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A capacity optimization and
scheduling scheme of a
multi-energy complementary
power station considering energy
trading

Shaokun Zou1*, Ning Zhang2 and Baoze Wei3

1Sungrow Renewables Development Co., Ltd., Hefei, China, 2School of Electrical Engineering and
Automation, Anhui University, Hefei, China, 3Department of Energy Technology, Aalborg University,
Aalborg, Denmark

Digital technology is rapidly advancing, and the resulting digitization of energy is
becoming an inevitable trend. Integrating digital technology with energy planning
can enable efficient utilization of renewable energy (RE); the fluctuation of RE
generation, such as wind and photovoltaic (PV), can be reduced, and the reliability
of the power grid can be ensured. A better solution for RE utilization and planning
based on digital technology is proposed in this paper. First, an operation
mechanism of a multi-energy complementary power station is proposed based
on the complementary characteristics of multiple energy sources in the power
generation process. The current status and related issues of multi-energy
complementary power stations are studied in this paper. Second, a two-layer
model of optimization that integrates the complementary features of multiple
energy sources and system planning requirements is developed in this paper
based on the aforementioned power station operationmechanism. The two layers
of the model are nested with each other to realize the operation of the power
station. The upper model includes the RE utilization rate and the benefits of the
energy storage (ES) system. The lower model includes the operating cost of the
power station. The solution model includes the highest utilization rate of RE and
the lowest operation cost. Finally, the simulation operation is performed based on
the data on a provincial power grid. Themodel and operation strategy of themulti-
energy complementary power station based on digital technology proposed by
this paper are verified.

KEYWORDS

digital technology, multi-energy complementary, optimization planning, renewable
energy, energy trading, energy storage system

1 Introduction

The green and low-carbon economy has received considerable global attention as a result
of resource and environmental limitations. Numerous countries are presently investigating
strategies to attain a low-carbon economy by confronting these challenges (Li et al., 2021; Li
et al., 2022; Zhang et al., 2022). RE plays a critical role in realizing this goal. Nevertheless, the
inherently unpredictable characteristics of wind and PV power generation may lead to
substantial resource wastage (Joseph and Balachandra, 2020). Digital technologies are being
used effectively to accurately model and optimize various processes (Li et al., 2020; Song
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et al., 2021; Yang et al., 2023). Thus, to enhance the utilization of RE
resources and encourage efficient energy consumption, establishing
a coordination mechanism for multi-energy complementation
through digital technologies is imperative.

Due to its cost-saving and environmentally friendly advantages,
RE is positioned to become the primary power source in the future.
However, in order to achieve low-carbon development, the fluctuation
of RE output must be addressed (Li et al., 2019; Olsen et al., 2019;
Sanjari et al., 2020). To this end, the adoption of multi-energy
complementarity represents a crucial step forward in promoting
energy modernization and the creation of a green and efficient
energy system (Tan and Novosel, 2017; Li et al., 2020; Auguadra
et al., 2023). The field of research related to RE is currently in a phase
of rapid development. However, several issues need to be addressed in
order to optimize the planning, construction, scheduling, operational
technology, and institutional mechanisms. These issues can be
broadly categorized as follows: first, there is a need to determine
the optimal combination of wind, PV, hydro, and thermal storage to
achieve the best operating results. Second, reducing energy waste and
improving the utilization of RE are critical challenges that require
further research. Third, the instability of RE sources, such as wind and
PV, due to weather fluctuations during power generation, can lead to
reduced power generation efficiency. Strategies for mitigating this
instability and replacing the output of conventional power stations
with RE to minimize costs must be developed. Fourth, determining
the appropriate pricing mechanism for electricity generated from RE
sources remains a key issue that needs to be addressed.

At present, scholars have studied the multi-energy
complementary coordination mechanism. An optimal operation
strategy for an independent regional grid based on the synergistic
operation of wind–PV–water-storage during the dry period is
proposed, as seen in Liu et al. (2019). This strategy mitigates the
impact of seasonal and daily fluctuations in RE output on power
supply reliability while also avoiding the risk of decreased
hydroelectric generation during dry periods due to water shortages.
In the paper by shafiei and Ghasemi-Marzbali (2023), a fast-charging
station model is developed by integrating RE and ES systems. The
uncertainty of RE is reduced, and the profitability of the charging
station is improved. A grid-interactive microgrid based on a DC–DC
multi-source converter configuration consisting of PV, wind, and
hybrid ES is proposed in an article by Ravada et al. (2021). It can
effectively reduce the fluctuations in generation caused by wind and
PV. A coordinated optimizationmodel for a hybrid water–wind–solar
system based on the uncertainty of scenic power generation is
proposed by Wei et al. (2019). The proposed operation strategy
can improve the efficiency of RE utilization and reduce
environmental pollution at the same time. An agent-based
transactive energy trading platform is proposed in the article by
Nunna et al. (2020) to integrate ES systems into the energy
management system of a microgrid. The proposed model can
effectively improve the system’s revenue. In the paper by Sun
et al. (2017), a scenario-based stochastic model is proposed for
dispatching a power system that integrates battery-based ES
and transportation. The model aims to minimize the operating
cost of the power system by reducing the amount of wind and
electricity that is abandoned. An interconnected power system
water–thermal–wind–PV complementary operation model is
proposed by Wang et al. (2018). This model couples the

complementary features of multi-energy and multi-area operations
to optimize the utilization of RE sources and minimize carbon
emissions. Additionally, this model mitigates the issue of
abandonment in multi-energy and multi-regional power systems. A
collaborative energy management strategy based on on-the-fly
prediction is proposed in an article by Bazmohammadi et al. (2019).
The proposed strategy solves the coupling constraint problem. It
achieves multi-energy complementarity and improves energy
utilization. A multi-energy supply geothermal–solar–wind RE hub
framework was established by Xu et al. (2022). This framework
maximizes the complementary features of the geothermal–PV–wind
hybrid RE system, resulting in improved economic performance. A
scheduling strategy structure that considers the stochastic characteristics
caused by wind power and PV is proposed in the paper by Dong et al.
(2020). A coordinated dispatching model with optimization objectives
and profit maximization is developed in this paper. The proposed
scheduling strategy can effectively improve the system’s revenue. In the
paper by Oskouei et al. (2021), a unified decision structure consisting of
network partitioning and optimal operational planning problems is
proposed. The structure determines the optimal allocation of wind, PV,
and ES systems. The RE utilization is increased, and the abandonment
rate is reduced. A techno–economic–environmental energy dispatch
framework for a multi-energy microgrid system is presented in an
article by Karimi et al. (2023). The model improves the flexibility and
reliability of themicrogrid system. It also optimizes the operational cost,
carbon emission, groundwater extraction, and independence of the
multi-energy system. The independence of the multi-energy microgrid
system is improved.

In this paper, a planning model is developed to facilitate the
integration of multiple energy sources, specifically wind, PV, hydro,
thermal, and storage. The proposed model encompasses the storage of
electricity during periods of low RE generation, which can be utilized
during peak periods for the regulation of peak loads. Moreover, surplus
power generated during low-energy periods can be exchanged with the
power grid. In situations where the energy supply is insufficient, power
can be procured from suppliers by comparing prices to select the most
viable option. The implementation of this planning model for multi-
energy complementarity power stations is anticipated to enhance the
utilization of RE, lower operational costs, and advance low-carbon
development.

Its contributions can be briefly expressed as follows:

1. A power station operation mechanism that takes into account
wind, PV, water, thermal, and ES is proposed by considering the
coupling relationship between several different energy sources.
Digital techniques are utilized to optimize the economic
performance of the multi-energy complementary power
station and to maximize the profitability of the station.

2. In this paper, a multi-energy complementary power station model
is developed that takes into account the operating costs of the
station, the revenue of the ES system, and the utilization of RE. The
model is segmented into two parts: upper and lower. Different
optimization algorithms are used to solve the model separately.

3. A power station planning model based on digital technology
proposed in this paper reduces the waste of resources and
supports the development of RE. At the same time, it solves
the problem of low utilization of RE, which is in line with the
green and low-carbon development goal.
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The remaining sections can be summarized as follows: in Section
2, the master planning model of the multi-energy complementary
power station is presented, and an objective function is established
to maximize the power station’s benefits at minimum cost. Section 3
discusses the simulation results and validates the model’s feasibility.
The paper concludes with the main findings in Section 4.

2 Materials and methods

2.1 Planning flow chart

The power station planning process is shown in Figure 1. The
operation strategy that enables the power station to be economically
optimal can be obtained by following the planning steps in Figure 1.
The planning process is as follows: first, the operating cost of each
unit is calculated by inputting the cost of each unit. Next, the RE
utilization capacity is calculated, and finally, the sum return of the
power station is calculated. If the calculated value is optimal, it is
outputted. Otherwise, the process iteratively updates the particle
until the optimal value is obtained.

2.2 Objective function

The objective function of the multi-energy complementary
power station is established as follows:

C � max Cyx − K − F − A − B −D( ). (1)

The objective function C represents the relationship between the
total revenue of the power station and the cost of each unit. The
objective function is established by maximizing the total revenue of
the power station and minimizing the cost of each unit (Li et al.,
2021).

2.2.1 ES system operating benefit and cost
model Cyx

2.2.1.1 ES system operating income model
The primary source of revenue for ES systems is to store

electricity during peak usage periods and sell it to the power
grid, earning the price differential.

Csy � ∑T
t�1

ηfPprice,sellP
f
St( − ηcPprice,buyP

c
St

⎞⎠ (2)

The formula for calculating the revenue generated by the ES
system during operation is given in Eq. 2. Since the ES system cannot
both charge and discharge at the same time, one of Pf

St and P
c
St must

be 0 in Eq. 2, which is given in the constraints section of the paper.

2.2.1.2 ES system operating cost model
The operating cost of an ES system consists of three

components, which are investment cost, operation and
maintenance (O&M) cost, and kWh cost.

Ccb � CIn + COM + CESS, (3)
CIn � C r, n( ) CPCESS + CEEESS( ), (4)

C r, n( ) � r 1 + r( )n
1 + r( )n − 1

, (5)
COM � λOPESS + λMQESS. (6)

If it is not possible to determine, the aforementioned cost factors
are generally approximated by a percentage of the initial investment
to calculate the O&M costs, that is,

COM � μCIn, (7)
CESS � CIn + COM

QESS
, (8)

QESS � ηESSPESSHESS. (9)
The formula for calculating the annual power generation of the

ES system is given in Eq. 9, and the annual power generation is
calculated by the conversion efficiency of the ES station and
the annual utilization hours of the electricity storage of the ES
station.

Therefore, the model with the greatest operating benefits of the
ES system is

Cyx � Csy − Ccb. (10)

The relationship between the benefits and costs of the ES system
is given in Eq. 10 as total benefits equal to operating benefits minus
costs.

2.2.2 Thermal power unit cost F
2.2.2.1 O&M costs f1

fd � Pzj

∑365
i�1
Eir 1 + r( )M

Tyk 1 + r( )M − 1
. (11)

FIGURE 1
Planning flow chart.
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The formula for calculating the average annual cost is given in
Eq. 11. The equivalent annual value of the cost of a thermal power
station can be calculated by Eq. 11.

f1 � λ1fd, (12)
where λ1 is the O&M coefficient.

The relationship between O&M costs and investment costs of
thermal power units is represented by Eq. 12.

2.2.2.2 Fuel costs f2

f2 � ∑365
i�1
EiWfuelPfuel. (13)

The formula for calculating the cost of fuel consumed by thermal
power units during peaking is given in Eq. 13.

To sum up, the charge for the thermal power turbine is

F � f1 + f2. (14)

2.2.3 Wind turbine cost A

A � λ2AIN, (15)
where λ2 is the O&M factor of the wind turbines.

2.2.4 Hydropower unit cost B

B � λ3BIN, (16)
where λ3 is the O&M coefficient of the hydropower unit.

2.2.5 Cost of PV unit D

D � λ4DIN, (17)

where λ4 is the O&M coefficient of the PV unit.

2.2.6 RE utilization capacity K
The ability to consume RE resources is expressed by the

abandoned wind, PV, and water. The less wind, PV, and water
are discarded, the higher the ability to consume RE resources in the
system, and the opposite is lower.

K � ∑T
t�1

∑Nw

w�1
xwP

wind
q,w,tΔt( ) +∑T

t�1
∑Ng

g�1
xgP

PV
q,g,tΔt( ) +∑T

t�1
∑Ns

s�1
xsP

hydro
q,s,t Δt( ),

(18)

where Δt is the duration of the time section.
K denotes the penalty price for wasting RE. When more

electricity is abandoned, the larger K is, and the lower the
utilization rate of RE will be. When the abandoned electricity
is less, the smaller K means a higher utilization rate of RE.
Therefore, in the planning process, the smaller the K, the better,
that is, the smaller the abandoned power, the higher the energy
utilization.

2.3 Binding conditions

2.3.1 Power balance constraint

∑Ω
i�1
Pi,t+∑Nw

w�1
Pwind
w,t +∑Ns

s�1
Phydro
s,t + ∑Ng

g�1
PPV
g,t + Pf

St � Pload
t + Pc

St. (19)

The whole system needs to satisfy the law of energy
conservation. The power balance equation is given by Eq. 19,
where the power generated by each unit at moment t is equal to
the load power, which is also equivalent to the load when the ES
system is charged and to the generator set when it is discharged
(Yang et al., 2022).

2.3.2 Thermal power output constraints

Pt,min ≤Pi,t ≤Pt,max, (20)
where Pt,min is the minimum power output of the thermal turbine at
time t. Pt,max is the thermal turbine’s maximum electrical output at
time t.

2.3.3 Wind turbine output constraint

0≤Pwind
w,t ≤Pwind

w,t,max, (21)
where Pwind

w,t,max is the wind turbine’s max output power at time t.

2.3.4 Hydroelectric turbine output constraint

0≤Phydro
s,t ≤Phydro

s,t,max, (22)
where Phydro

s,t,max is the hydroelectric turbine’s max output power at
moment t.

2.3.5 PV turbine output constraint

0≤PPV
g,t ≤P

PV
g,t,max, (23)

where PPV
g,t,max is the PV turbine’s max output power at moment t.

2.3.6 ES constraints
2.3.6.1 Charge state constraints

St � St−1 + ηcP
c
St

PESS
Δt − Pf

St

ηfPESS
Δt,

S min ≤ St ≤ S max.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (24)

Since the ES capacity of the ES system cannot be zero, the
maximum and minimum ES capacities at moment t are limited, as
shown in Eq. 24. The ES capacity at moment t increases as the ES
system is charged and decreases as the ES system is discharged.
When the RE output is enough to meet the load, the ES system
charges to store the excess electricity and the electricity can be sold
when the storage is not enough. When the RE output is not enough
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to meet the load, the ES system discharges, and if it is not enough, the
electricity needs to be purchased.

2.3.6.2 Charge and discharge power constraints

0≤Pf
St ≤Pf

St,max,
0≤Pc

St ≤Pc
St,max

Pf
St · Pc

St � 0.

⎧⎪⎪⎨⎪⎪⎩ , (25)

The charging and discharging power of the ES system is limited
and cannot be infinitely charged or discharged, so some constraints
should be added, as shown in Eq. 25.

2.3.6.3 Electricity price constraint
In a multi-party bidding situation, when the power grid tariff is

higher than the tariff of other power companies, the option is to sell
the excess power to the power grid.

0<minPsell
others <Pprice,sell,

0<Pprice,buy <minPbuy
others.

{ (26)

The bidding relationship between the grid and the power
supply company is represented by Eq. 26. The power station
always selects the party with the most favorable price. If the
price of buying electricity from the grid is higher than the price
of the other power supply companies, it chooses to buy electricity
from the other companies. It chooses to sell power to the grid if
the price of buying power from the grid is higher than the price of
the other supply companies.

3 Results

This paper analyses a modified example of an actual system
at a provincial level in China. The planning of multi-energy
complementary power stations in the next 5 years is studied in
this paper based on the current established commissioning plan
situation of the province. The main economic parameters of each
type of power source in the built multi-energy complementary
power stations are indicated in Table 1. In Table 1, it can be
seen that, for the time being, relatively few RE sources, such as
wind turbines and PV units, have been put into operation because
their power generation is unstable, and therefore, the utilization of
RE sources is currently limited.

3.1 Parameter setting

The overview diagram of the power plant operation scenario is
shown in Figure 2. A multi-energy complementary power station
consists of wind turbines, photovoltaic units, hydroelectric units,
thermal units, and energy storage systems. The power station
supplies power to the load, and excess power can be stored until
the power supply is low and the energy storage is discharged. The
power balance can also be maintained by trading power with the
power supplier to gain benefits.

The main economic parameters of the units selected for wind,
PV, water, thermal power, and ES systems are illustrated in Table 1.
During the simulation process, the selected units’ economic
parameters should be characterized by moderate cost and long
service life. Due to the advantages of large installed capacity, high
stability, long continuous discharge time, and wide regulation range,
ES systems choose pumped storage. By using pumped storage power
stations, the electricity system’s stability can be effectively improved
and the utilization of its RE capacity can be enhanced.

Figure 3 shows the wind, PV, and hydropower output curves for
a typical day in spring.

In Figure 3, it can be seen that PV turbines mainly work from 12:
00 to 14:00 and their output power peaks at 13:00. Hydropower units
mainly work from 22:00 to 10:00 of the following day, and the output
power peaks at 9:00. The wind turbines mainly work from 9:00 to 12:
00, and the output power peaks at 15:00.

Figure 4 shows the wind, PV, and hydropower output curves for
a typical day in summer.

In Figure 4, it can be seen that PV turbines mainly work from 6:
00 to 18:00 and their output power peaks at 12:00. Hydropower units
mainly work from 19:00 to 10:00 of the following day, and the output
power peaks at 23:00. The wind turbines mainly work from 10:00 to
24:00, and the output power peaks at 13:00.

Figure 5 shows the wind, PV, and hydropower output curves for
a typical day in autumn.

In Figure 5, it can be seen that PV turbines mainly work from 6:
00 to 18:00, and their output power peaks at 12:00. Hydropower
units mainly work from 19:00 to 14:00 of the following day, and the
output power peaks at 20:00. The wind turbines mainly work from 8:
00 to 24:00, and the output power peaks at 10:00 and 23:00.

Figure 6 shows the wind, PV, and hydropower output curves for
a typical day in winter.

In Figure 6, it can be seen that PV turbines mainly work from 10:
00 to 16:00, and their output power peaks at 13:00. Hydropower

TABLE 1 Main economic parameters of various types of power sources in a multi-energy complementary power station.

Power supply
type

Stand-alone
capacity/MW

Unit investment cost/
(Yuan·kW−1)

Annual fixed O&M costs/
(Yuan·kW−1)

Operating life/
year

PV 0.5 8,000 96 25

Wind power 2 7,000 195 20

Hydropower 125 11,450 240 50

ES 200 6,000 80 30

Thermal 300 5,000 105 15
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units mainly work from 18:00 to 24:00, and the output power peaks
at 20:00. The wind turbines mainly work from 9:00 to 24:00, and the
output power peaks at 24:00.

As the typical day is highly representative, the criterion for
selecting the typical day for all seasons is based on the day with the
highest daily load. The RE output data for this typical day are then
used as input data to more accurately reflect the operation of the
power station.

By comparing the output curves for a typical day in spring,
summer, autumn, and winter, it can be seen that the complementary
situation of the three renewable resources is obvious and that the
fluctuations in power generation can be reduced by making full use
of the complementary t characteristics of the energy sources. This

also illustrates again the indeterminate of RE and the necessity of
establishing multi-energy complementary power stations.
Therefore, the reasonable coordination of several energy sources
can improve the utilization of RE and reduce the waste of resources.

3.2 The results by projection analysis

Based on the original data on the province, the planning results
can be obtained, and the added installed capacity of various
electricity sources in the province is shown in Table 2. It can be
found that wind power and PV have been put into operation every
year during the planning period, and the capacity has been

FIGURE 2
Overview diagram of the power plant operation scenario.

FIGURE 3
Daily output curve in spring.

FIGURE 4
Daily output curve in summer.
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increasing year by year, which also shows that the development
prospect of renewable resources is good and applicable. Thermal
power is mainly used to take the basic load and part of the peak load
of the system and has a relatively stable installed capacity during the
planning period. Due to the influence of the construction period,
independent hydropower units are not put into operation in the first
3 years of the planning period, while 490 MW and 1530 MW are put

into operation in years 4 and 5, respectively. As shown in Table 2, ES
units were commissioned according to the original plan of the
province, and 800MW and 280 MW were commissioned in years
3 and 4 of the planning period, which were separate. The ES units
were not put into operation in the fifth year. This is due to the
optimization of the operating economy of the power station, which
had already been optimized to the maximum in the third and fourth
years, and further input is not conducive to the operation of the
power station. Therefore, ES units are only put into operation in
years 3 and 4.

From the aforementioned details, we can see that in the next
5 years, thermal power, wind power, and PV will become the leading
power generation methods of the system, while the share of wind
and PV power connected to the grid is expected to increase annually.
The reason is that the incorporation of ES fully utilizes the
complementary nature of various energy sources, improves the
use of RE, and reduces the waste of renewable resources, which
is an extremely important step in achieving low-carbon
development in countries around the world.

Taking the fifth year as an example, the discharge curves of the
typical days of ES in summer and winter are shown in Figures 7, 8. It
can be observed that the peak discharge periods of ES in summer are
mainly from 8:00 to 13:00 and 19:00 to 23:00, and the peak discharge
periods of ES in winter are mainly from 10:00 to 11:00 and 19:00 to
23:00. The price of electricity is higher than usual during these
periods, and the power station can sell electricity during these
periods to generate increased revenue. Therefore, it is possible to

FIGURE 5
Daily output curve in autumn.

FIGURE 6
Daily output curve in winter.

TABLE 2 New production capacity of various power supplies during the planning period.

Year Wind Power/MW PV/MW Hydropower/MW Thermal power/MW ES/MW

First year 1,431 1,012 0 2,607 0

Second year 2075 1,398 0 3,911 0

Third year 4,011 1879 0 3,923 800

Fourth year 3,169 2011 490 4,915 280

Fifth year 4,156 2,654 1,530 5,809 0

FIGURE 7
ES operation results in summer.
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get a clear picture of the operating revenue of the whole power
station through the hourly operation of the ES system during a
typical day.

4 Discussion

On the premise of promoting low-carbon development and
improving the utilization of RE, a planning model is established
in this article based on the characteristics of energy
complementarity. The model takes full advantage of the
complementarity of energy sources. Furthermore, the capacity
changes of various types of installed energy devices in different
time periods are analyzed, while the flexibility of the system is
improved. By simulating the model, it is clear from the simulation
results in Section 3 that in the next 5 years, energy complementarity
will be fully utilized due to the access to the multi-energy
complementary power station, and the use of renewable
resources for power generation will increase.

The model of a multi-energy complementary power station
based on digital technology developed in this study can improve
the capacity of RE consumption. In contrast to existing models, the
model in this study is more comprehensive in consideration. With a
large number of RE sources connected to the grid, using the
complementary relationship between energy sources to improve

energy utilization has practical implications for reducing
environmental pollution and for the electricity market.
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Glossary

RE renewable energy

PV photovoltaic

ES energy storage

O&M operation and maintenance

C benefits of the model

K abandonment penalty for RE

F cost of thermal turbines

A cost of wind turbines

B cost of hydropower turbines

D cost of PV turbines

Csy running revenue of the ES system

η efficiency of the ES system

F discharge

c charging

PSt power of the ES system

Pprice,sell price of electricity sold to the power grid

Pprice,buy price of electricity purchased from the power grid

Ccb operating cost of the ES system

CIn investment cost of the ES system

COM O&M cost of the ES system

CESS cost of ES system kilowatt-hour costs

CP power unit investment of ES

CE capacity unit investment of ES

PESS installed capacity of the ES power station

C(r, n) equivalent annual value coefficient

r benchmark discount rate

n duration of ES operation (life, in years)

λ O&M cost factor for ES

QESS annual power generation of ES

μ O&M cost coefficient

HESS annual utilization hours of electricity

f d annual equivalent of installed cost investment in thermal power

Pzj installed cost per unit of thermal power unit capacity

Ty annual operating time

k rate of the fundamental peak regulation capacity of thermal power to the
maximum output power

M service life

Ei peak regulation discharge power of ES on day i

IN installed cost

Pq,t discarded power occurring in period t

x abandoned penalty price

w wind turbine

g PV turbine

s hydro turbine

N number of turbines

Ω quantity of thermal turbines

Pi,t ith thermal unit’s output power at moment t

P,t actual power connected to the power grid

St battery power stored in the ES device in time period t

Smin minimum stored power of the charging state

Smax maximum stored power of the charging state

Pbuy
others

price of selling electricity to other power supply companies

Psell
others

price of electricity sold by the power grid
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Based on the difference of
Newton’s method integrated
energy system distributed
collaborative optimization

Xinying Liu1, Xu Chen2 and Xinyu Ke3*
1Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China, 2College of
Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, China, 3The Electrical
Engineering College, Guizhou University, Guiyang, China

With the integration of renewable energy into the grid, the traditional power
system stability faced by huge challenges, and the development of integrated
energy system, it is of essence to improve the coupling of multiple integrated
energy systems of different types, management in the integrated energy system
and reduce the pressure of communication and computing, in this paper, we
construct a distributed Newton algorithm based on Newton’s method to
accelerate the solving speed, which decreases the times of iterations to reduce
the pressure of communication and calculation, saving the cost of operation.
Besides, privacy protection is particularly important for a distributed control
system, under the premise that calculation speed is guaranteed, meanwhile,
privacy protection of all agents in an integrated energy system is also critical.
This study uses annular directed distributed algorithm to enhance the privacy of
integrated distributed energy systems in the intelligent body, so as to fully ensure
the privacy safety of all agents in the system. Moreover, the forementioned
difference Newton algorithm in this study avoid the behavior of Zeno, greatly
accelerating the speed of iteration and finding the best energymarket price,. At the
same time, the privacy safety of all agentsin the distributed energy system are
ensured. Finally, a distributed integrated energy system based on the algorithm
proposed by this study has went through theoretical proof and simulation
experiment, whose result shows the validity of the algorithm.

KEYWORDS

difference Newton method, integrated energy system, energy scheduling, optimization,
distributed algorithm

1 Introduction

Recent years have seen the need to bring a major shift of energy source from coal to and
electricity in an attempt to ensure power supply Therefore, renewable energy is connected to
the power system, which can ensure sustainable and reliable power supply. Despite
unprecedented challenge and change, the traditional power system gradually
transformed into new power system generating clean energy. However, as the new
energy power systemincreasing in scale, it still faces numerous challenges, such as new
balance system and complex security mechanism. The introduction of the integrated energy
system canmeet the regional energy demand and themulti-source strategy development is of
great significance, that said, the key still lies in safeguarding regional energy safety and stable
operation of energy system.
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For the traditional electric power system, renewable energy is
introduced into too little, therefore, most of the scholars at home and
abroad research contains only a single power network (YANG and
WANG, 2021), and for the centralized algorithm. These algorithms
included multi-objective optimization scheduling (Zhang et al.,
2020), mixed nonlinear programming (Marty et al., 2017),
(Hemamalini and Simon, 2009) Newton method, and traditional
iterative methods (Lin and Viviani, 1984) (Hemamalini and Simon,
2009) to solve the non-convex participant energy management
problem in centralized energy systems. The literature suggests
that centralized algorithms can more accurately obtain optimal
values (Hemamalini and Simon, 2009), and are fast and easy to
design. However, using centralized algorithms requires significant
computational resources and communication costs, and damage to
the central agent can be difficult to recover, such as (Yin et al., 2018).
To address the aforementioned challenges, a distributed algorithm
has been proposed by relevant scholars, which effectively overcomes
the issue of handling large volumes of data and prevents problems
such as information processing. The distributed algorithm
encompasses the following aspects: Chow initially proposed a
numerical method for consistency that was utilized by foreign
scholars to solve the problem of distributed energy scheduling
(Zhang and Chow, 2012). For a single distribution power grid,
the primary consideration is the impact of electricity prices on power
consumption (Xie et al., 2022a). Moreover, the robustness and
control of the micro grid must be taken into account (Xie et al.,
2022b), while optimization of parallel distribution in weak power
grids is achieved through the application of the method of group
economical ICA and the NSGA-II (Nie et al., 2023), (Zhong et al.,
2022), which aims to identify the optimal operating point for the
micro grid. The optimization of the micro grid mainly includes
approaches such as neural network-based methods (Zhang et al.,
2023), alternating direction multiplier methods (Gao et al., 2022)
(Zhu et al., 2022), and dynamic programming (Yang and Yang,
2022). Scholars, such as Yang Ping, have proposed the GPS model in
light of the relationship between information flow and energy flow,
and have also developed optimal control strategies to explore the
micro grid (Yang and Yang, 2022). The aforementioned research
effectively addresses the challenges associated with communication
and computing stress in traditional micro grid control centers. In
addition, due to the use of distributed methods, the absence of a
control center ensures that local damage has minimal impact on the
entire system. However, the research only focuses on electricity and
does not consider other forms of energy. With the constant
improvement of the proportion of new energy power system,
balance system, the security mechanism of the new type of power
system problems such as challenged, in this case, the collaborative
optimization of a variety of energy for the stability and security of the
power system is obviously much better than a single grid. In this
context, some scholars have proposed the concept of an integrated
energy system that differs from single energy networks. Considering
multiple energy networks together can enhance the effect of energy
optimization, but it also increases the complexity of the
transformation mechanisms across various forms of energy, such
as electricity, gas, and heat, in both time and space scales (Lv, 2022).
Consequently, the comprehensive optimization of an integrated
energy system is more challenging than optimizing a single grid
(Schfer et al., 2018). To address these issues, scholars have developed

distributed computing methods for finding optimal values in
integrated energy systems. Many studies by domestic and foreign
scholars have proposed distributed non-iterative algorithms for
multi-agent coordination optimization problems (Tan et al.,
2019; Tan et al., 2021). For instance, one study (Munshi and
Mohamed, 2019) proposed an unsupervised algorithm that uses
electric meter data to determine electrical load parameters, while
another study (Zhang et al., 2017) introduced the mixed alternating
direction multiplier method to solve the coupling relationship
between various forms of energy in the integrated energy system.
Scholars such as Zhang have applied the integrated energy unit and
alternating direction multiplier method to address the multivariate
coupling between electric and heat energy systems and solve
coordination problems between the energy networks (Zhang
et al., 2017). On the basis of previous research, scholars both at
home and abroad have mainly focused on the optimization of
distributed optimization methods in integrated energy systems
with regards to convergence speed. This has been done by
addressing issues such as information attacks (Zhao et al., 2016;
Duan and Chow, 2019), non-convexity of energy systems (Chen and
Zhao, 2019; Huang et al., 2019; Li et al., 2019), and so on.

Although about the optimal management of traditional
integrated energy system research have been studied from
many aspects, can meet the balance between supply and
demand, energy scheduling and achievements, but the
traditional studies in distributed energy system, between the
iterative speed and privacy protection problems still exist,
Literature (Zhang et al., 2017; Li et al., 2020) has shown that
when the iteration speed is slow, it is possible to ignore the kink
behavior, which can lead to a loss in wireless loop. The traditional
energy management approach is thus faced with the challenge of
being too slow for a long period of time, resulting in delayed
energy supply during emergencies and inevitable loss. Pressure is
too large and integrated energy systems of communication,
iterative speed too slow, resulting in the high cost problem.
Based on the above analysis, this paper combined with the
ring to algorithm design difference Newton’s method, Newton
method and greatly accelerate the iteration speed, reduce the
number of iterations, delay to solve energy, reduce
communication and computing pressure, privacy protection
and integrated energy systems between adjacent agent. The
main contributions of this paper are as follows.

1) The difference Newton’s method is proposed based on the
Newton’s method. In comparison with the traditional
approach, this method is characterized by a faster rate of
iteration and a reduced number of iterations. Consequently,
in the context of an integrated energy system, it can
significantly reduce communication and computational
overhead and mitigate energy latency.

2) The ring-based distributed algorithm is employed in the
integrated energy system to ensure privacy protection among
its participants. Conventional algorithms rely on participants to
protect their privacy, but they require the exchange of adjacent
information such as energy input/output power and energy price.
In this regard, the use of the ring-based distributed algorithm
effectively addresses this issue by providing complete privacy
protection for all participants.
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3) To avoid the divergence of Newton’s method during the
downhill, a kino line may occur where the algorithm iterates
indefinitely within a limited time, leading to an infinite loop. To
prevent this behavior, the proposed algorithm in this paper is
designed to avoid kino behavior.

The paper is structured as follows: In the first section, the
integrated energy system established in this study is introduced,
along with the function and constraint conditions for each
participant’s cost in the system. The second section describes the
Difference Newton’s method employed in this paper (DNEA) and
how it addresses the energy coupling issue. The third section
provides a proof of DNEA’s speed, convergence, optimality, and
avoidance of kino behavior. The fourth section presents a simulation
validation of the proposed DNEA algorithm in the established
integrated energy system. Finally, the fifth section offers
concluding remarks.

2 Models of IES

The composition of body, specifically its internal structure,
comprises various energy devices that serve distinct functions. 1)
The power generation device includes distributed coal-fired
generators, gas generators, solar generators, wind turbines,
and energy storage systems. 2) The heating device comprises
distributed coal-fired heat production devices, distributed
combustion gas heat production equipment, photovoltaic
production engines, and distributed storage devices. 3) The
thermal electric power plant machine. 4) The distributed gas
suppliers constitute the remaining energy equipment. Each of
these energy bodies accommodates three energy types, namely,
electricity, gas, and heat, which need to be considered while
accounting for electricity price fluctuations, load-side random
scheduling, and demand response for electricity, gas, and heat.
Because in traditional power system load is not adjustable, so you
need to increase the “adjustable load”, such as: conversion of
electricity and heat, electricity and hydrogen between mutual
conversion, energy storage device, etc.,. This paper is suitable for
small energy network connected to the electricity grid if there are
toning, can from the grid to compensate.

The figure illustrates the encryption of data to safeguard the
privacy of each pluripotent micro power grid in the integrated
energy system. During each iteration process, the control center
establishes encrypted data to ensure secure communication.

2.1 Models of renewable energy devices

This article considers five energy bodies and takes into
account the changing demands and environmental factors
affecting the energy efficiency of each equipment within these
bodies. Based on this, the following constraints have been
established.

1) Distributed energy physical quantity balance constraints

Pex
i,T �

∑
i∈Κpg

i

Pg
ij,T + ∑

i∈Κpc
i

Pc
ij,T + ∑

i∈Κpes
i

Pes
ij,T + ∑

i∈Κpchp
i

Pchp
ij,T + ∑

i∈Κpp
i

Pp
ij,T

+ ∑
i∈Κpw

i

Pw
ij,T − ∑

i∈ΚΛ
i

ΛPr
ij,T( + ΛPcl

ij,T
⎞⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(1)

Type: Pex
i,T for the ith a total electricity energy body; ∑

i∈Κpg
i

Pg
ijT for gas

supplier by air to turn electric power. ∑
i∈Κpc

i

Pc
ij,T as the coal to produce

electricity, ∑
i∈Κpes

i

Pes
ij,T as the energy storage equipment to produce

electricity. ∑
i∈Κpchp

i

Pchp
ij,T for cogeneration plant producing; ∑

i∈Κpp
i

Pp
ij,T for

photovoltaic generation; ∑
i∈Κpw

i

Pw
ij,T for wind power generation;

ΛPr
ij,T for the necessary power to the load side, ΛPcl

ij,T for electric
power loss when converted into heat. This paper only considers the
electric load that is converted to heat load, and not the heat load
converted to electricity load case. Κpg

i ,Κpc
i ,Κpes

i ,Κpchp
i ,Κpp

i ,Κpw
i ,ΚΛ

i

respectively represent the ith coal-fired generator set, energy storage
device, gas supplier collection, cogeneration unit set, pv electricity
production device set, load, and fan electricity production device
under given energy body scenarios.

Hex
i,T �

∑
i∈Κpg

i

Hg
ij,T + ∑

i∈Κpc
i

Hc
ij,T + ∑

i∈Κpes
i

Hes
ij,T

+ ∑
i∈Κpchp

i

Hchp
ij,T + ∑

i∈Κpp
i

Hp
ij,T − ∑

i∈ΚΛ
i

ΛHr
ij,T( + ΛHcl

ij,T
⎞⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2)

Gex
i,T � ∑

i∈Κgas
i

Ggas
ij,T − ∑

i∈ΚΛ
i

Hg
ij,T( + Pg

ij,T + ΛGcl
ij,T

⎞⎟⎟⎠ (3)

For each CLP energy body, the production amount of
equipment for gas and heat must remain equal to the difference
between the total load and the exchange of energy on the load side
during operation. In addition, the exchange of distributed energy
should satisfy the following constraints:

Regarding the heat transfer in type 2) variables, the concrete
form of electricity exchange is as follows: the same redundancy
avoidance applies, and it is not presented here. 3), Gex

i,T indicates
the remaining gas amount for the ith energy body; Ggas

ij,T

represents the gas quantity supplied by gas suppliers; ΛGcl
ij,T

denotes the gas volume lost when converted into other energy
forms. In this article, Pex

i,T and Hex
i,T are regulated as the timing for

discharge or exothermic processes, while negative values indicate
electricity or heat absorption. Pes

ij,T andHes
ij,T represent timing for

energy storage devices to emit or absorb electric heat; negative
values indicate electricity and heat energy storage devices’
absorption.

2) Considering the randomness, volatility, and renewable energy
output fluctuation value limit conditions, the following
expressions apply:

Pp,min
ij,T ≤Pp

ij,T ≤Pp,max
ij,T (4)

Pw,min
ij,T ≤Pw

ij,T ≤Pw,max
ij,T (5)

Hp,min
ij,T ≤Hp

ij,T ≤Hp,max
ij,T (6)
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Type: Pp,min
ij,T , Pw,min

ij,T ,Hp,min
ij,T for renewable energy to produce power

and thermal power limit, Pp,max
ij,T , Pw,max

ij,T , Hp,max
ij,T for renewable

energy to produce power and thermal power limit. Renewable
energy constraints are designed with consideration for the
renewable energy capacity confidence interval and prediction
error, expressing the randomness and volatility of renewable
energy (Zhang et al., 2017).

As a renewable energy source, solar electricity is widely utilized
currently; however, its volatility and randomness necessitate the
inclusion of photovoltaic (pv) motor and solar heating into the
following functions:

C Pp
ij,T( ) � αp,pij,TP

p
ij,T + βp,pij,T exp εp,pij,T

Pp,max
ij,T − Pp

ij,T

Pp,max
ij,T − Pp,min

ij,T

⎛⎝ ⎞⎠ + κp,pij,T (7)

C Hp
ij,T( ) � αh,pij,TH

p
ij,T + βh,pij,T exp εh,pij,T

Hp,max
ij,T −Hp

ij,T

Hp,max
ij,T −Hp,min

ij,T

⎛⎝ ⎞⎠ + κh,pij,T (8)

Type: αp,pij,T, β
p,p
ij,T, ε

p,p
ij,T, κ

p,p
ij,T, α

h,p
ij,T, β

h,p
ij,T, ε

h,p
ij,T, and κh,pij,T are the cost

coefficients.
Fan electricity production cost function:

C Pw
ij,T( ) � αp,wij,TP

w
ij,T + βp,wij,T exp εp,wij,T

Pw,max
ij,T − Pw

ij,T

Pw,max
ij,T − Pw,min

ij,T

⎛⎝ ⎞⎠ + κp,wij,T (9)

Type: αp,wij,T、 βp,wij,T、 εp,wij,T、 κp,wij,T of cost coefficient.
Note: this article does not consider the relationships between

kW and heat, electricity, and gas; therefore, the comprehensive
energy kW should be applied to all energy units involved.

3) Considering coal heating device, coal thermal power plant and
cogeneration plant output fluctuation value limit condition are:

Pc,min
ij,T ≤Pc

ij,T ≤Pc,max
ij,T (10)

Hc,min
ij,T ≤Hc

ij,T ≤Hc,max
ij,T (11)

Pchp,min
ij,T ≤Pchp

ij,T ≤Pchp,max
ij,T (12)

Hchp,min
ij,T ≤Hchp

ij,T ≤Hchp,max
ij,T (13)

Type: Pc,min
ij,T , Hc,min

ij,T , Pchp,min
ij,T , and Hchp,min

ij,T represent the lower limits
for the power supply of Tmoment coal-fired thermal power equipment,
coal heating equipment, and cogeneration plant heating power,
respectively; Pc,max

ij,T , Hc,max
ij,T , Pchp,max

ij,T , and Hchp,max
ij,T respectively

denote the upper limits for the power supply of T moment coal-
fired thermal power equipment, coal heating equipment, and
cogeneration plant heating power, respectively.

4) Coal-fired thermal power equipment, coal heating equipment,
and combined heat and power output ramping restrictions are as
follows:

−Pc,ccl
ij,T ≤Pc

ij,T − Pc
ij,T−1 ≤P

c,ccl
ij,T (14)

−Hc,ccl
ij,T ≤Hc

ij,T −Hc
ij,T−1 ≤Hc,ccl

ij,T (15)
−Pchp,ccl

ij,T ≤Pchp
ij,T − Pchp

ij,T−1 ≤P
chp,ccl
ij,T (16)

−Hchp,ccl
ij,T ≤Hchp

ij,T −Hchp
ij,T−1 ≤Hchp,ccl

ij,T (17)

Type: Hc,ccl
ij,T , P

chp,ccl
ij,T , and Hchp,ccl

ij,T represent the maximum change in
T moment coal-fired thermal power equipment compared to T-1 h,

the maximum change in T moment coal-fired heat production
equipment compared to T-1 h, and the maximum change in T
moment cogeneration equipment compared to T-1 h for electricity
and heat production, respectively. Pc

ij,T−1,H
c
ij,T−1, P

chp
ij,T−1, andH

chp
ij,T−1

denote the initial production of T-1 coal-fired thermal power
equipment, T-1 coal-fired heat production equipment, and T-1
cogeneration plant for electricity and heat, respectively.

Coal is commonly used in energy bodies to produce electricity
and heat, and its consumption characteristics are determined by the
energy size produced at time T. Although its stability is reliable, it
causes a certain level of environmental pollution and is subject to
ramping constraints. The cost functions for coal-fired generators
and heat production engines are as follows:

C Pc
ij,T( ) � αp,cij,T Pc

ij,T( )2 + βp,cij,TP
c
ij,T + εp,cij,Te

κ
p,c
ij,TP

c
ij,T + λp,cij,T (18)

C Hc
ij,T( ) � αh,cij,T Hc

ij,T( )2 + βh,cij,TH
c
ij,T + εh,cij,Te

κh,cij,TH
c
ij,T + λh,cij,T (19)

Type: αp,cij,T, β
p,c
ij,T, ε

p,c
ij,T, κ

p,c
ij,T, λ

p,c
ij,T, α

h,c
ij,T, β

h,c
ij,T, ε

h,c
ij,T, κ

h,c
ij,T, λ

h,c
ij,T are cost

coefficients, with R being positive.
As an energy body, the CLP cogeneration unit exhibits a thermal

coupling relationship with its main equipment. The cost function is
determined by the simultaneous production of electric and thermal
energy, and its output falls within a specific range. The cogeneration
unit cost function is as follows:

C Pchp
ij,T,H

chp
ij,T( ) � αp,chpij,T Pchp

ij,T( )2 + βp,chpij,T Pchp
ij,T + εh,chpij,T Hchp

ij,T( )2
+ λh,chpij,T Hchp

ij,T + ηchpij,T (20)

Type: αp,chpij,T , βp,chpij,T , εh,chpij,T , λh,chpij,T , ηchpij,T represent the cost coefficients.

5) Distributed gas supplier supply constraints are given by the
following expression:

0≤Ggas
ij,T ≤Ggas,max

ij,T (21)

Type: Ggas,max
ij,T represents the maximum gas supply provided by

gas suppliers at time T. Gas, gas electricity production, and gas
used as fuel for electricity and heat production exhibit similar
characteristics to coal-fired capacity. The size of energy produced
at time T determines the real-time fuel consumption amount,
with combustion gas suppliers supplying gas within a specific
range.

