterisks, the unembedded instance with

maximum h-range on D-Wave 2,000Q processors (hmax = 2)

indicated by blue squares, and the embedded instance requiring 33

qubits using a relative chain strength of 0.35 with the maximum h-

range of the Advantage processors indicated by red triangles. The

latter two are actually quite close, suggesting that the embedding

(with reasonably good chain strength, cf. Figure 7) has similar

effects than a rescaling of the problem parameters hi and Jij. This

is not totally surprising since a (required minimum) chain strength

may force the problem parameters to be rescaled (cf. Figure 5A).

Figure 8 shows the success probability obtained by ideal QA for

the embedded case in comparison to the results obtained on the

Advantage2_prototype1.1 with the same embedding. Obviously,

the time scales are very different. While in the ideal case

approximately 20 ns is sufficient to reach a success probability

of approximately 1, the shortest time possible on the D-Wave

processor is 1µs where the success rate only reaches approximately

0.9. For an annealing time of≈ 35µs, the success rate exceeds 0.98.

From this observation, we conclude that for this problem instance,

the D-Wave processor works in the quasistatic regime (Amin, 2015)

as the ideal simulation shows that the coherent regime would

have to be at approximately 1–20 ns. We note that the time to

simulate the ideal QA process requires much more time (on the

Frontiers inComputer Science 10 frontiersin.org118

https://doi.org/10.3389/fcomp.2024.1286057
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Vert et al. 10.3389/fcomp.2024.1286057

TABLE 3 Results for the Gn series obtained on the Advantage_system4.1 processor for a random embedding (Grand
n

) and the improved embedding (G
imp
n ).

#qbs #opt best worst av. best av. worst av. mean av. std

Grand
2 44 981.3± 10.2 −495 −388 −495.0± 0.0 −434.1± 16.9 −494.0± 0.6 7.0± 2.0

G
imp
2 38 975.1± 6.0 −495 −387 −495.0± 0.0 −428.9± 21.6 −493.7± 0.3 8.4± 1.0

Grand
3 142 61.8± 23.0 −2, 064 −1, 172 −2, 064.0± 0.0 −1, 422.8± 53.7 −1, 825.6± 19.0 122.8± 3.6

G
imp
3 129 167.5± 27.9 −2, 064 −1, 298 −2, 064.0± 0.0 −1, 547.2± 61.8 −1, 906.0± 10.4 101.0± 2.5

Grand
4 438 0.0± 0.0 −5, 776 −3, 533 −5, 546.7± 67.3 −3, 992.9± 172.0 −4, 965.1± 25.7 229.2± 6.6

G
imp
4 360 0.0± 0.0 −6, 025 −3, 776 −5, 811.2± 86.2 −3, 983.2± 169.9 −5, 076.1± 32.4 279.3± 7.9

Grand
5 935 0.0± 0.0 −13, 861 −8, 250 −13, 257.3± 227.5 −9, 379.8± 309.2 −11, 668.2± 74.5 620.0± 16.9

G
imp
5 870 0.0± 0.0 −13, 862 −9, 113 −13, 490.8± 149.1 −10, 019.1± 289.1 −12, 217.1± 53.8 555.5± 16.5

Grand
6 1, 971 0.0± 0.0 −28, 865 −17, 208 −28, 191.0± 422.0 −19, 825.0± 652.5 −24, 574.9±146.8 13, 08.6± 37.2

G
imp
6 1, 801 0.0± 0.0 −28, 865 −19, 266 −28, 739.1± 262.6 −20, 949.8± 630.9 −25, 596.2±174.1 1, 209.7± 43.1

Grand
7 3, 635 0.0± 0.0 −55, 361 −32, 847 −53, 907.7± 649.7 −38, 367.4±1, 661.8 −47, 159.0±657.4 2397.5± 109.8

G
imp
7 3, 293 0.0± 0.0 −55, 360 −35, 910 −53, 478.4± 747.6 −38, 018.6±1, 145.5 −46, 677.0±384.6 2366.4± 59.6

The columns show the graph with the corresponding embedding, the number of (physical) qubits, the average number of optimal solutions found, the best, worst, average best, average worst,

and average mean energies, and the average standard deviation of the energies obtained. The sample size is 1,000, averages are over 50 repetitions and given with standard deviation. Best and

worst energies are over all samples of all repetitions.

TABLE 4 Results for the Gn series obtained on the Advantage2_prototype1.1 processor for a random embedding (Grand
n

) and the improved embedding

(G
imp
n ).

#qbs #opt best worst av. best av. worst av. mean av. std

Grand
2 37 996.0± 3.3 −495 −440 −495.0± 0.0 −442.6± 7.5 −494.8± 0.2 3.1± 1.3

G
opt
2 33 999.9± 0.2 −495 −442 −495.0± 0.0 −491.8± 12.6 −495.0± 0.0 0.1± 0.4

Grand
3 126 278.4± 110.1 −2, 064 −1, 555 −2, 064.0± 0.0 −1, 669.4± 45.5 −1, 952.2± 20.0 80.9± 6.9

G
opt
3 112 724.6± 103.9 −2, 064 −1, 554 −2, 064.0± 0.0 −1, 750.3± 77.2 −2, 027.5± 14.0 58.7± 7.1

Grand
4 333 0.0± 0.0 −5, 777 −4, 278 −5, 687.1± 119.3 −4, 474.5± 102.8 −5, 185.6± 35.1 188.2± 11.8

G
opt
4 307 0.0± 0.0 −6, 026 −4, 529 −5, 881.5± 122.8 −4, 773.4± 92.6 −5, 429.7± 36.4 171.4± 12.5

The columns show the graph with the corresponding embedding, the number of (physical) qubits, the average number of optimal solutions found, the best, worst, average best, average worst,

and average mean energies, and the average standard deviation of the energies obtained. The sample size is 1,000, averages are over 50 repetitions and given with standard deviation. Best and

worst energies are over all samples of all repetitions.

TABLE 5 SA results using the embedding graphs onto the Pegasus topology of the Advantage_system4.1 QPU.

#iter #Opt Best Worst Mean Median Stdev

n 1,000 −68 −68 −68 −68 0
G1

n2 1,000 −68 −68 −68 −68 0

n 187 −495 −334 −435 −442 38.8
G2

n2 937 −495 −389 −491 −495 13.2

n 0 −1, 682 −787 −1, 336 −1, 300 148.8
G3

n2 0 −1, 937 −1, 299 −1, 626 −1, 680 107.2

n 0 −5, 601 −4, 026 −4, 849 −4, 844 225.0
G4

n2 0 −6, 054 −5, 048 −5, 585 −5, 570 185.6

n 0 −13, 367 −9, 355 −11, 395 −11, 404 633.8
G5

n2 0 −14, 949 −13, 125 −13, 813 −13, 775 286.9

n 0 −27, 019 −18, 867 −23, 091 −23, 131 1,370.4
G6

n2 0 −33, 245 −30, 524 −32, 112 −32, 119 470.4

n 0 −37, 073 −11, 152 −24, 083 −24, 187 4,137.3
G7

n2 0 −58, 859 −52, 187 −56, 192 −56, 204 999.3

The columns show the graph, the number of iterations, the number of optimal solutions found, the best, worst, mean and median energies, and the standard deviation of the energies obtained.

The sample size is 1,000.
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TABLE 6 SA results using the embedding graphs onto the Zephyr topology of the Advantage2_prototype1.1 QPU.

#iter #Opt Best Worst Mean Median Stdev

n 1000 −68 −68 −68 −68 0
G1

n2 1,000 −68 −68 −68 −68 0

n 840 −495 −389 −486 −495 19.6
G2

n2 997 −495 −442 −495 −495 2.9

n 0 −1, 937 −1, 299 −1, 628 −1, 681 94.2
G3

n2 118 −2, 064 −1, 681 −1, 889 −1, 937 98.5

n 0 −5, 528 −3, 843 −4, 761 −4, 778 259.5
G4

n2 0 −6, 026 −4, 979 −5, 433 −5, 526 190.2

The columns show the graph, the number of iterations, the number of optimal solutions found, the best, worst, mean and median energies, and the standard deviation of the energies obtained.

The sample size is 1,000.

order of minutes to hours depending on system size and simulated

annealing time).

3.4 E�ects of systematic errors in the QPU

When a given problem is assigned to a D-Wave QPU, there is

a limited precision and several sources of potential noise. While

some of the sources of errors and imprecisions are compensated for

by the electronic controllers and the base software, some of these

so-called ICEs (Integrated Control Errors) are intrinsic, e.g., the

precision of the Digital to Analog (DAC) converters to control the

couplers. As a consequence, any user of the QPU can not expect an

infinite precision of the given values of the coupling. The D-Wave

documentation points at an expected precision for coupling values

between 0.1% and 2%.

When dividing by 2λ, the non-zero off-diagonal elements of the

QUBO matrix take the value qij = 1 and the diagonal elements

qii = −1 − 1/2λ, which is between −1 and −2 for λ ≥ 0.5, and

thus does not require further rescaling.

Nonetheless, the important element to consider is the

associated Ising model as this is what is actually mapped to the

QPU after renormalizing the values in the interval [−1, 1] for Jij
and [−2, 2] (on D-Wave 2,000Q and older systems) or [−4, 4] for

hi (on Advantage and Advantage2 systems). Going from the QUBO

formulation to the Ising model (where we use the convention

xi = (1 − si)/2, cf. also Section 2.2) yields non-zero Jij = λ/2

(it is non-zero for all adjacent edges j of a given edge i) and hi ∈

{(nλ − λ − 1)/2, nλ − 1/2} for the outermost edges and all the

others, respectively. The dependence on n of the hi arises from the

number of edges connected to the vertices which also grows with

n. Rescaling by 2/n yields hi ∈ {λ − (λ + 1)/n, 2λ − 1/n} and

Jij = λ/n. As we can observe, the coupling matrix J tends toward 0

in an inverse law of n independent of the choice of λ as choosing a

λ growing with n enforces a rescaling by 1/λ due to the hi.

Nonetheless, the coupling should be an order of magnitude

above the noise and biases of ICE up to n ≈ 20 considering a 0.5%

accuracy or better on the coupling. Therefore, this particular point

would not constitute a large contributor to the limitation of the D-

Wave QPUs in the near term future. It can thus be considered safe

FIGURE 6

Success probability obtained from simulation for the G2 graph as a

function of annealing time for an embedding onto the Zephyr

topology (rcs = 0.35, red triangles) with the

Advantage2_prototype1.1 annealing schedule in comparison to

direct embedding with the allowed range on Advantage processors

(−4 ≤ hi ≤ 4, orange asterisks) and direct embedding with the

reduced range available on DW2000Q QPUs (−2 ≤ hi ≤ 2, blue

squares).

to assume that the limitations of D-Wave compared with ideal QA

are due to the other limitations of the QPU in our experiments.

4 Conclusion and outlook

In summary, we have benchmarked three generations of

D-Wave quantum processors by studying the performance when

using different embeddings and by comparing to simulated

annealing and ideal quantum annealing (i.e., solving the

Schrödinger equation numerically) using a particular series

(the Gn series) of maximum cardinality matching problems. From

ideal quantum annealing with all-to-all connectivity, we find that

for the problems without minor embedding (at least for the smaller

instances), the annealing schedule of the DW_2000Q performs

better, but this improvement is compensated by the decrease in
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FIGURE 7

Relative chain strength scan for G2 with a 33-qubit embedding on

Advantage2_prototype1.1. with annealing time 1.0µs and sample

size 10,000.

