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Editorial on the Research Topic
Online monitoring of wind power plants using digital twin models

In the fast-evolving renewable energy sector, offshore wind technology has made
significant strides, evolving from bottom-fixed turbines to the integration of floating
turbines. These developments have led to a critical focus on reducing Operational
Expenditure (OPEX) and improving turbine reliability through predictive maintenance
that uses real-time data to forecast and mitigate potential failures. Digital Twin models have
acted as an enabling technology for performing predictive maintenance. This research topic
brings together a set of nine studies dedicated to addressing the technical challenges and
practical applications of digital twin models in wind energy, aiming to lay the groundwork
for more sustainable, reliable, and cost-effective wind energy systems.

The featured articles explore various aspects of digital twin technology, from
architectural development to fault detection, all with the goal of optimizing wind
turbine maintenance. For instance, Marykovskiy et al. in Architecting a Digital Twin for
Wind Turbine Rotor Blade Aerodynamic Monitoring, presents a novel digital twin system,
Aerosense, designed for rotor blade monitoring using microelectromechanical sensors.
Built on systems engineering principles, Aerosense uses microelectromechanical sensors to
provide comprehensive monitoring and predictive modeling, moving the industry toward
more adaptable and integrated digital twin frameworks.

Another significant contribution, Fault Detection of a Wind Turbine Generator Bearing
Using Interpretable Machine Learning by Bindingsbø et al. addresses the challenge of
detecting faults in generator bearings—a common issue that can compromise turbine
performance. This study presents a machine learning-based approach for identifying
temperature anomalies indicative of bearing faults, using Supervisory Control and Data
Acquisition (SCADA) data. The emphasis on interpretable machine learning underscores
the need for transparency and accountability in predictive maintenance, essential for
broader adoption of digital twin models in wind energy.

This research topic also delves into powertrain degradation and control. In Yaw
Misalignment in Powertrain Degradation Modelling for Wind Farm Control in Curtailed
Conditions, Moghadam et al. examine how yaw misalignment affects powertrain
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components and propose a damage-aware control framework for
efficient power distribution within wind farms. This study highlights
the integration of degradation metrics into farm-level control,
demonstrating how digital twin models can simultaneously
address efficiency and durability through advanced control
strategies, and allow operators to make informed decisions about
the power setpoints of individual turbines within large farms.

Another key study, Optimal Operation Strategy for Distribution
Network with High Penetration of Dispersed Wind Power by Duan
et al. addresses the integration of distributed wind power into local
grids. This research presents an optimization model to enhance
network performance while balancing high wind penetration and
voltage stability. It highlights the potential of digital twins to manage
complex, large-scale networks, providing essential decision-
making support.

Control strategies for grid integration and stability are also
central to An MPC Based Active and Reactive Power Coordinated
Control Strategy of PMSG Wind Turbines to Enhance the Support
Capability by Ma et al. The study advances model predictive control
methods for regulating active and reactive power, underscoring the
role of digital twins in managing grid support functions traditionally
handled by conventional units. This contributes to a broader vision
of the utilization of digital twin models in future grid where
renewable sources play a more active role in maintaining
grid stability.

Available Power Estimation of Wind Farms Based on Deep
Spatio-temporal Neural Networks by Liu et al. illustrates the
potential of artificial intelligence in digital twin applications. This
study leverages deep learning techniques to forecast available power
based on historical data, demonstrating how spatio-temporal neural
networks can enhance prediction accuracy. The focus on turbine-
level data highlights the potential of digital twins for fine-grained,
turbine-specific insights, allowing operators to make informed
decisions about individual turbines within large farms.

In addition to simulations, the research topic also includes an
experimental study performed by Xiong et al. in Experimental study of
Dynamic Characteristics of an Ultra-Large Jacket Offshore Wind
Turbine under Wind and Wave Loads Using Aero-Hydro-Structural
Elastic Similarities, which provides a physical testing framework for
offshore turbine stability under extreme conditions. This study
underscores the importance of empirical validation in digital twin
models, ensuring their reliability across diverse operational conditions.

Power management and fault resilience are addressed by
contributions such as A Model Predictive Control Strategy for
Enhancing Fault Ride Through in PMSG Wind Turbines Using
SMES and Improved GSC Control by Abdelkader et al. which
introduces a novel strategy that combines superconducting
magnetic energy storage (SMES) with model predictive control
(MPC). This strategy boosts fault resilience by providing reactive
power support during grid disruptions, showcasing how digital
twins can predict and preempt faults, minimizing downtime.

Finally, Study on Obtaining Real Power Curve of Wind Turbines
by Using SCADA Data by Dai et al. explores methods for deriving
accurate power curves from SCADA data, an essential function of
digital twins in assessing wind turbine performance. This study
contributes to more precise performance assessments, directly
supporting predictive maintenance and operational planning.

Together, these studies represent a comprehensive approach to
tackling the challenges of digital twin modeling for predictive
maintenance in wind energy. They collectively address the three
core layers of digital twin realization—data acquisition, dynamic
model processing, and decision support—each layer contributing to
a robust framework for optimizing turbine performance. As digital
twin technology continues to mature, these contributions highlight
the technical challenges and the immense potential of predictive
maintenance, steering the wind energy industry towards a more
sustainable and efficient future.
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Study on Obtaining Real Power Curve
of Wind Turbines Using SCADA Data
Juchuan Dai1*, Huifan Zeng1, Fan Zhang1, Huanguo Chen2 and Mimi Li 1

1School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China, 2Faculty of Mechanical
Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, China

The key problem to be solved in the process of wind turbine (WT) operation and
maintenance is to obtain the wind turbine performance accurately. The power curve is
an important indicator to evaluate the performance of wind turbines. How to model and
obtain the power curve of wind turbines has always been one of the hot topics in research.
This paper proposes a novel idea to get the actual power curve of wind turbines. Firstly, the
basic data preprocessing algorithm is designed to process the zero value and null value in
the original supervisory control and data acquisition (SCADA) data. The moving average
filtering (MAF) method is employed to deal with the wind speed, the purpose of which is to
consider the comprehensive result of wind on the wind turbine power in a certain period.
According to the momentum theory of the ideal wind turbine and combined with the
characteristics of the anemometer installation position, the deviation between the
measured wind speed and the actual wind speed is approximately corrected. Here,
the influence of dynamic changes in air density is also considered. Then, the Gaussian
fitting algorithm is used to fit the wind-power curve. The characteristics of the power curve
before and after wind speed correction are compared and analyzed. At the same time, the
influence of the parameter uncertainty on the reliability of the power curve is considered
and investigated. Finally, the characteristics of the power curves of four wind turbines are
compared and analyzed. The research results show that among these power curves, WT3
and WT4 are the closest, WT2 is the next, and WT1 has the farthest deviation from the
others. The research work provides a valuable basis for on-site performance evaluation,
overhaul, and maintenance of wind turbines.

Keywords: power curve, wind turbines, SCADA data, moving average filtering, wind speed correction

INTRODUCTION

The serious impact of environmental degradation has increased global interest in wind energy. In
recent years, the wind power industry has developed rapidly (Dai et al., 2018a; Dawn et al., 2019).
According to the wind power statistics revealed by the World Wind Energy Association (WWEA),
the worldwide wind capacity has reached 744 gigawatts. In 2020, 93 gigawatts of new wind turbines
were added, setting a new record. With batches of wind turbines in service, their operating efficiency
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(usually referred to as “power coefficient”) has become the focus
because this is directly related to the economic benefits of wind
farm operation (Dai et al., 2016a; Dhunny et al., 2020; Sun et al.,
2020; Bakir et al., 2021). However, due to the influence of many
factors, the actual power characteristic of wind turbines operating
in wind farms is often inconsistent with the designed power
characteristic. So, modeling and obtaining the power curve of
wind turbines has always been one of the hot topics in research
(Rogers et al., 2020).

The power curve of wind turbines indicates the generated
power versus wind speed (Ciulla et al., 2019). It is widely used
for monitoring and evaluating wind turbine performance
(Pandit et al., 2020; Astolfi et al., 2021a). The abundant
SCADA data of wind farms provide a good database for
wind power curve research. The different techniques used
for wind turbine power curve (WTPC) modeling can be
divided into parametric techniques and non-parametric
techniques (Lydia et al., 2014). The power generation of
wind turbines will vary with external environmental
conditions. To investigate the influence of external
conditions on wind speed and wind turbine power, Kim
et al. analyze three atmospheric factors: atmospheric
stability, turbulence intensity (TI), and wind shear (Kim
et al., 2021). Various factors such as the age of the wind
turbine, installation location, air density, and wind direction
will cause inhomogeneity among the observation data, which
usually affects the accuracy of the fitted power curve. To
overcome this problem, the hybrid estimation method by
Mehrjoo et al. is presented, which is based on weighted
balanced loss functions (Mehrjoo et al., 2021). Saint-
Drenan et al. develop an open-source model that can
generate the power curve of any turbine to suit the specific
conditions of any site (Saint-Drenan et al., 2020). Marčiukaitis
et al. present a nonlinear regression model (three-parameter
exponential model) for modeling power curve with
application to the wind turbine of Seirijai wind farm (in
Lithuania) (Marčiukaitis et al., 2017). To get highly
accurate non-parametric power curve models,
Karamichailidou et al. employ artificial neural network
(ANN) belonging to the radial basis function architecture
and train it using non-symmetric fuzzy means (NSFM)
(Karamichailidou et al., 2021). Virgolino et al. introduce a
semi-parametric method that combines Gaussian process
(GP) regression, standard logistic functions (SLF), and
probabilistic kernel-based machine learning models
(Virgolino et al., 2020). Manobel et al. present a method
based on GP data pre-filtering and ANN modeling of the
power curve, where the prior filtering by GP modeling can
improve the network performance (Manobel et al., 2018).
Mehrjoo et al. propose two non-parametric techniques, which
are based on the tilt method and the monotonic spline
regression, to construct the WTPC that maintains
monotonicity (Mehrjoo et al., 2020). Seo et al. construct a
nonlinear parametric power curve model using the logistic
function, and four parameters in the logistic function are
obtained explicitly by the maximum likelihood estimation
(MLE) method (Seo et al., 2019). The results provided by the

logistic functions are useful due to the continuity and
adaptability. However, there are many types of logic
functions, and how to choose is a question worth studying.
From this scenario, the well-known logistic functions are
employed and tested for modeling WTPC by Villanueva
et al. (Villanueva and Feijóo, 2018). Yesilbudak et al.
present a robust hybrid method for the power curve
modeling of wind turbines, where Mahalanobis distance
measure and the chi-square cumulative distribution are
used for the power curve filtering (Yesilbudak, 2018).
Usually, the SCADA-collected data are those averaged
(typically with an averaging time of 10 min). Gonzalez
et al. investigate the use of high-frequency SCADA data for
wind turbine performance monitoring and propose a new
framework based on multivariate non-parametric models
(Gonzalez et al., 2017; Gonzalez et al., 2019).

However, the previous research mainly focused on the power
curve algorithm itself, that is, how to improve the algorithm to
improve the accuracy and reliability further, and the analysis of
the impact caused by the physical properties of the data itself is
insufficient. The knowledge gaps that need to be supplemented
are mainly manifested in the following aspects, which are also the
main contributions of this article.

• How to obtain the data needed for reliable power curve
modeling from SCADA data. In SCADA data, the wind
speed is provided by the anemometer installed on the
nacelle, which is not the actual incoming wind speed
(Dai et al., 2016b; Dai et al., 2019). Because the wind is
blowing first on the wind rotor and then on the
anemometer, some of the wind energy has already
been absorbed by the wind rotor, the wind speed
measured by the anemometer is smaller than the
actual incoming wind speed. If the wind speed data in
SCADA is used directly to obtain the power curve, the
deviation must be significant (Figure 1). So, different
from previous studies, this article first corrects the wind
speed in SCADA and then performs power curve
modeling.

• How to obtain the real mapping characteristics between
wind speed and power. The wind speed recorded in the
SCADA data is the instantaneous wind speed (once a
second). Due to the inertia of the wind turbine, the
output power cannot respond to the fast wind speed
but is the result of a comprehensive response to the wind
speed for a period. In other words, violent fluctuation in
wind speed is common. However, the violent fluctuation
of wind speed does not cause the violent fluctuation of
generator power in a short period. The primary reason is
that the wind rotor is a large inertial system. Therefore,
the key question is how to find the true mapping
relationship between the two. For this purpose, the
moving average filtering (MAF) method will be
employed to deal with the wind speed in the following
sections. Then, a reasonable filter window that meets the
characteristics of wind speed and power mapping will be
further found.
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• How to identify the reliability of the modeled power
curve. Power curve modeling involves the processing of
some parameters. If there is uncertainty (deviation) in
the parameter value, it will affect the accuracy of power
curve modeling. For example, the air temperature is used
for the power curve modeling, which is recorded in the
SCADA system. However, for mountain wind farms,
significant differences in distance and altitude can
cause temperature data bias. In another scenario, the
effect of the sensor’s error should also be considered.
Specifically, the two direct parameters for power curve
modeling are wind speed and power, both in the SCADA

system. The reliability of wind speed data and power data
in the SCADA system should be judged. In this way, the
actual power curve can be obtained better.

WIND AND POWER FROM RAW SCADA
DATA

In the SCADA system of the investigated wind turbines, many
operation parameters, such as wind speed, the rotational speed of
the wind rotor, generator side power of the converter, and grid
side power of the converter, are recorded. The investigated wind

FIGURE 1 | Wind turbine and its power curve.

FIGURE 2 | Wind and power from raw SCADA data. (A) Wind speed /(m/s). (B) Wind speed /(m/s). (C) Wind speed /(m/s). (D) Time 400s/div.
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turbines are 2 MW direct-driven type. For this type of wind
turbines, the generator side power of the converter is the output
power of the generator. If the loss of mechanical energy into
electrical energy is ignored, the power output of the generator can
also be approximately regarded as the mechanical energy output
of the wind rotor. Therefore, the scatterplot between wind speed
and generator power can be obtained by using wind speed data
and generator power data, which is shown in Figures 2A–C.
Here, about 57 h of SCADA data are used. Although the sampling
interval is 1 s, a point is extracted every 10 s to reduce the size of
the scatterplots. It should be pointed out that the wind speed data
is measured by the anemometer mounted on the top of the
nacelle. This means that the wind is blowing first on the wind
rotor and then on the anemometer. As a result, the wind speed
measured by the anemometer is smaller than the actual incoming
wind speed because some of the wind energy has already been
absorbed by the wind rotor. In addition, yaw misalignment tends
to degrade wind turbine power production (Gao and Hong,
2021). Here, these SCADA data can be divided into three
types according to the magnitude of the yaw angle: less than
5°, more than 5° but less than 10°, and more than 10°.

In Figure 2A, the corresponding yaw angle γ is less than 5° and
there are 7,074 sets of data. In Figure 2B, the corresponding yaw
angle γ is more than 5° but less than 10°, and there are 5,832 sets of
data. In Figure 2C, the corresponding yaw angle γ is more than
10°, and there are 7,649 sets of data. By looking at the SCADA
data, it can be found that the yaw angle is scattered in different
angle ranges. This is determined by the various characteristics of
natural wind direction and the yaw control strategy of the wind
turbine. It also means that this distribution may be different in
different periods or different wind turbines, with certain
randomness. It is also not difficult to find that the variation of
yaw angle may affect the wind-power characteristics by
comparing the distribution characteristic of the scatterplots in
the three subfigures. In addition, the distribution of some points is
far away from their concentrated distribution area. For example,
in Figure 2A, near a wind speed of 4 m/s, there are scattered
points with a power of more than 2000 kW. This is not the
normal performance of a wind turbine. There are two possible
reasons for this phenomenon: there may be interference signals
during data collecting, and the other is that there may be
instantaneous fluctuations in wind speed. Violent fluctuation
in wind speed is common. However, the violent fluctuation of
wind speed does not cause the violent fluctuation of generator
power. The primary reason is that the wind energy is absorbed by
the wind rotor, a large inertial system. In other words, the
instantaneous fluctuation of the wind does not cause the
instantaneous fluctuation of the rotational speed of the wind
rotor. Figure 2D shows the time history curves of wind speed and
generator power over a period. The data sampling interval used
here is 1 s. It can be seen from this subfigure that the change
frequency of wind speed is greater than the change frequency of
generator power. The changing trend of wind speed and the
changing trend of generator power are not identical. Due to the
inherent property of wind rotor inertia, it can be considered that
the influence of wind speed on generator power has a certain lag
effect, and the influence of wind speed on generator power is the

result of the comprehensive impact of wind in a period. Under the
condition of continuous wind speed, the generator power
occasionally appears zero values, which is an error in the
collection process and should be eliminated. Another thing to
note is that both the wind speed and the generator power are
measured by sensors; thus, the reliability of the data should be
confirmed. In other words, the system error of the sensor should
be eliminated as far as possible. The reason for proposing this
issue is that the sensors may not be calibrated regularly. For
example, an anemometer may not be calibrated during several
years of operation.

Overall, the following points should be attentional for the
investigation of the power curve of wind turbines.

• Compensation for the deviation between the wind speed
measured by the anemometer and the actual incoming wind
speed should be considered.

• The effect of wind direction (yaw angle) change on actual
power performance should be considered.

• The lag effect between wind speed change and generator
power change should be considered.

• The error data in the data collection process should be
eliminated.

• The effect of wind speed on generator power should be
regarded as the comprehensive result of wind in a certain
period.

• The system error of the sensors related to wind and
generator power should be eliminated.

WIND SPEED DATA CORRECTION

Since the effect of wind speed on generator power is the
comprehensive result of wind in a certain period, it is more
reasonable to model the power curve using the average of the
wind speed rather than its instantaneous value. At the same
time, the lag effect between wind speed variation and
generator power variation is also considered. Based on
these considerations, the moving average filtering (MAF)
method is employed to deal with the wind speed. This
method sequentially stores the data of n sampling points as
a queue. When new data is collected, the first data in the queue
is discarded and the arithmetic mean of the data is calculated.
The discrete expression of the filter can be written as

y(n) � 1
N + 1

∑N
k�0

x(n − k) (1)

where, y(n) is the output of the filter, x(n) is the input of the filter,
and N is the window length of the MAF filter.

Another thing to note is that null values and zero values
may occur during the sensor test. If a null value appears, it is
filled with zero. If a zero value appears between two normally
collected data, it can be repaired by averaging the two adjacent
data shown as Eq. 2. Also, this processing should be done
before filtering. If multiple zeros occur consecutively, the data
should be rejected.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(n) � 0, if x(n) is null
x(n) � x(n − 1) + x(n + 1)

2
, if x(n) � 0, x(n − 1)> 0&x(n + 1)> 0

x(n) � 0, if x(n + 1) � 0, x(n + 2) � 0, · · ·
(2)

When using MAF filters, the critical problem is to determine
the window length of the filter. Here, the basic idea to find the
appropriate filter window length is to compare wind speed
change trends and power change trends. Therefore, the filtered
wind speed curve and the time-history power curve are given as
shown in Figure 3.

In Figure 3A, the raw wind speed and the filtered wind speed
are presented in a period. The window length N is set to be 10.
The wind speed fluctuation is reduced after filtering. At the same
time, the filtered wind speed curve has a slight time delay
compared with the raw wind speed curve. Figures 3B–D show
the wind speed curves for different filter window lengths and the
corresponding time-history power curves. The longer the filter
window is, the smoother the filtered wind speed curve is. Judging
from the consistency of wind speed trend and power trend, it is
not that the longer the filter window, the better. In contrast, a
filter with a window length of 10 is better. Moreover, it should be
noted that the value of the filter window length is only an
approximate value because of the complexity of wind conditions.

On the other hand, the wind speed measured by the
anemometer mounted on the top of the nacelle is not the
actual wind speed. How to correct the wind speed has been an
issue of great concern. For example, Malgaroli et al. propose a
nacelle wind speed correction for evaluating wind turbine
performance by estimating the wind speed entering the wind
rotor (Astolfi et al., 2021b; Carullo et al., 2021). In this paper, the
nacelle wind speed compensation is mainly based on the
aerodynamic and energy flow characteristics of the wind
turbines (Dai et al., 2016b). It should be noted here that the
anemometers installed on the nacelle are considered in a normal

working state. In particular, the anemometers are generally no
longer calibrated regularly after service. Two issues require special
consideration in the future. One is the deviation caused by the
aging of the sensor itself, and the other is the deviation caused by
the sensor failure.

According to the momentum theory, the power of a wind
turbine to capture wind energy can be expressed as

P � 1
2
ρSvd(v21 − v22) (3)

where, v1 is the upstream wind speed of the wind rotor; vd is the
wind speed passing through the wind rotor; v2 is the downstream
wind speed of the wind rotor; ρ is the density of air; S is the area
swept by the wind rotor.

The relationship between v1, vd, and v2 can be written as
(Hansen, 2008; Dai et al., 2016b)

v2 � 2vd − v1 (4)
Substituting Eq. 4 into Eq. 3, there are

P � 2ρSv2d(v1 − vd) (5)
Subsequently, Eq. 5 can be transformed into (Dai et al., 2016b)

v1 � P

2ρSv2d
+ vd (6)

Since the anemometer is installed near the wind rotor, the
wind speed measured by the anemometer can be considered as
the speed flowing through the wind rotor, that is, vd. From Eq. 6,
the deviation between the measured wind speed and the actual
incoming wind speed is P/2ρSv2d. Using Eq. 6, the wind speed can
be further corrected.

In Eq. 6, air density ρ is not a constant value, will change with
ambient temperature, air pressure, and relative humidity.
Furthermore, as the altitude changes, so does the atmospheric

FIGURE 3 | Power and the filtered wind speed. (A) Time t/(100s/div). (B) Time t/(100s/div). (C) Time t/(100s/div). (D) Time t/(100s/div).
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pressure. Here, the air density is calculated using the method
shown in the “omni calculator” (https://www.omnicalculator.
com). The calculation expression from the website is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ � P0e

−gM(h−h0)
R·Tk − PV

Rd · TK
+ PV

Rv · TK

PV � 6.1078 × 10
7.5TC

TC + 237.3 · RH
(7)

where, TC is the measured temperature (degrees Celsius); TK is
the air temperature (Kelvins); RH is the relative humidity; PV is
the water vapor pressure (Pa); Rd is the gas constant for dry air
(287.058 J/(kg·K)); Rv is the gas constant for water vapor
(461.495 J/(kg·K)); P₀ is the pressure at the sea level; g is the
gravitational acceleration; M is the molar mass of air (M =
0.0289,644 kg/mol); h is the altitude; R is the universal gas
constant (R = 8.31432 N m/(mol·K)).

According to the above calculation method, the corrected
wind speed can be calculated, that is, the wind speed filtering
is carried out according to Eq. 1, and then the wind speed
deviation is corrected according to Eq. 6. In Figures 4A–D,
four wind speed correction curves under different wind speed
conditions are given. Overall, the corrected wind speed curves
have a delay in time, smoother curves, and an increase in
numerical value compared with the raw wind speed curves.

POWER CURVE MODEL

According to the wind power theory, the power of a wind turbine
is related to the inflow wind speed, rotational speed of the wind
rotor, pitch angle, yaw angle, and so on. Usually, when the wind

turbine is studied, the power is written as a function of wind speed
and power coefficient as shown in Eq. 8. Wind speed, wind
direction, the rotational speed of the wind rotor, pitch angle and
air density are all variables during wind turbine operation (Dai
et al., 2018b).

P � 1
2
ρπR2CP(v,ω, β, γ)v3 (8)

where, R is the radius of the wind rotor; CP is the power
coefficient; ω is the rotational speed of the wind rotor; β is the
pitch angle; γ is the yaw angle.

When a wind turbine is in regular operation, the structure
parameters and control parameters have been set. The
performance of the wind turbine is mainly the ability to
capture wind energy, which is reflected in the relationship
between power and wind speed. In other words, from the
user’s point of view, the relationship between power and wind
speed is their concern, which is also an important index for the
on-site assessment of wind turbines. From this scenario, it is
rather vital to obtain the actual wind-power curve. All the
dynamic variations of the rotational speed of the wind rotor,
pitch angle, and yaw angle are considered internal factors. This
means that the power curve modeling is simplified to the form of
Eq. 9.

P � f(v) (9)
However, only a scatterplot of wind and power can be

obtained using SCADA data without an exact expression. A
better description would be to get a relational expression and
use a curve to describe it. Therefore, the key to solving this
problem is to construct an effective nonlinear regression
equation. Here, Gaussian fitting was used to process the

FIGURE 4 | Corrected wind speed and raw wind speed. (A) Time t/(100s/div). (B) Time t/(100s/div). (C) Time t/(100s/div). (D) Time t/(100s/div).
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data through the comparison of various fitting forms,
including Exponential fitting, Fourier fitting, Polynomial
fitting, Power fitting, Sum of sin functions, etc. The
expression of Gaussian fitting can be written as (Li et al.,
2018; Xu et al., 2019)

P � f(v) � ∑n
i�1
αi · e

−[(v−βi)
δi
]2

(10)

where, v is wind speed; P is the power of the wind turbine; αi, βi
and δi are the coefficients; n is the number of peaks to fit.

When using the Gaussian fitting method, the coefficient n
in Eq. 10 is set to be 8, the nonlinear least square fitting
method is employed, and the algorithm is “trust region”. The
method has been integrated into the curve fitting toolbox of
MATLAB. In the specific settings, the minimum change in
coefficients for finite difference Jacobians is 1 × 10−8, the
maximum change in coefficients for finite difference Jacobians
is 0.1, the maximum number of function (model) evaluations
allowed is 600, the maximum number of fit iterations allowed
is 400, the termination tolerance used on stopping conditions
involving the function (model) value is 1 × 10−6, the
termination tolerance used on stopping conditions
involving the coefficients is 1 × 10−6. Also, the “center and
scale” method is selected to use. When using this method, the
abscissa of the data points to be fitted is changed by Eq. 11 in
MATLAB, that is

v′ � v −mean(v)
std(v) (11)

Then, Eq. 10 can be rewritten as

P � f(v −mean(v)
std(v) ) � ∑n

i�1
αi · e

−⎡⎣(x′−βi)
δi

⎤⎦2
(12)

Figure 5 shows the power curve based on Gaussian fitting in
three different scenarios. Figure 5A shows the wind-power
scatters and the fitting curve using the raw wind speed data.
Here, the selected wind speed ranges from 3 m/s to 13 m/s, and 0
values are excluded. The wind speed interval of 0.1 m/s is used to
draw the fitting curve. Although the scatterplot covers a wide
range, the trend of the fitting curve is consistent with the design
law. It also illustrates that the curve fitting method is suitable.
Figure 5B shows the wind-power scatters and the fitting curve
using the corrected wind speed data in which all the yaw angles
are contained. The range of wind-power scatterplot is
significantly reduced after the wind speed correction. This
shows that the wind speed correction is reasonable. It is also
interesting to note that the upper contour of the wind-power
scatterplot is relatively regular. In contrast, the lower contour of
the wind-power scatterplot is still irregular.

Figure 5C shows the wind-power scatters and the fitting curve
using the corrected wind speed data in which only yaw angles of
less than 5° are included. For ease of comparison, the wind-power
fitting curves for the three scenarios are put together in
Figure 5D. Curve 1 denotes the wind-power fitting curve of
scenario Ⅰ (Figure 5A), curve 2 denotes the wind-power fitting
curve of scenario Ⅱ (Figure 5B), and curve 3 denotes the wind-
power fitting curve of scenarioⅢ (Figure 5C). Table 1 shows the
fitting coefficients and goodness of the power curve. In different
scenarios, the fitting coefficient is different. For scenario Ⅰ, x is
normalized by mean 6.258 and std 2.071; for scenario Ⅱ, x is

FIGURE 5 | Power curve based on Gaussian fitting (WT1). (A) Wind speed /(m/s). (B) Wind speed /(m/s). (C) Wind speed /(m/s). (D) Time 400s/div.
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normalized by mean 7.319 and std 2.367; for scenario Ⅲ, x is
normalized by mean 7.487and std 2.384. In Figure 5D, curve 2
and curve 3 are basically coincident, and both are separated from
curve 1. This shows that a wider yaw angle does not significantly

affect wind-power fitting. This is because there are positive and
negative yaw angles, and the effects of positive and negative yaw
angles on the wind-power curve cancel each other out. In curve 1,
the critical wind speed at which the wind turbine reaches the rated

TABLE 1 | Fitting coefficients and goodness of the power curve (WT1).

Coefficients (with 95%
Confidence Bounds)

Power Curve Using
Raw SCADA Data

Power Curve Using
Corrected SCADA Data

(including all Yaw
Angles)

Power Curve Using
Corrected SCADA Data
(including Yaw Angles

of less than 5°)

α1 27.41 214.9 (40.69, 389.1) 11.28 (2.124, 20.45)
β1 1.648 1.201 (1.126, 1.276) 0.9859 (0.9808, 0.991)
δ1 0.1773 0.4794 (0.3294, 0.6294) 0.00787 (0.00027, 0.01547)
α2 2,570 17.18 (9.408, 24.96) 430.3 (254.5, 606.2)
β2 1.681 0.5873 (0.565, 0.6096) 1.366 (1.185, 1.548)
δ2 0.7932 0.1352 (0.0883, 0.1821) 0.6663 (0.5569, 0.7758)
α3 0 −11.41 (−68.77, 45.96) 61.57 (−254.8, 377.9)
β3 −8.822 2.026 (1.7, 2.351) 1.841 (1.69, 1.992)
δ3 0.005298 0.2248 (−0.2693, 0.7189) 0.2534 (−0.07993, 0.5868)
α4 −549.5(−1.672e4, 1.562e4) 32.94 (15.48, 50.39) 865.2 (673, 1,057)
β4 1.646(0.843, 2.45) 1.184 (1.17, 1.198) 2.464 (2.191, 2.737)
δ4 0.5395 (−1.427, 2.506) 0.1526 (0.1111, 0.1942) 0.557 (−0.07272, 1.187)
α5 −2,198 (−1.028e6, 1.023e6) 5.622e4 (−2.523e8, 2.524e8) 8.968 (3.792, 14.14)
β5 1.733 (−19.11, 22.57) 10.1 (−8,082, 8,102) 0.9242 (0.9107, 0.9378)
δ5 0.8921 (−28.43, 30.22) 3.461 (−2,135, 2,142) 0.03104 (0.0094, 0.053)
α6 −6.961 (−243.8, 229.8) −14.44 (−29.38, 0.5091) 67.42 (53.08, 81.76)
β6 1.358 (−0.32, 3.036) 0.8275 (0.825, 0.83) 1.122 (1.115, 1.129)
δ6 0.2503 (−2.741, 3.242) 0.00302 (−0.00051, 0.0065) 0.1483 (0.1295, 0.1671)
α7 1723 (−6,686, 1.013e4) 165.5 (−1.38e4, 1.413e4) −24.9 (-42.53, −7.267)
β7 3.523 (−4.671, 11.72) 0.3597 (−13.39, 14.11) 0.8373 (0.8359, 0.8388)
δ7 1.557 (−34.62, 37.74) 1.393 (−11.7, 14.48) 0.00245 (0.00053, 0.0044)
α8 1891 (−7,117, 1.09e4) 1860 (−7.483e4, 7.855e4) 1,685 (1,587, 1783)
β8 1.383 (−2.771, 5.537) 1.883 (−16.19, 19.96) 1.39 (1.306, 1.473)
δ8 1.686 (0.5422, 2.829) 1.826 (−16.85, 20.5) 1.719 (1.685, 1.754)
SSE 1.395e10 2.524e9 3.294e8
R-square 0.9022 0.983 0.9936
Adjusted R-square 0.9022 0.983 0.9936
RMSE 228.2 95.72 59.49

e in the table is the base of the exponential function with a value of 10.

TABLE 2 | Wind speed and the corresponding power based on fitting curve (WT1).

Wind Speed (m/s) Power Curve Using
Raw SCADA Data

Power Curve Using
Corrected SCADA Data

(including all Yaw
Angles)

Power Curve Using
Corrected SCADA Data
(including Yaw Angles

of less than 5°)

Power (kW) Power (kW) Power (kW)

3 87 45 45
4 220 108 108
5 469 227 228
6 843 424 428
7 1,288 704 715
8 1765 1,057 1,079
9 2052 1,506 1,519
10 2,119 2001 2024
11 2,140 2,131 2,145
12 2,138 2,130 2,139
13 2,153 2,133 2,126
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output power is less than that in curve 2 (curve 3). What needs
explanation is that taking into account the actual operating
characteristics of wind turbines, in Figure 5C, data with
power coefficients greater than 0.593 and less than 0.15 are
excluded.

Table 2 gives wind speed and the corresponding power based
on the fitting curve. In curve 1, when the wind speed is 9 m/s, the
power of the generator is 2052 kW. Further, it can be found by
calculating the curve fitting expression that when the wind speed
is 8.7 m/s, the power of the wind turbine reaches 2000 kW. In
curve 2, the wind speed is about 10 m/s which corresponds to the
power of 2000 kW. Likewise, the wind speed is about 10 m/s
which corresponds to the power of 2000 kW in curve 3.
According to the wind turbine manufacturer, the designed
rated wind speed is about 10.5 m/s. From this information, it
is obvious that curve 2 and curve 3 fit better. This further shows
that the wind speed correction is effective.

What needs to be further explained is that the fitted critical
wind speed is 10 m/s, which is different from the 10.5 m/s
designed by the manufacturer. There are several reasons to
consider. The design value of a wind turbine is calculated
based on a specific service condition, while the actual service
conditions are variable, such as wind speed fluctuations,
temperature changes, humidity changes, and so on. Because of
the complexity of wind turbines, the physical model must be
simplified in design, which leads to the difference between the
physical model and the actual model. Because of the limitation of
the level of the manufacturer, there are some differences between
the manufactured turbine and the designed turbine. From the
operating results, the constant power output of the wind turbine
is not just 2000 kW, but more than 2000 kW. Generally, the wind-
power curve after the wind speed correction is more in line with
the actual situation. This is applicable to the performance
evaluation of wind turbines in wind farms.

RELIABILITY ASSESSMENT OF POWER
CURVE

Power curve modeling involves the processing of some
parameters. If there is uncertainty (deviation) in the parameter
value, it will affect the accuracy of power curve modeling. For
example, the historical air relative humidity is used for the power
curve modeling, which is not recorded directly in the SCADA
system and can only be extracted by consulting the data from
other websites or database and is the humidity data in the larger
region, which is bound to have some differences with the real
humidity data. Although the temperature is directly recorded in
SCADA data, it is only the temperature data recorded near the
wind tower in wind farms. For mountain wind farms, significant
differences in distance and altitude can also cause temperature
data bias. In Eq. 4, the parameter vd denotes the wind speed in the
wind rotor plane. However, the actual wind speed used is the
measured result by the anemometer on the nacelle. Therefore, the
deviation between the measured wind speed and the
theoretical wind speed will also affect the accuracy of the
power curve.

It should be noted that none of the above deviations are due to
errors of the sensor itself. In other words, even if the sensors are
very accurate, these deviations still exist. In another scenario, the
effect of the sensor’s error should also be considered. Specifically,
the two direct parameters for power curve modeling are wind
speed and power, both in the SCADA system. The reliability of
wind speed data and power data in the SCADA system should be
judged. In this way, the actual power curve can be obtained better.

· Uncertainty effect of air humidity, air temperature, air
density, and wind speed

From Eq. 7, the deviation of relative humidity will affect the
calculation of air density and then affect the calculation of wind
speed in Eq. 6. If the air humidity has a δp% deviation, the effect
on the air density can be written as

ρ̂

ρ
� ⎡⎢⎢⎢⎢⎢⎢⎣P0e

−gM(h−h0)
R·Tk − P̂V

Rd · TK
+ P̂V

Rv · TK

⎤⎥⎥⎥⎥⎥⎥⎦/ρ (13)

where, ρ is the actual air density; ρ̂ is the air density with some
deviation PV � 6.1078 × 10

7.5TC
TC + 237.3 · RH(1 + δp%).

If the air temperature has a deviation ΔT, the effect on the air
density can be written as

ρ̂

ρ
� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣P0e

−gM(h−h0)
R·(Tk+ΔT) − P̂V

Rd · (TK + ΔT) + P̂V

Rv · (TK + ΔT)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦/ρ (14)

where, P̂V � 6.1078 × 10
7.5(TC+ΔT)
TC+237.3+ΔT · RH.

From Eq. 7, if the air density has a deviation Δρ, the effect on
the wind speed calculation can be written as

v̂1
v1

� [ P

2(ρ + Δρ)Sv2d + vd]/v1 (15)

If the measured wind speed vd has a deviation Δvd with the
actual wind speed in the wind rotor plane, the effect on the wind
speed calculation can be written as

v̂1
v1

� [ P

2ρS(vd + Δvd)2 + (vd + Δvd)]/v1 (16)

Figure 6 shows the calculation results of the uncertainty
effect of environmental parameters. In Figure 6A, the basic
value of relative humidity is set to 0.8, and then given a
deviation from -20 to 20%, the air density changes under
different temperature conditions are shown. The higher the
temperature is, the more significant the effect on air density is.
Overall, deviations in relative humidity have little effect on air
density. For example, at a temperature of 20°, a 20% deviation
in humidity has only an effect of 0.15%. In Figure 6B, the
temperature deviation is set in the range of -3°C to +3°C, and
the fitting curves of air density change under three temperature
base values are given. The three fitting curves basically
coincide. Furthermore, the higher the temperature is, the
lower the air density is. The numerical results show that the
air density changes by 1.1% when the temperature deviation is
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3°C. In Figure 6C, the basic air density value is 1.2 kg/m3, the
turbine power is set to be 2000 kW, and the given deviation
ranges from -0.15 kg/m3 to 0.15 kg/m3. When the measured
wind speed vd is different, the effect of air density deviation on
the corrected wind speed is slightly different. The smaller the
measured wind speed vd, the larger the corresponding effect.
When vd is 10 m/s and the air density deviation is 0.15 kg/m3,
the effect on the corrected wind speed is 1.15%. In Figure 6D,

the given deviation of the measured wind speed ranges from
-0.5 m/s to 0.5 m/s. Relatively, the deviation of the measured
wind speed significantly influences the calculation result of the
corrected wind speed. For instance, when the measured wind
speed vd is 10 m/s, the maximum effect on the corrected wind
speed is 3.5%.

· Reliability assessment of wind speed and power data

FIGURE 6 | Uncertainty effect of air humidity, air temperature, air density, and wind speed. (A) Air humidity deviation p%. (B) Air temperature deviation T /C. (C) Air
density deviation /(kg/m3). (D) Measured wind speed deviation v d /(m/s).

FIGURE 7 | Generator side power and grid side power. (A) WT1; (B) WT2; (C) WT3; (D) WT4.
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In the SCADA data, the generator side power (Pgen) and the
grid side power (Pgrid) of the converter are recorded
simultaneously. It is believed that the two data will not
have synchronously deviated. Therefore, the reliability can
be judged by comparing the relationship between the two sets
of power data. Specifically, the generator side power is given
by the abscissa, and the grid side power is provided by the
ordinate. The linear fitting curve and equation are provided by
the scatter relationship between the two. In Figure 7, the
generator-side power and grid-side power of the four wind
turbines are shown. For the convenience of analysis, only the
data of the generator side power between 1,000 kW and
1900 kW is selected. The relationship scatters between the
two are very close and linearly related. In Table 3, the
generator side power and grid side power based on the
fitting equation are given, where the grid side power is
calculated using the fitting equation. For a given generator
side power, the calculated grid side power is different for
different wind turbines. Overall, the power data of WT1 and
WT2 are close to each other, while the power data of WT3 and
WT4 are close to each other. To quantify the differences
between different wind turbines, a relative difference
(max(Pgrid) −min(Pgrid))/Pgen is given in row 5 of
Table 2. Under different power conditions, the values are
basically the same, which shows that the relationship between
generator side power and grid side power is stable. Moreover,
the maximum grid side power always appears on WT2, and
the minimum grid side power always appears on WT4.

To analyze the power curve of wind turbines more
comprehensively, four wind turbines in a mountain wind farm
in south China are investigated. The specific topography of the
wind farm is shown in Figure 8. Their power curves are shown in
Figure 9. Since Figure 5 has given the power scatter of 1# wind
turbine (WT1), Figures 9A–C only show the power scatters of 2#
(WT2), 3# (WT3), and 4# (WT4). Figure 9D shows the power
fitting curves of 4 wind turbines. The power curves of the four
wind turbines do not entirely overlap, which seems to mean that
although they are of the same type, the actual operating
performance is always different. Of course, this difference
cannot be ruled out due to the uncertainty of the data used.
The benefit of obtaining these power curves is to provide a basis
for further analysis of the performance of wind turbines. WT3
and WT4 are the closest among these power curves, WT2 is the
next, and WT1 has the farthest deviation. In terms of the wind
speed required to reach the designed rated power (2000 kW),
WT1 is 10 m/s, WT2 is 10.9 m/s, WT3 is 11.4 m/s, and WT4 is
11.3 m/s. Since the design rated wind speed of the wind turbine is
10.5 m/s, WT1 is less than the rated wind speed, and the other
three wind turbines are all greater than the designed rated wind
speed. There may be several reasons for this phenomenon. 1) The
power curve of WT1 deviates significantly from the other three
wind turbines, which may be caused by the inaccurate
anemometer of WT1. 2) If the measurement results of the
anemometer are accurate, it is likely that the yaws of WT2,
WT3, and WT4 have a large deviation, resulting in the need
for greater wind speed to obtain the same power output. 3) If the

TABLE 3 | Generator side power and grid side power based on fitting equation (kW).

Pgen 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1700 1800 1900

Pgrid

WT1 971 1,067 1,162 1,258 1,354 1,449 1,545 1,641 1736 1832
WT2 977 1,073 1,169 1,264 1,361 1,457 1,553 1,649 1745 1841
WT3 960 1,053 1,147 1,240 1,334 1,427 1,521 1,615 1708 1802
WT4 954 1,048 1,141 1,235 1,328 1,422 1,515 1,609 1702 1796
max(Pgrid )−min(Pgrid )

Pgen
0.023 0.023 0.023 0.022 0.024 0.023 0.024 0.024 0.024 0.024

FIGURE 8 | Four wind turbines in a mountain wind farm.
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previous two assumptions do not exist, then it should be caused
by sensor deviation or the different performance characteristics of
different wind turbines.

CONCLUSION

In this paper, a novel idea is proposed to obtain the actual power
curve of wind turbines. A series of effective measures are taken to
deal with the zero and null values in the original SCADA data,
consider the comprehensive result of wind on the wind turbine
power and correct the deviation between the measured wind
speed and the real wind speed. The Gaussian fitting algorithm is
used to fit the wind power curve; the power curve characteristics
before and after the wind speed correction are compared and
analyzed. Also, the characteristics of the power curves of four
wind turbines are compared and analyzed. The results show that
among these power curves, WT3 and WT4 are the closest,
followed by WT2, and WT1 has the largest deviation from the
other three wind turbines. The wind speed required for different
turbines to reach the designed rated power is different from the
actual power curves. Specifically,WT1 is 10 m/s,WT2 is 10.9 m/s,
WT3 is 11.4 m/s, and WT4 is 11.3 m/s.

For the research topic of this paper, it is necessary to deepen it
in the future further. For example, the research object of this
paper is direct-drive wind turbines, and its algorithm can be
transplanted to doubly-fed wind turbines or other types of wind
turbines in the future. On the other hand, the power curve of wind
turbines may evolve with the increase of service time, so historical

SCADA data can be used to observe its historical evolution trend
further. More importantly, according to the characteristics of the
power curve and the actual service conditions in wind farms, the
operation strategy and maintenance strategy of wind turbines can
be further studied.
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jacket offshore wind turbine
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Owing to the difficulties in the scaled rotor-nacelle assembly (RNA) and support

structure design, and alleviation of small scaling effects, the limited dynamic model

tests are conducted for the jacket offshore wind turbines (OWTs), which are

extensively constructed in the offshore wind farms located in the depth of

40–50m. To address this limitation, an integrated test method based on aero-

hydro-structural elastic similarities is proposed in this study. It comprises a

performance-scaled RNA model and a scaled support structure model. A

redesigned blade model is adopted in the scaled RNA model to ensure the

similarities of aerodynamic thrust loads without modifications of the scaled test

winds. Moreover, auxiliary scaled drivetrain and blade pitch control are designed to

simulate the operational states of a practical OWT. The scaled model of the OWT

support structure is fabricated based on the joint hydro-structural elastic similarity,

and the small scaling effects aremitigated by introducing sectional bending stiffness

similarities. Subsequently, the dynamic model tests of an ultra-large jacket OWT

under wind-only, wave-only, and combined wind and wave conditions are carried

out. The accuracy of the fabricated OWT test model is validated based on the

recorded responses, and the influence of the dominant frequencies on the dynamic

responses of the OWT model is quantitatively evaluated using the wavelet packet-

basedenergy analysismethod. Further, the couplingmechanismsof the scaledOWT

model under typical wind and wave loads are investigated, and the interactions

between the environmental loads and OWT motions are proved.

KEYWORDS

offshore wind turbine, scaledmodel design, basin model test, dynamic characteristics,
wavelet packet-based energy analysis method, wind and wave loads
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1 Introduction

Offshore wind energy is gradually becoming a mainstream

renewable energy source, and the massive deployment of

offshore wind turbines (OWTs) has accelerated this trend

over the past decade (Ren et al., 2022). According to the

Global Wind Energy Council (GWEC, 2022), the installed

capacities of offshore wind farms reached 21.1 GW in 2021,

and that in China exceeded 80%. Although superior wind

fields enhance the output of OWTs compared to that of

onshore wind fields (Park et al., 2021), the interactions

among the environmental loads, rotor-nacelle assembly

(RNA), and support system pose several problems, such as

motion of the support structure, resulting in increased

asymmetrical aerodynamic loading on the rotor blades

(Wang et al., 2022), particularly for ultra-large OWTs. To

accurately predict the structural responses of OWTs under

complex environmental conditions, numerous fully coupled

simulation tools have been developed, such as the widely used

GH Bladed (Bossanyi, 2011), SIMA (DNV, 2018), FAST v8/

OpenFAST (Jonkman and Jonkman, 2016; Jonkman and

Sprague, 2021), and HAWC2 (Larsen and Hansen, 2007).