6) Resistance and energy storage restrictions for energy storage
devices and heat values are as follows:

Pes,min
ij,T ≤Pes,n

ij,T−1 − Pes
ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Pes,max
ij,T (22)

Hes,min
ij,T ≤Hes,n

ij,T−1 − Hes
ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Hes,max
ij,T (23)

Ges,min
ij,T ≤Ges,n

ij,T−1 − Ges
ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Ges,max
ij,T (24)

Type: Pes,min
ij,T , Hes,min

ij,T , Ges,min
ij,T represent the lower limits of T

moment heat storage equipment, storage equipment, and gas
storage capacity, respectively. Pes,n

ij,T, H
es,n
ij,T, G

es,n
ij,T denote the storage

of heat, electricity, and gas for T-1 h heat storage, storage equipment,
and gas equipment, respectively. Pes,max

ij,T , Hes,max
ij,T , Ges,max

ij,T represent
the upper limits of storage capacity for electricity, heat, and gas at
time T.
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7) Electricity, heat, and energy storage device discharge and power
change constraints are as follows:

Pes,min
ij,T ≤ Pes

ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Pes,max
ij,T (25)

Hes,min
ij,T ≤ Hes

ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Hes,max
ij,T (26)

Ges,min
ij,T ≤ Ges

ij,T

∣∣∣∣∣ ∣∣∣∣∣≤Ges,max
ij,T (27)

Type: Pes,min
ij,T ,Hes,min

ij,T ,Ges,min
ij,T represent the lower limits for discharge

and energy absorption of storage, heat storage, and gas storage
equipment, respectively. Pes,max

ij,T , Hes,max
ij,T , Ges,max

ij,T denote the upper
limits for discharge and energy absorption of storage, heat storage,
and gas storage equipment, respectively.

Energy storage devices store energy when electricity prices are
low and release energy when prices are high, playing a regulatory
role. Consequently, they are essential equipment within energy
bodies. Due to varying factors across different types of energy
storage devices, a unified storage device cost function is
established as follows:

C Pes
ij,T( ) � αp,esij,T Pes

ij,T + βp,esij,T( )2 + λp,esij,T (28)
C Hes

ij,T( ) � αp,esij,T Hes
ij,T + βp,esij,T( )2 + λp,esij,T (29)

Type: αp,esij,T , β
p,es
ij,T , λ

p,es
ij,T , α

p,es
ij,T , β

p,es
ij,T , λ

p,es
ij,T represent cost coefficients.

8) Gas-to-electricity transfer and thermal conversion rates are as
follows:

Pes
ij,T � αGpes

ij,T (30)
Hes

ij,T � βGhes
ij,T (31)

Type: a and b represent the gas-to-electricity and heat conversion
rates, respectively. Gpes

ij,T and Ghes
ij,T denote the capacity for electricity

and heat conversion, respectively.

9) Lateral load consumption of electricity and heat cost functions
are as follows:

C Plp
ij,T( ) � αp,lpij,T Plp

ij,T( )2 + λp,lpij,TP
lp
ij,T + εp,lpij,T (32)

C Hlh
ij,T( ) � αh,lhij,T Plh

ij,T( )2 + λh,lhij,TP
lh
ij,T + εh,lhij,T (33)

Type: Plp
ij,T, Hlh

ij,T represent load side electricity and heat
consumption, respectively. αp,lpij,T , λ

p,lp
ij,T , ε

p,lp
ij,T , α

h,lh
ij,T, λ

h,lh
ij,T, and εh,lhij,T

are positive cost coefficients.

2.2 The interests of the function

The benefit of the energy body function revenue function and
cost function are two parts, and the mathematical expression is as
follows:

Ψi,T� Oi,T − Ci,T (34)
Type: Ψi,T represents the ith a energy body in T time overall
interests, Oi,T means the energy body in T moment ith total
earnings, Ci,T refers to the case of an energy body in T time ith
the total cost. The specific expressions for the profit function and
cost function in Eq. 34 are as follows:

Oi,T � Κuse
ij,T + prpTP

ex
i,T + prhTH

ex
i,T + prgTG

ex
i,T (35)

Ci,T � C Pp,s
ij,T( ) + C Ph,s

ij,T( ) + C Pchp
ij,T, H

chp
ij,T( ) (36)

Κuse
ij,T � −ηpij ΛPr

ij,T( )2 + ]pijΛPr
ij,T − ηhij ΛHr

ij,T( )2 + ]hijΛHr
ij,T (37)

C Pp,s
ij,T( ) � C Pp

ij,T( ) + C Pw
ij,T( ) + C Pc

ij,T( ) + C Pg
ij,T( ) + C Pes

ij,T( )
(38)

C Ph,s
ij,T( ) � C Hp

ij,T( ) + C Hc
ij,T( ) + C Hg

ij,T( ) + C Hes
ij,T( ) (39)

Type: Κuse
ij,T represents the energy utilization function for the energy

system on the load side, ηpij, ]
p
ij, η

h
ij, ]

h
ij are cost coefficients. pr

p
T, pr

p
T,

prpT denote the electricity, heat, and gas prices at time T, respectively.
C(Pp,s

ij,T) and C(Ph,s
ij,T) represent the cost of producing electricity and

heat for all equipment except cogeneration units at time T.

2.3 The objective function

This study focuses on the optimization of an integrated energy
system that aims to coordinate the use of different types of energy,
such as electricity, gas, and heat, with the goal of reducing
production costs and improving energy efficiency. Specifically, we
investigate the collaborative optimization of three energy supply and
demand types, namely, electricity, heat, and gas. The energy
conversion model is employed to allow for price adjustments
among the three types of energy (Yu-Shuai et al., 2020). We
strive to achieve a globally optimal solution that takes full
advantage of the complementary characteristics of various energy
sources to obtain the most economic price, while ensuring the
balance between energy supply and demand. The optimization
problem is formulated as (34), using a modified version of
Newton’s method, known as the difference Newton’s method, to
speed up the algorithm iteration and reduce communication and
computational pressure. The objective function is expressed as type
(40), which represents the overall benefits of the entire energy
system, while ensuring that the net energy value is zero, thus
guaranteeing the balance between energy supply and demand.
The function expression is presented below.

max Object � ∑n
i�1
Ψi,T (40)

∑n
i�1
Pex
i,T � 0,∑n

i�1
Hex

i,T � 0,∑n
i�1
Gex

i,T � 0 (41)

3 The algorithm design

3.1 The traditional Newton iteration method

The traditional numerical method referred to as Newton’s
method is commonly utilized to solve nonlinear equations.
Within integrated energy systems, collaborative optimization can
utilize the traditional Newton’s method to solve complex
optimization models. The basic idea of this method is to
iteratively solve equations of zero and determine the direction of
the next iteration through the first-order approximation of the
equation. In practical applications, the traditional Newton
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method can achieve optimal cooperation among parties based on the
integrated energy system states and parameters of continuous
optimization. When addressing comprehensive power, heat, and
gas optimization problems in energy systems, the traditional
Newton method can be applied to solve conflicts and coordinate
energy sources to realize optimal system synergy (Tan and Li, 2022).

3.2 DNEA algorithm design

In integrated energy systems, each energy entity is equipped
with its own processor. Nonetheless, the absence of a centralized
system causes a distributed structure which lacks significant
communication and computing power. Consequently, the
computing capability of each processor in the energy entity is
limited. When faced with the high-speed and high utilization of
renewable energy, the conventional algorithm struggles to compute
the parameters in a distributed energy system. To tackle this
challenge, this study introduces the difference Newton’s method
as a solution. This method is designed to resolve issues with slow
calculation speed and communication and computing pressure. By
applying the difference Newton’s method to every energy entity
during the calculation process, the computational speed is
significantly enhanced, while maintaining a balance between
supply and demand and maximizing profit. The following
outlines the design of the difference Newton’s method in the
calculation process of the integrated energy system.

Due to the convex nature of the cost function designed in this
paper, the derivative of the energy body’s benefit function for all
participants is the iterative price prpTη

p
ij, pr

h
T, pr

g
T. To ensure the

maximization of the overall interests objective function of the energy
system, this study assumes that each participant achieves the same
benefits for the same unit of electricity and heat, namely, prpT � prhT.
The specific algorithm design process is as follows:

dC Pp
ij,T( )

dPp
ij,T

� dC Hp
ij,T( )

dHp
ij,T

� ...... � prp,hT,1 (42)

Type: Given the goal of finding the optimal balance between
supply and demand conditions for the maximum overall energy
interests, the price of electricity and heat is assumed to be the same.
Hence, the price of electricity and heat are represented by prp,hT,1. The
derivative of the cost function for the remaining energy body
participants equals prp,hT,1, which is not elaborated upon further to
avoid redundancy. The sum of electricity and heat provided by all
participants in the energy body is calculated as S(Λp,h

T,1).

S Φr
T,1( ) � S Φp,r

T,1( ) + S Φh,r
T,1( ) (43)

Type: S(Φp,r
T,1), S(Φh,r

T,1) denote the sum of electricity and heat
required by the load side participants at the given prices,
respectively. This study assumes a 1:1 conversion efficiency for
electricity and heat, resulting in the need for electricity and heat
by the participants. The difference between supply and demand
balance values is calculated using the following formula:

The difference between the value of ζ sdT,1 between the supply and
demand balance values at this time is calculated using the following
formula:

ζ sdT,1 � S Λp,h
T,1( ) − S Φr

T,1( )∣∣∣∣∣ ∣∣∣∣∣ (44)
dC Pp

ij,T( )
dPp

ij,T

� dC Hp
ij,T( )

dHp
ij,T

� ...... � prpT,2 (45)

Assuming that the second energy iteration price is prp,hT,2, the
total energy provided by the participants is S(Λp,h

T,2), the total energy
required is S(Φr

T,2), the imbalance of supply and demand is ζ sdT,2, and
the second parameter is conceptually the same as the first parameter
formula. The computation formula is as follows:

prp,hT,3 � prp,hT,2 − ζ sdT,2
prp,hT,1 − prp,hT,2

ζ sdT,1 − ζ sdT,2
(46)

Type: according to the relationship between price and the
imbalance between supply and demand, if all functions are linear
and the balance between supply and demand is guaranteed, the
energy price is prp,hT,3. Due to the linear overtaking convex function,
the imbalance of supply and demand and the demand for ζ sdT,3 and
S(Φr

T,3) are met, respectively. Using prp,hT,2 and prp,hT,3 as the new
iteration prices, the next iteration price is found by repeating the
process until meeting |ζ sdT,i|< υaT,i: type: ζ sdT,i is the ith iteration
imbalance between supply and demand, and υaT,i is the allowed
error range. For all participants in the energy body, the changes in
electricity, heat, and gas provision correspond to the price changes of
each iteration prp,hT,i .

3.3 Ring signature algorithm design

This paper ensures privacy among all participants in the
integrated energy system by initializing the encrypted energy data
as PHed

T . For the first integrated energy system, the energy body’s
privacy increases with each iteration, as each iteration process, PHed

T

modifies the initial encrypted data. This prevents the encrypted data
from being guessed with increasing iteration numbers, thus avoiding
privacy leaks for all participants in the integrated energy system. The
ring signature algorithm is used as the basis for data transmission in
integrated energy systems, with the formula as follows:

PHed
ij,ki � PHed

ij,i−1 + PHed
T (47)

Type: In the first i-1 iterations, energy body information PHed
ij,ki

is introduced into the ith energy body, and PHed
ij,i−1 denotes the real

information of the ith energy body. The information transfer
direction is shown in Chart 1. This process strengthens privacy
protection among energy bodies, ensuring each energy body’s
privacy and fully protecting the privacy of all agents in the
system. This is an improvement compared to traditional privacy
protection, which does not adequately protect privacy between
integrated energy system energy bodies.

4 DNEA algorithm theory to prove

4.1 DNEA iteration speed

Setting parameters δ, ∀δ ∈ R+, R+ denotes all positive values. The
traditional iterative method using Newton’s method establishes an
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adjustment volume of each time as ζ sd,traT,i , and meeting ζ sd,traT,i , and
∀|ζ sd,traT,i |< δ. Therefore, the average adjustment volume for the
traditional iteration method is:

ζ sd,traT,i,ave � ∑n
i�1
ζ sd,traT,i /N (48)

Type: The total number N for iteration, ζ sd,traT,i ∀|ζ sd,traT,i |< δ.
Then, N is the number of iterations, with ∀|N|> δ. An inequality
exists such that |ζ sd,traT,i,ave|≤ δ, and the iterative algorithm designed in
this paper is based on the traditional Newton iteration method,
employing the Newton difference method. In the early stages of the
iterative algorithm presented in this paper, the adjustment of the
imbalance of supply and demand ζ sd,eaT,i prp,h,eaT,3 does not satisfy the
price inequality ∀|ζ sd,eaT,i |< δ, ∀|prp,h,eaT,3 |< δ, and the iteration process
is repeated. Later in the iteration, the imbalance of supply and
demand approaches ζ sd,laT,i , and the iterative prices approach prp,h,laT,3 ,

∀|ζ sd,eaT,i |< δ, and ∀|prp,h,eaT,3 |< δ. Gradually, the material difference

satisfies Equation ζ sdT,i,ave � ∑n
i�1
ζ sdT,i/N, on average, it does not meet the

equation for ζ sdT,i ∀∑n
i�1
ζ sdT,i < δ, ζ sdT,i,ave does not meet the ∀ζ sdT,i,ave < δ. In

summary, the iteration algorithm ζ sdT,i,ave > ζ
sd,tra
T,i,ave designed in this

paper improves upon the traditional Newton iteration method. This
proof demonstrates that, within the same number of iterations, the
difference Newton method achieves a smaller imbalance between
supply and demand, significantly enhancing the iteration speed of
the integrated energy system and reducing the amount of
computation.

4.2 DNEA convergence is proved

Starting with the first iteration, prp,hT,1, pr
p,h
T,2, are the calculated

prices for the second iteration. Due to price changes, the imbalance
of supply and demand alters the value of ζ sdT,1−2. The corresponding
relationship between price and the supply-demand imbalance
assumes a linear characteristic between price and supply. The
new iteration price prp,hT,3 is determined when supply and demand
are balanced. The first iteration point is connected to the second
iteration point on the price and supply function, with a linear slope
of fprp,hT,12

′. Lagrange’s theorem indicates that there is a point ε1
between the first and second iteration points with a slope
satisfying fε1

′ � fprp,hT,12

′. The second iteration point is connected to
the third iteration point, with a linear slope of f

prp,hT,23

′. Similarly, it can
be found in the two point ε2, fε2

′ � f
prp,hT,23

′ , by the nature of the convex
function, the inequality of fε1

′ >fε2
′ , therefore, inequality

fprp,hT,12

′ >fprp,hT,23

′. It is also known that, ensuring that the units

change with Δprp,hT,i , Δζ
sd
T,i , the change in becomes progressively

smaller. Thus, the iteration points for the balance between supply
and demand, obtained by linear prediction, do not exceed the supply
and demand balance formed by the convex function.

4.3 DNEA optimality

In the energy body, a balance between supply and demand for
electricity and heat must be maintained. Electricity and heat
conversion are employed to compensate for energy deficiencies.

Assuming equal prices for electricity and heat, if the energy body
lacks a heat quantity ofHnow

ij,T ,H
lack
ij,T , the surplus electricity and power

are Pnow
ij,T , Plack

ij,T , respectively. If electricity is not used for heat
conversion, an increase in price for this portion of heat is
required prh,chT , prh,unitT � Hlack

ij,T /pr
h,ch
T , with and satisfying the

equation. As the cost function of all participants in the energy
body is convex, thus the prh,unitT >prp,hT,i , and the energy and power
for the excess production unit price are prp,unitT . The convex function
properties indicate that the energy cost function has a larger slope
for a larger y, with the slope representing the energy unit price.
Therefore, the inequality prh,unitT >prp,hT,i >pr

p,unit
T is obtained,

ensuring that equal prices for electricity and heat result in the
largest gains for the energy body.

4.4 DNEA kinetic behavior analysis

This section provides mathematical proof that the difference
Newton iterative algorithm designed in this paper effectively avoids
kinetic behavior. Based on the convergence proof, the difference
Newton designed in this paper gradually tends toward a supply and
demand balance of 0. Setting parameter σaisdT as the allowablemaximum
imbalance between supply and demand, the energy system is triggered
from the beginning and iterates infinitely. The first time the supply and
demand equilibrium is reached is at time T, and |ζ sdT,i|< σaisdT satisfies the
supply and demand imbalance ζ sdT,i. It can be concluded that
convergence has been achieved, eliminating the need for further
triggering and avoiding infinite iterations within a limited time, thus
preventing kinetic behavior.

5 DNEA algorithm simulation analysis

To verify the algorithm presented in this manuscript, a testing of a
distributed algorithm based on differential points andNewton’smethod
was performed on an energy system described in Appendix 5, wherein
the fundamental parameters of the simulation device are exhibited.
Figure 1 portrays the integrated energy system under consideration. A
condition is stipulated in this paper, wherein the energy supply and
demand must remain within 10 kW of each other to achieve a balance
between energy production and consumption. The algorithm was
designed to accomplish this goal, and it achieved the desired balance
within five iterations. The simulation process is as follows.

5.1 DNEA simulation analysis iteration speed

A comparison between the iterative processes of the distributed
algorithm based on differential points and Newton’s method and the
traditional finite difference algorithm was conducted on five energy
systems with unbalanced supply and demand. The simulation results,
depicted in Figure 2, demonstrate that the differential points Newton
algorithm achieved a supply and demand balance of less than 10 kW
within the fifth iteration without causing any disturbances. In contrast,
the traditional algorithm failed to reach the optimal balance even after
50 iterations. Dichotomy optimization for the iterative error is small, the
eight time but also known from the analysis of the simulation, the final
results, not avoid kino, cannot ensure the final iteration for optimal
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results. Simulation results depicted in Figure 2, Figure 3 indicate that all
participants in the energy system, designed in this manuscript, achieved
rapid convergence to the optimal forecast price point while ensuring a
balance between supply and demand. These results verify the feasibility
and effectiveness of the algorithm presented in this paper. The
differential points Newton algorithm was employed to calculate the
energy system under conditions of supply and demand balance, which
yielded faster iteration speeds compared to traditional computing
methods by several orders of magnitude. Consequently, energy
losses, delays, and communication costs were considerably reduced,
leading to more efficient energy systems.

5.2 DNEA simulation convergence analysis

In this paper, an integrated energy system has been
designed. The simulation diagram presented in Figure 4,

Figure 5, Figure 6 depicts the supply side, and reveals that
the total electricity generated is 69828694.93 kW. The final
values of heat and gas are 35815789.39 kW and
368579.09 kW, respectively. The relevant parameters, such as
the change of price and the fast convergence to phase, contribute
to achieving a stable state. As a result, the aforementioned values
remain practically unchanged.

Furthermore, it is worth noting that Newton’s method, when
used in this study, yields highly accurate and reliable calculation
results. Moreover, it significantly reduces the communication and
computation workload associated with the distributed energy
system, facilitating a fast scheduling process and ensuring a
steady state energy system. As shown in Figure 7, the power
supply amounts to 72907191.36 kW, and the heating load

FIGURE 1
DNEA algorithmic trading structure.

FIGURE 2
IES difference flow chart of Newton’s method.

FIGURE 3
the balance between supply and demand iteration curve.
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reaches 32737316.53 kW, thereby achieving a balance between
supply and demand.

Combining the simulation results presented in Figure 4,
Figure 5, Figure 6, Figure 7, Figure 8, it can be concluded
without surprise that by utilizing the difference Newton’s
method, this study is capable of rapidly achieving a stable state,
while simultaneously ensuring that the results remain stable post
convergence.

5.3 Ring to privacy protection analysis

Traditional algorithm (Tan and Li, 2022) privacy often meet:

MplT � AcT*NaT
2

(49)

Type: MplT refers to privacy, and AcT, represents average
connectivity, the term NaT denotes an agent. Combined with the
simulation Figure 9 shows in conventional privacy protection
algorithms, an increase in the number of agents and average
connectivity leads to a gradual enhancement in privacy levels.
However, in this study, the researchers have designed a distinct
Newton algorithm with a ring structure. In this approach, the
growth in the number of agents and average connectivity does
not result in elevated privacy levels, but rather maintains
comprehensive privacy protection for the agents involved.

FIGURE 4
electricity price, heat price change curve.

FIGURE 5
energy demand curve.

FIGURE 6
power supply curve to the participants.

FIGURE 7
heating participants curves of heating load.
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5.4 Usage scenarios and limit analysis of the
algorithm

The utilization of the DNEA algorithmic approach is not applicable
within the context of an integrated energy system, as the cost function
follows a convex pattern. This system is characterized by
interconnections, and it should not be employed in scenarios with
high-quality energy standards, such as parks, intelligent buildings,
hospitals, among others.

6 Conclusion

The calculation speed for the traditional iterative algorithm
was evaluated multiple times, and each participant achieved the
optimal convergence value. This confirmed the feasibility and
stability of the proposed algorithm. However, it should be noted
that this algorithm is not suitable for participants in the energy
system with convex cost functions and constraints. Future
scholars may explore non-convex cost functions and
constraints to further develop the proposed algorithm. One
limitation of this paper is that it did not address the non-
convex cost function and constraints for the proposed
algorithm.
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In response to the high uncertainty of large-scale new energy output in the
electrical energy system (EES) and the weak controllability of energy output at
multiple time scales, this paper proposes a weak grid identification model for
transient energy balance in EESs based on grid partitioning, which has an
increasingly complex impact on the weak areas of transient energy balance in
the sending-end network. First, the accumulation of port energy during transient
faults and the propagation mechanism of port energy in the sending-end system
were studied, and an EES transient energy propagation mechanism model was
established. Then, considering the energy balance support requirements of nodes,
an EES grid partitioning model was established. Afterward, based on the
characteristics of transient energy propagation and a grid partitioning model,
an identification model for weak areas of transient energy balance in EESs was
constructed. Finally, based on actual operating data, numerical simulations were
conducted, and the results showed that the proposed weak grid identification
model for transient energy balance can meet the requirements for transient
stability analysis and transient energy balance characteristic analysis during
actual operation of power grids.

KEYWORDS

EES, transient stability, dynamic grid partition, weak area identification, transient energy

1 Introduction

Under the guidance of the adjustment of the energy consumption structure and the
strategic policy of “carbon peak and carbon neutrality,” the construction of an EES
connected to new energy (Li Y. et al., 2019; Li et al., 2020) with new energy as the main
body is deepening. China is gradually forming a power grid pattern of large-scale cross-
regional interconnected systems consisting of wind power and photovoltaic resource-rich
sending-end power grids in the western and northwestern regions through long-distance
UHVAC and DC channels, and eastern load-intensive regional power grids (Wu et al., 2018;
Huang et al., 2019; Li and Liu, 2019; Li et al., 2021). At present, the development of new
energy faces the following three problems. First, the total installed capacity of new energy is
far beyond the load, and limited by the characteristics of conventional power supply and
power grid structures (Da Cruz Sessa and Mariano Lessa Assis, 2018), the difficulty of new
energy consumption is prominent. Second, a large amount of new energy power stations
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leads to a reduction of conventional power supply in the system, the
reduction of system inertia, frequency and voltage response
characteristics, and a significant increase in the security risk of
power grid operation (Li C. S. et al., 2019). Third, the new energy
power station has no energy storage link, which is a disturbance
source for the power grid and has no adjustment ability. Therefore,
the stability circumstance of large-scale new energy connected to the
power grid urgently needs to seek new means to assist traditional
units to promote the ensemble regulation ability of the power grid
(Bhui and Senroy, 2017; Zhang J. et al., 2022; Zhang DW. et al.,
2022). The research and establishment of the transient energy
stability criterion and weak area identification method of
transient energy balance in new energy sending-end systems
forms the theoretical and algorithm basis for further research on
the robust control model of transient energy balance in sending-end
systems based on battery energy storage coordination and can also
provide the theoretical basis for the optimization of transient
stability-related constraints for the optimal configuration of
battery energy storage in sending-end systems (Heetal, 2020).

At present, researchers all around the world have already
conducted in-depth studies on the DC transmission of EESs
connected to new energy, power grid stability, and
identification of weak areas of transient energy balance. In
HAN et al. (2018), for solving the transient overvoltage
problem of AC bus caused by DC blocking in the HVDC
transmission system sending end, the emergency shutdown
strategy of triggering DC blocking is improved to slow down
the triggering process of DC blocking and ensure the stable
operation of wind turbines. In order to maintain the safety and
stability of the HVDC transmission system and avoid the outage of
the HVDC transmission system caused by transient fault of the DC
line (Xu et al., 2019; Ding et al., 2021), Muniappan (2021) added
the fault restart function of the DC line in DC control protection.
Scientific and reasonable division of the grid is the key to the
continuous implementation of the target grid of the sending-end
power grid.

The scientific and reasonable division of grids and the
identification of weak areas are key to the sustainable
implementation of the target grid structure of grid
transformation. LIU et al. (2010) considered the uncertainty of
changes in the location of fault points and proposed a method to
determine the commutation fault-related area (CFCR), searching for
weak areas. In FU et al. (2011) and CAI et al. (2017), active margin
index, sensitivity index, and other parameters were chosen as
indicators to identify weak areas in the grid region, or full
network voltage scanning was used for identification. However,
for more complex systems, the calculation of this identification
method is more complex. XIAO et al. (2016) proposed a new
method that combines an improved modal method and a P-V
curve to identify weak areas, but the accuracy of identifying weak
areas still needs to be improved.

In summary, there is relatively little research on EES partition
based on the energy balance capability. Therefore, this paper
studies the propagation mechanism of transient energy in an EES
during fault occurrence and establishes a transient energy
propagation mechanism model for EES fault ports.
Considering the energy balance support requirements of nodes
in EESs, we establish an EES grid partitioning model. The

transient energy propagation characteristics and the
identification method of the EES energy balance weak
partition area were also studied. Finally, a simulation model
for identifying the weak grid of transient energy balance in
the EES was established. Based on the analysis results, it can
be concluded that the proposed method for identifying the weak
grid of transient energy balance can meet the analysis
requirements of the power grid.

2 Transient energy propagation
mechanism of fault ports in the EES

2.1 Unconstrained transient energy
propagation model for fault ports in the EES

To study the propagation mechanism of transient energy at the
fault port in the EES during the occurrence of a fault, this paper
establishes an unconstrained propagation model for transient
energy:

N x( )€x +D x, _x( ) _x +H x( ) + G x, _x( ) � u (1)
where x ∈ Rn, _x∈ Rn, and€x∈ Rn are the state phasors of each node,
the derivative of state phasors, and the second derivative of the
corresponding system in the transmission process of the fault
port energy under the transient fault state, respectively;
N(x) ∈ Rn×n, D(x, _x) _x, H(x) ∈ Rn, and G(x, _x) ∈ Rn are the
inertia influence relation matrix, forward energy propagation
term, reverse energy propagation term, and energy loss term
when the fault port energy is transmitted in the interconnected
system network under the transient fault state, respectively; and
u ∈ Rn is the control variable of the influence of power supply and
load connected to each node on the energy of the fault port in the
transient fault state.

The energy action model of node s can be transformed into the
following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni xs( )€xs +Ds xs, _xs( ) _xs +Hs _xs( ) + Gs xs, _xs( ) + As xs, _xs, €xs( ) � us

Ai xs, _xs, €xs( ) � ∑n
r�1,r ≠ s

Nsr xs( )€xs + Nss xs( ) −Ns xs( )[ ]€xs

⎧⎨⎩ ⎫⎬⎭
+ ∑n

r�1,r ≠ s

Dsr xs, _xr( )xs, _xr + Dsr xs, _xs( ) −Ds xs, _xs( )[ ] _xs

⎧⎨⎩ ⎫⎬⎭
+ Hs xs( ) −Hs xs( )[ ]

(2)

where xs, _xs, €xs,Hs(xs), Gs(xs, _xs), and us represent the s-th
component of vectors x, _x, €x, �H(x), G(x, _x), and u, respectively;
Nsr(x) andDsr(x, _x) are the s-th and r-th components of the matrix
N(x) and D(x, _x), respectively; and As(x, _x, €x) ∈ R is the energy
transfer subsystem cross-linking term of node s.

Setting xs � [xs1 xs2]T � [xs _xs]T(s � 1, 2,/, n), the port
transient energy transitive relation network of the
aforementioned formula can be transformed into the following
form:

_xs � Bsxs + Cs fs xs, _xs( ) + gs xs( )us + hs xs, _xs, €xs( )[ ]
_ys � Dsxs

{ (3)

where xs is the state phasor of node s, ys is the output of node
s, and
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Bs � 0 1
0 0

[ ];Cs � 0
1

[ ]; Ds � 1 0
0 1

[ ];
fs xs, _xs( ) � N−1

s xs( ) −Ds xs, _xs( ) _xs −Hs xs( ) − Gs xs, _xs( )[ ];
gs xs( ) � N−1

s xs( );
hs xs, _xs, €xs( ) � −N−1

s xs( )As xs, _xs, €xs( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

2.2 Transient energy transfer model for EES
ports based on multiple constraints

During the transient energy balance control process of the EES
fault port, when constrained by load fluctuations, wind and
photovoltaic output fluctuations, transmission line capacity, and
other constraints, each constraint condition is uniformly
represented as follows:

λ x, t( ) � 0 (5)
where x ∈ Rn represents the variables of each node in the EES;
λ: Rn → Rm represents the state variable constraint function
corresponding to each node; and m is the dimension of the
constraint condition acting on the transient energy
transmission of the port in the transient energy balance
control process.

The derivative of the aforementioned equation is taken to
obtain

_λ x, t( ) � zλ x, t( )
zx

_x + zλ x, t( )
zt

(6)

The definition is as follows:

Kλ x, t( ) � zλ x, t( )
zx

� zλ

zx

_Q t( ) � zλ x, t( )
zt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where Kλ(x, t) is the m × n-dimensional Jacobian matrix, _Q(t) is
the change vector of the state variable constraint condition, and its
size depends on the change rate of the state variable. Eq. 6 is
represented as follows:

_λ x, t( ) � Kλ x, t( ) _x + _Q t( ) (8)
The relationship between the effect of each state constraint on

the transient energy transfer path and mode of the port p and its
corresponding x in the spatial coordinate system composed of each
node in the EES is as follows:

p � I x( ) (9)
Eq. 5 can be rewritten as follows:

λ p, t( ) � λ I x( ), t( ) (10)
At this time, the Jacobian matrix is as follows:

K � Kλ x, t( ) � zλ

zp

zI x( )
zx

(11)

Assuming δλ(p) as the contribution of the constraint condition
to the changes in the transient energy transfer joint path and mode
of the fault port, the following can be obtained:

δλ � δλ

δp
δp � 0 (12)

Taking the Lagrange multiplier f ∈ Rm into account, we can
obtain the following:

δλ

δp
δp( )T

f � 0 (13)

Set

δp( )TG2 � 0 (14)
where G2 represents the action of multidimensional constraints on
the change of the transient energy transfer path and mode at fault
ports; δp is the variation of various parameters under the action of
G2 after the transient energy propagation of the fault port ends.
From Eqs 13, 14, it can be concluded that

δp( )TG2 − δλ

δp
δp( )T

f � 0 (15)

Transforming the state constraint G2 into the system state space
of the transient energy balance control process at the fault port, we
obtain the following:

G1 � KTf � KT
λ x, t( )f (16)

In summary, the system model for the transient energy balance
control process of fault ports considering n state constraints is as follows:

N x( )€x +D x, _x( ) _x +H x( ) + G x, _x( ) � u + KT
Φ x, t( )f (17)

The variables of each node in the network defined in the
aforementioned system are as follows:

x � x1

x2
[ ], x1 ∈ Rn−m, x2 ∈ Rm (18)

Eq. 18 is substituted into Eq. 5 to obtain

Φ x1,Ω x, t( ), t( ) � 0 (19)
where x2 � Ω(x1, t), and Eq. 18 can be expressed by variable x1 as

x � x1

Ω x1, t( )[ ] (20)

From the derivation of Formula 20, we obtain

_x �
_x1

zΩ x1, t( )
zx1

+ zΩ x1, t( )
zt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
Jn−m 0

zΩ x1, t( )
zx1

Jm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _x1

0
⎡⎣ ⎤⎦ +

0

zΩ x1, t( )
zt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� U _θ + I

(21)
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where U �
Jn−m 0

zΩ x1, t( )
zx1

Jm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n, _θ � _x1

0
[ ] ∈ Rn, and I �

0

zΩ x1, t( )
zt

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn.

Eq. 21 can be obtained by calculating the second derivative of x:

€x � U€θ + _U _θ + _I. (22)
From Eqs 20–22, it can be concluded that

N x( ) U€θ + _U _θ + I
·( ) +D x, _x( ) U _θ + _I( )

+H x( ) + G x, _x( ) � u +KT
Φ x, t( )f

(23)

By separating the state constraint terms in the network node
variable parameters, the node s model can be obtained as follows:

Ns xs( )€xs +Ds xs, _xs( ) _xs +Hs xs( )+
Gs xs, _xs( ) + As xs, _xs, €xs( ) − τ Φs

* � us (24)
where

As xs, _xs, €xs( ) � ∑n
r�1
r ≠ s

Nsr x( ) UE€xs( )r + _UE _xs( )
r
+ _Ir[ ]

+Nsr x( ) UE€xs( )r + _UE _xs( )
r

[ + _Is] −Ns xr( )€xs

+ ∑n
r�1
r ≠ s

Drs xs, _xr( ) UE _xs( )r + Ir( ) +Dsr x, _xs( )

UE _xs( )r + Ir( ) −Ds xs, _xs( ) _xs

+ Hs x( ) −Hs xs( )( ) + τ Φs
* − τ Φs( ) (25)

3 Dynamic grid partitioning model of
the EES

When considering the energy balance support requirements of
nodes in the EES, the set of node state variables in the EES can be
expressed as follows:

X � xs xs ∈ Ω, s ∈ S|{ } (26)
where Ω can reflect the energy requirement of node s in the EES.

When the energy balance requirement of node s is Ω, the EES is
divided intoΛ grid regions,Λ � 0, 1, · · ·, L{ }, and the energy fieldmatrix
formed by injecting energy into each grid region is expressed as follows:

Y � ys ys ∈ Λ, s ∈ S
∣∣∣∣{ } (27)

where ys is the injected energy of node s.
Under the given operating state variable X, the probability of

each scheme for energy partition of energy field Y (this energy field
is the Markov random field) is given as follows:

P Y |X( ) � P X |Y( )P Y( )
P X( ) (28)

In the process of constantly changing the operating state variable
X, the energy field matrix also changes accordingly. Therefore, the
energy partitioning problem can be converted to solve the

minimization of energy imbalance in the EES by calculating the
global optimal estimation solution Y*, that is, dynamically solving
the minimization of energy imbalance in the EES:

Y* � argmax
Y

P Y |X( ) ~ argmin
Y

Eg X, Y( )
� argmin

Y
Ed X, Y( ) + Es Y( ){ } (29)

where Eg(X,Y) represents the energy supply and demand balance
condition in Y; Ed(X,Y) � −lgP(X |Y) represents the still present
energy requirement after dividing the system; Es(Y) �∑
s,r∈N(s)

δ(ys, yr) represents the battery energy that can be called

within the dividing scope; and N(s) refers to all neighboring nodes
within the grid partition where node s is located.

4 Identification model of the weak
partition area for transient energy
balance in the EES

4.1 Identification model of the weak
partition area

We establish an energy correlation model for adjacent nodes in
the EES, namely, the degree of topological overlap csr(xs, xr):

csr xs, xr( ) � bsr
1 − bsr

(30)

bsr �
∣∣∣∣∣∣∣exp{ −2 × xs − xr‖ ‖2( )2

ρmax
r ∈ Ns

xs − xr‖ ‖2( )2}
∣∣∣∣∣∣∣γ (31)

where xs and xr are the state variables of two adjacent nodes which
provide direct energy exchange to each other, s ≠ r; bsr represents
the energy exchange level; ‖xs − xr‖2 represents the Euclidean
distance of adjacent nodes; ρ refers to the homogenization
element of heterogeneous nodes connected to hybrid energy;
and γ is the penalty element for the energy interaction
exceeding limit.

Let ws represent a set of nodes within the partition area where
node s is located that has direct energy injection or cascading energy
interaction, and ϑs(ys) is the set of adjoining nodes that provide
direct energy exchange with set ws. Then, the energy interaction
degree with high-order topological prior for nodes cws(xs, xϑs) is as
follows:

cws xs, xϑs( ) � cN1 xs, xN1( ) + cN2 xs, xN2( ) +/ + cNi xs, xNi( ),
(32)

where cws(xs, xϑs) represents all energy correlation values cNi related
to node s added together in the partition area where node s is located;
cN1, cN2, . . . , cNi indicates the energy correlation between node s
and all adjacent nodes that have an energy interaction.

In summary, we establish a high-order prior energy model for
node energy correlation:

Eh xw|ϒ( ) � ∑
s∈S,r∈Ns

bsr + ∑
u≠s,r

bsubru

min ∑
u≠s

bsu ∑
u≠r

bru{ } + 1 − bsr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (33)
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where Eh(xw|ϒ) is the prior energy of higher-order topological
structures in the grid region where node s is located;ϒ � ρ, γ{ } is the
higher-order prior parameters for network partitioning.

Based on this, a Gaussian likelihood estimation model for the
partition area is constructed to identify the degree of energy
imbalance in each partition area:

P X|Y, θ( ) � ∏N
s�1

P xs

∣∣∣∣ys, θ( ) ∏
r∈ϑs

P xr

∣∣∣∣yr, θ( ) w yr( )
wr⎡⎢⎣ ⎤⎥⎦

w yr( ) � ∑
s∈S

∑
r∈ϑs

xs − xr‖ ‖ � ∑
s∈S

∑
r∈ϑs

xs + xr − 2xsxr( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(34)

where xr � xr|r ∈ ϑs{ } is the neighborhood node state variable set of
node s; θ � μl, σ

2
l{ }l∈Λ, where μl, and σ2l are the probability

distribution mean and variance of energy imbalance within a
partition area; wr is the probability calculation weight of energy

imbalance within the partition area, and wr � ∑
r∈N s

w(yr). The

smaller the wr, the larger the estimated value Y* of the energy
imbalance within its corresponding partition area, and the weaker
the energy balance ability of the partition area.

4.2 Identification process of the weak
partition area for transient energy balance in
the EES

The specific steps for identifying EES energy balance weak grids
based on a prior knowledge model are as follows:

Step 1: Initialize the parameter node set ws, the homogenization
element of heterogeneous nodes connected to hybrid energy ρ, and
the penalty element for the energy interaction exceeding limit γ.

Step 2: Calculate the energy correlation between node s and all
adjacent nodes with the energy interaction csr(xs, xr) in the
partition area where node s is located.

Step 3: Calculate the prior energy of the topological structure
γEh(xws | γ) of the partition area where node s is located.

Step 4: Repeat steps 2 to 3 until s � S.

Step 5: Sort the estimated values Y* of the energy imbalance within
the partition area by adopting the Gaussian likelihood estimation
model and identify the weaker energy balance ability partition area.

The flow chart for grid identification with weak energy balance
capability is shown in Supplementary Figure S1.

5 Example analysis

Consulting the actual operating EES data, this article designs a
simulation system, as shown in Supplementary Figure S2: the add-
up load of the sending-end power grid at node 1 is 10,000 MW, the
AC transmission is 2,000 MW, and the DC transmission is
3,000 MW. The total load of the node 2 receiving-end system is

60,000 MW, and the DC is 3,000 MW from the sending-end system.
The total load of the node 3 receiving-end system is 50,000 MW, and
the AC 2,000 MW is connected from the sending-end system.

The internal equivalent network structure of the new energy
transmission terminal grid is shown in Supplementary Figure S3.
G1, G5, and G8 are three photovoltaic converging power nodes with
capacities of 3,000, 2,000, and 3,000 MW, respectively. G2 is the
wind power-gathering power node with a capacity of 4,000 MW.
G13 is a hydropower power node with a capacity of 6,000 MW;
G11 is a thermal power node with a capacity of 2,000 MW; B1, B5,
B6, B14, and B24 are battery energy storage units with capacities of
1,500, 1,000, 1,600, 1,100, and 900 MW·h, respectively.

We built a system transient stability simulation model based on
MATLAB, with a limit cutoff time of 0.3 s set for simulation. Aiming
at testing and verifying the effectiveness of the EES weak grid
identification method for transient energy balance proposed in
this paper, two simulation scenarios are set. Scenario 1 does not
consider the energy support role of energy storage devices in the
transient energy equilibration, and scenario 2 considers energy
storage to adjust the energy balance.

5.1 Energy storage devices do not participate
in energy balance

Supplementary Figure S4 shows the equivalent power angle
instability curve and its corresponding transient stability margin
index change curve at node 1 of the sending-end system shown in
Supplementary Figure S3, without considering the participation of
energy storage in regulation, when a fault occurs at node 1 with a
three-phase short circuit, and this fault is not removed within the
limit removal time.

As shown in Supplementary Figure S4, when the fault occurs
along the output line of channel 1 of the sending-end system and the
system becomes unstable, the power angle of the system at node
1 exceeds the power angle stability limit after the first swing and the
sending-end system loses synchronization with the receiving-end
system. During the instability process of the sending-end system, the
equivalent power angle change curve of the system at node 1 is a
continuously increasing oscillation process. Meanwhile, as shown in
the variation curve of the stability margin index of the system in
Supplementary Figure S4, the curve shows that the stability margin
index of the sending-end changes significantly during the first swing
of the power angle swing of node 1, indicating that the system will
lose synchronization with the receiving-end system.

According to the EES dynamic grid partitioning model, as
mentioned earlier, the grid partitioning of the sending-end power
grid shown in Supplementary Figure S2 is carried out, and the
partitioning results are shown in Supplementary Figure S5.

Supplementary Figure S5 is shows that when a transient fault
happens in the output channel of the sending-end system, due to the
large startup methods of new energy sources, such as photovoltaic
and wind power in the system, and the lack of energy storage, when
dividing the grid of the sending-end network, the new energy
sources are all divided in the same grid as hydroelectric or
thermal power units to ensure that the transient energy balance
characteristics within the grid meet the system stability
requirements as much as possible.
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When the sending-end system loses stability under the scenario
of the three-phase short circuit fault at node 1 in Supplementary
Figure S3, the energy balance weak grid identification method put
forward in this article is adopted to calculate the estimated energy
imbalance of each grid. This article mainly calculates the estimated
value of energy imbalance within the grid and ranks the calculation
results of multiple grids in order to identify the grid with the largest
energy imbalance and the weakest energy balance ability. The
comparison between the calculation results and the maximum
frequency deviation of each grid during the fault time period can
be seen in Supplementary Table S1.

Supplementary Table S1 shows that except for partition area 1,
where the fault point is located, the variation pattern of the estimated
value of energy imbalance calculated using the method put forward
in this article is mostly consistent with the variation pattern of the
maximum grid frequency deviation during the fault time period,
which verifies the effectiveness of the energy balance weak partition
area identification method mentioned earlier. In addition, when the
sending-end system becomes unstable, the frequency deviation of
each partition area in the system is relatively large. This also
indicates that when the energy storage system is not configured,
the sending-end system will not only lose synchronization with the
receiving-end system when facing large transient energy injection
but also cause significant energy oscillations inside the sending-end
system. If the startup mode of thermal and hydroelectric units
existing in the power grid is small at this time and the response
speed can hardly reach the requirement level of suppressing
transient energy propagation within an effective time, the
sending-end system is likely to undergo splitting or even collapse.

5.2 Energy storage devices participate in
energy balance

Considering the involvement of multi-energy storage equipment
involved in energy regulation, at the time the fault occurs at node 1 of
channel 1 of the sending-end system in Supplementary Figure S2, the
equivalent power angle instability curve and its corresponding
transient stability margin index change curve at node 1 are shown
in Supplementary Figure S6.

Supplementary Figure S6 shows that at the time of fault
occurrence to channel 1 in the sending-end system, the system
protection and safety control devices do not cut off the fault
within the limit cutting time. The power angle of node 1 in the
system exceeds the power angle stability limit after the first swing.
However, due to the rapid absorption of transient energy by the
energy storage device configured in the sending-end system after the
system’s transient energy exceeds the limit, the amplitude of the power
angle swing in the system decreases rapidly during the second swing
and makes the subsequent oscillation process converge quickly.

Meanwhile, the variation curve of the stability margin index in
Supplementary Figure S6 shows that the stability margin index in
the sending-end system quickly decreases to within the stability
threshold after a jump in the first swing of the power angle swing at
node 1. It can be seen that after configuring battery energy storage,
the ability of the sending-end system to maintain transient stability
has been significantly improved, but the system will still enter an
unstable state, causing significant energy impacts on the

synchronous power supply, new energy power supply, and load
of the sending-end system.

The grid division results when considering the participation of
energy storage devices in regulation are shown in Supplementary
Figure S7.

Supplementary Figure S7 shows that compared to the grid
division in Supplementary Figure S5, the transient energy balance
grid division results shown in Supplementary Figure S7 not only
consider the support role of traditional hydropower and thermal
power units for new energy sources but also consider the support
role of energy storage systems for new energy sources and loads.