FIGURE 8

Success probability for the G2 graph as a function of annealing time

for a 33-qubit embedding onto the Zephyr topology obtained on

the D-Wave quantum processor Advantage2_prototype1.1 (blue

circles) and by simulation using the same annealing schedule (red

triangles). The relative chain strength was set to 0.35. The sample

size on the D-Wave processor is 10,000.

performance due to the required embedding onto the Chimera

topology. Results for theG1 andG2 graphs are comparable between

DW_2000Q_6 and Advantage processors, which is reasonable

given the investigation using ideal QA. Although embeddings onto

the Pegasus topology are possible with less than 2,000 qubits (≈ the

size of the DW_2000Q processors) up to G6, we could not find an

embedding onto DW_2000Q_6 for G5. Moreover, not only the size

of the processor but also the connectivity between the qubits are

important to map larger problems onto the QPU’s hardware graph.

For the Advantage_system4.1 and Advantage2_prototype1.1

processors, we explicitly compared the performance with different

embeddings (a random one and the one with the least number of

qubits found).

For most of the embeddings, we found little variation in the

performance (either in the success rate if the optimal solution

was found or in the minimal energy obtained). Only in a few

cases, we found a significant difference suggesting that the utilized

embedding might have been an unluckily bad one. Thus, trying

more than a single embbedding can be useful, but trying to find

an embedding with a particularly low number of qubits does not

seem to be worth the effort.

The comparison to SA underlines the drop in performance

when minor embedding has to be applied. While the unembedded

problems are easy to solve with SA, especially the larger ones (G3

or larger) become increasingly difficult to solve with SA if the

embedding is taken into account. The performance when utilizing

the embedding onto the Zephyr topology is worse than what we

obtained from the Advantage2_prototype1.1 processor even for n2

iterations per plateau of temperature. When using the embedding

onto the Pegasus topology, the performance of SA is comparable

(sometimes better sometimes worse) to the performance of the

Advantage_system4.1 processor. However, the actual computing

time required to obtain the SA results was significantly larger than

what was used on the QPUs.

In conclusion, we find that the main bottleneck is the minor

embedding required to solve an arbitrary problem on a QPU.

The annealing schedule does have an influence but at least in

the current study, it was found that it could only compensate for

the larger embeddings required for DW_2000Q compared with

Advantage_system in the cases of the smaller instances.

Possible future directions to continue the present study

could include the benchmark of other embedding algorithms

(such as Lucas, 2019; Zbinden et al., 2020) or a more in-depth

investigation of annealing schedule variations such as pausing

and quenching or reverse annealing in the spirit of Ikeda et al.

(2019); Marshall et al. (2019); Venturelli and Kondratyev (2019);

Gonzalez Izquierdo et al. (2021); Grant et al. (2021); Carugno et al.

(2022). Another interesting path to include in these studies would

be to consider the general QUBO formulation studied by McLeod

and Sasdelli (2022) and different values for λ in the soft constraint

to investigate whether all three algorithms (SA, ideal QA, and QA

on the D-Wave) show the same behavior in performance change.
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Resource allocation of wide-area internet networks is inherently a combinatorial

optimization problem that if solved quickly, could provide near real-time adaptive

control of internet-protocol tra�c ensuring increased network e�cacy and

robustness, while minimizing energy requirements coming from power-hungry

transceivers. In recent works we demonstrated how such a problem could be

cast as a quadratic unconstrained binary optimization (QUBO) problem that

can be embedded onto the D-Wave Advantage
TM

quantum annealer system,

demonstrating proof of principle. Our initial studies left open the possibility

for improvement of D-Wave solutions via judicious choices of system run

parameters. Here we report on our investigations for optimizing these system

parameters, and how we incorporate machine learning (ML) techniques to

further improve on the quality of solutions. In particular, we use the Hamming

distance to investigate correlations between various system-run parameters and

solution vectors.We then apply a decision tree neural network (NN) to learn these

correlations, with the goal of using the neural network to provide further guesses

to solution vectors. We successfully implement this NN in a simple integer linear

programming (ILP) example, demonstrating how the NN can fully map out the

solution space that was not captured by D-Wave. We find, however, for the

3-node network problem the NN is not able to enhance the quality of space

of solutions.

KEYWORDS

discrete optimization, integer linear program, machine learning, quantum annealing,

quantum computing, resource allocation, wide-area networks

Frontiers inComputer Science 01 frontiersin.org125

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1356983
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1356983&domain=pdf&date_stamp=2024-06-10
mailto:arthur.witt@ieee.org
mailto:j.kim@fz-juelich.de
https://doi.org/10.3389/fcomp.2024.1356983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1356983/full
https://orcid.org/0000-0003-1180-1172
https://orcid.org/0000-0002-4670-0390
https://orcid.org/0000-0002-9271-8022
https://orcid.org/0000-0002-1119-8978
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Witt et al. 10.3389/fcomp.2024.1356983

1 Introduction

Quantum computing is a cutting-edge technology that has

gained significant relevance during the last decades. Algorithms

for searching and optimization are currently studied intensively

on quantum computers as they hold the potential for solving

problems with non-polynomial (NP) complexity very efficiently.

Nowadays, quantum computers have reached a scale that allows

for the solution of non-trivial problems which have real-

world applications.

One example is the energy-aware resource allocation of wide-

area networks (Chiaraviglio et al., 2009). In these cases, one can

consider the resource allocation as an optimization problem and

introduce it as a relevant application of quantum computing, and

in particular quantum annealing (QA), as it inherently provides a

certain failure tolerance with self-healing capability. Further, the

problem has NP complexity and requires frequent solutions for

just-in-time adaptation of the network. If solutions are generated

quickly, say on the order of seconds, a revolution in network

operation with increased network efficiency might be possible

since current solutions obtained from classical and/or heuristic

algorithms require 15 minutes or more for time-to-solution as

shown in Feller (2012) and Tornatore et al. (2002). In previous

studies, (Witt et al., 2023), we have demonstrated how this resource

allocation problem can be formulated, based on an integer linear

program (ILP) model, as a quadratic unconstrained binary problem

(QUBO) which can then be embedded onto a quantum annealer.

In our initial studies we used the D-Wave Advantage
TM

system

(JUPSI) at the Forschungszentrum Jülich to perform the quantum

annealing. As part of the solution process, the QUBO problem

was embedded onto the quantum qubits prior to performing the

quantum annealing. This entailed mapping the problem onto a

network of logical qubits, whereby each logical qubit consists of a

constellation, or “chain”, of physical qubits. This mapping ensures

the requisite “connectivity” of the logical qubits as dictated by

the QUBO problem. We discovered that the network optimizing

approach was greatly limited by this embedding process. For

example, the optimization problem of a network with three nodes

can be described as a QUBO with ∼100 binary variables (logical

qubits). Even though this 3-node problem is quite small, the

required amount of physical qubits was in the range of 500 qubits,

representing already roughly 10% of the physical qubits available

in the D-Wave AdvantageTM system. With the current embedding

process that we employed at the time, a simulation of a 15-node

problem, corresponding to a real-world network, would require

a quantum annealer with ∼50,000 physical qubits, which is an

order of magnitude larger then current systems. We note that the

embedding process is not unique.

Our initial studies also had limited scope in system run

parameters, such as annealing time and profile of the annealing

process, penalty factor of the QUBO matrix, and chain strength

between physical qubits constituting logical qubits. Our choice of

run parameters were constrained mainly to system default values,

with little exploration on the dependence of quality of solutions

on these run parameters. Therefore there is potential room for

increasing the efficiency of the quantum annealing process (which

would result in better quality and more feasible solutions) by

judicious choice of optimized run parameters.

In this paper we address some of these issues by studying

the process of annealing with the aim to optimize the parameters

for the quantum annealing procedure. We introduce solution

quality metrics for evaluation purposes. Of particular import is

the Hamming distance metric, which rates the distance between

the ideal and obtained solution vector in binary space. By using

D-Wave solutions in conjunction with the Hamming distance to

optimal solution, we empirically determine correlations between

various run parameters and the quality of solution. These

correlations guide us in determining optimized run parameters for

the system in question, with the hope that the same optimized

run parameters can be applied to similar, but larger, systems.

Furthermore, we apply a decision tree neural network (NN) to learn

these correlations, after which we use the NN to “guess” improved

solutions. This NN represents a machine learning (ML) approach

that we couple with D-Wave generated solutions that aims at

providing better quality solutions, and represents an example of

a hybrid classical (ML)/quantum (QA) procedure for solving the

combinatorial optimization problem.

Our paper is organized as follows. In the following section we

give a cursory description of ILPs in general, the used method

to solve ILPs on quantum annealer, and two ILPs that we

examined in our study. We then introduce in Subsection 2.4 a

Hamming distancemetric, and demonstrate how it is used to derive

correlations between quality of solutions and various system run

parameters. Such correlations will be “learned” by our decision tree

NN, which we describe in detail in Subsection 2.5. In Section 3 we

present our findings. We first concentrate on a simple ILP problem,

demonstrating that our hybrid classical/quantum procedure does

indeed result in new feasible solutions while at the same time

providing guidance on optimized run parameters. We then apply

the formalism to the 3-node network problem mentioned above,

where here we see limited improvement in solutions, all of which

unfortunately are nowhere near the optimal solution. In Section 4

we discuss our findings and recapitulate. We comment on possible

future directions of investigation.

2 Materials and methods

2.1 The concept of integer linear programs

The investigations performed in our work fall under the class

of discrete optimization problems, meaning variables x to be

optimized take on only discrete values. Such problems can be

cast succinctly as an integer linear program (ILP), where certain

constraints, given as a set of linear (in-)equation, have to be satisfied

while minimizing a linear function. An ILP can be defined in its

canonical form by (Equations 1–4):

objective x0 = argmin
x
{cTx} (1)

constraints Ax+ b ≤ 0 (2)

variables x ∈ N
n, xi ≥ 0 (3)

constants c ∈ R
n, b ∈ R

m,A ∈ R
m×n . (4)

The ILP’s objective function can be seen as a loss function and

is defined in Equation (1) with a vector of cost terms c weighting
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the variable vector x. Matrix A and vector b parameterize the linear

equations that represent the inequality constraints (Equation 2).

They can be reshaped to equality constraints, Ax + b + s = 0,

by introducing slack variables s ∈ R, sj ≥ 0. This is a typical step

within the classical ILP-solving algorithm simplex, see Nash (2000).

We use the convention, that R are real-valued numbers, N natural

numbers inclusive zero, and B binary numbers.

Such problems are well-known to be non-polynomial (NP)-

hard in general. According to Karp (1972) and Adler et al. (2014),

linear programs are a rare class of problems in NP that resists

the classification as NP-complete or polynomial-solvable problems.

Lenstra (1983) argued, that mixed-integer linear programs with

fixed number of variables are solvable in polynomial-time. In

contrary, Nguyen and Pak (2017) present integer programs that

are NP-complete, even for fixed number of variables. Their

work further shows, that some integer programs are solvable in

polynomial-time. We can conclude, that bounded integer linear

programs are NP-complete and are solvable within polynomial time

in few cases.

