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Editorial on the Research Topic

Neural & Bio-inspired Processing and Robot Control

INTRODUCTION

The special issue on Neural & Bio-inspired Processing and Robot Control has successfully
completed its 3 years of activity. In the beginning, we anticipated that the modern understanding
of the biological and neurological system can drive the progress in robotics research in the forward
direction. This special issue was started with the aim to promote the inter-disciplinary interaction
between bio-inspired systems, and robotics. The profound understanding of both biological and
robotics systems will help in bridging the gaps in our understanding of complex problems.

ABOUT THE RESEARCH TOPIC

We are pleased to present 11 research articles, related to robot control, motion planning, and
learning. 59 authors from several Asian and European institutions contributed to these articles. The
contributions presented in this special issue are focused on the application of bio-inspired insight
for the improvement in performance and accuracy of robotic systems. Thus it can be claimed that
this special issue plays an important role in the development of a rapidly growing field of research
(Cuperlier et al., 2007; Pfeifer et al., 2007; Arbib et al., 2008; Khamassi et al., 2011; Caluwaerts
et al., 2012; Li and Zhang, 2018) at the intersection of bio-inspired systems and robotics. In our
selection of the research topics, we classified the contributions into two main groups: (a) those
applying the insight obtained from the biological systems to improve the performance and accuracy
of the control algorithms in robots and (b) those applying the latest developments in neuro-sciences
to develop intelligent robotic systems capable of autonomous decision making. We believe that
the impact of this research topic can be better described in term of the improvements in robotic
systems performance and development of intelligent algorithms by taking inspiration from simple
biological mechanisms present in the nature.

One of the novel contribution in this special issue presents an intention-driven mechanism
to help the severely disabled people in performing daily tasks (Zhang et al.). They used non-
invasive brain machine interface to decode the human intentions and developed a robot which
can perform the tasks accordingly. Another contribution presents how the learning algorithms can
be applied to teach a robot to perform different tasks (Lauretti et al.). Such medical applications
of robotics system will greatly help in improving the life quality of patients suffering from severe
disabilities. Another similar work uses fNIRS as a non-invasive brain machine interface to control
the quadcopter using human thoughts (Khan and Hong.).

4

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00072
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00072&domain=pdf&date_stamp=2018-11-08
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shuaili@polyu.edu.hk
https://doi.org/10.3389/fnbot.2018.00072
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00072/full
http://loop.frontiersin.org/people/616743/overview
http://loop.frontiersin.org/people/348137/overview
http://loop.frontiersin.org/people/376644/overview
http://loop.frontiersin.org/people/349089/overview
https://www.frontiersin.org/research-topics/5239/neural-bio-inspired-processing-and-robot-control
https://doi.org/10.3389/fnbot.2017.00048
https://doi.org/10.3389/fnbot.2018.00005
https://doi.org/10.3389/fnbot.2017.00006


Khan et al. Bio-inspired Processing and Robot Control

Another novel contribution presented in this special issue
includes the development of noise tolerant and robust schemes
for the robot’s motion planning in complicated environments
while minimizing the effect of model uncertainties and errors
[Ding et al.; Yang et al.; Guo et al.). Besides, another contribution
focuses on the theoretical analysis of the genetic algorithms for
safety-critical robotic applications and presents mechanisms to
prove their safety (Zhang et al.).

Redundancy resolution of redundant robotic manipulators
(Jin et al.), motion planning (Xiao et al.; Guo et al.), and
control and development of control algorithms to enable
the robots to perform human-like postures, gestures, and
movements (Tommasino and Campolo) also happens to
be a topic of great interest for the contributions in this
special issue. Such work will greatly improve the quality
of interaction between humans and robots, paving the way
for seamless incorporation of robotic system in our daily
life.

NEXT STEP

With the tremendous success of the past three Special issues
of this Research Topic, we will ask for contributions to these
research topics again in next year. We hope that our efforts
will contribute to accelerating the robotic research and bridge
the inter-disciplinary gaps between the bio-inspired systems,
neuroscience, and robotics.
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An Intention-Driven
Semi-autonomous Intelligent
Robotic System for Drinking
Zhijun Zhang, Yongqian Huang, Siyuan Chen, Jun Qu, Xin Pan, Tianyou Yu and
Yuanqing Li*

School of Automation Science and Engineering, South China University of Technology, Guangzhou, China

In this study, an intention-driven semi-autonomous intelligent robotic (ID-SIR) system is
designed and developed to assist the severely disabled patients to live independently.
The system mainly consists of a non-invasive brain–machine interface (BMI) subsystem,
a robot manipulator and a visual detection and localization subsystem. Different from
most of the existing systems remotely controlled by joystick, head- or eye tracking, the
proposed ID-SIR system directly acquires the intention from users’ brain. Compared with
the state-of-art system only working for a specific object in a fixed place, the designed
ID-SIR system can grasp any desired object in a random place chosen by a user and
deliver it to his/her mouth automatically. As one of the main advantages of the ID-SIR
system, the patient is only required to send one intention command for one drinking
task and the autonomous robot would finish the rest of specific controlling tasks, which
greatly eases the burden on patients. Eight healthy subjects attended our experiment,
which contained 10 tasks for each subject. In each task, the proposed ID-SIR system
delivered the desired beverage container to the mouth of the subject and then put it
back to the original position. The mean accuracy of the eight subjects was 97.5%, which
demonstrated the effectiveness of the ID-SIR system.

Keywords: assistive robot, neural network, semi-autonomous control, brain–machine interface, object recognition
and localization

1. INTRODUCTION

Independent living is essential for the patients with motor deficit due to stroke, spinal cord injures,
etc. (Kim et al., 2012; Carlson and del RMillan, 2013; Susko et al., 2016). In order to assist the patients
to live independently, intelligent robotics technology is an attractive solution (Hochberg et al., 2012;
Wu et al., 2015; He et al., 2016).

With less burden during the task execution period, it is a challenging work to accurately and real-
time obtain the intentions of patients, locate the desired object, and efficiently control the robot
manipulator to grasp the object and deliver it to the user. Evidently, intention obtaining approach,
robot control, and object perception are three key points.

1.1. Intention Obtaining Approach
Brain–machine interface (BMI) technology is one of the favored solutions, as it can decode directly
the users’ intentions in terms of their brain signals without nervous peripherals. In 1999, some
researchers applied the invasive BMI to train rats to control a robot arm (Chapin et al., 1999).
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In 2011, Kim et al. (2011) used the microelectrode array signals
to control a point-and-click cursor, which made it possible for
patients with tetraplegic to use the computer. Later, as a repre-
sentative work, Hochberg et al. (2012) proposed an invasive BMI
technology based on the microelectrode array signals, allowing
two patients with long-standing tetraplegia to control a robotic
arm for drinking. Even though the invasive BMI is a good solution,
it needs an operation on users in advance. The patients may
suffer from the expensive craniotomy and additional risks, such as
infections and side effects from operations. Therefore, atraumatic
non-invasive BMI technology is a better choice for most people.

As Onose et al. pointed out, EEG is the only realistically prac-
tical non-invasive BMI approach at present among the existing
non-invasive BMI technologies, because it is relatively affordable
and easy to set-up (Onose et al., 2012; Ferracuti et al., 2013;
Li et al., 2013, 2016; Yu et al., 2013). Other non-invasive BMI
technologies, such as functional magnetic resonance imagery,
magneto-encephalography, and positron emission tomography,
are quite expensive and not portable in terms of the size and
electrical energy usage (Onose et al., 2012). Therefore, a number
of EEG-based BMI paradigms and systems are exploited and
developed in recent years (Schröer et al., 2015; Wang et al., 2015).
Active/voluntary paradigm (e.g., Motor imagery, for short as MI)
and passive paradigm (e.g., P300 and steady-state evoked poten-
tials, for short as SSVEP) are two basic strategies for the inter-
action between users and computers. Although some researchers
employed the MI-BMI to control a robot arm to perform a task
of picking and placing (Wang et al., 2015), the disadvantages
are inherent and difficult to accept, such as less control options,
more preliminary training, low accuracy, and instability (Li and
Yu, 2015). By contrast, P300 evoked potential is more suitable to
detect users’ intention. It has been verified that the P300 allows
very high accuracy and more optional orders with little training
time (less than 5min), which is essential in practical applications
(Prezmarcos et al., 2011; Li and Yu, 2015). In addition, P300-BMI
systems do not require subjects to learn how to modulate their
EEG, and the P300-BMIwas about two times faster than the equiv-
alent Mi-BMI systems (Prezmarcos et al., 2011). A comparison
research between P300-BMI system and SSVEP-BMI system has
also proved that P300-BMI is more robust for subjects, though
SSVEP-BMI has higher bit rate (Lijing et al., 2012). Moreover, the
SSVEP-BMI needs to flash consistently in real time to obtain the
corresponding signals, which is more tiresome for users. Consid-
ering the safety, robustness and less burden, P300-BMI system is
more suitable and applied in the ID-SIR system.

In order to improve the accuracy and information transmission
rate, efficient classification algorithms are necessary. Among
numerous P300-BMI applications, support vector machine
(SVM) and linear discriminant analysis (LDA) have been used to
achieve acceptable results (Lenhardt et al., 2008; Schröer et al.,
2015; Simbolon et al., 2015). As pointed out in Lenhardt et al.
(2008), compared with other complex classifiers such as SVM,
LDA was capable due to its good classification performance as
well as low computational and training requirements. Hoffmann
et al. successfully applied the LDA to obtain high classification
accuracies and bit rates for severely disabled subjects (Hoffmann
et al., 2008). Different from most existing LDA-P300 systems

with a fixed training-round number (Townsend et al., 2010;
Akram et al., 2015; Chang et al., 2016), a self-adaptive Bayesian
linear discriminant analysis algorithm is exploited in this paper
to classify the P300 signals to obtain the user’s intention. It
can effectively decrease the cost of recognition time. The user’s
intention is then translated into control commands that are used
to control the robot manipulator to execute desired tasks.

1.2. Robot Control
For the severely disabled patients, the less brain burden the
system brought in, the better patients may feel. The designed
intention-driven semi-autonomous intelligent robotic (ID-SIR)
system seeks to decrease the need for user continuously sending
commands through “shared control” to realize it. Here, shared
control means that it is a semi-autonomous robot, which only
needs very limited high-level commands of users. It indicates that
users do not need to continuously send instructions to the BMI
system. In practical applications, the user only needs to send one
command to “tell” the BMI block which object is desired. All the
other work will be finished automatically by the robot.

1.3. Object Perception
Object perception is realized by embedding with the computer
vision. Considering the complexity of objects in home/hospital
environments, a region-growing algorithm, and a deep convo-
lutional neural network (CNN) are implemented in the system
for cup detection, as well as a depth information based vision
localization technology is exploited and applied. Compared with
the state-of-art system with color-based classifier (Schröer et al.,
2015), the deep CNN method is more powerful and accurate.
For instance, robot in Schröer et al. (2015) can only grasp a very
specific cup in a predefined place, but the proposed ID-SIR system
can grasp any learnt object from any initial position in the range
of vision and robot attainability.

Before ending this section, the main contributions of this paper
lie as below.

• A non-invasion type intention-driven semi-autonomous intel-
ligent robotic (ID-SIR) system is designed to assist severely
disabled users for drinking. To the best of authors’ knowledge,
it is the first time to realize a non-invasion typemind controlled
robot to grasp a desired object in a random place and deliver it
to the user’s mouth.

• A novel depth camera-based visual detection and localization
method is employed in the perception layer of the proposed
ID-SIR system, which can recognize and locate the desired
beverage container in any place in the range of visual and robot
reachable regions and the user’s month.

• A self-adaptive Bayesian linear discriminant analysis algorithm
is applied to the proposed ID-SIR system, which can effectively
decrease the cost of recognition time.

• Experiments and user studies are presented to verify the effec-
tiveness, robustness, and high accuracy of the proposed ID-SIR
system.

The remainder of this paper is organized in four sections.
Section 2 presents thewhole system in detail. Themethods used in
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the ID-SIR system are stated in Section 3. The experiment results
are discussed in Section 4. Section 5 concludes this paper with
final remarks.

2. SYSTEM OVERVIEW

In this section, the working mechanism and information trans-
mission process of the proposed ID-SIR system (as shown in
Figure 1) is stated in detail. From Figure 1, we can see that the
ID-SIR system includes triple layers, i.e., the perception layer,
decision-making layer, and execution layer. The perception layer
of the system includes a P300-based brain–machine interface
subsystem and a visual detection and localization subsystem.
The decision-making layer is about how to convert and transmit
the intention of users to the control commands of robots. The
execution layer is used for robot control.

First, in the BMI subsystem, an EEG cap and a direct-current
amplifier (NuAmps) are applied to acquire brain signals. After
preprocessing of the signals and feature extraction, a self-adaptive
Bayesian linear discriminant analysis (SA-BLDA) algorithm is
employed for classification, and the intention of the user is
obtained. Finally, an intention command is sent to the decision-
making layer and the visual detection and localization subsystem
as an output signal.

Second, in the visual detection and localization subsystem, two
Microsoft Kinects are applied as the vision input sensors.With the
help of region growing algorithm and deep neural network, the
positions of the beverage containers are detected and obtained.
Applying the Kinect software development kit (SDK), the position

FIGURE 1 | System architecture of the ID-SIR system.

information of the user’s mouth is detected. The position infor-
mation of the desired beverage container and the user’s mouth are
then sent to the decision-making layer in real time.

Third, the decision-making layer works as a connector and
coordinator between the other modules, which is responsible
for information transition and decision-making. It should decide
when and how to deliver which beverage container to the mouth
of the user according to the inputs from perception layers and
feedback from the execution layer.

Fourth, in order to grasp the desired beverage container and
deliver it to themouth flexibly, a robot manipulator of six degrees-
of-freedom (DOF) with three fingers (KINOVA JACO2 robot
manipulator) is applied. Through motion planning and control,
the executive commands, generated by the decision-making layer,
are well preformed on the robot manipulator to move along the
expected path and finish the drinking task.

3. METHODS

In this section, the algorithms and working mechanism of three
layers in the ID-SIR system are presented in detail. Specifically, it
includes perception layer (including BMI and computer vision),
decision-making layer, and execution layer.

3.1. Brain–Machine Interface
In this section, the BMI subsystem of the proposed ID-SIR system
is stated in detail. Specifically, it includes data acquisition and
amplification, graphical user interface, time series and control
mechanism, and mapping intentions to execution commands.

3.1.1. Data Acquisition and Amplification
First of all, EEG cap is worn by the user and the software setting
is prepared. With the application of the cap, the scalp signals
referenced to the right ear are detected.

In the experiment, a 32-channel Quik-CapTM (from Com-
pumedics, Neuroscan, Inc.) is employed. The horizontal elec-
trooculograph (HEOG) and vertical electrooculograph (VEOG)
are about eye movements that are not necessary in our data
analysis process. Therefore, the two channels are ignored in the
designed BCI of the ID-SIR system. The corresponding names of
electrodes and distribution of remaining 30 channels are shown
in Figure 2. As the P300 signals are mainly produced in parietal
lobe and occipital lobe, most of the sampling electrodes distribute
in these zones.

Second, the captured EEG signals from the cap is ampli-
fied, recoded, and transmitted to the computer by a NuAmps
device (Compumedics). In the signal acquisition process, all the
impedances of the electrodes should be less than 5KΩ, the sam-
pling rate of the signals is 250Hz, and the output band pass of the
NuAmps device is between 0.5 and 100Hz.

3.1.2. Experiment GUI Design
In order to attain the user’s intention to control the robot manipu-
lator to deliver the object (such as a bottle or a cup) to themonth of
the user, a P300-based speller system with 4 symbols are designed
(seeFigure 3). It is displayed as a 2× 2matrices, and each button is
attached with a white word and black background in idle periods.
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FIGURE 2 | Distribution of the 30 electrodes (expect referenced electrode and
ground electrode).

FIGURE 3 | GUI of the proposed ID-SIR system.

As can be seen from Figure 3, the 4 symbol buttons of the GUI are
“cup1,” “cup2,” “cup3,” and “back.” Here, the number of symbols
denotes the intention which can drive the robot to grasp the ith
object (cup/bottle) and deliver it to the user’s mouth (i= 1, 2, and
3). Symbol button “back” denotes the intention that drives the
robot to put the object back.

3.1.3. Time Series and Control Mechanism
In the proposed ID-SIR system, the user’s intention is recognized
by a self-adaptive P300-based BMI system that works with the
time series shown in Figure 4. When the button flashes, it changes
into green background and black words.

A session is a user’s off-line training or online testing time
period, i.e., a subject’s time cost in the training/testing experiment.
In the training process, a character training time is a trial; and in
the testing process, a character recognition time is a trial.

In the proposed ID-SIR system, one session includes N trials
and each trail corresponds to the recognition time cost of a symbol
button. Moreover, one trial is divided intoM rounds. The number
of roundsM is a self-adaption value determined by the user’smen-
tal state. The timeperiod of a round spans from the flash of the first
button to the recover of the final button. The corresponding time
is denoted by tround. In general, the more rounds it takes, the more
accurate the recognition will be and the more time the system will
spend.

In order to enhance the efficiency, a small number of rounds
are expected if the accuracy is satisfied to some extent. According
to the actual applications, a trial is set as 10 rounds in the proposed
ID-SIR system. Each of the four buttons flashes only once per
round, and the total time cost of a round is tround = 1.2 s. The stim-
ulus duration is the time cost when one button keeps continuous

FIGURE 4 | Time series chart of one session: M trials per session and
N rounds per trail.

lighting. In this system, the stimulus duration is 100ms.Moreover,
it is not necessary to start one button’s flashing after others finish.
The delay time between one button’s flash and another button’s
staring point is called inter-stimulus interval (ISI). The ISI is
200ms in the ID-SIR system. An epoch is the time period within
which P300 signal is recorded and detected. In other words, the
P300 signal can be found in an epoch if the user pays attention to
the flash button during the corresponding epoch. In the ID-SIR
system, tepoch = 600ms.

3.1.4. Mapping Intentions to Executive Commands
In order to accurately map the intentions to task commands, a
GUI and a decision-making block are necessary. As can be seen
from Figure 3, there are four executive commands totally, i.e.,
“cup1,” “cup2,” “cup3,” and “back.” During the task execution,
the flashing button stimulates the eyes, and the P300 signals are
detected, recognized, and converted to executive commands. The
robot manipulator is driven by the executive commands to deliver
the expected cup to the user’s month.

To do so, a self-adaptive Bayesian linear discriminant analysis
(SA-BLDA) algorithm is exploited. In this self-adaptive algorithm,
the round number M is dynamically and automatically deter-
mined on the basis of the user’s mind state and the quality of the
signals. The presented SA-BLDA algorithm considers both of the
accuracy and the recognition speed.

3.1.4.1. BLDA Algorithm Description
To recognize the acquired P300 signals, a Bayesian linear discrim-
inant analysis (BLDA) is exploited in the proposed ID-SIR system.
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Considering a regularization parameter, the BLDA algorithm can
avoid overfitting problem (Hoffmann et al., 2008).

(a) Assume that a training set (x, t) consists of P sampling points,
denoted by vector x ∈ RP, and x= (x1, · · · , xP)T. Since we
need to estimatewhether it is a P300 signal or not, it is a logical
problem, and thus target value t ∈ {−1, 1}.

For Bayesian regression theory, target values t consists of x
linearly weighted by w with Gaussian noise nnoise as bellow.

t = wTx + nnoise. (1)

The uncertainty over the value of the target variable can be
described by using a Gaussian probability distribution. That is to
say, t has a Gaussian distribution with the mean µ=wTx, and the
variance σ2 =β−1, i.e.,

p(t|x,w, β) = N
(
t|µ, σ2

)
= N

(
t|wTx, β−1

)
, (2)

where parameter β is the reciprocal of the variance, which denotes
the precision of the Gaussian probability distribution.

For the convenience of analysis, we suppose the P300 signals of
all the trials are independently and identically distributed. If the
number of training samples is denoted by Q, for Q independent
experiment samples and P total sampling numbers, inputs X can
be denoted as X = {x1, x2, · · · , xQ} ∈ RP×Q. Considering the
number of functional keys K, number of trails N, and number
of rounds M, the experiment samples Q=N ·M ·K. If CChannels
channels are used, and the sampling number of a section selected
P300 signal is denoted by SSamples, the total sampling number
P=CChannels·SSamples. According to the definition of a joint proba-
bility, the joint probability of independent experiment samples is
determined by the product of the marginal probabilities for each
sample value separately. Therefore, the likelihood function is

p(t|X,w, β) =
Q∏

n=1
N
(
tn|wTxn, β−1

)
,

=
(

β

2π

)Q/2
· exp

(
−β∥XTw − t∥2

2

)
. (3)

(b) For utilizing the Bayesian framework and for the convenience
of analysis, a prior distribution over the polynomial coeffi-
cients w is considered. For simplicity, a zero mean Gaussian
distribution is formulated as

p(w|α) = N
(
w|0, α−1I

)
=
( α

2π

) P+1
2
( ϵ

2π

)
exp
(
−α

2
wTI′(α)w

)
, (4)

where parameter α decides the precision of this Gaussian distri-
bution. For the linear regression with Pth order polynomial, the
total element number of feature vector w is P+ 1. In practical
applications, parameter ε is usually a small value.Matrix I is a unit
matrix, and I′(α) is

I′(α) =


α 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · ϵ

.

Based on Bayes theorem (Bishop, 2006), the posterior distribu-
tion for w is

p(w|X, t, α, β) =
p(t|w, β)p(w|α)∫
p(t|w, β)p(w|α)dw

. (5)

For simplify, training set {X, t} can be replaced by D. Equation
(3) is reformulated as

p(D|w, β) =
(

β

2π

)Q/2
· exp

(
−β∥XTw − t∥2

2

)
, (6)

and equation (5) can be rewritten as

p(w|D, α, β) =
p(D|w, β)p(w|α)∫
p(D|w, β)p(w|α)dw

. (7)

From equation (7), we see that the posterior distribution of w
is proportional to the product of the prior distribution and the
likelihood function, i.e.,

p(w|D, α, β) ∝ p(D|w, β)p(w|α), (8)

where w can be determined by finding the most probable value of
w given data set {X, t}. In equation (8), the likelihood p(D|w, β)
and prior p(w|α) are computed by equations (6) and (4), respec-
tively. The posterior distribution of w is Gaussian because both
of the prior and likelihood are Gaussian, and the mean m and
covariance C are

m = β
(
βXXT + I′(α)

)−1
Xt, (9)

C =
(
βXXT + I′(α)

)−1
, (10)

where α and β can be computed by an iterative algorithm
(Mackay, 1992).

(c) When a new input sample x̂ is obtained, the distribution
function of its predictive regression value t̂ is

p(̂t|β, α, x̂,D) =
∫

p(̂t|β, x̂,w)p(w|β, α,D)dw. (11)

The predictive distribution (11) is also a Gaussian distribution,
and the mean and variance are, respectively, as

µ = mTx̂, σ2 = 1/β + x̂TCx̂. (12)

In this ID-SIR system, the decision is made by mean µ.

3.1.4.2. Self-Adaptive Algorithm Design
First, during each stimulus period, epoch data need to be pre-
processed. Specifically, the sampled EEG data (about 150 discrete
points) in 600ms in each channel are filtered by a narrowband
filter with frequency 0.1–20Hz. In order to compress the data,
the narrowband signal data are then sampled again once every
6 points. They are denoted by symbol SSamples (see Figure 5). All
the 30-channel signals (i.e., CChannels = 30) are combined as a new
vector xwithP=CChannels·SSamples dimensions. During online test,
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FIGURE 5 | Elements of matrix X. (The individual agrees to publish his photo).

4 functional keys flash per round, and we can get 4-epoch EEG
data. It means 4 feature vectors can be obtained at each round.

Second, in order to recognize the 4 characters (i.e., “cup1,”
“cup2,” “cup3,” and “back”), an SA-BLDA algorithm is exploited,
and the corresponding flowchart is shown in Figure 6. When the
first P300 signal of one trail comes, the round numberM is set to
zero after the system initializes.When a new EEG signal including
4-epoch data of a new round comes, the round number M is set
to beM+ 1. Afterward, all the EEG signal data of 4 epochs at the
Mth round are preprocessed and 4 feature vectors are constituted
(each vector includes 30 channels data). The algebraic mean value
of the previousM rounds feature vectors is computed. In the SA-
BLDA algorithm, 4 characters are used, so 4 averaged eigenvectors
corresponding to the 4 characters are obtained (i.e., each character
corresponding to one x̂ in (12)). From equation (12), 4 regression
scores (i.e., µ in equation (12)) can be obtained. These scores are
then normalized between 0 and 1, and denoted by notation S.
Parameters Mmin and Mmax denote the minimum and maximum
number of repeated rounds, respectively. In the proposed ID-SIR
system, Mmin = 3 and Mmax = 8. Threshold θ0 is set in view of
training results. The specific selection method is described in the
next section.

3.1.4.3. Selection of Threshold Parameter θ0
Selection of threshold parameter θ0 is a balance issue between
classification accuracy and information transfer rate (ITR). A
practical system is expected to have high classification accuracy
and ITR. To achieve this aim, curves of accuracy and ITR with
various θ0 are firstly presented. In the ID-SIR system, since the
ITR drops while θ0 increases, θ0 is set at the point where the curve
of accuracy first reaches its highest value. A concrete application
example is illustrated in Section 4.

3.2. Visual Detection and Localization
In order to realize the automatic task of assistive drinking, it is
essential to recognize and locate the desired object as well as the

FIGURE 6 | Online classification process of the SA-BLDA Algorithm.

user’smouth. As shown inFigure 7, twoKinect sensors are applied
to execute perception tasks. One is placed in front of the user
to detect the position of the user’s mouth, while the other is set
up beside the table to recognize and locate the cup, bottle, and
pop can. The robot manipulator is placed on one side of the table
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FIGURE 7 | An illustration of coordinate transformation.

between Kinect and the user’s chair. In the ID-SIR system, the
desired object (such as a cup, a bottle, and a pop) can be put at
anywhere in the cross field of Kinect’s scanning zone and robot
manipulator’s working region (i.e., the area around the black and
white calibration board in Figure 7).

In the ensuing sections, the coordinate transformations from
camera coordinate system to the world coordinate system and
further to the robot coordinate system are first discussed. The
methods of the mouth and object (cup, bottle, and pop can)
detection and localization are then analyzed in detail.

3.2.1. Coordinate Transformation
In order to control the robot manipulator to grasp and move
an object, the position information of the object in the robot
coordinate system needs to be known.

First, camera calibration and transformation from the camera
coordinate system to the calibration-board coordinate system are
implemented.

The camera coordinate systems of two Kinects (denoted by K1
and K2), calibration-board coordinate systems (denoted by C1
andC2), and robot coordinate system (denoted by R) are shown in
Figure 7. The relationship between the camera coordinate system
and the calibration-board coordinate system is formulated as

XK
YK
ZK
1

 =
[K
CR K

CT
0 1

]
XC
YC
ZC
1

, (13)

where XK, YK, and ZK represent the three-dimensional position
information in the camera coordinate system of Kinect; XC, YC,
and ZC represent the three-dimensional position information in
the calibration-board coordinate system; K

CR and K
CT stand for

rotation matrix and translation matrix.
In the ID-SIR system, a common camera calibration method

is used to determine intrinsic and extrinsic parameters of Kinect

(Zhang, 2000), with which parameters K
CR and K

CT are obtained.
By using the SDK of Kinect, the three-dimensional position infor-
mation of all the points of the object is obtained. The method of
getting the three-dimensional position information of the object
and mouth in the camera coordinate system will be illustrated in
the following sections.

Second, the three-dimensional position information of the
object andmouth in the camera coordinate system is transformed
into the calibration-board coordinate system as

XC
YC
ZC
1


Obect

=
[K
CR K

CT
0 1

]−1


XK
YK
ZK
1


Object

, (14)

where K
CR and K

CT are obtained during camera calibration of
Kinect.

Third, the three-dimensional position information of the object
and mouth in the calibration-board coordinate system is trans-
formed into the robot coordinate system as

XR
YR
ZR
1


Obect

=
[R
CR R

CT
0 1

]−1


XC
YC
ZC
1


Object

, (15)

where R
CR and R

CT stand for rotationmatrix and translationmatrix.
Fourth, the three-dimensional position information of the

object (cup, bottle, and pop can) and mouth in the robot coor-
dinate system are sent to decision-making layer to implement the
drink delivering task.

3.2.2. Object Detection and Localization
As mentioned above, a Kinect sensor is employed to collect the
three-dimensional point cloud in the camera coordinate sys-
tem. We first implement a plane extraction algorithm for back-
ground detection and elimination. Next, an object segmentation
in the non-background proportion of the point cloud is applied.
According to the collection of potential objects’ three-dimensional
point sets in the camera coordinate system, the corresponding
RGB images of potential objects are isolated and identified with
the recognition algorithm based on the library which includes
images of the target object. After the recognition and coordinate
transformation, the three-dimensional position information of
the selected potential object in the robot coordinate system is
obtained and sent to the decision-making layer to implement
robot manipulator control.

3.2.2.1. Background Extraction
In order to recognize and locate the desired object on the
table rapidly and accurately, plane extraction for background–
foreground separation is essential. In the ID-SIR system, a region
growing (RG) algorithm is exploited to search the horizontal
background plane HPlane.

In the point cloud, we assume that the horizontal plane is a
plane where all the normal vectors of points are nearly perpendic-
ular. According to this assumption, all the neighboring points with
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nearly perpendicular norm vectors are considered as the points
on the same horizontal plane. Based on this hypothesis, the RG
algorithm is developed, and the corresponding flowchart is shown
in Figure 8.

First of all, the normal vectors of each point in the point cloud
are calculated. Without loss of generality, the point P, whose
coordinate information is (xk, yk, zk) in the point-cloud space (or
termed camera coordinate system), maps to the point of which
the pixel coordinate is (ik, jk) in the pixel space (or termed image
coordinate system). As shown in Figure 9, the normal vector v⃗P of

FIGURE 8 | A flowchart describing the procedure of the region growing
algorithm.

FIGURE 9 | An illustration of normal vector v⃗p of point Pk.

point Pk is computed as

v⃗P = v⃗1 × v⃗2, (16)

where v⃗1 = P1 − P3 and v⃗2 = P2 − P4, P1(ik, jk−1), P2(ik+1, jk),
P3(ik, jk+1), and P4(ik−1, jk) are the four surrounding points beside
Pk in the image coordinate system. All the normal vectors of the
points in the point cloud are computed according to equation (16).

Second, search all the normal vectors that are nearly parallel
to the perpendicular direction and add them into a potential
horizontal plane set MPoint. Here, the point Pk can be seen as a
seed (i.e., a starting point) of the region growing, in which the
four surrounding points PS of the seed are checked whether their
normal vectors are perpendicular and the distance DS between PS
and the seed are smaller than a threshold value DThreshold.

The surrounding qualified points are collected into the poten-
tial planar point set MPoint and inserted into a queue. They work
as new seeds of the region growing. The circulation of the region
growing will stop only when the queue is empty. Moreover, if
the number of potential point set nMPoint is larger than a certain
value nC, the potential planar point setMPoint would be added into
the plane set CPlane. Finally, when the scanning of all the normal
vectors v⃗P is completed, the plane set CPlane will be output as the
horizontal plane HPlane.

3.2.2.2. Object Segmentation
In order to segment the expected object from the background,
convex hull searching and two-times region growing (RG) algo-
rithms are exploited. The flowchart of the algorithm is shown in
Figure 10. The schematic diagram of two-times region growing
algorithm is illustrated in Figure 11.

First, according to plane set CPlane, the convex hulls of objects
in the RGB image are computed. A convex hull is the minimum
polygon, which roughly describes the outline of an object.

Second, two-times region growing algorithm is proposed to
obtain a complete object. The first-time region growing is applied
to obtain all the point sets within the convex hulls, and the second-
time region growing algorithm is used to handle the convex hull
boundary so as to obtain a complete object. Specifically, there are
three steps.

• Step 1. Traverse the three-dimensional point cloud. Judge
whether the points in the point cloud are inside the convex hulls
and belong to plane setCPlane. If the points are inside the convex
hulls (i.e., the points inside the green dotted line) but do not
belong to the plane set CPlane, they are considered as interior
points PInterior of the object. These interior points will be put
into the potential object point setMObject, and considered as the
seed of the region growing.

• Step 2. Starting from the seed, if the four points around the seed
are inside the convex hulls, but do not belong to plane setCPlane,
and the distance between two points is less than a threshold,
then these four points are regarded as interior points PInterior
of the object and will be put into the potential object point set
MObject. All the qualified interior points PInterior are collected
and put into a potential object point setMObject. If the number
nMObject of the points in potential object point setMObject is larger
than a certain value n′

C, the set MObject is considered as a real
object point set.
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• Step 3. In order to avoid erroneous judgment of the points near
the convex hull boundary, two-times region growing algorithm
is exploited to obtain the complete object. In Figure 11, the
green dotted line represents the convex hull and the red solid
line represents the object region after two-times region growing
process. If a point belonging to object point set MObject is on
the convex hull boundary (i.e., the yellow points on the green
dotted line), then the point is considered as a seed of two-
times region growing. If any of the four points (i.e., the orange
points) surrounding the seed are outside the convex hull and

FIGURE 10 | A flowchart describing the object segmentation procedure.

the distance between two points is less than a threshold, then
the corresponding points surrounding the seed are considered
as the part of the object and put into potential object point
set MObject. In addition, the points surrounding the seed are
considered as new seeds as the next round judgment until there
are no such points. Finally, all the potential object point sets
MObject are put into the total object set O.

3.2.2.3. Object Recognition
In order to recognize objects effectively, a deep convolutional
neural network (CNN) is designed and applied. Specifically, the
architecture of our CNN is presented in Figure 12.

The network contains eight layers with weights: the first four
are convolutional layers and the remaining are fully connected
layers. Every convolutional layer is followed by a max-pooling
layer with kernels of size 2× 2. The neurons in the fully connected
layers are linked to all neurons in the previous layer. The rectified
linear units (Relu) is applied to every convolutional layer and fully
connected layer as the activation function.

The first convolutional layer filters the 3× 200× 200 input
image with 32 kernels of size 3× 3× 3. The second convolutional
layer takes the max-pooled output of the first convolutional layer
and filters it with 64 kernels of size 32× 3× 3. The third convo-
lutional layer has 128 kernels of size 64× 3× 3 connected to the
max-pooled output of the second convolutional layer. The fourth
convolutional layer has 256 kernels of size 128× 3× 3. After the
convolutional layers, a flatten layer is employed to transformed the
multidimensional feature maps into single dimensional feature
maps, which can be put into the fully connected layers. Four
fully connected layers have 256, 128, 64, and 4 hidden units,
respectively. Between the third and forth fully connected layers,
“dropout” technique is applied to reduce the overfitting problem
by setting the output of each hidden neuron to zero with proba-
bility 0.5. The output of the last fully connected layer is connected
to a 4-way softmax which produces a distribution over the 4 class
labels (i.e., background, cup, bottle, and pop can).

3.2.2.4. Object Location
After the recognition, the position information of the desired
beverage container in the camera coordinate system is calculated

FIGURE 11 | Schematic diagram of two-times region growing algorithm in object segmentation.

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 4814

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Zhang et al. Deep Learning Based Semi-autonomous Intelligent Robotic System for Drinking

FIGURE 12 | An illustration of the architecture of our CNN.

as the mean value of position information of all the points of
the actual object point set. With the coordinate transformation
from the camera coordinate system to the robot coordinate system
(see Section 3.2), the three-dimensional position information of
the desired beverage container in the robot coordinate system is
obtained and is sent to the decision-making layer.

3.2.2.5. Mouth Detection and Localization
In order to complete the automatical assistive drinking task, the
position information of the user’s mouth is required. As men-
tioned at the beginning of Section 3.2, a Kinect sensor is put in
front of the user and capture the mouth. With the assistance of
the Kinect SDK 2.0, the 3D location of the user’s mouth in the
camera coordinate system is obtained. By using the coordinate
transformationmentioned in Section 3.2.1, the three-dimensional
position information of the user’s mouth in the robot coordinate
system is obtained and is sent to the decision-making layer.

3.3. Robot Manipulator Control
As shown inFigures 7 and 13, KINOVA JACO2 robotmanipulator
is employed in the ID-SIR system. The robot manipulator has
six joints and three fingers. Each finger has a controllable joint
and a passive joint. When the controllable joint is grasping an
object, the passive joint rotates automatically so that it can hold
the object more firmly. Consequently, the robot manipulator has
an adequate ability to grasp an object firmly and deliver it to the
user’s mouth steadily.

By using the official API, the end-effecter of the robot manip-
ulator (i.e., the three fingers) can be controlled to move from
an initial position to an expected position automatically and
smoothly. Therefore, only several separated key points in the
task space are required to obtain the continuous tracking tra-
jectories of joint space. At present, only the positions of the
desired beverage container and the user’s mouth are variable. The
remaining position points in the delivering process are prede-
fined. With the consideration of the manipulator’s stability and
user’s safety during the task execution, joint velocities of the
manipulator are limited at an appropriate speed. Moreover, the
manipular state, including position and direction information, is
captured and transferred to the robot controller in real time so
as to perform accurate control. The manipular state is also sent
back to the decision-making layer to make sure that the task is
finished.

FIGURE 13 | The ID-SIR system assists a user for drinking (the individual
agrees to publish his photo).

4. EXPERIMENTS AND USER STUDY

The study was approved by the Ethics Committee of South China
University of Technology.Written informed consent was obtained
from each subject. In order to verify the effectiveness of the
proposed ID-SIR system, two experiments are designed: one is the
CNN training and the other is whole system evaluation.Moreover,
comparisons among existing BMI-based assistive robotic systems
and our ID-SIR system are also presented. Figure 13 shows a
scenario of a user drinking with the help of the ID-SIR system.

4.1. CNN Training
In order to train our CNN to recognize the desired object, a
specific data set needs to be established.Without loss of generality,
we task three kinds of objects (i.e., a cup, a bottle, and a pop) as
an example. The data set was designed to contain 4 classes, i.e.,
cup, bottle, pop can, and background. Thus, 26,564 images in total,
approximately 6,500 samples for each class, were gathered through
a Kinect applying the region growing algorithm. The data set was
then divided into training set and validation set randomly with a
rate of 7:3.

Before training, data augmentation was implemented as gen-
erating new images with rescaling and horizontal reflections to
reduce the overfitting problem. After 5 epoch of training with
“adam” optimization scheme, our CNN finally achieved 0.9905
accuracy on the validation set.
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4.2. Whole System Evaluation
Eight volunteers were asked to attend the evaluation experiment.
The whole system evaluation process consisted of two parts: off-
line training and online testing. These volunteers were all healthy
subjects (19–21 years old), among which only one subject (i.e.,
subject 8) had experience in using P300-based BMI system before
and the other seven subjects had no experience in BMI system.

4.2.1. Off-Line Training
The EEG signal data were acquired by the following three steps.
First of all, a target symbol was given randomly by the computer
and displayed in the text box above the four buttons. Second, the
subject was asked to pay attention to the given target symbol.
Third, the buttons flashed in a random order. Each subject had to
complete 40 off-line trials (i.e., N= 40) and the chain of potential
signals, including useful EEG P300 signals and noises from 30
channels, were recorded in this training process.

After the data acquisition, the data set was processed by the
method of self-adaptive Bayesian linear discriminant analysis (SA-
BLDA) illustrated in Section 3.1, and the classifier model of the
subject was obtained, which was employed to detect the intention
command in online testing process.

Figure 15 illustrates the relationship among accuracy, ITR
and θ0 in the SA-BLDA algorithm. As analyzed in Section 3.1.3,
parameter θ0 is set at the point where the curve of accuracy first
reaches its highest value. According to this rule, the final selections
of θ0 of all the subjects and the corresponding accuracy and ITR
are listed in Table 1. From the table, we can see that the off-line
training process is fast, and the accuracy is high. Specifically, all
the accuracies are greater than 95%, and all the ITR are less than
20 bits/min.

4.2.2. Online Testing
During the online testing process, each subject was asked to
control the robot manipulator to finish 10 times assistive drinking
tasks. In each task, the subject chose a beverage container through
the P300-based BMI subsystem and controlled the robot to deliver
the beverage container to his mouth, and then sent the “back”
command to drive the robot manipulator to send the drink back
to its original position. Evidently, two commands were required
to complete each task: (i) grasp and deliver the desired beverage
container to the month, (ii) put the beverage container back.
Therefore, during the online testing experiment, each subject was
asked to finish 20 control commands (i.e., trial number N = 20).

TABLE 1 | Selections of θ0 and the corresponding accuracy and ITR of eight sub-
jects during off-line training process.

Subject θ0 Accuracy (%) ITR (bits/min)

S1 0.70 98.57 14.83
S2 0.25 100.00 31.00
S3 0.50 95.71 19.31
S4 0.55 100.00 19.60
S5 0.55 97.14 20.30
S6 0.70 98.57 15.31
S7 0.00 100.00 33.33
S8 0.50 95.71 19.84

The snapshots of a subject experiencing one assistive drinking task
are shown in Figure 14.

The experimental results of eight subjects’ online testing are
shown in Tables 2 and 3. In the second and third columns of
Table 2, the average round number Ma and the corresponding
average time of P300 signal recognition tP300 of each subject are
presented, respectively. The fourth and fifth columns list eight
average time and average accuracy when users completed 10
times drinking tasks. It is worth pointing out that a drinking task
includes delivering process and returning process. In other words,
the time cost of a drinking task includes time periods of P300
signal recognition, object recognition, object localization, and
robot operating. As seen from Table 3 that the mean time of P300
signal recognition is 5.25 s and the average time of completing one
task is 84 s in the online testing. The average accuracy of 10 times
drinking tasks controlling the robot manipulator is 97.50%. The
eight online experiments verify the effectiveness of the proposed
ID-SIR system.

Table 3 shows the evaluation of the eight subjects to the
proposed ID-SIR system after their experiences. The first four
questions are about the functions of the ID-SIR system and the
average scores are 4.25, 4.75, 4.13, and 4.75, respectively. These
four high scores demonstrate well that the ID-SIR system is very
capable and suitable for the assistive drinking tasks. The scores
of Q5 and Q6 (reaching to 3.5 and 4.25, respectively) shows that
subjects did not bear so much burden in the experiment and the
user experience of the ID-SIR system is acceptable. The 4.13 score
of the last question indicates that it is possible for the ID-SIR

FIGURE 14 | Snapshots of a subject completing one delivering task by using
the ID-SIR system (The individual agrees to publish his photo).

TABLE 2 | Results of ten times online assistive drinking testing.

Subjects Ma tP300 (s) tTask (s) Accuracy

S1 7.60 8 86 100%
S2 4.20 4 79 90%
S3 6.10 5 84 100%
S4 6.10 5 87 100%
S5 6.60 5 89 100%
S6 6.95 6 88 100%
S7 4.00 3 82 100%
S8 6.75 6 82 90%
Mean 6.04±1.29 5.25±1.49 84±3 97.50%±4.63
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FIGURE 15 | The relationship among accuracy, ITR and θ0. (A)–(H) Subjects 1–8.

TABLE 3 | Evaluation of eight subjects in experiments.

Questions S1 S2 S3 S4 S5 S6 S7 S8 Mean

(Q1) The ID-SIR system can decode your intention precisely (1=Strongly disagree,
5=Strongly agree)

5 4 4 4 5 4 3 5 4.25±0.71

(Q2) The ID-SIR system can recognize and localize the desired beverage container in real time
(1=Strongly disagree, 5=Strongly agree)

5 5 4 5 5 4 5 5 4.75±0.46

(Q3) The ID-SIR system can deliver the desired beverage container to your mouth
accurately (1=Strongly disagree, 5=Strongly agree)

3 4 4 4 5 5 3 5 4.13±0.83

(Q4) Do you think that the ID-SIR system successfully delivered you the desired beverage
container automatically? (1=Not at all, 5=Very much)

5 5 5 4 5 5 4 5 4.75±0.46

(Q5) During the experience were you fatigued? (1=Very much, 5=Not at all) 4 4 4 4 3 3 3 3 3.50±0.53

(Q6) Do you think that it was a joyful experience? (1=Not at all, 5=Very much) 4 4 5 4 5 4 4 4 4.25±0.46

(Q7) Do you think that the ID-SIR system is able to help people with stroke or
neurodegenerative diseases to have a drink on their own? (1=Not at all, 5=Very much)

4 3 5 3 4 5 5 4 4.13±0.83

system to continue to perform experiments on patientswith stroke
and neurodegenerative diseases.