The energy balance weak grid identification method proposed in
this article is used to calculate the estimated energy imbalance values
of each grid after re-partitioning. The comparison between the
calculated results and the maximum frequency deviation of each
grid during the fault time period is shown in Supplementary
Table S2.

Supplementary Table S2 shows that compared with the
estimated energy imbalance value in Supplementary Table S1,
after considering the participation of energy storage devices, the
estimated values of energy imbalance within each grid have been
reduced, and the energy balance ability has been improved. This
once again verifies the effectiveness of the energy balance weak
grid identification method mentioned previously. Moreover,
when the sending-end system is unstable due to the transient
energy support effect of the energy storage system, the frequency
deviation of each grid area of the sending-end system increases
and decreases significantly. On the other hand, the simulation
results also indicate that although the energy storage system
could improve the transient energy balance ability of the system
to a certain extent, relying on the energy absorption or release
characteristics of a simple energy storage system still cannot
effectively maintain the stability circumstance of the sending-end
system during serious transient fault at the outlet of the sending
channel.

6 Conclusion

To improve the stability of transient faults in EESs with battery
energy storage, this paper proposes a weak partition area
identification method for transient energy balance in an EES
based on a high-order prior energy model with energy correlation.

(1) This article studies the transient energy propagation mechanism
of ports during faults in EESs, establishes an unconstrained
propagation model that reflects the transient energy
propagation characteristics of ports, and adds actual multiple
constraints to establish a system model that describes transient
energy transfer.

(2) Considering the energy balance support requirements in EESs, this
paper proposes an EES dynamic partitioning model and an energy
balance weak partition area identification method based on a prior
model of node energy correlation, achieving the identification of
areas with weak energy balance capabilities in EES.

(3) This article is based on actual operating data and verifies the
proposed method through numerical simulation. The
simulation results verify the effectiveness of the proposed
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transient energy balance weak grid identification method (QIN,
2015; Hu et al., 2021; Cheng et al., 2022).
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The development of smart grids has revolutionized modern energy markets,
enabling users to participate in demand response (DR) programs and maintain
a balance between power generation and demand. However, users’ decreased
awareness poses a challenge in responding to signals from DR programs. To
address this issue, energy management controllers (EMCs) have emerged as
automated solutions for energy management problems using DR signals. This
study introduces a novel hybrid algorithm called the hybrid genetic bacteria
foraging optimization algorithm (HGBFOA), which combines the desirable
features of the genetic algorithm (GA) and bacteria foraging optimization
algorithm (BFOA) in its design and implementation. The proposed HGBFOA-
based EMC effectively solves energy management problems for four
categories of residential loads: time elastic, power elastic, critical, and hybrid.
By leveraging the characteristics of GA and BFOA, the HGBFOA algorithm achieves
an efficient appliance scheduling mechanism, reduced energy consumption,
minimized peak-to-average ratio (PAR), cost optimization, and improved user
comfort level. To evaluate the performance of HGBFOA, comparisons were made
with other well-known algorithms, including the particle swarm optimization
algorithm (PSO), GA, BFOA, and hybrid genetic particle optimization algorithm
(HGPO). The results demonstrate that the HGBFOA algorithm outperforms
existing algorithms in terms of scheduling, energy consumption, power costs,
PAR, and user comfort.

KEYWORDS

smart grid, renewable energy sources, demand response, day-ahead scheduling, energy
management controller, electric vehicles, energy storage system

1 Introduction

Over the last decade, the energy needs of consumers have risen at an exponential rate
(Hafeez et al., 2019; Alzahrani et al., 2023). The development of technology, substantial use
in industry, and introduction of electric vehicles on the road have led to an increased demand
for electricity. It will continue to rise exponentially. Energy consumption from buildings
accounts for approximately one-third of the energy that is generated worldwide (Gul and
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Sandhya, 2015). The United States Department of Energy projects
that energy use will increase by 56% in 2040 (United States
Department of Energy, 1225). Traditional power grids cannot
cope with the current world’s needs because of the enormous
increase in energy demand. The concept of smart grids has been
developed as a result of reduced effectiveness, environmental
concerns (Yu et al., 2023), distributed economic dispatch (Li
et al., 2022), distributed grounding layout (Xiao et al., 2022),
harmonic power flow (Xie and Sun, 2022), diverse maintenance
needs, and reliability issues in the traditional power network (Li
et al., 2022). Conventional networks have become a smart grid due
to advances in communication technologies and their integration
into the electricity infrastructure. Passive customers have become
active consumers because of the smart grid. Due to the elastic nature
of loads, the success of smart grids lies in the availability of resources
like distributed generation (Ribeiro et al., 2020). Figure 1 represents
a model of a smart grid.

Offering incentives in the form of prices revolutionized the
traditional power grid and enabled utility companies to change
the behavior of consumers in terms of energy consumption (Ma
et al., 2016). With the emergence of liberality in the electricity
market, efficiency is improved due to better economic solutions
provided by the power companies (Ribeiro et al., 2018). Due to
smart grids, electric utility companies (EUCs) are able to dispatch
price signals to consumers using day-ahead pricing (DAP)
signals, time of use (TOU), and real-time pricing (RTP)
signals. Therefore, users can modify the load at their own
pace. This increases the possibility for electricity consumers to
alter their load patterns in accordance with tariffs. However, an
intelligent optimization mechanism is extremely necessary in
order to prevent peak formation during low hours of the day
(Hafeez et al., 2020a). Thus, optimization methods are developed
to address various aspects like distribution generation effective
utilization (Chen et al., 2022; Sun et al., 2022), reliability
improvement (Ma et al., 2021), energy consumption
minimization (Min et al., 2023), and industrial applications

(Lv et al., 2022). However, electricity theft is a challenge while
implementing optimization methods (Yan and Wen, 2021). Load
demand management can ensure that consumers’ electricity
needs are met. The mechanism for managing the demand
mainly consists of demand response (DR) and demand side
management (DSM) in particular. A DSM shall be designed
with the primary aim of planning consumer load, taking into
account the price information provided by the energy companies
that use DR. The DSM is a key contributor to the development of
various strategies for ensuring grid stability by scheduling
electricity generation and the use of renewable resources
during periods when peak loads occur in order to balance the
load on smart grids. The DSM, through the flexible and diverse
development of plans, plays an essential role in ensuring
electricity grid stability. In order to reduce the load on the
primary grid and prevent the collapse of the whole power
system during maximum demand hours, DR encourages
consumers to shift their load from peak to off-peak hours
(Imran et al., 2020). The DSM’s primary strategy is to move
loads through a DR program. Consumers are encouraged to cut
their energy consumption at peak times and move loads into
cheaper periods of the day through the DSM strategy, which
reduces electricity costs and PAR (Gelazanskas and
KelumGamage, 2014; Hafeez et al., 2020b). It can be achieved
only when bi-directional communication exists between the
electricity grid and the energy consumer. Smart meters (SMs),
advanced metering infrastructure (AMI), automatically operated
appliances (AOAs), energy management controllers (EMC), and
renewable energy sources are required for this. The AMI will
assist in the exchange of data between a power grid and the
consumer’s SM (LiHui and Ho, 2014). Price signals along with
time are shared with the consumers so that they can easily adjust
their AOAs according to the time slot which suits them. The price
changes according to the consumers’ load curve (Barbato and
Capone, 2014). DSM must serve many residential, commercial,
and industrial consumers to cater to the energy crisis.
Nonetheless, residential buildings consume a large amount of
energy, so this is a highly preferred research area.

Several techniques and mathematical models have been
developed for scheduling residential loads, which helped reduce
energy costs and PAR. In order to solve energy problems,
optimization techniques such as linear, nonlinear, and mixed-
integer programming (MIP) are in use (Huang et al., 2019;
Elazab et al., 2021). More efficient solutions for cost reduction
are a number of developed mathematical models and other
techniques. However, the mathematical model does not seem to
be an effective way of scheduling appliances as it demonstrates poor
efficiency in solving problems having multiple objectives.
Furthermore, taking on a large number of devices that have to be
scheduled increases computational time (Albogamy et al., 2022). For
instance, to reduce PAR and solve appliance scheduling problems,
game theoretic techniques, such as Nash and Stackelberg, are
developed. Stackelberg’s method helps smooth out the load curve
and fulfill the energy needs of consumers by trading electricity
among utility companies (Yu and Ho, 2016; Srinivasan et al., 2017).
To address issues of gaming models, control techniques are
developed (Wang et al., 2022). For example, an adaptive dynamic
control with disturbance observers is developed by Zhang et al.

FIGURE 1
Smart grid overview.
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(2022) for energy balancing of a hybrid energy system. Likewise,
model predictive control (Wang et al., 2022), distributed power
sharing control (Zhao et al., 2022), and finite convergence control
(Wang J. et al., 2022) are introduced to solve microgrids’ energy
balancing problems. However, battery life prediction, battery
utilization for RES, battery charging/discharging scheduling, etc.,
are ignored (Dang et al., 2023; Gu et al., 2023). Batteries are utilized
in renewable energy systems (Cai et al., 2022) to smooth out
renewable power generation, and storage technology is cascaded
with an energy hub system (Jiang et al., 2022), storage technology-
based photovoltaics (Zhang et al., 2022), and solar system
development (Huang et al., 2023) for distribution network
expansion. However, solar cell-based generation is uncertain and
intermittent (Huang et al., 2023). In contrast, grid-connected
inverters and composite circuits have power quality issues
(Chung et al., 2022; Lin et al., 2022). A methodology for EV tour
scheduling in a traffic environment is developed by Zhang et al.
(2022). To address such limitations, heuristic algorithms, namely,
particle swarm optimization (PSO) along with the genetic algorithm
(GA) and bacteria foraging optimization algorithm (BFOA),
emerged to resolve the issue of the single-objective optimization
problem (Rehman et al., 2021). However, the multi-objective
optimization aspect of the energy management problem is
ignored (Cao et al., 2020a; Cao et al., 2020b). The authors
developed a multi-objective optimization model to decide on the
placement of PMU in the power grid (Cao et al., 2022). Likewise, a
multi-objective optimization model is developed by Zhang et al.
(2023) for a carbon-capturing facility in microgrids. A DSM model
is solved using the BFA algorithm by Priya Esther et al. (2016).
Similarly, the energy management problem is solved using GA for
smart grid cost optimization. However, GA has the relevant
characteristics of exploration but is limited only to the local best
solution. On the other hand, BFA is more suited to exploitation but
has drawbacks of obtaining a personal best solution. We used a
hybrid bacteria foraging and genetic algorithm, the HGBFOA,
which allows us to achieve a global best solution for multi-
objective optimization problems by combining GA and BFA
(Sarker et al., 2021).

So far, sufficient research has been carried out to improve energy
efficiency in the smart grid. There are also some limits to most of the
methods under discussion, which have certain prominent features.
The authors were able to solve a lot of objectives with the help of
mathematical models in many research works. However, in the case
of loads that are spontaneous and have a non-linear effect, it is not
possible to use mathematical techniques. Moreover, the techniques
are, in essence, complicated and require a long period of time to
arrive at an optimum solution. Compared to this, some of the
algorithms have suffered from early convergence that leads to the
loss of a number of algorithm features such as parameter
substitution, population diversity, and ending criteria. However,
the aforementioned techniques either cater to PAR, energy cost, user
comfort maximization, or scheduling problems, but none of the
aforementioned methods catered to all the objectives at the same
time. In our research work, a hybrid algorithm (HGBFOA) that
addresses all the aforementioned features simultaneously is
considered.

The research work is setup in the following manner: Section 2
presents the related work, Section 3 shows the research methodology

along with system modeling, and Section 4 presents details of the
existing and suggested system models. Simulation and results are
discussed in Section 5, while Section 6 provides an idea about future
extensions.

2 Literature review

In the smart grid field, research is conducted to obtain better
energy management by scheduling AOAs. In the study by Samadi
et al. (2010), plug-in hybrid electric vehicles are introduced. The
demand for energy from consumers is rising as a result of
introduction of new and up-to-date electrical equipment with
high power demand, leading to interruptions in the entire power
system. Two easy ways of meeting users’ requirements are present,
i.e., the electricity generation companies must increase generation by
building new plants or scheduling consumer appliances for efficient
energy management. The foremost method is costlier because to
increase generation, we have to construct new power plants along
with the current power plants, which needs considerable funding.
This will also lead to complexity in power transmission and
distribution. In comparison, the second technique will have to
manage the current requirement by introducing various pricing
techniques for 24 h. A direct load control (DLC) method is
presented by Abdollahi et al. (2011). Using the DLC method, the
utility can manage the power consumption and demand by
providing incentives to consumers for decreasing power usage
during high-demand hours while shifting load to low-demand
hours. However, an inclining block rate (IBR) with RPT and
TOU is initiated to avoid a peak in off-peak hours (Zhao et al.,
2013; Rastegar et al., 2016). The home energy management system
(HEMS) algorithm is proposed by Abushnaf et al. (2016), which
minimizes the electricity cost and power usage through appliance
scheduling using TOU pricing criteria. The AOAs are monitored,
controlled, and scheduled using HEMS (Zhou et al., 2016). In order
to reduce PAR, HEMSs provide timeslots for each device. During
these timeframes, automated equipment is scheduled according to
various price signals from power companies. However, in many
publications, the time allotted to each device is long enough, which
some devices, such as kettles, juicers, and blenders, cannot achieve.
Ma et al. (2016) considered the drawbacks of large timeframes, but
user comfort is already compromised. User comfort is formulated by
Zhou et al. (2016) by considering latency minimization and device
energy consumption. In the study by Hafeez et al. (2020a), extensive
research was conducted, and some exact algorithms were discussed.
However, the issue of user convenience is also present if you want to
reduce power consumption. One of the major drawbacks of this
research is the lack of integration of renewable energy sources into
the smart grid. There is no conceivable energy system that does not
integrate renewable energy sources (Zafar et al., 2013). In the study
by Adika and Wang (2014), MINLP is explained using RTP, which
reduces energy consumption by scheduling thermal and electrical
devices to minimize energy costs and maximize user comfort.
Performance is very effective on different models. However, the
computational complexity of this technique is a drawback. The
authors addressed user-initiated changes in device scheduling
(Jovanovic et al., 2016). However, the specified changes had to be
fulfilled the next day, increasing consumer dissatisfaction. Hafeez
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et al. (2019) solved this problem by allowing the consumer to turn
off one device and turn on another at the user’s request. Adika and
Wang (2014) considered an energy storage system that reduces
electricity costs and peak loads by almost a factor of five through
scheduling through linear programming. The evolutionary
algorithm (EA) in the study by Azar and Jacobsen (2016) was
used to address the three goals of reducing power costs,
maximizing power demand, and reducing carbon emissions.
Elkazaz et al. (2016) used distributed generation (DG) to enable
the bidirectional current flow, effectively reducing device latency
and minimizing energy costs. However, installation, maintenance,
and operating costs were completely ignored. Lokeshgupta and
Sivasubramani (2019) and Muhsen et al. (2019) worked on
reducing electricity costs and peak demand using linear
programming (LP) and EA, respectively.

The aforementioned model is a valuable source of literature
suitable for energy management. Few models are efficient for some
specific goals and restraints. For example, one model considered
PAR, another considered energy cost, whereas some techniques
combined PAR and energy cost. However, other models took into
consideration CO2 emissions and user comfort in relation to price.
The model described previously does not take advantage of the
beneficial aspects of smart grids that simultaneously consider PAR,
energy costs, user comfort, and energy consumption. Moreover,
coordination between devices has been neglected in most studies,
and adding renewable resources and other targets to already
installed infrastructure has not been considered in the
aforementioned literature. Therefore, we need a system model
that integrates renewable energy sources and implements inter-
device coordination to simultaneously consider PAR, energy costs,

user comfort, and power consumption. With this motivation, an
efficient and effective technique is proposed in our research paper.
Renewable energy is added to the smart grids for energy
management optimization and DR. Considering RES along with
other goals of this study allows us to model efficient and cost-
effective systems that can meet today’s world’s energy demands.

3 Proposed methodology

The suggested HGBFOA-based HEMS model consists of the
main components discussed in the following sections. The functions
and possible uses of all the components are described in following
headings.

3.1 Proposed system model

The proposed residential energy management system is
presented in this section. The energy management scheduling
problem is solved with AMI. The EMS consists of the EMC,
smart meter, intelligent devices, in-home display (IHD), home
area network (HAN), and power company, along with the power
station, as presented in Figure 2.

Smart energy meters collect device energy usage data from the
energy management controller. Communication between smart
meters and EMC is enabled by HAN. AMI can be considered the
backbone of a smart grid. The AMI, present between the SM and the
power company, can send price signals from the power company,
and accordingly, the consumer can accordingly schedule their smart

FIGURE 2
Proposed system model.
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devices. The consumers’ demand data collected by the smart meter is
sent to the power company via AMI (Shirazi and Jadid, 2015). In
response, a real-time DR signal from the power company is sent to
the smart meter. The IHD helps schedule appliances within EMC,
according to the utility company’s demand response signals. Our
hybrid algorithm, i.e., HGBFOA, is implemented in EMC to
schedule appliance operations according to the power rating and
type. This EMC, based on HGBFOA, responds to energy price data,
taking into account device operating time, device power rating, and
user preferences for device operation.

3.2 Inputs for the system

The inputs to the presented EMS are grid power, the pattern of
power consumption with a power rating of AOAs, and the demand
response. However, sharing generation and consumption
information in advance may create a security issue (Lv and Song,
2019; Lv et al., 2020a; Lv et al., 2020b; Cao et al., 2020c). Detailed
description of the system input is as follows.

3.3 Smart appliances

The residential load is classified into four types, i.e., flexible
power appliances, time flexible/elastic appliances, hybrid appliances,
and critical appliances. The time of operation of various residential
loads is given by Eq. 1.

Oi t( ) � 1 if t ∈ τi, i ∈ App
0 else

{ }. (1)

The time interval during which appliances are in operation is
represented by τi. App shows the set of residential appliances. The
explanation along with mathematical modeling of the
aforementioned four categories of appliances is given in the
following paragraphs:

3.3.1 Flexible power appliances
As the name suggests, devices that operate 24/7 and consume

power between the maximum and minimum ranges are power-
flexible appliances. For the user’s comfort, delayed operation of these
devices is not possible. Instead, these devices always work. Heating,
ventilation, and air conditioning (HVAC), electric water heaters
(EWHs), and refrigerators (Ref) are examples of energy-flexible
appliances considered in this study. The following equations are
used to model HVAC, EWHs, and Ref. Modeling of these loads is
necessary because they consume power between the minimum and
maximum values.

T min ≤Treq ≤T max, ∀t ∈ τ i i ∈ AC,WH,Ref{ }. (2)

Equation. 2 proves that the temperature of the power-flexible
appliances is in the specified range.

Oi 1( ) � 1, if Ti 0( )>Ti i( ) i ∈ AC,WH,Ref{ },
0, if Ti 0( )>Ti i( ) i ∈ AC,WH,Ref{ }.{ (3)

To check whether the appliance should be turned on/off, the
temperature is determined to see whether it exceeds the

consumer’s desired range of when the device will power on. If
the temperature is below the required range, the appliance will
power off for the initial interval described by Eq. 5.
Mathematically, various energy flexible appliances are detailed
in the following paragraphs.

HVAC: This equation takes into account the indoor–outdoor
temperature differences, activity levels, and occupancy to provide a
mathematical model for HVAC systems to maintain temperatures
within specified limits.

Tfinal t( ) � Tini t − 1( ) + μ Tout t( ) − Tin t( )( ) + μ β t( ) + ζ( )
+μOi t( ) ∀t � τ & i � AC. (4)

Here, Tini represents the initial temperature, whereas Tout and
Tin show the outside and inside temperatures, respectively. The
temperature variation effect, occupants’ number, and the level of
activity are denoted by μ. Cooling in the operation mode is given by β.

Electric water heater: Water heater is used at different times of
the day. For maximum user comfort, the water temperature should
be kept within certain limits. Usage patterns change depending on
the weather and the weekdays. The EWH operating limits are given
by Eq. 5.

Twh t( ) � Twh t − 1( ) + vwh Tcold − Thot( ) + ϕOi i( ) − Vcoldωwh[ ]. (5)
The temperature of the water heater is expressed by the variation

between the initial and hot water temperatures, water usage pattern,
the room temperature, and the ON/OFF state of the EWH.

3.3.2 Time-flexible appliances or time elastic
appliances

An appliance that is in operation only for certain time intervals is a
time-stretchable or time elastic appliance. These appliances should be in
operation during low demand or mid-peak hours. We can also slow
down the operation of these devices to reduce the consumer’s energy
costs and PAR of the utility. Appliances that can be flexible with time
are washing machines, dryers, and vacuum cleaners.

Dishwasher, washing machine, and dryer: The constraints of
such appliances are shown in Eq. 6:

∑
t�τi

Oi t( ) � OPi( ) max, ∀t ∈τi. (6)

These are time-flexible devices and should be operated at the
most reasonable time according to the user’s demands. Unlike other
household appliances, washers and dryers must operate in a specific
order, i.e., the dryer should be run after the washing machine run
stage. It shall not turn on before the washing machine run stage. Eqs
7, 8 represent the model equations as follows.

Sdryer + Swasher ≤ 1 ∀t ∈ τ i, (7)
Fi1 ≥Fi2 + τi. (8)

The first equation avoids running the washer and dryer in
parallel. The second equation ensures that the functions of these
devices remain in the correct order and that the dryer starts only
after the washer time has expired.

3.3.3 Critical load/appliances
Critical equipment have a short run time and need to start as

soon as the consumer wants them to start, so they cannot be delayed.
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These devices are only used for short periods of time. Examples of
this type of equipment include kettles, microwave ovens, juicers, and
blenders.

Kettles, ovens, and blenders: These appliances cannot be
interrupted during operation and have fixed power requirements.
Eq. 9 expresses it.

C.L � ∑A
i�1
Appi

Prate
× St. (9)

Critical load is represented by C.L, and Appi
Prate is the appliance

rated power. The appliance status is shown by St.

3.3.4 Hybrid load/appliances
Hybrid devices are a flexible device category in terms of both

performance and time. Hybrid devices consume power between the
maximum and minimum values, and their operation can also be
delayed until a timeslot convenient for consumers and utilities.
Examples of such devices are electric vehicles (EVs) and battery
storage systems (BSS). Mathematically, these devices are represented
as follows:

Electric vehicles and BSS: Due to technological advancement
and user convenience, every home consumer has some kind of
storage device (Mary and Rajarajeswari, 2014). To minimize the cost
and flatten the load curve, such devices charge during low-price
hours and discharge during high-demand hours. The batteries’
required initial charge is required to extend the life of the storage
system. Therefore, these storage devices must maintain a certain
level of energy before being fully discharged. The generalized model
for ESS is as follows:

Estor � Estor t − 1( ) + T Cch t( ) − Cdis t( )[ ] ∀t ∈ τ i, (10)
E min ≤ Εstor ≤ Ε max ∀t ∈ τi, (11)
∑
t�τi

Oi t( ) � OPi( ) max, ∀t ∈τi. (12)

Equation 10 describes the energy stored in the battery and
assumes a known charge–discharge interval. Equation 11 states
that the stored energy should be within a certain interval to
avoid overcharging or over discharging. This is necessary for the
storage system life. The EV and BSS energy storage is given by Eq. 12
and relies on the initial charge or discharge in that particular
timeslot.

DAP:DAP is a type of DRmethod. In this process, the electricity
supplier, the energy company, and the consumer agree to buy or sell
electricity prices 1 day in advance. Once an agreement is reached,
whether the actual price is lower or higher than the agreed price, it
cannot be changed for the day.

The EMC based on HGBFOA receives the DAP signal from the
power company to schedule the operation of residential appliances,
which is monitored using IHD.

3.4 Power-generating sources

Electricity is obtained from various resources, including
conventional and non-conventional resources. However, non-
conventional energy sources, such as solar PV, wind power, and
tidal/wave, along with fuel cells, are readily available. Among the

mentioned power sources, solar power is very important in today’s
world because it is free, widely available, and easy to install. Solar
power reduces carbon emissions, minimizes PAR, and helps reduce
overall energy costs. The energy produced from photovoltaics is
given by Eq. 13 (Zhongming et al., 2019; Dang et al., 2023).

Eg
Pv t( ) � ηPv × AreaPv × Irr t( ) × 1 − 5 × 10−3 Tempout t( ) − 25( )( ).

(13)
Eg

Pv shows the solar power generated each hour. However,
efficiency of solar PV is denoted by ηPv and the area of a PV
module in square meter is shown by AreaPv. Irr shows the solar
irradiation per hour, and Tempout shows the outdoor temperature.
For temperature correction, a constant number 0.005 is multiplied
with Tempout. The HGBFOA helps in scheduling appliances while
using power from solar PV during high-demand hours and charging
batteries when demand is low.

3.5 Battery storage system

The main purpose of battery storage systems is to provide an
alternative power source to minimize CO2 emissions and maximize
power reliability. The battery is installed together with the
photovoltaic system. During the day, the battery is charged when
the power generation is high and the consumption is low. During
peak hours and nights, this stored energy powers the load. Powering
loads during peak periods and charging during off-peak and mid-
peak periods help minimize energy costs (Gu et al., 2023). It also
helps maintain the grid stability by powering critical loads. Eq. 14
describes the battery charging and discharging mechanism.

ES t( ) � ES t − 1( ) + α.μESS.EECh t( ) − α.EEDch t( )( )
μESS

∀t. (14)

Energy stored in KWH at time t is presented by ES, and the
hourly duration is shown by α. μESS denotes the battery efficiency.
The battery charging rate is shown by EECh, whereas the discharging
rate is represented by EEDch, i.e., the power which turns on the load.
In order to operate the battery in certain limits to avoid extreme
charging and discharging, Eqs 15–17 represent the battery storage
and operation limits, while the high and low limits can be denoted by
EECh

UL and EEDch
LL , respectively.

EECh t( )≤EECh
UL, (15)

EEDch t( )≥EEDch
LL , (16)

ES t( )≥ESChUL. (17)
To optimize power usage, EMC receives the DAP signals from

the utility companies, power signals from PV, and consumer
priorities. Based on this, the efficient power usage pattern of the
house is determined.

3.6 System outputs

The EMC receives input in the form of appliance patterns and
generation sources. It processes this input and generates an output in
the form of an optimal power consumption pattern for the devices.
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Depending on the device’s efficient power plan, the results achieved
are lower energy costs, lower carbon emissions, minimized PAR, and
maximized user comfort. This coordination between appliances
helps maintain an optimized schedule for devices. The results are
discussed in the following sections.

Energy cost is the bill that the consumers have to pay for electricity
consumption. The power companywill send theDAP signal to the user,
and energy costs will be calculated based on the pricing signal. Research
shows that users who followed DR signals and set their devices at
different times of the day saw significant reductions in utility bills due to
peak hours, mid-peak hours, and off-peak hours. The utility will
calculate the DAP signal-related bill based on formula (18).

F1 � ∑24
t�1

∑N
a�1

EApp
c t( ) × St ×∂ t( )⎛⎝ ⎞⎠. (18)

Here, F1 denotes the less costly bill of the users. Energy
consumption of the appliance App is represented by EApp

c . St
indicates the on/off status of appliance at that time, and N shows
the number of appliances. This is obtained with the help of EMC
based on HGBFOA.

In this study, we examined various types of devices and their
energy consumption is mathematically represented in Eq. 19.

ETF
c t( ) � PTF

r × St. (19)
Time-flexible appliance’s energy consumption in each hour is

shown by ETF
c , whereas PTF

r denotes the highest power of that
appliance. Total power consumed by mentioned appliances in
24 h is shown in Eq. 20. Time-flexible appliances are denoted
by TF.

ETF
T � ∑24

t�1
∑N
TF�1

ETF
c t( ) ∀TFε App⎛⎝ ⎞⎠. (20)

Equation 21 shows the energy consumption of power-flexible
appliances for a timeslot.

EPF
c t( ) � PPF

r × St. (21)

The energy consumed by power-flexible appliances in 24 h is
given in Eq. 22.

EPF
T � ∑24

t�1
∑N
PF�1

EPF
c t( ) ∀PFε App⎛⎝ ⎞⎠. (22)

Here, PF represents power-elastic devices, and the energy in
KWH consumed by such appliances is denoted by EPF

c .
The power usage of critical appliances is presented in Eq. 23. The

energy and power consumed by these appliances is denoted by ECr
c

and PCr
r , respectively.

ECr
c t( ) � PCr

r × St. (23)

The overall hours of consumption of critical appliances is shown
in Eq. 24.

ECr
T � ∑24

t�1
∑N
Cr�1

ECr
c t( ) ∀Cr ε App⎛⎝ ⎞⎠. (24)

Equation 25 gives the energy consumption of hybrid appliances,
and energy consumption of these appliances is represented by EH

c .
PH
r shows the highest power of hybrid appliances, while the status of

appliance is shown by St.

EH
c t( ) � PH

r × St. (25)
The 24 h energy consumption of hybrid appliances is shown in

Eq. 26.

EH
T � ∑24

t�1
∑N
H�1

EH
c t( ) ∀Hε App⎛⎝ ⎞⎠. (26)

The total 24 h consumption of all appliances is formulated in
Eq. 27.

F2 � Eta
T � ETF

T + EPF
T + ECr

T + EH
c . (27)

Here, Eta
T shows the overall energy consumption of appliances as

a whole. Overall energy consumption by time-flexible/elastic
appliances, power-flexible/elastic appliances, critical load, and
hybrid devices is denoted by ETF

T , EPF
T , ECr

T , and EH
c , respectively.

PARmeans the peak to average energy consumption ratio over a
specified period. DR shifts loads from peak to off-peak hours by
encouraging consumer compliance. As a result, the energy supplier’s
load curve is smoothed and peak-free. For this reason, energy
providers do not need additional power plants to operate during
this time. This greatly reduces the user’s electricity bill. Equation 28
shows the mathematical formula for PAR, where F2 determines
PAR, which is one of the goals of this research work, ensuring
network stability and robustness. ET denotes the overall power used
by the consumer during the whole day.

F3 � max ETF
c t( ), EPF

c t( ), ECr
c t( )( )

ET
( ) × 24. (28)

Consumer comfort is an objective that is computed by device
operation delay, indoor/outdoor temperature variation, lighting, etc.
(Cai et al., 2022). This work computes comfort using device latency
and operation hours with/without scheduling. Correspondingly, if
PAR reduction is desired, the load should be shifted to off-peak
hours as it reduces user comfort. User comfort and energy costs are
two competing goals. To reduce their electricity bills, consumers
have to accept that their devices will run a little slower. At the same
time, users have to pay higher electricity bills if they want to start
using their devices immediately. User comfort, especially waiting
time, is calculated by the formula shown in Eq. 29.

Wa �
∑T
t�1

∑n
a�1

T0,unsch
a,t − T0,sch

a,t( )∣∣∣∣∣ ∣∣∣∣∣
Top
a

. (29)

The waiting time of an appliance a due to scheduling is shown by
‘Wa’. The pre- and post-scheduling status of an appliance is denoted
by T0,unsch

a,t and T0,sch
a,t , respectively. The operation time of such

appliance is represented by Top
a . EMC has the property of

shifting a device to low-peak hours of a day with respect to the
DAP signal. The maximum operational delay of a device can be
formulated as follows:

Wd
a � Tt

a − Top
a . (30)
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The maximum operational delay due to shifting of an appliance
to low-demand hours can be represented by Wd

a , while T
t
a denotes

the total time interval. The discomfort of the user can be calculated
by the following formula in Eq. 31:

F3 � Wa

Wd
a

× 100. (31)

3.7 Problem formulation

The aforementioned system outputs are the objective functions
of this work, which are separately modeled in the previous
subsection. Now, all these objectives are modeled combined in
the optimization problem, which is modeled as the minimization
problem as follows:

Min F( ) � Min F1φ1+F2φ2+F3φ3+F4φ4( ), (32)
∑

i∈App
pisi t( ) � Plim t( ) ∀t ∈ τ & i ∈ App. (33)

The objective functions in question, namely, energy cost,
energy consumption, PAR, and user comfort, are represented by
F1, F2, F3, and F4, respectively. The associated weighting factors
for these functions are denoted as φ1, φ2, φ3, and φ4. These
weights play a crucial role in determining which objective to
prioritize, providing a sense of interest and motivation. The
multi-objective function seeks to address multiple optimization
problems simultaneously, taking into account user priorities and
preferences. Eq. 33 shows the allowable power range for device
operation so that the power limit must not be exceeded for a
period of time. This helps avoid spikes, which are very important
to utility company operations. Based on this, EMC designs the
best power plan for the operation of the device. Devices are
classified into four main categories based on uptime, power
consumption, and schedule.

4 Proposed hybrid algorithm

Heuristic algorithms have been proposed to solve the energy
management problem. Existing techniques for solving the
scheduling problem cannot achieve effective energy management.
Most of these algorithms require a computationally intensive
solution for the scheduling problem of appliances, and the
algorithms’ efficiency decreases as the number of devices
increases. In order to obtain efficient energy management when
resolving scheduling problems, HGBFOA is proposed, which
addresses the limitations explained previously.

4.1 A hybrid genetic bacteria foraging
optimization algorithm

Genetic algorithm and bacteria foraging algorithm are good
optimization methods and have efficient exploration ability. The

search steps of the aforementioned optimization methods are
divided into two parts: local and global searching ability.

BFOA focuses on local scope searches, whereas genetic algorithms
have better global search capabilities. In addition to the benefits of these
two techniques, they also have some drawbacks. For example,
convergence problems exist in GA due to the maximum number of
iterations and large search space requirements. At the same time, the
BFOA elimination and dispersal stepsmay hinder the search for optimal
solutions. The HGBFOA, with qualities of both GA and BFOA, is
proposed to overcome the aforementioned limitations.

The flowchart of HGBFOA is shown in Figure 3 and explained step-
by-step. First, the required parameters are initialized. HGBFOA
performs BFOA step-by-step, as described in the flowchart.
Furthermore, there is a difference between dispersal and elimination.
The BFOA’s elimination and dispersal steps have changed forHGBFOA.
BFOA randomly removes and distributes the remaining bacteria after
the reproductive stage. In HGBFOA, the elimination and propagation
steps are performed through crossover and mutation. Then, GA is
started up to amaximumnumber of iterations. Ultimately, an optimized
schedule for devices is achieved by minimizing energy consumption,
reducing costs, and lowering PAR values.

FIGURE 3
Flowchart diagram of HGBFOA.
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5 Simulations and discussions

The simulation of the given model was conducted considering
three different scenarios. In Scenario I, the simulation was
performed using power solely from the grid. In Scenario II, the
simulation incorporated both power from the grid and PV power.
Finally, Scenario III involved simulations with the combination of
the grid, PV power, and ESS. All simulations are performed in
MATLAB, and results are obtained with comparisons to other
methods, i.e., PSO, GA, HGPO, mixed PSO and GA, BFO
algorithms, and HGBFOA and GA and BFO hybrid algorithms.
We used these algorithms because they are similar. Comparisons are
made between existing and proposed algorithms in terms of cost
savings, power consumption, better peak reduction (PAR), and time
delay.

Table 1 gives us an idea of six appliances with their power ratings
used in this research, (taken from the work of Jiang et al., 2022).

The following diagram contains details of the basic data required
to initialize the result. Figure 4A shows the day-ahead price signal
(DAP) (from the study by Li et al., 2022).

Time in hours is measured horizontally, and the vertical value
gives the energy price per unit in cents. In day-ahead pricing, an
hourly energy price is agreed between the energy supplier and the
consumer 1 day in advance. There are no additional costs for such
pricing. Unit prices are cheaper at night due to off-peak hours and
higher during peak hours. Therefore, the consumers schedule time
flexibly and set up their hybrid devices at times when costs are lower.

Figure 4B shows the daily solar irradiance. The times shown on
the graph start at 1:00 a.m., and there is no Sun until 6:00 a.m. As the
Sun rises after 6 a.m., solar radiation increases exponentially,
reaching a peak by 3 p.m. Therefore, PV power generation is
currently at its maximum and starts to decrease after this time
period as solar radiation decreases. Solar radiation continues to
decrease sharply, reaching zero after 7 p.m. After that, no
generations occur until the next day and the operation continues.
The load consumes the maximum amount of power produced
during maximum demand hours of the day. At present, green
energy is being produced and used, resulting in lower carbon
emissions from fossil fuel power plants.

TABLE 1 Different appliances with their power ratings.

Appliance Power rating Appliance Power rating

Air conditioner 70–130 W Electric vehicles 200 W

Washing machine 100 W Battery storage 50–120 W

Cloth dryer 100 W Iron 250 W

FIGURE 4
Day-ahead pricing signal is presented in (A). Solar irradiance (B) and ambient temperature (C).
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Figure 4C shows ambient temperature over 24 h, and the
temperature has a negative impact on the solar panel efficacy.
Environmental temperature and photovoltaic efficiency are
inversely proportional. The higher the temperature, the lower the
PV yield. The efficiency of solar modules is maximized under STC,
i.e., 25°C and 1,000 W/m2. According to the graph, the temperature
initially cools down at night and warms up again as the Sun rises.
Temperatures are highest between 1:00 and 3:00 p.m. and decrease
in the evening.

Figure 5A shows the battery charge status. The battery is initially
assumed to be zero and starts charging during the day when solar
power begins. The battery level increases hourly and is finally fully
charged in the afternoon. According to the figure, the maximum

storage capacity is 280 Ah, reaching around 7 p.m. The battery stays
in this state until morning and starts charging again when PV starts
generation. The battery status is displayed in Ampere hours (Ah).
This graph is only for battery charging and does not show the battery
discharge status.

Estimated renewable energy production and the excess
renewable energy production after charging the ESS are given
in Figure 5B. The Y-axis shows renewable energy production in
Watt-hours, and the X-axis shows timeframes in hours.
Renewable power generation is estimated to be up to 107 Wh
after the 11th timeslot and continues to increase until 3:00 p.m.
After that, renewable energy production decreases and
approaches zero upon reaching 7:00 p.m. The red graph shows
the leftover renewable energy production after charging the ESS.
Excess generated power is dispatched directly to the appliances,
thus reducing power consumption from the power grid. The
battery starts charging after 6:00 a.m. and is fully charged after 7:
00 p.m.

The original load curves for all three unplanned cases are shown
in Figure 6. This curve shows that the load is unevenly distributed
before optimization. In some cases, load power consumption is
higher during peak hours, making it more costly than during off-
peak hours.

5.1 Scenario I: Appliance scheduling while
using grid power only

In this case, we have considered only power from the grid,
while other sources like PV and ESS have not been used.
Scheduling is obtained for appliances in such a manner that
there is minimum load during peak hours, while the maximum
load is shifted to off-peak hours of the day, during which the
energy price is lower. The existing and HGBFOA algorithms are
simulated in MATLAB. The result of our hybrid algorithm is

FIGURE 5
(A) Battery charging level is shown, and renewal generation along with remaining RG after charging is presented by (B).

FIGURE 6
Load curve without scheduling.
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presented in a graph against the existing algorithms. The main
goal of our research, i.e., energy consumption, energy cost, PAR,
and scheduling, is compared with existing algorithms and our
hybrid algorithm for grid power.

5.1.1 Energy usage
Figure 7A represents the energy consumption patterns of different

devices at arbitrary times of the day. Comparisons are made between
different algorithms. The graph shows that PSO has a maximum energy
consumption of 500Wh, while GA and BFOA have a maximum energy
consumption of 760Wh and 740Wh, respectively. HGPO has a
maximum power of 415Wh, and HGBFOA has a maximum power
of 800Wh, which is the off-peak time with the lowest energy rates.
However, on average, the energy utilization of HGBFOA is more
efficient than that of the existing algorithms. From the graph, it can
be seen that for 15 h, i.e., 6 a.m. to 9 p.m., the energy consumption is kept
below 100Wh by our proposed algorithm. This shows the efficacy of
HGBFOA. These algorithms have gained an optimized power schedule
for different kinds of appliances, and power is held within its specified
limits (maximum during off-peak and minimum during peak hours).

5.1.2 Analysis of energy cost
As price per unit is very important for the consumers, our

objective is to reduce the energy consumption during the

high-price hours of the day. The energy cost for all existing
algorithms and our proposed algorithm has been compared in
Figure 7B. Only a nominal load is turned on during peak hours.
The maximum energy cost during 24 h for PSO, GA, HGPO, and
BFOA in cents is 105 cents, 215 cents, 83 cents, and 100 cents,
respectively. In contrast, the maximum energy consumption of
HGBFOA is 165 cents. These 165 cents are only for 3 h during
low-demand hours, where the price signal is low, so we have
turned on max appliances during these hours. For almost 16 h,
the energy price is under 30 cents, and the average energy cost for
HGBFOA during 24 h is less than 40 cents, which is lower than
that of the other existing algorithms.

5.1.3 Analysis of PAR
Figure 7C shows the PAR of PSO, GA, HGPO, BFOA, and

HGBFOA. If PAR is lower, then the peaks will be lower, which
means that the power is consumed efficiently. The PAR is the
maximum for GA and HGPO, which is 5.9 and 5.8, respectively.
A comparison between HGBFOA and other existing algorithms
is shown in Table 2. In the first two columns, algorithms are
taken along with their PAR value. The third column shows the
difference in the existing algorithms from our hybrid algorithm.
The last column presents the percentage difference between
HGBFOA and the other algorithms. In terms of percentage,

FIGURE 7
Energy consumption, energy cost, and PAR using power from the grid are shown in (A–C), respectively.
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HGBFOA shows better performance and is 43.18% more
efficient than PSO, 49.15% more efficient than GA, 48.27%
more effective than HGPO, and 16.66% better than BFOA.

5.2 Scenario II: Appliance operation
scheduling utilizing power from both PV and
the grid

For scenario II, we considered two power sources, i.e., power
from the grid and solar PV. During daytime, the renewable energy
from PV is used to operate load or in combination with the grid
when PV generation is insufficient. During nighttime, only grid
power is in use. In this study, simulations are conducted to analyze

the reduction of PAR, minimization of energy bills, and power
consumption using the proposed HGBFOA and other algorithms.
The results of these simulations and their comparison are described
in the following paragraphs.

5.2.1 Power consumption and utility bill analysis
Figure 8 shows the power consumption, usage time, energy cost,

and PAR of the existing algorithms and HGBFOA. The scheduling is
designed to reduce overall power consumption and energy costs,
especially during maximum-demand hours. During peak hours,
HGBFOA showed better performance than other algorithms in
terms of energy consumption and price. From Figure 8A, it is
clear that minimum energy consumption is maintained during
peak hours, i.e., during daytime. For comparison, we have

TABLE 2 PAR comparison for the grid.

Scheduling algorithm PAR Variation from HGBFOA Difference from HGBFOA (%)

PSO 5.3 2.3 43.18

GA 5.9 2.9 49.15

HGPO 5.8 2.8 48.27

BFOA 3.6 0.3 16.66

HGBFOA 3 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 8
Energy consumption, energy cost, and PAR considering power from PV and the grid are shown in (A–C), respectively.
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considered 6 to 21 timeslots. The energy consumption of different
appliances can be seen, which is below 100 Wh, which results in a
lower average energy cost of only 15 cents for HGBFOA. The reason
for the energy cost reduction is renewable power from PV during the
daytime and the load being operated on this source along with
the grid.

In Figure 8A, energy consumption (Watt-hours) is plotted on
the Y-axis, and time in hours is plotted on the X-axis. In the sixth
slot, the appliance with PSO consumes 406 Wh, that with GA
consumes 495 Wh, that with BFOA consumes 406 Wh, and those
with HGPO and HGBFOA consume 203 Wh and 105 Wh,

respectively. Comparing the power costs in Figure 8B for the
same sixth-hour slot, we get the following prices: energy cost for
PSO is 85 cents, and the cost for GA and BFOA is 50 and 83 cents,
respectively. Nevertheless, the utility bills for HGBFOA and HGPO
are 20 cents and 45 cents, respectively. Thus, HGBFOA results in
lower peak energy consumption, leading to a lower net utility bill
compared to the existing techniques. Energy consumption and costs
have been effectively reduced, specifically during peak time,
i.e., timeslots from 6 to 20. In addition, EMC’s HGBFOA-based
energy consumption follows a regular pattern, mostly keeping
energy costs at a low level.

TABLE 3 PAR evaluation with PV and the grid.