2.2 Solving integer linear programs on
quantum annealer

Quantum annealers are well-suited for investigating ILP

problems. However, an additional modification to the ILP problem

is required prior to embedding the problem on the quantum qubits.

Here the constraints are included into the cost function (to be

minimized) by introduction of penalty weight p. In so doing, the

original ILP problem with constraints is recast into quadratic form

without constraints,

x0 = argmin
x

{

c⊤x
}

Ax+ b ≤ 0

x ∈ N
n ≥ 0















←→







q0 = argmin
q

{

q⊤Qq+ C
}

q ∈ {0, 1}k
.

Here A, b and c are problem specific parameters as introduced

in the previous section. It is useful to classify solution vectors x

into two categories: feasible solutions which fulfill the constraints

and unfeasible solutions which violate the constraints. While a

feasible solution to the ILP is not necessarily an optimal solution,

an unfeasible solution hypothetically can have a smaller objective

value than the optimal feasible solution.

The problem is mapped to the quadratic unconstrained binary

optimization (QUBO) by definition of matrix Q that includes a

penalty factor p and a constant C. The inequality can be expressed

by an equation and another minimization over a slack variable s

incorporated into the bit vector q. The QUBO objective function

minimizes both the ILP objective function plus another objective

function representing the constraints. The penalty term expresses

the relative weight between both (ILP objective and constraint)

objective functions, see Chang et al. (2020) and Witt et al. (2023)

for a more detailed description. Finding the solution set q0 that

provides the absolute minimum of q⊤Qq is equivalent to solving

the original ILP problem with solution vector x0.

The D-Wave Advantage
TM

system is adapted to solving the

Ising spin system that represents an array of binary spins with

interactions between spins σ giving by some connectivity matrix

J and external magnetic field h. Our QUBO matrix can easily be

rewritten using J and h without any loss of generality,

q⊤Qq+ C⇔ σ
⊤Jσ + h⊤σ + g

with















J = 1
4Q0

h = 1
2 q̂+

1
2Q01

g = 1
41
⊤Q01+

1
21
⊤q̂+ C

,

with Q0 = Q − diag{q̂}, q̂ = diag−1{Q}, and g some constant.

The problem is now well-suited for the D-Wave machine. In Chang

et al. (2020) and Witt et al. (2023), we demonstrated proof of

principle that such a problem can be solved on a quantum annealer.

2.3 Investigated integer linear programs

In this work we have investigated multiple ILPs, two of

which we define explicitly here. The details of the remaining

ILPs we considered are described in our accompanying

Supplementary material. The first ILP optimizes the selection

of two integer variables under some constraints. It provides

a test case where all possible solutions can be studied with

the approach of brute force sampling, i.e., it provides a well-

suited setup for benchmarking. The second ILP describes

a realistic network resource optimization as studied in

Witt et al. (2023). As possible solutions are representable

as binary vectors with more than 60 variables, a brute

force sampling is not applicable within reasonable time for

this case.

2.3.1 Trivial ILP
Based on expressions (1)–(4), we can define a particular ILP

problem by

A =







−1/3 −1

−3 −1

0 1






, b =







2

6

−2






, c =

[

1

3

]

,

x ∈ N
2 , s ∈ N

3 .

A graphical interpretation of this ILP is depicted in Figure 1.

We can easily obtain the optimal solution vectors,

x0 =

[

3

1

]

or

[

6

0

]

,

and the optimal cost value cTx0 = 6 from this graph. This problem

is an explicit example of an ILP that can have more than one

optimal solution, which in turn can cause misleading results in

benchmarking experiments. In general, ILPs can have zero, one or

more solutions. We restrict the values in x to xi ∈ {0, 1, 2, 3}, ∀i ∈

{1, 2}, such that the ILP is uniquely solvable.

For binary representation of integer values, we will use 2 bits

for each variable in x and 3 bits for each element in s. Then q

is the binary search vector to be optimized. According to Chang
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FIGURE 1

Graphical interpretation of the trivial ILP problem. The drawn constraint lines are slightly shifted for visualization purposes without falsifying the

feasible region of integer values.

et al. (2020), this mapping with integer mapping matrix Z can be

described by







x

−−

s






=



















x1
x2
−−

s1
s2
s3



















=















2 1 0 0 | 0 0 0 0 0 0 0 0 0

0 0 2 1 | 0 0 0 0 0 0 0 0 0

0 0 0 0 | 4 2 1 0 0 0 0 0 0

0 0 0 0 | 0 0 0 4 2 1 0 0 0

0 0 0 0 | 0 0 0 0 0 0 4 2 1















︸ ︷︷ ︸

Z













q1
q2
...

q13













︸ ︷︷ ︸

q

.

In Supplementary Table S1 we enumerate other

trivial ILPs that we have investigated. These ILPs

encompass a range of optimal solutions, parameters,

and dimensions.

2.3.2 Network resource allocation problem
Optical wide-area networks consist of nodes that are linked

by optical fiber systems in form of a meshed topology. Nodes

v ∈ V are two layered. They are equipped with electrical IP

routers in the upper layer and optical cross connects (OXCs) in

the lower layer. Traffic from connected networks that traverses

the wide area network is “handed over” at the IP layer.

Signal transitions between layers inside the WAN are performed

with optical bidirectional transceivers, that are configured for

unidirectional use as required. Optical transceivers generate

optical signals with a bandwidth of 50 GHz at various center

frequencies. A finite number of signals can be combined in a

dense wavelength division multiplexing (DWDM) scheme on a

particular optical fiber link. This schemes are specified according

to ITU-T (2020). Thus, usable frequency bands in the optical

region, typically referred as wavelengths, are uniquely defined.

Optical cross connects enable wavelength-selective forwarding

and redirection of optical signals between connected fibers.

Fiber links are realized by a sequence of fiber spans and fiber

amplifiers and provide a hardware-wise connection between nodes

according to the networks topology. The maximal reach of

optical signals depends on the signal configuration (specified

by modulation schemes, and used forward error correction,

etc.) and the transceiver type itself. As an example, a tunable

coherent transceiver1 achieves an optical reach of 1,000 km at

a rate of 100 GBit/s. Typically, optical transmission paths are

organized as a sequence of transmission sections c with at least

one section to enable a end-to-end data transfer. Transmission

sections are abstract links in the lower layer that provide optical

transparent transmission on multiple wavelength. Their spanning

distance is limited by the optical reach of the driving transceivers.

Figure 2 illustrates how transmission paths in wide-area networks

can be realized.

Energy-aware traffic engineering can be seen as a major task

for economic network operation. Therefore, network resources

like transceivers and wavelengths on fiber links have to be

allocated to assign the required capacity to a transmission

section c. Assuming that the network is operated as single rate

system, i.e., all transceivers have the same signal rate, e.g., ξ =

100GBit/s, capacities at a transmission section c can be scaled

if multiple transceivers, enumerated by wc, are activated. Thus,

the transmission section’s capacity is wcξ . A unidirectional traffic

demand d represents a connectivity request between two network

nodes. We assume, that a demand exist for all disjunct node pairs

(u, v) with u 6= v and u, v ∈ V . The network has to provide

appropriate transmission paths, i.e., routes through the network

topology along a sequence of transmission sections, to enable the

transport of the demand’s traffic with volume hd. We prepare

a network-specific collection T of possible transmission path

realization prior the optimization, whereas possible transmission

path realizations per demand d are defined as td ∈ Td ⊂

T, see Witt et al. (2023), Section II-C. The economic resource

allocation within WDM networks is a discrete and combinatorial

optimization problem.

Witt et al. (2023) devised an integer linear program (ILP)

based on Enderle et al. (2020) to address the energy-aware resource

allocation problem within wide-area networks and prepared

the ILP according to the ILP-to-QUBO mapping formalism as

presented in Chang et al. (2020) and delineated in Subsection 2.2.

They further studied the solvability of this ILP, prepared in QUBO

form, on the D-Wave Advantage
TM

, a state-of-the-art quantum

1 100/200 G Tunable Coherent CFP2-DCO Transceiver:

https://www.fs.com/de-en/products/120128.html?attribute=5320&id=

297112.
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FIGURE 2

(A–C) Various ways of realizing transmission paths in wide-area networks with optical DWDM layer and (D) architecture of a OXC as introduced in

Witt et al. (2023).

annealer with over 5,000 qubits. Since the current work focuses

on improvement methods within the algorithmic part and not

on the application itself, we refer to Witt et al. (2023) for a

more in-depth explanation and interpretation of the ILP. In the

following, we recapitulate the ILP briefly. Parameters and variables

are given in Table 1. Traffic volumes hd per demand d, that are

varying over time, are held constant during the optimization

and will be updated frequently in a real scenario. The equality

constraint (Equation 5) enforces that a demand is routed on exactly

one transmission path. Constraint (Equation 6) combines traffic

flows per transmission section as selected in Equation (5) and

reserves the required capacity in terms of optical channels wc.

Constraint (Equation 7) activates installed transceivers to drive the

transmission sections. Minimizing the number of optical channels

wc as defined in objective (Equation 8), reduces the total amount

of active transceivers as well. This enables a energy-aware network

operation.

Constraints:
∑

td∈Td

gtd = 1 ∀d ∈ D (5)

− wc +
∑

d∈D

∑

td∈Td

ρc,td ·
hd

ξ
· gtd ≤ 0 ∀c ∈ C (6)

∑

c∈C

wc · ϕv,c ≤ ηv ∀v ∈ V (7)

Objective:
∑

c∈C

wc → min
.

(8)

The network under test is a fully-connected 3 node network,

e.g., the topology has a triangular shape with two short edges of

300 km length and a long edge spanning a 424 km distance. Each

network edge is realized by two fiber links to realize bidirectional

transmission. Traffic demand values hd are taken from a normal

distribution with mean 75Gbit/s and standard deviation 20Gbit/s.

As they represent floating numbers, we discretize them with an

accuracy of a = 1 (acc. to Witt et al., 2023, Section III-C), i.e.,

fractions are rounded to “x.0” or “x.5”. We set the number of

installed transceivers per node to ηv = 15 and the maximal number

of parallel optical signals per transmission path to ωc,max = 3. The

parameter ωc,max influences the QUBO’s matrix sizes as described

in Witt et al. (2023), Section III-C. The parameters ρc,td and ϕv,c

represent the connectivity described by the topology. They are

predefined together with the transmission path realization sets

Td. The boolean selector variable gtd , indicating the selection of

a predefined transmission path realization td for demand d, and

the number of parallel optical signals per transmission path ωc are

determined during the optimization.

2.4 Correlations between solution metrics
and system run parameters

With the intent to minimize the objective function, D-Wave

provides a distribution of solutions, all of which are not equally

important nor of equal quality. The setup of the ILP scenario

(penalty term, float variable solution, integer sizes) and the QUBO

(sparsity-affecting transformations, embedding, chain strength)

parameterize the problem. The annealing procedure (annealing

schedule, spin transformations, thermalization/decorrelation
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TABLE 1 List of parameters used in the ILP for network optimization.

