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Editorial on the Research Topic

Novel reliable approaches for prediction and clinical decision-making
in cancer
Although significant progress has been made in recent decades in understanding the

development and progression of cancer, cancer remains one of the leading causes of death.

Recent insights on immunobiological dysregulations involved in the development and

progression of cancer demonstrate the complexity and heterogeneity of cancer, which play

crucial role in the pharmacokinetic variability of cancer therapies. With regard to the

prevalence of recurrence/metastases and prognosis, as well as the prediction of cancer

treatment success, further investigations are urgently needed to establish cancer signatures

or treatment modalities that enable improved risk stratification and improved patient

management. This Research Topic focuses on studies that integrate new comprehensive

systemic, combinatorial, or complexed data that could be useful to develop personalized

treatment regimens, to improve immunotherapies and clinical decision-making.

It is worthy to note that the term ‘complex data’ is usually used to refer to high-

dimensional and heterogeneous datasets resulting from several diversified fields involving

genomics, transcriptomics, proteomics, and advanced medical imaging techniques such as

tomography and contrast-enhanced ultrasound. These data bring important insights into

the detailed processes of biological and systemic aspects and are therefore a source of

invaluable knowledge for research and clinical applications.

Furthermore, the heterogeneity in data types introduces complexities with respect to

data integration and analysis. The interpretation of findings in biologically or clinically

relevant contexts then requires the application of sophisticated methods and the use of

expert knowledge. This calls for the use of advancing techniques like Artificial intelligence

(AI) and machine learning to include deep learning models, which identify patterns and

make predictions. Advanced visualization tools go a step further in unraveling such

complex relationships.
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With the advent of AI, several algorithms are being used to

integrate cancer-related data. The study of Wang et al. evaluated

multiple machine learning models to build and validate a diagnostic

model for patients with advanced adenoma (AA). The XGBoost model

identified AA with high sensitivity (70.8%) and specificity (83.4%).

Numerous studies have addressed the pathogenesis of cancer

and the phenomena that determine its persistence and progression.

In this Research Topic, two studies by Bin Masood et al., and by

Zhao and Ren focus on the programmed cell death ligand-1 (PD-

L1) marker. Bin Masood et al. demonstrated the importance of

plasma PD-L1 testing in the diagnosis of glioblastoma multiforme.

Receiver operating characteristic curve analysis was used to calculate

the area under the curve for specificity (100%) and sensitivity (57.81%)

analysis. Kaplan-Meier survival analysis showed that patients with high

PD-L1 levels before surgery had poor overall survival. Zhao and Ren

showed that the tracer 18F-AlFNOTA-fibroblast activation protein

inhibitor (FAPI)-04 in positron emission tomography/computed

tomography (PET/CT) SUVsd parameter could predict positive PD-

L1 expression in patients with locally advanced esophageal squamous

cell carcinoma. Both studies demonstrated the importance of the PD-

L1 checkpoint molecule in the targeted therapy by identifying

excellent candidates.

Data is also used to analyze the prognosis of cancer patients. The

aim of different strategies is to precisely define which patients have a

poor prognosis and to be able to easily guide them to other options

using a cartesian scientific approach. Wang et al. for example,

proposed a prognostic prediction model based on differential gene

expression between muscle invasive bladder cancer (BLC) and non-

muscle invasive BLC. They reported that the protein S100A9 was

significantly elevated in recurrent patients. It may promote BLC cell

proliferation, migration, and invasion, and may be a potential

therapeutic target for BLC to further support clinical treatment

decisions. Li et al. highlighted the importance of the lipid

metabolism and immune-related genes in the prognosis of acute

myeloid leukemia (AML). They constructed a prognostic signature

with hub genes significantly associated with survival using a Gene

Set Enrichment Analysis. The created risk signature was negatively

correlated with immune cell infiltration. Low-risk patients were

more likely to respond to immunotherapy, while high-risk patients

responded better to specific targeted drugs. The risk-scoring model

is expected to be a valuable tool for individualized treatment

decision-making and provide valuable insights to improve patient

prognosis and treatment outcomes in AML.

Furthermore, Wang et al. and Liang et al. investigated the value

of disulfidptosis, a variant of cell death characterized by disulfide

accumulation, in cancer. In fact, Wang et al. computed an optimal
Abbreviations: AA, advanced adenoma; AI, artificial intelligence; AML, acute

myeloid leukemia; AT, adjuvant therapy; BC, breast cancer; BLC, bladder cancer;

CT, computed tomography; DS, disulfidptosis score; FAPI, fibroblast activation

protein inhibitor; HPD, hyperprogressive disease; ICI, immune checkpoint

inhibitors; nICT, neoadjuvant chemoimmunotherapy; PD-1, programmed cell

death protein-1; PD-L1, programmed cell death ligand-1; PET, positron emission

tomography; TME, tumor microenvironment.
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predictive model disulfidptosis score (DS) in patients with lung

adenocarcinoma. They showed that patients with low DS had a

better prognosis, characterized by higher OS, reduced mutation

status, improved immune status, and increased sensitivity to

immunotherapy. Meanwhile, Liang et al. investigated the predictive

value of disulfidptosis-related genes in breast cancer (BC) and their

relationship with TME. They constructed a disulfidptosis prognostic

model that efficiently predicted BC prognosis.

Four contribution address clinical decision support: The mini-

review by Li et al. focuses on hyperprogressive disease (HPD),

which occurs in response to immunotherapy with PD-1/PD-L1

immune checkpoint inhibitors (ICIs) in a small proportion of

patients with non-small cell lung cancer. It summarizes all aspects

of HPD, which is characterized by accelerated tumor growth and

early death, including its definition, current biomarkers, potential

mechanisms and treatment options. This review provides a detailed

insight into the advantages and disadvantages of immunotherapy.

Although immunotherapy, especially PD-1/PD-L1 ICIs, has

contributed to a crucial breakthrough in effective cancer

treatment, there is still a shortage of surrogate markers or models

that guide clinical treatment or predict immunotherapeutic

outcomes. For BLC, Xu et al. developed a multidimensional

expression regulation model based on immunotherapeutic anti-

PD-L1 genes, consisting of the following four genes IGF2BP3,

P4HB, RAC3 and CLK2, which predict the efficacy of therapy

and identify BLC patients, who will benefit from PD-L1 ICIs

therapy. This introduces a new tool for managing BLC.

For advanced hepatocellular carcinoma, Sun et al. established a

nomogram in their study that integrates quantitative parameters of

tumor characteristics based on pre-treatment contrast-enhanced

ultrasound and clinical and laboratory data that predict therapy

efficacy of anti-PD-1 in combination with anti-VEGF treatment.

Concerning decision-marking tools for oncologists the study by

Xie et al. investigated whether adjuvant therapy (AT) provides an

additional benefit for recurrence-free survival (RFS) in patients with

squamous cell carcinoma of the esophagus after neoadjuvant

chemoimmunotherapy (nICT) and surgery in a multi-center

propensity score match study including 155 nICT patients. The

results of this study evidenced that postoperative AT is not

necessary for an improved RFS in esophageal cancer patients

undergoing nICT.
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Hyperprogressive disease in
non-small cell lung cancer after
PD-1/PD-L1 inhibitors
immunotherapy: underlying killer

Yanping Li1*†, Tianhong Chen2†, Tian Yi Nie1, Juyuan Han1,
Yunyan He3, Xingxing Tang2 and Li Zhang4*

1Department of Respiratory Medicine, The Third People’s Hospital of Honghe Prefecture, Gejiu, China,
2Department of Thoracic Surgery , The Third People’s Hospital of Honghe Prefecture, Gejiu, China,
3Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming
Medical University, Kunming, China, 4Department of Oncology, Gejiu City People’s Hospital, Diannan
Central Hospital of Honghe Prefecture, The Fifth Affiliated Hospital of Kunming Medical University,
Gejiu, China
Immune checkpoint inhibitors (ICIs) target the negative regulatory pathway of T

cells and effectively reactive the anti-tumor immune function of T cells by

blocking the key pathway of the immune escape mechanism of the tumor—

PD-1/PD-L1, and fundamentally changing the prospect of immunotherapy for

non-small cell lung cancer patients. However, such promising immunotherapy is

overshadowed by Hyperprogressive Disease, a response pattern associated with

unwanted accelerated tumor growth and characterized by poor prognosis in a

fraction of treated patients. This review comprehensively provides an overview of

Hyperprogressive Disease in immune checkpoint inhibitor-based

immunotherapy for non-small cell lung cancer including its definition,

biomarkers, mechanisms, and treatment. A better understanding of the black

side of immune checkpoint inhibitors therapy will provide a more profound

insight into the pros and cons of immunotherapy.

KEYWORDS

non-small cell lung cancer, PD-1/PD-L1, response pattern, hyperprogressive
disease, immunotherapy
Introduction

Lung cancer is a serious life-threatening disease, and non-small cell lung cancer (NSCLC)

is one of its most prevalent subtypes (1, 2). Immune checkpoint inhibitors (ICIs), as PD-1/

PD-L1 inhibitors based immunotherapy has made revolutionized effects and become a

milestone in the treatment history of NSCLC (3). However, PD-1/PD-L1 blockade can lead to

an unsatisfactory response pattern characterized by accelerated tumor growth and associated

with poor prognosis——Hyperprogressive Disease (HPD) (4). Detrimental patterns such as
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HPD and early death (ED) have been respectively observed in a

proportion of NSCLC patients treated with ICIs (5). Overall survival

(OS) is significantly reduced in NSCLC patients who develop HPD

after PD-1/PD-L1 inhibitors blockade (4). For instance, although the

PD-1 antibody Nivolumab is quite effective in clinical practice, HPD

is not rare in patients with advanced NSCLC treated with Nivolumab

and paralleled with a poor prognosis (6, 7). There are also several case

reports about HPD events after treatment with another PD-1

inhibitor Pembrolizumab and the PD-L1 inhibitor - Durvalumab

(8, 9). However, the definition and predictive biomarkers of HPD in

NSCLC remain controversial, and the associated clinicopathological

features or biological mechanisms are not yet determined. This

significantly restricts the utilization of ICIs in patients with

NSCLC (Figure 1).
Definition of HPD in
NSCLC immunotherapy

The accelerate growth in tumor size and volume measured by

computed tomography(CT) during ICIs blockade are the most

objective characteristics of HPD by using the Response Evaluation

Criteria in Solid Tumors (RECIST) 1.1 criteria (10). However, the

main limitation of conventional response assessment criteria

RECIST 1.1 remains due to the inadequate ability to capture the

response to immunotherapies and the inapplicability to patients

without pre-baseline imaging or progression on unmeasurable

lesions (11, 12). Therefore, novel criteria like iRECIST is clinically

used as a response evaluation tool in patients undergoing

immunotherapy (13). Despite the improvement, the definition of

HPD has not been standardized and the prevalence of it varies

based on different criteria (14) (Table 1). The assessment criteria

should address the relevance of the clinical presentation, poor

prognosis, and biological behavior of the NSCLC (21). The

standard definition of HPD should be continuously optimized to

guide better PD-1/PD-L1 inhibitors immunotherapy.
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Differentiating HPD from
pseudoprogression

However, definitions based on radiological assessment alone

have substantial technical limitations. The possibility of

pseudoprogression (PsPD) exists when progressive deterioration

of pulmonary infiltrative shadows is observed within 4 weeks

among advanced NSCLC patients after the initial administration

of anti-PD-1 antibody (22). Current clinical and radiological

assessment strategies are inadequate to distinguish PsPD with

HPD. PsPD has a similar response pattern of tumor increase or

appearance of new lesions monitored by imaging at the beginning

of treatment with ICIs, but shrinks later, whereas HPD is a rapid

and poor prognosis progression pattern (23, 24). Consequently,

repeat biopsies should be considered even if radiographic tumor

progression is detected during immunotherapy (25–27). Besides,

immune system-related response criteria such as NLR and ctDNA

also have the potential to differentiate HPD from PsPD (28).
Clinical characteristics and
biomarkers for HPD

Conventional imaging methods are restricted to determine

HPD. Image-based radiomic markers extracted from baseline CT

of advanced NSCLC treated with PD-1/PD-L1 inhibitors including

the features of peritumoral texture and nodule vessel-related

tortuosity may have prospective value for identifying the HPD.

Meanwhile, using radiomics features at the lesion-level analysis has

the same effect. The novel radiomic models have translational

implications to distinguish vulnerable NSCLC patients at risk of

HPD (29–31).

In addition to imaging indices, sensitive predictive markers of

positive and negative responses to immunotherapy and clinical

factors that identify high-risk NSCLC populations that potentially

progress to HPD after treatment with ICIs should be continuously
FIGURE 1

HPD response patterns associated with poor prognosis in NSCLC patients whose tumors instead accelerated in growth after PD-1/PD-L1 inhibitor-
based immunotherapy.
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developed (32, 33). There are lots of clinicopathological features

associated with HPD in NSCLC patients treated with ICIs, as HPD

was found associated with higher age (>65 years old) rather than

higher tumor burden or specific tumor type (34) (Table 2).
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Subsequently, the related risk-predicting model based on clinical

features is under exploring. Lung immune prognostic index (LIPI)

based on dNLR > 3 and LDH > ULN is a promising tool for

selecting patients who may not benefit from ICIs therapy (42).
TABLE 2 Clinicopathological features associated with HPD in NSCLC patients.

Study Incidence Risk factors Ref

Yan Chen et al 8.02 to 30.43%
(1389)

ECOG> 1, RMH score≥ 2,
serum LDH level > ULN,
the number of metastasis sites > 2, and liver metastasis

(35)

Yong Jun Choi et al 19.2% (15/78) age, size of tumor and number of various metastatic lesions (36)

Lee X Li et al 119/3129 elevated NLR (37)

Youjin Kim et al / dNLR > 4 and LDH level > ULN (16)

Jehun Kim et al 15.9%(35/219) PD-L1 expression < 50%, metastatic sites≥ 3
NLR ≥ 3.3, and hemoglobin level < 10

(38)

Seo Ree Kim et al 11.3% (26/231) heavy smoker, very low PD-L1 expression, multiple metastasis, and CAR index, (39)

M P Petrova et al 4.8%(8/167) a high pre-immunotherapy NLR2 and the presence of sarcopenia (40)

Kristin L Ayers et al / African American patient group had lower incidence (14.7%) of HPD than the White patient group (24.5%). (41)
frontiers
ECOG, Eastern Cooperative Oncology Group; RMH score, Royal Marsden Hospital score; NLR, neutrophil-to-lymphocyte ratio; dNLR, derived neutrophil-to-lymphocyte ratio; ULN, upper
limit of normal; LDH, lactate dehydrogenase; STK11, serine/threonine kinase 11 gene; ctDNA, circulating tumor DNA.
TABLE 1 The prevalence of HPD is varied based on different criteria in NSCLC.

Study Incidence Criteria Conclusion Ref

Ignacio Matos
et al

12.5% (4/32)
HPD = 1.4 x baseline sum Target lesions Or HPD = 1.2 x baseline
sum Target lesions + new lesions in at least two different organs Capturing HPD by using RECIST criteria is intuitive

and easy to implement.
(15)

16.2% (1/27) HPD = TGR experimental period/TGR reference period ≥ 2

Youjin Kim
et al

14.3% (48/
135)

volumetry
volumetric measurement is more precise than the
basis of one-dimensional analysis.

(16)
13.1%(44/
135)

RECIST 1.1

Deirdre M.H.J.
ten Berge et al

7%(4/58) TGK TGK has predictive value for OS (17)

Roberto Ferrara
et al

13.8% DTGR exceeding 50%.
HPD is associated with high metastatic burden and
poor prognosis

(4)

Baptiste Kas
et al

18.5%(22/
406)

the TGR ratio
DTGR>100 is close to the characteristics of HPD
(increase of the tumor kinetics and poor survival).

(18)
5.4%(75/
406)

a progression pace >2-fold and TTF<2 months

C G Kim et al

20.9%(55/
263)

TGK

HPD meeting both TGK and TGR criteria is
associated with worse PFS and OS

(19)
20.5%(54/
263)

TGR

37.3%(98/
263)

TTF

B Abbar et al

11.3% TGRratio

TTF is the only indicator of significantly worsened
OS.

(20)

5.7% DTGR

17.0% TGK

9.6% RECIST

31.7% TTF
PFS, progression-free survival; TGK, tumor growth kinetics; OS, overall survival; DTGR, The difference between TGR before and during therapy; TTF, time to treatment failure.
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Genomic profiles is another key component of risk prediction

models for HPD after immunotherapy. A case report illustrates that

patients carrying EGFR exon 20 insertion and MYC amplification

have the risk of developing to HPD after Nivolumab blockade (43).

Besides, the coexistence of STK11 gene mutations and KRAS

mutations can be used as potential biomarkers for HPD (16).

Simultaneously, MDM2 family amplification or EGFR aberrations

are closely linked with increasing TGR after PD-1/PD-L1 inhibitors

monotherapy (44). Furthermore, long non-coding RNA (lncRNA)

plays a critical role in the immune regulation of LUAD and the

immune-related lncRNAs (IRLs) manifest a promising prediction

value of ICIs efficacy in LUAD. Patients with low risk might gain

benefits from ICIs whereas some have a risk of HPD (45).

Additionally, Liquid biopsy could be assisted to identify patients

at high risk of HPD, and ctDNA may be a novel prognostic

biomarker of PD-1 blockade (46, 47).

There are more and more studies evaluating the predictive and

prognostic value of the various immune cells in pretreatment tissue

samples and identifying determinants associated with response in

patients with NSCLC treated with ICIs. Levels of tumor-infiltrating

lymphocytes (TILs) were strongly and independently associated

with response to ICIs therapy (48). These studies illustrate that the

different predictive and prognostic values for infiltrating immune

cells in tumor tissue may help in selecting patients for ICIs. More

importantly, the patient’s TILs assessment is relatively easy to

incorporate into the pathology laboratory workflow, easy to

perform and inexpensive. Besides, the analyzing of immune cell

of PBMC gradually draws more and more attention (Table 3).
Mechanism of HPD in NSCLC

Exploring the mechanisms of HPD in NSCLC is critical for

understanding immunotherapy represented by ICIs. The tumour

microenvironment (TME) is involved in influencing the response to

immunotherapy as it plays a predominant role in the multiple

interactions between tumor cells and the immune system (52). The

biological basis and mechanisms of HPD are being elucidated and

some studies have proposed immune checkpoint antibody-Fc/FcR

interactions on macrophages as a mechanism of HPD after PD-1/

PD-L1 blockade. Reprogramming of tumor associated macrophage

(TAM) with the involvement of the Fc receptor of ICIs contribut to

the induction of HPD (51). While, a study revealed that HPD was
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significantly linked with intratumoral B-cell density but not T-cell

or macrophage (53). An animal model of a regulatory T cell (Treg)-

dominated TME formed by selective depletion of CD8+ T cells by

targeting CD8b antigen with near-infrared photoimmunotherapy

(NIR-PIT) has shown that HPD after PD-1 blockade can be partly

responsible for an imbalance between effector T cells and Tregs in

the TME (54). Intrestingly, the interaction between the redox and

immune system may lead to the local immunosuppression in the

TME which accelerate tumor growth. Such as the administration of

IgG4 and glutathione could promote tumor growth in the mouse

lung cancer model (55).

Notably, analysis of the pathological features of patients who

developed HPD during Pembrolizumab treatment for NSCLC

suggests that the pathological type conversion of adenocarcinoma

to small cell carcinoma may be the cause of HPD during ICIs

treatment (56). Furthermore, changes in PD-L1 expression in

tumor tissues may also be associated with HPD (8). It has been

demonstrated that HPD can be prevented in preclinical models by

targeting the IFNg-PKM2-b-catenin axis. Tandem through the

immunogenic, metabolic, and oncogenic pathway of the IFNg-
PKM2-b-catenin cascade is the primary mechanism of ICIs-

associated HPD (57). There is an urgent need for further

expansion of the scope of research and invasive research tools,

and in-depth exploration of the underlying molecular mechanisms

is of paramount importance.
The management of HPD in NSCLC

A comprehensive and thorough study of the mechanisms

involved not only provides a plausible explanation for HPD, but

also offers new opportunities to manipulate this mechanism to

improve cancer immunotherapy. PD-1 blockade may promote the

proliferation of highly suppressive PD-1+ eTreg cells, leading to

suppression of antitumor immunity and HPD. Therefore targeting

depletion of eTreg cells in tumor tissue would be an effective strategy

for the treatment and prevention of HPD (58). More importantly,

salvage treatment after the onset of HPD in NSCLC is also under

active investigation in clinical practice. Alternative therapies, like

high-dose corticosteroids, antibiotics and drainage, can be effective in

treating the symptoms of HPD caused by Nivolumab (59). Besides,

termination of immunotherapy should be discussed after the onset of

HPD is monitored and an early switch to cytotoxic therapy is
TABLE 3 Potential predictive immune biomarkers of HPD.

Study Immune cell Characteristics of TILs Ref

C G Kim
CD8+ T lymphocytes

a lower frequency of effector/memory subsets (CCR7-CD45RA- T cells among the total CD8+ T cells)
a higher frequency of severely exhausted populations (TIGIT+ T cells among PD-1+CD8+ T cells)

(19)

Kyung Hwan Kim high pre-treatment frequency of CD39+CD8+ T cells (49)

Hugo Arasanz CD4+ T lymphocytes
A strong expansion of highly differentiated CD28- CD4 T lymphocytes (CD4 THD)
CD28- CD4 T lymphocytes ≥ 1.3 (CD4 THD burst) was significantly associated with HPD

(50)

Giuseppe Lo Russo
Macrophages

infiltration by M2-like CD163+CD33+PD-L1+ clustered epithelioid macrophages. (51)

Seo Ree Kim fewer CD8+/PD-1+ TIL and more M2 macrophages in the tumor microenvironment (39)
frontiers
NLR, neutrophil-to-lymphocyte ratio; NLR1, neutrophil lymphocyte ratio; PLR1, platelet: lymphocyte ratio; PBMC, peripheral blood mononuclear cells; TAM, tumor-associated macrophages.
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essential to avoid further disease progression (60). For instance, a

comparative study retrospectively screened patients with

pathologically confirmed advanced or recurrent NSCLC

demontrated that the HPD rate was significantly lower in the

combination therapy (cytotoxic chemotherapy plus PD-1/PD-L1

inhibitor) group than in the PD-1/PD-L1 inhibitor monotherapy

group (61). Chemotherapy has the value to increase a tumor’s

response to immunotherapy and overcome the associated

resistance (62). The combination therapy warrant further study to

reduce the incidence of HPD. Moreover, informing patients of the

risk of HPD is an indispensable component before the administration

of ICIs. Health auhorities and trial sponsors are under obligation to

monitor tumor progression in trials to help oncologists properly

inform patients of the expected incidence of HPD.
Discussion

Immunotherapy based on immune checkpoint inhibitors has

brought revolutionary clinical benefits to patients with NSCLC,

however, immunotherapy is also a double-edged sword that may

bring about serious response patterns such as HPD, which deviates

from the original intent of immunotherapy’s excellent clinical efficacy

and high safety profile. The lack of consensus on the definitional

criteria and biological basis of HPD necessitates larger studies and

multicenter collaborations to standardize the criteria. How to

maximize the efficacy and minimize the HPD caused by ICIS while

consolidating existing therapeutic gains to benefit more NSCLC

patients remains an open question. The importance of positive

predictive markers for screening NSCLC patients who may benefit

from immunotherapy with ICIs and the role of developing negative
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response predictive markers to screen out subgroups of NSCLC that

do not benefit or may even develop HPD cannot be underestimated,

therefor identifying potential molecular mechanisms and developing

predictive biomarkers for HPD is an important direction.
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the clinical management of
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1Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan, 2Neurosurgery
Department, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan, 3Department of
Medical Lab Technology, Muslim Youth University, Islamabad, Pakistan, 4Faculty of Chemical and
Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia, 5Department of
Chemistry, Faculty of Natural Sciences and Informatics, Constantine The Philosopher University in
Nitra, Nitra, Slovakia, 6Faculty of Science, Department of Chemistry, University of Hradec Kralove,
Hradec Kralove, Slovakia, 7Biomedical Research Center, University Hospital Hradec Kralove, Hradec
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Background and objectives: Glioblastoma multiforme (GBM) is the most

aggressive, malignant, and therapy-resistant tumor of the brain. Blockade

therapy targeting the programmed cell death protein 1 (PD-1)/programmed

death ligand (PD-L1) axis is currently under investigation for the clinical

management of the GBM. This study has quantified the plasma levels of PD-L1

as a biomarker for the clinical management of GBM.

Methods: A cohort (n = 128) of Pakistani adult glioblastoma patients together with

age- and sex-matched healthy controls was used for quantification of pre-surgery

levels of plasma PD-L1. PD-L1 protein and mRNA were measured by PD-L1

platinum enzyme-linked immunosorbent assay and quantitative real-time PCR,

respectively. Receiver operating characteristic (ROC) curve analysis was used to

compute area under the curve (AUC) for specificity and sensitivity analyses. The

Kaplan–Meier survival analysis was employed to compute overall survival.

Results: PD-L1 protein and mRNA were significantly higher in GBM compared to

the healthy controls (p < 0.0001). Mean PD-L1 concentration for the GBM was

found to be 48.98 ± 2.290 pg/ml compared to 27.63 ± 1.281 pg/ml for controls.

Gene expression analysis showed statistically significant upregulation (p <

0.0001) of PD-L1 in blood of GBM compared to healthy controls. Plasma PD-

L1 showed an AUC of 0.840 (p < 0.0001; 95% CI = 0.7716 to 0.9090) where a

cutoff value higher than 46 pg/ml demonstrated 100% specificity and 57.81%

sensitivity. Higher pre-surgery levels of PD-L1 were found to be associated with

overall poor survival [p < 0.0001; HR (log-rank) = 0.08; 95% CI = 0.04 to 0.15].

Age, gender, and ethnic background were not found to be associated with

plasma PD-L1 levels.

Conclusion: The study concludes that blood-based measurements of PD-L1 in

GBM can be a promising prognostic marker and therapeutic target besides a

rapid and relatively non-invasive screening tool for routine clinical management.
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Future work extending the analysis to larger cohorts through multi-center

collaborations involving pre-treatment and post-treatment groups is required

to fully explore the usefulness of circulating PD-L1 for effective clinical

applications.
KEYWORDS
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1 Introduction

Glioblastoma multiforme (GBM) is a highly aggressive,

malignant, and therapy-resistant primary brain tumor with poor

prognosis. GBM is also the most abundant of malignant brain

tumors accounting for nearly 50% of reported gliomas in USA alone

(1). Though much has been learned over the past decades about the

progression of GBM, the prognosis, however, remains poor. Studies

have reported the median survival time of less than 24 months with

a majority of afflicted succumbing to death within 12 months of the

diagnosis (2). Magnetic resonance imaging (MRI) remains the gold

standard for the diagnosis of GBM, yet the disease is already at an

advanced stage by the time imaging reveals a tumor lesion in the

brain (3). Surgical resurrection of the tumor mass is the standard

first step towards therapeutic control followed by adjuvant therapy,

making combined use of radiation and chemotherapy. Despite the

multimodal treatment regimen, recurrence and relapse are almost

always inevitable; hence, treatment of GBM remains a challenge for

clinicians and biologists despite their best efforts (4).

Immune checkpoint inhibitors have been reported to confer

anti-tumor resistance by augmenting the ability of immune system

to eliminate the cancerous cells (5). Lately, the PD-1/PD-L1

pathway has become of interest for the clinical management of

multiple cancers (6). Immune checkpoints are the inhibitory

pathways regulating the cellular and systemic immune cascades

through ligand–receptor interactions. These checkpoint

mechanisms ensure the tight balance between protective and

damaging impacts of the immune pathways and can therefore be

exploited using specific antibodies for anti-tumor immunity (7).

Programmed cell death protein 1, also known as PD-1, is one such

transmembrane surface protein encoded by the CD274 gene located

on chromosome 9. The main ligand for PD-1 protein is

programmed death ligand (PD-L1), also known as B7 Homolog 1

(B7H1), which induces a co-inhibitory signal for the activated T

cells expressing PD-L1. This B7H1/PD-L1 pathway inhibits the

activity of cytotoxic T cells promoting their apoptosis and

functional exhaustion and, hence, facilitating immune evasion of

the tumor cells (8). Thus, immunotherapy by blocking these

immune checkpoint inhibitors has been attempted and found

promising for the treatment of many solid tumors (9).

Monoclonal antibodies against the PD1/PD-L1 axis are now

among the prescribed cancer treatment regimen (7).

PD-L1 has been shown to be upregulated in GBM and is

particularly associated with poor prognosis, malignancy, and
0216
aggressiveness (10). Extracellular vesicles that promote the

progression of GBM are also shown to express PD-L1 on their

surface and therefore are considered to participate in

immunosuppression (11). These findings have prompted the

evaluation of immune checkpoint inhibitors for the management

of hitherto unmanaged GBM (12). Many phase II and phase III

clinical trials are now underway to develop antibodies against PD-

L1/PD-1 nexus and to investigate new immune checkpoint

inhibitors in an effort to therapeutically manage the devastating

GBM (13). Besides being used as a therapeutic target for anti-tumor

therapy, the levels of PD-L1 in the tumor microenvironment have

also been shown as promising prognostic markers (10, 14).

However, invasive procedures such as surgical excision and

biopsy are required to extract enough tumor tissue material for

the measurements of the levels of PD-L1, somewhat constraining

the usefulness of this assay in clinical settings (15).

A soluble form of plasma PD-L1 thought to originate from PD-

L1-expressing cells in the tumor microenvironment has attracted

notable attention as a surrogate marker (16). Many research studies

have reported the use of plasma PD-L1 as a reliable prognostic

marker in multiple cancers and particularly for the evaluation of the

efficacy of the checkpoint blockade therapies (17). Blood-based

biomarkers have always been of clinical interest owing to their

relatively non-invasive, painless, and cost-effective nature. The

present study endeavored to measure the levels of plasma PD-L1

in the blood of pre-operative GBM patients in an effort to document

their role in cancer prognosis and clinical management. To our

knowledge, this is the first report documenting the levels of plasma

PD-L1 from a local cohort of Pakistani origin. The findings of this

work are expected to contribute to a broader understanding of the

sensitivity, specificity, and reliability of plasma PD-L1 as a

biomarker in the GBM tumor management.
2 Methods

2.1 Collection of blood samples

Adult patients with clinically confirmed diagnosis of

glioblastoma (GBM) were recruited to participate in the study

from the Neurosurgery ward of the Pakistan Institute of Medical

Sciences (PIMS), Islamabad after granting ethical approval from

both the ethical review board (ERB) of COMSATS University

Islamabad (CUI) and PIMS hospital. A written informed consent
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was obtained from all the study participants wherein each was

informed about the research prior to collecting the blood. Healthy

controls were selected with no prior history of malignant disease,

diabetes, cardiovascular disease, and/or any other major illness.

Controls were matched for age and gender with the malignant

cohort. All the study subjects in the GBM cohort were followed up

for 6 months after initial surgical excision of the tumor.

To determine the efficacy and usefulness of plasma PD-L1 as a

biomarker in the therapeutic management of GBM, blood samples were

collected from 64 confirmed GBM patients prior to their initial surgery.

Venous blood (3ml) was drawn by the trained hospital phlebotomist in a

pre-labeled ethylene diamine tetra-acetic acid (EDTA) tube to prevent

clotting following standard clinical practices. A questionnaire about the

disease-related informationwas also completed by each participant of the

study for demographic analysis. The tubes were then safely transferred to

the laboratory at the Department of Bioscience, CUI, in an ice box and

plasma was separated. First, the blood samples were centrifuged at low

speed to separate the aqueous phase and then at high speed to remove

residual cells, and finally, the separated plasma was stored at −20°C until

further use.
2.2 Extraction of RNA and DNase treatment

RNA from the pelleted cells obtained after centrifugation,

described in the previous step, was extracted using TRIzol reagent

(Thermo Scientific) following their protocol. RNA was dissolved in

RNase-free water and was quantified using NanoDrop

spectrophotometer and thereafter subjected to DNase (Thermo

Scientific) treatment to remove contaminating genomic DNA.

First, the DNase enzyme was added to the RNA solution and

incubated for an hour at 37°C as described in the manufacturer’s

assay. After incubation, samples were re-extracted using phenol-

chloroform-isoamyl alcohol (PCI, Invitrogen), and finally, the

RNase-free water was added to dissolve the RNA and stored at

−20°C.
2.3 cDNA synthesis and quantitative
real-time PCR

RNA was reverse transcribed using the first-strand cDNA

synthesis kit (Thermo Scientific) as per their protocol. Reaction

mix consisted of RNase inhibitor, reaction buffer, and dNTPs

together with reverse transcriptase (RT) enzyme. After the

completion of the reaction, cDNA was stored at −20°C until

further analysis. qRT-PCR (Applied Biosystems) was performed

using maxima SYBR® green master mix (Thermo Scientific) with b-
actin gene as internal control and gene-specific PD-L1 primers.
2.4 ELISA for measurement of plasma PD-
L1

PD-L1 in the plasma was measured using a commercially

available assay (Human PD-L1 Platinum ELISA Kit BMS2212,
Frontiers in Immunology 0317
Thermo Fisher Scientific) according to the protocol. Briefly, wash

buffer and assay buffers were prepared and human PD-L1 standard

was reconstituted and dilutions were prepared. Samples and

controls were added to the micro-well plate and kit-supplied

biotin conjugate was then added to each of the well. This was

followed by the addition of Streptavidin-horseradish peroxidase and

tetramethylbenzidine (TMB) substrate solution. The reaction was

terminated by the addition of the stop solution and optical density

(OD) values were measured using the automated microplate reader

(AMP) Platos R II at a primary wavelength of 450 nm with 620 nm

as the reference wavelength. All the measurements were made

in triplicate.
2.5 Statistical analysis

The differences between two groups were analyzed by Student’s

t-test or Mann–Whitney U-test based on the normality of the data.

The chi-square test was used to compare categorical variables

between different study groups. One-way analysis of variance

(ANOVA) was used to compare more than two groups. Pearson’s

or Spearman’s correlation was used to assess associations among

different parameters as appropriate. Kaplan–Meier’s survival

analysis was carried out to compute overall survival subsequent to

initial surgery. The specificity and sensitivity of PD-L1

measurement as biomarker were determined by the area under

the curve (AUC) in receiver operator characteristic (ROC) curves.

Microsoft Excel (Microsoft Corporation) and GraphPad Prism V9.0

(GraphPad Software, San Diego, CA) were used for all the

statistical analyses.
2.6 Role of the funding bodies

The funding bodies did not play any role in the study design,

data collection, data analysis and interpretation of the data, and

writing of this manuscript. The corresponding authors were

responsible for undertaking the study and ensuring the accuracy

and integrity of the work. All authors have read and approved the

final version.
3 Results

3.1 Demographic characteristics of the
study cohort

The study cohort consisted of 128 individuals, of whom 64 were

confirmed GBM patients and 64 were age- and sex-matched healthy

controls. Table 1 summarizes the demographic profile of the study

participants. Majority of the GBM patients were in the age group of

20–39 years and showed varied ethnic backgrounds. All the subjects

belonging to the GBM cohort were asked about the family history of

brain tumors, and it was observed that 7.81% of them were

affirmative while 92.18% did not have familial past.
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3.2 Plasma PD-L1 levels are higher in GBM

PD-L1 concentration was found to be statistically significantly

different between controls and GBM (p < 0.0001) as shown in

Figure 1A. Mean plasma concentration of PD-L1 was 27.63 ± 1.281

pg/ml for controls and 48.98 ± 2.290 pg/ml for GBM. These

concentrations were calculated using a standard curve (R2 = 0.9971)

where the concentrations of known standards ranged from 9.4 pg/ml to

300 pg/ml. Pearson correlation found no statistically significant

association between plasma PD-L1 levels and age (p = 0.6445, r =

0.058, 95% CI = −0.1898 to 0.3003) as can be seen in Figure 1B. Male

patients were found to havemean plasma PD-L1 concentrations of 51.56

± 3.272 pg/ml and female patients had 46.05 ± 3.152 pg/ml (Figure 1C)

with no statistically significant difference (p = 0.2330). One-way ANOVA

found no significant differences in plasma PD-L1 among different ethnic

groups (Figure 1D) (p = 0.123; f = 1.86; R2 = 0.113).
3.3 PD-L1 gene expression was
upregulated in the GBM cohort

PD-L1 was significantly upregulated in peripheral blood of

GBM compared to the healthy controls (p < 0.0001) as shown in
Frontiers in Immunology 0418
Figure 2A. Correlation analysis showed no statistically significant

association (Figure 2B) of gene expression with age (p = 0.6463; r =

0.058; 95% CI = −0.1901 to 0.3000). The gene expression was not

found to be significantly different (Figure 2C) between male and

female patients (p = 0.2121). Ethnicity of the study participants was

also not found to be associated with PD-L1 gene expression (p =

0.051; f = 2.511; R2 = 0.1455) as can be seen in Figure 2D.
3.4 PD-L1 sensitivity and specificity
as biomarker

ROC curve analysis was undertaken to determine the specificity

and sensitivity of the plasma levels of PD-L1 gene and protein. AUC

of ROC of PD-L1 gene expression in blood (Figure 3A) was found to

be 0.8245 (p < 0.0001; 95% CI = 0.7529 to 0.8960). AUC of ROC

calculated from the measured values of circulating PD-L1 (Figure 3B)

was observed to be 0.840 (p < 0.0001; 95% CI = 0.7716 to 0.9090).

Based on Youden index, a cutoff value of less than 46 pg/ml showed a

specificity of 98.44% and a sensitivity of 59.38%. A value higher than

46 pg/ml demonstrated 100% specificity and 57.81% sensitivity.

Table 2 summarizes the demographics of GBM cohort based on

the low (<46pg/ml) and high (>46pg/ml) plasma PD-L1.
3.5 Kaplan–Meier survival analysis found an
overall poor survival

The GBM cohort was followed for 6 months after initial surgery

and survival was found to be 34.37%, as shown by the Kaplan–Meier

curve in Figure 4A. The GBM cohort was classified into two groups

based on the Youden index cutoff value of 46 pg/ml, and a statistically

significant difference [p < 0.0001; HR (log-rank) = 0.08; 95% CI = 0.04

to 0.15] between these two groups was observed (Figure 4B).
4 Discussion

GBM is categorized as grade IV glioma with an overall poor

survival and is still a challenge to be managed by conventional

therapies, i.e., surgical removal, chemotherapy, and radiation (12).

The tumor microenvironment created by GBM is conducive for

immune evasion and suppression of the normal immune curbing of

the cancer spread. Immune checkpoint inhibitors therefore offer a

promising avenue for the control of such difficult-to-manage and

therapy-resistant tumors (18). The PD-1/PD-L1 pathway is one

such immune regulatory nexus that has been shown to have a

promising anti-tumor role in the non-small cell lung cancer, head

and neck squamous cell carcinoma, cervical cancer, renal cancer,

gastric cancer, chronic Hodgkin’s lymphoma, hepatocellular

carcinoma, urothelial cancer, and melanoma (12). Though the

efficacy of the PD-1/PD-L1 blockade therapy is yet somewhat

controversial in the clinical management of GBM, it still has

shown an overall reduction in the tumor burden combined with

the activation of local and systemic immune responses suppressed

by the tumor microenvironment (19, 20). The amount of PD-L1

protein is critical in predicting the therapeutic efficacy of PD-1/PD-
TABLE 1 Summary of the demographic features of the study cohort.

Demographic
parameters

Controls (n =
64)

GBM (n =
64)

p-
value*

Gender >0.99

Male 34 (53.12%) 34 (53.12%)

Female 30 (46.87%) 30 (46.87%)

Age (years) 0.89

Mean age 37.70 37.94

10–19 2 (3.12%) 2 (3.12%)

20–29 24 (37.50%) 23 (35.93%)

30–39 25 (39.06%) 23 (35.93%)

40–49 6 (9.37%) 7 (10.93%)

50–59 5 (7.81%) 6 (9.37%)

>60 2 (3.12%) 3 (4.68%)

Ethnicity 0.12

Punjabi 41 (64.06%) 37 (57.81%)

Seraiki 0 1 (1.56%)

Kashmiri 2 (3.12%) 5 (7.81%)

Pushtun 15 (23.43%) 20 (31.25%)

Gilgiti 6 (9.37%) 1 (1.56%)

Family History

Yes – 5 (7.81%)

No – 59 (92.18%)
*Chi-square test was used to compare categorical variables and t-test was used for
quantitative variables.
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L1 blockade therapy in different types of cancers (21). It is therefore

important to investigate the expression of PD-L1 in GBM to

comprehensively understand its role in cancer prognosis,

diagnosis, and effective therapeutic management.

The present study quantified the levels of RNA and protein of

plasma PD-L1 in the blood of the confirmed cases of GBM

recruited from local cohort together with age- and sex-matched

healthy controls. A large number of study participants were

observed to be middle-aged with a mean age of 37.94 ± 1.58

years, a much younger age of onset compared to the other parts

of the globe. The median age for most of the primary brain

tumors in the developed countries has been reported as 59 years,

while for GBM, it was 64 years (22). The incidence of GBM in

comparatively young individuals is difficult to explain given the

lack of epidemiological studies in our population, though partly

this disparity in age could be explained by the fact that Pakistan

hosts a larger young population where 64% are under the age of

30 years and overall life expectancy is 65.6 years (23, 24)

compared to developed countries where people lived to

advanced years. Study participants were asked about their

family history of cancer, and it was observed that only

approximately 7% were familial cases consistent with the fact

that GBM is a sporadic brain tumor (25).
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Pakistan is home to many different ethnic sub-groups, and since

the study subjects were recruited from one of the largest

government-run hospital in the capital city where treatment of

GBM is available, all were asked about ethnicities to establish its

putative association with PD-L1 expression. It was observed that no

correlation existed with the ethnic origin and expression of the PD-

L1 RNA and protein. The patients were selected randomly so that

bias in sampling can be disregarded for overrepresentation of one

ethnic group over the other. One possible reason for Punjabis to be

present in larger number among cancer subjects may be that the

capital city hosts a large population of Punjabi ethnic group

followed by Pushto-speaking Pakhtuns/Pathans. Demographic

differences in incidence of GBM have been observed for

developed countries, and it was found that GBM was more

prevalent in male than in female patients (22, 26).

GBM is currently diagnosed using imaging technologies,

particularly magnetic resonance imaging (MRI) with/without

contrast, and definitive pathology is confirmed by tissue biopsies.

Imaging, though non-invasive, is limited by failing to distinguish

actual tumor lesions from treatment-induced lesions and can often

lead to diagnostic errors. Tumor biopsy, on the other hand, is highly

invasive and can only offer a static glimpse into the tumor

microenvironment, which, for GBM, is highly heterogeneous and
D

A B

C

FIGURE 1

Comparative analysis of concentration of plasma PD-L1 between controls and GBM. A statistically significant difference (p < 0.0001) in the
concentration of plasma PD-L1 was found between controls and GBM (A). Plasma PD-L1 levels were found to have no association with age (p = 0.64)
(B), gender (p = 0.23) (C), and ethnicity (p = 0.12) (D). The '*' sign is used to represent the statistical significance. The 'ns' refers to 'not significant'.
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ever changing with additional risk of hemorrhage and neural

dysfunction (27, 28). Liquid biopsies utilizing body fluids

particularly blood are minimally invasive and safe alternates for

the diagnosis, pre- and post-treatment monitoring, and prognostic

predictions in clinical settings. Cerebrospinal fluid (CSF) and

peripheral blood are now under intensive investigation for the
Frontiers in Immunology 0620
estimation of biomarkers that can help in the early diagnosis of

GBM together with post-treatment management of the disease

where tissue biopsy is not possible and/or feasible (29, 30). These

minimally invasive liquid biopsies offer an additional advantage for

resource-limited settings such as developing countries and

underdeveloped societies where healthcare facilities are either
D

A B

C

FIGURE 2

PD-L1 gene expression in blood was significantly different (p < 0.0001) between controls and GBM (A). PD-L1 gene expression was not found to
have association with age (p = 0.64) (B), gender (p = 0.21) (C), and ethnicity (p = 0.05) (D) of study participants. The '*' sign is used to represent the
statistical significance. The 'ns' refers to 'not significant'.
A B

FIGURE 3

Plasma PD-L1 levels as biomarkers were evaluated using ROC analysis. PD-L1 gene expression in blood gave an AUC of 0.824 (p < 0.0001) as shown
in (A). Plasma levels of PD-L1 protein was found to have an AUC of 0.840 (p < 0.0001) and is shown in (B).
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non-existent or burdened enough to support the routine imaging

and invasive biopsies, which are obvious diagnostic choices

but costly.

PD-L1 expression as a putative biomarker in GBM has been

investigated with contradictory roles in prognosis mainly within

tumors. Plasma PD-L1 has been shown by few other studies as a

marker for primary and recurrent brain malignancies with poor

prognosis and overall poor survival (17, 31–33). PD-L1 levels have

been reported to be higher for other types of aggressive

malignancies and are therefore attributed as an independent

marker to predict overall survival and treatment efficacy (34, 35).

These studies have described the differences in the levels of plasma

PD-L1 following radiotherapy in gliomas and anti-PD-1 immune

therapy in recurrent glioblastomas as a promising biomarker.

However, the measured levels of the plasma PD-L1 were different

in all these studies, necessitating further explorative studies
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involving large and diverse cohorts to determine its clinical

usefulness. For effective cancer immunotherapeutic management

using blockade therapy, PD-L1 expression in tumor tissues has been

approved as companion diagnostics for pembrolizumab-based

treatment (36).

Many studies have reported the elevated levels of plasma PD-L1

in several types of malignancies with a potential to be used as a

prognostic biomarker but still a baseline has not been established. It

therefore is of paramount importance to characterize the expression

of plasma PD-L1 in larger cohorts of different ethnicities, races,

tumor types, and stages of malignancy for establishing robust and

reproducible cutoff values to characterize the progress of the disease

and outcome of the therapy. Also, given the role of PD-L1/PD-1 in

blockade therapies, the expression has to be characterized to

compensate for heterogeneity in the tumor microenvironment

and measurement techniques/technologies for the effective

applications of immune checkpoint inhibitors. The present study

compared the differences in the expression levels of plasma PD-L1

between GBM and healthy controls recruited from local population.

Blood was collected from adults with a confirmed diagnosis of GBM

prior to their initial surgery, and overall survival was computed

following 6 months post-surgery. To our knowledge, this is the first

study describing the plasma levels of PD-L1 in a GBM cohort of

Pakistani origin. The present study is limited by two important

considerations: first, the study has only investigated the pre-surgery

levels of plasma PD-L1 and has not contrasted it with post-surgery

levels. Second, the number of patients for survival analysis was small

because the study recruited participants from the largest tertiary-

care hospital in the capital city where treatment to multiple brain

malignancies is offered. Hence, the patient pool is highly

heterogeneous with clinical presentation of different types of

gliomas. This study only focused on GBM, and other gliomas

were not the focus of investigation; hence, it reduced the number
A B

FIGURE 4

Kaplan–Meier survival curve showing an overall survival of 34.37% after 6 months of initial surgery based on the levels of plasma PD-L1 (A). Further
stratification of the GBM cohort based on a cutoff of 46 pg/ml (calculated from ROC curve) showed a statistically significant (p < 0.0001) improved
survival for low pre-surgery levels of plasma PD-L1 (B).
TABLE 2 Distribution of the GBM cohort based on the low (≤46 pg/ml)
and high (≥46 pg/ml) plasma PD-L1.

Demographic
parameters

Plasma PD-L1
(≤46 pg/ml)

Plasma PD-L1
(≥46 pg/ml)

p-
value*

No. of patients 26 (40.62%) 38 (59.37%)

Mean PD-L1 (pg/ml) 31.63 60.85 <0.0001

Gender 0.35

Male 12 (46.15%) 22 (57.89%)

Female 14 (53.84%) 16 (42.10%)

Mean age (years) 41.69 35.37 0.04

Mean survival time
(months)

6 5 <0.0001
*Chi-square test was used to compare categorical variables, t-test was used for quantitative
variables, and survival was compared by Kaplan–Meier analysis.
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of eligible participants. For a comprehensive understanding of the

role of plasma PD-L1 in overall survival and prognosis of GBM,

future studies should compare the pre-surgery and post-surgery

groups with a large sample size so that patient groups can be

stratified and an optimized therapy regimen be devised.
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advanced hepatocellular
carcinoma patients
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Background: There is no study focusing on noninvasive predictors for the

efficacy of sintilimab (anti-PD-1) plus IBI305 (a bevacizumab biosimilar)

treatment in advanced hepatocellular carcinoma (HCC).

Method: A total of 33 patients with advanced HCC were prospectively enrolled

and received sintilimab plus IBI305 treatment from November 2018 to October

2019. Baseline characteristics including clinical data, laboratory data, and tumor

features based on pretreatment CT/MR were collected. Meanwhile,

pretreatment contrast-enhanced ultrasound (CEUS) for target tumor was

performed and quantitative parameters were derived from time–intensity

curves (TICs). A nomogram was developed based on the variables identified by

the univariable and multivariable logistic regression analysis. The discrimination,

calibration, and clinical utility of the nomogram were evaluated.