These coupled simulation tools employ blade element

momentum theory and generalized dynamic wake model in

aeroelastic analysis. Hydrodynamic loads on the highly

slender and large structures are typically calculated via

finite element analysis based on the dimensions of the

support system using the Morison formula and potential

flow theory, respectively. Meanwhile, the differences in the

established RNA models in the above simulation tools should

be pointed out. The flexibilities of rotor blades are generally

simulated using the first two flapwise and the first edgewise

modes in FAST v8 and OpenFAST, which is remarkably

different from the corresponding finite element model

using beam element in SIMA and HAWC2.

Presently, the extensively studies about the coupling

mechanism of typical bottom-fixed and floating OWTs are

carried out by researchers using the previously described

simulation tools. For example, Kim et al. (2016) established

the fully coupled numerical model of a monopile and jacket

OWT in GH Bladed and investigated the differences in the

structural responses between the monopile and jacket OWT.

Ren et al. (2022) carried out the dynamic analysis of a multi-

column tension leg platform floating OWT under operational

and extreme environmental conditions in FAST v7 and

investigated the tendon failure to examine the performance

of OWT based on the accidental limit states specified in the

design code DNV-RP-0286. Zhao et al. (2021) and Putri et al.

(2020) studied the dynamic responses of a semi-submersible

and spar-floating OWT using OpenFAST and SIMA,

respectively, to elucidate the coupling effects between the

RNA and mooring system. To verify the accuracy of

numerical simulations, comparisons among the various

coupled simulation tools for OWTs are performed as part

of the IEA OC4 project (Robertson et al., 2014). According to

the studies of Larsen et al. (2014), discrepancies in the

predicted OWT coupled motions using different numerical

tools are attributed to the variability of the essential

parameters in the different numerical models. Therefore,

the results obtained by numerical simulation need to be

further compared and analyzed, and the dynamic model

test provides an effective approach (Zeng et al., 2022).

For OWTs under wind and wave loading conditions, besides

the structural elastic similarity, the aerodynamic and

hydrodynamic loads similarities should also be satisfied to

ensure high quality and accuracy in the OWT dynamic tests.

For aerodynamic load similarity, it means that the viscous and

inertia forces should be appropriately scaled, and the Reynolds

number similarity is priorly applied in this case (Çengel and

Cimbala, 2006). Hydrodynamic inertia and gravity loads

dominate the motions of offshore structures under wave

excitation, and the associated Froude number similarity is

generalized in the physical model tests of offshore structures

under wave loads (Chakrabarti, 1994). Moreover, the differences

in the required flow velocity scale ratios between the Reynolds

and Froude number similarities should be considered. Therefore,

appropriate coordination of the Froude and Reynolds number

similarities is a critical issue in OWT dynamic tests.

Various experimental methods have been devised to

ensure accurate modeling of aerodynamic and

hydrodynamic loads in OWT tests. Wang et al. (2017)

performed dynamic model tests of a pentapod OWT under

earthquake, wind, wave, and current, and hydrodynamic

loading conditions and the OWT model were scaled based

on the Froude number and structural elastic similarities. The

aerodynamic thrust loads were appropriately scaled using an

equivalent circular disc, whereas the gyroscopic effects of the

rotor system were neglected. Froude number similarity was

applied in the semi-submersible floating OWT model design,

and an approximately geometrically scaled RNA model was

fabricated by Martin (2011). Subsequently, dynamic tests of

the semi-submersible floating OWT model under winds and

waves were performed, and the test winds were calibrated to

ensure accurate scaling of aerodynamic loads. Ahn and Shin

(2019) reported that aggerated wind loads occurred on the

support structure model owing to the improved test winds

used to accurately model the aerodynamic loads on the

geometric-scaled RNA model, which impaired the accuracy

of the OWT dynamic model tests. To address this, Du et al.

(2016) and Ahn and Shin (2020) proposed a performance-

scaled RNA model with updated blade airfoils for the OWT

model design, and the accuracy was verified by comparing the

results with the numerical results for the prototype RNA.

In addition, according to the recently released offshore wind

energy development guidelines effective over the next 5 years in

China, the exploration of offshore wind energy at water depths of
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30–50 m and the application of ultra-large WTs are primary

concerns. Therefore, the potential of commercial application of

jacket substructures should be emphasized. Before

commercialization, the dynamic characteristics and coupling

mechanisms of ultra-large jacket OWTs should be adequately

investigated. Hence, dynamic model tests of the ultra-large jacket

OWT must be performed to validate numerical analyses and

address their limitations. These observations indicate that the

scaled RNA model design directly determines the quality of the

tests, whereas the design method for ultra-large RNA still

warrants further study and validation because of the oversized

blade dimensions and inherent complexities of servo systems.

Moreover, owing to significant discrepancies between the

longitudinal principle and sectional dimensions, small scaling

effects should be considered in the scaled model design of ultra-

large support structures.

To address these technical challenges associated with ultra-

large jacket OWT dynamicmodel tests, an integrated test method

based on aero-hydro-structural elastic similarities is proposed,

comprising a performance-scaled RNA model and a scaled

support structure model using joint hydro-structural elastic

similarities. The remainder of this paper is organized as

follows. The derivation of essential similarities for the scaled

OWT model design is presented in Section 2. The redesigned

scaled RNA model based on the released aerodynamic

similarities and the scaled support structure model using

hydro-structural elastic similarities are introduced. This

section also describes the sensor arrangement and test

facilities. The applied wavelet packet-based energy analysis

method used for test data processing is introduced in Section

3. Furthermore, the validations of the fabricated OWT test model

and the analysis of OWT coupling mechanisms based on the

recorded data are presented in Section 4. Finally, based on the

observed experimental phenomena, the conclusions regarding

the OWT test model design method and coupling mechanisms

under different environmental conditions and operation states

are summarized in Section 5.

2 Physical dynamic test model design

2.1 Joint similarities for OWT model tests

For the OWT dynamic model tests, in addition to the

structural elastic similarity expressed in Eq. 1, the aero and

hydro similarities should be ensured, which are represented by

the Reynolds and Froude number similarities defined in Eqs 2,

3, respectively. However, as defined in Eqs 2, 3, differences

exist in the required velocity scale ratios between the Reynolds

and Froude number similarities. Therefore, these similarities

cannot be concurrently and strictly satisfied in the dynamic

model tests. Considering that the objective of this study is to

investigate the dynamic characteristics of an OWT under

typical wind and wave loads, strict Reynolds number

similarity is substituted by performance-scaled similarities,

which include similarities of aerodynamic thrust loads and

essential operational parameters. Moreover, hydro-structural

elastic similarity is formulated by combining Eqs 1–3, as

expressed in Eq. 4. Based on this equation, in addition to

the length scale ratio λL, an inertia radius scale ratio λr is used

in this study to alleviate the small scaling effects in the design

of the scaled OWT support structure model sectional

geometries (Huan et al., 2022). To ensure the accuracy of

the dynamic model tests, an appropriate scale ratio should be

determined before the design of the scaled OWT model. Based

on the geometries of the prototype OWT, water depth,

and capacities of the experimental facilities, the length scale

ratio is designated as 1/75. Subsequently, the similarities

between the additional parameters can be obtained, as

listed in Table 1.

λ2t � λ4L · λρ · λ−1E · λ−2r (1)
λv � 1/λL (2)
λv �

��
λL

√
(3)

λ3L · λ−2r � λE (4)

where λt is the time scale ratio; λρ, λE, and λv are the structural
material density, elastic modulus, and velocity scale ratio,

respectively.

2.2 Performance-scaled test model design

2.2.1 Prototype OWT concept
The prototype jacket OWT is illustrated in Figure 1A. The

original OWT comprised an upwind WT system and jacket

substructure. The RNA of the upper WT system was identical

to that of the DTU 10 MW baseline WT (Bak et al., 2013).

According to the recorded environmental conditions in the

southeastern offshore regions in China, the distance from the

top of the jacket substructure to the mean sea level needs to be

30.15 m to ensure structural safety, and the hub height of DTU

10 MW WT is 119.00 m, so the tower height should be 88.85 m.

The original tower height of DTU 10 MW WT is 115.63 m.

Therefore, the tower height is redesigned as 85.48 m to satisfy the

requirements under the practical environments. The basic

parameters of the RNA and the tower are listed in Table 2.

As depicted in Figure 1A, the mud braces and four levels of

X-braces are mounted along the four-legged jacket to ensure

steady operation of the WT system and structural safety at a

water depth of 40.00 m. The geometry and structure of the

support system are also shown in this figure.

2.2.2 Scaled rotor-nacelle assembly model
Because of the length scale ratio and prototype RNA used

in this study being consistent with the European Union
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LIFES50 + project, the recommended scaled blade model

design in the LIFES50 + project is adopted (Lifes50, 2021).

The updated SD7032 airfoil is selected in the performance-

scaled blade model design and a circular section is used at the

blade root to connect the blade and hub models. The

fabricated scaled blade model is shown in Figure 1B.

Moreover, the sectional chord length is altered, and the

maximum chord length could reach 0.115 m to withstand

test wind conditions generated using a simplified wind

generation system, as depicted in Figure 1C. The mass of

each blade model is strictly limited to 200 g; therefore, high-

strength and low-density carbon fibers are used in the

fabrication. Meanwhile, to ensure the smoothness of the

blade model and fabrication quality, the steel mold shown

in Figure 1D is utilized in the fabrication process.

A scaled drivetrain system comprising an actuator, torque

sensor, and shaft is designed to ensure similarity of essential

operational parameters, such as rotor speed and thrust load. In

the scaled drivetrain arrangement shown in Figure 1E, the

components are connected using couplers and tightened in an

aluminum nacelle model. Sequentially, the scaled model of the

nacelle is manufactured based on the drivetrain system

arrangement.

An additional scaled blade pitch system is designed to deploy

blade pitch control strategies during the tests, as shown in Figures

1F,G. Three-pitch actuators mounted in the transition piece

between the blade root and hub model are used to regulate

the blade pitch angles. The material of the hub model with a

diameter of 0.06 m is the same as that of the scaled nacelle model,

and the total mass of the scaled RNAmodel is 2,860 g, as listed in

Table 3.

2.2.3 Scaled support structure model
Based on previous mechanical tests, polymethyl

methacrylate (PMMA) is selected as the material for the

scaled OWT support model owing to its advantages such as

stable properties and convenient fabrication. The measured

elastic modulus of PMMA is 3.85 GPa, with a density of

1,198 kg/m3. Subsequently, the inertial radius scale ratio for

the scaling of sectional geometries is calculated to be 1/

88.8 according to the proposed hydro-structural elastic

similarity and length scale ratio. The principal dimensions

of the support structural model, such as the height and

sectional out-diameter of the tower and jacket model are

determined by the length scale ratio, the member sectional

thickness is scaled using the inertial radius scale ratio to

alleviate small scaling effects and ensure fabrication

accuracy. The scaled geometries of the tower and jacket

models are shown in Figure 1H. Moreover, the density

scale ratio is assumed to be 1.0; therefore, the additional

weights are uniformly distributed along the support model

to satisfy this assumption, except in the splash zone, as

depicted in Figure 1I.

2.2.4 Scaled test cases and environmental
conditions

Considering that the primary objective is to experimentally

investigate the dynamic characteristics and coupling mechanisms

of the jacket OWT, typical design load cases (DLCs) are selected

according to the measured environmental conditions and

offshore standard DNV GL-ST-0437 (DNV GL, 2016).

Subsequently, the scale ratios listed in Table 1 are used to

scale the recorded environmental conditions, as listed in the

model scale column in Table 4. Three typical winds (DLCs 1–3)

covering the cut-in to cut-out wind range are selected to study the

coupling mechanisms of the dynamic response of OWT under

different normal operation states. Additional extreme wind test

case 4 is applied to investigate the dynamic behaviors of a parked

OWT with the feathered rotor blades. Meanwhile, DLCs 5–8 are

performed to investigate the dynamic responses of OWT under

regular waves. To reveal the coupling mechanisms, subsequent

dynamic model tests are conducted under combined conditions

(DLCs 9–12). During the tests, the scaled winds and waves are

aligned along the fore-aft (F-A) direction, as shown in Figure 2A.

The rotational speed of the RNA model is regulated using the

drivetrain systemmodel, and the blade pitch and pitch-to-feather

control strategies are deployed using the pitch control system

model.

2.3 Test equipment and sensor
arrangement

A joint wind and wave simulation system developed by the State

Key Laboratory of Coastal and Offshore Engineering at Dalian

University of Technology was employed to generate scaled wind and

TABLE 1 Essential model parameter scale ratios defined by the ratio of model to prototype.

Parameters Length Density Mass Velocity Acceleration Rotor speed Pitch angle Time Frequency Force

Dimension [L] [ML3] [M] [LT−1] [LT−2] [1T] — [T] [1T] [MLT−2]
Similarity λL λρ � 1 λ3L

��
λL

√
λg � 1 λΩ λθ

��
λL

√
1��
λL

√ λ3L

Scale ratio 1
75

1.00 1
421 875

0.11 1.00 8.66 1.00 0.11 8.66 1
421 875
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FIGURE 1
Design of performance-scaled test model. (A) Essential parameters of prototype jacket OWT (Unit: m); (B) carbon fiber blade model; (C)
schematic of the blade model cross-section at maximum chord length; (D) steel mold; (E) arrangement of drivetrain system; (F) blade pitch system;
(G) scaled hub model; (H) parameters of the support structure model; and (I) additional weights.
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wave conditions in the tests. Figure 2A shows the dynamic model

tests of the jacket OWT model subjected to wind and wave loads.

The model test equipment primarily included wave generation and

wind generation systems, both of which are located on the left side of

the basin, as shown in Figure 2B. Wave-absorber equipment is

placed on the right side of the basin to reduce wave reflection. The

dimensions of the basin are 22.0 × 5.4 × 1.2 m, and the maximum

water depth is 1.0 m. The maximum height of generated waves is

0.33 m, and the allowable range of the wave period is 0.5–4 s. The

usable area of the wind generation system is 2.54 × 2.54 m, and the

maximum generated wind speed is 15 m/s.

The sensors used to record the input environmental

conditions and dynamic responses of the OWT model are as

follows. As depicted in Figure 1E, a torque sensor mounted in

the nacelle was used to measure the torque of the designed

drivetrain system, and the quality of the generated test wind

fields was calibrated prior to testing using a wind sensor

positioned at calibration points P1–P12, as shown in

TABLE 2 Basic parameters of prototype OWT.

Characteristics Value

Rating 10 MW

Rotor orientation and configuration Upwind and 3 blades

Control Variable speed, collective pitch

Single blade mass 41 732 kg

Hub mass 105 520 kg

Nacelle mass 446 036 kg

Hub height 119.00 m

Tower height 85.48 m

Tower top diameter and thickness 5.50 and 0.020 m

Tower base diameter and thickness 7.57 and 0.034 m

Rotor and hub diameter 178.30 and 5.60 m

Cut-in, rated, and cut-out wind speeds 4.0, 11.4, and 25.0 m/s

Cut-in and rated rotor speeds 6.0 and 9.6 rpm

TABLE 3 Masses of the major components of scaled RNA model.

Component Nacelle Actuator Couplers Torque
sensor

Shaft Hub Pitch
actuators

Connection
components

Screws Blades

Mass (g) 410 447 64 240 376 242 303 138 40 600

TABLE 4 Selected test cases.

Case
no.

description Full scale Model scale (1:75)

Vhub

(m/s)
H
(m)

T
(s)

Blade
pitch
(deg)

Rotor
speed
(rpm)

Water
depth
(m)

Vhub

(m/s)
H
(m)

T
(s)

Blade
pitch
(deg)

Rotor
speed
(rpm)

Threefold
blade
passing
frequency
(Hz)

Water
depth
(m)

1 Steady wind 6.0 0.9 6.0 61.0 0.7 0.9 51.96 2.60 0.8

2 11.4 0.0 9.6 1.3 0.0 83.14 4.28

3 18.0 15.2 9.6 2.1 15.2 83.14 4.28

4 29.0 90.0 0.0 3.3 90.0 0.00

5 Regular wave 1.50 8.7 0.9 0.00 0.02 1.0 0.9 0.00

6 3.00 9.5 0.0 0.00 0.04 1.1 0.0 0.00

7 4.50 10.4 15.2 0.00 0.06 1.2 15.2 0.00

8 6.00 11.3 90.0 0.00 0.08 1.3 90.0 0.00

9 6.0 1.50 8.7 0.9 6.0 0.7 0.02 1.0 0.9 51.96 2.60

10 Steady wind and 11.4 3.00 9.5 0.0 9.6 1.3 0.04 1.1 0.0 83.14 4.28

11 regular wave 18.0 4.50 10.4 15.2 9.6 2.1 0.06 1.2 15.2 83.14 4.28

12 29.0 6.00 11.3 90.0 0.0 3.3 0.08 1.3 90.0 0.00
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Figure 2A. Moreover, the accuracy of the wave generator was

measured by the wave gauge numbered “wave 1” positioned in

front of the facility and wave gauge numbered “wave 2” placed

around the OWT model. An additional wave gauge numbered

“wave 3” was used in the tests to record the far field wave

profiles. A force sensor with three translational degrees of

freedom (DOFs) was installed at the top of the tower in the

model to measure the thrust loads, as shown in Figure 2C. The

measuring range and resolution of the force sensors on the

DOFs are 100 and 0.1 N, respectively. Figure 2D shows ten

acceleration sensors with a range of 100 m/s2 uniformly

arranged on the support structure in the F-A direction in

the model to measure the motion of the structure under

different loading conditions. Strain gauges were arranged at

the tower base, and the local components of the jacket model

measured the structural responses, as depicted in Figure 2E. The

numbers and specifications of the sensors are listed in Table 5.

In addition to sensor accuracy, the sensor mass was strictly

limited to eliminate the undesirable influence of installed

sensors on local structural responses. For instance, the force

gauge mass should be as low as 65 g to satisfy this requirement.

The layout of the dynamic model tests for the jacket OWT is

shown in Figure 2F.

2.4 Test wind field and wave calibrations

As depicted in Figure 2F, the wind generation system was

pre-calibrated to ensure reliable generation of scaled wind fields

during testing. Therefore, eight measurement points, P1–P8,

were selected in the F-A direction, and the distance between

pairs of points was set as 851 mm. The measured scaled wind

speed of 2.1 m/s at the different points are listed in Table 6, and

points P4–P6 are suitable for measurement compared with the

theoretical values. Considering the fluctuations of the generated

wind speed at these potential points, point P6 was selected as a

FIGURE 2
Primary sensor arrangement and test equipment. (A) Schematic of the model test basin (Unit: mm); (B) joint wave and wind load simulation
system; (C) installed three-component load cell at the tower top; (D) acceleration sensor arrangement along model; (E) strain gauge arrangement;
and (F) dynamic model testing of jacket OWT subjected to winds and waves.
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feasible location. Moreover, the qualities of the wind speed at

point P6 were evaluated based on the measured statistics at

evenly distributed points P9–P12 in the side-to-side (S-S)

direction. The recorded mean values at points P9 and

P11 were consistent with the recorded data at point P6 and

the theoretical value; thus, the accuracy of the test wind field at

point P6 was confirmed. However, the test wind decreased at

points P10 and P12 and the fluctuations in the rotor plane

increased, thereby affecting the steady state condition of the

test wind fields.

The wave generator was calibrated using three wave gauges

arranged in the basin, as shown in Figure 2A. The recorded wave

parameters for the regular wave test cases at the selected OWT

model installation point are listed in Table 7. Comparison with the

scaled wave parameters indicated that the recorded regular wave

heights and periods were consistent with the corresponding

theoretical values. Subsequently, the accuracy of the experimental

setup was measured based on the calibration. The developed setup

satisfied the requirements of the OWT dynamic model tests.

3 Wavelet packet-based energy
analysis method

In contrast to other signal processing methods, such as Fourier

transform, fractal analysis, and Hilbert-Huang transform (Liao

TABLE 5 Sensor specifications and arrangement in OWT dynamic tests.

No Type Number Technical parameters

Wind 1 Wind sensor 1 Measuring range: 30 m/s

Resolution: 0.001 m/s

Wave 1–3 Wave gauge 3 Measuring range: 30 cm

Resolution: 0.03 cm

Force 1 Three-component load cell 1 Capacities: Fx = Fy = Fz = 100 N

Resolution: 0.1 N

Size: 4.0 × 4.0 × 2.0 cm

Mass: 65 g

Accel 1–10 (Single direction) Acceleration sensor 10 Capacity: 100 m/s2

Resolution: 0.004 m/s2

Size: 1.5 × 1.0 × 1.0 cm

Mass: 23 g

Str 1–20 Strain gauge 20 Capacity: 20000 με
Resolution: 1 με

TABLE 6 Statistics of recorded wind speeds at different sites (Unit: m/s).

Item Calibration site no.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Mean 0.9 0.6 1.0 2.0 2.2 2.4 2.7 2.9 2.4 1.2 2.1 1.1

STD 0.03 0.13 0.14 0.16 0.14 0.11 0.11 0.12 0.42 0.31 0.23 0.25

TABLE 7 Comparison of wave parameters between measured and theoretical scaled wave around the OWT model installation point.

Wave condition Regular wave 1 Regular wave 2 Regular wave 3 Regular wave 4

Item and Unit H (m) T (s) H (m) T (s) H (m) T (s) H (m) T (s)

Measured in calibration test 0.018 0.99 0.041 1.09 0.061 1.17 0.076 1.30

Theoretical scaled 0.020 1.00 0.040 1.10 0.060 1.20 0.080 1.30
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et al., 2017; Ling et al., 2019), wavelet packet analysis enables the

decomposition of the input signal into low- and high-frequency

bands (FBs) with the required resolution (Li et al., 2022), and the

influence of the FBs of interest can be quantified using the energy

ratio. Owing to these advantages, the wavelet packet-based energy

analysis method (Zhang et al., 2021) was applied in subsequent

data processing to identify the coupling mechanisms of the OWT

model for the selected test cases.

As shown in Figure 3A, the initial signals xi,0,0 is

decomposed into two sub-frequency components A1 and

D1 with respect to the low-frequency sub-signal xi,1,0
p

expressed in Eq. 5 and the high-frequency sub-signal xi,1,1
p

expressed in Eq. 6. As is evident from these equations, the

wavelet basis functions should be selected prior to the

decomposition. Meyer wavelet basis functions (h(k) and

g(k)) were used in this study, as expressed in Eqs 7, 8

(Zeng, 2016). The newly decomposed FBs can then be

obtained after the second decomposition, resulting from the

sub-signals in the previous layer. For example, the

decomposed FBs AA2 and AD2 in the third layer are

derived from FB A1 in the second layer. Based on the

characteristics of the wavelet-packet-based energy analysis

method, 2j FBs are obtained in the (j+1) layer after

completing the j-th decomposition, and the general

expressions of the decomposed sub-signals are expressed in

Eqs 9, 10. Furthermore, the energy of each decomposed FB can

be estimated using Eq. 11, the quantified influence of the

decomposed FBs is evaluated based on the defined energy ratio

ϕj, m in Eq. 12

xp
i,1,0 � ∑

k
h(k − 2i)xi,0,0 (5)

xp
i,1,1 � ∑

k
g(k − 2i)xi,0,0 (6)

h(k) � (2π)−1/2eiw/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(π
2
v( 3

2π
|ω| − 1)) 2π

3
≤ |ω|≤ 4π

3

cos(π
2
v( 3

4π
|ω| − 1)) 4π

3
≤ |ω|≤ 8π

3

0 |ω| ∉ [2π
3
,
8π
3
]

(7)
G(k) � (−1)kh(−k + 1) (8)

xp
i,j+1,2m � ∑

k
h(k − 2i)xi,j,m (9)

xp
i,j+1,2m+1 � ∑

k
g(k − 2i)xi,j,m (10)

FIGURE 3
Schematic of the decomposed three-layer wavelet packet tree and free decay results of the OWTmodel under the parked state. (A) Schematic
of the decomposed three-layer wavelet packet tree; (B) free decayed histories of tower top acceleration; (C) PSD of free decayed tower top
accelerations; and (D) normalized first mode shapes of the scaled model and coupled numerical prototype OWT.
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where xi,j+1,2m
p and xi,j+1,2m+1

p denote the i-th decomposed low-

frequency and high-frequency components of them-th FB in the

j-th layer, respectively; h(k) and g(k) represent the low-pass and

high-pass filtered Meyer wavelet basis functions, respectively; k is

a random number that varies from 1 to N; N denotes the number

of discrete sampling points in the initial signal; ω is the angular

frequency; v is auxiliary function for constructing the Meyer

wavelet; i is the serial number of discrete data in the original input

signal; j is the number of decomposed layers; and m is the FB

serial number in the jth layer.

Ej,m � ∑N

i�1
∣∣∣∣∣xj,m

* (i)
∣∣∣∣∣2 (11)

ϕj,m � Ej,m∑mEj,m
× 100% (12)

4 Dynamic model tests of scaled
jacket OWT

4.1 Estimation of OWT model first natural
mode

Before conducting the dynamic tests under winds and

waves, a free decay test was performed to identify the first

natural mode and nondimensional damping ratio of the OWT

model. An initial tower-top displacement in the F-A direction

was applied to the scaled test model under the parked state in

still water. The measured free decay histories of the tower top

acceleration are presented in Figure 3B, a generally decreasing

trend is observed owing to structural damping. According to

the empirical formula based on structural dynamics (Clough

and Penzien, 2006), expressed in Eq. 13, the nondimensional

damping ratio can be estimated based on the structural free

decayed motions, and the estimated damping ratio of the

OWT model is 4.4%. The OWT model damping ratio is less

than 5%; therefore, it can be assumed to be a small damping

system, and the first natural modes of the system can be

identified based on the narrow band peaks of the frequency

response functions (Bendat and Piersol, 1980). The power

spectral density (PSD) of the free decayed tower top

acceleration is depicted in Figure 3C, and the first natural

frequency of the OWT model is estimated as 2.87 Hz based on

the small damping system assumption. Furthermore, the first

natural mode of the OWT model can be identified based on

the PSDs of the recorded free-decayed tower and jacket

accelerations using the distributed acceleration sensors

along the support system model. The normalized

acceleration sensor is shown in Figure 3D.

Furthermore, a fully coupled numerical model of the

prototype jacket OWT was established in the simulation tool

FAST v8 (Jonkman and Jonkman, 2016), and the damping ratio

of the support system model was set as 3.3%. Therefore, the

introduced small damping system assumptions are also

applicable to the established coupled numerical model, and

the first natural frequency of the prototype jacket OWT is

0.326 Hz based on the free decayed tower top accelerations.

According to the frequency scale ratio defined in Table 1, the

corresponding scaled theoretical value should be 2.82 Hz, which

is consistent with the measure first natural frequency of the test

model. The estimated and normalized first mode shapes of the

coupled numerical model are shown in Figure 3D. Evidently, the

first mode shape obtained from the numerical model is almost

identical to the measured shape in the test model. This indicates

that the first bending mode of the OWT support system is

appropriately scaled in the tests using the proposed hydro-

structural elastic similarity.

ξ � 1
2π

ln

∣∣∣∣∣∣∣∣∣
φAp

φAp+1

∣∣∣∣∣∣∣∣∣ (13)

where φAp and φAp+1 denote the p-th and p+1-th peaks or valleys
of the decay curve, respectively.

4.2 Dynamic response analysis of OWT
model

According to the aero-hydro-elastic similarities, dynamic

model tests of a scaled jacket OWT model were performed

under the selected steady winds, regular waves, and combined

test conditions. The results of steady wind test cases are

compared to identify the variations of the structural responses

under different operation states, and the regular wave test cases

are conducted to investigate the effect of wave height and period.

Then, the comparisons under combined wind and wave

conditions are carried out to reveal the interactions among

the wind, wave, and scaled OWT model responses. Each test

case lasted for 330 s with a sampling frequency of 500 Hz, and the

first 150 s of the recorded data in each test were discarded to

eliminate the influence of transient effects on the results. The

measured histories of the thrust and tower-top acceleration for

the selected test cases listed in Table 4 are depicted in Figure 4,

and the corresponding statistics are listed in Table 8.

Subsequently, the wavelet packet-based energy analysis

method introduced in Section 3 was applied to analyze the

measured thrust loads and tower top accelerations. To

distinguish the frequency components of interest, such as the

OWT model fundamental and rotor model rotational

frequencies, the decomposed bandwidth in the last layer

should be less than 0.25 Hz. This implies that the decomposed

FBs should exceed 210, and the time cost is much higher if the

original recorded data are directly applied. Considering this

requirement, low-pass filtering and down-sampling procedures

were performed based on the recommended analysis method by

Zayed (2021) to reduce the sampling rate of the original data to
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FIGURE 4
Time series of dynamic responses under different test winds and waves. (A–D) Time series of thrust under different test winds and waves; (E–H)
time series of tower top acceleration under different test winds and waves.
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9 Hz without frequency aliasing and maintain the precision and

efficiency of data processing. The maximum identified frequency

of the filtered data was 4.5 Hz. After five decompositions, 25

decomposed sub-signals were obtained in total. The bandwidth

of each FB is 0.14 Hz, which can precisely identify the frequency

components of interest. Moreover, the energy ratios of the OWT

model responses calculated based on the time series of the

decomposed sub-signals in the frequency range of 0–4.5 Hz

under the scaled wind, wave, and combined test cases using

Eq. 12 are presented in Figure 5.

4.2.1 Dynamic characteristics of thrust loads
under different test winds and waves

• Steady wind test cases

As listed in Table 8, the measured mean thrust loads under

the steady test wind speeds of 0.7, 1.3, 2.1, and 3.3 m/s are 1.34,

3.53, 2.11, and 0.56 N, respectively, whereas the corresponding

theoretical scaled values of the prototype OWT are 1.18, 3.57,

1.74, and 0.61 N. It can be observed that the modeled mean

thrust loads are in agreement with the scaled values. For

example, the discrepancies between the measured and

theoretical scaled values are only 0.04 N under the test wind

speed of 1.3 m/s. The observed discrepancies could be due to the

precision of the data acquisition system and the limitations of

the performance-scaled RNA model. The latter can ensure the

similarity of aerodynamic thrust load under the specified wind

speeds without adjusting the scaled test winds using Froude

number similarity, rather than the entire range of cut-in to cut-

out wind speed. Moreover, an increasing trend of the measured

mean thrust loads is observed as the test wind speeds increase to

the scaled rated wind speed of 1.3 m/s. Under a normal

operation test wind of 2.1 m/s, pitch control strategies were

deployed to alleviate the thrust loads on the rotor plane of the

scaled OWT model. Minimal thrust loads are observed in the

parked state under a test wind 3.3 m/s (rotor speed of 0 rpm and

a blade pitch angle of 90°), and these are compared with the

other test winds. The accuracy of the designed RNA test model

was validated based on this comparison. The performance of

the scaled rotor blades and the drivetrain and mechanical

control systems, as well as the influence of test wind speeds

and mechanical control strategies on the thrust loads were also

determined.

The measured thrust load histories are shown in Figure 4. As

indicated by the dotted green lines in Figures 4A–D, smoother

curves are observed for test winds of 0.7 and 3.3 m/s, whereas the

more complex variations are observed for other test winds. The

reason for such differences in the thrust loads under different test

winds can be explained based on the frequency domain shown in

Figure 5. As depicted in Figures 5A,D, the unique dominant 3P

and first blade collective flapwise FBs are observed under the test

winds of 0.7 and 3.3 m/s, respectively. Consequently,

approximately regular variations in thrust loads were observed

under these test winds. Based on the definition of the energy ratio

in Eq. 12, the quantified influences of the dominant FBs can reach

76% and 92% under each test wind, respectively.

For the remaining test winds, the influence of multiple FBs

should be pointed out, as shown in Figures 5B,C. Particularly

under the test wind of 2.1 m/s, the comparable influences of the

scaled OWT model fundamental and 3P FBs are approximately

55% and 37%, respectively. Owing to the observed coupling

effects between the scaled OWT model natural frequency and

3P under the test winds of 1.3 and 2.1 m/s, more complex

variations in thrust loads under these test cases were observed.

TABLE 8 Statistical comparisons of dynamic responses under different test winds and waves.

Load cases Thrust (N) Tower top acceleration (m/s2)

Mean STD 95th MIN 95th MAX STD 95th MIN 95th MAX

Vhub = 0.7 m/s 1.34 0.29 0.77 1.87 0.03 −0.06 0.06

H = 0.02 m, T = 1.0 s 1.8E-3 1.5E-3 3.4E-5 4.4E-3 7.2E-4 −1.6E-3 1.3E-3

Vhub = 0.7 m/s and H = 0.02 m, T = 1.0 s 1.24 0.20 0.84 1.59 0.02 −0.04 0.04

Vhub = 1.3 m/s 3.53 0.28 2.63 4.01 0.05 −0.07 0.07

H = 0.04 m, T = 1.1 s 2.6E-3 2.1E-3 5.9E-4 5.8E-3 1.2E-3 −2.3E-3 2.3E-3

Vhub = 1.3 m/s and H = 0.04 m, T = 1.1 s 3.25 0.17 2.86 3.62 0.03 −0.03 0.03

Vhub = 2.1 m/s 2.11 0.35 1.31 2.78 0.07 −0.10 0.10

H = 0.06 m, T = 1.2 s 3.6E-3 2.7E-3 1.6E-3 6.3E-3 1.4E-3 −2.6E-3 2.6E-3

Vhub = 2.1 m/s and H = 0.06 m, T = 1.2 s 2.06 0.12 1.78 2.40 0.03 −0.05 0.05

Vhub = 3.3 m/s 0.56 0.30 1.8E-3 1.12 9.0E-3 −0.02 0.02

H = 0.08 m, T = 1.3 s 4.6E-3 2.6E-3 1.9E-3 8.7E-3 1.6E-3 −2.8E-3 2.8E-3

Vhub = 3.3 m/s and H = 0.08 m, T = 1.3 s 0.66 0.15 0.31 1.01 6.2E-3 −0.01 0.01
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FIGURE 5
Wavelet packet-based energy ratios of dynamic responses under different test winds and waves (Unit: %). (A–D) Energy ratios of thrust loads
under different test winds and waves; (E–H) energy ratios of tower top acceleration under different test winds and waves.
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Therefore, it can be concluded that the coupling mechanisms

of the measured thrust loads are sensitive to the inflow test winds

and related control strategies. The observed coupling effects

between the natural and rotational frequencies of the OWT

model should be highlighted.

• Regular wave test cases

Although the OWT model was in a parked state under

regular wave test cases, the internal forces of the transition piece

between the nacelle and tower models were recorded using the

mounted load gauge at the transition piece. The recorded

histories of the internal shear force in the F-A direction of

the scaled OWT model are plotted using solid blue lines in

Figures 4A–D. Evidently, the internal shear forces under the

scaled regular waves are much smaller than the thrust loads

under the test winds, even for the parked OWT model.

According to the energy ratios of the recorded shear forces

shown in Figures 5A–D, the wave frequency dominates the

response under regular wave excitations. For example, the

energy ratio of the wave FB under the regular wave

condition (H = 0.04 m, T = 1.1 s) can exceed 90%, as shown

in Figure 5B.

• Combined wind and wave test cases

To investigate the variations in the structural responses of the

scaled OWT model under the combined wind and wave test

cases, the measured statistics of the thrust loads are compared, as

listed in Table 8. As shown in the table, for the normal operation

scaled OWT model, the measured mean thrust loads under the

combined test cases are smaller than those under the steady wind

test cases. By contrast, a slightly increased mean thrust load of the

parked scaled OWT model was observed under the extreme

combined test case compared with the measured thrust load

under the extreme steady wind test case. Moreover, in

comparison with the STDs and 95th MAX values of the

thrust load under steady test winds, significant reductions in

such statistics are observed under the related combined wind and

wave test cases, in contrast to the increased 95th MIN values of

the response listed in the table. Based on the compared thrust

load statistics, the variations in the dynamic responses of the

scaled OWT model under the combined test cases are quite

complex was systematically analyzed using the wavelet packet-

based energy analysis method.

The measured histories of the thrust loads under the

combined test cases are presented in Figures 4A–D. Evidently,

the inflow test winds are the dominant environmental loads

under the combined test cases compared to the scaled regular

waves. According to the recorded thrust loads, the fluctuations of

the response are smaller than the measured data under the steady

test winds owing to the interactions among the winds, waves, and

scaled OWT model under the combined test cases.

Figure 5 presents the energy ratios of the measured thrust

loads under the combined test cases, and the effects of the

dominant FBs were quantified using the wavelet packet-based

energy analysis method. For the below-scaled rated wind speed

combined test case shown in Figure 5A, the rotor rotational

frequency dominates the thrust load, which is consistent with the

dynamic characteristics under the below-scaled rated test wind.

The influence of the dominant rotational FB can exceed 60% in

such a combined test case. Accordingly, more complex coupling

mechanisms were observed under the scaled rated and above-

scaled rated wind speed combined test cases, as depicted in

Figures 5B,C. In addition to the rotational frequency, the

scaled OWT model’s first and wave frequencies should also be

emphasized. For example, the influences of the OWT model

structural, rotational, and wave frequencies under the combined

test case (Vhub = 2.1 m/s, H = 0.06 m, T = 1.2 s) were

approximately 52%, 10%, and 22%, respectively. Meanwhile,

the proportion of the scaled OWT model’s fundamental

frequency exceeded 70% in the rated combined test case.

Therefore, the influence of the scaled OWT model structural

frequency is the most significant for the operation of the OWT

model under these test cases. Moreover, the first blade collective

flapwise frequency were observed for the parked OWT model

under the extreme combined test cases and its proportion

reached approximately 27%, in addition to the wave and

OWT model natural frequencies, as shown in Figure 5D.

Furthermore, the PSDs of the thrust loads under steady test

winds and the related combined test cases are shown in Figures

6A–D. As indicated in the figures, the remarkable hydrodynamic

damping effects on the OWT model structural, rotor rotational,

and first blade collective flapwise frequencies under the

combined test cases are observed compared with the steady

test winds. Therefore, the alleviated fluctuations in the

recorded histories of thrust load under combined test cases

are observed.

The influence of the interactions among the wind, wave,

and scaled OWT models under the combined test cases was

quantified in the above studies. For the operation OWT test

model, the OWT model fundamental and wave frequencies

are also observed for these scaled rated wind speed combined

test cases, in addition to the rotor model rotational

frequency. Moreover, for the parked OWT model, the first

blade collective flapwise frequency should also be

pointed out.

4.2.2 Dynamic characteristics of accelerations
under different test winds and waves

• Steady wind test cases

The increased tower top accelerations are observed under

the steady test wind of 1.3 m/s compared with the scaled test

wind of 0.7 m/s, as listed in Table 8. As introduced in the

previous section, the blades of the scaled RNA model were
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FIGURE 6
Power spectral densities of thrust and tower top acceleration under the steady wind and combined test cases. (A) Power spectral densities of
thrust under DLC 1 and DLC 9; (B) power spectral densities of thrust under DLC 2 and DLC 10; (C) power spectral densities of thrust under DLC 3 and
DLC 11; (D) power spectral densities of thrust under DLC 4 andDLC 12; (E) power spectral densities of tower top acceleration under DLC 1 andDLC 9;
(F) power spectral densities of tower top acceleration under DLC 2 and DLC 10; (G) power spectral densities of tower top acceleration under
DLC 3 and DLC 11; and (H) power spectral densities of tower top acceleration under DLC 4 and DLC 12.
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pitched to 15.2°under a test wind of 2.1 m/s to alleviate the

thrust loads, whereas the increased fluctuations in the STD of

the thrust loads should be due to the non-uniformity of the

generated test wind field. Accordingly, additional fluctuating

tower top accelerations were observed under such a test wind.

Meanwhile, by comparing with the normal operation test

cases, the minimum tower top accelerations are observed

for the parked OWT model with the blade pitch-to-feather

control strategy under an extreme test wind of 3.3 m/s. The

recorded histories of the tower top acceleration under various

steady test winds are illustrated in Figures 4E–H.

As the dashed green lines in Figures 4E–G, the generally

increasing trend can be seen with the inflow winds in the range

of below-scaled to above-scaled rated test winds, and the most

significant tower top accelerations are observed under the test

wind of 2.1 m/s. Meanwhile, it can be seen that the deployed

pitch-to-feather and shaft break procedures effectively

mitigated the tower model motions of the parked OWT

model under extreme test wind, in comparison with the

normal operation test winds, as depicted in Figure 4H.

Moreover, based on the wavelet packet-based energy

analysis method, the dominant FBs of the tower top

acceleration under each test case were identified and are

presented in Figures 5E–H. For the normal operation OWT

model, the influence of threefold blade passing FB should be

highlighted under the test wind of 0.7 m/s, and the proportion

of such FB can exceed 70%, as indicated in Figure 5E.

Meanwhile, the fundamental FB of the OWT model

dominates the response under the remaining operational

test winds, as shown in Figures 5F,G. Further, the

interactions between the OWT model first bending and

RNA model first blade collective flapwise modes are proved

under the extreme test wind, and the quantified comparable

influence of each dominant FB is about 42% and 49%,

respectively, as shown in Figure 5H.

According to the comparisons, it is approximately

identical to the variations in the thrust load, and the first

increasing and then decreasing trend of tower top

accelerations under different test winds are revealed, which

should be due to the deployed mechanical control strategies.

Moreover, the coupling effects between RNA and OWT

support structure models should be highlighted, even in the

parked state.

• Regular wave test cases

Based on the statistics listed in Table 8, and the related

histories shown in Figures 4E–H, for the presented regular wave

test cases, the maximum tower top acceleration is observed under

the test case with a wave height of 0.08 m; however, it is quite

small with the related ones under the test winds. The energy

distributions of the regular tower top accelerations under the

regular wave test cases are depicted in Figures 5E–H, where it can

be observed that the wave FB dominates the response, and the

quantified influence exceeds 90%.

Although the tower top accelerations under the selected

regular waves were small, the influence of wave loads on the

tower motions of the scaled OWT model under the combined

test cases is discussed in the subsequent section.

• Combined wind and wave test cases

The statistics of the tower-top accelerations under the

combined wind and wave test cases are listed in Table 8. As

presented in the table, either the STDs or the absolute values of

the extreme statistics under the combined test cases are smaller

than the relevant ones under the related test winds. Meanwhile,

the wind was proven to be the dominant load under the

combined test cases, as shown in Figures 4E–H. In

comparison with the steady test winds, the recorded histories

of the tower top accelerations reduced remarkably under the

combined test cases, particularly for the normal operation OWT

model.

The identified dominant FBs of the response under the

combined test cases are illustrated in Figures 5E–H. Owing to

the prominent influence of the wind load, the dominant FBs of

the response under the combined test cases are approximately

identical to the data under steady test winds, for example, the

scaled OWT model fundamental, threefold blade passing, and

first blade collective flapwise FBs, as depicted in the figures.

However, the proportions of the domain FBs are different

because of the additional input regular waves in the combined

test cases. For example, the proportions of the dominant OWT

model fundamental and threefold blade passing FBs are 38% and

55% under the combined wind and wave case (Vhub = 0.7 m/s,

H = 0.02 m, T = 1.0 s), while the relevant ones are 18% and 73%

under the related test wind.

Moreover, as indicated in Figures 6E–H, significant reductions

in the amplitudes of the dominant frequencies caused by

hydrodynamic damping under the normal operation combined

test cases can be distinctly observed compared with the steady

test winds, in addition to the approximate variations under the

extreme wind and combined tests. It can be observed that the tower

accelerations are reduced, particularly for the motions located at the

upper part of the tower, as shown in Figures 7A–C. Furthermore, it

can be seen the remarkably decreased 95thMAX values of the tower

accelerations under the combined test cases compared with the

related scaled steady test winds, especially for the accelerations

located at the upper part of tower model. For example, the 95th

MAX value of tower top acceleration can reach 0.1 m/s2 under the

test wind of 2.1 m/s, while the relevant one is only 0.05 m/s2 under

the related combined test case. The above reductions of tower

motions under the normal operation combined test cases should

be owing to the hydrodynamic damping effects on the dominant

OWTmodel first bending mode in the frequency domain, as shown

in Figures 6E–G. Meanwhile, the reductions of the amplitudes of
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dominant first bending and blade collective flapwise modes caused

by hydrodynamic damping can not be observed under the extreme

test case, and the tower accelerations under the combined case are

comparable with the responses under the related extreme test wind,

so it proves that the inflowwind dominates the towermotions under

such extreme test case, as shown in Figures 6H, 7D. Moreover,

owing to the activated OWT model first bending mode under the

wind and combined test cases shown in Figures 6E–H, the

maximum tower acceleration is located at the top of the scaled

tower model.

The coupling mechanisms of the tower accelerations under

the combined wind and wave test cases are studied, along with

the identified dominant OWT model fundamental, RNA model

rotational, and blade collective flapwise frequencies, and the

distinctive hydrodynamic damping effects on the tower

motions of the OWT model.

5 Conclusion

The dynamic characteristics and coupling mechanisms of

an ultra-large jacket OWT were investigated based on

dynamic model tests in this study. The scaled OWT model

was designed based on aero-hydro-structural elastic

similarities, and aerodynamic similarity was ensured using

performance-scaled similarities consisting of thrust load and

essential operational parameter similarities. Subsequently, a

scaled blade model is designed, and additional drivetrain and

FIGURE 7
Schematic diagrams of the 95th MAX values of the acceleration along the model in the fore-aft direction under the steady wind and combined
test cases. (A) Statistics of the measured accelerations under DLC 1 and DLC 9; (B) statistics of the measured accelerations under DLC 2 and DLC 10;
(C) statistics of the measured accelerations under DLC 3 and DLC 11; and (D) statistics of the measured accelerations under DLC 4 and DLC 12.
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pitch control systems are fabricated. The principal geometries

of the support model were scaled using hydro-structural

elastic similarity, and the additional weights were generally

uniformly distributed to ensure the density scale ratio. The

three-component force sensor, acceleration sensors, and

strain gauges mounted in the model were used to record

the thrust loads, motions, and internal forces of the scaled

OWT model. Based on the free decay, typical winds and

waves, and combined test cases, the dynamic characteristics

of the scaled OWT model were studied, and the following

conclusions were drawn.

(1) The first natural mode of the scaled OWT model was

estimated based on the free decay test and small damping

system assumptions, and it was in good agreement with that

of the prototype OWT. Thus, the applicability of the

recommended hydro-structural elastic similarity was

validated to a certain degree.