Parameter Interpretation

Constants ξ ∈ R Data rate of a single transceiver

ηv ∈ N Amount of transceivers installed at node v

ρc,td ∈ B Indicates whether the transmission section c is part of the demand-specific transmission path realization td

ϕv,c ∈ B Indicates whether transmission section c is connected to node v

hd ∈ R Traffic volume of demand d

Variables gtd ∈ B Path selector is 1 if a transmission path for demand d is realized by circuit configuration td ∈ Td

ωc ∈ N Amount of active transceivers, driving a transmission section c

pauses) can also have significant influence on the obtained

distribution of solutions. Studies like Willsch et al. (2022) show

that a proper parameter selection in terms of annealing schedule

and embedding variants can change the situation significantly.

Furthermore, the effect of thermalization in the context of quantum

annealing processes can have an impact, as was shown in Dickson

et al. (2013). Ideally, the solutions to the problem should not be

affected by the choices for these meta parameters. Still, we selected

the range of parameters to be tested using our experience garnered

from our previous study, see Witt et al. (2023).

However, as we show in later sections, different combinations

of parameters significantly affect the likelihood of obtaining

feasible solutions. Choices for such meta parameters can be highly

correlated. For example, longer (slower) annealing profiles can

provide higher probabilities for finding a feasible solution, yet at

the cost of generating fewer total number of solutions.

Our first studies, Witt et al. (2023), found that probabilities

for finding a minimal feasible solution for the three-node network

problem were at the order of 10−4% and below. This presented

a non-trivial task to evaluate the quality of the distribution of

solutions when only having a sample sizes of < 106. To address this

issue, we formulate statistical measures based on the distribution

of samples to quantify the quality of our D-Wave setup. Since

the optimal solution is, by definition, a feasible solution, we are

interested in the rate in which feasible solutions are produced. We

thus consider the feasibility ratio,

rfeasible =
Nfeasible

Nsamples
, (9)

that rates the success of finding Nfeasible feasible solutions within a

solution set with Nsamples samples.

Another metric of choice for solutions in the binary search

space that we use in our research here is the Hamming distance

dist{x, y} =
∑

i

XOR(xi, yi) .

This metric gives the number of flipped bits between an ideal

solution x obtained by a classical ILP solver like CPLEX or GLPK

and a non-ideal solution y obtained by the quantum annealer. For

binary solution vectors the Hamming distance is equivalent to the

L2-norm of the difference between x and y. This metric provides a

sense of “distance” between two solution vectors, essentially telling

us how many “bit-flips” are required to bring one solution into

another. Ultimately it allows us to perform a direct comparison

between particular D-Wave solution vectors and a known desired

solution vector.

Finally, we can train a neural network (NN) on these

correlations, with the goal that once trained, we can use the NN

to make further guesses on optimal solutions vectors. We describe

our NN in the following section.

2.5 Machine-learning approach

We employ a decision tree (DT) neural network in our

investigations. This NN is a type of supervised machine

learning (ML) algorithm that is used typically for regression and

classification analysis. It is a model that represents a series of

decisions and their possible consequences in the form of a tree-like

structure (Breiman et al., 1984). Each node in the tree represents

a decision, and each branch represents a possible outcome or

path that can be taken based on that decision. In Figure 3 we

provide a graphical example of a decision tree and its mapping to a

neural network.

A major advantage of decision tree NNs is their ease of

use, understandability, and interpretability. This makes their

implementation simple and their application efficient. Another

advantage comes from their inherent robustness to data outliers.

They can even handle missing values in the data. The data itself can

be both categorical and numerical in nature.

However, a potential drawback of DTs is that they can easily

overfit the data. This ultimately means that, though they may be

sufficiently expressive to explain the trained data, they fail when

extrapolating to new, or unseen data. Thus, the NN is limited in

its generalizability. This issue can to a certain degree bemitigated by

pruning the tree or using other techniques to reduce the complexity

of the model. In our studies we did not employ such mitigation

techniques, and leave such potential studies for later investigations.

We used the Scikit-learn python module (Pedregosa et al.,

2011) and its functionalities to implement our DT networks.

2.6 Construction of
Sherrington-Kirkpatrick graph

The Sherrington-Kirkpatrick (SK) graph encloses the coupling

strength and external fields of a Ising Hamiltonian. As mentioned
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FIGURE 3

A graphical example of decision tree network (left) and its mapping

to a neural network (right).

in Thai et al. (2022), finding the weighted minimal cut in this graph

is equivalent to finding the ground state in the Ising Hamiltonian.

Further, the Hamiltonian’s energy landscape can be explored by

exploration of the SK graph’s cut space.

The corresponding SK graph of the Ising HamiltonianH(x) =

h⊤x + x⊤Jx with n variables xi can be denoted as GSK
H = (V ,E,w)

with node set V , undirected edges (i, j) ∈ E and their weights W.

The first n nodes of V correspond to the variables xi. A further

node is added to V to capture the external fields h. Set E contains

only edges with non-zero weights according to wij = Jij + Jji for

1 ≤ i, j ≤ n and weights wi,n+1 = hi. Then, the weighted adjacency

matrix J′ of graph GSK
H with J′ij = Jij+ Jji, J

′
ji = 0 and J′i,n+1 = hi can

be used together with y ∈ S
n+1 to define the SK Hamiltonian as

H
SK(y) = y⊤J′y.

To apply a weighted minimal-cut approach on the SK graph

for graph reduction, a cut is defined by a subset S ⊆ V , such that

〈S,V\S〉 contains a set of edges that needs to be cut for separation of

S and V\X. With c(S) =
∑

(u,v)∈〈S,V\S〉 wuv, the capacity of the cut,

a minimal cut is defined as S∗ = mc(GSK) = argmin
S⊆V

c(S) with the

minimal capacity ofMC(GSK) = min
S⊆V

c(S).

3 Results

3.1 Trivial ILP problem

We now provide our findings for our simple ILP problem that

we described in Subsubsection 2.3.1. Similar results for the other

trivial ILPs we considered are found in the Supplementary material.

Note that this problem is sufficiently small that we can

determine all possible feasible solutions via brute force, which

includes the optimal solution. In this case this corresponds

to a total number of Nfeasible = 1, 536 feasible solutions.

The whole solution space contains Nsamples = 213 =

8, 192 possible vectors as our binary search vector q has a

dimension of 13, see Subsubsection 2.3.1. Thus, the feasibility

ratio (Equation 9) for brute force sampling is rfeasible =

18.75%.

3.1.1 Observations and correlations
In Figure 4 we show results for brute force sampling (left

side) and a run on the D-Wave Advantage
TM

(right side) using

a penalty of p = 2 and default run parameters. In the D-

Wave case, just 200 samples are taken, which is a relative

small portion (∼2.4%) compared to the complete solution space.

We have to remark, that the optimal solution can be found

even if the sample set is small. Figure 4 shows the distribution

of solutions over energy (upper row) and Hamming distance

(middle row) obtained by the mentioned sampling methods

and classified by their feasibility demarcated by feasible (green),

infeasible (red), and all (blue) solutions. We can observe, that

solutions obtained with D-Wave show low energies and only

Hamming distances of up to 8. This indicates, that the aimed

optimization takes place and only solutions with mostly good

qualities are found by D-Wave quantum annealer. But, we still

have to sort solutions by feasibility after sampling as minimizing

the energy can not entirely sort out infeasible solutions. The lower

row of Figure 4 shows the correlations between the solution’s

energy and their Hamming distance in relation to the best

feasible solution. Solutions with small Hamming distances tend

to have smaller energy values as observable and indicated by the

best fitting curves. We identified, that higher-energy solutions

are correlated with increasing Hamming distances to optimal

solution as the slope of the fitting curves are non-zero. The

energy range for solutions at same Hamming distances is spread

widely if the whole search space is considered. Feasible solutions

could be found only at the lower energy range. Within the D-

Wave sample set, solutions with small Hamming distances are

over-proportionally feasible solutions which is indicted by the

regression curves.

In the brute force sampling case, we can describe the

distribution of solutions upon the Hamming distance

(Figure 4 left, middle row) by a cumulative distribution

function,

CDF(d) =
1

2Nq

∑

d

(

Nq

d

)

∀ d ∈ {0, 1, . . . ,Nq} ,

with d representing possible Hamming distances

for binary search vectors q of length Nq. This

relation can be used for benchmarking as it forms

a fundamental boundary that only depends on the

vector size.

In Figure 5 (upper left panel) we show dependence of

the feasibility ratio (9) as a function of anneal time and

penalty factor, as well as the average hamming distance

(upper right panel) as a function of the same parameters.

There is seemingly little correlation between p and the

anneal time as long as p & 10. However, these results

suggest that increasing beyond p & 100 is beneficial since

in this region solutions with lower Hamming distance are

more likely. It is remarkable, that all feasibility ratios that are

shown in Figure 5 are significantly larger than the theoretical

value of 18.75% for the case that all possible solutions

are considered.

We also encountered a number of individual feasible solution

samples obtained in a single run whereby the solution vectors
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FIGURE 4

(Left) Brute force sampling to investigate the entire solution space. (Right) D-Wave sampling with penalty p = 2 and a set of 200 samples. (Upper

row) Histogram of solutions sorted by energy values. As solutions gathered by D-Wave’s quantum annealer have only energy values in the lower area

compared to the brute force case, x-axis are scaled di�erently. (Middle row) Histogram of solutions over Hamming distance with respect to the best

feasible solution vector. (Lower row) Scatter plot of solutions with reference to their energy values and the Hamming distance with respect to the

best feasible solution vector. (Blue) solution set under investigation. (Red) infeasible solutions. (Green) feasible solutions.

fulfill the ILP’s constraints and differ from each other in at least

one of its components, but are not necessarily optimal solutions.

It can happen that some of these individual feasible solutions

can share the same cost value. The parameter dependence of the

number of individual feasible solutions is presented in lower left

panel of Figure 5. We find that short annealing times generate

more individual solutions, however at the expense of reducing

the low-energy solutions. So the D-Wave quantum annealer

finds more solutions with higher energies if shorter annealing

profiles are applied. To no surprise, these correlations suggest

that optimizing to longer anneal times will provide lower energy

solutions. Similar findings are found for the other trivial ILPs listed

in Supplementary material. The relevant figures in this case are

Supplementary Figures S1–S3.

We point out that we find no correlations between the

parameters chain_strength and annealing_time,

suggesting that further optimization of the chain_strength

parameter is not possible.

3.1.2 Improvements obtained by machine
learning approach

Within a sample set, generated by D-Wave Advantage
TM

, we

have 110 independent solutions for our trivial ILP problem when

using p = 2 and an annealing time of 20 µs. This represents∼10%

of the possible feasible solutions. To improve upon this, we train

a NN on the correlations described above and then use the NN to

generate more solutions.

In particular, we train our NN using the solution vector vs.

the energy and feasibility correlations obtained from D-Wave data.

With input of energy and feasibility, the decision tree regression

predicts a new solution which has the corresponding input energy

and feasibility. We note that our NN does not always provide

new solutions whose output energy coincides with the same input

energy. This is readily seen in the left plot in Figure 6, where the

output energy Eout is plotted as a function of input energy Ein.