4.3. Comparisons with the Existing
Systems
In order to highlight the advantages and effectiveness of our
system, comparisons among existing BMI-based assistive robotic
systems and the ID-SIR system are shown in Table 4.

As shown in Table 4, a robotic system in Hochberg et al. (2012)
first applied the invasive MI-based BMI technology with a robot
manipulator to complete foam balls reaching and grasping tasks
and achieved the accuracy as 95.6% (touch) and 62.2% (grasp)
spending about 7 s per task. Later, a female patient with tetraplegia
and anarthria was assisted by the system to drink coffee from a
bottle speeding more than 85 s each time with 67.7% accuracy.
However, this system is inefficient and cause great burden on
users. Users have to concentrate continually to control the robot

manipulator in real time. Besides, sensors need to be implanted in
users’ brains and more than 1month is required for the operation
recovery and training. The robotic assistive systems in Wang
et al. (2015) and (Katyal et al., 2013) employed non-invasive
BMI technology and eye-tracking technology to a control robot
manipulator to grasp or pick objects. Besides, vision algorithms,
such as Euclidean clustering extraction (ECE) algorithmor sample
consensus (SC) algorithm, were also used to locate objects in
RGB-D images. However, they did not consider about detection
or assistive drinking problems. Regarding the assistive drinking
problem, the system in Schröer et al. (2015) incorporated non-
invasive MI-based BMI technology with object localization and
mouth detection to control the robot. However, the system took
almost 2min to complete one task and the color-based classifier
for recognizing a specific colorful plastic cup limited the choices
for users.

In order to overcome the deficits of existing systems
listed in Table 4, our ID-ARR system applies non-invasive
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TABLE 4 | Comparisons among existing BMI-based assistive robotic systems and our ID-SIR system.

System Year BMI Visual system Task Run time Accuracy

Hochberg et al. (2012) 2012 Invasive Experiment judgment Reach and grasp foam ball About 7 s 95.6% (Touch)
MI 62.2% (Grasp)

Grasp, deliver and drink ≥85 s 67.7%
Katyal et al. (2013) 2013 Non-invasive Object localization (ECE, SC) Reach and grasp balls 10.8±0.54 s Unknown
HARMONIE SSVEP Eye tracking (API)
Wang et al. (2015) 2015 Non-invasive Object localization (ECE) Pick and place 97.8 s 100.0% (Task)

MI Eye tracking (HMM) 47.6% (EEG)
Schröer et al. (2015) 2015 Non-invasive Object localization (color) Grasp, deliver and drink 2min 100.0% (Task)

MI Mouth detection (haarcascade)
ID-SIR 2017 Non-invasive Object localization (RG, CNN) Grasp, deliver and drink 84 s 97.50% (Task)

P300 Mouth detection (SDK)

P3000-based BMI technology to complete the assistive drinking
task automatically and reduce great burdens on users. It only
requires users to have short time training at the beginning and
concentrate only two times to give out commands during each
whole drinking process. Besides, two-times region growing algo-
rithm and convoluted neural network are applied to recognize and
locate the object, which are more effective and generalizable in
practical environments.

5. CONCLUSION

In this paper, an intention-driven semi-autonomous intelligent
robotic (ID-SIR) system has been designed. The system is com-
posed of a P300-based brain–computer interface (BMI) subsys-
tem, a robot manipulator and an automatic-visual-inspection
subsystem. It can detect a desired object and deliver it to the
mouth of the user. In order to detect the intention of the user, a
self-adaption Bayesian linear discriminant analysis algorithm has
been exploited and performed to improve training efficiency and
accuracy. Besides, a novel two-times region growing algorithm
has been proposed to obtain the complete object. One of the
important contributions of this paper is that the combination of
BMI and semi-autonomous robot technologies eases the burden
on the brain and satisfy user’s assisted-living requirement. By
using our system, eight subjects successfully complete 10 times
assistive drinking taskswith satisfactory accuracies (≥97.5%). The
experiment results have verified the capability of the proposed
ID-SIR system and the corresponding algorithms. Comparedwith

the existing BMI system, the advantages of the proposed ID-SIR
system are that (1) the object is not predefined and can be put at
anywhere in the cross field of sensor’s scanning zone and robot
manipulator’s region and (2) both the accuracy and efficiency
are considered in the P300-BMI subsystem. Further studies will
be conducted to set up the system on a mobile platform and
investigate the practical performance on patients.
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The reference joint position of upper-limb exoskeletons is typically obtained by means of
Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian;
this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the
robot kinematic chain to achieve the desired end-effector pose; however, if used to
operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria
are satisfied in the whole human-robot workspace. This paper proposes a motion
planning system, based on Learning by Demonstration, for upper-limb exoskeletons
that allow successfully assisting patients during Activities of Daily Living (ADLs) in
unstructured environment, while ensuring that anthropomorphic criteria are satisfied in
the whole human-robot workspace. The motion planning system combines Learning by
Demonstration with the computation of Dynamic Motion Primitives and machine learning
techniques to construct task- and patient-specific joint trajectories based on the learnt
trajectories. System validation was carried out in simulation and in a real setting with a 4-
DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb
Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance
of the proposed motion planning with traditional methods; (ii) assess the generalization
capabilities of the proposed method with respect to the environment variability. Three
ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The
achieved results showed a 100% success rate in the task fulfillment, with a high level of
generalization with respect to the environment variability. Moreover, an anthropomorphic
configuration of the exoskeleton is always ensured.

Keywords: motion planning, machine learning, learning by demonstration, dynamics movement primitives,
assistive robotics

1. INTRODUCTION

Understanding trajectory planning in human movements plays a paramount role in upper-limb
exoskeletons for rehabilitation and assistive purposes because of the tight physical human-robot
interaction. A typical strategy for determining the desired trajectory to be tracked by the exoskeleton
in complex tasks, such as the Activities of Daily Living (ADLs), is to replicate human movements
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(An et al., 1988). Joint trajectories from unimpaired volunteers,
caregivers, or therapists can be pre-recorded and later executed
by the robotic system throughout specific mapping methods, i.e.,
spline decomposition (Jiang et al., 2013), or else optimization of
ad hoc developed objective functions (Provenzale et al., 2014).
However, these methods are successful in structured environ-
ments, since they cannot manage variability in the environment
and external perturbations.

For ADLs in unstructured environment, a Cartesian motion
planner can be conveniently adopted (Marchal-Crespo and
Reinkensmeyer, 2009) and a purposely developed mathematical
model of human motor behavior should be formulated in order
to plan the desired trajectories in a way similar to humans. This
is the case, for example, of the minimum jerk criterion (Flash and
Hogan, 1985) or the minimum torque model (Svinin et al., 2010)
for point-to-point reaching tasks.

For the exoskeletons, the approach based on Cartesian
motion planning requires that inverse kinematics (IK) (Kim
et al., 2012) is applied for computing joint motion, with the
consequent increase of the computational burden. Moreover, the
traditional IK algorithm with inverse Jacobian allows exploiting
the available DoFs of the robot kinematic chain to achieve the
desired end-effector pose; however, it does not guarantee that
anthropomorphic criteria in the whole human-robot workspace
are satisfied, especially in non-redundant structures. Alternative
methods that account for anthropomorphic configurations in
the joint space are based on the computation of the swivel angle.
It can be estimated by means of geometric methods (Mihelj,
2006) or analytical methods based on the augmented Jacobian
(Papaleo et al., 2015); however, in the case of non-redundant
exoskeletons (as most of the commercially available ones
(Marchal-Crespo and Reinkensmeyer, 2009)), the computation
of the swivel angle causes the reduction of the number of
Cartesian DoFs to be controlled, since the swivel angle is
computed in lieu of one of the controlled Cartesian coordinates;
as a consequence, this entails a reduction of the success rate
in the fulfilment of the ADLs. Other approaches are based on
hybrid Cartesian joint motion planners (Pattacini et al., 2010);
nevertheless, as for the methods based on the computation of
the swivel angle, they cannot be adopted in non-redundant
exoskeletons without reducing the Cartesian DoFs to be
controlled.

An alternative approach is represented by Learning By Demon-
stration (LbD), where the human subject is observed during
the task execution and the robotic system replicates the learnt
movement. It allows avoiding motion planning in the Cartesian
space and inverse kinematics, but it requires to learn the target
joint configuration to be reached through supervised learning.
In literature, supervised learning methods, based on NNs, are
widely used by researchers to learn the IK of redundant and non-
redundant robots as in Oyama et al. (2001). Due to their adapt-
ability to several contexts, NNs are employed in several robotic
applications. In Li et al. (2017), they are used for redundancy
resolution in presence of noise; in Jin and Li (2016) and Jin et al.
(2017), NNs are adopted for motion control of multiple cooper-
ating redundant manipulators; and in Noda et al. (2014), they are
used for robot motion generation based on data frommultimodal

sensory systems. Nevertheless, to the best of our knowledge, how
learningmethods based onNNs can improve performance of LbD
approaches during the learning of motion features and robot IK is
not fairly explored.

This work proposes a motion planning system grounded on
LbD for generating reference trajectories in the joint space for
upper-limb exoskeletons, starting from the observation of the
human motion during the execution of ADLs. The paper contri-
bution is mainly addressed to extend the LbD approach in Ijspeert
et al. (2013) for the control of upper-limb exoskeletons and to sig-
nificantly improve it by introducing a Neural Network (NN), that
learns the motion features and the robot inverse kinematics. The
proposedmethod offers the following three main advantages with
respect to the available techniques used in literature to plan the
motion of upper-limb exoskeletons (i.e., motion planning in the
Cartesian space and inverse kinematics): (i) it does not require the
formulation of mathematical models of human motor behavior
in order to accomplish the task in a way similar to humans; (ii)
it allows performing the task also in unstructured environments
(where a variability can be caused, for example, by the object
position changes and subject different anthropometries); (iii) it
guarantees the task accomplishment in the feasible workspace
by preserving anthropomorphic configurations of the assisted
human arm.

The proposed motion planner is based on Dynamic Move-
ment Primitives (DMPs), with a well-defined landscape attractor
(Ijspeert et al., 2013). This attractor allows replicating the recorded
trajectory by means of a weighted sum of optimally spaced Gaus-
sian Kernels; weight parameters (DMP parameters) are extracted
from demonstrated movements with a Locally Weighted Regres-
sion (LWR) algorithm and are used to train a neural network
through supervised learning. The neural network has the aim to
define DMP parameters and joint target position and receives
in input context factors (such as object position or task type).
The DMP parameters are then processed by the DMP com-
putation module that provides the exoskeleton reference joint
trajectories.

The proposed motion planner was tested on an upper-limb
exoskeleton during ADLs tasks. The exoskeleton was made of
a 4-DoF shoulder-elbow exoskeleton (i.e., NeuroExos Shoulder-
Elbow Module (NESM) (Crea et al., 2016)) for reaching move-
ments, and a 5-DoF wrist-hand exoskeleton responsible for the
grasping phase. The system was experimentally validated on four
patients with Limb Girdle Muscular Dystrophy (LGMDs). They
were asked to perform one ADL (i.e., the drinking task) and
two activities belonging to the Southampton Hand Assessment
Procedure (SHAP) clinical test (i.e., pouring and lifting a light
sphere, consisting in reach-grasp-move-release a spherical object).
The position of the object to be grasped was acquired by means of
an external camera (Optitrack).

A comparative analysis with the traditional approach based on
path planning and IK for upper-limb exoskeletonswas carried out.
Moreover, the data acquired during the experimental session were
used to assess the generalization capability of the proposedmotion
planning system with respect to the different anthropometry of
the patients and the different object positions. Performance of
the proposed motion planning system was measured through a

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 521

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lauretti et al. A Learning by Demonstration Motion Planner

set of performance indicators, consisting of success rate, distance
from target position, distance from the physiological behavior,
and computational burden.

The paper is organized as follows: in Section 2, the exoskele-
ton, the proposed motion planner, and the experimental setup
and protocol are presented. Experimental results are illustrated
and discussed in Section 3 and Section 4, respectively. Finally,
conclusion and future works are reported in Section 5.

2. MATERIALS AND METHODS

2.1. Exoskeletons
The upper-limb exoskeleton used to validate the proposedmotion
planning system is shown in Figure 1. It consists of the NESM 4-
DoF exoskeleton and a 5-DoFWrist-hand exoskeleton, described
in the following.

2.1.1. NESM
NESM is an upper-limb exoskeleton consisting of four active
DoFs addressing the shoulder abduction/adduction (sA/A), flex-
ion/extension (sF/E) and internal/external rotation (sI/E), as well
as the elbow flexion/extension (eF/E) movements (Crea et al.,
2016). Additional passive degrees of freedom and size regulations
are included within the kinematic chain to improve the safety
and wear ability of the device: this system automatically com-
pensates for joint misalignments of the elbow and shoulder com-
plex and allows users with different anthropometries wearing the
device.

Each actuation unit has a series-elastic actuator (SEA), com-
prising a DC motor and reduction gear in series with a custom
spring. Two absolute encoders placed at both sides of the spring
allow sensing the joint torque by measuring the spring deforma-
tion, and at the same time, the encoder mounted more proximally
to the human joint provides the joint angular value. By virtue of
the SEA architecture, both position and torque control strategies
have been implemented.

The sA/A and sF/E actuation units are identical and are able to
withstand peak torques up to 60Nm. Similarly, the sI/E and eF/E

FIGURE 1 | NESM upper-limb exoskeleton with the wrist-hand exoskeleton.

actuation units can deliver up to 30Nm of peak torques. These
featuresmake the exoskeleton suitable to assist users having highly
reduced or null residual motion capabilities of their upper arm.
Notably, in this study, the position control modality is employed
to perform completely passive mobilization of the user’s arm.

Each joint can move within the following range of motion (the
zero configuration iswith the armparallel to the trunk): 0° to−90°
for sA/A and sF/E, −75° to 25° for sI/E and 0° to 120° for eF/E.

2.1.2. Wrist-Hand Exoskeleton
The wrist-hand exoskeleton is composed of two modules, the
hand and the wrist, that can be used separately or in combi-
nation. The wrist exoskeleton guarantees the activation of the
prono/supination movements. It consists of a DC motor with a
reduction stage, which drives a geared ring guide. The guide is
attached to an orthosis that aligns the forearm with the guide axis.
Joint limits are mechanically provided, but, if necessary they can
be reduced via software for increasing the safety in the human-
robot interaction.

The hand exoskeleton has 4 active DoFs: F/E of the index finger
Metacarpophalangeal (MCP) joint, F/E of the middle finger MCP
joint, F/E of the ring and little finger MCP joints, and F/E of the
thumbMCP joint. A linkage mechanism between theM regulator
as well. When a reference MCP and the Proximalinterphalangeal
(PIP) joint is adopted on each finger and is driven by a linear
actuator, for moving both PIP and MCP joints. A unique linear
actuator is used for driving the PIP and MCP joints of both the
third and the fourth fingers. The thumb A/A is fixed in a suitable
position.

The wrist exoskeleton can be easily connected to the shoulder-
elbow exoskeleton. In fact, by simply removing the forearm cuff
from the NESM, the cuff integrated to the wrist exoskeleton can
be attached to the output frame of the elbow actuation unit. The
resulting device is a full-arm robotic exoskeleton.

2.2. Low Level Control (LLC)
The control system used to operate the NESM implements two
control strategies: joint position and joint torque control modes.
When controlled in position, each actuation unit drives the joint
position along a reference value or trajectory. The controller
is based on a proportional-integral-derivative (PID) regulator,
which operates on the difference between the reference joint
angle and the measured one. The output is a current com-
manded to the driver of the SEA actuation unit to provide the
torque necessary to achieve the movement with null steady-state
error.

In the torque control mode, eachmotor is controlled to provide
a certain amount of torque. The closed-loop torque controller
output is dependent on the difference between the desired joint
torque and the measured one, and it is built on a PID regulator
as well. When a reference torque of 0Nm is commanded on
each joint, the device can be used in transparent mode, allowing
the user to freely move the arm. Conversely, the wrist module
and the hand exoskeleton could be controlled only in position;
the controller used to operate these devices is based on a PID
regulator, which operates on the difference between the reference
joint angle and the measured one.
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2.3. Motion Planning Based on LbD for
Upper-Limb Exoskeletons
The proposed motion planning for upper-limb exoskeletons is
shown in Figure 2. A variation of LbD method used in Ijspeert
et al. (2013) is presented. In particular, in this work, differently
from Ijspeert et al. (2013), a combination of DMP and supervised
learning is adopted with the aim of avoiding motion planning
in the Cartesian space and inverse kinematics. The proposed
motion planning consists of two main stages, named off-line
neural network training and DMP computation. In the off-line
neural network training, the trajectories executed by a healthy
human subject, e.g., the therapist or the caregiver, are recorded by
means of motion tracking devices such as magneto inertial sen-
sors or the robot itself when backdriven, and distinctive features,
named DMP parameters, are subsequently extracted using a LWR
algorithm (“Motion recording and DMP parameters extraction”
block in Figure 2). Hence, a neural network is trained through
the Levenberg-Marquardt (LM) supervised learning algorithm in
order to associate DMP parameters and robot joint target position
to context factors taken in input (i.e., object position and task to
be performed).

In the DMP computation, the patient can perform an ADL task
with the assistance of the exoskeleton. Depending on the task and
object position, the trained neural network provides the proper set
of DMPparameters and robot joint target positions for computing
the set of DMPs that best fit the desired task (“DMP computation”
block).

2.3.1. DMP Computation
The computation of the DMPs is obtained through the resolution
of a non-linear second order system, expressed as

τ q̈ = αq (βq (g − q) − q̇) + f (1)

where τ is a time constant,αq andβq are positive constants, q0 and
g are the initial and final points of the trajectory, respectively, and
f is a forcing term that implements the landscape attractor of the
system. In equation (1), q refers to a generic joint position of the
robot that needs to be computed for each joint of the exoskeleton
(i.e., q1, q2 . . . q5).

A possible formulation of the forcing term, namely the land-
scape attractor (Ijspeert et al., 2013), is

f(x) =
∑N

i=1 Ψi(x)ωi∑N
i=1 Ψi(x)

x(g − q0) (2)

where ωi is the DMP parameters, namely the weight parameters
adopted to reconstruct the recorded motion, while x is the state
variable of the system thatmakes equation (1) a time-independent
system. It is defined as

τ ẋ = −αxx (3)

where αx is a positive constant. On the other hand, Ψi(x) is
Gaussian kernels expressed as

Ψi (x) = exp
(

− 1
2σ2

i
(x − ci)2

)
(4)

where σi, ci, and N are the width, the centers, and the number
of Gaussian functions, respectively. The state variable x as well as
centers ci range between 0 and 1.

As in our previous work (Lauretti et al., 2017a), an optimized
spatial allocation of the Gaussian kernels is adopted, depending
on the complexity of the recorded trajectory. Hence, ci and σi are
defined as

c(x) =

∫ x
0 Vc(z) dz

||
∫ 1
0 Vc(z) dz||

(5)

FIGURE 2 | Block scheme of the proposed motion planning system.
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Vc(z) = 1 − αz

P∑
k=1

exp (−βz (z − zk)) (6)

σ(x) = γz
Vc(x)
N + δz (7)

ci = c
(

i
N

)
(8)

σi = σ

(
i
N

)
(9)

where αz, βz, γz, and δz are positive constants, P is the number of
critical points of the recorded trajectory, and zk is the normalized
time instant of each critical point. A graphical representation of c
and σ functions is provided in Figure 3.

2.3.2. Off-Line Neural Network Training
2.3.2.1. DMP Parameters Extraction
DMP parameters ωi are extracted through a LWR algorithm
(Schaal and Atkeson, 1998). The recordedmotion and derivatives,
i.e., qd, q̇d, and q̈d are inserted in the forcing term in equation (2)
as follows

ft = τ q̈d − αq (βq (g − qd) − q̇d), (10)

and a function approximation problem is formulated. Hence, a
locally weighted quadratic error is minimized by means of the
following cost function

Ji =
P∑

t=1
Ψi(t)(ft(t) − ωiϵ(t))2 (11)

ϵ(t) = x (g − q0) (12)

and ωi parameters that make ft as close as possible to f are found,
for each kernel function Ψi(t), in order to reconstruct the trajec-
tory qd, q̇d, and q̈d, through q, q̇, and q̈, respectively. In equation
(12), ϵ is the error between the target joint position to be reached
g and the initial joint position of the exoskeleton q0.

2.3.2.2. Neural Network
A Levenberg-Marquardt algorithm (LM) has been adopted for
the off-line neural network training (Lourakis, 2005). Given a

FIGURE 3 | c and σ functions for the optimal allocation of the Gaussian
Kernels. X* and T* are the state value and time instant corresponding to the
critical point (Lauretti et al., 2017a).

parameter vector p ∈ ℜn and a measurement vector x ∈ ℜm,
the LM algorithm finds the functional relation (f ) that maps the
parameter vector p into an estimated measurement x̂ (x̂ = f(p)).
A linear approximation of f in the neighborhood of p is provided
by a Taylor series expansion

f(p + δp) = f(p) + Jδp + o(p) (13)

Neglecting the higher order terms o(p), equation (12) could be
approximated as

f(p + δp) ≈ f(p) + Jδp (14)

where J is the Jacobian matrix δf(P)
δP .

At each step of the iterative process, LM looks for the δp that
minimizes the error defined as ∥x − f(p + δp)∥ = ∥x − f(p) +
Jδp∥ = ∥ϵ−Jδp∥. The error isminimizedwhen Jδp–ϵ is orthogonal
to the column space of J, namely when the following condition
holds

JT(Jδp − ϵp) = 0 (15)

JTJδp = JTϵp. (16)

In the LM method, equation (16), called normal equation, is
written as

Nδp = JTϵp (17)

N = µ + JTJ (18)

where JTJ and µ are called damping and damping term, respec-
tively. One iteration of LM algorithm consists of finding an
acceptable value of the damping term that reduces the error ϵp.
In other words, if δp computed from equation (17), leads to a
reduction of the error ϵp, the damping term is decreased and the
following iteration is processed; otherwise, the damping term is
increased and equation (17) is solved again. The LM algorithm
stops running when, at least, (i) JTϵp of equation (17) is lower
than a preset threshold ϵ1 or (ii) δp is lower than a threshold ϵ2
or (iii) a maximum number of iteration NMAX is reached. For the
sake of brevity, the complete LM algorithm is not shown; further
theoretical details about the implemented method could be found
in Lourakis (2005).

The structure of the adopted neural network is reported in
Figure 4. A two layer feed-forward network with M sigmoid
hidden neurons and N+ 1 linear output neurons is used for each
joint and for each task the user wants to perform. The inputs of
each network are the Cartesian target positions to be reached, Px,
Py, and Pz (e.g., object position); on the other hand, the outputs
of each network are the DMP parameters, ω1, ω2. . .ωN, and the
target joint angles, Qi (N is the number of DMP parameters
computed for the i-th joint).

2.3.2.3. Adapting NN Outputs to Different Subject
Anthropometries
In order to adapt the proposedmethod to different human bodies,
a recursivemethod that adjusts theNNoutputs for distinct subject
anthropometries was used. Its functioning principle is shown in
Figure 5.
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FIGURE 4 | Structure of the adopted neural network.
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FIGURE 5 | Block scheme of the recursive method used to adjust the NN
outputs for different subject anthropometries.

In the block scheme, Pd is the Cartesian target position to be
reached, Q is the output configuration of the robot joints, subject
1 is the person involved in the NN training phase while subject
2 is the assisted person, who wants to perform an ADL thanks
to the exoskeleton assistance. It is worth noting that, with the
aforementioned exoskeletons and the described tasks, two loops of
the recursive algorithm are suitable to obtain an acceptable error
in reaching the target position (less than 10mm).

2.4. Traditional Path Planning and IK
A simple path planning, based on a third-order polynomial func-
tion, was implemented in order to generate Cartesian trajectories
with null velocity at the beginning and at the end of themovement.
It can be written as

z = −2
zf − zi
D3 t3 + 3

zf − zi
D2 t2 + zi (19)

where z is the desired exoskeleton Cartesian pose, zf and zi are the
final and initial desired Cartesian pose, respectively, and D is the
motion duration.

Hence, two IK methods were adopted to generate the reference
joint position for the exoskeleton. They are IK based on the com-
putation of the swivel angle (named in the following IK with swivel
angle) and IK with the inverse Jacobian (named in the following
IK Inverse Jacobian).

2.4.1. IK with Swivel Angle
The IK algorithm with swivel angle was ad hoc developed for a
4-DoF spherical-revolute (S-R) manipulator (i.e., the shoulder-
elbow exoskeleton), based on geometrical considerations. An
additional constraint was imposed to calculate the analytical solu-
tion for the last revolute DoF of the upper-limb exoskeleton (i.e.,
the wrist prono-supination). For the sake of clarity, the Denavit-
Hartenberg model and parameters of the upper-limb exoskeleton
are reported in Figure 6.

The IK algorithm for the shoulder-elbow exoskeleton manages
three Cartesian coordinates and one orientation coordinate and
consists of the following steps:

• Being the target position known (vector p⃗), the solution for the
elbow angle is derived geometrically:

q4 = π − acos

(
d23 + d25 − |⃗p|2

2d3d5

)
(20)

• The orientation coordinate is a free parameter, (γ), introduced
for guaranteeing anthropomorphic criteria and is defined as the
angle, on the frontal plane (x0–y0 in Figure 6), between the
plane containing the upper arm and forearm and the frontal
plane. Once γ is chosen, two possible configurations of the
elbow (i.e., left or right) allow the arm lying in the chosen plane:
the solution with the four angles in the physiological range is
selected.

• Then, the shoulder joint angles can be derived from forward
kinematics:

q1 = atan
(
yo3
xo3

)
(21)

q2 = acos
(
zo3
d3

)
(22)

q3 = −arccos
(
zee − d3 cos q2 − d5 cos q2 cos q4

d5 sin q4 sin q2

)
(23)

• The wrist prono-supination angle is calculated, by imposing a
constraint on the hand orientation. For the addressed tasks (i.e.,
drinking, pouring, reaching-grasping-moving-releasing of the
sphere), two configurations were considered:

(1) Palm of the hand pointing downward (for pouring and
sphere reaching-moving):

q5 = arctan


cos q4(cos q1 sin q3 + cos q2 cos q3 sin q1)

+ sin q1 sin q2 sin q4
cos q2 sin ϑ1 sin q3 − cos q1 cos q3


(24)

(2) Palm of the hand pointing left (for drinking):

q5 = arctan

 cos q1 cos q3 − cos q2 sin q1 sin q3
cos q4(cos q1 sin q3 + cos q2 cos qa3 sin q1)

+ sin q1 sin q2 sin q4


(25)
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d a

1 + /2 0 0 /2

2 + /2 0 0 − /2

3 3 0 − /2

4 0 0 /2

5 5 0 − /2

FIGURE 6 | NESM reference frames positioning according to the Denavit–Hartenberg (D–H) convention.

2.4.2. IK with Inverse Jacobian
The IK algorithm with inverse Jacobian is well-described by the
following equation (Siciliano et al., 2010),

q̇ = J−1
A (q)(ẋd + Ke) (26)

where J−1
A is the analytical inverse Jacobian computed on the

kinematic chain of Figure 6, q and q̇ are the joint angle and its
derivative, respectively, ẋd is the desired velocity in the Cartesian
space, K is a positive definite matrix (usually diagonal), and e is
the operational space error defined as e= xd–xe. The desired joint
configuration q is obtained by numerically integrating equation
(26) through the Euler method.

2.5. Experimental Setup
The experimental platform for the validation of the proposed
motion planning system based on LbD is shown in Figure 7.

A user graphical interface is used to show the action to perform
to the subject. The control system architecture consisted in a
finite-state machine, which divides the main task (i.e., drinking,
pouring and reach-grasp-move-release a sphere) into several ele-
mentary actions (corresponding to the subtasks listed in Table 1)
that the different devices can accomplish (e.g., waiting for the
trigger, reaching the glass, grasping, etc.). Each subtask is triggered
by the user by means of the combined M-IMU/EMG interfaces,
letting him/her to control the exoskeletons. An abort function
was also implemented in the state machine to safely abort the
execution of the task at any time.

The communicationwithin the subsystems composing the plat-
form is managed by the Yet Another Robotic Platform (YARP)
messaging system. The motion commands acquired by the user
are sent, through the YARP server, to the exoskeletons. All the
acquired data are synchronized and saved under YARP.

The platform components are shown in Figure 8 and are
detailed in the following.

2.5.1. User Interface
The interface adopted to detect the user movement intention is
based on the combined use of 2 push-buttons and 2 M-IMUs
(Lauretti et al., 2017b).

The 2 push-buttons were placed on a table in order to be
activated by the index and the thumb fingers and to be used as a
switch. Moreover, the two M-IMUs (XSens MTw) were placed on
the user trunk and head in order to detect his/her neck motion.
An Awinda Station was used to record at 100Hz of synchronized
wireless data from the two M-IMUs.

By means of the developed interface the user may exploit: (i)
the head yaw motion in the negative direction to operate the
upper-limb exoskeleton movements and the head yaw motion in
the positive direction to abort the task; (ii) the index finger and
thumb residual motion to trigger the hand opening and the hand
closing.

2.6. Experimental Protocol
2.6.1. Off-Line Neural Network Training
The developed neural network was trained off-line on a healthy
volunteer subject (with upper arm length LUpper Arm = 0.33m and
forearm length Lforearm = 0.3m). He was asked to perform the
drinking task, with 41 different glass positions (Figure 9A) and
two activities belonging to the SHAP clinical test, i.e., pour-
ing (for 15 different positions of the glass and the bottle as in
Figure 9B) and reach-grasp-move-release a sphere (for 25 dif-
ferent positions of the sphere as in Figure 9C). Each task was
performed 5 times per each object position and arm motion was
recorded. The shoulder motion, i.e., the sA/A, sF/E, sI/E, and
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TABLE 1 | Tasks description.

Task 1: Drinking

subtask 1-1 reach the glass
subtask 1-2 reach the mouth
subtask 1-3 reach the table for releasing the glass
subtask 1-4 go back to the rest position

Task 2: Pouring

subtask 2-1 reach the bottle
subtask 2-2 pour the water into the glass
subtask 2-3 reach the table for releasing the bottle
subtask 2-4 go back to the rest position

Task 3: SHAP sphere

subtask 3-1 reach the sphere
subtask 3-2 move the sphere to another position on the table
subtask 3-3 go back to the rest position

eF/E movements were recorded through the NESM used in trans-
parent mode; conversely, the wrist Prono-Supination wP/S was
recorded by means of two M-IMUs placed on the subject forearm
and hand.

About 70% of the recorded data was used to train the neural
network; the remaining 30% was used to validate and test the
neural network in order to avoid over-fitting issues.

2.6.2. DMP Computation and Control
The experimental session was aimed to measure performance of
the proposed motion planning system, compare with the tradi-
tional approach based on inverse kinematics described in Section
2.4 and assess generalization capability. The system was tested
during the fulfillment of the same ADLs used for training, i.e.,
drinking, the pouring, and reach-grasp-move-release a sphere.
In the following, they are named task 1, 2, and 3, respectively.
Additionally, each task is divided into a number of subtasks listed
in Table 1.

The validation was performed in simulation and in the real
setting with patients. Simulation tests allowed evaluating system

FIGURE 8 | A representative subject performing the task (the subject signed
an informed consent document to authorize publication of this picture).

performance in the whole human-robot workspace (238, 75, and
125 object positions were considered for task 1, 2, and 3, respec-
tively). On the other hand, in the real setting, system performance
was assessed on four patients with Limb Girdle Muscular Dystro-
phy (LGMDs). They, aged 38.5 on average (Standard Deviation
14.6), volunteered to participate in this study. The experimental
protocol was approved by the local Ethical committee (Comitato
Etico Università Campus Biomedico di Roma, reference number:
01/17 PAR ComEt CBM), by the Italian Ministry of Health (Reg-
istro—classif. DGDMF/I.5.i.m.2/2016/1096) and complied with
the Declaration of Helsinki. The subjects were asked to perform
three repetitions of the three tasks thanks to the assistance of the
4-DoF upper-limb and 5-DoF wrist-hand exoskeletons (3 object
positions for each task were considered in this case).

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 527

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lauretti et al. A Learning by Demonstration Motion Planner

x
y

z

x
y

z

x
y

z

10 cm

1
5
 c
m 1

0
 cm

20 cm

10 cm
10 cm

1
0
 c
m

1
0
 c
m

A B C

FIGURE 9 | The workspace reached during the assistive tasks is delimited by the black line. Object positions during training are indicated by black dots [the glass in
the drinking task in (A), the bottle in the pouring task in (B) and the initial position of the sphere in the SHAP task in (C)]. Conversely, the glass positions during the
pouring task and the sphere final positions in the SHAP task are indicated by red dots in (B, C), respectively.

2.6.2.1. Comparative Analysis (CA) with Inverse Kinematics
Methods
The CA was aimed to measure performance of the proposed
motion planning based on LbD during the control of the exoskele-
ton and compare the results with the traditional approaches based
on path planning and inverse kinematics described in Section 2.4.
The comparative analysis (CA) was carried out in simulation on a
subject modeled with 30 cm upper arm and forearm lengths and
with 238, 75, and 125 different object positions.

2.6.2.2. Generalization Capability Assessment (GCA)
The GCA was aimed to evaluate the generalization level of the
proposed motion planning with respect to the different anthro-
pometries of the patients and the different object positions. First,
it was tested in simulation environment (GCA–sim) for 238,
75, and 125 object positions (for task 1, 2, and 3 respectively)
per 25 different subject anthropometries, i.e., the combination of
the following upper arm and forearm lengths: LUpper Arm = 30 cm,
32 cm, 34 cm, 36 cm, 38 cm and Lforearm = 30 cm, 32 cm, 34 cm,
36 cm, 38 cm. Subsequently, the proposed motion planning was
tested on the four patients (GCA–real), with LUpper Arm = 33 cm
and Lforearm = 30 cm, 30 cm, 35 cm, 37 cm, for 3 object positions
per task.

System performance was measured through three quantitative
indicators reported below.

2.6.2.3. Performance Indices
The proposed performance indicators are: (i) Position Err1,Orien-
tation Err1, Position Err2, Orientation Err2, (ii) PhJL (iii) Success
Rate and (iv) mean cycle time. They are aimed at evaluating (i)
distance from target position, (ii) distance from anthropomor-
phic configurations, taking into account the physiological joint

limits, (iii) the success rate of the task execution, and (iv) the
computational burden.

2.6.2.4. Distance from Target Position
The error was measured during subtasks 1-1, 2-1, 3-1, and 3-2
(Table 1) as

Position Err =
1
2

√
(xt − x)2 + (yt − y)2 + (zt − z)2 (27)

Orientation Err = ∥αt − α∥ (28)

where xt, yt, and zt are the coordinates of the target position and
x, y, and z are the coordinates of the actual position reached by
the robot end-effector; αt is the desired angle α that needs to be 0
for a successful task fulfillment; α is illustrated in Figure 10 and
is defined for subtask 1-1 and 2-1 as

α1 = acos
(

XT
eeY0

∥Xee∥ ∥Y0∥

)
(29)

Conversely, for subtask 3-1 and 3-2 α is defined as

α2 = acos
(

ZT
eeY0

∥Zee∥ ∥Y0∥

)
(30)

where Y0, Xee, and Zee are defined in the base reference frame
[XB, YB, ZB] as Y0 = [0, 1, 0], Xee = Tee

B [1, 0, 0, 1] and Zee =
Tee
B [0, 0, 1, 1] (Tee

B is the base/end-effector transformation matrix).
For subtask 2-2, the position and orientation error are

expressed as

Position Err2−2 =
1
2

√
(xbottle − xglass)2 + (zbottle − zglass)2 (31)
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A B C

D E

FIGURE 10 | (A) a graphical representation of the end-effector and the base reference frame is shown; (B) the α angle for task 1-1, 2-1 is shown; (C) the α angle for
task 3 is shown; (D) The base reference frame and bottle, end-effector, and glass reference frames are shown; (E) the β angle for task 2-2 is shown.

Orientation Err2−2 = ∥βt − β∥ (32)
xbottle
ybottle
zbottle
1

 = Tee
B Tbottle

ee


0
0
0
1

 (33)

β =
π

2
− acos

(
XT
eeY0

∥Xee∥ ∥Y0∥

)
(34)

where xbottle, zbottle, xglass, and zglass are expressed in the [XB, YB,
ZB] reference frame (Figure 10), Tbottle

ee is the end-effector/bottle-
tip transformationmatrix during the whole subtask 2-2 (i.e., when
the hand exoskeleton is grasping the bottle) and βt is the desired β
that needs to range from0 to π

3 in order to successfully accomplish
the pouring task. Thus, defining βt = 0, an acceptable value of the
orientation error, for a successful task fulfillment, ranges from 0
to π

3 .

2.6.2.5. Distance from the Physiological Joint Limits
The distance from the physiological joint limits is measured to
assess the level of anthropomorphism of the reached configura-
tion during motion. It is expressed as

PhJL =
∥∥∥∥2(qi − q̄i)
qiM − qim

∥∥∥∥ (35)

where qi is the actual position of the i-th joint, qiM and qim are the
upper and lower physiological limit of the i-th joint, respectively,
and q̄i is the mean value between qiM and qim. An acceptable value
of PhJL for the considered tasks ranges in between 0 and 1.

2.6.2.6. Success Rate of the Task Execution
The success rate of the task execution is evaluated as

Success rate =
Nsucc

Ntot
· 100 (36)

where Nsucc is the number of trials successfully accomplished and
Ntot is number of all the performed trials. Trials of tasks 1 and
3 are considered successfully accomplished if all the following
conditions are satisfied:

• Position Err≤ 15mm,
• Orientation Err≤ π

12 rad,
• 0≤ PhJL≤ 1.

Conversely, trials of Task 2 are considered successfully accom-
plished if all the following conditions are satisfied:

• Position Err2−1 ≤ 15mm,
• Orientation Err2−1 ≤ π

12 rad,
• Position Err2−2 ≤ 30mm (i.e. the glass radius),
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• 0≤Orientation Err2−2 ≤ π
3 rad,

• 0≤ PhJL≤ 1.

The aforementioned ranges were experimentally retrieved.

2.6.2.7. Computational Burden
The computational burden of the three compared methods is
evaluated through the mean cycle time; it is the time required
to complete one cycle of the algorithm that computes the desired
joint trajectory starting from the object position and the task type.
The computational time of the 3 methods was evaluated under
the same hardware conditions (Processor: Intel(R) Core(TM)2
Duo CPU 3.00GHz) and development environment (MATLAB
R2014b).

2.6.2.8. Statistical Analysis
For motion planner comparative analysis, mean value and SD of
the computed performance indices were calculated for each task
on the different object positions and subject anthropometries.
For the generalization tests, mean value and SD of the computed
performance indices were also calculated for all the subjects and
the number of repetitions of each task. A statistical analysis based
on Wilcoxon paired-sample test was performed for the compara-
tive analysis between the proposed motion planning system and
the traditional motion planner based on inverse kinematics. The
analysis was carried out onmultiple comparisons with Bonferroni

correction; hence, significance was achieved for p-value< 0.05/nc,
where nc is the number of multiple comparisons.

3. RESULTS

The results of the comparative analysis are reported in Figure 11.
In particular, mean value and standard deviation of the position
error, orientation error, and PhJL computed on the 238, 75, and
125 object positions (for task 1, 2, and 3, respectively) are reported.

One can observe that the DMP-based control always exceeded
the other two algorithms based on inverse kinematics in terms
of success rate. The DMP-based control always achieved 100%
while the IK inverse Jacobian reached 71.4% and the IK swivel
angle reached 84.7%. The differences are statistically significant
with p-value< 0.0083 (for the DMP-based control compared to
IK inverse Jacobian p-value= 0.0031 and for DMP-based control
compared to IK swivel angle p-value= 0.0045).

On the other hand, as expected, the DMP-based control suffers
from a position error higher than the one achieved with the other
two algorithms (this difference is statistically significant with p-
value= 0.0012 for theDMP-based control compared to IK inverse
Jacobian and p-value= 0.0008 for DMP-based control compared
to IK swivel angle), for all the subtasks except for subtask 2-2.

Indeed, about the position error of the subtask 2-2, the results
achieved with the DMP-based control are comparable to the one
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FIGURE 11 | Experimental results obtained for CA. The red lines denote the range within which the task is considered successfully accomplished.
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TABLE 2 | Experimental results obtained for GCA.

GCA–sim GCA–real

Task 1 Position Err [mm] 2.7±0.4 3.9 ± 0.5
Orientation Err [rad] 0.14 ± 0.01 0.164 ± 0.008
PhJL 0.51 ± 0.03 0.64 ± 0.04

Task 2-1 Position Err1 [mm] 3.2 ± 0.9 4.0±3.1
Orientation Err1 [rad] 0.10 ± 0.07 0.116 ± 0.05

Task 2-2 Position Err2 [mm] 19 ± 6 21 ± 5
Orientation Err2 [rad] 0.57 ± 0.07 0.5 ± 0.1

Task 2 PhJL 0.56 ± 0.04 0.64 ± 0.05

Task 3 Position Err [mm] 7.3 ± 1.2 9.5 ± 1.9
Orientation Err [rad] 0.157 ± 0.02 0.14 ± 0.02
PhJL 0.6 ± 0.4 0.5 ± 0.36
Success rate [%] 100 100

achieved with IK inverse Jacobian (p-value= 0.09), but are better
than the one achieved with IK swivel angle (p-value= 0.0033).

Conversely, the orientation error achieved for each task with
the DMP-based control is comparable to the one achieved with IK
with swivel angle (p-value= 0.12). The difference is statistically
significant between the orientation error achieved by the DMP-
based control and the one achieved with IK inverse Jacobian,
which is lower (p-value= 0.0028).

Moreover, the results clearly show that the DMP-based con-
trol and IK with swivel angle ensure a more anthropomorphic
configuration than IK inverse Jacobian, measured through PhJL.
The differences are statistically significant, with p-value= 0.0024
for the comparison between DMP-based control and IK inverse
Jacobian and p-value= 0.0019 for the comparison between IK
swivel angle and IK inverse Jacobian.

Finally, considerations about the computational burden of the
three methods have been made; a mean cycle time of 0.4ms,
7.2ms, and 0.1ms for theDMP-based control, IK inverse Jacobian,
and IK with swivel angle, respectively, has been estimated. As
expected, IK inverse Jacobian has a higher computational burden
compared the other two methods, since it is an iterative method.
Conversely, it is interesting to note that the proposed DMP-based
method, once trained, has a relatively low computational burden
(comparable to the geometrical approach based on the swivel
angle) since the DMP resolution is not computationally heavy.

The experimental results of the GCA are shown in Table 2.
Mean value and standard deviation of position error, orientation
error, and PhJL are reported. They were computed for GCA–sim
on 238, 75, and 125 object positions (for task 1, 2, and 3, respec-
tively) and 25 different subject anthropometries. Instead, for
GCA–real they were calculated on the four subjects and 3 object
positions for each task. It is interesting to note that performance
achieved in the real setting are very close to the simulation results;
moreover, the proposed motion planning based on DMP has a
high generalization level with respect to the different object posi-
tions and subject anthropometries, since the success rate achieved
for the 3 task is 100%.

4. DISCUSSIONS

The comparative analysis (Figure 11) showed that the IK inverse
Jacobian has better performance than the DMP-based control in

terms of position and orientation error, but it does not guarantee
physiological configuration and always the success of the oper-
ation in the whole human-robot workspace. Conversely, the IK
with swivel angle reached better results than DMP-based control
in terms of position and orientation error for tasks requiring the
control of only one orientation parameter (e.g., tasks 1, 2-1 and
3). Instead, it increased in more complex tasks that required the
control of more than one orientation parameter (task 2-2).