(2) The observed variations in the measured mean thrust loads

under different test winds were consistent with the related

scaled theoretical values. Hence, the fabrication accuracy of

the scaled RNA model using performance-scaled similarities

was proven. The fluctuations under some test winds are due

to the asymmetry of the generated test wind fields using the

simplified wind generation system and the scaling effects of

the small-scale ratio OWT model tests.

(3) For the scaled steady wind test cases, the influence of the test

wind speeds and mechanical control strategies on the thrust

loads was proved. It is approximately identical to the

variations in thrust loads; the first increasing and then

decreasing trend of tower top accelerations under the

different test winds are revealed, which should be due to

the deployed blade pitch control strategies.

(4) According to the quantified influence of dominant FBs

using the wave packet analysis method in the frequency

domain, it can be concluded that in addition to the OWT

model first natural frequency, the coupling effects

between the RNA and support model should be

emphasized, even for the OWT model under the

parked state, such as the observed first blade collective

flapwise frequency under the extreme test wind.

(5) The wave FBs dominate the motions of the OWT model

under regular wave inputs, whereas the responses are

relatively small compared with those under the steady test

winds. The inflow test winds proved to be the dominant

loads for the structural responses of the OWT model under

the combined test cases; therefore, the coupling mechanisms

are approximately identical to the scaled wind test cases, in

addition to the observed wave FBs. However, owing to the

influence of additional wave inputs under the combined test

cases, the quantified influence of the dominant FBs differed

from those under the scaled steady test winds.

(6) A significant decrease in the structural motions was observed

under the normal operation test cases compared with the

responses under steady test winds, which were caused by

hydrodynamic damping under the combined test cases.

Hence, although the motions excited by wave loads are

smaller than those related to wind loads, the induced

hydrodynamic damping effects should be pointed out,

particularly for the normal operation OWT model.

(7) In future studies, a coupled aero-servo-hydro-elastic

numerical model under winds and waves will be

established, and fully coupled analyses under different

limit states will be performed. Moreover, detailed

comparisons of the measured test data with the analyzed

results of the fully coupled numerical model will be

performed to validate the observed coupling mechanisms

and simulation accuracy of the coupled simulation tool.
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Optimal operation strategy for
distribution network with high
penetration of dispersed wind
power
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As a significant approach to local utilization of clean renewable energy, the
dispersed wind power (DWP) is becoming more and more widespread in
engineering applications. With the fluctuating wind power widely and
dispersedly integrated into distribution networks, it is urgent and pressing to
effectively enhance the penetration rate of wind power based on the safe
operation of distribution networks. This paper takes full advantage of the
power regulation ability of wind turbines to actively participate in the operation
of distribution networks, and then an optimal operation model of distribution
networks is established with the optimization objectives of high penetration of
DWP and maximum correntropy of node voltage. Aiming at the characteristics of
the proposed model, the multi-objective brain storm optimization algorithm is
adopted to solve the model to achieve the Pareto solution set, and the fuzzy
membership function is used to determine the optimal operation scheme from
the solution set. The simulation results on the expanded IEEE 33 bus system
indicate the rationality of the proposed optimal operation strategy for distribution
networks with high penetration of DWP. Meanwhile, the feasibility of the optimal
operation scheme is verified through the case of a practical demonstration
project.

KEYWORDS

dispersed wind power, distribution network, high penetration, regulation capability,
maximum correntropy criterion, brain storm optimization algorithm

1 Introduction

The aggravated environmental pollution and global fossil energy shortage have been
driving the rapid development of technologies in clean renewable energy based power
generation. As one of the focal points in energy research, the wind power is prominent.
China is committed to the development of dispersed wind power technology, especially in
April 2018, the National Energy Administration of China promulgated the specific
management rules for the projects of dispersed wind power (National Energy
Administration, 2018), which intended to vigorously promote the nearby utilization
capability of wind power. Due to the randomness and fluctuation of wind power output,
however, the large-scale integration of DWP into distribution network will bring adverse
effects on the safe and economic operation of the system (Ma et al., 2016). Therefore, the safe
and efficient utilization of DWP has become a vital problem to be solved at present.
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Many researches have been carried out on the optimal
operation, energy management and active control of distribution
network with diverse distributed generations in recent years. Two
voltage control strategies for distribution power system were
introduced in Reference (Joseph et al., 2020) which utilize
distributed energy resources to contribute reactive power to
support the grid voltage. Reference (Tang et al., 2017) presented
an optimal economic dispatch model for active distribution network
and developed a new optimization method to solve the model to
manage multiple controllable resources, such as distributed
generations, battery storage, and demand response and so on. In
order to take advantage of technological superiority of distributed
generations in the economic, environmental and energy aspects,
Reference (Zhao et al., 2016) highlighted an optimal dispatch model
for active distribution network aiming to protect environment and
save energy, then a two-stage algorithm was presented to solve the
model. In Reference (Li and Zheng, 2019), the consumption rate of
renewable energy and the operation cost of hybrid AC/DC
microgrid was regarded as the optimization objectives, the
source-network-load coordination strategies were proposed to
realize the efficient utilization of renewable energy and the
optimal operation of microgrids. The optimization objectives
were proposed in Reference (Tuladhar et al., 2016) which
contains minimization of system power loss, voltage deviation
and energy wastage from wind power and photovoltaic power.
Based on that, an optimal dispatch method for network
reconfiguration as well as reactive power optimization of
distributed generations was presented to improve the network
performances.

With the rapid development of wind turbines and their control
technology, flexible regulation of dispersed wind power output has
become a feasible technological means to achieve the optimal
operation of distribution network (Zhang et al., 2017). Therefore,
the researchers have paid great attention to the reactive power
optimization, active-reactive power coordination optimization,
and voltage control strategy for distribution network with
dispersed wind power. In Reference (Zhang et al., 2017), the
control model of maximum active power for wind power
integration was established by making full use of the reactive
power capability in doubly fed induction generator (DFIG).
Furthermore, a control strategy and optimization process for the
maximum active power of wind power integration was designed in
the paper. The reactive power capability of wind turbines based on
permanent magnet synchronous generators was considered in
Reference (Li et al., 2020), a reactive power control strategy
adopted by optimizing the reactive power of wind turbines was
proposed tominimize the power loss andmaximize the service life of
wind turbines. Reference (Xiang et al., 2021), established an optimal
operation model of reactive power for distributed wind generations
integrated into distribution network, with the purpose of making the
most of distributed wind generations and economic operation of the
distribution network. Reference (Guo et al., 2019) presented a
distributed coordinated active and reactive power control method
to optimize the output of active power and reactive power of wind
farms, and the effect of active power on voltages was considered to
improve the voltage control. Reference (Londero et al., 2017)
provided the influence mechanism of DFIG operational limits on
long-term voltage stability of power system and the circumstances of

different wind speed was taken into account to explore possible
simplified model. In Reference (Anilkumar et al., 2018), an
intelligent method of optimal coordinated voltage control was
proposed for distribution networks in the presence of
distribution generations, which aimed to seek the optimal
solution of different control variables.

Although most current researches on distributed renewable
energy power focused on the optimal operation and energy
management of distribution systems with a variety of controllable
resources, it is not applicable to the engineering applications which
only DWP is integrated into distribution networks. These researches
took into account the coordination and collaboration of various
controllable resources based on their respective characteristics.
However, according to the application situation of practical
projects, it is an important optimization goal to improve the
penetration rate of wind power resources on the premise of
ensuring the safe operation of power system. Besides, the power
regulation capability of the wind turbines is not fully explored, and
the regulation capability also needs to be verified by practical
engineering. Therefore, it is necessary to conduct the research of
the optimal operation strategy for DWP integrated into distribution
networks.

Based on the analysis of power regulation capability of DFIG,
this paper takes the high penetration of DWP and maximum
correntropy of node voltage as optimization objectives to
establish an optimal operation model for distribution networks,
and then the multi-objective brain storm optimization algorithm is
selected to solve the model. The expanded IEEE 33 bus system is
adopted to test the validity of the proposed model and solution
algorithm, moreover, the practical application effect of optimal
operation strategy is also verified by a demonstration project of
DWP integrated into the distribution network.

The rest of this paper is organized as follows: Section 2 analyzes
the power regulation capability for wind turbine, which lays a
theoretical foundation for the optimal operation strategy in this
paper. In Section 3, the optimal operation model of distribution
network with DWP is presented, and the solution method for the
model is described in Section 4. Simulation results on the expanded
IEEE 33 bus system are presented and discussed in Section 5, and the
test on a demonstration project in China is shown in Section 6.
Section 7 concludes the paper.

2 Analysis of power regulation
capability for wind turbines

In general, all of the three main types of wind turbines, i.e., cage
asynchronous generator, direct drive permanent magnet
synchronous generator and doubly fed induction generator, have
certain capability of power regulation. However, DFIG is the most
popular type applied in dispersed wind farms in China. The power
regulation capability of DFIG is the major foundation for the
realization of DWP’s active participation in the optimal
operation of distribution network.

Taking the DFIG as an example, the analysis of power
characteristics shows that the stator side and the grid-side
converter are the main source of reactive power (Zhang et al.,
2017; Xiang et al., 2021). Current research indicates that the

Frontiers in Energy Research frontiersin.org02

Duan et al. 10.3389/fenrg.2023.1166681

39

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1166681


reactive power regulation capability of DFIG is greatly affected by
the rotor current. The rotor current is restricted by the thermal
current limit of the rotor winding and the maximum current of the
converter, so it is considered that the maximum rotor current is a
key factor affecting the reactive power of DFIG. Taking into account
the current constraints of rotor side, the reactive power capability
from the stator side can be expressed as follows:

Qs
max � − 3U2

s

2ωsLs
+

�����������������
3
2
Lm

Ls
UsI max( )2

− P2
s

√√

Qs
min � − 3U2

s

2ωsLs
−

�����������������
3
2
Lm

Ls
UsI max( )2

− P2
s

√√
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where Qs
max and Qs

min denote the maximum reactive power which
issued and absorbed by the stator side respectively; Us is the stator
voltage; Imax is the maximum permissible current of rotor; Ps denotes
the active power output of the stator side; ωs denotes the
synchronous rotation angular velocity; Ls denotes the equivalent
inductance of stator; Lm denotes the excitation inductance.

In addition, the grid-side converter can also provide reactive
power regulation capability for the wind turbines, which is restricted
by the maximum capacity of grid-side converter. The reactive power
capability can be expressed as:

Qg
max �

����������
S2cmax − s2P2

s

√
Qg

min � −
����������
S2cmax − s2P2

s

√
,

⎧⎪⎨⎪⎩ (2)

where Qg
max and Qg

min denote the maximum reactive power which
issued and absorbed by the grid-side converter; Sc max is the capacity
of the grid-side converter; s is the slip ratio.

Therefore, the reactive power capability of a single DFIG unit,
i.e., the adjustable range of reactive power, can be expressed as Eq. 3:

Q max � Qs
max + Qg

max

Q min � Qs
min + Qg

min,
{ (3)

where Qmax and Qmin denote the maximum reactive power which
issued and absorbed by DFIG unit respectively.

The power capacity curve of DFIG is shown in Figure 1, each
curve in the figure is corresponding to the regulation range of
reactive power in different slip ratio. It can be seen that the
reactive power of wind turbines can be adjusted in a wide range
and gradually decreases with the increase of active power. Therefore,
the reactive power capability of wind turbine makes it have sufficient
conditions to actively participate in the voltage regulation of
distribution networks.

3 Optimal operation model of
distribution network with dispersed
wind power

The power regulation capability of wind turbines makes it
possible for dispersed wind power to participate in the operation
and regulation of distribution network. In order to give full play to
the advantages of dispersed wind power in the economic
development and environmental protection, this paper presents
an optimal operation model of distribution network with DWP,
which focuses on the high penetration of DWP and maximum
correntropy of node voltage. The purpose of optimal operation
model is not only the full utilization of clean renewable energy, but
also the improvement of voltage quality in distribution networks.

3.1 Objective function

3.1.1 High penetration of dispersed wind power
integration

Making full use of clean renewable energy based power
generation is one of the effective ways to solve the environmental
pollution and energy shortage crisis. Moreover, the operation cost of
wind power generation does not need fuel expenses. On the premise
of satisfying the demand of power load, the higher wind power
consumption, the lesser the electricity purchased from the bulk
power system which is dominated by thermal power, and the better
the economical operation of the system. Therefore, in the
perspective of environmental and economic factors, realizing the
high penetration of wind power integration is the primary objective
to achieve the optimal operation of distribution network with DWP.

The concept of energy penetration ratio has been recognized by
many researchers in judging the utilization level of clean and
renewable energy generation in distribution network. It mainly
refers to the percentage of electricity supplied by distributed
generations to load consumption of distribution network (Karimi
et al., 2016; Yarahmadi and Shakarami, 2018). Therefore, based on
the energy penetration ratio of DWP in an operation cycle, the
objective function for pursuing high penetration of dispersed wind
power integration is established as Eq. 4:

Ep � max∑K
t�1

∑
w∈W

Pw t( ) · Δt
Pload t( ) · Δt

⎛⎜⎜⎝ ⎞⎟⎟⎠ × 100%, (4)

where Ep denotes the energy penetration ratio of DWP; K is the
number of stages in a operation cycle; W denotes the number of

FIGURE 1
The capacity curve of DFIG.
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dispersed wind farms which integrated into distribution network;
Pw(t) denotes the active power output of wth dispersed wind farm at
time t; Pload(t) denotes the load power in distribution area at time t;
Δt denotes the length of each unit operation stage.

Eq. 4 refers to the percentage of the wind power consumption to
the load of distribution network. It is intended to ensure that the
active power generated by dispersed wind farms can be consumed to
the greatest extent on the premise of safe operation of the system, so
as to achieve the objective of high penetration and full utilization of
DWP by taking full advantages of the power regulation capability of
wind turbines.

3.1.2 Maximum correntropy of node voltage
Node voltage can reflect both the operation status and the

power quality of distribution network. The improvement of
voltage quality for distribution network by DWP integration
has been verified in theoretical research and practical
engineering application (Londero et al., 2017). The node
voltage is usually regarded as the constraint condition in most
of optimal operation models, but it will make the optimized node
voltage very close to its boundary value. So the node voltage is
extremely liable to exceed the specified limit, resulting in the
large-scale disconnection of dispersed wind farms from the
distribution network, which will cause the loss of consumers.
Therefore, in order to avoid the dispersed wind farms quitting
operation under voltage fluctuation as far as possible and
maintain a certain voltage margin, it is necessary to consider
the optimization objective of node voltage quality improvement.

Because the node voltage in the distribution network actually
presents the characteristics of non-Gaussian and nonlinear, the
maximum correntropy criterion (MCC) (Liu et al., 2007) is
applied as a cost function to establish the objective function of
voltage quality improvement in distribution networks, and its
general expression can be defined as Eq. 5:

V̂N,σ e( ) � max
1
N

∑N
i�1
Gσ ei( ) � max

1
N

∑N
i�1

1���
2π

√
σ
e−

ei( )2
2σ2 , (5)

where N denotes the number of sample points; Gσ(•) denotes the
kernel function of MCC; σ denotes the kernel width of the kernel
function, which is usually taken as constant 1; ei denotes the
difference between the output and expectation of the ith vector to
be solved.

The MCC maximizes the similarity between the expected value
and predicted output value in the sense of “entropy”. The criterion
focuses on the high-order statistics of the data, it is robust when
dealing with the non-Gaussian and nonlinear data (Bessa et al.,
2009). As a result, theMCC is suitable for processing of the data with
nonstationary and time-varying characteristics, such as node voltage
of distribution networks. According to Eq. 5, the objective function
of voltage quality improvement in distribution networks based on
the MCC can be expressed as Eq. 6:

ΔUMCC � max∑K
t�1

1
Nd

∑Nd

i�1
Gσ ϕ ΔUi t( )| | − δU( ) − 0( )⎛⎝ ⎞⎠

� max∑K
t�1

1
Nd

∑Nd

i�1

1���
2π

√
σ
e−

ϕ ΔUi t( )| |−δU( )( )2
2σ2⎛⎝ ⎞⎠, (6)

where ΔUMCC denotes the voltage quality index based on MCC; Nd

is the number of nodes in the distribution network; ΔUi(t) denotes
the voltage deviation of the ith node at time t, and it is a state variable
in the optimization process, which satisfies the power flow function
corresponding to the control variable of the active power and
reactive power output, i.e., ΔU = f (Pw、Qw); δU denotes the
maximum allowable deviation of node voltage; function ϕ can be
calculated according to Eq. 7:

ϕ x( ) � 0, x≤ 0
x, x> 0,

{ (7)

Eq. 6 is the objective function of node voltage, which is constructed
based on MCC shown in Eq. 5. The deviation of node voltage is the
optimization objective which refers to the difference between the output
and expectation in Eq. 5. This objective function means that the voltage
of all nodes in the distribution network should be controlled within a
safe and high-quality range to the fullest extent under the circumstances
of load or DWP output fluctuation, so as to solve the disconnection
problem of dispersed wind farms due to overvoltage. This problem has
arisen many times in the trial operation stage of the first demonstration
project of DWP integrated into 10 kV distribution network in China
(Zhang et al., 2017).

3.2 Constrains

3.2.1 Power flow constraints
The power flow constraints of the distribution network mainly

include equality constraints of power balance and inequality
constraints of node voltage and branch current, which can be
expressed as Eqs. 8, 9.

Pi � Ui ∑
j∈i

Uj Gij cos θij + Bij sin θij( )
Qi � Ui ∑

j∈i
Uj Gij sin θij − Bij cos θij( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

where Pi and Qi denote the active power and reactive power which
feed into ith node respectively; Ui and Uj denote the voltage
amplitude of node i and j respectively; Gij and Bij denote the real
and imaginary part of bus admittance matrix respectively; θij denotes
the phase angle difference between node i and j.

Ui
min ≤Ui ≤Ui

max

Ii ≤ Ii
max,

{ (9)

where Ui denotes the voltage amplitude of node i; Ui
min and Ui

max

denote the maximum and minimum voltage value of node i
respectively; Ii denotes the current amplitude of branch i; Iimax

denote the maximum limit of branch current.

3.2.2 The power output constraints
The power capacity of DFIGs in dispersed wind farms is finite.

Moreover, its reactive power is subject to the value of active power
and power factor, which is shown in Figure 1. The active power and
reactive power output of dispersed wind farms can be expressed as
inequality constraints, which are shown in Eq. 10.

Pw
min ≤Pw t( )≤Pw

max

Qw
min ≤Qw t( )≤Qw

max,
{ (10)
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where Pw(t) and Qw(t) denote the active power and reactive power
output of wth dispersed wind farm at time t respectively; Pw

min and
Pw
max denote the active power capacity bound of wth dispersed wind

farm respectively; Qw
min and Qw

max denote the reactive power bound
value respectively, which are corresponding to the active power
output Pw(t) according to Figure 1, i.e., [Qw

min, Qw
max] = f (Pw(t)).

4 Solution method for the optimal
operation model

The above Eqs. 4–10 constitute the optimal operation model of
the distribution network with DWP. With high dimensional control
variables, multiple optimization objectives, multiple optimization
periods and nonlinear constraints, the optimal operation model is
essentially a complex nonlinear programming problem. Traditional
optimization algorithms, such as interior point method and
nonlinear programming method, have shown some difficulties in
solving the power optimization problems of the distribution
network with DWP. Therefore, more and more researchers are
focusing on artificial intelligence algorithms which have more
powerful global searching ability. Aiming at the characteristics of
the proposed optimal operation model, it is necessary to choose an
intelligent algorithm with simple principle and wider adaptability to
solve the model. Brain storm optimization (BSO) algorithm is a
novel swarm intelligence search algorithm, which has the advantages
of clear concept, excellent global optimization, wide adaptability and
so on (Shi et al., 2013; Xiong and Shi, 2018). It has been applied to
various optimization problems such as economic dispatch of power
system. Considering the characteristics of the model and the
advantages of BSO algorithm, the multi-objective brain storm
optimization (MBSO) algorithm is introduced to solve the
optimal operation model to obtain optimal operation scheme in
this paper.

4.1 Description of BSO algorithm

BSO algorithm was derived from the process of
brainstorming meeting when people take the approach of
group decision making to deal with the problems. It is a
mathematical solution algorithm abstracted from this process.
In the discussion process, participants can be divided into three
categories, i.e., a moderator, discussants and a few of problem
originators. The mission of the moderator is to coordinate
discussion process and promote participants to generate more
good “ideas”. To avoid prejudice, the moderator should have no
relevant professional background for unresolved problems. The
discussants are the main force in the discussion process, they
discuss the problems and provide a variety of “ideas”. They
should have different academic knowledge and open mind as
much as possible, which will help them to put forward much
more different “ideas” where the best one is generated. After each
round of brainstorming, the problem originators should make a
choice from the “ideas” proposed by the discussants. They all
have their own expertise and experience for the problems, so they
will choose good idea according to different standards.

The iterative process of BSO algorithm corresponds to the
discussion process of brainstorming meeting. Solutions in the
algorithm can be regarded as “ideas” generated during
brainstorming discussions. In addition, the fitness functions of
the algorithm play the same role as problem originators in
evaluation and selection. Similar to other swarm intelligence
search algorithms, BSO algorithm also contains three core parts:
generation of initial solutions, iterative update of solutions, and
evaluation and selection of solutions. In each iteration process, the
algorithm mainly includes two modules: clustering and updating.
The clustering module divides all the solutions into k clusters based
on K-means clustering method. The cluster center reflects the
characteristics of these solutions and improves the efficiency of
subsequent iteration. The updating module promotes local search
through parallel optimization of all kinds of solutions, it also
promotes global search by means of inter-cluster collaboration
and Gauss mutation, which can ensure the convergence
performance of the algorithm and the diversity of solutions in
the process of optimization.

4.2 Solution method using MBSO algorithm

Because the presented optimal operation model has two
objective functions, the multi-objective brain storm optimization
algorithm is used to solve the model to obtain the Pareto solution set
and select the optimal operation scheme. The algorithm flow is
shown below.

(1) The parameters of the distribution network and DWP are
initialized firstly, and the initial parameters of the MBSO algorithm
should be set reasonably, which include the amount of solutions Ns,
maximum iterations KImax, four probability parameters P1, P2, P3,
P4, the amount of solutions M in the archive set (AS), and the
amount of clusters k;

(2) Ns solution vectors are generated randomly and evaluated by
the objective functions, on the basis of analysis of these solution
vectors, the non-dominated solutions can be singled out and be put
into the AS;

(3) K-means clusteringmethod is used to divideNs vectors into k
clusters in the two-dimensional target space composed of two
objective functions. For the k clusters, the clusters containing
non-dominated solutions can be regarded as elite clusters and the
others are ordinary clusters;

(4) The process of selecting solution vectors is shown in Figure 2
to generate new solutions. In order to generate new solution vectors,
the solution vectors that need to bemutated are selected according to
the selection flow in Figure 2. Then, the Gauss mutation method
shown in Eq. 11 can be used to update the elements in the selected
solution vectors.

xd
new � xd

selected + ξ ·Nr μr, σ
2
r( ), (11)

ξ � log sig
KImax/2 − tc

Ks
( ) · random() � random()

1 + exp tc−KImax
2

Ks
( ), (12)

where xd
selected is the dth element of selected vector; xd

new is the dth
element of new vector;Nr(μr, σ2r) is a random function subjected to
Gauss distribution with the parameters of μr and σr; ξ is a weight
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coefficient shown in Eq. 12, where KImax and tc denote the maximum
and the current iterations respectively; Ks denotes the slope of
function logsig(x).

The old and new solution vectors can be evaluated according to
the two objective functions and the non-dominated vector should be
kept for the next iterations (If they do not dominate each other,
either of them could be kept randomly).

(5) A new non-dominated solution is selected and compared
with all the solutions in the AS. If it dominates a number of
solutions in the AS, these solutions will be eliminated and this
new solution will be stored into the AS. However, if the new
non-dominated solution is dominated by a solution in the AS,
this new solution will be eliminated and the next new non-
dominated solution is checked. When all the non-dominated
solutions are compared, the number of solutions in the AS is
counted clearly. If the number of solutions exceeds the
prescribed capacity of the AS, the crowding-distance of each
solution in the AS should be calculated and the redundant
solutions should be eliminated. The method of calculating
crowding-distance is shown in Eq. 13.

D i( ) � ∑Nobj

n�1

fn i + 1( ) − fn i − 1( )∣∣∣∣ ∣∣∣∣
2

+min fn i + 1( )∣∣∣∣[(
−fn i( )|, fn i( ) − fn i − 1( )∣∣∣∣ ∣∣∣∣]), (13)

where Nobj denotes the number of objective functions and fn(i)
denotes the nth objective function value of ith solution.

(6) The optimal solutions could be searched according to the
above steps. When the preset convergence accuracy or maximum

iteration number are reached, i.e., the termination condition is
satisfied, the search stops and the current AS should be output,
which is the Pareto optimal solution set.

In actual operation of the distribution network, the operator
must choose one of them from Pareto set, i.e., an optimal
operation scheme that can balance the voltage quality and the
penetration of wind power. In this paper, the fuzzy membership
function shown in Eq. 14 is used to evaluate the satisfactory
degree of each objective function corresponding to each solution
in Pareto set. According to Eq. 15, the overall satisfactory degree
of each solution can be calculated. The operator can choose the
solution with the largest overall satisfactory degree as the optimal
operation scheme.

μi �

0 fi ≤fimin

fi − fimin

fimax − fimin

fimin <fi <fimax

1 fi ≥fimax

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(14)

μ � 1
Nobj

∑Nobj

i�1
μi, (15)

where μi is the satisfactory degree of the ith objective function; fi is
the value of the ith objective function; fimax and fimix form the scope
of the ith objective function; μ is the overall satisfactory degree.

To sum up, the solution method for optimal operation
model is shown in Figure 3. The method can be used to
obtain the Pareto solution set, from which the optimal
operation scheme is selected.

FIGURE 2
Update operation flow of BSO algorithm.
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5 Case study

5.1 Case system and parameters

In order to test the effectiveness of the proposed optimal
operation model and the solution method, an extended IEEE
33 bus distribution system is used as an example for simulation
analysis. The topology structure of the case system is presented

in Figure 4, and the details of each dispersed wind farm are
shown in Table 1.

The regulation range of reactive power is confined to the
actual situation of active power output for each dispersed wind
farm, which is shown in Figure 1. According to Chinese
national standard, the allowable deviation of voltage for
10 kV distribution systems is limited to ±7% of nominal
voltage. In order to prevent voltage disqualification caused
by the fluctuation of wind power and load, the maximum
allowable deviation of node voltage (δU in Eq. 6) is set as
0.05 p.u.

As shown in Figure 5, the load curve and forecasting active
power output curves of dispersed wind farms in a typical day are
used to simulate the proposed method. This typical day contains
various operating conditions, which can be simulated and tested
in different scenarios. The operating cycle is 24 h and the time
interval is 15 min.

5.2 Simulation results and analysis

The MBSO algorithm is utilized to solve the optimal operation
model to obtain the operation scheme. The proper configuration of
algorithm parameters should be set up firstly, i.e., the initial number
of individuals Ns = 50, while the capacity of archive set M = 20, the
maximum number of iterations KImax = 500, the number of clusters
k = 4, and the four probability parameters are P1 = 0.9, P2 = 0.3, P3 =
P4 = 0.5.

The simulation results are shown in Figures 6, 7, i.e., the
optimal operation scheme obtained by the proposed method of
high penetration of DWP integration. Figure 6 shows the
reactive power output of each dispersed wind farm after
optimization. Figures 7A–C show the active power output of
each dispersed wind farm after optimization during a typical
time period. According to the simulation results, we can
conclude that the wind turbines can make full use of its own
capability of power regulation to satisfy the integration
conditions of DWP and maintain the safe operation of the
system.

5.2.1 Comparison and analysis of wind power
utilization

The utilization indices of wind power about the constant
power factor operation mode (cosφ = 1) and the optimal high
penetration operation scheme are calculated respectively as
shown in Table 2. The indices are the utilization ratio of wind
power (i.e., the percentage of actual active power output to the
forecasting maximum active power of dispersed wind farms) and
the energy penetration ratio of DWP (i.e., Eq. 4). The constant

FIGURE 3
Flowchart of solution method for optimal operation model.

FIGURE 4
Diagram of dispersed wind farms integrated into IEEE33 bus
distribution system.

TABLE 1 Parameters of dispersed wind farms.

Number Node Capacity/MW

WT1 15 0.6

WT2 18 1.2

WT3 32 2.7
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power factor operation mode represents a kind of operation
method of distribution network with distributed generations. It
did not explore the power regulation capability of the wind
turbines, and the active power output of DWP was adjusted
passively according to the load demand of distribution
network. In order to ensure the normal operation of the
system, in cases when the node voltage of the distribution
network exceeds the specified limits in the constant power
factor operation mode, the measures of wind power
curtailment and electricity restriction are adopted to reduce
the active power output to maintain the node voltage to be
qualified.

As shown in Table 2, the utilization ratio and the penetration
ratio of wind power are increased by 20.59% and 18.56%
respectively based on the high penetration operation scheme.
Taking the dispersed wind farm (WT2) which integrated into
Node 18 as an example, Figure 8 shows the comparison on the
active power output of wind power in different operation modes.
During 0 a.m.–8 a.m. and 10 p.m. to 0 a.m. on the next day, the

active power output of wind power based on the high penetration
operation scheme is increased significantly compared with the
constant power factor operation mode. It indicates that the
proposed optimal operation strategy achieves high penetration
and efficient utilization of wind power resources.

5.2.2 Comparison and analysis of voltage quality
The voltage curves of typical nodes about the constant power

factor operation mode and the optimal high penetration operation
scheme are shown in Figure 9 (Wind turbines only output active
power in the constant power factor operation mode). In order to
avoid redundancy in image display, three typical nodes are selected
in Figure 9 to demonstrate the effect of the optimal operation
strategy. Node 18 and Node 32 are both the points of common
coupling (PCC) of DWP in different feeder sections of the
distribution network, the voltage of these two nodes is most
affected by the wind power output. Moreover, according to the
results of simulation calculation, the value of node voltage at Node
18 is the upper voltage limit in the test system. Therefore, these two
nodes are typical examples of their respective feeder sections to show
the optimization effect of node voltage. The location of Node 10 is
between the 10 kV bus and the PCC of wind power, it can reflect the
voltage of some nodes which are far away from the PCC of DWP to a
certain extent. The comparison between the Figures 9A,B shows that
the node voltage will exceed the specified limits during part of time
period in constant power factor operation mode, while the
optimized node voltage can meet the requirements for safe
operation of the distribution network.

Combined with the Figures 5–7, we can clearly see that: 1)
During 0 a.m.–6 a.m., in cases when the distribution network is
weakly loaded while the output of wind power is close to full
capacity, the dispersed wind farms will be separated from the
distribution network because of overvoltage in the event of
untimely adjustment, which is shown in Figure 9A. But when the
high penetration operation scheme of wind power is adopted, the
reactive power capability of the wind turbines is made full use to
regulate the node voltage of the distribution network. As shown in

FIGURE 5
Diagram of case data in a typical day.

FIGURE 6
Reactive power output curves of dispersed wind farms.
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Figure 9B, the capacity of reactive power is limited, so the active
power output of each wind farm should be reduced appropriately to
adjust the voltage to the defined scope. 2) During 5 p.m.–8 p.m., in
cases when the distribution network is heavily loaded while the
output of wind power is at a low level, the active power output of
the dispersed wind farms cannot meet the load requirement of the
system, as shown in Figure 9A, the voltage of some nodes will be less
than the lower boundary in the constant power factor operation
mode. At this time, the quality of the node voltage is failed to reach
the required standard of safe operation. If it continues to operate like
that, there may even appear quite serious consequences such as
voltage instability. During this period, as shown in Figure 9B, the

high penetration operation scheme can adjust the reactive power
output of wind turbines to regulate the node voltage actively and
keep them above 0.95 p. u. Generally speaking, the optimal high
penetration operation scheme can keep the voltage of each node
within the safe and high-quality range of 0.95–1.05p.u., the voltage
quality is obviously improved.

In summary, the simulation test on the IEEE 33 bus system
demonstrates that the proposed optimal operation method can
realize the high penetration and efficient utilization of wind
power on the premise of ensuring high quality of voltage. When
the problem of overvoltage cannot be solved only by the reactive
power capacity of dispersed wind farms, the active power output of
wind farms should be reduced to adjust the node voltage to a
qualified range.

6 Case analysis of demonstration
project

The optimal operation model and solution method
proposed in this paper have been applied to a demonstration
project in Northern Shaanxi province of China. It is one of the
first demonstration engineering applications for dispersed
wind farms integrated into the 10 kV distribution networks
in China. The local distribution network structure of the
demonstration project is presented in Figure 10, and the
details of the dispersed wind farm are shown in Table 3.

As shown in Figure 11, the load curve and active power
output curves of dispersed wind farms in a typical day are used to
simulation. The operating cycle is 24 h and the time interval is
15 min. The algorithm parameters are set up as: the initial
number of individuals Ns = 50, while the capacity of archive

FIGURE 7
Active power output curves of dispersed wind farms.

TABLE 2 Comparison on two operation modes of wind power.

Index Utilization ratio (%) Penetration ratio (%)

Constant power factor operation mode 77.46 69.87

High penetration operation scheme 98.05 88.43

FIGURE 8
Comparison on active power of WT2 between two operation
modes.
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set M = 20, the maximum number of iterations KImax = 500, the
number of clusters k = 4, and the four probability parameters are
P1 = 0.9, P2 = 0.3, P3 = P4 = 0.5.

The MBSO algorithm is used to solve the Pareto solution set and
select the optimal operation scheme. The simulation results are
shown as follows. Figure 12A shows the reactive power output of
dispersed wind farms after optimization. The voltage curves of
typical nodes about the constant power factor operation mode
and the optimal high penetration operation scheme are shown in
Figures 12B,C.

Combined with Figures 11, 12, the optimized results illustrate
that:1) During 0 a.m.–8 a.m., that is the time of valley load of the
distribution network and almost full active power output of wind
power, the voltage of the point of common coupling exceeds the
upper boundary (1.07p.u.) in the constant power factor operation
mode, as shown in Figure 12B. While the optimal operation
scheme of wind power can adjust the node voltage to the scope of
safe operation shown in Figure 12C, which indicates that the
reactive power regulation capability of wind turbines is sufficient

TABLE 3 The parameters of the dispersed wind farm.

Number Node Capacity/MW

WT1 8 4.2

WT2 17 6.3

FIGURE 10
Diagram of dispersed wind farm integrated into the local
distribution network.

FIGURE 9
Voltage curves of typical nodes.

FIGURE 11
Diagram of engineering case data.
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to meet the voltage requirements and realize the efficient
utilization of wind power. 2) During 6 p.m.–10 p.m., that is
the time of peak load of the distribution network and low active
power output of wind power, the voltage is slightly low at the
terminal node of feeder lines in the constant power factor
operation mode, which is shown in Figure 12B. When the
load or wind power output fluctuates, there is a high
probability that the node voltage will exceed the lower
boundary. The reactive power output of wind turbines can
improve the quality of node voltage based on the optimal
operation scheme, as shown in Figure 12C, which indicates
that the reactive power of dispersed wind farms can
participate in the voltage regulation of distribution network
effectively.

In this practical case, the high penetration operation scheme has
no restriction on active power output, it means that the active power
output of wind farms has been fully utilized, i.e., the penetration
ratio of wind power reaches the maximum. The above simulation
results are basically consistent with the actual operation of the
dispersed wind farm. According to statistics, the annual
operation time of the demonstration project is more than

3,000 h. The utilization ratio of active power of DWP maintains
at a relatively high level, which is the genuine implementation of the
efficient utilization of wind power.

7 Conclusion

This paper proposes an optimal operation strategy of
distribution network with high penetration of dispersed wind
power, in which the power regulation capability of wind turbines
is utilized sufficiently. A novel optimal operation model of
distribution network is established, which pursues high
penetration integration of DWP and maximum correntropy of
node voltage. Considering the characteristics of the model, the
MBSO algorithm is adopted to obtain the optimal operation
scheme for the distribution network. The simulation results on
expanded IEEE 33 bus system verify that the proposed optimal
operation strategy can effectively ensure the high quality of node
voltage and realize the high penetration integration of wind
power. Moreover, a case of engineering application for
dispersed wind farms also indicates the feasibility of the

FIGURE 12
Diagram of optimization results.
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optimal operation strategy, which shows great application
prospect and popularization value.
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An MPC based active and reactive
power coordinated control
strategy of PMSG wind turbines to
enhance the support capability

Xiyuan Ma1, Jingyi Yu1, Ping Yang2*, Pengyu Wang1 and
Peng Zhang2

1Digital Grid Research Institute of China Southern Power Grid, Guangzhou, China, 2Guangdong Key
Laboratory of Green Energy Technology, South China University of Technology, Guangzhou, China

As wind turbines are constantly replacing traditional units, it is becoming a
consensus that wind turbines should participate in the grid support that was
only responsible by traditional units in the past. In order to enhance the grid
support capabilities (including active power support and reactive power support)
of permanent magnet synchronous generator (PMSG) based wind turbines, this
paper constructs an active and reactive power coordinated control strategy.
Compared with the current active and reactive power coordinated control
strategy of PMSG wind turbines, the method of the proposed one innovatively
considers the climbing coordinated restriction between active and reactive power,
flexible prioritization arrangement between active and reactive power, the
accurate amplitude and climbing constraints of grid-side converters’ output
voltage, and the model predictive control (MPC) technique. The simulation
results verify that the proposed power control strategy can make PMSG wind
turbines achieve excellent power output performance and thus better meet the
requirements of power grid support.

KEYWORDS

grid support, permanentmagnet synchronous generator (PMSG) wind turbine, active and
reactive power coordinated control strategy, model predictive control (MPC), amplitude
and climbing

1 Introduction

Traditionally, the frequency and voltage of power systems are mainly controlled by
thermal units and hydropower units. Wind and photovoltaic units account for a small
generating capacity, and their power decouples with the grid frequency and voltage,
standing at maximum power points and fixed power factors (Gaied et al., 2022; Zeng
et al., 2022). However, with the implementation of the “double carbon” strategy in recent
years, the installed capacity of wind and photovoltaic energy in China is increasing
significantly, which reached approximate 706 GW by the end of September 2022
(National Energy Administration, 2023). The traditional units responsible for
frequency and voltage control are gradually being replaced by the wind and
photovoltaic units, which is gradually weakening the frequency and voltage control
capability of power systems. Hence, it is a growing consensus that wind and photovoltaic
units should provide frequency and voltage support services to power systems (i.e., grid
support), so as to maintain the security operation of power systems (Hansen et al., 2006;
Feltes et al., 2009).
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Permanent magnet synchronous generator (PMSG) wind
turbine, one of the mainstream wind turbines, is receiving more
and more popularity nowadays (Guo et al., 2021). The strengths of a
PMSG wind turbine include high energy efficiency and low
maintenance costs (Li et al., 2012; Musarrat et al., 2019). In
addition, a PMSG wind turbine contains a back-to-back full-scale
converter for connecting to power systems so that power system
faults and abnormal conditions will not directly affect the power
output of the generator. This means that it holds inherent
advantages in fault ride through and grid support (Tan et al.,
2017; Sheng et al., 2021).

To provide grid support services, it is necessary for a PMSG
wind turbine to adjust its active and reactive power to respond to
the changes of grid frequency and voltage. Topics about power
control strategies of a PMSG wind turbine/wind farm to provide
grid support could be found in a great deal of literature (Wu
et al., 2017; Peng et al., 2021; Zhong et al., 2021; Li et al., 2022;
Okedu, 2022). For instance, a control strategy is proposed in
literature (Wu et al., 2017) for a PMSG wind turbine
coordinating with a battery system to provide frequency
support, which is realized by instantly raising its active power
to a predefined level once grid frequency disturbance occurs. In
(Peng et al., 2021), the authors design a reactive voltage support
method for a wind farm with static synchronous compensators
considering remaining capacities and voltage unbalanced factors
for different PMSG wind turbines. Yet, the power control
strategies in literature (Wu et al., 2017; Peng et al., 2021;
Zhong et al., 2021; Li et al., 2022; Okedu, 2022) do not fall
under the category of coordinated control between active and
reactive power.

Unlike loose regulatory codes for daily power generation, in the
periods of providing grid support, the active and reactive power of a
PMSG wind turbine is required to meet exact amplitude and
response rate requirements, which are calculated based on the
deviation or slope of frequency and voltage (Mohseni and Islam,
2012; Liu et al., 2015; You et al., 2015). In this context, active and
reactive power coordinated control which involves active and
reactive power coordinated restriction and priority decisions
becomes an unavoidable and meaningful problem. On the one
hand, active and reactive power coordinated restriction can
improve the power control performance of a PMSG wind turbine
in order to better provide grid support. On the other hand, when the
apparent power of a PMSG wind turbine is greater than its rated
apparent power, the priority of active and reactive power must be
judged and then reduce the party with lower priority in order to
ensure that the party with higher priority meets the power grid
support requirements.

As shown in Figure 1, the shaded part represents the amplitude
range of active and reactive power that PMSG wind turbines can
output, which picture forms a semicircle or rectangle when active
and reactive power is restricted coordinately or separately. To obey
the given apparent power amplitude constraint, the semicircle’s
radius is equal to maximum apparent power S, and the rectangle is
contained in a semicircle with a radius of maximum apparent power
S. Obviously, under the given apparent power amplitude constraint,
active and reactive power amplitude coordinated restriction enables
PMSG wind turbines to output a larger range of active and reactive
power amplitude. By the same token, under the given apparent

power climbing constraint, active and reactive power climbing
coordinated restriction allows PMSG wind turbines to perform a
larger range of active and reactive power climbing. Therefore, active
and reactive power coordinated restriction is contributing to
improving the PMSG wind turbines’ power control performance.

For this reason, some literature pays attention to designing
the coordinated control strategies of active and reactive power for
PMSG wind turbines providing grid support (Nguyen et al., 2013;
Moghadasi and Sarwat, 2015; Yan et al., 2016; Zhang et al., 2016;
Tripathi et al., 2019). Ref (Dong et al., 2012). presents a
coordinated control strategy to enhance the low voltage ride
through and grid support capability of PMSG wind turbines. In
(Khazaei et al., 2020), a consensus-based control strategy is
proposed to regulate the output of PMSG wind turbines and
distributed batteries in a wind farm to deliver active and reactive
power to the load. These strategies only focus on amplitude
coordinated restriction of active and reactive power, which
will become more perfect if the climbing coordinated
restriction of active and reactive power can be taken into
account at the same time.

In summary, most previous power control strategies for
PMSG wind turbines providing grid support either do not
explore the coordinated control between active and reactive
power, or only focus on amplitude coordinated restriction and
ignore the climbing coordinated restriction between active and
reactive power. In addition, the priority decisions of active and
reactive power in previous power coordinated control strategies
are not flexible enough to apply to multiple grid support
scenarios. Model predictive control (MPC) (Rodriguez et al.,
2009; Mayne, 2014), which can handle complex constraints
and achieve multiple optimization objectives, is suitable to
structure flexible power coordinated control strategies. MPC is
numerous applicated in industrial process control (Qin and
Badgwell, 2003; Venkat et al., 2008; Vazquez et al., 2014) and
power control of PMSG wind turbines (Maaoui-Ben Hassine

FIGURE 1
Amplitude range of active and reactive power that PMSG wind
turbines can output. (A) coordinated restriction. (B) separated
restriction.
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et al., 2016; Shehata, 2017; Mishra and Saha, 2020), while has not
been found to be applicated in PMSG wind turbines’ active and
reactive power coordinated control. Finally, the current MPC
models on the PMSG wind turbines lack the accurate amplitude
and climbing constraints of grid-side converters’ output voltage.

Based on the mentioned issues, this paper proposes an MPC
based active and reactive power coordinated control strategy of
PMSG wind turbines to enhance the grid support capability. The
contributions of this article are as follows.

(1) Take the lead in adopting MPC to build an active and reactive
power coordinated control strategy of PMSG wind turbines that
can be flexibly applicated in different grid support scenarios due
to the MPC can flexibly set the priority of active and reactive
power.

(2) Not only the existing amplitude coordinated restriction between
active and reactive power but also the innovative climbing
coordinated restriction between active and reactive power is
considered in the proposed control strategy, which enables
PMSG wind turbines to perform a wider range of active and
reactive power amplitude and climbing. So it enhances the
power control performance and the grid support capability of
PMSG wind turbines.

(3) The amplitude and climbing constraint model of grid-side
converter voltage is structured in the proposed MPC based
control strategy in order to protect the grid-side converters and
dignify the output voltage waveform.

The rest of this paper is organized as follows. Section 2 describes
the overview of PMSG wind turbines. Section 3 displays the
mathematical model of PMSG wind turbines. The MPC based
active and reactive power coordinated control strategy is
introduced in Section 4 and simulated in Section 5. Finally,
Section 6 summarizes this paper.

2 The system description

The composition of the PMSG wind turbine studied is shown in
Figure 2, which mainly consists of a wind turbine, a PMSG, a back-
to-back converter, and multiple controllers. In this paper, the
generator-side converter is employed to maintain capacitor
voltage and the grid-side converter controls active power to
realize maximum power point tracking and provide grid
frequency support. Meanwhile, the grid-side converter is also
used to control the reactive power exchange to the power grid, so
as to provide grid voltage support. Therefore, the key to providing
frequency and voltage support for the power grid is to control the
active and reactive power of the grid-side converter.

In order to obtain the wider range of active and reactive power
amplitude and climbing under the given apparent power amplitude
and climbing constraints, in this paper, both the amplitude
coordinated restriction and climbing coordinated restriction of
the grid-side converter’s active and reactive power are
considered. In view of the obvious advantages of MPC in dealing
with multi-input and multi-output control problems with complex
constraints and specific objectives, this paper applies MPC to struct
the active and reactive power coordinated control strategy of the
grid-side converter.

The MPC based active and reactive power coordinated control
system of the grid-side converter is presented in Figure 2. The MPC
controller uses the predictive model of the controlled system to
predict the behavior of the controlled system under different control
actions and selects the optimal control action which minimizes the
objective function. According to the situations of the power grid and
the PMSG wind turbine, the objective function is automatically
adjusted so that the proposed control strategy can adapt to different
grid support scenarios.