A one-to-one correspondence would provide a straight line with

slope of unity, which is clearly not seen. However, the correlation
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FIGURE 5

Feasibility rate (Upper left), averaged Hamming distance (Upper right), and (Lower left) number of individual solutions as a function of anneal time

(µs) and penalty factor p. (Lower right) Energy distribution at p = 2 and annealing time of 20 µs. Values based on samples generated by D-Wave

Advantage
TM

to solve our trivial ILP problem.

between input and output energy as captured by our NN is still

positive. We find that the slope of this correlation depends on

the p value, whereby larger p values provide a slope closer to

unity. Qualitatively similar behavior is found for the ILPs listed in

Supplementary material, as can be seen in Supplementary Figure S5

of this document.

We expect the decision tree to recognize the feasibility

condition, but predicted solutions of the NN are not always

feasible. As mentioned above, the NN predicts solution vectors

whose energy ranges have some correlation with the input energies.

This feature provides, in principle, an advantage over brute-

force sampling since we can target solutions within a specific

energy range using our NN, whereas such control via brute

force sampling is not possible. However, there isn’t a complete

one-to-one correspondence between input and output energy

since ∼20% of the predicted solution vectors have components

that are not binary but contain fractional numbers. In these

cases we round the fraction to zero if the fractional number

is smaller than 0.2, and to one if larger than 0.8. Between 0.2

and 0.8, we enumerate all possible combinations of 0 and 1,

generating in these case new proposed solution vectors. We then

perform another feasibility test on these NN solutions to filter

out infeasible solutions. The energy distribution of feasible vs.

infeasible solutions after this treatment is shown in Figure 6

right.

3.2 Three-node network

We now turn our attention to the 3-node problem, which

represents the smallest, non-trivial system of wide-area networks.

Here we use CPLEX to obtain the optimal solution vector, from

which we make comparisons with D-Wave solution vectors. The

distribution of D-Wave solutions as a function of Hamming

distance to the optimal solution is given in Figure 7. Note that in

this case the optimal solution is not captured by D-Wave. In fact,

D-Wave cannot find any feasible solutions within a set of 600,000+

samples. As remark, the entire search space for this case is 263.

When we investigate inter-parameter correlations, we

find little to no correlations between the Hamming distance,

chain_strength, anneal_time, and penalty factor p.

This is demonstrated by the nearly flat dependence of the data

in Figure 8. This lack of correlation prevents us from obtaining

optimized run parameters for this system, and unfortunately
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FIGURE 6

Decision tree method to find more feasible solutions based on D-Wave data at p = 2 and annealing time = 20 µs.

FIGURE 7

Histogram of Hamming distance of the all solutions for 3-node

problem. There are no feasible solutions.

suggests that larger node problems will become just as difficult, if

not more difficult, to optimize.

These findings already hint at the difficulties we encounter

when applying an NN to this system, as we describe in the following

section. But we nonetheless train a DT network on the energy

and Hamming distance to optimal solution, exactly as described in

Subsubsection 3.1.2.

4 Discussion

4.1 Interpretation of findings

The total number of feasible solutions of the trivial ILP

problem is 1,536. As previously mentioned, D-Wave finds a

little <10% of these solutions, but with our NN we can fully

ascertain the full solution space distribution (compare the lower

right panel of Figure 5 with that of Figure 6 and see also

Supplementary Figures S2, S5). More concretely, we provide the

exact number of addition feasible solutions found with our NN as

a function of input parameters annealing time and penalty

factor p in Figure 9 (see Supplementary Figure S4 for our other

trivial ILPs). This means that, for our simple ILP problem,

the decision tree after round off treatment provided 1,426 new

independent feasible solutions. The distribution of new solutions

as a function of Hamming distance provided by our ML technique

is given in Figure 10. So combining our NN results with D-Wave’s,

all possible 1,536 solutions were found. Thus, our hybrid classical

(ML)/quantum (D-Wave) method allowed us to fully map out the

full solution space. We note that our NN is not generalizable to all

trivial ILPs, but is unique for each ILP. This is because the solution

vector space generated by D-wave is specific for each ILP, and so

each NN is trained with this specific solution vector layout. Within

our formalism a “master” NN for all trivial ILPs is not possible.

We now discuss our 3-node problem. Note that in this case,

D-Wave could not find the optimal solution provided by CPLEX,

despite our system parameter investigations mentioned in the

previous section. It is not viable to assume that feasible solutions

can be found by luck or random guessing. The probability to find

the optimal (minimal and feasible) solution is 1/263 ∼ 10−19

in our case. The fact that we could not find feasible solutions

within a set of 600.000 samples indicates that feasible solutions

are very rare. This was already observed in our previous study

(Witt et al., 2023). There, we were not able to find any feasible

solutions for some of the test sets and in other cases around 0.2–

11 per million samples. There are some possible hints for why this

is the case here. First of all, the entire solution set contains only

a small portion of feasible solutions that fulfill the ILP. Further,

the annealer minimizes the energy of the QUBO Hamiltonian.

As it is possible that the lowest energy state can be obtained

with various solution vectors someone could find also a energy-

wise optimized vector that does not fulfill the ILP. Furthermore,

hardware imperfections like noise or limited detection resolution

can cause this undesirable behavior.

At this point, critical voices could rate the annealer as an

expensive random sampler. But this is not the case as we were

able to show that trivial ILP problems are definitely solvable with

D-Wave. In these cases, we explicitly used less samples than the

solution space’s size to avoid an oversampling—somebody could

also solve small problems by oversampling even if the sampler

is neither a random guess sampler where each solution is equal

probable or a minimizing sampler like the quantum annealer.

Thus, D-Wave performs better than a random sampler. Clearly the

solvability is not the same for the network problem case, and this
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FIGURE 8

Hamming distance in dependence of penalty p and annealing parameters chain strength and annealing time. The Hamming distance is obtained by

comparing with the best solution obtained by CPLEX.

FIGURE 9

The number of new independent feasible solutions found by

decision tree for the ILP problem.

may be due to (a) a higher connected QUBO and longer chains of

qubits that represent a logical qubit, which cause chain breaks in

the quantum annealing hardware to be more likely, (b) numbers

in the QUBO matrix have a higher differing range that may be not

represented in the hardware well-enough, and of course (c) other

issues that are beyond our knowledge.

As part of an approach for improvements, we trained our NN

for the 3-node problem with the distributions that we generated

from our correlation studies in a comparable way as it was done

in the simple ILP problem. Once trained, we found, however, that

the NN was unsuccessful in finding any new feasible solutions, let

alone the optimal solution. We attribute this to the fact that our D-

Wave data distribution of energies (which is used to train the NN)

does not cover the energy region of the optimal solution. In fact,

as shown in Figure 11, the distribution of D-Wave solutions is far

from the optimal solution. Our NN could therefore not generalize

sufficiently to lower energy solutions. Compounding the issue is the

fact that the distribution of D-Wave solutions contained no feasible

FIGURE 10

Histogram of hamming distance of the feasible solution obtained by

D-Wave (blue) and the new feasible solutions obtained by decision

tree method for the ILP problem.

solutions, and this in turn limited what the NN could “learn”. Thus,

our hybrid (ML)/quantum (D-Wave) method failed to produce any

new solutions for our 3-node problem.

An obvious question to raise is whether another choice of

NN is better suited for our 3-node problem. As we discussed

in Subsection 2.5, one of the main advantages that motivated

our choice of the decision tree NN is admittedly its ease of

use, interpretability, and implementation. However, because of

its potential lack of expressivity, one could argue that another

choice of NN, e.g., convolutional or recurrent, might lead to better

results. This indeed may be the case, and at the least warrants

further research. We point out, however, that regardless of the NN

architecture, our formalism requires that there exist correlations

between hyper-parameters and the resulting D-Wave solutions

vectors. It is these correlations that are “learned” by the NN. Since

we found no such correlations in our 3-node problem, we suspect

that any other type of NN will have similar difficulties as those

encountered by our decision tree NN.
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FIGURE 11

Comparing the data distribution and the best solution. We convert the solution vector to decimal number to plot.

FIGURE 12

Evaluation of the trivial ILP problem in representation as Sherrington-Kirkpatrick (SK) graph. (Left) Distribution of energy for SK graph’s Hamiltonian if

all possible solutions are considered, (Right) distribution of all cut values in SK graph.

4.2 Outlook on further improvements

Still there may be ways to improve the situation. Our studies

to date have only varied the annealing profile. Instead, one may

perform reverse annealing, where the annealing is run “backwards”

from a starting classical solution, allowing for exploration of the

energy landscape around the classical solution. We are actively

investigating this procedure. Reverse annealing may be also

applicable to set initial states as shown in Pelofske et al. (2023).

Thus, expected solutions or solutions that are close to an expected

solution can be set as start value for the annealing process. If

the optimizer is applied frequently—a typical situation in network

optimization—the last obtained solution can be used for the

initialization of the next run as new optimal network configurations

might be close to the last configuration.

Annealing parameter like annealing schedules and various

embeddings for our problems can be studied more detailed like in

the study ofWillsch et al. (2022). The authors ofWillsch et al. (2022)

discovered an increase in the success rate for proper settings in the

annealing schedule. In our case we observed a more or less constant

success rate, especially for the 3-node network problem. Apart from

that it may be valuable to study our approach on a larger set of

similar problems to get a more general perspective. Unfortunately,

we had to restrict our study on a single problem instance as the

amount of feasible solutions for our problem is very rare and large

sampling sets are required for the analyzes. Besides, thermalization

within the annealing process can be studied as well, see Dickson

et al. (2013).

Furthermore, since the size of the problem that is embedded

on the quantum annealer plays a crucial role for its solvability,

methods for efficient embedding or problem reduction should

be incorporated within future studies. We point out that the

work of Thai et al. (2022) seems promising in reducing the

demands on the number of physical qubits. Here the authors

introduced a fast Hamiltonian reduction algorithm (FastHare) that

defines non-separable groups of qubits, i.e., qubits that obtain the
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same value in optimal solutions, and performed a reduction by

merging non-separable groups into single qubits. This could be

done within a worst case time complexity of O(αn2) with a user-

defined parameter α. The authors of Thai et al. (2022) showed

in a benchmark that their algorithm is capable of saving 62%

of physical qubits on average within a processing time of 0.3 s,

outperforming the roof duality–the reduction used within the D-

Wave’s software development kit SDK. We reviewed parts of their

work. In particular, we mapped our trivial ILP problem to a so-

called Sherrington-Kirkpatrick (SK) graph. We further evaluated

all cut values within this graph. The results (Figure 12) show that

the cut values in the SK graph correspond to the energy values

of QUBO or Ising problem solution vectors. As the Hamiltonian

reduction is based on graph compression on basis of minimal

cuts, we expect that the proposed algorithm (Thai et al., 2022) can

improve the situation, as a reduced Hamiltonian might be better

solvable on the D-Wave quantum annealer.

Unfortunately, we were not able to fully implement and apply

this sophisticated algorithm as we struggled at the following

point. The algorithm applies a min-cut algorithm on the SK

graph to detect non-separable qubit groups. Originally, we

though that a standard min-cut algorithm could be applied

here. Unfortunately, the for us available min-cut algorithms can

be only applied in graphs with positive-weighted edges. But,

due to the nature of QUBO, Ising or SK Hamiltonians, the

edges in a SK graph may have negative-valued edge weights.

This issue was not addressed in their work (Thai et al.,

2022). However, it remains unsure, if the fast Hamiltonian

Reduction (FastHare) algorithm can improve the solvability

of our ILPs with D-Wave’s annealer as the authors used

randomly generated graph structures in their evaluation, i.e.,

the graphs are weakly connected and as such well-suited for

graph compression.