Technique PAR Variation from HGBFOA Variance from HGBFOA (%)

PSO 4.74 2.09 44.1

GA 4.7 2.05 43.6

HGPO 3.4 0.75 22.05

BFOA 3.24 0.59 18.2

HGBFOA 2.65 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 9
Energy consumption, energy cost, and PAR considering power from PV, the grid, and ESS are shown in (A–C), respectively.
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5.2.2 Evaluation of PAR
A quick comparison between HGBFOA and other algorithms is

shown in Figure 8C. The PAR scores for PSO, GA, HGPO, BFOA,
and HGBFOA are 4.74, 4.7, 3.4, 3.24, and 2.65, respectively. As
shown in Table 3, HGBFOA outperformed PSO by 44.1%, GA by
43.6%, HGPO by 22.05%, and BFOA by 18.2%. Effective scheduling
reduced the peaks in different timeframes, and HGBFOA shows
better performance than other algorithms regarding PAR
minimization.

5.3 Scenario III: Appliance operation
scheduling utilizing power from PV, ESS, and
the power grid

In Scenario III, power is utilized from three different sources,
namely, the grid, renewable energy systems, and energy storage
systems. During daytime, PV and the grid together operate the load,
and excess power from PV is used to charge the batteries. Our hybrid
and other existing algorithms are applied. A comparison for power
consumption, energy cost, PAR and user comfort is made. Further
details are as follows.

5.3.1 Energy consumption and energy cost analysis
Figure 9 shows energy consumption, energy cost, and PAR using

the algorithm described previously. Our main goal is to reduce

energy consumption by scheduling devices during low energy-cost
timeslots. This can be attained by lowering energy consumption
during peak hours and shifting loads to low-peak hours. On average,
the energy consumption of HGBFOA is relatively lower than the
other aforementioned algorithms. For simplicity, we examine the
energy consumption of the appliances during timeslot no. 10 using
the algorithm described previously. The power consumption of the
10th slot for PSO, GA, and BFOA is 180 Wh, 170 Wh, and 110 Wh,
respectively, whereas the power consumption while using HGPO is
260 Wh and that of HGBFOA is 50 Wh. This indicates a clear
difference in the power consumption of the proposed algorithms.

Having determined the energy consumption during 10th hour,
the energy cost for this timeslot is described in the next row. Energy
costs for PSO, GA, and BFOA are −04 cents, 50 cents, and 42 cents,
respectively. The energy cost for HGPO is 56 cents, whereas
HGBFOA has an energy cost of 23 cents. HGBFOA’s overall
performance is better than the other existing algorithms.

5.3.2 PAR analysis with PV, grid, and ESS
Minimization of PAR is an important objective of this study. It is

greatly facilitated by our proposed HGBFOA algorithm. PAR
comparison with different algorithms is shown in Figure 9C. The
PAR for PSO is 4.74, that of GA is 3.07, that of HGPO is 2.88, that of
BFOA is 2.65, and that of HGBFOA is 0.7. HGBFOA is 85% more
efficient than PSO, 77% better than GA, 75.6% better than HGPO,
and 73% finer than BFOA. This is presented in Table 4. The table
shows that the appliances are effectively shifted to low peak andmid-
peak timeslots, resulting in a significant reduction in the PAR value.

5.4 User comfort

Figure 10 determines the user comfort, which is the operational
delay of appliances, and the graph is explained in the following
paragraph.

For PSO, the air conditioner has a 0.4-h delay, the refrigerator
has a 1.72-h delay, the washing machine has a 1.1-h delay, the juicer
blender has a 0.2-h delay, and the vacuum cleaner has a 2-h delay.
There will be an hour delay in EV/ESS operations. Air conditioners,
juicers, vacuum cleaners, and electric cars have no operational
delays, while refrigerators and washing machines have delays of
0.85 and 1.72 h, respectively. HGPO lags by 0.72, 1.1, 0.78, 1.4, 1.28,
and 1.2 h for air conditioners, refrigerators, washing machines,
juicers, vacuum cleaners, and EV/ESS, respectively. When using
BFOA, the devices such as air conditioners, refrigerators, washing
machines, juicers, vacuum cleaners, and EV/ESS face delays of 0.4 h,

TABLE 4 PAR evaluation utilizing PV, ESS, and the power grid.

Technique PAR Variance from HGBFOA Difference from HGBFOA (%)

PSO 4.74 4.04 85

GA 3.07 2.37 77

HGPO 2.88 2.18 75.6

BFOA 2.65 1.95 73

HGBFOA 0.7 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 10
User comfort comparison of the algorithms.
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1.42 h, 1.1 h, 0.2 h, 0 h, and 1 h, respectively. In the end, the
operating lags of air conditioners, refrigerators, washing
machines, juicers, vacuum cleaners, and EV/ESS with HGBFOA
are 2 h, 1.1 h, 1.55 h, 1.2 h, 2 h, and 1.24 h, respectively. There is a
slight delay when operating devices with HGBFOA. However, the
slight delay in operation is to reduce electricity bills, ensure efficient
energy management, and maintain minimum PAR values.

5.5 Possible trade-off

User comfort is somewhat limited to achieve important goals
such as optimal energy consumption, reduced energy costs,
reduced CO2 emissions, and minimum PAR values. Because
this research is based on a multi-goal problem, the achievement
of one goal depends on the achievement of another. Therefore,
there is a trade-off among user comfort, energy costs, and PAR
minimization. To avoid peaks, energy consumption costs, and
PAR values, a compromise must be made on delays in the
operation of some devices during peak hours. Appliances using
HGBFOA, especially air conditioners and vacuum cleaners, have a
slightly longer latency than those using other existing algorithms.
Furthermore, the operational delay of these appliances resulted in
lower power consumption, price, and PAR.

5.6 Conclusion

Although DR programs can obtain efficient energy utilization
and optimal power consumption, but their implementation is
complex because of insufficient user knowledge. To achieve this
goal, HGBFOA, which combines the GA and BFOA algorithms, was
developed. EMC has significantly improved the performance of the
DR program. EMC based on HGBFOA schedules home appliances
to operate automatically according to the DR signal, enabling
energy-efficient, cost-saving, and lower PAR and CO2 emission
schemes. Simulations and results show that EMC based on
HGBFOA outperforms other existing algorithms and can achieve
ongoing goals such as minimizing energy consumption and cost,
and reducing PAR while maximizing user comfort.

5.6.1 Future extension
This research work can be stretched in the following directions

in the future.

• For optimal energy management in smart grids, a fog and
cloud-based system can be used.

• Coordination of energy suppliers with consumers shall be
introduced in load planning to lower energy waste.

• Two-way power trade-off between the utility company and the
consumer shall be initiated, taking into account the “vehicle-
to-grid” and “grid-to-vehicle” energy optimization.

• For online and real-time energy optimization, a Lyapunov
optimization method can be established that considers field
demands from both energy suppliers and consumers.
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Nomenclature

Abbreviation Definition

AMI Advanced metering infrastructure

DSM Demand side management

DR Demand response

EMC Energy management controller

EUC Electricity utility company

DAP Day-ahead pricing

SM Smart meter

TOU Time of use

RTP Real-time pricing

PAR Peak-to-average ratio

AOA Automatically operated appliances

GA Genetic algorithm

PSO Particle swarm optimization

BFO Bacteria foraging optimization

HGBFOA Hybrid genetic bacteria foraging
optimization algorithm

HEMS Home energy management system

IHD In-home display

HAN Home area network

EWH Electric water heater

Ref Refrigerator

BPSO Binary particle swarm optimization

HGPO Hybrid genetic particle optimization

RG Renewable generation

DLC Direct load control

IBR Inclining block rate

ESS Energy storage system

Symbol Definition

Tt
a Time of operation of residential

appliances

F3 � Wa

Wd
a
× 100 Appliance operational interval

App Appliance

Min(F) � Min(F1φ1+F2φ2+F3φ3+F4φ4) Required temperature

∑
i∈App

pisi(t) � Plim(t)∀t ∈ τ & i ∈ App Initial temperature

φ1 Cooling due to on status

φ2 Rated power of the appliance

φ3 Appliance status

φ4 Stored energy

Oi(t) Solar PV generation

τi Solar PV efficiency

Treq Solar irradiance

Tini Efficiency of the battery

β Charging upper limit

AppiPrate
Discharging lower limit

St Charging rate

Estor Discharging rate

Eg
Pv Number of appliances

ηPv Energy consumed by time-flexible
appliances

Irr Energy consumed by critical appliances

μESS Energy consumed by hybrid appliances

EECh
UL

Energy consumed by power-flexible
appliances

EEDsh
LL

Appliance waiting time

EECh Pre-scheduled status of appliances

EEDch Appliance status after scheduling

N Maximum delay in appliance operation
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Design of integral sliding mode
control and fuzzy adaptive PI
control for voltage stability in DC
microgrid

Xinyu Zhang1,2, Yan Zhao1,2*, He Jiang1,2 and Mofan Wei3

1School of Renewable Energy, Shenyang Institute of Engineering, Shenyang, China, 2Liaoning Key
Laboratory of Regional Multi-Energy System Integration and Control, Shenyang, China, 3School of
Electrical Engineering, Shenyang University of Technology, Shenyang, China

This paper introduces a novel control strategy that merges integral sliding mode
control with fuzzy adaptive PI control. This hybrid approach maximizes the
benefits of both techniques to ensure voltage stability in DC microgrid. Firstly,
amathematical model characterizes the DC–DCboost converter. Subsequently, a
sliding surface, incorporating an integral term, is employed to regulate the
converter’s output voltage and current errors. To address uncertainties
stemming from factors like input inductance and output capacitance, a
dynamic sliding mode controller is formulated. The proposed sliding mode
control scheme significantly reduces the time required for voltage stability,
curbs system oscillations, and showcases robustness. Furthermore, the
inclusion of fuzzy adaptive PI control aids in refining the voltage deviation
signal and droop resistance. This enhancement improves the precision of the
error tracking system. Finally, the effectiveness of this strategy is demonstrated
through MATLAB simulations, supported by experimental validation and analysis.
The findings reveal that this control strategy efficiently accelerates the
convergence of DC microgrid voltage to a stable state.

KEYWORDS

sliding mode control, fuzzy control, adaptive PI control, DC microgrid, voltage stability

1 Introduction

A microgrid can be conceptualized as an integrated power system that encompasses
distributed generation systems, loads, and energy storage devices (Ullah et al., 2022). The
growing adoption of microgrids is attributed to their heightened reliability, improved
economic considerations and reduced global warming impact. The DC microgrid, in
particular, has garnered significant attention and research interest in the realm of power
engineering owing to its distinct advantages and potential. When contrasted with AC
microgrids, DC microgrids offer enhanced reliability, efficiency, and reduced power
conversion losses. Additionally, a majority of loads in modern residential and industrial
applications are powered by DC sources (Gui et al., 2021; Saafan et al., 2023). Consequently,
DC microgrids hold appeal as integral components within contemporary intelligent power
systems (Prabhakaran and Agarwal, 2020).

In the current context, with the focal point on sustainable energy and energy efficiency, the
significance of DC–DC converters in electrical engineering and microgrid design has gained
further prominence (Wang et al., 2020). These converters play a pivotal role in connecting the
DC output of renewable energy sources to the distribution system, owing to their
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cost-effectiveness, straightforward structure, and efficient power
conversion performance. This aspect holds vital importance in
optimizing energy utilization and enhancing energy efficiency at
the user end (Haroun et al., 2015; Tiwary et al., 2023). The
fundamental control objectives of a DC microgrid encompass
skillful power distribution management and meticulous bus voltage
regulation (Li et al., 2021). Prolonged substantial deviations in output
voltage can precipitate system instability, necessitating the
introduction of stabilizing control methodologies.

Regarding the stability quandary of boost converters, an array of
advanced control strategies have been proposed, including proportional
resonant (PR) control, proportional integral derivative (PID) control,
fuzzy logic-based control, and repetitive control (Zheng et al., 2018).
Among these control strategies mentioned above, sliding mode control
is considered to be a very efficient nonlinear robust control method due
to its large stabilization range, rapid dynamic response, and strong
disturbance immunity (Wang et al., 2021; Linares-Flores et al., 2022). In
(Liu et al., 2011), the authors designed two control loops containing
different converters which involve variable charging and discharging
modes to enhance the productivity of a hybrid power system. The
designed method, although it has improved the efficiency of the system,
employs electrical components such as bi-directional converters and
inductors that are too idealized and do not take into account the
presence of uncertainties at the same time, which does not achieve a fast
tracking of the errors. Literature (Mao et al., 2022) tries to solve this
problem by incorporating T-S fuzzy control when dealing with
nonlinear state variables, so as to improve the utilization of PV cells
connected to the microgrid while maintaining the stability of the bus
voltage, but the procedure is relatively time consuming. The
maintenance of system stability is an important task in control
theory. In traditional discontinuous control theory, the generation of
control rates usually relies on sign functions or hysteresis modulators
and in this way ensures the stability of the system. These generated
control laws must satisfy certain specific inequality conditions (Biricik
and Komurcugil, 2016; Merabet et al., 2017) to ensure their validity.
However, a noteworthy issue is that this control strategy still suffers
from output chattering. This may negatively affect the system
performance, especially in applications with high precision control
or high dynamic response. To address this issue, researchers have
started to consider the use of smoothing control law to eliminate the
vibration problem of discrete-time sliding mode control. This is an
effective strategy, which can suppress the chattering to a certain extent
and thus improve the system performance. However, the smoothing
control law is not without problems. The primary problem is that this
control method may limit the regulation capability and dynamic
response of the converter. Literature (Inomoto et al., 2022) provides
a solution to the above problem by designing two control loops in the
sliding mode controller. The first is an input voltage control loop for
computing the inductive current, guided by the MPPT algorithm. The
second circuit controls the current, which is related to the duty cycle of
the switches. These two loops enhance the performance of the
converter. The proposed technique uses a smooth switching
function to avoid chattering, resulting in a substantial shortening of
the time to reach a steady state. However, the literature selects high-
order sliding surfaces, which leads to the drawback of overly complex
algorithmic calculations.

Themeans for treating system uncertainties and variations are not
only sliding mode control, the adaptive PI control and fuzzy control

are also often in the priority list. Literature (Mi et al., 2019)
incorporates a T-S fuzzy model in a sliding mode controller
designed for the DC microgrid. Since the relationship between the
output voltage and power of distributed power sources is nonlinear,
the T-S fuzzy model is introduced for processing. The sliding mode
droop control is used to improve the vibration resistance of the system
due to parameter uncertainties and variations in operating conditions.
This combination enables the system to be more accurate when
allocating power according to the load. In the literature (Ahmed
et al., 2018), the author addresses the occurrence of phenomena such
as short-circuits or abrupt changes in load during the operation of
power electronic devices. A fuzzy logic control was integrated into the
coefficients of traditional PI controllers, enabling the controller to
rapidly respond to these changes. Taking power electronic
distribution transformer as an example, the voltage and current
errors are transferred to the improved PI controller and the
performance of the controller in its application under different
operating conditions is considered. The experiment demonstrates
that the proposed controller is capable of meeting the desired
requirements, but suffers from the problem of slow response time.
The authors in (Mokhtar et al., 2019) employed a sliding mode
controller to control the tracking error, and then added an
adaptive PI controller to adjust the error-related voltage and
current more accurately, but the sliding mode control portion of it
was not sufficiently stable for voltage error control. Different from the
previous work that only considered different control methods
combined together, in the literature (Jan et al., 2020), the authors
emphasized on the improvement of the parameters while applying
two control methods, in which the parameters are inferred by using
the affiliation function and fuzzy rule table, and genetic algorithms are
also involved. Ultimately, the output power of the renewable energy
source can be maximized, while these measures assure the frequency
stabilization in the system. However, with this control method,
unknown system parameters need to be estimated through the use
of multiple adaptive laws, which leads to the over-parameterization
problem. Literature (Kuppusamy and Joo, 2021) designed a memory-
integrated sliding mode control based on perturbation observer using
T-S fuzzy approach, which defines an integral fuzzy switching surface
function containing both input matrix and implicit parameters related
to the state variables, and utilizes the disturbance estimation generated
by the perturbation observer to offset the mismatched disturbance
error. This strategy has a T-S fuzzy modeling of the sliding mode
motion, which operates according to the control model in the initial
state andmaintains this state continuously under the limitations of the
memory sliding mode. This method is guaranteed for the fast
response of the system while preserving its continuous stability.

Addressing the challenge posed by the complex and uncertain
operational environment, which impedes the maintenance of a
sustained steady state, this study introduces a novel sliding mode
control (SMC) scheme. To secure the stable operation of the DC
microgrid, an integral sliding surface is constructed, subsequently
refining the traditional SMC approach. The stability of the improved
SMCmethod is substantiated through an appropriate Lyapunov function.

The main contributions of this paper are as follows.

1) The proposed SMC effectively mitigates system chattering by
incorporating an integral sliding surface design, markedly
enhancing tracking performance and ensuring voltage stability;
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2) An adaptive PI controller is combined to govern the error
between the DC bus voltage and its reference value and the
droop resistance to optimize voltage regulation. This
combination yields a more precise converter output voltage;

3) Parameter tuning for the adaptive PI controller leverages fuzzy rules,
allowing adaptation to varying internal and external parameters.

The rest of this paper is organized as follows. Section 2 shows the
system model of the DC–DC converter. Section 3 introduces the
designed sliding mode controller. Section 4 describes the fuzzy
adaptive PI control. Section 5 presents the simulation results.
The conclusion is illustrated in Section 6.

2 System model of the DC–DC
converter

DC–DC converters are utilized in numerous applications in
power systems. These converters manipulate the power electronics’
on/off states to modulate current transmission paths for voltage
augmentation. Notably, boost converters offer distinct advantages
across diverse scenarios. Their short duty cycles translate to
comparatively low energy losses, a crucial attribute for extended-
operation devices like remote communication systems, computers,
and office automation equipment. Moreover, boost converters find
favor in precision-demanding sectors like military and aerospace
owing to their stable output voltage traits (Lee et al., 2011). In
essence, the realm of DC–DC converters is characterized by diversity
and multifold applications, encompassing varied types. Boost
converters, specifically, have seamlessly integrated into myriad
domains owing to their distinctive attributes. Figure 1 illustrates

the overarching framework of the described control strategy. The
mathematical representation of a DC–DC converter is given by

dv1
dt

� −i2
C

+ − u − 1( )i1
C

di1
dt

� v2
L
+ u − 1( )v1

L

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where v1 is the actual output voltage of the converter, v2 is the input
supply voltage of the converter, i1 is the inductor current, i2 is the
actual output current, and u is the switching state, u ∈ [0, 1].

3 Proposed sliding mode control

In microgrids, whether the voltage is stable or not is of especially
significance for improving the performance of control accuracy and
response speed, including ensuring the stable operation of
microgrids. For this reason, the control approach used in this
paper is the sliding mode control, where the object of control is
chosen to be a tracking error system consisting of errors in output
voltage and inductive current with their reference values, we
introduce the following definitions:

e1 � vref1 − v1 (2)
where vref1 is the reference value of the converter output voltage,
and e1 is the error between the output voltage and the reference
value of the output voltage.

e2 � iref1 − i1 (3)
where iref1 is the reference value of the converter output current, e2
is the error between the converter output current and the current
reference value. e1 and e2 are the tracking error state variables. From
this, the dynamic equation for the tracking error of the system could
be given in the following formulation:

_e � Ae + Bx t( )u +D t( ) (4)
In Eq. 4, the system state matrices e, A, B, x(t) and D(t) can be

express by

e � e1 e2[ ]T

A �
0

1
C

−1
L

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B �
1
C

0

0
−1
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x t( ) � i1 v1[ ]T
D t( ) � i2−iref1

C

vref1−v2
L

[ ]T
The design of the sliding surface is crucial and it directly determines

the dynamic properties of the system under sliding mode motion. After
the system state reaches the sliding surface, the behavior will be governed
by the nature of the sliding surface. This means that the system is robust
to parameter variations and external perturbations. However, the
traditional sliding mode control can lead to a large chattering in the

FIGURE 1
The general framework of the proposal control strategy in the DC
microgrid.
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system due to the high frequency switching characteristics of the sliding
surface. Hence, during the refinement of the algorithm, a consideration of
how to balance the robustness in the system with the need to suppress
chattering is warranted to gain an optimization of the control capability of
the converter. The introduction of an integral term into the sliding surface
is a mean to attenuate the high-frequency switching and consequently
reduce the system vibration to a certain extent. The integral sliding
surface can ensuremore stable system operation. Therefore, the following
sliding surface containing integral term is selected.

s � g1e + g2∫t

0
edt (5)

where g1 and g2 are constant matrices, g1 � [ g11 g12 ],
g2 � [g21 g22 ], g11, g12, g21 and g22 are constants, respectively.

Substituting Eq. 4 into the derivative of the integral sliding
surface (5) yields

_s � g1 Ae + Bx t( )u +D t( )( ) + g2e (6)
The equivalent control law can be obtained by setting Eq. 6 to be zero

ueq � − g1Bx t( )( )−1 g1A + g2( )e + g1D t( )[ ] (7)

Taking parameter uncertainty and resistance to perturbations
into account as well, the hyperbolic tangent function is adopted and
the final design of the sliding mode controller is expressed as follows:

u* � − g1Bx t( )( )−1 g1A + g2( )e + g1D t( )[ ]
+ g1Bx t( )( )−1 −η ��

s| |√
sgn s( ) − ∫t

0
τsgn s( )dt(

−λtanh s( ) − θsgn s( ))
(8)

where η, τ and θ are normal numbers, λ is a negative real number,
and |λ|≤ θ, sgn(s) are sign functions.

In this improved slidingmode controller, η
��|s|√
sgn(s),∫t

0
τsgn(s)dt

and θsgn(s) are used to resist disturbances and reduce chattering. The
purpose of adding λtanh(s) is to speed up the convergence of the system.
The condition |λ|≤ θ is to ensure system stability.

In order to analyze the stability of the proposed sliding mode
control, the following Lyapunov function is selected.

V � 1
2
s2 (9)

Differentiating the Lyapunov function and combining with Eq.
8, it yields

_V � s _s
� s g1A e + Bx t( )u +D t( )( ) + g2e[ ]
� s g1 Ae + Bx t( )[{ − g1Bx t( )( )−1( g1A + g2( )e + g1D t( )[ ]

+ g1Bx t( )( )−1( − η
��
s| |√
sgn s( ) − ∫t

0
τsgn s( )dt

−λtanh s( ) − θsgn s( ))) +D t( )] + g2e}
� s −η ��

s| |√
sgn s( ) − ∫t

0
τsgn s( )dt − λtanh s( ) − θsgn s( )( )

� −η ��
s| |√
s| | − τs∫t

0
sgn s( )dt − λstanh s( ) − θ s| |≤ 0

(10)
The above-mentioned verification indicates that the derivative

of the Lyapunov function _V≤ 0, affirming the stability of the
controller devised in this study.

In a high switching frequency environment, the duty cycle can be
interpreted as a smooth analytic function of the discrete pulses in a pulse
widthmodulation (PWM) control system. The duty cycle of theDC–DC

boost converter is a key parameter that determines the adjustment range
and stability of the output voltage. The average control motion of the
sliding mode control system can theoretically be viewed as the average
dynamic response of a PWM control system. However, regardless of the
output of the SMC system, the actual physical meaning has a limitation
on the value of the duty cycle, which must be in the region of [0, 1].
Therefore, we can design an actual duty cycle d* for generating a PWM
control signal to drive the controllable switches of the converter. In this
study, we use PWM to generate pulse signals to control the converter
switches by opening and closing them, thus realizing the precise
regulation of the system. The actual duty cycle d* is expressed as follows:

d* �

1 d≥ 1
− g1Bx t( )( )−1 g1A + g2( )e + g1D t( )[ ]
+ g1Bx t( )( )−1( − η

��
s| |√
sgn s( ) − ∫t

0
τsgn s( )dt 0<d< 1

−λtanh s( ) − θsgn s( ))
0 d≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(11)

4 Fuzzy adaptive PI control

To make the voltage error more accurate and ensure enhanced
stability in the output voltage of the converter, two fuzzy adaptive PI
controllers are added to the treatment of the voltage tracking error.
These controllers serve to enhance precision in managing the DC
bus voltage and the droop resistance, respectively. The inputs of
adaptive PI controllers are the DC bus voltage error and the current
distribution error. By manipulating the droop control parameters,
precise control over the current allocation for each distributed
generation system within the microgrid is achieved, leading to
elevated power quality and microgrid reliability. The following
equation presents an adaptive droop system expression:

vref1 � vref + σvM − rdi2 (12)
where σvM is the voltage deviation signal to regulate the DC bus
voltage vM and its reference value vref, rd is the droop resistance of
the converter. The voltage deviation signal can be expressed by

σvM � −q1q2p t( )e3 t( ) + q1∫t

0
q3i t( )e3 t( )dt (13)

e3 t( ) � vrefM − vM (14)
where e3(t) is the difference between the DC bus voltage vM and its
reference value vrefM, q1 is a positive constant, q2p(t) is a proportional
gain coefficient, and q3i(t) is an integral gain coefficient. The
proportional and integral gains are expressed as follows:

q2p t( ) � e3
2 t( ) + ρ1∫t

0
e3

2 t( )dt (15)

q3i t( ) � ρ2∫t

0
e3

2 t( )dt (16)

where ρ1 and ρ2 are normal numbers.
In the practical operation of microgrids, due to the occurrence of

sudden changes in loads, etc., the currents are not immune to
additional errors, which can have an effect on the droop
resistance in the droop system. We have to cope with this
situation and the new droop resistance can be written by
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ri � −q4q5p t( )e4 t( ) + q4∫t

0
q6i t( )e4 t( )dt + rd (17)

q5p t( ) � e4
2 t( ) + ρ3∫t

0
e4

2 t( )dt (18)

q6i t( ) � ρ4∫t

0
e4

2 t( )dt (19)
e4 t( ) � i2 − i3 (20)

where ri is the new droop resistance, e4(t) is the current distribution
error between actual output current and expected current, i3 is the
current expected value, q4 is a constant, q5p(t) and q6i(t) are the
proportional and integral gain coefficients in the current
distribution loop, respectively, ρ3 and ρ4 are normal numbers.

While the conventional PI control approach enjoys widespread
application, it exhibits poor robustness, susceptibility to voltage
overshoot and current surges, and sensitivity to alterations in
system parameters and nonlinear traits. Fuzzy control, in contrast,
is an adaptable method not contingent upon an accurate system
model. It showcases robustness, particularly when handling nonlinear
systems. Nonetheless, despite the merits of fuzzy control, its
performance might lag behind that of conventional PI control in
certain instances. To synergize the advantages of both approaches and
surmount their individual limitations, this paper combines fuzzy
control with an adaptive PI controller. This combination enables
online self-adjustment of PI parameters through fuzzy rules to make
the parameters more accurate and flexible. The method seamlessly
combines the robustness of fuzzy logic and the intuition of PI control,
enabling the controller to flexibly adapt to diverse load variations and
voltage fluctuations. Specifically, the engineered fuzzy adaptive PI
controller initially acquires system error and error variation rate data.
Subsequently, it employs a fuzzy logic system to conduct reasoning
based on this information, adjusting parameters based on the
outcomes. This design empowers the controller to dynamically
fine-tune its performance to accommodate shifts in the system state.

The fuzzy domains of the fuzzy input variables e3 and Δe3 are set
to [−6, +6], and the fuzzy domains of the fuzzy controller outputs
Δq2p(t) and Δq3i(t) are set to [−6, +6] respectively. The
membership functions are defined as NB (Negative Big), NM
(Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive

Small), PM (Positive Medium), PB (Positive Big). Based on the
experience of previous engineers and repeated experiments, fuzzy
rule control tables are shown in Table 1 and Table 2. Subsequently,
the membership function is determined, considering the degree of
coverage of the domain and robustness, stability and sensitivity, the
linguistic values of the fuzzy linguistic variables in this paper are
using the triangular membership function, as shown in Figure 2.

TABLE 1 Fuzzy rule control table of Δq2p(t) and Δq5p(t)

e Δe

NB NM NS ZE PS PM PB

NB PB PB NB PM PS PS ZE

NM PB PB NM PM PS ZE ZE

NS PB PM NS PS ZE NS NM

ZE PM PM ZE ZE NS NM NM

PS PM PS ZE NS NS NM NM

PM PS ZE NM NM NM NB NB

PB ZE NM NS NM NB NB NB

TABLE 2 Fuzzy rule control table of Δq3i(t) and Δq6i(t)

e Δe

NB NM NS ZE PS PM PB

NB ZE ZE NB NM NM PS PS

NM ZE ZE NM NM NS ZE ZE

NS ZE ZE NS NS ZE ZE ZE

ZE ZE ZE NS NM PS ZE ZE

PS ZE ZE ZE PS PS ZE ZE

PM ZE ZE PS PM PM ZE ZE

PB NS NS NS PM PB ZE ZE

FIGURE 2
The membership function.
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Finally, the new scale and integration coefficients are obtained.
Figure 3 and Figure 4 illustrate the fuzzy inference surface after
the fuzzy rule.

The improved adaptive parameters are expressed as follows:

q2p* t( ) � q2p t( ) + Δq2p t( )
q3i* t( ) � q3i t( ) + Δq3i t( ){ (21)

where q2p*(t) and q3i*(t) are the new proportional and integral gain
coefficients, Δq2p(t) and Δq3i(t) are the fuzzy controller output
values respectively.

According to the same principle, the coefficients of the second
fuzzy adaptive PI controller can be obtained as follows:

q5p* t( ) � q5p t( ) + Δq5p t( )
q6i* t( ) � q6i t( ) + Δq6i t( ){ (22)

where q5p* (t) and q6i* (t) are the new proportional and integral gain
coefficients, Δq5p(t) and Δq6i(t) are the fuzzy controller output
values respectively.

FIGURE 3
Fuzzy inference surface of Δq2p(t) and Δq5p(t).

FIGURE 4
Fuzzy inference surface of Δq3i(t) and Δq6i(t).
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5 Simulation results

This subsection aims to substantiate the efficacy of the proposed
algorithm through simulation examples. The parameters involved in
the simulation are shown in Table 3.

Initially, we excluded the influence of external disturbances
and solely evaluated the control performance of the proposed
method under ideal circumstances. A comparison with the
traditional SMC approach yielded the subsequent simulation
outcomes. Referring to Figure 5 and Figure 6, we deduce that,
within the confines of the control strategy, the system rapidly and
effectively attains the desired target value. Notably, the proposed
method exhibits a briefer regulation duration and significantly
reduced chattering compared to the conventional method. In
addition, the traditional SMC cannot accurately achieve the
reference value of voltage. Upon examining Figure 5 and

FIGURE 5
Curves of converter output voltage under ideal circumstances.

TABLE 3 System parameters.

Parameters Value Parameters Value

L 100μH τ 0.3

C 100μF λ −0.35

rd 1Ω θ 0.4

vref1 48V q1 4.5

iref1 1A ρ1 0.01

g11 0.1 ρ2 0.1

g12 , g22 0.15 q4 10

g21 8 ρ3 10

η 1.45 ρ4 9

FIGURE 6
Curves of converter inductive current under ideal circumstances.
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Figure 7 concurrently, it becomes evident that the traditional
method fails to achieve the desired voltage value, perpetuating
an enduring error. The data in Figure 8 highlights the exceptional
current control capability of the strategy developed in this paper.
The current error swiftly converges to be zero within a brief span,
and the oscillation amplitude remains notably smaller in
comparison to the traditional method. Under ideal conditions,
the advanced controller advocated in this study vividly showcases
its prowess in dynamic performance enhancement.

To emulate real power system conditions, scenarios involving
external disturbances were examined. Load variations were tested
and discussed across different cases, with a comparison made to
the performance of the traditional SMC method in these

conditions. The ensuing simulation findings are presented as
follows. Analyzing Figure 9, we infer that when external
interference is present, the system tracks the predefined
reference value quickly and effectively after changing the load,
achieving regulation within 0.1 s. Figure 9 highlights that sizeable
external disturbances induce more pronounced voltage
fluctuations and changes under traditional SMC. This
observation underscores the traditional method’s inferior
robustness and diminished anti-interference capacity. In
contrast, the control strategy proposed herein swiftly stabilizes
the system’s output voltage, rapidly restoring equilibrium post-
referential attainment. This exemplifies the strategy’s enhanced
robustness and its capacity to suppress the influence of external

FIGURE 7
Curves of voltage error in the DC–DC converter under ideal circumstances.

FIGURE 8
Curves of current error in the DC–DC converter under ideal circumstances.
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disturbances, thereby effectually advancing system control.
Figure 10 presents the current variation. Although both
methods can achieve the set reference value, the proposed
method restrains the chattering. Figure 11 visually illustrates
the voltage error, manifesting the error’s eventual convergence
to be zero under the controller’s influence. This outcome
underscores the effective asymptotic tracking capability of the
current control strategy. In contrast, traditional SMC fail to
converge the voltage error to be zero. Figure 12 illustrates
current tracking error evolution. Notably, the traditional SMC
method exhibits substantial performance deviations when faced

with external disturbances. The proposed SMC enables the
current error to reach the convergence state more quickly and
steadily.

The simulation outcomes decisively showcase the proposed
controller’s pronounced improvements in both response time and
precision, when juxtaposed with the conventional sliding mode
controller. This method streamlines the algorithm, enhances
voltage stability control, and optimizes overall system performance.
These results affirm the effectiveness and superiority inherent in
combining SMC and fuzzy adaptive PI control within DC–DC
boost converter control.

FIGURE 9
Dynamic curves of converter output voltage.

FIGURE 10
Dynamic curves of converter inductive current.
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6 Conclusion

This study proposes a voltage stabilization control strategy
for DC–DC converters within DC microgrids, employing
integral SMC and fuzzy adaptive PI control. The strategy
effectively addresses the challenge of achieving rapid and
steady output voltage states. The primary aim is to enhance
dynamic performance and attain exceptional tracking error
control, thereby elevating converter efficiency. The proposed
SMC scheme demonstrates robust performance in countering
external disturbances and voltage fluctuations. Incorporating

fuzzy adaptive PI control bolsters system adaptability. The
controller’s capacity to dynamically adjust PI controller gains
equips the system to respond adeptly to sudden parameter
changes. The strategy was validated through MATLAB
simulations, confirming its ability to swiftly stabilize voltage
and attenuate oscillations. In conclusion, this paper presents an
innovative and effective control approach for DC–DC
converters in DC microgrids. The proposed method can be
widely used in voltage stabilization control in DC microgrids.
Future exploration of applying this strategy to more complex
power electronic devices holds promise.

FIGURE 11
Curves of voltage error in the DC–DC converter.

FIGURE 12
Curves of current error in the DC–DC converter.
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Network-constrained flexible
ramping product provision of
prosumer aggregator: a
data-driven stochastic bi-level
optimization

Xin Ai, Huanyu Hu, Junjie Hu*, Zhe Wang and Kunyu Wang

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China

Prosumers are expected to provide the flexible ramping product (FRP) in the
power system. However, voltage violations and line congestion may arise in the
distribution network, when FRP delivered by prosumers. Hence, this paper
proposes a data-driven stochastic bi-level optimization model to coordinate
the prosumer aggregator to decide FRP-offering while ensuring distribution
network security under FRP delivery. In the proposed bi-level model, the
upper-level is a min-max problem, representing the minimum expected cost
under the worst-case scenario probability distribution for the prosumer
aggregator. The lower-level is the operation cost minimization within the
distribution network security for distribution network operator. The proposed
model is converted into a single-level model using the Karush-Kuhn-Tucker
condition and strong duality theory, and applied to the modified IEEE 33-bus
network with three prosumers. The results demonstrate the effectiveness of the
proposed model.
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1 Introduction

The expansion of renewable energy integration into the power grid has led to the de-
committed of conventional units, exacerbating the scarcity of ramping resources in the
power system (Wang and Hodge, 2017). According to the CAISO daily report dated 23 June
2023, the requirement of FRP during the 3 hours following 6 a.m. accounted for 40.4% of the
peak load for that day (California Independent System Operator, 2023). Addressing this
pressing issue requires urgent exploration of demand-side ramping capability (Yamujala
et al., 2022). With the implementation of low-carbon policies and smart control technologies
in distribution system, an increasing number of passive low-voltage consumers with
distributed resources are being transformed into active prosumers, resulting in
unprecedented improvements of flexibility in distribution system (Kubli et al., 2018).
While significant improvements have been made in enhancing flexibility, its value
cannot be fully realized without proper organization and coordination. As a crucial link
between decentralized flexibility and economically scalable electricity services, research on
prosumer aggregator has rapidly gained momentum (Olivella-Rosell et al., 2018). However,
the deliverability and availability challenges associated with FRP (Fang et al., 2020), coupled
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with the voltage violations and line congestion in prosumer active
responses, pose additional challenges for prosumer aggregator in
providing FRP. Therefore, this paper investigate how prosumer
aggregator can provide FRP while ensuring the security of the
distribution network.

The current definition of prosumer is broad, encompassing
subjects such as electric vehicle aggregators, smart buildings, and
grid-connected microgrids, which are also considered as
prosumers (Gonzalez-Romera et al., 2019; Hu et al., 2019;
Huang et al., 2020; Nizami et al., 2020). In order to
comprehensively analyze the current state of research, this
paper also considers the provision of FRP by this broad
category of prosumer. Studies on the provision of FRP by
prosumer aggregators can be categorized into two group.

The first group focuses solely on the economic strategy
developed based on the portfolio model without considering
distribution system security. For instance, the author in the
literature (Kim et al., 2021) proposes a FRP offering strategy for
electric vehicles considering travel chain uncertainty. Similarly,
The literature (Wang et al., 2017; Hu et al., 2018) propose a FRP
offering strategy for microgrid and battery energy storage
aggregator, respectively. The literature (Zhang et al., 2022)
develops a method to allocate ramping capacity in electric-gas
systems. The literature (Zhu et al., 2020) proposes a decision
framework for residential-level energy hubs considering the
provision of FRP for arbitrage. The literature (Khoshjahan
et al., 2020) develops a stochastic FRP offering strategy for
energy storage systems. Likewise, The literature (Khoshjahan
et al., 2022) presents a robust optimal strategy for prosumer
aggregators to provide FRP in the real-time market. In
summary, the studies have explored the prosumers that
encompass various types of flexible resources based on the
optimal offering model within forecast market clearing prices.
This group of bidding decision models focuses only on the optimal
power allocation of resources within the prosumer and ignores the
interaction relationship with the market clearing price, which can
lead to an underestimation of the prosumer’s flexibility. Moreover,
strategies formulated using predicted market clearing prices
resemble passive time-of-use tariff demand response strategies.
Such approaches do not fully showcase the proactive advantages
inherent to the prosumer.

The second group considers the security of the distribution
network when submitting an offering strategy but ignores the
potential security issues when FRP is activated. For example, the
literature (Zhang et al., 2020) proposes an extended ACOPF model
that integrates electric vehicles and calculates the marginal benefit
value of FRP. The literature (Bahramara et al., 2022) presents a
method for considering distribution network line congestion when
microgrids provide services to system-independent operators. The
literature (Ghaemi et al., 2021a) proposes a bi-level model for DNO
purchasing microgrid’s FRP in the distribution network, while the
literature (Allahmoradi et al., 2021) suggests a stochastic optimal
strategy for reducing the net load ramping rate of active distribution
networks. The literature (Ghasemi et al., 2021) introduces a bi-level
optimal approach to incorporate distributed resources for providing
FRP. Although the bi-level model described above effectively
captures the interaction between the distribution network and
prosumer aggregators, the upper models are not aggregator

which are not suitable for bidding decisions. Although all of the
work mentioned above considers distribution system security when
the prosumer aggregator submit FRP, they only consider the energy
strategy to satisfy distribution network security when the FRP is not
activated. The power flow in the distribution network will change
when the distribution network operator activates the FRP of the
prosumer, which may cause distribution network security issues
such as voltage violations and line congestions. In addition, the value
of flexibility for each prosumer cannot be accounted for correctly
because of the ignorance of the network security constraints during
FRP delivery.

Moreover, the volatility of distributed renewable energy
(DRE) indirectly affects the bidding/offering decision of
prosumer aggregators. The optimization strategies developed
in the aforementioned literature, based on stochastic optimization
(Wang et al., 2017; Khoshjahan et al., 2020; Allahmoradi et al.,
2021; Bahramara et al., 2022) and robust optimization (Zhu et al.,
2020; Ghasemi et al., 2021b; Khoshjahan et al., 2022; Zhang et al.,
2022) for uncertainty modeling in the DRE output and market
clearing prices. Robust optimization does not rely on probability
distribution characteristics and makes decisions based only on
worst-case uncertainty scenarios. In optimal scheduling
problems where uncertainty extreme scenarios have a low
probability of occurring, robust models tend to result in
overly conservative strategies. It is a characteristic more suited
to the study of stable control and planning problems (Ma et al.,
2023). Stochastic optimization assumes that the decision-making
has a comprehensive understanding of uncertainty through
known probability distributions, and often empirical or data-
driven approaches are used to construct probability distributions
(Fu et al., 2023a). However, due to the finiteness of the sample,
the constructed probability distribution may be far from the true
probability distribution, which can lead to an under-conservative
strategy. Selecting representative discrete scenarios to
characterize the probability distribution is also an issue, which
a large set of scenarios will greatly increase the computational
burden. The literature (Fu et al., 2023b) proposes an approach to
select the representative scenarios by neural networks to reduce
the size of scenarios. Distributionally robust methods have
attracted much attention in recent years, which combine the
advantages of stochastic optimization and robust optimization by
formulating expected optimal decisions under robust probability
distributions, and have been applied to power system optimal
scheduling (Shi et al., 2023) and control (Xu et al., 2023) issues.
Among them, a stochastic optimization method based on a
mixed-norm model was firstly proposed in the literature
(Zhao and Guan, 2016), which can achieve expectation-
optimal decision-making under robust probability distribution.
The method can adjust the conservativeness of uncertainty
modeling and is particularly applicable to the formulation of
bid-offer strategy. The prosumer aggregator can improve its
response to the future development of the complex
distribution grid market by employing external data and
adopting a risk-averse willingness to dynamically adjust its
bidding and offering strategy. Therefore, embedding this
model into the problem of FRP decision-making by prosumer
aggregators is also within the scope of research interest in this
paper.
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In this context, the paper proposes a bidding/offering model
based on a data-driven stochastic bi-level optimization for prosumer
aggregator. The major contributions of this paper are presented as
follows.

1) Proposing a novel data-driven stochastic bi-level optimization
framework for prosumer aggregator, which effectively
incorporates the value of external data and proactively
develops energy and FRP bidding/offering strategy that strike
a better balance between economy and conservativeness.

2) Proposing an extended linearized ACOPF model that avoids
technical violations of the distribution system after the delivery
of FRP and enables the derivation of more detailed marginal
prices of nodes. More importantly, the linearization greatly
improves the model’s applicability, especially in the
construction of the bi-level programming.

The remainder of this paper is organized as follows. Section 2
presents the problem description. In Section 3, the proposed model

and solution technique is formulated. The numerical results are
analyzed in Section 4. Finally, Section 5 concludes the paper.

2 Problem description

2.1 Stochastic bi-level optimization
structure for bid and offer strategy of
prosumer aggregator

The proposed model presents a data-driven, stochastic bi-level
optimization problem. This captures the interactive decision-making
between the prosumer aggregator managing the prosumers and the
DNO scheduling the DRE. The structure is illustrated in Figure 1. We
assume that all prosumers within the distribution network can be
managed by a single aggregator. The interactive decision-making of
prosumer aggregator and DNO is a stochastic bi-level optimization
problem that can be modeled based on the scenario approach. The
upper-level problem represents the formulation of energy bidding and
FRP offering at the distribution locational marginal price for prosumer
aggregator, and the lower-level problem represents the energy and FRP
clearing out locally for DNO receiving the upper-level decision, the
structure of which is shown in Figure 2. In fact, the proposed model is
also a Stackelberg Game problem, where the prosumer aggregator acts
as the leader while the DNO acts as the follower. The proactive
superiority of the prosumer aggregator is emphasized. DRE are
common in distribution networks, and their energy management
strategy affect the energy and FRP clearing of DNO, and
subsequently the strategies of prosumers. The conservativeness of
uncertainty modeling is corrected using a data-driven approach. The
prosumer aggregator searches for the worst-case probability
distribution in the optimization space of the scenario probability
distribution, and ultimately achieves the minimum expected cost of
the bidding/offering strategy under the worst probability distribution.

The KKT condition and strong dual theory are used to solve the
model. The KKT condition can replace the lower-level optimization

FIGURE 1
Coordinated operational framework for aggregator and DNO.

FIGURE 2
A data-driven stochastic bi-level optimization framework for prosumer aggregator decision bid-offer.
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problem with an equilibrium constraint. The strong dual theory can
replace the bi-linear term in the upper level objective. The
linearization of the complementary relaxation constraints is done
by the big-Mmethod. The model can eventually be transformed into
a mixed-integer linear programming problem that can be easily
solved by commercial software.