Nevertheless, it is worth pointing out that the position error
obtained with the DMP-based control (even though higher than
the traditional approaches) is fully compatible with the considered
application domain which does not require very high accuracy. In
fact, it is shown in the literature that accuracy of human move-
ments during the execution of ADLs is around 1-2 cm (Merlo
et al., 2013). The achieved position error ismoreoverwell balanced
by the very high success rate and the guarantee of an anthropo-
morphic configuration (which also entail system reliability and
safety during the task fulfilment).

Furthermore, the high generalization level of the proposed
approach ensures higher robustness to the environmental changes
than the two other traditional methods, especially the one based
on the computation of the swivel angle, which needs to be a pri-
ori specified. A geometrical approach for inverting kinematics
(Section 2.4) has the clear advantage of a low computational bur-
den, but it is not guaranteed that it can be easily applied on all the
kinematic chains. Conversely, the proposed DMP based method
offers the advantage of being applicable to any kinematic chain,
thanks to the offline training, and has a good computational time
(which is comparable with the IK swivel angle and significantly
lower than the IK algorithm with inverse Jacobian).

5. CONCLUSION

A learning by demonstration method for planning motion
of upper-limb exoskeletons was presented in this work. It is
grounded on the computation of DMPs and machine learn-
ing techniques to construct the task- and patient-specific joint
trajectories based on the learnt trajectories. Distinctive fea-
tures, namely the DMP parameters, were firstly extracted from
the motion recorded during certain activities performed by
a human subject wearing the upper-limb exoskeleton. They
were subsequently used, together with the recorded joint angles
and Cartesian positions, to train a supervised neural network
(a two layer feed-forward network). The neural network pro-
vided the more appropriate set of DMP parameters to gener-
ate the task- and patient-specific trajectories of the exoskeleton
joints.

The proposed motion planning was preliminarily validated
in simulation and later experimentally validated on 4 patients
with LGMDs, who used the combined M-IMU/EMG interface
for controlling the upper-limb exoskeleton. The validation session
was aimed to (i) assess performance of the proposed motion
planning system by means of quantitative indicators and compare
it with traditional methods used to operate upper-limb exoskele-
tons, which are based on path planning and inverse kinematics
(IK inverse Jacobian and IK swivel angle); (ii) investigate the
generalization level of the proposed approach with respect to
the variability in the experimental scenario, given for example
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by different anthropometry of the patients and different object
positions.

The results achieved for the comparative analysis showed that
the DMP-based control guarantees a 100% success rate in the
task fulfillment, with an acceptable position and orientation error
for the targeted application. Moreover, it also ensures that the
exoskeleton always has configurations within the physiological
joint limits, differently from methods based on path planning
and inverse kinematics. Furthermore, the computational time
required by the proposed approach is lower than the one required
by the IK algorithm with inverse Jacobian and comparable with
the IK with swivel angle.

Finally, the results achieved in simulation as well as in the
experimental setting also showed a high generalization level of the
DMP based motion planning with respect to the different object
positions and subjects anthropometries. A success rate of 100% for
all tasks was reported.

Future works will be addressed to extend the study to a higher
number of patients and grasping and manipulation tasks, by
applying the proposedmotion planning approach also to the hand
exoskeleton (which in this study was used to perform grasping
tasks).

ETHICS STATEMENT

The experimental protocol was approved by the local Ethical com-
mittee (Comitato Etico Università Campus Biomedico di Roma,
reference number: 01/17 PAR ComEt CBM), by the Italian Min-
istry of Health (Registro—classif. DGDMF/I.5.i.m.2/2016/1096)
and complied with the Declaration of Helsinki. All subjects gave

written informed consent in accordance with the Declaration of
Helsinki.

AUTHOR CONTRIBUTIONS

CL designed the paper, analyzed the literature, designed and
developed the proposedmotion planner, analyzed the experimen-
tal data and wrote the manuscript. FC organized the experimental
sessions, acquired the data, analyzed the literature and contributed
to the manuscript writing. ALC analyzed the literature and partly
contributed to the manuscript writing. ET and SC designed and
developed the IK method used as benchmark for the comparative
analysis, i.e., IK based on the computation of the swivel angle,
and partly contributed to the manuscript writing. JMC and FJB
designed and developed the wrist-module and the hand exoskele-
ton. SMP recruited the patients. SS, NV, NGA contributed to
the design of the experiments and discussed the results. LZ con-
tributed to the design of the motion planner and the experiments,
discussed the results, wrote the paper and supervised the study. All
the authors read and approved the final version of themanuscript.

FUNDING

This work was supported partly by the Italian Institute
for Labour Accidents (INAIL) with the PPR 2 (CUP:
E58C13000990001), PCR 1/2 (CUP: E57B16000160005), PPR
AS 1/3 (CUP: E57B16000160005) and RehabRobo@work (CUP:
C82F17000040001) projects and partly by the European Project
H2020/AIDE: Adaptive Multimodal Interfaces to Assist Disabled
People in Daily Activities (CUP: J42I15000030006).

REFERENCES
An, C. H., Atkeson, C. G., and Hollerbach, J. M. (1988). Model-Based Control of a

Robot Manipulator. (Ann Arbor, MI: MIT Press).
Crea, S., Cempini, M., Moisè, M., Baldoni, A., Trigili, E., Marconi, D., et al. (2016).

“A novel shoulder-elbow exoskeleton with series elastic actuators,” in 6th IEEE
International Conference on Biomedical Robotics and Biomechatronics (BioRob)
2016 (Singapore: IEEE), 1248–1253.

Flash, T., and Hogan, N. (1985). The coordination of arm movements: an experi-
mentally confirmed mathematical model. J. Neurosci. 5, 1688–1703.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dynam-
ical movement primitives: learning attractormodels formotor behaviors.Neural
Comput. 25, 328–373. doi:10.1162/NECO_a_00393

Jiang, L., Shisheie, R., Cheng, M. H., Banta, L. E., and Guo, G. (2013). “Moving tra-
jectories and controller synthesis for an assistive device for arm rehabilitation,”
in IEEE International Conference on Automation Science and Engineering (CASE)
2013 (Madison, WI, USA: IEEE), 268–273.

Jin, L., and Li, S. (2016). Distributed task allocation of multiple robots: a control
perspective. IEEE Trans. Syst. Man Cybern. Syst. PP, 1–9. doi:10.1109/TSMC.
2016.2627579

Jin, L., Li, S., Zhou, M., Luo, X., Li, Y., and Qin, B. (2017). Neural dynamics for
cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform.
PP, 1–1. doi:10.1109/TII.2018.2789438

Kim, H., Miller, L. M., Byl, N., Abrams, G. M., and Rosen, J. (2012). Redundancy
resolution of the human arm and an upper limb exoskeleton. IEEE Trans.
Biomed. Eng. 59, 1770–1779. doi:10.1109/TBME.2012.2194489

Lauretti, C., Cordella, F., Guglielmelli, E., and Zollo, L. (2017a). Learning by
demonstration for planning activities of daily living in rehabilitation and assis-
tive robotics. IEEE Robot. Autom. Lett. 2, 1375–1382. doi:10.1109/LRA.2017.
2669369

Lauretti, C., Cordella, F., Scotto di Luzio, F., Saccucci, S., Sacchetti, R., Davalli,
A., et al. (2017b). “Comparative performance analysis of M-IMU/EMG and
voice user interfaces for assistive robots,” in 15th International Conference on
Rehabilitation Robotics, 2005. ICORR 2017 (London, UK: IEEE).

Li, S., Zhou, M., and Luo, X. (2017). Modified primal-dual neural networks for
motion control of redundant manipulators with dynamic rejection of harmonic
noises. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–11. doi:10.1109/TNNLS.
2017.2770172

Lourakis, M. I. (2005). A brief description of the Levenberg-Marquardt algorithm
implemented by levmar. Found. Res. Technol. 4, 1–6.

Marchal-Crespo, L., and Reinkensmeyer, D. J. (2009). Review of control strategies
for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6,
20. doi:10.1186/1743-0003-6-20

Merlo, A., Longhi, M., Giannotti, E., Prati, P., Giacobbi, M., Ruscelli, E., et al.
(2013). Upper limb evaluation with robotic exoskeleton. Normative values for
indices of accuracy, speed and smoothness. NeuroRehabilitation 33, 523–530.
doi:10.3233/NRE-130998

Mihelj, M. (2006). Human arm kinematics for robot based rehabilitation. Robotica
24, 377–383. doi:10.1017/S0263574705002304

Noda, K., Arie, H., Suga, Y., and Ogata, T. (2014). Multimodal integration learning
of robot behavior using deep neural networks. Rob. Auton. Syst. 62, 721–736.
doi:10.1016/j.robot.2014.03.003

Oyama, E., Chong, N. Y., Agah, A., and Maeda, T. (2001). “Inverse kinematics
learning by modular architecture neural networks with performance prediction
networks,” in IEEE International Conference on Robotics and Automation, 2001.
Proceedings 2001 ICRA, Vol. 1 (Seoul, Korea: IEEE), 1006–1012.

Papaleo, E., Zollo, L., Garcia-Aracil, N., Badesa, F. J., Morales, R., Maz-
zoleni, S., et al. (2015). Upper-limb kinematic reconstruction during stroke
robot-aided therapy.Med. Biol. Eng. Comput. 53, 815–828. doi:10.1007/s11517-
015-1276-9

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 532

https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1109/TSMC.2016.2627579
https://doi.org/10.1109/TSMC.2016.2627579
https://doi.org/10.1109/TII.2018.2789438
https://doi.org/10.1109/TBME.2012.2194489
https://doi.org/10.1109/LRA.2017.2669369
https://doi.org/10.1109/LRA.2017.2669369
https://doi.org/10.1109/TNNLS.2017.2770172
https://doi.org/10.1109/TNNLS.2017.2770172
https://doi.org/10.1186/1743-0003-6-20
https://doi.org/10.3233/NRE-130998
https://doi.org/10.1017/S0263574705002304
https://doi.org/10.1016/j.robot.2014.03.003
https://doi.org/10.1007/s11517-015-1276-9
https://doi.org/10.1007/s11517-015-1276-9
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lauretti et al. A Learning by Demonstration Motion Planner

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An experi-
mental evaluation of a novel minimum-jerk Cartesian controller for humanoid
robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010 (Taipei, IEEE), 1668–1674.

Provenzale, A., Cordella, F., Zollo, L., Davalli, A., Sacchetti, R., and Guglielmelli,
E. (2014). “A grasp synthesis algorithm based on postural synergies for an
anthropomorphic arm-hand robotic system,” in 5th IEEE RAS & EMBS Interna-
tional Conference on Biomedical Robotics and Biomechatronics (2014) (São Paulo,
IEEE), 958–963.

Schaal, S., and Atkeson, C. G. (1998). Constructive incremental learning
from only local information. Neural Comput. 10, 2047–2084. doi:10.1162/
089976698300016963

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics: Modelling,
Planning and Control. Berlino, Germania: Springer Science & Business Media.

Svinin, M. M., Goncharenko, I. A., Hosoe, S., and Osada, Y. (2010). Optimality
Principles and Motion Planning of Human-Like Reaching Movements. London,
UK: INTECH Open Access Publisher.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Lauretti, Cordella, Ciancio, Trigili, Catalan, Badesa, Crea, Pagliara,
Sterzi, Vitiello, Garcia Aracil and Zollo. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 533

https://doi.org/10.1162/089976698300016963
https://doi.org/10.1162/089976698300016963
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


February 2017 | Volume 11 | Article 6

Original research
published: 17 February 2017

doi: 10.3389/fnbot.2017.00006

Frontiers in Neurorobotics | www.frontiersin.org

Edited by: 
Xin Luo,  

Chongqing Institute of Green and 
Intelligent Technology (CAS), China

Reviewed by: 
Huanqing Wang,  

Carleton University, Canada  
Shuai Li,  

Hong Kong Polytechnic University, 
Hong Kong

*Correspondence:
Keum-Shik Hong 

kshong@pusan.ac.kr

Received: 25 October 2016
Accepted: 24 January 2017

Published: 17 February 2017

Citation: 
Khan MJ and Hong K-S (2017) 

Hybrid EEG–fNIRS-Based  
Eight-Command Decoding for BCI: 
Application to Quadcopter Control. 

Front. Neurorobot. 11:6. 
doi: 10.3389/fnbot.2017.00006

hybrid eeg–fnirs-Based  
eight-command Decoding 
for Bci: application to  
Quadcopter control

 

Muhammad Jawad Khan1 and Keum-Shik Hong1,2*

1 School of Mechanical Engineering, Pusan National University, Busan, South Korea, 2 Department of Cogno-Mechatronics 
Engineering, Pusan National University, Busan, South Korea

In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy 
(EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain 
region for brain–computer interface is presented. A total of eight commands are decoded 
by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, pari-
etal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word 
formation tasks are decoded with fNIRS, in which the selected features for classification 
and command generation are the peak, minimum, and mean ΔHbO values within a 2-s 
moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement 
in the up/down and left/right directions are used for four-command generation. The 
features in this case are the number of peaks and the mean of the EEG signal during 
1 s window. We tested the generated commands on a quadcopter in an open space. 
An average accuracy of 75.6% was achieved with fNIRS for four-command decoding 
and 86% with EEG for another four-command decoding. The testing results show the 
possibility of controlling a quadcopter online and in real-time using eight commands from 
the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface.

Keywords: brain–computer interface, hybrid eeg–fnirs, mental task, classification, quadcopter control

inTrODUcTiOn

Brain–computer interface (BCI) or brain–machine interface (BMI) is a method of communication 
between brain and hardware by means of signals generated from the brain without the involvement 
of muscles and peripheral nervous system (Naseer and Hong, 2015b; Schroeder and Chestek, 2016). 
Although prosthetic devices utilize muscles or peripheral nerve signals (Ravindra and Castellini, 
2014; Chadwell et al., 2016; Chen et al., 2016), brain signals are equally viable for provision of direct 
neural signals for interface purposes (Waldert et al., 2009; Quandt et al., 2012; Kao et al., 2014). A 
BCI, specifically, is an artificial intelligence system that can recognize a certain set of patterns gener-
ated by brain. The BCI promises as a platform to improve the quality of life of individuals with severe 
motor disabilities (Muller-Putz et al., 2015). The BCI procedure when acquiring control commands 
from the brain consists of five steps: signal acquisition, signal enhancement, feature extraction, clas-
sification, and control-interfacing (Nicolas-Alonso and Gomez-Gil, 2012).

The complicated surgical procedures performed for microelectrode implantation and establish-
ment of BCI have been outstandingly successful in achieving control of robotic and prosthetic arms 
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by means of neuronal-signal acquisition (Hochberg et al., 2006, 
2012). These methods, however, are far from perfect options for 
BCI purposes, as they are all invasive and incur significant risks 
(Jerbi et  al., 2011; Schultz and Kuiken, 2011; Rak et  al., 2012; 
Ortiz-Rosario and Adeli, 2013).

The alternative non-invasive methods measure brain activi-
ties via either detection of electrophysiological signals (Li et al., 
2010; Bai et al., 2015; Weyand et al., 2015) or determination of 
hemodynamic response (Bhutta et  al., 2014; Ruiz et  al., 2014; 
Hong et al., 2015; Naseer and Hong, 2015a; Weyand et al., 2015). 
Electrophysiological activity is generated by the neuronal firings 
prompted in the performance of brain tasks (Guntekin and Basar, 
2016). The hemodynamic response is the increase of hemoglobin 
as a result of the neuronal firing that occurs when the brain 
performs an activity (Ferrari and Quaresima, 2012; Boas et al., 
2014). The leading non-invasive BCI modalities in terms of cost 
and portability are electroencephalography (EEG) and functional 
near-infrared spectroscopy (fNIRS) (von Luhmann et al., 2015; 
Lin and Hsieh, 2016). The selection criterion for each modality 
is task dependent.

Electroencephalography has applications for active-, passive-, 
and reactive-type BCIs (Turnip et al., 2011; Zander and Kothe, 
2011; Turnip and Hong, 2012; Urgen et  al., 2013; Yoo et  al., 
2014). It is most widely employed with reactive-type tasks in the 
performance of which the brain output is generated in reaction 
to external stimulation. Commands are generated by detection of 
steady-state visually evoked potentials (SSVEP) and P300-based 
activations (Li et  al., 2010, 2013; Turnip and Hong, 2012; Cao 
et al., 2014; Bai et al., 2015). fNIRS-based BCIs, meanwhile, are 
most commonly of the active type, which obtains brain activity 
output via user intentionality, independent of external events. 
For the purposes of fNIRS-based active BCIs, mostly mental 
(e.g., math, counting, etc.) and motor-related tasks (e.g., motor 
imagery) are selected (Naseer et  al., 2014; Hong et  al., 2015; 
Hong and Naseer, 2016). Although recent studies have shown 
the importance of fNIRS-based BCI for reactive and passive tasks 
(Hu et  al., 2012; Santosa et  al., 2014; Bhutta et  al., 2015; Khan 
and Hong, 2015), active-type tasks are primarily used to increase 
the number of commands for this modality. The active-type 
BCI is preferred over the reactive BCI, as it allows a person to 
communicate with a machine at will. For both EEG and fNIRS, 
the drawback of increasing the number of active commands is 
the decrease in accuracy for BCI (Vuckovic and Sepulveda, 2012; 
Naseer and Hong, 2015a).

As a means of compensating for the accuracy reduction 
problem is the use of a single-brain signal acquisition modality, 
the hybrid BCI concept was proposed (Pfurtscheller et al., 2010). 
The design of a hybrid BCI entails the combination of either two 
modalities (at least one of which is a brain signal acquisition 
modality) or different brain signals (e.g., SSVEP and P300). The 
EEG–fNIRS-based hybrid BCI has been reported to enhance 
classification accuracy (Fazli et al., 2012; Putze et al., 2014; Tomita 
et al., 2014) and increase the number of commands (Khan et al., 
2014). Classification accuracy can be improved by simultane-
ously decoding EEG and fNIRS signals for the same activity and 
combining the features. The number of active commands can be 
increased by decoding brain activities from different brain regions 

(e.g., motor tasks for EEG and mental tasks for fNIRS). However, 
for these cases, the reported window size using fNIRS for optimal 
classification is around 10 s (Tomita et al., 2014). The problem 
of window size reduction and others relevant to real-time/online 
BCI applications require further research. Table  1 summarizes 
the most recent work (Kim et al., 2014; Bai et al., 2015; Combaz 
and Van Hulle, 2015; Hortal et al., 2015; Ma et al., 2015; Naseer 
and Hong, 2015a; Ramli et al., 2015; Yin et al., 2015) in terms of 
command number, accuracy, and window size as those param-
eters relate to robotic-control applications.

In the present BCI research, we decoded eight active com-
mands using signals from the frontal and prefrontal cortices. 
Four tasks (mental math, mental counting, word formation, and 
mental rotation) were decoded using fNIRS, and four eye move-
ment signals (up/down eye movement, left/right eye movement, 
twice or three times eyeblinks) were decoded using EEG. In the 
fNIRS classification and generation of commands, a 0- to 2-s 
window was used, whereas in the case of EEG, a 1-s window was 
used. The commands thus generated were used to update a quad-
copter’s movement coordinates (six movements and start/stop). 
Revealing the obtained results briefly, the signal mean, peak, and 
minimum-value features obtained using oxyhemoglobin data in 
0–2 s window provided 76.5% accurate classification. For EEG, 
signal peak and number of peaks achieved 86% accurate results. 
The testing of the drone in an arena showed the possibility of 
quadcopter control using eight-brain commands from the frontal 
cortex. To the authors’ best knowledge, this is the first fNIRS study 
to decode and classify brain activity in 0–2 s window. Also, this 
is the first study to decode four commands from the prefrontal 
cortex using fNIRS. Moreover, this work shows the first hybrid 
EEG–fNIRS-based decoding of eight active commands from the 
frontal and prefrontal cortices.

MaTerials anD MeThODs

subjects
A total of 10 healthy adults were recruited (all right-handed 
males; mean age: 28.5  ±  4.8). Right-handers had been sought 
in order to minimize any variations in the electrophysiological 
and hemodynamic responses due to the hemispheric dominance 
difference. None of the selected participants had participated in 
any previous brain signal acquisition experiment, and none had a 
history of any psychiatric, neurological, or visual disorder. All of 
them had normal or corrected to normal vision, and all provided 
a written consent after having been informed in detail about the 
experimental procedure. Experiments with fNIRS and EEG were 
approved by the Institutional Review Board of Pusan National 
University, and they were conducted in accordance with the ethi-
cal standards encoded in the latest Declaration of Helsinki.

electrode/Optode Placement
The frequency domain system ISS Imagent (ISS Inc., USA) 
was used for the signal acquisition. A total of eight sources 
and two detectors, making a combination of 16 channels, were 
positioned around the prefrontal cortex. The FPz location was 
positioned between the two detectors. The Emotiv EEG headset 
(Emotiv Epoc, USA) was used to acquire the EEG signals. The 
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TaBle 1 | comparison of our proposed method with recent electroencephalography (eeg)-based work on command generation, accuracy, and window size.

reference Brain area activity Brain–computer 
interface (Bci) 
type

Modality application commands accuracy (%) Window size

Kim et al. (2014) Complete brain Eye movement Active EEG + Eye 
tracker

Quadcopter control 8 91.67 5 s

Bai et al. (2015) Complete brain Motor imagery and 
P300

Active + reactive EEG Opening, closing, selection of files in Internet 
Explorer

9 (can achieve 
50)

4 s window for motor 
imagery and 600 μs for P300

Hortal et al. (2015) Motor and parietal Mental imagination Active EEG + EOG Robotic arm control for pick and place task 6 Task 1:71.13 
and Task 
2:61.51

0.5 s to synchronize output 
to brain–machine interface

Naseer and Hong 
(2015a)

Prefrontal and 
motor cortex

Mental arithmetic, 
mental counting and 
motor imagery

Active Functional 
near-infrared 
spectroscopy

Decoding answers to four-choice questions 4 73.3 2–7 s

Ma et al. (2015) Parietal and 
occipital

P300 and eyeblink Reactive + active EEG + EOG Mobile robot control 9 87.3 for average 
of 5 trials

~1.6 s

Combaz and Van 
Hulle (2015)

Whole brain P300 and steady-
state visually evoked 
potentials (SSVEP)

Reactive EEG Applications to locked-in patients option 
selection

12 Maximum 
achieved >95

200 μs before stimulation to 
800 μs after stimulation for 
experiment 1

Ramli et al. (2015) Motor and occipital Eye gaze Reactive EEG + EOG Application to BCI applications (wheelchair 
control)

6 97.88 0.5 s

Yin et al. (2015) Parietal and 
occipital cortex

P300 and SSVEP Reactive EEG Speller paradigm with applications to BCI 
systems control

Up to 64 
commands

95.18

The proposed 
method

Frontal Mental task + eye 
movement

Active NIRS + EEG Applications to quadcopter control 8 76.5% for NIRS 
and 86% for 
EEG

1 s for EEG and 2 s for NIRS
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FigUre 1 | configuration of optodes and electrodes for hybrid 
functional near-infrared spectroscopy–electroencephalography 
(fnirs–eeg) experiment. (a) 16-channel fNIRS with 2 detectors and 8 
emitters in the prefrontal brain region and (B) 14-electrode configuration of 
the Emotiv EEG headset.
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electrodes/optodes were positioned on the head according to the 
International 10–20 system (Jurcak et  al., 2007). The electrode 
and optode placement is illustrated in Figure 1.

experimental Procedure
The experimental procedure consisted of two sessions: training 
and testing. The subjects were trained to perform eight tasks 
detected simultaneously by EEG and fNIRS, after which the 
recorded brain activities were tested using real-time/online 
analysis.

Training Session
For the training session, the subjects were seated in a comfort-
able chair and told to relax. A computer monitor was set up 
approximately 70 cm in front of the subjects. The session began 
with a resting period of 2 min to establish a data baseline. After 
the resting period, the screen cued the participants to perform 
one of eight specific tasks. The tasks were as follows:

• Mental counting: counting backward from a displayed number;
• Mental arithmetic: subtraction of two-digit numbers 

from three-digit numbers in pseudo random order (e.g., 
233 − 52 = ?, ? − 23 = ?);

• Mental rotation: visualization of the clockwise rotation of a 
displayed stationary object (i.e., a cube);

• Word formation: formation of five scrambled words (e.g., 
“lloonab”), the first letter of which is shown as a cue (e.g., “B”);

• Two eyeblinks: blinking twice within 1 s window;
• Three eyeblinks: blinking thrice within 1 s window;
• Up/down eye movement: movement of both eyes in the up or 

down direction within 1 s window;
• Left/right eye movement: movement of both eyes in the left or 

right direction.

The mental tasks were recorded mainly using fNIRS, as 
the previous work (Weyand et  al., 2015) has shown its utility 
for high-accuracy detection of the above-noted tasks. The eye 
movement tasks were recorded principally using EEG, as the 
Emotiv EEG head set, as noted earlier, is commercially available 
as a system for detection of various facial movements and motor 
signals. The training session was divided into two parts: mental 
task training and eye movement training. In the first part, the 
subjects were trained for mental arithmetic, counting, rotation, 
as well as word formation tasks. Each task consisted of five 10-s 
trials separated by a 20-s resting session. In the second part of 
the training session, the subjects were instructed to move their 
eyes according to the cue given. Each trial in this case was 5 s in 
duration, and the resting period was 10 s. Details on the experi-
mental paradigm and data recording sequence are provided in 
Figure 2.

Testing Session
As part of the testing session, the training data were used to test 
the movement of a quadcopter (Parrot AR drone 2.0, Parrot SA., 
France). Specifically, the eight commands recorded during the 
training session were used to navigate the quadcopter in an open 
arena. The data were translated into commands and the subjects 
were asked to move the quadcopter in a rectangular path.

signal acquisition and Processing
The data for both modalities (EEG and fNIRS) were independently 
processed and filtered to acquire the desired output signals. In 
both cases, band-pass filtering was used to remove physiological 
noise from the acquired signals.

fNIRS Signal Processing
The frequency domain fNIRS system used two wavelengths 
(690 and 830 nm) to determine the changes in the concentra-
tion of hemoglobin. The sampling rate of 15.625 Hz was used to 
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FigUre 2 | experimental paradigm of a training session (per subject). 
After the initial 2-min rest, each functional near-infrared spectroscopy 
recording block consists of five 10-s activations and five 20-s rests, while 
each electroencephalography block consists of five 15-s tasks and five 10-s 
rests. The total duration of the experiment is 17 min.
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acquire the data. The modified Beer-Lambert law (Baker et al., 
2014; Bhatt et  al., 2016) was utilized to convert the data into 
concentrated changes of oxy- and deoxy-hemoglobin (ΔHbO 
and ΔHbR):
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where A is the absorbance of light (optical density), Iin is the 
incident intensity of light, Iout is the detected intensity of light, α 
is the specific extinction coefficient in µM−1 cm−1, c is the absorber 
concentration in micromolars, l is the distance between the source 
and the detector in centimeters, d is the differential path-length 
factor, and η is the loss of light due to scattering.

The data were first preprocessed to remove physiological 
noises related to respiration, cardiac, and low-frequency drift 
signals. In order to minimize the physiological noise due to 
heart pulsation (1–1.5 Hz for adults), respiration (approximately 
0.4  Hz for adults), and eye movement (0.3–1  Hz), the signals 
were low-pass filtered using a fourth-order Butterworth filter at a 
cutoff frequency of 0.15 Hz. The low-frequency drift signals were 
minimized from the data using a high-pass filter with a cutoff 
frequency of 0.033 Hz (Kamran and Hong, 2014; Bhutta et al., 
2015; Hong and Santosa, 2016).

EEG Signal Processing
The 14-channel EEG data were acquired at a sampling rate of 
128  Hz. The α-, β-, Δ-, and θ-bands, acquired by band-pass 
filtering between 8 and 12 Hz, 12 and 28 Hz, 0.5 and 4 Hz, and 
4 and 8 Hz, respectively, enabled isolation of the electrodes cor-
responding to the eye movement activities (Lotte et  al., 2007; 
Ortiz-Rosario and Adeli, 2013; Ma et al., 2015).

channel selection
Several channels were activated for both EEG and fNIRS. Proper 
channel selection is essential to the high-accuracy generation 
of commands. Previous work has employed t-value-based 
approaches (Hong and Nguyen, 2014; Hong and Santosa, 2016), 
bundled-optode-based approaches (Nguyen and Hong, 2016; 
Nguyen et al., 2016), and channel-averaging approaches (Khan 
and Hong, 2015; Naseer and Hong, 2015a). Other studies 
alternatively have employed their own algorithms, for instance, 
independent component analysis, etc. (Hu et al., 2010; Kamran 
and Hong, 2013; Santosa et  al., 2013). We used the following 
criteria for selection of fNIRS and EEG channels.

fNIRS Channel Selection
For fNIRS channel selection, we calculated the peak (max) value 
of ΔHbO in the baseline and in the first trials of the mental arith-
metic, mental counting, mental rotation, and word formation 
tasks, respectively. If the difference between the max value of the 
trial and the baseline value was positive, the channel was selected 
for classification; if neutral or negative (equal to or less than zero), 
it was discarded.

EEG Channel Selection
In case of EEG, we measured the power spectrum for each 
channel. The selected channels were those in which the signal 
power corresponding to the eyeblink and movement tasks was 
significant. Mostly the channels near the frontal brain region were 
active in this case.

Feature extraction and classification
In order to generate commands, we first extracted the relevant 
features for classification. We selected signal peak and signal 
mean as features as, according to the literature (Khan and Hong, 
2015), they provide better performance for fNIRS-based BCI 
systems. Also, in consideration of a recently reported possibil-
ity of an initial fNIRS signal dip (Hong and Naseer, 2016; Zafar 
and Hong, 2017), we added a minimum (min) signal value as 
a feature. We also investigated the possibility of minimizing the 
time for command generation by means of 0–1, 0–1.5, and 0–2 s 
windows.

For EEG signals, following channel selection we selected 
the signal mean and number of peaks as features for command 
generation. In this case, we used a moving window of 1 s to extract 
the relevant feature values.

For both modalities, MATLAB®-based functions were used 
to calculate the features of the mean, peak, min, and number of 
peaks. For offline processing, the extracted features were rescaled 
between 0 and 1 by the equation

 ′ =
−
−

a a a
a a
min 

max min 
, (3)

where a ∈ Rn represents the feature value, a′ is the rescaled value 
between 0 and 1, max a denotes the largest value, and min a 
indicates the smallest value. These normalized feature values 
were used in a four-class classifier for training and testing of the 
data. We used linear discriminant analysis (LDA) to classify the 
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FigUre 3 | Block diagram of the proposed brain–computer interface scheme for generation of eight commands.
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signals for EEG and fNIRS, as, in one of our previous studies, 
we found it to be faster than support vector machine (Khan and 
Hong, 2015).

For our case, xi ∈ R2, where, for fNIRS, i denotes the classifica-
tion class, μi is the sample mean of class i, and μ is the total mean 
over all of the samples l. That is,

 µ µi
i x i

l
ln

x
n

x= =
∈
∑ ∑1 1
class 

, , (4)

where ni is the number of samples of class i and n is the total 
number of samples. The optimal projection matrix V for LDA that 
maximizes the following Fisher’s criterion is

 J V V S V
V S V

T

T( ) ( )B

W

=
det
det( )

, (5)

where SB and SW are the between-class scatter matrix and the 
within-class scatter matrix, respectively, given by

 S ni
i

m

i i
T

B = − −
=
∑

1

( )( ) ,µ µ µ µ  (6)

 S x xl i l i
T

l ii

m

W
class

= − −∑∑
=

( )( ) ,µ
∈

µ
x1

 (7)

where the total number of classes is given by m. Equation 5 was 
treated as an eigenvalue problem in order to obtain the optimal 
vector V corresponding to the largest eigenvalue. In the case of 
offline testing, 10-fold cross-validation was used to estimate the 
classification accuracy (Lotte et  al., 2007; Hwang et  al., 2013; 
Ortiz-Rosario and Adeli, 2013).

control scheme for Quadcopter
For control of the quadcopter, we formulated eight commands for 
classification: up/down movements, clockwise/counterclockwise 
rotations, forward/backward movements, and start/stop. After 
classification, we updated the quadcopter’s movement coordinates 

by Wi-Fi communication. The quadcopter has navigated using 
the transmitted commands. Figure 3 provides a block diagram 
of the BCI scheme for quadcopter control.

resUlTs

Figure 4 plots Subject 2’s ΔHbO values for all 16 channels and 
four activities. It can be seen that not all of the channels were 
active when performing a brain activity. However, for all four 
of the mental tasks, the activation pattern appears in the same 
channels.

The plots in Figure  4 serve to emphasize the necessity of 
selecting proper channels for distinguishing of brain activi-
ties. As per our channel-selection criterion, we subtracted the 
max value in the baseline from the max value of the first trial. 
Accordingly, channels 4, 9, and 10 were selected for Subject 
2, whereas channel 8 was not, due to having a higher value of 
baseline. We intended to identify different brain channels for 
different activities; therefore, as per our criterion, the subtrac-
tion of the first trial for each activity can identify different 
channels. However, in this case, for all subjects selected, the 
common channels were activated as corresponding to the 
mental tasks.

As various windows sizes have been used for detection of fNIRS 
features in different studies (Utsugi et al., 2008; Luu and Chau, 
2009; Power et al., 2010; Naseer and Hong, 2013; Schudlo et al., 
2013; Schudlo and Chau, 2015; Weyand and Chau, 2015; Weyand 
et al., 2015; Naseer et al., 2016a,b), we intended to minimize the 
window size applicable to BCI applications. We therefore selected 
0–0.5, 0–1, 0–1.5, and 0–2  s windows for feature acquisition 
and investigated both hemodynamic and initial dip features to 
acquire the best window size for reduced computation time. The 
signals of Subject 2 as averaged over all of the trials in the reduced 
window are plotted in Figure 5.

In the case of EEG, we examined the power spectrum in 
order to identify the activated channels. The F3, F4, O1, and O2 
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FigUre 4 | hbO examples for Figure 1a (subject 2). Channels 4, 9, and 10 were selected as active channels by the proposed method, but channel 8 was not 
(even if it was identified as such by the t-value analysis).
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regions were most active. We selected the channel showing the 
highest power corresponding to the eye movement task. Figure 6 
plots the normalized power spectrum of the selected channel for 
Subject 2.

The accuracies obtained for fNIRS are shown in Table 2. The 
accuracies achieved using EEG for the selected channels are 
shown in Table 3.

For real-time/online testing, we associated each activity with 
quadcopter movement. The associated activity for each is shown 
in Figure 7.

We associated opposite movements with EEG/fNIRS activi-
ties; for example, if forward movement was associated with EEG 
signals, backward movement was associated with fNIRS signals. 
This was done to ensure safety from the quadcopter and any-
one in the area. This scheme has benefits in any case, as, if a 
command is misclassified/misinterpreted, a command with the 
second modality can be generated to countermove the misclas-
sified movement. As per Figure 7, when EEG was used for one 
motion, fNIRS was used for its counter motion. This selection 
reflected EEG’s demonstratively higher accuracy for most of the 
subjects.

We have tested the movement of the quadcopter in an arena. 
The subjects were asked to move the quadcopter in a rectangular 
path. They were asked to land the quadcopter near to the takeoff 
position. After take off, the subjects were informed to move the 
drone almost 3 m in forward direction, then 2 m to the left. The 
subjects had to increase the height by almost 0.5 m when reaching 

the left corner. After increasing the height, the subjects were to 
move the quadcopter backward 3 m and then 2 m to the right 
to reach the takeoff spot. After reaching the final position, the 
subjects were asked to land the drone. The path followed by the 
drone from Subject 2 is shown in Figure 8.

Since the drone requires quick response commands to maneu-
ver, it can be clearly seen that the path was not properly followed. 
The subject had to adjust the path to the desired path to reach the 
final position. This is due to the delay in command generation 
and transmission to the drone for movement control. Further 
improvement can be made by incorporating an adaptive control 
algorithm to the drone’s control and reduction of window size to 
stabilize the trajectory followed by the drone.

DiscUssiOn

In this study, we decoded eight active brain commands using 
hybrid EEG–fNIRS for BCI. The generated commands were 
tested using a quadcopter. To the best of the authors’ knowledge, 
there are only two previous studies that have tested their BCI 
schemes for control of a quadcopter in 3D space (LaFleur et al., 
2013; Kim et  al., 2014). Our work has an advantage over both 
studies, as we were able to control the quadcopter with a greater 
number of active commands. LaFleur et al. (2013) controlled the 
height and rotation of a quadcopter using motor imageries for 
the left, right, and both hands. However, in this case, the quad-
copter was given a fixed forward speed. Therefore, this work did 
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TaBle 2 | classification accuracies of four functional near-infrared 
spectroscopy window sizes (based upon the mean, peak, and minimum 
values of ΔhbO).

subjects Window size
0–0.5 s

Window size
0–1 s

Window size
0–1.5 s

Window size
0–2 s

1 65 70 70 75
2 80 85 90 95
3 80 80 85 85
4 50 55 60 65
5 85 85 90 95
6 70 70 70 75
7 55 60 65 70
8 65 60 65 70
9 60 65 65 70
10 50 55 60 65

Mean 66 ± 12.6 68.5 ± 11.5 72 ± 11.8 76.5 ± 11.3

FigUre 6 | normalized power spectra of electroencephalography 
(subject 2). (a) F3 electrode and (B) P7 electrode. The local peak in the red 
circle in (a) corresponds to the eye movement task measured by the F3 
electrode.

FigUre 5 | comparison of the averaged hbOs of four mental tasks 
and the magnified responses during 0–4 s window.

Khan and Hong Hybrid EEG–fNIRS-Based Control

Frontiers in Neurorobotics | www.frontiersin.org February 2017 | Volume 11 | Article 6

not give full quadcopter control to the user for navigation. Also, 
as it is impossible for some subjects to perform motor imagery 
(Vidaurre and Blankertz, 2010), their scheme is suited only to a 
specific set of users who can in fact perform it. Kim et al. (2014) 
integrated EEG with an eye tracker for generation of eight com-
mands. Although their eye tracking was effective, an LED-based 
flash light was used to monitor the eye movement. As such, with 
the illuminating LED enhancing the contrast between the pupil 
and iris, it would be difficult to maintain quadcopter-controlling 
concentration for any significant span of time. In our case, there 
are no such drawbacks, as the necessary mental and eye move-
ment commands are easy to generate. Also, our scheme yields 
more freedom to the user for drone control. It also includes a 
measure—specifically EEG/fNIRS integration—for avoidance 
of any miss-directional movement. A given EEG command has 
been matched with an opposing fNIRS command (see Figure 7). 
Thus, in the event that an EEG command is incorrectly classified 
and the quadcopter follows a wrong direction, fNIRS signals can 
be used to counteract that command.

Our proposed scheme for fNIRS classification incorporates 
features for both hemodynamics and initial dips. To the best of 
our knowledge, this is the first work to generate commands in a 

0–2  s window for BCI. Whereas previously, different windows 
have been reported for fNIRS-based classification using fNIRS, 
in the current work, the smallest window size for classification 
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TaBle 3 | electroencephalography accuracies of selected electrodes.

subjects electrodes selected accuracy (%)

1 F3 100
2 F3 95
3 F3 100
4 AF3 90
5 F7 75
6 F3 75
7 F4 75
8 F3 80
9 F7 80
10 F3 90

Mean 86 ± 10.2
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Further investigation of feature selection and the use of adaptive 
algorithms will improve the results in both window size and 
classification.

Another advantage of the proposed scheme is its decoding 
of all four fNIRS activities from the prefrontal cortex. In previ-
ous research (Naseer and Hong, 2015a), four choices have been 
decoded using fNIRS in a 2–7 s window. However, in this case, 
only two classes were decoded from the prefrontal cortex, the 
other two commands having been generated using data from 
the motor cortex. Our proposed work is more advantageous for 
more users, as those suffering from locked-in syndrome cannot 
properly perform motor tasks. Another advantage of our work is 
the reduced command-generation time using fNIRS. This enables 
patients who are partially locked-in (with minor eye movements) 
to use eight commands in controlling a robot in online/real-time 
scenarios.

A previous fNIRS study (Hong and Santosa, 2016) proposed 
channel selection based on a t-value criterion. It classified four 
sound categories from the auditory cortex using the channels’ 

FigUre 7 | The quadcopter control scheme based on electroencephalography and functional near-infrared spectroscopy signals.

was used. Although the reported optimal window size, which is 
to say, the size allowing for the highest classification accuracy, 
is 2–7 s (Naseer and Hong, 2013), the 0–2 s window size, albeit 
causing a decrease in accuracy, is still usable for BCI. Also, we 
used the mean, min, and peak values of ΔHbO for classification. 
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highest t-values. In our approach, we used the baseline as a refer-
ence for selection of channels. For classification, we selected, for 
four prefrontal activities, the common channels yielding a posi-
tive value after taking the difference between the peak value and 
the baseline. The drawback here is that only a limited number of 
channels can be selected. The algorithm can be further improved 
by adding the “difference of mean” for channel selection. In the 
comparison of our approach with t-value-based channel selection 
(see Table 4), most of the selected channels were common. It can 
be seen that the t-value-based scheme can identify more active 
channels. However, channel detection time also is an important 
factor for real-time applications, and our proposed scheme can 
identify the activated channels much quicker than the previous 
schemes. Thus, our method allows much room for further devel-
opment in terms of command generation and real-time control.

A limitation of this method is the acquisition of activities using 
eye movement tasks. Although the use of eye movement for robot 
control has already been demonstrated to be effective (Ma et al., 
2015), eye movements are related to motor activity, and so, it is 
difficult for motor-disabled patients to generate four EEG-based 
commands. The selection of different active tasks for EEG can 
improve the results. Another, fNIRS-related limitation of the 
proposed method is the variation in hemodynamic responses in 
subjects due to trial-to-trial variability (Hu et al., 2013). Granted, 
the proposed features (peak, mean, and min ΔHbO) might not 
yield the best performance for each subject in the 0–2 s window. 
However, this problem is not insoluble, and certainly, it will be 
addressed in further investigations into feature selection. Also, 
the use of adaptive algorithms promises improvement in fNIRS 
command generation time.

cOnclUsiOn

In this study, we investigated the possibility of decoding 
eight commands from the frontal and prefrontal cortices 

by combining electroencephalography and functional near-
infrared spectroscopy (fNIRS) for a BCI. Four EEG commands 
were generated by eye movements (two and three blinks as 
well as left/right and up/down movements), using the number 
of peaks and the mean value as features. In the case of fNIRS, 
we chose mental counting, mental arithmetic, mental rotation, 
and word formation tasks for the purpose of activity decoding. 
We selected a 0–2  s window to generate the commands using 
fNIRS signals. The signal mean, peak, and minimum values were 
used as features for incorporation of hemodynamic signals and 
initial dip features in the classifier. The obtained 76.5% accuracy 
indicates the possibility of classifying the activities in reduced 
windows. We tested the generated commands in a real-time 
scenario using a quadcopter. The movement coordinates of the 
quadcopter were updated using the hybrid EEG–fNIRS-based 
commands. The performed experiments served to demonstrate 

FigUre 8 | an example of trajectories of the quadcopter in the 3D space (subject 2).

