Introduction: The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) initiated a process in 2012 to revise the S1B Guideline “Testing for Carcinogenicity of Pharmaceuticals”. Previous retrospective analysis indicated the importance of histopathological risk factors in chronic toxicity studies, evidence of endocrine perturbation, and positive genetic toxicology results as potentially predictive indicators of carcinogenic risk. In addition, a relationship between pharmacodynamic activity and carcinogenicity outcome in long-term rodent studies has been reported. It was postulated that these factors could be evaluated in a Weight-of-Evidence (WoE) approach to predict the outcome of a 2-year rat study.
Methods: The ICH S1B(R1) Expert Working Group (EWG) conducted a Prospective Evaluation Study (PES) to determine the regulatory feasibility of this WoE approach. Drug Regulatory Authorities (DRAs) evaluated 49 Carcinogenicity Assessment Documents (CADs), which describe the WoE for submitted pharmaceutical compounds. Each compound was categorized into a carcinogenic risk category including a statement of the value of the 2-year rat study. The outcome of the completed 2-year rat studies was evaluated in relation to the prospective CAD to determine the accuracy of predictions.
Results: Based on the results of the PES, the EWG concluded that the evaluation process for assessing human carcinogenic risk of pharmaceuticals described in ICH S1B could be expanded to include a WoE approach. Approximately 27% of 2-year rat studies could be avoided in cases where DRAs and sponsors unanimously agreed that such a study would not add value.
Discussion: Key factors supporting a WoE assessment were identified: data that inform carcinogenic potential based on drug target biology and the primary pharmacologic mechanism of the parent compound and major human metabolites; results from secondary pharmacology screens for this compound and major human metabolites that inform carcinogenic risk; histopathology data from repeated-dose toxicity studies; evidence for hormonal perturbation; genotoxicity data; and evidence of immune modulation. The outcome of the PES indicates that a WoE approach can be used in place of conducting a 2-year rat study for some pharmaceuticals. These data were used by the ICH S1B(R1) EWG to write the R1 Addendum to the S1B Guideline published in August 2022.
The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.