2.2 Uncertainty modeling of DRE

DRE are widely deployed in distribution networks, and their
stochastic output characteristics have a substantial influence on the
energy and FRP locally clearing of DNO. The uncertainty model
proposed in the literature (Zhao and Guan, 2016) is able to take into
account the uncertainty of the probability distribution of random
variables. In this paper, this model is integrated into the proposed
stochastic bi-level programming problem.

The process of uncertainty modeling, as illustrated in Figure 3,
comprises several steps. Firstly, historical data is clustered to obtain an
initial probability distribution. Subsequently, the L1 norm and L∞ norm
are utilized to construct the set of probability distributions. It is worth
noting that the mix-norm captures the risk-averse of the prosumer
aggregator, influencing the level of conservativeness within the ensemble.
Lastly, a bi-level stochastic optimizationmodel is employed to identify the
worst-case distribution from the set, facilitating the formulation of an
optimal decision that is both economically viable and conservative.

3 Method development of FRP
provision by prosumer aggregator

3.1 Scenario probability distribution set

∑
s∈S

πs − π0| |≤ S
2Ns

ln
2S

1 − α1
(1)

maxs�1,...,S πs − π0| |≤ 1
2Ns

ln
2S

1 − αs
(2)

∑
s∈S

πs � 1 (3)

πs ≥ 0, s � 1, . . . , S (4)
Equation 1 sets the limits of the overall uncertainty of the

probability distribution while Eq. 2 sets the limits on the
maximum probability uncertainty (Zhao and Guan, 2016). Eqs.
3-4 denotes the basic properties of discrete probabilities.

3.2 Optimization model of prosumer
aggregator

3.2.1 Objective function
The upper-level problem aims to minimize operating cost under

the worst-case scenario probability distribution, which comprises
two terms. The first term represents the cost of purchasing energy
while the second term corresponds to the revenue from providing
the FRP, encompassing both upward FPR and downward FRP,
respectively.

minmaxΔt∑
s∈S

πs ∑
i∈N

∑
t∈T

λdlmp,p
s,i,t pvbs,i,t − λdlmp,u

s,i,t rvb,us,i,t + λdlmp,d
s,i,t rvb,ds,i,t( ) (5)

3.2.2 Operational constraints of prosumer
The energy management problem within the prosumer could be

deal with the portfolio model previously reviewed, which is outside
the scope of this paper. Therefore, the virtual battery model is used
here to represent the prosumer flexibility, referring to the authors’
previous work (Hou et al., 2019; Hu et al., 2019; Wu et al., 2019).

pvbs,i,t ≤ �pvbs,i,t (6)
pvbs,i,t − rvb,us,i,t ≥ 0 (7)
rvb,ds,i,t + pvbs,i,t ≤ �pvbi (8)
pvbs,i,t , r

vb,u
s,i,t , r

vb,d
s,i,t ≥ 0 (9)

evbs,i,t+1 � evbs,i,t + ηcpvbs,i,tΔt (10)
�evbi − evbs,i,t+1 ≥ ηcrvb,ds,i,t Δt (11)

evbs,i,t ≤ �evbi (12)
evb,inii � evbs,i,1 (13)
evb,exi � evbs,i,T (14)

FIGURE 3
A data-driven framework for uncertainty modeling.
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The amount of energy and FRP of each prosumer is limited
using Eqs.6–14. Eqs. 10–14 demonstrate the dynamic behavior of
prosumer at each time step, which depends on the amount of stored
energy in the previous time step.

3.3 Optimization model of DNO

3.3.1 Objective function
The lower-level problem aims to minimize the operating costs of

the DNO and represents the energy and FRP clearing out within the
distribution network, as described in Eq.15. The first term in Eq.15
represents the cost of energy purchased by the DNO from the retail
market to maintain power balance within the distribution system.
The second term corresponds to the revenue from providing FRP to
the market by the DNO, which is determined by the quantities
offered from DRE and the prosumers.

minΔt∑
t∈T

γpt p
dso
s,t − γut r

dso,u
s,t + γdt r

dso,d
s,t( ) (15)

rdso,us,t � ∑
i∈N

rvb,us,i,t +∑
j∈J

rpv,us,j,t : λ
u
s,t (16)

rdso,ds,t � ∑
i∈N

rvb,ds,i,t +∑
j∈J

rpv,ds,j,t : λ
d
s,t (17)

Where γpt is the day-ahead energy price in the retail market, γut
and γdt are the upward and downward FRP price. The right-hand
side of Eqs. 16, 17 denote the dual multiplier variables of the
constraints. The expressions of the same form in the later section
carry the same meaning as described here.

3.3.2 Operational constraints of PV
The selection of distributed PV as the representative DRE here is

motivated by its widespread prevalence and common usage. Other
DRE operational models can be extended on this basis easily.

ppvs,j,t ≤ p
pv,f ore
s,j,t : μpv,p+s,j,t (18)

rpv,ds,j,t ≤ p
pv
s,j,t : μ

pv,rd+
s,j,t (19)

ppvs,j,t + rpv,us,j,t ≤ ppv,f orrs,j,t : μpv,ru+s,j,t (20)
ppvs,j,t , r

pv,u
s,j,t , r

pv,d
s,j,t ≥ 0: μ

pv,p−
s,j,t , μpv,ru−

s,j,t , μpv,rd−
s,j,t (21)

Eqs. 18–21 represent that the DRE providing energy and FRP
within the forecasting power limits of the operating.

3.3.3 Network secure constraints
Inspired by the literature (Yuan et al., 2018), this paper proposes

an extended linearized ACOPF model which can simultaneously
optimize the system cost of providing energy and FRP.

pdsos,t +∑
j∈J

ppvs,j,t −∑
i∈N

pvbs,i,t − ∑
b∈B

ploadb,t − plosss,t � 0: λps,t (22)

pdso ≤ pdsos,t ≤ �pdso: μdso,p−s,t , μdso,p+s,t (23)
plosss,t ≈ plosss,t * −∑

jJ

zdj ppvs,j,t − ppvs,j,t*( ) +∑
i∈N

zdi pvbs,i,t − pvbs,i,t*( ) (24)

Eq. 22 represents the energy balance at system-level. Eq. 23 shows
the acceptable range of exchanging power between the DNO and grid.
Eq. 24 represents the linearized expression of distribution network

losses, where the matrix zd is the partial derivatives of bus power of the
distribution network with respect to the losses (Yuan et al., 2018).

pnets,w,t � ppvs,w,t − pvbs,w,t − ploadw,t (25)
νs,b,t � ν1 + ∑

w∈B
zpbp

net
s,w,t −∑

i∈B
zqb,iq

load
s,i,t (26)

ν ≤ νs,b,t ≤ �ν: μv−s,b,t , μ
v+
s,b,t (27)

ν ≤ νs,b,t + ∑
w∈B

zpb,w rpv,us,w,t + rvb,us,w,t( )≤ �ν: μv,ru−s,b,t , μ
v,rd+
s,b,t (28)

ν ≤ νs,b,t − ∑
w∈B

zpb,w rpv,ds,w,t + rvb,ds,w,t( )≤ �ν: μv,rd−s,b,t , μ
v,rd+
s,b,t (29)

Eqs. 25–27 represent the maximum and the minimum
permissible voltage magnitude of each bus. Eqs. 28, and 29 define
the allowable operating range of voltage magnitude after the delivery
of FRP, where the matrix zp and zq are the partial derivatives of
active power and reactive power each bus respect to voltage
magnitude respectively (Yuan et al., 2018).

plks,t ≈ plks,t* −∑
j∈J

zlkj ppvs,j,t − ppvs,j,t*( ) +∑
i∈N

zlki pvbs,i,t − pvbs,i,t*( ) (30)

p lk ≤ plks,t ≤ �plk : μp−s,lk ,t , μ
p+
s,lk ,t

(31)
p lk ≤ plks,t − ∑

w∈B
zlkw rpv,us,w,t + rvb,us,w,t( )≤ �plk : μru−s,lk ,t

, μru+s,lk ,t
(32)

p lk ≤ plks,t + ∑
w∈B

zlkw rpv,ds,w,t + rvb,ds,w,t( )≤ p lk : μrd−s,lk ,t
, μrd+

s,lk ,t
(33)

Eqs. 30, and 31 represent the operating boundary of the branch
power flow. Eqs. 32, and 33 define the allowable operating range of
branch power flow after the delivery of FRP, where the matrix zlk is
the partial derivatives of active power each bust respect to branch
flow (Yuan et al., 2018).

3.4 Solution methodology

3.4.1 KKT conditions
The first-order optimality condition on the lower-level decision

variable pdsos,t , r
dso,u
s,t , rdso,ds,t , ppvs,t , r

pv,u
s,t , rdso,ds,t are sequentially presented

in Eqs. 34–39.

γpt + λps,t − μdsp,p−
s,t + μdso.p+

s,t � 0 (34)
−γut + λus,t � 0 (35)
−γdt + λdt � 0 (36)

μpv,p+
s,j,t − μpv,rd+

s,j,t + μpv,ru+s,j,t − μpv,p−s,j,t + λps,t 1 + zpj( )
+∑



zpb,j( − μv−
s,b,t + μv+s,b,t − μv,rd−s,b,t + μv,rd+

s,b,t − μv,ru−s,b,t + μv,ru+
s,b,t )

+∑


zlkj −μp−s,lk ,t + μp+
s,lk ,t

− μru−s,lk ,t
+ μru+s,lk ,t

− μrd−
s,lk ,t

+ μrd+s,lk ,t
( ) � 0 (37)

μpv,ru+
s,b,t −μpv,ru−s,b,t − λus,t + ∑

b∈B
zpb,j(− μv,ru−s,b,t + μv,ru+

s,b,t )
+∑

k∈K
zlkj μru−s,lk ,t

− μru+
s,lk ,t

( ) � 0 (38)

μpv,rd+
s,b,t − μpv,ru+

s,b,t − μpv,rd−
s,b,t − λds,t +∑

bB

zpb,j μ
v,rd−
s,b,t − μv,rd+s,b,t( )

+∑


zlkj (− μrd−
s,lk ,t

+ μrd+s,lk ,t) � 0 (39)
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The resulting complementary conditions Eqs 40–59 are non-
linear equations, but they can be linearized using the Big-M
method.

0≤ μpv,p+
s,j,t ⊥ ppv,f ores,j,t − ppvs,j,t ≥ 0 (40)

0≤ μpv,rd+
s,j,t ⊥ ppvs,j,t − ppv,ds,j,t ≥ 0 (41)

0≤ μpv,ru+
s,j,t ⊥ ppv,f ores,j,t+1 − ppvs,j,t − rpv,us,j,t + rpv,ds,j,t ≥ 0 (42)

0≤ μpv,p−
s,j,t ⊥ ppvs,j,t ≥ 0 (43)

0≥ μpv,ru−
s,j,t ⊥ rpv,us,j,t ≤ 0 (44)

0≤ μpv,rd−
s,j,t ⊥ rpv,ds,j,t ≥ 0 (45)

0≤ μdso,p−
s,t ⊥ pdsos,t − pdso ≥ 0 (46)

0≤ μdso,p+
s,t ⊥ �pdso − pdsos,t ≥ 0 (47)

0≤ μv−
s,b,t ⊥ νs,b,t − ν ≥ 0 (48)

0≤ μv+
s,b,t ⊥�ν − νs,b,t ≥ 0 (49)

0≤ μv,ru−
s,b,t ⊥ νs,b,t +∑

∈
zpz,w rpv,us,w,t + rvb,us,w,t( ) − ν ≥ 0 (50)

0≤ μv,ru+
s,b,t ⊥�ν − νs,b,t −∑

∈
zpz,w rpv,us,w,t + rvb,us,w,t( )≥ 0 (51)

0≤ μv,rd−
s,b,t ⊥ νs,b,t −∑

∈
zpz,w rpv,ds,w,t + rvb,ds,w,t( ) − ν ≥ 0 (52)

0≤ μv,rd+
s,b,t ⊥�ν − νs,b,t +∑

∈
zpz,w rpv,ds,w,t + rvb,ds,w,t( )≥ 0 (53)

0≤ μp−s,lk ,t ⊥ plks,t − p lk ≥ 0 (54)
0≤ μp+

s,lk ,t
⊥ plk − plks,t ≥ 0 (55)

0≤ μru−
s,lk ,t

⊥ plks,t − ∑
w∈B

zlkw rpv,us,w,t + rvb,us,w,t( ) − p lk ≥ 0 (56)

0≤ μru+
s,lk ,t

⊥ �plk − plks,t + ∑
w∈B

zlkw rpv,us,w,t + rvb,us,w,t( )≥ 0 (57)

0≤ μrd−
s,lk ,t

⊥ plks,t + ∑
w∈B

zlkw rpv,ds,w,t + rvb,ds,w,t( ) − p lk ≥ 0 (58)

0≤ μrd+
s,lk ,t

⊥ �plk − plks,t − ∑
w∈B

zlkw rpv,ds,w,t + rvb,ds,w,t( )≥ 0 (59)

3.4.2 Strong duality property
The lower-level model is formulated as a linear programming

problem thus exhibits strong duality property. Eqs. 60, 61 refers to
the strong duality condition corresponding to lower-level problem
under each scenario.

∑
t∈T

γpt p
dso
s,t − γut r

dso,u
s,t − γdt r

dso,d
s,t �∑

∈

⎡⎣∑
∈

−λps,tpv,bs,i,t 1+ zdi( )−∑
∈

λus,t r
vb,u
s,t + λds,t r

vb,d
s,t( )⎡⎣ ⎤⎦

+∑
i∈N

pv,bs,i,t ∑
b∈B

zpb,i μ
v−
s,b,t − μv+

s,b,t + μv,ru−
s,b,t − μv,ru+

s,b,t + μv,rd−
s,b,t − μv,rd+

s,b,t( )
+∑

i∈N
pv,bs,i,t ∑

b∈B

zlki −μp−
s,lk ,t

+ μp+
s,lk ,t

− μru−
s,lk ,t

+ μru+
s,lk ,t

− μrd−
s,lk ,t

+ μrd+
s,lk ,t

( )
+∑

i∈N
rvb,us,i,t ∑

b∈B

zpb,i −μv,ru−
s,b,t + μv,ru+

s,b,t( )+ rlks,i,t ∑
b∈B

zlki μru−
s,lk ,t

μru+
s,lk ,t

( )
+∑

i∈N
rvb,ds,i,t ∑

b∈B

zpb,i μ
v,rd−
s,b,t − μv,rd+

s,b,t( )+ rlks,i,t ∑
b∈B

zlki μrd−
s,lk ,t

μrd+
s,lk ,t

( )⎤⎦ +X (60)

X �∑
t∈T

⎡⎢⎢⎣−∑
j∈J

μpv,p+s,j,t ppv,f ores,j,t +μpv,ru+
s,j,t ppv,f ores,j,t( )+λps,t⎛⎝−∑

b∈B

ploadb,t −ploss*s,t

−∑
i∈N

zdi p
vb*
s,i,t +∑

i∈N
zdi p

vb*
s,j,t
⎞⎠+μdso,p−

s,t pdso −μdso,p+s,t
�pdso

+∑
b∈B

μv−s,b,t +μv,ru−
s,b,t +μv,rd−

s,b,t( ) ν −ν1 +∑
w∈B

zpb,wp
load
w,t +∑

w∈B
zqb,wp

load
w,t

⎛⎝ ⎞⎠
+∑

b∈B

μv+s,b,t +μv,bu+
s,b,t +μv,rd+

s,b,t( ) ν1 −∑
w∈B

zpb,wp
load
w,t −∑

w∈B
zqb,wp

load
w,t − �ν⎛⎝ ⎞⎠

+∑
k∈K

μp−s,b,t +μru−s,b,t +μrd−
s,b,t( ) p lk −plk*s,t −∑

j∈J
zlkj p

pv*
s,j,t +∑

i∈N
zlki p

vb*
s,i,t

⎛⎝ ⎞⎠
+∑

k∈K

μp+s,b,t +μru+s,b,t +μrd+
s,b,t( ) plks,t +∑

j∈J
zlkj p

pv*
s,j,t −∑

i∈N
zlki p

vb*
s,i,t − �plk⎛⎝ ⎞⎠⎤⎥⎥⎦

(61)

3.4.3 Linearized objective
The corresponding DLMP expressions can be obtained by

taking partial derivatives of the Lagrangian function associated
with the lower-level model, as shown by the following Eqs. 62–64.

λdimp,p
s,i,t � −λps,t 1 + zdi( )

+∑
b∈B

zpb,t μv−s,b,t − μv+s,b,t + μv,ru−
s,b,t − μv,ru+s,b,t + μv,rd−s,b,t − μv,rd+

s,b,t( )
+∑

k∈K

zlki −μp−s,lk ,t + μp+s,lk ,t − μru−s,lk ,t
+ μru+

s,lk ,t
− μrd−s,lk ,t

+ μrd+
s,lk ,t

( )
(62)

λdlmp,u
s,i,t � λus,t −∑

bB

zpb,j μ
v,ru+
s,b,t − μv,ru−s,b,t( ) − ∑

kK

zlki μru−s,lk ,t
− μru+

s,lk ,t
( ) (63)

λdlmp,d
s,i,t � λds,t −∑

bB

zpb,j μ
v,rd−
s,b,t − μv,rd+s,b,t( ) − ∑

kK

zlki μrd+s,lk ,t
− μrd−

s,lk ,t
( ) (64)

Finally, the linear equivalent expression of the objective function
Eq. 5 can be driven from the strong duality condition Eq. 60 and the
DLMP expressions Eqs. 62–64. The linear objective function can be
substituted by Eq. 5 is stated below:

minmax∑
s

πs△t∑
t

γt
ppdsos,t − γut r

dso,u
s,t − γdt r

dso,d
s,t − X (65)

4 Numerical studies

4.1 Input data

A modified IEEE-33 bus power system is employed to
demonstrate the effectiveness of the proposed model. Figure 4
shows the specific access locations and capacities of the

FIGURE 4
Topology of the modified IEEE 33 bus power system.
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prosumers. The exchange power limit between the DNO and grid
sets 5 MW. The simulation is presented in the form of per-unit value
with a base value of 10 MW. The market prices for energy and FRP
are displayed in Figure 5, derived from the case in the literature
(Wang et al., 2017). The active and reactive loads demand of the
distribution network is shown in Figure 6. All cases studies are
performed on a PC with Inter Core 7 CPU (3.40 GHz) and 24.0 GB
RAM with the commercial solver GUROBI 10.0.1 for MILP
problems.

To demonstrate the effectiveness of the proposed model, two
numerical case are designed here. In both cases, a total of
1,000 historical scenarios of PV’s output are utilized, and the
mix-norm constraint is applied with a confidence level of 90%.

1) Case 1: Aggregator provide FRP without considering the security
of the distribution network after FRP delivery.

2) Case 2: The proposed model.

To demonstrate the effectiveness of the data-driven model in
adjusting offers conservativeness, two additional case are designed
based on Case 2.

1) Case 3: The mix-norm constraint is applied with a confidence
level of 80%.

2) Case 4: The mix-norm constraint is applied with a confidence
level of 100%.

4.2 Distribution network security analysis

The energy-bidding and FRP-offering costs of the prosumer
aggregator for different cases are shown in Table 1. Each type cost of
Case 1 is better than that of Case 2. When comparing the energy
costs of Case 1 and Case 2, it is clear that without considering the
security constraint related to FRP delivery, the prosumer aggregator
often prioritizes higher FRP benefit over energy costs. Obviously
ignoring the security constraint related to FRP delivery will cause the
prosumer flexibility value to be overestimated and affect the energy
bidding decision.

The voltage magnitude of each bus for Case 1 and Case 2 at time
slot 18:00 are shown in Figure 7. It can be seen that the voltage
magnitude of bus 12–17 in case 1 violates the low bound after the
delivery of the downward FRP. On the contrary, the voltage
magnitude of each node in Case 2 remains within the safety
boundary after the delivery of the downward FRP. In addition, it
can be seen that the voltage magnitude boost is less in Case 2 than in

FIGURE 6
Load curve.

TABLE 1 Bid-offer decision of prosumer aggregator in case 1 and case 2.

Case Energy
cost/$

FRP
revenue/$

Expected total
cost/$

1 71.432 61.404 10.028

2 69.532 43.257 26.274

FIGURE 7
Cases results of voltage magnitudes.

FIGURE 5
Energy, FRT market prices.
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Case 1 after delivering the upward FRP, because the quantity of FRP
in Case 2 is less than that of Case 1.

The power flow of each line of Case 1 and Case 2 in time slot 12:
00 are shown in Figure 8. The congestion occurs in Case 1 after the
delivery of downward FRP in line 1–3. On the contrary, there is no line
occurring congestion after delivering the downward FRP. The power of
each line does not change significantly in both cases after delivery of
upward climbing because the quantity of upward FRP accounts for too
small a proportion of the distribution network load demand.

The above analysis provides that the prosumer aggregator can
offer FRP while enable distribution network security.

The full-time energy and FRP bidding/offering strategies of
prosumer 2 in Case1 and Case2 are shown in Figure 9 and
Figure 10, respectively. Comparing Figure 5 and Figure 6, it can
be found that both energy and FRP cater better to the price and the
peak-valley characteristics of the distribution grid load to minimize
the operating cost. Case 2 purchases energy and offers downward

FRP in periods 7 and 9, which differ significantly from Case1.
Between the time periods 07:00–22:00, downward FRP of Case 2 is
significantly less than that of Case 1, which is caused by the
constraints related to post-delivery FRP.

4.3 Economic and conservative analysis

The costs of prosumer aggregator for Case3-4 are shown in
Table 2. The expected total cost of the bidding/offering strategy
increases with increasing confidence due to the consideration of
greater distributional uncertainty, which makes the strategy more
conservative and therefore less economical. It reflects the adjustment
of the conservativeness of the strategy by the subjective risk-averse of
the prosumer aggregator in the FRP-offer.

5 Conclusion

This paper addresses the problem of providing FRP by a
prosumer aggregator within distribution network security. For
this purpose, a data-driven bi-level stochastic optimization
approach is proposed to model the process of active interaction
between the prosumer and the DNO for decision making. The
stochastic decision problem of adjustable conservativeness of the
prosumer aggregator is solved by a data-driven scenario approach.
The portfolio problem of the prosumer aggregator and the problem

FIGURE 8
Case results of line congestion.

FIGURE 9
Case results of energy-bid od prosumer 2.

FIGURE 10
Cases results of FRP-offer of prosumer 2.

TABLE 2 Bid-offer decision of prosumer aggregator in cases 2–4.

Case Energy
cost/$

FRP
revenue/$

Expected total
cost/$

3 69.532 42.771 26.761

2 69.532 43.257 26.274

4 69.532 55.700 13.831
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of security-constrained economic dispatch of the distribution
network are solved in the upper-level and lower-level model,
respectively.

The simulation results show that through the optimal
scheduling of aggregator, prosumers can actively purchase
energy from DNO and provide the upward and downward FRP,
and ensure that the distribution network does not occur voltage
violations and line congestion. The prosumer aggregator is able to
take advantage of the peak-valley characteristics of prices and
adjust the conservativeness of its decisions based on confidence
levels. The reduction in FRP available to the prosumer due to
distribution network security constraints leads to higher costs for
the prosumer.
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Nomenclature

KKT Karush-Kuhn-Tucker

CAISO California Independent System Operator

FRP flexible ramping product

ACOPF alternative current optimal power flow

DNO distribution network operator

PV photovoltaic

Variables

πs scenario probability

pvbs,i,t energy bidding of prosumer

rvb,us,i,t , r
vb,d
s,i,t

upward/downward FRP offering of prosumer

evbs,i,t state of energy of prosumer

pdsos,t energy requirement of DNO

rdso,us,t , rdso,ds,t
upward/downward FRP offering of DNO

ppvs,j,t quantity of energy of DRE

rpv,us,j,t , r
pv,d
s,j,t

quantity of upward/downward FRP offering of DRE

λdlmp,p
s,i,t , λdlmp,u

s,i,t , λdlmp,d
s,i,t

DLMP of energy, upward/downward FRP for prosumer

Parameters

π0 initial probability

ηc energy conversion efficiency

γpt , γ
u
t , γ

d
t

day-ahead energy price, upward/downward FRP price

ppv,f ores,j,t
forecast day-ahead generation

ν1 voltage magnitude of the reference bus

Indices and sets

s,Ns index/set of scenario

S number of clustering scenarios

i,w,N index/set of prosumer

t,T index/set of time

j, J index/set of DRE

B set of nodes

b,w index of node

k,K index/set of branch
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An attack-resilient distributed
energy management strategy for
integrated energy systems
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The increasing integration of various energy sources and the adoption of smart
grid technologies have revolutionized the way we generate, distribute, and
consume energy. While these advancements offer numerous benefits, they
also introduce vulnerabilities to cyber–physical attacks. To this aim, this paper
investigates a resilient energy management strategy for integrated energy
systems. By adopting a switched control approach and incorporating a local
estimation mechanism, we have developed a resilient distributed energy
management strategy to tackle the energy management problem (EMP) in
integrated energy systems (IESs). This methodology demonstrates strong
robustness and resilience, successfully detecting data integrity attacks and
denial-of-service (DoS) attacks. Finally, we provide a case study to
demonstrate the effectiveness of our proposed strategy in a real-world scenario.

KEYWORDS

cyberattacks, energy management, integrated energy systems, smart grid, distributed
optimization

1 Introduction

Integrated energy systems (IESs), encompassing various energy sources, storage
systems, and smart grid technologies (Liu et al., 2023; Liu et al., 2022), have
significantly improved the efficiency and sustainability of energy generation and
distribution. The energy management problem (EMP) is the core research problem in
IESs (Li et al., 2020; Li et al., 2020; Li et al., 2022). EMP can be conceptualized as an
optimization challenge constrained by the goal of minimizing overall costs or maximizing
societal benefit (Li et al., 2021; Zhang et al., 2023). This optimization aims to achieve these
objectives while simultaneously ensuring a balance between energy supply and demand and
adhering to operational constraints.

The algorithms designed for EMP can be broadly categorized as either centralized or
distributed methods. Traditional centralized algorithms, such as the reinforcement learning
algorithm (Yang et al., 2022) and cuckoo algorithm, have been extensively explored in
previous research. However, a significant limitation of these algorithms lies in their
centralized nature, demanding a central controller to collect and process all relevant
information to compute optimal solutions. With the integration of distributed energy
resources, there is a growing inclination to shift computationally intensive tasks toward the
edge (Teng et al., 2023). Additionally, distributed participants are hesitant to divulge
personal data to a centralized controller due to concerns regarding security and financial
gain. To address this issue, distributed methods have been proposed, which attract
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significant attention. The distributed algorithms possess several
advantages: 1) Scalability: Distributed methods are highly
scalable. They can efficiently handle large-scale problems by
dividing the computational workload among multiple agents or
nodes. 2) Flexibility: Distributed optimization can adapt to dynamic
environments and changing conditions more effectively. Each node
can respond to local changes independently, which is particularly
useful in rapidly changing or unpredictable environments. 3)
Privacy: In distributed optimization, each node or agent can keep
its data local, which is beneficial for privacy-sensitive applications.
The distributed methods primarily encompass the alternating
direction method of multipliers (ADMM)-based approaches and
consensus-based methods. As an illustration, a distributed energy
management framework and model were introduced in Zhang et al.
(2017), taking into account interrelated power, heat, and gas
systems. In this context, an innovative distributed consensus-
ADMM algorithm was devised to ascertain the global optimal
operation for each participating entity. Utilizing a similar
approach, the distributed consensus-ADMM algorithm was
subsequently extended to address the multi-period energy
management problem (EMP) for manufacturing execution
systems (MESs), incorporating certain linearized network
constraints (Xu et al., 2020). Building upon the foundation laid
in Zhang et al. (2017), an asynchronous event-triggering-based
distributed energy management algorithm was introduced in Li
et al. (2019). This algorithm adeptly manages the distinctive
timescales inherent in various energy network types.
Furthermore, the concept of the We-Energy (WE) model, akin to
the multi-energy prosumer concept, was unveiled in Sun et al.
(2019). Concurrently, a distributed double-consensus (DDC)
algorithm was introduced to facilitate cooperative energy
management among multiple WE entities. Recently, various
distributed optimization algorithms have been developed to cater
to diverse application requirements. These include the adoption of a
Newton-based method to expedite convergence (Li et al., 2021), a
federated reinforcement learning algorithm (Lee and Choi, 2022),
and a double-side coordinative method (Zhou et al., 2023).

The prior research mentioned above has effectively addressed
EMP for IESs, yielding satisfactory results. However, it is worth
noting that the efficacy of these methods relies on a fundamental
assumption: the reliability of the communication network. The
distributed algorithms are executed within a communication
network that is susceptible to various malicious cyberattacks. In
recent years, notable efforts have been undertaken to investigate the
impact of different cyberattacks on distributed energy management
algorithms. To elaborate, Zeng et al. (2017), Zhao et al. (2017), and
Duan and Chow (2019) delved into the vulnerability of the
distributed lambda iteration algorithm in the context of data
integrity attacks. In such scenarios, the energy management
system’s operation may be compromised by the injection of false
data into exchanged information or local utilization data. In
contrast, denial-of-service (DoS) attacks are aimed at obstructing
and disrupting information sharing among agents. These attacks can
have severe consequences for IES security operations, as
communication is disrupted during the DoS attack period,
resulting in a fractured structure of the distributed
communication network. In this scenario, agents cannot
exchange real-time and accurate data with their neighbors,

potentially causing a global supply and demand mismatch,
leading to system failures and substantial economic losses.
Developing effective dispatch strategies to withstand such attacks
becomes imperative. In response, Zhang et al. (2019) introduced a
DoS-attack-robust strategy that combats DoS attacks by
implementing a mixed-integer linear programming method to
allocate the load demand. Li et al. (2017) proposed a novel
robust distributed economic dispatch strategy capable of
identifying and isolating misbehaving distributed generators to
safeguard the rest of the system. Most recently, Huang et al.
(2022) introduced a privacy-preserving protocol-based distributed
robust dispatch approach for MESs. This method proficiently
addresses both colluding and non-colluding attacks. Additionally,
Li et al. (2022) analyzed the impact of DoS attacks and proposed an
effectively double-gradient-descent algorithm to resist the
DoS attacks.

Although the existing research has investigated EMP under
diverse cyberattacks, they still suffer from two key challenges: 1)
the existing distributed and resilient energy management strategies
are mainly designed to deal with a single type of cyberattack, such as
data integrity or DoS attacks. It is highly needed to develop new
algorithms that are compatible with integrity and DoS attacks
simultaneously; 2) the existing distributed energy management
strategies, considering cyberattacks, work on connected
communication networks. However, in reality, the
communication networks may not be two-way. It is necessary to
design distributed algorithms that can handle directed graphs.

To tackle those challenges, we propose an attack-resilient
distributed energy management strategy that is capable of
handling integrity and DoS attacks and working under a directed
communication network. The contributions of this paper are
summarized as follows:

1) By introducing a switched control and local estimation
mechanism, an attack-resilient distributed energy
management strategy can be developed to solve EMP in
IESs. The proposed method can well resist both integrity
and DoS attacks, resulting in strong robustness and resilience.

2) The proposed energy management strategy fits well with the
directed communication network. Compared with the existing
distributed studies (Zeng et al., 2017; Zhao et al., 2017; Li et al.,
2018; Duan and Chow, 2019; Zhang et al., 2019; Li et al., 2022;
Huang et al., 2022), it possesses strong expansibility and
universality.

2 Formulation of EMP in IES

An IES consists of numerous interconnected energy bodies
(EBs) and principal networks. Each EB integrates a diverse array
of energy generation and conversion devices. This includes
renewable generators (RGs), renewable heating devices (RHDs),
fuel generators (FGs), fuel heating devices (FHDs), combined heat
and power (CHP) devices, electricity storage systems (ESSs), heat
storage systems (HSs), and gas producers (GPs). Furthermore, every
EB encompasses energy loads consisting of power, heat, and gas
loads. These loads further comprise must-run and schedulable loads
that are connected to their respective energy buses. The EMP of IES
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is more complex than that of smart grids due to the following two
parts. On the one hand, IES typically encompasses a wider array of
energy resources compared to a smart grid. While smart grids
primarily focus on electrical energy, integrating aspects like
renewable energy sources, demand response, and storage, IES
includes not only electricity but also other forms of energy, such
as heat, gas, and sometimes cooling systems. Managing these diverse
energy types, each with its own dynamics and constraints, adds
complexity to EMP. On the other hand, the objectives of managing
IES are more diverse and complex. In addition to ensuring the
reliability and efficiency of each energy system, IES must optimize
the overall system operation considering economic factors and the
balance between different energy sources. This multifaceted
objective set goes beyond the primary electrical focus of smart grids.

2.1 Model of EB

Considering the energy generation and consumption of single
EB, electricity is produced from RG, FG, and CHP, represented as
pi
re, p

i
fu, and pi

chp, respectively. Similarly, heat is generated from
RHD, FHD, and CHP, symbolized as hire, h

i
fu, and h

i
chp, respectively.

Gas is supplied by GP, signified as gi
gas. Regarding ES and HS,

depending on their charge and discharge states, they can serve either
as energy providers or users. The power and heat exchanges for ES
and HS are designated as pi

st and hist, respectively. Positive values of
pi
st or hist indicate discharging, while negative values signify

charging. For energy demands, we use lip,m (or lip,c), l
i
h,m (or lih,c),

and lig,m (or lig,c) to depict the essential (or adjustable) power, heat,
and gas loads, respectively. Motivated by potential profit, each EB
can act as both an energy supplier and a user by adeptly managing its
internal elements. We define pi

im, h
i
im, and gi

im to illustrate the
imbalance (either deficit or surplus) in power, heat, and gas,
respectively. The energy-balancing conditions for the ith EB at
instant T can be expressed as follows:

pi,T
im � pi,T

re + pi,T
fu + pi,T

chp + pi,T
st − li,Tp,m − li,Tp,c,

hi,Tim � hi,Tre + hi,Tfu + hi,Tchp + hi,Tst − li,Th,m − li,Th,c,

gi,T
im � gi,T

gas − li,Tg,m − li,Tg,c.

⎧⎪⎪⎨⎪⎪⎩ (1)

Beyond the supply–demand balance constraints, each EB
adheres to a series of localized operational constraints. Primarily,
these constraints fall under six categories:

1) Capability constraints for FG, FHD, and GP are given by

pi
fu,min ≤pi,T

fu ≤pi
fu,max,

hifu,min ≤ hi,Tfu ≤ hifu,max,
gi
gas, min ≤gi,T

gas ≤gi
gas,max,

⎧⎪⎪⎨⎪⎪⎩ (2)

where the superscripts “min” and “max” indicate the respective
minimum and maximum permissible values.

2) Forecasting error-adjusted confidence constraints for RG and
RHD are given by

pi,T
re,min ≤pi,T

re ≤pi,T
re,max,

hi,Tre,min ≤ hi,Tre ≤ hi,Tre,max,
{ (3)

3) The operational feasibility region of CHO is composed of four
linear inequality constraints defined as

1
i,mp

i,T
chp + 2

i,mh
i,T
chp + 3

i,m ≥ 0, m � 1, 2, 3, 4, (4)

where 1
i,m, 

2
i,m, and 3

i,m are the parameters.

4) Consideration of permissible charging/discharging processes
and accumulated energy for ES and HS is given by

−pi
ch,max ≤pi,T

st ≤pi
ds,max

−hich,max ≤ hi,Tst ≤ hids,max

SOCi,T
p � SOCi,T−1

p − pi,T−1
st ΔT

SOCi,T
h � SOCi,T−1

h − hi,T−1st ΔT
SOCi,T

p,min ≤ SOCi,T
p ≤ SOCi,T

p,max

SOCi,T
h,min ≤ SOCi,T

h ≤ SOCi,T
h,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (5)

where pi
ch,max and p

i
ds,max refer to the peak charging and discharging

speeds of pi,T
st . h

i
ch,max and hids,max refer to the peak charging and

discharging speeds of hi,Tst . SOC
i,T
p and SOCi,T

h refer to the state of
charge of ES and HS, respectively.

5) Restrictions on energy loads and associated proportions
are given by

0≤ li,Tp,c + li,Tp,m ≤ li,Tp,max

0≤ li,Th,c + li,Th,m ≤ li,Th,max

0≤ li,Tg,c + li,Tg,m ≤ li,Tg,max

Γig−p,min ≤
li,Tp,c

li,Tp,c + ƛli,Tg,m
≤ Γig−p,max

Γig−h,min ≤
li,Th,c

li,Th,c + ƛli,Tg,m
≤ Γig−h,max

Γih−p,min ≤
li,Tp,c

li,Tp,c + li,Th,m
≤ Γih−p,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (6)

where Γig−p, Γig−h, and Γih−p represent the respective fractions of
electrical, thermal, and combined energy loads. The coefficient ƛ
converts SCM/h to MW.

Next, the calculation of benefits for each individual EB, which
directs optimal operational behavior, encompasses the following six
components:

1) Derived from fuel costs, the FG and FHD cost functions, along
with CHP, are expressed as

C pi,T
fu( ) � aip,fu pi,T

fu( )2 + bip,fup
i,T
fu + cip,fu + εip,fu exp ξip,fup

i,T
fu( ), (7)

C hi,Tfu( ) � aih,fu hi,Tfu( )2 + bih,fuh
i,T
fu + cih,fu + εih,fu exp ξih,fuh

i,T
fu( ), (8)

C pi,T
chp, h

i,T
chp( ) � aichp pi,T

chp( )2 + bichpp
i,T
chp + di

chpp
i,T
chph

i,T
chp + eichp hi,Tchp( )2

+ fi
chph

i,T
chp + cichp,

(9)
where C(pi,T

fu), C(hi,Tfu), and C(pi,T
chp, h

i,T
chp) are the cost functions of

FG, FHD, and CHP, respectively. aip,fu, b
i
p,fu, c

i
p,fu, ε

i
p,fu, ξ

i
p,fu, a

i
h,fu,

bih,fu, c
i
h,fu, ε

i
h,fu, ξ

i
h,fu, a

i
chp, b

i
chp, c

i
chp, d

i
chp, e

i
chp, and fi

chp are the
positive cost coefficients.
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2) When contemplating the balance between optimality and
generative likelihood, the cost functions of RG and RHD are

C pi,T
re( ) � aip,rep

i,T
re + bip,re exp ξ ip,re

pi,T
re,max − pi,T

re

pi,T
re,max − pi,T

re,min

( ), (10)

C hi,Tre( ) � aih,reh
i,T
re + bih,re exp ξ ih,re

hi,Tre,max − hi,Tre
hi,Tre,max − hi,Tre,min

( ), (11)

where C(pi,T
re ) and C(hi,Tre ) are the cost functions of RG and RHD,

respectively. aip,re, b
i
p,re, ξ

i
p,re, a

i
h,re, b

i
h,re, and ξ

i
h,re are the positive cost

coefficients.

3) The cost functions of ES and HS can be represented as

C pi,T
st( ) � ai,Tp,st pi,T

st + bi,Tp,st( )2, (12)
C hi,Tst( ) � ai,Th,st hi,Tst + bi,Th,st( )2, (13)

where C(pi,T
st ) and C(hi,Tst ) are the cost functions ES and HS,

respectively. ai,Tp,st, bi,Tp,st, ai,Th,st, and bi,Th,st are the positive cost
coefficients.

4) The expression of GP’s cost function is

C gi,T
gas( ) � aig gi,T

gas( )3 + big gi,T
gas( )2 + di

gg
i,T
gas + cig, (14)

where C(gi,T
gas) is the cost function of GP. aig, b

i
g, c

i
g, and dig are the

positive cost coefficients. Since the gas generation is non-native, Eq.
14 is convex within the operation region, where gi,T

gas ≥ 0.

5) With demand response in focus, the energy load’s utility
function is

U li,Tp,c, l
i,T
h,c, l

i,T
g,c( ) � −αip li,Tp,m + li,Tp,c( )2 + βip li,Tp,m + li,Tp,c( )

−αi
h li,Th,m + li,Th,c( )2 + βih li,Th,m + li,Th,c( )

−αig li,Tg,m + li,Tg,c( )2 + βig li,Tg,m + li,Tg,c( ),
(15)

whereU(li,Tp,c, li,Th,c, li,Tg,c) is the utility function. αip, βip, αih, βih, αig, and βig
are the positive utility coefficients.

The reasons for why we chose the second-order form of the load
utility function are as follows: first, the second-order utility function
provides a more accurate representation of user satisfaction in scenarios
where it is not just the service itself but the rate of change in service
quality that impacts user perception. Second, the second-order utility
function provides the flexibility needed to model various user behaviors
and preferences under different conditions. Third, this form of utility
function offers a good balance between complexity and analytical
tractability. It allows us to derive meaningful insights and results
without overly complicating the mathematical framework.

2.2 Model of EMP

The overall objective of EMP of IES is to maximize the social
welfare. Its mathematical expression is given by

Max W � U li,Tp,c, l
i,T
h,c, l

i,T
g,c( ) − C pi,T

fu( ) − C hi,Tfu( ) − C pi,T
chp, h

i,T
chp( ) − C pi,T

re( )
−C hi,Tre( ) − C pi,T

st( ) − C hi,Tst( ) − C gi,T
gas( ),

(16)

s.t.

∑n
i�1

pi,T
re + pi,T

fu + pi,T
chp + pi,T

st − li,Tp,m − li,Tp,c( ) � 0

∑n
i�1

hi,Tre + hi,Tfu + hi,Tchp + hi,Tst − li,Th,m − li,Th,c( ) � 0

∑n
i�1

gi,T
gas − li,Tg,m − li,Tg,c( ) � 0

equations 2 − 6( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (17)

For the sake of analysis, we stipulate that the three-dimensional
vector xij represents the power, heat, and gas attributes of the ith
member in the ith EB. It is pertinent to mention that based on the
specific traits of the participant, some of these elements might be
zero. Furthermore, we characterize lijm as a tri-dimensional vector
denoting the power, heat, and gas of the jth indispensable energy
load in the ith EB. Each member can modify its variable to resemble
xij by ensuring that the maximum and minimum constraints of any
zero component are set to zero. Concurrently, any cost function
linked with the zero component(s) can be designated as any type of
robustly convex function. We then introduce f(xij) to symbolize
the associated cost function or adverse utility function. Then, the
studied problem Eqs 16, 17) can be equivalently written as

min f � ∑n
i�1
∑mi

j�1
f xij( ), (18)

s.t.
∑n
i�1
∑mi

j�1
Bijxij − lijm( ) � 0

xij ∈ Ωij

⎧⎪⎪⎨⎪⎪⎩ , (19)

where mi refers to the number of participants in ith EB. Bij � −1
when xij signifies the controllable energy load. In all other cases,
Bij � 1. Ωij refers to the closed convex sets defined by the intrinsic
inequality constraints.

Note that the cost function for each component is the convex
function within the corresponding local operation region.
Meanwhile, the global supply and demand constraint shown in
Eq. 19 is the affine function. Thus, our studied problem is a convex
problem. According to the convex theory, there is only one optimal
point. Thus, in our considered model, there exists only one
equilibrium point, which is the optimal point.

3 Attack-resilient distributed energy
management strategy

3.1 Attack models

This study delves into the utilization of a distributed algorithm
to address EMP. As the operational framework of such algorithms is
deeply rooted in a distributed communication network, it becomes
inherently vulnerable to diverse cyberattacks. In this paper, we
consider data integrity and DoS attacks. The major mechanisms
affected by the two types of cyberattacks on EMP are as follows:

1) Data integrity attacks in energy management algorithms refer
to cyberattacks where adversaries manipulate or tamper with
the data being used by these algorithms, leading to faulty
decision-making. Energy management systems rely on
accurate data to efficiently control and distribute energy
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resources. By compromising the integrity of these data,
attackers can cause operational inefficiencies, financial
losses, system instabilities, and even safety hazards.

2) DoS attacks, in the context of computer networks, refer to
attempts to make a machine, service, or network resource
unavailable to its intended users by flooding the targeted
system with superfluous requests in an effort to overload
systems and prevent some or all legitimate requests from
being fulfilled. The potential disruption by multiple
adversaries targeting the communication flow between EBs
is recognized, which can lead to an enduring compromise of
essential shared data.

In order to divide the attack and non-attack zones, we provide
the following definitions: Starting at a reference point T0, the
cumulative time span [T0, T] is bifurcated into regular intervals
and periods of assault. The duration representing the kth attack is
denoted as (Tk, Tk + σk], wherein Tk signifies the moment the
attack is initiated and σk denotes its persistence. The fraction of
the overall time occupied by attacks within the interval [T0, T] is
represented by Φap(T) � ∑

∀k
σk/(T − T0). Following this, the

classification of time spans into attack and non-attack segments
is expressed as Πap(T) � k(Tk, Tk + σk] ∩[T0, T] and
Πnp(T) � k(Tk + σk, Tk+1] ∩[T0, T], respectively. When a node i
experiences a DoS attack or data integrity, it is classified as an attack
node. Such nodes fall under the category represented by ℘s(T).