TaBle 4 | comparison of selected channels and time between the 
proposed method and the t-value-based method.

subjects selected channels

The proposed 
scheme

selection 
time (s)

t-value-based 
scheme

selection 
time (s)

1 4, 10 0.0005 4, 8, 10 0.172
2 4, 9, 10 0.0005 2, 3, 4, 9, 10, 11 0.185
3 3, 5, 7,11, 12, 15 0.0005 2, 3, 5, 7, 11, 15 0.203
4 2, 3, 5, 6, 11, 14 0.0005 2, 3, 5, 6, 9, 11, 

14, 15 
0.192

5 6, 7, 14, 15 0.0005 5, 6, 7, 14, 15, 16 0.195
6 6, 8–16 0.0005 1,5–16 0.198
7 1, 4, 5, 8, 15 0.0005 1, 2, 3, 4, 5, 8, 10 0.191
8 1, 2, 3, 4, 5, 8, 

11, 14
0.0005 1, 2, 3, 4, 5, 8, 11–15 0.198

9 1, 2, 3, 4, 5, 6,10 0.0005 1, 2, 3, 4, 5, 8, 9, 
10, 16

0.196

10 1, 2, 6, 7, 14 0.0005 1, 5, 6, 7, 9, 13, 14 0.172
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the BCI feasibility and potential applications of the proposed 
eight-command decoding scheme. Further research on better 
feature selection and minimization of time window for com-
mand generation can improve the controllability of the quad-
copter. Moreover, the incorporation of adaptive algorithms for 
flight control along with brain signal decoding for stable flight 
can further strengthen the results.
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To obtain the online solution of complex-valued systems of linear equation in complex
domain with higher precision and higher convergence rate, a new neural network based
on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network
for complex-valued systems of linear equation in complex domain is proposed and
theoretically proved to be convergent within finite time. Then, the illustrative results show
that the new neural network model has the higher precision and the higher convergence
rate, as compared with the gradient neural network (GNN) model and the ZNN model.
Finally, the application for controlling the robot using the proposed method for the
complex-valued systems of linear equation is realized, and the simulation results verify
the effectiveness and superiorness of the new neural network for the complex-valued
systems of linear equation.

Keywords: complex-valued systems of linear equation, recurrent neural network, finite-time convergence, robot,
gradient neural network, motion tracking

1. INTRODUCTION

Today, the complex-valued systems of linear equation has been applied into many fields (Duran-
Diaz et al., 2011; Guo et al., 2011; Subramanian et al., 2014; Hezari et al., 2016; Zhang et al., 2016;
Xiao et al., 2017a). Inmathematics, the complex-valued systems of linear equations can be written as

Az(t) = b ∈ Cn, (1)

whereA ∈ Cn×n and b ∈ Cn are the complex-valued coefficients, and z(t) ∈ Cn is a complex-valued
vector to be computed. Xiao et al. (2015) proposed a fully complex-valued gradient neural network
(GNN) to solve such a complex-valued systems of linear equation. However, the corresponding
error norm usually converges to the theoretical solution after very long time. So to increase the
convergence rate, a kind of neural network called Zhang neural network (ZNN) is proposed tomake
the lagging error converge to 0 exponentially (Zhang and Ge, 2005; Zhang et al., 2009). However,
in Xiao (2016) and Xiao et al. (2017b), Xiao pointed that the original ZNN model cannot converge
to 0 within finite time, and its real-time calculation capability may be limited (Marco et al., 2006; Li
et al., 2013; Li and Li, 2014; Xiao, 2015). So, Xiao (2016) presented a new design formula, which can
converge to 0 within finite time for the time-varying matrix inversion.
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Considering that a complex variable can be written as the com-
bination of its real and imaginary parts, we have A=Are + jAim,
b= bre + jbim, and z(t)= zre(t)+ zim(t), where the symbol j =√

−1 means an imaginary unit. Therefore, the equation (1) can
be presented as

[Are + jAim][zre(t) + jzim(t)] = bre + jbim ∈ Cn, (2)

where Are ∈ Rn×n,Aim ∈ Rn×n, zre ∈ Rn, zim ∈ Rn, bre ∈ Rn,
and bim ∈ Rn. According to the complex formula, the real (or
imaginary) part of the left-side and right-side of equation is equal
(Zhang et al., 2016). Then we have{

Arezre(t) − Aimzim(t) = bre ∈ Rn,

Aimzre(t) + Arezim(t) = bim ∈ Rn.
(3)

Thus, we can express the equation (3) in a compact matrix
form as: [

Are −Aim
Aim Are

] [
zre(t)
zim(t)

]
=
[
bre
bim

]
∈ R2n. (4)

We can write the equation (4) as

Cx(t) = e ∈ R2n, (5)

where C =
[
Are −Aim
Aim Are

]
, x(t) =

[
zre(t)
zim(t)

]
, and e =

[
bre
bim

]
. Now

the complex-valued system of linear equation can be computed
in real domain. In this situation, most methods for solving real-
valued system of linear equation can be used to solve the complex-
valued system of linear equation (Zhang and Ge, 2005; Zhang
et al., 2009; Guo et al., 2011). For example, a gradient neural
network (GNN) can be designed to solve such a real-valued system
of linear equation. The GNN model can be directly presented as
follows (Xiao et al., 2015):

ẋ(t) = −γCT(Cx(t) − e), (6)

where design parameter γ > 0 is employed to adjust the conver-
gence rate of the GNN model. Zhang et al. (Zhang et al., 2016)
used the recurrent neural network to solve the complex-valued
quadratic programming problems. Hezari et al. (2016) solved a
class of complex symmetric system of linear equations using an
iterative method. However, the above mentioned neural networks
cannot converge to the desired solution within finite time. Con-
sidering that the complex-valued system of linear equation can
be transformed into the real-valued system of linear equation, a
new neural network can be derived from the new design formula
proposed by Xiao for solving the complex-valued system of linear
equation (Xiao et al., 2015). In addition, the new neural network
possesses a finite-time convergence property.

In recent years, the research on robot has become a hot spot
(Khan et al., 2016a,b; Zanchettin et al., 2016; Guo et al., 2017),
and the neural network has been successfully applied into the
robot domain (He et al., 2016; Jin and Li, 2016; Woodford et al.,
2016; Jin et al., 2017; Xiao, 2017). However, the application of
the new design method for the complex-valued system of linear

equation in robot domain has not been reported. So this is the first
time to propose a new neural network, which can convergence
within finite-time for solving the complex-valued system of linear
equation and its application to robot domain.

The rest of this paper is organized into four sections. Section 2
proposes a finite-time recurrent neural network (FTRNN) to deal
with the complex-valued system of linear equation, and its con-
vergence analysis is given in detail. Section 3 gives the computer-
simulation results to substantiate the theoretical analysis and
the superiority. Section 4 gives the results of the application for
controlling the robotic motion planning. Finally, the conclusions
are presented in Section 5. Before ending this section, the main
contributions of the current work are presented as follows.

• The research object focuses on a complex-valued system of
linear equation in complex domain, which is quite different
from the previously investigated real-valued system of linear
equation in real domain.

• A new finite-time recurrent neural network is proposed and
investigated for solving complex-valued systems of linear equa-
tion in complex domain. In addition, it is theoretically proved
to be convergent within finite time.

• Theoretical analyses and simulative results are presented to
show the effectiveness of the proposed finite-time recurrent
neural network. In addition, a five-link planar manipulator is
used to validate the applicability of the finite-time recurrent
neural network.

2. FINITE-TIME RECURRENT NEURAL
NETWORK

Considering that the complex-valued system of linear equation
can be computed in real domain, the error function E(t) of
traditional ZNN can be presented as

E(t) = Cx(t) − e ∈ R2n. (7)

Then, according to the design formula Ė(t) = −γΦ(E(t)), the
original ZNN model can be presented as

Cẋ(t) = −γΦ(Cx(t) − e), (8)

where Φ(·) means an activation function array, and γ > 0 is used
to adjust the convergence rate. In this paper, the new design
formula in Xiao (2016) for E(t) can be directly employed and
written as follows:

dE(t)
dt = −γΦ

(
ρ1E(t) + ρ2Ej/f(t)

)
, (9)

where the parameters ρ1 and ρ2 satisfy ρ1 > 0, ρ2 > 0, and f and j
mean the positive odd integer and satisfy f > j. Then we have

Cẋ(t) = −γΦ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f(t)

)
. (10)

To simplify the formula, Φ(·) uses the linear activation func-
tion. Then we have

dE(t)
dt = −γ

(
ρ1E(t) + ρ2Ej/f(t)

)
, (11)
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and

Cẋ(t) = −γ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f

)
, (12)

which is called the finite-time recurrent neural network (FTRNN)
model to online deal with the complex-valued system of linear
equation. In addition, for design formula (11) and FTRNNmodel
(12), we have the following two theorems to ensure their finite-
time convergence properties.

Theorem 1. The error function E(t) of design formula (11)
converges to zero within finite-time tu regardless of its randomly
generated initial error E(0):

tu =
f

γρ1(f − j) ln
ρ1hM(0)(f−j)/f + ρ2

ρ2
,

where hM(0)means the maximum element of the matrix E(0).
P. For design formula (11), we have

dE(t)
dt = −

(
γρ1E(t) + γρ2Ej/f(t)

)
. (13)

To deal with the dynamic response of the equation (13), the
above differential equation can be rewritten as below:

E−j/f(t) ⋄ dE(t)
dt + γρ1E(f−j)/f(t) = −γρ2, (14)

where the matrix-multiplication operator ⋄ means the Hadamard
product and can be written as

W ⋄ S =


W11S11, W12S12, · · · , W1nS1n
R21S21, W21S21, · · · , W2nS2n

...
...

. . .
...

Wm1Sm1, Wm2Sm2, · · · , WmnSmn,

 ∈ Rm×n.

Now let us define Y(t)=E(f–j)/f(t). Then, we have

dY(t)
dt =

f − j
f E−j/f(t) ⋄ dE(t)

dt .

Thus, the differential equation (14) can be equivalent to the
following first order differential equation:

dY(t)
dt +

f − j
f γρ1Y(t) = − f − j

f γρ2I. (15)

This is a typical first order differential equation, and we have

Y(t) =
(

ρ2

ρ1
I + Z(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1
I. (16)

So we have

E(f−j)/f(t) =
(

ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1
I,

(17)

and

E(t) =
[(

ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1

]f/(f−j)
.

(18)
From the equation (18), we can find the error matrix E(t) will

converge to 0 in tu, and(
ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1tu
)

− ρ2

ρ1
I = 0. (19)

Considering each element of the matrix E(t) has the same
identical dynamics, we have

tik =
f

γρ1(f − j) ln
ρ1h(f−j)/f

ik (0) + ρ2

ρ1
, (20)

where hik means the ikth element of thematrix E(0), and tik means
the ikth finite-time convergence upper bound of the matrix E(t).
Let hM(0)=max(hik). Then for any ikth element of the matrix
E(t), we have the maximum convergence time:

tu =
f

γρ1(f − j) ln
ρ1hM(0)(f−j)/f + ρ2

ρ2
.

According to the above analysis, we can draw a conclusion
that the error matrix E(t) will converge to 0 within the finite
time tu regardless of its initial value E(0). Now the proof is
completed. �

Theorem 2. The state matrix X(t) of FTRNN model (12) will
converge to the theoretical solution of (5) in finite time tu regardless
of its randomly generated initial state x(0), and

tu ∈

{
f

γρ1(f − j) ln
ρ1hL(0)(f−j)/f + ρ2

ρ2
,

f
γρ1(f − j) ln

ρ1hM(0)(f−j)/f + ρ2

ρ2

}
,

where hM(0) and hL(0) mean the largest and the smallest elements
of the matrix E(0), respectively.

P. Let x(FT)(t) represent the solution of the FTRNNmodel
(12), x(org)(t) represent the theoretical solution of the equation (5),
and x̃(t) represent the difference between x(FT)(t) and x(org)(t).
Then, we can obtain

x̃(t) = x(FT)(t) − x(org)(t) ∈ R2n×2n. (21)

The equation (21) can be written as

x(FT)(t) = x̃(t) + x(org)(t) ∈ R2n×2n. (22)

Substitutes the above equation into FTRNN model (12), we
have

C( ˙̃x(t) + ẋ(org)(t)) = −γ
(
ρ1(C(x̃(t) + x(org)(t)) − e)

+ρ2(C(x̃(t) + x(org)(t)) − e)j/f
)
. (23)

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 4549

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Ding et al. FTRNN with Application to Robots

Considering Cx(org)(t)− e= 0 and C ẋ(org)(t) = 0, the above
equation can be written as

C ˙̃x(t) = −γ
(
ρ1(Cx̃(t) − e) + ρ2(Cx̃(t) − e)j/f

)
.

Furthermore, considering E(t) = C(x̃(t) + x(org)(t)) − e,
Cx(org)(t)− e= 0, and E(t) = Cx̃(t), the above differential equa-
tion can be written as

dE(t)
dt = −γ

(
ρ1(E(t) − e) + ρ2(E(t) − e)j/f

)
.

Let Ẽ(t) = E(t) − e, then we have

dẼ(t)
dt = −γ

(
ρ1Ẽ(t) + ρ2Ẽ

j/f(t)
)
. (24)

So according to the equation (20), we have

t̃ik =
f

γρ1(f − j) ln
ρ1h̃

(f−j)/f
ik (0) + ρ2

ρ1
, (25)

where t̃ik means the time upper of ikth solution of the matrix Ẽ(t),
and h̃ik means the ikth initial error value of the matrix Ẽ(0).

Let us define h̃M = max(h̃ik(0)), and h̃L = min(h̃ik(0)) with
i, k= 1, 2, . . . n. Then for all possible i and k, we have

f
γρ1(f − j) ln

ρ1h̃
(f−j)/f
L (0) + ρ2

ρ1

6 t̃ik(t) 6 f
γρ1(f − j) ln

ρ1h̃
(f−j)/f
M (0) + ρ2

ρ1
.

A B

FIGURE 1 | Output trajectories of neural states x(t) synthesized by GNN model (6) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).

A B

FIGURE 2 | Output trajectories of neural states x(t) synthesized by ZNN model (8) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).
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The above equation shows that the state matrix x̃(t) =
x(FT)(t)− x(org)(t)will converges to 0 within finite time regardless
of its initial error value. In another word, the matrix x(FT)(t) for
the FTRNN model (12) will converge to the theoretical solution
x(org)(t) for the theoretical model (5) within finite time regardless
of its randomly generated initial state x(0). Now the proof is
completed. �

3. COMPUTER SIMULATION

In this section, a digital example will be carried out to show
the superiority of FTRNN model (12) to GNN model (6) and
ZNN model (8). We can choose the design parameters f and
j, which satisfy f > j. For example, we choose f = 5 and j= 1
in this paper. In addition to this, to substantiate the superiority

of FTRNN model (12), we choose the same complex-valued
matrix A and b as these of the paper (Xiao et al., 2015). Then
we have

A =


−0.7597 + 0.6503j −0.8391 − 0.5440j 0.2837 − 0.9589j 1
0.7597 + 0.6503j −0.8391 + 0.5440j −0.2837 − 0.9589j 1
0.7597 − 0.6503j −0.8391 − 0.5440j −0.2837 + 0.9589j 1

0 − 1.0000j −1.0000 0 + 1.0000j 1

.

So we have

Are =


−0.7597 −0.8391 0.2837 1
0.7597 −0.8391 −0.2837 1
0.7597 −0.8391 −0.2837 1

0 −1.0000 0 1

,

A B

FIGURE 3 | Output trajectories of neural states x(t) synthesized by FTRNN model (12) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).

A B

FIGURE 4 | Output trajectories of residual functions ||E(t)||2 synthesized by different neural-network models with (A) γ =5 and (B) γ = 500.
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and

Aim =


0.6503 −0.5440 −0.9589 0
0.6503 0.5440 −0.9589 0

−0.6503 −0.5440 0.9589 0
−1.0000 0 1.0000 0

.
Now the randomly generated vector b= [1.0000,

0.2837+ 0.9589j, 0.2837− 0.9589j, 0]T in Xiao et al. (2015)
is employed in this paper. The theoretical solution of the
complex-valued linear equation system can be written as
z(org) = [−0.4683−0.2545j, 1.2425+ 0.3239j, −0.6126+ 0.0112j,
1.5082+ 0.4683j]. Then according to the equation (5), we have

C=



−0.7597 −0.8391 0.2837 1 −0.6503 0.5440 0.9589 0
0.7597 −0.8391 −0.2837 1 −0.6503 −0.5440 0.9589 0
0.7597 −0.8391 −0.2837 1 0.6503 0.5440 −0.9589 0

0 −1.0000 0 1 1.0000 0 −1.0000 0
0.6503 −0.5440 −0.9589 0 −0.7597 −0.8391 0.2837 1
0.6503 0.5440 −0.9589 0 0.7597 −0.8391 −0.2837 1

−0.6503 −0.5440 0.9589 0 0.7597 −0.8391 −0.2837 1
−1.0000 0 1.0000 0 0 −1.0000 0 1


,

and e= [1.0000, 0.2837, 0.2837, 0, 0, 0.9589, −0.9589, 0]T. So the
theoretical solution of the complex-valued linear equation system

can be rewritten as x(org) = [−0.4683, 1.2425, −0.6126, 1.5082,
−0.2545, 0.3239, 0.0112, 0.4683]T.

First, a zero initial complex-valued state z(0) ∈ C4 is generated,
which can be transformed into the real-valued state x(0) ∈ R8 in
real domain. To help facilitate the contrast, we choose the design
parameter γ = 5 and γ = 500, respectively.

NowGNNmodel (6), ZNNmodel (8), and FTRNNmodel (12)
are applied to solve this complex-valued systems of linear equation
problem. The output trajectories of the corresponding neural-
state solutions are displayed in Figures 1–3. As seen from such
three figures, we can conclude that the output trajectories of the
neural-state solutions can converge to the theoretical solutions,
but the convergence rates are different. By comparison, we can
easily find that FTRNN model (12) has a fastest convergence
property.

To directly show the solution process of such three neural-
network models, the evolution of the corresponding residual
errors, measured by the norm ||E(t)||2, is plotted in Figure 4
under the conditions of γ = 5 and γ = 500. From Figure 4A,
the results are consistent with those of Figures 1–3. In addition,
from Figure 4B, the convergence speeds of GNNmodel (6), ZNN
model (8), and FTRNN model (12) can be improved as the value
of γ increases.

A B

C D

FIGURE 5 | Simulative results synthesized by FTRNN model (12) when the end-effector of five-link planar manipulator tracking the square path. (A) Motion
trajectories of manipulator, (B) actual and desired path, (C) position error, (D) velocity error.
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A B

FIGURE 6 | Motion trajectories of joint angle and joint velocity synthesized by FTRNN model (12) when the end-effector of five-link planar manipulator tracking the
square path. (A) Motion trajectories of θ, (B) motion trajectories of θ̇.

Now we can draw a conclusion that, as compared with GNN
model (6) and ZNN model (8), FTRNN model (12) has the
most superiority for solving the complex-valued system of linear
equation problem.

4. APPLICATION TO ROBOTIC MOTION
TRACKING

In this section, a five-link planar manipulator is used to vali-
date the applicability of the finite-time recurrent neural network
(FTRNN) (Zhang et al., 2011). It is well known that the kinematics
equations of the five-link planar manipulator at the position level
and at the velocity level are, respectively, written as follows (Xiao
and Zhang, 2013, 2014a,b, 2016; Xiao et al., 2017c):

r(t) = f(θ(t)) (26)
ṙ(t) = J(θ)θ̇(t) (27)

where θ denotes the angle vector of the five-link planar manip-
ulator, r(t) denotes the end-effector position vector, f (·) stands
for a smooth non-linear mapping function, and J(θ)= ∂f (θ)/∂θ
∈ Rm×n.

To realize the motion tacking of this five-link planar manipu-
lator, the inverse kinematic equation has been solved. Especially,
equation (27) can be seen as a system of linear equations when the
end-effector motion tracking task is allocated [i.e., ṙ(t) is known
and θ̇(t) needs to be solved]. Thus, we can use the proposed
FTRNNmodel (12) to solve this system of linear equations. Then,
based on the design process of FTRNNmodel (12), we can obtain
the following dynamic model to track control of the five-link
planar manipulator [based on the formulation of equation (27)]:

Cẋ(t) = −γ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f

)
,

where C= J, x = θ̇ and e = ṙ(t).
In the simulation experiment, a square path (with the radius

being 1m) is allocated for the five-link planar manipulator to

track. Besides, initial state of the mobile manipulator is set as
θ(0)= [π/4,π/4,π/4,π/4,π/4]T, γ = 103 and task duration is 20 s.
The experiment results are shown in Figures 5 and 6. From the
results shown in such two figures, we can obtain that the five-
link planar manipulator completes the square path tracking task
successfully.

5. CONCLUSION

In this paper, a finite-time recurrent neural network (FTRNN) for
the complex-valued system of linear equation in complex domain
is proposed and investigated. This is the first time to propose such
a neural networkmodel, which can convergence within finite time
to online deal with the complex-valued system of linear equation
in complex domain, and the first time to apply this FTRNN
model for robotic path tracking by solving the system of linear
equation. The simulation experiments show that the proposed
FTRNN model has better effectiveness, as compared to the GNN
model and the ZNN model for the complex-valued system of
linear equation in complex domain.
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An evaluation method is described that will enable researchers to study fight control 
characteristics of robo-pigeons in fully open space. It is not limited by the experi-
mental environment and overcomes environmental interference with flight control 
in small experimental spaces using a compact system. The system consists of two 
components: a global positioning system (GPS)-based stimulator with dimensions of 
38 mm × 26 mm × 8 mm and a weight of 18 g that can easily be carried by a pigeon as 
a backpack and a PC-based program developed in Virtual C++. The GPS-based stimu-
lator generates variable stimulation and automatically records the GPS data and stimulus 
parameters. The PC-based program analyzes the recorded data and displays the flight 
trajectory of the tested robo-pigeon on a digital map. This method enables quick and 
clear evaluation of the flight control characteristics of a robo-pigeon in open space based 
on its visual trajectory, as well as further optimization of the microelectric stimulation 
parameters to improve the design of robo-pigeons. The functional effectiveness of the 
method was investigated and verified by performing flight control experiments using a 
robo-pigeon in open space.

Keywords: brain–computer interface, robo-pigeon, bio-robot, flight control, stimulator

inTrODUcTiOn

Some animals have amazing senses of smell that enable them to detect narcotics, explosives, and 
pipeline leaks (Britt et  al., 2008). Engineers have not developed any device with odor detection 
capabilities comparable to those of canines. Furthermore, some animals can traverse a variety of 
terrain types more efficiently than electromechanical robots or humans (Grinke et al., 2015); for 
instance, engineers have not developed a micro air vehicle with flight abilities comparable to those 
of pigeons. Animals could be employed to conduct search and rescue missions more efficiently than 
electromechanical robots if they could be controlled. Therefore, increasing interest is developing in 
the prospect of controlling animals and utilizing them as new kinds of robots.

Special kinds of bionic robots called bio-robots have been developed based on brain–computer 
interfaces (BCIs), which involve direct communication between the brain and an external device. 
The first BCI-based robo-rat was developed according to a “virtual reward” behavior model in 2002 
(Talwar et al., 2002). Micro-electrodes were implanted into three regions in a rat’s brain: the medial 
forebrain bundle (MFB) and the whisker representations in the left and right somatosensory cortices 
(SIs). The MFB was stimulated to generate intense excitement as a virtual reward, while the left 
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and right SIs were stimulated to generate “virtual touches” in the 
corresponding directions. With stimulation of both the MFB and 
SIs, the robo-rat could be trained to perform certain behaviors, 
such as “walk forward,” “turn left,” and “turn right” in certain 
circumstances (Xu et al., 2004). These BCI-based bio-robots were 
developed successfully, and proof-of-concept tests were con-
ducted in which motion along a complicated route was performed 
by remote control, even in 3-D terrain, by utilizing a telemetry 
system for brain microstimulation. BCI-based bio-robots are 
different from electromechanical robots as they are controlled by 
electrical stimulation of specific regions within the brains of the 
employed animals. In addition, bio-robots incorporate animals’ 
visual, audio, and tactile sensory capabilities, which increase 
their intelligence without requiring any extraneous attachments. 
Bio-robots’ movements are not dependent on motors, which are 
necessary in electromechanical robots and have high energy con-
sumptions. Consequently, bio-robots are not limited by energy 
shortage capabilities when traveling over long distances and are 
more skilled than electromechanical robots when conducting 
complex missions. As bio-robots are superior to electromechani-
cal robots in many potential applications, researchers have been 
investigating different types of bio-robots, such as rats (Feng 
et al., 2007; Huai et al., 2009; Pi et al., 2010; Zhang et al., 2012; 
Su et al., 2014; Zheng et al., 2015; Yu et al., 2016), geckos (Guo 
et al., 2009), sharks (Gomes et al., 2006), goldfishes (Kobayashi 
et al., 2009), carps (Peng et al., 2011), cockroaches (Holzer and 
Shimoyama, 1997), pigeons (Su et  al., 2012), beetles (Hirotaka 
et al., 2008), and honeybees (Bao et al., 2011).

We developed the first BCI-based robo-pigeon using a new 
“virtual fear” behavior model in 2007 (Xinhua, 2007). In this 
type of robo-pigeon, microelectrodes are implanted into three 
motion-related nuclei in the brain: the left and right dorsalis 
intermedius ventralis anterior (DIVA) nuclei and the periaq-
ueductal gray (PAG) region. The robo-pigeon can then be con-
trolled via neural reactions to functional electrical stimulation. In 
this method, charge is transferred into the three motion-related 
regions in the brain of the robo-pigeon, externally exciting the 
membrane potentials of the neurons and inducing the neurons 
to fire in response. The efficacy of a robo-pigeon closely depends 
on the amount of charge transferred to the three motion-related 
neural tissues. The transferred charge is determined by several 
factors, including the frequency, number, and duration of the 
stimulation pulses, as well as the locations and surface coating of 
the stimulating electrodes. It is impractical to maintain the same 
precise electrode positioning in the brains of different pigeons 
(i.e., pigeons of different species, weights, or ages) during surgical 
implantation. Electrode positioning inaccuracy makes it essential 
to vary and optimize the stimulus settings in every stimulation 
channel for each robo-pigeon.

We previously reported on the remote control of robo-
pigeons using a conventional neural stimulator with an RF 
transceiver (Yang et  al., 2015). Forward motion and turns to 
the left and right were achieved by stimulating the PAG region 
and the left and right DIVA nuclei, respectively, by utilizing 
a telemetry system for brain microstimulation in laboratory 
environments, i.e., small enclosed spaces, typically experimental 
chambers or workshops, which are completely different from the 

open spaces in which robo-pigeons would actually be employed, 
limit their flight, and interfere with optimization of the stimulus 
settings. In addition, robo-pigeons would be out of the sight of 
their handlers in open space, and the telemetry system previ-
ously employed in laboratory environments is useless in such 
situations. These problems will be solved by the new system 
and method described in this paper, which can be utilized for 
flight control and optimization of the stimulus settings of robo-
pigeons in open space.

MaTerials anD MeThODs

Overview
We describe the design of the system in the context of robo-pigeon 
fight control experiments in this section. The system consists of 
two separate components: an integrated global positioning system 
(GPS)-based microstimulator and a customized C++ program. 
The former is mounted on the back of a robo-pigeon and con-
nected to the electrodes implanted in its brain and is responsible 
for generating micro-electrical stimulation and recording the 
experimental data during the flight control test. The latter is run 
on a PC or laptop and is in charge of analyzing the experimental 
data and displaying the results.

gPs-Based Microstimulator
The GPS-based microstimulator in the proposed system is pri-
marily composed of a microprocessor (ATmega8L, Atmel Inc.), a 
trans-flash (TF) card module, and a micro GPS module (SR-92) 
with a built-in patch antenna (ProGin Technology Inc.). All of 
the components are assembled on a printed circuit board and 
powered by a 3.7 V polymer battery.

Figure 1 illustrates the circuitry of the GPS-based microstimu-
lator in detail. Reg710-3.3 is a 3.3 V regulator. The programmable 
microprocessor (ATmega8L) has 23 digital I/O pins: two of these 
pins are employed to communicate with the GPS module as a 
serial port, and three pins are used to operate the TF card as a 
serial peripheral interface (SPI) port. Six pins are retained to gen-
erate a biphasic pulse as three separate output channels. In each 
output channel, two pins (PC0 and PC1, PC2 and PC3, or PC4 
and PC5) are used to stimulate one of the three motion-related 
brain regions with constant voltage biphasic stimulus pulses. The 
GPS-based microstimulator also records the experimental data, 
including the location and velocity of the bio-robot and the cor-
responding stimulation parameters (pulse number, duration, and 
frequency) during its flight.

One program runs on the microprocessor onboard the robo-
pigeon and generates gradient stimulation in every output chan-
nel of the GPS-based microstimulator. After the flight control test 
has begun, each channel is initiated with the same stimulation 
parameters: pulse number  =  2, pulse duration  =  0.2  ms, and 
pulse frequency = 80 Hz. Then, the corresponding pulse trains 
are applied alternately to stimulate the three motion-related 
brain regions. Simultaneously, the GPS data and stimulation 
parameters are recorded on the TF card. During the robo-pigeon 
flight control test, the stimulus is delivered independently to 
DIVA or PAG according to different circumstances of flight test 
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FigUre 1 | Schematic diagram of the global positioning system-based robo-pigeon microstimulator.

TaBle 1 | Formatted data recording.

Pre-header gPrMc-formatted global positioning system data command stimulation parameters

PH Latitude, N/S, longitude, E/W, speed L/R/T/I Pulse number Pulse duration Pulse frequency
@ 3559.8758, N, 12006.8668, E, 20.91 L 10 4 80
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or take-off test. The stimulus parameters are increased gradually 
and alternately according to the following rules: the pulse dura-
tion, number, and frequency are increased in increments of 1 
(unit: 0.1 ms), 5, and 10, respectively. One parameter is changed 
in each stimulation cycle until each parameter reaches its maxi-
mum value (pulse number = 20, pulse duration = 0.8 ms, pulse 
frequency = 120 Hz.).

The microprocessor receives the GPS data and extracts the 
latitude, longitude, and speed from the GPRMC [one of many 
sentences in the National Marine Electronics Association 
(NMEA) standard for GPS receiver, for all sentences start with 
GP, RMC-recommended minimum data for GPS]-formatted 
GPS data stream. These data and the corresponding stimulation 
parameters are written into a file allocation table file on the TF 
card as a record with the format shown in Table 1. Each record 
is composed of a pre-header (PH), GPRMC-formatted GPS 
data, a command, and stimulation parameters. For example, 
in “@3559.8758, N, 12006.8668, E, 20.91, L, 10, 4, 80,” “@” is 
a header identifying the start of the record, the location of the 
object is 35°59.8758′ N and 120°6.8668′ E, the speed of the object 
is 20.91 knots (1 knot = 1.852 km/h), “L” indicates stimulation of 
the left DIVA (L: stimulation of left DIVA, R: stimulation of right 
DIVA, T: stimulation of PAG, I: idle), and the stimulation param-
eters are: pulse number = 10, pulse duration = 0.4 ms, and pulse 
frequency = 80 Hz. Each update of the GPS data triggers a new 
recording; therefore, all of the experimental data are recorded one 
by one on the TF card during the flight of the robo-pigeon in 
open space.

Data processing
The proposed data processing system includes a TF card reader 
and a PC-based program developed in Visual C++. The program 
processes the experimental data that are recorded on the TF card 
and displays the experimental results, as shown in Figure 2. The 
results are presented in the form of the 2-D trajectory of the inves-
tigated robo-pigeon that is drawn automatically by the program 
on a digital map based on the experimental data. Each trajectory 
is composed of numerous dots with four different shapes. Each 
dot corresponds to a data record and a position of the bio-robot 
during its flight. The shapes represent the following command 
types: ▲ = L command, ■ = R command, ● = T command, 
and ☆ = idle, i.e., without a command.

The trajectory in Figure 2 demonstrates how the control char-
acteristics of the robo-pigeon can be evaluated. Each segment of 
the trajectory can be categorized as corresponding to effective 
control or ineffective control. The effective control situations 
include stimulating the right DIVA nucleus and inducing a right 
turn (SRDRT), stimulating the left DIVA nucleus and inducing a 
left turn (SLDLT), and stimulating the PAG region and inducing 
take-off (SRTO), while the ineffective control situations include 
stimulating the right DIVA nucleus but not inducing a turn 
(SRDNT), stimulating the left DIVA nucleus but not inducing a 
turn (SLDNT), and stimulating the PAG region but not inducing 
take-off (SRNT). For effective control, the stimulus parameter 
settings can be determined and optimized for every stimulation 
channel and the corresponding stimulation parameters recorded. 
If ineffective control is observed, further investigation should be 
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FigUre 3 | Photographs of the global positioning system (GPS)-based microstimulator and robo-pigeon test in open space. (a) Unassembled unit modules, 
(B) assembled GPS-based microstimulator, (c) landing, and (D) flying robo-pigeon in test.

FigUre 2 | Schematic diagram of the data processing system and example results.
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conducted on the locations and surface coating of the stimulating 
electrodes and robo-pigeon design optimization strategies should 
be identified.

resUlTs

We manufactured the modules shown in Figure 3A: a micro-GPS 
module, output leads, a TF card, and a motherboard. All of the 
other units were mounted on the motherboard through slots to 
assemble the GPS-based microstimulator depicted in Figure 3B. 
The GPS-based microstimulator was powered by a rechargeable 
3.7 V, 240 mAh polymer battery attached to the back side of the 
motherboard and electrically connected to the motherboard when 
used by turning on the microswitch. The battery of the system 

lasts about 2.3 h, which is enough for conducting a complete test 
of robo-pigeon, compared with an average of slightly more than 
1  h needed for each test. The GPS-based microstimulator was 
mounted on the back of a robo-pigeon as a backpack, and the 
terminals of the six output leads were connected to the stimu-
lating electrodes located in the three brain regions (the left and 
right DIVA nuclei and the PAG region). The backpack measured 
38  mm  ×  26  mm  ×  8  mm, weighed 18  g, and could easily be 
carried as a backpack by the pigeon, as shown in Figures 3C,D.

The microprocessor was preloaded with a C program to gener-
ate stimulation and record the data automatically following the 
process illustrated in Figure 4. As soon as a valid GPS position 
was received by the microprocessor through the serial port, it 
entered the test or idle state. The idle state was employed to avoid 
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FigUre 4 | Flow diagram of robo-pigeon fight control in open space.

FigUre 5 | Results of robo-pigeon flight control test in open space.
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fatigue due to continuous testing. In the following test, the speed 
of the robo-pigeon was first determined based on the GPS data. If 
the speed was more than 0.3 m/s, the flight test was conducted as 
follows: stimulation was applied to the left or right DIVA nucleus 
according to the rules mentioned above. Otherwise, a take-off 
test involving PAG stimulation was conducted. In each test cycle, 
the GPS position data and corresponding stimulation parameters 
were arranged based on the format of Table 1 and written into a 
text file on the TF card. Only the GPS position data were recorded 
for the idle state.

When the test was completed, the text file on the TF card was 
transferred to a computer via a TF card reader and processed 
using a custom PC-based program to display the test results 
presented in Figure 5. The satellite picture was vectorized into a 
digital electronic map using SuperMap Deskpro 5.0 (SuperMap 
Software Co., Ltd.). Based on the data on the TF card, a series of 
vector graphs representing the flight control characteristics was 
constructed on the digital map using different types of identi-
fication dots. In Figure 5, each dot represents a position of the 
robo-pigeon during its flight, each ▲ denotes a position at which 
left DIVA stimulation was issued, each ■ represents a position at 
which right DIVA stimulation was issued, and each ☆ indicates a 
position at which no stimulation was issued.

For convenience of illustration, a solid auxiliary line with 
arrows was drawn manually and divided into several segments, 
which are labeled as L1, R1, F1, L2, R2, L3, R3, and F2 in Figure 5. 
Each segment corresponds to the command type and stimulation 
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FigUre 6 | Results of robo-pigeon take-off test in open space.

TaBle 2 | Effective stimulation parameters in the robo-pigeon flight control test.

Types command stimulation parameters

segment 
label

l/r/F/idle Pulse 
number

Pulse 
duration

Pulse 
frequency

L1 L 20 4 100
R1 R 20 4 100
F1 Idle – – –
L2 L 20 4 110
R2 R 20 4 110
L3 L 20 5 110
R3 R 20 5 110
F2 Idle – – –
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parameters listed in Table 2 according to the data recorded on 
the TF card.

Command and stimulation are determined by a program 
running on the GPS stimulator, the whole vector graphs are 
drawn automatically by our custom PC-based program based 
on the GPS data on the TF card. Table 2 shows command and 
stimulation corresponding to flight trajectory in the Figure 5. 
L1 corresponds to left DIVA stimulation and contains ten 
points, each point represents a position on the digital map 
and has the same stimulation (pulse number = 20, pulse dura-
tion = 0.4 ms, pulse frequency = 100 Hz) shown in Table 2. R1 
corresponds to right DIVA stimulation, it has the same relation 
between the stimulation and the GPS data with L1. F1 is corre-
sponding to idle without stimulation. According to stimulation 
gradient rules mentioned above, the frequency was increased in 
increments of 10 and a new combination of parameters (pulse 
number = 20, pulse duration = 0.4 ms, pulse frequency = 110) 
was generated, L2 and R2 are flight trajectory corresponding 
to left and right DIVA stimulation with the new parameter. 

Then, the pulse duration was increased in increments of 1 (unit 
0.1  ms). L3 and R3 are results of fight control with the new 
stimulation (pulse number = 20, pulse duration = 0.5 ms, pulse 
frequency = 110).

According to the above results, the following conclusions can 
be drawn: (1) the tested robo-pigeon can be controlled in left and 
right direction in open space, (2) the multiple parameter combi-
nations shown in Table 2 are effective for the tested robo-pigeon, 
(3) the minimal stimulus parameters (pulse number = 20, pulse 
duration = 0.4 ms, pulse frequency = 100 Hz) could be deter-
mined as the optimized stimulus parameters for flight control of 
the robo-pigeon, taking into account energy consumption and 
potential nerve damage.

A solid auxiliary line with arrows was drawn manually and 
divided into two segments, which are labeled as T_1 and F_1 
in Figure  6. T_1 demonstrates an effective take-off using the 
stimulation listed in Table 3 according to the data recorded on 
the TF card. F_1 is corresponding to idle without stimulation. The 
stimulus parameters (pulse number = 20, pulse duration = 0.6 ms, 
pulse frequency = 110 Hz) could be determined as the optimized 
stimulus parameters for take-off of the robo-pigeon.

Results such as those obtained in this study will enable 
researchers to analyze and evaluate the control characteristics 
of robo-pigeons and optimize the parameter settings for each 
stimulation channel. Furthermore, such results will facilitate the 
identification of problems that could not be exposed in labora-
tory environments and the development of strategies to improve 
automatic robo-pigeon navigation in potential applications.

DiscUssiOn

The stimulus parameters and position are not recorded synchro-
nously due to difficulties of positioning a flying robo-pigeon 
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TaBle 3 | Effective stimulation parameters in the robo-pigeon take-off test.

Types command stimulation parameters

segment 
label

T/idle Pulse 
number

Pulse 
duration

Pulse 
frequency

T_1 T 20 6 110
F_1 Idle – – –
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in the indoor environment, so, the results of flight control 
experiment in the laboratory need to be manually analyzed and 
judged by the experimenter. Moreover, it is impossible to draw 
accurately the motion trajectory of robo-pigeons only based on 
experimental videos, in addition, this work is time consuming 
and laborious. Therefore, the experimental results cannot be 
objectively displayed and quantitatively analyzed. More unfor-
tunately, those experimental data are not complete due to space 
constraints in the laboratory. So, it does not apply to open space, 
which is actual environment of potential application of robo-
pigeons. In view of the above deficiencies, we proposed a method 
based on the newly designed GPS-based stimulator, it has the 
capabilities of collecting experimental data and generating visual 
trajectory of robo-pigeons automatically.

Random errors originating from the electrode positioning, 
electrode coating, and devices used for robo-pigeon development 
are inevitable. Those errors cause the parameter settings to differ 
between individuals and could even lead to the functional failure 
of a robo-pigeon. Therefore, it is essential to test and evaluate 
the control characteristics of robo-pigeons in open space. The 
method proposed just provides a simple and feasible solution to 
the complex and tedious tests.

The system described in this report overcomes some of 
the drawbacks of previous telemetry systems by providing an 
evaluation method of robo-pigeon flight control testing in open 
space. A special feature of the system is that it can record experi-
mental data and display experimental results automatically. The 
system is not limited by the experimental environment and 

will enable researchers to evaluate the control characteristics 
of robo-pigeons in open space quickly and clearly, to optimize 
the parameter settings for every stimulation channel, and to 
identify methods of improving the robo-pigeon design pro-
cess. Simultaneously, the system will enrich brain stimulation 
research methods and enable bio-robot experiments to be 
conducted in open environments.
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A New Noise-Tolerant Obstacle
Avoidance Scheme for Motion
Planning of Redundant Robot
Manipulators
Dongsheng Guo*, Feng Xu, Laicheng Yan, Zhuoyun Nie and Hui Shao

College of Information Science and Engineering, Huaqiao University, Xiamen, China

Avoiding obstacle(s) is a challenging issue in the research of redundant robot

manipulators. In addition, noise from truncation, rounding, and model uncertainty is an

important factor that affects greatly the obstacle avoidance scheme. In this paper, based

on the neural dynamics design formula, a new scheme with the pseudoinverse-type

formulation is proposed for obstacle avoidance of redundant robot manipulators in a

noisy environment. Such a scheme has the capability of suppressing constant and

bounded time-varying noises, and it is thus termed as the noise-tolerant obstacle

avoidance (NTOA) scheme in this paper. Theoretical results are also given to show

the excellent property of the proposed NTOA scheme (particularly in noise situation).

Based on a PA10 robot manipulator with point and window-shaped obstacles, computer

simulation results are presented to further substantiate the efficacy and superiority of the

proposed NTOA scheme for motion planning of redundant robot manipulators.

Keywords: obstacle avoidance, noise tolerant, pseudoinverse-type formulation, redundant robot manipulators,

motion planning

1. INTRODUCTION

Recently, redundant robot manipulators have played an increasingly important part in many
scientific and industrial fields. Motion planning is the fundamental issue, and has been extensively
studied (Siciliano and Khatib, 2008; Siciliano et al., 2009; Flacco and De luca, 2015; Qiu et al., 2016;
Zhang et al., 2016; Li M. et al., 2017; Jin and Li, 2018). A collision-free motion is necessary for a
redundant robot manipulator because collision would lead to the failure of the motion planning
task. Moreover, such collision(s) may cause considerable damage to the robot manipulator.
Avoiding environmental obstacle(s) is an important issue in the motion planning of redundant
robot manipulators. Many effective obstacle avoidance schemes have thus been developed for
redundant robot manipulators (Maciekewski and Klein, 1985; Wang and Hamam, 1992; Chen
et al., 2002; Lee and Buss, 2007; Guo and Zhang, 2012, 2014; Marcos et al., 2012; Chen and Zhang,
2016; Xiao and Zhang, 2016; Guo and Li, 2016). For example, Lee and Buss (2007) investigated
obstacle avoidance by using the Jacobian transpose method. In Marcos et al. (2012), Machado et al.
presented a multi-objective method for redundant robot manipulators to avoid obstacles. Note that
most reported obstacle avoidance schemes are assumed to be free of noise in the simulations or
experiments.

Given its practical application in the industry, another important issue for redundant robot
manipulators that requires consideration is the simultaneous handling of environmental noise(s)
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during the end-effector task execution (Yildirim and Eski, 2010).
Noise is inevitably encountered when implementing the scheme
for obstacle avoidance of redundant robot manipulators; this
noise comes in the form of truncation error, rounding error,
model uncertainty, and external disturbance (Jin et al., 2017a; Li
et al., 2018). The robustness against additive noise is an important
factor in designing a reliable obstacle avoidance scheme. Many
researchers have thus examined robot manipulators in the
presence of noise (Gaudiano et al., 1996; Florchinger, 2000; Siu
et al., 2010; Yildirim and Eski, 2010; Ting et al., 2011; Guo
et al., 2017; Jin et al., 2017a; Li et al., 2018). For example,
Yildirim and Eski (2010) presented a noise analysis of robot
manipulators using neural networks. In Li et al. (2018) designed
a new approach for redundant robot manipulators that was
combined with the neural controller inherently tolerant to noise.