Results: Tumor embolus and grad ratio were significant variables related to the

efficacy of sintilimab plus IBI305 strategy. The nomogram based on these two

variables achieved an excellent predictive performance with an area under curve

(AUC) of 0.909 (95% CI, 0.813–1). A bootstrapping for 500 repetitions was

performed to validate this model and the AUC of the bootstrap model was

0.91 (95% CI, 0.8–0.98). The calibration curve and decision curve analysis (DCA)

showed that the nomogram had a good consistency and clinical utility.
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Conclusions: This study has established and validated a nomogram by

incorporating the quantitative parameters of pretreatment CEUS and baseline

clinical characteristics to predict the anti-PD-1 plus anti-VEGF treatment efficacy

in advanced HCC patients.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC), with a 5-year survival rate of

5%–30%, ranks as the fourth most common malignant tumor and

the second leading cause of cancer-related death (1, 2). The

insidious onset and slow progression of symptoms usually result

in delayed diagnosis of HCC. Considering the severity of HCC, only

10%–15% of HCC patients are eligible for surgical resection (3). In

general, systemic treatment is the main option for advanced HCC

patients (4). Anti-vascular endothelial growth factor (anti-VEGF)

drugs were applied as standard systemic treatment agent, but the

median overall survival (OS) ranges from 10.7 to 13.6 months (5–9).

Immune checkpoint inhibitors (ICIs), particularly antibodies

targeting programmed cell death-1 (PD-1) or programmed cell

death ligand-1 (PD-L1), have exhibited promising potential at

improving tumor response and survival of HCC patients. The

United States Food and Drug Administration (FDA) has

approved anti-PD-1/PD-L1 for the treatment of advanced HCC

(10). However, the efficacy of mono-immunotherapy remains

limited. As first-line treatment, nivolumab monotherapy did not

prolong the median OS compared with sorafenib monotherapy

(11). The combination of ICIs and VEGF inhibitors is a promising

strategy to fight tumors in a synergistic way. The VEGF inhibitor

helps to induce the normalization of tumor vascularization, alleviate

immunosuppression of tumor microenvironment, and increase the

infiltration and activation of immune cells. Meanwhile, PD-1/PD-

L1 inhibitors can enhance the stimulation of immune cells by

targeting immune checkpoints (12–14). Recently, a series of

clinical trials had demonstrated that ICIs plus anti-VEGF can

result in more improvements in objective response rate (ORR),

disease control rate (DCR), and progression-free survival (PFS) (15,

16). In 2020, FDA had approved the combined strategy as first-line

treatment for advanced HCC.

In the background of precision medicine, it is urgent to identify

the population who are likely to benefit from combined treatment.

Imaging plays an important role in the management of HCC and

has potential to provide noninvasive information for the prediction

of treatment efficacy. Current studies mainly focused on applying

imaging features to predict treatment response to mono-

immunotherapy. Based on radiomics features extracted from

pretreatment contrast-enhanced CT images, Yuan developed a

nomogram to predict the anti-PD-1 treatment efficacy in patients
0225
with advanced HCC (17). Huang reported that the presence of the

hyper-enhanced rim on the Kupffer phase images obtained from

Sonazoid-contrast-enhanced ultrasound (Sonazoid-CEUS) is a

promising biomarker to predict unfavorable response with anti-

PD-1/PD-L1 therapy in HCC patients (18). At present, no

noninvasive predictors for the efficacy of ICI plus anti-VEGF

inhibitor treatment have been reported.

CEUS is a first-line modality in the management of HCC

with high temporal resolution and high sensitivity to detect

hypervascularization (19, 20). Different from contrast-enhanced

CT/MR agents that deposit into extravascular space, ultrasound

contrast agents are true intravascular contrast agents that are

capable of quantification analysis of tumor perfusion information.

Quantification parameters of CEUS had been widely used for the

early evaluation or prediction of the response to antiangiogenic

therapy in tumors with various types (21–24).

In order to screen population that might potentially benefit

from combined treatments, our study develops a nomogram based

on quantification parameters of pretreatment CEUS to predict the

efficacy of ICI plus anti-VEGF inhibitor treatment.
Materials and methods

This was a single-center prospective study approved by the

ethics committee of the cancer hospital of the Chinese Academy of

Medical Sciences (No.18-126/1704). All enrolled patients had given

their informed consent.
Patient selection and sample
size estimation

From November 2018 to October 2019, 33 HCC patients

treated with sintilimab (anti-PD-1) plus a bevacizumab biosimilar

(anti-VEGF) were included in this study. The inclusion criteria were

listed as follows: (1) patients who were aged ≥ 18 and diagnosed

with HCC by histology or cytology; (2) with the presence of

measurable lesions (≥1) proven by CEUS and contrast-enhanced

CT/MR examination performed within 1 week before the start of

combined treatment; (3) with a regular CT/MR follow-up duration

≥ 12 weeks; (4) patients in stage B or C according to the Barcelona
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Clinic Liver Cancer (BCLC) staging system; (5) with Eastern

Cooperative Oncology Group (ECOG) performance status of 0 or

1; and (6) with Child–Pugh liver function scores ≤7. The exclusion

criteria were as follows: (1) without baseline CEUS and CT/MR

examination; (2) accepted locoregional therapy during follow-up;

(3) currently has or had a history of malignant tumors besides HCC;

(4) allergic to ultrasound/CT/MR contrast agents or other

contraindication for ultrasound contrast agent application; and

(5) incomplete follow-up.

The sample size estimation was based on the reported DCR in

advanced HCC patients treated with anti-PD-1/PD-L1 plus anti-

VEGF agents and on the principle of 10 outcome events per variable

(25). According to a systematic review and meta-analysis, The DCR

was 0.75 in PD-L1/PD-1 plus anti-VEGF agents. Using an

estimated DCR of 0.75 in the study population and for two

predictors (15), we aimed to enroll 27 HCC patients but actually

enrolled 33.
Dosage of anti-PD-1 plus anti-VEGF agents

Sintilimab was given intravenously at a fixed dose of 200 mg

every 3 weeks and the bevacizumab biosimilar (IBI305) was given

intravenously at a fixed dose of 7.5 mg/kg or 15 mg/kg. The

incidence and severity of AEs were graded and recorded

according to the Common Terminology Criteria for AEs version

5.0 (CTCAE 5.0).
Clinical data and assessments of
response to therapy

Baseline clinical characteristics including basic data, laboratory

data, and abdominal CT/MR data of enrolled patients were

collected and documented. Basic data included age, gender, BCLC

stage, ECOG performance, and Child–Pugh score. Laboratory data

included alpha-fetoprotein (AFP), total bilirubin (TBIL), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), and

prothrombin time (PT). Target tumor size, tumor number,

vascular invasion, and extra-hepatic metastasis status were

documented according to baseline abdominal CT and/or MRI

performed within 2 weeks before the initial treatment. Then, the

follow-up abdominal CT was performed every 4 weeks after the

initial treatment for treatment evaluation. Meanwhile, the baseline

CEUS was performed within 1 week before the start of combined

treatment and the details will be illustrated in Examination

procedure of CEUS. Both CEUS and CT/MR chose the same HCC

lesion as target lesion of each patient for evaluation. Based on

anatomical location, a radiologist with over 20 years’ specialization

in CEUS diagnosis was assigned to ensure that the target lesion

observed by CEUS is consistent with the target lesion evaluated by

CT/MR. If multiple HCC lesions exist in a patient, the biggest lesion

that can be clearly revealed by CEUS was chosen as the target lesion.

Modified response evaluation criteria in solid tumor

(mRECIST) was used to evaluate tumor response to treatment,

and the classifications were listed as follows: (1) complete response
Frontiers in Immunology 0326
(CR), disappearance of any arterial enhancement in target lesion;

(2) partial response (PR), the total reduction of the diameters of the

target lesions (arterial phase) by ≥30%; and (3) stable disease (SD),

any cases that do not qualify for either PR or progressive disease

(PD); PD, the diameter of the target lesion increased by at least 20%

compared with the baseline value or the appearance of new lesions

with enhancement in the arterial phase. Based on the response

evaluation by two experienced radiologists (with 10 years’

experience in abdominal CT/MR diagnosis), the patients with CR,

PR, or SD ≥ 12 weeks were classified as the non-PD group while the

patients with PD during follow-up were categorized as the

PD group.
Examination procedure of CEUS

The conventional ultrasound and CEUS were performed using

LOGIQ E9 (GE Healthcare, WI, USA) by an experienced radiologist

(with 3 years’ experience in CEUS) within 1 week before the initial

treatment. The frequency range of the probe was 3 to 5 MHz. The

lyophilized powder of contrast agent Sono Vue (Bracco SpA, Milan,

Italy) was reconstituted by adding 5 ml of 0.9% saline and shaking

to form a homogeneous microbubble suspension. Before activating

CEUS mode, conventional ultrasound was performed to screen the

whole liver and choose target HCC lesions and best sonographic

sections for observation. If multiple HCC lesions exist in a patient,

the biggest lesion that can be clearly and completely presented by

conventional ultrasound was selected as target lesion. The final

sonographic sections for revealing target lesions were acquired by

slightly adjusting on the basis of one of the standard sections

introduced by the color atlas of ultrasound anatomy (26). The

location (Couninaud liver segment), surrounding anatomic

markers, and observing section of each target lesion were

documented in order to facilitate the further identification in CT/

MR images by a radiologist with over 20 years’ experience in HCC

diagnosis. Then, a bolus of 2.4-ml suspension of the contrast agent

was administered via antecubital vein. The CEUS mode and the

chronograph were activated simultaneously. Continuous imaging

was acquired immediately after injection of the contrast agent and

lasted for 3 min. The imaging was presented as a dynamic video

with a DICOM format. The dynamic videos were stored in LOGIQ

E9 and backed up in a portable hard drive for further analysis.
Quantification analysis of CEUS

The dynamic videos acquired from CEUS was analyzed using

the built-in software of LOGIQ E9. Two radiologists (both with 3

years’ experience in CEUS) reviewed the dynamic video of each

target lesion and selected the proper frame to draw the region of

interest (ROI) including the tumor region (TR) and peritumoral

region (PTR). The contour of each target lesion was manually

drawn and the time–intensity curve (TIC) was automatically

generated by the built-in software. Quantitative parameters

generated from TIC included (1) time to peak (TtoPk), the time

from zero intensity (right before the contrast arrives in the ROI) to
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maximum intensity; (2) peak intensity* (PI*), showing the

difference between the peak intensity (PI) and baseline intensity

(BI); (3) grad, the gradient from arrival intensity to PI, reflecting the

average perfusion velocity; (4) area under curve (AUC), the area

under TIC with the arrival intensity as baseline. The TIC obtained

from TR (TIC-TR) and PTR (TIC-PTR) respectively generated

corresponding quantitative parameters for each patient. The final

variables used for binary logistic regression analysis was obtained by

calculating the ratio of the parameters generated by TIC-TR to

those generated by TIC-PTR.
Development and internal validation
of nomogram

Multivariable logistic regression was used to explore the

relationship between variables and non-PD. Variables with p-

value < 0.05 in univariate logistic regression were included in

multivariable logistic regression. Redundant variable was excluded

if collinearity existed. The variables with the variance inflation

factors (VIFs) >5 indicated suspicious multicollinearities.

Classification variables were set with a dummy variable. A

nomogram model for predicting non-PD was developed using the

independent risk factors identified by multivariable logistic

regression analysis. The discriminatory ability of the model was

evaluated using receiver operating characteristic (ROC) curve

analysis. The predictive accuracy of the model was evaluated by a

calibration curve. An internal bootstrap validation was performed

using computer resampling for 500 repetitions of simple random

sampling with replacement. Decision curve analysis (DCA) was

performed to determine the clinical usefulness.
Statistical analysis

R software (ver.1.4.1717, R Development Core Team) and SPSS

22.0 software (IBM Corporation, NY, USA) were used for statistical

analysis. The c (2) test or Fisher’s exact test were used for the

comparison of classification variables, whereas the independent-

sample t test was used for the comparison of continuous variables. A

p-value < 0.05 was considered statistically significant. SPSS was used

for binary logistic regression analysis and R software was used to

develop the predictive model and test the diagnostic performance of

the model with the corresponding package.
Results

Baseline characteristics of patients in the
PD group and non-PD group

A total of 33 patients were enrolled in this study from

November 2018 to October 2019. Each enrolled patient received

at least one cycle of sintilimab plus IBI 305 treatment. According to
Frontiers in Immunology 0427
tumor response evaluation, the enrolled patients were divided into a

PD group and a non-PD (PR+CR+SD) group as illustrated in the

Clinical data and assessments of response to therapy. The baseline

characteristics summarized from clinical data, laboratory data, and

imaging data of baseline abdominal CT/MR are listed in Table 1.

BCLC staging, ECOG performance status, and Child–Pugh liver

function scores were not assigned as variables in baseline

characteristics since these clinical data were taken as inclusion

criteria. In addition, considering the IBI305 was given at two

different doses of 7.5 mg/kg or 15 mg/kg, the dose of IBI305 was

also listed as a variable in Table 1. Except for the variable of

embolus, there were no significant differences in baseline

characteristics including IBI305 dose between the PD group and

non-PD group, indicating a good consistency between two groups.
Quantitative parameters generated based
on baseline CEUS

Based on the TR (tumor region) and PTR (peritumor region),

corresponding TICs were generated by built-in software. The TIC of

TR was defined as TIC-TR while that of PTR was defined as TIC-

PTR. Corresponding quantitative parameters of TIC-TR and TIC-

PR are listed in Table 2. These quantitative parameters included

TtoPK, PI*, grad, and AUC. The ratios of quantitative parameters of

TIC-TR to those of TIC-PTR were calculated and are listed in

Table 2. The representative images of CEUS and corresponding

TICs are presented in Figures 1, 2.
Target tumor response to treatment

The response to treatment of target tumor was evaluated by the

follow-up CT/MR. The follow-up duration of every enrolled patient

was ≥12 weeks after initial treatment. While no CR was observed in

enrolled patients, 11 patients experienced PR, 11 patients

experienced SD, and 11 patients experienced PD. A DCR of

66.67% was obtained in our study (Table 3).
Nomogram for predicting non-PD

Univariable and multivariable logistic regression analysis were

performed to identify the independent variables related to non-PD

(Tables 4, 5). Finally, embolus and grad ratio were considered to be

significant variables related to non-PD. The absence of embolus in

portal vein and the lower value of grad ratio were predictive factors

for non-PD. With these two variables, a nomogram was established

and the probability of non-PD can be estimated (Figure 3). The

discriminative ability was evaluated by ROC curve analysis. The

area under the ROC curve (AUC) (AUC, 0.909 [95% confidence

interval (CI), 0.813–1]) of the nomogram was higher than that for

applying embolus alone (AUC: 0.773 [95% CI, 0.612–

0.934]) (Figure 4).
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Model validation

The developed nomogram was validated with internal bootstrap

validation. The ROC curve was evaluated by bootstrapping for 500

repetitions and the AUC of the bootstrap nomogram was 0.909

(95% CI, 0.793–0.979) (Figure 5). Also based on the internal
Frontiers in Immunology 0528
bootstrap validation, the AUC of the ROC curve for applying

the embolus status alone to predict the therapeutic efficiency

was only 0.773 (95% CI, 0.612–0.934) (Figure 6). Based on

internal bootstrap validation, the calibration curve of the

nomogram showed a good fitting with the idea curve. When the

probability was less than 0.5, the nomogram may slightly
TABLE 2 Quantitative parameters based on TR/PTR in the PD group and non-PD group.

Parameters
PD group (n = 11) non-PD group (n = 22)

TIC-TR TIC-PTR Related ratios TIC-TR TIC-PTR Related ratios

TtoPK (s) 14.18 ± 3.21 29.32 ± 8.09 0.51 ± 0.15 17.32 ± 6.93 32.417 ± 10.05 0.54 ± 0.15

PI* (dB) 26.84 ± 5.22 23.98 ± 4.91 1.13 ± 0.22 23.94 ± 5.60 25.05 ± 5.30 0.97 ± 0.18

Grad 1.99 ± 0.69 0.87 ± 0.24 2.3 ± 0.62 1.46 ± 0.41 0.81 ± 0.31 1.8 ± 0.42

AUC 3,234.36 ± 732.45 3,117.00 ± 876.33 1.11 ± 0.50 2,887.81 ± 880.25 3,255.74 ± 846.78 0.90 ± 0.22
TIC, time–intensity curve; TR, tumor region; PTR, peritumor region; TtoPK, time to peak; PI, peak intensity; BI, baseline intensity; PI*, the difference between PI and BI; AUC, area under the
operating characteristic curve. TIC-TR represents the TIC generated from TR; TIC-PTR represents the TIC generated from PTR; ratio represents the ratio of quantitative parameters of TIC-TR
to those of TIC-PTR.
TABLE 1 Baseline characteristics of patients in the PD group and non-PD group.

Characteristic PD group (n = 11) Non-PD group (n = 22) p-value

Age at diagnosis (years) 59.09 ± 11.03 55.86 ± 11.97 0.46

Gender

Male 9 (81.8%) 18 (81.8%) 0.671

Female 2 (18.2%) 4 (18.2%)

AFP (ng/ml)

<20 1 (9.1%) 5 (22.7%) 0.409

20–400 5 (45.5%) 7 (31.8%)

>400 5 (45.5%) 10 (45.5%)

Alb (g/L) 41.23 ± 7.69 44.21 ± 4.09 0.153

PLT (109/L) 12.86 ± 0.98 12.30 ± 0.66 0.06

Tbil (mmol/L) 17.54 ± 9.79 13.94 ± 4.62 0.158

Tumor size (cm) 8.02 ± 5.86 8.40 ± 4.19 0.837

Tumor number

<3 1 (9.1%) 8 (36.4%) 0.104

≥3 10 (90.9%) 14 (63.6%)

Embolus

Present 8 (72.7%) 4 (18.2%) 0.004

Absent 3 (27.3%) 18 (81.8%)

Extra-hepatic metastasis

Yes 10 (90.9%) 19 (86.4%) 0.593

No 1 (9.1%) 3 (13.6%)

IBI305 dose

7.5 mg/kg 7 (63.6%) 12 (54.5%) 0.453

15 mg/kg 4 (36.4%) 10 (45.5%)
fron
PD, progressive disease; IBI305, a bevacizumab biosimilar for anti-VEGF.
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underestimate the probability. When the probability was higher

than 0.5, the nomogram may slightly overestimate the probability

(Figure 7). The DCA showed a positive net benefit for the

nomogram and embolus when a threshold probability was greater

than 0.2. When compared with the net benefit achieved by applying
Frontiers in Immunology 0629
embolus status alone to predict therapeutic efficiency, a better

clinical utility was achieved after incorporating grad and embolus

to establish the nomogram (Figure 8).
Discussion

In this study, a CEUS quantitative parameter-based nomogram

was developed and validated by bootstrap method to predict the

anti-tumor efficacy in advanced HCC patients treated with

sintilimab plus IBI305. By incorporating the variables of embolus

and grad ratio, the nomogram achieved a good performance in

predicting the probability of non-PD after anti-PD-1 plus anti-

VEGF treatment.

Compared with anti-PD-1/PD-L1 monotherapy, the combined

strategy of PD-1/PD-L1 inhibitors plus anti-VEGF agents achieved

more clinical improvements for advanced HCC patients in ORR
FIGURE 2

Representative images of CEUS and TIC of patients in the non-PD group.
TABLE 3 Tumor response for enrolled patients after anti-PD-1 plus anti-
VEGF treatment.

Tumor response All patients (n = 33)

Complete response (CR) 0

Partial response (PR) 11 (33.33%)

Stable disease (SD) 11 (33.33%)

Progressive disease (PD) 11 (33.33%)

DCR (CR+PR+SD) 22 (66.67%)
FIGURE 1

Representative image of contrast-enhanced ultrasound (CEUS) and time–intensity curve (TIC) of patients in the progressive disease (PD) group.
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(0.26 vs. 0.21), DCR (0.75 vs. 0.59), and PFS (6.2 months vs. 4.19

months) according to the results of the meat analysis based on

recent clinical trials (15). However, patients with unfavorable

response to this combined strategy still existed. Studies focusing
Frontiers in Immunology 0730
on exploring the biomarkers that aid in predicting the response to

anti-PD-1 plus anti-VEGF agents are urgently needed. Generally,

tumor neovascularization significantly differs from normal

vasculature due to the presence of dilation, distortion, and
TABLE 4 Univariable logistic regression analysis to identify risk factors for non-PD.

Variables Odds ratio 95% confidence interval p-value

Age 1.042 0.975–1.042 0.223

Gender (male) 1.00 0.153–6.531 1.00

Tumor size (cm) 1.227 0.995–1.513 0.055

Tumor number (≥3) 5.714 0.613–53.229 0.126

Embolus (present) 0.083 0.015–0.462 0.04

Extra-hepatic metastasis (yes) 0.708 0.145–17.218 0.708

IBI305 dose (15 mg/kg) 0.686 0.155–3.036 0.619

TtoPK ratio 5.431 0.03–978.72 0.523

PI* ratio 0.007 0.000–1.280 0.062

Grad ratio 0.136 0.023–0.789 0.026

AUC ratio 0.098 0.003–3.352 0.198
fron
TtoPK ratio is defined as the ratio of the TtoPK obtained from TIC-PR to that obtained from TIC-PTR
PI* ratio is defined as the ratio of the PI*(PI-BI) obtained from TIC-PR to that obtained from TIC-PTR.
Grad ratio is defined as the ratio of the grad obtained from TIC-PR to that obtained from TIC-PTR.
AUC ratio is defined as the AUC obtained from TIC-PR to that obtained from TIC-PTR.
TABLE 5 Multivariate logistic regression analysis to identify risk factors for non-PD.

Variables Odds ratio 95% confidence interval p-value

Embolus (present) 0.015 0.001–0.338 0.008

Grad ratio 0.025 0.001–0.596 0.023
FIGURE 3

Nomogram prediction of non-PD.
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formation of abnormal division branch, leading to corresponding

blood perfusion patterns (27). The anti-VEGF agent can induce the

normalization of tumor vascularization and thereby result in the

changes of blood perfusion patterns (28, 29). Tumor-associated

macrophages (TAMs) were considered to play an important role in

immunotherapy resistance (30). As we know, TAMs can be divided
Frontiers in Immunology 0831
into M1-like and M2-like subtypes. The high ratio of M1-like TAM

to M2-like TAM can lead to a better long-term prognosis of cancer

patients (31). The immune resistance can also be partially attributed

to the predominant presence of M2-like TAM in the tumor

environment (TME) (32). In patients with advanced HCC, high

infiltration of M2 macrophage was considered to be associated with
FIGURE 4

Receiver operating characteristic (ROC) curve. AUC: area under the receiver operating characteristic curve for the nomogram and for applying the
embolus alone to predict non-PD.
FIGURE 5

The ROC curve measured by bootstrapping for 500 repetitions and the AUC of the bootstrap stepwise nomogram. The snow blue area shows the
95% confidence interval of the ROC curve.
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resistance to anti-PD-1 monotherapy (33). A research team from

our institution recently reported that the tumor infiltration of M1

macrophages may serve as a potential predictive biomarker for anti-

PD-1 plus anti-VEGF therapy in patients with advanced HCC (16).
Frontiers in Immunology 0932
It is worth emphasizing that the M2-like TAMs is also associated

with the microvessel density in tumor (31). This view was further

supported by the finding that close association was observed

between TAMs and tumor angiogenesis during cervical cancer
FIGURE 6

The ROC curve measured by bootstrapping for 500 repetitions and the AUC for applying embolus alone to predict non-PD. The lake blue area
shows the 95% confidence interval of the ROC curve.
FIGURE 7

Calibration curve for predicted probability. The X-axis represents the probability of non-PD predicted by the nomogram. The Y-axis represents the
actual probability of non-PD. The diagonal dashed line represents the ideal calibration line.
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progression (34). In well-differentiated HCC, tumor vascularity was

also proved to be correlated with M2-like TAM count (35). Thus,

the microvessel intensity in tumor is potentially useful to predict the

immune resistance in TME by indicating the proportion of M2

TAMs. For now, no non-invasive predictors were mentioned for

predicting the efficacy of the treatment using ICIs plus anti-VEGF

agents in advanced HCC patients.

CEUS is a non-invasive imaging modality using a contrast agent

consisting of gas bubbles that are small enough to transverse

through pulmonary vasculature and finally reach the target organ

vasculature. Different from CT/MR contrast agents, the ultrasound

contrast agent is a true intravascular contrast agent without

deposition into the extravascular space and has the potential to

reflect the vascular distribution and intensity without the concerns

of ionizing radiation. Zheng reported that a good correlation (r =

0.624, p < 0.001) was obtained between the quantitative CEUS

variable (maximum intensity, namely, PI) and the intratumoral

microvessel density (MVD) estimated based on surgical tissue

sections stained with CD34 (36). By revealing the changes of

microvessel perfusion, quantitative CEUS had been widely used in

the early evaluation or prediction for the treatment efficacy of anti-

VEGF monotherapy (24, 37, 38). Several studies had emphasized

that the anti-PD-1 treatment was also capable of promoting

vascular normalization, indicating a potential application of

CEUS in treatment evaluation among patients treated with anti-

PD-1 monotherapy (22, 39). A series of quantitative parameters

including TtoPK, PI, grad, and AUC can be acquired from TIC

analysis based on CEUS imaging data. These parameters can

comprehensively reflect the characteristics of microvessel by

depicting the perfusion information and thereby indicate the

infiltration status of M2-like macrophages in tumor.
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In total, tumor embolus and grad ratio were included as variables

in developing our nomogram model. Tumor embolus, presented as

enhanced solid areas within the portal vein and its branches in the

arterial phase of contrast-enhanced CT/MR images, is a widely used

poor prognostic factor for HCC (40–42). In our model, the absence of

portal vein embolus was an indicator for non-PD response, which is

consistent with a previous study (17). Grad represents the gradient

from arrival intensity to PI, reflecting the mean perfusion velocity in

concerned regions. Grad depicts the blood flow per unit time and

indirectly reflects the microvessel intensity of tumor. Considering

that the value of quantitative parameters can be affected by the liver

background or the image depth, we introduced the concept of ratio to

provide more objective comparison among enrolled patients. The

final variable for developing a nomogram was defined as the ratio of

the grad derived from TR to that derived from PTR. There was a

study addressing that the peritumoral hyper-enhanced ring on the

Kupffer phase images obtained via Sonazoid-CEUS is a promising

marker for predicting the response of anti-PD-1/PD-L1

monotherapy. However, the Sone Vue used in our study was

capable of remaining inside the vasculature and avoiding the

possibility of being taken by Kupffer cells. The parameters obtained

from PTR merely represent the perfusion information of

microvessels. According to the odds ratio calculated by logistic

regression analysis, patients with lower grad ratios were more likely

to benefit from the combined treatment. Considering the positive

correlation between microvessel intensity and M2-like TAM

infiltration, a lower grad ratio may indirectly reflect the low

microvessel intensity in the tumor area, leading to a lower M2-like

TAM infiltration and a better treatment efficacy. A nomogram is a

practical tool to quantify variables and incorporate multiple variables

to establish a prediction model. In our study, ROC curve analysis,
FIGURE 8

Decision curve analysis for the nomogram. Thin slash line: assume all patients are non-PD. Solid horizontal line: assume no patients are non-PD. The
graph shows the expected net benefit per patient relative to the nomogram and embolus for the prediction of non-PD.
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calibration curve analysis, and DCA were performed to evaluate the

performance of the nomogram and achieved a satisfactory result.

Although a dose gradient of IBI305 (7.5 mg/kg vs. 15mg/kg) was

present in our study, there is no significant difference in terms of the

IBI305 dose between the PD group and the non-PD group in

baseline analysis, excluding the possibility that the difference in

IBI305 dose may affect the treatment efficacy. In addition, all

enrolled patients received the same therapeutic combination of

sintilimab and IBI305 in our study, ensuring the consistency of

treatment strategy in each patient. According to RECIST, a patient

may be misclassified as non-responder because the tumor size may

remain unchanged or slightly increase due to hemorrhage, necrosis,

or edema. In order to better evaluate the viable tumor portions,

mRECIST was applied to evaluate the response on CT images.

There are several limitations to our study. First, the sample size

was relatively small and the survival data like OS and PFS were not

included in this study. Second, only internal validation was

performed due to the restriction of sample size. Third, patient

body habitus, bowel gas, and lesion size and location within the liver

may limit imaging access and affect the target lesion selection in

some patients. Fourth, operator dependence in the acquisition of

sonographic images may limit the generalized application of this

prediction model. Therefore, a quantitative CEUS-based

prospective study with a larger sample size and detailed survival

data was needed to screen the advanced HCC population who may

benefit from a combined strategy.
Conclusions

This study has established and validated a nomogram by

incorporating pretreatment CEUS quantitative parameters and

baseline clinical characteristics to predict the anti-PD-1 plus anti-

VEGF treatment efficacy in advanced HCC patients, which may

help in clinical decision-making for patients with advanced HCC.
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A novel signature constructed
by differential genes of
muscle-invasive and
non-muscle-invasive bladder
cancer for the prediction of
prognosis in bladder cancer

Weizhuo Wang1†, Xi Zhang2†, Silin Jiang3†, Peng Xu2†,
Kang Chen4, Kai Li1, Fei Wang1, Xiang Le1 and Ke Zhang1*

1Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China, 2Department of Urology,
Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
3Department of Urology, Department of Urology, The Second Affiliated Hospital of Nanjing Medical
University, Nanjing, China, 4Department of Urology, North China University of Science and
Technology, Tangshan, China
Background: Bladder cancer (BCa) is a malignant tumor that usually forms

cancer cells in the inner lining of the bladder. Hundreds of thousands of

people worldwide have BCa diagnosed each year. The purpose of this study

was to construct a prognostic model by differential expression of genes between

muscular and non-muscular invasive BCa, and to investigate the prognosis of

BCa patients.

Methods: The data of BCa patients was sourced from the GEO and TCGA

database. Single-cell sequencing data was obtained from three patients in the

GSE135337 database, and microarray data for verification was obtained from

GSE32894. Univariate, Lasso and multivariate cox regression analyses were

performed to construct the prognostic model. The prognostic features,

immune features and drug sensitivity of the model were further evaluated.

Single-cell data and microarray data were used to validate the differential

expression of model genes between muscle-invasive and non-muscle-invasive

BCa. The invasion and migration of BCa cells were evaluated using the transwell

assay and wound-healing assay. The cell proliferation capacity was

simultaneously evaluated using Colony formation experiments. The protein

expression of the specific gene was detected by western blot analysis.

Results: We identified 183 differentially expressed muscle-invasive-related

differential genes (MIRDGs), among which four were selected to establish a

prognostic model. Based on our signature, patients in different groups displayed

varying levels of immune infiltration and immunotherapy profiles. Single-cell

sequencing data and microarray data confirmed that four invasion-related genes

were expressed at higher levels in muscle-invasive BCa. Given the critical role of

S100A9 in the progression of BCa, we performed further analysis. The results
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showed that protein expression of S100A9 was high in muscle-invasive BCa, and

S100A9 knockdown could inhibit the proliferation, migration and invasion of BCa.

Conclusion: These findings demonstrated that the prognostic model for BCa

patients was reasonably accurate and valid, and it may prove to be of

considerable value for the treatment and prognosis of BCa patients in the

future. S100A9 may become a better prognostic marker and potential

therapeutic target to further guide clinical treatment decisions.
KEYWORDS

bladder cancer, muscle-invasive, prognostic signature, immune microenvironment,
biomarker
1 Introduction

Bladder cancer (BCa) is a type of malignant tumor that typically

forms cancer cells in the inner layer of the bladder. Hundreds of

thousands of people are diagnosed with BCa worldwide every year,

and its incidence is increasing year by year (1). BCa is common in

older people, while in developing countries, it is often related to

work environments and environmental pollution. According to

statistics, men are more likely than women to develop cancer, and

factors such as smoking, long-term exposure to chemicals, and

chronic cystitis are also related to cancer (2).

Regarding the treatment of BCa, existing researches show that

whether infiltration of the muscle layer is present is a key factor in

determining a patient’s treatment plan. Based on this, BCa patients

can be divided into non-muscle-invasive and muscle-invasive types.

Among them, 60%-70% of non-muscle-invasive types are confined

to the bladder mucosa (Ta stage), 20%-30% show subepithelial

connective tissue infiltration (T1 stage), and about 10% show in situ

carcinoma. The main treatment for non-muscle-invasive BCa is

transurethral resection of bladder tumor (TURBT), followed by

immediate injection of bacillus Calmette-Guerin (BCG) vaccine or

intravesical chemotherapy. The decision to administer BCG and/or

chemotherapy is based on the risk of cancer progression or

recurrence. Muscle-invasive BCa invades the muscle layer,

including invasion of the muscle layer (T2 stage), invasion of

surrounding tissue (T3 stage), and invasion of any surrounding

organ such as the prostate, seminal vesicles, uterus, vagina, pelvic

wall, abdominal wall (T4 stage), etc. Given the invasiveness of

muscle-invasive BCa, timely diagnosis and treatment are crucial (3).

Existing treatments strongly recommend radical cystectomy with

bilateral pelvic lymph node dissection and platinum-based

neoadjuvant chemotherapy for all resectable non-metastatic

muscle-invasive BCa patients (4).

The prognosis and treatment of muscle-invasive and non-

muscle-invasive BCa are significantly different, and the likelihood

of recurrence and poor prognosis is higher in muscle-invasive BCa

(5). Most non-invasive BCa only require bladder resection and

instillation therapy, while muscle-invasive BCa requires bladder

removal and surrounding cleaning, and even bladder
0237
reconstruction, but this method has no evidence of improving

long-term outcomes and has a significant impact on the patient’s

life (6). Non-muscle-invasive progresses to muscle-invasive BCa in

approximately 10% to 20% of cases, requiring continuous follow-up

and subsequent treatment (7).Additionally, the treatment of BCa

often involves a significant amount of follow-up and subsequent

treatment, which can place a heavy financial burden on patients (8).

For example, the recommended Bacillus Calmette-Guérin (BCG)

attention treatment for non-invasive BCa patients in current

guidelines costs approximately $100,000 in the first year alone

(9). For non-invasive BCa patients, an effective target that can

identify their prognosis is needed to roughly determine their

possible progression and adjust the treatment plan accordingly. In

clinical practice, sometimes patients experience repeated recurrence

despite transurethral resection and BCG treatment (10). In such

cases, more aggressive treatment methods, such as partial bladder

resection or bladder removal surgery, should be considered to

prevent disease progression. Pathological grading, recurrence

frequency, and growth range of the tumor are used as means of

judging the situation. With the rapid development of genomic

technologies, the cost of sequencing is also decreasing. The cost of

single-sample sequencing is now under $100,especially for clinical

exome sequencing (CES), and if a unified platform is used for

sequencing, the cost is likely to decrease further (11). This is a small

fraction of the long-term follow-up and treatment costs for BCa

patients. In addition, standardized sequencing at scale will

standardize the various gene expression values that affect

patient prognosis.

In the process of BCa, various genes such as TFPI-2 and

GATA3 have been revealed to cause a change in the invasive

ability of BCa (12, 13). For the specific staging diagnosis of BCa,

clinical identification often relies on samples obtained through

transurethral resection of bladder tumor (TURBT) (3).Convenient

sample acquisition provides good convenience for gene sequencing

that can be performed. Although recent studies have shown that

detecting urinary methylation levels contributes to the diagnosis

and prognostic prediction of BCa, the current gold standard

diagnostic method remains TURBT. In existing research, certain

biomarkers have been identified for their value in the progression
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and prognosis of BCa. For example, BUB1 has been found to predict

the prognosis of non-muscle-invasive BCa (14), while STAG2 has

demonstrated independent prognostic value in low-grade non-

muscle-invasive BCa (15). Regarding the prediction of BCa

recurrence, BCL-2 Family, p63 have been considered to have

some clinical value (16). In existing research, several genes have

been identified to have an impact on the prognosis of bladder

cancer, such as SERPINE2, SNCAIP, S100A9, and others (17–19).

Particularly, S100A9 has been shown to be highly expressed in

bladder cancer tissues in large-scale clinical studies (20), and its

expression levels are also elevated in the urine of patients (21).

However, there is limited research on its role in muscle-invasive and

non-muscle-invasive bladder cancer. Existing studies often rely on

databases, and there is a lack of comparative analysis regarding its

influence on bladder cancer recurrence and progression. Therefore,

further exploration and standardized guidelines are still needed

before these genes can be clinically applied.
2 Method

2.1 Data source

The consolidated transcriptome expression matrix and clinical

data of BCa were obtained from the Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. GSE13507 dataset

was used as the training cohort for building the model, while the

TCGA-BLCA dataset was used as the testing cohort. The single-cell

sequencing data used to validate the differential gene expression of

the model came from the GSM4006647, GSM400644, and

GSM4006645 in the GSE135337 dataset. The microarray data

used to validate the differential gene expression came from the

GSE32894 dataset.
2.2 Differential genes in the muscle-
invasive and non-muscle-invasive
bladder cancer

After downloading the gene expression data from GSE13507,

the data was organized and analyzed for differential expression

using the limma package in R language (22). MIRDGs were selected

based on criteria such as |Log2FC|>1 and adj.P.Val <0.05, and

visualized in a volcano plot using the ggplot2 package. Enrichment

analysis was performed on the resulting MIRDGs (23), and a

heatmap was generated to display the results. Additionally, a

protein-protein interaction network was constructed for the

MIRDGs (24).
2.3 Construction of bladder cancer related
prognostic model

We employed statistical analyses to investigate the impact of

genes on patient prognosis. Specifically, we first used univariate

cox regression analysis on training cohort GSE13507 to identify
Frontiers in Immunology 0338
prognostic genes, and presented the results using a heatmap.

Subsequently, we employed the least absolute shrinkage and

selection operator (LASSO) Cox regression and multivariate Cox

regression analysis to construct the bladder cancer related

prognostic model. The patients were then divided into either the

low risk group or the high risk group based on the median riskscore.

TCGA-BLCA was used as the testing cohort to verify the accuracy

of the prognostic model. The prognostic accuracy of the riskscore

was evaluated using kaplan-meier (KM) analysis, the area under the

curve (AUC) of the receiver operating characteristic (ROC) curve,

as well as univariate and multivariate independent prognostic

analysis.Then we construct a nomogram based on the training

cohort (GSE13507).
2.4 Single-cell data and microarray data
validation data exist for differential
expression of the genes identified by
the model

We integrated the pTa (GSM4006644), pT2 (GSM4006647),

and pT1 (GSM4006645) samples in order to compare the

expression patterns of model genes in the single-cell data.

Microarray data from the GSE32894 dataset were further used to

validate the expression differences.
2.5 Immune infiltration and
immunotherapy analysis

Single-sample gene set enrichment analysis (ssGSEA) was

performed using the “GSVA” package to calculate enrichment scores

for different immune cell types and immunologic functions using

immune-related gene sets (25). The immunosuppressive checkpoints

were sourced from relevant literature and the website (https://

www.immport.org/home, Supplementary Table 9) (26). Tumor

microenvironment (TME) may affect the occurrence and

development of cancer, so we employed the ESTIMATE algorithm

to evaluate the TME score (ImmuneSocre, StromalScore, and tumor

purity) of BCa samples. The Gene expression profiling data and clinical

results of 348 BCa immunotherapy patients were obtained from in

IMvigor210 cohort. The results of anti PD-L1 immunotherapy

responses were divided into complete response (CR), partial response

(PR), stable disease (SD), and disease progression (PD).
2.6 Western blot assay

The tested proteins are derived from 12 postoperative pathological

tissue samples obtained from 8 patients. Among these samples, there

are four from patients withmuscle-invasive BCa and four from patients

with non-muscle-invasive BCa. Additionally, four samples of normal

tissue were obtained from adjacent tissue to the cancerous area. WB

assay was performed after the detection of protein concentration. 20 mg
of samples were separated on a 10% SDS-PAGE gel, then transferred to

a PVDF membrane and blocked for 1 hour at room temperature. The
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membranes were incubated with primary antibodies (S100A9

concentration, 0.5 µg/mL; b-actin dilution rate, 1:500; Abmart) at 4°

C overnight. The next day, the membranes were incubated with the

secondary antibody (Abmart; dilution rate, 1:2000) at 24°C for 1 h.

Signals of targeted proteins were detected using an enhanced

chemiluminescence detection system.
2.7 Wound-healing assay

Cell migration was assessed by performing a wound healing

assay. Briefly, T24 and UMUC3 cells were transfected with S100A9.

Approximately 2x10^6 cells were seeded into 6-well plates and

cultured for 24 h. Then, a yellow plastic pipette tip was used to

create a wound by scraping the cells. Cell migration was monitored

under a Nicon Eclipse microscope and photographed at 100×.
2.8 Cell proliferation assay and
transwell assay

Following the standard procedure, the proliferation ability of

the cells was assessed with colony formation assays. T24 and

UMUC3 cells (with an incubation density of 2x10^5) were

incubated in the upper chambers (Labselect). For the invasion

assay, the upper chambers were pre-coated with Matrigel (BD

Biosciences). Culture medium without and with 10% FBS was

added into the upper and lower chambers, respectively. After 12h,
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non-migrated cells were wiped out while migrated or invaded CRC

cells were fixed, stained and counted using an inverted microscope.
3 Results

3.1 Identification of the differentially
expressed genes

First, we downloaded the expression matrix and clinical data

(Supplementary Tables 1, 2) files of GSE13507 from GEO, including

103 samples of primary non-muscle-invasive BCa and 61 samples of

primary muscle-invasive cancer. We then performed differential

analysis using the limma package in R language, setting the

differential value as |logFC|> 1 and adj.P.Val.< 0.05. A total of

183 DEGs were selected (Supplementary Table 3) and we presented

them using the volcano plot and heatmap (Figures 1A, C).
3.2 Enrichment analysis of differentially
expressed genes and construction of
protein interaction networks

After identifying the DEGs, we performed enrichment analysis on

these genes using the org.Hs.eg.db package in R. Our analysis criteria

were set at adj.P.Val < 0.1 and q.value < 0.2 (Supplementary Table 4).

Enrichment analysis of the gene ontology biological process (GO : BP)

showed significant enrichment in extracellular matrix organization,
D
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FIGURE 1

Differential Analysis, Protein Network Construction, GO Analysis, and KEGG Analysis(revised). (A) Volcano plot of differential gene muscle-invasive
and non-muscle-invasive bladder cancer; (B) PPI protein network; (C) Heatmap of differential gene muscle-invasive and non-muscle-invasive
bladder cancer; (D) GO analysis and KEGG analysis.
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extracellular structure organization, connective tissue development,

while the cellular component (GO : CC) analysis showed significant

enrichment in collagen-containing extracellular matrix, contractile

fiber, contractile fiber part. Molecular function (GO : MF) analysis

revealed significant enrichment in extracellular matrix structural

constituent, extracellular matrix structural constituent conferring

tensile strength, integrin binding. Furthermore, KEGG analysis

revealed that these DEGs were mainly involved in IL-17 signaling

pathway, protein digestion and absorption (Figure 1B). These results

were consistent with previous studies and suggested that changes in

cell adhesion and interaction in the tumor tissue may lead to the

invasive changes observed in the tumor as a whole. In addition, a

protein-protein interaction (PPI) network analysis was performed

using the STRING database (Supplementary Table 5), and the PPI

network diagram showed that FABP6, ACTC1, and S100A9 had the

strongest interactions with other MIRDGs (Figure 1D).
3.3 Identification of the prognostic
features of bladder cancer related
prognostic model

To construct BCa related prognostic model, the univariate cox

regression analysis was adopted to screen out prognostic genes.

According to the P-value <= 0.01 standard, twenty-one prognostic

related genes were screened (Figure 2A). Eight prognostic genes were

further analyzed using Lasso regression (Figures 2B, D). Because Lasso

regression only helped us compress the variables to 8 genes, but in the

end, we used multivariate Cox regression to build a prognostic model

that includes 4 genes: SERPINE2, SNCAIP, NMU, and S100A9.

(Supplementary Table 6) (Figure 2C). Then we evaluated whether

our model was an independent factor affecting patient prognosis.

Because whether there was muscular infiltration was based on TNM

staging, we did not include TNM staging in the evaluation, and since

the model was based on whether there was muscular invasion, we

compared whether there was muscular invasion and model genes to

observe whether they were independent prognostic factors. Therefore,

we performed univariate and multivariate independent prognostic

analyses on age, sex, pathological grade, and whether there was

muscular invasion, and finally found that our model was an

independent factor affecting patient prognosis (P<0.01) (Figures 2E,

F). Then, the risk score was calculated by formula (Specific values

were included in Supplementary Table 2). The distribution of risk

score, survival status, gene expression and the KM survival curve in

the training set (Figures 3A-D) and testing set (Figures 3E-H)

demonstrated a positive association between risk score and

mortality. In addition, the AUC of the ROC curve was 0.842 in

training cohort (GSE13507) (Figure 4A). Compared with other

factors, the AUC of the model was the highest, indicating that our

model had the best predictive ability for patient survival. The ROC

curves for riskscore at 1, 2, and 3 years in the training dataset were

0.842, 0.758, and 0.744, respectively (Figure 4B). TCGA-BLCA dataset

was adopted as an external validation dataset to validate the accuracy

of model (Supplementary Table 7). We found that the diagnostic
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ability of the model was significantly higher than that of other factors

(Figure 4C). The AUC of the 1, 2, and 3-year OS of riskscore in the

TCGA-BLCA dataset was 0.753, 0.747, and 0.723, respectively

(Figure 4D). At the same time, multiple-index ROC analysis

showed that age, sex, tumor grade, whether there was muscular

infiltration, and risk score may all have an impact on patient

prognosis, so we also constructed a nomogram based on age, sex,

whether there was muscular invasion, tumor pathology grade, and

risk score to predict the patient’s 1-year, 3-year, and 5-year survival

rates (Figure 4E).
3.4 Single-cell sequencing data and
microarray data validate the differential
gene expression of the model

To validate the expression of genes in our model in muscle-

invasive and non-muscle-invasive bladder cancer, we utilized single-

cell sequencing data. Firstly, we downloaded the expression matrix of

the single-cell data, including pTa (GSM4006644), pT2

(GSM4006647), and pT1 (GSM4006645), where pT1 and pTa

represent non-muscle-invasive BCa, and pT2 represents muscle-

invasive BCa. Subsequently, we performed data analysis using the

Seurat package in R programming language. We defined the number

of highly variable genes as 3000. Finally, we conducted visualization-

based dimensionality reduction using the obtained highly variable

genes and principal components (PCs). For this purpose, we

employed the UMAP method as our dimensionality reduction

technique (Figure 5A). We integrated the data using the

FindIntegrationAnchors function and identified two cell types:

epithelial cells and monocytes. Since BCa primarily originates from

epithelial cells, we extracted the epithelial cells separately and

displayed their distribution in each BCa type (Figure 5B). We

examined the expression of model-associated genes in pTa, pT2,

and pT1 to investigate the expression differences of model genes

between muscle-invasive and non-muscle-invasive BCa.We observed

significant expression differences in S100A9, with higher levels

observed in patients with muscle-invasive BCa (Figures 5C, E).

However, due to the limited sequencing depth in the single-cell

data, the detection rates of SERPINE2, SNCAIP, and NMU were

relatively low (Figure 5D). As the expression data for non-muscle-

invasive BCa in TCGA was limited, we further validated our results

using a microarray dataset (GSE32894, Supplementary Table 8). First,

we downloaded the gene expression matrix and grouped patients

based on T-stage (Supplementary Table 4). The data had already been

log2-transformed and standardized, resulting in gene expression

values with negative values. By extracting and comparing the

expression of model-related genes, we found significant differences

in gene expression between muscle-invasive and non-muscle-invasive

BCa patients in the model (Figure 5F). Moreover, the expression of

model genes was significantly higher in patients with muscle-invasive

BCa, consistent with our previous differential analysis and single-cell

sequencing analysis. In the model, the risk coefficients of the relevant

genes were all positive, consistent with the increased expression trend
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of model genes in muscle-invasive BCa in the validation dataset.

These findings indicate the reliability of our model construction.

Combined with previous clinical data analysis, we have reason to

believe that the identified model genes play an important role in

predicting the risk of muscle invasion and prognosis in BCa patients.
3.5 Identification of immunoinfiltration
features of the prognostic model

As BCa is known to be an immunoresponsive tumor with high

heterogeneity and metastatic potential, we further investigated the

prognostic model of the immune microenvironment characteristics.
Frontiers in Immunology 0641
The heatmap showed the distribution of the TME scores and

immune cells between high and low risk groups (Figure 6A). The

association between the immune infiltration cells and riskscore was

illustrated in Figure 6B, revealing a strong relationship between

riskscore and immune cells. Furthermore, the expression levels of

immunosuppressive cells, including Myeloid-derived suppressor

cells (MDSCs), Regulatory T cells, and macrophages, were found

to be significantly higher in the high risk group (Figure 6C).