3.2 Directed communication network

We study a directional communication network, represented by
G � (V, ξ, A). In this context, V � [1, 2, . . . , n] signifies the group of
agents, and ξ encompasses a subset of pairs in V × V, indicating the
edges or communication links. The graph G is assumed to be robustly
interconnected without any self-linking edges. For an edge originating
from node i�j and terminating at ij, i is represented by (ij, i�j) ∈ ξ. The
adjacency matrix is denoted by A � [aij,i�j], where aij,i�j � 1 if
(ij, i�j) ∈ ξ is an edge; otherwise, aij,i�j � 0. The in-degree matrix is
expressed asDin � diag[din1 , din2 , . . . , dinn ], where dini is the sum of aij,i�j
over all i�j except when i�j � ij. Similarly, the out-degree matrix is
depicted asDout � diag[dout1 , dout2 , . . . , doutn ], with douti being the sum
of ai�j across all i�j with the exception of i�j � ij. Moreover, we have
L′ � Dout − A and L � D − A. The in-neighbor of ij is defined asΝij

in.
In this paper, we require that the communication network be strongly
connected during the non-attack segment. In addition, there is no
limitation on the communication network during the attack segment.

3.3 Main algorithm

In this section, we propose a discrete-time attack-resilient
distributed energy management algorithm to solve EMP,
considering data integrity and DoS attacks. First, we define the
following switched control variables:

υij1 t − 1[ ] �
zij t − 1[ ], t ∈ Πnp T( )
zij Tk[ ], t ∈ Πnp T( )&ij ∈ ℘s T( )
zij t − 1[ ], t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎨⎪⎩ , (20)

υij2 t − 1[ ] �

− ∑
i�j∈Nij

in

aij,i�j zij t − 1[ ] − zi
�j t − 1[ ]( ), t ∈ Πnp T( )

− ∑
i�j∈Nij

in

aij,i�j zij Tk[ ] − zi
�j Tk[ ]( ), t ∈ Πnp T( )&ij ∈ ℘s T( )

− ∑
i�j∈Nij

in

aij,i�j zij t − 1[ ] − zi
�j t − 1[ ]( ), t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(21)

υij3 t − 1[ ] �

− ∑
i�j∈Nij

in

aij,i�j wij t − 1[ ] − wi�j t − 1[ ]( ), t ∈ Πnp T( )

− ∑
i�j∈Nij

in

aij,i�j wij Tk[ ] − wi�j Tk[ ]( ), t ∈ Πnp T( )&ij ∈ ℘s T( )

− ∑
i�j∈Nij

in

aij,i�j wij t − 1[ ] − wi�j t − 1[ ]( ), t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(22)

where zij and wij are assistant variables. υij1 , υ
ij
2 , and υij3 are control

variables. The physical meaning of zij is the energy price, while wij

does not have specific physical meaning.
Next, the updating rules of the discrete-time attack-resilient

distributed energy management algorithm are given by

xij t[ ] � diag ∇2f xij t − 1[ ]( )[ ]−1ΘΩij xij t − 1[ ],−∇f xij t − 1[ ]( ) + υij1 t − 1[ ]( ),
(23)

zij t[ ] � υij2 t − 1[ ] + υij3 t − 1[ ] − xij t − 1[ ] + lijm, (24)
wij t[ ] � −υij2 t − 1[ ], (25)

where ΘΩij refers to the differential projection operation.
We elaborate the updating processes, including the

following steps:
Step (1) Each agent tries to send the information of zij[t − 1]

and wij[t − 1] to its out-neighbors and receive information of
zi�j[t − 1] and wi�j[t − 1] from its neighbors.

Step (2) Each agent should identify whether it is subjected to
data integrity attacks and DoS attacks based on the methods
proposed in Li T. et al. (2022) and Huang et al. (2022),
respectively. Then, each agent is able to identify the current
categories for t ∈ Πnp(T), t ∈ Πnp(T)&ij ∈ ℘s(T), or
t ∈ Πnp(T)&ij ∉ ℘s(T).

Step (3) Each agent updates υij1 [t − 1], υij2 [t − 1], and υij3 [t − 1]
based on Eqs 20–22.

Step (4) Each agent updates xij[t], zij[t], and wij[t] based on
Eqs 23–25.

Step (5) Repeat Steps (1–4) until the algorithm converges to
stable values.

Based on the aforementioned processes, it can be observed that
each agent only needs to share the information of zij[t − 1] and
wij[t − 1] with its neighbors. Thus, the proposed method is fully
distributed. In addition, we employ the switched strategy, as shown
in Eqs 20–22, to resist the cyberattacks.

In this paper, we design a discrete-time algorithm to solve EMP.
The reasons are as follows: first, by using the discrete-time
algorithm, agents are executed at discrete time steps, making it
easier to synchronize information sharing across distributed agents.
This is particularly useful in IES, where coordinating the timing of
operations is crucial. Second, discrete-time algorithms can be more
resource-efficient in certain contexts. They can be designed to
operate only at specific intervals, reducing the need for
continuous computation and potentially saving on energy and
computational resources. Last but not least, discrete-time
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algorithms offer flexibility in implementation, especially in digital
systems where time is naturally discretized. This makes them well-
suited for implementation in digital computers and
microcontrollers.

4 Simulation analysis

4.1 Setting of the test system

The effectiveness of the proposed method will be tested in IES
with five EBs. Its physical and communication structures are shown
in Figure 1, as described previously in Zhang et al. (2017). We also
follow Zhang et al. (2017) to set the parameters of each EB. The
communication interval is 0.01 s. We consider that the system is
subjected to data integrity attacks during [0.40 s, 0.66 s] and [2.3 s,
2.55 s] and is subjected to DoS attacks during [6.1 s, 6.2 s] and
[11.1 s, 11.12 s]. The scales of energy and price are unified as 1 p.u. =
1 MW for power or heat, 1 p.u. = 84 SCM/h for gas, and 1 p.u. = 1 $/
MWh for price.

4.2 Convergence analysis

In this section, the proposed attack-resilient distributed energy
management algorithm is performed to solve EMP. The simulation
outcomes are shown in Figures 2–7.

Specifically, Figures 2–4 exhibit the estimated calculations for
power generation/demand, heat generation/demand, and gas
generation/demand across all participating entities. Distinct
colors within each graph are employed to differentiate between
the various curves, each representing computational and

convergence trajectory of each participant. These visual
representations indicate that despite the data integrity and DoS
attacks, the energy generation/demand (encompassing power, heat,
and gas) for every participant is capable of stabilizing at a
consistent value.

Additionally, the trajectories for the estimated prices of power,
heat, and gas are shown in Figures 5–7, each progressively settling at
three common values, ultimately representing the final market
clearing prices for power, heat, and gas, respectively. This
occurrence persists even in the face of data integrity and DoS
attacks. The final settled values are marked at $32.6887 (p.u.) for
the power price, $23.6611 (p.u.) for the heat price, and $15.2825
(p.u.) for the gas price. In addition, the final energy generation and

FIGURE 1
IES composed of five EBs.

FIGURE 2
Power generation/demand.
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demands are listed in Table 1. These values are consistent with those
derived in scenarios devoid of attacks, as referenced from Zhang
et al. (2017).

These findings collectively underscore the resilience and
robustness of the S-NRBDEM algorithm, affirming its capacity to
empower each participant to persistently seek optimal operational
states and market clearing prices for energy.

5 Discussion

This paper addresses the pressing need for resilient energy
management in the context of IESs; this necessity has become
even more urgent due to the ever increasing integration of
diverse energy resources and the rapid adoption of IES
technologies. Through rigorous investigation and analysis, we
have introduced and validated an attack-resilient distributed
energy management strategy, augmented by a local estimation

FIGURE 3
Heat generation/demand.

FIGURE 4
Gas generation/demand.

FIGURE 5
Power price.

FIGURE 6
Heat price.

FIGURE 7
Gas price.
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mechanism and switched control. This strategy has been
meticulously designed to address not only data integrity attacks
but also DoS attacks. The simulations conducted in IES with five EBs
show that our proposed method enables estimated energy prices and
energy generation/demand to converge to the corresponding
optimal solutions, although there are both data integrity attacks
and DoS attacks. The findings and insights garnered from this case

study underscore the potential of our proposed strategy to serve as a
reliable safeguard against cyber–physical threats, ensuring
uninterrupted and secure energy management.
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TABLE 1 Results of energy generation/demand.

Number Power Heat Gas

Energy body 1 N. 1 48.7268 0.0000 0.0000

N. 2 99.9954 0.0000 0.0000

N. 3 81.9283 0.0000 0.0000

N. 4 205.9112 175.0624 0.0000

N. 5 150.9604 0.0000 151.1224

N. 6 0.0000 0.0000 697.1795

N. 7 0.0000 140.4003 0.0000

N. 8 0.0000 93.8493 0.0000

Energy body 2 N. 1 79.8125 0.0000 0.0000

N. 2 40.0000 0.0000 0.0000

N. 3 97.5581 124.7394 0.0000

N. 4 368.7103 234.9918 640.0000

N. 5 0.0000 149.9000 0.0000

N. 6 0.0000 94.9337 0.0000

N. 7 0.0000 −50.9576 0.0000

Energy body 3 N. 1 43.0000 0.0000 0.0000

N. 2 86.3169 0.0000 0.0000

N. 3 139.1635 145.6757 0.0000

N. 4 247.9710 214.2603 100.0000

N. 5 0.0000 −66.9455 0.0000

N. 6 0.0000 115.3432 0.0000

Energy body 4 N. 1 57.3021 0.0000 0.0000

N. 2 63.8647 0.0000 0.0000

N. 3 74.8888 0.0000 0.0000

N. 4 137.9980 168.0150 0.0000

N. 5 34.6087 169.6301 77.3927

N. 6 0.0000 0.0000 731.8678

Energy body 5 N. 1 59.7180 0.0000 0.0000

N. 2 107.4698 155.1541 0.0000

N. 3 131.4040 104.8088 220.5323

N. 4 0.0000 117.5203 0.0000
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A cloud-edge cooperative
scheduling model and its
optimization method for regional
multi-energy systems

Shuo Liu1, Yun Teng1*, SongQing Cheng1, NingWei Xu1,
Peng Sun1, Kun Zhang1 and Zhe Chen2

1School of Electrical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China, 2The
Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark

In the process of multi-energy system optimal scheduling, due to the high data
processing requirements of the multi-energy devices and loads and the
complexity of the operating states of the multi-energy devices, the scheduling
optimization of the system is to some extent more difficult. To address this
problem, this paper proposes a regional multi-energy system optimal scheduling
model based on the theory of cloud-edge collaboration. First, based on
intelligent data sensors, a cloud-edge cooperative scheduling framework of
the regional multi-energy system is constructed. Then, the physical model of
operating state data of multi-energy system equipment and the allocation
mechanism of system scheduling tasks are studied. With the cloud service
application layer and the edge computing layer as the upper and lower
optimization scheduling layers, the double-layer optimization scheduling
model of the regional multi-energy system is established. The objectives of
the model are optimal scheduling cost and minimum delay of scheduling data
transmission. The multi-objective whale optimization algorithm is used to solve
the model. Finally, a simulation model is built for verification. The simulation
results show that the scheduling model established in this paper can effectively
improve the scheduling data processing capability and improve the economy of
regional multi-energy system scheduling.

KEYWORDS

regional multi-energy system, edge computing, cloud-edge collaboration, physical
perception, optimized scheduling

1 Introduction

The development and operation of power grids are now focused on constructing an
intelligent, informatized, and diversified new power system with new energy as the primary
source, with the goal of achieving “Carbon peak and Carbon neutralization” (Teng et al.,
2018). This requires higher standards for the operation, scheduling, and control of power
grids, especially with the integration of a high proportion of new energy power generation
resources (Teng et al., 2020). A regional multi-energy system is a complex system involving
the input, conversion, and supply of electricity, heat, and gas energy. It contains various
energy supply equipment. It can flexibly and reliably meet the consumption demands of
users through the conversion and coordination between multiple types of energy (Zhang
et al., 2017; Li et al., 2019). However, traditional centralized operation and control methods
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have difficulty meeting the requirements of large-scale, high-
capacity data and information processing of regional multi-
energy systems (Lo and Ansari, 2013; Zhang et al., 2018). The
rapid development of new intelligent control technologies, such as
edge computing (Sulieman et al., 2022; Raeisi-Varzaneh et al., 2023)
and IoT technologies (Abir et al., 2021; Gao et al., 2023), provides
favorable conditions for promoting the coordinated and integrated
development of regional multi-energy system data and information
networks. This development forms new application scenarios of
energy-information interaction and integration, including cloud-
edge synergy, information-physical synergy, digital twins, and other
new application technologies (Ren et al., 2019; Su et al., 2019). As a
result, there is an urgent need to study optimized operation methods
for regional multi-energy systems that can achieve flexibility,
reliability and high data and information computation efficiency.

In view of the development and application prospects, some
scholars have begun to research the optimization methods of
intelligent and informative operation and control of regional
multi-energy systems. In (Wang and Li, 2022), it focuses on the
problem of short-term load forecasting of power grids. The study
proposes a short-term forecasting method of power grid loads based
on cloud edge collaboration. The model is trained with a large
amount of historical data to provide accurate predictions. In (Luo
et al., 2022), aiming at the scheduling deviation of distribution
network in a long-time scale and considering the distribution
characteristics of transformer equipment in the distribution
network, a collaborative scheduling method of the distribution
network based on cloud edge cooperation is proposed. The
distribution network cooperative optimal scheduling is carried
out by taking transformer equipment in different power supply
areas of the distribution network as an edge layer, and the optimal
scheduling cost of each transformer power supply area is targeted.
This results in an improved dispatch economy for the distribution
network. In (Xia et al., 2022), a hybrid model for power grid data
recognition based on distributed compressed sensing and
bidirectional long-short memory network is proposed to address
the problem of low power quality data recognition accuracy in
power grid. It optimizes the recognition parameters in the model by
establishing a cloud-edge cooperative framework and using
distributed compressed perception as the edge algorithm, and
using a large amount of data to train the model. The
improvement of grid power quality data recognition accuracy
and anti-interference performance is realized. In (Liu et al.,
2018), it analyzed the information architecture and optimization
effect of edge computing technology when applied to the optimal
scheduling of electric vehicles. The study focused on data processing
and information security and proved the effectiveness of edge
computing technology in meeting the real-time communication
and arithmetic demands of the electric power network. In (Gooi
et al., 2023), the advantages of edge computing technology in
optimizing, allocating, and scheduling of smart grid resources are
analyzed. Then, it explores the relationship between smart grid and
artificial intelligence and proposes an optimization method for
power grid cloud computing by applying edge intelligence
technology. This reduces the pressure on cloud computing and
improves the computing efficiency of power grid operation
optimization tasks. As for the information and data security
problems faced in the process of adopting intelligent technology

for the optimal scheduling of power grids or energy systems, some
scholars have also carried out research and discussion. In (Li et al.,
2022; Li et al., 2023), it studied the collaborative energy management
method of multi-energy system under DoS attack for the problems
of cyber-attack faced during the energy optimization and scheduling
process of multi-energy system. The information security capability
for network optimization and energy management processes is
enhanced, and its cyber defense resistance capability is improved.
In (Huang et al., 2022), it focuses on the problem of the multi-energy
system scheduling economy. The study employs a distributed robust
optimization algorithm to develop a method for achieving this goal.
Meanwhile, a data privacy protection protocol has been researched
and designed to address network security issues encountered during
the distributed optimal scheduling of the system. This protocol
improves the reliability of information transmission during system
scheduling and promotes the system’s scheduling economy.

However, there is a lack of detailed modeling analysis and
research on the integration of edge computing technology and
cloud-edge collaboration technology into the optimization
modeling of regional multi-energy system operation and
scheduling. There is a lack of relevant research on how to better
improve the efficiency of regional multi-energy system scheduling.

Based on the above analysis, this paper studies a cloud-edge
cooperative optimal scheduling model of the regional multi-energy
system based on edge computing. By utilizing sensors and
controllers distributed at different nodes of the regional multi-
energy system for collecting and sending energy equipment data
and equipment operation control, a regional multi-energy system
scheduling framework is established. A multi-node cloud-edge
cooperative scheduling model of the regional multi-energy system
is established by coordinating different edge computing scheduling
layer base stations and by allocating scheduling tasks to multiple
base stations. On this basis, a double-layer scheduling optimization
model of the regional multi-energy system is established for
optimization, and a scheduling model solution process based on
multi-objective whale optimization algorithm is given. Thus, there
are three main contributions to this research.

(1) A cloud-side coordinated scheduling framework of multi-
node energy data information interaction for regional multi-
energy systems is established in this paper. The scheduling
process of the regional multi-energy system is optimized by
dividing it into five service layers and configuring the
corresponding computing servers in different scheduling
service layers. This improves the data information
processing capability of the scheduling calculation and
optimization process of the system.

(2) The physical model of the regional multi-energy system is
established. The operating parameters of the energy supply
equipment have been preliminarily clarified, and amethod for
sensing the operating state data of the equipment of the multi-
energy system has been studied. Further, the multi-node
scheduling task allocation model of the regional multi-
energy systems has been established to optimize scheduling
results among the systems in the coverage area of different
regional edge computing layer base stations.

(3) A double-layer optimization scheduling model of the regional
multi-energy system is established, which aims at optimal
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operational scheduling costs and scheduling task
transmission delays. The model is solved using the multi-
objective whale optimization algorithm.

Finally, the feasibility and validity of the scheduling model
established in this paper are analyzed and verified by obtaining
the historical data of power grid operation in a region of Northeast
China and building a simulation model.

2 Multi-node cloud-edge cooperative
schedulingmodel of the regional multi-
energy system

2.1 Scheduling framework of the regional
multi-energy system

For the regional multi-energy system, the use of a centralized
optimization scheduling method may result in increased energy

consumption, scheduling costs, and network latency due to the
centralized transmission, processing, computation, and distribution
of distributed new energy power supply operation information and
load demand information. To mitigate these issues, alternative
scheduling methods should be considered. Edge computing
technology makes use of various data sensors, data routing and
other devices configured in the regional multi-energy system to
analyze and process the collected operation information data on
the side of each distributed power generation equipment. The
calculation results are then transmitted to the cloud service data
computing center for centralized coordination and scheduling.
Based on this, this paper establishes a cloud-side coordinated
scheduling framework of multi-node energy data information
interaction for regional multi-energy systems, as shown
in Figure 1.

The scheduling framework shown in Figure 1 is mainly
composed of five scheduling service layers: equipment entity
layer, state data perception layer, edge computing layer, data
network communication layer, and cloud service application

FIGURE 1
Scheduling framework of the regional multi-energy system.
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layer (Ilic et al., 2010; Si et al., 2020). Computing servers are
configured in the corresponding service layers to facilitate data
processing, analysis, and storage.

(1) The equipment entity layer is composed of various energy
equipment and equipment operation control module. The
main task is to use each energy equipment to generate
electricity, heat, gas and other energy supply to the
consumer. Through the equipment operation control
module, it controls and adjusts the operation status of
energy equipment.

(2) The state data perception layer is composed of various
intelligent energy data collection and measurement
modules. Its main task is to assist the edge computing
layer and cloud service application layer in perceiving the
operating state of each energy equipment in the system.

(3) The edge computing layer is composed of edge computing
modules and data storage. Its main task is to calculate the
optimal operation scheme for each energy equipment in the
regional energy system. This includes determining the
optimal output of energy equipment, energy supply, and
transaction prices.

(4) The data network communication layer is composed of data
routing, wireless modules, etc., Its main task is to facilitate the
communication and transmission of energy data, scheduling
data, and control commands between the state data
perception layer, edge computing layer, cloud service
application layer, and other layers. Its goal is to ensure
quick and lossless data transmission.

(5) The cloud service application layer serves as the energy
management center for power generation, transmission,
and supply in the regional multi-energy system. It is
composed of servers and centralized scheduling centers,
and its main task is to provide data storage, reading,
computation, analysis, and dynamic display services for the
centralized regulation and control of the regional multi-
energy system. Through computation and analysis, the
optimal supply scheme for a regional multi-energy system
is calculated to realize the optimal scheduling of regional
multi-energy system.

2.2 Physical model of the regional multi-
energy system

As shown in Figure 1, the construction of the physical entity
model of each energy supply equipment within the system is the
basis for the optimal scheduling of the regional multi-energy system.
To carry out this study, the network topology of the regional multi-
energy system is established, as shown in Figure 2. The system is
composed of photovoltaic cells, wind turbines, gas turbines, gas
boilers, PtG equipment, and energy storage equipment. It provides
electricity and heat energy to the system energy users by purchasing
natural gas from the superior gas network. Part of the natural gas is
directly supplied to the users through the gas network. The gas
turbine and gas boiler are used to provide electricity and heat energy
to the system energy users, respectively. The wind turbine and
photovoltaic are used to provide electricity to users. The system

is connected to the main power grid to compensate for any
electricity shortages. The PtG equipment is used to output the
gas energy to the energy users. The energy storage equipment is
mainly used to regulate the input and output of various energy
sources of the regional multi-energy system by charging and
discharging energy.

2.2.1 Physical model of the wind turbine
Taking doubly-fed wind turbine as an example, the physical

model of the wind turbine can be described by Eq. 1:

Jw _ωw,t � Qw,r − Qw,m

Qw,m � Km θw,r − θw,g
Nw,g

( ) + Bd ωw,t − ωw,g

Nw,g
( )

Qw,r � 3∫Rwind

0

1
2
πρv3w Cu

w sinφ − Cd
w cosφ( )Rsrdr

Jw,g _ωw,g � Qw,m

Nw,g
− Qw,e

Pw,t � Qw,rωw,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Pw,t is the output of the wind turbine at time t; Qw,r is the
torque corresponding to the force of the wind turbine blade in the
rotation process;Qw,m andQw,e are the input mechanical torque and
the output electromagnetic torque of the unit, respectively; Jw is the
rotational equivalent inertia of the blade; Jw,g is the rotational
equivalent inertia of the wind turbine; ωw,t and ωw,g are fan
speed and wind turbine speed, respectively; Km is the stiffness
coefficient of the low-speed rotating shaft of the unit; Bd is the
damping factor of the wind turbine; θw,t and θw,g are the angular

FIGURE 2
Topology of the multi-energy system.
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velocity displacement of the wind wheel rotor and the rotational
velocity displacement of the wind turbine rotor, respectively; Nw,g is
the gearbox ratio; Cu

w and Cd
w are the rising force factor and drag

coefficient of fan blades when rotating, respectively; Rs is the chord
length of the section at the radius r of the fan blade; ρ and vw are the
density and wind speed of the air in the operating environment,
respectively; Rw is the length of the fan blade.

Therefore, there are 14 operational parameters needed to be
sensed by the wind turbine, which can be expressed by Eq. 2:

Pw,t � vw,ωw,t,ωw,g, ρ;Cu
w, C

d
w ,φ;

Km, Bd, θw,r, θw,g, Nw,g;Rw, Rs
[ ] (2)

2.2.2 Physical model of the photovoltaic
The physical model of the photovoltaic cell can be described by

Eq. 3:

PPV,t � U2
PV

Rsh + Rs
+ I2PVRs

IPV � Iph − I0 exp
UPV + IPVRs

βkTPV
( ) − 1[ ] − UPV + IPVRs

Rsh
, UPV ≥ 0

IPV � Iph + I0 − UPV + IPVRs

Rsh
, Ubr <UPV < 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where PPV,t is the output of the photovoltaic cells at time t; UPV and IPV
are the voltage and current at both ends of the photovoltaic cells,
respectively; Ubr is the diode reverse breakdown voltage in the
equivalent schematic diagram; Rs and Rsh are the equivalent series
resistance and parallel resistance at both ends of the battery in the
equivalent schematic diagram; Iph is the photogenerated current of the
photovoltaic cells when the illumination is QPV and the temperature is
TPV; I0 is the diode equivalent reverse saturation current in the equivalent
schematic diagram; k = 1.38 e−23 J/K; β is the fitting factor of the output
characteristics of the diode inside the photovoltaic cell, which reflects the
similarity between the output characteristics of the diode inside the
photovoltaic cell and the output characteristics of the ideal diode.

Therefore, there are 10 physical parameters of the photovoltaic
cell, which can be described by Eq. 4:

PPV,t � UPV, IPV, Iph;Ubr, I0, Rs, Rsh;TPV, β, QPV[ ] (4)

2.2.3 Physical model of the gas turbine
The operating status of the gas turbine is mainly limited by its

operating efficiency and intake volume. The physical model of the
gas turbine can be described by Eq. 5:

PMGT,t � 1 + f( )PMGT,g − PMGT,pa

∣∣∣∣ ∣∣∣∣ − PMGT,gc

∣∣∣∣ ∣∣∣∣
PMGT,g � ηgcg Tgin − Tgout( )Vgas

PMGT,pa � cpa Tpa,in − Tpa,out( )
ηpa

Vpa

PMGT,gc �
cg Tgc,in − Tgc,out( )

ηgc
Vgas

′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where PMGT,t is the output of the gas turbine at time t; PMGT,g, PMGT,pa,
and PMGT,gc are the turbine output, compressed air consumption

power, and compressed natural gas consumption power,
respectively; f is the ratio coefficient of natural gas to air when
natural gas is fed into the gas turbine; Vgas and Vpa are the gas
intake and air volume of the gas turbine, respectively; Vgas

′ is the
compression volume of the natural gas; cg and cpa are the specific
heat capacity of natural gas and air, respectively; ηg, ηpa, and ηgc
are the turbine efficiency, compressed air efficiency, and
compressed natural gas efficiency of the gas turbine,
respectively; Tgin and Tgout are the temperature of the gas
entering the equipment and the temperature of the output
equipment when the turbine is running, respectively; Tpa,in

and Tpa,out are the inlet temperature and outlet temperature of
the compressor, respectively; Tgc,in and Tgc,out are the inlet
temperature and outlet temperature of the natural gas
compressor in the gas turbine unit, respectively.

The physical parameters of the gas turbine can be described by
Eq. 6:

PMGT,t � Tgin, Tgout, Tpa,in, Tpa,out, Tgc,in, Tgc,out;Vgas, Vpa, Vgas
′ ;f, ηg, ηpa, ηgc[ ]

(6)

2.2.4 Physical model of the gas boiler
The relationship between energy input-output of a gas boiler is

described by Eq. 7:

PGB,t � VGB,tηGBHCVNG (7)
where PGB,t is the heat output of the gas boiler at time t; VGB,t is the
amount of natural gas intake at time t; ηGB is the heat production rate of
the equipment; HCVNG is the low calorific value of natural gas.

The physical parameters of the gas boiler can be described by
Eq. 8:

PGB,t � VGB,t, ηGB[ ] (8)

2.2.5 Physical model of the PtG equipment
The relationship between electrical energy consumption and

natural gas output in the PtG equipment can be described by Eq. 9:

PPtG,t � ηPtG,t PPtH,t − PH2,t

ηH2,t

+ PHtG,tηHtG,t( )
QH2,t+1 � QH2,t + PH2,t · Δt − PHtG,t · Δt
Qsto

H2,t ∈ QH2
min, QH2

max[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(9)

where PPtG,t is the natural gas output power of the PtG equipment at
time t; PPtH,t, PH2,t, and PHtG,t are the electric-hydrogen conversion
output power, hydrogen storage power and hydrogen-gas conversion
output power inside the PtG equipment at time t, respectively; ηPtH,t,
ηH2,t, and ηHtG,t are the hydrogen methanation efficiency, hydrogen
storage efficiency and hydrogen discharge efficiency of the PtG
equipment at time t, respectively; QH2,t is the hydrogen storage
capacity in the PtG equipment at time t, and Qmin

H2 and Qmax
H2 are its

minimum and maximum values, respectively.
The physical parameters of the gas turbine can be described by

Eq. 10:

PMGT,t � PPtH,t;PH2,t;PHtG,t; ηPtG,t, ηH2,t , ηHtG,t;QH2,t, QH2
min, QH2

max[ ] (10)

Frontiers in Energy Research frontiersin.org05

Liu et al. 10.3389/fenrg.2024.1372612

85

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1372612


2.2.6 Physical model of the energy
storage equipment

The regional multi-energy system utilizes electricity storage
batteries, gas storage equipment, and heat storage equipment for
charging and discharging, which serve to regulate the output of the
regional multi-energy system. Therefore, it can be described by
Eqs 11–13.

Qe,t+1 � 1 − ηloss( )Qe,t + ηe,cP
c
e,t −

Pd
e,t

ηe,d
( )Δt

0≤Pc
e,t ≤ γc · Pcmax

e

0≤Pd
e,t ≤ γd · Pdmax

e

Qe
min ≤Qe,t ≤Qe

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where P c
e,t and Pd

e,t are the charging and discharging power of the
electricity storage battery at time t, respectively, and Pcmax

e and
Pdmax
e are its upper limit, respectively; ηe,c and ηe,d are the

charging and discharging efficiencies, respectively; ηloss is the
proportion of the equipment’s electricity loss; Qe,t is the capacity
of the equipment, and Qe

min and Qe
max are its lower and upper

limits, respectively; γc and γd denote that the battery is charged or
discharged.

Qg,t � ∫t

t0
Pg,tdt � Qg,t0 + ηg Pin

g,t − Pout
g,t( ) t − t0( )

0≤Qg,t ≤Qg
max{ (12)

where Qg,t is the storage volume of gas storage equipment at time t;
ηg is the storage efficiency; Qg,t0 is the storage volume of natural gas
at time t0; P

in
g,t and Pout

g,t are the charging and discharging power of
the gas storage equipment at time t, respectively.

Qh,t � ∫t

t0
Ph,tdt � Qh,t0 + ηh Pin

h,t − Pout
h,t( ) t − t0( )

0≤Qh,t ≤Qh
max{ (13)

where Qh,t is the heat energy storage of the equipment at time t; ηh is
the heat efficiency; Qh,t0 is the heat energy storage of the equipment
at time t0; P

in
h,t and P

out
h,t are the heat storage and heat release power of

the heat storage equipment at time t, respectively.

2.3 Multi-node scheduling task
allocation model

Assuming that the regional multi-energy system being
studied includes m edge computing layer base stations (which
handle the main tasks of the edge computing layer and the data
network communication layer) and n energy-consuming users.
These can be denoted as edge computing layer base station set
M = {1, 2, . . . , m} and energy-consuming user set Nuser =
{1, 2, . . . , n}, respectively. At this time, all energy-consuming
users in the regional multi-energy system must satisfy the
constraints of Eq. 14.

Nuser � ∪
k
Nuser,k∈M (14)

The edge computing layer base station provides data support
and scheduling calculation services to energy consumption users
and the cloud service layer. This is achieved according to the edge
computing module, data storage and communication module, data

routing and other equipment deployed in the system. At the same
time, the base station can transmit the calculated data and collected
data to the neighboring base station. Then, by allocating the computation
tasks to be completed by its own base station, it realizes the cooperative
computation of multiple edge computing base stations to better complete
the edge node scheduling optimization in the regional multi-energy
system. If the edge computing layer base station is responsible for a
small amount of computation tasks, the current base station can be used
to complete the scheduling tasks.

If all energy equipment and energy consumption users in the
scheduling process of the regional multi-energy system perform
system scheduling optimization at the same time, all the
computation tasks of the edge computing layer base station are
allocated according to Eq. 15.

X � xn,i,m{ }
xn,i,m � 1,

the computational task i of the energy consumption user
n are assigned to the base stationm

0, else

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(15)

where X is the system scheduling task allocation decision set; xn,i,m is
the corresponding values taken in the set.

Meanwhile, at least one base station in the edge computing layer
must perform all computational tasks while satisfying the constraint
of Eq. 16.

∑
m∈M

xn,i,m � 1,∀n ∈ N, i ∈ Yn

Ecul
X,m � ∑

n∈N
∑
i∈Yn

cn,ixn,i,m ≤Emax cul
m ,m ∈ M

Esto
X,m � ∑

n∈N
∑
i∈Yn

en,ixn,i,m ≤Emax sto
m ,m ∈ M

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(16)

where the first term is the constraint on the computational tasks to be
completed by the edge computing layer base station; the second and
third terms are the constraints on the response of the computational and
data storage capacity of the edge computing layer base station m; EculX,m
and EstoX,m are the amount of the response of the computational and data
storage capacity of the edge computing layer base stationm, and Emaxculm
and Emax sto

m are their corresponding upper limits; cn,i is the scheduling
task computation demand; en,i is the scheduling task data storage
demand; Yn is the optimized scheduling computation task n in
the system.

When performing optimized scheduling computation tasks for the
regional multi-energy system, each task requires energy for
computation and data communication, as well as incurs
transmission delays. Therefore, the cost and transmission delay
consumed by the edge computing layer and the cloud service
application layer can be expressed by Eq. 17:

Ccoop,t � NumMCcul,m

�Tcoop � 1
NumN

∑
n∈N

Tcoop,i

Tcoop,i � max
i∈Yn

Tsend
n,i + Tcul

n,i + Tmerge
n,i{ } + Treturn

n,i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(17)

where Ccoop,t is the consumption cost of the optimized scheduling
computation task performed by the regional multi-energy system;
NumM is the number of edge computing layer base stations
executing the computation task at time t; Ccul,m is the operation
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cost of the mth edge computing layer base station; Tcoop,i is the
transmission delay of the optimized scheduling computation task
performed by the regional multi-energy system at time t, and �Tcoop is
the average of its delay value; NumN is the number of energy
consuming users; Tsend

n,i , Tcul
n,i , T

merge
n,i , and Treturn

n,i are the optimization
scheduling task transmission delay, computation delay, computation
result convergence delay, and computation result return delay,
respectively.

In the actual optimization scheduling process, the computing
process of multi-node cloud-edge cooperative scheduling in the
regional multi-energy system is shown in Figure 3.

The state data sensing layer collects the operating state data and
ledger data of each energy equipment in the equipment entity layer and
stores them in the databases of the edge computing layer and the cloud
service application layer. Then, the optimization scheduling task begins
at each energy equipment and energy consumption user. It is then
uploaded to the edge computing layer, where the computing task is
allocated based on Eq. 15. The corresponding optimization
computation is executed, and the operation scheduling commands
are sent to the equipment entity layer based on the computational
results to regulate the operation state of the energy equipment. At the
same time, the computation results are summarized, merged, and sent

to the cloud service application layer. Finally, the cloud service
application layer performs the scheduling of region multi-energy
systems covered by the edge computing layer base stations based on
the received scheduling optimization data and the energy equipment
operation data. The scheduling optimization calculation is unified and
coordinated for the whole multi-energy system. The calculation results
are also sent to the edge computing layer through the data network
communication layer.

3 Cloud-edge cooperative optimization
schedulingmodel of the regional multi-
energy system

3.1 Scheduling model

To fully utilize the multi-node cloud-edge collaborative scheduling
capability in the optimization and scheduling process of the regional
multi-energy system, the double-layer optimization scheduling model
of the regional multi-energy system is established as shown in Figure 4.
The upper-layer optimization model in the cloud service application
layer adopts an intelligent optimization algorithm to minimize the

FIGURE 3
Multi-node cloud-edge collaborative scheduling computing process.
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overall operation and scheduling cost of the regional multi-energy
system. It completes the scheduling optimization of the systems in the
coverage area of the different regional edge computing layer base
stations in the regional multi-energy system and obtains the optimal
energy supply scheduling scheme, based on the received scheduling
optimization data and energy equipment operation data. The lower-
layer optimizationmodel is that the edge computing layer calculates the
optimal energy supply scheduling scheme based on the optimal energy
supply scheduling scheme and control commands calculated by the
cloud service application layer.

The objective function of the upper-layer scheduling
optimization model for the cloud service application layer can be
described by Eq. 18:

minF1 � ∑24
t�1

∑NumM

i�1
CePi,t + ∑NumM

i�1
∑NumM

j�1
Ce

exchange P
e
i,j,t

∣∣∣∣∣ ∣∣∣∣∣(⎧⎨⎩
+ Cg

exchange P
g
i,j,t

∣∣∣∣∣ ∣∣∣∣∣ + Ch
exchange P

h
i,j,t

∣∣∣∣∣ ∣∣∣∣∣)} + ∑NumM

i�1
αiF2 +∑24

t�1
Ccoop,t (18)

where F1 is the overall operation and scheduling cost of the regional
multi-energy system; Ce is the unit electric energy interaction price
between the regional multi-energy system covered by different

regional edge computing layer base stations and the large power
grid; Pi,t is the interactive electric power between the regional
multi-energy system covered by different regional edge
computing layer base stations and the large power grid;
Ce
exchange, C

g
exchange, and Ch

exchange are the unit exchange cost of
electricity, natural gas, and heat energy in the area covered by the
ith and jth regional edge computing layer base stations,
respectively; Pe

i,j,t, Pg
i,j,t, and Ph

i,j,t are the exchange power of
electricity, natural gas, and heat energy in the area covered by
the ith and jth regional edge computing layer base stations,
respectively; When the regional system covered by the ith
regional edge computing layer base station exchanges electricity,
natural gas and heat energy to the region covered by the jth regional
edge computing layer base station, Pe

i,j,t, P
g
i,j,t, and P

h
i,j,t are taken as

a positive value, and the opposite are taken as a negative value; αi is
the scheduling optimization priority of the different regional edge
computing layer base station, the larger the value of the priority
level is, the higher the priority level of the computation order is in
the calculation of the optimized scheduling task in this region; F2 is
the scheduling and operating cost of the regional multi-energy
system covered by the regional edge computing layer base stations
obtained by the edge computing layer calculation.

FIGURE 4
Double-layer optimization scheduling model of the regional multi-energy system.
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The objective function of the lower-layer scheduling optimization
model for the edge computing layer can be described by Eq. 19:

minF2 � ∑24
t�1

∑NumM

i�1
∑
I

Ci,I,tPi,I,t (19)

where Ci,I,t is the operating cost of the Ith energy equipment in the
area covered by the ith regional edge computing layer base station at
time t; Pi,I,t is the electricity, heat energy or gas energy supply of the
Ith energy equipment at time t.

In addition to the consideration of system operating costs, the
regional multi-energy system to perform scheduling calculations
is also required to consider the scheduling task transmission
delay under the multi-node cloud-edge collaborative scheduling
strategy, and minimize the data transmission delay of the
scheduling optimization calculation process, which can be
expressed by Eq. 20:

minF3 � �Tcoop (20)

3.2 Constraints

The supply balance constraints for electricity, gas, and heat in
the regional multi-energy system can be described by Eq. 21

∑
I1

Pi,I1 ,t − Pc
i,e,t + Pd

i,e,t + Pi,t + Pe
i,j,t � Pi,Le,t

∑
I2

Pi,I2 ,t − Pin
i,g,t + Pout

i,g,t + Pg
i,j,t � Pi,Lg,t

Pi,GB,t − Pin
i,h,t + Pout

i,h,t + Ph
i,j,t � Pi,Lh,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

where Pi,Le,t, Pi,Lg,t, and Pi,Lh,t are the electricity, heat and gas loads in
the area covered by the ith regional edge computing layer base
station, respectively; I1 is the set of electricity energy equipment in
the area covered by the ith regional edge computing layer base
station, and I1 = {wind turbine, photovoltaic, and PtG equipment};
I2 is the set of natural gas energy equipment in the area covered by
the ith regional edge computing layer base station, and I2 = {gas
turbine, PtG equipment, and gas boiler}; Pe

i,j,t, P
g
i,j,t, and Ph

i,j,t are the
exchange power of electricity, natural gas, and heat energy between
the areas covered by the ith and jth edge computing layer base
station, respectively; Pc

i,e,t and Pd
i,e,t, P

in
i,g,t and Pout

i,g,t, P
in
i,h,t and Pout

i,h,t are
the charging and discharging power of the battery storage
equipment, gas storage equipment and heat storage equipment at
time t, respectively.

The operation constraints of multiple energy equipment in the
regional multi-energy system can be described by Eq. 22

Pi,w,t
min ≤Pi,w,t ≤Pi,w,t

max

Pi,PV,t
min ≤Pi,PV,t ≤Pi,PV,t

max

Pe,min
i,PtG,t ≤Pe

i,PtG,t ≤P
e,max
i,PtG,t

Pi,GT,t
min ≤Pi,GT,t ≤Pi,GT,t

max

Pi,GB,t
min ≤Pi,GB,t ≤Pi,GB,t

max

Pg,min
i,PtG,t ≤Pg

i,PtG,t ≤P
g,min
i,PtG,t

Pc,min
i,e,t ≤Pc

i,e,t ≤P
c,max
i,e,t

Pd,min
i,e,t ≤Pd

i,e,t ≤Pd,max
i,e,t

Pin,min
i,g,t ≤Pin

i,g,t ≤Pin,max
i,g,t

Pout,min
i,g,t ≤Pout

i,g,t ≤Pout,max
i,g,t

Pin,min
i,h,t ≤Pin

i,h,t ≤P
in,max
i,h,t

Pout,min
i,h,t ≤Pout

i,h,t ≤Pout,max
i,h,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where Pi,w,t
min and Pi,w,t

max, Pi,PV,t
min and Pi,PV,t

max, Pe,min
i,PtG,t and Pe,max

i,PtG,t are the
minimum and maximum output power of the wind turbine,
photovoltaic and electricity power consumed by PtG
equipment in the area covered by the ith regional edge
computing layer base station, respectively; Pi,GT,t

min and Pi,GT,t
max,

Pi,GB,t
min and Pi,GB,t

max, Pg,min
i,PtG,t and Pg,min

i,PtG,t are the minimum and
maximum values of the gas power consumed by gas turbine,
gas boiler, and gas output power of PtG equipment in the area
covered by the ith regional edge computing layer base station,
respectively; Pc,min

i,e,t and Pc,max
i,e,t , Pd,min

i,e,t and Pd,max
i,e,t are the

minimum and maximum values of the charging power and
discharging power of the battery storage equipment at the
time t, respectively; Pin,min

i,g,t and Pin,max
i,g,t , Pout,min

i,g,t and Pout,max
i,g,t

are the minimum and maximum values of the charging power
and discharging power of the gas storage equipment at time t;
Pin,min
i,h,t and Pin,max

i,h,t , Pout,min
i,h,t and Pout,max

i,h,t are the minimum and
maximum values of the charging power and discharging power of
the heat storage equipment at time t, respectively.

Data transmission constraints in the multi-node cloud-edge
cooperative scheduling framework. The relevant equations can be
found in Eqs 15–17.

The regional grid operations flow constraints can be described
by Eq. 23

Pi,w,t + Pi,PV,t − Pe
i,PtG,t − Pc

i,e,t + Pd
i,e,t + Pi,t + Pe

i,j,t − Pi,Le,t � Ui,x ∑
y�1

Ui,y Gxy cos θxy + Bxy sin θxy( )
Qi,w,t + Qi,PV,t +Qi,t + Qe

i,j,t −Qi,Le,t � Ui,x ∑
y�1

Ui,y Gxy sin θxy − Bxy cos θxy( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(23)

where Ui,x and Ui,y are the voltage at the node x and node y in the
regional grid covered by the ith regional edge computing layer base
station;Qi,w,t,Qi,PV,t,Qi,t, andQe

i,j,t are the output reactive power of wind
turbine, output reactive power of photovoltaic, interaction reactive power
with the larger grid, and reactive power exchange between regional grids,
respectively; Qi,Le,t is the reactive power of loads within the regional grid;
Gxy and Bxy are the conductance and conductivity between the node x
and node y in the regional grid, respectively.

4 Multi-objective whale
optimization algorithm

To achieve optimal computation and control of regional multi-
energy system scheduling under the framework of edge computing
and cloud-edge collaborative scheduling, this paper proposes a
multi-objective whale optimization algorithm, which is used to
solve the optimal scheduling scheme of the regional multi-
energy system.

4.1 Fundamentals of the algorithm

The whale optimization algorithm is a heuristic, single-
objective optimization algorithm that simulates the feeding
behavior of whale groups (Mirjalili and Lewis, 2016). It has
the advantages of a simple algorithm structure, easy
implementation, and high convergence speed and optimization
accuracy. proposes a multi-objective whale optimization
algorithm for solving regional multi-energy system scheduling
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schemes, based on a multi-objective algorithm framework with
non-dominated as well as congestion ranking. The algorithm is
divided into three phases: encircling prey, bubble net attack, and
searching prey.