The aforementioned noise (e.g., realization error and/or
external error) has significant effects on the efficacy of the
obstacle avoidance schemes for redundant robot manipulators.
Such noise may also cause scheme invalidation or the failure
of the end-effector primary task. For time-critical end-effector
tasks, denoising must be integrated with motion planning for
redundant robot manipulators (Li et al., 2018). Time is precious
for the obstacle avoidance of redundant robot manipulators in
practice, and any noise-reduction preprocessing may consume
additional time (which may be in breach of the real-time
requirement) (Li et al., 2018). Thus, an effective obstacle
avoidance scheme is worth investigating for redundant robot
manipulators in a noisy environment. Such a scheme must be
inherently tolerant to various types of noise and able to make the
robot manipulator avoid obstacles simultaneously.

In recent years, neural dynamics (as an important branch of
artificial intelligence) has attracted considerable attention (Zhang
et al., 2002; Zhang and Yi, 2011; He et al., 2014a,b; Zhang
and Guo, 2015; Li et al., 2016, 2017a,b). It has been studied
for solving different mathematical problems arising in motion
planning of redundant robot manipulators. In particular, an
exponent-type design formula was proposed by Zhang et al.
(Zhang et al., 2002; Zhang and Yi, 2011; Zhang and Guo, 2015),
and different neural-dynamics models were further developed
to solve various types of time-varying problem. Note that some
of these models have been applied effectively to redundant
robot manipulators, showing well the application prospect of
the neural-dynamics approach. By following the aforementioned
successful work, another neural-dynamics design formula, which
has noise suppression capability, was proposed and investigated
by Jin et al. (2016a,b, 2017b). In this paper, such a design formula
is exploited to develop an effective obstacle avoidance scheme
for motion planning of redundant robot manipulators in the
presence of noise.

Specifically, by using the neural-dynamics design formula in
Jin et al. (2016a,b, 2017b) to solve the system of time-varying
nonlinear kinematic equations, the corresponding obstacle
avoidance scheme with the pseudoinverse-type formulation is
proposed for redundant robot manipulators in this paper.
Such an obstacle avoidance scheme can suppress constant
and bounded time-varying noises, and is thus termed as the
noise-tolerant obstacle avoidance (NTOA) scheme. For the

proposed NTOA scheme, theoretical results are presented to
show its excellent property. Computer simulation results are
illustrated based on the PA10 robot manipulator with point and
window-shaped obstacles to further substantiate the efficacy and
superiority of the proposed NTOA scheme for motion planning
of redundant robot manipulators.

The rest of this paper is organized into five sections. In section
2, the formulations of the neural-dynamics design formula and
the NTOA scheme are given. Section 3 presents the theoretical
results of the proposed NTOA scheme. In section 4, simulation
results that are synthesized by the proposed NTOA scheme
are provided. Section 5 shows the discussion about the NTOA
scheme. Section 6 concludes this paper with final remarks. The
main contributions of this paper are as follows.

1) This paper proposes and investigates a new NTOA scheme
for the motion planning of redundant robot manipulators in
the presence of noise. This scheme has a noise-suppressing
capability, which can make the robot manipulators achieve
their obstacle-avoidance purpose. This paper marks an
important advancement in obstacle avoidance research by
proposing and providing a NTOA scheme.

2) In this paper, the Cartesian error synthesized by the proposed
NTOA scheme is proven to possess the property of global
and exponential convergence. Theoretical results also indicate
that the proposed scheme has the capability of suppressing
constant and bounded time-varying noises.

3) Computer simulations based on the PA10 robot manipulator
are performed to substantiate the efficacy and superiority
of the proposed NTOA scheme whether in the presence or
absence of noise.

2. DESIGN FORMULA AND SCHEME
FORMULATION

In this section, the formulation of the neural-dynamics design
formula is presented. Then, by exploiting this design formula to

solve the system of time-varying nonlinear kinematic equations,
the corresponding obstacle avoidance scheme is developed
for motion planning of redundant robot manipulators in the
presence of noise.

2.1. Neural-Dynamics Design Formula
Let us consider the following time-varying problem:

φ(t) = 0 ∈ Rn.

In the neural-dynamics design methodology (Zhang et al., 2002;
Zhang and Yi, 2011; Zhang and Guo, 2015), to solve this problem,
the following vector-valued error function is defined:

e(t) : = φ(t) ∈ Rn.

Then, the time derivative of the error function e(t), i.e., ė(t), is
selected such that e(t) converges to zero. In Zhang et al. (2002),
an exponent-type design formula was originally developed by
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Zhang et al. to determine ė(t). Such a design formula is written
as follows:

ė(t) = −γ e(t), (1)

where design parameter γ > 0 ∈ R is used to scale the
convergence rate of the solution (Zhang et al., 2002; Zhang
and Yi, 2011; Zhang and Guo, 2015). Corresponding to the
specific time-varying problem to be solved, expanding (1) yields
the related neural-dynamics model. Furthermore, based on (1),
another neural-dynamics design formula with noise suppression
capability was developed by Jin et al. (2016a,b, 2017b). This
design formula is written as follows:

ė(t) = −kPe(t)− kI

∫ t

0
e(τ )dτ , (2)

where kP > 0 ∈ R and kI > 0 ∈ R are the design parameters.
Please refer to Jin et al. (2016a,b, 2017b) for details about
the property of (2). Based on previous research, such a neural
dynamics design formula (2) is applied to the obstacle avoidance
of redundant robot manipulators in the ensuing section.

2.2. NTOA Scheme
The redundancy-resolution problem related to the motion
planning of redundant robot manipulators is described as
follows: given the desired end-effector path rd(t) ∈ Rm, the
corresponding joint trajectory θ(t) ∈ Rn should be obtained in
real time t. In mathematics, solving the redundancy-resolution
problem can be equivalent to solving the following system of
time-varying nonlinear kinematic equations:

f (θ) = rd, (3)

where f (·) is a differentiable nonlinear mapping.
To solve (3), the error function e(t) is defined as follows:

e(t) = f (θ)− rd ∈ Rm.

Evidently, expanding (2) yields the following result:

Jθ̇ = ṙd − kP(f (θ)− rd)− kI

∫ t

0
(f (θ)− rd)dτ , (4)

where J ∈ Rm×n is the Jacobian matrix of the robot manipulator,
θ̇ ∈ Rn is the joint-velocity vector, and ṙd ∈ Rm is the time
derivative of rd. By generalizing the conventional pseudoinverse-
type formulation (Siciliano and Khatib, 2008; Siciliano et al.,
2009), the following redundancy-resolution scheme for the
motion planning of redundant robot manipulators is obtained:

θ̇ = J†(ṙd−kP(f (θ)− rd)−kI

∫ t

0
(f (θ)− rd)dτ )+ (I− J†J)z. (5)

As mentioned previously, avoiding environmental obstacle(s) is
an important issue in the motion planning of redundant robot
manipulators. Thus, by choosing a suitable z in (5), the NTOA

scheme proposed in this paper for redundant robot manipulators
is formulated as follows:

θ̇ = J†(ṙd−kP(f (θ)−rd)−kI

∫ t

0
(f (θ)−rd)dτ )+κ

n−ς
∑

i=1

VT
Ni∇H(θ)VNi,

(6)
where κ ∈ R is a real scalar (Li et al., 2001), ς = rank(J),
and superscript T denotes the transpose operator. In addition,
∇H(θ) is the gradient of a performance criterion H(θ) (being
a scalar function of the joint-angle vector θ ∈ Rn), and VNi

is the ith column vector of VN ∈ Rn×(n−ς) with VN =

[Vς+1 Vς+2 · · · Vn]. Vj (with j = ς + 1, ς + 2, · · · , n) is the jth
column vector of the orthogonal unitary matrixV ∈ Rn×n, which
is obtained by using the singular value decomposition (SVD) of J
(Lee and Buss, 2007). That is,

J = USVT,

where U ∈ Rm×m is the orthogonal matrix and S ∈ Rm×n

contains the singular values of J in its main diagonal. For obstacle
avoidance, ∇H(θ) in (6) is replaced with the following escape
velocity θ̇C in the joint space (Lee and Buss, 2007):

θ̇C =

k
∑

i=1

JTCi(θ)vCij,

where k is the number of critical points and JCi(θ) is the Jacobian
matrix of the ith critical point Ci. In addition, vCij is defined as a
function of the minimum distance dij (between the ith link and
the jth obstacle) along the direction away from the critical point
Ci (Lee and Buss, 2007):

vCij =











0 for d1 < dij,
v0
2 {cos(π

dij−d2
d1−d2

)+ 1}uij for d2 < dij 6 d1,

v0uij for dij 6 d2,

where v0 is the maximum escape velocity and uij is the unit vector
from the critical point Ci on the ith link to the jth obstacle. In
addition, the predefined thresholds d1 and d2 are the outer and
inner safety thresholds, respectively. Descriptions of the outer
and inner safety thresholds can be seen in Guo and Zhang (2014)
and/or Guo and Li (2016).

Note that, for the proposed NTOA scheme (6), this paper
limits the investigation that the two design parameters kP and kI
satisfy k2P > 4kI numerically. Furthermore, theoretical results of
(6) are presented in the ensuing section to show its effectiveness
on motion planning and noise suppression.

3. THEORETICAL RESULTS

In this section, four theorems are provided to investigate
the performance of the proposed NTOA scheme (6) in three
situations, namely, the zero noise, constant noise, and bounded
time-varying noise.
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3.1. Obstacle Avoidance Without
Considering Noise
In this subsection, the proposed NTOA scheme (6) is studied for
redundant robot manipulators without considering the existence
of noise (i.e., zero noise situation).

Theorem 1: The trajectory of the Cartesian error e(t) for the
proposed NTOA scheme (6) is asymptotically stable.

Proof: See Appendix A in Supplementary Material.
Theorem 2: In addition to Theorem 1, the Cartesian error e(t)

synthesized by the proposed NTOA scheme (6) has the property of
exponential convergence.

Proof: See Appendix B in Supplementary Material.
For the proposed NTOA scheme (6), the results of Theorems

1 and 2 indicate that the corresponding Cartesian error e(t) has
the property of global and exponential convergence. This means
that the magnitude of e(t) synthesized by (6) can be kept within
the region of a small value. By choosing the kP and kI values
appropriately, the e(t) magnitude can be small enough during
the motion task execution (whether noise exists or not), then
the performance of (6) is considered satisfactory (De Luca et al.,
1992). In summary, these results theoretically guarantee that the
proposed NTOA scheme (6) is effective in the motion planning
of redundant robot manipulators.

3.2. Obstacle Avoidance With Noise
Considered
In this subsection, the proposedNTOA scheme (6) is investigated
considering the existence of noise (i.e., the situations of
constant noise and bounded time-varying noise). For further
investigation, the proposed NTOA scheme (6) under the
pollution of noise is formulated as follows:

θ̇ = J†
(

ṙd−kP(f (θ)−rd)−kI

∫ t

0
(f (θ)−rd)dτ+δ(t)

)

+κ

n−ς
∑

i=1

VT
Ni∇H(θ)VNi,

(7)
where δ(t) ∈ Rm denotes the vector-form noise (e.g., constant
realization errors, time-varying bias errors, and the superposition
of these errors). Now, the performance of the noise-polluted
NTOA scheme (7) is studied for redundant robot manipulators.

Theorem 3: In the case of the vector-form constant noise δ(t) =
c ∈ Rm, the Cartesian error e(t) synthesized by the noise-polluted
NTOA scheme (7) has a convergence property.

Proof: See Appendix C in Supplementary Material.
As mentioned before, the convergence property can guarantee

a small magnitude of the Cartesian error e(t) during the
motion task execution. Based on the proof in Appendix C in
Supplementary Material, no matter how large the unknown
vector-form constant noise δ(t) = c ∈ Rm is, the Cartesian error
e(t) for the noise-polluted NTOA scheme (7) is convergent, with
the steady-state error being zero. Thus, as synthesized by (7) with
the appropriate values of kP and kI, the magnitude of e(t) can be
small enough.

In many practical applications, the noise can be time-varying.
For the fast time-varying noise, the low-pass filter could be
exploited to tackle the problem of error compensation. However,
the noise-reduction preprocessing may consume extra time
and violate the real-time requirement. Thus, investigating the

performance of the noise-polluted NTOA scheme (7) in the
presence of bounded time-varying noise (or even random noise)
is necessary.

Theorem 4: In the case of the bounded vector-form time-
varying noise δ(t) ∈ Rm, the Cartesian error e(t) synthesized by the
noise-polluted NTOA scheme (7) is bounded, with the steady-state
error being bounded by

2

√

m

k2P − 4kI
max
06τ6t

|δi(τ )|,

where δi(t) denotes the ith element of δ(t) and the symbol | · |
denotes the absolute value of a scalar.

Proof: See Appendix D in Supplementary Material.
From Theorem 4, the upper bound of the steady-state error

is in inverse proportion to the kP value. By choosing a large
enough kP value and an appropriate kI value, the steady-state
error can be arbitrarily small, which means that the magnitude
of e(t) synthesized by (7) can also be small enough during
the task execution. This result further shows that the noise-
polluted NTOA scheme (7) is effective in the motion planning
of redundant robot manipulators in the presence of bounded
time-varying noise.

In summary, the results in this section (i.e., Theorems 1–
4) theoretically substantiate the efficacy and superiority of the
proposed NTOA scheme (6) for redundant robot manipulators
whether noise exists or not.

4. SIMULATIVE VERIFICATIONS

In this section, based on the PA10 robot manipulator with
an equipped long tool (Zhang and Wang, 2004; Guo and
Zhang, 2012, 2014), computer simulations with the existence of
point and window-shaped obstacles are performed to verify the
efficacy and superiority of the proposed NTOA scheme (6). For
comparison, the obstacle avoidance method presented in Lee and
Buss (2007) is simulated as well.

4.1. Point Obstacle Avoidance
In this example, the PA10 robot manipulator is simulated, in
which there exists a point obstacle. The obstacle avoidance
method in Lee and Buss (2007) and the proposed NTOA scheme
(6) are both applied to such a robot manipulator for the end-
effector tracking of a circular path considering three situations
(i.e., the situations of zero, constant, and bounded time-varying
noises).

4.1.1. Zero Noise
The obstacle avoidance method in Lee and Buss (2007) and the
proposed NTOA scheme (6) are both tested in the zero-noise
situation, and the corresponding simulation results are presented
in Figures 1–3 and Table 1.

Figure 1 shows the simulation results synthesized by the
general minimum velocity norm (MVN) scheme [i.e., the
proposed NTOA scheme (6) using kP = kI = κ = 0], in which
the existence of the point obstacle is not considered. As seen from
Figure 1A, the desired motion is achieved successfully by the
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FIGURE 1 | Simulation results synthesized by the general MVN scheme [i.e., the proposed NTOA scheme (6) using kP = kI = κ = 0] for the PA10 end-effector

tracking the circular path, where the existence of the point obstacle and noise is not considered.

FIGURE 2 | Simulation results synthesized by the obstacle avoidance method in Lee and Buss (2007) for the PA10 end-effector tracking the circular path, where the

zero noise is considered.
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FIGURE 3 | Simulation results synthesized by the proposed NTOA scheme (6) using kP = kI = 10 and κ = 1 for the PA10 end-effector tracking the circular path,

where the zero noise is considered.

TABLE 1 | Maximal absolute value (MAV) of Cartesian error synthesized by the

proposed NTOA scheme (6) with zero noise considered and with different kP and

kI values used.

# MAV of eX MAV of eY MAV of eZ

kP = kI = 10 4.874× 10−6 3.449× 10−6 2.741× 10−6

kP = kI = 100 4.138× 10−7 1.052× 10−6 9.202× 10−7

kP = kI = 1000 2.392× 10−7 3.708× 10−7 4.321× 10−7

PA10 robot manipulator. However, Figure 1B indicates that the
minimum link-obstacle distance dm is smaller than 0.05m during
[4.91, 6.25] s. This can be viewed as a collision phenomenon (Guo
and Zhang, 2014; Guo and Li, 2016) that may cause damage to
the robot manipulator and the point obstacle. Thus, exploiting
an effective obstacle avoidance method/scheme for PA10 robot
manipulator is necessary.

Figure 2 illustrates the simulation results synthesized by the
obstacle avoidance method in Lee and Buss (2007), where the
existence of the point obstacle is considered. As shown in
Figures 2A,B, during the motion task execution, the minimum

link-obstacle distance dm is always greater than 0.05 m. This
substantiates that the presented point obstacle is successfully
avoided by the obstacle avoidance method in Lee and Buss
(2007). Figure 2C shows that the maximal Cartesian error is
approximately 5.0 × 10−5 m. However, the detailed results

in Figure 2C show that the divergence phenomenon in the
Cartesian error is present. Thus, the obstacle avoidance method
in Lee and Buss (2007), although effective, may be less desirable

and less applicable in robotics.
By contrast, Figure 3 presents the simulation results

synthesized by the proposed NTOA scheme (6) with

kP = kI = 10 and κ = 1. As seen from Figures 3A,B, the

minimum link-obstacle distance dm during the motion is always
>0.05 m, which implies that obstacle avoidance is achieved

successfully. In addition, as shown in Figure 3C, the maximal

Cartesian error is <5.0 × 10−6 m, indicating the efficacy of the

proposed NTOA scheme (6) for the motion planning of PA10
robot manipulator. The comparison between Figure 2C and

Figure 3C shows that the maximal Cartesian error via (6) is
about 10 times smaller than the one via the obstacle avoidance
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FIGURE 4 | Simulation results synthesized by the proposed NTOA scheme (6) using kP = kI = 103 and κ = 1 for the PA10 end-effector tracking the circular path,

where the constant noise is considered.

TABLE 2 | Maximal absolute value (MAV) of Cartesian error synthesized by the proposed NTOA scheme (6) with constant noise considered and with different kP and kI
values used.

# MAV of eX MAV of eY MAV of eZ

kP = kI = 103 9.457× 10−5 1.419× 10−4 1.893× 10−4

kP = kI = 104 9.466× 10−6 1.421× 10−5 1.893× 10−5

kP = kI = 105 9.441× 10−7 1.425× 10−6 1.907× 10−6

method in Lee and Buss (2007). Furthermore, the divergence
phenomenon does not exist for the Cartesian error presented
in Figure 3C. Thus, a prominent advantage of the proposed
NTOA scheme (6) is that it guarantees a Cartesian error with
no divergence (which agrees with the convergence results in
Theorems 1 and 2). These comparative results indicate that the
proposed NTOA scheme (6) is superior to the obstacle avoidance
method in Lee and Buss (2007).

For further investigation, the proposed NTOA scheme (6)
is tested by using different kP and kI values, and the related
simulation results are presented in Table 1. As seen from Table 1,
the maximal absolute value (MAV) of the Cartesian error

synthesized by (6) is small enough (i.e., of order 10−7 ∼

10−6), showing the efficacy on motion planning. In addition,
it follows from Table 1 that the MAV of Cartesian error
decreases when the kP and kI values increase. Thus, the
design parameters kP and kI play an important role in (6),
and should be set as large as the robotics systems would
permit (or selected appropriately large for simulation/experiment
purposes).

In summary, the above results (i.e., Figures 1–3 and Table 1)
substantiate the efficacy and superiority of the proposed NTOA
scheme (6), as compared with the obstacle avoidance method in
Lee and Buss (2007).
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FIGURE 5 | Simulation results synthesized by the proposed NTOA scheme (6) using kP = kI = 103 and κ = 1 for the PA10 end-effector tracking the circular path,

where the bounded time-varying noise is considered.

FIGURE 6 | Simulation results synthesized by the general MVN scheme for the PA10 end-effector tracking the circular path, where the existence of the

window-shaped obstacle and noise is not considered.
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FIGURE 7 | Simulation results synthesized by the proposed NTOA scheme (6) for the PA10 end-effector tracking the circular path, where the zero noise, constant

noise, and bounded time-varying (TV) noise are considered.

4.1.2. Constant Noise
The proposed NTOA scheme (6) is tested in the situation of the
constant noise δ(t) = c = [0.10, 0.15, 0.20]T. In this situation,
the noise-polluted NTOA scheme (7) is actually used, and the
corresponding simulation results are shown in Figure 4 and
Table 2. Note that the obstacle avoidance method in Lee and Buss
(2007) with constant noise considered is test as well. However,
the computer simulation failed, which shows that such a method
does not have a capability of suppressing noise and cannot handle
this kind of noise (thereby leading to the failure of the task
execution).

Figure 4 shows the simulation results synthesized by the
noise-polluted NTOA scheme (7) with kP = kI = 103 and
κ = 1. As seen from Figure 4, the obstacle-avoidance purpose is

achieved successfully via (7) in the sense that dm is always >0.05
m. In addition, the simulated end-effector trajectory is close to the
desired circular path with a small Cartesian error. The existence
of constant noise leads to the significant increase of the Cartesian
error (from the zero initial value) in the transient phase, as
shown in Figure 4C. Owing to the noise suppressing capability,
(7) can handle this kind of noise. The resultant Cartesian error
is convergent (which agrees with the result of Theorem 3), and
is kept within the region of a small value (i.e., of order 10−4).
These results indicate that the noise-polluted NTOA scheme (7)
is effective for robotic practical applications.

The noise-polluted NTOA scheme (7) is tested as well using
different kP and kI values, and the related simulation results are
presented in Table 2. As shown in Table 2, the MAV of Cartesian
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FIGURE 8 | Trajectories of Cartesian error e(t) synthesized by the proposed NTOA scheme (6) with three situations considered, which corresponds to Figure 7.

error is small enough, meaning that the motion planning task
is executed successfully via (7) (though constant noise exists).
Table 2 also indicates that the performance of (7) is improved
effectively by increasing the kP and kI values, showing again
the important role of kP and kI in the noise-polluted NTOA
scheme (7).

In summary, the above simulation results substantiate the
efficacy and superiority of the proposed NTOA scheme (6)
[i.e., the performance of the noise-polluted NTOA scheme (7)]
for motion planning of redundant robot manipulators in the
presence of constant noise.

4.1.3. Bounded Time-Varying Noise
The proposed NTOA scheme (6) is tested in the situation of
the bounded time-varying noise δ(t) = [0.2 sin(t), 0.2 sin(2t),
0.2 sin(3t)]T. Similarly, the noise-polluted NTOA scheme (7) is
actually used in this situation, and the corresponding simulation
results are presented in Figure 5.

As shown in Figure 5, the minimum link-obstacle distance
dm is always >0.05 m and the maximal Cartesian error is
<3.0 × 10−4 m. Thus, the purposes of obstacle avoidance
and motion planning are both achieved successfully using the
noise-polluted NTOA scheme (7). According to Figure 5C,
the Cartesian error is bounded and is kept within (−3, 2) ×
10−4 m during the task execution. This coincides with the
result of Theorem 4. The noise-polluted NTOA scheme (7) is
tested using different kP and kI values for further investigation.
Owing to the similarity of results, the related simulation results
are omitted here. This result indicates that the MAV of the
Cartesian error via (7) decreases as the kP and kI values
increase.

In summary, these simulation results substantiate the efficacy
and superiority of the proposed NTOA scheme (6) [or the
excellent performance of the noise-polluted NTOA scheme (7)]
for redundant robot manipulators in the presence of bounded
time-varying noise.
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4.2. Window-Shaped Obstacle Avoidance
In this example, the PA10 robot manipulator is simulated, in
which there exists a window-shaped obstacle (Guo and Zhang,
2014). The proposed NTOA scheme (6) is applied to such a
robot manipulator for its end-effector tracking a circular path.
Similarly, the following three situations of noise are considered
in the investigation of the proposed NTOA scheme (6):











Zero noise: [0, 0, 0]T,

Constant noise: [0.1, 0.2, 0.3]T,

Bounded time-varying noise: [0.2 cos(t), 0.2 cos(2t), 0.2 cos(3t)]T.

Without considering the existence of the window-shaped
obstacle, Figure 6 shows the simulation results synthesized by the
general MVN scheme. As seen from Figure 6, the desired motion
for the PA10 robot manipulator is achieved successfully, but the
minimum link-obstacle distance dm is smaller than 0.05m during
[2.67, 3.96] s. This close distance (being <0.05 m) means that
there exists a collision that may cause considerable damage to the
PA10 robot manipulator and the window-shaped obstacle.

To avoid the window-shaped obstacle, the proposed NTOA
scheme (6) [as well as the noise-polluted NTOA scheme (7)] is
applied to the PA10 robot manipulator under the aforementioned
three situations, and the simulation results are shown in
Figures 7, 8. Note that, for Figure 7, the left subfigures present
the simulated motion trajectories of the robot manipulator, and
the right subfigures present the corresponding profiles of the
minimum link-obstacle distance dm. Evidently, as shown in
Figures 7, 8, all of the simulated end-effector trajectories are close
to the desired circular path (with the Cartesian errors being small
enough), and the minimum link-obstacle distance dm during
the motion is always greater than 0.05 m. This indicates that
the obstacle-avoidance and motion-planning purposes are both
achieved successfully via (6) [or (7)], no matter whether noise
exists or not. Besides, as seen from Figure 8, in each situation
of noise, the change of the Cartesian error is similar to the
change presented in Figures 3C, 4C, 5C, showing that these
results coincide with the results of Theorems 1–4. Thus, being
one of its prominent advantages, the proposed NTOA scheme (6)
guarantees that the Cartesian error occurs without divergence, as
evidenced by both the theoretical and simulation results.

In summary, these simulation results have substantiated again
the efficacy and superiority of the proposed NTOA scheme (6)
for motion planning of redundant robot manipulators in the
presence of different kinds of noise.

5. DISCUSSION

For the proposed NTOA scheme (6), the feedback item kP(f (θ)−

rd) and the integration item kI
∫ t
0 (f (θ)− rd)dτ ) are incorporated

into the scheme formulation. Such a scheme thus contains
the proportional, integral, and derivative information of the
desired end-effector path rd. In this sense, the proposed NTOA
scheme (6) processes the characteristic of proportional-integral-
derivative (PID), thereby showing that (6) can be considered as a
nonlinear PID controller for the obstacle avoidance of redundant
robot manipulators. Because of the special characteristic, the

proposed scheme (6) is robust against constant noise and
bounded time-varying noise, and enables the effective obstacle
avoidance of redundant robot manipulators even in the presence
of noise. The efficacy of (6) has been analyzed and verified via the
theoretical and simulation results in sections 3 and 4.

By summarizing the simulation results in section 4, the
superiority of the proposed NTOA scheme (6) over the obstacle
avoidance method in Lee and Buss (2007) is presented as
follows.

• In the situation of zero noise, the obstacle avoidancemethod in
Lee and Buss (2007) would introduce undesirable divergence
phenomenon in Cartesian error (see Figure 2). By contrast,
the error e(t) via the proposed NTOA scheme (6) will not
encounter the divergence problem owing to the feedback and
integration items in (6). In addition, the motion precision
of the proposed NTOA scheme (6) is better than that of
the obstacle avoidance method in Lee and Buss (2007), as
demonstrated in section 4.

• In the situation of nonzero noise, the obstacle avoidance
method in Lee and Buss (2007) is intolerant to noise, which
invalidates the method. By contrast, the proposed NTOA
scheme (6) can suppress constant noise and bounded time-
varying noise (see sections 3 and 4). Thus, the efficacy of the
proposed NTOA scheme (6) is theoretically guaranteed even
in the presence of noise.

In summary, the proposed NTOA scheme (6) is advantageous
over the obstacle avoidance method in Lee and Buss (2007)
because it guarantees nondivergence Cartesian error regardless
of the absence or presence of noise. Given this characteristic,
the proposed NTOA scheme (6) is superior to the obstacle
avoidance method in Lee and Buss (2007) for redundant robot
manipulators.

Besides, both the theoretical and simulation results in sections
3 and 4 have indicated that the design parameters kP and kI
are important to ensure the precision of the Cartesian error for
the proposed NTOA scheme (6). To a certain extent, such two
parameters are similar to the PID parameters and can be used to
enhance the noise suppression capability of the proposed NTOA
scheme (6). In general, the values of kP and kI can be selected
in accordance with the actual situations of noise and practical
requirements of precision. Summarizing the theoretical analysis
and simulation results shows that kP and kI should be set to
sufficiently large values (e.g., kP = kI = 103 or larger) to ensure
the satisfactory performance of the proposed NTOA scheme (6),
particularly in the presence of noise.

6. CONCLUSION

In this paper, based on the neural dynamics design formula
in Jin et al. (2016a,b, 2017b), the new NTOA scheme (6)
is proposed and investigated for the motion planning of
redundant robot manipulators in the presence of noise. This
scheme, which is capable of suppressing constant and bounded
time-varying noises, enables the robot manipulator to avoid
obstacles successfully. Theoretical results are presented for the
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proposed NTOA scheme (6) [as well as the noise-polluted
NTOA scheme (7)] to show its excellent performance in motion
planning and its remarkable noise suppression capability. On the
basis of the PA10 robot manipulator with point and window-
shaped obstacles and different kinds of noise, simulation results
are provided to further substantiate the efficacy and superiority
of the proposed NTOA scheme (6).
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Genetic algorithms are widely adopted to solve optimization problems in robotic

applications. In such safety-critical systems, it is vitally important to formally prove the

correctness when genetic algorithms are applied. This paper focuses on formal modeling

of crossover operations that are one of most important operations in genetic algorithms.

Specially, we for the first time formalize crossover operations with higher-order logic

based on HOL4 that is easy to be deployedwith its user-friendly programing environment.

With correctness-guaranteed formalized crossover operations, we can safely apply them

in robotic applications. We implement our technique to solve a path planning problem

using a genetic algorithm with our formalized crossover operations, and the results show

the effectiveness of our technique.

Keywords: genetic algorithm, formalization, crossover operator, high order logic, HOL4

INTRODUCTION

Genetic algorithms are widely adopted in robotic applications such as path planning (Hu and Yang,
2004; Taharwa et al., 2008; Achour and Chaalal, 2011; Liu et al., 2013; Sanfilippo et al., 2013; Gautam
and Verma, 2014; Vicmudo et al., 2014).When genetic algorithms are applied in such safety-critical
applications, it is extremely important to prove their correctness. Specially, crossover operators
play a key role in searching for near-optimal solution in genetic algorithms. Therefore, it becomes
an important issue for how to develop correctness-guaranteed formalized crossover operations in
robotic applications (Zhou and Sun, 1999; Wang and Cao, 2002).

There have been studies to formalize crossover operations of genetic algorithms. In Uchibori
and Endou (1999), completed the formalization of crossover operators. In Vidal et al. (2008),
a mathematical abstraction of crossover operators is proposed to extend the applicability of
formalized crossover operators in genetic algorithms. In Nawaz et al. (2013), the correctness of
genetic algorithms with formalized crossover operators is verified. While the above studies lay the
foundation for formalizing crossover operations of genetic algorithms, effective mechanisms and
techniques are still urgently needed for developing correctness-guaranteed formalized crossover
operations that can be easily deployed in genetic algorithms in practice.

In this paper, we for the first time develop correctness-guaranteed formalized crossover
operations based on HOL4 (Higher-Order Logic 4) (HOL Project, 2017) that is easy to be deployed
with its user-friendly programing environment. We first present a general structural model and
construct the formal model of cross operators. Based on these, one-point crossover operator
and multi-point crossover operator are then formalized and proved with HOL4. We conduct
a case study by implementing the proposed technique in robotic applications to solve a path
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planning problem, in which a genetic algorithm with our
formalized crossover operations has been developed, and the
results show that our technique can be easily applied and
effectively solve optimization problems with genetic algorithms.

The rest of paper is organized as follows. Section Manuscript
Formatting presents background. Section Higher-order Logic
Representation of Crossover Operators: Basic Elements describes
the formal model of cross operations with HOL4. In sections
Higher-order Logic Representation and Formal Verification
of One-point Crossover Operators and Higher-order Logic
Representation and Formal Verification of Multi-Point
Crossover Operators, we formalize and prove one-point
and multi-point crossover operators with HOL4, respectively.
Section Discussion discusses the proposed technique. Section
Evaluation evaluates the proposed work with a case study
for implementing our technique to solve path planning in
robotic applications. Finally, we conclude this paper in section
Conclusion.

MANUSCRIPT FORMATTING

Population
In order to complete the formalization of crossover operators,
we must formalize the population that is the base of the
evolution of genetic algorithms and the workspace of crossover
operators. According to the collective property of the population,
a population is defined as the abstract set and is represented as
“: bool list - > bool” in HOL4. We use the symbol D to represent
the non-empty set of a population. In addition, in order to ensure
that crossover operations can be carried out in the formalized
population D to generate new chromosomes, population D also
needs to meet the following two properties:

• Non-unitary: There are at least two chromosomes in
population D, and the two chromosomes are not the same.

• Closure: Offspring chromosomes generated by a crossover
operator which involves two chromosomes in population D
still belong to population D.

Crossover Operations
A crossover operation is defined as the behavioral process in
which offspring are produced by crossover operators. A crossover
operation intercepts two parent chromosomes at the crossover
point, and reconnects the dissected gene segments to create a
new chromosome. Figure 1 illustrate how a crossover operation
works.

To implement the higher-order logic formalization of
crossover operations, we can abstract the process shown in
Figure 1. into three elements, namely, the operation object,
the operation position and the basic operation. Based on this
abstraction, Figure 2 shows a structural model. In Figure 2,
chromosomes are individuals in population D; chromosome
p and chromosome q as operation objects that represent the
two parent chromosomes; cross-term l denotes the operation
position which is the set of crossover points; the basic operations
consisting of TAKE, DROP and APPEND are the behavior
operations used to complete gene exchange.

FIGURE 1 | The workflow of a cross operation.

As shown in Figure 2, the operation objects and operation
positions in the general model of crossover operations constitute
the basic variables of the formal model, and the basic operations
in the general structural model construct the behavior of the
formal model. Moreover, the basic variables and the basic
behavior operations will form the formal model of the crossover
operation.

HIGHER-ORDER LOGIC
REPRESENTATION OF CROSSOVER
OPERATORS: BASIC ELEMENTS

To realize the formalization of crossover operations, the
prerequisite work is to use the higher-order logic to represent
the basic elements of crossover operations. Therefore, the higher-
order logic representation of the three basic elements in the above
model and the proofs of their related properties are presented in
this section.

Higher-Order Logic Representation of
Chromosomes
Since a chromosome is an arrangement of a limited number of
genes, the data structure of chromosomes in HOL4 is defined as
a list; the data type of elements in the list is defined as Boolean
(: bool). Then a chromosome can be represented as a Boolean
list (: bool list). Correspondingly, two parent chromosomes of an
operation object can be represented by p and q respectively, p =

p1 . . . pn,q = q1 . . . qn,p ∈ D,q ∈ D. Here pi (: bool) (1≤ i≤n) is
the gene that constitutes the chromosome p (: bool list);qi (: bool)
(1≤ i≤n) is the gene that forms the chromosome q (: bool list).

Higher-Order Logic Representation of
Cross-Term
The crossover position in crossover operations, called cross-
term, is represented by a natural number. Thus, its data type is
defined as natural number (: num) in HOL4. Since the crossover
operators include one-point crossover andmulti-point crossover,
the number of crossover points may be one or more. Therefore,
the data structure of cross-term in HOL4 is defined as natural
number lists (: num list) and represented by l (: num list).
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FIGURE 2 | A structure model of crossover operations.

Higher-Order Logic Representation of
Basic Operations
As described above, the data structure of both chromosomes and
cross-term are defined as lists. By analyzing the list theory base
in HOL4, the operation functions, namely, TAKE, DROP and
APPEND, exactly match the three basic operation functions in
the general model. Therefore, TAKE is used to get the first n genes
of chromosome p, abbreviated as p ↑ n; DROP is used to obtain
the genes after the n-th position of chromosome p, abbreviated
as q ↓ n; APPEND is utilized to connect the two chromosome
fragments p1 and q1 to form a new chromosome, abbreviated as
p1 ++ q1.

The mathematical description of the three basic operations
(TAKE, DROP and APPEND) is presented as follows.

For any p, q ∈ D, let n be the length of p, m the crossover
point, k the length of q, where m, n, k ∈ N. The basic operations
are defined as:

p TAKE m =

{

(p1, · · · , pm) if m < n,
p if m ≥ n.

p DROP m =

{

(pm+1, · · · , pn) if m < n,
[] if m ≥ n.

p APPEND q = (p1, · · · , pn, q1, · · · , qk).

Here, [] denotes an empty list.
Based on the above definitions, the higher-order logic
representations of the three basic operations in HOL4 can
be expressed respectively as follows:

> val TAKE=

[] |− (!l. TAKE 0 l = []) /\
!n x l. TAKE (SUC n) (x::l)= x::TAKE n l: thm
> val DROP=

[] |− (!l. DROP 0 l = l) /\
!n x l. DROP (SUC n) (x::l)= DROP n l: thm
> val APPEND=

[] |− (!l. []++ l = l) /\
!l1 l2 h. h::l1++ l2= h::(l1++ l2): thm

Formal Verification of Basic Operations
In HOL4 library, TAKE and DROP are used to manipulate
the list, and they have two parameters, i.e., natural number
and list. Function TAKE can cut the child list of list before
the natural number, and function DROP can cut the child
list of list after the natural number. In order to prove the
properties of the formalized crossover operators, it is necessary
to prove the properties of TAKE and DROP (Darmochwal and
Nakamura, 1991; Kotowicz, 1993; Uchibori and Endou, 1999;
Vidal et al., 2008; Nawaz et al., 2013). Since the existing properties
of APPEND in HOL4 are sufficient, there is no need for more
proofs. The basic properties of TAKE and DROP are classified as
follows and their mathematical descriptions are given below.

Properties of TAKE: for any p, q ∈ D,m, n ∈ N

∗ [] ↑ n= [] (1)

p ↑ 0 = [] (2)

∗ ((p ↑ m) ↑ n) = (p ↑ MIN(m, n)) (3)

∗ (p ↑ MIN(m, n)) = ((p ↑ n) ↑ m) (4)

∗ ((p ↑ m) ↑ n) = ((p ↑ n) ↑ m) (5)

LENGTH p = LENGTH q ==>

∗ LENGTH (p ↑ n) = LENGTH (q ↑ n)
(6)

LENGTH (p ↑ n) =

MIN(n, ( LENGTH p ))
(7)

((m<= LENGTH p)/\(m<=n)) ==>

∗ (m<= LENGTH (p ↑ n))
(8)

(m<= LENGTH p ) ==>

∗ (m = LENGTH (p ↑ m) )
(9)

( LENGTH p <=n) ==>

((p++q) ↑ n = p++

∗ (q ↑ (n− LENGTH p )))

(10)
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LENGTH (p ↑ n) =

if(n<= LENGTH p )

then n

else (LENGTH p)

(11)

(LENGTH p ) <=n ==> p ↑ n = p (12)

(n<= LENGTH p ) ==>

((p++q) ↑ n = p ↑ n)
(13)

( LENGTH p <n) ==>

((p++q) ↑ n = p++

(q ↑ (n− LENGTH p )))

(14)

( LENGTH p <n) ==>

((p++q) ↑ n = p++

(q ↑ (n− LENGTH p )))

(15)

(m<= LENGTH p) ∧ (n<=m) ==>

(((p ↑ m) ↑ n) =p ↑ n)
(16)

Properties of DROP: for any p, q ∈ D, m, n ∈ N

∗ [] ↓ n= [] (17)

p ↓ 0 =p (18)

p ↓ 0 =q ==> p = q (19)

∗ ((p ↓ m) ↓ n) = (p ↓ (m+n)) (20)

∗ (p ↓ (m+n)) = ((p ↓ n) ↓ m) (21)

∗ ((p ↓ m) ↓ n) = ((p ↓ n) ↓ m) (22)

LENGTH p = LENGTH q ==>

∗ LENGTH (p ↓ n ) = LENGTH (q ↓ n )
(23)

LENGTH (p ↓ n) = (LENGTH p)−n (24)

(LENGTH p ) <=n ==> p ↓ n= [] (25)

(n<= LENGTH p ) ==>

((p++q) ↓ n= (p ↓ n)++q)
(26)

( LENGTH p <=n) ==>

((p++q) ↓ n = q ↓ (n− LENGTH p ))
(27)

((n+m) <= LENGTH p) ==>

(((p ↓ m) ↓ n) =p ↓ (n+m))
(28)

The relation between TAKE and DROP: for any p, q ∈D,m, n ∈N

∗ (p ↑ n) ↓ n= [] (29)

∗ (p ↓ n) ↑ m= (p ↑ (m+n)) ↓ n (30)

∗ (p ↑ n) ↓ m= (p ↓ m) ↑ (n−m) (31)

In the above equations, the properties with ∗ are required to be
proved in this paper, while these properties without ∗ have existed
in HOL4 and need not be proved.

FIGURE 3 | Basic flow chart of crossover operations.

Formal Modeling and Implementation of
Crossover Operations with HOL4
As mentioned above, crossover operations are the process of
generating offspring. In order to establish a formal model of
crossover operation, we first construct the basic implementation
flow of generating offspring based on the general structural
model of crossover operation, as shown in Figure 3.

In Figure 3, p and q are two parent chromosomes; l is the
cross-term that represents the crossover position; l= [s] indicates
that there is only one crossover point s; chromosome p’ is the
offspring chromosome generated.

The basic implementation of crossover operation in Figure 3

can only be used for one-point crossover operator. In order
to apply the formalized crossover operation to other crossover
operators, the crossover process is improved according to the
characteristics of multi-point crossover operators.

In general, the process of multi-point crossover can be
regarded as the repetition of one-point crossover. Therefore,
when the number of crossover points are n (n > 1) in cross-
term l, the operation objects of TAKE andDROP are the offspring
chromosomes generated by n-1 rounds of crossover.

Let CROSSOVER represent a crossover operation.
CROSSOVER crosses the chromosomes p and q in turns
according to the crossover points in cross-term l. According to
the features of the functional language, recursive methods can be
used to achieve the repeated process between one-point crossover
and multi-point crossover. Figure 4 shows the implementation
process of crossover operations.

As shown in Figure 4, CROSSOVER l p q is the offspring
chromosome generated by the crossover operation with two
parent chromosomes p and q. Similarly, CROSSOVER l q p
is another offspring chromosome generated by the crossover
operation with two parent chromosomes q and p. To complete
the gene exchange, a crossover operation uses two basic
operations, namely, TAKE and DROP. The operation object of
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TAKE and DROP also contains the crossover operation itself, so
the whole process contains two recursive lines. Because the two
recursive lines are parallel, the method employed is called double
recursion. According to the execution diagram of the double
recursion, it can be observed that the recursion procedure is to
reduce the size of the cross-term, while the regression process is
to exchange genes at each crossover point in turn.

In Figure 4, the implementation procedure of the crossover
operation can be viewed as a binary tree where the number
of crossover points corresponds to the height of the binary
tree. For the special case in which there is only one crossover
point, the height of the full binary tree is one. Therefore, the
crossover operation with the double recursion method, which
can be used to construct one-point crossover and multi-point
crossover, possesses generality. Moreover, the implementation
process of this crossover operation can also be used to form
other crossover operators such as uniform crossover operators
and partially matched crossover operators.

According to the implementation process of the crossover
operation, the mathematical description of the crossover
operation is given as follows:

CROSSOVER l p q =







p if l = [],

((CROSSOVER t p q) ↑ h) if l = h : :t.

++ ((CROSSOVER t q p) ↓ h)

Based on the above mathematical description, the higher-order
logic implementation of the crossover operation inHOL4 is given
as follows:

> val CROSSOVER_def=
[] |− (!p q. CROSSOVER [] p q= p) /\
!h t p q.
CROSSOVER (h::t) p q=
TAKE h (CROSSOVER t p q)++

DROP h (CROSSOVER t q p): thm

The higher-order logic description of the crossover operation
is an important preliminary work for formalizing crossover
operators. We further describe the one-point crossover operator
and multi-point crossover operator using higher-order logic in
HOL4 and complete the proofs of their relevant properties next.

HIGHER-ORDER LOGIC
REPRESENTATION AND FORMAL
VERIFICATION OF ONE-POINT
CROSSOVER OPERATORS

One-point crossover operator selects two chromosomes in
population D as two parent chromosomes and one random
crossover point, and then exchanges the chromosome segments
at the crossover point to obtain two new offspring chromosomes.

Two parent chromosomes in population D are defined as
follows:

p = p1, p2, ..., pn
q = q1, q2, ..., qn

p and q represent the two parent chromosomes; pi (1≤i≤n) and
qi (1≤i≤n) express the genes that make up the chromosomes.