Moreover, the scores of immune-related molecules such as

Checkpoint, CCR, and Inflammation-promoting molecules were

significantly elevated in the high risk group compared to the low

risk group (Figure 6D). Additionally, we analyzed the potential

relationship between riskscore and tumor microenvironment
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FIGURE 2

Model Construction and Independent Evaluation(revised). (A) Genes identified by univariate cox regression, (B, D) lasso regression, (C) Model genes
identified by multivariate cox regression, (E) Univariate independent prognosis analysis, (F) Multivariate independent prognosis analysis.
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scores. The ESTIMATE Score, Stromal Score, and Immune Score

were significantly higher in the high risk group (Figure 6E).

We used the reshape2 package in R to analyze and compare

the immunosuppressive checkpoints of high- and low-risk

groups. Most of the differentially expressed immunosuppressive

checkpoints have higher expression levels in the high-risk group

than in the low-risk group (Figure 6F).
3.6 Immunotherapy and drug sensitivity
analysis of the prognostic model

In order to evaluate the model’s response to immunotherapy, we

validated the association of risk scores with immunotherapy in the
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BCa immunotherapy dataset (IMvigor210 cohort). As a result, we

found poor prognosis in the high-risk group in the immunotherapy

dataset (IMvigor 210) (Figure 6G). The AUC of the 1, 2, and 3-year

OS of riskscore in the IMvigor 210 dataset was 0.625, 0.604, and 0.57,

respectively (Figure 6H). Figure 6I indicated that the proportion of SD

and PD in the high risk group was higher. Meanwhile, riskscore was

significantly over-expressed in the SD/PD group (Figure 6J). To

further guide the development of clinical treatment strategies, we

screened 9 major chemotherapeutic agents from the pRRophetic

package to determine whether riskscore was associated with BCa

resistance. The IC50 of Gefitinib, Bosutinib, Axitinib and Nilotinib

was higher in high risk group, suggesting that these 4 drugs may be

more suitable for patients with lower riskscore (Figures 7A-D). The

IC50 of Sunitinib, Paclitaxel, Docetaxel, Bortezomib and Cisplatin
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FIGURE 3

Clinical Relevance of the Model in GSE13507 and TCGA cohort. (A) Riskscore information for patients in GSE13507. (B) Survival status of patients in
GSE13507 with increasing riskscore. (C) Gene expression profile of patients in GSE13507 model with increasing riskscore. (D) Survival curves of high
and low risk groups in GSE13507 patients. (E) Riskscore information for patients in TCGA. (F) Survival status of patients in TCGA with increasing
riskscore. (G) Gene expression profile of patients in TCGA model with increasing riskscore. (H) Survival curves of high and low risk groups in TCGA
patients.
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FIGURE 4

ROC Curves of the Model in GSE13507 and TCGA Datasets, and Nomogram. (A) Multiple-index ROC curves for GSE13507 patients, (B) Time-
dependent ROC curve ROC curves for GSE13507 patients, (C) Multiple-index ROC curves for TCGA patients, (D) Time-dependent ROC curve ROC
curves for TCGA patients, (E) Nomogram build based on training cohort.
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FIGURE 5

The expression profiles of model genes in single-cell data and GSE32894 dataset(revised). (A) UMAP dimensionality reduction displayed by cell type,
(B) UMAP dimensionality reduction displayed by sample stage in epithelial cells. (C) Expression of S100A9 on UMAP dimensionality reduction in epithelial
cells. (D) Expression levels of model genes in single-cell data based on sample T stage. (E) Violin plots showing the expression of S100A9 on UMAP in
samples of pT1, pT2, and pTa stages. (F) Expression of model genes involved in muscle-invasive and non-muscle invasive bladder cancer in GSE32894.
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was higher in low risk group (Figures 7E-I). These findings not only

provide valuable insights for the selection of appropriate

chemotherapy drugs according to the risk score of BCa patients,

but also help to make clinical treatment decisions.
3.7 Overexpression of S100A9 in muscle-
invasive and non-muscle-invasive
BCa tissues

In the cohort used to construct the model (GSE13507), clinical

data on the subsequent progression of BCa patients were available.

We found that the expression of S100A9 was significantly elevated in
Frontiers in Immunology 0944
recurrent patients (Figure 8A). Furthermore, in patients who

progressed to muscle-invasive BCa compared to those who did not,

the expression of S100A9 was also significantly increased (Figure 8B).

Additionally, single-cell sequencing data demonstrated higher

expression of S100A9 in epithelial cells of muscle-invasive BCa

compared to non-muscle-invasive BCa. Therefore, we selected

S100A9 from the model as the target for further experimental

validation. To validate the biological function of S100A9 in BCa,

we first evaluated the protein expression of S100A9 among normal,

muscle-invasive and non-invasive BCa tissues. WB showed that the

protein expression of S100A9 was higher inmuscle-invasive and non-

invasive BCa than in normal tissues, and the expression was the

highest in muscle-invasive BCa (Figure 8C).
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FIGURE 6

Immune characteristics of the model (A) Heatmap showing ssGSEA results for high and low-risk groups. (B) Correlation analysis between risk score
and immune cells. (C) Differential expression of immunosuppressive cells between high and low-risk groups. (D) Differential expression of immune
function scores within the model. (E) Differences in TME scores between high and low-risk groups. (F) Differential expression of immunosuppressive
checkpoints between high and low-risk groups. (G) KM survival analysis for the model in the IMvigor210. (H) ROC curves for the model at 1, 2, and 3
years. (I) Differential expression of riskscore between CR/PR and SD/PD groups. (J) Differences in the proportion of CR/PR and SD/PD between high
and low-risk groups. * represents p< 0.05; ** represents p< 0.01; *** represents p< 0.001.
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3.8 S100A9 promotes BCa cell
proliferation, migration and invasion
in vitro

First, S100A9-siRNA was transfected into T24 and UMUC3

cells to knock down S100A9. The results indicated that the si-

S100A9 used in the experiment effectively suppressed the

expression of S100A9 (Figure 9A). Colony formation experiments

confirmed that si-S100A9 significantly impaired the proliferative

capacity of T24 and UMUC3 cells (Figure 9B). The transwell assay

demonstrated that si-S100A9-treated T24 and UMUC3 cells

exhibited reduced migration and invasion capacities compared to

the control group (Figures 9C, D). This was consistent with the

results of our previous analysis, indicating that S100A9 played a role

in promoting proliferation, migration and invasion in BCa cells.
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4 Discussion

With the rapid development of genomic technologies, the cost

of sequencing is also decreasing. The cost of single-sample

sequencing is now under $100,especially for clinical exome

sequencing (CES), and if a unified platform is used for

sequencing, the cost is likely to decrease further (11). This is a

small fraction of the long-term follow-up and treatment costs for

BCa patients. In addition, standardized sequencing at scale will

standardize the various gene expression values that affect patient

prognosis. In previous studies, although there have been differential

analysis and gene identification of muscle-invasive and non-

muscle-invasive bladder cancer based on databases, all of their

research was solely database-driven. While seven genes, including

S100A9, were investigated and validated in databases, no
D
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C

FIGURE 7

Drug sensitivity of BCa prognostic model. Sensitivity analysis for Gefitinib (A), Bosutinib (B), Axitinib (C), Nilotinib (D), Sunitinib (E), Paclitaxel (F),
Docetaxel (G), Bortezomib (H) and Cisplatin (I) between low and high risk groups.
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experimental verification was conducted. The identified genes were

not further validated in the normal, non- muscle-invasive bladder

cancer, and muscle-invasive bladder cancer groups. Our research

addressed these shortcomings by conducting experimental

validation and utilizing single-cell sequencing data for further

verification. Additionally, we explored the impact of the S100A9

gene on bladder cancer cells in cell lines, thereby advancing research

in this field. In our study, because the sequencing platforms and

expression data processing methods are different, there may be

differences in the numerical expressions. Therefore, when studying

the impact of risk scoring on patients’ overall survival rates, we used

median values to group high- and low-risk patients from both

GSE13507 and TCGA patients. And we build nomogram only based

on training cohort (GSE13507). Additionally, as the use of

cystoscopy is essential for the diagnosis and treatment of BCa,

obtaining sequencing samples is also extremely simple. Assuming

that the standardized sequencing platform is successfully

established, reference values for the standardized expression of

various genes are available, which provides more options for the

treatment and follow-up of BCa patients. For example, early-stage

BCa patients can take aggressive treatment based on the high

expression of certain invasive genes, thereby avoiding the risk of

muscle infiltration. This approach can reduce patients’ treatment

costs and improve treatment efficacy. For patients with invasive

BCa, based on the existing bioinformatics algorithms, their immune

checkpoint status and tumor microenvironment can be estimated

according to their gene expression information, the degree of
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infiltration can be observed, and personalized immunotherapy

can be carried out accordingly. In recent years, there have been

significant advances in research on immune therapy and targeted

therapy for BCa (27). More accurate sequencing methods such as

single cell sequencing and spatial transcriptome have also been

added to the search for BCa markers (28). Precise sequencing can

target specific cancer cell molecules or immune cells for targeted

therapy, thereby improving treatment efficacy and prognosis.

In this study, we focused on using differential genes between

muscle-invasive and non-muscle-invasive BCa to develop and

validate prognostic features of BCa. First, 183 MIRDGs were

identified between muscle-invasive and non-muscle-invasive BCa.

Secondly, based on multivariate cox regression analysis, four genes

(SERPINE2, SNCAIP, NMU, S100A9) were determined as

prognostic features. At the same time, the KM survival curve in the

model also showed that the survival time of the low-risk group of

patients was significantly better than that of the high-risk group. The

survival results were independently validated using the TCGA

dataset. and the AUC of the ROC curve was also good, and the

survival curve results were consistent. Furthermore, single-cell

sequencing data further confirmed that the S100A9 in the model

had differential expression between the two types of cancer, and

S100A9 in invasive BCa was significantly higher than that in non-

invasive BCa. Because the depth of single-cell sequencing was

insufficient, we used microarray data (GSE32894) for further

validation. The results showed that the expression of the model

genes was higher in the muscle-invasive BCa group than in the non-
A

B

C

FIGURE 8

Expression of model genes in recurrent and progressive patients, and verification of protein expression levels of S100A9 in BCa. (A) Expression
comparison of model genes between patients with no recurrence and recurrent patients. (B) Expression comparison of model genes between
patients who did not progress to muscle-invasive BCa and patients who progressed to muscle-invasive BCa. (C) Western blot analysis showing the
difference of S100A9 protein expression among normal, non-muscle-invasive and muscle-invasive BCa tissues.
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muscle-invasive bladder group, indicating that our model genes were

consistent with the differential analysis we previously performed

using GSE13507. Moreover, this is consistent with the calculation

we obtained when building the model, where HR>1, indicating that

high expression may lead to poor prognosis of BCa. In addition,

immunosuppressive checkpoints and immunosuppressive cells were

significantly overexpressed in the high-risk group. At the same time,

there were significant differences in StromalScore, ImmuneScore,

ESTIMATEScore, TumorPurity between the high- and low-risk

groups. These results suggested that four model genes may be

involved in constructing immunosuppressive microenvironments

that promote tumor invasion and metastasis. The upregulation of

immune checkpoints in the high-risk group suggests a stronger ability

to evade immune surveillance, which may contribute to the poor

prognosis in this group. Notably, we observed that the expression of

PD-1-related immune checkpoints (CD274, PDCD1) showed
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significant differences but overall low expression levels. This finding

is consistent with previous studies that have reported BCa’s

insensitivity to PD-1 therapy, further confirming the accuracy of

our analysis. Furthermore, the higher immune scores in the high-risk

group compared to the low-risk group indicate significant differences

in the tumor microenvironment between these groups. This disparity

may be an important factor contributing to the unfavorable prognosis

observed in the high-risk group.

Our prognostic signature include four genes, SERPINE2,

SNCAIP, NMU, and S100A9, each playing a critical role in tumor

progression, invasion, and metastasis. SERPINE2 is a member of

the serine protease inhibitor family and is mainly expressed in the

placenta, brain, and urothelial epithelium. Upregulation of

SERPINE2 has been reported to increase the radioresistance of

lung cancer cells and is also involved in the invasion and metastasis

of endometrial cancer (29). High expression of SERPINE2 indicates
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FIGURE 9

Downregulation of S100A9 suppressed the progression of BCa in vitro. (A) The protein expression of S100A9 was downregulated in T24 and UMUC3
cells, as determined by Western blot; (B) Colony formation assay in si-S100A9 and control cells; (C) Wound healing assay was used to detect the
effect of S100A9-knockdown on BCa cell migration. Cell migration ability was represented by the wound gap distance in microscopic field at the
time points of 0 and 48 h; (D) S100A9-knockdown suppressed BCa cell metastasis in T24 and UMUC3. *** represents p<0.001.
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poor prognosis of urothelial carcinoma, which is consistent with the

results of our study (30), and it also promotes tumorigenesis in

various cancers (31, 32). SNCAIP encodes synaptic nuclear protein

a-interacting protein and has been found to be highly expressed in

metastatic clear cell carcinoma (33). The NMU encodes a member

of the neuropeptide neuromedin family. The encoded protein is a

precursor that is processed by proteolytic cleavage to produce

biologically active neuropeptides that play a role in pain, stress,

and immune-mediated inflammatory diseases (34). Increased

expression of this gene has been observed in kidney cancer (35),

pancreatic cancer (36), and lung cancer (37). S100A9 has been

found to be a protein that bridges inflammation and cancer.

Increased expression of S100A9 is considered a sign of increased

tumor proliferation and invasive ability and is believed to be a new

therapeutic target for cancer treatment (38).

The occurrence of recurrence and progression in BCa treatment

is a major concern for clinicians. Recurrence not only necessitates

additional surgical interventions but also requires close monitoring

and follow-up, which can impose a significant burden on patients in

terms of time and financial resources. Progression to muscle-

invasive disease leads to a worse prognosis, requiring more

aggressive and invasive treatments such as bladder removal

surgery, which rapidly diminishes the patient’s quality of life. In

our analysis of the GSE13507 cohort, we observed elevated

expression of S100A9 in both recurrent and progressive BCa

cases. Furthermore, single-cell data revealed increased expression

of S100A9 in invasive BCa within the extracted epithelial cells. We

conducted further experimental validation, including western blot,

which confirmed high protein expression of S100A9 in invasive BCa

patients. Cell-based assays demonstrated that silencing S100A9

reduced the invasiveness of BCa cells. These findings suggest that

S100A9 may serve as a prognostic marker for early-stage

BCa patients.

In non-invasive BCa patients with high expression of S100A9,

more aggressive and timely treatments such as partial bladder

resection or frequent follow-up should be considered. However,

this decision requires validation through large-scale clinical trials.

In other studies, increased expression of S100A9 has been observed

in urine samples from both invasive and non-invasive BCa patients,

accompanied by cell-based experiments. Our study, based on

clinical information from patients, not only identified S100A9 but

also provided an explanation for its elevated expression in invasive

BCa and its association with recurrence and progression. This

suggests that the diagnostic use of S100A9 during the initial

assessment of bladder lesions would greatly assist clinicians in

predicting patient prognosis. This is the innovative aspect of our

research. However, our current study has certain limitations. Firstly,

the data collected were from public databases, and the sample size

was limited. Future research should overcome these limitations by

employing larger sample sizes. Additionally, while we validated the

performance of S100A9 in cell experiments and clinical samples, the

specific mechanisms and the roles of the other three genes in our

model remain unknown. Future studies will follow the following

plans: designing more comprehensive clinical trials with well-
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defined clinical endpoints, such as the number and timing of

recurrences in non-muscle-invasive BCa and the conversion to

muscle-invasive disease, and their respective time points.

Moreover, a standardized sequencing workflow will be designed

to collate sequencing data for unified comparative analysis, which

can be matched with newly added clinical events to more accurately

identify genes influencing patient prognosis and provide treatment

targets. Finally, the identified genes possess complex functionalities

and molecular mechanisms, which will require further validation in

cellular and animal models.
5 Conclusion

In this study, we further elucidated the role of differential genes

in prognosis between muscle-invasive and non-muscle-invasive

BCa. Moreover, we have constructed the prognostic model in BCa

patients, which may be employed as a reliable predictor of prognosis

and immune response.

Meanwhile, S100A9 may promote the proliferation, migration

and invasion of BCa cells, which may be a potential therapeutic

target of BCa.
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Identification of disulfidptosis-
related subgroups and
prognostic signatures in
lung adenocarcinoma using
machine learning and
experimental validation

Yuzhi Wang1†, Yunfei Xu2†, Chunyang Liu3,
Chengliang Yuan1* and Yi Zhang4*

1Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China,
2Department of Laboratory Medicine, Chengdu Women’s and Children’s Central Hospital, Chengdu,
Sichuan, China, 3Department of Ultrasound, The First People’s Hospital of Yibin, Yibin, Sichuan, China,
4Department of Blood Transfusion, Deyang People’s Hospital, Deyang, Sichuan, China
Background: Disulfidptosis is a newly identified variant of cell death

characterized by disulfide accumulation, which is independent of ATP

depletion. Accordingly, the latent influence of disulfidptosis on the prognosis

of lung adenocarcinoma (LUAD) patients and the progression of tumors remains

poorly understood.

Methods: We conducted a multifaceted analysis of the transcriptional and

genetic modifications in disulfidptosis regulators (DRs) specific to LUAD,

followed by an evaluation of their expression configurations to define DR

clusters. Harnessing the differentially expressed genes (DEGs) identified from

these clusters, we formulated an optimal predictive model by amalgamating 10

distinct machine learning algorithms across 101 unique combinations to

compute the disulfidptosis score (DS). Patients were subsequently stratified

into high and low DS cohorts based on median DS values. We then performed

an exhaustive comparison between these cohorts, focusing on somatic

mutations, clinical attributes, tumor microenvironment, and treatment

responsiveness. Finally, we empirically validated the biological implications of a

critical gene, KYNU, through assays in LUAD cell lines.

Results:We identified two DR clusters and there were great differences in overall

survival (OS) and tumor microenvironment. We selected the "Least Absolute

Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)"

algorithm to develop a DS based on the average C-index across different

cohorts. Our model effectively stratified LUAD patients into high- and low-DS

subgroups, with this latter demonstrating superior OS, a reduced mutational

landscape, enhanced immune status, and increased sensitivity to

immunotherapy. Notably, the predictive accuracy of DS outperformed the

published LUAD signature and clinical features. Finally, we validated the DS
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expression using clinical samples and found that inhibiting KYNU suppressed

LUAD cells proliferation, invasiveness, and migration in vitro.

Conclusions: The DR-based scoring system that we developed enabled accurate

prognostic stratification of LUAD patients and provides important insights into

the molecular mechanisms and treatment strategies for LUAD.
KEYWORDS

disulfidptosis, lung adenocarcinoma, prognosis, tumor microenvironment, immunotherapy
Introduction

Lung cancer is a global health concern and one of the foremost

sources of cancer patient morbidity and mortality, posing a grave

threat to public health (1). In 2020, an estimated 2,206,771 new

cases were diagnosed, and 1,796,144 fatalities occurred (2). Non-

small cell lung cancer (NSCLC) stands as the prevalent pathological

category among lung cancers, comprising about 85% of all cases,

whereas lung adenocarcinoma (LUAD) is the most frequently

occurring subtype of NSCLC (3). LUAD is plagued by a high

incidence of invasive behavior and metastatic spread. However,

significant advances in the treatment of LUAD have been achieved

in the past few decades. Accordingly, targeted therapies and

immunotherapies have been demonstrated to enhance the

treatment efficacy and outcomes for patients with LUAD (4).

However, the majority of patients develop drug resistance and

relapse following initial treatment, resulting in no significant

improvement in 5-year survival rates (5). Thus, to benefit more

LUAD patients, there is an urgent need to identify new therapeutic

targets and prognostic indicators for predicting survival and

guiding clinical treatment in LUAD patients.

Programmed cell death (PCD) is a cellular death process

governed by a molecular program that is controlled by particular

genes. This process is essential for the normal development of

organisms and the preservation of homeostasis (6). Exploration

and characterization of these cell death mechanisms not only

deepens our fundamental comprehension of cellular equilibrium,

but also offers valuable perspectives for the therapeutic approach to a

variety of diseases, including cancer. For instance, recent studies have

progressively highlighted the tumor-inhibiting effects of ferroptosis,

which is achieved through the deprivation of cysteine and the

generation of reactive oxygen species (ROS) by p53 (7, 8).

Moreover, the enhancement of lipid peroxidation by activated CD8

+ T cells can induce ferroptosis, which contributes to the antitumor

efficacy of immunotherapy (9). The role of autophagy in cancer can

vary, depending on the specific tumor model and tumor stage.

During the initial stages of cancer, autophagy functions as a

protective mechanism, shielding normal cells from tumorigenesis

by preventing DNA damage and mutations (10). However, in the

context of fully-formed solid tumors, autophagy shifts its role and

promotes tumor progression by promoting tumor growth, enhancing

cell survival, enhancing resistance to platinum-based chemotherapy,
0252
and facilitating the formation of metastases (11). Autophagy

inhibitors, therefore, comprise one of the treatment options for

patients with advanced tumors. Recent research (Liu et al., 2023)

demonstrates that excessive accumulation of disulfide induces a

unique form of controlled cell death known as “disulfidptosis” that

is distinct from apoptosis, necrosis, autophagy, and ferroptosis (12).

SLC7A11 is an essential transport protein whose primary function is

to facilitate the cellular uptake of cysteine (13). Cysteine is a necessary

building block for the synthesis of glutathione and a crucial

component for inhibiting oxidative stress in cells and regulating

iron death pathways (14). However, it has also been shown to possess

certain cytotoxic properties (15). Gan Bo et al., discovered that under

conditions of glucose deprivation, high expression of SLC7A11 leads

to a significant consumption of NADPH within cells, abnormal

aggregation of disulfides like cysteine, inducing disulfide stress and

rapid cell death (16). This form of cell death induced by glucose

deprivation and high SLC7A11 expression in cancer cells cannot be

prevented by inhibitors of cell death that act on other cells, nor is it

caused by depletion of intracellular ATP. However, thiol-oxidizing

agents, such as Diamide, can enhance this effect. Moreover, under

glucose-deficient conditions, the number of disulfide bonds in the

actin cytoskeleton increases significantly. Therefore, this study

suggests that the induction of disulfide-dependent cell death by

GLUT inhibitors may be an effective cancer treatment strategy.

Consequently, focusing on disulfidptosis regulators (DRs) as

potential targets provides new perspectives for understanding the

complexities of the occurrence and development mechanism in

LUAD. This approach is, therefore, of significant importance in

enhancing the efficacy of treatment in patients with LUAD

patients. However, the full scope of the impact of DRs on

outcomes and treatments for LUAD patients has yet to be

comprehensively explored.

In the current study, we divided 1569 LUAD samples into two

disulfidptosis-associated subtypes according to 18 DRs and

compared survival and immune infiltration between the subtypes.

We also developed a disulfidptosis score (DS) to predict overall

survival (OS) and to delineate the immunological landscape of

LUAD. As indicated by the findings, a higher DS was associated

with unfavorable prognostic outcomes and worse immunotherapy

responses in LUAD, suggesting the potential clinical utility of DS as

a tool for assessing prognosis and immunotherapy efficacy. Thus,

the current study introduces an innovative approach for assessing
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1233260
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1233260
the efficacy of immunotherapy and predicting the prognosis of

LUAD patients based on DS.
Materials and methods

Data collection

The LUAD data were obtained from The Cancer Genome Atlas

(TCGA)-LUAD (https://portal.gdc.cancer.gov/), GSE31210,

GSE68465, and GSE72094 in Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/), which included RNA

sequencing data, somatic mutation data, copy number variation

(CNV) data, and corresponding clinical information. The TCGA-

LUAD cohort, which consisted of 539 LUAD tissues and 59 cancer-

adjacent tissue samples, served as a training cohort. Meanwhile,

GSE31210, GSE68465, and GSE72094 were utilized for the

validation cohort, which consisted of 1,150 LUAD patients.

Additionally, the “sva” package was used to correct the batch

effect between the different datasets by adopting the “combat”

algorithm (17). Moreover, patients who lacked OS time were

filtered out. Finally, 1569 eligible patients were encompassed in

the study. The detailed clinical characteristics of all LUAD patients

is listed in Supplementary Table 1. Additionally, 18 DRs were

collected from the previous study (Supplementary Table 2) (12).
Consensus cluster analysis of DRs

A consensus clustering algorithm was employed to discern

optimal subtypes founded on the expression of 18 DRs using the

R package “ConsensusClusterPlus”. The number of clusters (K) and

their stability (with 1,000 repeats for mast k = 9) were determined

by the consensus clustering algorithm (18). The clustering was

based on dividing centromeres with “Euclidean” distances (the most

common and familiar distance measurement methods and

correlation of K-Means clustering). Additionally, a T-distributed

Stochastic Neighbor Embedding (tSNE) analysis was conducted to

decrease the dimensions and differentiate the subtypes of

information (tSNE can preserve local similarities between data

points and is one of the most used unsupervised clustering

visualization methods).
Differentially expressed genes and
functional annotation

DEGs among DRs subtypes were determined using the “limma”

R package with the filtering criteria of log (fold change) >1 and

False-discovery rate (FDR) <0.05 (19). To further investigate the

potential functions and enriched pathways of DEGs, functional

enrichment analyses were conducted on DEGs employing the

“clusterprofiler” R package (20).
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Generation of DS

The DS was calculated to quantify the disulfidptosis patterns of

the LUAD. Accordingly, a univariate cox regression analysis was

conducted to identify the DEGs are related to prognosis.

Subsequently, the patients were segregated into distinct gene

cluster groups according to the expression of prognostic DEGs

using the unsupervised clustering method. Based on prognostic

DEGs, the 10 machine learning algorithms, including ‘Least

Absolute Shrinkage and Selection Operator (LASSO, “glmnet”

package)’, ‘Ridge (“glmnet” package)’, ‘Elastic network (“glmnet”

package)’, ‘StepCox (“survival” package)’, ‘Survival support vector

machine (survival-SVM, “survivalsvm” package)’, ‘CoxBoost

(“CoxBoost” package)’ (21), ‘Supervised principal components,

“superpc” package’ (22), ‘partial least squares regression for

COX, “plsRcox” package’, ‘random survival forest (RSF,

“randomForestSRC” package)’, ‘generalized boosted regression

modeling, “gbm” package’ were used to constructed the models.

Briefly, 101 combinations of 10 machine learning algorithms were

used to build the models based on a leave-one-out cross-validation

(LOOCV) framework. Models with <3 genes were excluded.

Simultaneously, each patient’s linear score and concordance index

(C-index) are calculated based on various models, and the optimal

model is selected based on the average highest C-index in the

training and testing cohorts. Utilizing the optimal model, the DS for

each patient was determined. See the supplementary methods table

for details. The patients were then separated into high- and low-DS

groups using the median DS value. Subsequently, Kaplan–Meier

survival analysis was utilized to compare the OS rates of patients in

various DS groups.
Somatic mutation and CNV analysis

The “maftools” package was utilized to evaluate and

visualize the mutation type and frequency of the genes (23).

Correspondingly, the tumor mutation burden (TMB) of each

LUAD sample was calculated based on the total count of

somatic mutations per megabase (MB) in the exon coding

region of the human genome. Different mutation types were

classified as either synonymous or nonsynonymous mutations.

The nonsynonymous variants included Frame_Shift_Del,

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense,

Nonsense, Nonstop, Splice_Site, and Translation_Start_Site. The

maftools analysis focused on identifying significantly mutated

genes (P <0.05) between the two groups and assessing the

interaction effect of gene mutations. Only genes with mutations

occurring 30 times or more in at least one group were considered

for both analyses. GISTIC 2.0 was used to identify significant

regions within CNV data (24). To quantify and compare CNVs,

we calculated the fraction of altered genome (FGA), fraction of

genome gained (FGG), and fraction of genome lost (FGL) for each

sample. FGA reveals the proportion of genomic segments that
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have been altered. FGG/FGL considers specifically the genomic

segments that have undergone gain or loss, respectively.
Tumor microenvironment landscape and
hallmark pathway analyses

TME at LUAD were evaluated under four aspects. First, the

immune score, stromal score, ESTIMATE score, and tumor purity

were calculated using the ESTIMATE algorithm (25). Secondly,

three algorithms, Single Sample Gene Set Enrichment Analysis

(ssGSEA), Tumor Immune Estimation Resource (TIMER, https://

cistrome.shinyapps.io/timer/), and “MCPcounter” were used to

quantify the relative infiltration of immune cells in the entire

cohort (26–28). Thirdly, the seven steps of cancer immunity cycle

were analyzed using the Tracking Tumor Immunophenotype (TIP)

website (http://biocc.hrbmu.edu.cn/TIP/) (29). In the fourth step,

35 inhibitory immune checkpoints were extracted from a prior

study. Subsequently, Gene Set Enrichment Analysis (GSEA) was

utilized to identify underlying mechanisms in hallmark gene sets

with the recommended criteria (FDR <0.25 and NES >1), in order

to determine the underlying hallmark pathways associated with DS

(30). Meanwhile, “Gene Set Variation Analysis” (GSVA) package

was applied to the two DS groups with an adjusted p value <0.01

(31). The “h.all.v7.4.symbols.gmt” hallmark gene sets from the

MSigDB database were employed for GSVA implementation.
Assessment of immunotherapy
and chemotherapy

To explore the predictive value of DS in LUAD patients after

immunotherapy, we compared the immunedysfunction and exclusion

(TIDE, http://tide.dfci.harvard.edu/) score; additionally, the submap

algorithm was applied to compare the efficacy of immunotherapy

among various DS subtypes (32, 33). In addition, four

immunotherapy-treated cohorts, IMvigor210, GSE35640, GSE79671,

and GSE173839, were collected to investigate the immunotherapy

response ability of DS. The sensitivity of tumor cell lines to potential

drugs was obtained from the Cancer Therapeutics Response Portal

(CTRP, https://portals.broadinstitute.org/ctrp) and Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM, https://depmap.org/

portal/prism/). The more sensitive a cell line is to a potential drug, the

lower its area under the curve (AUC).
Single-cell RNA-sequencing analysis

ScRNA-seq data was downloaded from GSE131907.

Subsequently, the “Seurat” R package was utilized to measure the

gene expression levels by processing the raw data from each sample

(34). Cells with fewer than 200 detected genes were removed.

Accordingly, the top 2000 highly variable genes were selected for

subsequent clustering analysis. Following this, single cells were

classified into distinct subgroups via the application of the
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FindNeighbors and FindClusters functions (dim = 15 and

resolution =0.2). In addition, the tSNE was constructed utilizing

the top 15 primary components. Subsequently, immune cells and

tumor cells were identified using the “single R” and “copyKAT”

packages (35, 36). Pseudotime trajectory analysis is a method used

to study the temporal order of cells during development,

differentiation, or other biological processes. Its goal is to reduce

the dimensionality of single-cell data from high-dimensional to

one-dimensional, thus representing the temporal changes of cells in

a pseudotime manner. This aids in understanding the timeline of

processes like differentiation, development, and transformation in

tumor cells. Hence, the cell trajectory cancer cell populations were

ordered in pseudotime using the “Monocle” package (37).
Cell culture and transfection

Two human LUAD cells (PC-9 and H838) as well as a normal

bronchial epithelial cell (BEAS-2B) were obtained from the

American Type Culture Collection (Manassas, VA, USA). The

PC-9 and H838 cells were grown in RPMI 1640 supplemented

with 10% FBS and 1% penicillin-streptomycin, while BEAS-2B cells

were grown in DMEM supplemented with 10% FBS and 1%

penicillin-streptomycin in humidified air at 37°C and 5% CO2

(This condition simulates the physiological environment in the

human body, aiding in maintaining normal cellular growth,

metabolism, and function). To construct KYNU knockdown and

negative control (NC) cell lines, H838 and PC-9 cells were seeded in

6-well plates at a density of 5 × 104 cells/well and transfected with 50

nM siRNAs-KYNU and siRNA negative control (siRNA-NC) using

lipofectamine 3000 (This reagent possesses high efficiency, broad

spectrum, and low toxicity) following the manufacturer’s guidelines

(Hanheng, Shanghai, China). After 48 h of transfection, subsequent

experiments were conducted (Typically, after 48 hours of

transfecting siRNA, the target gene’s expression is effectively

disrupted in the vast majority of cases, while cells continue to

maintain a relatively healthy and appropriate growth state). The

siRNA sequences are provided in Supplementary Table 3.
Tissue microarray and
immunohistochemistry

For this study, a total of 15 TM tissue samples (HLugA030PG04-

1) were utilized, including 15 LUAD and 15 adjacent non-tumor

tissues. All the tissues were procured from Shanghai Outdo Biotech

Co., Ltd. (Shanghai, China). TM was stained using IHC with KYNU.

In brief, the antibodies were diluted to the suitable concentration and

incubated overnight with the sections at 4°C. The avidin–biotin and

streptavidin complex were then incubated with the biotinylated goat

anti-rabbit IgG secondary antibody for 0.5 h. The cell nuclei were

counterstained blue with Hematoxylin. Each specimen was graded

based on the intensity (0: absent, 1: mild, 2: moderate, and 3:

pronounced) and the proportion of positively stained cells (0: 0%,

1: 1%–25%, 2: 26%–50%, 3: 51%–75%, and 4: 76%–100%). The final
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IHC scores were then calculated as the product of the intensity score

and the percentage score (38).
RNA-isolation and real-time reverse
transcription polymerase chain reaction

RNA extraction was performed employing RNA extraction kit

(AG, Changsha, China) in accordance with the manufacturer’s

instructions. The complementary DNA (cDNA) was synthesized

from total RNA for each sample by using a reverse transcription

kit (Promega, Madison, Wisconsin). Subsequently, the mRNA

expression was quantitatively analyzed via RT-PCR (Roche Light

Cycler® 480II System). The relative gene expression was normalized

to b-actin, acting as the control gene. The primer sequences for the

genes are outlined in Supplementary Table 4. The fold change of the

target gene was computed utilizing the 2−DDCt method.
Proliferation assay

Cells in logarithmic phase were seeded into 96-well plates at

density of 2,000 cells per 100 µl. They were then cultured for 0, 24,

48, 72, and 96 h. At the end of the incubation cycle, CCK-8 reagent

(Saiku, Shanghai, China) was added to each well for 2 h at 37°C.

Subsequently, the absorbance values of each well were measured at

450 nm. For colony formation assay, 500 cells were seeded into each

well of a 12-well plate and incubated. After 10 days, the cells were

stained with crystal violet solution, and fixed with 4%

paraformaldehyde for 0.5 h. Finally, colonies consisting of more

than 50 cells were counted.
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Migration and invasion assay

The transwell experiment was executed using a transwell

chamber (Transwell, Corning Costar, USA). For migration assays, a

total of 4 × 104 cells were resuspended in 200 ml serum-free medium

and placed to the upper chamber. The lower chamber was filled with

700 ml of medium containing 10% FBS. After 18 h, cells that migrated

through the membrane were fixed and stained with hematoxylin.

Following a 24 h-incubation period, cells that traversed the

membrane were fixed with 4% paraformaldehyde for 30 minutes

and stained with a crystal violet solution for 15 min. Subsequently,

they were observed with a microscope, and five random fields of view

were selected to count the cells. The protocol for the invasion assay

was similar to the migration assay, with the exception that the upper

chambers were coated with 70 ml of diluted Matrigel. In addition, the

wound healing assay was utilized to examine cell migration. Serum-

starved LUAD cells (2 × 105) were seeded in 6 well plates and then

transfected with siRNA-NC or siRNA-KYNU. Upon reaching >95%

cell confluence, a sterile 20 ml pipette tip was used to create a scratch

in the monolayer of cells. After a PBS wash, the cells were incubated

for 0 and 24 h in the corresponding basic culture medium. The

monolayer cells were examined microscopically, and the gap distance

was measured quantitatively to ascertain LUAD cell migration.
Statistical analysis

All statistical analyses and representations were conducted

using R (version 4.2.1) and GraphPad Prism (version 9.00). The

Chi-squared test was used to compare the proportion of individuals

within two groups. Additionally, continuous variables in two or
B

C D E
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FIGURE 1

The genomic features and expression of DRs in LUAD. (A) The differential expression of DRs between tumor and normal samples. (B) Mutation
landscape of DRs in TCGA-LUAD. (C) The CNV mutation frequency of DRs. (D) Chromosome position and alteration of DRs. (E) Molecular
interaction network map of DRs Negative correlations are illustrated in green, while positive correlations are denoted in pink. ns, not significant,
*P < 0.05, **P < 0.01, ***P < 0.001.
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more groups were compared using Wilcoxon rank-sum test or

Kruskal–Walli’s test. For correlation analysis, the Pearson

correlation test was employed. A p-value less than 0.05 was

deemed statistically significant.
Results

Genetic and transcriptional alterations of
DRs in LUAD

Gene expression analysis using bulk RNA-seq demonstrated

that the majority of DRs displayed relative higher expression levels

in LUAD tissues compared to para-carcinoma tissues (Figure 1A).

As depicted in Figure 1B, 104 of 616 (16.88%) LUAD samples

possessed genetic mutations. A total of 13 of 18 DRs were found to

be mutated, with CNOT1 exhibiting the highest rate of mutation.

Among them, missense mutations were found to be the most

frequent (Figure 1B). In order to unmask the genetic

modifications in DRs, we presented an overview of the frequency

of somatic and copy number mutations with malignancies.

Moreover, analysis of these 18 DRs revealed that CNV alterations

were common. NDUFS2, NUBPL, PPM1F, EPAS1, and LRPPRC

displayed widespread CNV amplification, whereas CCNC,

NDUFA11, OXSM, and GYS1 showed widespread CNV deletions

(Figure 1C). Figure 1D depicts the locations of CNV alterations in

LUAD DRs. The correlation network composed of 18 DRs is

illustrated in Figure 1E (correlation coefficient >0.4; the positive

correlation is represented by the red line, negative correlation is

represented by the blue line).
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Identification of DRs subtypes in the
LUAD cohort

In order to delve further into understanding the DRs’

expression pattern in the oncogenesis of LUAD, 1569 patients

from 4 independent LUAD cohorts were included. Accordingly,

we performed unsupervised clustering and classification on the

combined LUAD cohort based on DRs. Our results showed that k =

2 was the optimal choice (Figures S1). In addition, the tSNE results

revealed significant differences between the two clusters in terms of

DRs expression (Figure 2A). Moreover, the Kaplan–Meier survival

analysis demonstrated that the DRcluster A had a greater survival

advantage than DRcluster B (Figure 2B). In addition, the

clinicopathological characteristics of the various DR clusters also

revealed significant differences (Figure 2C). To further explore the

biological behavioral difference between these two clusters, we also

conducted a GSVA enrichment analysis (Figure 2D). The results

demonstrated that DRcluster A was primarily enriched for

carcinogenic pathways like focal adhesion, EMC receptor

interaction, and others. Moreover, Figure 2E data also revealed

significant differences in the relative expression of immune

infiltration cells across two DRclusters.
Identification of genes subtypes and
establishment of DS

A total of 51 DEGs were identified from two DRclusters using

the “limma” package. These DRs subtypes-related genes were

significantly enriched in cellular metabolism (Figures 3A, B).
B C
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FIGURE 2

The construction of DRclusters. (A) tSNE plot of two DRclusters. (B) Kaplan-Meier survival analysis between two DRclusters. (C) Heatmaps of the
distribution of DRs in the two DRclusters. (D) GSEA analysis indicating significant enrichment of pathways in the two DRclusters. (E) The proportion
of 24 kinds of immune cells in two DRclusters. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 4

Construction of prognostic signature based on DEGs. (A) A total of 101 kinds of prediction models via a leave-one-out cross-validation framework
and further calculated the C-index of each model. (B) Cvfit and lambda curves of LASSO regression applied with minimum criteria. (C) The number
of trees determined by minimum error and importance of the four most valuable genes based on the RSF algorithm. (D-G) Kaplan-Meier survival
curves of OS for high- and low-DS groups of patients in the TCGA, GSE31210, GSE68465, GSE72094 cohorts, respectively.
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FIGURE 3

Identification of DRs gene clusters based on DEGs in DRclusters. (A, B) GO and KEGG enrichment analyses of DEGs among two DRclusters
(C) Differences in the expression of DRs among the two genecluster (D) tSNE plot of two geneclusters. (E) Kaplan-Meier survival analysis between
two geneclusters. (F) The proportion of 24 kinds of immune cells in two geneclusters. *p < 0.05; ***p < 0.001; ns, not significant.
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Subsequently, we conducted a univariate Cox regression analysis for

DEGs and identified 39 DEGs with prognostic importance for

LUAD. To further investigate the heterogeneity of DRs subtypes,

we performed unsupervised clustering on 39 DEGs. The 1569

patients with LUAD were also separated into two gene clusters,

designated geneCluster A and B (Figure S2). Similar to DRcluster,

these genes accurately differentiate LUAD patients, with distinct

clusters of genes exhibiting variations in DRs, survival rates, and

immune cell infiltration (Figures 3C–F). Following this, the

LOOCV framework was used to fit 101 prediction models to both

training and testing sets. The C-index for each model was

calculated, and based on the model with the highest average C-

index (0.713), “Lasso+RSF” was deemed the optimal model

(Figures 4A–C, Supplementary Table 5). A DS was calculated for

each patient based on the expression of 7 genes (KRT6A, NEIL3,

KYNU, ABCC2, SFTPC, CPS1, and INSL4) weighted by their

regression coefficients in the model, and patients were divided to

high- or low‐DS groups based on the median cutoff point of DS

(Supplementary Table 6). As evident from the K–M survival

analysis, OS rates were significantly diminished in the high-DS

group compared to the low-DS group (Figures 4D–G). Moreover,

the relationship between different types of patients and their

prognoses was analyzed (Figure 5), with results suggesting that a

low DS was related to a better prognosis in all patient categories.
Evaluation of the DS

A time-dependent receiver operating characteristic (ROC)

curve was employed to assess the validity of DS, as the AUC

value for TCGA (0.93–0.96), GSE31210 (0.68–0.79), GSE68465
Frontiers in Immunology 0858
(0.63–0.66), GSE72094 (0.63–0.72), and meta-cohort (0.71–0.78)

(Figures 6A–E). In addition, the C-index of clinical factors in

patients with LUAD was determined (Figures 6F–J). Notably, the

DS had a higher predictive efficacy than the vast majority of clinical

indicators. Subsequently, both DS and clinical indicators were

subjected to univariate and multivariate Cox analyses. In all

cohorts, the DS was determined to be an independent indicator

of OS prognosis (Tables 1–4). In order to determine the prognostic

efficacy of DS, we combined 56 previously published LUAD

prognostic models and conducted a comparative analysis of each

model’s C-index. These models were developed using a variety of

biologically relevant features, including autophagy, EMT,

ferroptosis, hypoxia, necroptosis, glycolysis, and m6A

methylation. Accordingly, DS was found to exhibit superior

performance relative to the vast majority of models across all

cohorts (Figure 7, Supplementary Table 7). Cumulatively, these

results, therefore, demonstrate that the DS would be a valuable

LUAD prognostic model.
Comparison of the mutations and CNV
between DS groups

Using the “maftool” package, a comparison was made between

the distribution differences of somatic mutations observed in high-

and low-DS groups. (Figures 8A, B). Comparing the frequency of

mutants between the high- and low-DS groups, more somatic

mutations, both synonymous and nonsynonymous, were observed

in the high-DS group (Figures 8C–E). In addition, maftools analysis

results showed that 17 genes mutated more frequently in LUAD

patients in the high-DS group, including KEAP1, STK11,
B C
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FIGURE 5

Correlation analysis of DS. (A) Alluvial diagram of clusters distributions in groups with different DS and survival outcomes (B) Expression of DRs
between high- and low-DS groups. (C) Differences in DS between DRclusters. (D) Differences in DS between gene clusters. (E) The circular pie chart
for the proportion difference of clinical indices. *P < 0.05, ***P < 0.001.
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SMARCA4, TTN, NCKAP5, COL5A2, ANKRD30A, TEX15,

PCDH15, GRIN2B, AHNAK, FAT4, FMN2, FAT1, ZNF804B,

DOCK2 and COL22A1 (Figure 8F), and there was extensive co-

mutation between these genes (Figure 8G). This is consistent with

the mutation analysis described above; accordingly, TMB was found

to be higher in the high-DS group compared to the low-DS group

(Figure 8H). Subsequently, LUAD patients were classified into two
Frontiers in Immunology 0959
mutation groups based on their TMB score. When combining DS

and TMB, we discovered that patients with low TMB from the high-

DS group had the worst prognosis (Figure 8I). Subsequently, we

used the GISTIC 2.0 software to decipher the amplification and

deletion of CNA on chromosome. Compared to the high-DS group,

the low-DS group had a greater burden of amplification and

deletion at both the arm and focal levels (Figure 8J). However, no
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for TCGA cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Stage 1.977(1.586-2.463) < 0.001 1.239(0.863-1.779) 0.245

M 1.727(1.18-2.527) 0.005 0.969(0.611-1.537) 0.895

N 1.942(1.575-2.394) < 0.001 1.23(0.923-1.64) 0.157

T 1.816(1.386-2.38) < 0.001 1.267(0.895-1.793) 0.183

Age 1.038(0.822-1.31) 0.754 NA NA

Sex 1.041(0.847-1.28) 0.7 NA NA

DS 0.118(0.084-0.165) < 0.001 0.136(0.092-0.202) < 0.001
fro
Significant value is given in bold.
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FIGURE 6

Evaluation of the DS. (A-E) Time-dependent ROC curves presented with the 1-5 year AUC in TCGA, GSE31210, GSE68465, GSE72094 and meta-
cohort. (F) The C-index of the CDS for the TCGA, GSE31210, GSE68465, GSE72094 cohorts. (G-J) The C-index of the DS and other clinical factors
in the TCGA, GSE31210, GSE68465, GSE72094 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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significant disparities were observed between the high- and low-DS

groups in terms of FGA, FGG, and FGL (Figure 8K). These results

indicate a certain degree of correlation between DS and mutations.
TME analysis

In order to evaluate the discriminative potential of the DS

subgroup for the TME and its applicability in immunotherapy, we

simultaneously evaluated the abundance of immune cell infiltration

across multiple samples using four distinct algorithms. Unsurprisingly,

as the DS increased, the number of immune cells declined (Figure 9A).

Apparently, the activation of key steps in the cancer immunity cycle,

such as step 3 (priming_and_activation) and step 4 (CD4 T cell

recruiting, Dendritic cell recruiting, Macrophage recruiting,

Monocyte recruiting, and T cell recruiting) appeared to be

significantly higher in the low-DS group than in the high-DS group

(Figure 9B). Subsequently, the expression profile of immune

checkpoints in the two DS groups were further evaluated.

Accordingly, the analysis revealed that the low-DS group

demonstrated elevated expression levels of immune checkpoints,

including HHLA2 and CD48 (Figure 9C). Given the observed

upregulation of immune-related characteristics in the group with low

DS, its underlying biological mechanisms were investigated further. As

evident from the findings, DS exhibited correlations with multiple

metabolic pathways (Figure 9D). In addition, DS demonstrated a

strong correlation with numerous immunotherapeutic strategies

(Figure 9D). To investigate the cancer signaling pathways associated

with DS, GSVA analysis was performed on high- and low-DS groups.

Using a predetermined threshold, we discovered that 16 signature
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pathways were significantly upregulated in the high-DS group

compared to the low-DS group (Figure 9E). GSEA validated that 12

of these pathways were upregulated in high-DS patients, themajority of

which are known to be carcinogenic (Figures 9F–I).
Assessment of immunotherapy
and chemotherapy

The potential of an immunotherapy response was subsequently

predicted for each immune cluster utilizing the TIDE algorithm and

submap analysis. Accordingly, lower TIDE scores were observed in

the low-DS group, implying a higher sensitivity to immunotherapy

in these patients (Figure 10A). Moreover, the submap results

indicated that the group with a low DS level was more sensitive

to CTLA4 inhibitors (Figure 10B). Although we evaluated an

individual’s immunotherapy efficacy using two algorithms, it

remains critical to directly compare the curative efficacy of

immunotherapy cohorts across various DS groups. As a result,

four immunotherapy cohorts were included for further analysis. In

the IMvigor210 cohort, patients with DR/PR had significantly

longer OS compared to patients with SD/PD, whereas the

influence of DS on patient prognosis was minimal (Figure 10C).