4.1.1 Encircling prey
In the first phase, the whale gradually approaches the prey

through an encirclement approach. Assuming that the current
optimal solution is the target prey, the positions of other

FIGURE 5
Solving algorithm.
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individuals in the group are moved to the position of the optimal
solution, and updated as Eq. 24:

W � C · X* t( ) − X t( )| |
X t + 1( ) � X* t( ) − A ·W{ (24)

where X*(t) = {X1*,X2*, . . . ,XN*} is the optimal solution solved by
the algorithm, which is the position vector of the target prey hunted
by the whale; t is the number of iterations; X(t) is the position vector
of the solution; A·W is the encircling step size, which can be
calculated according to the Eq. 26:

A � 2a · Rand − a
C � 2a · Rand{ (25)

where Rand is a random number between [0,1]; a is the convergence
factor, which decreases linearly from 2 to 0 as the number of
iterations increases, and is denoted as Eq. 26:

a � 2 − 2t
Tmax

( ) (26)

where Tmax is the maximum number of iterations.

4.1.2 Bubble net attack
There are two ways to describe the feeding behavior of whales:

the shrinking encirclement mechanism and the spiral
updating position.

a) Shrinking encirclement mechanism: It is realized by constantly
encircling the prey by the value of the convergence factor a.

b) Spiral updating position: The algorithm first calculates the
distance between the current individual and the optimal
solution position. Then, it approaches the optimal solution
position in a spiral manner. The mathematical model can be
expressed as Eq. 27:

X t + 1( ) � W* · ekl cos 2πl( ) + X* t( ) (27)
where W* is the distance between the current individual and the
current optimal position; k is a constant coefficient to qualify the
logarithmic spiral form; l is a random number between [0,1].

Both above methods have a certain probability to appear in the
actual whale hunting process. Therefore, the algorithm sets the
selection probability coefficient p for performing the shrink-wrap
mechanism and the spiral position update, denoted as Eq. 28:

TABLE 1 Simulation parameters

Parameter Value Parameter Value

Turbine efficiency of the gas turbine 0.8 Hydrogen storage efficiency 0.9

Compressed air efficiency of the gas turbine 1.3 Hydrogen discharge efficiency 0.85

Compressed natural gas efficiency of the gas turbine 1.3 Charging efficiency 0.85

Hydrogen methanation efficiency 0.75 Discharging efficiency 0.85

Gas turbine power generation costs/($/MWh) 74.14 Gas Storage Efficiency 0.85

Gas boiler heat production costs/($/MWh) 45.72 Heat Storage Efficiency 0.8

PtG Operating Costs/($/MWh) 78.57 Natural gas prices/($/m3) 0.39

FIGURE 6
Photovoltaic and wind power output data.

FIGURE 7
Load data.
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X t + 1( ) � W* · ekl cos 2πl( ) + X* t( ),
X* t( ) − A ·W,

{ p> 0.5
p≤ 0.5

(28)

4.1.3 Searching prey
When |A|≥1, the whale searches away from the reference target

to find a superior prey, denoted as Eq. 29:

W � C · Xrand − X t( )| |
X t + 1( ) � Xrand − A ·W{ (29)

whereXrand is the randomly selected position vector of the next prey.

4.2 Optimal solution selection mechanism
of the algorithm

In a multi-objective optimization problem with n objective
functions Fi(x), i = 1, 2, . . ., n, a decision variable Ya is said to
dominate Yb if Eq. 30 is satisfied. If there is no other decision variable
that can dominate a decision variable, it is considered a non-
dominated solution.

Fi Ya( )≥Fi Yb( ),∀i ∈ 1, 2, 3,/, n
Fi Ya( )>Fi Yb( ),∃i ∈ 1, 2, 3,/, n

{ (30)

This paper proposes the idea of multi-objective particle swarm
algorithm, which takes the global optimal solution as the target of
bubble net attack, and the local optimal solution as the target of prey
search. To achieve a local optimal solution, select the individual that
dominates the current local optimal solution after moving positions.
If the individual after moving position and the current local optimal
solution do not dominate each other, randomly select both as the

local optimal solution to ensure solution distribution and non-
domination. The process of whale moving position fully uses the
information obtained in the process of whale moving position, and
the global optimal solution is selected according to the hierarchical
analysis method, which ensures the effectiveness and objectivity of
the global optimal solution selection process.

The distribution of the solution set of the algorithm uses the
results of the crowding degree ranking in this paper as the standard
for updating the solution set in the iterative process. The crowding
degree is calculated using Eq. 31.

Yd � Yd + Fi+1 − Fi−1
Fmax − Fmin

(31)

where Fmax and Fmin are the maximum and minimum values of the
objective function, respectively; Fi-1 and Fi+1 are the values of the
objective function of the previous individual and the next individual
after the descending order ranking, respectively.

The algorithm uses the crowding degree, which can visualize the
distribution of solutions. A larger crowding degree indicates a better
distribution of solutions, while a smaller crowding degree indicates a
worse distribution. Therefore, during the iteration process of
updating the solution set, larger solutions can be filtered based
on the size of the crowding degree, and smaller solutions can be
eliminated to maintain diversity and distribution of solutions.

4.3 Solution process of scheduling model
based on multi-objective whale
optimization algorithm

Figure 5 shows the solution process, and the specific steps are
as follows:

FIGURE 8
Electricity energy optimized scheduling results of Region 2.
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(1) Initialize parameters, such as the output population size and
iteration number, for each equipment in the regional multi-
energy system. Randomly initializing the position of each
individual in the output population, and initializing the local
optimal value of each equipment in the regional multi-
energy system.

(2) Calculate the objective function value for each individual in
the initial population, which represents the output power of
each device in the regional multi-energy system.

(3) Use the hierarchical analysis method to select the global
optimal solution from the entire output population of
equipment and guide the position of the equipment power
output population in the desired direction.

(4) To update the position of each individual of the output
population of each equipment in the multi-energy system,
use Eqs 27, 28 based on the values of |A|, p and the judgment
conditions.

(5) Update the local optimal solution in the power output
population of each equipment in the multi-energy system
using the optimal solution domination principle of Eqs 30, 31.

(6) Check if each individual in the equipment output population
has been traversed. If not, go back to Step (4).

(7) Check if the maximum number of iterations has been reached
or if the algorithm iteration has met the end condition. If yes,
output the optimal scheduling result of the regional multi-
energy system and end the algorithm. Otherwise, go back
to Step (3).

5 Example analysis

Using the model established in this paper, the historical
operation data of new energy units and the historical load
data of a regional power grid in Northeast China on a typical
operation day are selected. The topology shown in Figure 2 is

used to build a regional multi-energy system multi-node cloud-
edge cooperative scheduling simulation model to optimize the
scheduling.

The parameters of the electricity/heat/gas multi-energy system
are shown in Table 1. Figures 6, 7 show the PV and wind power
output and load data during the simulation.

The regional power grid is divided into NumM regions, and the
equipment entity layer, state data perception layer, edge computing
layer, data network communication layer, and cloud service
application layer are set up according to the established multi-
node cloud-edge collaborative scheduling model, respectively. In
this paper,NumM is set to 4. An AMD R7 5800H, 16 GB computer is
used for scheduling optimization of the regional multi-
energy system.

The scheduling optimization result of the edge computing
layer of the region 2 multi-energy system are given in
Figures 8–10.

According to Figures, the wind turbine and photovoltaic
equipment output is consistently high throughout each time,
resulting in a higher utilization of new energy in the region. Other
power generation equipment is adjusted based on changes in load
demand to better meet load requirements. During nighttime
hours, electricity prices are low. As a result, the regional grid
chooses to purchase electricity from the grid more frequently.
Battery storage equipment is charged during these hours to
discharge energy during times of high demand. This reduces
the operation and dispatching costs of the regional multi-energy
system. When demand is high, battery storage equipment will be
charged and used to discharge energy when the load is high. This
will reduce the operation and scheduling costs of the regional
multi-energy system. To meet the heat and gas load demand in
the regional multi-energy system, the edge computing layer
calculates the optimal heat and gas energy supply arrangement
scheme based on the acquired equipment data and load demand

FIGURE 9
Heat energy optimized scheduling results of Region 2. FIGURE 10

Gas energy optimized scheduling results of Region 2.
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data. It then adjusts the operation status of the corresponding
energy equipment to meet the heat and gas load demand of users
in the region when the load demand is high. Table 2 shows the
results of the 24-h operation cost comparison for the regional
multi-energy system.

Figure 11 gives the results of the electricity interaction between
the region 2 multi-energy system and the other three regional multi-
energy systems. The interaction of electric energy is mainly affected
by changes in the output of new energy units and customer
load demand.

This paper also explores the effectiveness of regional multi-
energy system scheduling solution under two approaches: multi-
node cloud-edge cooperative scheduling and centralized scheduling,
and the results are shown in Table 3, Figure 12.

When the edge computing layer has not received the latest
inter-regional energy interaction commands from the cloud
service application layer, the edge computing layer can
perform optimization calculations of energy equipment
outputs within the regional multi-energy system by directly
utilizing the operating state data and ledger data of each
energy equipment in the equipment entity layer collected by
the state data perception layer. At the same time, the amount of

energy data and equipment operation data that need to be
processed is smaller when each edge computing layer
performs scheduling optimization calculation compared to
centralized scheduling optimization. This reduction in data
results in a decrease in the number of iterative calculations
required for scheduling optimization solving using the multi-
objective whale optimization algorithm. The corresponding
results are shown in Table 3. Table 3 also shows the results of
the number of iterations and average delay of scheduling
optimization among regional multi-energy systems performed
by the cloud service application layer. The number of iterations
and delay are significantly lower than that of the centralized
scheduling method.

The results of system operation data information processing
and calculation time are shown in Figure 12. Compared to
centralized scheduling method, cloud-edge cooperative
scheduling technology improves the rate of data processing
and calculation of the regional multi-energy system. The data
processing time is reduced by 20.94%, and the optimization
calculation time is reduced by 29.64%. This finding suggests
that cloud-edge cooperative scheduling technology is a more
efficient option for the regional multi-energy system.

TABLE 2 Operating costs

Cost Before Optimization After Optimization

Equipment operating cost /$ 236.17 181.93

Natural gas cost /$ 146.14 167.10

Power Purchase Cost /$ 39.81 21.88

Power sales revenue /$ 5.50 28.01

Total cost /$ 427.62 398.92

FIGURE 11
Optimized scheduling results of the electricity interaction.
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6 Conclusion

Based on edge computing technology and cloud-edge
cooperative control framework, this paper proposes a multi-node
cloud-edge cooperative optimal scheduling strategy of the regional
multi-energy system coordinated with multiple edge service layer
base stations. The paper establishes a two-layer optimal scheduling
model for regional multi-energy systems. The method is simulated
and verified through analysis, and the conclusions are presented
as follows:

(1) The use of the cloud edge cooperative scheduling
technology for the perception, monitoring, and
optimization of the regional multi-energy system can
effectively improve the ability of data information
processing and calculation of the multi-energy system.
The time of data information processing is reduced by
20.94%, and the time of optimization calculation is reduced
by 29.64%.

(2) The efficiency of scheduling and optimization of the
regional multi-energy system has been improved by

allocating the scheduling and optimization tasks of the
whole system to the edge computing service layer, and then
performing cooperative computation among the multiple
edge service layer base stations to reduce the amount of
data computation and processing for the execution of the
optimization and scheduling tasks of the regional multi-
energy system;

(3) Through the analysis of the scheduling optimization
results of the regional multi-energy system, the
double-layer optimal scheduling model of the regional
multi-energy system established in this paper can
increase the flexible adjustment ability of the system,
and realize the economic operation of the multi-
energy system.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

TABLE 3 Operating Costs Solution comparison of scheduling optimization task

Number of
regions

Cloud-Edge Cooperative Scheduling Method Centralized Scheduling
Method

Number of iterations of
edge computing layer

Number of iterations of cloud
service application layer

Average
delay/s

Average
delay/s

Number of
iterations

2 106 84 2.03 3.69 373

4 232 167 2.97 6.27 583

8 536 241 4.12 8.95 1386

16 1272 501 7.62 13.28 2768

FIGURE 12
Comparison of data information processing and calculation time before and after optimization.
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Low-carbon economic
scheduling of virtual power plant
considering carbon emission flow
and demand response

Yongchao Wang1, Jiantie Xu2*, Wenhui Pei2, Hanyang Wang2

and Zhuang Zhang2

1College of Information Science and Engineering, Northeastern University, Shenyang, China, 2State Grid
Liaoning Electric Power Co., Ltd., Shenyang Power Supply Company, Shenyang, China

To fully explore the potential low-carbon and economic advantages of a virtual
power plant (VPP) that aggregates multiple distributed resources, the paper
proposes a VPP scheduling model that considers the carbon emission flow
(CEF) and demand response (DR), which is characterized by electro-carbon
coupling and source-load interaction. First, the electric-carbon characteristics
of each distributed resource under VPP are modeled, and the source-load
electric-carbon coupling characteristic model is modeled through the CEF
theory. On this basis, a load-side multi-type DR model is established to
achieve the purpose of source-load synergy to reduce carbon emissions from
VPP. To this end, a two-stage scheduling model of VPP considering the source-
load electro-carbon coupling relationship is established, and the implementation
of themodel can reduce power generation costs, carbon emissions and promote
clean energy, and the simulation results of the improved IEEE-14 node system
verify the effectiveness of the proposed model.

KEYWORDS

virtual power plant, electro-carbon coupling, carbon emission flow, demand response,
low-carbon economic scheduling

1 Introduction

In the face of growing global awareness surrounding environmental preservation, the
shift towards a low-carbon economy and sustainable development has emerged as a
predominant global trend. Within the energy sector, conventional fossil energy sources
like coal-fired and fuel oil have evolved into significant contributors to environmental
pollution (Li et al., 2020). Therefore, in the context of low-carbon power, the increasing
development of distributed resources has become an unavoidable trend, and the scale of
development is expanding and the level of utilization is increasing (Li et al., 2019; Li et al.,
2021). How to ensure the safe and stable operation of the power grid while realizing the
access and optimal operation of distributed resources is a problem that needs to be solved at
present (Huang et al., 2022). The virtual power plant (VPP) is a new type of energy supply
model that can effectively aggregate multiple distributed resources with the advantages of
low carbon, high efficiency and flexibility. Therefore, virtual power plants have received
extensive attention in both theoretical and practical research areas in recent years.

The VPP achieves the synergy and complementarity of diverse energy types through the
integration of multiple energy sources. This not only caters to the energy demands of
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various load types but also significantly diminishes the carbon
footprint of the system. The scheduling problem of the VPP is
one of the keys and bases to realizing its efficient operation and
optimal control, and its main purpose is to formulate a reasonable
scheduling strategy to improve its operation efficiency and economic
benefits (Liu et al., 2023). Extensive research efforts have been
dedicated to this issue. For example, in (Naughton et al., 2021;
Nguyen and Nguyen, 2021; Wang andWu, 2021), a VPP scheduling
model considering distributed resources aggregation such as
distributed wind power (WT), photovoltaic (PV) and energy
storage constructed, (Cao et al., 2016), established a VPP
economic scheduling model, with the objective function being to
minimize the cost of power generation. (Wang and Teng, 2023)
established a VPP economic scheduling model incorporating the
carbon trading mechanism. Based on this, (Sun et al., 2023; Tang
et al., 2023) proposed a demand response (DR) taking into account
the carbon trading mechanism and the low-carbon economic
scheduling method for VPP, which improves the capacity of
renewable energy consumption. It is worth noting that these
references seldom analyze the electro-carbon coupling
relationship of distributed resources, and there is a single means
of carbon reduction and a lack of effective interaction between low-
carbon means on both the source and load sides. As an effective
analytical tool for the development of low-carbon electricity, the
carbon flow emission (CEF) theory has been further developed and
improved. (Zhou et al., 2012; Kang et al., 2015) elaborated on the
concept of CEF theory, improving its theoretical framework and
proposing corresponding calculation methods. (Cheng et al., 2019;
Cheng et al., 2019; Cheng et al., 2020) applied the CEF theory to the
integrated energy system, which significantly reduces the carbon
emission of the system, and offers a fresh perspective and guiding
principle for the virtual power plant to realize the low-carbon
scheduling.

To further improve the low-carbon properties of VPPs, enhance
the usage of clean energy sources and decrease energy expenses,
research on load-side DR under VPPs has attracted increasing
interest. For example, in (Li et al., 2022), flexible resources were
designated as controllable units extensively situated on the
distribution grid side. These units can be agilely controlled and
regulated, facilitating a bidirectional and synergistic interaction
between the main grid and the distribution grid. (Liu et al., 2022)
conducted further research on electricity trading methods for
electric vehicles. (Zahra et al., 2021) proposed an optimal VPP
scheduling method taking DR into account, which coordinates the
utilization of VPP storage and DR resources through a time-sharing
tariff strategy to improve energy consumption while achieving peak-
to-valley regulation. (Li et al., 2022) introduced a demand-side
satisfaction coefficient, which significantly improves the
motivation of users to participate in DR. (Li et al., 2020; Zhang
et al., 2022) further classified loads into transferable loads and
curtailable loads, and established a scheduling model for multiple
types of loads to participate in DR. The above research works have
achieved significant results in improving the motivation of users to
participate in DR. However, the time period division of traditional
time-sharing tariffs is relatively rigid and lacks sufficient flexibility,
which has limited incentives for users. There are few tariff models
that take into account the differences in carbon emissions of
electricity consumption at different nodes, and few studies that

classify loads according to their characteristics and develop DR
models accordingly.

Addressing the issues above, this study centers on the electric-
carbon coupling problem under VPP scheduling, proposes a source-
load electric-carbon coupling relationship model founded on the
principles of CEF theory, and subsequently establishes a two-stage
VPP scheduling model incorporating participation in the carbon
trading market and DR. Its main contributions and salient features
are summarized below.

1) To comprehensively analyze the effect of electricity demand on
carbon emissions, the CEF theory is utilized to track the
carbon emissions from power generation measurement up
to power consumption measurement. Additionally, investigate
the potential low-carbon capacity of the load side to gain a
better understanding of its contribution towards carbon
reduction efforts.

2) To effectively integrate low-carbon means into both the supply
and demand sides, and to promote the deep interaction and
synergy between supply and demand, a multi-type load DR
model that considers the relationship between load electricity
consumption and carbon emissions is established.

3) A two-stage optimized scheduling model for VPP is established,
based on a designed low-carbon dispatch strategy. The model
takes into account both economic and low-carbon factors in
making system operation decisions. The optimal scheduling
results were obtained by iteratively optimizing the upper
economic model and the lower low-carbon model.

The remaining portion of this paper is structured in the
following manner. Section 2 introduces the structure of VPP and
the CEF theory. In Section 3, the electric-carbon relation of
distributed resources is modeled, and in Section 4, a multi-type
DR model is based on the relationship between load electricity use
and carbon emissions and develops a two-stage scheduling model
for VPP. Section 5 presents a case study that illustrates the proposed
model’s effectiveness, while Section VI provides a concluding
summary of the entire paper.

2 VPP basic structure and CEF theory

2.1 VPP physical structure

The structure of the VPP is illustrated in Figure 1 and it
consolidates four resource types, controllable distributed power
supply, new energy, energy storage, and load. Each resource type
functions as a subsystem, allowing for optimal resource allocation
across a broad spectrum through information transmission and
energy interaction. This facilitates the reduction of carbon
emissions, enhancing the system’s new energy consumption
capacity and increasing overall revenue (Kang et al., 2022).

2.2 Definition and calculation of CEF

Due to the consumption characteristics of power resources,
the carbon emissions generated by the power system are
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commonly referred to as off-site carbon emissions. Specifically,
the loads themselves do not produce carbon emissions,
electricity production is often accompanied by the release
of carbon dioxide resulting from the utilization of non-
renewable energy sources. To better track the carbon
footprint of the load side and analyze the carbon
characteristics of electricity from this perspective, it is
necessary to introduce the concept of CEF. This allows for
tracing the transfer of carbon emissions from power
generation to the load side, providing a more accurate
understanding of carbon emissions. As depicted in Figure 2,
this model can calculate carbon flow indicators, such as
emission flow rate and flow density, for each node and time
period based on the existing distribution.

2.2.1 Carbon emission flow rate
Define the carbon emission resulting from the flow of energy

through the network’s nodes or branches per unit of time as the
carbon flow emission rate R in •CO2/h , and the computational
expression is Eq. (1).

R � dC

dt
(1)

Where C is the carbon flow emission rate of the network node or
branch and t is the time.

2.2.2 Carbon density
Branch carbon density refers to the amount of carbon emissions

produced by a single unit of electricity transmitted through a branch

FIGURE 1
Physical structure diagram of VPP.

FIGURE 2
Schematic diagram of power system currents and CEF.
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of a power system, i.e., it is the ratio of branch carbon flow emission
rate to the active tidal current streaming through that branch and is
denoted by ρ.

ρ � R

P
(2)

Where P donates the active current of the associated network.

2.2.3 Nodal carbon intensity
The nodal carbon flow density encompasses both the carbon

flow density at generator nodes and the carbon flow density at load
nodes. The generator node carbon flow density, referred to as carbon
intensity, is denoted by EG. Meanwhile, the load node carbon flow
density, known as load node carbon intensity, describes the carbon
emission associated with the load’s consumption unit of electrical

energy and is represented by en. Therefore, the carbon intensity at
the node can be utilized for analyzing the relationship between
electricity consumption and carbon emissions of the load side.

3 Modeling the electro-carbon
characteristics of distributed resources

The “electric-carbon characteristic” is defined as the correlation
between the net external power output and the net carbon emissions
of a distributed generating unit. Presently, the prevailing approach
in studies involves utilizing carbon intensity to articulate the
electric-carbon characteristic of a unit. Carbon intensity
quantifies the emissions produced per unit of electricity supplied
to the grid by a unit.

FIGURE 3
Schematic diagram of the steps in the coupled electro-carbon price modeling.
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FIGURE 4
VPP two-stage optimized scheduling flowchart.

FIGURE 5
Schematic diagram of dichotomous iteration.
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3.1 Unit electro-carbon
characterization model

The fuel carbon emissions of fossil fuel producing units are the
main source of carbon emissions from the VPP’s power generation
source. Carbon emissions from the operation and production
processes of clean energy generating units, such WT and PV, are
estimated to be zero. As such, in research investigations, their carbon
intensity is usually set to 0.

EWT,PV � 0 (3)
Where EWT,PV is the carbon intensity of WT and PV.
The electrical carbon characteristics of a fuel unit are influenced

by several factors, and its carbon intensity can usually be obtained
from Eq. (4). Eq. (5).

δi � aiP
2
g,j + biPg,i + ci( )hi/Pg,j × 103 (4)

EG,i � ηiki
MCOi

MC

δi
103

(5)

Where δi and ai, bi, ci are the fuel consumption per
unit of electrical energy and the characteristic parameters of
the unit i, respectively, EG,i is the carbon intensity of the fuel
unit, hi is the correction factor, MCO2, MC are the molar mass of
carbon dioxide and carbon, ηi and ki are the carbon content
of the unit’s fuel and carbon oxidation rate, respectively.

The above model applies to coal-fired, gas-fired, and other fuel-
fired units, and the size of the parameters varies among different
types of units.

3.2 Energy storage electro-carbon
characterization model

The energy storage device operates in two concurrent states:
charging and discharging. When in the charging state, it
functions like a special load that can absorb a portion of carbon

FIGURE 6
IEEE-14 system node diagram.

TABLE 1 Multi-type load distribution.

Form Nodal load

Type Commercial load Industrial load Residential load

Nodal 6, 11–14 2–5 8–10
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emissions. On the other hand, when in the discharging state, it
operates like special power generation equipment, resulting in the
release of some carbon emissions. In conclusion, based on the CEF
model, the electric-carbon characteristic model can be outlined
as follows.

When the energy storage device is being charged, carbon
emissions accompany the electrical energy charged into the
energy storage device, at this time the energy storage charging
carbon intensity is equivalent to the carbon intensity of the node
where the element is located.

echa � ej (6)

When the energy storage device is in a discharged state, carbon
emissions are released from the energy storage device along with
electricity.

Qcha
e,t � Pcha

e,t echa,tΔt

Qdis
e,t � Pdis

e,t ej,tΔt �
Pdis
e,t

ηdise

edis,t−1Δt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

Where Qcha
e,t , Qdis

e,t represents the amounts of carbon
emission changes during the period of charging and discharging
the energy storage device, Pcha

e,t , P
dis
e,t represents the power associated

with the charging and discharging, and ηdise is the
discharging efficiency.

The carbon intensity of discharge emissions from energy storage
devices is expressed as:

edis � edis,t−1SOC t − 1( ) + Qcha
e,t − Qdis

e,t

SOC t( ) (8)

Where SOC(t) is the values of the capacity of the energy storage
equipment at moment t.

3.3 Load electro-carbon
characterization model

Carbon emissions from electricity consumption by power users
are closely related to the quality and amount of the electricity they
consume, where “quality” refers to the carbon content of the source
of electricity, and “amount” as the name implies, pertains to the
amount of electricity.

Reference (Da, 2016; Yang et al., 2023) demonstrates that the
load node carbon intensity size is equivalent to the sum of all
tributary carbon flow densities streaming into the node and the
carbon intensity of the generators connected to the node concerning
the tidal current weighted average. therefore, the load node CEF
model is in Eq. (9).

ej �
∑N

i�1,j ≠ j
Pi−jρi−j + PGjEGj

∑N
i�1,i ≠ j

Pi−j + PGj

(9)

where ej represent the carbon intensity of load node j, Pi−j , ρi−j
are the power and carbon flow density of the branches
connected to node i and node j, respectively, PGj and EGj are
the generating power and carbon intensity of the generators
connected to the node j, respectively, and N is the number of
network nodes.

The definition of load carbon intensity is the same as that of
generating unit carbon intensity. Consequently, nodal carbon
intensity can be used to express the electrical carbon properties
of the load. As the load uses power per unit of time, the higher
the carbon intensity of a load node, the more output the high
carbon intensity unit produces relative to the load, increasing the
value of carbon emissions. Users can independently participate in
low-carbon DR by evaluating the variations in nodal carbon
intensity throughout the day, as long as they stay within the

FIGURE 7
WT and PV forecast data.
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FIGURE 8
Scheduling results for different Scenarios. (A) Scenario A scheduling result. (B) Scenario B scheduling result. (C) Scenario C scheduling result.
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parameters of load control capacity. They can then choose to
individually increase or decrease loads and actively participate in
low-carbon emission reduction activities, modifying their power
consumption behaviors accordingly.

4 Low-carbon scheduling strategy
considering source-load electro-
carbon characteristics

4.1 Carbon market trading model

The carbon trading market system is currently the
mainstream market mechanism to limit carbon emissions
from the system at source by trading the carbon emission

rights formulated. In the carbon trading market, it is
necessary to determine the carbon trading volume of the
VPP participating in the market based on the initial carbon
emission amount, combined with the actual carbon emissions
of the VPP (Lei et al., 2020). Among them, there are
various ways to determine the initial carbon emission
amount, such as the annual power generation method,
baseline historical emissions and power generation intensity.
For the output of the VPP units, the intensity of power
generation is utilized to define the initial carbon quota of the
VPP as in Eq. (10).

Ec � ηhPGj,t (10)

Where Ec is the given unit carbon allowance, ηh is the carbon
emission rights allocation factor.

FIGURE 9
Clean energy consumption rates for different scenarios.

TABLE 2 Scheduling costs for each scenario.

Scheduling result Generation cost/¥ Carbon trading cost/¥ Total cost/¥ Carbon emission/t

A 32,740 1,520 34,260 12.46

B 33,821 1,644 35,465 13.52

C 35,103 1912 37,015 15.23
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4.2 DR modeling based on load electro-
carbon characteristics

As the carbon intensity of each load node increases, the value of
carbon emissions associated with its unit of power consumption also
increases. Leveraging this insight can optimize load scheduling to
increase electricity consumption during low carbon intensity
periods and decrease consumption during high carbon intensity
periods. This strategic load scheduling can diminish the carbon

emission value per unit of electricity over a cycle, resulting in energy
savings and emission reduction.

According to the principle of consumer psychology, price-based
DR guides users to carry out reasonable electricity consumption
behavior through the change of electricity price (Liu et al., 2023), and
China has achieved remarkable results in guiding users to peak
shaving and valley filling through the establishment of DR model of
peak-valley leveling time-sharing electricity price. However, the
traditional electricity pricing strategy is usually based on

FIGURE 10
Comparison of carbon emissions by partition under different scenarios.

FIGURE 11
Scenario 1 load comparison before and after DR.
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electricity supply and demand and cost considerations, and its
pricing mechanism is relatively fixed, often without sufficient
consideration of carbon emissions in the process of electricity
production and use. Such strategies are usually simple and
straightforward to implement, but may lack incentives for energy
efficiency and environmental protection. In this paper, with
reference to the time-sharing electricity pricing model, we
analyze it from a low-carbon perspective, divide the low, medium
and high carbon responsibility zones according to the carbon
intensity, and establish the time-sharing electricity-carbon
coupling price model for different carbon responsibility zones.
The steps of the electricity-carbon coupling price model are
shown in Figures 3A,B.

The specific steps are as follows:

1) As shown in Figure 3A, following the load node carbon
intensity solution formula in Eq (9), the magnitude of
carbon intensity at each load node at the current t time is
calculated, and the low, medium and high carbon
responsibility intervals are divided. The specific division
method is shown in Eq. (11).

ej t( ) ∈

emin ≤ ej t( )≤ 1
2

emin + eave( ), low carbon responsibility zone

1
2

emin + eave( )< ej t( )≤ 1
2

emax + eave( ),medium carbon responsibility zone

1
2

emax + eave( )< ej t( )≤ emax , high carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where emin and emax are the minimum and maximum load node
carbon intensity at time t, eave is the average of all load node carbon
intensity at time t, and ej is the carbon intensity of load node j.

2) As shown in Figure 3B, the low, medium and high time-
sharing carbon prices are set with reference to the peak, valley
and level time-sharing prices, and the specific carbon price is
shown in Eq. (12).

qj,c t( ) �
−1
2
λ, ej t( ) ∈ Low carbon responsibility zone

0, ej t( ) ∈ Μedium carbon responsibility zone

1
2
λ, ej t( ) ∈ Ηigh carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(12)

where λ is the carbon price difference between loads in the high and
low responsibility zones, qj,c is the carbon value of load j.

qj t( ) �
q0 − 1

2
λ, ej t( ) ∈ Low carbon responsibility zone

q0, ej t( ) ∈ Μedium carbon responsibility zone

q0 + 1
2
λ, ej t( ) ∈ Ηigh carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where q0 is the basic price.

4.3 Multi-type load DR modeling

Within a defined time frame, industrial and residential load
users have the flexibility to shift a portion of their load without

disrupting overall production plans and daily life demands. The
primary aim is to execute load shedding during specific scheduling
periods to mitigate demand peaks. To realize this goal, this paper
introduces two forms of load-side DR through the electro-carbon
coupling price acting as the pricing signal. This is achieved through
the development of segmented prices, facilitating load transfer.
Subsequent to implementation, the load of industrial and
residential users for each time period can be represented using
Eq. (14).

Ptri,t � Pexp ,t + Pdr,t (14)

Where Pexp ,t is the load value of the node before the response at
the moment t, Ptri,t is the load value of the node after the response at
the moment t, Pdr,t is the response value of the load.

During demand response implementation, the two load types
previously mentioned need to adhere to the following restrictions: 1)
the user’s total electricity consumption stays constant during the
entire scheduling cycle; 2) the user’s load adjustment during each
scheduling time period must fall within a predefined permissible
range. The permitted range for demand response, given the context
of this study, is [-12.5%, +7.5%] of the predicted load for the relevant
time period.

∑24
t�1
Pexp ,i,t � ∑24

t�1
Ptri,i,t

−0.125Pexp ,i,t ≤Pdet ,t ≤ 0.075Pexp ,i,t

⎧⎪⎪⎨⎪⎪⎩ (15)

Commercial loads including large shopping malls, schools and
hospitals, are deemed rigid in this paper due to inherent industry
limitations. These loads possess limited capacity for load transfer
and face challenges in utilizing time-sharing prices for load shifting.
In operational scenarios, users of such loads can receive instructions
for load reduction, empowering them to voluntarily cut a portion of
their load. In exchange for their responsive actions, users receive
compensation. The load reduction model is depicted in Eqs. 16, 17.

Pcut,t ≤Pcut,t,max, t ∈ Tout (16)
Pcut,t,max ≤ 0.1Pexp ,j,t (17)

Where Pcut,t is the commercial load reduction at the time t,
Pcut,t,max is the maximum value of reduction at the time t, and Tcut is
the time period that can be reduced, and during the time span that
allows for reduction, the maximum value of reduction at time t is set
to be no more than 10% of the load in that time period.

4.4 Two-stage VPP low-carbon economic
scheduling model

4.4.1 First stage scheduling model
The primary objective of the first stage economic scheduling

model is to reduce the generation cost of the VPP to its minimum.
This objective function includes the power generation costs of
thermal, WT and PV, along with the start-up (shut-down) cost
of thermal units and the associated carbon trading costs. The
detailed expression is depicted in Eq. (18).

f1 � min fg + fw + fv + fk + fs + fc( ) (18)
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Where fg denotes the fuel cost of thermal power units, fw is the
generation cost of WT, fv is the generation cost of PV, fk is the
start-up (shut-down) cost of thermal power units, fs refers to the
operation and maintenance cost of energy storage equipment, and
fc is the cost of carbon trading.

fg � ∑T
t�0
∑H
h�1

ahP2
G,h,t + bhPG,h,t + ch( )

fw � ∑T
t�0
∑K
k�0

bkPW,k,t( )
fv � ∑T

t�0
∑L
l�0

bvPV,l,t( )
fk � ∑T

t�0
∑H
h�1

Uh,t+1 1 − Uh,t( ) + Uh,t 1 − Uh,t+1( )CU,h( )
fsoc � ∑T

t�0
ωsoc Psoc,t

∣∣∣∣ ∣∣∣∣
fc � ∑T

t�0
ε Ed,t − Ec,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Where ah, bh, ch signifies the cost coefficients of coal
consumption for the unit, bk, bv are the cost coefficients of
WT and PV, PG,h,t, PW,k,t, PV,k,t are the output power of
thermal power, WT and PV in the time period t. Uh,t is the
start-up (shut-down) variable of the thermal power unit h in the
time period t, which takes the values of 0 and 1, CU,h is the start-
up (shut-down) cost of the unit h, H, K, L are the numbers of
various types of units, ωSOC is the cost coefficient of operation and
maintenance of the storage equipment, PSOC,t is the power of the
storage energy in time period t, and ε is the price of the carbon
trade, Ed,t is the carbon emission.

The constraints are as follows:

1) Thermal unit capacity and ramping constraints.

PG,min ≤PG,t ≤PG,max

Rdown ≤PG,t − PG,t−1 ≤Rup t≥ 2( ){ (20)

Where PG,min, PG,max are the maximum and minimum values of
active output from thermal power units, Rup and Rdown represent the
maximum and minimum values of climbing power.

2) WT and PV capacity constraints.

PW,min ≤PW,t ≤PW,max

PV,min ≤PV,t ≤PV,max
{ (21)

Where PW,max, PV,max and PW,min, PV,min represent the
maximum and minimum values of the active output of WT and
PV, respectively.

3) Energy storage capacity and charge/discharge state constraints.

SOCmin ≤ SOC t( )≤ SOCmax (22)
Xcha,t +Xdis,t � 1, echa t( ) ≠ edis t( )
Xcha,t +Xdis,t � 0, echa t( ) � edis t( ){ (23)

Where SOCmin and SOCmax are the maximum and minimum
values of the capacity of the energy storage equipment, suggest that
the energy storage is undergoing a charging process, and similarly

Xdis,t � 1 suggest that the energy storage is undergoing a
discharging process.

4) Power balance constraints.

∑H
h�1

PG,t +∑K
k�1

PW,t +∑L
l�1
PV,t � PL,t (24)

Where PL,t denotes the load power.

4.4.2 Second stage scheduling model
This paper employs the first stage model to derive the start-up

(shut-down) plan and unit output for generating units within the
carbon trading market. The resulting data, encompassing both start-
up (shut-down) plans and unit outputs, are subsequently
transmitted to the second stage model. In the second stage, the
load-side electricity and carbon coupling price function as the
pricing signal, accounting for multiple load types in DR. The
load amounts for responsive nodes are fed into the first stage
scheduling model, and these steps are iteratively executed until
the discrepancy in load-side DR changes falls below the critical
value. The second stage low-carbon scheduling model is designed to
minimize the combined cost of customer power purchases and DR,
as depicted in Eq. (25).

f2 � min fdr + fcut + fq( ) (25)

Where fdr is the industrial and residential load node price DR
cost, fcut is the commercial load node load curtailment
compensation cost, and fq is the customer’s power purchase cost.

fdr � ∑24
t�1

∑GIP+GRP

i�1
Pdr,tcdr

fcut � ∑Tcut

t�1
∑GCP

i�1
Pcut,tccut

fq � ∑T
t�0
∑G
j�1
Pj,tqj t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

Where G is the number of load nodes, GIP, GCP and GRP are
industrial loads, commercial loads, residential loads node-set, cdr is
the industrial and residential loads DR cost price per unit of load
volume, ccut is the commercial and residential loads to cut down the
cost of compensation per unit of load volume, and Pj,t is the power
consumption of j node at t moment.

4.4.3 Flowchart for solving the two-stage
scheduling model

Figure 4 displays the flowchart outlining the two-stage VPP low-
carbon economic scheduling model.

The model workstream is as follows:

1) Commence the process by inputting unit node parameters,
load forecast data, carbon quota parameters and other essential
example-based data.

2) Solve the first stage VPP economic scheduling model to obtain
the output, carbon emissions, active power data transmitted by
each line during the unit scheduling cycle. Simultaneously,
calculate the carbon intensity of each node by utilizing the
CEF method.
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3) Develop electric-carbon coupling prices grounded in the
carbon intensity for each node.

4) Enter the second stage virtual power plant low carbon
scheduling model to solve for the optimized loadings.

5) The optimized load quantity is resubstituted into the upper
model to re-do the day-ahead scheduling. The above process is
repeated until the difference in the load-side demand response
change between the two processes is less than the critical value,
then the optimal scheduling scheme and results are outputted.

In this particular instance, the dichotomy is employed as a
means of imposing constraints that effectively prevent the
emergence of oscillatory non-convergence. Dichotomous iteration
addresses oscillation issues by adopting a heuristic strategy known as
equipartitioning. Its core principle lies in establishing a practical
load-interval that consistently encompasses the optimal operational
state. Subsequently, through iterative adjustments to either the lower
or upper bounds, this interval range is progressively narrowed, until
it converges to or falls below the predefined convergence threshold.
This methodical narrowing process ensures that the system
stabilizes and converges to an optimal solution. To further clarify
the process, Figure 5 provides a schematic diagram that illustrates
the steps involved in the dichotomous iteration process.

The detailed procedure for the dichotomy method is outlined
below: if the kth iteration oscillates, the load corresponding to the
electricity demand is Pbuy

φ,t , set as the maximum value of the power
demand at time t as Pbuy,max

φ,t , Pbuy,max
φ,t � max Pbuy

φ,t , P
buy
φ−1,t{ }, and the

minimum value of the electricity demand at time t as
Pbuy,min
φ,t , Pbuy,min

φ,t � min Pbuy
φ,t , P

buy
φ−1,t{ }, which will be set to be the

load operation interval, and the optimal operational condition lies
within this range.

Step 1: The average value of electricity consumption at moment t
is Pbuy

t,ave, P
buy
t,ave � (Pbuy,max

φ,t + Pbuy,min
φ,t )/2.

Step 2: Adding constraints: Pbuy
t � Pbuy

t,ave, solving the two-layer
model. This step splits the current running interval into
two-halves and terminates the iteration if the convergence
condition is satisfied. Otherwise φ � φ + 1, perform step 3.

Step 3: Adding constraints: Pbuy,min
φ,t ≤Pbuy

t ≤Pbuy,max
φ,t , solving the

two-layer model. This step obtains a new run interval
containing the optimal state. If the convergence condition
is satisfied, the iteration is terminated. Otherwise,
perform step 4.

Step 4: If Pbuy
t � Pbuy,max

φ,t , the optimal state is within
[Pbuy

t,ave, P
buy,max
φ,t ], Update the lower bound, let

Pbuy,min
φ,t � Pbuy

t,ave; if Pbuy,min
φ,t � Pbuy

t , update the upper
bound, let Pbuy,max

φ,t � Pbuy
t,ave. Then return to step 1 until

the convergence condition is satisfied.

5 Case study

5.1 Basic data

The improved IEEE-14 node system is used for the arithmetic
example analysis, the distribution of units is shown in Figure 6, and
the distribution of multiple types of load nodes is shown in Table 1.
The predicted power ofWT and PV is shown in Figure 7. A period of

24 h and a step size of 1 h is set to solve the problem using the
CPLEX simulation platform.

5.2 Simulation results analysis

To confirm the efficacy of the proposed low-carbon economy
scheduling model, sets up and analyzes three operational scenarios
through simulation. Scenario A is the two-stage low-carbon
economic scheduling of VPP proposed in this paper. Scenario B
adopts the traditional time-sharing price DR modeling in (Zhao
et al., 2022) for VPP scheduling. Scenario C does not consider DR
modeling for VPP scheduling.

By contrasting the carbon emissions and economical operating
expenses of the previously discussed scenarios. Figures 8, 9 show that
the main factor affecting the variation in carbon emissions is the
amount of clean energy used during the scheduling period. The
quantity of clean energy used determines how much displacement
the thermal power unit can produce. As the use of renewable energy
increases, thermal power output decreases, resulting in lower carbon
emissions. Based on a combined analysis of Table 2 and Figures
8A,C, gas turbine power has a higher proportion and the clean
energy consumption rate is lower when DR is ignored. In Scenario
C, there is an increase in gas turbine output during peak load hours,
which raises generation costs and carbon emissions. On the other
hand, in Scenario A, consumers engage in DR by allocating a portion
of the load to the clean energy unit that has a higher output. This
lowers generation costs and carbon emissions while simultaneously
encouraging the use of clean energy.

Through a comprehensive analysis involving Table 2 and Figures
8A,B, it becomes evident that the clean energy consumption rate is
higher in the scheduling model proposed in this paper, leading to a
reduction in gas turbine output. This is because, compared with
conventional time-sharing tariffs, the electric-carbon coupling price
based on load electric-carbon characteristics takes into account the
differences in carbon emissions at the nodes to reasonably calculate the
carbon price at different nodes, to formulate a reasonable price, which
enables the users to be more actively involved in the DR, promotes the
clean energy consumption and reduces carbon emissions.

The comparison of clean energy consumption rates under
different scenarios in Figure 9 shows that the multi-type demand
response improves the low-carbon incentive effect for the system.
The time-sharing load-side electricity-carbon coupling price signal
guides the users to consciously carry out low-carbon electricity
consumption behaviors and thus reduces the amount of
abandoned wind and light, the carbon emission and system
operation cost, which demonstrates that the multi-type demand
response model proposed in this paper can enhance the low-carbon
economic benefit. Figures 9, 10 reveal that, in comparison to
Scenario B and Scenario C, the new energy units in Scenario A
are fully utilized, the carbon emissions of the three types of regions
are all reduced, and the carbon emissions of the industrial regions in
the three types of regions are greatly restricted, which is in line with
the priority requirement of carbon restriction in the industrial and
commercial regions in the context of the dual-carbon mechanism.

As seen in Figure 11, Scenario A contrasts the system load change
curves before and after DR. During the 2 hours of the midday and
evening peaks, the commercial load is somewhat reduced by the
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electric power load. At the same time, a portion of the peak load is
transferred to the load side valley by the DR model, which uses the
linked price of carbon and electric power as the price signal. The
results of the scheduling without DR indicate that the gas turbine
production rises between 11:00 and 20:00, which raises the system’s
generating costs and carbon emissions. After DR, part of the peak
shortfall load is shifted and curtailed to the 5:00–10:00 and 20:00–23:
00 valley hours, where the load is mostly supplied by clean energy,
thus reducing both carbon emissions and operating costs.