Firstly, the mathematical model of the grid-side converter is
established. Secondly, an inverse system is designed in order to
change the grid-side converter into a pseudolinear composite
system. Thirdly, the prediction model and constraint conditions
of the MPC controller are built according to the state space equation
and operation boundary of the pseudolinear composite system, and
the objective function of the MPC controller is built according to the
reference value and priority of active and reactive power. Finally, the
optimal control action is obtained by solving the optimization
problem.

3 The system model

3.1 Mathematical model of grid side
converter

By analyzing the three-phase circuit between the grid-side
converter and the power system as shown in Figure 2, the three-
phase mathematical model of the grid-side converter system can be
written as follows:

Uabc − Eabc � IabcR + L
dIabc
dt

(1)

where Uabc and Eabc represent the three-phase voltage of the grid-
side converter and the power system respectively. R and L are the

FIGURE 2
The composition of the PMSG wind turbine studied.
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resistor and inductor of the filter. Iabc represents the three-phase grid
current flowing into the power grid from the grid-side converter.

The three-phase mathematical model (1) of the grid-side
converter can be transformed to a mathematical model in dq
synchronously rotating reference frame, which can be expressed
as follows.

L
did
dt

� −Rid + ωLiq + ud − ed

L
diq
dt

� −Riq − ωLid + uq − eq

(2)

ed � e
eq � 0

(3)

where id and iq, ud and uq, ed and eq are the grid current, converter
voltage, grid voltage in dq-axis. e and ω are the amplitude and
angular frequency of the grid voltage, which are uncertain and
varying parameters. The active and reactive power flowing into the
power grid can be given by

P � 3
2
eid

Q � 3
2
eiq

(4)

3.2 Grid Side Converter Model Linearization

It can be seen that the nonlinearities exist in the grid-side
converter’s mathematical model (2) since it contains the
nonlinear terms e and ω. In this paper, an inverse system is
designed and connected in series to the control loop to cope with
the nonlinearity existing in the grid-side converter’s mathematical
model. The inverse system uses real time state feedback to
compensate the control variables vd and vq, which the
compensation law can be expressed as follows.

It is worth mentioning that, due to the need to solve the
optimization model, the sampling interval of an MPC controller
cannot be set as a small value, while the sampling interval of an
inverse system can be set to very small, so the inverse system can
sample the state variables (id and iq), amplitude e and angular
frequency ω in real time to compensate the control variables vd
and vq. The real time system states (id and iq) can be obtained by
measuring the real time three-phase current and making a Park’s
Transformation.

ud � Lvd + Rid − ωLiq + e
uq � Lvq + Riq + ωLid

(5)

As shown in Figure 2, vd and vq are the inputs of the inverse
system. ud and uq are the outputs of the inverse system and as
converter control voltages to input in the grid-side converter system.
The mathematical model of the composite system composed of the
inverse system and the grid-side converter system can be obtained
by substituting (5) into (2)–(4).

did
dt

� vd

diq
dt

� vq

(6)

P � 3
2
eid

Q � 3
2
eiq

(7)

Therefore, a grid-side converter composite system is structed
which inputs are vd and vq, and outputs are the active power P and
reactive power Q.

The state variables and output variables of the composite system
are the same as those of the grid-side converter system. Therefore, to
control the composite system is essential to control the converter
system grid-side converter system.

The state representation Eq. 2 of the grid-side converter system
contains the nonlinear terms e and ω. If the amplitude e and angular
frequency ω of the grid voltage change, the MPC controller may not
achieve the expected effect of predicting and controlling the state
variables. In contrast, the state representation Eq. 6 of the composite
system is linear and definite, so that the state variables can be accurately
predicted and controlled by the MPC controller whether the amplitude
and angular frequency of the grid voltage change or not. Therefore,
compared with the direct control of the grid-side converter system, the
control of the composite system can obtain amore reliable control effect.

The grid-side converter composite system model (6)–(7) can be
written as a normal linear state space model.

x
• � Ax + Bv
y � Cx

x � [id, iq]T, y � P,Q[ ]T

A � 0, 0
0, 0

[ ], B � 1, 0
0, 1

[ ], C � 1.5*e, 0
0, 1.5*e

[ ]
(8)

If the amplitude of the grid voltage is stable, the system model
can accurately describe the output characteristic of the system. So
that the MPC controller can accurately predict and control the
outputs of the system. The system outputs will gradually reach the
reference values under the control of the MPC controller.

In contrast, if the amplitude of the grid voltage changes after being
measured, this means that the output characteristic of the system has
changed and does not match the currently established system model
during this sampling interval. The MPC controller may not achieve the
expected effect of predicting and controlling the system outputs during
this sampling interval. However, the system model will be corrected
because the MPC controller will re-measure the grid voltage amplitude
at the beginning of the next sampling interval. Based on the correct
system model, the system outputs will gradually reach the reference
values under the control of theMPC controller. Therefore, the change of
the grid voltage amplitude will not cause the system to lose stability, but
make the outputs of the system fail to reach the expected value within
the current sampling interval.

The MPC algorithm is not executed continuously in the controller,
but at regular interval, which is called sampling interval or control
period and is denoted by T. Discretization (8) can result in

x k + 1( ) � Adx k( ) + Bdv k( )
y k( ) � Cdx k( )
x k( )� [id k( ), iq k( )]T, v k( ) � vd k( ), vq k( )[ ]T
y k( ) � P k( ), Q k( )[ ]T
Ad � eAT, Bd � ∫T

0
eAtdt · B, Cd � C

(9)
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where x(k), v(k), y(k) are the states, inputs and outputs of
the grid-side converter composite system in discrete time.
Next, the MPC controller is designed to control the grid-side
converter composite system, based on the discrete state-space
model (9).

4 The MPC based control strategy

The prediction horizon refers to the time range from the current
time point to a certain time point in the future. The MPC algorithm
needs to predict the state variables of the composite system in this
time range. The time length of the prediction horizon is an integral
multiple of the MPC sampling interval/control interval, so it can be
expressed as NP*T. Similarly, The control horizon refers to the time
range from the current time point to a certain time point in the
future. The MPC algorithm needs to compute the optimal control
variables of the composite system in this time range. The time length
of the control horizon is an integral multiple of the MPC sampling
interval/control interval, so it can be expressed as NC*T.

In this paper, NP = 3 and NC = 2 when we introduce the
formulas of the optimization problem. This means that the MPC
algorithm needs to predict the state variables of the system from
the time t = (k+1)*T to the time t = (k+ 3)*T, meanwhile, the
MPC algorithm needs to compute the optimal control variables
of the system in the period from the time t = kT to the future time
t = (k+2)*T. In fact, they can take other values. With the increase
in the NP and NC, the computing time and controller
performance of the MPC algorithm will increase. When
setting the values of NP and NC, it is necessary to ensure that
the computing time of the MPC algorithm cannot exceed the
MPC sampling interval.

In each sampling interval, the MPC controller solves the
optimization problem (8–23) and obtains the optimal control
variables v(t) � [vd(t), vq(t)], t � kT, (k + 1)T, ... (k +NC)T of
future NC sampling interval, and then only the first set of
optimal control variable [vd(kT), vq(kT)] will be provided for
the composite system.

4.1 Constraint conditions of power
amplitude

Generalized power amplitude constraint conditions include
the power amplitude constraints and current amplitude
constraints. Based on the discrete state-space model (9), the grid
current amplitudes in the future triple control periods can be
predicted as follows.

x k + 1( ) � Adx k( ) + Bdv k( )
x k + 2( ) � Adx k + 1( ) + Bdv k + 1( ) � Ad

2x k( ) + AdBdv k( )
+ Bdv k + 1( )

x k + 3( ) � Adx k + 2( ) + Bdv k + 2( ) � Ad
3x k( ) + Ad

2Bdv k( )
+ AdBdv k + 1( ) + Bdv k + 2( )

(10)
The prediction model (10) of grid current amplitudes can be

rewritten in matrix form.

X � ADx k( ) + BDV
X � x k + 1( );x k + 2( );x k + 3( )[ ]
V � v k( ); v k + 1( ); v k + 2( )[ ]
AD � Ad;Ad

2;Ad
3[ ]

BD �
Bd, 0 2×2( ), 0 2×2( )
AdBd, Bd, 0 2×2( )
Ad

2Bd, AdBd, Bd

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(11)

The future grid current amplitudes should not be greater than of
the rated current amplitude of the grid-side converter. Then, we
have.

x j( )∣∣∣∣ ∣∣∣∣2 � id j( )2 + iq j( )2 ≤ i2N, j � k + 1, ..., k + 3 (12)

Compared to separately restricting each active current id(j) and
reactive current iq(j) amplitude such as
id min ≤ id(j)≤ id max, iq min ≤ iq(j)≤ iq max, coordinately restricting
active current id and reactive current iq(j) amplitudes as (12)
makes the amplitude range of active current and reactive current
larger.

Similarly, based on discrete state-space model (9), the power
amplitudes in the future triple control periods can be predicted.

y k + 1( ) � CdAdx k( ) + CdBdv k( )
y k + 2( ) � CdAdx k + 1( ) + CdBdv k + 1( )

� CdAd
2x k( ) + CdAdBdv k( ) + CdBdv k + 1( )

y k + 3( ) � CdAdx k + 2( ) + CdBdv k + 2( )
� CdAd

3x k( ) + CdAd
2Bdv k( ) + CdAdBdv k + 1( )

+ CdBdv k + 2( )

(13)

The prediction model (12) of the power amplitudes can be
rewritten in matrix form.

Y � CDx k( ) +DDV
Y � y k + 1( );y k + 2( );y k + 3( )[ ]
V � v k( ); v k + 1( ); v k + 2( )[ ]

CD � CdAd( ); CdAd
2( ); CdAd

3( )[ ]
DD �

CdBd, 0 2×2( ), 0 2×2( )
CdAdBd, CdBd, 0 2×2( )
CdA

2
dBd, CdAdBd, CdBd

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(14)

The future apparent power amplitudes of the grid-side converter
should not be greater than its rated apparent power amplitude.
Then, we have.

y j( )∣∣∣∣ ∣∣∣∣2 � P j( )2 + Q j( )2 ≤ S2N, j � k + 1, ..., k + 3 (15)

Compared to separately restricting each active power P(j)
and reactive power Q(j) amplitude such as Pmin ≤P(j)
≤Pmax, Qmin ≤Q(j)≤Qmax, coordinately restricting active
power P(j) and reactive power Q(j) amplitudes as (15)
makes the amplitude range of active power and reactive power
larger.

4.2 Constraint conditions of power climbing
and voltage

Based on the state space model (6)–(9), we can see that the
climbing of active power and reactive power depends on the control
variables vd and vq. To restrict the maximum climbing of apparent
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power, the coordinately restricting climbing of active and reactive
power can be set as

vd j( )2 + vq j( )2 ≤ v 2
max , j � k, ..., k + 2( ) (16)

Compared to separately restricting each control input such as
vd min ≤ vd(j)≤ vd max, vq min ≤ vq(j)≤ vq max, coordinately
restricting vd and vq as (16) makes the climbing range of active
and reactive power larger.

In order to protect the grid-side converter and dignify the output
voltage waveform, the amplitude coordinated restriction and
climbing coordinated restriction between grid-side converter
voltages ud and uq are structed in this sub-section. The variation
characteristic of the converter voltage ud and uq can be analyzed as
follow and is shown as Figure 3.

(1) The variation characteristic of the control variables vd and vq

As mentioned above, The MPC algorithm is not executed
continuously, but at regular control period T. At the starting
point of each control period T, the MPC controller solves the
MPC algorithm and outputs a new round of control variables vd
and vq. Then, the outputs of the MPC controller will remain
unchanged until the next control period.

Therefore, during a control period T, the control variables vd
and vq remain unchanged. At the moments of two control period
junctures, the MPC controller will give a new round of control
variables vd and vq, so that the control variables vd and vq will
suddenly change at these moments. The variation characteristic of
the control variables vd and vq can be seen in Figure 3.

(2) The variation characteristic of the current id and iq

According to mathematical model (6), it can be seen that the
change rates of the current id and iq are the control variables vd and
vq, respectively. During a control period T, the control variables vd
and vq remain unchanged. Therefore, the current id and iq will
monotonically increase or decrease. The variation characteristic of

the current id and iq can be seen in Figure 3. The variation
characteristics of the power P and Q are consistent with those of
the current id and iq.

(3) The variation characteristic of the converter voltage ud and uq.

Based on inverse system model (5), the derivative of the
converter voltage ud and uq can be calculated as dud/dt � Rvd −
ωLvq and duq/dt � Rvq + ωLvd. It can be seen that the derivatives of
the converter voltage ud and uq are constant, so they vary
monotonically during a control period T.

At the moments of two control period junctures (such as t =
kT. . .t=(k+3)T), the MPC controller will give a new round of control
variables vd; vq. According to mathematical model (5), the converter
voltage ud and uq will suddenly change at these moments due to the
sudden change of the control variables vd and vq. The variation
characteristic of the converter voltage ud and uq can be seen in
Figure 3.

Based on the inverse system model (5), the future converter
voltage u(j)+, j � k...k + 2 in Figure 3 can be calculated as

u k( )+ � Lv k( ) + Rjx k( ) + ej
u k + 1( )+ �� Lv k + 1( ) + Rjx k + 1( ) + ej
u k + 2( )+ � Lv k + 2( ) + Rjx k + 2( ) + ej

u k( )+ � ud k( )+
uq k( )+[ ], Rj � R,−Lω0

Lω0, R
( ), ej � e

0
[ ]

(17)

The prediction model (17) of converter voltage can be rewritten
in matrix form.

U+ � LV + RJW + eJ
U+ � u k( )+; u k + 1( )+; u k + 2( )+[ ]
W � x k( ); x k + 1( );x k + 2( )[ ]
V � v k( ); v k + 1( ); v k + 2( )[ ]
eJ � ej; ej; ej[ ]
RJ � diag Rj, Rj, Rj( )

(18)

Based on the inverse system model (5), the future converter
voltage u(j)−, j � k + 1...k + 3 in Figure 3 can be calculated as

u k + 1( )− �� Lv k( ) + Rjx k + 1( ) + ej
u k + 2( )− � Lv k + 1( ) + Rjx k + 2( ) + ej
u k + 3( )− � Lv k + 2( ) + Rjx k + 3( ) + ej

u k( )− � ud k( )−
uq k( )−[ ], Rj � R,−Lω0

Lω0, R
( ), ej � e

0
[ ]

(19)

The prediction model (19) of converter voltage can be rewritten
in matrix form.

U− � LV + RJX + eJ
U− � u k + 1( )−; u k + 2( )−; u k + 3( )−[ ]
X � x k + 1( );x k + 2( );x k + 3( )[ ]
V � v k( ); v k + 1( ); v k + 2( )[ ]
eJ � ej; ej; ej[ ]
RJ � diag Rj, Rj, Rj( )

(20)

The future voltage amplitudes of the grid-side converter should
not be greater than its rated voltage amplitude. Then, we have.

u j( )+∣∣∣∣ ∣∣∣∣2 � ud j( )+∣∣∣∣ ∣∣∣∣2 + uq j( )+∣∣∣∣ ∣∣∣∣2 ≤ u2
N, j � k, ..., k + 2

u j( )−∣∣∣∣ ∣∣∣∣2 � ud j( )−∣∣∣∣ ∣∣∣∣2 + uq j( )−∣∣∣∣ ∣∣∣∣2 ≤ u2
N, j � k + 1, ..., k + 3

(21)

FIGURE 3
The variation characteristic of the control variables, current and
converter voltage.
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As shown in Figure 3, at the moments of two control period T
junctures (such as t = kT. . .t=(k+3)T), the output converter voltage
u � [ud, uq]T will suddenly change due to the suddenly change of
control input v � [vd, vq]T. The climbing of the converter voltage
depends on the change of the control input which is denoted by
Δv � [Δvd,Δvq]T. Δvd and Δvd are coordinated restricted in order to
avoid excessive transient climbing of converter voltage.

Δv j( )∣∣∣∣ ∣∣∣∣2 � Δvd j( )2 + Δvq j( )2 ≤Δv 2
max , j � k, ..., k + 2( )

Δv k( ) � v k( ) − v k − 1( )
Δv k + 1( ) � v k + 1( ) − v k( )
Δv k + 2( ) � v k + 2( ) − v k + 1( )

(22)

The square of the current amplitude is |i|2 � id2 + iq2 and the
square of the converter voltage amplitude is |u|2 � ud2 + uq2. Based
on did/dt � vd and diq/dt � vq, the second derivative of |i|2 can be
calculated as d2|i|2/dt2 � idvd + 2iqvq. Similarly, based on dud/dt �
Rvd − ωLvq and duq/dt � Rvq + ωLvd, the second derivative of |u|2
can be calculated as d2|u|2/dt2 � 2(Rvd − ωLvq)2 + 2(Rvq + ωLvd)2.

It can be seen that the second derivatives of both |i|2 and |u|2
are greater than or equal to 0. This means that during a control
period T, the curves of both |i|2 and |u|2 are concave downward.
The maximum values of |i|2 and |u|2 during a control period T will
appear at the beginning and end instants of the control period.
The square of the apparent power amplitude |S|2 and the square
of the current amplitude |i|2 have the same characteristics.
Therefore, it is only necessary to restrict the amplitude square
of converter voltage, current and power at the beginning and end
instants of each control period T such as constraint conditions
(12), (15), (21). Even without the above reasons, since the MPC
controller is discrete, it can only carry out discrete constraints on
voltage, current and power.

4.3 Objective function

The optimization objective is to minimize the deviations
between the output values and reference values of the grid-side
converter composite system’s active and reactive power.

min J � ΔYTRΔY
ΔY � Yref − Y
Y � y k + 1( );y k + 2( );y k + 3( )[ ]

Yref � y k + 1( )ref;y k + 2( )ref;y k + 3( )ref[ ]
y k( )ref � P k( )ref, Q k( )ref[ ]T, y k( ) � P k( ), Q k( )[ ]T

r � rP, 0
0, rQ

[ ], R � diag r, r, r( )

(23)

When the apparent power reference of the grid-side converter
composite system lesser than its rated apparent power, the output
values of active and reactive power can reach their reference values.
If the apparent power reference is greater than rated apparent power,
the priority of active and reactive power must be set and the party
with lower priority cannot reach its reference.

This paper sets the priority of active and reactive power by
setting the deviation coefficients rP and rQ. When rP is greater than
rQ, it means that the active priority is higher. On the contrary, when
rP is less than rQ, reactive power priority is higher. The party with
higher priority can achieve greater amplitude and climbing.

According to the National standard of China “Technical
Regulations for Wind Farm Access to Electric Power System,
GB/T 19963.1-2021”, when the grid voltage change is in the
domain of e< 0.9eN or e> 1.1eN, the wind farm should provide
reactive power support for the grid voltage recovery, and when the
grid voltage change is in the domain of 0.9eN < e< 1.1eN, the wind
farm should withdraw reactive power support.

Therefore, in the proposed control strategy, according to the
situation of the power grid and the PMSG wind turbine, the
deviation coefficients rP and rQ. are automatically adjusted so
that the proposed control strategy can adapt to different grid
support scenarios. For example, when the grid voltage change is
in the domain of 0.9eN < e< 1.1eN, the active power priority is set
higher ( rP > rQ ), so that the PMSG wind turbine can carry out
maximum wind energy capture and frequency support. When the
grid voltage change is in the domain of e< 0.9eN or e> 1.1eN, the
priority task of the PMSG wind turbine is to provide reactive power
support for the grid voltage recovery, and of cause the reactive power
priority is set higher ( rP < rQ ). The priority of active and reactive
power can also be set according to other conditions, such as grid
frequency or rotor speeds of the PMSG wind turbine.

4.4 Stability analysis

The optimization problem of the MPC controller can be sort out
as follows

min J V{ }( ) � ΔYTRΔY
s.t. 8( ) − 23( ) ci V{ }( )≤ 0, i � 1,/, m

hj V{ }( ) � 0, j � 1,/, n
{ (24)

where ci( V{ }) and hj( V{ }) represent the inequality constraints and
equality constraints in (8–23). The optimization variables V{ } of the
optimization problem (24) are V � [v(k);/; v(k +NC)].

4.4.1 The feasibility of the optimization process
To avoid the feasible set determined by the constraints becoming

empty, the optimization problem (24) can be modified as follows.

min J V, ε{ }( ) � ΔYTRΔY +∑m
i�1
ρi εi| |2

s.t.
ci V, ε{ }( )≤ εi, i � 1,/, m
εi ≥ 0, i � 1,/, m
hj V{ }( ) � 0, j � 1,/, n

⎧⎪⎨⎪⎩
(25)

The optimization variables V, ε{ } of the optimization problem
(25) include original optimization variables V �
[v(k);/; v(k +NC)] and slack optimization variables
ε � [ε1;/; εm]. The values of the slack optimization variables ε �
[ε1;/; εm] are flexible, thus any values of the original
optimization variables V � [v(k);/; v(k +NC)] can satisfy the
constraints. In other word, the feasible set determined by the
constraints is always non-empty so that the optimization
problems (25) always exists the optimal solution during the
optimization process.

The slack optimization variables ε � [ε1;/; εm] are contained
in the objective function, so that all the slack optimization variables
ε � [ε1;/; εm] will eventually approach 0 during the
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optimization process. In the end, the optimization problem (25) is
the same as the optimization problem (24).

4.4.2 The stability analysis of the control system.
The control system including the MPC controller and the grid-

side converter composite system. Stability analysis is to construct an
energy function for the control system and determine whether the
energy function meets the stability conditions. The energy function
chosen here is EF(x(k)) � y(k)T r y(k), where y(k) � Cdx(k).
Next, we will prove that it satisfies the stability conditions.

1) EF(x(k)) is a positive definite function.

If x(k) ≠ �0, we have y(k) � Cdx(k) ≠ �0, then EF(x(k)) �
y(k)T r y(k)> 0.

If x(k) � �0, we have y(k) � Cdx(k) � �0, then EF(x(k)) �
y(k)T r y(k) � 0.

Therefore, EF(x(k)) is a positive definite function.

2) when |x(k)| → ∞, the EF(x(k)) → ∞.

Firstly, EF � y(k)T r y(k) � α|y(k)|2, α is a constant.
If |x(k)| → ∞, we have |y(k)| � |Cdx(k)| → ∞,

then EF(x(k)) → ∞.

3) If x(k) ≠ �0, EF(x(k)) is going to go down over time.

When judging the change trend of the energy function
EF(x(k)), the system input vector is 0 vector (Yref � �0) but the
initial system state vector is not 0 vector (x(k)� [id(k), iq(k)]T ≠ �0).
Given that ΔY � Yref − Y and Yref � �0, the optimization problem
(25) can be rewritten as:

min J V, ε{ }( ) � YTRY +∑m
i�1
ρi εi| |2 � ∑k+NP

l� k+1( )
y l( )T r y l( ) +∑m

i�1
ρi εi| |2

s.t.
ci V, ε{ }( )≤ εi, i � 1,/, m
εi ≥ 0, i � 1,/, m
hj V{ }( ) � 0, j � 1,/, n

⎧⎪⎨⎪⎩
(26)

When initial state variables are x(k)� [id(k), iq(k)]T ≠ �0, the
energy function is EF(x(k)) � y(k)T r y(k). Solving the
optimization problem (26), the optimal variables obtained are
denoted by Vk � [v(k);/; v(k +NC)], εk � [εk1;/; εkm], and
the optimal state sequence is denoted by
Xk � [x(k + 1);/; x(k +NP)], and the optimal output
sequence is denoted by Yk � [y(k + 1);/; y(k +NP)]. Then,
the objective function is J( V, ε{ })k � ∑k+NP

l�(k+1)
y(l)T r y(l) +∑m

i�1ρi|εki |2. By analyzing the optimization
problem (26), the optimization results have the following two
hypothesis.

If the value taking of the original optimization variables Vk �
[v(k);/; v(k +NC)] makes the state variables and outputs
constantly approach 0 (that is |x(k)|> |x(k + 1)|
≥/≥ |x(k +NP)|≥ 0 and |y(k)|> |y(k + 1)|≥/≥ |y(k +NP)|
≥ 0), the value taking of the slack optimization variables εk �
[εk1;/; εkm] can be smaller or remain 0. so that the result of

the objective function J( V, ε{ })k � ∑k+NP

l�(k+1) y(l)T r y(l) +∑m
i�1ρi|εki |2 will be smaller.
On the contrary, if the value taking of the original optimization

variables Vk � [v(k);/; v(k +NC)]make the state variables and
outputs constantly away from 0 (that is
|x(k)|< |x(k + 1)|</< |x(k +NP)| and |y(k)|< |y(k + 1)|
</< |y(k +NP)|), the slack optimization variables εk �
[εk1;/; εkm] will be forced to take larger values to ensure that
the inequality constraint can be satisfied. In this way, the result of the
objective function J( V, ε{ })k � ∑k+NP

l�(k+1) y(l)T r y(l) +∑m
i�1ρi|εki |2

will be larger.
Given that the optimal variables obtained

Vk � [v(k);/; v(k +NC)], εk � [εk1;/; εkm] always minimize
the objective function J( V, ε{ }) � ∑k+NP

l�(k+1) y(l)T r
y(l) +∑m

i�1ρi|εki |2. Therefore, the optimization result will satisfy
the first hypothesis. That is to say, the optimal state variables
and optimal outputs obtained from solving the optimization
problem (26) will constantly approach 0
(|x(k)|> |x(k + 1)|≥/≥ |x(k +NP)|≥ 0
and |y(k)|> |y(k + 1)|≥/≥ |y(k +NP)|≥ 0).

Under the control of the MPC controller, in the next sampling
interval, the system state variables changes to
x(k + 1)� [id(k + 1), iq(k + 1)]T, the energy function is
EF(x(k + 1)) � y(k + 1)T r y(k + 1). Given that
|y(k)|> |y(k + 1)|, we have EF(x(k))>EF(x(k + 1)). The energy
function EF(x(k)) declines over time.

If x(k + 1) ≠ �0, solving the optimization problem (26), the
optimal variables obtained are denoted by
Vk+1 � [v(k + 1);/; v(k + 1 +NC)], εk+1 � [εk+11 ;/; εk+1m ],
and the optimal state sequence is denoted by
Xk+1 � [x(k + 2);/; x(k + 1 +NP)], and the optimal output
sequence is denoted by Yk+1 � [y(k + 2);/; y(k + 1 +NP)].
Similarly, the optimization result will satisfy that
|x(k + 1)|> |x(k + 2)|≥/≥ |x(k + 1 +NP)|≥ 0 and
|y(k + 1)|> |y(k + 2)|≥/≥ |y(k + 1 +NP)|≥ 0). Under the
control of the MPC controller, the system state variables will
changes to x(k + 2) in the next sampling interval, and we have
EF(x(k + 1))>EF(x(k + 2)).

By analogy, if the state vector is not 0 vector, the energy function
EF(x(k)) is going to go down over time under the control of the
MPC controller.

4.5 Optimization solving program

The optimization problem (25) is a convex optimization
problem with a convex quadratic objective function and multiple
convex quadratic constraints which can be solved in many ways.
Specifically, a convex optimization problem can be sort out as the
following general form.

minf xk{ }( )
s.t. gi xk{ }( )≤ 0, i � 1,/, m

hj xk{ }( ) � 0, j � 1,/, n
(27)

where xk{ } is the set of optimization variables, and f( xk{ }) is the
objective function of the convex optimization problem. gi( xk{ }) and
hj( xk{ }) represent inequality constraints and equality constraints of
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the convex optimization problem, respectively. The Lagrange
function is defined as:

L xk{ }, λi{ }, μj{ }( ) � f xk{ }( ) +∑m
i�1
λigi xk{ }( ) +∑n

j�1
μjhj xk{ }( ) (28)

where λi{ } and μj{ } are called Lagrange multipliers. The optimal
solution of convex optimization problem (27) can be obtained by
solving the KKT conditions (Xu et al., 2001). as follows.

zL

zxk
� 0, k � 1,/, K

zL

zμj
� 0, j � 1,/, J

λigi xk{ }( ) � 0, i � 1,/, m

λi ≥ 0, i � 1,/, m

gi xk{ }( )≤ 0, i � 1,/, m

(29)

In (29), equality constraints are used to solve the optimal
solution, and inequality constraints are used to verify the optimal
solution. It is worth mentioning that in addition to the above
method, there are many solving methods (An, 2000) and mature
commercial solvers for convex optimization problems. The
commercial solvers (Gurobi optimization, 2023; IBM CPLEX
Optimizer, 2023) can be used to solve convex optimization
problems conveniently and quickly, without the need for users to
write optimization programs.

In each sampling interval T, the actions of the MPC controller
include measuring the system states, constructing and solving the

optimization problem (8–23), and providing the optimal control
variables (Vd and Vq) to the system. The flow of the MPC algorithm
is shown in Figure 4.

5 Case study

5.1 Simulation description

The performance of the proposed active and reactive power
coordinated control strategy is evaluated in this section by testing
the tracking performance of the PMSG wind turbine to the active
and reactive power step references. The references of active and
reactive power are shown in Figure 5. In order to capture
maximum wind energy, the active power reference remains at
2.5 MW unchanged. The grid voltage stays in the rated value at
0–0.2s and the reactive power reference is set as 0.1 MW at
0–0.2 s. While the grid voltage drops down to 50% of the
rated value at 0.2 s and the duration is 0.6 s. According to the
reactive current support requirements in grid codes [21], the
reactive power reference is stepped from 0.1 MW to 1.35 MW
at 0.2 s.

Three different scenarios are simulated in this section using
MATLAB/Simulink.

S1: Active and reactive power are controlled using the MPC
controller without coordinated restrictions and priority
arrangement
S2: Active and reactive power are coordinately controlled using
the MPC controller, which considers amplitude coordinated
restrictions and priority arrangement of active and reactive
power.
S3: Active and reactive power are coordinately controlled using
the MPC controller, which considers amplitude coordinated
restrictions and priority arrangement of active and reactive
power. Meanwhile, the climbing coordinated restrictions of
active and reactive power is considered.
S4: Active and reactive power are coordinately controlled using
the PI controller, which considers amplitude coordinated
restrictions and priority arrangement of active and reactive
power.

FIGURE 4
The flow of the MPC algorithm.

FIGURE 5
The active and reactive power step references of the PMSG wind
turbine.
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The other conditions and parameters in the three simulated
scenarios are the same. The parameters of the grid-side converter
system are indicated in Table 1 (Yaramasu and Wu, 2014). The
prediction horizon is set as five times control period T and the
control horizon is set as four times control period T when
simulating.

5.2 Results and analysis

Figures 6–8 depict the power reference tracking results of the
PMSG wind turbine in the three different scenarios. Due to the
grid voltage droping down to 50% of the rated value at 0.2 s, the
maximum apparent power of the PMSG wind turbine change
from 3MW to 1.5 MW at 0.2 s. In Scenario S1, the active and
reactive power coordinated restrictions and priority decisions are
not considered. Regardless of the power grid status, the
amplitude range and climbing range of active and reactive
power are fixed and do not interfere with each other.
Therefore, the PMSG wind turbine cannot guarantee reactive
power output by reducing the active power output. Therefore,
when the grid voltage drop, the reactive power of the PMSG wind

turbine cannot meet the 1.35 MW reference which is the reactive
power support requirement.

Amplitude coordinated restrictions and priority decisions of
active and reactive power are considered in Scenario S2. When the
grid voltage drops down to 50% of the rated value at 0.2s, the priority
task of the PMSG wind turbine is to provide reactive power support
for the grid voltage recovery, and of cause the reactive power priority
is set higher. As shown in Figure 6, by reducing the amplitude of
active power, the PMSG wind turbine can output 1.35 MW reactive
power to meet the reactive power support requirements of the grid.
That is why we say it is very necessary and meaningful to
coordinately control the active and reactive power amplitude of
the wind turbine under the background of grid support.

The proposed control strategy in this paper is simulated in
Scenario 3 which considers amplitude and climbing coordinated
restrictions and priority decisions between active and reactive
power. Similarly to Scenario 2, the PMSG wind turbine can meet
the reactive power support requirements of the grid when the grid
voltage drops. The difference between Scenario 2 and Scenario 3 is
that, the PMSG wind turbine shows a faster response speed in
Scenario 3, which the dynamic time in Scenario 3 is 20 ms and it is
40 ms in Scenario 2. This demonstrates the superiority of the control
strategy proposed in this paper.

Figures 9, 10 show the current climbing of the PMSG wind
turbine in Scenario 2 and Scenario 3. It can be found that the active
and reactive current climbing limit value of the PMSG wind turbine
in Scenario 3 is larger than that in Scenario 2. The greater ability to
climb allows the PMSG wind turbine to show faster response speed
in response to a step change in the power reference value. The results
explain why the PMSG wind turbine shows a faster response speed
in Scenario 3. The simulation results verify that under the given
apparent power/current climbing constraint, active and reactive
power/current climbing coordinated restrictions allow PMSG
wind turbines to perform a larger range of active and reactive
power/current climbing.

The voltage of the grid-side converter is shown in Figure 11
when the PMSGwind turbine executes the proposed control strategy

TABLE 1 Parameters of the grid-side converter system.

Parameters Description Value

R (Ω) The resistor and inductor of the filter 0.027

L (mH) The inductor of the filter 1.65

eN (V) Rated phase voltage of the power grid 1732

SN (MW) Rated apparent power of the grid side converter 3

iN (A) Rated current of the grid side converter 577.35

uN (V) Rated phase voltage of the grid side converter 1803

T (ms) Control period of the MPC controller 10

FIGURE 6
The power references tracking results of the PMSG wind turbine in the S1 scenario.
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in Scenario 3. It is easy to see that the voltage amplitude does not
exceed its maximum allowed value in the whole process. In addition,
there are no sharp climb and spike in the voltage waveform, which
can protect the grid-side converters and improve the electricity
quality of the PMSG wind turbine. Hence, The voltage amplitude
and climbing constraint model proposed in this paper is effective.

The three-phase current of the grid-side converter is shown in
Figure 12 when the PMSG wind turbine executes the proposed

control strategy in Scenario 3. The rated peak value of single-phase
current is 0.816 kA. It is easy to see that the amplitudes of the three-
phase current do not exceed the rated peak value 0.816 kA in the
whole process. In addition, there are no sharp climb and spike in the
three-phase current waveforms, which can protect the grid-side
converters and improve the electricity quality of the PMSG wind
turbine. Hence, The current amplitude and climbing constraint
model proposed in this paper is effective.

Figure 13 shows the result of the PMSG wind turbine tracking a
3 MW step active power reference, which is simulated with different

FIGURE 8
The power references tracking results of the PMSG wind turbine
in the S3 scenario.

FIGURE 7
The power references tracking results of the PMSG wind turbine
in the S2 scenario.

FIGURE 9
The power climbing of the PMSG wind turbine in Scenario 2.

FIGURE 10
The power climbing of the PMSG wind turbine in Scenario 3.

FIGURE 11
The voltage of the grid-side converter in Scenario 3.

FIGURE 12
The three-phase current of the grid-side converter in Scenario 3.
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prediction horizons. As can be seen from Figure 13, when the
prediction horizon is short (Np = 1), the output of the PMSG
wind turbine exists the overshoot. This is because the MPCmodel
in this paper contains constraints on the power climbing change.
The active power output of the PMSG wind turbine has a large
climbing in the early stage, and the climbing cannot be changed
quickly after approaching the active power reference value, so
overdrive occurs. When the prediction horizon is long, the MPC
controller can predict the corresponding future multi-step power
output under different control variables, and select the optimal
control variable to avoid overshoot. It is worth mentioning that
the longer the prediction horizon, the better the control effect. In
the scenario, the control effect is exactly the same when Np = 5 as
when Np = 9. It is worth mentioning that as the prediction
horizon increases, the control effect will not get better. In the
current scenario, the control effect is exactly the same when Np =
5 and Np = 9.

In the proposed MPC based control strategy, the priority of
active and reactive power can be flexibly arranged by setting the
deviation coefficients rP and rQ in the objective function. The
steady-state amplitude of active and reactive power at 0.2–0.4s in
Scenario 3 are displayed in Table 2, which is simulated with different
deviation coefficients rP and rQ. Due to the grid voltage drops of

50% at 0.2 s, the maximum apparent power of the PMSG wind
turbine changes from 3MW to 1.5 MW. Under the given 1.5 MW
apparent power constraint, different priority settings will result in
different active and reactive power outputs. So that the PMSG wind
turbine can operate in different modes such as giving priority to the
active power support/output, giving priority to the reactive power
support/output, and giving the same/close priority to the active
power support and the reactive power support. The MPC controller
can flexibly set the priority of active and reactive power, so that the
proposed control strategy can be flexibly applicated in different grid
support scenarios.

Figures 14, 15 depict the power reference tracking results and the
grid-side converter voltage of the PMSG wind turbine when the
PMSG wind turbine is controlled by a PI controller in Scenario 4. It
can be seen in Figure 14 that there are overshoots and steady-state
errors existing when the PMSG wind turbine tracks the active power
references. It is worth mentioning that increasing the integral
parameter in the PI controller can eliminate steady-state errors,
but can lead to larger overshoots. As can be seen in Figure 15, the
grid-side converter voltage may exceed its rated value during the
dynamic process, which may cause damage to the grid-side
converter and degrade the power quality. In addition, the
amplitudes of output power and the grid-side converter voltage
continue to fluctuate during the steady state period. This means that
the power quality of the PMSG wind turbine output is lower.

FIGURE 13
The active power references tracking results of the PMSG wind
turbine under different prediction horizon.

TABLE 2 The steady-state amplitude of active and reactive power with
different deviation coefficients.

Deviation coefficients Power references Power outputs

rP � 1
rQ � 100000

Pref = 2.5 MW p = 0.65 MW

Qref = 1.35 MW Q = 1.35 MW

rP � 100000
rQ � 1

Pref = 2.5 MW p = 1.5 MW

Qref = 1.35 MW Q = 0 MW

rP � 1
rQ � 1

Pref = 2.5 MW p = 1.32 MW

Qref = 1.35 MW Q = 0.713 MW

rP � 1
rQ � 10

Pref = 2.5 MW p = 0.95 MW

Qref = 1.35 MW Q = 1.161 MW

FIGURE 14
The power references tracking results of the PMSG wind turbine
in the S4 scenario.

FIGURE 15
The voltage of the grid-side converter in Scenario 4.
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As shown in Figures 8–13, the MPC based active and reactive
power coordinated control strategy proposed in this paper can
enable one of active power and reactive power (the one with
higher priority) to track its references perfectly with zero steady-
state error, zero overshoot and transient dynamic process. The
steady-state power curve and the steady-state voltage curve are
smooth straight lines. The power amplitude constraint, power
climbing constraint, power priority arrangement, voltage
amplitude constraint and voltage ramp constraint set in the
proposed control strategy have achieved the expected results.
That is because the MPC controller is good at dealing with
multi-input and multi-output control problems with complex
constraints and specific objectives. The above complex
constraints and specific objectives are difficult to implement by
PI controllers.

6 Conclusion

In this paper, an MPC based active and reactive power
coordinated control strategy is proposed to enhance the power
control performance and grid support capability of PMSG wind
turbines. Firstly, the constraint conditions in the MPC controller
are constructed which include amplitude and climbing
coordinated restrictions between active and reactive power,
voltage amplitude and climbing constraints of grid-side
converters. These constraint conditions enable PMSG wind
turbines to perform a wider range of active and reactive power
amplitude and climbing, and a smoother output voltage
waveform. Then, an objective function is constructed to
minimize the deviation of active and reactive power from their
reference values. By setting the deviation coefficients in the
objective function, the priority of active power output and
reactive power output can be flexibly arranged. So that PMSG
wind turbines can meet the power output requirements in
different grid support scenarios. In the end, the simulation
results show that the proposed control strategy can make
PMSG wind turbines achieve excellent power control
performance and thus better meet the requirements of power
grid support. In the future, the influences of sampling delay and
MPC calculation delay on the proposed control strategy will be
analyzed and the proposed control strategy will be improved by
using delay compensation technology.
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Available power estimation of wind
farms based on deep
spatio-temporal neural networks
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1North China Branch of State Grid Corporation of China, Beijing, China, 2Beijing Jiaotong University, Beijing,
China

With the development of advanced digital infrastructure in new wind power plants in
China, the individual wind-turbine level data are available to power operators and can
potentially provide more accurate available wind power estimations. In this paper,
considering the state of the wind turbine and the loss in the station, a four-layer
spatio-temporal neural network is proposed to compute the available power of wind
farms. Specifically, the long short-termmemory (LSTM) network is built for eachwind
turbine to extract the time-series correlations in historical data. In addition, the graph
convolution network (GCN) is employed to extract the spatial relationship between
neighboring wind turbines based on the topology and patterns of historical data. The
case studies are performed using actual data from awind farm in northern China. The
study results indicate that the computation error using the proposed model is lower
than that using the conventional physics-based methods and is also lower than that
using other artificial intelligence methods.

KEYWORDS

wind farm available power, deep spatio-temporal network, long short-term memory
network, wind power, artificial intelligence

1 Introduction

In recent years, the installed capacity of wind power has gradually increased, and the
proportion of new energy power generation has gradually increased. In July 2022, the Global
Wind Energy Council released the “Global Wind Report 2022.” This report shows that the new
installed capacity of global wind power is 93.6 GW. By the end of 2021, the cumulative installed
capacity of global wind power reached 837 GW, a year-on-year increase of 12.4%. However, due
to the random, fluctuating, and intermittent characteristics of wind power, it brings significant
challenges to real-time dispatching of power grids (Li et al., 2019a). In this work, we focus on the
available power estimation of wind farms, which refers to the theoretical power subtracting the
power output of wind turbines under losses in wind farms (State Grid Corporation of China,
2018). Accurate available power is important for system operators to determine the optimal
dispatch on the wind farm and other types of generators. It could also serve as an important
input for many real-time monitoring and control systems.

At present, the theoretical power computation and prediction of wind farms can be divided
into physics-based methods, statistics-based methods, artificial intelligence-based methods, and
hybrid methods. The physics-based method mainly uses the numerical weather forecast model
to calculate the future wind speed. Then, the predicted wind speed is brought into the relevant
wind farm power curve (Tascikaraoglu et al., 2014) (usually provided by the wind farm
manufacturer) to predict the wind farm power generations. The physical methods include the
prototype machine method (Ding et al., 2016), the wind measurement tower extrapolation
method (Guo et al., 2019), and the nacelle wind speed method (Jiang et al., 2014). When using
the prototype method, using the prototype data to represent other wind turbine data of the same
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model will result in large errors. Since the wind tower extrapolation
method needs to consider several factors, such as the topography,
humidity, and pressure of the wind farm, the macro- and micro-
climate model is very complicated. In addition, the estimation
accuracy is acceptable for larger regional levels. However, for the
wind farm level, it suffers from poor performance.

The statistical method is based on the statistical analysis of the
correlation between wind farm power generations, wind speed, and
wind direction data and establishes the mapping relationship between
wind speed and wind direction and the output power of the wind farm.
In the literature (Rajagopalan and Santoso, 2009), according to the
actual measurement data of the wind farm, the model is based on the
autoregressive moving average model (ARMA). Since ARMA can only
handle stationary time series, the researchers applied the
autoregressive integral moving average model (ARIMA), which can
handle non-stationary time series, to wind power forecasting.
However, statistical methods only analyze the superficial
relationship between variables in time series. It is difficult to deal
with complex and non-linear relationships.

At present, artificial intelligence-based methods are generally used
for wind power forecasting and available power estimations. The
artificial intelligence method uses historical power data, NWP data,
etc., as input information to establish a non-linear mapping
relationship between the output and multi-variables. Compared
with statistical methods, the adaptability and self-learning ability of
artificial intelligence methods have been significantly improved. Li
et al. (2019b) used the Spearman rank correlation coefficient method
to determine the hyperparameters of the long short-term memory
(LSTM) network prediction model, which can effectively determine
the initial step size range. Compared with the BP neural network, the
wind power prediction accuracy based on the LSTM model is higher.
Kisvari et al. (2021) combined the grid search method to adjust the
hyperparameters of the gated recurrent unit (GRU) neural network.
The proposed method achieves high accuracy with low computational
cost. It shows robustness and low sensitivity to noise. The
aforementioned wind power prediction methods only consider
historical time-series features and do not consider complex spatial
relationships. Therefore, the convolutional neural network (CNN) is
used to extract the spatial features of wind farms to improve the
accuracy of wind power prediction. Bai et al. (2018) redesigned the
structure of CNN and proposed a temporal convolutional network
(TCN). The research object of the aforementioned literature is only a
single wind farm, and in most cases, regional prediction of wind power
is required. Therefore, the temporal and spatial correlation between
multiple wind farms needs to be further considered. Wang et al.
(2022b) considered the dynamic spatio-temporal correlation between
adjacent wind farms and calculated the spatio-temporal correlation
matrix, modeling a graph structure with dynamic spatio-temporal
correlation information as a graph convolution network (GCN) input.
Experiments prove that the prediction accuracy of theoretical power
generation of wind farms has been improved.

A combinedmodel is a combination of two or more models, which
eliminates the limitations of the individual models by combining their
advantages in order to maximize the advantages of each method and
improve the accuracy of wind farm power prediction. In a study by He
et al. (2022), the weather is divided into different types according to
the meteorological characteristics, and the IOWA operator is applied
to assign different weight coefficients to the CNN and LSTM. The final
power prediction is obtained by weighting the outputs of the two

models. In a study by Liang et al. (2021), a method of CNN combined
with LSTM is proposed to obtain spatial distribution characteristics of
the long-term wind speed and short-term time-series characteristics.
Since the CNN can only be used to process regularly arranged images,
the GCN is proposed to enable feature extraction for non-Euclidean
structured data. Kan and Liu (2019) used the LSTM model to extract
temporal features from historical data and used the graph convolution
technique to extract spatial features frommultiple PV plant data in the
same region. Liao et al. (2022) combined the GCN and LSTMnetwork,
adopted the GCN, captured the complex spatial correlation between
adjacent wind farms through the adjacency matrix, and learned the
dynamic change of the wind power curve based on LSTM. Compared
with the single wind power prediction method, the combined method
predicts the wind farm power with higher accuracy (Chen et al., 2021),
which can retain the advantages of each model. Therefore, wind farm
power prediction models based on combined methods have received
extensive attention from researchers. In recent years, some scholars
have adopted more advanced hybrid models, including the
correlation-constrained and sparsity-controlled vector
autoregressive models for spatio-temporal wind power forecasting
(Zhao et al., 2018), feature extraction of meteorological factors for
wind power prediction based on the variable weight-combined
method (Lu et al., 2021), spatial model-based short-term wind
power prediction (Ye et al., 2017), and ultra-short-term combined
prediction approach based on kernel function with a specially
designed switch mechanism (Peng et al., 2021).