Choose an random intersection i(1≤i≤n),then generate two
new offspring:

p′ = p1, ..., pi, qi+1, ..., qn
q′ = q1, ..., qi, pi+1, ..., pn

p′ and q′ denote the two offspring; pi (1≤i≤n) and qi (1≤i≤n)
express the genes that make up the chromosomes.

Formalization of One-Point Crossover
Operator in HOL4
From the definition of the one-point crossover operator, it is
known that the one-point crossover operator generates two
chromosomes at the same time, while the crossover operation
can only produce one offspring chromosome every time. Thus,
the implementation of the one-point crossover operator needs
two crossover operations. Since the two offspring are generated
at the same time and their relation is parallel, two-tuples are used
to indicate the relation between two offspring generated in the
mathematical description of the one-point crossover operator as
follows:

⊙ n p q= (CROSSOVER [n] p q,

CROSSOVER [n] q p ).

Symbol ⊙̄ represents an one-point crossover operator;
CROSSOVER denotes the crossover operation; p and q are
two parent chromosomes in population D; [n] is the crossover
term with one crossover point n.

Based on the above mathematical descriptions, the higher-
order logic description of the one-point crossover operator in
HOL4 is as follows:

> val ONEPOINT_CROSSOVER_def=
[] |− !n p q.
ONEPOINT_CROSSOVER n (p,q)=

(CROSSOVER [n] p q, CROSSOVER [n] q p): thm

Verification of One-Point Crossover
Operator
In order to ensure the correctness of one-point crossover
operator, we prove the four basic properties of the one-point
crossover operator in HOL4.

Theorem 1: Given any p, q ∈ D and a random
crossover point n, if LENGTH p = LENGTH q, then
LENGTH (CROSSOVER [n] p q) = LENGTH p. The
higher-order logic description is as follows:

> val OCROSSOVER_LENGTH=

[] |− !n p q.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(LENGTH (CROSSOVER [n] p q)=
LENGTH p): thm

Theorem 1 ensures that the one-point crossover does not change
the length of chromosome.
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FIGURE 4 | Implementation flow of crossover operations.

Theorem 2: Given any p, q ∈ D, if LENGTH p = LENGTH q,
0 is the crossover point, then CROSSOVER [0] p q = q. The
higher-order logic description is as follows:

> val OCROSSOVER_ZERO=

[] |− !p q.
p IN D /\q IN D
/\(LENGTH p= LENGTH q)==>

(CROSSOVER [0] p q= q): thm

Theorem 2 shows that when crossover point is 0, the offspring
generated by one-point crossover operator are the same as parent
chromosomes, but the order is exchanged, that is, the first
offspring is the second parent and the second child is the first
parent.

Theorem 3: Given any p, q ∈ D, if LENGTH p = LENGTH q,
n is the crossover point andLENGTH p<n, then
CROSSOVER [n] p q = p. The higher-order logic description is
as follows:

> val OCROSSOVER_TOO_LONG=

[] |− !n p q.
p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\
LENGTH p < n==>

(CROSSOVER [n] p q= p): thm

Theorem 3 guarantees that if the position of the crossing point
is larger than the length of chromosome, then the offspring
produced by the one-point crossover operator are the same as
the parent chromosomes.

Theorem 4: Given any p, q ∈ D, if LENGTH p = LENGTH q,
n is the crossover point and LENGTH p = n, then
CROSSOVER [n] p q = p. The higher-order logic description is
as follows:

> val OCROSSOVER_EQ=

[] |− !n p q.
p IN D /\q IN D /\

(LENGTH p= LENGTH q) /\
(n= LENGTH p)==>

(CROSSOVER [n] p q= p): thm

Theorem 4 holds the property that if the position of the
intersection is equal to the length of chromosome, the offspring
generated by the one-point crossover operator are the same as the
parents.

As mentioned above, Theorems 1-4 mainly reflect the relation
between the positions of crossover points and the results
produced by the one-point crossover operator. In addition, the
formalization of the one-point crossover operator provides a
good foundation for our analysis and design of formalization of
the multi-point crossover operator.
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HIGHER-ORDER LOGIC
REPRESENTATION AND FORMAL
VERIFICATION OF MULTI-POINT
CROSSOVER OPERATORS

With a multi-point crossover operator, two chromosomes in
population D are selected as two parent chromosomes, and with
n crossover points, we exchange the chromosome segments to
eventually obtain two new offspring chromosomes.

Two parent chromosomes in population D are:

p = p1, p2, ..., pn
q = q1, q2, ..., qn

p and q represent the two parent chromosomes; pi (1≤i≤n) and
qi (1≤i≤n) represent the genes that make up the chromosomes.

By randomly selecting n crossover points: i, j, k,. . . ., the
offspring produced can be represented as follows:

p′ = p1, ..., pi, qi+1, ..., qj, pj+1, ..., pk, qk+1...
q′ = q1, ..., qi, pi+1, ..., pj, qj+1, ..., qk, pk+1...

Here, p′ and q′ denote the two offspring; pi (1≤i≤n).

Formalization of Multi-Point Crossover
Operator in HOL4
From the definition of the multi-point crossover operator, we
can see that the multi-point crossover operator is similar to the
one-point crossover operator. In both cases, progeny is generated
in parallel. The difference is the number of crossover points.
Therefore, the creation of multi-point crossover also needs two
crossover operations. However, the cross-term denoted by l is
an arrangement of multiple crossover points rather than only
one point. When describing the multi-point crossover with
mathematical methods, we still use two-tuples to represent the
parallel relation between two offspring.

Therefore, the mathematical description of the multi-point
crossover operator obtained is as follows:

⊗ l (p,q) = (CROSSOVER l p q , CROSSOVER l q p).

Symbol ⊗ represents multi-point crossover operator;
CROSSOVER denotes crossover operation; p and q are two
parent chromosomes in population D; l is the cross-term with
multiple crossover points.

Based on the above mathematical description, a multi-point
crossover operator in HOL4 can be denoted as follows:

> val MULTIPOINT_CROSSOVER_def=
[] |− !l p q.
MULTIPOINT_CROSSOVER l (p,q)=
(CROSSOVER l p q, CROSSOVER l q p): thm

Verification of Multi-Point Crossover
Operator
To ensure that the higher-order logic representation of a multi-
point crossover operator is correct, its propertiesmust be verified.

In the following, Theorems 6 and 7 describe the relation between
the crossover point and offspring generated by the multi-point
crossover operator; Theorems 8-9 and Theorems 14-16 mainly
show that the results produced by the multi-point crossover
operator are independent of the arrangement of cross-term;
Theorem 10 guarantees that the elimination of two identical
elements in a cross-term does not affect the results obtained by
the multi-point crossover operator.

Theorem 5: Given any p, q ∈ D, any cross-
term l, if LENGTH p = LENGTH q, then
LENGTH( CROSSOVER l p q) =LENGTH p. The higher-order
logic description is as follows:

> val XCROSSOVER_LENGTH=

[]|− !l p q.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(LENGTH (CROSSOVER l p q)= LENGTH p): thm

Theorem 5 ensures that the length of new chromosomes
generated by the multi-point crossover is equal to the length of
two parent chromosomes p and q.

Theorem 6: Given any p, q ∈ D, any cross-term l, if
LENGTH p = LENGTH q, then CROSSOVER (0 : :l) p q =

CROSSOVER l q p. The higher-order logic description is as
follows:

> val XCROSSOVER_ZERO_APPEND=

[] |− !p q l.
p IN D /\q IN D==>

(CROSSOVER (0::l) p q= CROSSOVER l q p): thm

Theorem 6 shows that in the case of the same chromosomes p
and q, adding a crossover point 0 at the beginning of the cross-
term l does not change the progeny generated by the multi-point
crossover.

Theorem 7: Given any p, q ∈ D, any cross-term l,
if LENGTH p = LENGTH q and LENGTH p ≤ n, then
CROSSOVER (n::l) p q = CROSSOVER l p q. The higher-order
logic description is as follows:

> val XCROSSOVER_TOO_LENGTH=

[] |− !p q n l.
p IN D /\q IN D /\

(LENGTH p= LENGTH q) /\LENGTH p <= n==>

(CROSSOVER (n::l) p q= CROSSOVER l p q): thm

Theorem 7 guarantees that in the case of the same parent
chromosomes p and q, when n is not less than the length of
chromosome, adding a crossover point n at the beginning of
the cross-term l does not change the progeny generated by
multi-point crossover.

Theorem 8: Given any p, q ∈ D, any cross-
term l, l1, l2, if LENGTH p = ccLENGTH q and
CROSSOVER l1 p q = CROSSOVER l2 p q, then
CROSSOVER (l++l1) p q = CROSSOVER (l++l2) p q .
The higher-order logic description is as follows:

> val XCROSSOVER_EQ=

[]|− !l1 l2.
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(!p q.p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\

(CROSSOVER l1 p q= CROSSOVER l2 p q))==>

!p q l. CROSSOVER (l++ l1) p q=
CROSSOVER (l ++ l2) p q: thm

Theorem 8 shows that in the case of the same parent
chromosomes p and q, if the offspring generated by the multi-
point crossover with cross-term l1 are equal to the offspring
produced by the multi-point crossover with cross-term l2, adding
cross-term l at the beginning of the cross-term l1 and l2
respectively does not change the equivalency of the progeny
generated in the same way.

Theorem 9: Given any p, q ∈ D, any cross-term
l, any m, n ∈ N, if LENGTH p = LENGTH q, then
CROSSOVER (n : :(m : :l)) p q = CROSSOVER (m : :(n : :l)) p q.
The higher-order logic description is as follows:

> val XCROSSOVER_SWAP=

[] |− !p q l m n.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(CROSSOVER (n::m::l) p q=
CROSSOVER (m::n::l) p q): thm

Theorem 9 holds the property that in the case of the same parent
chromosomes p and q, two crossover points with different order
are added respectively at the beginning of cross-term l, then the
progeny produced by the multi-point crossover with the new two
cross-terms respectively are the same.

Theorem 10: Given any p, q ∈ D, any cross-
term l, any n ∈ N, if LENGTH p = LENGTH q, then
CROSSOVER (n : :(n : :l)) p q = CROSSOVER l p q. The
higher-order logic description is as follows:

> val XCROSSOVER_SAME=

[] |− !p q l n.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(CROSSOVER (n::n::l) p q= CROSSOVER l p q): thm

Theorem 10 guarantees that in the case of the same parent
chromosomes p and q, if we add two identical crossover points
at the beginning of the cross-term l to obtain a new cross-term,
the offspring generated by multi-point crossover operator with
the new cross-term are the equal to those generated with cross-
term l. In other words, the elimination of two identical elements
in cross-term does not affect the results generated by multi-point
crossover.

From Theorems 8–10, we can see that the results produced by
the multi-point crossover operator used in genetic algorithms are
related to the position of crossover points, and independent of
the order of crossover points.

To demonstrate that the results generated by the multi-
point crossover are not affected by the order of cross-
term, the concept of strictly increasing list is used to verify
the properties of the crossover operator. Strictly increasing
list means that the elements in the list are in ascending
order, and two identical elements are eliminated in the

list. If cross-term l’ is the strictly increasing list of cross-
term l, the property that progeny generated by the multi-
point crossover operator are not affected by the order of
cross-term, can be expressed as: CROSSOVER l p q =

CROSSOVER l′ p q.
In order to get the strictly increasing list of any list in

HOL4, it is necessary to define two predicates INSERT_PL and
CANON_PL. Given a strictly increasing list l and a natural
number n, when n is not in list 1, predicate INSERT_PL can
produce a new strictly increasing list with element n; otherwise
it gets a new list that has the eliminated element n. The function
of predicate CANON_PL is to get the strictly increasing list l’ of
any given list l.

The higher-order logic presentations of predicate INSERT_PL
and predicate CANON_PL are expressed as follows:

> val INSERT_PL=

[] |− (!n. INSERT_PL n []= [n]) /\
!n h t.

INSERT_PL n (h::t)=
if n < h then n::h::t else if n= h
then t else h::INSERT_PL n t: thm

> val CANON_PL=

[] |− (CANON_PL []= []) /\
!h t. CANON_PL (h::t)=

INSERT_PL h (CANON_PL t): thm

To ensure that the definitions of the two predicates are correct,
we need to prove the properties of the strictly increasing list.
The property of the strictly increasing list can be described as
“any element in a strictly increasing list is smaller than the next
element”. Predicate INCREASE_PRO is used to represent this
property in HOL4, and its higher-order logic description is as
follows:

> val INCREASE_PRO=

[] |- (INCREASE_PRO [] <=> T) /\
!t1 h1. INCREASE_PRO (h1::t1) <=>

case t1 of []=> T |h2::t2=>

h1 < h2 /\INCREASE_PRO (h2::t2): thm

In addition, it is also required to prove the following properties
of the strictly increasing list:

Theorem 11: Given any cross-term l, any m, n ∈ N, if

INCREASE_PRO(n : :l) andm<n, then INCREASE_PRO(m : :l).

The higher-order logic description is as follows:

> val LIST_INCREASE_ONE=

[] |− !l m n. INCREASE_PRO (n::l) /\
m < n==> INCREASE_PRO (m::l): thm

Theorem 11 shows that if adding a natural number n at the

beginning of list l possesses the strictly increasing property, then

adding a natural numberm that is smaller than n at the beginning

of list l can still get a new strictly increasing list.
Theorem 12: Given any cross-term l, any n ∈ N,

if INCREASE_PRO l, then INSERT_PL n l still meets
INCREASE_PRO(INSERT_PL n l). The higher-order logic
description is as follows:
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> val LIST_INCREASE_INSERT=

[] |- !l n. INCREASE_PRO l ==>

INCREASE_PRO (INSERT_PL n l): thm

Theorem 12 ensures that if l is a strictly increasing list and a
natural number n is inserted into list 1 by predicate INSERT_PL,
then the new list obtained is still a strictly increasing list.

In order to prove the theorem 13, we need to give the following
lemma:

Lemma 1: Given any cross-term l, any m, n ∈ N, if
INCREASE_PRO(m : :n : :l), thenm<n and INCREASE_PRO(n :

:l). The higher-order logic description is as follows:

> val LIST_INCREASE_IMP=

[] |− !l m n. INCREASE_PRO (m::n::l)==>

m < n /\INCREASE_PRO (n::l): thm

Lemma 1 shows that if (m : :n : :l) is a strictly increasing list, then
(n : :l) is a strictly increasing list andm < n.

Theorem 13: Given any cross-term l, if INCREASE_PRO l,
then CANON_PL l = l. The higher-order logic description is as
follows:

> val LIST_INCREASE_CANON= [] |−
!l. INCREASE_PRO l ==> (CANON_PL l = l): thm

Theorem 13 illustrates that if the arrangement of a list is strictly
incremental, then the list is a strictly increasing list.

The proofs of Theorems 11–13 ensure the correctness of the
strictly increasing list defined in HOL4. By using the definition of
strictly increasing list, the following properties of the multi-point
crossover operator can be further proved.

Theorem 14: Given any p, q ∈ D, any cross-term l. l′ is the
strictly increasing list of l, if LENGTH p = LENGTH q, then
CROSSOVER l p q = CROSSOVERl′ p q. The higher-order logic
description is as follows:

> val CANON_XCROSSOVER_EQ=

[] |− !p q l n.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(CROSSOVER (CANON l) p q=
CROSSOVER l p q): thm

Theorem 14 guarantees that in the case of the same parent
chromosomes p and q, the progeny generated by multi-point
crossover with cross-term l are equal to the ones produced in
the same way with the strictly increasing list of l. It is also more
straightforward to illustrate that the results of the multi-point
crossover are independent of the order of the elements in the
cross-term.

Theorem 15: Given any p, q ∈ D, any
cross-term l. l′ is the strictly increasing list of
l, any n ∈ N. if LENGTH p = LENGTH q, then
CROSSOVER (INSERT_PL n l′) p q = CROSSOVER (n : :l) p q.
The higher-order logic description is as follows:

> val LINCREASE_XCROSSOVER_N=

[] |− !p q l n.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(CROSSOVER (INSERT_PL n l) p q=
CROSSOVER (n::l) p q): thm

Theorem 15 shows that in the case of the same parent
chromosomes p and q, if the crossover point n is inserted into
cross-term l and l’ respectively, where l’ is the strictly increasing
list of l, then the results obtained by the multi-point crossover
under these two new cross-terms are the same.

Theorem 16: Given any p, q ∈ D, any
cross-term l1, l2, if LENGTH p = LENGTH q
and (CANON_PL l1) = (CANON_PL l2), then
CROSSOVER l1 p q = CROSSOVER l2 p q. The higher-order
logic description is as follows:

> val CANON_XCROSSOVER_DEQ=

[] |− !p q l1 l2.
p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\
(CANON_PL l1= CANON_PL l2)==>

(CROSSOVER l1 p q= CROSSOVER l2 p q): thm

Theorem 16 ensures that in the case of the same parent
chromosomes p and q, if the strictly increasing list of different
cross-terms are the same, then the offspring respectively
produced by the multi-point crossover under the different cross-
terms are the same.

DISCUSSION

As shown above, one-point and multi-point crossover operators
are formalized and verified. The proposed technique is general
and can applied in formalizing and verifying other genetic
operators in genetic algorithms such as mutation. Mutation
is another genetic operator that can preserve genetic diversity
in such a way local minima caused by similar populations of
chromosomes can be avoided. With mutation, one or more gene
values in a chromosome can be changed from its initial state so
a better solution may be achieved. To implement mutation, a

common method is to generate a random variable for each bit

in a chromosome sequence that is used to determine whether or
not a particular bit will be amended. To realize the formalization
and verification of mutation operations, first, we need to use

the higher-order logic to represent basic elements, and then we

can construct the formal modeling and perform verification with
HOL4. This will be investigated in our future work.

EVALUATION

Experimental Setup
We conduct the experiment in Windows 7 with the specific tool
HOL4, and the programing language is ML. In the experiment,
robot path planning based on GA is described by ML, and
the cross operation in algorithm is described by multi-point
crossover mentioned in this paper. We proved the effectiveness
of our formal model of crossover by running the algorithm in
HOL4 successfully. In addition, we do not need to specify the
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inputs because of the advantage of theorem proving, and HOL4
will exhaust all the cases space, i.e., covering all inputs. The final
output will show that robot can avoid collisions in any input
situation.

Case Study on Robotics
Genetic Algorithms have many advantages compared with
traditional optimization methods. In this section, we present a
case study on robotics, in which a genetic algorithm with the
two-point crossover operator implemented by HOL4 is applied
in robot path planning. We give the specific formal description
and collision free verification.

The workspace of the robot is a 2-D environment. We assume
that the location and size of obstacles are known, and the
obstacles will stay the same during the movement of robot. The
robot working space is modeled with grids following Cartesian
coordinates. As shown in Figure 5, the lower left corner of the
grid array is the coordinate origin, the right direction of the
horizontal axis is the forward direction of x axis, and the up
direction of the vertical axis is the forward direction of y axis.
Each grid interval corresponds to a unit length on the coordinate
axis, and any grid can be uniquely identified by (x, y). The length
and width of a grid is defined as 10 units of distance, S represents
the starting point of the robot, G represents the target point of
the robot, and black grids are used to represent obstacles.

The moving path of the robot is represented by the
chromosome. We defined the chromosome through a real list,
where the subscript of the list represents the value of the
coordinate x, and the gene is the value of the list, which represents
the value of the coordinate y. The population is composed of
a certain number of chromosomes, and its size is 20. In order
to guarantee the global optimality of the genetic algorithm, the
initial population is randomly generated.

The fitness function directly affects the computation efficiency
and time of the genetic algorithm. In the path planning of the
robot, the design of the fitness function needs to consider the
length of the path and collision avoidance. Therefore, the fitness
function is set to the sum of the path length and the obstacles’
coordinates. It is represented as:

L = L1+ L2 =

N
∑

i=1

√

(yi+1 − yi)2 + 1+ A

m
∑

j=1

(xj + yj)

Here, L1 represents the distance between two adjacent coordinate
points, and L2 represents the obstacle coordinates. When i = xj
and yi = yj, A is 100; otherwise A is 0. N = 10 indicates that the
space coordinate has 10 unit lengths,m represents the number of
obstacles. In this way, the fitness function is very large when there
are obstacles in the path. In order to simplify the calculation in
HOL4, we modified the function as follows:

L′ =

N
∑

i=1

(yi+1 − yi)
2 + 10+ A

m
∑

j=1

(xj + yj)

In this function, L1 represents the sum of squares of the distance
between two points. Although we modified the calculated way of

FIGURE 5 | Schematic diagram of the robot motion space.

L1, it does not affect the comparative relationship between the
length of the path of two chromosomes. Thus, the new fitness
function can also be used to evaluate the optimal path in the path
planning. According to the property of the shortest path, we can
see that the lower the fitness value of the chromosome is, the
better the path will become.

In this genetic algorithm, we use three basic genetic operators:
selection, crossover, and mutation. In the selection operator, we
use ranking selection, by which each individual in the population
is ranked from low to high according to the fitness, the selected
probability of the forward 80% individuals in the population is
6.25%, and the remaining 20% is 0. In the crossover operator, we
use the two-point crossover operator, the crossover probability
is 0.9, and the two intersections are generated randomly. In
the mutation operator, we use the basic bit mutation, the
mutation probability is 0.08, and themutation position is selected
randomly.

Next, we present how to define each operators using HOL4.
The selection operator is defined as follows:

val Pi = FST (List.nth (QuickresultList, hd
Random.rangelist(0,16) (1,Random.newgen())))

QuickresultList preserves the chromosome and its fitness
value according to fitness value from low to high. hd
Random.rangelist(0,16) (1,Random.newgen()) indicates the
selected chromosome subscript with equal probability. FST
deletes the selected fitness value of the chromosome and returns
the selected chromosome to the chromosome Pi◦

The crossover operator is defined as follows:

fun TWOIPOINT_CROSSOVER l (p,q) = (CROSSOVER l p
q,CROSSOVER l q p)

TWOIPOINT_CROSSOVER is the formalized crossover
operator, CROSSOVER is the formalized crossover operation.
With the two-point crossover, TWOIPOINT_CROSSOVER l
(p,q) will transfer a cross-term l to two crossover points.
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The mutation operator is defined as follows:

fun BMUTATION (pih::pil) point = List.take ((pih::pil),point-
1) @ ((Random.rangelist(1,11)(1,Random.newgen()) @
List.drop ((pih::pil),point)))

BMUTATION represents the mutation operator, pih::pil
is the chromosomes to be mutated, point indicates the
mutation point randomly produced. List.take ((pih::pil),
point-1) obtains the genes before the mutation point,
Random.rangelist(1,11)(1,Random.newgen()) can select the
allele gene by equal probability at the mutation position,
List.drop ((pih::pil),point) obtains the genes after the mutation
point, @ is used to connect the gene segments obtained by the
three functions after the mutation.

With the genetic algorithm, we can obtain the optimization
collision free path. In order to ensure that the genetic algorithm
can find the final path and meet the collision free conditions, we
need verify the final path. In this paper, the array of coordinate
points of the final path represented by the list. If one of the
elements in the list is equal to the coordinate of the obstacle, the
final path does not meet the property of collision free.

The verification result is shown as follow:

val BP = INTER ([(1,2),(2,4),(3,6),(4,7),(5,8),(6,8),(7,9),(8,9),
(9,9),(10,10)],
[(5,7),(7,8),(8,8),(9,8)]);
> val BP = []: int list

Among them, INNER refers to the formal description of the
property of collision free is shown below:

val BP= INTER (PATH, O);

It is used to determine whether the two lists have the same
elements. If there is no such elements, it outputs the empty
list; otherwise, it generates the new list of the same elements.
PATH is the list of the final robot path generated by the
genetic algorithm, PATH=[(x1,y1),. . . ,(x10,y10)], (xi,yi)(1≤i≤10)
indicates the coordinates of the final path. O is the list of
the Coordinates of the obstacles,O=[(xO1,yO1),. . . (xOm,yOm)],
(xOi,yOi)(1≤i≤m) indicates the Coordinates of the obstacles,
andm represents the number of the obstacles.

The BP is final result. It is an empty list, illustrating the optimal
or near optimal path generated by the genetic algorithm has no
common elements with the obstacles. Thus, the final path meets
the collision free condition.

CONCLUSION

In this paper, we formalized crossover operations with
higher-order logic based on HOL4 that is easy to be
deployed with its user-friendly programing environment.
We implemented our technique to solve a path planning
problem using a genetic algorithm with our formalized crossover
operations, and the results show the effectiveness of our
technique.

There are two directions for the future work. First, it is
interesting to extend formalized crossover operations to other

applications such as energy optimization for embedded systems
(Wang et al., 2011) and non-volatile memory (Chen et al.,
2016; Long et al., 2016; Wang et al., 2016; Liu et al., 2017),
and construct a crossover operator library in HOL4. Moreover,
we can further formalize genetic algorithms using formalized
crossover operators. Based on this, the formalized genetic
algorithm can be used to create the general tactics in HOL4,
thus improving the automation level of the interactive theorem
proving system.
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By incorporating the physical constraints in joint space, a different-level simultaneous

minimization scheme, which takes both the robot kinematics and robot dynamics into

account, is presented and investigated for fault-tolerant motion planning of redundant

manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with

equality and bound constraints, which is then solved by a discrete-time recurrent neural

network. Simulative verifications based on a six-link planar redundant robot manipulator

substantiate the efficacy and accuracy of the presented acceleration fault-tolerant

scheme, the resultant QP and the corresponding discrete-time recurrent neural network.

Keywords: redundant manipulator, different level, fault tolerance, physical constraint, discrete-time recurrent

neural network

1. INTRODUCTION

In recent decades, robotics has drawn more and more attention in scientific areas and engineering
applications. Many researches have been focused on this topic, and various kinds of robots have
thus been developed and investigated (Roberts and Maciejewski, 1996; Sun et al., 2009; Zhang
and Zhang, 2012, 2013; Li et al., 2014; Jin and Zhang, 2015; Jin et al., 2016; Jin and Li, 2017; Jin
et al., 2017a,b; Zhang et al., 2017a,b). As a typical kind of robot, redundant manipulators have
played a more and more important role in numerous fields of engineering applications (Roberts
and Maciejewski, 1996; Zhang and Zhang, 2012, 2013; Jin and Zhang, 2015; Liao and Liu, 2015;
Jin et al., 2016, 2017a,b; Jin and Li, 2017; Zhang et al., 2017a,b). For redundant manipulators,
they can accomplish subtasks easily and dexterously and optimization of various performance
criteria, since they possess more degrees of freedom (DOF) than the minimum amount required to
accomplish a given end-effector primary task. Recent progresses have shown advantages of using
adaptive neural networks for the control of nonlinear systems (Tang et al., 2014, 2017). For example,
an adaptive control scheme was provided in Tang et al. (2014) for robot manipulator systems
with unknown functions and dead-zone input by using adaptive neural networks, of which the
parameters of the dead zone are assumed to be unknown but bounded. One of the fundamental
issues in operating such a redundant manipulator is the inverse-kinematics problem (or termed,
redundancy-resolution problem). Specifically, the joint trajectories need to be generated online
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based on the provided desired Cartesian trajectories of the end-
effector. That is, if the manipulator control scheme is fault
tolerant, the end-effector can fulfill the required task even if
its joint fails. As one essential and challenging issue in inverse
kinematics, it is important to tolerate joint failure online during
the task execution. For example, in the remote applications
such as space or sea exploration, repairing broken actuators is
costly or even impossible and the probability of their failure
is increased due to the hostile operating environment. To
say the least, it may induce the damage to people and/or
manipulator if a manipulator without a fault-tolerant scheme
being equipped suddenly encounters a joint-lock situation
during the execution. Thus, the fault-tolerant ability is an
important or even indispensable design criterion for robotic
systems.

More recently, the fault tolerance has attracted significant
interest in the societies of academia and industry because of
the increased demands in practical applications for safety and
productivity as well as operating efficiency. Numerous researches
on the topic of fault tolerance have thus been presented and
investigated (Roberts and Maciejewski, 1996; Izumikawa et al.,
2005; Siqueira and Terra, 2009; Li and Zhang, 2012). Authors
in Siqueira and Terra (2009) described the fault occurrence for
a three-link manipulator based on a Markovian jump model,
which took into account all possible fault sequences in a three-
link manipulator robot, and defined guidelines to control an
n-link manipulator robot with several faults. Izumikawa et al.
(2005) designed a controller of a fault-tolerant system with a
signal observer for a strain gauge sensor fault. By switching
from the controller for normal mode to the controller for
unnormal mode, the stability and the control performance of
such a system were maintained. Generally speaking, the existing
methods for fault tolerance can be categorized as the passive
type and the active type (Zhang and Jiang, 2008). The former
one fixes and designs the corresponding controllers to be robust
against the presumed faults, which needs neither fault detection
nor controller reconfiguration, with limited capabilities for fault
tolerance. The latter one reacts to the failures of the system
actively by reconfiguring control actions to maintain the stability
and acceptable performance of the entire system (Bustan et al.,
2014).

A fault-tolerant scheme was presented by adding a matrix-
vector form equality constraint for the faulty joint, which took
the limits of joint angle and joint velocity into consideration (Li
and Zhang, 2012). However, this fault-tolerant scheme can not
handle the joint-acceleration limits. More seriously, this scheme
may introduce the undesirable discontinuity phenomenon in
the velocity solution because it was investigated at the joint-
velocity level. Thus, it is worthy to investigate the scheme for
fault-tolerance of redundant robot manipulators at the joint-
acceleration level, which can effectively remedy the discontinuity
phenomenon at the joint-velocity level and incorporates robot
dynamic. However, up to now there is almost no study on
the fault tolerance of redundant robot manipulators on the
combination of different level. In other words, the study on the
fault tolerance of redundant robot manipulators at the different
level is still rare despite its appealingness.

In this paper, we make progress along this direction by
presenting a different-level simultaneous minimization scheme,
which takes both the robot kinematics and robot dynamics into
account. The scheme is then reformulated as a quadratic program
(QP) subject to equality and bound constraints. In order to solve
such a QP problem, a discrete-time recurrent neural network is
developed and applied to online solution of the QP problem.
Simulative results based on a six-link planar robot manipulator
further illustrate the efficacy and superiority of the proposed
fault-tolerant scheme for fault tolerance of redundant robot
manipulators.

2. PRELIMINARIES AND SCHEME
FORMULATION

To lay a basis for further discussion, the relationship between the
end-effector velocity ṙ ∈ Rm and the joint velocity q̇ ∈ Rn for
redundant robot manipulators can be given hereinafter directly
(Zhang and Zhang, 2012)

J(q)q̇ = ṙ, (1)

where J(q) ∈ Rm×n is the Jacobianmatrix of the end-effector with
q being the joint-angle vector. By differentiating Equation (1)
with respect to time t, the relationship between the end-effector
acceleration r̈ and the joint acceleration q̈ is obtained as follows
(Zhang and Zhang, 2012):

J(q)q̈ = r̈b = r̈ − J̇(q)q̇, (2)

where J̇(q) is the time derivative of J(q). Note that, since the
manipulator system is redundant (i.e., m < n), Equations (1)
and (2) are under-determined, and generally admit an infinite
number of feasible solutions in terms of inverse kinematics. This
implies the ability to accommodate more functional constraints
such as fault tolerance. For example, once a joint is stuck, other
joints can take over its workload and move the end-effector to
its goal via a fault-tolerant scheme. It is worth mentioning here
that the fault-tolerant scheme investigated in Li and Zhang (2012)
was based on Equation (1) (i.e., at the joint-velocity level), while
the fault-tolerant scheme presented in the ensuing subsections is
based on Equation (2) (i.e., at the joint-acceleration level).

For the online solution of Equation (2), the following QP-
oriented formulation can be used (Zhang and Zhang, 2012):

minimize q̈T3q̈/2+ cTq̈, (3)

subject to J(q)q̈ = r̈b, (4)

where coefficients 3 ∈ Rn×n and c ∈ Rn are defined
accordingly for a specific redundancy-resolution scheme. In
addition, superscript T denotes the transpose of a matrix or
vector.

However, without appropriate remedied measures, when a
manipulator suffers a joint failure, its performance would be
significantly affected, and even worse, the manipulator fails to
complete the prescribed path task. In safety-critical systems,
the consequences of a minor fault in a system component can
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be catastrophic. Therefore, the demands on reliability, safety
and fault tolerance are generally high. It is necessary to take
fault tolerance into consideration in the above inverse-kinematic
scheme (i.e., Equations 3 and 4) in order to improve the reliability
and availability while tracking a desirable path. Inspired by
Roberts and Maciejewski (1996), at a time instant, if there are
nf joints being locked (e.g., the ith, · · · , and jth joints with
i, j ∈ [1, 2, · · · , n] and i 6= j), then we directly remove
the corresponding joint-acceleration variables in the scheme.
For example, if a failed joint i is locked, the corresponding
relationship between the end-effector acceleration and the joint
acceleration is obtained as

[iJ(q)][iq̈] = r̈b = r̈ − [i ˙J(q)][iq̇], (5)

where iJ(q) = [j1, · · · , ji−1, ji+1, · · · , jn] and i J̇(q) =

[j̇1, · · · , j̇i−1, j̇i+1, · · · , j̇n] with jh and j̇h denoting
the hth column of J(q) and J̇(q), respectively. In
addition, iq̇ = [q̇1, · · · , q̇i−1, q̇i+1, · · · , q̇n] and iq̈ =

[q̈1, · · · , q̈i−1, q̈i+1, · · · , q̈n]. The reduced Equation (5) then
determines the kinematic properties of the degraded system.

By incorporating the joint physical constraints as well as the
robot dynamic presented in Appendix (SupplementaryMaterial),
the different-level simultaneous minimization scheme for fault
tolerance of robot manipulators is written as

minimize α(θ̈TWθ̈/2+ pTθ̈)+ βτTτ/2, (6)

subject to J(θ)θ̈ = r̈a, (7)

τ = Hθ̈ + cτ (θ̇ , θ)+ gτ (θ), (8)

θ− 6 θ 6 θ+, (9)

θ̇− 6 θ̇ 6 θ̇+, (10)

θ̈− 6 θ̈ 6 θ̈+, (11)

τ− 6 τ 6 τ+, (12)

where α ∈ (0, 1) and β ∈ (0, 1) are the weighting factors with α+

β = 1 numerically; θ , θ̇ , θ̈ and τ denote the nr dimensional joint-
angle, joint-velocity, joint-acceleration and joint-torque vectors,
respectively; W = I ∈ Rnr×nr , and J(θ) ∈ Rm×nr , p ∈ Rnr ;
b = r̈a + Kv(ṙd − J(θ)θ̇) + Kp(rd − f (θ)) ∈ Rm; r̈a = r̈ − J̇(θ)θ̇
with J̇(θ) ∈ Rm×nr and nr = n − nf [nf denotes the number of
faulty joint(s)]. In addition, H denotes the nr × nr dimensional
inertia matrix; cτ denotes the nr dimensional Coriolis/centrifugal
force vector and gτ denotes the nr dimensional gravitational force
vector. Besides, τ± = ±140 × 1v N·m. For simplicity and for
example, α is set to be 0.995 (i.e., β = 0.005) in the ensuing
simulations.

Remark 1: Fault detection is a fundamental, specialized
and relatively independent part for fault tolerance, for which
many methods have been proposed. These methods can be
classified into two categories: model-based methods and data-
based methods (Yüksel and Sezgin, 2010). Model-based methods
obtain the deviations signals between the model and the real
system named as residuals to detect faults. Data-based methods
are based on only processing input and output signals of the
system to detect faults. In this paper, for focusing on the superior
performance of the fault-tolerant scheme in faulty situation, it

can be simply assumed that the fault detection/diagnosis system
can always detect and diagnose an unexpected joint fault and
immediately give the feedback to the fault-tolerant system. Once
the fault-tolerant system receives such a feedback, it activates
the reconfiguration mechanism and removes the corresponding
joint-acceleration variables in the scheme.

Remark 2: Note that the model disturbance and
computational round-off errors always exist in practical
application. In order to improve the accuracy of the scheme,
the feedback control needs to be incorporated into the forward
kinematics equation. One effective approach is to add feedbacks
of Cartesian position and velocity error, i.e., instead of using
J(θ)θ̈ = r̈a, Equation (7) can be replaced with

J(θ)θ̈ = r̈a + Kv(ṙd − J(θ)θ̇)+ Kp(rd − f (θ)),

where Kp and Kv are positive-definite symmetric m × m
gain matrices for position-error and velocity-error feedbacks,
respectively. In the ensuing simulations and experiments, the
diagonal elements of the gainmatricesKp andKv are set as 10 and
the off-diagonal elements are set as 0 for simplicity and clarity.

With the aid of conversion techniques given in Cheng et al.
(1994), Cheng et al. (1995), and Park et al. (1998), the new bound
constraint can thus be written as η− 6 θ̈ 6 η+, where the ith
elements of η− and η+ are defined respectively as

η−i = max{γp(θ
−
i + ϑi − θi), γv(θ̇

−
i − θ̇i), θ̈

−
i },

η+i = min{γp(θ
+
i − ϑi − θi), γv(θ̇

+
i − θ̇i), θ̈

+
i },

where ϑ > 0 is a small constant vector used to scale the safety
region. Besides, coefficients γp > 0 and γv > 0 determine the
deceleration magnitude.

Based on the above analysis, the proposed scheme for
physically-constrained redundant robot manipulators can be
reformulated into the following standard QP in terms of θ̈ :

minimize α(θ̈TWθ̈/2+ pTθ̈)+ βτTτ/2 (13)

subject to Aθ̈ = b, (14)

η− 6 θ̈ 6 η+, (15)

where W = I ∈ Rnr×nr , A = J(θ) ∈ Rm×nr , b = r̈a + Kv(ṙd −

J(θ)θ̇) + Kp(rd − f (θ)) ∈ Rm, τ = Hθ̈ + cτ (θ̇ , θ) + gτ (θ), and
p = (µ + ν)θ̇ + µν(θ − θ(0)) ∈ Rnr with µ > 0 and ν > 0. In
addition, θ̈ and η± are defined the same as before.

Neural networks have been recognized as a powerful tool for
real-time processing and successfully applied widely in various
control systems (Wang et al., 2015, 2016). In particular, we use
the following discrete-time recurrent neural network for solving
online theQP problem (Xiao and Zhang, 2013; Zhang and Zhang,
2013).

uk+1 = uk −
‖e(uk)‖22

‖(MT + I)e(uk)‖22
(MT + I)e(uk), (16)

where ‖ · ‖2 denotes the two-norm of a matrix; the decision
variable vector u and its upper and lower bounds u± ∈ RN (with

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 5090

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Jin et al. DLSMS Aided with DTRNN

N = nr +m) are defined respectively as

u =

[

θ̈

y

]

, u+ =

[

η+

̟1v

]

, u− =

[

η−

−̟1v

]

,

with y ∈ Rm being the auxiliary decision vector (i.e., dual
decision vector) defined corresponding to equality constraint
(Equation 14), 1v = [1, · · · , 1]T denoting an appropriately
dimensioned vector composed of ones, constant ̟ = 1010 ∈ R
being defined to replace +∞ numerically, and the augmented
matrixM and vector z being defined respectively as

M =

[

αW + βH −AT

A 0

]

∈ RN×N , z =

[

p+ cτ
−b

]

∈ RN .

Besides, P�(·) :R
N → � is a piecewise-linear projection operator

defined from space RN onto set �, and the ith element of P�(u)
is defined as

[P�(u)]i =











u−i , if ui 6 u−i ,

ui, if u−i < ui < u+i ,

u+i , if ui > u+i ,

∀i ∈ {1, 2, · · · ,N}.

3. SIMULATIVE RESULTS

In this paper, a six-link planar manipulator with motor-driven
push-rod type joints is presented as a simulative platform to
illustrate the effectiveness of the scheme. The hardware system of
the six-link planar manipulator, which has six joints, is presented
in Zhang and Zhang (2013). The physical parameters of the
six-link planar manipulator are shown in Table 1, of which θ+i
and θ−i denote respectively the upper and lower limits of the
ith joint-angle vector and li denotes the length of the ith link,
i = 1, 2, · · · , 6. Besides, in the simulations and the ensuing
experiment, the final error tolerance of ‖e(uk)‖ is set as 10−5 for
the discrete-time QP solver Equation (16) with the sampling gap
being 0.01 s. The end-effector of the six-link planar redundant
robot manipulator is expected to track a square-path with side-
length being 0.039 m. In addition, the duration of the path-
tracking task is 20 s, ϑ = 0.1 rad, joint-velocity limits θ̇± =

±1.5 × 1v rad/s, joint-acceleration limits θ̈± = ±2 × 1v rad/s
2

and µ = ν = 4.
For comparison and for illustrating the efficacy of

the different-level simultaneous minimization scheme
(Equations 6–12) in the faulty situation, the simulation results

TABLE 1 | Physical limits of the six-link robot manipulator.

i θ
−

i
(rad) θ

+

i
(rad) li (m) ai (m) bi (m)

1 −1.536 1.431 0.301 – –

2 0.052 0.816 0.290 0.250 0.080

3 0.035 0.621 0.230 0.250 0.080

4 0.052 0.599 0.225 0.190 0.080

5 0.035 0.599 0.214 0.185 0.080

6 0.009 0.445 0.103 0.174 0.080

synthesized by scheme (Equations 6–12) with the first joint being
faulty from on t = 15 s are shown in Figure 1. As observed from
Figure 1A, the end-effector motion trajectory is close enough to
the desired square path (i.e., with the robot dynamics taken into
account, the tracking task is also completed), which substantiates
the effectiveness of the different-level simultaneousminimization
scheme (Equations 6–12) in the faulty situation. In addition, the
tracking position error with the maximal position error being less
than 4 × 10−6 m shown in Figure 1B further shows the efficacy
and accuracy of such a different-level simultaneous minimization
scheme. Besides, in Figure 1C, for the first joint torque (i.e.,
τ1 denoted by the blue lines), the solid lines and dashed lines
respectively denote the joint-torque profiles corresponding to
the no-fault situation and fault-tolerant situation with the first
joint being faulty from on t = 15 s. As observed from Figure 1C,
after t = 15 s, the value of the first joint torque becomes zero.
With the first joint being faulty from on t = 15 s, the values of
the joint velocities and joint accelerations are zero, which implies
the efficacy of the different-level simultaneous minimization
scheme (Equations 6–12) in the faulty situation. In summary, the
above simulation results substantiate the efficacy and accuracy
of the the different-level simultaneous minimization scheme
(Equations 6–12), which takes both the robot kinematics and
robot dynamics into account.

Remark 3: Note that, for a fault-tolerant task, it can be
classified into the following two cases. (i) The equality constraint
is always satisfied; e.g., once some joints are simultaneously
faulty, the remainder joints can take over the workload and
move the end-effector to its goal via a fault-tolerant scheme. (ii)
The equality constraint can not be always satisfied; e.g., with
some joints being faulty, the equality constraint does not hold
at some time instants, and thus the path-tracking task can not
be fulfilled in this situation. Theoretically speaking, the equality
constraint should be satisfied all the time. However, strictly
speaking, the equality constraint can not be satisfied exactly even
for the first case. Specifically, the tracking position-error profiles
synthesized by the different-level simultaneous minimization
scheme (Equations 6–12) are numerically near zero but nonzero
(i.e., 10−6). That is because the simulation and computation are
performed on a finite-arithmetic finite-memory digital computer.
Then, the tracking position error may be inevitable between the
desired path and actual trajectory, which is used to be the input
of the feedback to track the task in a more accurate manner.
To show clearly the second case (i.e., the equality constraint is
not always satisfied), the corresponding motion trajectories and
tracking errors with the first five joints being locked from on
t = 15 s are visualized in Figure 2. Specifically, as seen from
Figure 2, with the first five joints being faulty from on t =

15 s, the values of the corresponding joint velocities and joint
accelerations are zero and the corresponding joint angles remain
the same as θ(t = 15). To distinguish those two types of position
error (i.e., the usual computational error, and the failure error
due to the lack of feasible solution) as well as to keep the robotic
system more reliable, a criterion can be added to the scheme. For
example, the emergency brake of the system can be activated for
the position error larger than 0.01 m with an increasing trend.
As shown in Figure 2D, with the red dotted line denoting the
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FIGURE 1 | Simulation results of the six-link planar redundant robot manipulator with its end-effector tracking the given square path synthesized by different-level

simultaneous minimization scheme (Equations 6–12) and with the first joint being faulty from on t = 15 s. (A) Desired square-path and actual end-effector trajectory.