6 Conclusion

Based on the electric-carbon coupling relationship of distributed
resources and the theory of CEF, this paper proposes a low-carbon
optimal scheduling method for VPP considering the CEF and DR,
making full use of the adjustable resources to enhance the low-
carbon economic advantages of VPP as well as facilitating the
utilization of clean energy sources, which is verified by the
simulation of the improved IEEE-14 node system example. the
following conclusions can be obtained:

The proposed two-stage optimal scheduling model for VPP
considers both the cost of generation and carbon emissions in a
comprehensive manner. Through the source-load-storage cooperative
scheduling strategy, the load side consumes a higher proportion of
renewable energy, leading to a significant reduction in carbon emissions.
Additionally, the establishment of a DR model, which is based on the
coupled price of electricity and carbon, and considers multiple types of
loads, holds significant practical value for reducing emissions. This
model not only meets the carbon reduction needs of diverse user
categories but also addresses the dual requirements of low carbon
and economy aligned with the dual carbon objective. Furthermore, it
provides innovative ways to explore low-carbon measures tailored to
specific load categories within the carbon trading market.
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Impact of different reserve cost
allocation mechanisms on market
participants’ revenues: a
quantitative analysis

Xu Wen*, Quan Zhou, Baosong Luo, Yang Yang, Rui Mao and
Dong Fan

Southwest Subsection of State Grid, Chengdu, China

Insufficient flexibility is amajor barrier to the development of new power systems.
Leveraging the resource allocation function of the electricity market is a
promising way to enhance the flexibility of power systems and promote the
consumption of renewables. The reasonable allocation of ancillary service costs
plays a pivotal role in this function. Towards the target of “who causes, who
shares,” various research related to cost allocation has been conducted.
However, there is a lack of quantitative analysis of the impact of different cost
allocation mechanisms on the market participants’ revenues. Whether various
cost allocation mechanisms can alleviate the insufficient flexibility problem of
power systems needs to be validated. With this in mind, taking operating reserve
ancillary services as an example, a long-term market operation simulation model
with energy-reserve joint clearing is established in this paper based on the time
series production simulation. According to this, the revenues of market
participants under different reserve cost allocation mechanisms are quantified.
Besides, a self-dispatch model for the energy storage (ES) equipped by
renewables is established, based on which the impact of ES on the revenues
of renewables under different cost allocation mechanisms is analyzed. Case
studies based on practical data from a provincial power grid in China demonstrate
that with the well-designed reserve cost allocation mechanism, the revenues of
flexible resources can be ensured. Meanwhile, renewables are incentivized to
reduce their fluctuations and uncertainties by equipping the ES. Hence, the
insufficient flexibility problem of power systems can be alleviated from both
supply and requirements perspectives.

KEYWORDS

cost allocation mechanisms, electricity market, market operation simulation, market
revenue calculation, self-dispatch of energy storage (ES)

1 Introduction

In recent years, the large-scale integration of renewables has brought significant
challenges to the safe and stable operation of power systems due to their inherent
fluctuations and uncertainties. Regarding this, leveraging the resource allocation
function of the electricity market plays a crucial role in enhancing the operational
flexibility of power systems and promoting the consumption of renewables. The
resource allocation function of the electricity market is twofold: it provides reasonable
compensation to flexible resources that offer ancillary services, and thus, they are
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incentivized to provide ancillary services to handle the variability of
renewables (Fang et al., 2019); and it reasonably allocates the
ancillary services costs to market participants that cause the
requirements for services, and thus, they are incentivized to
reduce their variability. The aforementioned resource allocation
function can alleviate the impact of renewables from both the
supply and requirements of ancillary services (Chen et al., 2015;
Ela and Hytowitz et al., 2019; Yu et al., 2019).

The reasonable allocation of ancillary service costs is the key part
of the resource allocation function (Gazafroudi et al., 2015; Buchholz
et al., 2019), which affects the revenues of flexible resources and the
penalties for market participants that cause the requirements for
services. This issue has drawn global attention. In industrial practice,
China mainly allocates the ancillary service costs in proportion to
the generated or consumed energy of market participants. This
method is easy to implement. However, the variability of market
participants cannot be considered (Prica and Ilic, 2006). Australia
allocates the ancillary service costs according to the deviation
responsibility, for instance, the frequency regulation costs are
allocated based on the deviation between the planned and actual
energy of market participants (AEMO et al., 2018). This method can
reflect the variability of market participants to some extent.
However, the providers of ancillary services need to undertake
service costs, which affects their market revenues (Morales-
Espana et al., 2016). California allocates the ancillary service costs
in proportion to the declared ancillary service requirements of
market participants (Yu et al., 2019). The actual variability of
market participants cannot be considered. Regarding the
drawbacks of the methods used in industrial practices,
researchers have proposed various cost allocation methods to
achieve that target of “who causes, who shares.” These methods
include the method based on the Vickrey-Clarke-Groves (VCG)
theory (Xiang et al., 2023), forecast accuracy (He et al., 2019), risk
contribution theory (Liang et al., 2007), the Shapley value (Haring
et al., 2014), and price components of ancillary services (Wang et al.,
2020), etc. Among them, based on the contribution of renewables
and load to the reserve requirement, reference Wang et al. (2020)
derivates the reserve price component to achieve the natural
allocation of reserve costs. If the contribution of renewables and
load to the reserve requirement is accurate, this method can achieve
the target of “who causes, who shares”. In the following part of this
paper, this method will be regarded as the ideal cost allocation
mechanism and compared with other traditional cost allocation
mechanisms.

In summary, toward the target of “who causes, who shares,”
various cost allocation methods have been proposed. Nevertheless,
the impact of different cost allocation mechanisms on the market
participants’ revenues has not been quantitatively analyzed. How
could different cost allocation mechanisms alleviate the insufficient
flexibility problem of power systems is not clear. The necessity of a
reasonable cost allocation mechanism needs to be further validated.

With this in mind, taking the operating reserve as the research
object, the market participants’ revenues under different cost
allocation mechanisms are quantitatively analyzed in this paper
based on the long-term market operation simulation. The effect of
ensuring flexible resources’ revenues and incentivizing renewables to
reduce their variability of different cost allocation mechanisms is
explored, which can give references for the design of the cost

allocation mechanism. In this paper, the market participants
include renewables, load, and thermal power units. The energy
storage devices mentioned in this paper are equipped with
renewables. Hence, they belong to renewable entities. The
contributions of this paper are listed as follows:

1) Based on the time series production simulation, a long-term
market operation simulation model with energy-reserve joint
clearing is established in this paper. In the established model,
the contributions of renewables and load to the reserve
requirement are described according to their historical
forecast errors. A self-dispatch model for energy storage
(ES) equipped by renewables is established. The forecast
errors of renewables can be reduced by the equipped ES,
and thus, their contributions to the reserve requirement can
be reduced. According to the market clearing prices and
different cost allocation mechanisms, the market
participants’ revenue calculation model considering the
equipped ES is constructed, which lays a foundation for
analyzing how could different cost allocation mechanisms
alleviate the insufficient flexibility problem of power systems.

2) Based on the practical data from a provincial power grid in China,
a quantitative analysis of market participants’ revenues is
conducted under different cost allocation mechanisms,
variability of renewables, and capacities of the equipped ES.
Case studies demonstrate that compared with the method
based on energy generation/consumption used in Chinese
industry, the method based on “who causes, who shares” can
ensure the revenues of flexible resources better (revenues are
improved by 3.34%). Besides, under the method based on “who
causes, who shares,” the revenues of renewables can be greatly
improved by equipping the ES (reflected in the 28.64%
improvement in energy revenues and the 49.61% reduction of
allocated reserve costs). While under the method based on energy
generation/consumption, the allocated reserve costs of renewables
will instead increase by 61.11% after the configuration of the ES,
which affects the total revenues of renewables. Therefore, the
reasonable cost allocationmechanism can alleviate the insufficient
flexibility problem of power systems by ensuring the flexible
resources’ revenues and incentivizing renewables to reduce their
variability.

2 Long-term market operation
simulation model with energy-reserve
joint clearing

To quantitatively assess the revenues of market participants
under various reserve cost allocation strategies, a simulation of the
power spot market’s daily operations is required, utilizing extensive
load and renewables data via time-series production simulation
theory. This section outlines the energy-reserve market joint
clearing model employed in this study, enabling the
determination of market participants’ operational modes through
model resolution. Subsequently, Section 3 will evaluate the impacts
of different reserve cost allocation mechanisms on market
participants’ revenues. The energy-reserve joint clearing model
utilized in this study is detailed further below.

Frontiers in Energy Research frontiersin.org02

Wen et al. 10.3389/fenrg.2024.1413297

113

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1413297


2.1 Energy-reserve joint market clearing
model considering contributions of market
participants to reserve requirement

2.1.1 Objective function
The market clearing model’s objective function aims to

minimize the system’s operating costs:

min ∑
k∈K

∑
t∈T
∑
g∈G

bt,kE,g × Pt,k
g + bt,k,UPR,g × Rt,k,UP

g + bt,k,DNR,g × Rt,k,DN
g + Ct,k

g,U + Ct,k
g,D[ ] + Ct,k

r
⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦⎧⎨⎩ ⎫⎬⎭

(1)

Ct,k
r � ∑

v∈V
rv Pt,k,f

v − Pt,k
v( ) + ∑

d∈D

rd Pt,k,f
d − Pt,k

d( )⎡⎣ ⎤⎦ (2)

Ct,k
g,U ≥ Kg ut,k

g − ut−1,k
g( )

Ct,k
g,U > � 0

⎧⎨⎩ (3)

Ct,k
g,D ≥ Mg ut,k

g − ut−1,k
g( )

Ct,k
g,D > � 0

⎧⎨⎩ (4)

When ut,kg is 0, the thermal power unit is shut down.When ut,kg is
1, the thermal power unit is operational.

2.1.2 Operating constraints
2.1.2.1 Line power flow constraints

σt,k,l−l( ), Pl
min ≤ ∑

j∈J
Hlj AjgP

t,k
g + AjvP

t,k
v − Pt,k

d( )≤Pl
max, σt,k,l+l( )

(5)

2.1.2.2 Power balance constraints

∑
v∈V

Pt,k
v +∑

g∈G
Pt,k
g � ∑

d∈D

Pt,k
d , σt,kb( ) (6)

2.1.2.3 Reserve constraints
The aggregated frequency regulation capacity across all units

must satisfy the system’s overall frequency regulation requirements.

∑
g∈G

Rt,k,UP
g ≥Rt,k,UP

sys , λt,k,UPR( ) (7)

∑
g∈G

Rt,k,DN
g ≥Rt,k,DN

sys , λt,k,DNR( ) (8)

Rt,k,UP
sys � πdP

t,k,UP
d + πvP

t,k,UP
v (9)

Rt,k,DN
sys � πdP

t,k,DN
d + πvP

t,k,DN
v (10)

where the ratio πdi/vi is determined by the maximum ratio between
the historical forecast errors of market members and their
corresponding predicted power generation capacity/load demand
(the system reserves capacity to address the maximum forecast error
of market members). It is noted that the focus of this paper is not to
accurately quantify the operating reserve requirement of the power
system. Instead, this paper aims to quantitatively analyze the impact
of different cost allocation mechanisms on the market participants’
revenues, thus, demonstrating the effectiveness of the cost allocation
mechanism that obeys the principle of “who causes, who shares.”
Therefore, the offset of prediction errors of renewables and load is

ignored and the ratio πdi/vi is assumed to be accurate, based on which
the reserve cost allocation that obeys the principle of “who causes,
who shares” can be achieved. Besides, so far, there still lacks a cost
allocation mechanism that can achieve the target of “who causes,
who shares” considering the impact of conventional generators,
renewables, and load. Therefore, to achieve a reasonable cost
allocation that obeys the principle of “who causes, who shares”
and simplify the analysis, this paper does not consider the impact of
conventional generators on the reserve requirement. The reasonable
cost allocation mechanism that considers conventional generators is
worthy of future research but out of the scope of this paper.

Except for the constraints illustrated above, constraints related
to the upper/lower output limits of thermal power units, the
upward/downward ramping limits of thermal power units, and
the operating status of the last period on day k being the same as
the first period on day (k + 1) are common constraints for thermal
power unit operation. Additionally, the constraints related to the
curtailment of renewable energy units and load are also considered.
Due to space limitations, these constraints are not illustrated
in detail.

The market clearing model outlined in this section enables the
daily determination of scheduling and operation plans for various
market participants. This forms the basis for calculating subsequent
earnings for market participants.

2.2 Self-dispatch model for energy storage
equipped by renewables

An effective alternative cost allocation mechanism should
incentivize renewable sources to reduce their forecast errors
through the deployment of ES systems. This requires that the
market revenues of renewable sources, post-storage deployment,
exceed their pre-storage revenues, with a growth rate higher than
that of renewable sources without storage deployment. To analyze
whether different cost allocation mechanisms can motivate
renewable sources to voluntarily deploy storage, this section
develops a self-dispatch model for renewables with integrated
storage. This model can reflect, through historical operation data
of renewable sources, the extent to which proper storage operation
planning can reduce the daily maximum forecast error. As discussed
in Section 2.1, the reduction in the maximum forecast error reduces
the reserve impact of renewable sources, thereby decreasing the
overall system reserve requirements and total reserve costs.

2.2.1 Objective function
The objective function for the self-dispatch model of renewables

with integrated ES, as developed in this study, aims to minimize the
maximum prediction error across all operational periods for
renewable sources as detailed in the Eqs 11, 12.

min max et,k
∣∣∣∣ ∣∣∣∣( ){ } (11)

et,k � Pt,k,f
v − Pt,k,a

v + χt,kes,chaP
t,k
es,cha − χt,kes,disP

t,k
es,dis( ) (12)

χt,kes,cha = 1 Indicates the charging state, and 0 signifies the absence
of charging; similarly, χt,kes,dis = 1 denotes the discharging state, with
0 indicating no discharging. Pt,k

es,cha/dis quantifies the power associated
with charging or discharging the ES system.
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2.2.2 Operating constraints
In the self-dispatch model for renewables with integrated ES, the

operational constraints of ES systems include the following:

(1) ES state mutually exclusive constraint

An ES unit can either be in a charging or discharging state at any
given time, as detailed in Eq. 13.

χt,kes,cha + χt,kes,dis ≤ 1 (13)

(2) Charge/discharge power constraints for ES devices as detailed
in the Eqs 14, 15.

0≤Pt,k
es,cha ≤ χt,kes,chaP

t,k,max
es,cha (14)

0≤Pt,k
es,dis ≤ χt,kes,disP

t,k,max
es,dis (15)

(3) ES constraints

The energy levels within the storage system must remain within
its permissible limits, as specified in Eq. 16:

κes
minEcap ≤Et,k

es ≤ κes
maxEcap (16)

The initial energy level for each day is set based on the final
energy level from the preceding day, as outlined in Eq. 17.

E24,k
es � E1,k+1

es (17)

The constraint governing changes in ES is detailed in Eq. 18.

Et,k
es � 1 − αes( )Et−1

es + Pt,k
es,cha,iδes,cha + Pt,k

es,dis/δes,dis( )Δt (18)

2.2.3 Objective function linearization
The objective function depicted in Eq. 11 is non-linear,

hindering the model’s solvability. To address this issue, the study
linearizes the objective function by introducing an ancillary variable
z, thereby transforming it into a linear form devoid of absolute
values and the max function. Consequently, the objective function
now aims to minimize the value of z, with two additional constraints,
as specified in Eq. 19, incorporated into the model.

min z

s.t z≥ et,k

z≥ − et,k
{ (19)

The constraints in Eq. 19 necessitate that the ancillary variable z
must be at least as large as the absolute value of the prediction error
for renewables in each historical period, ensuring z≥ max(|et,k|).
Thus, minimizing z equates to reducing the maximum prediction
error of renewables across all operational periods. Consequently, the
optimization problem, when substituting the original objective
function depicted in Eq. 11 with that in Eq. 19, remains
equivalent to the original problem.

By implementing the self-dispatch model for renewables
integrated with ES, renewables operators can optimally utilize ES
systems. This optimization allows for the adjustment of
discrepancies between actual and forecasted outputs through

strategic charging or discharging of the storage system.
Consequently, this reduces the maximum prediction error
associated with renewable sources, diminishing their impact on
system reserve requirements and enhancing their competitive
position in the market. With ES in place, the reserve
requirements attributed to the variance in renewables production
decrease. As a result, the overall bidding cost of the energy unit is
reduced, improving its likelihood of success in market clearing.

3 Total revenues calculation of market
participants under different reserve
cost allocation mechanisms

3.1 Energy revenues calculation of market
participants

Regarding power revenue, the market clearing prices
discussed here mainly consist of energy and start-stop prices.
Thermal power units earn revenue from both energy and start-
stop operations, while renewables sources (considered units with
minimal start-stop costs) generate income similarly. On the other
hand, the load incurs both energy and start-stop expenses. As
explained in Section 2.1, the model for energy-reserve joint
clearing introduces a binary variable to indicate the start-stop
status of units, which introduces non-convexity into the model.
To accurately formulate energy and start-stop prices, this study
uses the approach outlined in the reference Wang et al. (2023),
converting the original non-convex model into a convex one
through the application of artificial constraints.

The clearing model delineated in Section 2.1 is designated asm1.
Building upon the solution outcomes of m1, the price-assisted
optimization model m2 is developed. In m2, the integer variable
and ut,kg from m1 are relaxed into continuous variables with values
spanning from 0 to 1, as illustrated in Eq. 20. Additionally, an
artificial bundle is introduced as depicted in Eq. 21.

0≤ ut,k
g ≤ 1,∀g, ∀t,∀k (20)

∑
v∈V

Pt,k
v +∑

g∈G
PUt,k

g ut,k
g � ∑

d∈D

Pt,k
d , ςt,ken( ) (21)

where: ςt,ken represents the dual multiplier of the artificial constraint,
and PUt,k

g is determined based on the solution results of m1.
Specifically, when the optimal start-stop state in m 1, ut,k*g � 1, is
active, PUt,k

g it corresponds to the optimal output value of the
M1 thermal power unit Pt,k*

g . Conversely, when ut,k*g � 0 it is
inactive, PUt,k

g it is set to the negative maximum output of the
thermal power unit.

In conclusion, Eqs 1–10, and Eqs 19–21 form the m2 pricing
auxiliary optimization model within the framework of linear
programming. The inclusion of Constraint (21) ensures that,
even when the integer variable ut,kg is relaxed to a continuous
variable, its optimal value aligns with the optimal solution of the
original model,m1. Consequently, the optimal solution of the price-
assisted optimization model m2 coincides with that of the original
model m1. Utilizing model m2 facilitates the derivation of energy
and start-stop prices (detailed derivation is beyond the scope of this
discussion but can be found in reference (Wang et al., 2023),
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enabling the calculation of power revenue for each market
participant.

The energy price for thermal power units is detailed in Eq. 22.

γt,ken,g � σt,kb +∑
l∈L

σt,k,l−l − σt,k,l+l( )Hlg (22)

The start-stop price for thermal power units is detailed in Eq. 23.

γt,kst,g � ςt,ken PU
t,k
g (23)

The income from electricity for thermal power units is presented
in Eq. 24.

Ht,k
en,g �∑

t∈T
γt,ken,gP

t,k
g + γt,kst,gu

t,k
g( ) (24)

For load d, the electricity price, comprising both energy and
start-stop components, is indicated in Eq. 25.

γt,kd � σt,kb +∑
l∈L

σt,k,l−l − σt,k,l+
l( )Hld + ςt,ken (25)

The cost incurred by load d for electrical energy is depicted in
Eq. 26.

Et,k
en,d � γt,kd Pt,k

d (26)

Similarly, the electricity price for renewables units v, which
includes the energy and start-stop components, is specified in Eq. 27.

γt,kv � σt,kb +∑
l∈L

σt,k,l−l − σt,k,l+l( )Hlv + ςt,ken (27)

The income from electricity for renewables units v is
documented in Eq. 28.

Et,k
en,v � γt,kv Pt,k

v (28)

3.2 Reserve revenues calculation of market
participants under different reserve cost
allocation mechanisms

The energy-reserve joint clearing model, as delineated in Section
2.1, quantifies the influence of renewables and load on reserve
requirements. This study posits that this influence is precisely
characterized and, on this premise, computes the reserve revenue for
market participants across various reserve cost allocation mechanisms.
Subsequently, it evaluates the efficacy of these mechanisms. It is noted
that the focus of this paper is not to propose an ideal reserve cost
allocation. This paper aims to demonstrate the necessity of reasonable
cost allocationmechanisms that obey the principle of “who causes, who
shares” by comparing market revenues under different cost allocation
mechanisms.

3.2.1 Mechanism based on “who causes,
who shares”

As outlined in Section 2.1, this study excludes the influence of
thermal power unit outages on system reserve requirements.
Consequently, under the “who cause, who share” allocation
mechanism, thermal power units are exempt from reserve costs,

while the revenue generated from providing reserve services is
distributed between renewable sources and load entities. Thus,
thermal power units accrue reserve revenue, whereas renewable
sources and load entities incur the reserve costs.

As highlighted in the introduction, accurately characterizing
the impact of renewables and load on requirements for reserve
services enables the application of the method from reference
(Wang et al., 2020) to fulfill the market allocation principle of
“who cause, who share.” Building on the premise that the impact
of renewables and load on reserve requirements, as described in
Section 2.1, is precisely articulated, this study employs the
approach detailed in reference (Wang et al., 2020) to calculate
the reserve price components for thermal power units, as well as
renewables sources and load. This approach facilitates the natural
redirection of reserve costs via price signals, thereby achieving
the “who cause, who share” objective. The pricing and earnings
related to reserves for each market participant are presented
below [the detailed derivation process is elaborated in reference
(Wang et al., 2020)].

The reserve revenue for thermal power units is detailed in Eq. 29.

Ht,k
s,g � λt,k,UPR Rt,k,UP

g + λt,k,DNR Rt,k,DN
g (29)

By integrating this with the electricity revenue, the total revenue
for thermal power units is computed as presented in Eq. 30.

Ht,k
g � Ht,k

en,g +Ht,k
s,g (30)

The reserve price components for renewables unit v are outlined
in Eq. 31, encompassing both the upper and lower reserve price
components.

ρt,kv � πvλ
t,k,UP
R + πvλ

t,k,DN
R (31)

The reserve costs attributed to renewables unit v are specified in
Eq. 32, consisting of the reserve price components for renewables
and their output power.

St,kw,v � ρt,kv Pt,k
v (32)

The overall revenue of renewables is determined by aggregating
the electricity revenue and the reserve costs for renewables units, as
indicated in Eq. 33.

Et,k
v � Et,k

en,v − St,kw,v (33)

The reserve price component for load d, detailed in Eq. 34,
comprises both the upper and lower reserve price components.

ρt,kd � πdλ
t,k,UP
R + πdλ

t,k,DN
R (34)

The reserve cost incurred by load d, specified in Eq. 35, includes
the reserve price component associated with renewables and the load
requirements.

St,kw,d � ρt,kd Pt,k
d (35)

By holistically assessing the electrical energy cost and reserve
cost for load d, the aggregate cost payable by the load is computed, as
presented in Eq. 36.

Et,k
v � −Et,k

en,d − St,kw,d (36)
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3.2.2 Mechanisms based on the proportion of
energy generation/consumption

The allocationmethod, predicated on the ratio of power generation
to consumption, distributes the total reserve cost among market
participants based on their respective shares of total power
generation and consumption within the network. This approach is
detailed in Eqs 37, 38, exemplified by the reserve cost allocation for day
k, and represents a prevalent method within the Chinese industry.

Zk
s �∑

t∈T
∑
g∈G

Ht,k
s,g (37)

Skp,d/v/g �
∑
t∈T

Pt,k
d/v/g

∑
t∈T

∑
d∈D

Pt,k
d + ∑

v∈V
Pt,k
v + ∑

g∈G
Pt,k
g( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Zk

s (38)

Within this distribution mechanism, thermal power units,
renewable sources, and loads are all required to contribute towards
the reserve costs. Consequently, the aggregate revenue of thermal power
units is derived from their electricity sales revenue, reserve revenue, and
the reserve costs they incur, as illustrated in Eq. 39.

Ht,k
g � Ht,k

en,g +Ht,k
s,g − St,kp,g (39)

The total revenue calculations for renewables sources and loads,
akin to those presented in Eqs 33, 36, respectively, will not be
reiterated here.

3.2.3 Mechanism based on types of market
participants

The apportionment method, which accounts for the type of
market entity, initially allocates the total reserve cost among
different types of market entities in predetermined proportions.
Subsequently, it distributes the reserve cost to individual market
participants based on their share of electricity generation/
consumption. This approach is a prevalent method of cost
distribution within the Chinese industry.

The total reserve cost allocated to various market entities by this
method is detailed in Eq. 40.

Wk
d/v/g � αd/v/gZ

k
s (40)

In the Chinese industrial sector, the allocation ratio for thermal
power units αd/v/g is set at 10%, while the ratios for renewable energy
and load are both set at 45%.

Taking thermal power units as an example, the reserve cost
allocated to thermal power units will be further allocated to each
thermal power unit according to the ratio of power generation
between thermal power units, as shown in Eq. 41. The
apportionment of the reserve cost between the load subject and
the renewables subject is similar to that of the thermal power unit,
which will not be described here.

St,kx,g �
∑
t∈T

Pt,k
g

∑
t∈T
∑
g∈G

Pt,k
g

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠Wk
g (41)

Under this apportionment mechanism, the total revenue of
thermal power is similar to Eq. 39, and the total revenue of

renewables and the total revenue of load are similar to Eqs 33,
36, which will not be repeated here.

3.3 Total revenues calculation of renewables
with equipped energy storage

Section 3.1 determines the electricity revenue generated by
renewable sources, while Section 3.2 assesses the reserve costs
allocated to renewables under various distribution mechanisms. The
overall revenue of renewables is derived from combining electricity
revenue and reserve costs. Additionally, for renewables entities
equipped with supporting ES systems, it is imperative to account for
the investment and operational costs of these storage solutions to
precisely evaluate the revenue implications for renewables entities
following the implementation of ES under diverse cost allocation
mechanisms.

The costs associated with ES discussed in this paper encompass
investment costs, maintenance costs, and life loss costs, as detailed in
references (Li and Xu et al., 2018; Ahmadi et al., 2018; Li et al., 2021).
These costs are distributed across each moment and day within the
sequential production simulation.

The life loss cost, allocated per period, is detailed in Eq. 42.

Ct,k
es � ∑

es∈ES
εes · Pt,k

es,cha + Pt,k
es,dis( ) (42)

The parameter εes can be obtained by fitting the energy storage
life cycle curve.

The investment cost allocated per period is outlined in Eq. 43.

Ct,k
cap �

∑
es∈ES

Ccp,esf 1 + f( )wes/ 1 + f( )wes−1[ ]
R × L

(43)

The maintenance cost for each period of ES is detailed in Eq. 44.

Ct,k
ma � Pt,k

es,cha + Pt,k
es,dis( )Et,k

es,om (44)

Upon accounting for ES costs, the total revenue of renewables
entities, inclusive of supporting ES, comprises electricity revenue,
reserve costs, and ES costs. This is exemplified in Eq. 45, utilizing the
“who cause, who share” principle for reserve cost allocation.

Et,k
v � Et,k

en,v − St,kw,v − Ct,k
es + Ct,k

cap + Ct,k
ma( ) (45)

Since the energy storage is equipped with renewables, the costs of
the energy storage are added to the costs of corresponding renewables.

4 Case studies

4.1 Case description

The operational data from a provincial power grid in China,
spanning January 2020 to December 2020, serves as the basis of the
load and renewables data utilized in case studies. Meanwhile, to
improve the penetration of renewables, the renewables data are
proportionally expanded to achieve a 30% penetration rate. In
addition, the prediction errors of renewables and load are
generated according to the assumption that the prediction errors
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follow a normal distribution with a mean of zero (Holttinen et al.,
2008). By amalgamating the prediction error data with the practical
data, the predicted renewables and load are obtained. The predicted
data are used as input for the market clearing model, while the
prediction error data are used to form the operating reserve
requirement of the power system.

The IEEE 30-node system serves as the basis of the power
system’s topology in case studies. In addition, two wind turbines
are added in nodes 5 and 50, and two thermal power units are added
in nodes 8 and 19. The practical renewables and load data are scaled
to fit the parameters of the IEEE 30-node system. This paper focuses
on the evaluation of market participants’ revenues under various
reserve cost allocation mechanisms and explores the mechanisms’
effectiveness. For the sake of simplicity, this paper denotes the three
cost allocation methods introduced in Section 3.2 as M1, M2, and
M3, respectively. The scheduling interval used in the dispatch model
introduced in Section 2 is 1 h. The operating parameters of the
thermal power units in the modified IEEE 30-node system are
detailed in Table 1.

4.2 Analysis of simulation results

4.2.1 Analysis of market participants’ revenues
under different reserve cost allocation
mechanisms

To effectively analyze the impact of the reserve cost allocation
mechanism on market participants’ revenue, this section assumes that

the two introduced typhoon motor groups, labeled W1 and W2, have
identical installed capacities and forecasted outputs. However, the
standard deviation of the forecast error for W1 is 30% of its actual
output, while for W2, it is 20%. Neither wind turbine incorporates ES.
Table 2 presents the revenue of each market entity under various
standby cost allocation mechanisms, with “G” representing all thermal
power units.

Data from Table 2 indicates that, under the allocation mechanism
M1, thermal power units enjoy the highest total revenue. This outcome
is attributed to the fact that in mechanismM1, thermal power units do
not induce additional reserve requirements (as the model does not
consider shutdowns of thermal units), thus exempting them from
bearing the costs associated with reserve capacity. Conversely, under
mechanisms M2 and M3, thermal units incur higher reserve costs,
diminishing their reserve revenue in comparison to M1, which in turn
affects their overall profitability. Consequently, compared to
mechanisms M2 and M3, thermal units’ total revenue under
M1 increased by 3.46% and 3.38%, respectively. Therefore,
mechanism M1 more effectively ensures the profitability of thermal
power units, encouraging them to offer reserve services. In contrast,
under mechanisms M2 and M3, despite providing reserve services, the
associated costs dampen their enthusiasm for offering ancillary services.

A comparison of the energy revenue between wind power units
reveals that W2’s energy revenue is 25.07% higher than that of W1.
This is because W2 exhibits less variability, leading to lower system
reserve requirements per unit of output (i.e., a lesser impact on
reserve requirements), thereby reducing the operational costs
associated with its output. Hence, compared to W1, which has

TABLE 1 Operation parameters of thermal power units.

Unit index Energy bid price
/$·(MW·h)−1

Reserve bid price
/$·(MW·h)−1

Maximum output
/MW

Minimum output
/MW

Ramping capability
/[MW·(5 min)−1]

1 28.50 36.61 70.00 15.00 10.00

2 40.39 38.30 75.00 15.00 10.00

3 36.32 26.32 80.00 10.00 10.00

4 38.27 22.35 60.00 10.00 10.00

5 36.30 25.45 50.00 10.00 10.00

6 23.47 39.74 30.00 15.00 10.00

7 35.64 41.85 60.00 15.00 10.00

8 30.47 34.52 40.00 15.00 10.00

TABLE 2 Earnings of market players under different reserve cost allocation mechanisms.

Cost
allocation
mechanism

M1 M2 M3

Market entity Energy
revenue

Reserve
revenue

Total
revenue

Energy
revenue

Reserve
revenue

Total
revenue

Energy
revenue

Reserve
revenue

Total
revenue

W1 1,611,317 −128,433 1,482,884 1,611,317 −12,673 1,598,644 1,611,317 −16,410 1,594,907

W2 2,015,401 −60,993 1,954,408 2,015,401 −33,645 1,981,756 2,015,401 −40,768 1,974,633

G 14,172,753 1,114,357 15,287,110 14,172,753 603,496 14,776,249 14,172,753 614,356 14,787,109
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more significant fluctuations, the market prefers to accommodate
W2, as evidenced by its substantially higher accepted bid volume (an
increase of 66.21%, as shown in Figure 1), ultimately resulting in
higher energy revenue for W2.

An analysis of the reserve costs associated with wind turbines
reveals that under the M1 allocation mechanism, W2 incurs a lower
reserve cost, constituting only 47.44% of W1’s reserve cost,
attributed to its minimal impact on reserve requirements.
Conversely, traditional cost allocation mechanisms M2 and
M3 allocate reserve costs based on bid quantities, resulting in
W2 incurring higher reserve costs, 165.45% and 148.43% greater
than W1, respectively. Besides, under traditional cost allocation
mechanisms M2 and M3, W2 with fewer uncertainties undertakes
more reserve costs than that allocated to W1. Hence, these
mechanisms do not obey the principle of “who causes, who
shares” and are regarded as unfair (Gazafroudi et al., 2017; Xiang
et al., 2023). By contrast, the M1 mechanism is more favorable for
renewable sources with smaller fluctuations and uncertainties, as it
imposes lower reserve costs on them, thereby incentivizing the
reduction of their fluctuations and uncertainties characteristics.

Regarding the total revenue of wind turbines, under allocation
mechanism M1, W2 achieves not only a higher energy revenue than
W1 but also incurs a lower reserve cost, resulting in a total revenue
increase of 31.79% compared toW1. In contrast, under mechanisms
M2 andM3, the elevated reserve costs borne byW2 lead to a relative
decrease in its total revenue increase to only 23.96% and 23.81%,
respectively, when compared to W1. Analysis of the total revenue
across both turbines under all three mechanisms reveals that
W1 and W2 secure higher revenues under M2 and M3. This

outcome is attributable to the distribution of reserve costs among
thermal power units in M2 and M3, thereby reducing the wind
turbines’ reserve costs and enhancing their total revenue.

In conclusion, the M1 allocation mechanism is more effective in
ensuring the revenue stability of power supply regulation while also
enabling renewable sources with lower fluctuations and
uncertainties to gain a competitive edge in the market (relative to
the revenue increase of newer, high-fluctuation energy sources).
This approach incentivizes renewable entities to minimize their
fluctuations and uncertainties characteristics.

4.2.2 Incentive effect of different reserve cost
allocation mechanisms on configuring energy
storage by renewables

To further assess the validity of various reserve cost allocation
mechanisms, this section will evaluate the impact of ES configurations
with differing capacities and maximum charge/discharge rates in wind
turbine W1. It will also examine the revenue variations of two wind
turbines to understand the motivational effects of these mechanisms on
the integration of ES into renewable sources. It is posited that both wind
turbines, W1 and W2, have identical installed capacities, predicted
outputs, and actual outputs, with the forecast error’s standard deviation
being 20% of the actual output.

Table 3 illustrates the revenue shifts for new energy entities given
an energy storage configuration of 30 MW charging/discharging
power and 200 MWh capacity.

Table 3 demonstrates that equipping wind turbine W1 with ES
significantly mitigates its fluctuations and uncertainties characteristics
and enhances its market competitiveness, leading to an increase in its

FIGURE 1
Comparison of scalars in fans with different bearing coefficients.
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bid-winning capacity. Conversely, this results in a reduction in both the
bid-winning capacity and capacity income of thermal power units.
Furthermore, analyzing the revenue of thermal power units after
integrating ES into W1 under the three allocation mechanisms
reveals an increase in reserve revenue for the thermal motor group
under M1 by 44.49% and 42.82% compared to M2 and M3,
respectively, with total revenue seeing an uptick of 3.36% and
3.24%. This indicates that in scenarios involving renewables
configurations with ES, M1 more effectively safeguards the market
revenue of thermal power units compared to the conventional
mechanisms M2 and M3.

An analysis of W1’s market revenue reveals that integrating
ES leads to a significant improvement in energy revenue, with a
27.51% increase in bid power compared to configurations
without ES. Regarding reserve costs, the M1 allocation
mechanism sees a reduction in W1’s fluctuations and
uncertainties characteristics due to ES installation, thereby
decreasing its impact on reserve requirements and reducing its
reserve costs by 49.61%. Despite the higher investment cost for
ES, W1’s overall revenue post-integration increases by 32.01%.
Conversely, under the M2 and M3 mechanisms, W1 incurs
higher reserve costs (61.09% and 53.00% increases,
respectively) due to enhanced bid-winning power, resulting in
overall revenue growth rates of only 24.58% and 24.44%,
respectively, which are lower than those observed under M1.
In summary, the M1 mechanism more effectively promotes the
enhancement of overall revenue for renewable sources equipped
with ES by encouraging a reduction in fluctuations and
uncertainties through strategic ES allocation, in comparison
to M2 and M3.

Analysis of W2’s market revenue indicates that in scenarios lacking
ES support, W1, and W2 exhibit identical market revenues across all
three reserve cost allocation mechanisms due to their matching
operating parameters. However, upon integrating ES, W1 enhances
itsmarket competitiveness and bid capacity, inversely affectingW2’s bid

capacity. Consequently, W2’s energy revenue decreases by 9.46% in
comparison to scenarios where W1 is not equipped with ES. Regarding
reserve costs, under theM1mechanism,W2 incurs higher reserve costs
owing to its pronounced fluctuations and uncertain characteristics.
Nevertheless, W1’s adoption of ES leads to a system-wide reduction in
reserve costs, thereby diminishing W2’s reserve expenses by 12.52%
relative to scenarios excluding ES. Ultimately, W2’s total revenue
declines by 7.38%; under M2 and M3 mechanisms, due to its lesser
bid capacity, W2’s reserve costs are lower than W1’s and are further
reduced by 11.88% and 13.10%, respectively, compared to scenarios
withoutW1’s ES, culminating in a total revenue reduction of 7.07% and
7.66%. This comparison underlines that traditional mechanisms
M2 and M3, where W1 incurs higher reserve costs post-ES
integration, may deter renewable sources from adopting ES solutions.

This study aims to examine the impact of the M1 allocation
mechanism on incentivizing renewable sources to actively integrate
ES. Figure 2 presents a comparative analysis of the overall revenue
across various renewables units under M1, focusing on
configurations of W1 with diverse ES capacities and
maximum powers.

Figure 2 illustrates that, under the M1 allocation mechanism, as
ES capacity and maximum power enhance, W1’s total revenue
progressively increases. In contrast, W2’s total revenue exhibits a
corresponding decline. Notably, when the ES parameters reach
50 MW/300 MWh, W1’s total revenue surges by 46.73% relative
to scenarios lacking ES, whereas W2’s total revenue diminishes by
15.97%. This pattern underscores that, within the M1 framework,
renewable sources equipped with storage markedly boost their
revenue, whereas those without storage experience a revenue
downturn. Hence, the M1 mechanism effectively motivates the
strategic integration of ES among renewable sources.

In conclusion, the M1 allocation mechanism outperforms
traditional mechanisms M2 and M3 by more effectively securing
power supply revenue adjustments and incentivizing renewable
sources to integrate ES. Consequently, there is a compelling need

TABLE 3 Revenues of each market entity under different reserve cost allocation mechanisms after new ES is configured.

Market
entity

Cost allocation
mechanism

M1 M2 M3

Does
W1 incorporate

ES?

Without
ES

With ES
(30 MW/
200 MWh)

Without
ES

With ES
(30 MW/
200 MWh)

Without
ES

With ES
(30 MW/
200 MWh)

W1 Energy Revenue 1,574,131 2,007,110 1,574,131 2,007,110 1,574,131 2,007,110

Reserve Revenue −134,826 −67,944 −18,637 −30,024 −23,768 −36,365

ES Cost 0 39,169 0 39,169 0 39,169

Total Revenue 1,439,304 1,899,997 1,555,493 1,937,916 1,560,363 1,941,747

W2 Energy Revenue 1,574,131 1,461,887 1,574,131 1,461,887 1,574,131 1,461,887

Reserve Revenue −134,826 −117,943 −18,637 −16,423 −23,768 −21,177

Total Revenue 1,439,304 1,343,943 1,555,493 1,445,463 1,560,363 1,440,710

G Energy Revenue 10,322,660 10,296,755 10,322,660 10,296,755 10,322,660 10,296,755

Reserve Revenue 1,015,278 843,756 544,914 468,326 555,175 482,421

Total Revenue 11,337,939 11,140,512 10,867,575 10,765,082 10,877,826 10,779,177
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to develop a market-driven allocation mechanism aligned with the
principle of “who causes, who shares.” This study presupposes that
renewable sources and loads can precisely forecast the system’s
reserve requirements, thereby achieving the cost allocation principle.
However, this assumption may not hold in real-market operations,
necessitating further investigation by market operators. Such
research is crucial for enhancing the power system’s flexibility
through a well-designed cost-allocation mechanism for
auxiliary services.

5 Conclusion

This study addresses the challenge of enhancing power network
flexibility, which is compromised by the high influx of renewable
sources. We explore a viable reserve cost allocation mechanism to
tackle this challenge. We develop a comprehensive simulation model
that combines long-period market operations with energy-reserve joint
clearing. This model encapsulates the impact of renewable source
prediction errors on system reserve requirements. Furthermore, we
formulate a self-dispatchmodel for the equipped ES to accurately reflect
changes in prediction error post-storage implementation. By
incorporating market clearing mechanisms, we establish a model for
calculating the total revenue of market entities under various reserve
cost allocation schemes. This sets the stage for an in-depth analysis of
how different mechanisms can alleviate the system’s flexibility shortfall.
Using real data from a provincial power grid in China, we conduct a
comparative analysis of the revenues to market participants under
diverse reserve cost allocation frameworks. This analysis helps to
illustrate the potential of these mechanisms to enhance system
flexibility. The key findings are as follows:

(1) In contrast to the traditional allocation mechanisms that
are widely used in the Chinese industry, under the

mechanism that obeys the principle of “who causes, who
shares,” the regulating resources that do not cause the need
for the reserve need not undertake reserve costs. As a
result, the market revenues of regulating resources can
be ensured.

(2) Besides, under the mechanism that obeys the principle of
“who causes, who shares,” the reserve costs allocated to
renewables can be greatly reduced by equipping ESs. As a
result, their market revenues can be significantly improved
(including the costs of ESs). By contrast, the market revenues
of renewables without equipped ESs are decreased.

In summary, this research demonstrates that the “who causes,
who shares” allocation mechanism not only effectively ensures and
stabilizes the revenue of power suppliers but also motivates
renewable entities to diminish their fluctuations and uncertainties
traits through the adoption of ES. This approach holds significant
potential for enhancing the power system’s flexibility and addressing
its current limitations.
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FIGURE 2
Overall revenues of renewables under the M1 allocation mechanism when supporting ES parameters change.
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Nomenclature

g, G Index and set for generators

v, V Index and set for renewables

d, D Index and set for load

es, ES Index and set for energy storage

j, J Index and set for buses

l Index for branches

k, K Index and set for the day

t, T Index and set for dispatch intervals

bt,kE,g Energy bid of generator g in the tth dispatch interval ($/MWh)

bt,k,UP/DN
R,g

Regulation-up/down mileage bid of genera-tor i in the tth dispatch
interval ($/MWh)

Pt,k
g

Planned output of thermal power units

Rt,k,UP/DN
g

Upper/lower reserve capacity by thermal power units

Ct,k
r

The cost associated with renewables curtailment and load shedding

rv/d The per-unit cost of renewables curtailment/load shedding

Pt,k,f
v/d

The forecasted output of renewable and predicted load demand

Pt,k
v/d

The actual output of renewable and actual load demand

Ct,k
g ,U/D

Startup and shutdown costs of thermal power units

Kg The unit startup costs of thermal power units

Mg The unit shutdown costs of thermal power units

ut,kg The binary variable indicates the operational status of thermal power
units

Hl,j The transfer distribution factors between injection power and active
power flow

Ajg The correlation matrix between thermal power unit indices and node
indices

Ajv The correlation matrix between renewable unit indices and node indices

Pmax /min
l Maximum/minimum transmission power

σt,k,l+/−l
Dual multipliers of line flow constraints

σt,kb Dual multipliers of power balance constraints

Rt,k,UP/DN
sys

System upward/downward reserve requirements

πdi/vi The impact of load/renewable on system reserve requirements

λt,k,UP/DN
R

Dual multipliers of system upward/downward reserve requirement
constraints

|et,k | Forecast errors in renewables

Pt,k,a
v

The historical actual output of renewable

χt,kes,cha/dis Integer variables for the charging/discharging state of energy storage

Pt,k
es,cha/dis

Charging/discharging power of energy storage

Pt,k,max
es,cha/dis

Maximum charging/discharging power of energy storage

κmin /max
es The maximum/minimum energy coefficients allowed for energy storage

Ecap Maximum energy capacity of energy storage equipment

Et,k
es

Energy capacity of energy storage

αes The natural decay rate of energy storage

δes,cha/dis Charging/discharging efficiency of energy storage

Δt Time granularity of each dispatch period

St,kv/d Reserve costs are borne by renewable/load

Skp,d/v/g Reserve costs that each market member needs to bear

Zk
s

Total reserve revenue of all thermal power units on the kth day

αd/v/g Allocation coefficients of various market entities

Wk
d/v/g

Total reserve costs that each market entity needs to bear

εes Power degradation cost per unit for energy storage

R Number of periods per day in long-term simulations

L Total number of simulated days

Ccp, es Initial investment costs

Wes Annual interest rate lifespan of energy storage units

f Annual interest rate

Et,k
es,om

Maintenance cost per unit of power for energy storage
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