However, patients who responded better to immunotherapy had

lower DS levels across all cohorts (Figures 10D–G). Although there

were no significant differences in patient survival and DS between

the two groups for some cohorts, the propensity for these results

was consistent for the other cohorts. In addition, these results

demonstrate that the DS was able to predict the efficacy of ICBs

and can provide direction for the deployment of immunotherapy.
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE68465 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

N 2.029(1.689-2.438) < 0.001 1.92(1.578-2.335) < 0.001

T 2.062(1.587-2.68) < 0.001 1.851(1.403-2.442) < 0.001

Gender 1.262(1.051-1.516) 0.013 1.236(1.018-1.5) 0.032

Chemotherapy 1.412(1.15-1.734) < 0.001 1.279(1.032-1.586) 0.024

DS 0.767(0.639-0.92) 0.004 0.819(0.678-0.989) 0.038
fro
Significant value is given in bold.
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE31210 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Smoking 1.417(0.882-2.277) 0.15 NA NA

Gender 1.344(0.839-2.152) 0.219 NA NA

Age 1.263(0.777-2.052) 0.346 NA NA

Stage 2.774(1.732-4.441) < 0.001 2.305(1.417-3.75) < 0.001

DS 0.4(0.229-0.7) 0.001 0.495(0.278-0.881) 0.017
Significant value is given in bold.
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Thus, to pinpoint candidate drugs that may exhibit heightened

sensitivity in LUAD patients, we conducted drug response

predictions using CTRP- and PRISM-derived data. Finally, the

cross-correlation of the two pharmacogenomics databases allowed

us to predict four drugs or compounds (including SB−743921,

ispinesib, cabazitaxel, and gemcitabine) with therapeutic potential

in patients (Figures 10H, I).
Single-cell sequencing analysis

To analyze the expression of DS in TME, we used the LUAD

single-cell dataset GSE131907 from the GEO database. All the cells
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were partitioned into 16 clusters using the k-nearest neighbor

(KNN) clustering algorithm (Figure 11A). Subsequently, using the

“single R” and “copycat” packages to annotate all cells, we were able

to identify 9 distinct cellular subtypes, including B cells, endothelial

cells, epithelial cells, cancer cells, macrophage cells, monocyte cells,

smooth muscle cells, NK cells, and T cells (Figure 11B). Most of

these cells are important components of the TME mentioned in the

above results. Subsequently, we investigated the single-cell

transcriptome localization of 7 genes in DS (Figure 11C).

Concurrently, the DS for each cell was calculated, which showed

that cells with a high DS predominately resided in the region of

cancer cells (Figure 11D). Additionally, the temporal sequence of

cancer cellular differentiation was revealed by the analysis of the
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE72094 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

STK11 1.028(0.72-1.469) 0.879 NA NA

KRAS 0.767(0.588-0.999) 0.049 0.911(0.693-1.198) 0.506

Age 1.258(0.836-1.894) 0.27 NA NA

Gender 0.733(0.564-0.952) 0.02 0.746(0.569-0.979) 0.035

Stage 1.969(1.477-2.625) < 0.001 1.956(1.459-2.623) < 0.001

Smoking 1.248(0.694-2.245) 0.459 NA NA

TP53 0.861(0.645-1.151) 0.313 NA NA

EGFR 2.58(1.274-5.226) 0.008 2.025(0.986-4.159) 0.055

DS 0.549(0.416-0.724) < 0.001 0.619(0.465-0.825) 0.001
fro
Significant value is given in bold.
FIGURE 7

C-index analysis between the DS and 56 published signatures in TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns, not significant.
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pseudotime trajectory. Accordingly, low DS cancer cells appear at

an earlier pseudotime than high DS cancer cells, which are

primarily found in the earliest stages of differentiation

(Figures 11E–H).
KYNU evaluation in the LUAD cells

The qRT-PCR experiments were performed on LUAD cell lines

to confirm the expression levels of DS genes in LUAD. Our finding

discovered that ABCC2, NEIL3, KYNU, and CPS1 exhibited

elevated expression in LUAD cell lines, while KRT6A and SFTPC

were found to be underexpressed (Figure 12A). In addition, KYNU

exhibited the most significant correlation between high expression

and unfavorable poor patient prognosis. No reports have

documented the role of KYNU in LUAD to date. As a result of

these considerations, KYNU was selected as the focus of further

experiments. Correspondingly, IHC staining analysis showed that

the protein level of KYNU expression was elevated in LUAD tumor
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tissues relative to paracancerous tissues (Figure 12B). Subsequently,

we investigated the function of KYNU in PC-9 and H838 LUAD cell

lines through a series of cell-based experiments. Initially, the effect

of the siRNA was confirmed via RT-qPCR (Figure 13A). As

demonstrated by CCK-8 and clone formation assays, KYNU

knockdown inhibits LUAD cell growth and their clone formation

capacity (Figures 13B, C). In addition, wound healing and transwell

assays confirmed that KYNU knockdown inhibited the cell

migration and invasion capabilities of LUAD cells (Figures 13D,

E). The precision of these findings corroborated that the expression

of KYNU mirrored the variations anticipated through

bioinformatic prediction.
Discussion

LUAD persistently remains the principal contributor to cancer-

related deaths among all cancer types and poses a substantial threat

to global health (39). Prior research has revealed that the onset and
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FIGURE 8

Integrated comparisons of somatic mutation and CNVs between high- and low-DS groups in the TCGA cohort. (A, B) Visual summary showing
common genetic alterations in the high and low-DS groups. (C-E) Association between all mutation counts, synonymous mutation counts,
nonsynonymous mutation counts, and DS and their distribution in the DS groups. (F) Forest plot of gene mutations in the patients. (G) Interaction
effect of genes mutating differentially in patients. (H) Tumor mutation burden between high- and low-DS groups. (I) Comprehensive survival analysis
based on DS and TMB. (J) Gene fragments profiles with amplification (red) and deletion (green) among the DS groups. (K) Comparison of the
fraction of the genome altered, lost, and gained between the DS groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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progression of LUAD involve complex biological mechanisms, such

as a multitude of genetic and epigenetic modifications (40, 41).

Numerous staging systems have been proposed and utilized for

clinical determinations to predict patient prognoses; however, these

systems predominantly rely on clinicopathological features,
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ignoring the critical influence of complex molecular pathogenic

processes in the oncogenesis and progression of LUAD (42, 43). As

a result, there have been negligible improvements in patient

outcomes. Consequently, the identification of superior predictive

biomarkers for treatment responsiveness and patient outcomes
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FIGURE 9

Analysis of the TME in different DS groups. (A) Differences in immune infiltration status between two DS groups were evaluated by four algorithms.
(B) The differences of cancer immunity cycle were showed in boxplot between two DS groups. (C) The differences of immune checkpoint related
genes were showed in boxplot between two DS groups. (D) The correlations between the TIIClnc signature score and metabolic immune-related
pathways, immune-related pathways based on GSVA of GO and KEGG terms were displayed in butterfly plot. (E) The difference in the hallmark gene
sets between different DS groups based on GSVA. (F-I) The GSEA results for the 12 overlapping upregulated hallmark pathways in terms of the high-
DS group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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FIGURE 10

Prediction of immunotherapy and chemotherapy response. (A) A violin diagram illustrates the variance in TIDE scores among patients with diverse
DS. (B) A comprehensive submap analysis of the meta-cohort and melanoma patients, inclusive of intricate immunotherapeutic data. (C) A Kaplan-
Meier plot delineates the survival rates for patients categorized into high- and low-DS groups within the IMvigor cohort. (D-G) A box diagram
depicts the disparity in DS among patients exhibiting immunotherapy responses in the IMvigor210, GSE35640, GSE79671, and GSE173839 cohorts.
(H, I) The findings from the correlation study and differential drug response analysis of CTRP-derived pharmaceuticals and PRISM-derived
pharmaceuticals are presented. ***P < 0.001.
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could be advantageous in optimizing individualized therapeutic

strategies and prognostic management for those afflicted with

LUAD. Atypical accumulation of intracellular disulfides induces

disulfide stress, which results in cellular toxicity and ultimately

induces cell death (16, 44). Disulfide bonds are the most important

redox-reactive covalent bonds between two cysteine residues within

proteins. These bonds are regarded as cellular redox regulators and

are intimately linked to the formation of disulfides. Recent studies

have revealed that neoplastic cells may also experience disturbances

in disulfide metabolism as a result of oxidative stress, a process that

can potentially inhibit the proliferation of tumor cells and induce

their apoptosis (45, 46). In addition, the disulfides inherent to

neoplastic cells may act as conduits, modulating the responsiveness

to chemotherapeutic agents and immunotherapy, and possibly

serving as prognostic markers (47–79). This suggests that the

application of disulfidptosis-focused translational medicine holds

considerable promise as a candidate for clinical implementation

across an array of human malignancies. Several DRs have been

implicated in pathological and physiological processes of a variety

of tumor. To counterbalance the oxidative stress induced by their

heightened metabolic rate, tumor cells can upregulate the

expression of the catalytic subunit SLC7A11 of the Xc−system,

thereby maintaining high levels of glutathione (50). In addition, the

overexpression of SLC7A11 in glioma cells improves their

resistance to oxidative stress and decreases their sensitivity to

temozolomide (51). In this regard, SLC3A2 is significantly
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upregulated in several types of malignant tumor cells, including

those of the lung, breast, and prostate (52, 53). Furthermore,

SLC3A2 is also an independent prognostic indicator for thymic

epithelial tumors and NSCLC (54). Consequently, the

overexpression of SLC3A2 contributes to radiotherapy resistance

in tumors, indicating that SLC3A2 could surface as a promising

clinical prospect in cancer treatment (55). Moreover, models

composed of DRs have been established in certain tumor types,

demonstrating their potential predictive value for patient prognosis

and treatment efficacy (56, 57). These findings indicate that DRs

have significant potential for elucidating the molecular mechanisms

underlying LUAD and identifying novel biomarkers. Nonetheless,

there is a dearth of pertinent research on how DRs influence

prognosis, immune infiltration, and clinical response in LUAD.

In this study, we first analyzed the characteristics of DRs in

LUAD, including extensive genetic and transcriptional level

alterations. The majority of these genes are upregulated in LUAD

patients and are associated with a poorer prognosis, suggesting a

plausible role for DRs in the pathogenesis of LUAD. Using

unsupervised clustering techniques on DRs transcriptomic

expression data, we then divided LUAD patients from four

distinct cohorts into two subgroups, designated DRcluster A and

DRcluster B. In DRcluster B, the majority of DRs were significantly

upregulated, indicating relatively active disulfidptosis. Compared to

patients in DRcluster A, DRcluster B was associated with an

increase in the number of immune cells that infiltrated the
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FIGURE 11

Exploration of DS in LUAD scRNA-seq data. (A) t-SNE plot colored by 16 cell subpopulations. (B) t-SNE plot of the distribution of 9 cell types.
(C, D) Evaluation of DS gene expression and DS in scRNA-seq data in scRNA-seq data. (E-H) Pseudotime trajectory analysis in LUAD cells (Cells are
colored based on states, pseudotime, cluster and DS groups.
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affected tissue. Significant infiltration levels of effector immune cells

are critical for a successful immunotherapeutic response. Typically,

a higher CD8+ T cell infiltration rate is indicative of a better

prognosis for survival. As evidence, a higher concentration of

cytotoxic CD8+ T cells permeating the tumor has been linked to

superior outcomes for patients with NSCLC (58). This is consistent

with our prognosis and analysis results of immune infiltration. As a

result, we proceeded to identify 86 DEGs that distinguished the two

DRclusters, and based on these DEGs, we formed a pair of gene

clusters. Intriguingly, we discovered statistically significant

differences in OS, DRs, and TME between gene clusters, revealing

a strong correlation between DRclusters and gene clusters. In light

of the lack of DRclusters for clinical application and the paucity of

biomarkers for prognosis tracking, we developed a robust and

effective model by transforming 10 machine learning algorithms

into more than 101 combinations and selecting the best performing

algorithm determined by the mean C-index across four LUAD

cohorts (59). This facilitated the creation of a robust and efficient

DR-based prognostic model, suitable for appraising the prognosis of

LUAD patients. Ultimately, the combination of LASSO and RSF

was deemed the superior model for constructing the DS. Survival

analysis utilizing the median value of the DS revealed its association

with LUAD prognosis, and concordant results were obtained from

three independent cohorts. The AUC at various time points and the

C-index suggest that the DS has exceptional clinical efficacy,
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surpassing the performance of a substantial number of other

clinical attributes. Significantly, when compared to the 56

previously reported molecular signatures for LUAD, the

predictive performance of the DS is consistently superior in

nearly all cohorts examined.

The composition of ourDS comprises 7 genes, includingKRT6A,

NEIL3, KYNU, ABCC2, SFTPC, CPS1, and INSL4. In addition, qRT-

PCR analysis revealed that LUAD and human bronchial epithelial

cell expression of the majority of genes differed significantly.

Numerous identified genes exhibit a strong correlation with the

onset and advancement of LC. For instance, overexpression of

KRT6A in NSCLC is associated with poor prognosis (60). KRT6A,

acting downstream of LSD1, upregulates G6PD and the pentose

phosphate pathway flux via the MYC signaling cascade, thereby

promoting NSCLC growth and invasion (61). The upregulation of

NEIL3 expression in NSCLC tissues and cell lines correlates with

clinical progression and a poor prognosis. By partially activating the

PI3K/AKT/mTOR signaling pathway, NEIL3 contributes to the

progression of NSCLC (62). A recent study demonstrated that

SFTPC expression is suppressed in human LUAD tissues and cell

lines, and its overexpression inhibits LCcell proliferation in vitro and

in vivo (63). INSL4, via autocrine or paracrine effects, promotes the

proliferation and invasion of NSCLC by enhancing the MAPK and

AKT signaling pathways. Moreover, INSL4 serves as a detrimental

prognostic indicator for patients suffering from NSCLC. Among the
B

A

FIGURE 12

Validation of expression levels of DS genes. (A) DS genes expression in LUAD and normal cell lines. (B) Protein expression levels of KYNU were
assessed by IHC. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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7 genes, IHC confirmed the elevated expression of KYNU in LUAD

tissue samples, and the association between high KYNU expressions

was notably associated with a shorter OS in the cohort. Moreover,

cellular experiments suggest that the knockdown of KYNU can curb

the proliferation, invasion, and migration capabilities of LUAD cells,

suggesting its oncogenic role in LUAD.

TMB has recently emerged as a promising prognostic

biomarker for numerous tumor types. A higher TMB is

frequently associated with improved survival outcomes (9). For

instance, a study of NSCLC patients revealed that those with

elevated TMB levels experienced prolonged OS when subjected to

PD-1/PD-L1 antibody therapy (64). In this study, LUAD patients

with an escalated DS had elevated TMB. This could be the result of

patient heterogeneity or a small sample size. Recently, the

proliferation and efficacy of targeted immunotherapies have

begun to transform the landscape of cancer treatment (65, 66).

Given the complex interaction between the tumor immune

microenvironment and host immune responses, there is an urgent

need for predictive biomarkers that facilitate individualized therapy.

Increased concentrations of CD8+ T cells in the tumor
Frontiers in Immunology 1666
microenvironment correlate with an improved prognosis and

increased survival rates among patients with NSCLC (67).

Furthermore, the existence of dysfunctional CD8+ T cells within

lung tumors and malignant pleural effusions has been documented,

thereby diminishing their capacity to mount an effective antitumor

response (68). In preclinical studies, NK cell-based therapies have

demonstrated the ability to prevent the development of pulmonary

metastases (69). Several studies demonstrate that extracorporeal

stimulation of autologous Natural Killer (NK) cells with

Interleukin-2 (IL-2) in conjunction with adoptive transfer and

subcutaneous IL-2 infusions increased overall survival (OS) in a

subset of patients with advanced cancers (70). Within the

pulmonary environment, neoplasm-associated B lymphocytes can

differentiate into plasma cells, thereby producing tumor-specific

antibodies capable of recognizing and reacting to tumor-associated

antigens (71). Accordingly, the presence of both follicular B cells

and tumor-infiltrating plasma cells has been positively correlated

with increased longevity in patients with NSCLC, highlighting the

protective contribution of plasma cells and antibodies in combating

tumor proliferation (72). Moreover, single-cell sequencing analysis
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FIGURE 13

(A) The effect of siRNA to knockdown KYNU in LUAD cell lines was measured by RT–qPCR. (B, C) The CCK-8 and clone formation assays showed
that knockdown of KYNU inhibited the proliferation of LUAD cells. (D, E) The wound healing and transwell assays showed that knockdown of KYNU
inhibited the migration and invasion of LUAD cells. *P < 0.05; **P < 0.01; ***P < 0.001.
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results indicate that high DS cells are primarily located in the tumor

cell and B cell regions, suggesting a possible interaction between

them. Consistent with previous findings, LUAD patients with a low

DS demonstrated a high level of immune cell infiltration, including

CD8 cells, NK cells, B cells, dendritic cells, mast cells, and central

memory T cells, all of which play crucial roles in either bolster or

counter tumor immunity during immunotherapy. Tumor cells

characterized by reduced differentiation levels frequently

demonstrate accelerated growth rates and heightened

invasiveness, often correlating with unfavorable prognoses (73).

Pseudotime analysis outcomes revealed a spatial disposition

wherein tumor cells exhibiting diminished CDS levels occupied

the initial phase of the differentiation trajectory. Conversely, those

with elevated CDS levels were situated at the concluding stage of

differentiation. Consequently, it becomes evident that CDS levels

could potentially be linked to the extent of differentiation as well as

invasiveness in tumor cells. In accordance with the tumor

immunoediting hypothesis, the high-DS group exhibited greater

immunosuppression but decreased immunoreactivity compared to

the low-DS group (74). Disparities in the immune infiltrating

microenvironment could potentially contribute to cancer

progression and result in a poorer prognosis. Elevated IDO1

exp r e s s i on con t r i bu t e s t o th e dev e l opmen t o f an

immunosuppressive TME by promoting T cell and NK cell

inactivation and activating and expanding Tregs and DCs (75,

76). The role of IDO1-mediated tryptophan (TRP) metabolism in

resistance to therapies targeting CTLA-4 or PD-1 demonstrates its

potential as a promising target to augment existing immunotherapy

approaches (77). CD40 is an essential co-stimulatory protein

involved in the pro-inflammatory immune activation of antigen-

presenting cells like dendritic cells and immunosuppressive

macrophages within the cancer landscape (78, 79). Earlier

investigations demonstrate that CD40 stimulation, in addition to

activating tumor-associated immunosuppressive macrophages and

T cells and inhibiting tumor progression (80, 81), also remodels the

TME and heightens the tumor’s responsiveness to checkpoint

blockade therapies in various types of cancer (82, 83). The

findings of the current study show that the expression of IDO1

was downregulated in the low-DS group relative to the high-DS

group, while CD40 expression was upregulated. In addition,

differences in the expression of other immune checkpoints

between the two groups suggested immunotherapy would have

divergent effects (84). To determine the degree of immunotherapy

response in LUAD patients, we evaluated the TIDE and submap

algorithms to discovered that low-DS individuals identified by the

model may be suitable candidates for immune checkpoint blockade

therapies targeting CTLA-4 and PD-1. The scores based on

immunotherapy algorithm scores are merely a reflection of

theoretical hypotheses and cannot represent the actual efficacy

within actual cohorts. For a more comprehensive analysis of the

predictive efficacy of DS in immunotherapy, we thus incorporated

multiple immunotherapy cohorts. Thus, in predicting therapeutic

responses within immunotherapy cohorts, DS exhibits a trend that

is consistent with immunotherapy algorithms, as indicated by our

findings. These results suggest that a lower DS score may be a potent

indicator of immunotherapy response in patients with LUAD.
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The efficacy of pharmaceutical interventions is closely correlated

with drug sensitivity and individual variation, indicating that

personalized therapies based on specific subtypes could reduce the

prevalence of ineffective therapies among LUAD patients. An analysis

of drug sensitivity differences among LUAD patients with varying DS

revealed 4 pharmaceuticals with significantly divergent sensitivities.

Subsequent sensitivity projections demonstrated that SB-743921,

cabazitaxel, gemcitabine, and ispinesib could potentially serve as

superior therapeutic options for individuals with a high DS.

Through signaling pathways such as G2M_CHECKPOINT,

DNA_REPAIR, and PI3K_AKT_MTOR_SIGNALING, some of

these pharmaceuticals exert their antitumor effects, as revealed by

our enrichment analyses. Cabazitaxel functions by closely interacting

with microtubule proteins, resulting in the inhibition of their

depolymerization and consequently the inhibition of cellular mitosis.

This mechanism induces cell cycle cessation, resulting in the

programmed death or apoptosis of neoplastic cells (85). Recent

research revealed that cabazitaxel can induce G2/M phase block and

autophagy in LUAD cells by inhibiting the PI3K-AKT-mTOR

pathway, indicating its potential as a chemotherapy drug for LUAD

patients (86). Gemcitabine is a pyrimidine nucleoside analogue

antimetabolite that can inhibit the synthesis and repair of DNA,

thereby inducing cellular autophagy and apoptosis (87). When used

as a stand-alone treatment, gemcitabine has consistently demonstrated

response rates greater than 20% while maintaining a favorable

tolerability profile. Moreover, its therapeutic efficacy can be

augmented through combination regimens with platinum-based

compounds such as cisplatin, thereby synergistically enhancing its

overall efficacy (88, 89).

Despite the use of potent open-source data to elucidate two

distinct characteristics of LUAD disulfidptosis subtypes and to

develop a robust DS evaluation model, this investigation is

limited by certain factors. First, this study relies on patient data

obtained from publicly available retrospective cohorts and lacks the

prospective real-world data required to validate the clinical

applicability of the proposed scoring system. In addition, due to

financial and resource limitations, we conducted preliminary in

vitro experiments to investigate the functionality of KYNU in

LUAD. The further experimentation and investigation are

required for a more complete comprehension of the molecular

mechanisms. This study focuses on bioinformatics analysis and

preliminary functional investigations to identify possible

biomarkers. These limitations will be addressed in future research.
Conclusions

In conclusion, this study identified disulfidptosis-related

subgroups and developed a DS for evaluating the prognosis,

immune infiltration, mutations, and treatment sensitivity of LUAD

patients. Studying disparities in disulfidptosis patterns has deepened

our comprehension of both tumor heterogeneity and the intricate

complexities within the TME. We have also constructed and validated

a DS that accurately predicts patient prognosis and treatment efficacy

assessment, offering a potentially powerful new tool for clinical

decision-making, patient outcomes, and individualized treatment
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strategies. Besides, this study has contributed to advancing the

understanding of molecular complexity in LUAD and provides

directions and potential avenues for future LUAD research.
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Medical Science, Zhengzhou University, Zhengzhou, China, 5Department of Internal Medicine,
Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,
6Department of Medicine, The Second Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China
Background: As a severe hematological malignancy in adults, acute myeloid

leukemia (AML) is characterized by high heterogeneity and complexity. Emerging

evidence highlights the importance of the tumor immune microenvironment

and lipid metabolism in cancer progression. In this study, we comprehensively

evaluated the expression profiles of genes related to lipid metabolism and

immune modifications to develop a prognostic risk signature for AML.

Methods: First, we extracted the mRNA expression profiles of bone marrow

samples from an AML cohort from The Cancer Genome Atlas database and

employed Cox regression analysis to select prognostic hub genes associated

with lipid metabolism and immunity. We then constructed a prognostic signature

with hub genes significantly related to survival and validated the stability and

robustness of the prognostic signature using three external datasets. Gene Set

Enrichment Analysis was implemented to explore the underlying biological

pathways related to the risk signature. Finally, the correlation between

signature, immunity, and drug sensitivity was explored.

Results: Eight genes were identified from the analysis and verified in the clinical

samples, including APOBEC3C, MSMO1, ATP13A2, SMPDL3B, PLA2G4A,

TNFSF15, IL2RA, and HGF, to develop a risk-scoring model that effectively

stratified patients with AML into low- and high-risk groups, demonstrating

significant differences in survival time. The risk signature was negatively related

to immune cell infiltration. Samples with AML in the low-risk group, as defined by

the risk signature, were more likely to be responsive to immunotherapy, whereas

those at high risk responded better to specific targeted drugs.

Conclusions: This study reveals the significant role of lipid metabolism- and

immune-related genes in prognosis and demonstrated the utility of these

signature genes as reliable bioinformatic indicators for predicting survival in
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patients with AML. The risk-scoring model based on these prognostic signature

genes holds promise as a valuable tool for individualized treatment decision-

making, providing valuable insights for improving patient prognosis and treatment

outcomes in AML.
KEYWORDS

acute myeloid leukemia, lipid metabolism, immunotherapy, drug sensitivity,
prognostic signature
1 Introduction

Acute myeloid leukemia (AML) is characterized by a clinically,

epigenetically, and genetically heterogeneous disease with poor

outcomes (1). Despite being initially sensitive to chemotherapy,

most patients with AML ultimately experience relapse and die of

progressive disease. Therefore, there is an urgent need for alternative

treatment solutions. Advances in epigenomic and genomic

characterization of AML have paved the way for the development

and approval of novel targeted agents (2). Immunotherapy is also a

promising strategy for long-term disease control. However, acquired

resistance to targeted agents and a low response to immunotherapy

still cause treatment failure (3). Thus, novel therapeutic targets and

prognostic biomarkers are urgently required to guide clinical practice

and predict the survival of patients with AML.

Emerging evidence suggests thatmetabolic disruptions, particularly

those involving certain metabolites and associated pathways, are crucial

factors in the development and progression of leukemia. Lipids and

their derivatives play critical roles in energy generation and form the

structural basis of cellular and organelle membranes. Extensive

research conducted over numerous years has explored the impact of

lipid metabolism on AML, leading to recent breakthroughs (4). As a

lipid category, fatty acids represent an appealing therapeutic target that

supports increased biomass, membrane biogenesis, energy production,

and lipoprotein generation in dividing AML cells (5). AML is

associated with the overexpression and constant activation of

sphingosine kinase 1, an enzyme responsible for producing

sphingosine 1-phosphate from sphingosine. Remarkably, the

inhibition of sphingosine kinase 1 induces apoptosis in AML blasts

and leukemic stem cells obtained from patients (6, 7). Consequently,

control of lipid metabolism reprogramming has emerged as a

promising therapeutic target for enhancing the prognosis of

individuals diagnosed with AML. Therefore, we previously

constructed a prognostic signature with high specificity and

sensitivity for estimating the prognosis of AML patients based on

lipid metabolism-related genes (LMRGs) (8). The findings showed that

the risk signature had remarkable specificity and sensitivity in

estimating the outcomes of AML patients. And, consistent with the
A, Gene Set Enrichment

abolism-related gene; OS,

ing characteristic; TCGA,

function and exclusion.
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findings of other studies, interventions aimed at modulating lipid

metabolism have the potential to impact not only tumor cells, but

also immune cells (9, 10). We found that the lipid metabolism-related

risk signature was closely associated with the immune tumor

microenvironment (TME) and response to immunotherapy in AML.

As is same to solid tumor cells, AML cells are capable of

developing an immunosuppressive microenvironment in which

both adaptive and innate immune responses are profoundly

disrupted (11, 12). Emerging evidence indicates that lipids are

crucial for driving this dysregulated state. In acidic, hypoxic, and

nutrition-deficient TMEs, both the cancer and immune cells tend to

depend on the lipids for energy storage, building cellular

membranes, and generating signaling molecules. Consequently,

the dysregulation of lipid metabolism within the TME can have a

profound impact on tumorigenesis, subsequent progression, and

metastasis. Within this complex TME, lipids act as double-edged

swords capable of either supporting antitumor or promoting pro-

tumor immune responses (9, 12). These contradictory results

present a dilemma, as simply inhibiting or stimulating a single

lipid metabolic pathway within the TME fails to achieve optimal

results. The models constructed with a single feature exhibited

relatively weaker validity and robustness than those constructed

with multiple features. Therefore, there is an urgent need for a

comprehensive understanding of a multi-featured signature model

specifically tailored for patients with AML, along with an

exploration of its prognostic implications.

In this study, we integrated genes related to immunity and lipid

metabolism to develop a prognostic signature based on the

interactions between antitumor immunity and lipid metabolism.
2 Materials and methods

2.1 Data collection and preparation

The clinical data and RNA-sequencing profile of the patients

with AML (Supplementary Table 1) came from The Cancer

Genome Atlas (TCGA) database (https://www.cancer.gov/tcga/).

Prior to analysis, all transcriptome data for fragments per

kilobase of transcript per million mapped reads were log-

transformed and subsequently converted to transcripts per

million. Baseline features of the AML patients involved in the risk

signature are displayed in Supplementary Table 2.
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For external validation, three independent datasets (GSE12417,

GSE37642, and GSE71014) along with the clinical data were acquired

from the GEO database, available at https://www.ncbi.nlm.nih.gov/geo/.
2.2 Identification of immune- and lipid
metabolism-related prognostic genes

Here, we incorporated a comprehensive approach to identify

genes associated with lipid metabolism. Specifically, we included all

genes from 34 LMRG sets sourced from the Molecular Signature

Database (MsigDB; available at https://www.gsea-msigdb.org/gsea/

msigdb/) (13). By considering the intersection of these gene sets, we

derived a final set of 1,996 LMRGs. For detailed information

regarding the LMRG sets, please refer to Supplementary Table 3. A

collection of 1,793 immune-related genes was acquired from the

ImmPort database, available at https://www.immport.org/ (14).

Details of the immune-related genes (IRGs) are displayed in

Supplementary Table 4. The integration of LMRGs and IRGs was

performed to conduct a prognostic analysis of AML, and 180

prognostic genes (p <0.01) were acquired for the subsequent analyses.
2.3 Development and validation of a
prognostic lipid metabolism and immune
co-related signature

A total of 144 samples from the AML cohort in the TCGA database

were then randomly divided into the training (N = 72) and validation

(N = 72) datasets in a 1:1 ratio. First, we used univariate Cox regression

to identify LMRGs and IRGswith prognostic role in the training dataset.

Then, least absolute shrinkage and selection operator (LASSO) Cox

regression analysis with the R package (version 3.6.1) “glmnet,” a novel

risk-scoring model with eight genes was developed as follows:

Risk score = expAPOBEC3C × 0.188873061 + expMSMO1 ×

0.176721847 + expATP13A2 × 0.096045519 + expSMPDL3B

× 0.077828708 + expPLA2G4A × 0.071836509 + expTNFSF15 ×

0.027983123 + expIL2RA × 0.022815855 – expHGF × 0.044508523

Subsequently, patients with AML in the training dataset were

classified into low-risk group and the high-risk group by the median

cutoff risk score. The Kaplan-Meier survival curve was performed to

compare the differences between the two risk groups. The receiver

operating characteristic (ROC) curves were constructed to assess

the validity of the risk signature.

The validity of the risk signature was verified using samples

from the GSE12417, GSE37642, and GSE71014 cohorts. The same

analyses used for the training dataset were used to calculate the risk

scores of samples from the GEO cohorts.
2.4 Clinical correlation
and subgroup analyses

To assess the clinical significance and prognostic utility of the

risk signature, we extracted the clinical data of 144 patients with

AML in the TCGA database, and these variables included age
Frontiers in Immunology 0373
(>= 60 years or < 60 years), gender (female or male), chromosome

status (normal or abnormal), and gene mutation (FLT3, NPM1, RAS,

and IDH1mutation or not) (Supplementary Table 5). Then, Kaplan–

Meier curves were initially generated to explore the prognostic role of

each gene included in the risk signature (15).
2.5 Functional enrichment analysis

The TCGA database contained genomic data from 144 samples

in the AML cohort, which were classified into either high-risk or

low-risk groups based on their risk score. Using the GSEA v4.1.0

software (https://www.gsea-msigdb.org/gsea/index.jsp), the

hallmark gene set (h.all.v7.2.symbols.gmt) was employed for

enrichment analysis, with the phenotypic label being the high-risk

group versus the low-risk group. The number of permutations used

was 1000, while all other settings were set to default values (13).

Statistically significant findings were defined as p <0.05 and q <0.05.
2.6 Nomogram construction
and assessment

By integrating the risk scores and clinical data of 144 patients

with AML in the TCGA database, we constructed nomogram

survival models for overall survival (OS) by the “rms” R package,

incorporating both univariate and multivariate results. The

calibration curve estimate was then adjusted for optimism by

using a bootstrap procedure (16). In addition, ROC curves were

generated to validate the predictive capacity of the risk signature

with clinical characteristics.

A total of 144 patients with AML in the TCGA database were

classified into low-risk group and the high-risk group by the median

cutoff risk score. The CIBERSORT algorithm was performed to

estimate the infiltration levels of various immune cell types (17).

Tumor immune dysfunction and exclusion (TIDE) data for AML

was acquired from http://tide.dfci.harvard.edu/. The TIDE

algorithm was developed to generate TIDE scores and to

accurately evaluate the response of immunotherapy agents in

patients with cancer (18). Lower TIDE scores indicate better

outcomes. The immunotherapy response of each patient was

evaluated by the gene expression profiles.
2.8 Pharmaceutical screening

A total of 144 patients with AML in the TCGA database were

classified into low-risk group and the high-risk group by the median

cutoff risk score. Then, we employed the “pRRophetic” R package in

the Genomics of Drug Sensitivity in Cancer (GDSC) database to

determine the varying susceptibilities to the drug between high- and

low-risk groups. The half maximal inhibitory concentration (IC50)

value, which indicates the concentration at which cell growth is

inhibited by 50%, was used as a metric of drug sensitivity (19, 20).

Stringent filtration conditions (p <0.01) were used.
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2.9 Quantitative real-time PCR

Details of the PCR operation was carried out in accordance with

previous study (21). Samples of health donor and patients with

AML were collected from Henan Cancer Hospital and approved by

Medical Ethics Committee of The Affiliated Cancer Hospital of

Zhengzhou University (approval no. 2023-KY-0104-001). The PCR

primers were purchased from SangonBiotech (Sangon, Zhengzhou,

China). And, the primer sequences in this study were showed in the

Supplementary Table 6.
3 Results

3.1 Construction of an eight-gene
signature with high accuracy
of prognosis prediction

Briefly, 1,996 LMRGs and 1,793 IRGs in AML were included, of

which 180 candidate prognostic genes were subsequently identified

using univariate Cox regression analysis (Figure 1A). LASSO Cox

regression analysis finally identified eight crucial genes for lipid

metabolism- and immune-related prognostic signatures according

to the optimal l value (Figures 1B, C). Among them, there were five

LMRGs (MSMO1, ATP13A2, SMPDL3B, PLA2G4A, and TNFSF15)

and three IRGs (APOBEC3C, IL2RA, andHGF). Except forHGF, all

other seven signature genes are detrimental factors with a hazard

ratio (HR) >1. The risk score for each AML sample in this study was

calculated by the formula described in Section 2.3.

The median risk score was regarded as the cut-off value to

classify the training TCGA cohort into the high-risk and low-risk

groups (Figure 2A). The scatter plot indicated that high-risk

patients were significantly associated with a high mortality rate

compared to that of low-risk patients (Figure 2B). The gene

expression heatmap illustrates that, except for HGF, all other

seven signature genes were upregulated in the high-risk group

(Figure 2C). Kaplan-Meier curve analysis demonstrated that high-

risk patients suffered significantly worse survival outcomes than

low-risk ones (Figure 2D). The AUC reached 0.807, 0.848, and

0.843 at 1, 3, and 5 years, respectively (Figure 2E). In addition,
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results for the testing and entire datasets were consistent with those

from the training dataset (Figures 3A–E). The above results

demonstrated that the potential prognostic signature showed

great specificity and sensitivity in estimating the prognosis of

AML patients.
3.2 External validation of the risk signature
in the GEO cohorts

To validate the predictive reliability of this prognostic signature,

we screened and included three GEO datasets as external validation

cohorts. After calculating the risk scores for each sample in these

datasets, we assigned patients to high- and low-risk groups by the

median cut-off value of these scores. Survival analyses performed on

all three validation datasets consistently demonstrated that in the

high-risk patients with AML experienced significantly worse OS

outcomes than the low-risk ones (GSE37642, p = 0.00041;

GSE71014, p = 0.0098; GSE12417, p = 0.046) (Figures 4A–C).
3.3 Correlation between the clinical
characteristics and prognostic signature

To assess the clinical significance and prognostic utility of the

risk signature, Kaplan-Meier curves were initially generated to

explore the prognostic role of each gene included in the risk

signature. These variables included age (>= 60 years or < 60

years), gender (female or male), chromosome status (normal or

abnormal), and gene mutation status (FLT3, NPM1, RAS, and

IDH1 mutation or not). The results revealed that regardless of the

clinicopathological features, high-risk patients tend to have the

worst OS outcomes, indicating the stable performance of the

prognostic risk signature (Figures 5A–N).
3.4 Nomogram analysis

Univariate combined with multivariate Cox regression analyses

were preformed to explore whether the risk signature and
B CA

FIGURE 1

Development of the prognostic risk signature in the training dataset. (A) The least absolute shrinkage and selection operator (LASSO) model was
subjected to ten fold cross-validation for variable selection. (B) LASSO coefficient profile of identified crucial genes. (C) Coefficient profile of the
eight prognostic genes.
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clinicopathological parameters, including age, sex, chromosomal

status, and gene mutations, were the independent prognostic

factors. The results showed that the risk scores (HR = 3.02; 95%

CI 2.79-3.25) and age (HR = 2.42; 95% CI 2.2-2.65) were the

independent prognostic factors for survival (Figures 6A, B). In

addition, a nomogram was developed using age and risk scores to
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accurately predict the survival rates at 1-, 3-, and 5-year in patients

with AML, which suggested that a higher total score suggested

worse survival. The result showed that the prognostic signature had

the greatest impact on OS (Figure 6C). Meanwhile, the calibration

curve demonstrated a strong agreement between the predicted and

observed OS at 1-, 3-, and 5-year intervals, indicating the excellent

predictive accuracy of the prognostic signature (Figures 6D–F).

Furthermore, the 1-, 3-, and 5-year survival ROC analyses showed

that the AUCs for the nomogram and risk scores were superior to

the other variables, such as age, chromosomal status, sex, as well as

FLT3, NPM1, RAS, and IDH1 mutations (Figures 6G–I). These

results showed that the nomogram and risk score provided a higher

practical value for prognostic prediction than the other variables.
3.5 Biological functions and pathway
analysis

GSEA was performed between the two risk groups to identify

the underlying biological functions and pathways associated with

the risk score. The results indicated that interferon g, inflammatory,

and interferon a responses, as well as TNFa signaling via NF-kB,
complement, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling,

allograft rejection, hypoxia, and KRAS signaling pathway were

enriched, which are central in mediating host responses to

inflammation and antitumor immunity (Figure 7).
3.6 Correlation between the
prognostic signature and tumor
immune microenvironment

As the antitumor immunity-related signaling pathways were

significantly enriched in the GSEA analysis, we evaluated the

correlation of the prognostic risk signature with immune state in

each patient with AML. CIBERSORT algorithm was performed to

estimate the infiltration levels of various immune cell types in the

TME. The results demonstrated that high-risk patients had a lower

fraction of activated dendritic cells, CD56dim NK cells, effector

memory CD4 T cells, macrophages, immature B cells, MDSCs, NK

cells, NK T cells, neutrophils, T follicular helper cells, plasmacytoid

dendritic cells, and type 1 T helper cells (Figure 8A). Then, the

immune scores and the TIDE scores of each sample were calculated,

and the results demonstrated that the high-risk samples hold lower

immune scores and higher TIDE scores than the low-risk samples

(Figures 8B, C), indicating that high-risk patients were associated

with enhanced tumor immune escape ability. Moreover, we

assessed the disparity in the response rates to immunotherapy

between the two risk groups. Notably, the samples from the low-

risk group exhibited higher immunotherapy response rates than

those from the high-risk group (Figure 8D). Based on these

outcomes, we ascertained that the risk signature could indicate

the immune cell infiltration and the response to immunotherapy

in AML.
B

C

D

E

A

FIGURE 2

Performance of the prognostic signature in the training dataset.
(A) The risk curve of each AML sample was defined by risk score.
(B) Scatter plots showing the survival status of each sample. (C) Heat
map of the expression of the eight selected genes. (D) Kaplan-Meier
survival curves between the two risk groups. (E) The receiver
operating characteristic (ROC) curves for overall survival at 1, 3, and
5 years.
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3.7 Drug sensitivity analysis

Thereafter, the pRRophetic package were used to further analyze

the sensitivity of antitumor drugs based on the IC50 available in the

GDSC database for patients with AML (19, 20). In our study, we

successfully identified a total of 198 small molecular compounds that

exhibited significantly diverse responses between the high-risk and

low-risk groups (Supplementary Table 7). The results showed that the

high-risk group showed a lower sensitivity to BI2536 (PLK1 inhibitor)
Frontiers in Immunology 0676
and SB-505124 (TGFbR inhibitor), whereas they were sensitive to

several other drugs such as AZD2014 (mTOR inhibitor), pictilisib

(PI3Ka/d inhibitor), MK-2206 (Akt inhibitor), dactolisib (dual pan-

class I PI3K and mTOR kinase inhibitor), afatinib (EGFR inhibitor),

rapamycin (FRAP/mTOR inhibitor), and taselisib (PI3K inhibitor

targets PIK3CA mutations), even though none of these is currently

used in the treatment of AML (Figure 9). The outcomes of our study

offer promising molecular candidates for targeted therapy that can be

utilized in the treatment of AML patients.
B

C

D

E

A

FIGURE 3

Performance of the prognostic signature in the testing and entire datasets. (A) The risk curve of each AML sample was defined by risk score.
(B) Scatter plots showing the survival status of each sample. (C) Heat map of the expression of the eight selected genes. (D) Kaplan-Meier survival
curves between the two risk groups. (E) The receiver operating characteristic (ROC) curves for overall survival at 1, 3, and 5 years.
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4 Discussion

Here, we studied the role of LMRGs and IRGs in the prognosis

of patients with AML. By analyzing large-scale genomic and clinical

datasets from TCGA and GEO databases, we identified an eight-
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gene signature that demonstrated robust prognostic value and

potential clinical applications in AML. We performed additional

analysis on the expression of eight signature genes in the high and

low-risk groups across multiple cohorts, including TCGA,

GSE12417, GSE37642, and GSE71014. The findings demonstrated
B C D

E F G H

I J K L

M N

A

FIGURE 5

Relationships between the prognostic signature and clinicopathological characteristics. (A) Age >= 60 years, (B) Age < 60 years, (C) Female, (D) Male,
(E) Normal chromosome, (F) Abnormal chromosome, (G) No FLT3 mutation, (H) FLT3 mutation, (I) No NPM1 mutation, (J) NPM1 mutation, (K) No
RAS mutation, (L) RAS mutation, (M) IDH1 mutation, (N) IDH1 mutation.
B CA

FIGURE 4

Survival analyses performed on all three GEO validation datasets. (A) GSE37642: p = 0.00041, (B) GSE71014: p = 0.0098, (C) GSE12417: p = 0.046).
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that MSMO1, ATP13A2, SMPDL3B, PLA2G4A, TNFSF15,

APOBEC3C, and IL2RA were upregulated in the high-risk group,

whereas HGF was downregulated. Survival analysis indicated that

patients with high expression of these signature genes, except for

HGF, experienced worse OS outcomes. These results provide

further evidence that these genes may function as detrimental

factors , while HGF may serve as a protective factor

(Supplementary Figures 1 and 2). The relative expression of these
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eight signature genes were also detected in the clinical samples

(Supplementary Figure 3).

APOBEC3C is a member of the APOBEC family that plays

important but distinct roles in host defense and mediates C-to-T

mutagenesis in cancers. A previous study indicated a negative

correlation between APOBEC3C mRNA expression and base

substitution mutations in estrogen receptor-negative breast cancer

(22). Qian et al. found that APOBEC3C was significantly
B

C

D E F

G H I

A

FIGURE 6

Construction and validation of the nomogram. (A, B) Univariate and multivariate Cox regression of the prognostic signature and clinical characteristics.
(C) The developed nomogram to estimate the survival possibilities of patients with AML. (D-F) Calibration blots of the agreement between the predicted
overall survival and observed overall survival at 1, 3, and 5 years. (G–I) The ROC curves for overall survival at 1, 3, and 5 years.
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upregulated in pancreatic ductal adenocarcinoma compared with

that in normal pancreatic tissues and predicted worse survival rates

(23). Jiang et al. found that increased APOBEC3C expression was

related to hematopoietic stem and progenitor cell proliferation and

an increased C-to-T mutational burden during disease progression

in patients with myeloproliferative neoplasm (24).

Methylsterol monooxygenase 1 (MSMO1), an intermediate

enzyme involved in cholesterol and fatty acid biosynthesis, acts as
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a novel mediator of chemoresistance in cancer (25). A previous

study revealed that MSMO1 plays crucial roles in tumorigenesis and

progression and is a promising prognostic biomarker for cervical

squamous cell carcinoma (26).

ATPase cation transporting 13A2 (ATP13A2/PARK9), a late

endolysosomal transporter, regulates membrane association,

cellular a-synuclein multimerization, and externalization and is

genetically implicated in neurodegenerative disorders (27). Zhang
FIGURE 7

Top 10 significantly enriched pathways in the GSEA.
B C D

A

FIGURE 8

Relationship between the prognostic signature and tumor microenvironment. Correlation of the risk score with (A) immune infiltration level,
(B) immune score, (C) tumor immune dysfunction and exclusion (TIDE) score, and (D) immunotherapy response. *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001, ns, not statistically significant.
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et al. revealed that ATP13A2 activates the pentose phosphate

pathway via the TFEB-PGD axis to facilitate colorectal cancer

growth (28).

As the negative regulator of Toll-like receptor signaling,

Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B)

plays a crucial role in innate immunity and at the interface of

membrane biology. Qu et al. demonstrated that SMPDL3B

expression indicates poor prognosis and contributes to AML

progression (29).

The cytosolic phospholipase, PLA2G4A, is crucial for the

pathogenesis of FLT3-ITD-mutated AML (30). Higher PLA2G4A

expression results in worse OS and mutations in NRAS, which are

known to contribute to the development of myelodysplastic

syndrome development (31).

Tumor necrosis family superfamily member 15 (TNFSF15)

promotes lymphatic metastasis by upregulating vascular

endothelial growth factor-C in a lung cancer mouse model (32).

Lu et al. showed that increased TNFSF15 expression indicates worse

prognosis in oral cancer (33).
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Excessive expression of IL2RA, the gene encoding the alpha

chain of the interleukin-2 receptor, has been linked to

chemotherapy resistance and unfavorable outcomes in AML (34).

IL2RA enhances cell proliferation and cell cycle activity while

suppressing apoptosis in both human AML cell lines and primary

cells. In two genetically modified mouse models of AML, IL2RA

hampered cell differentiation, facilitated stem cell-like

characteristics, and was essential for leukemia development.

Antibodies targeting IL2RA have demonstrated the ability to

inhibit leukemic cells without affecting normal hematopoietic

cells, and their combined effects with other anti-leukemic agents

have shown potential synergy. Consequently, IL2RA is a promising

therapeutic target in AML because it regulates key processes, such

as proliferation, differentiation, apoptosis, stem cell-related

properties, and leukemogenesis (35).

As a multifunctional cytokine, hepatocyte growth factor (HGF)

regulates cell growth, movement, and tissue regeneration in various

epithelial cells (36). HGF binds to its receptor c-Met and activates its

kinase activity, initiating signaling pathways such as JAK/STAT3,
B C

D E F
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A

FIGURE 9

Drug sensitivity analysis. (A) SB-505124, (B) BI2536, (C) AZD2014, (D) pictilisib, (E) MK-2206, (F) dactolisib, (G) afatinib, (H) rapamycin, and (I)
traselisib. **p <0.01, ***p <0.001, ****p <0.0001.
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PI3K/Akt/NF-kB, and Ras/Raf. Aberrations in the HGF/MET pathway

act as diagnostic, predictive, and prognostic biomarkers for cancers

(37). HGF has been discovered to regulate the activity of various

immune cell types, including B cells, T cells, and natural killer cells,

which are important components of the anti-tumor immune response.

By enhancing the immune surveillance and anti-tumor effects, HGF

may contribute to reducing the risk of AML development or

progression. While, it’s worth noting that the exact mechanisms by

whichHGF influences AML risk are still being investigated, and further

studies are required to fully reveal its role in the disease. Nonetheless,

the association between HGF and a reduced risk in AML highlights the

potential importance of this growth factor in the development and

treatment of the disease.

The risk score defined by the prognostic signature defined in

this study effectively stratified patients with AML into low- and

high-risk groups with significantly different survival outcomes.

These results are consistent with those of the external validation

cohorts from the GEO dataset. Regardless of age, sex, cytogenetic

abnormalities, or gene mutations, patients in the high-risk group

consistently exhibited worse OS outcomes, further supporting the

reliability and generalizability of the prognostic risk signature.

To enhance the clinical utility of our findings, we constructed

nomograms that integrated the risk scores derived from the eight-

gene signature with other clinical factors. The ROC and calibration

curves further confirmed the higher predictive accuracy of the

prognostic signature and nomograms compared with the clinical

variables, such as age, sex, cytogenetic abnormalities, and gene

mutations, indicating their potential as reliable tools for

personalized treatment decision-making.

GSEA between the two risk groups sheds light on the

underlying biological mechanisms associated with the prognostic

signature. Many antitumor immunity-related pathways were

enriched, suggesting the involvement of immune dysregulation in

AML prognosis. This could lead to the distinction in the

immunotherapy response against cancer and the treatment

response between the two risk groups.

Then, the correlation between the immune cell infiltration and

risk score was explored. The low-risk group showed higher

proportions of effector memory CD4 T cells, macrophages, NK

cells, NK T cells, T follicular helper cells, Type 1 T helper cells, and

other immune cell subtypes. The negative correlation between the

immune cell infiltration and risk score suggests that patients in the

high-risk group may have impaired immune status. The immune

and immune escape scores were then calculated, and the results

demonstrated a poorer immune state and stronger immune escape

ability in the high-risk group, which may affect the response to

immunotherapy. Furthermore, in the high-risk group, there was a

notable decrease in the expression level of common immune

checkpoints such as PD1, PDL1, PDL2, and CTLA4

(Supplementary Figure 4). These findings indicate that the

identified signature holds promise as a valuable tool for assessing

the effectiveness of immunotherapy in individuals with AML.