Most of the existing wind farm power prediction methods used
numerical weather forecast data or measurement data from weather
towers in wind farms as model inputs and the theoretical power of the
whole wind farm as the model output. Since the state of the wind
turbines and the loss in the field are not taken into account, they can
only be used for theoretical power generation calculation and
theoretical prediction of wind farms. Few studies have been
conducted to calculate the available power of wind farms.

The previous theoretical power estimation is aimed at using
numerical weather forecasts to estimate the total power generated
by the entire wind farm, which cannot be accurate to each wind
turbine, and the error is large. The emergence of a stand-alone
information system can provide the nacelle wind speed of each
wind turbine so that the grid dispatching department can be based
on stand-alone actual measurement data to more accurately estimate
the wind turbine and wind farm available power generation. Second, in
most areas of the country, the only data available to the grid
dispatching department are the weather forecast data and the
active power of the grid connection point, which does not include
the status of waiting for wind, planned shutdown, unit failure
shutdown, and other wind turbine operating conditions. However,
the active power emitted by the wind turbine in the normal power
generation operation state reflects the real power generation capacity
of the wind turbine.

Regional control centers in China enhanced the existing SCADA
system to collect each wind turbine’s operating status, wind speed, and
wind direction from every wind farm, which provides an opportunity
for accurate computation of available power of each wind farm. In this
paper, we propose a deep spatio-temporal neural network for
calculating the available power generation in wind farms based on
the data to integrate wind farm’s SCADA into the control center’s
SCADA. Long short-termmemory (LSTM) is used to extract temporal
information, and the graph convolutional network (GCN) is used to

Frontiers in Energy Research frontiersin.org02

Liu et al. 10.3389/fenrg.2023.1032867

65

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1032867


describe the topology between wind turbines in wind farms and then
solve the problem of spatial correlation and station loss.

In this paper, in order to improve the prediction accuracy, based
on the real-time meteorological information of each wind turbine
provided by the stand-alone information system, an ultra-short-term
available power calculation method is proposed. This method
combines the GCN and LSTM and considers the spatio-temporal
correlation of wind farms and station losses. The key contributions are
as follows:

1) Stand-alone information systems are used in wind power
forecasting. They can provide real-time meteorological
information such as the wind speed of each wind turbine and
the information on the operating status of the wind turbine.

2) A novel graph neural network-based hybrid approach is proposed
for ultra-short-term power prediction. LSTM is used to excavate
the temporal characteristics of the wind speed of the wind turbine.
The spatial position relationship of the wind turbine constitutes
graph data, which is used as an input to the GCN to capture spatial
dependence.

3) Based on the construction of the electrical topology connection
diagram, the station loss problem is solved in combination with
the GCN.

2 Problem formulation of available
power estimation of wind farms

The available power of a wind farm refers to the maximum power
theoretically available from the wind energy subtracting the power
output of a wind turbine under maintenance and line losses in the
wind farm. Additionally, instead of the actual power output of the
wind farm, it may also be subject to curtailment and dispatch signals.
To estimate the maximum available power of a wind farm, the wind
speed information is used as the input. In this work, we used the
historical wind speed data measured at each turbine and the turbine
output power data under the maximum power point tracking working
condition. Therefore, the summation of power generations of all the
turbines, subtracting the total losses of the wind farm, equals the
maximum available power of the wind farm.

Pavai,i � G swindspeed,i( ), (1)
Pfarm � ∑n

1
Pavai,i − Ploss, (2)

where swindspeed,i is the wind speed at the ith wind turbine and G(•) is
the estimation method which takes the wind speed as the input and
outputs the maximum power generation of the turbine. Pavai,i is the
available power of the ith turbine. n is the total number of turbines, and
Ploss is the loss within the wind farm. Pfarm is the estimated maximum
available power of the wind farm.

The aforementioned available power calculation does not take into
account the in-station losses. Since the sources of loss in the station are
diverse and difficult to estimate, therefore, it is proposed to construct
an electrical connection diagram of wind farm wind turbines based on
the GCN using the wind farm electrical main wiring diagram, and the
characteristics of the loss in the station are included in the wind
turbine electrical connection diagram.

There is a correlation between the available power generation of
wind turbines and the historical nacelle wind speed. The LSTM neural

network layer can be constructed to effectively mine the time-series
correlation information of wind turbine wind speed data. The complex
topography and wake effects in the wind farm space have an impact on
the power generated by the wind turbines. There is a correlation
between adjacent wind turbines. Due to the different spatial
distribution of WTGs and their own operating conditions, even the
available power generation of WTGs of the same model varies.
Therefore, based on the GCN, the fan relationship connection
diagram is considered to extract spatial features.

3 The spatio-temporal NN-based
algorithm for available power estimation

In terms of the structure of the proposed algorithm, in this work, a
two-stage deep neural network-based algorithm is proposed, which
mainly consists of four major layers. The first stage contains the first
two layers, namely, the LSTM layer and the GCN layer. LSTM is a type
of recurrent neural network that is proven to be very effective in terms
of handling the input data with temporal relationships. The time-
series wind speed data are used as the input of the LSTM layer. The
GCN layer is implemented to extract the spatial topology of the wind
dynamics in the wind farm to help the estimation of the available
power. In the second stage, a third GCN layer is used to calculate the
losses in the wind farm, where the topology of the wind farm is also
used. The last layer is a fully connected layer for the final output. It
should be noted that the layer here refers to a section of small network,
which contains multiple sub-layers, like single GCN layers, activation
function, and pooling layer. The first stage and the second stage can be
pre-trained separately under the supervised learning scheme with SGD
and then combined together for fine-tuning the parameters. Figure 1
shows the general framework of the proposed model, which
demonstrated the structure of the proposed model. The details of
the model are presented in the following sub-sections.

3.1 The correlation of time sequence
extraction by the LSTM algorithm

There is a correlation between the available power generation of
wind turbines and the historical nacelle wind speed (Wang et al.,
2021). As a typical time series, forecasting the current wind power is
not only related to forecasting the current input but also to the
previous input and output. In order to fully exploit the information
contained in the historical wind speed, this paper uses a long short-
term memory network to extract the potential time-series information
of wind turbine wind speed data for the estimation of available power
generation of wind turbines.

The long short-term memory network is a variant of the recurrent
neural network (RNN), which solves the problem of RNN gradient
explosion and gradient disappearance. Based on the RNN, LSTM
changes the single neural network layer in the RNN to one with four
neural networks.

By changing the structure of neurons, LSTM introduces the gate
mechanism and removes and adds information in the neurons
through the gate mechanism (Hochreiter and Schmidhuber, 1997).
The LSTM network can consist of one or more LSTM units that
represent the data independent of each other in the time series and the
data of multiple consecutive moments on the data of the current
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moment. The structure principle is shown in Figure 2. In Figure 2, xt
represents the nacelle wind speed and the individual operating state at
moment t; ht represents the power generated by the WTGs at moment
t; and ct represents the effect of the power generated by the WTGs at
moments t-4, t-3, t-2, and t-1 on the power generated by the WTGs at
moment t.

The LSTM unit consists of four parts: information storage chain,
forgetting gate, memory gate, and output gate. The information
storage chain runs through all the LSTM units before and after the
LSTM network and is responsible for the storage and transmission of
wind speed and operation status information of wind turbines at
historical moments, and the information in the information storage
chain of each LSTM unit is updated. ω and b denote the weight vector

and offset value in each gate mechanism, respectively; σ is the sigmoid
activation function.

The role of the forgetting gate is to selectively forget the wind
speed and operating status information components of some
historical moments and to avoid too much information from the
historical moments to affect the neural network’s processing of the
wind speed and operating status inputs of the wind turbine at the
current moment. By the effect of the forgetting gate, the
information in the historical moments of WTGs that are not
strongly correlated with the estimated moments can be
eliminated. The mathematical expression of the forgetting gate
is shown in Eq. 3.

ft � σ Wf. ht−1, xt[ ] + bf( ). (3)

The memory gate is the control unit used to control whether the
wind speed and operating status data of the WTGs at time t (now)
are incorporated into the network cell state. First, the tanh function
layer is used to extract the valid information from the present
vector, and the output is ~Ct; then, the sigmoid function is used to
control "how much” of this memory is to be put into the unit state,
and the output is it. By using the memory gate, the strong
correlation between the WTG historical moments and the
estimated moments can be retained in the network cell state and
passed to the next moment. The mathematical representation of the
memory gate is as follows:

~Ct � tanh Wc. ht−1, xt[ ] + bc( ), (4)
it � σ Wi. ht−1, xt[ ] + bi( ). (5)

The output gate integrates the output data processed by the
forgetting gate and the memory gate as the output of the power
generated by the wind turbine at moment t. The mathematical
expression of the output gate is as follows:

ot � σ Wo. ht−1, xt[ ] + b0( ), (6)
ht � ot*tanh Ct( ). (7)

FIGURE 1
Model general frame diagram.

FIGURE 2
LSTM internal structure diagram.
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The network unit status is used to store information about the
current WTG power, wind speed, and operating status and pass it to
the next moment, which affects the output of the WTG power at the
next moment. The update equation of the network unit status is shown
in Eq. 8.

Ct � ft*Ct−1 + it*~Ct. (8)
The LSTM neural network layer can be constructed to effectively

mine the time-series correlation information of wind turbine wind
speed data. The key historical moments of wind speed are first
screened out, and then the wind speed and operation status of the
key historical moments are passed into the LSTM network as input
vectors, and the valid information in the key historical moments is
selected through memory gates and forgetting gates to update the
network unit states, thus making the LSTM network fully consider the
temporal correlation when estimating the available power generation
of wind turbines and thus improving the available power estimation
accuracy.

3.2 The temporal correlation by the GCN
algorithm

The complex topography and wake effects in the wind farm space
have an impact on the power generated by the wind turbines. The
wind turbines are not distributed in isolation in the wind farm space,
and the data of neighboring turbines have a large contribution to the
estimation of the available power generation of wind turbines. From
the perspective of wind speed in wind turbine nacelle, the nacelle wind
speed of a WTG at moment t in a certain wind direction has a strong
correlation with the nacelle wind speed of an upstream WTG at a
moment t before, and when the wind direction changes, the upstream
unit of that turbine will also change. In addition, due to the different
spatial distribution ofWTGs and their own operating conditions, even
the available power generation of WTGs of the same model varies.
Therefore, in this paper, we will analyze the spatial correlation of
WTGs based on the Pearson correlation coefficient of the nacelle wind
speed of each WTG and construct a WTG connection relationship
diagram. Then, we use a GCN to extract the spatial information within
the wind farm based on the output information of the LSTM network
in the previous section and establish a differentiated WTG available
power generation estimation model for the wind farm.

Traditional convolutional neural networks are limited to modeling
Euclidean spatial data only, while graph convolutional networks can
process non-Euclidean spatial data using graph representation, which
makes them more suitable for modeling all wind turbines in a wind
farm. In the wind farm available power estimation, the graph data are
first constructed based on the WTG connection relationship graph
and the nacelle wind speed and operation status data of WTGs, and
then the extraction of spatial features among WTGs is completed
based on the graph convolutional neural network.

Before extracting the spatial features of wind farms using the GCN,
the wind turbine connection relationship graph should be constructed
based on the correlation of all wind turbines in the wind farm. Each
wind turbine in the wind farm is abstracted into nodes, and the
correlation of nacelle wind speed between all wind turbines in the wind
farm is analyzed by the Pearson correlation coefficient, and the units
with the correlation coefficient greater than the set threshold can be
judged as having a correlation, and the units with a correlation are

connected to form edges. Taking a wind farm with six wind turbines as
an example, the connection relationship diagram of wind turbines in
the wind farm is constructed, as shown in Figure 3.

The GCN is a neural network that performs feature extraction on
graphs. A graph consists of a set of vertices and edges connecting the
vertices [27]; the vertices are the objects studied, and the edges are
specific relationships between two objects. In the wind power plant
turbine connectivity graph, turbines are abstracted as nodes, and units
with a strong correlation with each other constitute edges. The fan
connection relationship graph notation can be expressed as � (V, E),
where V is the set of nodes (turbines) and E is the set of edges. The
connections between turbines can be represented by the adjacency
matrix ~A, and the number of edges directly connected by a given
turbine is represented by the degree matrix ~D. The adjacency and
degree matrices for the aforementioned example are constructed and
shown in Figure 4.

The graph convolutional neural network uses the structural
information of the edge–vertex connections of the WTG
connectivity graph ~A and the input data H of each WTG to
perform feature extraction of the implicit graph information. The
message propagation between layers is given by Eq. 9, and the feature
aggregation between turbines is given by Eq. 10.

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ), (9)
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In Eq. 9, H(l) represents the input data of WTGs in the layer l
network after l-1 network aggregation, H(l+1) represents the output
data of the layer l network, n is the total number of turbines in the
turbine connectivity graph, and each turbine is represented by a
d-dimensional feature vector; ~A � A + IN, where if A is multiplied
directly with H, only the neighboring turbine features are considered,
so it is common to add the self-loop, i.e., the unit matrix, to take into
account the turbines’ own ~D, which is the degree matrix of the
undirected graph, ~Dii � ∑j

~Aij; W(l) is the training parameter
needed for the model and h is the output dimension; σ is the
activation function, usually ReLU or Sigmoid. After aggregation
and multiplication by the weight parameter matrix, the input of
the next layer of the network is obtained after the non-linear
activation function H(l+1).

The spatial correlation problem between wind turbines can be
effectively solved by using the GCN, and the schematic diagram of
extracting spatial features using the GCN is shown in Figure 5. In the
wind farmwind turbine connectivity graph, the initial attribute of each
node, i.e., the input, is the temporal feature vector of each wind turbine
extracted after LSTM. After the first layer of the GCN, the wind speed
and operation status information of each wind turbine’s neighboring
units are fully aggregated, and the feature vector of each node is
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FIGURE 3
Schematic diagram of building a connection diagram of wind turbines.

FIGURE 4
Adjacency matrix and degree matrix.

FIGURE 5
Schematic diagram of extracting spatial features by the GCN.

Frontiers in Energy Research frontiersin.org06

Liu et al. 10.3389/fenrg.2023.1032867

69

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1032867


transformed into one dimension, outputting N*1 dimensional data, so
that the model considers both the temporal characteristics of the wind
speed and the spatial characteristics within the wind farm, and the
output of this layer is the available power generated by the wind
turbine.

3.3 The station loss problem based on the
layer 2 GCN algorithm

Station losses also need to be taken into account when making
available power estimates. Wind turbines in the wind farm through the
transformer step-up, and the power lines are connected together, and
they finally go through the wind farm main transformer step-up
voltage to the grid. This process will inevitably produce line losses,
box transformer losses, main transformer losses, etc., which are
collectively referred to as station losses. Because the station loss is
not part of the power sent through the grid connection point, the
station loss does not belong to the wind farm available power
generation. The calculation of the wind farm available power
generation needs to subtract this part of the power loss. However,

station losses come from a variety of sources and are difficult to
estimate, making it difficult to eliminate the impact of direct
calculation on their accuracy.

Using the graph convolutional neural network, the wind turbine
electrical connection relationship diagram can be constructed
according to the main wind farm electrical wiring diagram, and the
characteristics of the station losses are implied in the wind turbine
electrical connection relationship diagram so as to indirectly complete
the calculation of the losses of the convergence line, the main
transformer in the wind farm. The schematic diagram of the wind
turbine electrical connection relationship diagram is shown in
Figure 6.

The wind turbines are abstracted as nodes in the second layer of
the GCN graph, and the power transmission paths are abstracted as
edges between the nodes. The propagation process of the nodes’ own
attributes in the GCN well-simulates the losses occurring in the power
transmission process of theWTGs’ power generation. The input of the
second GCN layer is the output matrix of the first GCN layer
H1 � R(N*l), and the output features are the available power
generation of each WTG in the wind farm, H2 � R(N*l). Finally,
after the fully connected layer, the node characteristics of N wind

FIGURE 6
Electrical connection topology of the wind turbines.

FIGURE 7
Construction of the wind farm wind turbine connection diagram.
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turbines H2 are used as the input to output the available power
generated by the whole wind farm.

4 Case study

The actual operation data of a wind farm are used as an example to
test the model of this paper. The installed capacity of the wind farm is
100 MW, including 50 turbines with a single capacity of 2 MW, one
main transformer with a rated capacity of 120 MW, 50 box

transformers with a rated capacity of 2,300 kW, and six
convergence lines; the turbine models are consistent. The wind
farm data include the actual power of wind turbines, wind speed,
and the actual power of wind farm grid connection points, and the
data sampling interval is 1 December 2020–31 December 2020, with a
sampling frequency of 1 min/point and a total of 44,640 samples. To
use the data more efficiently for training, testing, and validation, the
10-fold cross validation is used.

The proposed deep neural network is trained with the
stochastic gradient descent (SGD) optimization algorithm and

FIGURE 8
Construction of the electrical connection diagram of the wind turbine.

FIGURE 9
Plot of wind speed versus power output for six turbines.
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the cross-entropy loss functions. The cross-entropy loss
increases as the predicted probability diverges from the actual
label. A perfect model has a loss of 0. However, balancing the
over and under fitting is important for the training process.
Therefore, the loss will not be 0 in reality. The SGD is an

iterative method for optimizing an objective function with
smoothness properties. It can be considered a stochastic
approximation of the conventional gradient decent optimization,
where an estimated gradient is used as the replacement of the actual
gradient.

TABLE 1 Errors in the test set of the theoretical power generation estimation model for wind turbines.

Model Root mean square (RMS) error (%) Mean absolute error (MAE) (%)

Proposed method (model_1) 2.005 1.679

Prototype machine method (Ding et al., 2016) (model_2) 9.486 7.269

LSTM-based method (Li et al., 2019b) (model_3) 3.265 2.169

Power curve method (Tascikaraoglu et al., 2014) (model_4) 5.286 4.568

LSTM + GCN method (model_5) 2.925 1.354

FIGURE 10
Estimated power output versus the real power outputs of the six turbines.
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In this paper, four models are compared with the proposed
method. The proposed model is marked as model_1, which
establishes a wind farm available output estimation model based on
LSTM and GCN considering the spatial and temporal correlation
within the wind farm and the loss within the wind farm; model 2 is the
prototype machine method (Ding et al., 2016), and model 4 is the
power curve method (Tascikaraoglu et al., 2014); model 3 considers
the temporal sequence within the wind farm, based on LSTM to
complete the estimation. The estimation of available power generation
of wind farms is done based on LSTM (Li et al., 2019b). Model_5 is an
estimation model based on LSTM and the single-layer GCN without
considering in-station losses.

After the adjustment of the model structure and parameters, the
parameters of the proposed model are as follows:

(1) LSTM layer: Since the input variables of the model are only the
nacelle wind speed and operation status, the dimension of the
input layer is 2; the number of key historical moments is
determined to be 4 based on correlation analysis, so the
number of time steps of the input layer is 5; for the estimation
of available power generation in wind farms, this paper only
considers a single-layer LSTM estimation model, so the number of
hidden layer parameters is 1; the dimension of the hidden layer is
generally chosen to be four times the number of input variables
Therefore, the number of hidden layer dimensions of the
model is 8.

(2) GCN layer: The model in this paper uses two layers of the GCN.
The graph topology of the first layer network is shown in Figure 7,
which is determined by the spatial correlation of WTGs, with
50 nodes and 736 edges, and the input layer dimension of each
node is determined by the hidden layer dimension of LSTM,
which is 8, and the output layer dimension is 1; the graph topology
of the second layer network is shown in Figure 8, which is
determined by the wind farm electrical connection diagram
with 50 nodes and 98 edges, each of which has an input layer
dimension of 1 and an output layer dimension of 1.

(3) Fully connected layer: The fully connected layer is selected as the
output layer of the spatio-temporal neural network. The input

layer dimension of this layer is 50, which represents the available
power generation of 50 wind turbines; the output layer dimension
is 1, which represents the estimated value of the available power
generation of wind farms.

Based on the data of pre-processed samples completed the
aforementioned four wind farm available power generation
estimation models, the test set in each model estimation results is
shown in Figure 9; the root mean square error and the average absolute
error of the estimated value of eachmodel and the real value are shown
in Table 1.

In Figure 9, the original data in terms of wind speed versus output
power are plotted for six different turbines. We have the data for all of
the turbines in the wind farm. Due to the space limitation, only six of
them are presented here. From the pattern in the figure, we can see that
the maximum power of each turbine is around 2 MW. The output
power of the turbines saturated around 2 MW. When the wind speed
is low, in addition to the dead zone of the turbines, there are also
chances that the wind turbines do not produce any power due to
operation dispatches. Furthermore, the data contain outlier points due
to maintenance or other reasons.

In Figure 10, the estimated power output results of the proposed
method are shown for the six wind turbines. From the result, it can be
seen that the proposed method can provide relatively accurate results,
comparing with the real outputs.

From Figure 11, the estimation error of model_2 is unstable and
increases significantly when the wind farm is at high power generation,
and the estimation error of some samples is significantly larger than
that of others at low power generation, compared with the model
proposed in this paper (model_1), the LSTM model (model_3), and
the power curve method (model_4), which are more stable. The
estimated value of the LSTM model (model_3) is lower than the
real value when the wind farm is at high power generation and slightly
higher than the real value when it is at low power generation. The
estimated values of the proposed model (model_1) and the power
curve method (model_4) are slightly higher than the true values when
the wind farm is at high power generation and slightly lower than the
true values when it is at low power generation. As can be seen from
Figure 9, the difference between the estimated values and the true
values for all the samples tested in the proposed model (model_1) is
not large when the wind farm is at low power, while the difference
between the estimated values and the true values for some samples of
the prototype method (model_2) is small, but there are also some
samples that differ significantly from the true values.

From Table 1, it can be seen that the estimation error of the wind
farm available power estimation model (model_1) proposed in this
paper is 2.005%, and it is improved by 7.481% compared with the
model_2 and by 1.26%, 3.281%, and 0.92% compared with model 3,
model 4, and model_5, respectively. Model_5 adds a layer of GCN
relative to model_3 to consider the spatial correlation within the wind
field, reducing its root mean square error by 0.34%.

To sum up, based on the long short-termmemory network and the
graphical convolutional neural network, this paper establishes a model
(model_1) that considers the temporal order of the wind speed of wind
turbines and the spatial correlation of wind turbines inside wind farms
and the station loss and has a more stable performance than that of
model 2, model 3, model 4, and model_5, and its estimation error is
lower and closer to the real value; by comparing model_3 and model_
5 with the models proposed in this paper, it can be seen that the two-

FIGURE 11
Comparison of estimated power values and real power values of a
part of the test set.
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layer GCN in the model can effectively extract the spatial information
inside the wind farm and solve the problem of loss in the station.

5 Conclusion

We investigate the problem of estimating the available power
generation of wind farms and propose a model for calculating the
available power generation of wind farms based on long short-term
memory networks and graph convolutional networks.

When comparing the proposed method with the four available
power generation estimation methods, namely, the sample machine
method, the LSTM model, the power curve method, and the available
generation power estimation method that considers only the spatio-
temporal correlation method in the wind farm, the root mean square
error of the proposed method is 2.138%, which is 77.5%, 34.5%, 59.6%,
and 26.9% higher than that of the sample machine method, the LSTM
model, the power curve method, and the method that considers only
the spatio-temporal correlation within the wind farm, respectively,
proving the feasibility and superiority of the proposed method.

The improvement of the accuracy of the estimation of the available
power generation of wind farms will facilitate the online dispatching
and optimization of the strategy of the direct wind power AGC
(automatic generation control) system by the dispatching
department of the State Grid Corporation, promote the
consumption of new energy, and help the country achieve the
reduction of carbon emissions.

In terms of the findings, limitations, and recommendations, the
authors would like to share the following:

1) Due to the aerodynamics, the output power of wind farms has
strong spatial correlations.

2) With the help of the data from individual turbines, more accurate
estimation results in terms of available power can be generated
because the state of individual turbines can be considered,
including the rotating maintenance of turbines within the
wind farm.

3) The performance of the machine learning algorithms is limited by
the quality of the input/training dataset. Therefore, it is very
important to wash and clean the dataset and find the outliers,
resulting in improved estimation accuracy.

The limitation of the proposed method is also the data
availability. It is fortunate that we have the data of individual

wind turbines in terms of wind speed, output power, and operation
states. Therefore, the model can be developed in this work, and the
available power can be estimated based on individual turbine
outputs and losses. Otherwise, the conventional wind
forecasting is the best way to predict the output power of a
wind farm.
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A model predictive control
strategy for enhancing fault ride
through in PMSG wind turbines
using SMES and improved GSC
control
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Aswan, Egypt

Wind energy has emerged as a prominent player in the realm of renewable energy
sources, both in terms of capacity and technological adaptability. Among the
various renewable energy technologies, wind turbine generators stand out as the
most widely employed. Recently, gearless permanent magnet synchronous
generators have gained traction in the wind energy sector due to their
appealing features, such as reduced maintenance costs and the elimination of
gearboxes. Nevertheless, challenges remain, particularly concerning the grid-
friendly integration of wind turbines, specifically with regard to high voltage
ride-through (HVRT) and low voltage ride-through (LVRT) improvements.
These challenges pose a threat to grid stability, impede Wind Turbine
Generator performance, and may lead to significant damage to wind turbines.
To address these concerns, this research proposes an integrated strategy that
combines a model predictive control (MPC) superconducting magnetic energy
storage (SMES) device with a modified WTG grid-side converter control. By
coupling SMES devices to the dc-link of Permanent Magnet Synchronous
Generator WTGs, the proposed approach aims to achieve an overvoltage
suppression effect during grid disturbances and provide support for grid
reactive power. Through various test scenarios, the feasibility and practicality
of this suggested technique are demonstrated.

KEYWORDS

fault ride-through, grid faults, model predictive control, permanentmagnet synchronous
generators, wind energy

1 Introduction

Governments worldwide have shown significant interest in renewable energy
production, leading to substantial investments and development efforts. The wind sector
experienced remarkable growth. Globally, 77.6 GW of new wind power capacity was
connected to power grids in 2022, bringing total installed wind capacity to 906 GW, a
year-on-year (YoY) growth of 9%. Projections indicate that the total installed wind capacity
will reach 2 TW by 2030 (GlobalWind Energy Council, 2023). This surge in wind energy has

OPEN ACCESS

EDITED BY

Joshuva Arockia Dhanraj,
Hindustan Institute of Technology and
Science, India

REVIEWED BY

Kenneth E. Okedu,
Melbourne Institute of Technology,
Australia
Angalaeswari S.,
Vellore Institute of Technology (VIT),
India

*CORRESPONDENCE

Wesam Rohouma,
wesam.rohouma@udst.edu.qa

Omar Abdel-Rahim,
o.abdelrahim@aswu.edu.eg

RECEIVED 15 August 2023
ACCEPTED 09 October 2023
PUBLISHED 25 October 2023

CITATION

Abdelkader SM, Morgan EF, Megahed TF,
Rohouma W and Abdel-Rahim O (2023),
A model predictive control strategy for
enhancing fault ride through in PMSG
wind turbines using SMES and improved
GSC control.
Front. Energy Res. 11:1277954.
doi: 10.3389/fenrg.2023.1277954

COPYRIGHT

© 2023 Abdelkader, Morgan, Megahed,
Rohouma and Abdel-Rahim. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 25 October 2023
DOI 10.3389/fenrg.2023.1277954

76

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1277954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1277954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1277954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1277954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1277954/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1277954&domain=pdf&date_stamp=2023-10-25
mailto:wesam.rohouma@udst.edu.qa
mailto:wesam.rohouma@udst.edu.qa
mailto:o.abdelrahim@aswu.edu.eg
mailto:o.abdelrahim@aswu.edu.eg
https://doi.org/10.3389/fenrg.2023.1277954
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1277954


prompted network operators and researchers to focus on enhancing
the efficiency of wind power generators integrated into electrical
grids. Consequently, the integration of wind power facilities using
permanent magnet synchronous generators (PMSGs) into utility
networks is on the rise (Jiang et al., 2021; Abdel-Rahim et al., 2022;
Morgan et al., 2022a; Raouf et al., 2023).

PMSG wind turbine generators (WTGs) offer numerous
advantages, such as excellent operational efficiency, self-
excitation capability, gearbox elimination, high power factor,
and reliability (Abdel-Rahim et al., 2014). However, the impact
of wind energy on power networks necessitates addressing issues
related to security, stability, and operation. Controlling voltage,
frequency, and power while avoiding network disruptions is
crucial. In the event of a malfunction, it was previously
acceptable to isolate wind energy conversion systems (WECs)
from the electric grid. However, to prevent power outages, strict
grid codes have been established by transmission line operators
worldwide, mandating wind turbines to remain connected to the
grid even under adverse conditions. Failure to provide adequate
protection can lead to disconnection of WTGs or damage to
turbine and converter switches (Lyu et al., 2020).

To address these challenges, fault ride-through (FRT) methods
have been developed. Notably, direct-drive PMSG wind turbines
(WTs) have the advantage of contributing minimally to fault
currents, allowing them to meet FRT criteria to some extent.
However, they lack the ability to stabilize system voltage during
grid variations. To maintain grid voltage, WTGs must contribute
reactive power (López et al., 2009; Sarkar et al., 2018). As a result,
FRT is crucial for WTs to withstand voltage fluctuations without
disconnection from the grid. The main focus of FRT in direct-drive
PMSG WTGs is to manage excess energy stored in the WTG’s
internal dc-link while supporting the grid with reactive power
during disturbances (Hu et al., 2017).

Various FRT methods incorporate hardware schemes, such as
braking choppers, dynamic voltage restorers (DVRs), energy storage
systems (ESS), and STATCOM, as well as soft schemes like modified
control for back-to-back converters (Benali et al., 2018; Djagarov
et al., 2019; Huang et al., 2020a; Kim and Kim, 2021; Nasiri and
Arzani, 2022). To enhance grid connection efficiency, using ESS to
offset erratic active power supply during grid faults has been
considered favorable (Makhad et al., 2022). High-capacity energy
storage devices play a crucial role in quick dynamic power
adjustment, which improves transient stability and guarantees
consistent electricity output (Abhinav and Pindoriya, 2016).
However, batteries used for reactive power assistance result in
frequent charging and discharging cycles, reducing battery
lifespan (Das et al., 2018). Hence, superconducting magnetic
energy storage (SMES) is a more suitable option for FRT
compared to other high-capacity energy storage devices like
battery energy storage (BES). SMES devices offer advantages such
as high energy storage efficiency, minimal self-discharge rate (when
coupled with a superconducting switch), extended lifespan, and
minimal environmental impact (Bar et al., 2021). Research has
shown that SMES outperforms BES in terms of faster response
and better dc voltage stabilization in dc-dc converters (Nikolaidis
and Poullikkas, 2018).

SMES devices are widely used in WTG applications, either
integrated into the WTG’s dc-link or linked to the point of

common coupling (PCC) outside the WTG. At the dc-link,
SMES controls its dc-dc chopper to reduce excess power and
compensate for reactive power from the WTG to the grid. When
connected at PCC, SMES supports voltage and compensates for
delivered wind power from PCC to the grid.

However, some SMES-based schemes that involve adding a dc-
ac inverter and control adjustments in the external circuit can lead to
increased capital costs and control complexity (Zheng et al., 2017;
Morgan et al., 2022b). Additionally, these schemes may not be cost-
effective since they require additional devices like SMES to enhance
FRT in PMSG WTGs. A more viable approach is to incorporate a
modified control scheme for the WTG to maintain the DC link
voltage close to a constant. Various control methods have been
employed to achieve this objective, including fuzzy logic controllers
(FLCs) and artificial neural network (ANN) controllers. However,
these methods have drawbacks, such as complex architecture and
lengthy training times (Mukherjee and Rao, 2019; Ahsan and Mufti,
2020).

In contrast, proportional-integral (PI) controllers have proven
effective in modern manufacturing processes due to their resilience,
broad stability margin, simplicity, and low cost (Jannati et al., 2016).
Despite these advantages, PI controllers may encounter challenges
in heavy nonlinear systems, particularly when uncertainties are
involved. Various optimization techniques, such as the genetic
algorithm, continuous mixed p-norm (CMPN) algorithm, grey
wolf optimizer, water cycle algorithm, and whale optimization
algorithm, have been suggested for fine-tuning PI controllers for
industrial applications (Dahiya et al., 2019; Qais et al., 2019; Qais
et al., 2020a; Soliman et al., 2020; Joseph et al., 2022). While these
algorithms excel in finding the best global optimum solution, they
are time-consuming and require intricate flowcharts. To address
these issues, the model predictive control (MPC) method is adopted
in this study. MPC offers rapid dynamic response, adaptability to
multiple variables and inequalities, improved resilience, and
stability. MPC is extensively used in industry, has a
straightforward calculating procedure, and has undergone
rigorous long-term practice tests (Qais et al., 2020b; Chen et al.,
2020).

Previous research has explored the coordination of SMES
devices and modified converter control for other wind turbine
types. However, these techniques cannot be directly applied to
PMSG WTGs, necessitating further research into cooperative
schemes involving enhanced WTG control and SMES to improve
the stable grid connection of future wind farms.

To address these challenges, this paper presents a
comprehensive control strategy that combines SMES with
auxiliary reactive power support. A modified WTG converter
control and a model predictive control SMES system are
employed to achieve the objectives. The paper’s main
contributions are as follows:

1) A cooperative control strategy is proposed to enhance FRT
using SMES.

2) A prediction model of SMES is established, and a corresponding
model predictive control method is proposed to track power
instructions for storing, charging, and discharging. Simulation
results compare the performance of MPC with other control
algorithms.
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2 FRT grid code requirement for PMSG
wind turbines

Various countries have pursued diverse approaches to enhance
their wind power generation capacities. In regions where the wind
energy industry is well-established, grid codes have been
implemented to accommodate the specific requirements of grid
integration. One crucial aspect of wind power integration is the
ability to withstand faults and disturbances in the grid, which is
known as fault ride-through (FRT) capability (Abdel-Rahim and
Funato, 2014; Huang et al., 2020b).

Utility grid standards impose requirements on wind turbine
generators (WTGs) to possess sufficient High Voltage Ride-
Through (HVRT) and Low Voltage Ride-Through (LVRT)
capabilities. Figure 1 provides an illustrative example of the
HVRT and LVRT criteria. According to these standards, the
WTG should remain connected to the grid when the grid voltage
falls within the shaded gray region. On the other hand, if the grid
voltage exceeds this region, the WTG can safely trip without any
adverse consequences. Moreover, when the terminal voltage ranges
from 0.9 per unit (p.u.) to 1.1 p.u., the wind turbines should continue
operating, but under different voltage conditions, a brief
disconnection might be necessary (Luo et al., 2018; Abdel Aleem
et al., 2017).

3 Mathematical modeling of the
proposed hybrid WECS-SMES

The comprehensive system under study is depicted in Figure 2,
encompassing components such as a wind turbine (WT) model, a
Permanent Magnet Synchronous Generator (PMSG), power
converters, a Superconducting Magnetic Energy Storage (SMES)
device, and a grid model. The proposed method entails the parallel
connection of the SMES device to the direct current (dc) link of the
1.5 MW integrated WTG. The essential characteristics of the
integrated 1.5 MW WTG are summarized in Table 1.

3.1 Mathematical modeling of WECS

The mechanical power produced from the wind by the PMSG-
WT is expressed as (Okedu, 2022):

Pw � 1
2
ρAV3

WCp λ, β( ) (1)

In Eq. 1, Pw represents the wind power harnessed, measured in
watts (W). The parameter CP denotes the power coefficient, while ρ
denotes the air density in kilograms per cubic meter ((Kg/m3). A
represents the swept area in square meters (m2), and Vw stands for

FIGURE 1
A typical grid code for fault ride-through (FRT).
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the wind velocity without any rotor interference, expressed in meters
per second (m/s). The power coefficient CP of the wind generator is
determined by the ratio of the tip speed (λ) to the pitch angle (β), and
this relationship is expressed in Eq. 2 (Okedu, 2022).

Cp λ, β( ) � c1
c2
λi
− c3β − c4( )e −c5

λi + c6λ (2)

Where

1
λi
� 1
λ − 0.08β −

0.035

β3 + 1
(3)

Eq. 2 incorporates coefficients c1to c6, which represent the
characteristics of the wind turbine (WT). In the context of
Permanent Magnet Synchronous Generator (PMSG) wind
turbines, the maximum power point tracking (MPPT) relies on
the rotor speed, enabling the attainment of maximum power output
(Wang et al., 2018).

P MAX � 1
2
ρA

ωrR
λopt

( )3

cpopt (4)

The variables in question are as follows: λopt represents the
optimal tip speed, cpopt denotes the optimal power coefficient, andωr

indicates the rotor speed of the wind generator.

3.2 Mathematical modeling of PMSG

The dynamic model of the PMSG wind turbine in the d-q
reference rotating frame is presented as shown in reference (Wang
et al., 2018).

dψsd

dt
� −Vsd − RsIsd − ωeψsq (5)

dψsq

dt
� −Vsq − RsIsq − ωeψsd (6)

From Eqs 5, 6

ψsd � Lsd + Lmd( )Isd + ψm (7)
ψsq � Lsq + Lmq( )Isq (8)

In the dynamic model of the PMSG wind turbine, the following
variables are involved: Vsd and Vsq represent the stator circuit’s
voltage, Rs denotes the stator winding resistance, and Isd and Isq are
the currents in the d and q reference frames, respectively.
Furthermore, ωe signifies the rotational speed of the wind
generator, while ψsd and ψsq stand for the flux linkages of the
stator circuit. Additionally, Lsd and Lsq represent the stator winding
leakage inductances, and Lmd and Lmq denote the magnetizing
inductances. Finally, ψm signifies the flux linkage of the
machine’s permanent magnet. By substituting Eqs 7, 8 into Eqs
5, 6, the resulting differential equation can be obtained.

Ld
dIsd
dt

� −Vsd − RsIsd − ωeIqIsq (9)

Lq
dIsq
dt

� −Vsq − RsIsq + ωeLdIsd + ωeψm (10)
Ld � Lsd + Lmd (11)
Lq � Lsq + Lmq (12)

The active and reactive power of the Permanent Magnet
Synchronous Generator (PMSG) are expressed as follows:

FIGURE 2
PMSG-SMES based wind turbine connected to the Grid.

TABLE 1 Key features of the PMSG WTG system.

Parameter Value Parameter

Rated Power 1.5 MW

Rated wind speed 12 m/s

Rated Voltage 595 V

Number of poles pairs 40

DC-link Voltage 1150 V
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Pg � 3
2

VsdIsd + VsqIsq( ) (13)

Qg � 3
2

VsqIsd − VsdIsq( ) (14)

The electro-torque of the wind generator with pole pairs (p) is
represented as follows:

Te � 0.5p ψmIsq( + Ld − Lq( )IsdIsq (15)

In the case of a surface-seated Permanent Magnet Synchronous
Generator (PMSG), it is reasonable to assume that Ld � Lq.
Consequently, the expression for Te can be formulated as follows:

Te � 0.5p ψmisq( ) (16)

3.3 SMES Modeling

Among the various commercial energy storage devices (ESD)
available, superconducting magnetic energy storage (SMES)
stands out due to its rapid response speed, high power
density, and extended lifespan (Gouda et al., 2020). In this
study, SMES is emulated as an inductor with negligible
resistance. The DC-DC side of the converter comprises two
Insulated Gate Bipolar Transistors (IGBT) and two diodes,
enabling a bidirectional, two-quadrant operation of the SMES
magnet. This allows the SMES to charge, store, and discharge
energy while the current is positive. The switching pattern of the
transistors is adjusted to produce either positive or negative
voltage at the magnet’s terminals, turning it into an intrinsic
zero-voltage device. The fundamental electrical circuit for the
SMES chopper is depicted in Figure 3.

In the charging mode, when the controller commands the SMES
to absorb energy, the current path is illustrated in Figure 3A. During
this mode, IGBT G1 and IGBT G2 are activated to charge the SMES
from the DC bus. The voltage V(t) across the inductor can be
expressed as follows:

V t( ) � Ls
di t( )
dt

(17)

The expression for the energy stored in the SMES can be
obtained as follows, taking into account the DC bus voltage (V),
the coil inductance (Ls), and the charging current (i(t)) as a function
of time (t). The DC current flowing in the coil is represented by Is,
while R1 denotes the coil resistance, with the inner resistance
considered negligible (R1 ≈ 0). Therefore, the energy stored in
the SMES can be calculated using the given parameters:

E t( ) � 1
2
LsI

2
s t( ) (18)

In the discharge mode, IGBT G1 and G2 are turned off, and the
controller manages the duty cycle of IGBT G2 to achieve the desired
output current Iref . For the discharge process, assuming the initial
current in the SMES is I0, and the duty ratio for IGBT G2 is denoted
by D, the current in the SMES at time t can be expressed as follows:

I t( ) � I0 exp − R*t*D
Ls

(19)

When the SMES does not require power exchange with the
power grid, the chopper operates in standby mode to maintain the
stored energy in the SMES. In this standby state, the current path is
depicted in Figure 3C, where IGBT G1 remains continuously turned
on, and IGBT G2 remains continuously turned off. The current
flowing in the superconductor during the storage process can be
represented as follows:

I t( ) � I0 exp −R1*t
Ls

( ) (20)

If the superconductor material exhibits zero resistance ((R1 ≈ 0),
both the storing current and the stored energy remain constant. The
control diagram of the chopper will be discussed in the subsequent
section. For a summary of the essential characteristics of the SMES
device, please refer to Table 2.

4 Principle of operation

The dual operation modes of the protection circuit exist, as
described below:

FIGURE 3
Operation mode of SMES (A) Charging mode (B) Standby mode (C) Discharging mode.
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4.1 During voltage sag and swell

Eq. 21 illustrates the behavior of the DC link, where C and Vc

represent the capacitance and voltage of the dc-link, respectively.
Pf and Pr correspond to the grid filter and rotor power,
respectively. To maintain dc-link voltage stability, it is
necessary for the power transferred from the generator side
(Pr) to equal the power transferred from the dc-link capacitor
to the grid filter (Pf ) (Xu et al., 2019). However, during voltage
dips or spikes, a power imbalance occurs, leading to variations in
the values of Pr and Pf Consequently, a rise in voltage occurs
across the dc-link capacitor.

During High Voltage Ride-Through (HVRT), if the grid
voltage increases, the output of the MSC (Pf ) will not change
significantly. Nevertheless, an overvoltage condition may cause
energy to flow back toward the WTG, resulting in an unexpected
spike in the capacitor voltage. Such an occurrence poses a threat
to the normal operation of the WTG (De Siqueira and Peng,
2021).

To address this issue, the excess energy received by the dc-link
capacitor during voltage fluctuations needs to be dissipated, or
alternatively, the total capacitance of the DC-link (C_Total)
should be increased, as depicted in Eq. 22, to maintain the dc-
link voltage within a safe range (De Siqueira and Peng, 2021).

CVC
dVc

dt
� Pf − Pr (21)

Vc �
�����
2Ec

CTotal

√
(22)

4.2 Converter and SMES control

The primary aim of this study is to enhance the Fault Ride-
Through (FRT) capability in the PMSG-based Wind Turbine
Generator (WTG). To achieve this objective, the methods
presented in Nielsen et al. (2010), which pertain to Machine and
Grid Side Converter control, are adopted. Consequently, these
methods will not be reiterated in this work. Instead, this section
focuses on a modified control strategy for the grid-side converter
that incorporates SMES to address the FRT issue, as illustrated in
Figure 4.

4.3 Model predictive control strategy for
SMES

The dc-dc chopper operates with binary on and off settings.
Consequently, it has a set of switching states that encompass all

possible permutations. However, certain combinations leading to
short-circuits in the DC link are avoided. To determine the
optimal switching state of the dc-dc chopper corresponding to
the dc-link voltage, an optimization process is carried out.
Subsequently, the optimal switching states are applied. Unlike
traditional PID control, where pulse width modulation (PWM) is
used to generate switching signals for the converters, the MPC-
based SMES system directly produces the required switching
signals for the chopper. Figure 5 illustrates the predictive control
method for the dc-dc chopper. For calculating the expected
voltage across the dc link, the predicted current flowing
through the SMES coil at the sampling time Ts is utilized.
Below is a discrete-time model representing the dynamic
current in the SMES coil at the sampling time Ts.

The expected SMES current at time k is given by:

ipL k + 1( ) � iL k( )
Ts

+ Ts

Ls
( ) Vdc k( )( ) (23)

Where, Ls represents the inductance of the SMES coil, iL(k)
represents the current of the SMES coil at time k, Dc link
Voltage at time k is denoted by, Vdc(k) .

With its accompanying switching function as:

s � 0,while � G1is off andG2is on
1,while � G1is on andG2is of

{ (24)

Table 3 illustrates the complete switching sequence for the DC-
DC chopper. Where G1 and G2 represents the dc-dc chopper’s
switches.

At time k, the capacitor’s expected current is:

ic k( ) � is k( ) − il k( ) − ig k( ) (25)

But since the SMES coil is considered already charged, the next
available state is the discharge state, hence ic(k) is represented as;

ic k( ) � is k( ) + il k( ) − ig k( ) (26)

The relationship between voltage and capacitor current is as
follows:

iC � CdVdc

dt
(27)

ic k + 1( ) � C VdC K + 1( ) − VdC K( )[ ]
Ts

(28)

The derivative capacitor voltage dVC
dt , is also replaced by the

forward Euler approximation. Thus, the capacitor’s predicted dc
voltage at time k+1 can be derived as follows:

Vp
dc k + 1( ) � ic k( )* TS

c
+ Vdc k( ) (29)

where, Vp
dc (k + 1) represents the capacitor’s predicted voltage at

time k + 1.
The cost functions g1, thus the difference between the reference

and forecast signal levels is defined as Eq. 30.

g1 � Vp
dc k + 1( ) − Vdc

* K( )∣∣∣∣ ∣∣∣∣ (30)

Where Vdc
* represents the reference value of the dc-link voltage.