(B) Corresponding tracking position-error profiles. (C) Joint-torque profiles. (D) Joint-angle profiles. (E) Joint-velocity profiles. (F) Joint-acceleration profiles.

criterion, the robotic system can be stopped at time instant t ≈ 16
s to prevent the potential damage(s) to nearby people and/or
robot arms.

It is worth pointing out that, although the investigations
are based on the joint-lock situation, the efficacy of the
proposed different-level simultaneous minimization scheme
(Equations 6–12) as well as the resultant QP is not limited
to the joint-lock situation. The joint-lock situation is just a
representative of lots of joint faulty situations, such as the failure
of one joint actuator. In addition, being the representative,
the joint-lock situation extensively exists in types of joints
(e.g., rotational joints and translational joints). For example,

the joints may be locked with a greater probability when the
robot works with the sludge. Thus, the proposed different-level
simultaneousminimization scheme (Equations 6–12) is generally
applicable, and the feasibility and efficacy of such a proposed
scheme are not limited by the specific robot structure and failure
mode.

4. CONCLUSIONS

In this paper, by incorporating the physical constraints in
joint space, a different-level simultaneous minimization scheme,
which takes both the robot kinematics and robot dynamics
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FIGURE 2 | Simulation results of the six-link planar redundant robot manipulator with its end-effector tracking the given square path synthesized by different-level

simultaneous minimization scheme (Equations 6–12) with the first five joints being faulty from on t = 15 s. (A) Joint-angle profiles. (B) Joint-velocity profiles.

(C) Joint-acceleration profiles. (D) Corresponding tracking position-error profiles.

into account, has been presented and investigated for fault-
tolerant motion planning of redundant manipulator in this
paper. Then, the scheme has been reformulated as a quadratic
program (QP) with equality and bound constraints, which
has been solved by a discrete-time recurrent neural network.
Simulative verifications based on a six-link planar redundant
robot manipulator have substantiated the efficacy and accuracy
of the presented acceleration fault-tolerant scheme, the resultant
QP and the corresponding discrete-time recurrent neural
network.
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A dual-robot system is a robotic device composed of two robot arms. To eliminate the
joint-angle drift and prevent the occurrence of high joint velocity, a velocity-level bi-criteria
optimization scheme, which includes two criteria (i.e., the minimum velocity norm and
the repetitive motion), is proposed and investigated for coordinated path tracking of dual
robot manipulators. Specifically, to realize the coordinated path tracking of dual robot
manipulators, two subschemes are first presented for the left and right robotmanipulators.
After that, such two subschemes are reformulated as two general quadratic programs
(QPs), which can be formulated as one unified QP. A recurrent neural network (RNN) is
thus presented to solve effectively the unified QP problem. At last, computer simulation
results based on a dual three-link planar manipulator further validate the feasibility and
the efficacy of the velocity-level optimization scheme for coordinated path tracking using
the recurrent neural network.

Keywords: dual robot manipulators, bi-criteria optimization scheme, recurrent neural network, quadratic program,
repetitive motion

1. INTRODUCTION

Robot manipulators were widely investigated and applied to many fields (Jin et al., 2017; Zhang
and Zhang, 2012; Xiao and Zhang, 2013, 2014a; Jin and Zhang, 2015; Zhang et al., 2015; Yamada
et al., 2016), such as human–robot interaction, path tracking, industrial manufacturing, military,
repetitive motion, and so on. Many researches have been focused on this topic, and various kinds
of robot manipulators have been developed and investigated (Li et al., 2012, 2014, 2017; Xiao
and Zhang, 2013; Jin and Zhang, 2015; Zhang et al., 2015). As far as we know, there are some
manipulation tasks (including large, heavy, awkwardly sized payloads) that cannot be fulfilled
by only a single robot manipulator. In contrast, dual robot manipulators can not only complete
some common tasks but also can finish some complex and dangerous things that the single robot
manipulator is usually hard to finish (Zhang and Li, 2017; Li et al., 2012, 2014; Jin and Zhang, 2015).
In addition, dual robot manipulators have been successfully applied to various applications (Jin and
Li, 2016; Zhang et al., 2013, 2015; Xiao and Zhang, 2014b; Jin and Zhang, 2015; Jin et al., 2016a), e.g.,
load transport, cooperative assembly, dextrous grasping, coordinate welding. Therefore, using dual
robot manipulators to collectively conduct complicated tasks is becoming increasingly popular.
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It is well known that inverse kinematics of robot manipulators
(including dual manipulators) is a much more difficult problem
than forward kinematics, but it is a fundamental issue in the field
of robotics (also including dual robot manipulators). Generally
speaking, there are two types of good methods for addressing the
inverse kinematic problem. One is based on the pseudoinverse
method that includes a homogeneous solution and a specific
minimum-norm solution (Klein andKee, 1989; Klein andAhmed,
1995). However, the traditional pseudoinverse method needs to
compute the inverse/pseudoinverse of matrices, which usually
costs a lot of time. In addition, this method would lead to the
joint angle drift when the end-effector completes a repetitive
motion (Klein and Ahmed, 1995). The second method is based
on optimization techniques, which treat performance criteria as
objective functions (Jin and Li, 2016; Zhang et al., 2004; Guo and
Zhang, 2012; Xiao and Zhang, 2013, 2014a, 2016). Among the
existing schemes, single performance criterion is widely used to
control themotion ofmanipulators at different joint levels, such as
repetitive motion (Xiao and Zhang, 2013, 2014a), manipulability
(Jin and Li, 2016), obstacle avoidance (Xiao and Zhang, 2016),
minimum velocity norm (Guo and Zhang, 2012), and minimum
torque norm (Zhang et al., 2004).

It is worth pointing out that single criterion optimization
schemes cannot satisfy multiple requirements in practical appli-
cations, so dual-criteria optimization schemes are needed (Hou
et al., 2010). Besides, considering the importance of the repetitive
motion control for dual robot manipulators, it also requires an
effective criterion for solving the joint-angle drift problem of dual
robot manipulators in practical applications (Xiao and Zhang,
2013, 2014a; Zhang et al., 2013). To satisfy the above requirements,
in this article, a novel bi-criteria optimization scheme is presented
and investigated for coordinated path tracking of dual robot
manipulators at the joint velocity level, of which the bi-criteria
consist of the minimum velocity motion (MVN) and the repeti-
tive motion (RM). Note that the proposed optimization scheme
consists of two subschemes (corresponding to the left and right
manipulators). Besides, such two subschemes can be rewritten as
two general quadratic programs (QPs), which is further integrated
into one QP formulation.

There are a lot of methods to solve the above QP problems,
such as numerical algorithms, recurrent neural networks (RNN),
and so on. Although the numerical algorithms can iterate good
solutions, they are not suitable for real-time implementations due
to their series characteristic and computational complexity. As
an efficient computation tool, the neural network approach has
several potential advantages in real-time applications (Li et al.,
2013a,b; Li and Li, 2014; Xiao and Zhang, 2014c; Xiao, 2015,
2016a,b; Xiao and Lu, 2015; Jin et al., 2016b, 2017; Xiao and
Liao, 2016), such as parallel processing, hardware implementation
ability, and distributed storage. For example, a gradient-based
neural network (GNN) has been widely used to solve various
challenging mathematical problems (Zhang et al., 2009; Xiao and
Zhang, 2011; Yi et al., 2011; Li et al., 2013c; Xiao, 2016c). Con-
sidering the advantages of this method, GNN is developed and
applied for solving the proposed bi-criteria optimization scheme
and the unified QP problem. Finally, on the basis of a dual
three-link planar manipulator, we conduct circular path tracking

simulations using such a GNNmodel and the proposed bi-criteria
optimization scheme. The computer simulation results further
verify the feasibility and effectiveness of the proposed scheme for
coordinated path tracking of dual robot manipulators using the
recurrent neural network.

2. PRELIMINARIES

The forward kinematic equations of the robot manipulators at the
position level and the velocity level can be expressed, respectively,
as follows (Jin et al., 2017; Zhang and Zhang, 2012; Xiao and
Zhang, 2013, 2014a; Jin and Zhang, 2015; Zhang et al., 2015):

r(t) = f(θ(t)), (1)

ṙ(t) = J(θ)θ̇(t), (2)

where θ(t)∈Rn and θ̇(t) ∈ Rn denote the joint position vector
and the joint velocity vector, respectively; r(t)∈Rm and ṙ(t) ∈ Rm

denote the end-effector position vector and the end-effector veloc-
ity vector, respectively; Jacobian matrix J(θ) = ∂f(θ(t))/∂θ ∈
Rm×n; and f (·) denotes a smooth non-linear function.

For example, for a three-link planar robot manipulator, we
can readily get the forward-kinematic equation (the independent
variable t is omitted for presentation convenience):

r =
[
rX
rY

]
=
[
l1c1 + l2c2 + l3c3
l1s1 + l2s2 + l3s3

]
= f(θ),

where θ = [θ1, θ2, θ3]T ∈R3, r∈R2, l1 denotes the length of the
first link, l2 denotes the length of the second link, and l3 denotes
the length of the third link. In addition, the variables depicted in
the above are defined as

c1 = cos(θ1), s1 = sin(θ1),

c2 = cos(θ1 + θ2), s2 = sin(θ1 + θ2),

c3 = cos(θ1 + θ2 + θ3), s3 = sin(θ1 + θ2 + θ3).

The Jacobian matrix of f (·) can be solved in this situation by
differentiating (1):

J =
[
−l1s1 − l2s2 − l3s3 −l2s2 − l3s3 −l3s3
l1c1 + l2c2 + l3c3 l2c2 + l3c3 l3c3

]
. (3)

Note that, in this article, we are concerned with the dual robot
arms. Without loss of generality, one is called the left manipulator
and the other is called the right manipulator for convenience.
Therefore, the variables of the left and right robot manipulators of
dual arms are correspondingly marked by subscripts l and r. For
example, variables θl and θr denote the joint position vectors of
the left and right robot manipulators of dual arms, respectively. In
Section 5, we set l1 = l2 = l3 = 1m.

3. SCHEME FORMULATION

For simplicity, the bi-criteria scheme of one robot manipulator
is firstly proposed. To integrate the optimization criteria of the
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minimum velocity norm (MVN) and the repetitive motion (RM),
a bi-criteria optimization objective at the velocity level is designed
as

minimize ∥θ̇l/r∥22/2 + ∥θ̇l/r + ql/r∥22/2, (4)

where ql/r = ϵ(θl/r − θl/r(0)) with ϵ > 0. Besides, perfor-
mance index ∥θ̇l/r∥22 can achieve the minimum velocity motion
of robot manipulators, and performance index ∥θ̇l/r + ql/r∥22/2
can complete the repetitive motion task at the joint velocity level.

For the left robot manipulator, considering the forward kine-
matics equation and the above bi-criteria optimization objective,
the bi-criteria optimization scheme can be formulated as below:

minimize ∥θ̇l∥22/2 + ∥θ̇l + ql∥22/2, (5)

subject to Jl(θ)θ̇l = ṙl, (6)

where θ̇l, ql, J l(θ), and ṙl are defined the same as before, but
belong to the variables of the left robot manipulator. Equation (5)
uses the bi-criteria optimization objective (equation (4)); and
equation (6) is the forward kinematics equation (2) of the left
robot manipulator of dual arms.

For the right robot manipulator, the bi-criteria optimization
scheme can be formulated as below in the same way:

minimize ∥θ̇r∥22/2 + ∥θ̇r + qr∥22/2, (7)

subject to Jr(θ)θ̇r = ṙr, (8)

where θ̇r, qr, Jr(θ), and ṙr are defined the same as before, but belong
to the variables of the right robot manipulator.

4. QP REFORMULATION AND
UNIFICATION

In this section, to obtain two standard QP formulations, the pro-
posed subschemes are rewritten as two QPs, which can be unified
into one QP problem.

(1) Conversion of MVN criterion: according to definition of two
norms, minimizing ∥θ̇l∥22/2 in the first term of equation (5)
for the left robot manipulator is equivalent to

minimize θ̇Tl Iθ̇l
2

, (9)

where I ∈Rn×n denotes an identity matrix.
Similarly, MVN criterion ∥θ̇r∥22/2 in the first term of
equation (7) for the right robot manipulator is equivalent to

minimize θ̇Tr Iθ̇r
2

. (10)

(2) Conversion of RM criterion: the RM criterion ∥θ̇l + ql∥22/2
in the second term of equation (5) for the left robot manipu-
lator is rewritten equivalently as

minimize (θ̇l + ql)T(θ̇l + ql)
2

, (11)

which is further equivalent to the following form:

minimize θ̇Tl Iθ̇l + 2qTl θ̇l + qTl ql
2

, (12)

where qTl ql can be deemed as a constant with respect to
optimization variable θ̇ and can be ignored during minimiza-
tion. Thus, the RM criterion ∥θ̇l + ql∥22/2 of the left robot
manipulator is finally equivalent to the following form:

minimize θ̇Tl Iθ̇l + 2qTl θ̇l
2

. (13)

Similarly, the RM criterion ∥θ̇r + qr∥22/2 of the right robot
manipulator can be equivalent to the following form:

minimize θ̇Tr Iθ̇r + 2qTr θ̇r
2

. (14)

A B

FIGURE 1 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Motion trajectories of dual manipulator and (B) desired circular path and actual trajectory.
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Thus, through the above conversion, the bi-criteria optimiza-
tion subscheme for the left robot manipulator can be formulated
as the following standard QP:

minimize xTl Qlxl/2 + qTl xl, (15)
subject to Alxl = bl, (16)

where xl = θ̇l ∈ Rn, Q1 = 2I ∈Rn×n, ql = ϵ(θl − θl(0)) ∈ Rn,
Al = J l(θ)∈Rm×n, and bl = ṙl.

Similarly, the bi-criteria optimization subscheme of the right
robot manipulator is presented as

minimize xTr Qrxr/2 + qTr xr, (17)
subject to Arxr = br, (18)

where xr = θ̇r ∈ Rn, Qr = 2I ∈Rn×n, qr = ϵ(θr − θr(0)) ∈ Rn,
Ar = Jr(θ)∈Rm×n, and br = ṙr.

Finally, the presented two QPs for the left and right robot
manipulators of two arms are unified into a new QP formulation,
i.e.,

minimize zTWz/2 + ωTz, (19)
subject to Cz = d, (20)

where coefficient matrices (or vectors) are defined as below:

z =
[
xl
xr

]
∈ R2n, W =

[
Ql 0
0 Qr

]
∈ R2n×2n,

ω =
[
ql
qr

]
∈ R2n, C =

[
Jl(θ) 0
0 Jr(θ)

]
∈ R2m×2n,

d =
[
bl
br

]
=
[
ṙl
ṙr

]
∈ R2m.

5. RECURRENT NEURAL NETWORK
SOLVER

Note that there are many methods to solve such a standard
QP problem. The most common approach is to use a Lagrange
multiplier and to minimize a cost function (Li et al., 2013c; Xiao,

A B

C D

FIGURE 2 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Joint angle θl profile of left manipulator, (B) joint angle θr profile of right manipulator, (C) joint velocity θ̇l profile of left
manipulator, and (D) joint velocity θ̇r profile of right manipulator.
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2016a). Thus, for dynamic quadratic optimization (equations (19)
and (20)), its related Lagrangian is presented as follows:

H(z, λ) = zTWz/2 + ωTz + λT(Cz − d),

where λ ∈R2m denotes the multiplier variable.
It is well known that solving the quadratic optimization (equa-

tions (19) and (20)) could be achieved by zeroing the following
equations: {∂H(z,λ)

∂x = Wz + ω + CTλ = 0,
∂H(z,λ)
∂λ(t) = Cz − d = 0.

Let

G =
[
W CT

C 0

]
∈ R(2n+2m)×(2n+2m), y =

[
z
λ

]
∈ R2n+2m,

u =
[
−ω
d

]
∈ R2n+2m.

The above linear equations can be further equivalent to the
following:

Gy = u. (21)

Note that there were a lot of methods to solve the above linear
equation system (equation (21)). In this part, a gradient-based
neural network (GNN) is presented and investigated for solv-
ing the proposed bi-criteria optimization scheme and the finally
equivalent equation (21). By following the literature (Zhang et al.,
2009; Xiao and Zhang, 2011; Yi et al., 2011; Li et al., 2013c; Xiao,
2016c), the design procedure of GNN is listed as below.

First, an non-negative scalar-based energy function Ω is
defined as follows:

Ω = ∥Gy − u∥22/2. (22)

Second, the negative gradient ofΩ can be solved as−∂Ω/∂y =
GT(Gy − u).

A B

C D

FIGURE 3 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Position error εl profile of left manipulator, (B) position error εr profile of right manipulator, (C) velocity error ε̇l profile of
left manipulator, and (D) velocity error ε̇r profile of right manipulator.
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Finally, according to gradient neural network design formula
ẏ = −γ∂Ω/∂y, the GNN model for dynamic inverse kinematics
problem can be described as follows:

ẏ = −γGT (Gy − u) , (23)

where y∈R2n+2m denotes the neural state of GNN model (equa-
tion (23)).

6. SIMULATIVE VERIFICATIONS

In this part, the unified bi-criteria optimization scheme (equations
(19) and (20)) is applied to a dual three-link planar manipulator
and solved by the presented GNN model (equation (23)). In
computer simulations, the end-effectors of the dual manipulators
are expected to simultaneously track a circle. Without loss of
generality, design parameters ϵ= 10 and γ = 107; the task exe-
cution time is 8 s, and the radius of the desired circle is 0.25m.
Besides, the joints of the left and right manipulators are expected
to begin with the initial states θl(0)= [3π/4, −2π/5, −π/4]T rad
and θr(0)= [π/3, 2π/5, π/4]T rad, respectively. The computer
simulations are illustrated in Figures 1–3, which is solved by
the proposed bi-criteria optimization scheme and the presented
recurrent neural network.

Specifically, Figure 1 shows the whole motion trajectories of
the dual three-link planar manipulators when the end-effectors
track the given circular path. As seen from Figure 1A, the circular
path-tracking task is performed successfully by the dual three-link
planar manipulators. In addition, from Figure 1B, we can see that
the final state and the initial state of the dual three-link planar
manipulators coincide with each other.

Figure 2 shows the joint-variable (including joint angle and
joint velocity) profiles during the task execution of the dual
three-link planar manipulators. From this figure, we can conclude
that the proposed bi-criteria optimization scheme [synthesized
by GNN model (equation (23))] can not only solve the joint-
angle drift problem but also prevent the occurrence of high joint
velocity in this path-tracking task. Specifically, after the end-
effectors completing the circular-path tracking task, the final joint
states of the left and right manipulators return to their initial
states, which can be seen in Figures 2A,B. In addition, from
Figures 2C,D, we can observe that the situation of the high joint
velocity does not happen, and the final velocity of each joint
for the dual three-link manipulators is equal to zero. It is worth
pointing out that, if the final joint velocities is not equal to zero, the
manipulator’ joints will not stop immediately at the end of the task
duration; and thus, the non-repetitive problem would happen.
These results demonstrate and verify the effectiveness of such
a bi-criteria optimization scheme synthesized by GNN model
(equation (23)).

For further verifying the accuracy of the proposed bi-criteria
optimization scheme and GNN model (equation (23)), Figure 3
shows the corresponding position error ε(t):= r(t)− f (θ(t)) and
the velocity error ε̇(t) of the left robot manipulator and the
right robot manipulator, where εX and εY denote, respectively,

the X-axis and Y-axis components of ε(t). As observed from
Figures 3A,B, the corresponding X-axis and Y-axis components
of position errors for the left robot manipulator and the right
robot manipulator are less than 2× 10−5 m. Besides, from
Figures 3C,D, we can obtain that the X-axis and Y-axis com-
ponents of velocity errors for the left robot manipulator and
the right robot manipulator are less than 6× 10−6 m. These
demonstrate that the given circular path tracking task is ful-
filled well via the proposed velocity-level bi-criteria optimization
scheme.

In summary, the end-effector tasks are performed very well
by synthesizing the proposed velocity-level bi-criteria optimiza-
tion scheme. The detailed results verifies the effectiveness and
applicability of the proposed bi-criteria optimization scheme for
coordinated path tracking of dual redundant robot manipulators
using the recurrent neural network.

7. CONCLUSION

In this article, a novel velocity-level bi-criteria optimization
scheme (i.e., integrating minimum velocity norm and repeti-
tive motion) has been proposed and investigated for complex
motion planning of dual robot manipulators. Such a bi-criteria
optimization scheme can not only prevent the occurrence of
high joint-velocity but also remedy the joint angle drifts of dual
redundant robot manipulators well. In addition, the proposed
scheme guarantees the joint velocity equals zero at the end of path
tracking motion. To do so, two subschemes have been presented
for the left and right robot manipulators, which are reformulated
as two general quadratic programs (QPs). Then, such two general
QP problems have been further unified into one standard QP
formulation. Simulative results based on the dual three-link robot
manipulators have substantiated the efficacy and applicability
of the proposed velocity-level bi-criteria optimization scheme.
The future work may lie in the applications of the bi-criteria
optimization scheme to real robot manipulators.
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This paper exploits the dynamical modeling, behavior analysis, and synchronization of
a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters
linked in a ring configuration under direction-dependent coupling. The main purpose
is to investigate a robust adaptive control law for the synchronization of uncertain and
perturbed neurons, communicating in a medium of bidirectional coupling. The neurons
are assumed to be different and interconnected in a ring structure. The strength of the
gap junctions is taken to be different for each link in the network, owing to the inter-
neuronal coupling medium properties. Robust adaptive control mechanism based on
Lyapunov stability analysis is employed and theoretical criteria are derived to realize the
synchronization of the network of four FHN neurons in a ring form with unknown param-
eters under direction-dependent coupling and disturbances. The proposed scheme for
synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring
communication topology, having all parameters unknown, and subject to directional
coupling medium and perturbations, is addressed for the first time as per our knowledge.
To demonstrate the efficacy of the proposed strategy, simulation results are provided.

Keywords: FitzHugh–Nagumo neuron, neuronal networks, ring configuration, coupling strengths, robust adaptive
synchronization control

INTRODUCTION

The spurred efforts to get an insight of the complex and opaque interactions among the levels of
various neuronal networks is a major aspiration in neuroscience, because it would be an incredible
abet to explore the foundation of normal and pathological brain functioning (Buzsaki, 2006;
Alvarellos-Gonzalez et al., 2012; Aqil et al., 2012b). For example, one would be able to unveil how
a steering signal is generated for muscles from the brain or how neurons diminish during brain
disorders like Parkinson’s, Huntington’s, and epilepsy (Deak et al., 2007; Di Garbo et al., 2007;
Mejias and Torres, 2007; Limousin and Martinez-Torres, 2008; Jobst, 2010; and Ostrem and Starr,
2008). The brain’s mechanisms of operations have their own realism in interconnection and signal
transmission, which has enthused many researchers to investigate brain activity at multiple levels
(Naseer andHong, 2013; Hong andNguyen, 2014; Santosa et al., 2014; Hong andNaseer, 2016; Hong
and Santosa, 2016; Nguyen andHong, 2016; Zafar andHong, 2017), ranging from a single neuron to
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a network of neurons. Brain has a number of complex functions
and activities in relation to cognitive purposes (Santosa et al.,
2013; Hong et al., 2015, 2017; Naseer et al., 2016; Nguyen et al.,
2016). These brain activities can be somehow measured using
various modalities and sensors in order to identify the intension
of a subject (Turnip et al., 2011; Khan et al., 2014; Hong and Khan,
2017). Therefore, in-depth research has been done on modeling,
analysis, instrumentation, and control of external devices in the
area of brain-computer interfaces (Khan and Hong, 2015, 2017;
Kocaturk et al., 2015; Naseer andHong, 2015; Ghafoor et al., 2017;
Liu and Hong, 2017).

Neuronal networks have been a thought-provoking and imper-
ative subject owing to the various potential real-world processes,
estimation, control and robotic applications [see Ellacott et al.
(1997) and references therein]. In a neuronal network, a large
number of neurons are inter-connected in various fashions under
multifarious coupling phenomena. Recently, the studies on the
dynamical behavior of a single neuron, a collective behavior of
coupled neurons, and synchronization among the neurons have
been extensively investigated (Thompson et al., 1999; Hua and
Smith, 2004; Zhang et al., 2006;Wu andChen, 2008; Yu et al., 2013;
Wang et al., 2015). Synchronization of neurons plays a key role in
the transmission process of neuronal signals, and enables effective
communications in the brain or to the muscles (Knoblauch and
Palm, 2005; Wang et al., 2008a,b; Nguyen and Hong, 2011, 2013).
The FitzHugh–Nagumo (FHN) system, a simplified model of the
coupling effect of neurons, has been considered largely owing to
the fact that it mimics the dynamical behavior of neurons and
intricates neuronal networks under external electrical stimulation
(Thompson et al., 1999).

Neuroscience enriched by numerous reports in the context
of coupled FHN neurons has opened a new avenue of research
during the past few years. The simplest model to mimic the
dynamical properties of neuronal interactions (such as synchro-
nization) consists of two coupled neurons (Wang et al., 2009;
Zhen and Xu, 2010; Aqil et al., 2012a; Iqbal et al., 2015, 2017). A
control and synchronization methodology was designed to inves-
tigate the coupled reaction–diffusion FHN systems in Ambrosio
and Aziz-Alaoui (2012). Synchronization of two coupled neurons
was carried out by employing an adaptive backstepping sliding
mode control in Yu et al. (2012). A theoretical criterion was
presented for the synchronization of uncertain chaotic coupled
systems for a neural network via the sliding mode technique by
Chen et al. (2009). Synchronization of two identical coupled FHN
systems with known or unknown parameters has been studied
via a nonlinear adaptive control based on the fuzzy logic scheme,
neural networks, the uncertainty estimator, and the feedback lin-
earization control (Wang et al., 2007, 2008a,b; Zhang et al., 2007;
Che et al., 2009), respectively. Later, a robust adaptive control
for synchronization of two coupled FHN neurons of unknown
parameters has been developed.Moreover, some important results
for the synchronization of three-coupled FHN neurons having
slightly different unknown parameters and disturbances with
respect to multiple communication pathways have been explored
(Rehan and Hong, 2011; Rehan et al., 2011). For more related
investigations, synchronization of two coupled FHNneurons with

unknown and different parameters under direction-dependent
coupling has been discussed in Iqbal et al. (2014).

To a certain extent, efforts have been dedicated to the study of
the dynamics of the neuronal networks coupled in a ring fashion,
specifically by exploiting the impact of time delays (Campbell
et al., 2005; Xu, 2008; Song and Xu, 2012; Zhang, 2014; Wang
et al., 2015; Mao and Wang, 2016; Yuan et al., 2016; Mao, 2017).
A recent work by Zhou et al. (2009) extended the synchronization
problem to a network of coupled FHN neurons and explored the
impact of the gap junctions on the network. It was investigated
that the influence of the gap junctions on the dynamical behavior
of neurobiological networks is stronger than the coupled systems.
In addition, interestingly, a network of the FHN neurons exhibits
a more fascinating dynamically complicated behavior than two or
three coupled FHN neurons.

Some interesting works on synchronization of neurons have
been accomplished in the recent years by employing various com-
plexities. For instance, the work of Lai et al. (2008) employed
an adaptive control approach, which provided synchronization of
FHN neurons under a sinusoidal electrical field. The approach,
however, may not ensure asymptotic convergence of the syn-
chronization error and additional parameters are required for
achieving the adaptation. To attain the robust synchronization
of FHN neurons, Wei et al. (2009) introduced an internal model
control strategy for output synchronization between the neu-
rons using a semi-global Lyapunov approach. For dealing with
perturbations, sliding surface-based control schemes were devel-
oped by Che et al. (2011) and Yu et al. (2012) in the pres-
ence of resistive coupling between the neurons. A step further,
model complexity along with the behavioral analyses and con-
trol approach for phase synchronization between neurons were
studied in the recent study by Ma et al. (2017). Despite of these
studies, several open problems and challenges include synchro-
nization in multiple coupled neurons and coupling model com-
plexities.

In the earlier works, the research was limited to the simple
scenarios of two or three coupled FHN neuronal models, since
such simple scenarios were easily addressable. But, the operational
mechanisms in the brain cannot be described with simple systems
owing to the complex interactions (coupling) existing among the
large number of neurons. Consequently, in order to explore the
dynamical behavior of real complex systems, it is indispensable
and challenging to work on larger coupled networks instead of
a simple model of coupled systems (or reduced networks). In
addition, the coupling models between the neurons should also
be addressed as much as possibly closer to the actual complex
medium strengths. Moreover, controlling of behaviors of neurons
can be accomplished via adaptive control approaches in order
to develop intelligent methods of adaptation according to the
dynamical circumstances (Oyama et al., 2016; Stewart et al., 2016;
Aoi et al., 2017). In conclusion, considering a neuronal network
with unknown parameters in which a large number of neurons
are communicating under complex couplings, namely, direction-
dependent coupling, can lead to enhance the theoretical and
numerical analysis of neuronal systems’ complexity, which is a
pretty challenging research task.
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Motivated by the aforementioned rationale, the aim of this
paper is to investigate the dynamical behavior and synchroniza-
tion of a network of different FHNneuronswith unknown param-
eters, linked in a ring configuration, under direction-dependent
coupling mediums. The direction-dependent coupling has been
employed due to direction-dependent behavior of the gap junc-
tions. The gap junctions between neurons can either allow current
in one or in both (but with different strengths) directions, giv-
ing rise to the so-called direction-dependent coupling between
neurons, see Iqbal et al. (2014). A model of four different FHN
neurons, coupled in a ring topology, under external disturbances
is presented. The different strength of the gap junctions for
each link in the network owing to the inter-neuronal coupling
medium properties is considered. A robust adaptive control is
designed to address the intricate problem of the synchronization
in a network of neurons. Based on Lyapunov stability theory,
conditions are derived analytically for the synchronization in a
network of four different FHN neurons with unknown parame-
ters in a ring configuration under direction-dependent coupling
and disturbances. The developed robust adaptive control algo-
rithm encounters the problem of dealing with different recovery
variables. Unlike the synchronization approach, partial synchro-
nization of neurons by Iqbal et al. (2014), the proposed scheme
ensures the complete synchronization of neurons. To the best
of our knowledge, the robust adaptive control mechanism for
synchronization of different neurons with unknown parameters
in the ring configuration under direction-dependent coupling
and disturbances is addressed for the first time. Essentially, the
outcome of this study can edify new ideas for understanding
of the neuronal networks in context of multifaceted coupling
phenomena. Compared with the existing works on synchroniza-
tion of two or three neurons, our study considers a complex
scenario for synchronizing four neurons in a ring configuration
under direction-dependent coupling, parametric uncertainties,
and perturbations. This study shows the possibility of a robust
and adaptive control strategy for attaining the coherent behavior
among neurons forming a complicated network under an external
electrical stimulation. To end with, extensive numerical simula-
tion results are drawn to elucidate the efficacy of the proposed
method.

There are several differences in this study compared to the
existing works. For instance, this study considers a ring configu-
ration of multiple neurons rather than an interconnection of two
neurons as in Wang et al. (2007), Zhang et al. (2007), Wang et al.
(2008a,b), Che et al. (2009), Rehan and Hong (2011), Lai et al.
(2008),Wei et al. (2009), Che et al. (2011), Yu et al. (2012), andMa
et al. (2017). In addition, the current flow between two neurons
is considered as direction-dependent, compared to these models,
for regarding bidirectional coupling formed by the gap junctions.
Moreover, the models of neurons in our study have different
parameters to examine synchronization of dissimilar neurons.
Compared to synchronization study in Rehan et al. (2011) for
three FHN neurons, we develop a control approach for robust
adaptive synchronization and all the parameters are considered to
be unknown and different. Moreover, we employ a more complex
scenario of four neurons, bidirectional coupling, and ring config-
uration. In comparison to the recent neuronal synchronization

study of Iqbal et al. (2015), there are three contributions in this
work. First, we consider multiple neurons for developing a syn-
chronization control approach owing to the presence of multiple
coupled neuronal interactions in the brain; second, synchroniza-
tion of both activation potentials and recovery variables has been
achieved in the proposed study; third, the idea of bidirectional
coupling between two neurons has been extended to a ring con-
figuration of neurons.

The rest of the manuscript are organized as follows: Section
“Results and Discussion” discusses the main results, contain-
ing the modeling of a network of different FHN neurons
with unknown parameters linked in a ring configuration under
direction-dependent coupling, the design of a robust adaptive
control mechanism, synchronization in the network without dis-
turbance, synchronization in the network with disturbance, and
numerical simulation results. Section “Methods” includes the
employed methods, namely, FHNmodel, Lyapunov stability anal-
ysis, and proof of the main results without and with disturbances.
Section “Conclusion”, finally, includes the study conclusions.

RESULTS AND DISCUSSION

Ring Configured FHN Neurons under
Direction-Dependent Coupling
The ring configuration of four neurons coupled in a bidirectional
medium is shown in Figure 1. Let N1 be the master neuron, and
N2, N3, and N4 be the slave neurons. We employ control signals
for the synchronization of the slave neurons with the master neu-
ron. The purpose of this study is to model the neuronal behavior
and to provide a synchronization control remedy for attaining the
coherent behavior of the neurons. The proposed network model
of ring configured four FHN neurons under direction-dependent
coupling [by accounting the results of Iqbal et al. (2014) and Yuan
et al. (2016)] is given by

ẋ1 = x1(x1 − 1)(1 − r1x1) − y1 − g1 [(x1 − x2) + (x1 − x4)]
+ Iext,1 + dext,1, (1)

ẏ1 = b1x1,
ẋ2 = x2(x2 − 1)(1 − r2x2) − y2 − g2 [(x2 − x1) + (x2 − x3)]

+ Iext,2 + dext,2, (2)
ẏ2 = b2x2,
ẋ3 = x3(x3 − 1)(1 − r3x3) − y3 − g3 [(x3 − x2) + (x3 − x4)]

+ Iext,3 + dext,3, (3)
ẏ3 = b3x3,
ẋ4 = x4(x4 − 1)(1 − r4x4) − y4 − g4 [(x4 − x3) + (x4 − x1)]

+ Iext,4 + dext,4, (4)
ẏ4 = b4x4,

where x1 and y1 are the model states of the master FHN neu-
ron, namely, the activation potential and the recovery variable,
respectively. The x2 and y2 represent the states of the first slave
neuron, x3 and y3 correspond to the second slave neuron states,
and x4 and y4 are the states for the fourth neuron. The parameters
(r1, r2, r3, r4) and (b1, b2, b3, b4) are related with the neurons’
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FIGURE 1 | Four neurons in a ring configuration: the neurons are interconnected through bidirectional couplings; control inputs are used for synchronization of the
slave neurons to the master neuron.

nonlinear parts and recovery variable dynamics, respectively. The
terms Iext,1, Iext,2, Iext,3, and Iext,4 represent the external stimulation
currents, where Iext,i = (A/ω) cos(ωt) for i = 1, 2, 3, 4, ω = 2πf.
Here, f denotes the frequency and A denotes the amplitude of
stimulation current. The gap junctions’ strengths for communi-
cation between neurons are represented by g1, g2, g3, and g4. Dis-
turbances at neurons are denoted by dext,1, dext,2, dext,3, and dext,4.

Various models of coupled neurons were considered in the
studies (Wang et al., 2007, 2008a,b; Zhang et al., 2007; Che
et al., 2009; Chen et al., 2009; Rehan and Hong, 2011; Rehan
et al., 2011; Ambrosio and Aziz-Alaoui, 2012; Aqil et al., 2012a;
Yu et al., 2012). However, these studies considered simple neu-
ronal models with direction-independent coupling. The work
of Iqbal et al. (2014) introduced the direction-dependent cou-
pling. However, the ring configuration of neurons and coupling
between several neurons were lacking. It should be noted that
the model parameters associated with the proposed network of
FHN neurons in Eqs (1)–(4) are totally uncertain and differ-
ent. In addition, the proposed systematic approach considering
direction-dependent coupling, different parameters, disturbances
to the network model, and ring topology, in contrast to the simple
models offered inWang et al. (2007, 2008a,b), Zhang et al. (2007),
Che et al. (2009), Chen et al. (2009), Rehan and Hong (2011),
Rehan et al. (2011), Ambrosio and Aziz-Alaoui (2012), Aqil et al.
(2012a), Yu et al. (2012), and Iqbal et al. (2014), which empowers
a more realistic and generalized model.

In order to explore the complex behavior of the network
model of the ring configured with different four FHN neu-
rons under direction-dependent coupling, we first set the model

parameters as r1 = 10, r2 = 10.2, r3 = 10.4, r4 = 10.6, b1 = 1,
b2 = 1.01, b3 = 1.02, b4 = 1.03, g1 = 0.001, g2 = 0.002, g3 = 0.003,
g4 = 0.004, and f = 0.127. The disturbances are accounted as
dext,1 = 0.1 sin 12t, dext,2 = 0.1 sin 20t, dext,3 = 0.1 sin 25t,
and dext,4 = 0.1 sin 23t. The stimulation amplitude is selected
as A= 0.01. Figure 2 depicts the results for the network of dif-
ferent FHN neurons under direction-dependent coupling. The
phase portraits of four FHN chaotic neurons are shown in
Figures 2A–D. These phase portraits show that the neurons have
oscillatory behaviors. Figures 3 and 4 exhibit the nonsynchronous
behavior of the network of four FHN neurons for activation
potentials and recovery variables (to be explained later). The
phase portrait in Figure 2A displays the chaotic behavior of first
neuron. The second neuron’s chaotic behavior can be observed in
Figure 2B. The chaotic behaviors for third and fourth neurons can
be deduced from Figures 2C,D, respectively. The Lyapunov expo-
nent has been computed for all the four neurons in Figures 2A–D
using the approach provided in Iqbal et al. (2014), which come out
to be 0.120, 0.058, 0.371, and 0.097. In conclusion, Figures 2–4
along with positive values of the Lyapunov exponent show that
all of neurons in the network possess the chaotic behavior, as
provided in Figures 2A–D, and are not synchronous, as indicated
in Figures 3 and 4.

Adaptive Control Mechanism and Error
Dynamics
This section provides compact equations for the error dynamics,
controller, and adaptation laws. This work offers an adaptive

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 6105

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Iqbal et al. Synchronization of Ring Configured Neurons

A B

C D

FIGURE 2 | Chaotic behavior of four FitzHugh–Nagumo neurons without control: (A) first neuron, (B) second neuron, (C) third neuron, and (D) fourth neuron.

control mechanism for the synchronization of ring configured
four FHN neurons under direction-dependent coupling. Thus,
model in Eqs (1)–(4) becomes

ẋ1 = x1(x1 − 1)(1 − r1x1) − y1 − g1 [(x1 − x2) + (x1 − x4)]
+ Iext,1 + dext,1, (5)

ẏ1 = b1x1,
ẋ2 = x2(x2 − 1)(1 − r2x2) − y2 − g2 [(x2 − x1) + (x2 − x3)]

+ Iext,2 + dext,2 + ux1, (6)
ẏ2 = b2x2 + uy1,
ẋ3 = x3(x3 − 1)(1 − r3x3) − y3 − g3 [(x3 − x2) + (x3 − x4)]

+ Iext,3 + dext,3 + ux2, (7)
ẏ3 = b3x3 + uy2,
ẋ4 = x4(x4 − 1)(1 − r4x4) − y4 − g4 [(x4 − x3) + (x4 − x1)]

+ Iext,4 + dext,4 + ux3, (8)
ẏ4 = b4x4 + uy3,

where ux1, ux2, and ux3 and uy1, uy2, and uy3 are the control inputs.
We address a complete synchronization problem for the network
model of ring configured FHNneurons in the context of their acti-
vation potentials and recovery variables, in contrast to the study
of Iqbal et al. (2014), which has demonstrated the synchronization
of two FHN neurons for their activation potentials only. To derive

the control laws, the synchronization errors can be written as

ex1 = x1 − x2, ex2 = x1 − x3, ex3 = x1 − x4, (9)
ey1 = y1 − y2, ey2 = y1 − y3, ey3 = y1 − y4. (10)

It is worth mentioning that all six synchronization errors in
Eqs (9) and (10) are introduced for attaining the complete syn-
chronization, compared to the existing method of Iqbal et al.
(2014). Figure 3A demonstrates the nonsynchronous behavior
of neurons in terms of activation potentials. The spikes in the
activation potential errors for the neurons can be observed in the
plots of Figure 3B. On the same basis, demonstration of non-
identical responses of the FHN neurons in the recovery variable
states is provided in Figure 4A. The spikes in individual behaviors
of synchronization errors in the recovery variables are provided
in Figure 4B. These spikes in synchronization errors of activa-
tion potentials and recovery variables depict that the firing in
neurons are not coherent at all. By employing Eqs (5)–(10), the
synchronization error dynamics after lengthy algebra take the
form

ėx1 = Φ1
TΓ1(x1, x2) + F1(x1, x2) − ex1 + dx1 − ux1,

ėy1 = Ψ1
TΥ1(x1, x2) − uy1,

(11)

ėx2 = Φ2
TΓ2(x1, x3) + F2(x1, x3) − ex2 + dx2 − ux2,

ėy2 = Ψ2
TΥ2(x1, x3) − uy2,

(12)
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A

B

FIGURE 3 | Activation potential errors in the absence of a control signal: (A) plots of activation potential errors, (B) spikes in activation potential errors ex1, ex2, and
ex3. It shows that all the activation potential errors have oscillating behaviors. Therefore, activation potentials of neurons are not synchronous.
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A

B

FIGURE 4 | Recovery variable errors in the absence of a control signal: (A) plots of recovery variable errors, (B) spikes in recovery variable errors ey1, ey2, and ey3. It
shows that all the recovery variable errors have oscillatory behaviors. It can be concluded that recovery variables of FitzHugh–Nagumo neurons are not coherent.
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ėx3 = Φ3
TΓ3(x1, x4) + F3(x1, x4) − ex3 + dx3 − ux3,

ėy3 = Ψ3
TΥ3(x1, x4) − uy3.

(13)

The whole derivation of the error dynamics and the relevant
matrices can be seen in the Section “Methods”. The proposed
controllers for the ring configured FHN neurons are selected as

ux1 = Φ̂T
1 Γ1(x1, x2) + F1(x1, x2) + K1ex1,

uy1 = Ψ̂
T
1 Υ1(x1, x2),

(14)

ux2 = Φ̂T
2 Γ2(x1, x3) + F2(x1, x3) + K2ex2,

uy2 = Ψ̂
T
2 Υ2(x1, x3),

(15)

ux3 = Φ̂T
3 Γ3(x1, x4) + F3(x1, x4) + K3ex3,

uy3 = Ψ̂
T
3 Υ3(x1, x4).

(16)

The selected adaptation laws are

˙̂Φ1 = p1ex1Γ1(x1, x2)1/q1,
˙̂Ψ1 = l1ey1Υ1(x1, x2)1/m1,

(17)

˙̂Φ2 = p2ex2Γ2(x1, x3)1/q2,
˙̂Ψ2 = l2ey2Υ2(x1, x3)1/m2,

(18)

˙̂Φ3 = p3ex3Γ3(x1, x4)1/q3,
˙̂Ψ3 = l3ey3Υ3(x1, x4)1/m3,

(19)

where the scalars sets (p1, p2, p3), (q1, q2, q3), (l1, l2, l3), and (m1,m2,
m3) enclose positive scalars. In the next subsection, adaptive and
robust adaptive synchronization control conditions are provided
in the network of ring configured neurons.

Adaptive Synchronization
Now, a theoretical condition is developed for the synchronization
of ring configured neurons under direction-dependent coupling
Eqs (5)–(8) by application of adaptive control mechanism in
Eqs (14)–(16) with adaptation law in Eqs (17)–(19). The following
assumption is taken to obtain the main results.