Beside the ILP to QUBO mapping formalism that was

described in Chang et al. (2020) and Witt et al. (2023),

someone could model the problem in a differing way. One

possibility is the introduction of constraint-specific penalty

factors, that create new degrees of freedom usable for problem-

specific optimization of the algorithm. It can be achieved by

the use of a penalty vector p⊤ = [p1, p2, . . . , pm] and a

corresponding penalty matrix P = Ip inside the formulations.

The QUBO Hamiltonian and thus the objective to be optimized

is then

H(q) = q⊤Qq+ C→ min,

with Q =

[

Qxx Qxs

Qsx Qss

]

, C = b⊤Pb and

Qxx = Z⊤x A
⊤PAZx + diag

{(

2b⊤PA+ c⊤
)

Zx

}

,

Qxs = Q⊤sx = Z⊤x A
⊤PZs ,

Qss = Z⊤s PZs + 2diag
{

Z⊤s Pb
}

.

This extends the ILP to QUBO mapping formalism to a

generalized form. Required details could be found in Witt et al.

(2023), Section III-D.

4.3 Outcome

Our work can be summarized as follows. The approach aims

to solve ILPs with a quantum annealing attempt. We tried to find

optimal annealing parameters and discovered weak correlations

between annealing parameters and success rates in the 3-node

network case. Further, a decision tree ML approach was applied

to increase the rate of feasible ILP solutions. We realized that

further improvements are needed to overcome remaining hurdles

and discussed some attempts therefore. Even as the results for the 3-

node problem are not fully satisfying, we are able to show with less

complicated ILP problems that the approach works in principle.

Thus, we expect that the approach can be extended in a way that

larger problem instances are also solvable.

Finally, fast ILP-solving methods can have a significant impact

on systems that should be optimized in real time. As an example, a

novel mode of real-time network operation in wide-area networks

is studied in Witt (2024). Here, similar ILPs are used to define a

frequently applied network optimization.
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Experimenting with D-Wave
quantum annealers on prime
factorization problems

Jingwen Ding, Giuseppe Spallitta and Roberto Sebastiani*

Department of Information Science and Engineering, University of Trento, Trento, Italy

This paper builds on top of a paper we have published very recently, in which

we have proposed a novel approach to prime factorization (PF) by quantum

annealing, where 8, 219, 999 = 32, 749 × 251 was the highest prime product

we were able to factorize—which, to the best of our knowledge is the largest

number which was ever factorized by means of a quantum device. The series

of annealing experiments which led us to these results, however, did not follow

a straight-line path; rather, they involved a convoluted trial-and-error process,

full of failed or partially-failed attempts and backtracks, which only in the end

drove us to find the successful annealing strategies. In this paper, we delve into

the reasoning behind our experimental decisions and provide an account of

some of the attempts we have taken before conceiving the final strategies that

allowed us to achieve the results. This involves also a bunch of ideas, techniques,

and strategies we investigated which, although turned out to be inferior wrt.

those we adopted in the end, may instead provide insights to a more-specialized

audience of D-Wave users and practitioners. In particular, we show the following

insights: (i) di�erent initialization techniques a�ect performances, among which

flux biases are e�ective when targeting locally-structured embeddings; (ii) chain

strengths have a lower impact in locally-structured embeddings compared to

problem relying on global embeddings; (iii) there is a trade-o� between broken

chain and excited CFAs, suggesting an incremental annealing o�set remedy

approach based on the modules instead of single qubits. Thus, by sharing the

details of our experiences, we aim to provide insights into the evolving landscape

of quantum annealing, and help people access and e�ectively use D-Wave

quantum annealers.

KEYWORDS

quantum computing, quantum annealing, prime factorization, embedding,

experimental analysis

1 Introduction

Quantum computing has emerged as a novel paradigm in computer science,

offering the potential capabilities to solve complex problems that have long remained

intractable for classical computers. Among the various approaches within quantum

computing, quantum annealers (QA) stand out as a promising tool for tackling

challenging computational tasks. To this extent, prime factorization (PF)—i.e., the

problem of breaking down a number into its prime factors—is a good candidate

to be effectively solved by quantum computing, in particular by quantum annealing.

This problem is of utmost significance in modern cryptography, where the security

of systems often relies on the presumed computational intractability of PF (Rivest

et al., 1978). Several approaches have been presented to address PF by quantum

computing (e.g., Vandersypen et al., 2001; Lucero et al., 2012; Martín-López et al., 2012;

Monz et al., 2016; Amico et al., 2019; Selvarajan et al., 2021), by quantum annealing
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(e.g., Dridi and Alghassi, 2017; Jiang et al., 2018; Mengoni et al.,

2020), or by hybrid quantum-classical technologies (e.g., Wang

et al., 2020; Karamlou et al., 2021). See Willsch et al. (2023) and

Ding et al. (2024) for a summary.

This paper builds on top of a paper we have published very

recently (Ding et al., 2024), in which we have proposed a novel

approach to PF by quantum annealing, with two main results.

First, we have presented a very compact modular encoding of a

binary multiplier circuit into the Pegasus QA architecture, which

allowed us to encode up to a 21×12-bit multiplier (or alternatively

a 22 × 8-bit one) into the Pegasus 5760-qubit topology of D-

Wave Advantage annealers. Due to the modularity of the encoding,

this number will scale up automatically with the growth of the

qubit number in future chips. Second, we have investigated the

problem of actually solving encoded PF problems by running

an extensive experimental evaluation on a D-Wave Advantage

4.1 quantum annealer. In these experiments we have introduced

different approaches to initialize the multiplier qubits, and adopted

several performance-enhancement annealing strategies. Overall,

within the limits of our QPU resources, 8, 219, 999 = 32, 749× 251

was the highest prime product we were able to factorize—which,

to the best of our knowledge, is the largest number which was

ever factorized by means of a “pure” quantum device (i.e., without

adopting hybrid quantum-classical techniques).

In this paper we delve into the reasoning behind our

experimental decisions and provide a more comprehensive account

of the steps and attempts we have taken before conceiving the final

strategies which allowed us to achieve the results in Ding et al.

(2024). We illustrate a bunch of ideas, techniques, and strategies we

investigated which, although turned out to be inferior wrt. those we

adopted in the end —and as such were not of interest for the more

general public targeted in Ding et al. (2024)— may instead provide

insights to a more-specialized audience of D-Wave QA users

and practitioners. In particular, we show the following insights:

(i) different initialization techniques affect performance, among

which flux biases are effective when targeting locally-structured

embeddings; (ii) chain strengths have a lower impact in locally-

structured embeddings compared to problems relying on global

embeddings; (iii) there is a trade-off between a broken chain and

excited CFAs, suggesting an incremental annealing offset remedy

approach based on the modules instead of single qubits. Thus, by

sharing the details of our experiences, including both successes and

setbacks, we aim to provide insights into the evolving landscape

of quantum annealing and help people access and effectively use

D-Wave quantum annealers.

2 Methods

We first summarize a few concepts from Ding et al. (2024). The

prime factorization problem (PF) of a biprime number N can be

addressed by SAT solvers by encoding a n × m multiplier into a

Boolean formula, fixing the values of the output bits s.t. to encode

N. In Ding et al. (2024), we presented a modular embedding of a

Abbreviations: CFA, Controlled Full-Adder; OMT, Optimization Modulo

Theories; PF, Prime Factorization; QA, Quantum Annealer; SAT, Propositional

Satisfiability.

binary multiplier circuit into the Pegasus QA architecture, based on

locally-structured embedding of SAT problems (Bian et al., 2020).

The multiplier circuit, represented in terms of a conjunction of

Controlled Full-adder (CFA) Boolean functions linked by means

of equivalences between variables, is embedded into the Pegasus

topology, with each CFA embedded into a 8-qubit tile and with the

variable equivalences implemented through chains. Each CFA F(x)

is encoded in terms of a penalty function:

PF(

z
︷︸︸︷

x, a |θ)
def
= θ0

+
∑

zi∈V
θizi +

∑

(zi ,zj)∈E,i<j θijzizj; zi ∈ {−1, 1}; (1)

s.t. ∀x min{a}PF(x, a|θ)

{

= 0 if F(x) = ⊤

≥ gmin if F(x) = ⊥
(2)

where the Boolean variables x and a aremapped into a subset z ⊆ V

of the qubits in the topology graph (V ,E), s.t. the qubit values

{1,−1} are interpreted as the truth values {⊤,⊥} respectively;

θ0, θi, θij and gmin are called respectively offset, biases, couplings

and the gap; the offset has no bounds, whereas the range for

biases and couplings is [−4,+4] and [−2,+1] respectively. (The

ancilla variables a are needed to address the over-constrainedness

of the encoding problem.) The θ values in PF(x, a|θ) have been

synthesized by means of OPTIMATHSAT (Sebastiani and Trentin,

2020) s.t. to maximize gmin.
1 The penalty function of the whole

multiplier is thus produced as the sum of the penalty functions of

the CFAs, plus a term (2 − 2zz′) for every chain 〈z, z′〉. Then it is

fed to the annealer, forcing the values of the output qubits so that

to represent the biprime number N, and forcing to −1 the value

of the carry-in qubit of the rightmost CFA of each row, and the

value of the in2 qubit of the CFAs in the first row in the multiplier.

Therefore, if the annealer finds a ground state s.t. such penalty

function is zero, then the values of the qubit represent a solution

of the PF problem.2 (We refer the reader to Ding et al. (2024) for a

much more detailed explanation).

2.1 Alternative approaches to initialize
qubits

Solving prime factorization of a specific number N requires

some of the qubits to be initialized to some fixed value in

{−1, 1}. For instance, given an 8-bit multiplier and N = 42,

whose binary representation is 00101010, then the qubits of the

CFAs corresponding to the output number should be initialized

respectively to {−1,−1, 1,−1, 1,−1, 1,−1}; also, e.g., the carry-in

qubit of the CFA for the least significant bit in a number must be

set to −1. D-Wave API offers a native function, fix_variables(),
that replaces the truth values of the qubits into the penalty function.

1 The bigger is gmin, the easier is for the annealer to discriminate solutions

from non-solutions (Bian et al., 2020).

2 From Equations (1) and (2) we notice that, due to non-minimum values

of a, in principle we can have solution scenarios where F(x) = ⊤ and

0 < PF(x, a|θ) < gmin, which we can recognize as solutions, or even s.t.

PF(x, a|θ) ≥ gmin, for recognizing which we need testing F(x) = ⊤ explicitly,

which can be performed very easily.
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Unfortunately, this causes a subsequent rescaling of all weights if

one bias or coupling does not fit into the proper range, reducing

thus the gap gmin accordingly.

The initialization of qubits can be implemented either at the

encoding level [i.e., by imposing qubit values directly into the

penalty function PF(x|θ) ], or at the hardware level (i.e., by

imposing the qubit values through the tuning of the quantum

annealer hardware). In Ding et al. (2024) we adopted the

latter implementation by tuning flux biases, and showed the

benefits they brought to the success probability of reaching

the ground state. In this paper, we mainly focus on the

former type of implementation, proposing a few alternatives

to fix_variables():

• Ad-hoc encoding for the CFAs: we substitute the values

of the input variables into the corresponding CFAs and

then re-encode these initialized CFAs, with reduced graphs,

into new CFA penalty functions. For instance, suppose we

want to set the value of c_in to false. Then we feed to the

OMT solver the extended formula F′(x) = F(x) ∧ ¬c_in

to generate a new specialized penalty function. To prevent

the gmin from being scaled down due to the input values,

during the re-encoding process we take into account all

combinations of possible inputs that occur in the CFAs.3

This results into the generation of an offline library of

specialized CFAs, with increased minimal gaps, gmin ∈ [3, 18].