Figure 6 depicts the control algorithm used by the MPC-based
SMES system. The dc voltage forecast relies on Eq. 29.

TABLE 2 Key features of SMES Tokyo Model (Xu et al., 2019).

Parameter Value Parameter

Critical coil current 3375 A

Self-inductance 0.1 H
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4.4 Modified Grid Side Converter control

For grid voltage angle detection, a phase-locked loop (PLL) is
utilized (Yuan et al., 2020). During regular operation, iqref is set to 0,
enabling the Grid-Side Converter (GSC) to operate in unity power
factor mode. However, when theWTG is in Fault Ride-Through (FRT)
mode, the dynamic reactive current reference is determined based on
the magnitude of the voltage dips, as expressed in Eq. 31.

igqref � k × IN × VN − V( ) (31)

In Eq. 32, K represents the coefficient, i_gqref denotes the
reactive current reference, and V refers to the instantaneous
terminal voltage. VN and IN represent the nominal voltage and
current of the WTG, respectively. During operation, if the terminal
voltage is below the nominal voltage, a capacitive current reference
will be transmitted to the converter. Conversely, if the terminal
voltage exceeds the nominal voltage, an inductive current reference
will be sent to the converter. It is essential to ensure that the active
current reference is governed by Eq. 32 to restrict its value within the
IGBT’s current threshold during Fault Ride-Through (FRT) mode.

igdref ≤
����������
I 2max − I2gqref

√
(32)

The threshold current of the IGBT is denoted as I max, and
igqref represents the active current reference. For the purpose of
this study, the maximum allowable current is set to 1.8 pu. As
depicted in Figure 4, the active and reactive references remain the
same as in conventional vector control during normal operating

conditions. However, when the Fault Ride-Through (FRT) mode
is activated, the i_gqref changes to Eq. 31 to provide reactive
power assistance either in a capacitive or inductive manner, while
ensuring that the igqref stays within the safe operating current
limit of the IGBT.

During High Voltage Ride-Through (HVRT) and Low Voltage
Ride-Through (LVRT) events, the Grid-Side Converter (GSC) is
configured to operate in the Q-priority mode. This means that the
converter prioritizes the contribution of reactive current over the
contribution of active current.

5 Case studies

In Matlab∖Simulink, a 1.5 MW PMSG-based WECS with a
model predictive control SMES model is developed. The
following are the conditions for the test case studies:

Case 1: 80% balanced voltage sag.

Case 2: 20% balanced voltage swell.

5.1 Case 1: Behaviours under 80%
symmetrical voltage sag

In this experimental study, a balanced voltage drop of 0.80 pu is
applied to the grid at t = 3s and persists for 150 m. Figure 6A illustrates

FIGURE 4
Schematic representation of the MPC-based SMES control system.
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the 0.80 pu voltage drop at the grid-connected point during the fault.
The root mean square value of the voltage drop at the grid-connected
point is depicted in Figure 6B.Without anyQ support, the voltage at the
grid-connected point peaks at 0.2 pu and gradually increases to 0.25 pu
when the SMES is controlled by MPC (Model Predictive Control).

Figure 6C presents the behavior of the DC-link voltage. Without
Q support, the DC-link voltage exhibits uncontrolled growth,
exceeding the fault period, resulting in a 5,450 V increase over a
time period of 3.5s, surpassing the fault duration. However, when
MPC-controlled SMES is activated, the DC-link voltage is effectively

FIGURE 5
Algorithm for controlling the systems as implemented.
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regulated to 1,200 V, enabling the wind turbine to ride through the
fault within the fault period.

Figure 6D depicts the active power management profile under
two scenarios: without Q support and with SMES + MPC schemes.
Without Q support, the grid’s active power decreases from its
nominal value of 1.5 MW to approximately 0.365 MW until t =
3.47s, before returning to its nominal value. When SMES regulated
by MPC is engaged, the grid-side active power is cushioned at
around 0.736 MW until t = 3.15s, before returning to its nominal
value.

Similarly, Figure 6E shows the behavior of the grid’s reactive
power. Without any Q support mechanism, there is no grid reactive
power support during the fault. However, with the MPC + SMES

technique, the reactive power reaches 0.35 MVar to facilitate PCC
(Point of Common Coupling) voltage recovery. As depicted in
Figure 6F, the SMES’s active current is injected into the grid
during this recovery period. Following the elimination of the grid
fault, the SMES current, controlled by MPC, is increased to 1,750 A,
ensuring that these operations remain below the SMES critical
current threshold.

Table 4 provides a summary of the advantages of MPC in the
proposed technique, as detailed in reference (Aimene et al., 2022). The
comparison includes the percentage change in the DC-link voltage (Δ
V_dc) and the control settling time (s). Table 4 demonstrates that the
MPC + SMES technique, owing to its capability to handle control
uncertainties, facilitates a reasonable system recovery.

5.2 Case 2: Behaviours under 20%
symmetrical voltage swell

In this experimental study, a balanced voltage swell of 0.20 pu is
applied to the grid at t = 3s and lasts for 150 m. Figure 7A illustrates
the 0.20 pu voltage swell at the grid-connected point during the fault.
The root mean square value of the voltage swell at the grid-
connected point is depicted in Figure 7B.

TABLE 3 DC-DC chopper Switching States.

G1 G2 Decisions

0 0 Discharge (Vdc)

0 1 Freewheeling (0)

1 0 Freewheeling (0)

1 1 Charge (−Vdc)

FIGURE 6
PMAwind generator response for 0.80pu balanced voltage sag (A) Phase abc of PCC voltage profile (B) RMS of Terminal voltage (C)DC-link voltage
(D) Active power (E) Reactive power (F) SMES current profile.
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Without any Q support, the voltage at the grid-connected point
peaks at 1.2 pu and gradually decreases to 1.16 pu when the SMES is
controlled byMPC (Model Predictive Control). The DC-link behavior
is shown in Figure 7C. If no Q support mechanism is introduced, the
DC-link voltage would increase uncontrollably, resulting in a 1,600 V
rise in the DC-link voltage. However, when MPC-controlled SMES is
activated, the DC-link voltage decreases to about 1,250 V, enabling the
wind turbine to ride through the fault within the fault period.

Figure 7D depicts the active power management profile under
two scenarios: without Q support and with MPC + SMES schemes.
Without Q support, the grid’s active power decreases from its
nominal value of 1.5 MW to around 1 MW until t = 3.2s, before
returning to its nominal value. When SMES regulated by MPC is

engaged, the grid-side active power is cushioned at about 1.3 MW
for a duration of t = 3.15s before returning to its nominal value.

Similarly, Figure 7E shows the behavior of the grid’s reactive power.
Without any Q support mechanism, there is no grid reactive power
support during faults. However, with the MPC-SMES technique, the
reactive power reaches a noticeable rise of −0.4 MVar to facilitate PCC
(Point of Common Coupling) voltage recovery.

As shown in Figure 7F, during the voltage swell at t = 3s, the
SMES coil increases, leading to a positive slope with MPC. Energy is
transferred from the grid to the SMES coil during this recovery
period. Following the elimination of the grid fault, the SMES current
returns steadily to 1,500 A, which is well below its critical current
threshold.

FIGURE 7
PMA wind generator response for 0.20 pu balanced voltage swell (A) Phase abc of PCC voltage profile (B) RMS Terminal voltage (C) DC-link voltage
(D) Active power (E) Reactive power (F) SMES current profile.

TABLE 4 Results for 0.80 pu balanced Voltage sag conditions.

SETTLING TIME (S)

METHODS ΔVDC% VDC

MPC + SMES 4.348 3.2

MAHM OUD et al. (2020); Aimene et al. (2022) 13.043 3.6

Bold is our achieved results.

TABLE 5 Results for 0.20 pu balanced Voltage Swell conditions.

Settling time (s)

Methods ΔVdc% Vdc

MPC + SMES 8.695a 3.4

Yuan et al. (2020); Mahmoud et al. (2022) 15.25 3.52

aBold signifies best values.
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Table 5 provides a summary of MPC’s advantages over other
techniques proposed in the literature. The comparison includes the
percentage change in the DC-link voltage ((ΔVdc) and the control
settling time (s). From Table 5, it can be seen that the MPC-SMES
technique, due to its capability to handle control uncertainties,
facilitates a reasonable system recovery.

6 Conclusion

In this paper, a grid-tied PMA wind turbine with SMES connected
at the dc-link. Themodel incorporates a wind turbine with a capacity of
1.5 MW, an SMES device, and a machine and grid-side converter.

The WECS performance was evaluated under balanced voltage
sag and swell scenarios.

The 80% voltage dip experiences an overvoltage of up to 5450 V on
the DC-link, while the 0.20% swell reaches 1000 V from the reference
value, indicating how detrimental sags are to the dc-link capacitor.

This means that PMA wind turbines are at a higher risk from
balanced voltage sags compared to balanced voltage swells. Reactive
power is managed via a strategy that regulates its transfer between
the grid and the converter. Reactive power flows from the grid to the
converter during a swell and the other way around during a sag. This
contributes to the reliability of the power system.

There is clear evidence that the suggested ride through technique
improves the performance of PMA-WTG in the face of grid voltage
fluctuations.
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Fault detection of a wind turbine
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Introduction: During its operational lifetime, a wind turbine is subjected to a number
of degradation mechanisms. If left unattended, the degradation of components will
result in its suboptimal performance and eventual failure. Hence, tomitigate the risk of
failures, it is imperative that the wind turbine be regularly monitored, inspected, and
optimallymaintained.Offshorewind turbines are normally inspected andmaintained at
fixed intervals (generally 6-month intervals) and the program (list of tasks) is prepared
using experience or risk-reliability analysis, like Risk-based inspection (RBI) and
Reliability-centered maintenance (RCM). This time-based maintenance program can
be improved upon by incorporating results from condition monitoring involving data
collection using sensors and fault detection using data analytics. In order to properly
carryout condition assessment, it is important to assurequality&quantity of data and to
use correct procedures for interpretation of data for fault detection. This paper
discusses the work carried out to develop a machine learning based methodology
for detecting faults in a wind turbine generator bearing. Explanation of the working of
the machine learning model has also been discussed in detail.

Methods: Themethodology includes application ofmachine learningmodel using
SCADA data for predicting operating temperature of a healthy bearing; and then
comparing the predicted bearing temperature against the actual bearing
temperature.

Results: Consistent abnormal differences between predicted and actual
temperatures may be attributed to the degradation and presence of a fault in
the bearing.

Discussion: This fault detection can then be used for rescheduling the
maintenance tasks. The working of this methodology is discussed in detail
using a case study.

KEYWORDS

bearing, condition monitoring, fault detection, machine learning, offshore wind turbine,
SCADA, SHAP

1 Introduction

In order to meet the increasing demand for energy and yet reduce dependency on
conventional fossil fuels, there has been a spurt in growth of wind farms (IEA, 2021). These
wind farms are comprised of arrays of wind turbines (typically horizontal), installed either
onshore or offshore, to produce electricity from the wind. However, despite recent advances
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in the design, manufacturing, operation and maintenance of wind
turbines, their acceptance has been muted due to a number of
reasons, including difficulties and high costs associated with their
operation and maintenance.

When compared to the onshore wind turbines, the offshore
counterparts offer more reliable power generation due to higher
mean wind speeds and more steady wind supply. Unfortunately,
the operation and maintenance difficulties and costs are also higher
due to multiple reasons, including faster degradation of equipment by
harsh marine conditions, difficulties in accessing the site from distant
shores, rough weather conditions, scarcity of skilled personnel and
need for specialized vessels. Thus, the operation and maintenance
costs account for approximately a third of the Levelized Cost of
Energy (LCOE) (Wiggelinkhuizen et al., 2007; Stehly et al., 2020).

During their operational lifetime, various components of a wind
turbine are subjected to a number of environmental & operational
attacks resulting in their degradation. This degradation results in
deterioration in performance and at times failure. Failure of a
component takes place when the applied load is greater than the
maximum safe working load of the component. The applied load
andmaximum safe working load of the component vary with time. The
applied load can vary due to the changes in the operating conditions,
environmental conditions or accident; and the maximum safe working
load may change with time due to degradation caused to the
component by different types of degradation mechanisms. Hence, it
becomes difficult to predict when the failure will take place (Arabian-
Hoseynabadi, et al., 2010; Kahrobaee and Asgarpoor 2011; Shafiee and
Dinmohammadi 2014; Luengo and Kolios 2015; Zhang et al., 2016).

To help in predicting the time of failure, detailed failure analysis
involving the following stages needs to be carried out (Kandukuri
et al., 2016):

• Fault Detection—detection of abnormal changes in the
structure or behavior of a component that can help to
identify faulty condition

• Fault Diagnosis—analysis of the abnormal changes in the
structure or behavior to identify cause or mechanism of the
degradation that would cause the failure

• Fault Quantification—analysis of the behavior or performance
to quantify the degree of degradation and fault (partial or
complete)

• Fault Prognosis—analysis of the time-based changes to predict
the outcome of further degradation or prognosis of fault

Failure (or fault) analysis can be used to develop detailed failure
profiles (failure causes, failure mechanisms, etc.), which can
subsequently be used for developing an appropriate maintenance
schedule to prevent or manage the failure. In a maintenance
schedule, the maintenance activities can be either preventive or
corrective depending on whether the task is carried out before or
after failure. These maintenance activities involve detailed
inspection (visual, auditory, NDT), testing, service (lubrication,
cleaning, repair, etc.), repair and replacement tasks.

The preventive maintenance programs are often time-based, for
example, preventive maintenance activities of wind turbines are
normally planned at 6-month intervals (Nilsson and Bertling,
2007). Since these time-based inspection and maintenance
programs are expensive, there have been efforts to develop

methodologies for preparing more efficient and effective
maintenance programs. This involves development of maintenance
schedules based on formalized risk/reliability analysis (e.g., Risk Based
Inspection and Maintenance or Reliability Centered Maintenance).

In order to improve the technical asset integrity management of
wind farms there is an increasing move towards condition-based
maintenance as opposed to scheduled or reactive maintenance to
reduce downtime and lost production. This is achieved by a)
continuous monitoring using sensors; b) data analytics; and c)
developing condition-based maintenance plans.

To continuously monitor, all modern wind turbines come with a
Supervisory Control and Data Acquisition (SCADA) system. This
system is comprised of a multitude of sensors that constantly
monitor various parameters regarding environment, process,
operation, and condition of components (equipment or
structure). The data from the sensors is transmitted and stored
in SCADA supervisory computers. At the control office the data is
interpreted, and the information gained is then used to control the
process or operation. The same data can be used to develop
optimized condition-based maintenance schedules.

While the collection, transmission and storage of data has become
relatively easy in recent years, the challenge is to identify and extract
relevant information from the available data. Thus, sensible data
collection requires understanding the system, making decisions
related to collection and rationalization of data to make it suitable
for further analysis, and finally, to use the preprocessed data to extract
useful information, like, fault detection and identification, so that
necessary decisions can be taken. There are a number of approaches
by which the data analysis can be carried out, to include machine
learning, fuzzy logic, artificial neural networks, and deep learning.

Machine learning techniques have been widely explored for
analyzing data from offshore wind turbines and these have been
found to be suitable for detecting anomalies and assisting in
decision-making (Stetco, et al., 2019). However, while machine
learning models may have high prediction accuracy, they often
lack interpretability. This is because models often act as black-boxes,
thereby making their results challenging to understand and
interpret, and users may not have knowledge of the underlying
decisions in the predicting process (Ekanayake et al., 2022).

Interpretable machine learning tools can be applied to gain
insight into the working of machine learning models. Thus, it is
easier to understand the factors that drive their predictions and
increase confidence in their predictions. This understanding may be
used to justify the use of the model and to further improve its
working (Adadi and Berrada, 2018). Interpretable machine learning
is currently at a stage where it is sufficiently developed and mature,
but there are still some challenges that need to be addressed
(Mahesh, 2020; Vilone and Longo, 2020).

In recent years, the research community has become more
interested in Shapley additive explanations (SHAP) method,
which proposes a model agnostic representation of feature
importance estimated by Shapley values in a computationally
efficient manner. Shapley values are a solution concept from
collaborative game theory. The SHAP method is an additive
feature attribution method that considers the features as “the
players”, combinations of different features as “the coalitions,”
and the prediction as “the total payout.” The average marginal
contribution for feature i over all possible coalitions is the Shapley
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value ϕ_i, hence it explains each feature’s contribution to a
prediction (Lundberg and Lee, 2017; Lundberg et al., 2018).

Besides SHAP there are other methods for interpreting machine
learning results such as Individual Conditional Expectation (ICE) plots
(Goldstein et al., 2015) and Local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016). ICE plots visualize the
dependence of model predictions on a feature for each instance
separately. By varying the values of a feature for a particular
instance while keeping the values of all other features fixed, it shows
the relationship between the feature and the model’s predictions across
a range of values by repeating this process. Each line in the ICE plot
represents the predicted outcome for a different instance, allowing us to
see the individual effects of a feature on the model’s predictions. LIME
works by approximating the machine learning model locally around a
specific instance, using a simpler, interpretable model. It perturbs the
instance, creates a dataset, fits an interpretable model on the perturbed
instances, and generates explanations based on the model’s feature
weights. These explanations help us understand why a particular
prediction was made on a local level.

While ICE plots and LIME focus on local explanations for
individual predictions, SHAP provides both model-agnostic and
global explanations. SHAP values capture the contribution of each
feature to a prediction across the entire dataset, allowing for a more
comprehensive understanding of feature importance. Additionally,
SHAP is applicable to a wide range of models and is able to handle
feature interactions, thus providing a more nuanced understanding
of how features interact to influence predictions. Based on these
advantages, SHAP is selected as the best fitting interpretable
machine learning method.

After the SCADAdata has been analyzed using appropriatemodels,
the results from the model have to be used to decide maintenance
activities. These activities are triggered when some condition indicator
crosses a preset limit. This guides the maintenance activities to take
place based on the actual condition, as against faulty condition in
corrective maintenance and perceived condition in preventive
maintenance. Hence, condition-based maintenance strategy offers
advantages that are associated with (Koukoura et al., 2021):

• maintenance activities carried out only when required, e.g.,
reduced human errors in maintenance

• not conducting unnecessary scheduled replacement of parts
before their end of useful life, e.g., cost saving

• advanced planning of maintenance activities, e.g., better
planning

In spite of these advantages, use of a condition-based
maintenance approach is still restricted and needs further
research and development. This is because of the difficulties
associated with the:

• quality and quantity of collected data
• handling of imperfect (spurious, inconsistent, inaccurate,
uncertain, or irrational) data collected from faulty sensors

• interpretation of data to information regarding failure profile
• reasoning of information into knowledge about the existing
status of the equipment

• converting knowledge to decision regarding maintenance
scheduling

• handling of unreliable analysis that may trigger false alarm
(false positive) or failure to respond (false negative)

Hence, a solution that integrates the traditional (corrective and
preventive) maintenance methods with condition-based
maintenance methods may provide a solution that is robust,
effective, and efficient. In this integrated method:

• the failure analysis is carried out in the traditional manner, and
then the results of failure profile is used judiciously to develop
a maintenance strategy;

• the time for inspection and maintenance of a component is
adjusted based upon condition monitoring.

This paper discusses the work carried out to develop
methodology for identifying faults in a wind turbine generator
bearing using interpretable machine learning models and using
the results for rescheduling of its maintenance time. The
methodology includes preprocessing of data to remove outlier
data, use of machine learning models to predict bearing
temperature, identification of deviation between predicted and
actual temperatures, critical analysis of results, and
recommendations for rescheduling of maintenance tasks.

2 Proposed fault detection
methodology

2.1 Description of the process

In order to develop an effective and efficient asset management
program for a component, it is important to understand the process
in terms of the structure, environment, and operation.

A wind-turbine contains 20 to 25 bearings, all of which must be
considered in a system-level reliability calculation of life expectancy
[wind power engineering]. A typical roller bearing consists of four
components: a) inner ring, b) outer ring, c) cage, and d) rollers.
During an operation, these components are subjected to different
levels of dynamic and static loads, which can be in axial, radial or
combination direction under constant or alternating conditions.
These loads cause degradation of the material because of wear
(contact wear—peeling, scoring, smearing, etc.), fatigue (contact
fatigue—flaking, spalling, etc.), corrosion, electrical erosion, plastic
deformation, and fracture and cracking (ISO, 2017), thereby
resulting in the deterioration of the components and ultimately
failure (Sankar et al., 2012). As the degradation progresses, it also
results in changes in the behavior patterns of parameters like
temperature, vibration, noise, rotational speed, etc. By monitoring
these parameters using appropriate sensors, it may be possible to
diagnose the health of the bearings. Commonly used parameters for
identifying fault in a bearing include temperature, vibration, and
noise.

2.2 Feature selection

As discussed in the previous section, temperature is a commonly
measured parameter to monitor the health of a bearing, because it is

Frontiers in Energy Research frontiersin.org03

Bindingsbø et al. 10.3389/fenrg.2023.1284676

90

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


easy to continuously monitor and analyze in order to identify any
abnormal behavior.

Figure 1 shows the simplified flowchart of heat transfers taking
place in a bearing. A bearing is at a thermal equilibrium when it
reaches a steady temperature. At this temperature, there is a balance
between:

1. Heat generation due to bearing friction (rolling, sliding, etc.) and
seal friction—During an operation, the friction among the
components of a bearing results in generation of heat, the
amount of which is dependent upon a number of factors,
including the rotational speed, type of bearing, bearing
geometry, elastic deformation under load of the rolling
elements and raceways, type of lubricant and its application,
and sliding friction between the components. The friction also
results in its wear as a result of which there is an increase in
bearing surface imperfections (deformation, pitting, craters,
depressions, surface irregularities, spalling, cracking, etc.). The
formation of surface imperfections leads to an increase in friction
resulting in an increase in heat generation. Thus, an increase in
friction due to structural imperfections or deterioration in
lubrication increases the temperature of bearings.

2. Conductive heat transfer from or to the adjacent
parts—Temperature of a bearing depends upon the heat input
from or heat output to the adjacent parts. One piece of equipment
that can significantly affect the bearing temperature is the
generator itself. When the generator shaft rotates, heat is
generated due to electrical resistance in the windings, resulting
in heating of the generator. Since the temperature of the
generator is higher than the temperature of the bearing, there
is thus a heat transfer from generator to bearing. By measuring
the temperature of the generator in stator windings, it may be
possible to estimate the effect of the generator temperature on the
temperature of the bearing.

3. Convective heat dissipation to environment—Temperature of a
bearing in operation is generally above the environmental
temperature, hence the bearing continuously dissipates heat to

the environment. The rate of convective heat transfer is a
function of:
• Convective heat transfer coefficient—The convective heat
transfer coefficient depends upon a number of parameters,
including the air velocity over the solid surface and the specific
heat capacity of humid air. The specific heat capacity of humid
air is approximately proportional to the absolute humidity of
air. Thus, as the humidity increases the value of convective
heat transfer coefficient increases, resulting in an increase in
heat loss (Boukhriss et al., 2013). Thus, the temperature of a
bearing depends upon the speed of air circulation around it
and the relative humidity of air.

• Temperature difference between the bearing and the
environment—The rate of heat loss is proportional to the
difference in the temperatures of the solid (bearing) and the
environment. Thus, the temperature of the bearing depends
upon the ambient temperature.

Based on the understanding of the heat transfers, five variables
have been selected to predict the bearing temperature. These are:

1. Generator Shaft/Bearing Rotational Speed—This is the rotational
speed of the high-speed shaft connected to the generator. The
shaft is supported by the generator bearings, and thus rotation of
the shaft leads to rotation of the bearing resulting in generation of
heat in the bearings due to friction.

2. Generator Temperature—This measures the temperature of the
generator stator windings. When the generator shaft rotates, heat
is generated by electrical resistance in the windings. The windings
are located close to the generator bearings and heat is transferred
from the windings to the bearings.

3. Wind Speed—In a wind turbine, wind turns its rotor which in-
turn rotates the shaft of the generator. Thus, wind speed
determines the rotational speed of the generator shaft and
bearing. Additionally, since the nacelle is not airtight, the
wind speed impacts air movement inside the nacelle, which in
turn influences the convective heat transfer rate.

FIGURE 1
Flowchart showing the heat transfers taking place in bearings.
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4. Nacelle Air Humidity—This is the relative humidity of air inside
the nacelle.

5. Nacelle Temperature—This is the temperature measured in the
confined space housing the wind turbine drivetrain. The
generator is located at the back of the nacelle and is therefore
affected by the ambient temperature in the nacelle.

Figure 2 shows the flowchart of the methodology employed
for detecting fault in a bearing. Using the five parameters, it may
be possible to estimate temperature of a healthy bearing and if
the measured temperature is above the predicted value, then
there is a possibility that the higher temperature is the result of

increased friction due to degradations in the bearing or
lubrication.

2.3 Proposed model for predicting bearing
temperature

As discussed in the previous section, the first step is to predict
the bearing temperature using the five input variables. Figure 3
shows the flowchart of proposedmethodology for predicting bearing
temperature using machine learning algorithms.

2.3.1 Selection of regression algorithms
In this project a number of machine learning algorithms have

been considered for developing a predictive model. These included:

• Linear Models—Linear Regression (LR), Lasso, Ridge, and
Bayesian Ridge Regression

• Tree-based Models—Decision Trees, Random Forest (RF)
• Boosting Models—AdaBoost, XGBoost and LGBoost
• Support Vector Regression (SVR)

The short-listing of suitable algorithms have been carried out
based on two key criteria.

• Firstly, the algorithms that demonstrate high compatibility with
interpretable machine learning tools (example, SHAP) have been
prioritized. This consideration is crucial as it ensures that the
developed models are not just black boxes, rather their decision-
making processes can be understood and explained. This aspect is
particularly important for applications where transparency and
trust in the model’s predictions are paramount.

• Secondly, one representative algorithm from each of the
aforementioned categories—linear models, tree-based
models, boosting models, and support vector machines
have been deliberately selected. This enables comparison
regarding their behavior and strengths.

These selection criteria help to identify the most effective
algorithm that not only delivers high accuracy but also aligns

FIGURE 2
Flowchart showing the proposed fault detection methodology.

FIGURE 3
Flowchart for developing the proposed interpretable machine
learning model.
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with the interpretability and applicability requirements of our
project. Thus, out of the above mentioned algorithms, four
algorithms—Linear Regression (LR), Random Forest (RF),
Support Vector Regression (SVR) and XGBoost—have been
shortlisted for further testing.

2.3.2 Data preprocessing
Data preprocessing is an important step of any machine learning

model. This is because raw data is typically created, processed, and
stored by a mix of humans and business processes, often resulting in
imperfections like vague, inconsistent, irrational, duplicate or
missing values. These imperfections need to be corrected for the
algorithms to work properly. Hence, an important step in
preprocessing is to identify and handle (often remove) outliers.
The outliers are removed only from the training and evaluation data
so that the models can be trained and evaluated on healthy turbine
operation data. This improves the models’ capability to detect
anomalies in the test data.

2.3.3 Exploratory data analysis (EDA)
Exploratory data analysis is used to analyze and investigate the

data set and summarize the main characteristics by employing data
visualization methods. Common methods include the use of
Pearson, Kendall, or Spearman correlation metrics. These metrics
depict the correlation between all the possible pairs of values and is a
powerful tool to identify and visualize patterns in data.

2.3.4 Data splitting—training, validation and testing
data

In supervised machine learning tasks, best practice is to split
data into three independent data sets: training set, validation set and
test set.

2.3.5 Model training
Model training is the process of teaching a machine learning

model to make predictions or perform a specific task by exposing it
to a labeled data set. The goal of model training is to enable the
model to learn patterns, relationships, and rules from the training
data so that it can generalize its knowledge to make accurate
predictions on unseen or future data.

2.3.6 Model evaluation
In order to select the best performing algorithm out of the four,

some criteria for evaluation need to be applied. These criteria should
be able to judge a model’s performance regarding a) accuracy of
prediction, b) compatibility with interpretable machine learning
tools, c) time usage for carrying out the calculations, and d)
simplicity. The selection of the best model is based on an overall
assessment of all the criteria.

To evaluate the accuracy of prediction, Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R2)
have been used.

2.3.7 Hyperparameter tuning
Many machine learning algorithms require hyperparameters

that need to be defined before running them. First-level model
parameters are decided during training, but the second-level tuning

parameters need to be tuned to optimize the performance. Typically,
this is done by performing cross-validation or evaluating predictions
on a separate test set (Probst et al., 2019).

In this analysis, hyperparameter tuning is performed using grid
search (Bergstra and Bengio 2012) and hyperparameter values
suggested by Probst, Boulesteix et al. (2019). This method runs
through all possible combinations of the parameters within their
search ranges forming a grid. It is performed using the scikit-learn
library for python programming language. The grid search finally
ranks all the combinations by their mean RMSE score across the
same cross-validation folds used for model evaluation. Results from
the grid search are used to select the optimal values for the
hyperparameters.

Besides grid search there are additional hyperparameter tuning
methods such as random search and Bayesian optimization. Grid search
is selected due to its transparency and reproducibility, as well as its
robustness against local optima. By evaluating all possible combinations,
it reduces the risk of getting stuck in suboptimal regions of the
hyperparameter space, and hence it increases the likelihood of
finding the best set of hyperparameters for a given problem.

2.4 Model interpretation using SHAP

Once the model has been tuned using optimal hyperparameters,
it is ready to be interpreted. SHAP has been used to interpret outputs
of the best performing machine learning model and quantifying
impact of each features to predictions. A negative SHAP value
indicates a negative impact that decreases the value of the model
output, whereas a positive SHAP value indicates a positive impact
that increases the value of the model output. Although a SHAP
analysis does not explicitly imply causalities, it helps in interpreting
how each feature contributes to the model output and helps to
identify importance of a feature in a model prediction.

3 Illustrative case study

3.1 SCADA data

To demonstrate the feasibility of the proposed methodology,
SCADA data made available by the energy company EDP (2017)
from four horizontal axis wind turbines located off the western coast
of Africa has been used. The data has been recorded over a period of
2 years (2016 and 2017) at a 10-min averaging interval. The datasets
contain values of 76 parameters. Besides this, associated datasets about
meteorological conditions have also been provided for the same time
instances. Failure logs containing timestamp, damaged component and
associated remarks are also available. For this work, Turbine Number 7
(“T07”) has been selected because its failure log has recorded generator
bearing failure. For Turbine Number 7, the total number of instances are
52,445 and 52,294 for 2016 and 2017, respectively. Table 1 shows the
selected features and target used for developing the model.

The generator uses two bearings, one on the drive-end and one
on the driven end. The failure log records damage of generator
bearings on 20 August 2017, at 08:08:00, and damage of generator
shortly afterwards on 21 August 2017, at 16:47:00 (Table 2). The
downtime caused by the generator failures is highlighted in green in
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Figure 4 and lasts from 20 August 2017, at 08:10:00 until 28 August
2017, at 21:50:00. The model shall attempt to predict these failures.

3.2 Data preprocessing

3.2.1 Identification of data outliers
Quite often SCADA data contains outliers that arise due to

imperfections in the SCADA system and do not reflect the actual
condition of process, environment, or component. For the
development of a predictive model, it is important to remove
these outliers because their presence can lead to biases in the model.

One common reason for outliers in the data is the inputs from
faulty sensors. Since health prognosis of a bearing relies heavily on
the data collected by the sensors, the reliability of analysis thus
depends upon the reliability of the collected data. Hence, the

reliability of results from the proposed methodology also depends
upon the quality of data used for the analysis.

Figure 5 shows plots of the temperature data versus selected periods
of the two bearings. Sudden spike in the recoded temperatures can only
be due to errors in the data collection, possibly arising due to the faulty
sensor. This is justified by the record showing that the sensor was
replaced on 30 April 2016 12:40 after recording High temperature in
generator bearing 1. Outliers like those shown in the figure need to be
handled during the data preprocessing.

In this model outliers have been identified by the use of box
plots, shown in Figure 6. In a box plot, the lower limit of the whisker
marks the minimum value, excluding outliers, whereas the upper
limit of the whisker marks the maximum value, excluding outliers.
The lower limit of the box is the first quartile (Q1 or the 25th
percentile), whereas the upper point of the box is the third quartile
(Q3 or the 75th percentile). All values within the box between

FIGURE 4
Bearings temperature during the bearing and generator failures in (A) 2017 and (B) August 2017.
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Q1 and Q3, also called the interquartile range (IQR), are calculated
using Eq. 1. The horizontal red line in the box is the median value.
An outlier in this case is defined as a value outside 1.5 times the IQR
above Q3 or below Q1.

IQR � Q3 − Q1 (1)
where: IQR = Interquartile range Q1 = the first quartile, or the 25th
percentile Q3 = the third quartile, or the 75th percentile

3.2.2 Data cleaning
Depending upon the characteristics of specific variables, rules

for identification and handling of outliers have also been adopted.

For example, a threshold of 100°C has been set for the generator
bearing temperature and all values higher than this have been
removed. Similarly, relative humidity values are missing in the
period 3 January 2017 to 6 May 2017, and this gap has been
filled with values from the previous year.

Further cleaning has been performed using DBSCAN (Ester
et al., 1996). DBSCAN is a density-based clustering algorithm that
works on the assumption that clusters are dense regions in space
separated by regions of lower density. “Densely clustered” data
points are gathered into a single cluster.

The results before and after cleaning are shown in Figure 7.
Figure 7A shows the presence of a significant number of outliers
which indicate that either the turbine is not operating despite
the blowing wind, or the sensors are not working properly.
Additionally, there are many instances of the turbine not
operating at its maximum potential. Figure 7B shows the plot
after the removal of the most significant outliers and the
remaining data points sufficiently fit the theoretical power
curve.

3.3 Exploratory data analysis (EDA)

Figure 8 shows the Pearson correlation matrix of the input
features and target. Some signals are highly correlated, for
example a) wind speed and generator rotational speed, b)
wind speed and generator phase temperature, and c) generator
phase temperature and bearing temperature. The matrix shows
that the selected features are significantly relevant to the target
variable.

To further understand the correlation between the features and
target, pairwise relationships between them in the training set have
been plotted (Figure 9). The marginal histograms have been
prepared by dividing signal values into 25 bins.

FIGURE 5
Effect of faulty sensors on recorded temperature of bearings.

FIGURE 6
Box plot of SCADA signals.
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3.3.1 Effect of generator shaft/bearing rotational
speed on bearing temperature

The time averaged wear rate of a bearing can be given as (Gupta,
2013):

W T( ) � 1
T

K

H
∫T

o
Q t( )u t( )dt (2)

where :W = Time-averaged wear rate over the time interval (T) K =
Wear coefficient H = Hardness of the material being subjected to
wear Q = The time-dependent load at a given interaction u = Sliding
velocity as a function of time

The equation shows the dependence of wear on the parameters
Q and u, which in turn are dependent upon the rotational speed.

Thus, the wear rate increases with an increase in the rotational
speed. Corresponding to the increase in wear, the heat generated due
to friction also increases with the increase in the rotational speed.
This increase in heat generation manifests itself as an increase in the
temperature.

Figure 9 shows the bearing temperature (Gen_Bear_Temp) is a
function of the rotational speed of generator shaft/bearing
(Gen_RPM).

3.3.2 Effect of generator temperature on bearing
temperature

In a generator, heat is produced in the windings of the stators
due to the passage of electricity through the electric wiring (Joule
Heating). This heat is dissipated to the surrounding through
conduction and convection. A part of dissipated heat also
increases the temperature of the generator bearings.

Figure 9 shows the approximately linear relationship between
the generator temperature (Gen_Phase_Temp) and the bearing
temperature (Gen_Bear_Temp).

3.3.3 Effect of wind speed on bearing temperature
Wind speed has two opposing effects on the bearing

temperature. On the one hand, an increase in wind speed
increases the rotational speed of bearing resulting in increase in
temperature due to friction. On the other hand, wind speed also
increases air circulation within the nacelle, thereby increasing the
convective heat transfer coefficient and subsequently heat loss from
the bearing.

Figure 9 shows that there is a net increase in bearing temperature
(Gen_Bear_Temp) with an increase in wind speed (Wind_Speed).

3.3.4 Effect of nacelle air humidity on bearing
temperature

Since the specific heat capacity of humid air increases with an
increase in the relative humidity of air, expectedly an increase in

FIGURE 7
Plot of power generated versus wind speed using data of training period (A) Using raw. (B) Using data after cleaning outliers.

FIGURE 8
Pearson correlation matrix of the input features.
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relative humidity increases the convective heat transfer coefficient
and subsequently increases heat loss from the bearing.

Figure 9 shows a weak correlation between the relative humidity
of air (Humidity) and the bearing temperature (Gen_Bear_Temp).

3.3.5 Effect of nacelle temperature on bearing
temperature

The ambient temperature in the nacelle follows an annual cycle,
whereby the temperature is lower during winters and higher during
summers. Since the convective heat transfer is proportional to the
temperature difference between a bearing’s surface temperature and
the ambient temperature, this variation in the ambient temperature

has an effect on the heat dissipation from bearing to the
environment.

Figure 9 shows an increase in the bearing temperature (Gen_
Bear_Temp) with an increase in ambient temperature inside nacelle
(Nac_Temp).

3.4 Data splitting—training, validation and
test data

The data from 2016, after the removal of outliers, has been used
for training the model in two steps. In the first step, the clean

FIGURE 9
Pairwise relationships between input features.
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2016 data is split into two parts—training data and validation data.
The data from the first 8 months is used to train the algorithms,
while the data from the last 4 months is used to evaluate (validate)
the algorithms. Four month-long validation data can be considered
sufficient to cover different parts of the time series such as trends and
seasonality patterns. The validation data has been divided into four
folds, each lasting for nearly a month. The initial part of the
validation set is correlated with the last part of the training set.
In order to increase independence between training and validation, a
gap of 24 h is removed from the end of the training set close to the
validation set.

In the second step, the best performing model has been trained
on all data in 2016 in order to capture any seasonal variations.

Thus, the complete dataset has been split into training data
(33%), validation data (17%) and test data (50%). The dataset
contains over 100,000 timestamps, and hence using only 33% (in
the first step) and 50% (in the second step) of the data for training is
sufficient. Holding out 17% of the data for validation is in the
recommended range (Belyadi and Haghighat 2021).

3.5 Model training

The four shortlisted Ralgorithms—Linear Regression (LR),
Random Forest (RF), Support Vector Regression (SVR) and
XGBoost—are trained using the training data set. For the
algorithms to be evaluated on equal terms, all algorithm
parameters are set to their default values during initial training.

3.6 Model evaluation

In the first step, performance of the four algorithms—Linear
Regression (LR), Random Forest (RF), Support Vector Regression
(SVR) and XGBoost—have been evaluated. Table 3 presents the
RMSE scores for the four algorithm from the cross validation. The
table shows that Support Vector Regression (SVR) has the best
RMSE mean score whereas Linear Regression (LR) has the worst.
The existence of almost equal RMSE values across different folds
signifies that the data is evenly distributed over the time period.

Table 4 presents the results of the evaluation of the four models
on the whole 1-year test set (2017). There is a noticeable difference in
the RMSE scores when the models predict a whole year compared to
only the folds in the cross validation. This is due to the test set
containing faulty turbine operational data whereas the cross
validation set consists of only healthy turbine operational data
similar to the training set used to learn the model. The
evaluation results suggest that:

• Linear Regression (LR)—This has a decent score and shortest
fit and prediction time.

• Random Forest (RF)—This has a good score but somewhat
long fit time.

• Support Vector Regression (SVR)—This goes from top
performing algorithm on the validation data to worst
performing on the test data in almost all parameters,
highest RMSE and longest fit and predict time.

• XGBoost–This scores on top while having an acceptable fit
and predict time.

TABLE 1 Selected features and target for developing the model.

Variable Description Units

Timestamp 10-min resolution

Features

Gen_RPM Generator shaft/bearing rotational speed rpm

Gen_Phase_Temp SCADA dataset gives the average temperature inside generator in stator windings Phase 1, 2 and 3. Since the temperatures are nearly the
same, Gen_Phase_Temp is an average temperature of the three temperatures

°C

Wind_Speed Ambient wind speed m/s

Humidity Relative nacelle air humidity %

Nac_Temp Nacelle temperature °C

Target

Gen_Bear_Temp Temperature in generator bearing 1 (Driven End) °C

TABLE 2 Failure log for Turbine Number 7 (“T07”).

Timestamp Component Remarks

20 August 2017, 08:08:00 Generator bearing Generator bearings damaged

21 August 2017, 16:47:00 Generator Generator damaged

TABLE 3 Cross validation RMSE scores.

Model Fold 0 Fold 1 Fold 2 Fold 3 Mean

LR 1.61 1.74 1.62 1.57 1.64

RF 1.53 1.68 1.57 1.58 1.59

SVR 1.48 1.55 1.46 1.31 1.45

XGBoost 1.48 1.74 1.48 1.51 1.55
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To visualize the performance of the algorithms, plots of the
predicted temperatures versus observed temperatures are shown in
Figure 10.

• Linear Regression (LR)—This tends to predict rather low
values

• Random Forest (RF)—Along with XGBoost this appears to
give the best fit

• Support Vector Regression (SVR)—This predicts high values
for some low bearing temperatures and low values for some
high bearing temperatures.

• XGBoost–This appears to be the most accurate model, even
though at times it predicts high values for some low bearing
temperatures

While the SVR shows good performance in scoring metrics, it is
important to note that the algorithm demands significantly more
time for model fitting and prediction compared to XGBoost. This
increased computational time, especially while dealing with large
datasets or in real-time analysis, often makes SVR unsuitable. In
contrast, XGBoost with its efficient handling of large data and faster
execution emerges as a more practical choice.

Upon detailed evaluation, XGBoost has been identified as the most
suitable algorithmbecause it strikes an optimal balance between accuracy
and computational efficiency. Furthermore, this algorithm can be fine-
tuned using hyperparameter tuning techniques, thereby, enhancing its
performance. This process involved systematically adjusting the
algorithm’s parameters to find the combination that yields the best
results in terms of prediction accuracy and processing speed. The fine-
tuned XGBoost model demonstrates a marked improvement in
performance, confirming its suitability for the required predictive
modeling tasks.

3.7 Hyperparameter tuning

As described in the previous section, the XGBoost model has
been selected as the most suitable model for further analysis. An

important part of machine learning optimization is the tweaking and
tuning of hyperparameters. Hyperparameter tuning is performed in
the XGBoost model to enhance the model’s accuracy before trying it
on the test data set. The selected hyperparameters and their
suggested ranges (Probst et al., 2019) for tuning are presented in
Table 5. In addition to the parameters in Table 5, the parameters
colsample_bytree and colsample_bylevel have been set to 0.6. In order
to determine the optimal combination of hyperparameters grid
search with cross validation strategy has been performed.

Results from the grid search are displayed in Figure 11. The figure
shows that as compared to max_depth, learning_rate and n_estimators
have more effect on performance of the algorithm in terms of RMSE,
MAE andR2. The optimal values of these parameters are given inTable 5.

Table 6 shows the performance of XGBoost algorithm after
hyperparameter tuning using the optimized parameter values given
in Table 5. As shown, there is an improvement in the performance of
the algorithm after hyperparameter tuning.

3.8 Prediction of generator bearing
temperature

The optimized XGBoost algorithm-based model (Figure 3) has
been used to predict bearing temperature using the TestingData (2017).

Figure 12 shows the plots of the actual and predicted values for
the period 1 January to 15 January 2017, the curves of which are for:

• actual temperature
• predicted temperature
• predicted plus/minus 2 standard deviation temperature

The figure shows that the actual temperature remains within the
(predicted ±2 standard deviation or approximately 3.5°C)
temperature range.

3.9 Sources of error

Inaccuracies in the output results may arise due to:

• The high correlations between feature and target variables may
impact how the machine learning model learns. This risk is
partly mitigated by using hyperparameters colsample_bytree
and colsample_bylevel.

• Faulty sensors
• Wrong calibration or drift in calibration of sensors

TABLE 4 Performance of models with default parameters.

Model MAE MAPE MSE RMSE R2 Fit time [s] Predict time [s]

LR 1.569 0.039 4.436 2.106 0.980 0.011 0.005

RF 1.479 0.035 3.888 1.972 0.982 18.104 0.889

SVR 1.521 0.037 4.887 2.211 0.978 90.701 188.590

XGBoost 1.436 0.034 3.824 1.955 0.983 1.266 0.019

TABLE 5 Hyperparameter search range.

Hyperparameter Search range Optimal value

n_estimators [200, 400, 600, 800, 1,000] 1,000

max_depth [3, 4, 5, 6, 7, 8, 9] 4

learning_rate [0.1, 0.05, 0.01] 0.05
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In the case study there may be additional sources of errors,
including:

• Replacing the missing humidity data with the values from the
previous year.

3.10 Fault detection and recommendation
for rescheduling maintenance plan

Figure 13 shows the plots of the actual and predicted values for
the period from 7 June to 23 June 2017. During this period there are

FIGURE 10
Predicted and observed temperatures for all models.

FIGURE 11
Model impact changing (A) learning_rate, (B) max_depth and (C) n_estimators.
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times when the actual bearing temperature exceeds the predicted
value by more than two standard deviations (approximately 3.5°C)
over significantly long periods, and this is highlighted in green. For
example, on 7 June 2017, the actual value reaches 95°C whereas the
model prediction is 76°C, a difference of 19°C.

After 7 June 2017, there is a tendency for the actual bearing
temperature to be higher than the predicted bearing temperature. At
times it often crosses the two standard deviation limit. This indicates
two possibilities:

• Malfunctioning of the bearing sensor.
• Possibility that the bearing is getting hotter than expected
perhaps due to increased friction. The increased friction could
be either because of increased wear or improper lubrication.

Both of these possibilities warrant special inspection and
monitoring activity.

Based on the detection of faulty bearing, recommendation may
be made for scheduling maintenance activities at the earliest
opportunity. This recommendation is justified by the fact that
the bearing breaks down 2 months later on 20 August 2017.

4 Model interpretation using SHAP

The XGBoost algorithm-based model used for the case study
gives reasonably good predictions for the temperature of a generator
bearing. The model needs to be further evaluated to interpret it is
working. Since XGBoost is a tree-based model, the Tree SHAP
algorithm proposed by Lundberg et al. (2018) for tree ensembles can
be used to calculate the SHAP values that could be used for the
interpretation of the working.