Additionally, our prediction results of the immunotherapy
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response rate further verified this conclusion, which showed that

low-risk patients had higher immunotherapy response rates than

that of high-risk patients. This finding highlights the potential

importance of immune modulation in AML treatment. Future

research could focus on understanding the underlying

mechanisms that contribute to immune suppression in high-risk

patients and explore strategies to enhance immune cell function in

these individuals.

In line with the potential impact on the immunotherapy

response, we evaluated the sensitivity of AML patients to

antitumor drugs using pRRophetic packages. Our results

indicated that the high-risk patients exhibited higher sensitivity to

some potential drugs. This finding could be relevant for treatment

selection and personalized therapeutic approaches in AML as it

implies that high-risk patients may be more sensitive to specific

antitumor drugs, which targeted to PI3K–AKT–mTOR signaling

pathways. PI3K-AKT-mTOR signaling pathway is one of the most

abnormal signal pathways in human cancer including AML, which

is involved in the control of cell metabolism, proliferation,

movement, growth and survival and many other cellular

processes (38). Inhibition of PI3K-AKT-mTOR pathway is an

important strategy for tumor therapy. However, the effects of

these inhibitors seem to vary greatly among patients with AML

(39, 40). So far, no clear mutation characteristics or other

pathological processes associated with the disease have been

detected to predict treatment response. Our results provide a

valuable tool for individualized treatment decision-making of

these drugs in AML.

It is important to acknowledge the limitations of this study.

First, although we utilized large-scale datasets for the analysis, the

retrospective nature of the study design may introduce inherent

biases. Prospective studies are warranted to validate our findings

and to assess the clinical utility of prognostic signatures and

nomograms for real-time patient management. Further functional

experiments and in-depth mechanistic investigations are required

to elucidate the precise roles of the identified LMRGs and IRGs in

AML pathogenesis and treatment responses.

In conclusion, our study presents a comprehensive analysis of

the prognostic value and clinical implications of an eight-gene

signature derived from LMRGs and IRGs in AML. This signature

effectively stratified patients into high- and low-risk groups,

demonstrating significant differences in survival outcomes and

potential implications for immune cell infiltration, treatment

response, and drug sensitivity. This opens up avenues for

studying the interplay between lipid metabolism and immune

dysregulation, which may uncover novel therapeutic targets.

Future investigations could explore the manipulation of lipid

metabolism pathways as a means to modulate immune responses

and improve treatment outcomes in AML. Overall, these findings in

this study have several broader implications. They aid in

personalized risk assessment for AML patients, guiding treatment

decisions towards immunotherapy or targeted drugs based on risk

group assignment.
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SUPPLEMENTARY FIGURE 1

The relative expression of eight signature genes in the high- and low-risk
groups from TCGA, GSE37642, GSE71014, and GSE12417 cohorts. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E), PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 2

Correlation of each signature gene and survival in TCGA cohort. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E), PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 3

The relative expression of each signature gene in the clinical samples. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E) PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 4

Correlation of risk score and immune checkpoints. (A) PD1, (B) PDL1, (C)
PDL2, (D) CTLA4.
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Academy of Medical Sciences, Jinan, Shandong, China
Purpose: This prospective study examined whether metabolism parameters

obtained using the tracer 18F-AlFNOTA-fibroblast activation protein inhibitor

(FAPI)-04 (denoted as 18F-FAPI-04) in positron emission tomography/computed

tomography (PET/CT) can predict programmed death ligand-1 (PD-L1) expression

in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC).

Patients and methods: The 24 enrolled LA-ESCC patients underwent an 18F-FAPI-

04 PET/CT scan. Themaximum,mean, peak and standard deviation standard uptake

values (SUVmax, SUVmean, SUVpeak and SUVsd), metabolic tumor volume (MTV),

and total lesion FAP (TLF) expression of the primary tumor were collected.

Addit ionally , we evaluated PD-L1 expression on cancer cells by

immunohistochemistry and immunofluorescence methods. Patients were divided

into negative and positive expressions according to the expression of PD-L1 (CPS <

10 and CPS ≥ 10), and the variables were compared between the two groups.

Results: The SUVmax, SUVmean, SUVpeak and SUVsd were significantly higher in

patients with positive expression than in negative expression (all p < 0.05).

Receiver operating characteristic curve analysis identified SUVmean (area

under the curve [AUC] = 0.882, p = 0.004), SUVsd (AUC = 0.874, p = 0.005),

SUVpeak (AUC = 0.840, p = 0.010) and SUVmax (AUC = 0.765, p = 0.045) as

significant predictors of the PD-L1 positive expression, with cutoff values of 9.67,

1.90, 9.67 and 13.71, respectively. On univariate logistic regression analysis,

SUVmean (p = 0.045), SUVsd (p = 0.024), and SUVpeak (p = 0.031) were

significantly correlated with the PD-L1 positive expression. On multivariable

logistic regression analysis, SUVsd (p = 0.035) was an optimum predictor

factor for PD-L1 positive expression.

Conclusion: 18F-FAPI-04 PET/CT parameters, including SUVmean, SUVpeak,

and SUVsd, correlated with PD-L1 expression in patients with LA-ESCC, and

thus SUVsd was an optimum predictor for PD-L1 positive expression, which

could help to explore the existence of immune checkpoints and select ESCC

candidates for immunotherapy.

KEYWORDS

fibroblast activation protein, positron emission tomography, PD-L1 expression,
esophageal carcinoma, 18F-FAPI-04 PET/CT parameters
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1 Introduction

Esophageal cancer (EC) is one of the most common malignant

tumors of the digestive system in the world, ranking seventh in

incidence and sixth in mortality overall in 2020 (1, 2). Esophageal

squamous cell carcinoma (ESCC) is the main histological type of

esophageal cancer in China. The prognosis for esophageal cancer is

poor, with a 5-year survival rate of only 15%-25% worldwide (3). At

present, the treatment options available are limited.

With the development and application of immunotherapy,

programmed death ligand-1 (PD-L1) has been shown to significantly

prolong the overall survival of ECpatientswithmanageable safety (4–6).

In 2019, the immune checkpoint inhibitor pembrolizumab was

approved by the Food and Drug Administration (FDA) as a second-

line therapy to treat patients with locally advanced or metastatic ESCC

whose tumors are positively expressing PD-L1 (Combined Positive

Score [CPS] ≥10) (5). Immunohistochemistry (IHC) expression of

PD-L1 is the most widely used biomarker for predicting the efficacy of

esophageal cancer immunotherapy, and accurate and reliable PD-L1

testing is crucial for screening potential beneficiaries of immunotherapy.

Fibroblast activation protein (FAP) is a member of the

dipeptidyl peptidase 4 protein family and has both endopeptidase

and dipeptidyl peptidase activities. FAP is highly expressed in

stromal fibroblasts of more than 90% of epithelial carcinomas (7,

8). Research has shown that high expression of FAP in stromal

fibroblasts of breast cancer, colon cancer, esophageal cancer and

other malignant tumors is related to poor prognosis (9–11). 68Ga-

DOTAFAPI-04 has diagnostic and therapeutic potential in

oncologic and nononcologic diseases (12, 13). 68Ga-FAPI-04 has

been explored the value of predicting treatment outcomes and

prognosis for EC patients (14–16). We previously performed a

pilot clinical study in which 18F-FAPI-04, a novel tracer, was safe

and offered high specificity for FAP imaging (17). However, the

ability of 68Ga-FAPI/18F-FAPI-04 PET/CT to predict PD-L1

expression in EC needs to be validated by prospective studies.

The present study aimed to identify imaging parameters that

could predict tumor PD-L1 expression by comparing 18F-FAPI-04

PET/CT parameters between patients with EC classified as negative

(CPS < 10) and positive expression (CPS ≥ 10). Identifying patients

with PD-L1 positively expressed by imaging will help realize the

individualized treatment of tumors and improve prognosis.
2 Methods

2.1 Patients

Potentially eligible locally advanced esophageal squamous cell

carcinoma (LA-ESCC) patients were recruited at Shandong Cancer

Hospital and Institute from June 2021 to July 2022 (Table 1). All

patients volunteered to participate in this study, and the local ethics

committee of Shandong Cancer Hospital and Institute approved the

prospective study.

Patients were enrolled based on the following criteria: (1)

histopathologically confirmed esophageal squamous cell
Frontiers in Immunology 0285
carcinoma(T3~4N0~3M0); (2) age ≥ 18 years; (3) presence of

measurable primary tumors;(4) PD-L1 expression assay was

conducted and (5) 18F-FAPI-04 PET/CT scanning was performed.

The exclusion criteria included: (1) pregnancy or breastfeeding;

and (2) unwillingness to participate or withdraw. The flow chart of

research and design is shown in Figure 1.
2.2 18F-FAPI-04 PET/CT scanning

18F-FAPI-04 was synthesized as described previously (18). Patients

were not required to fast or under blood glucose measurement before

scanning. After intravenous injection of 18F-FAPI-04 (4.81 MBq/kg),

the patients needed to rest for approximately 1 h. Scanning was then

performed with two different PET/CT(GE MINI TF Big Bore; Philips

Healthcare, Cleveland, OH, USA). Whole-body CT scans were

obtained using a low-dose protocol (300 mAs, 120 kV, a 512 × 512

matrix, rotation time of 1.0 s, and pitch index of 0.688; reconstructed

with a soft-tissue kernel to a slice thickness of 2 mm) for attenuation

correction. PET data were acquired in three-dimensional mode using a

200 × 200 matrix with an imaging time of 1 min per bed position.

During image acquisition, the patients maintained normal shallow

breathing. Subsequently, after attenuation and correction (Biograph 3D

iterative reconstruction software, time of flight [TOF] correction), we

viewed attenuation-corrected PET images, CT images, and PET/CT

fusion images.
2.3 Imaging analysis

The attenuation-corrected CT images, PET images, and fused

PET/CT images were displayed in coronal, sagittal, and transaxial
TABLE 1 Characteristics of enrolled LA-ESCC patients (N=24).

Characteristics Number of cases (%)

Age (years) ≤60 11 (45.8)

>60 13 (54.2)

Gender Male 21 (87.5)

Female 3 (12.5)

T stage T3 24 (100.0)

T4 0 (0.0)

N stage N0 5 (20.8)

N1 14 (58.3)

N2 3 (12.5)

N3 2 (8.3)

Tumor location Cervical 0 (0.0)

Upper 7 (29.2)

Middle 10 (41.7)

Lower 7 (29.2)
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slices, which were viewed and analyzed on the Nuclear Medicine

Information System (Beijing Mozi Healthcare Ltd, Beijing,

China). Two experienced PET/CT physicians (J.Z. and J.R., with

18 and 6 years, respectively, of nuclear oncology experience)

visually assessed the 18F-FAPI-04 PET/CT images and reached a

consensus regarding the image interpretations for primary

tumors. Regions of interest were drawn around tumor lesions

with higher uptake in transaxial sections, and 18F-FAPI-04 PET/

CT parameters were generated by an automated 3-dimensional

contouring program with a 30% isocontour. The uptake values in

the region of interest were normalised to the injected dose per

kilogram of patient body weight, and the standardised uptake

values were derived according to the following formula:

[measured radioactivity concentration (Bq/mL) × body weight

(g)]/injected radioactivity concentration (Bq). Regions of interest

were drawn around the primary tumor lesion, and the obtained

parameters, including SUVmax, SUVmean, SUVpeak, SUVsd,

metabolic tumor volume (MTV), and total lesion FAP

expression (TLF), were generated by an automated contouring

program provided by the vendor. TLF (total lesion FAP

expression) was calculated as the product of the SUVmean of

the lesion and the MTV (TLF= SUVmean× MTV). We also

measured the SUVmean of 1 cm3 areas in the ascending aorta,

liver and Lumbar 5 (L5) vertebrae. The circular region of interest

(ROI) of 1cm3 was drawn in the normal regions of segments VII

and VIII of the liver. The average of the liver SUVmean was

calculated. The ratio of the SUVmax of the primary tumor to the

SUVmean of the normal tissue (blood, liver and L5 vertebrae) is

then calculated and is called the tumor to background ratio

(TBRblood, TBRliver and TBRbone). For controversial lesions,

discussion among the imaging experts with consideration of the

results from other imaging modalities proceeded until a final

consensus was reached.
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2.4 Evaluation of PD-L1 expression by
immunohistochemical 22C3 assay

In our study, PD-L1 expression in all patients was obtained by

gastroscopic biopsy for pathological tissue of esophageal cancer.

PD-L1 expression was assessed by CPS, which was defined as the

number of PD-L1 stained cells (tumor cells, lymphocytes and

macrophages) divided by the total number of surviving tumor cells

multiplied by 100. The maximum CPS is defined as 100. All other

cells, such as tumor-associated plasma cells, neutrophils, normal/non-

neoplastic cells, and necrotic cells, were excluded from the evaluation.

The cutoff value was determined according to an FDA-approved test

and the guidelines of pembrolizumab treatment and separated into

two classifications: negative (CPS < 10) and positive expression (CPS ≥

10) (5, 17). Patients without sufficient viable tumor cells (<100) were

excluded. Each slide was blindly given a CPS for PD-L1 expression by

two experienced pathologists. Both hematoxylin–eosin (HE) staining

and PD-L1 IHC staining were assessed to reach a final CPS value. Two

experienced pathologists (D.Z. and H.J., with 25 and 22 years,

respectively, of oncology experience) evaluated pathological slides.

Each case has a final consistent result after discussion.
2.5 Statistical analysis

Statistical analyzes were performed using SPSS software

(version 27.0 for Windows; SPSS INC.). Continuous data were

described as the mean ± standard deviation (mean ± SD) or median

and interquartile, depending on whether they followed a normal

distribution. and non-normally distributed data (including MTV)

was expressed as the median and interquartile. Comparisons of

normally distributed data between the two groups were performed

using a paired two-sample t test, and comparisons of non-normally

distributed data between the two groups were performed using the

Mann–Whitney U test. Binary logistic regression analyses were

performed to ascertain the relationships between 18F-FAPI-04 PET/

CT parameters, tumor location, degree of differentiation and PD-L1

expression. Receiver operating characteristic (ROC) curve analysis

was used to determine the threshold values with the maximum

Youden index of 18F-FAPI-04 PET/CT parameters for PD-L1

positive expression. Spearman rank correlation coefficients were

calculated to assess the relationship between 18F-FAPI-04 PET/CT

parameters and PD-L1 expression. All tests were two-sided, and a

probability of less than 0.05 was considered statistically significant.

3 Results

3.1 Patients’ characteristics

From June 2021 to July 2022, 24 patients diagnosed with LA-

ESCC based on histological examinations at Shandong Cancer

Hospital and Institute were enrolled in this study. The

characteristics of the patients are presented in Table 1. Among all

patients, 17 patients were classified as negative expression (CPS <

10), and 7 patients as positive expression (CPS ≥ 10). Figure 2 shows
FIGURE 1

Research flowchart.
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representative 18F-FAPI-04 PET/CT imaging results for two cases

classified as positive and negative PD-L1 expression.
3.2 Quantitative 18F-FAPI-04
PET/CT parameters

The quantitative 18F-FAPI-04 PET/CT parameters SUVmax,

SUVmean, SUVpeak, SUVsd, MTV and TLF are shown in Table 2

for all patients, negative (CPS < 10) and positive expression

(CPS≥10) patients. SUVmax, SUVmean, SUVpeak, and SUVsd

were significantly higher in positive expression patients than in

negative (14.13 ± 4.41 vs. 10.61 ± 2.77, p = 0.027; 8.67 ± 1.97 vs. 5.74

± 1.60, p<0.001; 11.15 ± 2.90 vs.7.77 ± 2.31, p = 0.006 and 2.57 ±

0.48 vs. 1.73 ± 0.59, p = 0.003) (Table 2). None of the other
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parameters showed a significant difference between negative and

positive PD-L1 expression.

3.3 The ability of 18F-FAPI-04 PET/CT
parameters to predict PD-L1 expression

ROC curves were generated to evaluate the predictive accuracy of
18F-FAPI-04 PET/CT parameters for identifying negative and positive

expression patients (Table 3; Figure 3). The AUC value for SUVmean

(AUC = 0.882) was higher than those for SUVsd (AUC =0.874),

SUVpeak (AUC =0.840) and SUVmax (AUC=0.765) (Table 3), while

the AUC values for all four parameters were significant (p = 0.004, p =

0.005, p = 0.010 and p = 0.045, respectively) (Table 3). The cutoff

values for SUVmean, SUVsd, SUVpeak and SUVmax, based on the

Youden indexes, were 7.38, 1.90, 9.67 and 13.71, respectively (Table 3).
FIGURE 2

(A) 18F-FAPI-04 PET/CT and CT images of a LA-ESCC patient with an outcome classified as PD-L1 positive expression(CPS about 70), with SUVmax
15.36, SUVmean 8.60, SUVpeak 11.02, SUVsd 2.47, MTV 51.52 cm3 and TLF 443.07g. (B) 18F-FAPI-04 PET/CT and CT images of a LA-ESCC patient
with an outcome classified as PD-L1 positive expression(CPS<1) , with SUVmax 6.45, SUVmean 3.36, SUVpeak 4.51, SUVsd 0.89, MTV 53.99 cm3 and
TLF 181.41g.
TABLE 2 Parameters calculated from 18F-FAPI-04 PET/CT scans.

Parameters All patients
(n=24)

Negative expression
(n=17)

Positive expression
(n=7)

P-value

TBRblood 9.49 ± 0.56 9.08 ± 2.39 10.49 ± 3.52 0.265

TBRliver 9.83 ± 0.84 8.84 ± 3.35 12.23 ± 4.99 0.064

TBRbone 9.76 ± 1.00 9.15 ± 4.17 11.22 ± 6.51 0.360

SUVmax* 11.64 ± 0.74 10.61 ± 2.77 14.13 ± 4.41 0.027

SUVmean* 6.59 ± 0.44 5.74 ± 1.60 8.67 ± 1.97 <0.001

SUVpeak* 8.76 ± 0.59 7.77 ± 2.31 11.15 ± 2.90 0.006

SUVsd* 1.98 ± 0.14 1.73 ± 0.59 2.57 ± 0.48 0.003

MTV (cm3) 26.55 ± 3.64 18.55 (14.18,37.01) 23.46 (10.46,51.52) 0.930

TLF (g) 182.54 ± 31.73 279.52 ± 246.98 142.62 ± 77.82 0.197
fro
*P < 0.05.
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3.4 Correlations between 18F-FAPI-04 PET/
CT parameters and PD-L1 expression

We found a moderate correlation between SUVsd, SUVean,

SUVPeak, SUVmax and PD-L1 expression (rs=0.584,p=0.003;

rs=0.571,p=0.004; rs=0.511,p=0.011; rs=0.462,p=0.024,

respectively). The correlation between 18F-FAPI-04PET/CT

biomarkers extracted from tumor lesions and PD-L1 expression is

shown in Table 4.
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3.5 Associations between 18F-FAPI-04
PET/CT parameters, clinical features
and PD-L1 expression

According to univariate logistic regression analyses, SUVmean

(p = 0.026), SUVpeak (p = 0.031), and SUVsd (p = 0.024) were

independently associated with the PD-L1 expression in LA-ESCC

patients (Table 5). Due to the moderate positive correlation among

SUVmean, SUVsd and SUVpeak, we only included SUVsd (the
TABLE 3 Areas under the curve for the ability of 18F-FAPI-04 PET/CT parameters to predict PD-L1 expression.

Parameters AUC Threshold p 95%CI Sensitivity Specificity

Lower bound Upper bound

SUVmax* 0.765 >13.71 0.045 0.520 1.000 71.43 88.24

SUVmean* 0.882 >7.38 0.004 0.718 1.000 85.71 88.24

SUVpeak* 0.840 >9.67 0.010 0.665 1.000 85.71 82.35

SUVsd* 0.874 >1.90 0.005 0.733 1.000 100 80.59

MTV 0.563 >18.55 0.634 0.269 0.857 71.43 52.94

TLF 0.639 >231.98 0.295 0.344 0.933 57.14 88.24

TBRblood 0.655 >12.848 0.290 0.436 0.835 42.86 100.00

TBRliver 0.706 >12.32 0.124 0.487 0.872 57.14 88.24

TBRbone 0.588 >16.685 0.548 0.371 0.783 28.57 100.00
*P < 0.05.
FIGURE 3

Receiver operating characteristic curves for the ability of 18F -FAPI-04 PET/CT parameters to predict PD-L1 expression.
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largest correlation coefficient) and TBRliver (p = 0.059) in

the multivariate logistic analysis. Finally, only SUVsd (p = 0.035)

was an optimum predictor of PD-L1 expression in these

patients (Table 5).
4 Discussion

ESCC is the most common type of esophageal cancer, and about

46.8% of ESCC showed positive PD-L1 expression (19). PD-L1

expression in ESCC is an indicator for immunotherapy and a

potential prognostic marker for untreated ESCC patients (20, 21).
68Ga-FAPI-04 PET/CT can not only better display the primary

tumor and regional lymph nodes, but also the high uptake rate and

low background activity of esophageal cancer to facilitate accurate

delineation of the target area (22). Therefore, whether parameters

from 18F/68Ga-FAPI-04 PET/CT scans can predict PD-L1

expression in esophageal cancer warrants a prospective study.

In 2019, the immune checkpoint inhibitor pembrolizumab was

approved by the Food and Drug Administration (FDA) as a second-

line therapy to treat patients with locally advanced or metastatic

ESCC whose tumors are positively expressing PD-L1 (Combined

Positive Score [CPS] ≥10) (22). Therefore, we chose CPS ≥10 as PD-

L1 positive expression in our study and investigated PD-L1
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expression correlation with parameters of 18F- FAPI-04 PET/CT

and clinicopathological characteristics in ESCC.
18F-FDG PET/CT can predict tumor microenvironment and PD-

L1 expression in many tumors (14, 23). It has been reported that 18F-

FDG PET/CT can provide metabolic information on tumor immune

microenvironment in breast cancer and clear cell renal cell carcinoma

(23, 24). Many literatures reported that SUVmax of 18F-FDG PET/

CT could predict PD-L1 expression in lung adenocarcinomas and

squamous cell carcinomas (25, 26). Meanwhile, SUVmax could

predict PD-L1 status in cervical cancer (27). These all revealed that

the tumor lesion FDG activity (glucose activity) was mainly

associated with PD-L1 positive expression.

In our study, the results suggest that specific parameters derived

from 18F-FAPI-04 PET/CT scans, particularly SUVmean, SUVpeak,

and SUVsd were associated with predicting PD-L1 expression of

ESCC. By multivariable logistic regression analysis, SUVsd was an

optimum predictor for PD-L1 positive expression in ESCC. SUVsd

could reflect intratumoral heterogeneity (28–31). The tumor

microenvironment can promote the heterogeneity of tumors,

including fibroblasts, vascular and immune cells, and the

extracellular matrix (32, 33), which also impacts the PD-L1

expression. Thus, different from the correlation between PD-L1

expression and tumor glucose activity (FDG activity) in 18F-FDG

PET/CT imaging, SUVsd was an optimal predictor of PD-L1
TABLE 4 Correlations between 18F-FAPI-04 PET/CT parameters and PD-L1 expression.

18F-FAPI-04 PET/CT Parameters

PD-L1 expression SUVmax* SUVmean* SUVpeak* SUVsd* MTV TLF TBRblood TBRliver TBRbone

rs 0.462 0.571 0.511 0.584 -0.016 0.012 0.205 0.270 0.092

p 0.024 0.004 0.011 0.003 0.941 0.956 0.337 0.203 0.671
front
*P < 0.05.
TABLE 5 Univariate and multivariate logistic regression analyses of 18F-FAPI-04 PET/CT parameters and clinical factors for predicting PD-L1
expression.

Factor Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Differentiation degree 1.20 (0.13-11.05) 0.998 – –

Location 6.0 (0.52-69.75) 0.152 – –

SUVmax 1.38 (0.99-1.92) 0.051 – –

SUVmean * 3.10 (1.14-8.41) 0.026 – –

SUVpeak * 1.74 (1.05-2.87) 0.031 – –

SUVsd * 16.93 (1.45-19.87) 0.024 3.182 (1.085-9.334) 0.035

MTV 1.02 (0.97-1.07) 0.386 – –

TLF 1.00 (1.00-1.02) 0.114 – –

TBRblood 1.219 (0.865-1.718) 0.257 – –

TBRliver 1.257 (0.966-1.635) 0.059 0.972 (0.646-1.462) 0.892

TBRbone 1.092 (0.908-1.313) 0.348 – –
*P < 0.05.
-,This parameter was not multivariate analyzed.
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positive expression in 18F-FAPI-04 PET/CT imaging, which may be

related to its can reflect tumor microenvironment.

The main limitations of the present study include its single-center

design and the relatively small sample size. Further large-scale, multi-

center clinical studies are needed to confirm our findings before their

clinical application. Additionally, many antibodies in PD-L1

expression detection, such as 22C3, SP263, SP142, etc. We use

22C3 for PD-L1 expression detection in our hospital, and the

correlation between other methods for PD-L1 expression and 18F-

FAPI-04 PET/CT parameters needs further study. In addition,

probably due to the short follow-up period or small sample size,

the 18F-FAPI-04 PET/CT parameters could not predict the prognosis

of the patients, and we will continue to study this topic.
5 Conclusion

18F-FAPI-04 PET/CT parameters, including SUVmean,

SUVpeak, and SUVsd, were associated with PD-L1 expression in

patients with LA-ESCC, and thus, SUVsd was an optimal predict for

PD-L1 positive expression, which could help to explore the

existence of immune checkpoints and select ESCC candidates

for immunotherapy.
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Introduction: Breast cancer (BC) is now the most common type of cancer in

women. Disulfidptosis is a new regulation of cell death (RCD). RCD dysregulation

is causally linked to cancer. However, the comprehensive relationship between

disulfidptosis and BC remains unknown. This study aimed to explore the

predictive value of disulfidptosis-related genes (DRGs) in BC and their

relationship with the TME.

Methods: This study obtained 11 disulfidptosis genes (DGs) from previous

research by Gan et al. RNA sequencing data of BC were downloaded from the

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO)

databases. First, we examined the effect of DG gene mutations and copy number

changes on the overall survival of breast cancer samples. We then used the

expression profile data of 11 DGs and survival data for consensus clustering, and

BC patients were divided into two clusters. Survival analysis, gene set variation

analysis (GSVA) and ss GSEA were used to compare the differences between

them. Subsequently, DRGs were identified between the clusters used to perform

Cox regression and least absolute shrinkage and selection operator regression

(LASSO) analyses to construct a prognosis model. Finally, the immune cell

infiltration pattern, immunotherapy response, and drug sensitivity of the two

subtypes were analyzed. CCK-8 and a colony assay obtained by knocking down

genes and gene sequencing were used to validate the model.

Result: Two DG clusters were identified based on the expression of 11DGs. Then,

225 DRGs were identified between them. RS, composed of six genes, showed a

significant relationship with survival, immune cell infiltration, clinical

characteristics, immune checkpoints, immunotherapy response, and drug

sensitivity. Low-RS shows a better prognosis and higher immunotherapy

response than high-RS. A nomogram with perfect stability constructed using
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signature and clinical characteristics can predict the survival of each patient.

CCK-8 and colony assay obtained by knocking down genes have demonstrated

that the knockdown of high-risk genes in the RS model significantly inhibited cell

proliferation.

Discussion: This study elucidates the potential relationship between

disulfidptosis-related genes and breast cancer and provides new guidance for

treating breast cancer.
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1 Introduction

In recent years, the incidence of breast cancer in women has

continued to grow at a rate of 0.5% per year. By 2022, breast

cancer has surpassed lung cancer and has become the world’s

highest incidence of tumors. According to the latest estimates,

there will be 297,790 new breast cancer cases and 43,170 deaths

among women in the United States in 2023, making it the leading

cause of cancer death among women aged 20-49 (1). Many

treatment options for BC have been developed, including

surgery, chemotherapy, endocrine therapy, immune antibody

(trastuzumab) therapy, and radiotherapy, based on disease stage

and pathological characteristics (2, 3). Although the prognosis of

breast cancer has improved significantly in the past few decades,

even if patients pass standard diagnosis and treatment, 20–30% of

BC patients still have distant metastasis, accounting for about 90%

of all breast cancer deaths (2).

As a highly complex and heterogeneous disease with different

molecular spectrums, breast cancer limits the broad application of

classification and standard treatment to some extent. Furthermore,

it is difficult to predict the prognosis of BC (2, 4). Therefore, we

urgently need to explore the characteristics of the high-risk

population of breast cancer patients to obtain the key markers of

prognosis and to find potential therapeutic targets to designate

individualized treatment to improve the prognosis of patients.

SLC7A11-mediated cystine reduction to cysteine highly

depends on the reduced nicotinamide adenine dinucleotide

phosphate (NADPH) generated by the glucose–pentose

phosphate pathway. Under glucose starvation, the NADPH in

SLC7A11-high-expression cells is consumed in large quantities,

and the abnormal accumulation of disulfides, such as those in

cystine, induces disulfide stress. This causes actin filaments to

aggregate and contract rapidly, peeling off the plasma membrane

before apparent cell death, called disulfidptosis. During this process,

SLC7A11 and SLC3A2, which encode the SLC7A11 chaperone

protein, mediate the reduction of ingested cystine to cysteine.

Next, the WAVE regulatory complex (WRC) can activate seven

subunits of actin-related protein 2 and 3 (Arp2/3) complexes to

promote actin polymerization and plate pseudopod formation. This
0293
produces a branched cortical actin network under the plasma

membrane, thereby stripping actin filaments from the plasma

membrane. Nck-related protein 1 encoded by NCKAP1 is a WRC

component. Its deletion will reduce the protein levels of other

components in the WRC, including WAVE-2, CYFIP 1, Abi 2, and

HSPC 300, and inhibit disulfidptosis. Similarly, knocking out the

other four components of the WRC will also repress disulfidptosis.

Finally, Rac can activate WRC to promote plate pseudopod

formation and disulfidptosis. Knockout of the RPN1 gene, which

encodes an N-oligosaccharide transferase in the endoplasmic

reticulum, will offer UMRC6 cells stronger resistance

to disulfidptosis.

However, DRGs have not been demonstrated in the survival

prognosis, tumor immune microenvironment, TMB, immunity,

and clinical treatment of BC patients. We still lack direct evidence

of the predictive ability of DRGs for BC prognosis and

immunotherapy. This study aimed to construct a risk score (RS)

model based on DRGs to predict the prognosis of BC patients. In

this study, TCGA and GEO databases were used to obtain DRGs by

analyzing the difference in consensus clustering of DGs. The RS

model of DRGs was built using the LASSO-Cox method. Further,

we verified that this feature could be used as a reliable, independent

predictor of prognosis and immune-sensitive response and could

predict the prognosis of BC patients. Through this model, patients

were divided into high-risk and low-risk groups. The differences in

survival outcomes, tumor immune microenvironment, and

immunotherapy response of BC patients were analyzed.

According to the differences between groups, drug sensitivity

studies were conducted to find sensitive drugs in different

populations, and individualized intervention was implemented to

improve the prognosis of BC patients.
2 Methods

2.1 Data collection and processing

We downloaded and organized 1,180 samples (1,081 tumor and

99 normal samples) from the TCGA database using the
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TCGAbiolinks and SummaryExperiment package in R v.4.2.2

(Supplementary Table 1). We searched the GEO database with

“breast cancer” and “survival information” as keywords and

screened according to the following criteria: first, all samples were

from humans; second, all data sets included matched cancer tissue

samples and clinical information; and third, the data set contained

at least 200 samples. We downloaded the GSE12276 and GSE20685

gene expression profile, GPL570 platform annotation information,

and clinical information using GEOquery, the data transmission

tool of the GDC application. Gene expression profiles were

standardized using the scaling method provided in the limma R

package (5). TCGA and GEO gene expression profile information

and clinical data are publicly available and open access. Therefore,

no ethical issues were involved. Clinicopathologic features include

gender, age, T (tumor) stage, N (lymph node metastasis) status, M

(distant metastasis) status, tumor grade, survival status, and survival

time. The tumor mutation data were derived from TCGA [GDC

(cancer.gov)], and the gene copy number was downloaded from the

Xena database (UCSC Xena). We obtained 11 disulfidptosis genes

(DGs) from a previous study (6). The workflow of the current study

is shown in Figure 1.
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2.2 Survival, TMB, and CNV difference
analysis between DGs

We used the Limma package using wilcox.test to test the difference

in DG expression between tumor and normal samples (p < 0.05). R

package survival and survminer were used for the survival analysis of

DGs. DGs were divided into high- and low-expression groups

according to gene expression. The survival differences between the

two groups were compared (p < 0.05). Tumormutation burden (TMB)

refers to the number of somatic nonsynonymous mutations or all

mutations per megabase in the gene region detected by whole exome

sequencing or targeted sequencing in a tumor sample (7). Mutation

data were downloaded from the Cancer Genome Atlas Breast Cancer

(TCGA-BRCA) collection using the GDCquery package with 988 data

downloads. According to the data.category = Simple Nucleotide

Variation, data.type = Masked Somatic Mutation. The mutation data

were analyzed with the R package maftools (8). The mutation

probability of DGs in each tumor sample was calculated and

analyzed. CNV (Copy Number Variation) is the increase or decrease

in the copy number of genomic fragments caused by genome

rearrangement. Xena downloaded and collated copy number
FIGURE 1

Workflow diagram.
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variation data and used R-package RCircos to visualize the CNV

of DGs.
2.3 Establishment of the disulfidptosis
gene cluster

We used the R software package “ConsensusCluster Plus” for

consensus clustering analysis and identified clusters of BC patients

based on DGs. We set the cluster count (k) between two and nine

and selected the optimal k value based on the sum of squared errors

(SSE) inflection point. The stability of the DG group was verified by

the PCA algorithm. Additionally, Kaplan-Meier survival analysis

evaluated the OS of different DG clusters, and the heat map showed

the degree of difference in DGs between the two groups.
2.4 TME infiltration and functional
enrichment analysis of different clusters

Gene set variation analysis (GSVA) is a particular gene set

enrichment method. This method works on single samples and

enables pathway-centric analyses of molecular data by performing a

conceptually simple but powerful change in the functional unit of

analysis from genes to gene sets. We used the GSVA and GSEABase

packages to evaluate the pathways enriched in groups A and B. We

attempted to explain the reasons for the difference in survival between

the groups from the bioinformatics perspective (9). Single sample gene

set enrichment analysis (ssGSEA) was used to quantitatively analyze the

immune infiltration of the overall sample and to observe the difference in

component immune infiltration (10).We used the “limma”R package to

analyze the DRGs between the two disulfidptosis clusters (p < 0.05, |

logFC| = 0.585). Finally, we used the “ggplot2” package. The gene

ontology (GO) analysis of DRGs was performed, and the histogram,

bubble diagram, and circle diagram were drawn to explore its function

and biological process. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis, histogram, and bubble diagram

were drawn to explore its function and biological processes.
2.5 Identification of DRGs and construction
of the prognostic signature

Before constructing the risk prediction model, we screened the

features. First, a univariate Cox model was used to explore the

relationship between 225 DRGs and OS of patients. A total of 114

single-factor DRGs related to BC prognosis were obtained. The least

absolute shrinkage and selection operator (LASSO) was used to avoid

overfitting in the TCGA training cohort (11). The prognostic DRG

model was established using multivariate Cox regression analysis and

the step Akaike information standard (stepAIC) value. The RS for each

patient was calculated by combining the expression of each gene (Ei),

LASSO coefficients (Li), and RS = Sni Ei * Li. The patients were divided
into high-risk and low-risk groups according to the median RS. Finally,

the Kaplan–Meier survival curve was used to analyze the difference in

overall survival between the two groups.
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The sensitivity and specificity of the prognostic indicators were

evaluated using the receiver operating characteristic (ROC) curve and

the area under the ROC curve (AUC). A bootstrap method based on

1,000 resamplings was used to obtain the test set (12, 13) to verify the

effectiveness of the prediction model. The training set was a

combined dataset established using TCGA and GEO based on

common genes. In the test set, the AUC of the prognostic model

was calculated using the R package “riskRegression.” Subsequently,

the stability of the ROC model was tested in the separate TCGA and

GEO datasets, and the TCGA and GEO joint datasets merged based

on common genes. Analyze the relationship between RSs and clinical

factors, verify the effectiveness of risk markers, and further compare

the survival prediction ability of prognostic factors. The

independence of the prognostic model was verified using univariate

and multivariate Cox regression analyses by comparing the clinical

characteristics of the patients. At the same time, the nomogram was

constructed with the Cox regression coefficient of the package “rms,”

and the calibration curve was drawn.
2.6 Establishment of DRG cluster

We used the “ConsensusCluster Plus” package for consistency

clustering analysis and identified clusters of BC patients based on

DRGs. We set the cluster count (k) between two and nine and

selected the optimal k value based on the sum of the squared errors

(SSE) inflection point. The stability of the DG group was verified

using a PCA algorithm. Additionally, Kaplan–Meier survival

analysis evaluated the OS of different DG clusters, and the heat

map showed the difference in DGs between groups.
2.7 Different tumor immune
microenvironment patterns with RS

We used the CIBERSORT algorithm to calculate the proportion

of tumor-infiltrating immune cells (14). The difference in the

proportion of tumor-infiltrating immune cells between the high-

and low-risk groups was compared. The ESTIMATE algorithm was

used to evaluate the differences in immune, stromal, and tumor

purity scores between the high- and low-risk groups. The tumor

mutation burden was assessed based on whether the sample was

considered high or low risk. Additionally, we used the Maftools

package to perform somatic mutation analysis on breast cancer

patients to view and analyze somatic mutation data. We also studied

the relationship between BC RSs and cancer stem cells.
2.8 The role of RS based on DRGs in
predicting drug sensitivity and clinical
immune efficacy

For a long time, the research and development of new drugs have

been a hot spot in breast cancer treatment. We used the pRRophetic

package to calculate the half inhibitory concentration (IC50) of

commonly used drugs in breast cancer patients. We screened out
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potential drugs with sensitivity differences between the two groups

according to the risk level of breast cancer patients (p < 0.001) and drew

a box plot. We used ggplot2, ggpubr, limma, and reforme2 R software

packages to analyze the statistical differences in the expression levels of

79 common ICI-related immunosuppressive molecules (15). Tumor

Immune Dysfunction and Exclusion (TIDE) [Tumor Immune

Dysfunction and Exclusion (TIDE) (harvard.edu)] is a simple method

to predict the immune escape of patients based on the evaluation of the

tumor microenvironment using gene expression profiles. Patients with

high TIDE scores have a high chance of antitumor immune escape (16).

We obtained information on the immune escape ability after submitting

the transcriptome data of TCGA-BRCA patients to the website. TCGA

is a quantitative scoring scheme developed by developers using machine

learning: it is a better predictor of anti-cytotoxic T lymphocyte antigen 4

(CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1)

antibody responses. We downloaded BC immunophenotype score

(IPS) from TCIA database (https://tcia.at/). In order to predict the

sensitivity of immunotherapy, we compared the IPS of high and low risk

groups in different immunotherapy decisions (17).
2.9 Cell lines, cell culture, cell transfection,
and real-time quantitative PCR

The Tumor Cell Line Comprehensive Analysis Database (DepMap

Portal) was utilized to screen for cell lines for further experimental

validation (18). Breast cancer cell lines (MDA-MB-468) were obtained

from Sichuan Huijixin Biotechnology Co., Ltd. The MDA-MB-468 cells

were grown in Dulbecco’s Modified Eagle Medium (DMEM) culture

medium, supplemented with 10% Fetal Bovine Serum (FBS) in a

standard humidified incubator with 5% CO2 at 37°C. The

TMEM45A and SHCBP1 specific short hairpin RNAs (shRNAs) were

synthesized from Chengdu Youkangjianxing Biotechnology Co., Ltd.

The sequences of shRNAs are as the following: sh- TMEM45A -1:

5 ′- TGCTGTTGACAGTGAGCGCGGTTAAAGTATTTG

AATTTAATAGTGAAGCCACAGATGTATTAAATTCAAAT

ACTTTAACCATGCCTACTGCCTCGGA-3′; sh- TMEM45A -2:

5′- TGCTGTTGACAGTGAGCGCGGTGTACAAAGAGTATTC

TGATAGTGAAGCCACAGATGTATCAGAATACTCTTT

GTACACCATGCCTACTGCCTCGGA′. sh- SHCBP1 -1: 5′-TGCT
GTTGACAGTGAGCGCCACATTGATTTTTCAATTGA

ATAGTGAAGCCACAGATGTATTCAATTGAAAAATC

AATGTGATGCCTACTGCCTCGGA-3′; sh- SHCBP1 -2: 5′- TGCT
GTTGACAGTGAGCGCCAGCCAAATGTTGATATTAA

ATAGTGAAGCCACAGATGTATTTAATATCAACATTTGGC

TGATGCCTACTGCCTCGGA -3′.
The knockdown efficiency was evaluated using real-time

quantitative PCR (RT-qPCR) after 48 h transfection. The primer

sequences used in the experiment are as follows. For the TMEM45A

gene, the primers include qpcr-TMEM45A-F (forward primer):

TTGGATGCCCACACTATGA and qpcr-TMEM45A-R (reverse

primer): TCCATGGTCAAGGAGTTACA. For the SHCBP1 gene,

the primers consist of qpcr-SHCBP1-F (forward primer):

CTGGAGTTACAGAAGGATGGTG and qpcr-SHCBP1-R (reverse

primer): CCATAGAAGCCTGTGGAATGT. After the knockdown of

TMEM45A and SHCBP1 in cell line MDA-MB-468, total mRNA from
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cells was extracted with TRIzol reagent (TaKaRa, Japan). Then,

concentration and purity were evaluated by Nanodrop 2000 (Thermo

Fisher, USA). After the RNA was reversely transcribed into cDNA with

PrimeScript RT kit (TaKaRa, Japan) according to the instructions, SYBR

Premix Ex Taq TM kit (TaKaRa, Japan) was applied for RT-qPCR, with

b-actin as the endogenous control gene. The RT-qPCR amplification

instrument (ABI StepOne Plus) was used to detect the SYBR Green

fluorescence signal level after each amplification cycle. Data processing

was performed using GraphPad Prism 10.0.0, and T-test was conducted

to compare the experimental group to the control group. This

supplementary material has been reflected in the preceding text.
2.10 Cell proliferation assay

For three days, proliferation assays were conducted daily on BC cells

in 96-well plates using Cell Counting Kit 8 (CCK8) reagent (Beyotime,

China). Incubation occurred at 37°C for 2 h, and the plate was analyzed

with a microplate reader at 450 nm to measure absorbance.
2.11 Colony formation assays

Approximately 500 cells per well were seeded into a 6-well

culture plate and incubated at 37°C for two weeks. After washing

with PBS twice, cells were fixed with 4% paraformaldehyde for

15 min and then dyed with crystal violet. Each experiment was

repeated three times. ImageJ was used for image analysis to convert

images into cellular count data (19). The acquired counts were

normalized by dividing them by the corresponding cell count in the

control group, yielding percentage data. Data and image processing

were performed using GraphPad Prism 10.0.0. The statistical

analysis consisted of a t-test conducted on three replicate datasets,

comparing the experimental and control groups.
2.12 RNA-seq

Cells were used for RNA sequencing after the knockdown of

TMEM45A and SHCBP1 in cell line MDA-MB-468. Approximately

2 mg of total RNA was extracted from each specimen and pretreated

with Epicentre Ribo-zeroTM rRNA Removal Kit. Then, the RNA

expression profile library was constructed in line with the

manufacturer’s protocol of NEBNext R Ultratdirectional RNA

Library Prep Kit(NEB, USA). The steps are as follows: First, RNA

was lysed into small fragments after being treated with NEBNext

first strand synthesis reaction buffer at high-temperature treatment,

and the first strand cDNA was synthesized using random hexmer

primers and M-MULv reverse transcriptase. The second strand

dsDNA was then obtained, and the fragment residues were

converted into blunt ends by exonuclease or polymerase.

Subsequently, the 3’end of each dsDNA fragment was adenylated

and connected to the NEBNext adapter with a hairpin structure.

After purification using the AMPure XP system (Beckman Coulter,

Beverly, USA), 150–200 bp DNA fragments were obtained and

sequenced using HiSeq 2500 (Illumina, CA, USA).
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2.13 RNA-seq data processing and analysis

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) was utilized to check the sequencing quality of all the sample

data trimmed using the FASTX Toolkit. The sequencing reads against

the human assembly GRCh37 weremapped using TopHat (v 2.0.9).We

perform differential analysis using the gene expression matrix in counts

format. We employed the R package edgeR to perform differential

analysis between snSHCBP1 and NC, as well as snTMEM45A and NC,

using predetermined criteria (fold change > 1, padj < 0.05). Following

this analysis, we created volcano plots to visualize the differential

expression of genes. We conducted an intersection analysis to identify

genes that exhibited consistent differential expression in both replicates.

Subsequently, we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

(p-value < 0.05) on the genes found in the intersection.
3 Results

3.1 11DGs in breast cancer: expression,
genetic variants, and prognostic values

We analyzed the differences between 11 DGs in breast cancer and

normal breast tissue samples. Except for NCKAP1, other genes

significantly differed between tumor and normal groups (p < 0.05).

The expression levels of SLC3A2, RPN1, BRK1, ACTR2, ACTR3,

RAC1, SLC7A11, andWASF2 in the tumor samples were higher than

those in the normal samples. On the other hand, the expression levels

of WASF2, CYFIP1, and ABI2 in the normal samples were higher

(Figure 2A). Of the 911 breast cancer samples of TCGA, 33 samples

had DG mutations. The genes with the highest mutation frequencies

were NCKAP1 and CYFIP1. Still, no base mutation was found in

WASF2 (Figure 2B). The location and copy number changes of DGs

on chromosomes are shown in Figure 2C. Among them, SLC3A2,

BRK1, ABI2, ACTR2, NCKAP1, RAC1, RPN1, SLC7A11, and

ACTR3 are upregulated in breast cancer, while CYFIP1 and

WASF2 were downregulated. COX regression analysis and K-M

survival analysis were performed on the expression of 11 DGs and

the survival time of patients, and the tumor samples were divided into

high- and low-risk groups according to the median value of a single

gene. It can be concluded that SLC7A11, SLC3A2, RPN1, NCKAP1,

BRK1, ACTR2, ACTR3, and RAC1 are single-factor genes that can

predict the survival of patients (p < 0.05, Supplementary Table 2). The

survival analysis was statistically significant, and the gene expression

was negatively correlated with the survival time (Figure 2D). The 11

DGs positively regulated each other (Figure 2E).
3.2 Clusters of DGs identified in
breast cancer

We performed a consistent cluster analysis of the expression levels

of 11 DGs to explore their roles in the occurrence and development of

breast cancer. Among the clustering variables, k = 2 had better

clustering stability, the highest intra-group correlation, and the
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lowest inter-group correlation (Figures 3A–C). Therefore, we divided

all tumor samples into clusters A (n = 339) and B (n = 850). PCA

showed a significant interval between the two groups (Figure 3D).

Survival analysis between groups A and B showed that the prognosis of

group A was significantly better than that of group B, and the survival

difference between the two groups was statistically significant (p < 0.05,

Figure 3E). Additionally, the heat map between the two AB groups

showed significant differences in the expression of 11 DGs between the

two groups, especially between the SLC7A11 groups (Figure 3F).
3.3 TME infiltration and functional
enrichment analysis of different clusters

The samples in the A and B groups were analyzed using GSVA.

From Figure 4A, it can be seen that group B was more active in

arachidonic acid metabolism and taurine and hypotaurine metabolism

pathways than group A. At the same time, group A was active in

nonhomologous end connections, ubiquitin-mediated proteolysis, and

other pathways. We performed a single sample gene set enrichment

analysis (ssGSEA) on groups A and B. From Figure 4B, we can see

Activated.B.cell, Activated.CD8.T.cell, CD56dim.natural.killer.cell,

Eosinophil, MDSC, Macrophage, Mast.cell , Monocyte.

Natural.killer.cell, Neutrophil, Plasmacytoid.dendritic.cell,

T.follicular.helper.cell, Type.1.T.helper.cell, and Type.17.T.helper.cell

were highly expressed in Cluster A and Activated.CD4.T.cell,

Activated.dendritic.cell, Gamma.delta.T.cell, Immature.B.cell,

Immature.dendritic.cell, Regulatory.T.cell, and Type.2.T.helper.cell

were highly expressed in cluster B. We found 225 differential genes

between groups A and B to explore the differences in biological

processes between groups A and B according to the DG grouping.

We performed GO and KEGG enrichment analyses on these

differential genes. As shown in Figures 4C, D, DRGs are mainly

enriched in the nuclear division, chromosome segregation, and

nuclear chromosome segregation in biological processes (BP). In

addition, DRGs were primarily enriched in the spindle, chromosomal

region, and condensed chromosome. Regarding molecular function,

DRGs were mainly enriched in microtubule binding, tubulin binding,

and ATP hydrolysis activity. We also performed a KEGG enrichment

analysis to explore the differential genes in the pathway. The most

enriched pathways were in the cell cycle. Cytokine−cytokine receptor

interaction and human papillomavirus infection were the most

significant enrichments in the cell cycle, PPAR signaling pathway,

and ECM−receptor interaction (Figures 4E, F).
3.4 Clusters of DRGs identified in
breast cancer

Based on a consensus cluster analysis of 225 DRGs, the relationship

between disulfidptosis and BRCA subtypes was explored. K = 3 is the

appropriate choice for the most stable aggregation (Figures 5A–D).