Notice that, using these modified encodings, we obtained

some solutions where F(x) = ⊤ and 0 < PF(x, a|θ) < gmin

(see text footnote 2), which never occurred in the experiments

reported in Ding et al. (2024). Both the gap increment

and the extra solutions can increase the probability to

find solutions.

• Extra chaining: we notice that in the penalty functions of CFA

we have obtained, the biases of the qubits are all within [−1, 1],

whereas the range for the D-Wave Advantage 4.1 is [−4, 4].

Based on these facts, we have explored a simple alternative way

to initialize qubits, without the risk of rescaling down the gmin

value. Specially, in order to assign qubit z to 1 [resp. −1], we

can add the penalty function for z = 1 (2 − 2z) [resp. for

z = −1 (2 + 2z)] to the penalty function of the multiplier,

s.t. the bias of z safely remains in [−3, 3]. Equivalently, we can

find an unused neighbor qubit z′ (if any), add an equivalence

chain between z and z′, and then initialize z′ to 1 (resp−1) by

fix_variables().

2.2 The impact of chain strength in QA for
modular encodings

The effect of chain strength has been previously studied in

the context of global embedding, where the input problem is

first encoded into a QUBO problem, which is then embedded

into the hardware by means of embedding algorithms. The

3 This is made necessary by one further technique, namely qubit sharing,

which we have introduced in Ding et al. (2024) and which is not explained

here.

main issue of that approach is that the QUBO model does

not know in advance how many chains are there in a

specific topology and where they will be placed. Thus, the

addition of chains a-posteriori—whose length and placement

are out of the control of the user—and the consequent re-

scaling of biases and coupling may affect the performances of

the algorithm.

Our locally-structured embedding approach in Ding et al.

(2024) differs from the above approach because the Ising model

that is generated is already hardware-compliant, so that there

is no risk of weights rescaling, and we do not need a fine-

grained analysis of chain strength. Given the modularity of our

encoding and the presence of chains to allow communication

between neighboring modules, however, it is still important to

investigate the side effects of chain strength in modular encoding.

To this extent, we choose a set of chain strengths, c ∈

{1, 1.5, 2}, as representatives for investigating their effects on the

performance of our locally structured embedding approach on

QA systems.

2.3 Incrementally remedying excited CFAs

We assume that if all CFAs in a multiplier reach the

ground state with high probability, then the success probability

of the whole multiplier will be positively affected. Based on

this assumption, we have proposed an incremental remedy

strategy, to remedy the most excited CFAs during the

solving process.

The remedy approach is based on anneal offsets (DWave,

2021). In the standard annealing process of D-Wave systems, the

annealing schedules are set identically for all qubits. However,

the system also allows for adjusting the annealing schedule for

each qubit. This is implemented by offsetting the global, time-

dependent bias signal c(s) that controls the annealing process.

More specially, for a qubit qi, its anneal offsets ±δci 6= 0

correspond to advancing and delaying the standard annealing

schedule, respectively.

In a fashion similar to Andriyash et al. (2016), Lanting et al.

(2017), Yarkoni et al. (2019), and Adame and McMahon (2020) we

adopted the idea of incrementally fixing annealing offset weights

to increase the probability of reaching a ground state. Differently

from these papers, however, where the annealing offset is set

to qubits, we set modules of our encoding (i.e., CFAs) as the

target of annealing offset tuning, and we choose the number of

excitations of these modules as a measure to guide the remedy

strategy process.

In each step of our incremental remedy approach, we first

find the most-excited CFA —i.e., the CFA whose number of

excitation occurrences out of the 1,000 samples is maximum—

and then continue to advance the annealing process of all

its qubits by annealing offset δci = 0.01, on top of the

previous remedying history, until the CFA is no longer the most

excited. The procedure terminates either if the system reaches

one ground state or if it reaches a certain number of steps

set as a threshold. This threshold is chosen according to the
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TABLE 1 Di�erent initialization approaches for solving small-size PF, with the annealing time Ta = 10 µs and 1,000 samples for each problem instance.

Size Inputs CFA0 CFA1

API Ad-hoc Chain Flux-bias API Chain Flux-bias

3×3 25 = 5×5 161 154 93 308 327 173 136

35 = 5×7 389 666 286 711 410 379 951

49 = 7×7 450 577 312 906 344 295 997

4×4 121 = 11×11 17 4 30 63 9 33 0

143 = 11×13 40 52 28 129 122 32 67

169 = 13×13 31 54 4 312 84 69 5

5×5 289 = 17×17 5 0 0 1 3 1 0

323 = 17×19 2 0 1 7 22 3 0

361 = 19×19 1 1 0 1 11 1 3

391 = 17×23 6 1 4 119 5 19 9

437 = 19×23 17 0 3 67 3 2 0

493 = 17×29 3 6 0 4 8 0 2

527 = 17×31 21 11 6 91 6 5 37

529 = 23×23 5 0 3 8 0 1 8

551 = 19×29 0 11 4 24 2 3 4

589 = 19×31 16 13 11 7 1 22 52

667 = 23×29 0 6 2 3 8 9 105

713 = 23×31 11 12 3 26 2 1 138

841 = 29×29 5 9 8 148 14 8 7

899 = 29×31 17 76 5 222 7 13 343

961 = 31×31 1 43 0 37 1 0 338

limitation on the access of QuPU, e.g., the perimeter of the

multiplier embedded.

3 Results

3.1 Results of di�erent initialization
approaches of qubits

In the experiments, we compare the proposed initialization

approaches on D-Wave Advantage system 4.1 for factoring small

integers of up to 5 × 5 bits, with the annealing time (Ta =

10µs) and 1,000 samples set for each problem instance. Table 1

by comparing the performances of the initialization techniques

, we notice that the ad-hoc re-encoding outperforms the native

API and the extra-chain approaches, but it still does not perform

as well as the flux-bias tuning, which we finally adopted in Ding

et al. (2024). In Ding et al. (2024) we also proposed a variant

of the CFA function, namely CFA1, minimizing the number

of unsatisfying assignments with gmin equal to 2. For the sake

of completeness, we also tested this encoding in combination

with initialization techniques other than flux biases. These results

confirm that the combination of the flux-bias initialization and

the improved CFA1, which we adopted in Ding et al. (2024),

produces the highest success probability for D-Wave Advantage

4.1 in finding solutions. For this reason, we continue to use this

combination, the flux-bias initialization + CFA1, in the following

experiments of this paper.

3.2 Results of di�erent chain strengths

Using the initialization approach based on CFA1 + flux

biases and the same configuration of the annealing system

(Ta = 10µs, 1, 000 samples for each problem instance) of

previous experiments, we test different chain strengths (c ∈

{1, 1.5, 2}) for QA factoring integers from 3 × 3 up to

11 × 8 bits, using the 10 highest co-prime number for each

multiplier size.

In Figure 1, left we summarize the results of all samples

provided the QA. Sorting them by the size of the input problem

(x-axis), we plot respectively the number of samples successfully

reaching the ground state (first plot), the number of samples

having no broken chain (second plot), and the number of

samples having no excited CFA (third plot). In general, we

report the score of the median sample among all problems

(dashed line) as a summary of the annealer behavior for each

sample size. In addition, for each sample size, we provide

information on the problem that reaches the ground state the
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FIGURE 1

(Left) Comparison of di�erent chain strengths c, c ∈ {1, 1.5, 2}, for QA to factor integers of 3+ 3 bits up to 11+ 8 bits, with the annealing time

Ta = 10 µs and 1,000 samples set for each problem instance. (Right) Excitations distribution of chains (first column) and CFAs (second column) for

factoring 10 integers of 8+ 8 bits tested in the previous experiments, with chain strength equal to c ∈ {1, 1.5, 2} (respectively top, middle, and bottom

row).

least frequently (represented by the minimum dotted line in

Figure 1, left), as well as the one that reaches the ground state

the most frequently (represented by the maximum solid line in

Figure 1, left).

We see that stronger chains (c ∈ {1.5, 2}) do not

always bring us a higher success probability in general for

the chosen problem sizes, and that weaker chains (c = 1)

can produce higher success probabilities than stronger chains

occasionally for middle-size problems. Notice that this result,

in terms of the success probability, is consistent with what

is mentioned by Lanting et al. (2017), suggesting that locally-

structured embedding does not behave differently from global

embedding regarding chain strengths. We also observe that

as the problem size increases, weaker chains tend to be

broken more easily than stronger chains. The rapidly declining

dotted yellow lines confirm this phenomenon, approaching 0

for problems of bigger size. Based on these two observations,

we speculate that the strongest chain, which was chosen

in Ding et al. (2024), is the best candidate for factoring

integers of up to 17 × 8 bits, the maximal problem size

they could encode into the target QA system with a locally-

structured embedding.

3.3 Results of incrementally fixing
excited CFAs

From the experiment of the previous subsection, we can see

that there seems to be a trade-off between broken chains and the

excitations of CFAs: the weaker the chains are, the more likely they

are broken, and the fewer the samples where the CFAs are excited.

Moreover, the excitations of CFAs are not uniformly distributed.

To this extent, we studied the distribution of broken chains and

CFAs in 10 8 × 8 factoring problems, shown in Figure 1, right.

The results on excitations of chains and CFAs are reported as 3D

bar plots in Figure (3rd and 4th row, respectively). Each problem

instance is mapped with its color. The x and the y axis correspond

to the column and row of the multiplier respectively; the z axis

represents the sum of excitations of each chain or CFA for the tested

10 problem instances. These results support testing an incremental

remedy strategy based on modules.

With the strongest chain strength and the same configuration

of the annealing system as the other experiments in the paper,

we test the approach of incrementally fixing excited CFAs for QA

factoring the highest integers of 8×8 bits up to 10×8 bits from the

experiments shown in Figure 1. The results are shown in Table 2.
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TABLE 2 Results of incrementally remedying excited CFAs for factoring integers of 8 × 8 bits up to 10 × 8 bits, with the same annealing time Ta = 10 µswith the number of samples ranging from 1,000 to 3,000 set

for each problem instance.