4.1 Global explanations

Figure 14A shows the mean absolute SHAP values for the used
features. The figure shows that:

• The generator phase temperature has by far the highest impact
on the model predictions. This is reasonable due to the
adjacent location of the bearing and generator.

• Nacelle temperature and wind speed have moderate average
impact on the model predictions, which should be expected
since the convective heat loss from bearing is directly
proportional to the difference in temperature between the

TABLE 6 Optimized XGBoost performance on test data and validation data.

Test data performance

Model MAE MAPE MSE RMSE R2

XGBoost 1.436 0.034 3.824 1.955 0.983

Optimized XGBoost 1.389 0.033 3.354 1.832 0.985

Change [%] 3.272 2.941 12.291 6.292 0.203

Validation Data Performance [RMSE]

Model Fold 0 Fold 1 Fold 2 Fold 3 Mean

XGBoost 1.48 1.74 1.48 1.51 1.55

Optimized XGBoost 1.41 1.65 1.44 1.40 1.48

Change [%] 4.73 5.17 2.70 7.29 4.52

FIGURE 12
Actual and predicted temperatures of generator bearing for the period January 1 to 15 January 2017.
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bearing and the nacelle temperature. Wind speed affects not
only the rotational speed but also the convective heat loss.

• Generator or bearing rotational speed and relative humidity
have low impact.

Figure 14B shows the changes in the SHAP value for changes in the
feature value. For all features except the humidity, a higher feature value
has a positive impact on the model prediction, and a low feature value
has a negative impact on the model output. As is to be expected, the
humidity has the opposite impact for its feature values, because increase
in humidity increases the specific heat capacity of air resulting in higher
convective heat loss from the bearing and a decrease in temperature.

SHAP treats each feature as a “player,” hence there are
interaction effects between features. The SHAP main effect plots
in Figure 15 remove all interaction effects between features and thus
display the raw impact of each feature.

• Generator Shaft/Bearing Rotational Speed—Generator
rotational speed has a low impact with a small positive
spike near its max rotation speed.

• Generator Temperature—The generator phase temperature
has a dominant and nearly linear impact on the model output.

• Wind Speed—At the cut-in wind speed of 4 m/s, there is a
marked increase in the impact of wind speed. It increases up until
the rated wind speed of 12 m/s and from there on stays constant.

• Nacelle Air Humidity—The impact of humidity is rather weak
and decreases slowly across its range.

• Nacelle Temperature—Nacelle temperature has an increased
positive impact in the temperature range 20°C–45°C.

4.2 Local explanations

SHAP waterfall plots are used for explaining individual
predictions. Starting from the expected value of the model output

(the average prediction of the model on the training data) at the
bottom of the waterfall plot, each row shows the contribution of each
feature to the model output for a prediction. A positive (red)
contribution moves the initial output value higher whereas a
negative (blue) contribution moves the initial output value lower.

4.2.1 Explanation of prediction for 7 January 2017
Figure 12 shows the plots of the actual and predicted values for

the period of 1 January to 15 January 2017. During this period all
predicted values are within two standard deviations of the actual
value, indicating a possibility that the bearing is operating normally.
From this period, an instance (7 January 2017, 17:40:00) has been
randomly selected for local explanation.

According to Figure 15, the temperature of bearing is influenced
most by the generator temperature because of its high temperature
and proximity to the bearing. This is followed by the nacelle
temperature and wind speed. The generator rotational speed and
humidity have relatively minor effect.

On 7 January 2017, at 17:40:00 the actual generator bearing
temperature is 53°C. The SHAP waterfall plot in Figure 16 explains
how the XGBoost model arrived at a prediction of 54°C.

• Generator Shaft/Bearing Rotational Speed—Rotational speed
has minor effect on the predicted temperature value, hence the
net heating effect on the predicted bearing temperature
(+0.52°C) is relatively small.

• Generator Temperature—The high generator phase
temperature (89.3°C) has by far the most significant
positive influence (+8.52°C) on the bearing temperature.

• Wind Speed—Wind speed makes relatively small positive
effect (+2.02°C) on the predicted value. Wind speed has
two opposing effects—increase in temperature due to
increased friction and decrease in temperature due to
increased convective heat loss. In this case the rotational
speed has small effect (+0.52°C) and hence a greater

FIGURE 13
Actual and predicted temperatures of generator bearing for the period 7 June to 23 June 2017.
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positive effect may be due to the interaction between the wind
speed, the generator temperature and the bearing temperature.

• Nacelle AirHumidity—The high relative humidity (78%) also does
not significantly (−0.52°C) affect the predicted temperature value,
because relative humidity itself does not have any significant role.

• Nacelle Temperature—The nacelle temperature (30°C) is close
to the average annual temperature, ranging between 15°C and

50°C, and hence does not play a significant role (−0.01°C) in
the fall of temperature on predicted value.

4.2.2 Explanation of prediction for 7 June 2017
Figure 13 shows the plots of the actual and predicted values

for the period 7 June to 23 June 2017. On 7 June 2017 (Summer),
the environmental and operating temperatures are quite different

FIGURE 14
(A) Mean absolute SHAP value per feature. (B) Matrix plot of SHAP values for different features.

FIGURE 15
SHAP main effects plot for (A) generator rpm, (B) generator phase temperature, (C) nacelle temperature, (D) wind speed and (E) humidity.

Frontiers in Energy Research frontiersin.org16

Bindingsbø et al. 10.3389/fenrg.2023.1284676

103

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


from those of 7 January 2017 (Winter). Based on the SHAP
waterfall plot (Figure 17), an attempt is made to explain the
working of the model.

• Generator Shaft/Bearing Rotational Speed—As in the previous
case (7 January 2017), the rotational speed has a minor effect
on the predicted temperature value, and hence the net heating
effect on the predicted bearing temperature (+1.48°C) is
relatively small. The small increase could be due to the
small positive spike that appears near its max rotation
speed (Figure 14A).

• Generator Temperature—The generator temperature is very
high (137.3°C) and this significantly (+20.95°C) raises the
temperature of the bearing.

• Wind Speed—Compared to the previous case, wind speed
gives relatively higher positive effect (+4.43°C) on the

predicted value. This may be because of higher interaction
between the wind speed, the generator temperature, and the
bearing temperature.

• Nacelle Air Humidity—As in the previous case, nacelle relative
humidity has negligible (−0.12°C) effect on the predicted
temperature value.

• Nacelle Temperature—Compared to the previous case, the
nacelle temperature (39°C) is 9°C higher than the previous
case, and hence there is significantly (+5.86°C) higher effect on
the predicted temperature.

The analysis provides a reasonable explanation for the predicted
bearing temperature. A high generator temperature (137°C)
increases the predicted bearing temperature significantly
(+20.95°C) and the remaining features also contribute to bringing
the predicted bearing temperature to 76.2°C.

FIGURE 16
Local explanation on 7 January 2017, 17:40:00 by waterfall plot.

FIGURE 17
Local explanation on 7 June 2017, 23:10:00 by waterfall plot.
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5 Conclusion

This paper presents a simple and robust methodology for
making a machine learning based model for detecting faults in
wind turbine generator bearing. In this model, the predicted
bearing temperature is compared against the actual bearing
temperature and a significant difference between the two
indicates a possibility of fault(s) in the bearing or its
lubrication. Either of these may result in failure. As a case
study, the idea has been demonstrated on a generator bearing,
using real-life SCADA data. The results show that it is possible to
detect potential failure well in advance. This knowledge can be
used for planning maintenance.

Four different machine learning algorithms, Linear Regression
(LR), Random Forest (RF), Support Vector Regression (SVR) and
XGBoost, have been evaluated and XGBoost has been found to be
the most suitable algorithm for the task.

The paper also examines the role of five features, generator shaft/
bearing rotational speed, generator temperature, wind speed, nacelle
air humidity, and nacelle temperature, on the predicted bearing
temperature. Out of these, the generator temperature has been found
to play the major role, followed by the wind speed and nacelle
temperature. Bearing rotational speed and relative humidity of
nacelle air play minor roles.

To take the research work further, the following tasks have been
identified:

(a) analysis of data from different wind turbines,
(b) testing of other machine learning/artificial intelligence

algorithms, like artificial neural networks,
(c) consideration of the impact of more features,
(d) use of other interpretable machine learning tools such as

Individual Conditional Expectation (ICE) plots (Goldstein
et al., 2015) and LIME (Local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016),

(e) expanding the scope from component to system level.
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A framework characterizing the degradation of wind turbines for use inmultiple-
input damage-aware farm control is suggested. The focus is on the fatigue
damage of the powertrain (drivetrain + generator) system, but the methodology
may be extended to other components. A database of steady-state damage
analyses for different operating conditions (average wind speeds, turbulence
levels, power demands, and yawmisalignment angles) using aero-hydro-servo-
elastic simulations is first generated. Then, a weighted damage index based
on probabilistic long-term fatigue damage analysis of the powertrain system
components is suggested and used to represent degradation at the farm level for
control purposes. The focus is on curtailed conditions where the farm controller
dispatches power commands to individual turbines in order to track a demanded
power reference (rather than seeking to maximize power) at the farm level. As
a secondary objective, the controller seeks to mitigate degradation through a
smart combination of power commands and yaw offset angles, making use
of the weighted degradation index. The potential of the proposed approach is
demonstrated through a case study on the TotalControl Reference Wind Power
Plant in a FLORIS-based simulation framework. The proposed farm controller
is compared with the conventional one without damage mitigation feature and
with damage mitigation but without yaw angle as the control input. It is found
that combining yawing and downregulation effectively slows down degradation
on the main bearing and powertrain as a whole.

KEYWORDS

database, fatigue damage, powertrain, farm control, power tracking, curtailment, yaw
misalignment

1 Introduction

Enhancing the cost-effectiveness of offshore wind is unanimously cited as essential to
solve the energy crisis, and the importance of optimizing the operation and maintenance
of wind farms is underscored. Regarding operation, an aspect that takes increasing space
in wind farm operators’ economics is the provision of ancillary services to grid operators.
In particular, farm curtailment services for secondary (directly asked by the grid operator)
or tertiary (through intraday bidding in electricity markets) frequency support is expected
to increase dramatically as the penetration of intermittent energy sources (wind and solar)
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into the grid increases (Yasuda et al., 2022; Wiser et al., 2023). In
this context, wind farms are asked to provide a desired power
below the maximum available in the wind, leaving some freedom
in how individual turbine power outputs should be dispatched.
Maintenance, on the other hand, refers more to the degradation
of wind energy systems over time, associated with repair and
downtime costs, which is all the more acute as wind farms
move further from the shore. Recent literature has developed
digital twin models based on simulation or operational data for
monitoring the health condition and optimizing the operation
of the various electrical, mechanical, and structural systems of
wind turbines and power plants (Xia and Zou, 2023; Moghadam
and Nejad, 2022; van Dinter et al., 2022). A powertrain system
consisting of the gearbox, shafts, main bearings, back-to-back (BTB)
frequency converter, generator, and rotor is on average responsible
for approximately 50% of wind turbine total failures and downtime
(Pfaffel et al., 2017). Among these, powertrain components such
as bearings and gearbox are prone to fatigue damage, which
greatly depends on how much power the turbine is asked to
produce (Moghadam et al., 2023). This lays the motivation behind
this study, as a way to reduce the levelized cost of energy
(LCOE) of wind power, combining wind farm curtailment with
degradation mitigation by smart power dispatch to influence the
remaining useful lifetime of powertrain components, in order
to reduce maintenance costs while making profit from ancillary
service provision.

However, this requires a multidisciplinary and multiscale
simulation framework for development and analysis. In particular,
complexity has to be reduced by using a simple indicator for
degradation, avoiding the requirement for running turbine-
and component-scale models at the farm level. To this end,
Moghadam et al. (2023) suggested a mapping between the damage
index and operating conditions (wind speed, turbulence intensity,
and power set point) based on turbine-level simulations and a quasi-
static degradation model. High-fidelity physics-based (state-space
models of varying degrees of complexity with constant/time-variant
lumped parameters (Moghadam et al., 2021; Zhang et al., 2021;
Moghadam and Desch, 2023), multi-body (Peeters et al., 2006)
and finite element (Hart et al., 2020), and data-driven (random
forest; Azzam et al., 2022) models and artificial neural network
(Azzam et al., 2021) have been used in the literature to estimate
loads on powertrain components, but the overall complexity sets a
limit to their applicability. Higher fidelity would also be beneficial
regarding the effect of wake on powertrain, especially when wake
flow impacts only part of the downstream turbine’s rotor as has
been identified by van Binsbergen et al. (2020) using FAST.Farm
simulations featuring the dynamic wake meandering model were
carried out by Madsen et al. (2010). Again, with complexity as the
limiting factor and with farm-level use in mind, Moghadam et al.
(2023) modeled wake-added turbulence as a simple increase
in turbulence intensity in the ambient wind spectrum as
recommended by the IEC standard IEC 61400-1:2019 (2019). This
way, wake-added turbulence is readily encompassed by adjusting
turbulence intensity as an input parameter when reading in
the database.

Another multidisciplinary bottleneck lies in modeling local
wind variations between turbines, since they drive the local available
power that is a key input to power dispatch—setting an upper

bound to the individual set points. Variations in mean wind speed
due to wake-induced velocity deficit are typically readily included
in available farm simulation tools. Farm-wide wind fluctuations
due to turbulence are, however, not trivial to include, although
their effect on power dispatch is tremendous. The mid-fidelity
approach used in Moghadam et al. (2023) is based on models
for synthetic turbulence generation that have been specifically
developed for farm-wide applications (Chabaud, 2023, based on
Sørensen et al., 2008).

Damage mitigation in curtailed operations is receiving
increasing attention in the literature (Knudsen et al., 2015;
Stock et al., 2020; Merz et al., 2021; Sood et al., 2023). However,
the powertrain has not been the focus as modeling fatigue damage
on its components requires multidisciplinary collaboration and a
change of metric from damage-equivalent load to fatigue damage
(Moghadam et al., 2023; Sood et al., 2023). Also, modeling wind
fluctuations has been either simplistic (based on frozen turbulence
assumption, only valid at the turbine level) or exceedingly costly
(based on large eddy simulations, LES), limiting the studies’ validity
or flexibility, respectively.

Yaw angle offset control has always been used in the context
of power maximization: the basic use is to follow wind direction
and reduce misalignment, and the advanced use is wake steering
to reduce wake losses on downstream turbines. In this context, the
influence of yaw misalignment on drivetrain loads has been studied
by Cardaun et al. (2019) and van Binsbergen et al. (2020), where
the authors showed that yaw misalignment does not necessarily
have a negative impact; however, a combination with the farm
power curtailment controller has not been studied. This work adds
a new dimension to the previous study by Moghadam et al. (2023),
showing how yaw angle offset and power-tracking active controllers
can cooperate at the farm level to reduce fatigue damage and
spread it among turbines. To this end, a powertrain fatigue damage
analysis is performed considering different power set points and
yaw offset angles in addition to wind conditions. The resulting
damage database is utilized for tuning the farm controller gains. The
potential of the proposed control scheme is then demonstrated in
case studies.

The main contributions of this article are

• developing a powertrain system fatigue damage
database that encompasses yaw misalignment angle
variations in addition to wind field and demand
variations,
• designing a power tracking and yaw angle offset coordinated

controller by using the developed database to enhance the load
mitigation feature of the farm controller, and
• demonstrating the use of the database within the proposed

farm controller and its potential to steer farm-wide
degradation.

The article is organized as follows: the database
approach, the farm controller, and the utilization of
the database are described in Section 2; the results
related to database generation and demonstration are
discussed in Section 3; and finally, the article is concluded
in Section 4.
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2 Methodology

2.1 Database generation

The methodology described in Moghadam et al. (2023) with
yaw misalignment added is shown in Figure 1. The powertrain
system damage database as a function of wind speed, turbulence
intensity, power demand, and yaw misalignment angle is
created by turbine-level aero-hydro-servo-elastic simulations in
NREL’s OpenFAST—the servo part uses a custom version of the
DTU wind energy controller (Meng et al., 2020; Hansen and
Henriksen, 2013) featuring active power derating; the hydro
part is not included at this stage and left as further work. The
steps are

• generating input turbulent wind field by NREL’s TurbSim with
desired mean wind speed and turbulence intensity,
• running the aero-hydro-servo-elastic simulation with the

desired power command and yawmisalignment angle to obtain
global powertrain loads,
• propagating these loads to powertrain subcomponents using a

quasi-static approach,
• calculating the load and stress of each subcomponent, and
• calculating the fatigue damage of each subcomponent and the

weighted damage index.

The last step is based on a powertrain degradationmodel, further
detailed in the following:

• The physics-based quasi-static model proposed by
Moghadam et al. (2023) is employed.
• The load elements of the bearings and gears of the powertrain,

then the equivalent load of the bearings and maximum stress of
the gears are calculated.
• The load calculation is carried out based on the types of

components, basic geometrical parameters, powertrain input
loads, and safety factors from ISO 281 and ISO 6336 standards.
• Rainflow cycle counting and Miner’s rule are applied to

calculate the fatigue damage of the gears.
• Load–duration–distribution and Miner’s rule are applied to

calculate the fatigue damage of the bearings.

The database created by turbine-level simulations establishes
the damage index (an index that represents the long-term fatigue
damage of all the drivetrain components) as a function of
environmental (average wind speed and turbulence intensity)
and operational (generated power and yaw misalignment angle)
variables. The wake effect for individual turbines is considered by
the reduced mean wind speed and the increased wake-induced
turbulence intensity. When used in farm control, it is desirable
to characterize degradation via a scalar quantity, here called the
damage index. Depending on the control objective, the damage
index may be specific to a single powertrain component or
aggregated over all components. In the latter case, a weighted
damage index may be used based on the vulnerability of each
component. In this article, a simple weighting is suggested based on
probabilistic long-term fatigue damage analysis:

FIGURE 1
Powertrain damage vs. wind speed, yaw misalignment angle, and power demand database generation by single-turbine simulation (adapted from
Moghadam et al., 2023).
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αi =
D̄i

max(D̄i)
,

D̄i = ∫∫∫∫Di (u, I,γ,DF) . f (u, I,γ,DF)

× du dI dγ dDF for i = 1,…,M,

(1b)

where uoc, Ioc, and γoc are, respectively, themean value of wind speed,
the turbulence intensity, and the yaw misalignment angle during
the operating condition oc during the time interval t. Dt,oc

i is the
absolute value of accumulated damage for the i-th subcomponent
during this time interval. DF is the derating factor equal to the
ratio of generated power over available power—saturated to rated
power at higher wind speeds. M is the number of powertrain
subcomponents considered in the degradation analysis. αi is a
weight factor representing the normalized damage for the i-th
subcomponent. f(u, I,γ,DF) is the joint probability distribution of
the operating conditions, with the integral equal to 1.

2.2 Farm control and database utilization

The wind farm controller coordinates the operation of
the turbine’s active power—through pitch angle and generator
torque—and yaw controllers within the farm to meet the power
demand while steering degradation. The proposed farm power
tracking controller is an adapted version from Moghadam et al.
(2023); Merz et al. (2021) now augmented with a yaw angle
offset component. The integration of the powertrain degradation
database to the farm controller is shown in Figure 2, featuring
the yaw angle offset as an additional control input for the damage
mitigation function.

The wind farm control layout is presented in Figure 3. A
distributed architecture based on individual PI regulators and time-
adaptive gains is adopted. The wind farm controller is responsible
for dispatching the turbines’ power, Pc,i(t), such that the reference

wind farm power, at the point of common coupling (PCC), Ppcc(t),
is tracked. Each individual turbine controller (TC) consists of a
feedforward term and a feedback loop, as shown in Figure 3. The
former defines the bulk part of the PCC power reference requested
from the i-th turbine through the gain λi1(t). The latter uses the
farm output power error at the PCC, ϵpcc(t), by first dispatching
between turbine regulators through the gains λi2(t) and then using
it to compensate for the tracking errors through the proportional
and integral feedback gains, KP and KI, respectively. It is worth
mentioning that the power-sharing quality is directly affected by the
locally available power, Pa,i(t), and smart anti-windup mechanisms
are necessary to prevent sudden power injections due to changing
inflow conditions from weather, turbulence, and wakes (ui(t)).
The participation of each turbine in tracking the farm power
output is adjusted based on the turbine’s accumulated damage and
through time-dependent gains λij(t) (see Section 2), which are also
communicated among the turbines and encapsulate information
from the database of the weighted damage index (see Section 2.1).
The additional decision feature that is included, when compared to
Moghadam et al. (2023), allows for setting the yaw angle offset of the
damaged turbine(s), γi(t), to the value corresponding to the lowest
possible damage accumulation, under specified environmental and
operational conditions (power dispatch). In this sense, the updated
damage database, which includes the extra dimension of the
yaw angle offset, is used instead, further enhancing the damage
mitigation capabilities for the damaged turbines. The adaptive gains
λij(t) (j ∈ {1,2}) are defined as

λij =
gij (DI (u, I,γ,DF))

∑
turbines

gij (DI (u, I,γ,DF))
, s.t.

N

∑
i=1

λij = 1. (2)

where N is the number of turbines of the farm, and gij is a
tunable mapping from DIi = DI (u, I,γ,DF) to λij, for turbine i, as in
Moghadam et al. (2023). In case of no fatigue damage mitigation in
the farm controller, the gains λi1 and λi2 will take equal values for all
the turbines of the farm.

The yaw angle controller is an open-loop add-on. Optimal yaw
misalignment values are first found, then translated to yaw angle

FIGURE 2
Utilization of powertrain degradation database with the additional wake steering dimension for the farm power tracking controller design (adapted
from Moghadam et al., 2023).
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FIGURE 3
Wind farm control configuration and schematic of the distributed controller.

offset commands considering wind direction1. Losses induced by
yaw misalignment are compensated through the PI feedback of
the power dispatch control loop. Note that yaw angle control is
not meant to increase power production on downstream turbines
through wake steering in this context. Wake deflection is not
the focus and is included in the modeling framework only as a
side effect. The wake effects are modeled through the simulation
framework presented in Moghadam et al. (2023), employing a
modified, quasi-steady version of NREL’s FLORIS farm flow model,
which is capable of capturing the effect of the derating commands
to the turbines.

3 Results and discussion

3.1 Case study

The conditions of the case study simulated to generate the
database are listed as follows:

• The turbine model is DTU 10 MW reference wind turbine
(Bak et al., 2013) fixed-bottom installed on a reference
monopile as shown in Figure 4. The 10 MW powertrain system
design, configuration, and selection of the subcomponents for
the fatigue damage analysis are based on Moghadam and Nejad
(2020), Wang et al. (2020), and Moghadam et al. (2023);
• Design Load Case (DLC) 1.2 from IEC 61400-1 IEC 61400-

1:2019 (2019) (fatigue damage in normal operation) with wind
field parameters adjusted to offshore conditions using IEC
61400-3 IEC 61400-3-1:2019 (2019);
• In the simulations, the average wind speed changes from 4 to

25 m/s in steps of 3 m/s with the resolution of 1 m/s between

1 In this study, the wind direction was kept constant in farm-level simulations,

so the yaw angle offset commands and yaw misalignment input in the

database are equivalent.

FIGURE 4
DTU 10 MW reference wind turbine installed on a reference monopile.

7 and 13 m/s, which is the region that is rated with a high
chance of occurrence. Effective turbulence intensity or the
turbulence intensity by taking into consideration the wake-
added turbulence changes from 0% to 32% in steps of 8%. This
range is selected based on the results reported by Frandsen
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(2007). The derating factor DF changes from 0% to 100% in
steps of 25%. Yaw misalignment angle changes from −20° to
+20° in steps of 10°.
• For each case, six independent 1-h wind field realizations, with

the first 10 min removed, are run. In total, 9,000 independent
simulations have been run.
• The weighted damage index is calculated using a simple

weighted integral along the wind speed only (other
dimensions are fixed to their input value) using a standard
probability distribution from IEC 61400-1:2019 (2019), wind
turbine class I.
• Standard settings in FLORIS are used, i.e., the Gauss and GCH

wake model with default parameters (Laboratory, 2023).

3.2 Controller performance

The performance of the DTU controller featuring derating
functionality is shown in Figure 5, which shows how the rotor speed
and pitch regulators cooperate at different wind speeds and yaw
misalignment angles to achieve different values of power demand. In
this figure, ωrot is the average rotor speed and β is the average blade
pitch angle. As seen, the yaw misalignment angle has a negligible
influence on the controller’s operating state.

3.3 Powertrain degradation analysis

Figure 6 shows the selected time series of dynamic equivalent
loads of the bearings (the gearbox-side main bearing, the gearbox
high-speed shaft drive end bearing, and the generator non–drive
end bearing) and contact and root bending stresses of the gears (the
planet gears of the first planetary gear stage) as a function of the
average wind speed, turbulence, yawmisalignment angle, and power
demand variations. It can be seen that yaw misalignment has the
largest influence on the main bearing load in terms of both mean
value and oscillation amplitude. Further investigation showed that

the main shaft bending moment around the z-axis (yaw moment) is
the main contributor.

The results of the long-term fatigue damage analysis of the
powertrain system are shown in Figure 7. This sets the base for
selecting theweight factorsαi in Section 2.1 to calculate theweighted
average damage index. In practice, the main bearings dominate
damage in most operating conditions. At very high wind speeds, the
planet gears take over.The contributions from the other components
to the damage index are minor.

3.4 Turbine-level database

A global overview of the degradation database mapping the
damage index to operating conditions is shown in Figure 8,
which maps the weighted damage index of the powertrain under
consideration to mean wind speed, turbulence intensity, derating
factor, and yaw misalignment angle. The damage ratio in this figure
is defined as the ratio of the weighted damage index at a non–zero
yaw misalignment over its zero yaw misalignment value. It shows
the conditions when yawing is beneficial or detrimental, strongly
depending on the yawing direction. The rotational direction of the
rotor is the same for positive and negative yaw misalignment angles.
As a result, the angle of attack for each blade cross-section due to
the combined effect of the inflow velocity and the rotational velocity
will be different for positive and negative yaw angles. This gives
different induced velocities and the resulting aerodynamic forces on
the blade cross-sections. As a result, the drivetrain fatigue damages
are also different for positive and negative yaw angles, as shown
in Figure 9.

Figure 9 shows the normal operation (not downregulated) case
in more detail, where it is clear that yawing in any direction
would mostly increase damage. However, by crossing observations
with Figure 8, it is seen that in highly downregulated conditions,
yawing may prove beneficial. This may in turn be exploited by
the farm controller to reduce damage whenever the demand is

FIGURE 5
DTU controller performance in different yaw misalignment angles.
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FIGURE 6
Estimated powertrain components load and stress for different load conditions. (A) Bending stress for the planet gears—stage 1. (B) Contact stress for
the planet gears—stage 1. (C) Main bearing MB-B equivalent radial dynamic load. (D) Gearbox bearing HSS-DE equivalent radial dynamic loads. (E)
Generator bearing GEN-NDE equivalent radial dynamic load.

met, as demonstrated in Section 3.5. Multiple damage indices for
a given wind speed and yaw angle in Figure 9 are associated with
the different values of power demand. As the farm is operating in
the power curtailment mode of operation, the power set point and

therefore the generated power of each turbine can be different from
the available power.

To gain an understanding of how each parameter participates
in the damage, a sensitivity analysis is performed, with results as
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FIGURE 7
Vulnerability map of the powertrain while taking into consideration the wake steering controller.

FIGURE 8
Powertrain weighted damage index vs. mean wind speed, turbulence intensity, power demand, and yaw misalignment conditions. Plain/hollow
markers show conditions when yawing is detrimental/beneficial, respectively, regarding the overall powertrain fatigue damage.

presented in Figure 10. Figure 10B shows that damage increases
as turbulence intensity increases, as expected. Figure 10A shows
that the damage index increases as the mean wind speed increases
up to the rated mean wind speed 11.4 m/s, due to the increased
mean thrust force and its effect on main bearing damage. After
the rated wind speed is reached, there is a mitigating trend in
the overall damage attributed to the reduction of thrust force
(both mean value and fluctuations) through pitch control. For
high wind speeds and/or turbulence intensities, gears dominate
damage—the damage of gears is mainly driven by mean torque and
torque oscillations, not thrust—showing a different damage pattern
increasing linearly with demanded power. More interesting is the
relationship between damage and yaw misalignment angle shown
in Figure 10C, depicting inmore detail the preliminary observations
on a possible reduction of damage through yawing in downregulated
conditions. It shows that the combined effect of downregulating and

yawing is nontrivial and cannot be generalized in a simple control
law; case-by-case lookup in the database should be used in the
farm controller.

3.5 Applications in farm control

The same setup as used in Moghadam et al. (2023) has been
chosen for comparability:

• Turbine layout: 32 turbines, staggered, 5-diameter spacing
(Andersen et al., 2018).
• Wind speed: 12.4 m/s—damage is largely dominated by the

main bearing.
• Wind direction: North, i.e., perpendicular to dominant

(featuring maximum wake effect, eight rows with 5D spacing,
starting from turbines T29 to T32).
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FIGURE 9
3D sensitivity analysis to see the influence of yaw misalignment angle on the powertrain damage for a wide range of wind speed variations.

• Wind fluctuations: obtained from the model of Sørensen et al.
(2008) and Vigueras-Rodríguez et al. (2010, 2012).
• Tunable mapping functions gi: same for both i ∈ {1,2} readings.

gi (DIi) = 1− 0.5(
DIi − infi∈N

DIi
sup
i∈N

DIi − infi∈N
DIi
). (3)

It introduces an affine re-scaling of the damage indexDIi, which
ensures that turbines with lowDIi values will contribute more to the
power tracking task (gi takes values closer to 1), while turbines with
higher DIi values will contribute less (gi takes values closer to 0.5)
and with a minimum contribution that is lower bound by half of
the turbine’s naive contribution (without any damage information).
This tuning is not cost-optimized and only devised for qualitative
demonstration purposes. The sup and inf operators represent the
supremum and infimum for the set DIi.

The goal is to show how the yaw angle can be used by the
controller as an additional control input to improve the fatigue
mitigation feature. In total, 18 simulations are run corresponding
to two control objective scenarios, three control methods, and three
curtailment profiles. The two control objective scenarios are

• Scenario 1: All turbines are equally damaged. The objective is
to reduce the overall damage and spread it evenly over the
turbines. This case has a high cost-saving potential but would
require a global cost–benefit analysis that includes all turbine
components.
• Scenario 2: One particular turbine (turbine 1) is damaged. The

objective is to minimize further damage on this turbine only.
This case is particularly relevant as powertrain components
typically show early signs of failure, motivating the use of

damage mitigating control to influence the remaining lifetime
and coordinate with maintenance actions, thus reducing
downtime.

The three control methods are

• Method 1: No fatigue damage mitigation (equalLambdas),
• Method 2: Fatigue damagemitigationwithout yaw angle control

as in Moghadam et al. (2023) (loadMitigation),
• Method 3: Fatigue damage mitigation with yaw angle control

(loadMitigation yaw).

The three curtailment profiles correspond to constant power
references equal to 0.2, 0.5, and 0.8 per unit (pu) of the installed
farm power (320 MW).

Power dispatch commands follow the control scheme in Figure 3
and are updated every minute. Yaw angle commands are selected to
yield minimum damage on the turbine(s) of interest (all in scenario
1 and only turbine 1 in scenario 2) and updated every 10 min,
following the quasi-steady update rate of the waked flow field, by
the simulation framework described in Section 2.2.

Results for scenario 1 are shown in Figure 11 with one subfigure
per curtailment profile. It can be seen that power dispatch only
can even out damage between upstream and downstream turbines
but does not significantly reduce overall damage. Adding the yaw
degree of freedom, on the other hand, aims at decreasing damage
and is particularly efficient in heavily curtailed conditions, which is
consistent with the database simulation results.

Results for scenario 2 are shown in Figures 12, 13, where
the power dispatch (moving average) and the corresponding time
evolution of the damage accumulation for the damaged turbine
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FIGURE 10
Powertrain fatigue damage vs. turbine-generated power sensitivity analysis. (A) Damage index vs. generated power at different wind speeds. (B)
Damage index vs. generated power at different turbulence intensities. (C) Damage index vs. generated power at different yaw misalignment angles.

can be observed. Initially, Ppcc is naively distributed among the
turbines. After the first control update based on the database at 600 s
(because it requires information from the last 10 min), the farm
controller has realized that it can track Ppcc with less contribution
from the damaged turbine, and turbine 1 is re-dispatched to lower
power levels. Both versions of the farm controller calculate the same

powerdispatch plan for turbine 1, as observed from the moving
average of the power dispatch in Figure 12A. However, since the
proposed, enhanced version can also set the yaw angle of turbine 1
to a proper value, at the end of the simulation period, turbine 1 has
accumulated less damage (solid purple line in Figure 12) than the
case without a yaw angle offset (dashed green line in Figure 12). On
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FIGURE 11
Distribution of accumulated damage over the farm turbines under different operational strategies. (A) Farm reference power level 0.2 pu (north wind,
12.4 m/s). (B) Farm reference power level 0.5 pu (north wind, 12.4 m/s). (C) Farm reference power level 0.8 pu (north wind, 12.4 m/s).

the contrary, the naive approach that does not consider any damage
information (solid red lines in Figure 12) instructs a different power
dispatch plant for turbine 1, which would result in even higher
damage accumulation by the end of the simulation. The simulated
case’s corresponding optimal yaw angle offset sequence (adopted
only by the controller version with yaw information) is presented
in Figure 12B.

Similar results were also observed for the case of farm reference
power level 0.2 pu, and in general, for relatively lower values of

farm reference power (equivalently higher levels of curtailment).
For relatively higher values of farm reference power, however, the
effectiveness of the proposed control scheme is lower. To illustrate
this, we present the wind farm simulation results for the case of
farm reference power 0.8 pu, shown in Figure 13, and following
the same format as for the case of 0.5 pu (Figure 12). As can be
observed, in this case, the power dispatch for the damaged turbine
(turbine 1) is the same for both versions of the controller (with
and without yaw), and for most of the simulation period, they are
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FIGURE 12
Wind farm simulation and effects of the wind farm controller on the damaged turbine (farm reference level 0.5 pu). (A) Power dispatch (moving
average) and damage accumulation. (B) Yaw angle offset (case with Yaw).

FIGURE 13
Wind farm simulation and effects of the wind farm controller on the damaged turbine (farm reference level 0.8 pu). (A) Power dispatch (moving
average) and damage accumulation. (B) Yaw angle offset (case with Yaw).

even the same with the naive approach. This is primarily because
the requested farm power is relatively high when compared to the
available, for this case, considering the pessimistic wind direction
(northwind) that is associatedwith the largest impact from thewake
effect. It is only at the last part of the simulation period that the farm
controller can re-dispatch turbine 1 since the farm output can be
trackedwith less turbine 1 contribution.This is shown in Figure 13A,
where the power decreases to lower values after 3,000 s. However,
the decrease for the controller versions that take into account the
damage is much more significant when compared to the naive
approach, and as a consequence of this, the accumulated damage for
the turbine is slightly lower than the naive approach by the end of
the simulation. Again, the corresponding optimal yaw angle offset
sequence is presented in Figure 13B. In this case, we observe that
no offset yaw angle is decided, meaning that both versions of the
controller (with and without yaw) are identical, which also justifies
the identical damage accumulation for both versions, as depicted in
Figure 13A.This observation is in linewith the updated results of the

damage database when including the yaw misalignment capability,
where for higher turbine-generated power (lower derating levels),
the effect of the yaw on turbine damage (based on the weighted
damage index) becomes less significant.

4 Conclusion

A methodology characterizing powertrain fatigue damage for
use in farm control is suggested. This study focuses on the effect
of yaw misalignment, enabling yaw angle control at the farm level
for damage mitigation purposes. It complements previous work on
powertrain degradation modeling for multi-objective farm control
in curtailed conditions, where it was shown how the damage
on individual turbines may be steered while tracking a below-
maximum power reference from the grid operator by acting on
the power set points sent to individual turbines (the so-called
power dispatch). The farm controller makes use of a database
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mapping operating conditions (wind speed, turbulence intensity,
power set point, and yaw misalignment) to an overall indicator of
powertrain degradation. It is built fromnumerous aero-servo-elastic
turbine simulations feeding a quasi-static degradation model of
each powertrain component—bearings and gears—following design
standards, whose results are assembled to give a single metric
for degradation. It is found that yawing-downregulated—asked
to produce less power than available—turbines may further
reduce damage, especially for the main bearing. This finding is
then exploited in farm-level case studies with various levels of
curtailment, where the farmcontroller reacts to localwind variations
from turbulence and wakes, with power tracking as a primary
objective and damage mitigation as a secondary objective. This
demonstration of damage-aware farm control shows the benefit
of adding the yaw degree of freedom to the load mitigation
functionality.

These results are readily valuable when the objective is to
reduce downtime on a damaged upstream turbine showing early
signs of failure in a powertrain component. Future work will
be devoted to quantifying uncertainty in the database by using
high-fidelity models for wake effects and including the fatigue
damage of other turbine systems, namely, blades, pitch bearings, and
support structure, focusing particularly on combined yawing and
downregulation.This will enable the extension of the proposed farm
control methodology to holistic farm-wide lifetime extension and
optimal maintenance planning purposes.
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Digital twins play an ever-increasing role in maximising the value of
measurement and synthetic data by providing real-time monitoring of physical
systems, integrating predictive models and creating actionable insights. This
paper presents the development and implementation of the Aerosense digital
twin for aerodynamic monitoring of wind turbine rotor blades. Employing low-
cost, easy-to-install microelectromechanical (MEMS) sensors, the Aerosense
system collects aerodynamic and acoustic data from rotor blades. This data
is analysed through a cloud-based system that enables real-time analytics
and predictive modelling. Our methodological approach frames digital twin
development as a systems engineering problem and utilises design patterns,
design thinking, and a co-design framework from applied category theory to
aid in the development process. The paper details the architecture, deployment,
and validation of a ‘Digital Shadow’-type twin with simulation/prediction
functionalities. The solution pattern is discussed in terms of its implementation
challenges and broader applicability. By providing a practical solution to
integrating all the digital twin components into a holistic system, we aim to help
wind energy specialists learn how to transform a conceptual idea of a digital twin
into a functional implementation for any application.

KEYWORDS

digital twin, wind turbine rotor blade, monitoring, design development and
implementation, systems engineering, taxonomy, digital shadow, co-design

1 Introduction

1.1 Rotor blade aerodynamic monitoring

Due to the increasing size and flexibility of wind turbine rotor blades, it is
becoming more and more important to measure and monitor their aerodynamic
and acoustic behaviour operation (Schepers and Schreck, 2019). This can help wind
turbine manufacturers (OEMs) to improve their aerodynamic models and blade designs,
owner/operators to optimise operation and researchers to understand complex aerodynamic
phenomena. The complexity of the installation and use of such measurement systems
means that there have not yet been a large number of publications on the topic, despite
the increasing demand. For example, the DanAERO project from 2013–2016 investigated
the aerodynamic and acoustic properties of wind turbine blades in wind tunnel and field
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tests (Madsen et al., 2016; Troldborg et al., 2013). The field tests
included instrumenting a 2 MW wind turbine rotor blade with 50
flush-mounted microphones. It was shown that such aero-acoustic
field measurements have the potential to provide a high added value
to the wind industry through furthered understanding of three-
dimensional effects. Furthermore, the international collaboration
IEA Wind Task 47 aims to cooperate and share experiences in
aerodynamic measurements on Megawatt-scale wind turbines1. A
more detailed study of previous literature can be found in the
introduction of a recent paper by the current authors (Barber et al.,
2022). It can be summarised that there is a large unmet need for
easy-to-install and affordable rotor blade aerodynamic monitoring
systems in the sector.

1.2 Digital twins

Digital twins are a promising technology for creating value
from wind turbine monitoring, such as rotor blade aerodynamic
monitoring, particularly when a scale-up of a single measurement
campaign is desired. A “digital twin” is a top-level conceptualisation
based on two fundamental principles: “duality” and “strong
similarity” (Grieves, 2022). The digital twin paradigm thus
spans such a broad range of applications that two particular
implementations may share few - or no - technological solutions
between them. Recently, the current authors proposed a digital twin
classification system based on a Simple Knowledge Organisation
System (SKOS) (W3C, 2009) data model, to act as a starting point
for the development of digital twins by allowing comparison or
solution re-use between implementations (Marykovskiy et al.,
2023a). An excerpt from the classification system is presented in
Figure 1, referencing some digital twin types that have previously
been described in literature, such as DigitalTwinPrototype
and DigitalTwinInstance described by Grieves and Vickers
(2017), DigitalModel, DigitalShadow, DigitalTwin

described by Kritzinger et al. (2018), and various types categorised
by their functionalities as described by Wagg et al. (2020).

When classified based on their functional capabilities
(Wagg et al., 2020), digital twins can range from ‘Supervisory’, in
which data from measurements is simply ingested and stored, to
‘Operational’, inwhich analysis of the operational data is undertaken,
to ‘Simulation/Prediction’, in which models, simulations, validation,
and verification and uncertainty quantification enhance the
measurements, to ‘Intelligent/Learning’, which includes Decision
Support Systems (DSS), and finally to ‘Autonomous/Management’,
in which autonomous asset control is implemented. According
to Wagg et al. (2020), the main transformative aspect of a digital
twin is to improve the predictive capability of a system by
augmenting computational models with data to create a virtual
prediction tool that can evolve over time. ‘Intelligent/Learning’
digital twins have recently been shown to allow accelerated
and informed decision-making related to physical systems
by representing them virtually and including a continuous
feedback loop between the virtual representation and a physical

1 https://iea-wind.org/task47/, last access: 01 March 2024.

FIGURE 1
Excerpt from Digital Twin Conceptual Model (DTCM)
SKOS taxonomy (Marykovskiy et al., 2023a).

system (Arista et al., 2023; D’Amico et al., 2022; Grieves, 2022;
Wagg et al., 2020; Zheng et al., 2021).

1.3 Developing digital twins in the wind
energy context

Recently, publications related to digital twins and DSS in
wind energy were reviewed by Marykovskiy et al. (2024) in
the broader context of artificial intelligence systems and domain
semantics. Most digital twin implementations in wind energy were
found to belong to the functional levels ‘Supervisory’ (26 out of
111), ‘Operational’ (22) or ‘Simulation-Prediction’ (60). Only three
papers belong to the functional levels ‘Intelligent-Learning’ (2)
and ‘Autonomous-Management’ (1). For wind energy Operations
and Management (O&M), previous ‘Supervisory’ or ‘Operational’
digital twins included continuous structural monitoring of a wind
farm (Hines et al., 2023). ‘Simulation/Prediction’ digital twins
included an augmented Kalman filter with a reduced mechanical
model to estimate tower wind turbine loads (Branlard et al., 2020),
integration of degradation processes in a strategic offshore wind
farm O&M simulation model using a Markov process for blade
degradation (Welte et al., 2017), and modelling the probabilistic
characteristics of mooring line fatigue stresses for the purpose
of risk-based inspection (Lone et al., 2022). ‘Intelligent/Learning’
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digital twins include a probabilistic framework for updating the
structural reliability of offshore wind turbine substructures based on
digital twin information (Augustyn et al., 2021).

This distinction based on functional capabilities, however, is not
the only possible classification of digital twin implementations. As
we can see from Section 1.2, it is also possible to distinguish and
group digital twins based on the manner in which the connection
between the physical object and its digital representation is achieved
or based on the fidelity levels of simulations employed. Here,
the specific technological solutions used in composing the system
into the one whole will highly depend on the use case and its
requirements.

The sheer variety of different types and applications of digital
twins has left many wind energy domain specialists struggling
to clarify development processes that suit their specific needs:
the passage from the conceptual idea of a digital twin to
a functional implementation is often unclear. There exist a
myriad of technology stacks, modelling and simulation tools,
algorithms and system integration requirements, the selection of
which is nuanced and made more complex by technical and
specialised jargon. This is not helped by the focus of previous
literature on the physical models, rather than on the system
architecture.

In its core, the digital twin conceptual model does not
necessarily imply an introduction or development of new modelling
techniques or simulation applications. However, practical solutions
to integrate all the digital twin components into a holistic system,
with all of its constituents interconnected and valorised, remain
obscure. For instance, one possibility to enable system orchestration
is through the use of semantic artefacts. The term ‘semantic
artefact’ is used to denote conceptualisations with various degree
of expressiveness, such as controlled vocabularies, taxonomies,
schemas and ontologies (Le Franc et al., 2020). However, in the
aforementioned review by Marykovskiy et al. (2024), a lack of
adoption of semantic artefacts in the research of digital twin and
DSS was found, reflected by the low number of publications that
refer to them (35 out of 181). This can be attributed to multitude
of factors that plague multi- and interdisciplinary developments
such as a natural tendency towards knowledge siloing within
organisations and communities (wind energy from information
technology professionals, industry from academia, etc.) as well as
to the overall digitalisation challenges in the areas of data, culture
and coopetition (Clifton et al., 2023). There is therefore a high value
for the wind energy community to present developed digital twin
instances from system architecture and technology implementation
points of view.

1.4 The Aerosense system

The Aerosense system was developed to address the high
demand for easy-to-use and cost effective rotor blade aerodynamic
monitoring systems combined with a high potential of digital twin
applications in this field, as mentioned in the previous two sections.
Aerosense is a cost-effective microelectromechanical systems
(MEMS)-based aerodynamic and acoustic wireless measurement
system that is thin, non-intrusive, easy to install, low power, and
self-sustaining, which was previously introduced by the authors of

this present paper (Barber et al., 2022). The hardware is composed
of sensor nodes installed on the blade and a base station receiving
and sending the data to the cloud (Figure 2A). Figure 2B shows a
sensor node of the Aerosense measurement system installed on a
wind turbine blade.

Previous publications related to this work have focused
strongly on the hardware development, showing that the sensors
are capable of delivering relevant results continuously in the
wind tunnel (Barber et al., 2022; Polonelli et al., 2023a).
Additionally, various methods for using the measurements to
provide added value to the wind energy industry have been
introduced, including Leading Edge Erosion (LEE) detection
and classification (Duthé et al., 2021), inferring angle of attack
and wind speed (Marykovskiy et al., 2023c), detecting structural
damage (Abdallah et al., 2022) and flow-field reconstruction (Duthé
et al., 2023). The overall design of the digital twin, including
software integration and the cloud data storage design, has not yet
been discussed.