Therefore, we divided all tumor samples into three subgroups: cluster A

(n = 525), cluster B (n = 379), and cluster C (n = 285). 11DGs exhibit

significant differences among clusters A, B, and C (Figure 5E). Figure 5F

shows that the prognosis of group A is the best, followed by group B,
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and the prognosis of group C is relatively poor. From Figure 5G, it can

be seen that there were significant differences in the expression levels of

DRGs between different clusters. The samples of DRG cluster A were

mostly in cluster A of 11 DGs, and the survival prognosis of these two

clusters was significantly better than that of other groups.
3.5 Creating and confirming the
predictive RS

We used univariate Cox regression analysis to extract 114 DRGs

associated with BC prognosis in the preliminary screening
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(Supplementary Table 3). Using the LASSO regression algorithm, 14

BC-related genes were identified based on the minimum partial

likelihood of the best l value and deviation (Figures 6A, B,

Supplementary Table 4). Multivariate Cox regression analysis was

performed on these 14 genes, and a risk model consisting of six

genes was obtained (Figure 6C). Among them, SHCBP and

TMEM45A were molecules that improved prognosis. PIGR, IGLV6-

57, TCN1, and GFRA1 were risk factors. The molecular formula of the

model was as follows: RS = (0.1917 * SHCBP1 + 0.0836 * TMEM45A–

0.0721 * PIGR–0.1633 * IGLV6–57–0.0489 * TCN1-0.0676 * GFRA1).

In the bootstrap set, AUC at one year was 0.767, AUC at three years

was 0.717, and AUC at five years was 0.694 (Figure 6D, Supplementary
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FIGURE 2

The analysis of 11 DGs' expression and association in the TCGA cohort. (A) The expression of the 11 DGs in BC tissues and healthy breast tissues
(*p<0.05; ***p< 0.001). (B) Data on the frequency of DGs' mutations for 991 BC patients. (C) The sites of CNV variation in DGs on the 23
chromosomes. (D) The relationship between 8 DGs and overall s survival. (E) The interactions between DGs in BC (the red and blue strings denote
positive and negative correlation, respectively; the intensity of the correlation is indicated by the color shades).
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Table 5). Besides, we used the GEO database GSE20685 for external

data verification. The AUC values of breast cancer patients predicted by

our model were 0.743, 0.650, and 0.615 at one, three, and five years,

respectively (Figure 6E). We validated it separately in the GEO dataset:

AUC at one year was 0.762, AUC at three years was 0.734, AUC at five

years was 0.758, AUC at one year was 0.771, AUC at three years was

0.712, and AUC at five years was 0.652 in TCGA. In the combined

dataset of TCGA and GEO, the AUC at one year was 0.766. The AUC

at three years was 0.716, and the AUC at five years was 0.686

(Figures 6F–H). BC patients were randomly selected for scoring, total

point = point (T) + point (N) + point (RS) + point (stage) + point (age)

below by combining RS and clinicopathological features, using the

nomogram (a quantitative method), as shown in Figure 6I. The total

score corresponds to the scale in the figure. It can predict 1-year, 3-year,

and 5-year OS of BC patients. The calibration curve showed adequate

consistency between the predicted values of the 1-year, 3-year, and 5-

year OS nomograms and the actual observed values (Figure 6J).
3.6 Dividing the high- and low-risk groups
and observing their distribution in clusters

The patients in the TCGA, GEO, and total datasets were divided

into high-risk and low-risk groups according to the median RS value.

The differences between the groups were compared. Figure 7A shows

that the genes (SLC7A11, SLC3A2, BRK1, ACTR2, ACTR3, RPN1, and

NCKAP1) have the K-M survival analysis between the high- and low-

risk groups showed that the survival differences between the high- and

low-risk groups were statistically different (p < 0.001) in the TCGA

dataset, GEO dataset, combined dataset and external validation of the

GEO database. The prognosis of the significantly high-risk group was

poor (Figure 7B). Seven of the 11 disulfide death genes showed
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significant differences in gene expression between high-risk and low-

risk individuals (Figure 7C). Figure 7D illustrates the proportion of

surviving and dying patients in two RS high and low groups, two DGs,

and three DRG subtypes. Figures 7E, F show the RS distribution of two

DG subtypes and three DRG subtypes, respectively. The PCA diagram

shows that RS has an adequate grouping function (Figure 7G).
3.7 Different immune landscapes in the
two risk groups

The CIBERSORT algorithm evaluated the relationship between RS

and the relative number of immune cells. RS was positively correlated

with the number of immune cells, such as Macrophages M0 and M2,

Dendritic cells resting, Mast cells activated, B cells memory, NK cells

resting, T cells CD4 memory resting, B cells naïve, Mast cells resting, and

Monocytes. The expression of immune cells, such as dendritic cells

activated, Plasma cells, MacrophagesM1, and T cells CD8, was negatively

correlated (p < 0.05). The stromal score, immune score, and ESTIMATE

score of the high-risk group were higher. The difference between the

groups was statistically significant (Figure 8A). Our study also examined

the association between six genes and the number of immune cells

(Figure 8B). According to our research, these six genes affect most

immune cells. By observing the mutation frequency of each tumor

sample and the mutation frequency of the gene, the TMB difference

between the high- and low-risk groups was compared. From Figures 8C,

D, it can be seen that the TMB of patients in the high-risk group is higher

than that in the low-risk group, RS is positively correlated with TMB, and

CRGsClusteA is significantly enriched in the low-risk area.

The TMB survival curve showed that patients with low TMB had a

better prognosis (Figure 8E). Compared with other groups, BC patients

with low risk and low TMB had the best prognoses (Figure 8F). The
B C
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FIGURE 3

Biological and clinicopathological characteristics of DG subtypes. (A) The consensus matrix's heatmap of two clusters (k = 2). (B) tracking plot. (C)
Consensus CDF. (D) A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (E) Subtype-specific Kaplan-Meier
OS curves. (F) DGs expression levels and clinicopathological traits vary across subtypes.
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mutation rate of the low-risk group was 85.81% (Figure 8G). The

mutation rate of the high-risk group was 85.78% (Figure 8H). The

waterfall diagram shows that the mutation genes in the high- and low-

risk groups are mainly PIK3 CA, TP53, TTN, CDH1, GATA3,

MUC16, and MAP3K1, and the mutation rates of these genes are

different in the high- and low-risk groups. PIK3CA had the highest

mutation frequency in the low-risk samples, while TP53 had the

highest in the high-risk groups. The mutation probability of TP53 in

the high-risk group was 43%, while the mutation frequency of TP53 in

the low-risk group was only 29%.
3.8 Drug sensitivity and different
immunotherapy responses in the two
risk groups

There was a positive correlation between RS and stem cells. The

higher the RS, the higher the content of stem cells (p < 0.05)
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(Figure 9A). The TIDE score of the high-risk group was lower than

that of the low-risk group, and the tumor immune escape ability was

weak (Figure 9B). The ESTIMATE results showed that the stromal

immunity and estimated scores of the high-risk group were low

(Figure 9C). The drug treatment of breast cancer has broad research

prospects and has attracted much attention. Therefore, the IC50 value

of chemotherapeutic drugs for BC was calculated, and the relationship

between RS and drug resistance was analyzed. We noted that in

addition to docetaxel (microtubule depolymerization inhibitors) and

parthenolide (NF-kB inhibitors) in high-risk patients with lower IC50.

In contrast, other drugs [ABT.888 (Veliparib, PARP inhibitors)],

AG.014699 (Rucaparib, PARP inhibitors), AMG.706 (Motesanib,

VEGFR inhibitors), ATRA, AUY922 (Luminespib, HSP90

inhibitors), GDC0941 (Pictilisib, PI3K inhibitors), Metformin,

Methotrexate, Nilotinib, Nutlin.3a (MDM2 inhibitors), Roscovitine,

Temsirolimus, and Tipifarnib) had lower IC50 in low-risk patients

(Figure 9D). We performed immune checkpoint analysis on high-risk

and low-risk groups to explore the precise use of immune checkpoint
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FIGURE 4

Disulfidptosis subtypes linked to TME invasion. (A) GSVA of two disulfidptosis subtype-related cellular pathways (Red means activated and blue
means inhibited). (B) Correlations between immune cell infiltration levels in the two subtypes associated with disulfidptosis. (C, D) The GO function
enrichment analyses. (E, F) The KEGG function enrichment analyses.
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FIGURE 5

Biological and clinicopathological characteristics of DRG subtypes. (A) The consensus matrix's heatmap of two clusters (k = 3). (B) Consensus CDF
(C) Delta area. (D) tracking plot Consensus CDF. (E) DRGs expression levels and clinicopathological traits vary across subtypes. (F) Subtype-specific
Kaplan-Meier OS curves. (G) DRGs expression levels and clinicopathological traits vary across subtypes.
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FIGURE 6

(A, B) LASSO variable trajectory plot for 1,000 cross validations (A) and LASSO coefficient profile (B). (C) Forest Plot for Multifactorial Cox Regression
Analysis. (D) ROC curves and AUCs for 1-, 3-, and 5-year survival rates. (E) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in another
independent GEO dataset. (F) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in the TCGA and GEO merged datasets. (G) ROC curves and
AUCs for 1-, 3-, and 5-year survival rates in TCGA datasets. (H) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in GEO datasets. (I) The
nomogram used to calculate the survival rates of 1-, 3-, and 5-years for patients with BC. (J) Calibration curve for nomograms.
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inhibitors (ICI) in breast cancer patients. Except for the high expression

of the PVR gene in the high-risk group, the other immune checkpoint

genes were increased in the low-risk group. The IPS of the low-risk

group was significantly higher than that of the high-risk group, and the

immunotherapy efficacy of the low-risk group was better (Figure 9E).
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3.9 Knockdown of TMEM45A and SHCBP1
inhibited BC cell proliferation

We conducted a search on the DepMap Portal to assess the

expression levels of TMEM45A and SHCBP1 in various breast
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FIGURE 7

(A) Ranked dot, scatter plots and heat map of the model gene expressions in the TCGA and GEO merged datasets, TCGA datasets and GEO datasets.
(B) Kaplan–Meier analyses of the OS between the TCGA and GEO merged datasets, TCGA datasets, GEO datasets and another independent GEO
dataset. (C) RS score differences in eleven DGs. *p < 0.05, ***p < 0.001. (D) The subtype distributions among groups, risk scores and survival
outcomes. (E) Variations in risk scores among DGs subtypes. (F) Variations in risk scores among CRGs subtypes. (G) Through PCA analysis, it can be
seen that there are large transcriptome differences between high and low groups.
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cancer cell lines. Ultimately, we observed that these two genes exhibited

significantly high expression in the MDA-MB-468 cell line

(Supplementary Figure 1). In our study, we constructed a predictive

model using six dual sulfur death-related genes. We selected the high-

risk genes TMEM45A and SHCBP1 in our model to validate the
Frontiers in Immunology 12103
potential for targeted gene therapy. TCGA and GEO data analyses

revealed that TMEM45A and SHCBP1 were highly expressed in breast

cancer. Therefore, we knocked down TMEM45A and SHCBP1 and

further investigated the role of TMEM45A and SHCBP1 inMDA-MB-

468 breast cancer cells in vitro.
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FIGURE 8

Comprehensive analysis of the risk scores in BC. (A) Correlations between immune cell types and risk score. (B) The six genes from the proposed
model are correlated with the number of immune cells. (C) risk score and TMB spearman correlation analysis. (D) The differences in TMB between
high- and low-risk groups. (E) Kaplan–Meier survival curves of BC patients between the H-TMB and L-TMB groups. (F) Kaplan–Meier survival curves
of BC patients across H-TMB + high risk, H-TMB + low risk, L-TMB + high risk, and L-TMB + low risk. TMB, tumor mutational burden; H, high; L,
low. (G, H) The somatic mutation features waterfall plot determined by high and low risk scores. One patient was represented by each column. The
correct number represented each gene's frequency of mutation, and the upper barplot displayed TMB. The proportion of each variant type was
displayed in the right barplot.
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First, we established MDA-MB-468 shTMEM45A and

shSHCBP1 cell lines through lentiviral transduction. As shown in

Figure 10A, the knockdown of TMEM45A and SHCBP1 in MDA-

MB-468 was satisfactory. We further investigated the impact of

TMEM45A and SHCBP1 knockdown on the functionality of breast

cancer cells through CCK-8 and colony formation assays to

determine their effects on BRCA cell proliferation.
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As expected, the CCK-8 assay (Figure 10B) showed that the

knockdown of TMEM45A and SHCBP1 in MDAMB468 similarly

inhibited the proliferation of breast cancer cells. The colony formation

assays (Figure 10C, D) demonstrated that the knockdown of

TMEM45A and SHCBP1 significantly and independently inhibited

cell proliferation (p < 0.05). These results collectively indicate that

TMEM45A and SHCBP1 influence the proliferation of BC cells.
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FIGURE 9

(A) Associates between the CSC index and the risk score. (B) TIDE score between high- and low-risk group. (C) The boxplots for the drug sensitivity
analysis. (D) Differential expression analysis of the immune checkpoint genes between the high-risk and low-risk groups. IC50, the half-maximal
inhibitory concentration; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (E) The difference between anti-PD1 treatment and anti-CTLA-4 treatment between
high and low risk groups.
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3.10 Sequencing and functional
enrichment analysis

The knockdown of SHCBP1 and TMEM45A was achieved by

generating shSHCBP1_1, shSHCBP1_2, shTMEM45A_1, and

shTMEM45A_2. Differential analysis was conducted using the

average counts from three replicate sequencing experiments

(Supplementary Table 6). shSHCBP1_1 exhibited differential

expression in 1171 genes (687 upregulated, 484 downregulated)

compared to the NC group, while shSHCBP1_2 showed differential

expression in 593 genes (421 upregulated, 172 downregulated)

compared to the NC group (Figures 11A–C). shTMEM45A_1

exhibited differential expression in 7710 genes (3896 upregulated,

3814 downregulated) compared to the NC group, while

shSHCBP1_2 showed differential expression in 7272 genes (3683

upregulated, 3589 downregulated) compared to the NC group

(Figures 11F–H). We identified the intersecting genes in the

upregulated and downregulated gene sets from the two

independent replicate experiments and subjected these genes to

GO and KEGG enrichment analyses (Figures 11D, E, I, J).
4 Discussion

Regulated cell death (RCD) is a type of cell death controlled by

specific molecular pathways and regulated by genetic or

pharmacological manipulation (20). Recently, disulfidptosis has
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been defined as a new RCD. Previous studies have suggested that

SLC7A11-mediated cystine intake is critical in promoting

glutathione biosynthesis and inhibiting oxidative stress and

ferroptosis. Subsequently, SLC7A11 was found to significantly

promote cell death under glucose starvation (21–23).

Subsequently, it was found that SLC7A11-mediated reduction of

cystine to cysteine was highly dependent on the reduced

nicotinamide adenine dinucleotide phosphate (NADPH)

produced by the glucose–pentose phosphate pathway (24).

Recently, Liu et al. proposed that disulfidptosis is an abnormal

accumulation of disulfides, such as cystine, which induces disulfide

stress, causes disulfide bond cross-linking and cytoskeleton

contraction of the actin cytoskeleton, and ultimately induces cell

death6. Not only does RCD play a key role in body development

and cell homeostasis, but its dysregulation is also causally linked to

many diseases, including cancer. Escape from cell death is

considered to be one of the core markers of cancer. The

importance of other RCDs in BC has been revealed, but the role

of disulfidptosis in BC remains unclear (25–29). Our study explored

the importance of disulfidptosis in predicting the prognosis,

survival time, immunotherapy response, and chemosensitivity of

BC patients. This result may lay the foundation for precisely

treating BC breast protrusion-related diseases.

We first performed a differential gene expression analysis, gene

copy number mutation between tumor and normal tissues, and

tumor mutation load analysis on 11 DGs. We found that, except for

NCKAP1, the remaining DGs had significant expression differences
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FIGURE 10

(A) The efficiency of silencing TMEM45A and SHCBP1 was indicated by RT-qPCR in MDA-MB-468 cell lines. (B) The MTT assay revealed that, in
comparison to the control group, the proliferation capability of the MDA-MB-468 cell line with TMEM45A and SHCBP1 knockdown significantly
diminished. (C, D) The clonogenic assay revealed that the depletion of TMEM45A and SHCBP1 attenuated the proliferative capacity of MDA-MB-468
cells. The data is presented as the mean from at least three independent experiments. (*p<0.05; **p<0.01; ***p< 0.001; ****p< 0.0001).
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between the two groups. Most of them had increased gene

expression in breast cancer, meaning these genes may be involved

in some BC generation and development processes. In addition to

the decrease in CYFIP1 and WASF2 gene copy numbers in tumor

samples, the copy number of other DGs increased to varying

degrees, consistent with the decline in CYFIP1 and WASF2 gene

expression in BC patients. It has been reported that ABI2 can

promote the growth and metastasis of HCC. In BC patients, the

ABI2 gene copy number increased. Still, gene expression decreased,

indicating that there may be other mechanisms in the body, such as

methylation, acetylation, ubiquitination, and so on, to regulate

ABI2 expression. Among the 911 breast cancer mutation data
Frontiers in Immunology 15106
samples, only 33 had DG mutations. The highest mutation

probability was 1% for NCKAP1 and CYFIP1. DGs showed more

specific genetic stability than the 53% mutation rate of high-

mutation genes, such as TP53 and PIK3CA (30). K-M survival

analysis showed that the expression levels of SLC7A11, SLC3A2,

RPN1, NCKAP1, BRK1, ACTR2, ACTR3, and RAC1 could

independently predict the prognosis of patients (p < 0.05).

Among these 11 DGs, SLC7A11 can affect non-small cell lung

cancer (31), renal cell carcinoma (32), prostate cancer progression

through ferroptosis, and WASF2 is associated with poor ovarian

cancer prognosis (33). These results further indicate that DGs play

an important role in the development and progression of tumors.
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FIGURE 11

The volcano plot displays the differentially expressed genes between shSHCBP1_1 (A) and shSHCBP1_2 (B) compared to the NC group. (C) The Venn
diagram shows the overlap in differentially expressed genes between shSHCBP1_1 and shSHCBP1_2 compared to the NC group. (D, E) GO and
KEGG Enrichment Analysis of Overlapping Differentially Expressed Genes in shSHCBP1_1 and shSHCBP1_2 vs. NC. The volcano plot displays the
differentially expressed genes between shTMEM45A_1 (F) and shTMEM45A_2 (G) compared to the NC group. (H) The Venn diagram shows the
overlap in differentially expressed genes between shTMEM45A_1 and shTMEM45A_2 compared to the NC group. (I, J) GO and KEGG Enrichment
Analysis of Overlapping Differentially Expressed Genes in shTMEM45A_1 and shTMEM45A_2 vs. NC.
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Consensus clustering is a standard unsupervised clustering

method for cancer subtype classification research. It can

distinguish samples into several subtypes according to different

omics datasets to find new disease subtypes or compare different

subtypes (34–36). We consistently clustered 11 prognostic DGs in

the TCGA and GEO breast cancer data and identified two DG

clusters. The OS of BC patients was statistically different between

the two clusters, and the OS of group A was longer than that of

group B. GSVA analysis showed that some pathways were enriched

differently between the two DG groups, such as arachidonic acid

metabolism, ubiquitin-mediated proteolysis, and taurine and

hypotaurine metabolism. The ssGSEA analysis showed that most

of the immune cells in group A were widely enriched and infiltrated,

which may inhibit tumor cells through an immune response. In

contrast, the lack of immune cells and immunosuppression in

group B may be related to the poor prognosis of patients. PCA

analysis showed a considerable difference between groups A and B.

A total of 225 DRGs were obtained, and GO and KEGG

enrichment analyses were performed on these genes. GO analysis

showed that these DRGs were mainly enriched in microtubule

binding, tubulin binding, and other biological behaviors closely

related to the construction of the cytoskeleton. Therefore, it can be

speculated that these DRGs may mediate changes in the

cytoskeleton and cause cell death, which is consistent with

previous studies 6. Furthermore, through KEGG enrichment

analysis, these differential genes were mainly enriched in signal

transduction pathways, such as the cell cycle, PPAR signaling

pathway, ECM-receptor interaction, and other pathways,

indicating that intercellular interaction may be a critical link in

disulfidptosis-induced cell death.

One-hundred-and-fourteen of the 225 differential genes were

associated with BC prognosis. According to the expression of these

114 DRGs, breast cancer was divided into three subtypes by

consensus clustering. The prognosis of group A was the best,

followed by group B, and the prognosis of group C was relatively

poor. In this study, we further developed six DRGs (SHCBP,

TMEM45A, PIGR, IGLV6-57, TCN1, GFRA1) to construct RS to

predict the prognosis of BC patients and used TCGA, GEO

separated and TCGA and GEO joint databases to evaluate the

prognostic value of RS through a survival curve, RS map, survival
Frontiers in Immunology 16107
state map, and heatmap. RS = (0.1917 * SHCBP1 + 0.0836 *

TMEM45A-0.0721 * PIGR-0.1633 * IGLV6-57-0.0489 * TCN1-

0.0676 * GFRA1). SHCBP1 has been previously reported as an

immune-related biomarker for cancer diagnosis and prognosis and

a potential therapeutic target for tumor immunotherapy (37). Jing

et al. proposed that TMEM45A can be used as an oncogene in

ovarian cancer and that inhibition of TMEM45A may be a

therapeutic strategy for ovarian cancer. Wichitra et al. proposed

that M1 macrophages can cause high expression of PIGR in breast

cancer cells, and high expression of polymeric immunoglobulin

receptor (PIGR) in breast cancer is associated with an increased 5-

year survival rate (38), indicating that PIGR may be a protective

factor for breast cancer. IGLV6-57 is also widely used in cancer

diagnosis (39). TCN1 may play a carcinogenic role in colorectal

cancer by regulating the ITGB4 signaling pathway leading to

cytoskeleton damage and promoting cell death (40). This type of

cell death may be disulfidptosis. Sunil Bhakta et al. proposed that

GFRA1 is associated with targeted therapy for hormone receptor–

positive breast cancer (41). The six genes constructing the model are

inseparable from regulating tumor life activities.

The area under the ROC curve (AUC) was used to evaluate the

predictive ability of RS for patient prognosis (42). A considerable

AUC indicates that the model has good classification ability and can

compare features (43). The AUC of our model was 0.762, 0.734, and

0.758 at one year, three years, and five years, respectively, which was

significantly higher than most prediction models. We integrated all

the essential information of a series of prognostic models, including

author, year, and genetic characteristics, and constructed AUC to

verify the diagnostic performance of the model. After comparison,

we found that our model had the best diagnostic performance

(Table 1). Table 1 shows a metabolic-related 4-gene prognostic

model with AUCs of 0.764, 0.689, and 0.612 for 1-year, 3-year, and

5-year, respectively (44). Another pyroptosis model consisted of 16

genes with AUC of 0.756, 0.752, and 0.723 for 1, 3, and 5 years (45).

Its diagnostic value is almost the same as our model, but it is

composed of 16 genes, while our model has only six genes that can

be better applied in clinical practice. In two cuproptosis-related

prognostic models, 1-year, 3-year, and 5-year AUC values were

0.685, 0.678, and 0.678 (46), and for another 1-, 3-, and 5-year

model, the AUCs were 0.554, 0.527, and 0.649 (47). The AUC of the
TABLE 1 The area under the ROC curve (AUC) showed the sensitivity and specificity of the known gene signatures in predicting the prognosis of BC
patients.

Article Year RCD Model Gene AUC

Our 2023 Disulfidptosis 6 0.762 (1-year), 0.734 (3-year), 0.758 (5-year)

Lu, Liu, and Zhang 2022 (44) 2022 Metabolic 4 0.764 (1-year), 0.689 (3-year), 0.612 (5-year)

Chen, Luo, et al., 2022 (45) 2022 Pyroptosis 16 0.756 (1-year), 0.752 (3-year), 0.723 (5-year)

Li et al., 2022 (46) 2022 Cuproptosis 6 0.685 (1-year), 0.678 (3-year), 0.678 (5-year)

Sha et al., 2022 (47) 2022 Cuproptosis 2 0.554 (1-year), 0.527 (3-year), 0.649 (5-year)

Zhu et al., 2022 (48) 2022 Ferroptosis 6 0.821 (1-year), 0.678 (3-year), 0.651 (5-year)

Yu et al., 2022 (49) 2022 Necroptosis 6 0.701 (1-year), 0.716 (2-year), 0.708 (3-year)

Chen, Yang, et al., 2022 (50) 2022 Necroptosis 7 0.731 (1-year), 0.643 (3-year), 0.641 (5-year)
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ferroptosis model constructed by Zhu et al. was 0.821, 0.678, and

0.651 in 1-, 3-, and 5-years (48). The AUCs of the ferroptosis model

produced by Zhu et al. were 0.821, 0.678, and 0.651 in 1-, 3-, and 5-

year models. Although it had a good prediction effect in the first

year, our model AUC was above 0.734, which was more stable. We

also list other models more concerned with short-term survival

rates, such as the AUC of the necroptosis-related model at 1-, 2-,

and 3-year patients, which were 0.701, 0.716, and 0.708 (49). The

AUC of the necroptosis-related prognostic model constructed by

Chen et al. in 1-, 3-, and 5-year patients were 0.731, 0.643, and

0.641, respectively (50). Our prognostic model has adequate

predictive value. Our model involves only six genes, while other

models tend to have more genes. To a certain extent, our RS model

is more convenient to use. The C-index of the nomogram was 0.762

(95% CI: 0.711–0.813), indicating that the predicted results of 1-, 3-,

and 5-year patients were consistent with the actual results. The

expression of DGs in the high-risk group was significantly

increased, suggesting that genes have an adverse effect on the

prognoses of patients. Therefore, the prognostic model

constructed by DRGs is reliable and accurate. On the other hand,

it also shows the critical role of DGs in the occurrence,

development, and life processes of tumors. In summary, the

model we constructed can be considered a suitable prognostic

signal, and its mechanism of action in BC deserves further

exploration and verification.

Subsequently, we found the immune factors that determined

the prognoses of the high- and low-risk groups through the immune

analysis of the patients. The high-risk group had a large number of

macrophage M2 cell infiltrations. Macrophages M2 increase is

associated with tumor growth and poor prognosis of cancer 48,

and are considered essential biomarkers in cancer diagnosis and a

potential target for cancer treatment (51, 52). T cells CD8 is a

significant member of the low-risk group. In previous reports, T cell

CD8 can prevent tumor growth and promote immune response and

immunotherapy (53). This may be one of the reasons for the

survival difference between high- and low-risk groups. The TMB

study showed that PIK3CA had the highest mutation frequency in

the low-risk samples, while TP53 had the highest mutation

frequency in the high-risk groups. The mutation rate of TP53 in

patients with an increased risk of BC is 43%, while the mutation rate

of TP53 in patients with low risk is only 29%. Previous studies have

reported that the mutation of the TP53 gene is related to the poor

therapeutic effect and prognosis of BC (54, 55), confirming the poor

prognosis of patients with a high TP53 mutation rate in our high-

risk group.

Tumor treatment is an essential field of concern. Through IC 50

screening analysis of potential chemical drugs, we realized that low-

risk patients might be more sensitive to chemotherapy, ABT.888

(Veliparib, PARP inhibitors), AG.014699 (Rucaparib, PARP

inhibitors), AMG.706 (Motesanib, VEGFR inhibitors), ATRA,

and AUY922 (Luminespib, HSP90 inhibitors). GDC0941

(Pictilisib, PI3K inhibitors), Metformin, Methotrexate, Nilotinib,

Nutlin.3a (MDM2 inhibitors), Roscovitine, Temsirolimus,

Tipifarnib, and other drugs had a lower IC50 in the low-risk

group. High-risk patients resisted PARP and VEGFR inhibitors

and other drugs and were sensitive to docetaxel (a microtubule
Frontiers in Immunology 17108
depolymerization inhibitor) and parthenolide (NF-kB inhibitors).

Immunotherapy also occupies a crucial position in the treatment of

BC patients. The ESTIMATE results showed that the stromal

immunity and estimated scores of the high-risk group were low.

The TIDE analysis showed that the TIDE immune escape score of

the high-risk group was low. The combination of PD-1 and PDL-1

caused T cells to lose the ability to attack cancer cells, resulting in

the immune escape of tumor cells. The expression of immune

checkpoint genes, such as PD-1 and PDL-1, in high-risk patients,

was low, which may be the reason for the low TIDE immune escape

score in the high-risk group. However, based on the difference in

immune checkpoints between the high- and low-risk groups,

distinguished by the RS model constructed by DRGs, we found

that the expression of immune checkpoint genes in the high-risk

group was significantly lower than that in the low-risk group. It is

speculated that patients in the low-risk group are more likely to

induce an antitumor immune response through immune genes,

thus benefiting from immunotherapy, which is consistent with the

high Stromal Score, Immune Score, and ESTIMATE Score results of

the low-risk population in the previous article. TMB is a reliable

biomarker for predicting treatment outcomes in cancer patients

treated with ICI (56, 57). This is consistent with our earlier results

that ‘RS is significantly associated with TMB. Patients in the high-

risk group had higher TMB, antitumor immune dysfunction, poor

ICI treatment, and poor prognosis. In summary, combined with

drug sensitivity and immune efficacy analysis, we predict that low-

risk patients will benefit more from combining chemotherapy and

immunotherapy, providing a basis for individualized treatment of

BC patients. More drugs are worthy of selection and development

for low-risk patients. The effects of chemotherapy and

immunotherapy in the high-risk group were poor. The high

expression of disulfidptosis genes (e.g., SLC3A2, RPN1, BRK1,

ACTR2, ACTR3, SLC7A11, and NCKAP1) in the KM analysis of

breast cancer indicated the poor prognosis of patients. The

difference analysis between the high- and low-risk groups differed.

These genes were highly expressed in the high-risk group. Through

our study, targeted therapy of the disulfidptosis gene will benefit the

high-risk group.

In addition, we conducted in vitro validation through cell

formation assays and CCK-8 on the high-risk genes (TMEM45A

and SHCBP1) within the RS model. This initial validation provided

preliminary evidence of the feasibility of utilizing these two genes for

targeted therapy in breast cancer (BC). Subsequently, we conducted

cellular sequencing following the gene knockout of TMEM45A and

SHCBP1 to infer their roles in the biological mechanisms.

This study systematically analyzed the role of disulfidptosis-

related genes in the prognosis of breast cancer and their correlation

with the tumor microenvironment and clinical characteristics and

constructed a better prognosis prediction model. The model

performs well in predicting the survival outcome, tumor immune

microenvironment, and immunotherapy response of BC patients.

Furthermore, it expounds on its correlation with TMB, immunity,

and clinical treatment (chemotherapy and immunotherapy),

providing a reference for individualized and precise breast cancer

treatment. Finally, Experimental validation and sequencing were

also conducted to substantiate these findings.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1198826
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1198826
5 Conclusion

This study has the following contributions. First, this study is

the first to identify the subtypes associated with disulfidptosis and to

create a predictive model based on breast cancer DRGs. Although

disulfidptosis differs from other recognized cell death methods, it

may provide new therapeutic possibilities for cancer treatment.

Second, a variety of different technologies and databases are used to

improve the reliability of the results. We also defined subtypes

associated with disulfidptosis and created a predictive model for the

screening and testing processes. Finally, we first proposed a

disulfidptosis gene-targeted therapy for high-risk BC groups. We

intend to gather further patient samples during subsequent clinical

investigations to substantiate the dependability of our model.
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clinical treatment data reveals
bladder cancer therapeutic
vulnerability gene combinations
and prognostic risks
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and Yuyan Zhu1*

1Department of Urology, The First Hospital of China Medical University, Shenyang, China,
2Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China,
3Department of Laboratory Animal Science, China Medical University, Liaoning, Shenyang, China,
4Key Laboratory of Transgenetic Animal Research, China Medical University, Liaoning,
Shenyang, China
Background: Bladder cancer (BCa) is a common malignancy of the urinary tract.

Due to the high heterogeneity of BCa, patients have poor prognosis and

treatment outcomes. Immunotherapy has changed the clinical treatment

landscape for many advanced malignancies, opening new avenues for the

precise treatment of malignancies. However, effective predictors and models

to guide clinical treatment and predict immunotherapeutic outcomes are

still lacking.

Methods: We downloaded BCa sample data from The Cancer Genome Atlas to

identify anti-PD-L1 immunotherapy-related genes through an immunotherapy

dataset and used machine learning algorithms to build a new PD-L1

multidimensional regulatory index (PMRI) based on these genes. PMRI-related

column-line graphs were constructed to provide quantitative tools for clinical

practice. We analyzed the clinical characteristics, tumor immune

microenvironment, chemotherapy response, and immunotherapy response of

patients based on PMRI system. Further, we performed function validation of

classical PMRI genes and their correlation with PD-L1 in BCa cells and screening

of potential small-molecule drugs targeting PMRI core target proteins through

molecular docking.

Results: PMRI, which consists of four anti-PD-L1 immunotherapy-associated

genes (IGF2BP3, P4HB, RAC3, and CLK2), is a reliable predictor of survival in

patients with BCa and has been validated using multiple external datasets. We

found higher levels of immune cell infiltration and better responses to

immunotherapy and cisplatin chemotherapy in the high PMRI group than in

the low PMRI group, which can also be used to predict immune efficacy in a

variety of solid tumors other than BCa. Knockdown of IGF2BP3 inhibited BCa cell

proliferation and migration, and IGF2BP3 was positively correlated with PD-L1

expression. We performed molecular docking prediction for each of the core

proteins comprising PMRI and identified 16 small-molecule drugs with the

highest affinity to the target proteins.
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Conclusions: Our PD-L1 multidimensional expression regulation model

based on anti-PD-L1 immunotherapy-related genes can accurately assess

the prognosis of patients with BCa and identify patient populations that will

benefit from immunotherapy, providing a new tool for the clinical

management of intermediate and advanced BCa.
KEYWORDS

bladder cancer, regulation of PD-L1 expression, prognosis, immunotherapy
efficacy, molecular docking
Background

Bladder cancer (BCa) is the tenth most common malignancy

worldwide and has the sixth highest incidence in men, with

approximately 573,000 new cases and 213,000 cancer-related

deaths annually worldwide (1). Patients with muscle-invasive

bladder cancer (MIBC) have a poor prognosis, with an overall

five-year survival rate of 40–50%. For patients with limited MIBC,

neoadjuvant chemotherapy combined with radical cystectomy is the

primary treatment modality, whereas only palliative systemic

chemotherapy or immunotherapy is used for metastatic BCa (2).

BCa is considered an immunotherapy-responsive tumor, immune

checkpoint inhibition therapy targeting the immunosuppressive

microenvironment has revolutionized cancer treatment (3).

However, only a fraction of patients has experienced lasting

benefits from immune checkpoint inhibitors, limiting the use of

these promising strategies in clinical practice (3, 4). Therefore, there

is an urgent need to identify reliable molecular biomarkers to

predict the response to checkpoint blockade and improve the

clinical efficacy of these therapies.

Research on potential biomarkers for BCa immunotherapy has

focused on two aspects, (i) tumor cell-related markers, such as

intratumoral heterogeneity (ITH), tumor mutational burden

(TMB), intrinsic molecular subtypes (IMS), DNA damage repair

(DDR), intrinsic molecular subtypes, gene expression profile (GEP);

(ii) tumor microenvironment-related markers, such as tumor-

infiltrating lymphocytes (TIL), intrinsic molecular subtypes

(IMS), GEP. Damage response (DDR), intrinsic molecular

isoforms, GEP. (iii) Markers related to tumor microenvironment,

such as tumor infiltrating lymphocyte (tumor-infiltrating

lymphocyte TIL), programmed cell death protein (PD-1/PD-L1),

gastrointestinal microbiota (5, 6). However, owing to the high

heterogeneity of BCa, there is currently no biomarker with

sufficient clinical evidence to justify its routine use. Therefore,

there is a need to understand the role of immunotherapy in BCa

based on immunotherapy-related genes and to identify reliable

features to predict the prognosis of patients with BCa and their

response to immunotherapy and chemotherapy.

The expression of programmed cell death ligand 1 (PD-L1), an

important immunosuppressive protein on the surface of tumor
02112
cells, is regulated at multiple levels, including genomic alterations

(amplification or translocation), epigenetic modifications

(methylation of histones or CpG islands and histone acetylation),

transcriptional regulation (inflammatory stimulation and

oncogenic signaling), post-transcriptional regulation (miRNA, 3’-

UTR, RAS and angiotensin II status regulation), post-translational

modifications (ubiquitination, glycosylation, phosphorylation and

palmitoylation) (7). The pathways, proteins, and cytokines involved

in the regulation of PD-L1 expression are complex and diverse;

however, all of these regulatory pathways could be novel ways to

treat tumors. In the past few years, ICIs blocking the PD-1/PD-L1

pathway have emerged as therapeutic approaches that can improve

the overall survival of patients with mUC, but they are effective with

PD-L1 inhibitor therapy only in some patients. Consequently, it is

of great clinical significance to investigate the regulatory

mechanisms of PD-L1 expression in depth (3). Notably, clinical

prediction models constructed to integrate the regulatory

mechanisms of PD-L1 expression are lacking. Therefore,

exploring PD-L1 expression regulation models can help predict

the efficacy of anti-PD-1/PD-L1 immunotherapy in patients with

BCa to help them choose the treatment strategies.

In current study,we identified four genes that regulate PD-L1

expression in different dimensions based on the screening of

immunotherapy-related genes from an immunotherapy dataset

and combined them with machine learning methods to construct

a therapeutically guided PD-L1 Multidimensional Regulation Index

(PMRI). The different forms of validation all suggest that the PD-L1

multidimensional expression regulation model can accurately assess

the prognosis of patients with BCa and identify possible patient

populations benefiting from immunotherapy and chemotherapy.
Materials and methods

Obtaining sequence data from BCa
patients and identifying anti-PD-L1
immunotherapy-related genes

We downloaded expression profile data, corresponding clinical

information and pathological sections from The Cancer Genome
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Atlas (TCGA) (https://portal.gdc.cancer.gov/) database for BCa

patients, and raw RNA-seq data were normalized to fragments

per kilobase million (FPKM). The GSE13507, GSE32894, GSE31684

and GSE48075 cohorts were obtained from the Gene Expression

Omnibus (GEO) (https://cancergenome.nih.gov/) database. We

also downloaded the IMvigor210 immunotherapy data cohort, a

group of expression profile data and corresponding clinical

information for patients treated with anti-PD-L1 antibody

(atezolizumab) for uroepithelial carcinoma (8). After receiving

anti-PD-L1 antibody immunotherapy, patients were classified into

the following four categories based on response: complete remission

(CR), partial remission (PR), stable disease (SD), and progressive

disease (PD), and we set CR and PR in the IMvigor210 dataset as

the group responding to PD-L1 blockers and SD and PD as the

group not responding to PD-L1 blockers. Genes differentially

expressed in response to anti-PD-L1 immunotherapy were

identified by comparing the response and non-response groups

by the R package “DESeq2” at a threshold (p-value < 0.05), after

which we used WGCNA to obtain the module with the highest

correlation to the CR group and thus the anti-PD-L1

immunotherapy-related genes.
Unsupervised clustering

Based on the red module genes obtained from the above

WGCNA, we performed consensus clustering using the R

package “ConsensusClusterPlus” to identify BCa subtypes (9).
Construction and validation of PD-L1
multidimensional regulatory index and
histological validation at the protein level

We performed differential expression analysis of the modular

genes with the highest correlation with the CR group between tumor

and normal tissues with a threshold of logFC > 1 and fdr < 0.01.

Genes associated with prognosis in BCa patients were subsequently

screened by univariate cox regression analysis with a threshold of p-

value < 0.005, and finally multifactorial cox regression analysis was

used to construct a PD-L1 multidimensional regulatory index

(PMRI). PMRI was obtained for each BCa patient according to the

following formula: PD-L1multidimensional regulatory index (PMRI)

= Coef(Gene1) × Expr(Gene1) + Coef(Gene2) × Expr(Gene2) +……

+ Coef(Gene n) × Expr(Gene n). Where Expr(Gene n) represents the

expression of a particular gene and Coef(Gene n) represents the

coefficient obtained from multifactorial Cox analysis of genes.

GSE13507, GSE32894, GSE31684 and GSE48075 cohorts were

eliminated for batch effects and combined as an external

validation cohort.

Based on Kaplan-Meier method and subject operating

characteristic curve (ROC) to study TCGA cohort and GSE13507,

GSE32894, GSE31684, and GSE48075 cohorts to validate the

prognostic value of PMRI. We combined the commonly used

clinicopathological features to construct column line plots and
Frontiers in Immunology 03113
compared the validity of the column line plots by plotting 1-, 3-,

and 5-year calibration curves as well as ROC curves. We further

searched the Human Protein Atlas database (https://www.

proteinatlas.org/) (10) to obtain histological validation of CLK2,

IGF2BP3, P4HB and RAC3 at the protein level between bladder

tumor tissue and normal bladder tissue.
Gene set enrichment analysis and
immuno-infiltration analysis

GSEA was performed by the R package “clusterProfiler” to

evaluate the major enrichment pathways in the high-risk group, and

the HALLMARK, c5GO and c2KEGG gene sets were set as the

enriched gene sets with the screening conditions of |NES| > 1,

nominal p-value<0.05. The sample replacement test was performed

1000 times, so gene sets were obtained from the MSigDb database

(https://www.gsea-msigdb.org/gsea/msigdb/) download.

Tumor purity, stromal score, immune score and ESTIMATE

score (10) were calculated for each BCa patient using the

“ESTIMATE” package in the R program. A single sample gene set

enrichment analysis (ssGSEA) algorithm was also used to study the

level of immune infiltration based on different immune cell types

between the high PMRI and low PMRI groups. Lymphocyte scores

in pathological sections were graded using a semi-quantitative

scoring system (0-5) to describe tumor inflammation.
Analysis of drug treatment response and
immunotherapy response

We derived IC50 by ProPhetic algorithm to assess drug

response to common chemotherapy treatments for BCa,

comparing drug sensitivity to chemotherapy treatments in

patients with high and low PMRI. We also downloaded gene

expression of cancer cells to different drugs from Genomics For

Drug Sensitivity in Cancer (GDSC) database (https://

www.cancerrxgene.org/) (11) and the Cancer Treatment Response

Portal (CTRP) database (https://portals.broadinstitute.org/ctrp/)

(12) to download the gene expression data of cancer cells to

different drugs to analyze the gene expression of CLK2, IGF2BP3,

P4HB and RAC3 in relation to drug sensitivity.

The response of BCa patients to immunotherapy was

assessed by the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm score in the TIDE database (http://tide.dfci.

harvard.edu/) (13), and the immune escape potential between

high and low PMRI groups was investigated using the Wilcoxon

trial (TIDE score), with high TIDE scores often associated with

poorer immunotherapy response and stronger immune escape

potential. We also extracted clinical information from the

IMvigor210 dataset (atezolizumab) to assess the analysis of

differences between anti-PD-L1 immunotherapy groups

(responders or non-responders) between high/low PMRI (8).

These results were used to assess the predictive value of PMRI on

the effect of immune checkpoint therapy.
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Molecular docking simulation

We used MOE software to screen small molecule drugs that

bind to the target proteins and perform molecular docking

simulations. We downloaded the protein structures of the target

targets (CLK2-6KHE, IGF2BP3-6GX6, P4HB-7ZSC and RAC3-

2QME) from the PDB database and small molecule drugs were

obtained from the zinc15 database of FDA approved drugs and

subjected to energy minimization. We set LigX to 7 at pH and 300 K

to optimize the protonation state and hydrogen orientation of the

protein, and finally simulated the binding pose of IGF2BP3, RAC3,

CLK2 and P4HB to small molecule drugs by docking.
Cell culture

We purchased and used human BCa cell lines T24 and UM-

UC3 from the Shanghai Cell Bank of the Chinese Academy of

Sciences. T24 and UM-UC3 cells were cultured in medium

containing 5% fetal bovine serum against the wall. Cells were

cultured at 37°C with 5% CO2.
Small interfering RNA transfection

The purchased siRNA was transfected with lipo3000. T24 and

UM-UC3 cells were pre-plated into 6-well cell culture plates and

transfected when cell fusion reached about 70%. First, 7.5 mL of 20

mM siRNA solution and 125 mL of serum-free medium were mixed

well and incubated for 5 min at room temperature; 7.5 mL of

Lipo3000 and 125 mL of serum-free medium were mixed well and

incubated for 5 min at room temperature. The two solutions were

then mixed together and incubated for 15 min. Finally, the mixture

was added to the cells and the 6-well plate was shaken gently in an

“8” motion to mix the transfection solution into the medium. The

cells were incubated for 48 hours and then analyzed for transfection

efficiency. IGF2BP3-specific siRNA sequences are: si-IGF2BP3#1,

5 ’-GCTGGAGCTTCAATTAAGA-3 ’ ; s i-IGF2BP3#2, 5 ’-

CCTTGAAAGTAGCCTATAT-3’.
Protein blotting

Total cell lysates were extracted, normalized and attenuated for

electrophoresis. Proteins were separated by SDS-PAGE and

transferred to PVDF membranes. The membranes were then

blocked in 3% bovine serum albumin at room temperature,

incubated overnight with primary antibody, and then incubated

with secondary antibody.
RNA extraction and real-time PCR

A total of 14 BCa specimens were collected at the First Hospital

of China Medical University (Shenyang, China), and all samples
Frontiers in Immunology 04114
were rapidly frozen at -80°C immediately after collection. total RNA

was prepared from 14 BCa tissues by Trizol reagent (Invitrogen)

and reverse transcribed in PrimeScript RT premix (Takara). The

primer sequences for IGF2BP3 and PD-L1 primer sequences are

shown in Supplementary Table S1.
Cell Counting Kit-8 cell activity assay and
EdU cell proliferation assay

CCK8 and EdU were used to detect cell viability. The digested

cells were washed and resuspended and then counted using a cell

counting plate, and the counts were averaged three times. T24 and

UM-UC3 cells transfected with si-IGF2BP3 were spread in 96-well

plates, after which 2000 cells were inoculated into each well, and 6

replicate wells were set up for each group, and five groups of 0h,

24h, 48h, 72h and 96h were set up. At 0h, 24h, 48h, 72h and 96h, 10

ml of CCK8 solution was added to each well and mixed thoroughly

with a pipette gun, followed by incubation in a tinfoil-wrapped

light-proof treatment in an incubator at 37°C for 4 h. The

absorbance values of each well at 450 nm were measured and

counted under light-proof conditions using a multi-mode enzyme

marker. The si-IGF2BP3-transfected T24 and UM-UC3 cells were

inoculated in 24-well plates, and each well was incubated with EdU

medium for 2 h. The cells were washed twice with PBS. Cell fixation

solution (PBS containing 4% paraformaldehyde) was added to each

well and fixed at room temperature for 30 min, after which the

glycine decolorization shaker was added and incubated for 5 min

before discarding the glycine solution and adding 100 ml of

permeant decolorization shaker with slow shaking permeation.