Size #Samples 1000 2000 3000

input PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

8×8 49,447 = 251×197 6.25 [(6, 7), 395] 5 0.0 [(0, 1), 315] 6.0 [(0, 1), 1,268] 32 4.083 [(6, 5), 490] 4.0 [(0, 1), 1,377] 32 4.083 [(4, 7), 894]

49,949 = 251×199 6.083 [(6, 7), 466] 4 0.0 [(7, 6), 347] 4.0 [(0, 1), 982] 32 4.0 [(6, 5), 429] 2.0 [(0, 1), 1,461] 25 0.0 [(5, 7), 631]

52,961 = 251×211 2.083 [(7, 5), 454] 32 6.083 [(6, 7), 250] 6.167 [(7, 5), 994] 32 6.167 [(5, 7), 452] 6.083 [(7, 5), 1,705] 6 0.0 [(7, 6), 1,001]

55,973 = 251×223 4.0 [(5, 7), 242] 2 0.0 [(7, 3), 267] 0.0 [(0, 1), 569] 0 0.0 [(0, 1), 569] 0.0 [(7, 6), 896] 0 0.0 [(7, 6), 896]

56,977 = 251×227 2.083 [(7, 6), 457] 31 0.0 [(0, 1), 351] 4.083 [(7, 6), 921] 8 0.0 [(7, 6), 593] 4.083 [(7, 6), 1,555] 16 0.0 [(0, 1), 739]

57,479 = 251×229 6.0 [(5, 7), 277] 32 4.0 [(6, 5), 200] 4.083 [(0, 1), 722] 32 4.083 [(6, 6), 471] 4.0 [(5, 7), 925] 1 0.0 [(0, 1), 905]

58,483 = 251×233 4.083 [(7, 7), 338] 32 4.0 [(0, 3), 242] 4.083 [(7, 7), 779] 32 4.083 [(1, 4), 452] 4.0 [(7, 7), 1,069] 32 4.0 [(2, 1), 669]

59,989 = 251×239 0.0 [(7, 7), 252] 0 0.0 [(7, 7), 252] 0.0 [(7, 7), 815] 0 0.0 [(7, 7), 815] 0.0 [(7, 7), 1,282] 0 0.0 [(7, 7), 1,282]

60,491 = 251×241 2.0 [(7, 7), 237] 32 4.083 [(7, 7), 276] 2.0 [(7, 7), 856] 32 2.0 [(1, 4), 461] 2.0 [(7, 7), 1,082] 32 2.0 [(3, 0), 589]

63,001 = 251×251 4.083 [(7, 7), 492] 4 0.0 [(0, 2), 292] 2.0 [(7, 7), 836] 1 0.0 [(7, 7), 889] 2.0 [(7, 7), 1,397] 6 0.0 [(7, 7), 999]

9×8 100,273 =

509×197

8.167 [(7, 4), 629] 34 4.083 [(6, 7), 281] 8.083 [(7, 4), 1,413] 34 8.0 [(1, 7), 490] 4.083 [(7, 4), 1,834] 34 4.083 [(1, 7), 754]

101,291 =

509×199

8.0 [(7, 3), 461] 34 6.25 [(6, 8), 288] 6.083 [(7, 3), 859] 34 8.0 [(6, 8), 540] 8.083 [(6, 8), 1,273] 34 6.083 [(5, 8), 692]

107,399 =

509×211

8.0 [(7, 3), 479] 34 4.0 [(7, 5), 210] 4.083 [(0, 1), 1,100] 34 6.083 [(7, 6), 431] 6.0 [(7, 3), 1,485] 34 4.0 [(1, 4), 701]

113,507 =

509×223

8.0 [(0, 1), 373] 13 0.0 [(7, 6), 244] 4.083 [(0, 1), 1,133] 3 0.0 [(7, 7), 995] 4.083 [(0, 1), 1,803] 34 6.0 [(6, 7), 612]

115,543 =

509×227

8.083 [(0, 1), 541] 34 8.0 [(7, 3), 214] 8.0 [(0, 1), 1,394] 34 6.167 [(7, 6), 460] 6.0 [(0, 1), 1,633] 34 6.083 [(0, 0), 794)

116,561 =

509×229

6.167 [(0, 1), 434] 34 8.167 [(2, 5), 226] 6.0 [(0, 1), 1,002] 34 6.083 [(6, 7), 522] 6.083 [(7, 8), 1,305] 34 6.083 [(7, 8), 660)

118,597 =

509×233

6.0 [(0, 1), 379] 34 4.0 [(2, 6), 211] 8.0 [(7, 8), 880] 34 6.167 [(6, 7), 363] 6.083 [(7, 8), 1,743] 34 6.083 [(5, 8), 683)

121,651 =

509×239

8.083 [(7, 8), 628] 34 4.083 [(7, 7), 274] 8.0 [(7, 8), 1,035] 9 0.0 [(0, 2), 508] 4.0 [(0, 1), 1,307] 4 0.0 [(0, 2), 974]

122,669 =

509×241

6.083 [(7, 8), 600] 34 4.083 [(7, 6), 272] 10.0 [(7, 8), 1,515] 34 4.0 [(0, 4), 557] 6.083 [(7, 8), 2,154] 34 4.0 [(7, 5), 685]

127,759 =

509×251

6.0 [(0, 1), 651] 2 0.0 [(0, 1), 542] 6.0 [(7, 8), 1,261] 2 0.0 ([7, 8), 1,026] 4.0 [(0, 1), 1,799] 2 0.0 [(0, 1), 1,837]

(Continued)
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TABLE 2 (Continued)

Size #Samples 1000 2000 3000

input PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

10×8 201,137 =

1,021×197

8.083 [(7, 2), 424] 36 10.083 [(7, 2), 234] 2.0 [(7, 2), 881] 36 4.083 [(4, 9), 463] 4.0 [(7, 2), 1,430] 36 6.083 [(2, 9), 690]

203,179 =

1,021×199

10.083 [(0, 1), 474] 36 6.083 [(0, 2), 281] 8.083 [(0, 1), 940] 36 6.167 [(5, 7), 423] 8.083 [(0, 1), 1,431] 36 8.0 [(7, 6), 1,033]

215,431 =

1,021×211

8.0 [(0, 1), 574] 36 8.0 [(7, 8), 265] 6.0 [(0, 1), 1,033] 36 6.083 [(3, 1), 422] 6.0 [(0, 1), 1,817] 36 8.0 [(7, 3), 594]

227,683 =

1,021×223

8.083 [(0, 1), 586] 36 6.167 [(5, 9), 213] 4.0 [(0, 1), 1,318] 36 4.167 [(6, 8), 419] 6.0 [(0, 1), 1,897] 36 4.083 [(7, 4), 639]

231,767 =

1,021×227

10.0 [(0, 1), 592] 36 8.083 [(5, 9), 269] 8.083 [(0, 1), 1,146] 36 6.083 [(7, 7), 452] 8.083 [(0, 1), 1,709] 36 6.0 [(7, 6), 641]

233,809 =

1,021×229

8.083 [(7, 9), 361] 36 6.167 [(5, 9), 248] 6.0 [(0, 1), 922] 36 8.0 [(2, 9), 453] 6.167 [(7, 9), 1,207] 36 6.0 [(7, 5), 776]

237,893 =

1,021×233

6.0 [(7, 9), 456] 36 6.083 [(0, 1), 185] 6.0 [(7, 9), 886] 36 6.0 [(1, 4), 378] 4.0 [(7, 9), 1,480] 36 6.0 [(2, 2), 553]

244,019 =

1,021×239

8.083 [(0, 1), 600] 36 4.0 [(7, 9), 234] 6.167 [(0, 1), 1,252] 36 6.0 [(1, 2), 427] 6.083 [(7, 9), 1,595] 30 0.0 [(0, 1), 733]

246,061 =

1,021×241

2.083 [(7, 9), 619] 36 6.0 [(1, 1), 232] 10.0 [(7, 9), 1,056] 36 8.0 [(1, 5), 499] 8.0 [(7, 9), 1,478] 36 4.0 [(2, 9), 615]

256,271 =

1,021×251

4.083 [(7, 9), 659] 36 4.083 [(7, 8), 226] 6.083 [(0, 1), 1,256] 10 0.0 [(0, 4), 695] 2.083 [(0, 1), 1,900] 36 4.083 [(7, 8), 787]

For each problem, we first report the starting point sample, including its energy, the most excited CFA, and the number of its excitations respectively. Then, we report the number of iterations performed by the remedy strategy (a bold number means we did not reach

the step threshold and a ground state has been found), together with the energy and the current most excited CFA.
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FIGURE 2

Fixing results for factoring 16-bit 113,507 in Table 2. Each coordinate corresponds to the CFA in the multiplier circuit. The numbers in the figures in

the leftmost and rightmost columns represent the number of excitations out of 1,000 samples, whereas the number in the figure in the middle

denotes the anneal o�set used in the whole fixing process, for advancing the annealing schedule of the specific CFA. Notice the less homogeneous

distribution of excitations of CFAs in the leftmost figure compared to the rightmost figure. (Left) Before the fixing. (Middle) The fixing history. (Right)

After the fixing.

To get an extensive analysis of the novel remedy strategy, we tested

three different configurations, with the only difference being the

number of samples obtained for each iteration (respectively 1,000,

2,000, and 3,000). We also show in Figure 2 the behavior of the

remedy strategy on one of the problem instances.

From the results, we can see that the remedy strategy helps in

solving some of the problem instances. In particular, this approach

works under the assumption the user has a limited amount of

QPU time (i.e., the annealing time is confined to values . 20µ)s,

showing its effectiveness when users are bound to tight constraints

in accessing the D-Wave devices. This approach works more

effectively with smaller instances, reaching the ground state more

frequently and with fewer iteration steps. Moreover, increasing the

sample size does not impact performances, showing sporadically

improvements in reaching the ground state when the number

of samples increases. Nevertheless, setting the annealing offset

scores based on the modules’ properties instead of targeting qubits

independently seems promising, and further investigations could

define different conditions to prioritize the annealing of some

CFAs.

4 Discussion

This paper has built upon the recent work presented in

our previous publication (Ding et al., 2024), which introduced

a novel approach to the problem of PF through quantum

annealing. In contrast to our previous paper, which showcased

exclusively the effective techniques that highly benefited our

task, here we discussed several intermediate and less successful

approaches. This comprehensive exploration provides insights into

the intricacies that influenced our final results in Ding et al.

(2024). The code to replicate these experiments is reported in the

following publicly available repository: https://gitlab.com/jingwen.

ding/multiplier-encoder-2nd.

Our experiments revealed several insights:

• Effectiveness of flux biases tuning: We showed that the

techniques to initialize qubits implemented at the encoding

level were not as effective as flux-biases tuning. Nevertheless,

they can be considered as viable alternative to the usage of

fix_variables() in other contexts.

• Chains coupling strength: Even though using the highest

value for chains coupling strength might not be optimal

for small-sized problems, it proved crucial for solving more

complex problems. This highlights the delicate balance

between problem size and annealing parameters, e.g., chain

strength.

• Trade-off between broken chains and CFA excitations: We

observed a trade-off between the presence of broken chains

and the excitations of CFAs when the QA generates its

samples. This further highlights the importance of monitoring

chain strength in other contexts.

• Non-uniform distribution of CFA excitations: The

excitations of CFAs were found to be non-uniformly

distributed for different samples on the same problem

instance. Understanding this distribution can be valuable for

tailoring annealing strategies to specific problem instances.

• Remedy strategy for middle-size problems: The remedy

strategy we proposed in Section 2.4, based on the above

observations, showed minor benefits in solving middle-sized

problems. Nevertheless, it could be useful in other contexts.

By delving into the details of our experimental journey, listing

both our successes and setbacks, we aim to provide valuable insights

to amore specialized audience of D-WaveQuantumAnnealer users

and practitioners. Our work contributes to the evolving world of

quantum annealing and equips researchers and professionals with

additional knowledge to effectively use D-Wave quantum annealers

in their applications.
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