1.5 This contribution

In this paper, we present and demonstrate the top-level system
design of a digital twin for wind turbine rotor blade aerodynamic
monitoring, which was developed as part of the Aerosense project.
By providing a practical solution to integrating all the digital twin
components into a holistic system, we aim to help wind energy
specialists learn how to transform a conceptual idea of a digital twin
into a functional implementation for any application. In Section 2
we present the system architecture of the Aerosense digital twin
from a conceptual point of view. Then, we discuss the system
design in Section 3, with a focus on the cloud data storage solution
and the software integration. In Section 4 we present the results
of a field test case, including the test set-up, the measurement
results, and the demonstration of added value. In Section 5 we
discuss its wider application, and in Section 5.3 we present the
conclusions.

2 Architecture of the Aerosense digital
twin

A multitude of design methodologies, decision support tools,
and optimisation algorithms exist for facilitating design and
architecting processes in general. Here we used several well-
establishedmethodologies including design thinking (Pearce, 2020),
design patterns (Gamma et al., 1994; Tekinerdogan and Verdouw,
2020), decision trees and applied category theory (Censi, 2016;
Zardini et al., 2021). According to the design patterns approach,
before developing a concrete realisation of a digital twin, it is
opportune to establish the desired digital twin type. Type selection
is guided by the context in which the development of the digital
twin is occurring. Adopting the design thinking methodology, the
use case for the Aerosense digital twin is therefore first presented
(Section 2.1), followed by digital twin type selection (Section 2.2),
which served as a starting point in establishing the overall system
architecture (Section 2.3).
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FIGURE 2
Aerosense system sensor hardware and its placement on a wind turbine blade. (A) General concept of the Aerosense system. (B) View of an Aerosense
measurement system installed on a 6 m long wind turbine blade.

2.1 The use case

In order to define the priority use case for the Aerosense
project, a design thinking strategy was applied. Design thinking
is an iterative methodology for framing problems and co-
creating implementable solutions using visual thinking and
prototyping (Pearce, 2020). It consists of the phases “Empathise”,
“Define”, “Ideate”, “Prototype”, “Test” and “Implement”. For the
“Empathise” phase, extensive “user story” interviews were carried
out with potential customers from both industry and academia
at the beginning of the project, in which several imagined but
realistic “user stories” were presented and discussed. The results
were used to define and prioritise the most important use cases
for the “Define” phase. Through this process, we discovered that
the Aerosense system has a high potential to provide OEMs,
owner/operators and researchers with added value, including to
improve aero-elastic models, detect and classify surface damage,
and even detect structural damage. For the remaining phases,
we applied a design pattern methodology, as discussed in the
next sections.

Analysing a variety of use cases revealed one foundational
application. Since wind turbines have grown larger andmore flexible
in recent years, established 2D assumptions used for aerodynamic
tools have become less likely to hold valid (Bangga et al., 2017).Thus,
one of the use cases, “improving aerodynamic models”, was seen as
most important, underpinning further analysis or damage detection
methods. The beneficiaries, value statements and required outputs
of this use case are given in Table 1. This information was used as a
design basis for the system, and will be revisited in Section 4.

The required outputs from Table 1 can be summarised as
functionality requirements for interactive dashboards (required
outputs indicated by letter ‘a’) and Colab notebooks, which is a

cloud-hosted Jupyter notebooks service (required outputs indicated
by letters ‘b’ through ‘e’). For dashboards, these functionalities
include visualisation, exploration, and inspection of sensors’ time
series data and pressure coefficient distributions through interactive
plots. Colab notebooks, on the other hand, allow for more flexible
and custom uses, more accommodating of the defined user stories.
Here, the main functionality to ensure is access to the sensor
data, data processing algorithms, and simulations for further
data transformation and analysis. The data processed in Colab
notebooks can also be visualised, explored, and inspected through
interactive plots.

2.2 Type classification

Comparing the digital twin classifications of Figure 1 to
the required outputs from the use case exercise in Table 1,
the DigitalTwinType of the Aerosense digital twin was
classified as follows:

• PhysicalSystemLifetimeStageType:
DigitalTwinInstance

(because the intention is to work with an existing instance of
a wind turbine, not, say, a prototype of a turbine not yet in
existence)
• ConnectionSystemAutomationType:
Digital Shadow

(because there is a one-way automated connection from
physical to digital system, as opposed to two-way, which would
enable control or other adaptive behaviour)
• SystemFunctionalityType:
SimulationPredictionDigitalTwin
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TABLE 1 Description of the use case “improving aerodynamic models” for this work.

Beneficiary Value added Required output

1. OEM
measurement
and data science
teams

1a. Allow initial data inspection and download of measurement data
for further analysis or comparison by the customer

1a. Corrected and calibrated time series data for each sensor,
classified based on operating conditions, available on a dashboard

1b. Allow detailed analyses such as extracting data and plotting
pressure distributions to be carried out based on the time series and
averaged data according to the needs of the customer or partner,
without having to write a new code that works with the downloaded
data

1b. Colab notebook for analysis of time series and averaged data

2. OEM
aerodynamic
modelling teams

2a. Enable data exploration for improved understanding of the
aerodynamic behaviour

2a. Pressure coefficient distribution plots for specific time instances
available on a dashboard

2b. Enable pressure distributions to be plotted, examined and
compared

2b. Installed sensor placement obtained via photogrammetry
available through an API and accessible via a Colab notebook

2c. Enable direct comparisons with data from the customer, e.g.,
measured or simulated 2D pressure coefficient distributions

2c. Phase-averaged pressure and pressure coefficient distributions at
different operating conditions available in a Colab notebook

2d. Enable inference of the angle of attack at the sensor location,
which allows measured pressure distributions to be compared with
measured or simulated 2D pressure distributions at different angles
of attack

2d. Aerofoil inflow inference model with uncertainty quantification
available in a Colab notebook

2e. Allow direct comparison of observed pressure distributions with
2D simulation results, leading to an improved understanding of the
aerodynamic behaviour of the wind turbine in the field, validation of
the fundamental assumptions adopted during modelling, as well as
to recommendations for the improvement of aerodynamic models

2e. Simulated vs. measured phase-averaged pressure distributions at
different angles of attack available in a Colab notebook

(because the extent of the use case outputs include simulation
and prediction applications, incorporating operational and
supervisory aspects like visualisation of system state)

Each of the aforementioned types is accompanied by a
specific design pattern (Tekinerdogan and Verdouw, 2020) reflected
in the overall digital twin architecture and system hardware
implementations as discussed in the following section.

2.3 Aerosense digital twin conceptual
model and related hardware

Generally, a digital twin system can be conceptually divided
into three main sub-systems: physical system, digital system, and
connection system. Sensors, in general, are considered to be a
part of the physical system (Singh et al., 2021; Tao et al., 2018)
or its interface. However, this conceptual division may not always
coincide with the boundaries of the actual physical hardware (a
more convenient division) requiring some pragmatism in classifying
system components.2 A conceptual diagram of the Aerosense digital
twin system and its hardware is shown in Figure 3. It comprises

2 For example, each of the subsystems mentioned contains elements that

conceptually would be considered a connection system, but a coarser

classification based on the purpose of each subsystem results in a clearer

discussion.

sensor node, base station, and cloud infrastructure sub-systems,
which are classified and described below.

2.3.1 Physical system: wind turbine and sensors
As a DigitalTwinInstance the Aerosense system

provides a digital twin for a wide range of generic turbines - from
small test platforms to massive, multi-Megawatt scale devices. The
latter impose demanding design requirements, especially in terms
of wireless transmission ranges. Aerosense prototypes were tested
on the Aventa AV-7 wind turbine3, a small 6 kW device, located in
Taggenberg (CH),with a rotor diameter of 12.8 m: this is the physical
instance that is “twinned” here. However, the design specifications
enable use with much larger devices.

The Aerosense sensor node pictured in Figure 2 contains a
suite of sensors to provide the measurements necessary for the
outputs defined by the “improving aerodynamics models” use
case. The sensors included in the suite are: absolute pressure
senors, differential pressure sensors, acoustic sensors, a 9 Degrees
of Freedom (DOF) Inertial Measurement Unit (IMU), and
microphones. These sensors are controlled by an in-house
data processing and transfer unit equipped with a Bluetooth
Low Emission (BLE) wireless interface for data transmission
(Polonelli et al., 2023a). Up to five sensor nodes can potentially
be installed to allow for measurements at different locations on the

3 More information about the Aventa AV-7 wind turbine can be found at

https://doi.org/10.5281/zenodo.8192149
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FIGURE 3
Conceptual model of the Aerosense digital twin including the Physical System Interface.

rotor (Polonelli et al., 2023b). Section 3.2 discusses the design of the
sensor nodes. External data sources such as Supervisory Control
and Data Acquisition (SCADA) system data from turbines, weather
forecasts, etc., could also be considered part of the physical system
interface.

2.3.2 Connection system
The connection system4 forms the infrastructure for data

retrieval from the sensor(s) through to the cloud infrastructure. The
data flow from physical to digital system in a DigitalShadow
is typically unidirectional, as can be seen from Figure 3. The main
physical element of this connection system is the base station
(see Figure 2), which acts as a gateway and a buffer for sensor
data on its way from the node(s) to the data ingress of the
cloud infrastructure. It orchestrates sessions of sampling and data
download from the node(s), and allows sessions to be controlled
remotely (see Section 3.3). The Application Programming Interface
(API) serves as a “connecting tissue” between different applications
within the digital system. Additionally it serves as an entry point
for the sensor data arriving from the gateway (running on the
base station) as well as from external sensors including SCADA
and other data describing physical system quasi-static properties
(e.g., geometry). For the Aerosense system, a project-specific API

4 According to Tao et al. (2019), connections within the digital system

- such as messaging queues and data pipelines within the cloud

infrastructure - would be part of the “Connection System”. However,

since these are such fundamental components of the data system and

services architecture, their design is discussed as a part of the cloud

infrastructure and digital system for the purposes of this work.

was developed. The design of the API and software integration is
discussed in detail in Section 3.4.

2.3.3 Digital system (data, services and models)
As can be seen in Figure 3, the digital system can be

conceptually divided into three sub-systems: Data (for data
storage and retrieval), Models (which are the virtual entities
representing the physical system) and Services (which run Models
for analysis, provide data transformation and support applications
like dashboards or other monitoring tools). This classification
maps ontologically to the “five-dimension” digital twin model
proposed by Tao et al. (2019) and used in the development
of a prognostics and health management wind turbine digital
twin (Tao et al., 2018). For the specific implementation of this
SimulationPredictionDigitalTwin, the Services include
forward solvers to provide the simulation capabilities, inverse solvers
to infer non-measured quantities, data processing algorithms and
Colab notebooks to perform data transformation and analysis,
and dashboards for immediate data visualisation, exploration and
inspection. The Models include Computer Aided Design (CAD)
geometries of the blades, as well as sectional models for the
aforementioned forward solvers. TheData sub-system provides data
storage through two modalities: file storage (for long term data
persistence) and BigQuery tables (for when the data needs to be
queried by a user or a service). The design of the digital system is
discussed in detail in Section 3.4.

3 Hardware and digital system design

A concrete realisation of the chosen digital twin type requires
an implementation of hardware and digital system solutions,
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which provide the end users with a desired set of functionalities
(e.g., supervisory through to intelligent learning functions, fidelity
levels, twin synchronisation times, etc.) within the bounds of
available resources (e.g., production and operational costs, etc.).
Furthermore, when creating complex multi-scale systems such as
wind turbine digital twins, it is common for the development process
to occur in different teams. In this case, a team may work on a
system component that has certain functionalities, which in turn
satisfy resource requirements for the other team. For example, an
electronics team working on a measurement system development
chooses sensors that capture certain data with certain accuracy and
precision. This data is later used by a cloud services development
team as an input to their solvers. The changes adopted by one
team will affect the performance of other, yet the final digital twin
should still satisfy the user-defined constraints. This can be seen
as an applied category theory collaborative design (or co-design)
problem as defined by Censi (2016) and Fong and Spivak (2018).
The co-design problem in general, and specifically for the entire
Aerosense digital twin system, is presented in Section 3.1, followed
by a system-level overview of sensor(s) design in Section 3.2.
The base station design is touched upon in Section 3.3, and the
cloud infrastructure and digital system implementation is discussed
in detail in Section 3.4.

3.1 Co-design problem

Before formally defining a co-design problem, it is necessary to
formalise a single design problem with implementation (DPI):

DPI = (F ,R,I ,prov,req)

where:

• F ,R,I are posets, called Functionality, Resources, and
Implementation spaces respectively;
• prov: I → F is a mapping from an implementation to the

functionality it provides;
• req: I →R is a mapping from an implementation to the

resources it requires;

A co-design problem, then, is defined as a multigraph of design
problems. This allows to treat an overall design of the system in a
compositional manner (i.e., divide the system into its components)
and to introduce different levels of abstraction.

In the case of the Aerosense digital twin, the constraints on
the Functionality and Requirement spaces are presented in Table 2.
These are specific quantitative (when possible) and qualitative top-
level constraints resulting from the use-story studies, described
previously in Section 2.1. The overall system co-design problem can
be visually represented using the graphical language as in Figure 4,
with an abstraction on the hardware components and digital system
levels. In these type of figures, the co-design graph is presented,
allowing for an immediate overview of various interdependences
in the system. Each labeled node represents an Implementation
of a component or an assembly, while the edges can be of either
Functionality or Recourse type. Towhich degree an assembly should
be split to sub-assemblies and sub-sub-assemblies is arbitrary,
enabling various levels of abstraction. For example, it is possible to

consider the senor node(s) as a whole or, as an assembly of sensors,
power, housing, compute, and transmission assemblies. In the next
three sections, the design of the three main components, senor
node(s), base station, and cloud infrastructure and digital system is
presented.

3.2 Sensor node design

The development of the sensor node is the most complex
part of the Aerosense system design. From a system point of
view, it requires a close collaboration between teams of diverse
backgrounds and expertise such as development of integrated
circuit boards and relative firmware (Center for Project Based
Learning at ETH Zurich), experimental and computational fluid
dynamics (Institute for Energy Technology at OST), structural
health monitoring and machine learning (Structural Mechanics
and Monitoring at ETH Zurich), data engineering (Octue), and
additive manufacturing (Institute of Materials Engineering and
Plastics Processing at OST). Hence, here we describe the design
constraints and implementation characteristics on a system level. A
detailed description of the sensor node design from an electronics
point of view is available in the relevant preceding publications
(Polonelli et al., 2023a).

The functionality and resources graph defined by each team
during sensor node design is visualised in Figure 5. In addition
to the overall design constraints already defined in Table 2 it
illustrates the interdependence between various components within
the sensor node design problem. For instance, a change to the
desired measurement data characteristics inevitably updates the
constraints on compute, power, and transmission systems. This, in
turn, may influence the housing design, for example, by requiring
it to provide more useable volume for a bigger battery. In terms of
actual implementations, which provide the desired functionalities
within the bounds of available required resources, the sensor node
components have the characteristics described hereinafter.

Measurement data is the key functionality of the sensor node
component, as it also constitutes a required resource for the digital
system and its services. The types of sensors utilised, measurement
characteristics (precision, accuracy, sampling frequency), and
measurement session periods are all ultimately driven by necessity to
capture the physical system state in sufficient resolution to describe
the underlying phenomena. This process is at the core of the digital
twin concept in that of the physical system being twinned to its
digital representation. The fidelity and the resolution of this digital
representation, in the end, should provide the functionalities and the
added value desired by the digital twin users. The reader may refer
directly to Section 3.4.3, which discusses digital system services, for
more information on the intended use of the measurement data.

In terms of the sensor suite, the hardware implementation is
the following. An array of 40 MEMS absolute pressure sensors
(ST LPS27HHW) are distributed along the chord of the blade,
sampling at 100 Hz. Following thorough calibration, an absolute
accuracy of 11 Pa is achieved. Given the expected dynamic
pressure of 1,000 Pa on a 5 MW wind turbine, (Deparday et al.,
2022), it suggests that a precision of 1% can be reached in
pressure measurements. Five differential pressure sensors measure
differences of pressure around the leading-edge. The sensors have
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TABLE 2 Functionality and requirements constraints for the Aerosense digital twin system.

Digital twin component Functionality/Resources Constraint

Sensor Node

Functionality

Pressure data ⊗ IMU data ⊗
Differential pressure data ⊗Microphone data ⊗

Precision ⊗Accuracy ⊗
Sampling frequency ⊗Session duration

≥resources required for the Services

Housing flexibility ≥minimum curvature radius of 10 mm

Housing durability ≥withstand weather conditions defined in IEC
61400–1

Housing adhesion ≥withstand peeling and not cause blade
degradation

Housing water resistance ≥IP55

Resources

Node cost ≤5′000€ to 10′000€

Node size housing thickness ≤4 mm

Installation time ≤4 h

Base Station

Functionality

Connectivity = mobile network

Placement = tower base

Resources

Installation time ≤1 h

Base station cost ≤500€ to 1′000€

Operational cost ≤100€ per month

Cloud Infrastructure and Digital System

Functionalities

Dashboard and Colab notebook functionalities as per use case required output

Long-term data storage ≥wind turbine life-time

Twin synchronisation time ≤1 h

Resources

Physical system geometry ∼1 mm accuracy

Operational cost ≤500€ per month

an accuracy of 0.25% Full Scale, +1 Last Significant Bit, at 25°C
and a sampling frequency of 1.2 kHz, sufficient to resolve fast
dynamics of the turbulent inflow. Ten acoustic sensors (Vesper
VM2020) sampling at 16 kHz are installed at the trailing edge.
An Inertial Measurement Unit (IMU) is included, comprising an
accelerometer, a gyroscope and a magnetometer (Bosch BMX160).
The IMU data is sampled at 100 Hz.

On-board compute, sensor controls, and data transmission are
provided by a CC2652P microcontroller by Texas Instruments. It
embeds a 48 MHz ARM Cortex-M4 processor, and a Bluetooth
Low Emission (BLE) wireless interface to capture data from the
individual sensors and communicate with the base station. This
solution provides a low power consumption for sensor readout,
and a long-range transmission with a range up to 400 m at a
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FIGURE 4
Aerosense digital twin co-design problem Functionalities (blue solid) and Resources (red dashed).

FIGURE 5
Sensor node co-design problem Functionalities (blue solid) and Resources (red dashed).

rate up to 2 Mbps (Fischer et al., 2021). This allows for a flexible
base station placement even on a large-scale wind turbines. The
implementation of the BLE is a result of the power consumption
requirement. However, this implementation results in a significant
data throughput limitation. This design problem does not have a

data streaming solutionwith the current technology. Instead, a batch
processing approach was adopted, in which sampling periods (i.e.,
measurement sessions) are intermittent with data transfer periods.
The manner in which this conditioned the development of the
Aerosense system is further described in Section 3.3 and Section 3.4.
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The housing for the sensors, integrated circuits, and power
module is implemented with a custom-made PolyJet 3D-printed
sleeve, which is flexible enough to bend around airfoil section
where the system may be potentially installed. To provide necessary
adhesion characteristics, the sleeve is fixed onto the blade with the
same type of adhesion tape that is used for leading edge protection of
wind turbine blades. This solution also ensures an easy installation
by a technician even on mounted blades, and the possibility of the
system removal without damaging the blade.

3.3 Base station design

The design of the base station is less complex compared to the
other parts of the Aerosense system. The constraints imposed (see
Figure 4) are also less restrictive, with multiple possible solutions
in terms of hardware and software implementations. Hence, in
the case of the Aerosense digital twin, there is no necessity
to formalise the design of individual components of the base
station as a co-design problem, maintaining a higher abstraction
level. The base station hardware comprises a BLE transceiver, a
local computing unit running the gateway software (on a Linux
distribution), and a mobile network modem which provides a
connection to cloud resources. The open-source gateway software5

was implemented as a Command Line Interface (CLI) in python,
with a multi-threaded implementation (to stream packets from
the node whilst simultaneously caching, batching and uploading
their data contents). Software was deployed using balena.io, which
allowed automated update across multiple prototypes as well as
facilitating remote connection via Secure Shell Protocol (SSH). The
gateway uploads data files (containing batches of sensor values)
to the Data Ingress area (see Figure 7), and interfaces with the
API to retrieve and update installation configurations (containing
information related to equipped sensors, geolocation of the site,
sensor geometry and so on) (Clark and Lugg, 2022).

3.4 Cloud infrastructure and digital system
design

The cloud infrastructure provides the necessary resources for
the digital system implementation (see Figure 6). From the top level
point of view, the required functionalities of the cloud infrastructure
include data storage, management and querying for the data system.
At the same time, cloud infrastructure provides necessary compute
and orchestration capabilities for digital system services. Lastly,
for models, there is a requirement of management solutions. In
terms of resources required by the cloud infrastructure itself, the
main limitation is imposed by the operational costs, as modern
cloud solutions are capable of managing Big Data type datasets and
providing high performance computing (HPC).

For the Aerosense digital twin, Figure 7 shows a more detailed
view of the cloud infrastructure supporting the implementation of
the digital system, highlighting the data storage, retrieval and data

5 https://github.com/aerosense-ai/data-gateway, last access: 01

March 2024.

processing services that comprise the digital twin. This architecture
was determined from a bottom-up analysis of the data requirements
discussed in Section 3.4.1, and is described in more details in the
following sub-sections.

3.4.1 Data
The design of an efficient Data sub-system is fundamental for a

sustainable and scalable digital twin solution. The design decisions
include data ingress organisation (such as communication protocols,
endpoints, and APIs), data management and storage solutions
(such as database types and databases management systems
(DBMS) selection), data modelling and querying implementations
(such as data conceptual models and database schemas), as
discussed below.

3.4.1.1 Data ingress
The data ingress area of Figure 7 represents the final step in

connection of the physical to the digital system. Data ingress has
two aspects:

• Gateway API. A very limited set of endpoints6 is exposed,
allowing the gateway CLI to register new installations and
update node configuration data. Because the set of endpoints
is so limited and tightly scoped, serverless Cloud Functions are
used to avoid the creation and maintenance of server-related
infrastructure.
• Gateway Batch Ingress. A write-only cloud storage bucket is

configured to accept authenticated uploads of files containing
raw sensor data. A serverless Cloud Function is triggered
on upload, its sole purpose being to read batched data
from the files and stream values into long term storage
(Tier 1 in Figure 7). In addition to the above advantages, using
serverless functions in this case facilitates massive scalability:
with data rates being extremely substantial when multiple
nodes are downloading, but intermittent for much of the time,
maintaining statically-resourcing servers presents either a
choke-point on data ingress or a high cost for over-provisioned
capacity most of the time.

The Cloud Functions for data ingress are developed in the same
repository as the rest of the data gateway code, and deployed in
the same Continuous Deployment process. This ensures that edge
gateway code running on the base stations is always compatible with
its counterpart cloud-side.

3.4.1.2 Data management and storage
The architecture of the tiered data lakehouse shown in Figure 7

was not developed in a top-down approach, but the opposite:
its design emerged from a bottom-up consideration of 1) what
data sources would have to be stored/retrieved, 2) why end
users (researchers) would access them and 3) how they would
do that. To start this process, a decision tree was built, not
considering Aerosense in particular but governing an entirely
general problem of what kinds of data storage are suitable for
what kinds of data. This is shown in Figure 8. Next, each different

6 The endpoints are designed with a RESTful pattern of GET, POST,

PUT requests.
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FIGURE 6
Cloud infrastructure and digital system co-design problem Functionalities (blue solid) and Resources (red dashed).

FIGURE 7
Cloud infrastructure for the digital twin and its underlying data lakehouse.

kind of data that the Aerosense project would produce was
listed and the volume of that data kind was estimated.7 Drawing

7 Whilst exact specifications of sensors and related equipment were not

known a priori, the stated initial objectives of the project allowed good

estimation of the type and volume of data early in the project.

on the user profiles and journeys discussed in Section 2.1, a
process was followed for each data kind to choose the ultimate
storage decision. One example for the pressure sensor data
(the kind requiring the most sophisticated approach) is shown
in the Figure 9.

The recommended solution was to use a data warehouse for the
following data sources:
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FIGURE 8
Decision tree for determining cloud data storage options based on data type and volume.

FIGURE 9
Annotated tree showing the decision-making process for pressure sensor event data.

• Unsteady pressure and accelerometer measurements,
with timeseries of individual data points batched into a
stream of events.
• Intermittent events stored on the same time basis, allowing

efficient and easy extraction of data records corresponding to,
for example, system alerts or commands issued.
• Fetched data from third party systems (e.g., wind speed,

weather metrics etc.), fetched and cleaned by one or more
digital twins, resolved onto the time basis of the warehouse.

• ‘Materialised views’ of same (in which raw data in a
root master table, or derived/cleaned representations of the
same, is recorded in a table having a more efficient access
pattern (working like a cache for fast fetching and reduced
query cost).
• Records of all file-like object entries (see below), time-synced

and labeled where appropriate, enabling user to query for a
manifest of the file objects relevant to a given period of time
or experiment.
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Columns in the warehouse tables were defined to include
associated system metadata and timestamps, allowing filtering of
results by experimental session, by time, or by other tag values. The
recommended solution was to store the following as file-like objects
(‘blobs’) in a store:

• Microphone recordings (being high bandwidth and efficiently
compressible, treating their sensor data as a series of audio files
was most appropriate).
• Trained Models used for classification, feature detection, etc.

These data blobs (typically binary) never need to be queried
internally so simple blob storage is ideal.
• Geometry Files such as aerofoil shapes.
• Legacy input/output files for simulations. For example,

software for aerodynamic simulation such as XFOIL and
OpenFAST (see Section 3.4.3) require particular format
text/ASCII files for definition of simulation variables,
geometry, etc., which are best retained in their original forms
for the service layer.

The outstanding data kind is system metadata, which included:

• Geometrical details of the installed sensor locations.
• Installation records of the particular combinations of hardware

installed on each turbine
• Session records of the sequences of commands issued

in sequence
• Low-level configuration metadata (e.g., buffering and cache

settings, communication port configuration, etc.

Thismetadata would ideally be stored in a relational database, to
facilitate development of improved workflows and more interactive
update of the data (e.g., via a web application). However, since
metadata is tightly coupled to the data itself and the volume is
extremely small, it was stored in tables in thewarehouse 1) to support
a simpler querying and permissions system, 2) to reduce cost by
avoiding the need for maintaining a highly available relational
database instance to store only a few kilobytes of data and 3) to avoid
distribution of tightly coupled data into two different stores.

Positioning of the sensors (in a frame of reference local to
the installed strip) is included in configuration data for each
installation, which is registered (along with other metadata like
session details) using the Gateway API (see Section 3.4.1). This
type of metadata is serialised as JavaScript Object Notation (JSON),
validated against a schema8 and stored for future uses such
as plotting pressure distributions. Additional measurements (the
radius of the node from the rotation axis, the geolocation of the
turbine and the shape of the blade section at that radius) are included
to enable later conversion of coordinates to blade-local, turbine-local
and world coordinate systems as required.

3.4.1.3 Data querying
A python based client was developed, along with a process

to supply the user with credentials (a ‘service account’) sufficient
for querying the warehouse and object store. The python client
encapsulates the more challenging SQL statements required for

8 https://jsonschema.registry.octue.com/aerosense/sensor-

coordinates/0.1.4.json, last access: 01 March 2024.

querying tables in the warehouse - this step is important,
because different query implementations can have significant cost
implications.9 The python client can be installed on researchers’
personal laptops, within a Colab notebook, and in applications
like dashboards to facilitate a universal access to data. To enable
working with raw file-like objects, the python client leveraged the
file manifesting capability of the Octue SDK (Octue, 2022), enabling
the warehouse to be queried for a list of relevant files (e.g., for a
time period or experiment session) which can then be opened or
downloaded directly (with the mechanics of managing cloud file
storage abstracted away from the user).

3.4.2 Models
Physical system models is one of the required resources for

the digital system services (see Figure 6). To satisfy the required
output 2e, in which measured pressure distributions are compared
to the ones obtained from the simulations, the 2D aerofoil sectional
models are needed by the forward solvers (see Section 3.4.3).
These models can be created by utilising data from several sources
external to the Aerosense digital twin such as wind turbine technical
documentation, drawings or CAD models. In practice, there are
several obstacles for model creation:

• Data is not available for discontinued and legacy equipment or
due to legal limitations.
• Variations from the original design specifications during

manufacturing process or due to in-operation degradation.
• Difficulties in precise collocation of the sensors during the

node installation on the blade.

To overcome these obstacles in the Aerosense digital twin,
a photogrammetry process has been developed to evaluate the
position of the sensors and the shape of the blade. The process
involves taking videos and photos of the sensor nodes and wind
turbine blade from different positions, and reconstructing the 3D
shape of the wind turbine blade and obtaining the position of
the sensors using triangulation. Detailed drawings or patterns
on the housings and some additional speckled tapes make this
photogrammetry process more accurate. The requirement on the
accuracy was evaluated through the uncertainty quantification
procedure described by Marykovskiy et al. (2023c), specifically for
the inflow inference problem.

The reconstructed blade shape is further processed by extracting
a point-cloud relative to the section of interest, approximating
the aerofoil geometry with Bèzier curves, for smoothing and re-
sampling. The resulting ordered lists of aerofoil section coordinates
can be used directly as inputs to panel-code type forward solvers.
As for finite volume method solvers, a Construct 2D Meshing
utility was integrated into the model creation pipeline. This software
creates structured, high-quality 2D aerofoil meshes. The modified
version of the software developed by Fraunhofer IWES10 was

9 In practice, an iterative process revealed which queries were most cost-

intensive then either the queries modified or the database re-clustered to

perform more efficiently.

10 https://gitlab.cc-asp.fraunhofer.de/iwes-cfsd-public/wtrb-

aerodynamics/c2d-ext, last access: 01 March 2024.
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FIGURE 10
Overview of the services design problem, in terms of data resources.

wrapped with Octue SDK and implemented as a child-process for
the OpenFOAM service.

Additionally to blade sectional models, full wind turbinemodels
for the solvers based on Blade Element Momentum (BEM) method
were created during the Aerosense project. The integration of
these models and solvers in the Aerosense digital twin was not
required by the use case presented in this work. However, these
developments were considered for further digital twin developments
and improvements to satisfy the use cases discovered during the
user-story interviews.

3.4.3 Services
As described in Section 2.3.3, Services, run Models for analysis,

provide intermediate data transformation or processing (e.g., from
Tier 1 to Tier 2 in Figure 7), or provide applications like dashboards
or other monitoring tools. In essence, the services convert ingressed
and stored raw data (Section 3.4.1) into the requisite outputs of
the use case (Table 1).

Figure 10 presents this process as a co-design problem
where for each service its inputs are viewed as resources and its
outputs as functionalities. For the sake of clarity, the diagram
omits other design parameters such as computational cost
(resource), parallelisation possibilities (functionality), and fidelity
(functionality). Nevertheless, these aspects should be considered
when approaching digital twin design, especially for a digital
twin with functionality level of SimulationPrediction

and above (see Section 2.2). These considerations in the context
of wind turbine twinning often necessitate introduction of
surrogate and reduced order models, multi-fidelity and hybrid
modeling techniques (Li et al., 2022; Quick et al., 2019;
Quick et al., 2022; Renganathan et al., 2020).

3.4.3.1 Service wrappers
To implement a model or a data processor in a digital twin, the

code or application must be “wrapped”, enabling it to be deployed
to cloud infrastructure and invoked as part of a data pipeline.
Commonly, legacy software applications or libraries must be either
re-implemented entirely or adapted to meet these requirements.
The Octue SDK (Octue, 2022), which embodies Octue’s ‘twined’
framework, was developed for this purpose (with significant
work on the framework inspired by the needs of the Aerosense
project).

The premise of the framework is as follows:

• Any new or legacy scientific analysis app/code is possible to
wrap for use in an automated data processing pipeline.
• A system of communication called a question is the basis of the

wrapper. Services can be asked a question and should answer
with a series of updates culminating in a result.
• Any service can ask one ormore questions of any other service.
• A service is bounded by its ‘Data API’:

– inputs (data that will change on a per-analysis basis),
– outputs (data returned as a result),
– configuration (input settings, constants or static data that

change on a per-service basis),
– logs (semi-structured textual data reporting progress,

warnings and errors)
– monitors (structured numeric data for reporting progress,

such as residual values in aCFD calculation or an estimated
time remaining)
• The inputs, outputs and configuration may be supplied
in the form of ‘files’ (a manifest of file-like objects in
cloud storage with associated metadata) or ‘values’ (raw
JSON data).
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• A service has a set of JSONSchema11 defining the expected
inputs, configuration, outputs and monitors.
• All services have an identical ‘Calling API’ (the mechanics
of asking a question as an http request and receiving an
event stream of responses). This is encapsulated meaning that
researchers developing services need no expertise of web APIs,
servers, message queues or deployment infrastructure.

This system was implemented for each of the models
discussed in Section 3.4.2, with an automated deployment process
set up so that each subsequent release of code resulted in a new
service revision (with corresponding version tag, allowing questions
to be routed to specific versions).

3.4.3.2 Service implementations
The digital system Services required by the Aerosense use case

for the realisation of the digital twin are the following:

• Data processing algorithms compute derived quantities such
as static pressure, pressure coefficient distributions or blade
azimuth angle. As shown in Figure 10, to compute pressure
coefficient distribution on the aerofoils, measurements from
absolute pressure sensors are corrected for sensor drift.
Additionally it is necessary to account for the contribution of
the atmospheric pressure and hydrostatic pressure variations
(Deparday et al., 2023). While atmospheric pressure at the
base of the wind turbine is provided by the sensors installed
on the base station, the hydrostatic pressure component
varies with height. IMU data is proceeded by in-house fusion
algorithm (Trummer et al., 2023), to compute the largest
deflections of the blade as well as its azimuthal position when
rotating, enabling the estimation of hydrostatic pressure.

• Inverse problem solvers infer quantities including the angle
of attack and farfield wind speed. Differential pressure
measurements, once processed, are used by the inference
service as input for the hybrid model, based on the inviscid
flow theory (Marykovskiy et al., 2023c). Farfield wind speed
is used to estimate dynamic pressure contribution in pressure
coefficient calculations and along with angle of attack is used
as an input to forward solvers.

• Forward problem solvers allow for comparisons between
measurements and simulations, and can predict non-measured
quantities such as the structural deformation of the blade.
– OpenFOAM12 and XFOIL13 produce simulated data for

the purpose of comparison with measured quantities, as
required by the use case. To integrate these solvers with
Octue SDK, xfoil-python14 and pyFoam15 python-based
software wrapers were used. Additionally these solvers,

11 https://json-schema.org/last access: 01 March 2024.

12 https://openfoam.org/, last access: 01 March 2024.

13 https://web.mit.edu/drela/Public/web/xfoil/, last access: 01March 2024.

14 https://github.com/DARcorporation/xfoil-python, last access: 01

March 2024.

15 http://openfoamwiki.net/index.php/Contrib_PyFoam, last access: 01

March 2024.

along with their automated workflow and data pipelines
can be dual-purposed to also generate large synthetic
data sets. These are then used to train machine learning
algorithms and perform uncertainty quantification. This
provides a bridgehead for further digital twin system
augmentation with new algorithms and analysis tools.

– OpenFAST16 (with TurbSim) software was used to generate an
inflowdata and perform aeroelastic simulationswithAVENTA
AV-7 wind turbine model. A python package openfast_
toolbox17 was used to provide an intermediate integration
layer between OpenFAST and OctueSDK.

• The Aerosense dashboard allows to explore the Aerosense data
lake in a visual manner according to the selected metadata
defined in our data model. It allows for filtering based on
different measurement campaigns, installations, sensors, time
periods and other metadata such as wind turbine rotor speed
or relative statistical information (min, max, mean, standard
deviation etc.) for chosen variables of interest. The data can
be explored via the interactive plotly functions such as data
inspection, view controls (such as zooming and panning), and
selecting individual data sets.
• Colab notebooks providing additional post processing

capabilities are available to team members as well as invited
external researchers. The “Aerosense data playground”
is a set of Colab notebooks that can be shared with
chosen collaborators. The resulting code is continuously
refactored into a python library “aerosense-tools” hosted
onGitHub (Lugg et al., 2023).This library is used in dashboard
development. This allows different partners to work together,
develop code and get insights into the data.

4 Application and results

4.1 Test set-up

After some initial tests of the robustness of the housings and
the power consumption of the Aerosense system (Polonelli et al.,
2023a), a field test campaign was carried out with the final
Aerosense prototype (Figure 11). As mentioned in Section 2.3.1,
the design specifications enable the use of the system on multi-
Megawatt scale wind turbines. However, for practical and cost
considerations, these initial field tests were performed on a 6 kW
Aventa wind turbine. The turbine delivers 10-min averaged SCADA
data including the active power, the nacelle wind speed and wind
direction, the blade pitch angle and the generator temperature.
The sensor node was installed at a radial position of 74% of
the blade length (6.7 m from the centre of rotation) on one
blade. It is shown attached to the blade in Figure 11A. Several
measurement campaigns were carried out between July 2022 and

16 https://www.nrel.gov/wind/nwtc/openfast.html, last access: 01

March 2024.

17 https://github.com/OpenFAST/openfast_toolbox, last access: 01

March 2024.
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FIGURE 11
View of the sensor node installed in the field. (A) The Aerosense node installed on the Aventa turbine, (B) 3D reconstruction of the installed sensor node.

April 2023; however, with several improvements being made to the
hardware and firmware. This results in several weeks of useable
barometer, differential pressure sensor, microphone, and IMU
data during this time, which is available in Marykovskiy et al.
(2023b). All the samples are timestamped with UTC time. Wind
turbine, sensor location and sensor properties metadata is provided
as JSON files. The wind turbine metadata follows the WindIO
schema and the pressure sensor locations metadata follows the
Aerosense sensor geometry schema. The pressure sensor locations
were calculated as described in Section 3.4.2with a photogrammetry
process18, reconstructing the sensor node and the blade shape, as
demonstrated in Figure 11B. An accuracy in the order of 1 mm
was achieved, enabling accurate positioning of the aforementioned
sensors and the use of this information in post-processing or
transformation of measurement data.

4.2 Digital twin demonstration

The field test allowed us to demonstrate the value of the use
case introduced in Section 2.1 according to the outputs in Table 1.
As described in the aforementioned section, the two main modes to
use and analyse the data are the dashboard and the Colab notebooks.
Here, we limit the demonstration to these two functionalities of the
digital twin, while the detailed analysis of the data itself merits a
separate study to thoroughly explore the insights gained from the
field tests.

18 https://sketchfab.com/3d-models/aventa-blade-

2ebed0e05e0e4c3c95a7308af3a494d3, last access: 01 March 2024.

4.2.1 Dashboard
The dashboard displays times series for each sensor, classified

in different installations of the Aerosense measurement system,
as shown in Figure 12 for pressure data from the barometers.
Specific sensor types and measurements periods can be selected.
No data needs to be downloaded or specific code to be computed
to obtain an initial data inspection of measurement data. This
fulfils the output 1a of Table 1. The dashboard can also display
pressure coefficient distribution plots for an immediate visualisation
relative to specific time instances. This functionality enables
the verification of the physical plausibility of pressure data
recorded by the measurement system and a general understanding
of the aerodynamic behaviour at specific time instants. The
synchronisation time of the dashboard plots to the on-site
measurements is under 1 hour, allowing for quasi-real time
monitoring. This fulfils the output 2a and 2b of Table 1.

4.2.2 Colab notebooks
The Colab notebooks developed within this work allow users

to perform detailed analyses, such as extracting data and plotting
pressure distributions. This is achieved without the need to write
a new code that works with the downloaded data. The versatility
of the Colab notebook allows more complex analyses, for example,
based on conditional averaging with specific weather conditions
in a large time period or for specific azimuthal position of the
blade. The Colab notebook enables, for example, the comparison
of data from multiple wind turbine installations. This fulfils the
output 1b of Table 1.

Phase-averaged pressure and pressure coefficient distributions
at different operating conditions can be computed and analysed
in the Colab notebook. This allows, for example, a more detailed
analysis of the pressure distribution depending on the azimuth
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FIGURE 12
Barometer time series available from the Aerosense Dashboard.

position of the rotor blade for different operating conditions (output
2b from Table 1) It also enables direct comparisons with data from
the customer, for instance measured or simulated 2D pressure
coefficient distributions (output 2c). Furthermore, phase-averaged
pressure distribution can also be directly compared to pressure
distributions obtained from XFOIL simulations for given inflow
conditions, as illustrated in Figure 13 (output 2e). This figure
depicts phase-averaged pressure distributions at different rotor
blade azimuth positions (indicated by the colour of the points)
for a 1-min time interval when wind directions and wind speeds
were considered stable. They are compared to XFOIL simulations
for two inflow conditions. The inflow conditions were computed
using the Aerofoil inference model (Marykovskiy et al., 2023c)
available in the Python package used by the Colab notebook
(output 2d). Figure 13 illustrates that the local wind speed and
corresponding angle of attack differ at different positions on
the blade when rotating. This may be due to non-uniformity
of the wind or yaw misalignment of the wind turbine. These
findings can facilitate a more comprehensive understanding of
the aerodynamic behaviour of the wind turbine in operational
conditions, as well as to recommendations for the improvement of
aerodynamic models.

5 Discussion

In this work, we have seen that the development of digital twins
in the wind energy context primarily represents a characteristic
system engineering problem. In this discussion, we summarise
the main challenges we experienced in this project, followed

by an evaluation of the methodologies used to overcome these
challenges. Finally, we discuss how the results can be useful for wider
applications. This presents domain experts with questions, which
can often lie outside their primary expertise. The main challenges
encountered when architecting the Aerosense digital twins were
found to be:

• Establishing priority use cases for the digital twin system, and
preventing a “scope creep” from introducing ever increasing
requirements to the system.
• Collaboration and management of teams from

diverse domains.
• Selecting and adopting appropriate supporting digital

technologies for sustainable and scalable results.

The authors believe these challenges are not unique to the
Aerosense project, and the methods presented in this work can
also be applied in the development of digital twins with different
applications and different twinned physical systems, including the
multi-Megawatt scale wind turbines. This methodological approach
to digital twin design, in fact, becomes even more crucial for
the successful technology implementation as the complexity of
twinned systems increases, and the use cases require integration of
signals from increased number of sensors and analyses resulting
from multi-scale and multi physics models. In the next sections,
we evaluate the success of our use of the design thinking, design
patterns, decision trees and applied category theory methodologies
to overcome these challenges.
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FIGURE 13
Aerosense Colab notebooks produced plot. Phase-averaged pressure distributions at different rotor blade azimuth position for a 1-min time interval
when wind directions and wind speed were stable. Comparison with XFOIL simulation results.

5.1 Design thinking for digital twins

The main focus of the design thinking methodology in this
work was on the “Empathise” phase, in which “user stories” were
explored in order to then define the foundational use case that
was used as a basis for the design of the Aerosense digital twin.
It proved as essential tool for providing the required amount
of focus to then apply the design patterns methodology, as
discussed below. Furthermore, a range of other use cases were
defined, which could be used to further develop the present
solution.

5.2 Design patterns for digital twins

In the Aerosense project, when approaching the development
of the digital twin from a systems architecture perspective,
the authors adopted well-established twin types as well as
common conceptualisation schemes such as the 5-dimension
digital twin model. These conceptual models have provided an
initial indication on the overall design patterns, to serve as a
blueprint for further development. Currently, “the catalogue” of
solution patterns is rather limited and only a few digital twin
type definitions are commonly accepted and recognised across
engineering domains. A more fine-grained and widely accepted
digital twin classification can facilitatemore streamlined digital twin
development by applying proven methodologies. Additionally, this
approach opens avenues for collaborative innovation. By utilising
a classification system that is acknowledged across industries,
future digital twin projects can increase interoperability and
knowledge exchange, thus gaining access to otherwise untapped
resources.

Furthermore, the use of a standardised classification schemes
aids in documenting and communicating the functionality and
scope of digital twins more effectively, both within and across
industries.This not only enhances the visibility of research outcomes
but also aids in selection and adoption of technical solutions,making
them more accessible to domain experts from different sectors,
and facilitating cross-domain knowledge transfer. An example of
such knowledge transfer is the adoption of digital twin technology
innovations in the manufacturing sector by the wind energy
domain, where the principles of operational efficiency and predictive
maintenance are equally valuable.

5.3 Applied category theory and co-design
framework for digital twins

During the design of individual system components, the
discussion centered around the component assemblies and their
physical boundaries, rather than conceptual division into physical,
digital and connection systems. This type of compositional
thinking finds its fundamental basis in category theory. Co-design
formalisation originally proposed by Zardini et al. (2021) in the
context of robotics and autonomous systems also lends itself
to the digital twin development. The theoretical grounding of
this framework serves as means of knowledge representation for
functional and resource requirements for a given digital twin, its
components or component assemblies. Additionally, this formal
basis allows for multiple solution searches and optimisations
as a twin evolves to include new uses cases or technology
implementations.
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6 Conclusion

In this paper the authors approached the design, development,
and deployment of digital twin from a system engineering
perspective, to architect the Aerosense system for aerodynamic
monitoring of wind turbine blades.

The Aerosense system use case and requirements (Section 2.1)
were adopted in Section 2.2, leading to characterisation of the
particular digital twin with a “Simulation/Prediction” functionality,
“Digital Shadow” connectivity, and being at “Instance” physical
system lifetime stage. By undertaking the same classification process
for prospective digital twins, readers can understand whether the
technology solutions used in this work are appropriate for reuse to
accelerate their own project(s).

Casting the design of the digital twin into a co-design
formalism of applied category theory (Section 3.1), proved
instrumental for obtaining desired twin functionalities and
affronting interdisciplinary challenges.

The technology solutions form a fully-tested, production-
ready data system for turbine blade data collection, cloud
ingress, data lakehouse storage and access/use. Both software
and hardware solutions have been developed and published as
open source (together with documentation) to provide a complete
implementation example.

The Aerosense digital twin brings this all together to provide
an out-of-the-box solution to monitoring wind turbines in the field,
collecting blade sensor data for research purposes and augmenting
that data with simulations to form a digital twin of the type
classification described above.
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