After that, staining reaction solution was added to each well

under light-proof treatment. Images were examined using

fluorescence microscopy. Each experiment was repeated

three times.
Cell migration capacity assay

Wound-healing and Transwell assays were performed to

determine cell invasion ability. Parallel lines were drawn on the

bottom surface of six-well plates using marker pens, T24 and UM-

UC3 cells were resuspended and the plates were spread, and the

next day a straightedge was used to create scratches than using a 10

ml gun tip with the direction of the scratch perpendicular to the

marker line, after which the cells were washed 3 times with PBS to

wash away the floating cells, and after 72 h the cells were removed

and photographed under a microscope. Transfected T24 and UM-

UC3 cells were collected and starved in serum-free medium for 4h

to remove the effect of serum. The cells were digested with trypsin

and resuspended in serum-free incomplete medium, followed by

the addition of the above cell suspension in the upper chamber of

the Transwell and complete medium containing 10% fetal bovine

serum in the lower chamber for 48 h. The Transwell was washed

three times with PBS, and the cells adhering to the lower membrane

were fixed with 4% paraformaldehyde and stained with crystal

violet. Each experiment was repeated three times.
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Statistical analysis

Survival curves were plotted using the Kaplan-Meier method to

compare survival differences between the two groups Correlations

were assessed using Spearman correlation analysis. P-values ≤0.05

were considered statistically significant. All statistical analyses were

performed by R. Experimental data were processed and plotted

using Image J and GraphPad software. The workflow of this study is

shown in Supplementary Figure S1.
Results

Identification of anti-PD-L1
immunotherapy-related genes in BCa

We performed a difference analysis of the IMvigor210 dataset

between the groups responding to PD-L1 blockers (CR and PR

groups) and those non-responding to PD-L1 blockers (SD and PD

groups) with a threshold of p-value less than 0.05, and obtained

3301 genes and constructed a volcano plot (Figure 1A). To identify

the modules with the highest correlation with the complete

response group (CR group), we applied WGCNA to the TCGA-

BLCA dataset to construct a co-expression network and finally

aggregated the 3301 genes obtained above into 6 modules

(Figure 1B) with an optimal soft threshold of 4 to ensure a scale-

free topology (Figure 1C). The correlations between the module

feature genes and multiple variables were obtained by calculating

the Pearson correlation coefficient (PCC), where the red module

was significantly positively correlated with the CR composition

(PCC=0.25, P=2E-06) (Figure 1D). We then performed GO and

KEGG enrichment analysis of the genes in the red module, and the

results showed that they are mainly involved in the cell cycle, DNA

replication, and the pathway of DNA unwinding helicase

activity (Figure 1E).
Identification of anti-PD-L1
immunotherapy-associated Clusters and
differences in immune microenvironment
and immunotherapy response among
different Clusters

We performed a cluster analysis of BCa patients in the TCGA

cohort using the red module genes obtained after WGCNA analysis,

and the results showed that the BCa patients in the TCGA cohort

could be well divided into two clusters, and there was good internal

stability and consistency between the two clusters (Supplementary

Figure S2A). Kaplan-Meier curves showed that patients in Cluster1

group had significantly worse prognosis than Cluster2 group (p <

0.05) (Supplementary Figure S2B). Comparison of the differences in

immune microenvironment between the two Clusters by the

ESITIMATE algorithm showed that Cluster 2 had a higher

ESITIMATE score, immune score, stromal score and lower tumor

purity compared to Cluster 1 (Supplementary Figure S2C). The

CIBERSORT algorithm showed a significant difference in immune
Frontiers in Immunology 05115
cell infiltration between the two Clusters. Significantly different,

with a significantly higher proportion of CD8 T cells in Cluster 2

than in Cluster 1 (p < 0.05) (Supplementary Figure S2D).
Construction and validation of PD-L1
multidimensional regulatory index

We performed differential and prognostic analyses on the red

module genes obtained from the WGCNA analysis, after which in

order to construct a risk model associated with PD-L1

immunotherapy and its derived PD-L1 multidimensional

regulatory index (PMRI), we used multifactorial Cox analysis to

screen four genes with independent prognostic value to construct

the PMRI, which were IGF2BP3 (HR= 1.225, 95% CI=1.026-1.463,

P=0.025), P4HB (HR=1.573, 95% CI=1.170-2.113, P=0.003), RAC3

(HR=1.256, 95% CI=1.054-1.496, P=0.011) and CLK2 (HR=0.614,

95% CI=0.456-0.825, P=0.001)(The coefficients obtained from the

multifactorial Cox analysis of the four genes in PMRI were 0.203 for

IGF2BP3, 0.453 for P4HB, 0.228 for RAC3 and -0.488 for CLK2

(Figures 2A, B). We compared the expression levels of IGF2BP3,

P4HB, RAC3 and CLK2 in TCGA BCa tissues and normal tissues,

and the results showed that all four genes were significantly

upregulated in tumor tissues (Figure 2C). We also obtained

immunohistochemical staining results of CLK2, IGF2BP3, P4HB

and RAC3 from the HPA database in normal and BCa tissues,

demonstrating that these four genes were highly expressed in BCa

tissues (Figure 2D).
PD-L1 multidimensional modulation index
predicts the prognosis of BCa patients

Kaplan-Meier curves showed that the high PMRI group had a

worse prognosis in the OS phase compared to the low PMRI group

(p < 0.05) (Figure 3A). To assess the prognostic predictive validity

of PMRI, we obtained the GSE13507, GSE32894, GSE31684, and

GSE48075 cohorts as a validation cohort, and the results showed

that the mortality rate was significantly higher in the high-PMRI

group than in the low-PMRI group (p < 0.05), suggesting that PMRI

has a better prognostic predictive value at OS stage (Figure 3B). The

results by univariate and multivariate regression analysis showed

that PMRI was an independent risk factor (Figures 3C, D). We also

performed a difference analysis of different common clinical

characteristics in the high/low PMRI group, and the results

showed that Cluster, grading and BCa subtypes were significantly

different in the high/low PMRI group (p < 0.05) (Figure 3E).

Analysis of PMRI index and clinical trait stratified survival curves

showed that PMRI could significantly differentiate the prognosis of

each clinical subgroup, with patients in the high PMRI group

having a had a poorer prognosis (Supplementary Figure S3).

We also obtained the characteristics of currently published

prognostic models for BCa and compared them with the

prognostic prediction accuracy of the PMRI in this study, and the

results showed that the PMRI outperformed other prognostic

models in predicting BCa patients (Figure 3F; Supplementary
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Figure S4), (14–20).The area under the ROC curve (AUC) can be

used to analyze the validity of the PMRI prognostic prediction, and

the AUCs at 1, 3 and 5 years were 0.709, 0.663 and 0.623, and the 1-

year AUC was better than other clinical features in predicting

patient survival, suggesting that this PMRI can better predict the

short- and long-term survival of BCa patients (Figures 3G, H).

Finally, we constructed column line graphs based on the PMRI and

other clinical features (age and clinical stage) from multivariate

analysis, with the PMRI accounting for the major part of the total

column line graph score (Figure 3I). The calibration curve showed

that the 1-, 3-, and 5-year column line plots exhibited good

predictive accuracy compared to the reference line (Figure 3J).

These results above suggest that PMRI can accurately and reliably

predict the survival outcome of BCa patients.
PD-L1 multidimensional regulatory index
predicts pan-cancer prognosis

To explore the prevalence of PMRI in other cancers, we used the

model equation for PMRI described above to calculate PMRI values

for patients with other cancer types in TCGA and to plot Kaplan-

Meier survival curves for the high/low PMRI groups. For Overall

Survival (OS), patients in the high PMRI group in KIRP, LGG,

LUAD, MESO, PCPG, SARC, THCA, and UCEC had a poorer

prognosis, while patients in the low PMRI group in LAML had a

poorer prognosis (Figure 4A). For Disease Specific Survival (DSS),

patients in the high PMRI group in BLCA, KIRC, KIRP, LGG,
Frontiers in Immunology 06116
MESO, SARC, SKCM, THCA, and UCEC had poorer Disease

Specific Survival. The patients in the low PMRI group in CESC

had poorer Disease-Specific Survival (Figure 4B). For Disease Free

Interval (DFI), patients in the high PMRI group in BLCA, LGG,

SARC and UCEC had shorter Disease Free Interval, while patients

in the low PMRI group in ESCA had shorter Disease Free Interval

(Figure 4C). For Progression Free Interval (PFI), patients in the

high PMRI group had shorter Progression Free Interval in BLCA,

KIRP, LGG, MESO, SARC, SKCM and UCEC, while patients in the

low PMRI group had shorter Progression Free Interval in CESC and

PRAD. Progression Free Interval in CESC and PRAD (Figure 4D).

The above results suggest that PMRI has a good effect in predicting

prognosis not only in BCa but also in other cancers.
Correlation of gene set enrichment
analysis and PD-L1 multidimensional
regulatory index with the
tumor microenvironment

To explore the cancer signaling pathways associated with PMRI,

we performed GSEA analysis in the high PMRI and low PMRI

groups, and the results showed that the high PMRI group was

significantly enriched in HYPOXIA, IL2_STAT5_SIGNALING,

IL6_JAK_STAT3_SIGNALING, INFLAMMATORY_ RESPONSE,

INTERFERON_GAMMA_RESPONSE, MTORC1_SIGNALING,

and PI3K_AKT_MTOR_SIGNALING signaling pathways, and

the above signaling pathways are involved in the regulation of
B C

D E

A

FIGURE 1

Identification of anti-PD-L1 immunotherapy-related genes in BCa. (A) Volcano plot of anti-PD-L1 blocker antibodies (CR and PR groups) versus anti-
PD-L1 antibody non-responsive groups (SD and PD groups) for differential analysis. (B) Cluster dendrogram of 3301 genes with significant
differences. (C) Selection of optimal soft threshold power over a wide range. (D) Tabular cells showing Pearson correlation coefficients with p-values
between modular feature genes and multiple variables. (E) GO enrichment analysis and KEGG enrichment analysis of the red module genes.
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PD-L1 expression levels, so it can be confirmed that PMRI is closely

related to PD-L1 expression levels (21) (Figure 5A). In addition, by

performing GO and KEGG enrichment analysis on the high PMRI

group, the results showed that high PMRI was closely associated

with immune cell infiltration (Figure 5B).

We used the ESTIMATE algorithm to assess immune cell

infiltration in the tumor microenvironment of BCa patients, and

the results showed that patients in the high PMRI group had

significantly higher TME scores (ESTIMATE score, immune score

and stromal score) and significantly lower tumor purity scores than

those in the low PMRI group, indicating that compared to the low

PMRI group, patients in the high PMRI group had a higher

percentage of immune and stromal cell infiltration ratio was

higher and tumor purity was lower in the high PMRI group

compared to the low PMRI group (Figure 5C). The results of

immune-related function analysis by ssGSEA algorithm showed

that HLA and immune checkpoint expression were significantly

higher in the high PMRI group than in the low PMRI group

(Figure 5D). We then compared the expression of common HLA

molecules, immunostimulatory genes and immunosuppressive

genes in the high/low PMRI group, and most common HLA
Frontiers in Immunology 07117
molecules, immunostimulatory genes and immunosuppressive

genes were highly expressed in the high PMRI group, such as

PD-L1, PD-1 and CTLA-4 (Figures 5E–G). We confirmed the

higher level of immune cell infiltration in patients in the high

PMRI group (TCGA-XF-AAMX) than in patients in the low PMRI

group (TCGA-ZF-A9R7) by TCGA pathological sections

(Figures 5H, I). Taken together, the results suggest that our

patients in the high PMRI group may correspond to BCa hot

tumors while those in the low PMRI group may correspond to

BCa cold tumors.
Association of PD-L1 multidimensional
modulation index with
immunotherapy efficacy

We used the IMvigor 210 database to analyze the

immunotherapy response in the high/low PMRI population, and

the results showed that the PMRI scores of those who responded to

anti-PD-L1 antibodies were significantly higher than those who did

not respond to anti-PD-L1 antibodies, indicating that high PMRI
B C

D

A

FIGURE 2

Construction of PD-L1 multidimensional regulatory index and validation of immunohistochemical staining results. (A) Forest plots of four PMRIs
obtained by multifactorial Cox analysis. (B) Constructed histograms of four gene coefficients composed of PMRI. (C) Comparison of the expression
levels of IGF2BP3, P4HB, RAC3 and CLK2 in TCGA BCa tissues and normal tissues. (D) Immunohistochemical staining results of CLK2, IGF2BP3,
P4HB and RAC3 in normal and BCa tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1301157
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1301157
scores were strongly associated with better immunotherapy

outcomes (Figure 6A). We also determined the difference in

expression of the four genes that construct the PMRI score

between the responding and non-responding groups, and the

results showed that all four genes (IGF2BP3, CLK2, P4HB and

RAC3) were significantly more highly expressed in those who

responded to anti-PD-L1 antibodies (Figure 6B). In addition,

higher expression levels of the immune checkpoints PD-1, PD-L1

and CTLA-4 in the high PMRI group and a significant positive

correlation between PMRI score and expression of PD-1, PD-L1 and

CTLA-4 were strongly associated with a good prognosis in the OS
Frontiers in Immunology 08118
phase of BCa (Figures 6C–E). Patients with lower TIDE scores were

more likely to benefit from immunotherapy (13) and high PMRI

group had a significantly higher TIDE score than the low PMRI

group, and it can be inferred that the high PMRI group responded

better to immunotherapy (Figure 6F). In addition, we found

significant differences in MSI and TMB between the high/low

PMRI groups (Figures 6G, H). Finally, we assessed the value of

PMRI score in predicting the efficacy of immunotherapy by PMRI

scoring in cancer patients in pan-cancer, and the results showed

significant differences in TIDE scoring between the low PMRI

scoring group and the high PMRI group in BRCA, CSC, ESCA,
B C D
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A

FIGURE 3

Association of PD-L1 multidimensional regulatory indices with clinical traits and construction of line plots. (A) Kaplan-Meier survival curves for the
TCGA cohort. (B) Kaplan-Meier survival curves for the GSE13507, GSE32894, GSE31684 and GSE48075 cohorts. (C, D) Univariate and multivariate
regression analyses. (E) Common clinical characteristics (Cluster, age, sex, grade, stage, T, M, N, BCa subtype and whether lymphovascular invasion)
were analyzed for differences in the high/low PMRI group. (F) Histogram of PMRI index compared with other BCa prognostic indices. (G) ROC
curves of PMRI at 1, 3 and 5 years. (H) AUC comparison of PMRI with other clinical traits at 1, 3 and 5 years. (I) Column line graphs constructed
based on PMRI, age, and clinical stage. (J) Calibration curves for 1-year, 3-year and 5-year overall survival. *p < 0.05, **p < 0.01, ***p < 0.001.
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HNSC, LGG, LUAD, LUSC, PAAD, TGCT, THCA, and UCEC,

suggesting that PMRI scores can also be used to assess

immunotherapy efficacy in pan-cancer in addition to in BLCA

(Figure 6I). In addition, we collected genes that have been currently

reported to be positively associated with immune efficacy and

negatively associated with immune efficacy and analyzed them for

association with PMRI (22–24). The results showed that PMRI was

significantly positively associated with positive immune efficacy-

related genes (MSH2, MSH6, NRAS and POLD1) and negatively

associated with negative immune efficacy-related genes (STK11)

(Figure 6J). The above results suggest that PMRI can predict the

effect of immunotherapy and that patients in the high PMRI group

have a better effect on immunotherapy.
Frontiers in Immunology 09119
Association between PD-L1
multidimensional modulation index and
chemotherapy response and common
drug sensitivity

To guide the clinical use of drugs in BCa patients, we analyzed the

response to common BCa chemotherapeutic drugs in the high PMRI

and PMRI groups, and the IC50 was negatively correlated with

patients’ sensitivity to the drugs. The results showed that patients in

the high PMRI group were more effective in treatment with Cisplatin,

while the low PMRI group was more effective in treatment with

Gefitinib and Methotrexate treatment was more effective

(Supplementary Figure S5A). We collected data from the TCGA
B

C

D

A

FIGURE 4

Predictive value of PMRI in other cancers. Using Kaplan-Meier survival curve analysis, patients in the high PMRI group and low PMRI group were
compared in pan-cancer for Overall Survival (OS) (A), Disease Specific Survival (DSS) (B), Disease Free Interval (DFI) (C), and Progression Free Interval
(PFI) (D).
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cohort to analyze the difference in PMRI scores between the cisplatin-

responsive group and the non-responsive group. The results showed

that the PMRI score in the cisplatin-responsive group (CR&PR) was

significantly higher than that in the cisplatin-non-responsive group

(PD&SD) (Supplementary Figure S5B). In addition, the relationship

between drug sensitivity and mRNA expression of P4HB, IGF2BP3,

RAC3 and CLK2 was analyzed by GDSC and CTRP databases, with

positive correlation representing gene expression associated with drug

resistance and negative correlation representing genes associated with

drug sensitivity. The results of both databases showed that the mRNA

expression of P4HB correlated with most chemotherapeutic drug

resistance, and the mRNA expression of CLK2 correlated with most

chemotherapeutic drug sensitivity (Supplementary Figures S5C, D).

These results suggest that PMRI is an effective indicator for predicting

the efficacy of commonly used chemotherapy drugs (cisplatin and
Frontiers in Immunology 10120
methotrexate) in BCa, and can be used as a potential therapeutic target

for BCa chemotherapy.
Small molecule drug candidate prediction
for core target proteins

Molecular docking is a structure-based computational

algorithm for compound screening. We obtained the protein

structures of IGF2BP3, RAC3, CLK2 and P4HB from the PDB

database for molecular docking with 1379 FDA-approved small

molecule drugs. Showing the top four small molecules with the

highest binding power to the IGF2BP3 binding pocket (Nonoxynol-

9, Cobicistat, Valrubicin, and Indinavir) (Figures 7A–D), the top

four small molecules with the highest binding power to the RAC3
B
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FIGURE 5

Correlation analysis of GSEA and tumor microenvironment. (A, B) GSEA analysis of patients in the high PMRI group. (C) Comparison of tumor purity,
ESTIMATE score, immune score and stromal score between patients in the high PMRI group and low PMRI group. (D) Comparison of immune-related
functions between patients in the high PMRI group and low PMRI group. (D) Comparison of HLA molecule (E), immunostimulatory gene (F) and
immunosuppressive gene (G) expression between patients in the high PMRI group and low PMRI group. Level of immune cell infiltration in TCGA
pathological sections of patients in the low PMRI group (H) and patients in the high PMRI group (I). *p < 0.05, **p < 0.01, ***p < 0.001, ns, Non Significance.
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binding pocket (Tessalon, Cobicistat, Nonoxynol-9, and

Gadofosveset) (Figures 7E–H), the top four small molecules with

the highest pocket binding to CLK2 (Saquinavir, Amaryl, Trypan

Blue, and Irinotecan) (Figures 7I–L), and the top four small

molecules with the highest pocket binding to P4HB The top four

small molecules with the highest pocket binding (Gadofosveset,

Propantheline, Tessalon and Cobicistat) (Figures 7M–P). For
Frontiers in Immunology 11121
example, Cobicistat (ZINC000085537014) forms hydrogen bonds

with IGF2BP3 amino acid residues Glu-69, Ser-58 and Arg-79,

where Glu-69 and Ser-58 act as hydrogen bond acceptors and Arg-

79 as a hydrogen bond donor. In addition, these small molecules

form van der Waals (VDW) interactions with residues around the

protein receptor, contributing to the binding between the small

molecules and IGF2BP3, RAC3, CLK2 and P4HB.
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FIGURE 6

PD-L1 multidimensional modulation index in response to immunotherapy. (A) Box plots of PMRI scores in the responding and non-responding
groups. (B) Differences in IGF2BP3, CLK2, P4HB and RAC3 expressions between the responding and non-responding groups. (C–E) Differences in
PD-1, PD-L1 and CTLA-4 expression between high/low PMRI groups, correlation of PMRI with PD-1, PD-L1 and CTLA-4 expression and prognostic
correlation of PMRI with PD-1, PD-L1 and CTLA-4. Differences in TIDE score (F), MSI (G) and TMB (H) between the high PMRI group and low PMRI
group. (I) PMRI scores are used to assess immunotherapy efficacy in pan-cancer. (J) Association of PMRI index with genes related to positive/
negative immune efficacy. *p < 0.05, **p < 0.01, ***p < 0.001.
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Knockdown of IGF2BP3 inhibits
proliferation and migration of BCa and
IGF2BP3 positively correlates with PD-L1

To investigate the role of IGF2BP3 in BCa cells, two siRNAs

(IGF2BP3-1, IGF2BP3-2) were designed to silence IGF2BP3

expression in T24 and UM-UC3 cells. The expression of IGF2BP3

after knockdown was verified by protein blotting, and the results

showed that the above two siRNAs could effectively knock down the

expression of IGF2BP3 (Supplementary Figures S6A, B). We then

performed CCK8, EdU, wound healing and Transwell experiments

on T24 and UM-UC3 cells transfected with si-IGF2BP3, respectively.

The CCK8 results showed that the proliferation ability of T24 and

UM-UC3 cells in the NC group was significantly higher than that of

both si-IGF2BP3 groups at 24, 48, 72 and 96 h (p < 0.05, Figures 8A,

B). The results by EdU staining assay showed that knockdown of

IGF2BP3 gene had significantly lower proliferative capacity for T24

and UM-UC3 cells than the NC group (p < 0.05, Figures 8C, D). Both

wound healing assay and Transwell assay results showed that the

migratory ability of T24 and UM-UC3 cells with low expression of

IGF2BP3 was significantly reduced (p < 0.05, Figures 8E–H). The

above results suggest that knockdown of IGF2BP3 expression can

inhibit the proliferation and migration of BCa cells.

We then collected 14 BCa tissue samples to investigate the

correlation between IGF2BP3 and PD-L1, and found a significant

positive correlation between IGF2BP3 and PD-L1 (R=0.596, P

value=0.024, Figure 8I). We found a significant decrease in the

protein level of PD-L1 after silencing IGF2BP3 expression in T24

and UM-UC3 cells by WB experiments (Figures 8J, K;

Supplementary Figures S6C, D). In addition, we constructed a

pattern diagram of the relationship between the four genes

constructing the PMRI index and PD-L1 (Figure 8L).
Discussion

Advanced or metastatic BCa is an aggressive malignancy

associated with poor long-term survival outcomes (17, 25, 26).

Immune checkpoint inhibitors targeting programmed cell death 1

(PD-1) or PD-L1 have recently been shown to be effective in

patients with BCa (27). Therefore, more accurate and reliable

immunotherapy-related markers are needed to predict survival

status and immunotherapy response in patients with BCa. In this

study, we established a PMRI constructed from four anti-PD-L1

immunotherapy-related genes (IGF2BP3, P4HB, RAC3, and CLK2)

based on an anti-PD-L1 immunotherapy dataset. We found an

association between high PMRI not only with poor prognosis in

patients with BCa, but also with therapeutic strategies that could

help differentiate and predict the efficacy of immunotherapy in

patients with BCa, and thus improve patient prognosis. In vitro

experiments and preliminary virtual screening further identified the

biological functions and potential druggability of PMRI. Thus, our

PMRI can predict the prognostic risk and immunotherapy response

of BCa. The derived PMRI can be used as a new indicator to predict

BCa prognosis and immunotherapy benefits, and may provide

valuable insights to find new BCa treatment strategies.
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An important finding of this study was the exploration of the

therapeutic potential for BCa from the new perspective of PD-L1

expression co-regulation patterns. To determine whether PMRI can

predict the efficacy of anticancer immunotherapy in patients with

BCa, we compared the expression levels of common immune

checkpoints and HLA molecules between the high and low PMRI

groups and found that the majority were significantly upregulated in

the high PMRI group, with PD-1, PD-L1, and CTLA-4 expression

levels significantly correlated with PMRI scores. The results showed

that the TIDE scores in the high PMRI group were significantly lower

than those in the low PMRI group, suggesting that ICI

immunotherapy is more effective in treating the high PMRI

population. We also scored PMRI for TIDE immune efficacy in

pan-cancer, demonstrating that it can be used not only as a potential

biomarker to predict BCa immunotherapy response and screen

suitable patients, but also for predicting immunotherapy efficiency

in pan-cancer. Consistent with the TIDE score results, there were

significant differences in PMRI scores between the responding and

non-responding groups of uroepithelial cancer patients in response to

PD-L1 therapy in the IMvigor 210 cohort, with the responding group

having higher PMRI scores, validating the efficacy of anti-PD-L1

immunotherapy for patients in the high PMRI score group. However,

we predicted the response of BCa patients to treatment with common

chemotherapeutic agents based on the IC50 values of the drugs.

Additionally, we calculated the association between gene expression

and drug sensitivity, and found that common chemotherapeutic

agents (e.g., cisplatin and gemcitabine) also differed significantly

between PMRI subgroups. These results suggest that we

constructed the PMRI as a valid indicator to assess the response of

patients with BCa to immunotherapy and chemotherapy, to

accurately assess the prognosis of patients, and to identify the

patient population that will benefit from immunotherapy.

Current predictive biomarkers for PD-1/PD-L1 inhibitors include

predictors, such as TMB,MSI, PD-L1, IFN-g, TIL, and serummarkers

(IL-6/IL-8/LDH/CRP/B2M) (5). The other cytokines and serum

markers predict the efficacy of immunotherapy in terms of the

immune microenvironment. In our study, we constructed a PMRI

based on immunotherapy datasets and from the perspective of the

multifaceted regulation of PD-L1 expression in cancer cells and found

that it not only correlated significantly with TMB and MSI, but also

validated its effectiveness in predicting immunotherapy efficacy in

patients with BCa using the TIDE algorithm and external

immunotherapy datasets. Our results strongly suggest that the

pathways involved in regulating PD-L1 expression may also be

considered as candidate reference factors for the comprehensive

treatment of intermediate and advanced bladder tumors.

The four genes ultimately included in the PMRI were significantly

and highly expressed in patients in the anti-PD-L1 immunotherapy

response group. Insulin-like growth factor 2 mRNA-binding protein 3

(IGF2BP3) is an RNA-binding protein (RBP). Researchers found that

IGF2BP3 can act as a PD-L1 mRNA reader, recognizing and

regulating the stability of METTL3-mediated m6A-modified PD-L1

mRNA in a METTL3-dependent manner to prevent PD-L1 mRNA

degradation (28). The P4HB gene encodes a protein disulfide

isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1) that

are involved in the protein folding process of the endoplasmic
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reticulum. Moreover, researchers found that PDI and ERO1, acting in

concert, could promote oxidative protein folding of PD-L1 in the

endoplasmic reticulum thereby enhancing PD-L1 expression (29, 30).

Cancer cells have been reported to utilize the JAK-STAT signaling

pathway to increase PD-L1 mRNA expression, whereas RAC3

overexpression can activate JAK/STAT signaling through the

PYCR1 axis to regulate PD-L1 expression, and thus suppress tumor

immunity to provide favorable conditions for BCa progression (21,

31). Similarly, the binding of Wnt ligands to activated EGFR induces
Frontiers in Immunology 13123
b-catenin/TCF/LEF to form a complex with the PD-L1 promoter

region and induces PD-L1mRNA expression in tumor cells.CLK2 has

been reported to increase PD-L1 mRNA expression to evade T-cell

attack via the Wnt/b-catenin/TCF/LEF pathway (32, 33). The anti-

PD-L1 immunotherapy-related genes are closely related to the

transcriptional, post-transcriptional, and protein stability regulation

of PD-L1 in cancer cells. Consistent with these observations, we

validated the function of classical PMRI genes and their relevance to

PD-L1 expression in BCa cells. The results showed that IGF2BP3
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FIGURE 7

Molecular docking pose. Screening of candidate small molecules for target proteins using molecular docking. Docking poses of IGF2BP3 active
pocket with Nonoxynol-9 (A), Cobicistat (B), Valrubicin (C) and Indinavir (D) are shown. Docking poses of RAC3 active pocket with Tessalon (E),
Cobicistat (F), Nonoxynol-9 (G) and Docking poses of the CLK2 active pocket with Saquinavir (I), Amaryl (J), Trypan Blue (K) and Irinotecan (L).
Docking poses of the P4HB active pocket with Gadofosveset (M), Propantheline (N), Tessalon (O) and Cobicistat (P) in docked position. On the left is
the overall structure of IGF2BP3, RAC3, CLK2 and P4HB with small molecule drugs, where the small molecules are embedded into the protein. In
the middle is a detailed diagram of the interaction between IGF2BP3, RAC3, CLK2 and P4HB with small molecule drugs, where the hydrogen bonds
are shown as yellow dashed lines. On the right is a 2D interaction diagram between IGF2BP3, RAC3, CLK2 and P4HB and small molecule drugs,
where green arrows indicate side chain hydrogen bonding interactions, blue arrows indicate main chain hydrogen bonding interactions, and
hexagons represent residues interacting with aromatic hydrocarbons.
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promoted the proliferation and migration of BCa cells and positively

regulated PD-L1 expression. These results suggest that anti-PD-L1

immunotherapy-related genes and their derived PMRI are closely

associated with PD-L1 expression and tumor immunity in cancer

cells. PMRI genes from DNA induction, transcriptional, translational,

and post-translational modifications of PD-L1 expression. The

synergistic regulation of PD-L1 expression by PMRI genes from

DNA induction, transcriptional, translational, and post-translational

modifications may have potential value in therapeutic evaluation and

translational research.
Frontiers in Immunology 14124
As another application of PITI efficacy prediction, we

demonstrated the feasibility of a structure-based approach for

identifying candidate small-molecule drugs that target core

proteins. We used IGF2BP3, RAC3, CLK2, and P4HB as small-

molecule drug targets and screened potential small-molecule drugs

by molecular docking from the zinc database of Food and Drug

Administration (FDA)-approved drugs using MOE software.

Valrubicin is among the top four small-molecule drugs with the

highest affinity for IGF2BP3, and it has been reported in clinical

trials for superficial BCa chemotherapy, demonstrating that
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FIGURE 8

Knockdown of IGF2BP3 inhibits BCa cell proliferation and migration and IGF2BP3 correlates with PD-L1. CCK8 viability assay (A, B), EdU cell
proliferation capacity assay (C, D), wound healing capacity assay (E, F) and transwell cell migration capacity (G, H) in T24 and UM-UC3 cells
transfected with two si-IGF2BP3, respectively. (I) qPCR assay of IGF2BP3 and PD-L1 correlation in 14 BCa tissues. (J, K) PD-L1 protein expression
levels in T24 and UM-UC3 cells after siRNA transfection. (L) PMRI index gene and PD-L1 correlation pattern plot. *p < 0.05, **p < 0.01, ***p < 0.001.
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valrubicin is effective in ablating tumors remaining in the bladder

after incomplete transurethral resection of bladder tumors and in

preventing and delaying bladder tumor recurrence (34). A clinical

trial of cobicistat, which has a strong affinity to RAC3, was

conducted for the treatment of human immunodeficiency virus

exposure prophylaxis (35). Irinotecan is among the top four small-

molecule drugs with the highest binding affinity to the CLK2

binding pocket, and it has been widely used in clinical trials for

solid tumors, such as colorectal, pancreatic, and biliary tract cancers

(36–38). Furthermore, Gadofosveset, which is known to have a

P4HB-docking pocket with the highest affinity, was reported in

clinical trials in combination with MR angiography for the

treatment of peripheral vascular disease; results showed that at

0.03 mmol/kg it was not only safe and effective for MR angiography

of occlusive disease of the main iliac artery, but also had improved

accuracy over non-enhanced MR angiography (39). Although the

specific mechanisms of these candidate small-molecule compounds

remain to be explored in depth, our findings suggest that they have

great potential for anti-PD-L1 immunotherapy in BCa, especially in

the population of BCa patients with high PMRI scores.

Although our constructed PMRI can closely respond to and

predict the prognosis, chemotherapy sensitivity, and immunotherapy

efficacy of BCa and many other cancers, this study has some

limitations. First, the data for our analysis were obtained from

public databases, which may have led to a case-selection bias. In

addition, there is a need to collect large amounts of clinical case-data

for evaluation to further validate the accuracy of our findings. Finally,

further in vivo and in vitro experiments are required to validate the

specific molecular mechanisms of the genes involved in the

construction of the PMRI in BCa progression.
Conclusion

In summary, based on the comprehensive analysis of multiple

aspects of BCa by PMRI constructed from anti-PD-L1

immunotherapy-related genes, we found that PMRI could

effectively predict the prognosis and immunotherapeutic effects in

patients with BCa. This study identified novel prognoses,

therapeutic biomarker combinations, and potential therapeutic

targets for anti-PD-L1 immunotherapy, providing useful insights

for future research on BCa treatment strategies. In the era of cancer

immunotherapy, exploring co-regulation patterns of PD-L1

expression and their oncological therapeutic potential provides

new perspectives for clinical diagnosis, individualized

comprehensive treatment, and translational research of BCa.
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Glossary

ACC Adrenocortical carcinoma

BCa Bladder cancer

CLK2 CDC Like Kinase 2

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

CNV Copy number variation

CTLA4 Cytotoxic T-lymphocyte-associated protein 4

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

DSS Disease-free survival

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

GDSC Genomics of Drug Sensitivity in Cancer

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA gene set enrichment analysis

GTEx Genotype-Tissue Expression Program

HNSC Head and Neck squamous cell carcinoma

HR Hazard Ratio

IC50 half maximal inhibitory concentration

ICB Immune checkpoint blockade

IGF2BP3 Insulin Like Growth Factor 2 MRNA Binding Protein 3

KEGG Kyoto Encyclopedia of Genes and Genomes

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

KM Kaplan–Meier

LAG3 Lymphocyte Activating 3

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

NES Normalized enrichment score

OS Overall survival

(Continued)
F
rontiers in I
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Continued

OV Ovarian serous cystadenocarcinoma

P4HB Prolyl 4-Hydroxylase Subunit Beta

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PD-1 Programmed cell death 1

PD-L1 Programmed cell death 1 ligand 1

PFS Progression-free survival

PMRI PD-L1 multidimensional regulatory index

PPI protein–protein interaction

PRAD Prostate adenocarcinoma

RAC3 Rac Family Small GTPase 3

READ Rectum adenocarcinoma

ROC Receiver Operating Characteristic

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

ssGSEA single-sample gene set enrichment analysis

STAD Stomach adenocarcinoma

TCGA The Cancer Genome Atlas

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

TIDE tumor immune dysfunction and exclusion

TP53 Tumor Protein P53

TMB Tumor mutation burden

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

WGCNA Weighted Gene coexpression Network Analysis
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Adjuvant therapy provides
no additional recurrence-free
benefit for esophageal
squamous cell carcinoma
patients after neoadjuvant
chemoimmunotherapy and
surgery: a multi-center
propensity score match study
Shu-Han Xie1,2†, Li-Tao Yang1,2,3†, Hai Zhang1,2,4†, Zi-Lu Tang5,6†,
Zhi-Wei Lin1,2, Yi Chen1,2, Zhi-Nuan Hong1,7,8,9*‡, Rong-Yu Xu5,6*‡,
Wan-Li Lin4*‡ and Ming-Qiang Kang1,7,8,9*‡

1Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,
2The Graduate School of Fujian Medical University, Fuzhou, Fujian, China, 3Department of Thoracic
Surgery, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi, China, 4Department of Thoracic
Surgery, Gaozhou People’s Hospital, Gaozhou, Guangdong, China, 5Department of Thoracic Surgery,
Quanzhou First Hospital, Quanzhou, Fujian, China, 6Department of Thoracic Surgery, Quanzhou First
Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China, 7Key Laboratory of Cardio-
Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China, 8Key
Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou,
Fujian, China, 9Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou,
Fujian, China
Purpose: The need for adjuvant therapy (AT) following neoadjuvant

chemoimmunotherapy (nICT) and surgery in esophageal squamous cell cancer

(ESCC) remains uncertain. This study aims to investigate whether AT offers

additional benefits in terms of recurrence-free survival (RFS) for ESCC patients

after nICT and surgery.

Methods: Retrospective analysis was conducted between January 2019 and

December 2022 from three centers. Eligible patients were divided into two

groups: the AT group and the non-AT group. Survival analyses comparing

different modalities of AT (including adjuvant chemotherapy and adjuvant

chemoimmunotherapy) with non-AT were performed. The primary endpoint

was RFS. Propensity score matching(PSM) was used to mitigate inter-group

patient heterogeneity. Kaplan-Meier survival curves and Cox regression analysis

were employed for recurrence-free survival analysis.

Results: A total of 155 nICT patients were included, with 26 patients experiencing

recurrence. According to Cox analysis, receipt of adjuvant therapy emerged as an

independent risk factor(HR:2.621, 95%CI:[1.089,6.310], P=0.032), and there was

statistically significant difference in the Kaplan-Meier survival curves between

non-AT and receipt of AT in matched pairs (p=0.026). Stratified analysis revealed

AT bring no survival benefit to patients with pathological complete response(p=
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Abbreviations: nCT, neoadjuvant chemotherapy;

chemoradiotherapy; nICT, neoadjuvant chemoimmuno

immunotherapy; aICT, adjuvant chemoimmunothe
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recurrence-free survival; ESCC, esophageal squamous ce
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0.149) and residual tumor cell(p=0.062). Subgroup analysis showed no significant

difference in recurrence-free survival between non-AT and adjuvant

chemoimmunotherapy patients(P=0.108). However, patients receiving adjuvant

chemotherapy exhibited poorer recurrence survival compared to non-AT

patients (p= 0.016).

Conclusion: In terms of recurrence-free survival for ESCC patients after nICT and

surgery, the necessity of adjuvant therapy especially the adjuvant chemotherapy,

can be mitigated.
KEYWORDS

adjuvant therapy, neoadjuvant chemoimmunotherapy, esophageal cancer, propensity
score matching, recurrence-free survival
1 Introduction

Esophageal cancer accounts for approximately 50% of cancer

cases in China, with over 90% diagnosed as esophageal squamous

cell carcinoma (ESCC) (1, 2). Esophagectomy plays a pivotal role in

the treatment of locally advanced esophageal squamous cell

carcinoma (3). However, surgery alone often results in substantial

recurrence and metastasis, with rates ranging from 43.3% to

50.0% (4).

Currently, the standard treatment for locally advanced ESCC

involves minimally invasive esophagectomy following neoadjuvant

therapy (5). However, the standard neoadjuvant therapy for

locally advanced ESCC remains uncertain. Neoadjuvant

chemoradiotherapy (nCRT) is commonly used in Western

countries, while neoadjuvant chemotherapy (nCT) is extensively

used in China and Japan (6) (7). Despite availability of these

treatments, the survival of ESCC patients following neoadjuvant

therapy is poor due to high recurrence rates and limited long-term

survival. The 10-year results from the CROSS trial show a 63.6%

disease-free survival rate in the nCRT group, with a 24.3% distant

metastasis rate (8). Therefore, there is an urgent need for more

effective systemic therapies to improve long-term survival

outcomes. Previous study indicates enhanced prognosis in

patients receiving nCRT following the addition of adjuvant

chemotherapy(aCT) (9 ) . Add i t i ona l l y , neoad juvan t

chemoimmunotherapy (nICT) has emerged as a promising and

innovative approach for locally advanced ESCC in recent years. Our

center has conducted a single-arm phase II clinical trial to evaluate

the safety and efficacy of nICT in the treatment of locally advanced
nCRT, neoadjuvant

therapy; aIT, adjuvant

rapy; aCT, adjuvant

advanced ESCC; PSM,

esophagectomy; RFS,

ll cancer.

02129
ESCC (LA-ESCC) (10). Furthermore, the combination of

pembrolizumab (a PD-1 inhibitor) with chemotherapy has been

recommended as a first-line treatment for advanced EC (11). The

NICE phase-II study demonstrated a 78.1% 2-year recurrence-free

survival rate and a 67.9% overall survival rate after nICT (12). The

CheckMate577 study revealed that adjuvant immunotherapy

following nCRT and esophagectomy significantly extended

median disease-free survival to 11.0 months, highlighting the

therapeutic advantage of immunotherapy as a systemic treatment

option (13).

However, it is imperative to elucidate whether adjuvant therapy,

including aCT and adjuvant chemoimmunotherapy(aICT), is

indispensable following nICT. Considering the long-term

immune memory effect of immunotherapeutic agents (14, 15), we

propose that postoperative adjuvant treatment might not be

necessary for improved recurrence-free survival in esophageal

cancer patients undergoing nICT.
2 Methods

2.1 Patient selection

This study retrospectively enrolled patients who underwent

esophagectomy at three centers(Fujian Medical University Union

Hospital, Quanzhou First Hospital and Gaozhou People’s Hospital)

between January 1, 2019, and December 30, 2022. The inclusion

criteria of this study were as follows: 1. Patients diagnosed with cT3-

4aNanyM0 or cT1-2N+M0 ESCC; 2. receiving at least one cycle of

nICT without restrictions on the chemotherapy regimen and type of

immunodrug; 3. undergoing radical resection(R0 resection); and 4.

provided complete clinical and pathological information. The

exclusion criteria were as follows: 1. Patients diagnosed with

esophageal adenocarcinoma or other pathological type; 2. patients

who underwent only exploratory surgery or jejunostomy; and 3.

patients who received radiotherapy before or after surgery. The
frontiersin.org
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patient selection procedure is summarized in the flowchart

(Figure S1).
2.2 Treatment protocols

Diagnostic and clinical staging procedures included

gastroscopy, contrast-enhanced computed tomography of the

neck, chest, and upper abdomen, as well as neck ultrasound.

Positron emission computed tomography was performed

when necessary.

The chemotherapy regimen primarily consisted of platinum in

combination with paclitaxel or docetaxel, administered every three

weeks. Common neoadjuvant chemotherapy regimens involved

cisplatin(60 mg/m2) on day 1, followed by nab-paclitaxel(125 mg/

m2) on days 1 and 8, or docetaxel(75 mg/m2) with cisplatin(60 mg/

m2) on day 1. Following neoadjuvant chemotherapy, PD-1

monoclonal ant ibodies were administered, including

camrelizumab, pembrolizumab, sintilimab, tislelizumab, or

toripalimab, as detailed in our previous studies (16, 17).

Generally, PD-1 inhibitors were administered every three weeks,

including sintilimab at a dosage of 200 mg, toripalimab at a dosage

of 240 mg, pembrolizumab at a dosage of 200 mg, tislelizuma at a

dosage of 200 mg and camrelizumab at a dosage of 200 mg.

Suitable candidates for curative esophagectomy, without

contraindications, typically underwent the procedure 4-8 weeks

after the last dose of neoadjuvant therapy. Esophagectomy with

standard 2-field or 3-field lymphadenectomy and gastric

reconstruction was performed. Neck lymphadenectomy was

conducted if preoperative imaging indicated suspected neck

lymph node enlargement.

Postoperative adjuvant therapy was not mandatory and was

applied depending on a comprehensive assessment of pathological

outcomes, treatment preferences, physical condition, and physician

evaluation. Adjuvant therapy regimens in this study included

chemotherapy(aCT), immunotherapy(aIT), or a combination of

both(aICT).

Dosages and cycles were determined by expert oncologists and

thoracic surgeons, and adjusted as needed for drug-related

toxicities, patient tolerance, or tumor response to treatment.
2.3 Follow-up and outcomes measure

In accordance with the NCCN and CSCO guideline, ESCC

patients were subjected to regular follow-up examinations every 3 to

6 months within the initial two-year period. Subsequently, follow-

ups were conducted at 6-month intervals from the third to fifth

year, and annually thereafter. Commonly, the follow-up methods

included outpatient visits and telephone interviews. Computed

tomography (CT) scans is widely used as a routine examination

method to monitor for recurrence of the disease during the follow-

up period. If deemed necessary and possible, a PET-CT scan or

biopsy will be conducted. Follow-up times were defined from the

date of surgery to recurrence or the last date of follow-up. The cut-

off date of the last follow-up was October 28, 2023. The follow-up
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endpoint in this study is recurrence-free survival, defined as the

duration from surgical resection to the occurrence of local

recurrence or distal metastasis. Moreover, we investigated

recurrence patterns among patients after nICT. Locoregional

recurrences were defined as cancer reappearance within the

esophagus, at the surgical anastomosis site, or in adjacent regional

lymph nodes. Distant recurrences were defined as cancer recurrence

in distant organs or beyond the operative field.
2.4 Relevant definitions

In this study, Propensity score matching (PSM) was performed

to assess the impact of adjuvant therapy and its specific regimens on

survival outcomes in distinct groups of ESCC patients. For

matching cohort 1, ESCC patients with AT was compared with

patients without AT. Subsequent analyses, represented by matching

cohorts 2 and 3, investigated the survival advantage of specific

adjuvant therapy modes compared to the absence of any adjuvant

therapy. Notably, patients with adjuvant chemotherapy was

compared with patients without any adjuvant therapy in

matching cohort 2. Similarly, patients with adjuvant

chemoimmunotherapy was compared with patients without any

adjuvant therapy in matching cohort 3. Statistical analysis flow is

depicted in Figure 1.

Additionally, The 11-month landmark method was

implemented to re-evaluate the role of AT in the nICT group by

excluding patients without positive outcome events and a follow-up

period of no exceeding 11 months post-surgery (18–20).
2.5 Statistical analyses

Categorical data were presented as counts and percentages,

compared using Chi-square or Fisher’s exact tests. PSM reduced

bias from confounders, generating scores via logistic regression and

nearest neighbor matching without replacement (caliper: 0.05).

Matching parameters included pCR, ypT, ypN statuses. Matching

cohorts 1 and 3 had a 1:1 ratio, cohort 2 a 1:2 ratio. Survival

differences were analyzed using Kaplan-Meier curves and log-rank

tests. In addition, Cox regression was performed to evaluate risk

factors (variables with p< 0.05 in univariate analysis were included

in the multivariate analysis, using LR stepwise regression method).

The reverse Kaplan-Meier method was used to calculate the median

follow-up duration. In this study, the statistical test values were

calculated using the chi-square test. Data were analyzed using SPSS

(v25) and R (v4.3.1). Statistical significance was set at P < 0.05.
3 Results

3.1 Baseline characteristic of ESCC patients
in the nICT group

Our study included a total of 155 patients from three centers.

The study consisted of 125 males (80.6%) and 30 females (19.4%).
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Among them, 77 patients(49.6%) received AT. All patients took a

TP or DP for their neoadjuvant chemotherapy regimen. Within the

AT recipients, only 20 patients receive adjuvant chemotherapy and

10 patients received adjuvant immunotherapy (aIT), while 47

patients take aICT as their adjuvant therapy regimen. The median

follow-up duration of this study was 23 months (95%CI: 20.95-

25.05; range:2-48 months). Detailed information about patients in

nICT group is presented in Table 1.
3.2 Survival comparison between AT
recipients and non-AT patients in the nICT
group before and after PSM

A comparison of baseline characteristics between the AT and

non-AT patient populations is detailed in Table 2. Before PSM, AT

recipients had a worse RFS compared to patients without AT

(p=0.027). Similarly, Kaplan-Meier curve analysis and log-rank

tests indicated statistically significant differences between patients

who received AT and those who did not after PSM (p=0.026), as

shown in Figure 2.

Subsequently, Cox regression analysis was conducted in

unmatched pairs to analyze the risk factors affecting the RFS of

nICT patients. In univariate Cox analysis, ypN status, ypT status,

smoking history and AT were identified as the significant

influencing factor for RFS in nICT patients. While, AT(HR:2.621,

95%CI: [1.089,6.310], P=0.032) and ypN status were significant

independent risk factor for RFS in multivariate Cox analysis, as

shown in Table 3.

In stratified analysis, it was observed that patients with

pathological complete response showed no statistically significant

differences in prognosis based on the receipt of AT(p=0.072 in

unmatched pairs; p= 0.149 in matched pairs), as shown in

Figures 3A, B. Similarly, among patients with residual tumor cell
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(non-pCR), the receipt of AT did not result in statistically

significant differences in prognosis(p=0.142 in unmatched pairs;

p= 0.062 in matched pairs), as shown in Figures 3C, D.
3.3 11-month landmark analysis of the role
of AT in the recipients of nICT

In landmark analysis, patients without positive outcome events

and a follow-up period of no more than 11 months post-surgery

was excluded. The AT recipients have worse recurrence-free

survival compared to patients without AT in both pre-PSM and

after-PSM cohorts(P=0.024; p= 0.011, respectively), as is shown in

Figure 4. The matching parameters in this landmark analysis

including Sex, pCR, ypT and ypN status. Detailed baseline

information about patients on landmark method basis is

presented in Table 4.
3.4 Subgroup analysis of survival
comparison between patients of non-AT
and two modalities of AT

In the nICT group, both before and after PSM, patients

receiving aCT exhibited poorer prognosis in terms of recurrence-

free survival compared to non-AT patients (p=0.008;p= 0.016,

respectively), as shown in Figures 5A, B. Detailed baseline

information for these two matched pairs before and after

matching is presented in Table 5.

Conversely, no statistically significant differences were observed

between non-AT patients and those receiving aICT before and after

PSM (p=0.232; p= 0.108, respectively), as illustrated in Figures 5C,

D. The baseline information for non-AT and aICT patients before

and after matching is presented in Table 6.
FIGURE 1

The flowchart illustrates the statistical analysis process in this study.
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3.5 Recurrence patterns

Within the nICT group, 26 patients experienced recurrence.

The median time to recurrence was 12.5 months. Specifically, 14

patients had locoregional recurrences, 11 patients had distant

metastasis, and 1 patients experienced both locoregional

recurrence and distant metastasis. Additionally, 2 patients

developed supraclavicular lymph node metastasis, classified as a

locoregional recurrence in our study, as shown in Figure 6.
4 Discussion

In recent years, immunotherapy has increasingly been used for

esophageal cancer patients, especially those with locally advanced

stages. However, the necessity and benefits of adjuvant therapy for

ESCC patients after nICT and surgery remain contentious in

international medical consensus. Given the reported finding that

nICT does not increase postoperative complications (21), our study

is keen to investigate the prognostic factors influencing the survival
TABLE 1 Clinicopathological Characteristics of patients in nICT group.

Clinicopathological characteristic N (%)

Sex

male 125 (80.6%)

female 30 (19.4%)

Age

≤65 122 (78.7%)

>65 33 (21.3%)

BMI

<18.5 18 (11.6%)

18.5-23.9 106 (68.4%)

≥24 31 (20.0%)

Smoking history

no 66 (42.6%)

yes 89 (57.4%)

Tumor location

upper 14 (9.0%)

middle 90 (58.1%)

lower 51 (32.9%)

Regimen of nCT

TP/DP 155 (100.0%)

Others 0 (0%)

Type of immunodrug

sintilimab 34 (21.9%)

toripalimab 14 (9.0%)

pembrolizumab 30 (19.4%)

tislelizumab 11 (7.1%)

camrelizumab 66 (42.6%)

Cycle of neoadjuvant therapy

≤2 121 (78.1%)

>2 34 (21.9%)

Adjuvant therapy

no 78 (50.3%)

yes 77 (49.7%)

Type of adjuvant therapy

aCT 20 (26.0%)

aICT 47 (61.0%)

aIT 10 (13.0%)

Regimen of chemotherapy in aCT and aICT

TP/DP 65 (97.0%)

(Continued)
TABLE 1 Continued

Clinicopathological characteristic N (%)

Others* 2 (3.0%)

Stage

I 67 (43.2%)

II 24 (15.5%)

IIIa 22 (14.2%)

IIIb 38 (24.5%)

IVa 4 (2.6%)

ypT stage

T0 47 (30.3%)

T1 31 (20.0%)

T2 22 (14.2%)

T3 55 (35.5%)

ypN stage

N0 91 (58.7%)

N1 38 (24.5%)

N2 22 (14.2%)

N3 4 (2.6%)

Pathological response

non-pCR 119 (76.8%)

pCR 36 (23.2%)
f

nCT, neoadjuvant chemotherapy; aICT, adjuvant chemoimmunotherapy; aCT, adjuvant
chemotherapy; aIT, adjuvant immunotherapy; pCR, pathological complete response. TP/
DP: paclitaxel combined with platinum-based chemotherapy or docetaxel combined with
platinum-based chemotherapy.
*2 patients take platinum +5-FU as adjuvant chemotherapy regimen.
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TABLE 2 Characteristics comparison of AT and non-AT patients in nICT group before and after matching.

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT AT non-AT AT

Sex 5.762 0.016 3.576 0.059

male 57 (73.1%) 68 (88.3%) 44 (74.6%) 52 (88.1%)

female 21 (26.9%) 9 (11.7%) 15 (25.4%) 7 (11.9%)

Age 1.774 0.183 0.837 0.360

≤65 58 (74.4%) 64 (83.1%) 45 (76.3%) 49 (83.1%)

>65 20 (25.6%) 13 (16.9%) 14 (23.7%) 10 (16.9%)

BMI 0.952 0.621 1.943 0.379

<18.5 11 (14.1%) 7 (9.1%) 9 (15.3%) 5 (8.5%)

18.5-23.9 52 (66.7%) 54 (70.1%) 42 (71.2%) 42 (71.2%)

≥24 15 (19.2%) 16 (20.8%) 8 (13.6%) 12 (20.3%)

Smoking history 1.514 0.219 0.555 0.456

no 37 (47.4%) 29 (37.7%) 27 (45.8%) 23 (39.0%)

yes 41 (52.6%) 48 (62.3%) 32 (54.2%) 36 (61.0%)

Tumor location 5.704 0.058 1.950 0.377

upper 4 (5.1%) 10 (13.0%) 4 (6.8%) 7 (11.9%)

middle 52 (66.7%) 38 (49.4%) 37 (62.7%) 30 (50.8%)

lower 22 (28.2%) 29 (37.7%) 18 (30.5%) 22 (37.3%)

Cycle of nICT 0.539 0.463 0.457 0.499

≤2 59 (75.6%) 62 (80.5%) 45 (76.3%) 48 (81.4%)

>2 19 (24.4%) 15 (19.5%) 14 (23.7%) 11 (18.6%)

Stage 6.325 0.175 0.000 1.000

I 39 (50.0%) 28 (36.4%) 27 (45.8%) 27 (45.8%)

II 13 (16.7%) 11 (14.3%) 11 (18.6%) 11 (18.6%)

IIIa 9 (11.5%) 13 (16.9%) 9 (15.3%) 9 (15.3%)

IIIb 14 (17.9%) 24 (31.2%) 12 (20.3%) 12 (20.3%)

IVa 3 (3.8%) 1 (1.3%) 0 (0%) 0 (0%)

ypT stage 2.945 0.400 0.000 1.000

T0 27 (34.6%) 20 (26.0%) 17 (28.8%) 17 (28.8%)

T1 14 (17.9%) 17 (22.1%) 14 (23.7%) 14 (23.7%)

T2 13 (16.7%) 9 (11.7%) 8 (13.6%) 8 (13.6%)

T3 24 (30.8%) 31 (40.3%) 20 (33.9%) 20 (33.9%)

ypN stage 6.210 0.093 0.000 1.000

N0 52 (66.7%) 39 (50.6%) 38 (64.4%) 38 (64.4%)

N1 14 (17.9%) 24 (31.2%) 14 (23.7%) 14 (23.7%)

N2 9 (11.5%) 13 (16.9%) 7 (11.9%) 7 (11.9%)

N3 3 (3.8%) 1 (1.3%) 0 (0%) 0 (0%)

(Continued)
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of esophageal cancer patients undergoing nICT and evaluate the

necessity of adjuvant therapy and different AT modalities

(including aCT and aICT) in order to better guide the selection of

treatment and surveillance model after nICT and surgery. In this

study, data from three centers of 155 nICT cases were analyzed.

After propensity score matching, there were no statistically

significant differences observed in baseline characteristics between

patients who received AT and those who did not. According to the

Cox analysis and Kaplan-Meier curve analysis, the addition of

adjuvant therapy significantly compromised the recurrence-free

survival rate of ESCC following nICT in our study. These findings

suggest that the administration of adjuvant therapy had a

detrimental impact on recurrence-free survival following nICT

and the unnecessity of AT in this patient population. This aligns

with prior research indicating patients receiving adjuvant therapy

exhibited a significantly diminished disease-free survival following

resection and neoadjuvant chemoradiation, in comparison to those

not undergoing adjuvant therapy (22).

Previous studies have reported that ESCC patients with a

pathological complete response have higher 5-year overall survival

than incomplete responders (23). The correlation between

pathological response and prognosis influences the choice of

postoperative treatment. However, the recommendation of

adjuvant therapy for ESCC patients exhibiting diverse pathological

responses remains a subject of ongoing controversy (9, 24).

Therefore, stratified analysis was conducted in our study to

evaluate survival outcomes of AT among patients achieving pCR

and those with residual pathological tumor cells (ypT+ status or/and

ypN+ status) after nICT. Interestingly, AT did not significantly

enhance recurrence-free survival benefits for pCR cases, indicating

that these individuals can adopt a “watch and see” follow-up strategy,
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consistent with the current postoperative follow-up strategy (25, 26).

However, in cases with incomplete response, the survival advantages

of AT were still not found to be statistically significant. Previous

studies have demonstrated that the administration of postoperative

chemotherapy does not confer any additional survival benefit to

patients with lymph node metastasis following neoadjuvant

chemotherapy, which aligns with our study (27). The clinical trial

CheckMate-577 showed that nivolumab, as an adjuvant agent, can

lead to longer disease-free survival for patients with residual

pathological tumors after nCRT and surgery. However, there is

insufficient evidence and research to substantiate the necessity of

AT in ESCC patients who had received nICT and exhibit positive

postoperative pathological findings. Previous research has

demonstrated that, in comparison to as adjuvants, immune

checkpoint inhibitors (ICIs) offer distinct advantages as

neoadjuvant therapy for eradicating distant metastases (28). This

potentially explains the improved recurrence-free survival observed

in nICT cases without AT of our study, even in cases of lymph node

metastasis or residual tumor cells.

Administration of different adjuvant therapy regimens may

exert varying benefits in terms of recurrence-free survival of

ESCC patients. Therefore, whether different adjuvant therapy

regimens (aCT and aICT) could confer survival benefits to nICT

cases was analyzed. In this study, the patients receiving aICT did not

show any statistically significant differences compared to those

without any AT. However, it was noted that recipients of aCT

exhibited inferior survival rates compared to non-AT individuals

following nICT and surgery in both pre-match and post-match

cohorts, suggesting the absence of requirement for aCT. Previous

research conducted by Yan demonstrated that postoperative

adjuvant chemotherapy is not necessary for reducing recurrence
TABLE 2 Continued

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT AT non-AT AT

Pathological response 2.183 0.140 0.000 1.000

non-pCR 56 (71.8%) 63 (81.8%) 45 (76.3%) 45 (76.3%)

pCR 22 (28.2%) 14 (18.2%) 14 (23.7%) 14 (23.7%)
fro
nICT, neoadjuvant chemoimmunotherapy; pCR, pathological complete response; AT, adjuvant chemotherapy.
BA

FIGURE 2

Kaplan-Meier survival curves of recurrence-free survival between non-AT and AT recipients in the nICT group before PSM (A) and after PSM (B).
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1332492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2024.1332492
TABLE 3 Univariate and multivariate Cox analysis for recurrence-free survival in a unmatched population.

Univariate Cox analysis Multivariate Cox analysis

HR 95%CI P value HR 95%CI P value

Sex 0.112

male 1.000

female 0.310 [0.073,1.313]

age 0.187

≤65 1.000

>65 0.377 [0.089,1.604]

smoking history 0.042

no 1.000

yes 2.469 [1.034,5.894]

BMI 0.451

<18.5 1.000

18.5-23.9 3.325 [0.444,24.933] 0.242

>24 3.855 [0.474,31.364] 0.207

Location 0.171

Upper 1.000

Middle 0.527 [0.146,1.909] 0.330

lower 1.163 [0.323,4.181] 0.817

Cycle of nICT 0.399

≤2 1.000

>2 1.484 [0.593,3.716]

Receipt of AT 0.033 0.032

No 1.000 1.000

Yes 2.460 [1.075,5.626] 2.621 [1.089,6.310]

ypT stage 0.198

T0 1.000

T1 2.368 [0.668,8.397] 0.182

T2 1.686 [0.377,7.536] 0.494

T3 3.270 [1.065,10.037] 0.038

ypN stage 0.005 0.014

N0 1.000 1.000

N1 1.448 [0.525,3.992] 0.475 1.185 [0.424,3.312] 0.746

N2 3.624 [1.427,9.206] 0.007 3.019 [1.173,7.771] 0.022

N3 9.514 [2.021,44.791] 0.004 14.087 [2.821,70.342] 0.001

Pathological response 0.050

non-pCR 1.000

pCR 0.236 [0.056,0.998]
F
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in patients who have undergone neoadjuvant chemotherapy and a

trend towards inferior disease-free survival was observed in patients

who underwent adjuvant therapy (29), aligning with our study’s

perspective on the need for adjuvant chemotherapy following

neoadjuvant therapy. In addition, it is widely acknowledged that

not all patients derive benefits from chemotherapy. Considering the

potential impact of esophagectomy on patients, factors such as

impaired postoperative food intake and swallowing ability,

physiological and psychological stress, as well as postoperative

complications, compromise the immune system of individuals

with esophageal cancer after surgery (30–32). Consequently, the

adverse effects of chemotherapy may further impede an already

compromised immune system’s capacity to effectively recognize

and target cancer cells, thereby diminishing the efficacy of

chemotherapy or immunotherapy and leading to cancer

recurrence. In addition, administration of neoadjuvant therapy
Frontiers in Immunology 09136
may potentially suppress the responsiveness of patients towards

subsequent systemic therapy post-surgery (33, 34). In this study, we

identified adjuvant therapy and higher ypN status as independent

risk factors of recurrence in ESCC patients following nICT and

surgery. Furthermore, subgroup analysis revealed that patients

receiving adjuvant chemotherapy exhibited a poorer prognosis

compared to those who did not receive any adjuvant therapy.

This may be due to the outweighing side effects of chemotherapy

compared to its survival benefit. These findings suggest that in our

clinical practice, a close follow-up strategy is preferable over

continued administration of adjuvant therapy, particularly

chemotherapy, for patients undergoing nICT and surgery.

For the recurrencepattern innICTpatients, theproportionof local

recurrence and distant metastasis was 54% and 46%, respectively.

However, the majority of patients with distant recurrence had bone

metastases and respiratory system metastases, suggesting that in
B

C D

A

FIGURE 3

Kaplan-Meier survival curves of recurrence-free survival between non-AT and AT recipient in subgroup of pCR patients in unmatched pairs (A), pCR
patients in matched pairs (B), non-pCR patients in unmatched pairs (C) and non-pCR patients in matched pairs (D).
BA

FIGURE 4

Kaplan-Meier survival curves of recurrence-free survival between non-AT and aCT patients on the 11-month landmark basis before PSM (A) and after
PSM (B).
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TABLE 4 Characteristics comparison of AT patients and non-AT patients in the nICT group on the landmark basis before and after matching.

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT AT non-AT AT

Sex 7.076 0.008 0.102 0.749

male 52 (72.2%) 62 (89.9%) 44 (88.0%) 45 (90.0%)

female 20 (27.8%) 7 (10.1%) 6 (12.0%) 5 (10.0%)

Age 1.302 0.254 0.071 0.790

≤65 55 (76.4%) 58 (84.1%) 41 (82.0%) 42 (84.0%)

>65 17 (23.6%) 11 (15.9%) 9 (18.0%) 8 (16.0%)

BMI 0.971 0.615 1.903 0.399

<18.5 10 (13.9%) 6 (8.7%) 6 (12.0%) 3 (6.0%)

18.5-23.9 48 (66.7%) 48 (69.6%) 37 (74.0%) 36 (72.0%)

≥24 14 (19.4%) 15 (21.7%) 7 (14.0%) 11 (22.0%)

Smoking history 1.684 0.194 0.042 0.838

no 36 (50.0%) 27 (39.1%) 19 (38.0%) 20 (40.0%)

yes 36 (50.0%) 42 (60.9%) 31 (62.0%) 30 (60.0%)

Tumor location 4.453 0.108 2.346 0.309

upper 4 (5.6%) 9 (13.0%) 3 (6.0%) 7 (14.0%)

middle 48 (66.7%) 35 (50.7%) 32 (64.0%) 26 (52.0%)

lower 20 (27.8%) 25 (36.2%) 15 (30.0%) 17 (34.0%)

Cycle of nICT 0.016 0.900 0.000 1.000

≤2 58 (80.6%) 55 (79.7%) 40 (80.0%) 40 (80.0%)

>2 14 (19.4%) 14 (20.3%) 10 (20.0%) 10 (20.0%)

Stage 4.779 0.320 1.053 1.000

I 36 (50.0%) 27 (39.1%) 24 (48.0%) 24 (48.0%)

II 12 (16.7%) 10 (14.5%) 10 (20.0%) 9 (18.0%)

IIIa 8 (11.1%) 9 (13.0%) 6 (12.0%) 6 (12.0%)

IIIb 13 (18.1%) 22 (31.9%) 10 (20.0%) 10 (20.0%)

IVa 3 (4.2%) 1 (1.4%) 0 (0%) 1 (2.0%)

ypT stage 2.312 0.510 0.083 0.994

T0 25 (34.7%) 19 (27.5%) 16 (32.0%) 16 (32.0%)

T1 13 (18.1%) 14 (20.3%) 9 (18.0%) 10 (20.0%)

T2 12 (16.7%) 8 (11.6%) 8 (16.0%) 8 (16.0%)

T3 22 (30.6%) 28 (40.6%) 17 (34.0%) 16 (32.0%)

ypN stage 4.371 0.239 1.015 1.000

N0 48 (66.7%) 37 (53.6%) 34 (68.0%) 33 (66.0%)

N1 12 (16.7%) 19 (27.5%) 10 (20.0%) 10 (20.0%)

N2 9 (12.5%) 12 (17.4%) 6 (12.0%) 6 (12.0%)

N3 3 (4.2%) 1 (1.4%) 0 (0%) 1 (2.0%)

Pathological response 1.488 0.223 0.000 1.000

(Continued)
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addition to routine CT examination, PET/CT or bone scintigraphy

may help to facilitate early detection of distant metastasis.

To the best of our knowledge, this study represents the first

analysis of the survival benefit associated with adjuvant therapy in

ESCC patients with nICT following surgery. According to previous

research, the median time to recurrence for ESCC after nCRT is

approximately 11 months (35–37), which is similar with our study.

Therefore, the follow-up period in this study is adequate to reflect the

effectiveness of adjuvant treatment for ESCC for recurrence.

Additionally, to further mitigate the potential bias caused by shorter

follow-up durations compared to the median recurrence time, a

sensitivity analysis(landmark method) was conducted on patients

with follow-up durations exceeding 11 months. The results of this

landmark analysis mirrored those of the primary analysis, suggesting

that the observed lack of benefit from adjuvant therapy is robust

and reliable.

Despite the implementation of rigorous inclusion and exclusion

criteria, as well as propensity score matching to ensure baseline

comparability, the inherent limitations of a retrospective study

design may introduce some degree of bias. Additionally, the majority

of patients in our study were treated with the TP/DP regimen-based
Frontiers in Immunology 11138
protocol forneoadjuvantandadjuvants andreceivednomore than two

cycles of treatment. Consequently, conducting subgroup analysis

regarding chemotherapy regimens and cycles was not feasible in this

study. We are currently making efforts to collaborate with more

institutions to expand our database and plan to conduct subgroup

analyses in future studies. Since the incidence of ESCC is more than

90% in Asian populations, it is important to note that this study

specifically focused on patients diagnosed with esophageal squamous

cell carcinoma; thus, the applicability of our research findings to

patients with adenocarcinoma remains uncertain.
Conclusion

In terms of recurrence-free survival, the need for postoperative

adjuvant therapy can be reduced for patients who have undergone

nICT and surgery. Meanwhile, the adverse effects of postoperative

adjuvant chemotherapy for patients already receiving nICT appear

to outweigh its therapeutic benefits in preventing recurrence. A

well-designed prospective study on a large scale is necessary to

validate these findings.
TABLE 4 Continued

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT AT non-AT AT

non-pCR 51 (70.8%) 55 (79.7%) 36 (72.0%) 36 (72.0%)

pCR 21 (29.2%) 14 (20.3%) 14 (28.0%) 14 (28.0%)
fro
nICT, neoadjuvant chemoimmunotherapy; AT, adjuvant chemotherapy; pCR, pathological complete response.
B

C D

A

FIGURE 5

Kaplan-Meier survival curves of recurrence-free survival between patients of non-AT and two modalities of AT: (A) comparison of patients of non-AT
with aCT before PSM; (B) comparison of patients of non-AT with aCT after PSM; (C) comparison of patients of non-AT with aICT before PSM;
(D) comparison of patients of non-AT with aICT after PSM).
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TABLE 5 Characteristics comparison of aCT patients and non-AT patients before and after matching.

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT aCT non-AT aCT

Sex 4.395 0.038 3.847 0.072

male 57 (73.1%) 19 (95.0%) 25 (73.5%) 19 (95.0%)

female 21 (26.9%) 1 (5.0%) 9 (26.5%) 1 (5.0%)

Age 1.004 0.389 0.064 1.000

≤65 58 (74.4%) 17 (85.0%) 28 (82.4%) 17 (85.0%)

>65 20 (25.6%) 3 (15.0%) 6 (17.6%) 3 (15.0%)

BMI 1.244 0.681 5.111 0.101

<18.5 11 (14.1%) 1 (5.0%) 5 (14.7%) 1 (5.0%)

18.5-23.9 52 (66.7%) 15 (75.0%) 28 (82.4%) 15 (75.0%)

≥24 15 (19.2%) 4 (20.0%) 1 (2.9%) 4 (20.0%)

Smoking history 1.965 0.161 1.518 0.218

no 37 (47.4%) 6 (30.0%) 16 (47.1%) 6 (30.0%)

yes 41 (52.6%) 14 (70.0%) 18 (52.9%) 14 (70.0%)

Tumor location 1.857 0.523 1.888 0.543

upper 4 (5.1%) 0 (0%) 3 (8.8%) 0 (0%)

middle 52 (66.7%) 12 (60.0%) 18 (52.9%) 12 (60.0%)

lower 22 (28.2%) 8 (40.0%) 13 (38.2%) 8 (40.0%)

Cycle of nICT 0.267 0.606 0.078 0.780

≤2 59 (75.6%) 14 (70.0%) 25 (73.5%) 14 (70.0%)

>2 19 (24.4%) 6 (30.0%) 9 (26.5%) 6 (30.0%)

Stage 7.180 0.158 0.499 0.931

I 39 (50.0%) 6 (30.0%) 12 (35.3%) 6 (30.0%)

II 13 (16.7%) 3 (15.0%) 6 (17.6%) 3 (15.0%)

IIIa 9 (11.5%) 2 (10.0%) 4 (11.8%) 2 (10.0%)

IIIb 14 (17.9%) 9 (45.0%) 12 (35.3%) 9 (45.0%)

IVa 3 (3.8%) 0 (0%) 0 (0%) 0 (0%)

ypT stage 4.697 0.217 0.193 1.000

T0 27 (34.6%) 4 (20.0%) 8 (23.5%) 4 (20.0%)

T1 14 (17.9%) 5 (25.0%) 9 (26.5%) 5 (25.0%)

T2 13 (16.7%) 1 (5.0%) 2 (5.9%) 1 (5.0%)

T3 24 (30.8%) 10 (50.0%) 15 (44.1%) 10 (50.0%)

ypN stage 4.989 0.196 0.470 0.872

N0 52 (66.7%) 9 (45.0%) 18 (52.9%) 9 (45.0%)

N1 14 (17.9%) 7 (35.0%) 9 (26.5%) 7 (35.0%)

N2 9 (11.5%) 4 (20.0%) 7 (20.6%) 4 (20.0%)

N3 3 (3.8%) 0 (0%) 0 (0%) 0 (0%)

Pathological response 1.461 0.227 0.064 1.000

(Continued)
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TABLE 5 Continued

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT aCT non-AT aCT

non-pCR 56 (71.8%) 17 (85.0%) 28 (82.4%) 17 (85.0%)

pCR 22 (28.2%) 3 (15.0%) 6 (17.6%) 3 (15.0%)
F
rontiers in Immunology
 114
30
 fro
nICT, neoadjuvant chemoimmunotherapy; aCT, adjuvant chemotherapy; AT, adjuvant chemotherapy; pCR, pathological complete response.
TABLE 6 Characteristics comparison of aICT patients and non-AT patients before and after matching.

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT aICT non-AT aICT

Sex 2.442 0.118 1.235 0.266

male 57 (73.1%) 40 (85.1%) 32 (76.2%) 36 (85.7%)

female 21 (26.9%) 7 (14.9%) 10 (23.8%) 6 (14.3%)

Age 1.254 0.263 0.283 0.595

≤65 58 (74.4%) 39 (83.0%) 32 (76.2%) 34 (81.0%)

>65 20 (25.6%) 8 (17.0%) 10 (23.8%) 8 (19.0%)

BMI 0.902 0.637 2.349 0.329

<18.5 11 (14.1%) 4 (8.5%) 6 (14.3%) 3 (7.1%)

18.5-23.9 52 (66.7%) 34 (72.3%) 32 (76.2%) 31 (73.8%)

≥24 15 (19.2%) 9 (19.1%) 4 (9.5%) 8 (19.0%)

Smoking history 0.090 0.765 0.048 0.827

no 37 (47.4%) 21 (44.7%) 20 (47.6%) 19 (45.2%)

yes 41 (52.6%) 26 (55.3%) 22 (52.4%) 23 (54.8%)

Tumor location 6.187 0.045 1.191 0.601

upper 4 (5.1%) 8 (17.0%) 3 (7.1%) 6 (14.3%)

middle 52 (66.7%) 23 (48.9%) 25 (59.5%) 22 (52.4%)

lower 22 (28.2%) 16 (34.0%) 14 (33.3%) 14 (33.3%)

Cycle of nICT 1.595 0.207 1.844 0.175

≤2 59 (75.6%) 40 (85.1%) 31 (73.8%) 36 (85.7%)

>2 19 (24.4%) 7 (14.9%) 11 (26.2%) 6 (14.3%)

Stage 6.142 0.216 0.000 1.000

I 39 (50.0%) 19 (40.4%) 19 (45.2%) 19 (45.2%)

II 13 (16.7%) 5 (10.6%) 5 (11.9%) 5 (11.9%)

IIIa 9 (11.5%) 9 (19.1%) 7 (16.7%) 7 (16.7%)

IIIb 14 (17.9%) 14 (29.8%) 11 (26.2%) 11 (26.2%)

IVa 3 (3.8%) 0 (0%) 0 (0%) 0 (0%)

ypT stage 0.641 0.887 0.000 1.000

T0 27 (34.6%) 15 (31.9%) 13 (31.0%) 13 (31.0%)

T1 14 (17.9%) 9 (19.1%) 9 (21.4%) 9 (21.4%)

T2 13 (16.7%) 6 (12.8%) 6 (14.3%) 6 (14.3%)

(Continued)
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TABLE 6 Continued

Before PSM
Statistics value P value

After PSM
Statistics value P value

non-AT aICT non-AT aICT

T3 24 (30.8%) 17 (36.2%) 14 (33.3%) 14 (33.3%)

ypN stage 5.997 0.113 0.000 1.000

N0 52 (66.7%) 24 (51.1%) 24 (57.1%) 24 (57.1%)

N1 14 (17.9%) 14 (29.8%) 12 (28.6%) 12 (28.6%)

N2 9 (11.5%) 9 (19.1%) 6 (14.3%) 6 (14.3%)

N3 3 (3.8%) 0 (0%) 0 (0%) 0 (0%)

Pathological response 0.739 0.390 0.000 1.000

non-pCR 56 (71.8%) 37 (78.7%) 32 (76.2%) 32 (76.2%)

pCR 22 (28.2%) 10 (21.3%) 10 (23.8%) 10 (23.8%)
F
rontiers in Immunology
 114
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 fro
nICT, neoadjuvant chemoimmunotherapy; aICT, adjuvant chemoimmunotherapy; AT, adjuvant chemotherapy; pCR, pathological complete response.
FIGURE 6

Recurrence patterns in the nICT group.
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Machine learning-based
identification of colorectal
advanced adenoma using clinical
and laboratory data: a phase I
exploratory study in accordance
with updated World Endoscopy
Organization guidelines for
noninvasive colorectal cancer
screening tests
Huijie Wang1†, Xu Cao1†, Ping Meng2, Caihua Zheng2, Jinli Liu2,
Yong Liu1, Tianpeng Zhang3, Xiaofang Li1, Xiaoyang Shi1,
Xiaoxing Sun1, Teng Zhang4, Haiying Zuo5, Zhichao Wang5,
Xin Fu6, Huan Li6 and Huanwei Zheng2*

1Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China,
2Department of Gastroenterology, Shijiazhuang Traditional Chinese Medicine Hospital,
Shijiazhuang, China, 3Department of Anus & Intestine Surgery, Shijiazhuang Traditional Chinese
Medicine Hospital, Shijiazhuang, China, 4Institute of Traditional Chinese Medicine, North China
University of Science and Technology, Tangshan, China, 5Graduate School, Hebei North University,
Zhangjiakou, China, 6Research and Development Department, Wuhan Metware Biotechnology Co.,
Ltd, Wuhan, China
Objective: The recent World Endoscopy Organization (WEO) guidelines now

recognize precursor lesions of colorectal cancer (CRC) as legitimate screening

targets. However, an optimal screening method for detecting advanced

adenoma (AA), a significant precursor lesion, remains elusive.

Methods: We employed five machine learning methods, using clinical and

laboratory data, to develop and validate a diagnostic model for identifying

patients with AA (569 AAs vs. 3228 controls with normal colonoscopy). The

best-performing model was selected based on sensitivity and specificity

assessments. Its performance in recognizing adenoma-carcinoma sequence

was evaluated in line with guidelines, and adjustable thresholds were

established. For comparison, the Fecal Occult Blood Test (FOBT) was

also selected.

Results: The XGBoost model demonstrated superior performance in identifying

AA, with a sensitivity of 70.8% and a specificity of 83.4%. It successfully detected

42.7% of non-advanced adenoma (NAA) and 80.1% of CRC. The model-

transformed risk assessment scale provided diagnostic performance at

different positivity thresholds. Compared to FOBT, the XGBoost model better

identified AA and NAA, however, was less effective in CRC.
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Conclusion: The XGBoost model, compared to FOBT, offers improved accuracy

in identifying AA patients. While it may not meet the recommendations of some

organizations, it provides value for individuals who are unable to use FOBT for

various reasons.
KEYWORDS

advanced colorectal adenoma, machine learning, non-invasive test, risk assessment,
adjustable thresholds
1 Introduction

Colorectal cancer (CRC) represents a significant threat to

residents of China, contributing substantially to the societal

burden (1). In China, CRC-related new cases and deaths account

for 9.87% and 8.01% of all malignant tumor incidence and

mortality, respectively (2). Addressing this public health challenge

effectively is of paramount importance (3).

The goal of CRC screening is to reduce mortality and morbidity

by identifying treatable CRC cases and precursor lesions, while

minimizing health risks and individual burdens (4). In 2023, the

CRC Screening Committee of the World Endoscopy Organization

(WEO) issued guidelines for evaluating novel non-invasive screening

tests for CRC. These guidelines recommend a dual-step screening

process, starting with a non-invasive test and, if positive, followed by

a colonoscopy. The non-invasive test should be capable of identifying

individuals with an increased likelihood of CRC or advanced

precursor lesions (5). Advanced adenoma (AA), an important

precursor lesion, is currently considered to carry a significantly

elevated risk (6). Although the fecal immunochemical test (FIT) is

currently the most widely used non-invasive test, its sensitivity for

early detection of CRC, especially AA, remains suboptimal (7). As a

result, there is an urgent need for more accurate and non-invasive

screening strategies that can identify AA, thereby improving survival

rates among CRC patients (8).

Recent clinical guidelines from the Asian Pacific Gastroenterology

and Digestive Endoscopy highlight the superiority of combining

biomarkers over single biomarkers for detecting colorectal neoplasia

(8). Machine learning, based on feature combinations, has emerged as

a powerful and effective method for predictive analytics. Its successful

application in diagnosis, prediction, and treatment selection has

received considerable recognition (9). Routine medical laboratory

tests are widely used in China and have become an essential part of

modern healthcare (10). The results of these tests may contain more

information than even the most experienced clinician can discern,

making them suitable for analysis through artificial intelligence to

uncover subtle interrelationships (11).

Predictive and diagnostic models based on routine clinical and

laboratory data have been developed for various cancers (12–15).

However, they often exhibit low sensitivity for AAs due to their
02145
non-specific symptoms and distinct risk factors compared to those

of CRC (16).

The CRC Screening Committee of the WEO outlines a four-

phase evaluation process for new tests, starting with Phase I studies

involving limited cohorts or case-control studies (5). Based on this

premise, we conducted a Phase I exploratory case-control study

using clinical and laboratory data. The aim is to construct a

machine-learning diagnostic model for identifying AA and to

assess its ability to meet the objectives of non-invasive screening

tests, as outlined in the WEO guidelines. These objectives include

diagnostic performance regarding the adenoma-carcinoma

sequence, adjustable thresholds of positivity, and comparison with

validated non-invasive screening tests.
2 Materials and methods

2.1 Study design and population

We conducted a retrospective case-control study, comprising a

case group with AA (17) and a control group with normal

colonoscopies. The objective was to develop (train) and validate

(test) a model for diagnosing AA. AA is defined as an adenoma that

exhibits any of the following characteristics: size ≥ 1 cm, presence of

tubulovillous or villous components, or high-grade dysplasia. The

model was constructed based on features obtained as part of routine

clinical care, which included demographic characteristics, lifestyle

factors, and clinical features (including comorbidities and

laboratory indicators). We ensured that data from at least one

laboratory test were available within one month before the

colonoscopy. In addition, we validated the outcome model in

other populations including non-advanced adenoma (NAA) and

CRC. NAA refers to an adenoma that does not meet the definition

of AA. All subjects were identified using colonoscopy and

pathohistological diagnoses obtained from medical records

between April 2015 and June 2022. The exclusion criteria were as

follows: a history of colorectal surgery, incomplete medical records,

substandard bowel preparation, a colonoscopy that did not reach

the cecum, and cases that did not meet the standards of data quality

control (QC) (Detail for Figure 1). Specifically, the exclusion criteria
frontiersin.org

https://doi.org/10.3389/fonc.2024.1325514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1325514
for CRC did not include substandard bowel preparation and

whether the colonoscope reached the cecum.

The retrospective study received approval from the Ethics

Committee of Shijiazhuang Traditional Chinese Medicine

Hospital (NO.20220919029), and the requirements for informed

consent were waived due to the retrospective nature of the study.
2.2 Data collection

The present study collected demographic characteristics (age, sex,

andmarital status), smoking and drinking information (including never,

former, and current usage), comorbid conditions, and laboratory test

results (routine blood and urine tests, fecal occult blood test [FOBT],

biochemistry, tumor markers, and coagulation function). Notably,

qualitative FOBT is more prevalent in Chinese hospitals than

quantitative FIT. The FOBT method employed in this study was

immunocolloid gold (the FOBT was considered positive when the

hemoglobin level was greater than or equal to 0.2 mg/ml diluent).

Detailed test methods for laboratory data included in the

machine learning analyses were presented in Supplementary Table 1.
2.3 Feature screening

During the data QC process, we retained the features of interest

and excluded features with a missing rate exceeding 20% or samples

with a missing rate exceeding 50%. For continuous variables with

missing values in features retained after QC, we imputed them using

k-nearest neighbors (KNN, K = 15). Missing values in categorical
Frontiers in Oncology 03146
variables with a missing rate of less than 20% were imputed using

grouped plurality while missing rates of 20% or more were imputed

with the new phenotype “MISS”.

Subsequently, we initially screened categorical and continuous

variables using the chi-square test and random forest, respectively,

to eliminate features with minimal or no impact on grouping. The

remaining features’ importance was ranked using the logistic

regression (LR), random forest (RF), and least absolute shrinkage

and selection operator (LASSO) methods. This step was repeated

10 times to mitigate random bias in data splitting. We took the

intersection of the features selected by different models and

weighted the importance of each feature, summing them to

obtain the importance of weighted features for manual screening.
2.4 Machine learning modeling
and validation

We employed five machine learning methods, namely LR, RF,

eXtreme Gradient Boosting (XGBoost), KNN, and support vector

machine (SVM), for modeling within the caret framework in R. The

data were randomly divided into 10 repetitive groupings based on

an 8:2 ratio (training group: validation group) to generate 10 sets of

training and validation datasets. We modeled the training sets using

the aforementioned five methods.

For all methods except LR, we predefined a wide range of

parameters and evaluated them using the Grid Searching method

using 3 independent 10-fold cross-validations to obtain the most

appropriate modeling parameter within the current parameter

space, which was then used for model construction.
FIGURE 1

Study population flowchart.
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We predicted scores on the training set data using the models

obtained from the five methods. Based on the prediction results of

the training set, we plotted receiver operating characteristic (ROC)

curves, and the point closest to the top-left corner was selected as

the classification threshold (closest.topleft). We applied the model

and threshold to the validation set data and calculated the area

under the curve (AUC), sensitivity, and specificity to evaluate the

model performance and determine the final resultant model.
2.5 Evaluating model performance based
on the latest WEO guidelines

We assessed the diagnostic performance of the outcome model

in patients with NAA, AA, and CRC in the adenoma-carcinoma

sequence using true positive rate (TPR) and false positive rate

(FPR). Qualitative FOBT was selected as a validated non-invasive

screening test, and we compared the diagnostic performance of the

outcome model and the FOBT in patients with FOBT results. We

also employed an adjustable positivity threshold to assess disease

risk based on an arbitrary risk scale from 0 to 100, calculating the

true positives (TP), false negatives (FN), true negatives (TN), false

positives (FP), sensitivity (%), specificity (%), positive predictive

value (PPV, %), and negative predictive value (NPV, %) (18).
2.6 Statistical analysis

To compare the differences among groups, we adopted the

Wilcoxon test, t-test, or chi-square test, depending on the type and

distribution of the data. We performed ROC curve analysis using

the pROC package in R, and the Delong method was used to

calculate the confidence intervals. The bootstrap method was

applied to calculate the 95% confidence intervals for sensitivity

and specificity. The Hanley-McNeil test was used to analyze the

statistical significance of the difference in AUC between the

outcome model and FOBT (19).
3 Results

3.1 Study participants

We initially included a total of 575 AAs and 3263 controls. After

QC, 569 AAs and 3228 controls were eligible for machine learning

modeling and validation. The demographic and clinical

characteristics of the study participants are shown in Table 1.

Supplementary Table 2 provides more descriptive information

on features.
3.2 Feature screening

We collected 167 features, and after data QC and feature

screening, 60 features were retained for machine learning

modeling (see Supplementary Table 3 for details). In ROC
Frontiers in Oncology 04147
analyses using separate variable to differentiate between the AA

and control groups (Figure 2, Table 2), none of these indicators

demonstrated strong discriminatory power (AUC<0.8), with age

exhibiting the highest discriminatory power (AUC=0.77).
3.3 Modelling and validation using
different models

We successfully built fivemodels using differentmachine learning

methods (KNN,XGBoost, LR, RF, and SVM).Wecalculated theAUC,

sensitivity, and specificity for both the training and validation sets to

characterize the diagnostic performance of these models (Figure 3A,

Table 2). Overall, the XGBoost model showed the most promising

diagnostic performance for identifying patients with AA while

maintaining a validation set specificity of at least 0.8. The XGBoost

model demonstrated gooddiagnostic performance inboth the training

and validation sets, with a sensitivity of 87.5% (95% CI, 84.4−90.4%)

(AA=456, Control=2583) and a specificity of 88.4% (95% CI, 87.2

−89.6%) in the training set. And the validation set performance

resulted in 70.8% (95% CI, 62.0−78.8%) sensitivity and 83.4% (95%

CI, 80.5−86.1%) specificity (AA=113, Control=645). Conversely, the

RF model, which performed well in the training set, exhibited 97.2%

specificity but only 23.9% sensitivity in the validation set, suggesting

potential overfitting. The combined diagnostic performance of KNN,

LR, and SVM in the validation set did not match that of XGBoost.

Thus, based on these results, we concluded that the XGBoost method

provided the best performance on the dataset and selected it as the

final model.
3.4 Evaluating the diagnostic performance
of models based on the latest
WEO guidelines

3.4.1 Diagnostic performance in the adenoma-
carcinoma sequence

We validated the diagnostic performance of the XGBoost model

in the validation set for AA (n=113), NAA (n=3047), and CRC
TABLE 1 Demographic and clinical characteristics of the
study participants.

Variables
Case

n = 569
Control
n = 3228

P-value

Age, yr, Mean ± SD 61.4 ± 10.2 50.5 ± 13.0 < 0.001

Sex, male, n (%) 369 (64.9) 1208 (37.4) < 0.001

Weight, kg, Mean ± SD 70.1 ± 11.9 66.2 ± 12.6 < 0.001

Comorbidities, n (%)

Ischemic
cerebrovascular disease

73 (12.8) 301 (9.3) 0.01

Coronary heart disease 90 (15.8) 339 (10.5) < 0.001

Diabetes mellitus 158 (27.8) 481 (14.9) < 0.001

Hypertension 235 (41.3) 700 (21.7) < 0.001
fro
Data are presented as the mean ± SD, median (quartile 1–quartile 3), or N (%).
ntiersin.org

https://doi.org/10.3389/fonc.2024.1325514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1325514

Frontiers in Oncology 05148
(n=488) (Table 3). In these three groups, the FPR was 16.6%

and the TPR was 70.8% (AA), 42.7% (NAA), and 80.1%

(CRC), respectively.
3.4.2 Comparison of diagnostic performance of
XGBoost model and FOBT

In this study, we screened three subsets with FOBT results: CRC

(n=343), NAA (n=1996), and AA (n=65). This was done to

compare the diagnostic performance of the XGBoost model with

that of the FOBT, as shown in Table 4. The FPR of the XGBoost

model (15.5%) was superior to that of the FOBT (16.5%). The TPR

of the XGBoost model for NAA and AA was 40.03% and 70.8%,

respectively, which were better than FOBT (25.2% and 47.7%).

However, in CRC, the TPR of the XGBoost model (84.8%) was

lower than that of FOBT (91.6%). The ROC curves of the XGBoost

model and FOBT for these three subsets are depicted in

Figures 3B–D, respectively. Moreover, we analyzed the difference

in AUC between the XGBoost model and FOBT. As shown in

Table 4, we found that in all three validation sets, the AUC of the

XGBoost model was significantly higher than that of FOBT (all

P<0.05). This indicates that from the perspective of AUC, the

XGBoost model outperforms FOBT.
3.4.3 Adjustable positivity thresholds for the
XGBoost model

We transformed the calculation results of the XGBoost model

into risk scores with a score range of 0 to 100, allowing visualization

of sensitivity, specificity, and other indicators at different thresholds

(Table 5). For example, choosing a score of 10 as the positive

threshold resulted in a sensitivity of 87.6% and specificity of 64.34%,

while a score of 20 yielded a sensitivity of 74.3% and specificity

of 82.5.
TABLE 2 Diagnostic performance of various models in training and
validation sets.

Methods AUC Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

KNN

Train 0.938
(0.929-0.946)

90.4 (87.7-93.0) 83.4 (81.9-84.8)

Valid 0.754
(0.708-0.801)

56.6 (47.8-65.5) 78.8 (75.7-81.9)

LR

Train 0.844
(0.826-0.863)

79.2 (75.2-82.7) 74.8 (73.1-76.4)

Valid 0.833
(0.790-0.875)

77.0 (69.0-84.1) 75.5 (72.1-78.9)

RF

Train 1 100 100

Valid 0.820
(0.778-0.861)

23.9 (15.9-31.9) 97.2 (95.8-98.5)

SVM

Train 0.920
(0.904-0.936)

84.7 (81.1-87.9) 91.6 (90.4-92.6)

Valid 0.773
(0.724-0.823)

69.0 (60.2-77.9) 74.6 (71.2-77.8)

XGBoost

Train 0.955
(0.947-0.963)

87.5 (84.4-90.4) 88.4 (87.2-89.6)

Valid 0.850
(0.813-0.887)

70.8 (62.0-78.8) 83.4 (80.5-86.1)
AUC, area under the curve; CI, confidence interval; LR, logistic regression; RF, random forest;
SVM, support vector machine; KNN, k-nearest neighbors; XGBoost, eXtreme
Gradient Boosting.
FIGURE 2

Cleveland dot plots show AUCs for Top 30 parameters identifying AAs and controls. AA, advanced adenoma.
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4 Discussion

The recent guidelines from the WEO for endoscopic CRC

screening have incorporated principles such as treating screening

as a multistep process, recognizing precursor lesions for CRC as
Frontiers in Oncology 06149
legitimate targets, using FIT as a current comparator, and providing

the ability to adjust thresholds for new test positivity. In light of this,

we conducted a phase I exploratory study using 60 clinical and

laboratory data points to develop and validate an XGBoost model

for identifying patients with AA. The model exhibited a sensitivity
A B

C D

FIGURE 3

ROC curves of machine learning models and FOBT in different validation cohorts. (A) Five constructed machine learning models in the validation set;
(B) XGBoost model and FOBT in the CRC validation set with FOBT results; (C) XGBoost model and FOBT in the AA validation set with FOBT results;
(D) XGBoost model and FOBT in the NAA validation set that includes FOBT results. AA, advanced adenoma; NAA, non-advanced adenoma; CRC,
colorectal cancer; ROC, receiver operating characteristic; XGBoost, eXtreme Gradient Boosting; FOBT, fecal occult blood test; LR, logistic
regression; RF, random forest; SVM, support vector machine; KNN, k-nearest neighbors; AUC, area under the curve.
TABLE 3 Diagnostic performance of the XGBoost model and FOBT in the validation set of advanced adenoma, non-advanced adenoma, and
colorectal cancer.

Subgroups Case, n
Control,

n

XGBoost FOBT

TP, n TPR, % FP, n FPR, % TP, n TPR, % FP, n FPR, %

AA 113 645 80 70.8 107 16.6

With FOBT 65 413 46 70.8 64 15.5 31 47.7 68 16.5

NAA 3047 645 1300 42.7 107 16.6

With FOBT 1996 413 799 40.0 64 15.5 502 25.2 68 16.5

CRC 488 645 391 80.1 107 16.6

With FOBT 343 413 291 84.8 64 15.5 314 91.6 68 16.5
fro
AA, advanced adenoma; NAA, non-advanced adenoma; CRC, colorectal cancer; XGBoost, eXtreme Gradient Boosting; FOBT, Fecal occult blood test; TP, true positives; TPR, true positive rate;
FP, false positives; FPR, false positive rate.
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of 70.8% and specificity of 83.4% in the validation set, successfully

detecting NAA with a sensitivity of 42.7% and CRC with a

sensitivity of 80.1%. The risk assessment scale, transformed by the

XGBoost model, showcased varying levels of disease risk at different

positivity thresholds, and notably, the XGBoost model

outperformed FOBT in identifying more patients with AA.

Detecting and endoscopically resecting colorectal precancerous

lesions, such as AA, has been recognized as an effective method for

preventing the occurrence of CRC and reducing CRC-induced

mortality (20). Ensuring the identification of AA is a crucial

objective in CRC screening programs (21). Despite colonoscopy

being the most frequently recommended and performed screening

method, its adoption remains low among the Chinese population,

with some individuals preferring less invasive alternatives such as

FOBT or FIT (22). Additionally, a significant number of subjects

show a preference for blood-based screening tests over stool-based

tests (23), which poses challenges to the widespread implementation

of stool tests. Developing AA identification tools based on easily

accessible data without imposing additional burdens on patients or

healthcare providers increases the likelihood of enabling patients to

benefit from screening. Pan et al. (24) constructed a diagnostic model

based on serum N-glycan levels with machine learning involving a

population comprising cases of AA and CRC. In this model, the

sensitivity and specificity for diagnosing AA were reported as 58%

and 85%, respectively. However, it’s important to note that, like

many existing CRC diagnostic models, Pan et al. did not create a

dedicated model exclusively for AA (25–28). This approach could

explain the poor performance of the model in identifying AA. Xiang

et al. (20) developed a serum metabolite-based diagnostic model for

AA (255 AAs and 178 controls) with a sensitivity of 44.7% and a

specificity of 88.9%. The study highlighted that the sensitivity of all

current AA diagnostic models remains below 45% at a similar level

of specificity. While our model achieves a sensitivity above 50% for

detecting AA at this level of specificity, it does not meet the

requirements set by certain agencies, such as the United States

Preventive Services Task Force, which mandates an acceptable

sensitivity of at least 70% for CRC and a specificity of at least 90%

for both cancer and advanced precursor lesion (29).

In China, certain large-scale CRC screening programs and

hospitals typically employ the qualitative immunogold method for

FOBT (30–32). However, there remain individuals who either

cannot or choose not to provide stool samples. Importantly, the

diagnostic model utilized in this study does not necessarily rely on

FOBT results; it is designed to apply to subjects without FOBT. In

the current exploratory study of the adenoma-carcinoma
Frontiers in Oncology 07150
sequence, the XGBoost model demonstrated superiority over

FOBT in diagnosing NAA and AA but was found to be less

effective than FOBT in diagnosing CRC. The simplicity and

rapidity of the FOBT, and notably high sensitivity for CRC

screening render it irreplaceable in the context of the adenoma-

carcinoma sequence. Additionally, the XGBoost model offers

potential benefits to patients who do not undergo FOBT for

various reasons.

The test positivity threshold plays a crucial role in determining

various important parameters. Specifically, it influences the test

positivity rate, which subsequently impacts the workload of

colonoscopy, the quantity of CRC or AA that warrant detection

through colonoscopy (a potentially cost-effective alternative

measure), the detection rate of the target lesion, and the positive

predictive value (33). Non-invasive screening tests with adjustable

positivity thresholds or algorithms enable the selection of test

accuracy parameters, including diagnostic sensitivity and

specificity, as well as test positivity rates that optimally align with

the intended goals of the screening program (5). We present test

accuracy parameters at different positivity thresholds in the risk

assessment table. The capacity to modify detection thresholds can

effectively manage the expenses related to colonoscopy, workforce

availability, treatment costs, and the public expectations that are

integral to equity-focused programs (5). By offering diverse risk

stratification data, it can enhance physicians’ clinical decision-

making process for individual patients.

This study has several limitations. Firstly, the study population

originates from a single center, warranting further validation in

diverse countries or regions to achieve widespread applicability.

Secondly, it’s noteworthy that a significant portion of the AA cases

were recruited from clinical settings with relatively high prevalence

rates, which might limit the full representativeness of our results in

the general population. Lastly, certain non-routine laboratory

indicators included in this study, such as tumor markers and

coagulation function, may contribute to an increase in the cost

for the patient.

In conclusion, we adhered to WEO guidelines, constructing the

XGBoost model of the AA patients using clinical and laboratory

data in a phase I exploratory study. We established adjustable

positivity thresholds to accommodate diverse screening program

objectives. This model significantly outperforms FOBT in

identifying patients with NAA and AA in the adenoma-

carcinoma sequence; however, it cannot replace FOBT for CRC

patients. Despite the XGBoost model’s substantially improved

accuracy in AA identification compared to existing screening
TABLE 4 Comparison of AUC between XGBoost and FOBT in different validation sets.

Validation sets
AUC (95% CI)

Estimate Difference Z P-value
XGBoost FOBT

AA 0.863 (0.805-0.921) 0.656 (0.580-0.732) 0.207 4.231 < 0.001

NAA 0.731 (0.708-0.755) 0.543 (0.514-0.573) 0.188 9.708 < 0.001

CRC 0.924 (0.903-0.945) 0.875 (0.849-0.902) 0.049 2.865 0.004
frontiersin.org

https://doi.org/10.3389/fonc.2024.1325514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1325514
methods (e.g., FOBT), it has not yet met the recommendations of

certain organizations. Nevertheless, it holds the potential to provide

valuable benefits for individuals who are unable to undergo the

FOBT test due to various reasons.
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