Assumption 1. The parameters in the network of four
FHN neurons in Eqs (5)–(8) and couplings, given by
(r1, r2, r3, r4, b1, b2, b3, b4, g1, g2, g3, g4), are unknown constants.

Theorem 1. Consider a network model of ring configured four
FHN neurons in Eqs (5)–(8) having synchronization error dynam-
ics Eqs (11)–(13) satisfying Assumption 1 with zero disturbances.
Adaptive control mechanism Eqs (14)–(16) and the adaptation law
given by Eqs (17)–(19) selected through p(K1+1) > 0, p(K2+1) >
0, and p(K3 + 1) > 0 will ensure synchronization of the network
model of ring configured neurons in terms of activation potentials
by guaranteeing the convergence of synchronization errors to zero.
In addition, if the steady-state is attained in a finite amount of
time, the convergence of Φ̂i to Φ̂∗

i and Ψ̂i to Ψ̂
∗
i for all i= 1, 2, 3,

are ensured for constant steady-state vector values Φ̂∗
i and Ψ̂

∗
i ,

validating (Φi − Φ̂∗
i )

T
Γi = 0 and (Ψi − Ψ̂

∗
i )

T
Υi = 0.

The proof of the main result of Theorem 1 can be viewed
in the next section. The result is important from the synchro-
nization of a network of neurons point of view. In contrast to
Iqbal et al. (2014), the proposed strategy in Theorem 1 can
be used for complete synchronization of a network of different
FHN neurons with unknown parameters. In addition, we con-
sidered multiple neurons linked in a ring configuration under
direction-dependent coupling. In contrast to the conventional
results like Wang et al. (2007, 2008a,b), Zhang et al. (2007),
Che et al. (2009), Chen et al. (2009), Rehan and Hong (2011),
Rehan et al. (2011), Ambrosio and Aziz-Alaoui (2012), Aqil et al.
(2012a), and Yu et al. (2012), several aspects like uncertainties,
ring configuration, different neurons, several number of neurons,
and direction-dependent coupling are incorporated to design a
matter-of-fact control approach of Theorem 1. Adaptations are
employed for the synchronization of four neurons for dealing with
a large number of unknown parameters. Additionally, a realistic
approach has been followed for the adaptive control by consid-
ering all four neurons of different dynamics. The conventional
studies assume that the FHN neurons have the same dynamical
aspects.

In comparison to the works in Wang et al. (2007), Zhang
et al. (2007), Wang et al. (2008a,b), Che et al. (2009), Rehan
and Hong (2011), Lai et al. (2008), Wei et al. (2009), Che et al.
(2011), Yu et al. (2012), and Ma et al. (2017), the proposed
synchronization approach in Theorem 1 considers multiple neu-
rons, directional coupling, and ring configuration to develop an
adaptive mechanism for synchronization. The work of Rehan
et al. (2011) considered synchronization in three neurons with
known parameters. Here in this study, we consider adaptation
of the parameters, and adaptation laws are introduced to achieve
coherent behaviors in neurons with unknown and dissimilar
parameters of neurons. In addition, a different configuration
and direction-dependent couplings are employed in the proposed
method of Theorem 1. The approach of Iqbal et al. (2015) devel-
oped a strategy to achieve synchronization in activation potentials
and proposed a method to deal with two neurons only. In this
case, we also provide a mechanism for synchronization recov-
ery variables as well and provide an extension to a ring of four
neurons.

Robust Adaptive Synchronization with
Disturbance
In this subsection, amethodology for the synchronization in a net-
work of different FHN neurons with unknown parameters linked
in a ring configuration under direction-dependent coupling and
disturbances is presented. In addition to Assumption 1, we take
the following supposition.

Assumption 2. Assume that the inequalities, given by ∥dx1∥ ≤
dm1, ∥dx2∥ ≤ dm2, ∥dx3∥ ≤ dm3, and ∥Φi∥ ≤ Φmi, ∀i = 1, 2, 3,
hold.

Theorem 2. Consider a network model of ring configured
four FHN neurons in Eqs (5)–(8), having synchronization error
dynamics in Eqs (11)–(13) satisfying Assumptions 1–2. Suppose
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the proposed adaptive control mechanism in Eqs (14)–(16) and the
modified adaptation laws given by

˙̂Φ1 =
(
pex1Γ1 − kc ∥ex1∥ Φ̂1

)
/q ,

˙̂Ψ1 = ley1Υ1/m,

(20)

˙̂Φ2 =
(
pex2Γ2 − kc ∥ex2∥ Φ̂2

)
/q ,

˙̂Ψ2 = ley2Υ2/m,

(21)

˙̂Φ3 =
(
pex3Γ3 − kc ∥ex3∥ Φ̂3

)
/q ,

˙̂Ψ3 = ley3Υ3/m,

(22)

where kc is a scalar constant. If we take p(K1+1) > 0, p(K2 + 1) >
0, and p(K3 + 1) > 0, it ensures synchronization of the network
model of the ring configured FHN neurons by guaranteeing the
convergence of errors to the compact sets. The proposed robust
adaptive control scheme will ensure uniformly ultimately bounded
errors and parameter estimation errors Φi − Φ̂i.

A brief proof of the statement in Theorem 2 is presented in
Section “Methods”. It is notable that the result of Theorem 2
refines the strategy developed in Theorem 1 by considering the
disturbances to modify the design approach and adaptation laws.
In contrast to the method demonstrated in Iqbal et al. (2014), the
approach adopted in Theorem 2 provides a complete synchro-
nization in a network of different FHN neurons with disturbance
under unknown parameters linked in a ring configuration under
direction-dependent coupling. There are various differences in
this work with Iqbal et al. (2014). For instance, the four main
differences are as follows: (a) we investigate a ring configuration
of neurons, (b) this study is based on a more complex scenario
of four neurons than the simple case of two neurons, (c) the
coupling is also complex in this work, and (d) the achievement
of complete synchronization rather than partial one is empha-
sized. It should also be noted that the work on synchroniza-
tion of neurons under direction-dependent coupling is lacking in
the literature. It is worth mentioning that such robust adaptive
synchronization of the perturbed ring configured neurons with
different parameters and direction-dependent coupling is lacking
in the existing literature, like Wang et al. (2007, 2008a,b), Zhang
et al. (2007), Che et al. (2009), Chen et al. (2009), Rehan and
Hong (2011), Rehan et al. (2011), Ambrosio and Aziz-Alaoui
(2012), Aqil et al. (2012a), and Yu et al. (2012). The presented
approach considered a large number of parameters unknown in
the four neurons. In addition, a perturbation in each neuron
has been incorporated to provide an advanced synchronization
solution. To deal with these perturbations and uncertainties, both
adaptation and robustness of control signals for the slow and fast
variations, respectively, are addressed in addition to the direction-
dependent strength of the signals for any connection between
neurons.

Simulation Results
To validate the efficacy of the proposed adaptive control
mechanism for synchronization in the network model of the

ring configured different four FHN neurons under direction-
dependent coupling, we first select the model parameters as
r1 = 10, r2 = 10.2, r3 = 10.4, r4 = 10.6, b1 = 1, b2 = 1.01, b3 = 1.02,
b4 = 1.03, g1 = 0.001, g2 = 0.002, g3 = 0.003, g4 = 0.004, and
f = 0.127. The disturbances are taken as dext,1 = 0.1 sin 12t,
dext,2 = 0.1 sin 20t, dext,3 = 0.1 sin 25t, and dext,4 = 0.1 sin 23t.
The stimulation amplitude is chosen as A= 0.01.

By application of Theorem 2, the parameters of controller
and the adaptation law are obtained as p= q= l=m= 1. The
control parameters are taken to be kc = 5, K1 = 20, K1 = 20.001,
and K3 = 20.002. It has been observed in Figures 2–4 that the
behaviors of the original FHN neurons without any control signal
are not coherent. As discussed earlier, the activation potential
errors and recovery variable errors in Figures 3 and 4 do not
have converging attributes. Rather, spikes are observed in the
synchronization errors, leading to non-synchronous firings of the
neurons.

Now we simulate the behavior of same neurons without and
with the proposed robust adaptive control scheme of Theorem 2.
The proposed control signal is applied at t= 400. Before this
time, the behaviors of the neurons are not coherent and the
synchronization errors have oscillatory responses. Bymeans of the
proposed robust adaptive control scheme, it is observed that the
FHN neurons are synchronized under unknown parameters and
external perturbations.Figures 5 and 6 depict the synchronization
errors for the different FHN neurons under direction-dependent
coupling by using the proposed methodology. Before t= 400, the
behaviors of the activation potential errors inFigure 5 have spikes,
showing non-synchronous firing in neurons. The same trend is
also observed in the recovery variable synchronization errors in
Figure 6. We activated the proposed robust adaptive controller
of Theorem 2 at t= 400. By application of the controller, the
synchronization errors for activation potentials and recovery vari-
ables converge to a region near zero, as shown in Figures 5 and 6.
The convergence of synchronization errors is fast, showing the
effectiveness of the proposed robust adaptive control scheme. Due
to convergence of the synchronization errors in Figures 5 and 6,
the spikes due to firing of the four neurons under bidirectional
coupling become identical, validating the synchronization in both
activation potentials and recovery variables. It is concluded that
the results in Figure 5 authenticate the efficacy of the proposed
robust adaptive control mechanism in the context of synchro-
nization of activation potentials. Moreover, Figure 6 validates
the effectiveness of the proposed mechanism for synchronization
of recovery variables. As the synchronization errors converge in
the neighborhood of zero, it is evident that synchronization of
activation and recovery potentials is achieved via the proposed
robust adaptive control scheme.

The adopted modeling and control methodologies are general-
ized in certain extent and simulation results presented herein rep-
resent a broader scenario of a network of FHNneurons. Themeth-
ods presented in Theorems 1–2 are valid to a general form of FHN
neurons. In addition, robustness against bounded disturbances
has been guaranteed through Theorem 2. The results of Theorems
1 and 2 may not be limited to FHN systems of only four neurons.
All in all, the proposed modeling and control methodology can
be used for a more general form, synchronization in a network of
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A B
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FIGURE 5 | Activation potential errors of four FitzHugh–Nagumo neurons with the robust adaptive control in Eqs (14)–(16) and (20)–(22). The controller is applied at
time t=400. As controller is applied, synchronization of activation potentials is achieved: (A) error plot x1 − x2, (B) error plot x1 − x3, and (C) error plot x1 − x4.

different FHN neurons of unknown parameters, coupled in ring
configuration, and subject to direction-dependent coupling and
disturbances.

MATERIALS AND METHODS

FHN Model
Neuron is the chief functional element in the brain. Its dynam-
ical examination is important for the treatment of brain dis-
eases. There aremany neuronal models, such as Hindmarsh-Rose,
Hodgkin and Huxley, and FitzHugh–Nagumo, etc. These models
offer investigation of the dynamical behavior of a neuron and
even synchronization in a network of neurons. FHN model is a
famous one in terms of representing various neuronal behaviors,
owing to its simple representation. Consider the FHN model for
representing dynamical aspects of a neuron subjected to external
electrical stimulation as in Thompson et al. (1999), given by

dx
dt = x(x − 1)(1 − rx) − y + I,

dy
dt = bx + vy,

(23)

where x and y represent the activation potential and the recovery
variable, respectively, r is a nonlinearity parameter in the model,
parameters b and v are related to the recovery variable, and
I = (a/ω) cos ωt shows the stimulation current. We employ
this important neuronal model to study the synchronization in
a network of different FHN neurons of unknown parameters
coupled in ring configuration subject to direction-dependent cou-
pling and disturbances. In this paper, coupled FHN models were
simulated using the S-function inMatlab for nonlinear differential
equations.

Lyapunov Stability Analysis
The Lyapunov stability criterion is widely utilized to understand
the stability and control of dynamical systems. In order to elabo-
rate the Lyapunov stability method, consider a dynamical system,
for example, ẋ = f(t, x), where x ∈ Rn denotes the state vector
for the dynamical system. Suppose there exists a positive definite
Lyapunov function V(x) for all the values of vector x ∈ Rn. If the
derivative of the energy function V(x) along the dynamics of the
system x= f (t, x) is negative definite, the state x will approach to
zero, conferring to the Lyapunov stability theory (seeKhalil (1996)
and references therein). V̇(x) < 0means that the factitious energy
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A B

C

FIGURE 6 | Recovery variable errors of four FitzHugh–Nagumo neurons under the robust adaptive control in Eqs (14)–(16) and (20)–(22). The controller is applied at
time t=400. As controller is applied, synchronization of recovery variable is achieved: (A) error plot y1 − y2, (B) error plot y1 − y3, and (C) error plot y1 − y4.

V(x) of the dynamical system is decreasing, leading to stability of
the system.

Derivation of Error Dynamics
By using Eqs (5)–(10), we obtain the error dynamics as follows:

ėx1 = f1(x1) − f2(x2) − y1 + y2 − g1 [(x1 − x2) + (x1 − x4)]
+ g2 [(x2 − x1) + (x2 − x3)] + dx1 − ux1,

ėy1 = b1x1 − b2x2 − uy1, (24)

ėx2 = f1(x1) − f3(x3) − y1 + y3 − g1 [(x1 − x2) + (x1 − x4)]
+ g3 [(x3 − x2) + (x3 − x4)] + dx2 − ux2,

ėy2 = b1x1 − b3x3 − uy2, (25)

ėx3 = f1(x1) − f4(x4) − y1 + y4 − g1 [(x1 − x2) + (x1 − x4)]
+ g4 [(x4 − x3) + (x4 − x1)] + dx3 − ux3,

ėy3 = b1x1 − b4x4 − uy3. (26)

Note that Iext ,1, Iext ,2, Iext ,3, and Iext ,4 are the same in the present sce-
nario, therefore, their effect is canceled out in the error dynamics.

Let us define the functions and signals

f1(x1) = −r1x31 + r1x21 + x21 − x1,

f2(x2) = −r2x32 + r2x22 + x22 − x2,

f3(x3) = −r3x33 + r3x23 + x23 − x3,

f4(x4) = −r4x34 + r4x24 + x24 − x4,
dx1 = dext,1 − dext,2,
dx2 = dext,1 − dext,3,
dx3 = dext,1 − dext,4.

(27)

As the recovery variable dynamics are dependent on the activation
potential, the relations become

y1 = b1
∫ t

0
x1dα + y1(0),

y2 = b2
∫ t

0
x2dα + y2(0),

y3 = b3
∫ t

0
x3dα + y3(0),

y4 = b4
∫ t

0
x4dα + y4(0).

(28)
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Here y1(0), y2(0), y3(0), and y4(0) denote the unknown initial
conditions for the recovery variable of four neurons. The relevant
quantities in the error dynamics formulation are defined by

Φ1
T =

[
r1 r2 b1 b2 y1(0) y2(0) g1 g2

]
Γ1(x1, x2) =

[
−x31 + x21 x32 − x22 −

∫ t
0 x1dα

∫ t
0 x2dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x2 − x1)+ (x2 − x3)]
]T

,

(29)

Ψ1
T =

[
b1 b2

]
, [0, 1],

Υ1(x1, x2) =
[
x1 −x2

]T
,

(30)

Φ2
T =

[
r1 r3 b1 b3 y1(0) y3(0) g1 g3

]
,

Γ2(x1, x3) =
[
−x31 + x21 x33 − x23 −

∫ t
0 x1dα

∫ t
0 x3dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x3 − x2)+ (x3 − x4)]
]T

,

(31)

Ψ2
T =

[
b1 b3

]
,

Υ2(x1, x3) =
[
x1 −x3

]T
,

(32)

Φ3
T =

[
r1 r4 b1 b4 y1(0) y4(0) g1 g4

]
,

Γ3(x1, x4) =
[
−x31 + x21 x34 − x24 −

∫ t
0 x1dα

∫ t
0 x4dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x4 − x3)+ (x4 − x1)]
]T

,

(33)

Ψ3
T =

[
b1 b4

]
,

Υ3(x1, x4) =
[
x1 −x4

]T
,

(34)

and

F1(x1, x2) = x21 − x22,

F2(x1, x3) = x21 − x23,

F3(x1, x4) = x21 − x24.

(35)

Employing Eqs (27)–(35) into Eqs (24)–(26), the error dynam-
ics equations given by Eqs (11)–(13) are obtained in the Section
“Results and Discussion”.

Proof of Theorem 1
The proof of Theorem 1 is provided using the same steps as in
Iqbal et al. (2014). However, our scenario is more complex due to
the ring configuration and multiple neurons. Incorporating Eqs
(14)–(16) into Eqs (11)–(13), for i= 1, 2, 3 leads to the results

ėxi = (Φi − Φ̂i)
TΓi − (Ki + 1)exi + dxi,

ėyi = (Ψi − Ψ̂i)
T

Υi.
(36)

The considered Lyapunov function candidate is given by

V(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

= (1/2)
3∑

i=1

(
pexi2 + q(Φi − Φ̂i)

T
(Φi − Φ̂i)

)
+ (1/2 )

3∑
i=1

(
leyi2 + m(Ψi − Ψ̂i)

T
(Ψi − Ψ̂i)

)
,

(37)

with p> 0, q> 0, l> 0, m> 0. On taking the time-derivative

of Eq (37), using (Φi − Φ̂i)
T ˙̂Φi =

˙̂Φi
T
(Φi − Φ̂i) and

(Ψi − Ψ̂i)
T ˙̂Ψi = ˙̂Ψi(Ψi − Ψ̂i)

T and, further, incorporating the
error systems of Eq (36), we obtain

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

=
3∑

i=1

(
pexi(Φi − Φ̂i)

TΓi − p(Ki + 1)exi2

− q(Φi − Φ̂i)
T ˙̂Φi + pexidxi + leyi(Ψi − Ψ̂i)

T
Υi

−m(Ψi − Ψ̂i)
T ˙̂Ψi

)
.

(38)

Using the adaptation laws in Eqs (17)–(19) under zero distur-
bances, it yields

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i)) = −p
3∑

i=1
(Ki + 1)exi2. (39)

As V̇(exi, eyi, (Φi−Φ̂i), (Ψi−Ψ̂i)) < 0,weneed−p(Ki+1) less
than zero for i = 1, 2, 3. In the steady-state, the synchronization
errors and their derivatives are zero. In addition, the behaviors of
all four neurons will be the same. Therefore, we have ˙̂Φi = 0 and
˙̂Ψi = 0, which implies that Φ̂i = Φ̂∗

i and Ψ̂i = Ψ̂
∗
i are satisfied

in the steady-state, where Φ̂∗
i and Ψ̂

∗
i are constants. As observed

in Rehan and Hong (2011), Rehan et al. (2011), and Iqbal et al.
(2014), we have (Φi − Φ̂∗

i )
T

Γi = 0 and (Ψi − Ψ̂
∗
i )

T
Υi = 0.

Proof of Theorem 2
The proof of Theorem 2 employs similar methods as in the results
(Rehan and Hong, 2011; Rehan et al., 2011; Iqbal et al., 2014) for
the proposed complex scenario. Using Eq (38) and the proposed
adaptation law in Theorem 2, we have

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

=
3∑

i=1

(
−p(Ki + 1)exi2 − (Φ̂i − Φi)

TΦ̂ikc ∥exi∥ + pexidxi
)
.

(40)

It can be confirmed with ∥Φi∥ ≤ Φmi that
∥∥∥Φ̂i − Φi

∥∥∥2 −∥∥∥Φ̂i − Φi

∥∥∥Φmi ≤ (Φ̂i − Φi)
TΦ̂i from (Iqbal et al., 2014). It

along with Assumption 2 implies

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

≤
3∑

i=1

(
− ∥exi∥

(
p(Ki + 1) ∥exi∥ + kc

(∥∥∥Φ̂i − Φi

∥∥∥− Φmi/2
)2

−kcΦ2
mi/4 − pdmi

))
.

(41)
Given that p(Ki+1)>0, Eq (41) implies that

V̇(exi, eyi, (Φi−Φ̂i), (Ψi − Ψ̂i)) < 0 if the conditions in
Eq (42) hold.

∥exi∥ >
kcΦ2

mi/4 + pdmi

p(Ki + 1)
,
∥∥∥Φ̂i − Φi

∥∥∥ >
Φmi

2
+

√
Φ2

mi
4

+
pdmi

kc
,

(42)
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for i= 1, 2, 3. Thus, the synchronization errors and estimation
errors are uniformly ultimately bounded as seen in Zhang et al.
(2007), Rehan and Hong (2011), Rehan et al. (2011), and Iqbal
et al. (2014) and references therein. The guidelines provided in
Zhang et al. (2007), Rehan and Hong (2011), Rehan et al. (2011),
and Iqbal et al. (2014) and references therein for the selections of
robust adaptive control parameters can be followed.

This study provides a step to increase complexity by increasing
the number of neurons and considering their complex interac-
tions, and it provides an approach to consider a generalizedmodel
for synchronization aspects. Prohibition of synchronization is
also another research topic. Further works on blockage of the
synchronization using control strategies can also be investigated.

CONCLUSIONS

This paper addressed the controlled synchronization in a net-
work of ring configured four different FHN neurons with
unknown parameters under direction-dependent coupling and
disturbances. The neurons and their interactions (i.e., coupling)
in a ring topology network are considered to be different owing to
the inter-neuronal couplingmediumproperties. Based on the Lya-
punov stability criteria, adaptive control strategies were developed
to deal with the complex problem of synchronization in a network

of four different FHN neurons. In addition, a robust adaptive con-
trol was also developed to ensure robustness against the external
disturbances to attain the uniformly ultimately bounded synchro-
nization errors. In contrast to various existing works, dissimilar
neurons, unknownparameters,multiple neurons, ring topology of
neurons, bidirectional communication in neurons and coherence
in activation potentials, and recovery variables are incorporated in
this study. The numerical simulation results verified the efficacy
of the proposed control approaches.

AUTHOR CONTRIBUTIONS

MI wrote the first draft of the manuscript. MR has initiated
the idea and revised the manuscript. K-SH has corrected the
manuscript and finalized the work. All the authors have approved
the final manuscript.

FUNDING

This work was supported by the National Research Foun-
dation (NRF) of Korea under the Ministry of Science and
ICT, Korea (grant no. NRF-2017R1A2A1A17069430 and
NRF2017R1A4A1015627).

REFERENCES
Alvarellos-Gonzalez, A., Pazos, A., and Porto-Pazos, A. B. (2012). Computational

models of neuron-astrocyte interactions lead to improved efficacy in the per-
formance of neural networks. Comput. Math. Methods Med. 2012, 476324.
doi:10.1155/2012/476324

Ambrosio, B., and Aziz-Alaoui, M. A. (2012). Synchronization and control of
coupled reaction-diffusion systems of the FitzHugh-Nagumo type. Comput.
Math. Appl. 64, 934–943. doi:10.1016/j.camwa.2012.01.056

Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., and Worgotter, F. (2017). Adaptive
control strategies for interlimb coordination in legged robots: a review. Front.
Neurorobot. 11:39. doi:10.3389/fnbot.2017.00039

Aqil, M., Hong, K.-S., and Jeong, M. Y. (2012a). Synchronization of coupled
chaotic FitzHugh-Nagumo systems. Commun. Nonlin. Sci. Numer. Simul. 17,
1615–1627. doi:10.1016/j.cnsns.2011.09.028

Aqil, M., Hong, K.-S., Jeong, M. Y., and Ge, S. S. (2012b). Detection of event-
related hemodynamic response to neuroactivation by dynamic modeling of
brain activity. Neuroimage 63, 553–568. doi:10.1016/j.neuroimage.2012.07.006

Buzsaki, G. (2006). Rhythms of the Brain. New York: Oxford University
Press.

Campbell, S. A., Edwards, R., and Van den Driessche, P. (2005). Delayed cou-
pling between two neural network loops. SIAM J. Appl. Math. 65, 316–335.
doi:10.1137/S0036139903434833

Che, Y.-Q., Wang, J., Cui, S.-G., Deng, B., Wei, X.-L., Chan, W.-L., et al. (2011).
Chaos synchronization of coupled neurons via adaptive sliding mode control.
Nonlinear Anal. Real World Appl. 12, 3199–3206. doi:10.1016/j.nonrwa.2011.05.
020

Che, Y. Q., Wang, J., Zhou, S. S., and Deng, B. (2009). Robust synchronization
control of coupled chaotic neurons under external electrical stimulation. Chaos
Solitons Fractals 40, 1333–1342. doi:10.1016/j.chaos.2007.09.014

Chen,M., Jiang, C. S., Jiang, B., andWu, Q. X. (2009). Slidingmode synchronization
controller design with neural network for uncertain chaotic systems. Chaos
Solitons Fractals 39, 1856–1863. doi:10.1016/j.chaos.2007.06.113

Deak, G. O., Bartlett, M. S., and Jebara, T. (2007). New trends in cognitive sci-
ence: integrative approaches to learning and development. Neurocomputing 70,
2139–2147. doi:10.1016/j.neucom.2006.06.008

Di Garbo, A., Barbi, M., and Chillemi, S. (2007). The synchronization properties
of a network of inhibitory interneurons depend on the biophysical model.
BioSystems 88, 216–227. doi:10.1016/j.biosystems.2006.08.011

Ellacott, S. W., Mason, J. C., and Anderson, I. J. (1997). Mathematics of Neural
Networks: Models, Algorithms and Applications. Norwell, MA: Springer US.

Ghafoor, U., Kim, S., andHong, K.-S. (2017). Selectivity and longevity of peripheral-
nerve and machine interfaces: a review. Front. Neurorobot. 11:59. doi:10.3389/
fnbot.2017.00059

Hong, K.-S., Bhutta, M. R., Liu, X., and Shin, Y. I. (2017). Classification of
somatosensory cortex activities using fNIRS. Behav. Brain Res. 333, 225–234.
doi:10.1016/j.bbr.2017.06.034

Hong, K.-S., and Khan,M. J. (2017). Hybrid BCI techniques for improved classifica-
tion accuracy and increased number of commands: a review. Front. Neurorobot.
11:35. doi:10.3389/fnbot.2017.00035

Hong, K.-S., and Naseer, N. (2016). Reduction of delay in detecting initial dips from
functional near-infrared spectroscopy signals using vector-based phase analysis.
Int. J. Neural Syst. 26, 1650012. doi:10.1142/S012906571650012X

Hong, K.-S., Naseer, N., and Kim, Y. H. (2015). Classification of prefrontal and
motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92.
doi:10.1016/j.neulet.2014.12.029

Hong, K.-S., and Nguyen, H.-D. (2014). State-space models of impulse hemody-
namic responses over motor, somatosensory, and visual cortices. Biomed. Opt.
Express 5, 1778–1798. doi:10.1364/BOE.5.001778

Hong, K.-S., and Santosa, H. (2016). Decoding four different sound-categories in
the auditory cortex using functional near-infrared spectroscopy. Hear. Res. 333,
157–166. doi:10.1016/j.heares.2016.01.009

Hua, J. Y. Y., and Smith, S. J. (2004). Neural activity and the dynamics of
central nervous system development. Nat. Neurosci. 7, 327–332. doi:10.1038/
nn1218

Iqbal, M., Rehan, M., and Hong, K.-S. (2017). Modeling of inter-neuronal coupling
medium and its impact on neuronal synchronization. PLoS ONE 12:e0176986.
doi:10.1371/journal.pone.0176986

Iqbal, M., Rehan, M., Hong, K.-S., Khaliq, A., and Saeed-ur-Rehman. (2015).
Sector-condition-based results for adaptive control and synchronization of
chaotic systems under input saturation. Chaos Solitons Fractals 77, 158–169.
doi:10.1016/j.chaos.2015.05.021

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 6114

https://doi.org/10.1155/2012/476324
https://doi.org/10.1016/j.camwa.2012.01.056
https://doi.org/10.3389/fnbot.2017.00039
https://doi.org/10.1016/j.cnsns.2011.09.028
https://doi.org/10.1016/j.neuroimage.2012.07.006
https://doi.org/10.1137/S0036139903434833
https://doi.org/10.1016/j.nonrwa.2011.05.020
https://doi.org/10.1016/j.nonrwa.2011.05.020
https://doi.org/10.1016/j.chaos.2007.09.014
https://doi.org/10.1016/j.chaos.2007.06.113
https://doi.org/10.1016/j.neucom.2006.06.008
https://doi.org/10.1016/j.biosystems.2006.08.011
https://doi.org/10.3389/fnbot.2017.00059
https://doi.org/10.3389/fnbot.2017.00059
https://doi.org/10.1016/j.bbr.2017.06.034
https://doi.org/10.3389/fnbot.2017.00035
https://doi.org/10.1142/S012906571650012X
https://doi.org/10.1016/j.neulet.2014.12.029
https://doi.org/10.1364/BOE.5.001778
https://doi.org/10.1016/j.heares.2016.01.009
https://doi.org/10.1038/nn1218
https://doi.org/10.1038/nn1218
https://doi.org/10.1371/journal.pone.0176986
https://doi.org/10.1016/j.chaos.2015.05.021
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Iqbal et al. Synchronization of Ring Configured Neurons

Iqbal, M., Rehan, M., Khaliq, A., Saeed-ur-Rehman, and Hong, K.-S. (2014).
Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with
unknown parameters under communication-direction-dependent coupling.
Comput. Math. Methods Med. 2014, 367173. doi:10.1155/2014/367173

Jobst, B. (2010). Brain stimulation for surgical epilepsy. Epilepsy Res. 89, 154–161.
doi:10.1016/j.eplepsyres.2009.08.017

Khalil, H. K. (1996). Nonlinear Systems. New Jersey: Prentice Hall.
Khan, M. J., and Hong, K.-S. (2015). Passive BCI based on drowsiness detection: an

fNIRS study. Biomed. Opt. Express 6, 4063–4078. doi:10.1364/BOE.6.004063
Khan, M. J., and Hong, K.-S. (2017). Hybird EEG-fNIRS-based eight command

decoding for BCI: application to quadcopter control. Front. Neurorobot. 11:6.
doi:10.3389/fnbot.2017.00006

Khan,M. J., Hong,M. J., andHong, K.-S. (2014). Decoding of fourmovement direc-
tions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci.
8:244. doi:10.3389/fnhum.2014.00244

Knoblauch, A., and Palm, G. (2005). What is signal and what is noise in the brain.
BioSystems 79, 83–90. doi:10.1016/j.biosystems.2004.09.007

Kocaturk, M., Gulcur, H. O., and Canbeyli, R. (2015). Toward building hybrid
biological/in silico neural networks for motor neuroprosthetic control. Front.
Neurorobot. 9:8. doi:10.3389/fnbot.2015.00008

Lai, C.-W., Chen, C.-K., Liao, T.-L., and Yan, J.-J. (2008). Adaptive synchronization
for nonlinear FitzHugh–Nagumo neurons in external electrical stimulation. Int.
J. Adapt. Control Signal Process 22, 833–844. doi:10.1002/acs.1022

Limousin, P., andMartinez-Torres, I. (2008). Deep brain stimulation for Parkinson’s
disease. Neurotherapeutics 5, 309–319. doi:10.1016/j.nurt.2008.01.006

Liu, X., and Hong, K.-S. (2017). Detection of primary RGB colors projected on
a screen using fNIRS. J. Innov. Opt. Health Sci. 10, 1750006. doi:10.1142/
S1793545817500067

Ma, J., Mi, L., Zhou, P., Xu, Y., and Hayat, T. (2017). Phase synchronization between
two neurons induced by coupling of electromagnetic field. Appl. Math. Comput.
307, 321–328. doi:10.1016/j.amc.2017.03.002

Mao, X., and Wang, Z. (2016). Stability, bifurcation, and synchronization of delay-
coupled ring neural networks. Nonlinear Dyn. 84, 1063–1078. doi:10.1007/
s11071-015-2550-y

Mao, X. C. (2017). Complicated dynamics of a ring of nonidentical
FitzHugh–Nagumo neurons with delayed couplings. Nonlinear Dyn. 87,
2395–2406. doi:10.1007/s11071-016-3198-y

Mejias, J. F., and Torres, J. J. (2007). Improvement of spike coincidence detec-
tion with facilitating synapses. Neurocomputing 70, 2026–2029. doi:10.1016/j.
neucom.2006.10.097

Naseer, N., and Hong, K.-S. (2013). Classification of functional near-infrared
spectroscopy signals corresponding to the right- and left-wrist motor imagery
for development of a brain-computer interface. Neurosci. Lett. 553, 84–89.
doi:10.1016/j.neulet.2013.08.021

Naseer, N., and Hong, K.-S. (2015). fNIRS-based brain-computer interfaces: a
review. Front. Hum. Neurosci. 9:3. doi:10.3389/fnhum.2015.00003

Naseer, N., Noori, F. M., Qureshi, N. K., and Hong, K.-S. (2016). Determining
optimal feature-combination for LDA classification of functional near-infrared
spectroscopy signals in brain-computer interface application. Front. Hum. Neu-
rosci. 10:237. doi:10.3389/fnhum.2016.00237

Nguyen, H.-D., and Hong, K.-S. (2016). Bundled-optode implementation for 3D
imaging in functional near-infrared spectroscopy. Biomed. Opt. Express 7,
3491–3507. doi:10.1364/BOE.7.003491

Nguyen, H.-D., Hong, K.-S., and Shin, Y.-I. (2016). Bundled-optode method in
functional near-infrared spectroscopy. PLoS ONE 11:e0165146. doi:10.1371/
journal.pone.0165146

Nguyen, L. H., and Hong, K.-S. (2011). Synchronization of coupled chaotic
FitzHugh-Nagumo neurons via Lyapunov functions. Math. Comput. Simul. 82,
590–603. doi:10.1016/j.matcom.2011.10.005

Nguyen, L. H., and Hong, K.-S. (2013). Adaptive synchronization of two
coupled chaotic Hindmarsh-Rose neurons by controlling the membrane
potential of a slave neuron. Appl. Math. Model. 37, 2460–2468. doi:10.1016/j.
apm.2012.06.003

Ostrem, J. L., and Starr, P. A. (2008). Treatment of dystonia with
deep brain stimulation. Neurotherapeutics 5, 320–330. doi:10.1016/j.nurt.
2008.01.002

Oyama, S., Shimoda, S., Alnajjar, F. S. K., Iwatsuki, K., Hoshiyama, M., Tanaka,
H., et al. (2016). Biomechanical reconstruction using the tacit learning sys-
tem: intuitive control of prosthetic hand rotation. Front. Neurorobot. 10:19.
doi:10.3389/fnbot.2016.00019

Rehan, M., and Hong, K.-S. (2011). LMI-based robust adaptive synchronization of
FitzHugh-Nagumoneuronswith unknownparameters under uncertain external
electrical stimulation. Phys. Lett. A 375, 1666–1670. doi:10.1016/j.physleta.2011.
03.012

Rehan, M., Hong, K.-S., and Aqil, M. (2011). Synchronization of multiple chaotic
FitzHugh-Nagumo neurons with gap junctions under external electrical stimu-
lation. Neurocomputing 74, 3296–3304. doi:10.1016/j.neucom.2011.05.015

Santosa, H., Hong, M. J., and Hong, K.-S. (2014). Lateralization of music processing
auditory cortex: an fNIRS study. Front. Behav. Neurosci. 8:UNS418. doi:10.3389/
fnbeh.2014.00418

Santosa, H., Hong, M. J., Kim, S. P., and Hong, K.-S. (2013). Noise reduction
in functional near-infrared spectroscopy signals by independent component
analysis. Rev. Sci. Instrum. 84, 073106. doi:10.1063/1.4812785

Song, Y. L., and Xu, J. (2012). Inphase and antiphase synchronization in a delay-
coupled system with applications to a delaycoupled FitzHugh–Nagumo system.
IEEE Trans. Neural Netw. Learn. Syst. 23, 1659–1670. doi:10.1109/TNNLS.2012.
2209459

Stewart, T. C., Kleinhans, A., Mundy, A., and Conradt, J. (2016). Serendipitous
offline learning in a neuromorphic robot. Front. Neurorobot. 10:1. doi:10.3389/
fnbot.2016.00001

Thompson, C. J., Bardos, D. C., Yang, Y. S., and Joyner, K. H. (1999). Nonlinear cable
models for cells exposed to electric fields I. General theory and space-clamped
solutions. Chaos Solitons Fractals 10, 1825–1842. doi:10.1016/S0960-0779(98)
00131-3

Turnip, A., Hong, K.-S., and Jeong, M. Y. (2011). Real-time feature extraction
of P300 component using adaptive nonlinear principal component analysis.
Biomed. Eng. Online 10, 83. doi:10.1186/1475-925X-10-83

Wang, J., Zhang, T., and Deng, B. (2007). Synchronization of FitzHugh–Nagumo
neurons in external electrical stimulation via nonlinear control. Chaos Solitons
Fractals 31, 30–38. doi:10.1016/j.chaos.2005.09.006

Wang, Q. Y., Duan, Z. S., Feng, Z. S., Chen, G. R., and Lu, Q. S. (2008a). Syn-
chronization transition in gap-junction-coupled leech neurons. Physica A 387,
4404–4410. doi:10.1016/j.physa.2008.02.067

Wang, J., Zhang, Z., and Li, H. Y. (2008b). Synchronization of FitzHugh-Nagumo
systems in EES via H8 variable universe adaptive fuzzy control. Chaos Solitons
Fractals 36, 1332–1339. doi:10.1016/j.chaos.2006.08.012

Wang, Q. Y., Lu, Q. S., Chen, G. R., Feng, Z. S., and Duan, L. X. (2009). Bifurcation
and synchronization of synaptically coupled FHNmodels with time delay.Chaos
Solitons Fractals 39, 918–925. doi:10.1016/j.chaos.2007.01.061

Wang, Z. L., Jiang, Y., and Li, H. (2015). Synchronization of multiple burst-
ing neurons ring coupled via impulsive variables. Complexity 21, 29–37.
doi:10.1002/cplx.21575

Wei, X., Wang, J., and Deng, B. (2009). Introducing internal model to robust
output synchronization of FitzHugh-Nagumo neurons in external electrical
stimulation. Commun. Nonlin. Sci. Numer. Simul. 14, 3108–3119. doi:10.1016/j.
cnsns.2008.10.016

Wu, W., and Chen, T. P. (2008). Global synchronization criteria of linearly coupled
neural network systems with time-varying coupling. IEEE Trans. Neural Netw.
19, 319–332. doi:10.1109/TNN.2007.908639

Xu, X. (2008). Complicated dynamics of a ring neural network with time delays. J.
Phys. A-Math. Theor. 41, 035102. doi:10.1088/1751-8113/41/3/035102

Yu, H. T., Wang, J., Deng, B., Wei, X. L., Che, Y. Q., Wong, Y. K., et al. (2012).
Adaptive backstepping sliding mode control for chaos synchronization of two
coupled neurons in the externa electrical stimulation. Commun. Nonlin. Sci.
Numer. Simul. 17, 1344–1354. doi:10.1016/j.cnsns.2011.07.009

Yu, H. T., Wang, J., Liu, Q. X., Sun, J. B., and Yu, H. F. (2013). Delay-induced
synchronization transitions in small-world neuronal networks with hybrid
synapses. Chaos Solitons Fractals 48, 68–74. doi:10.1016/j.chaos.2012.05.005

Yuan, L. H., Ren, G. D., and Wang, C. N. (2016). Synchronization of neuronal
circuits with ring connection on PSpice. J. Control Sci. Eng. 2016, 3414909.
doi:10.1155/2016/3414909

Zafar, A., and Hong, K.-S. (2017). Detection and classification of three class initial
dips from prefrontal cortex. Biomed. Opt. Express 8, 367–383. doi:10.1364/boe.
8.000367

Zhang, J. Q., Shen, C. S., andCui, Z. F. (2006).Modulation on the collective response
behavior by the system size in two-dimensional coupled cell systems. Sci. China
Ser. G. 49, 304–312. doi:10.1007/s11433-006-0304-z

Zhang, Q. (2014). Robust synchronization of FitzHugh–Nagumo network with
parameter disturbances by sliding mode control. Chaos Solitons Fractals 58,
22–26. doi:10.1016/j.chaos.2013.11.002

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 6115

https://doi.org/10.1155/2014/367173
https://doi.org/10.1016/j.eplepsyres.2009.08.017
https://doi.org/10.1364/BOE.6.004063
https://doi.org/10.3389/fnbot.2017.00006
https://doi.org/10.3389/fnhum.2014.00244
https://doi.org/10.1016/j.biosystems.2004.09.007
https://doi.org/10.3389/fnbot.2015.00008
https://doi.org/10.1002/acs.1022
https://doi.org/10.1016/j.nurt.2008.01.006
https://doi.org/10.1142/S1793545817500067
https://doi.org/10.1142/S1793545817500067
https://doi.org/10.1016/j.amc.2017.03.002
https://doi.org/10.1007/s11071-015-2550-y
https://doi.org/10.1007/s11071-015-2550-y
https://doi.org/10.1007/s11071-016-3198-y
https://doi.org/10.1016/j.neucom.2006.10.097
https://doi.org/10.1016/j.neucom.2006.10.097
https://doi.org/10.1016/j.neulet.2013.08.021
https://doi.org/10.3389/fnhum.2015.00003
https://doi.org/10.3389/fnhum.2016.00237
https://doi.org/10.1364/BOE.7.003491
https://doi.org/10.1371/journal.pone.0165146
https://doi.org/10.1371/journal.pone.0165146
https://doi.org/10.1016/j.matcom.2011.10.005
https://doi.org/10.1016/j.apm.2012.06.003
https://doi.org/10.1016/j.apm.2012.06.003
https://doi.org/10.1016/j.nurt.2008.01.002
https://doi.org/10.1016/j.nurt.2008.01.002
https://doi.org/10.3389/fnbot.2016.00019
https://doi.org/10.1016/j.physleta.2011.03.012
https://doi.org/10.1016/j.physleta.2011.03.012
https://doi.org/10.1016/j.neucom.2011.05.015
https://doi.org/10.3389/fnbeh.2014.00418
https://doi.org/10.3389/fnbeh.2014.00418
https://doi.org/10.1063/1.4812785
https://doi.org/10.1109/TNNLS.2012.2209459
https://doi.org/10.1109/TNNLS.2012.2209459
https://doi.org/10.3389/fnbot.2016.00001
https://doi.org/10.3389/fnbot.2016.00001
https://doi.org/10.1016/S0960-0779(98)00131-3
https://doi.org/10.1016/S0960-0779(98)00131-3
https://doi.org/10.1186/1475-925X-10-83
https://doi.org/10.1016/j.chaos.2005.09.006
https://doi.org/10.1016/j.physa.2008.02.067
https://doi.org/10.1016/j.chaos.2006.08.012
https://doi.org/10.1016/j.chaos.2007.01.061
https://doi.org/10.1002/cplx.21575
https://doi.org/10.1016/j.cnsns.2008.10.016
https://doi.org/10.1016/j.cnsns.2008.10.016
https://doi.org/10.1109/TNN.2007.908639
https://doi.org/10.1088/1751-8113/41/3/035102
https://doi.org/10.1016/j.cnsns.2011.07.009
https://doi.org/10.1016/j.chaos.2012.05.005
https://doi.org/10.1155/2016/3414909
https://doi.org/10.1364/boe.8.000367
https://doi.org/10.1364/boe.8.000367
https://doi.org/10.1007/s11433-006-0304-z
https://doi.org/10.1016/j.chaos.2013.11.002
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Iqbal et al. Synchronization of Ring Configured Neurons

Zhang, T., Wang, J., Fei, X. Y., and Deng, B. (2007). Synchronization of coupled
FitzHugh-Nagumo systems via MIMO feedback linearization control. Chaos
Solitons Fractals 33, 194–202. doi:10.1016/j.chaos.2006.01.037

Zhen, B., and Xu, J. A. (2010). Fold-Hopf bifurcation analysis for a coupled
Fitzhugh-Nagumo neural system with time delay. Int. J. Bifurcation Chaos 20,
3919–3934. doi:10.1142/S0218127410028112

Zhou, J., Yu, W. W., Li, X. M., Small, M., and Lu, J. A. (2009). Identifying the
topology of a coupled FitzHugh-Nagumo neurobiological network via a pinning
mechanism. IEEE Trans. Neural Netw. 20, 1679–1684. doi:10.1109/TNN.2009.
2029102

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Iqbal, Rehan and Hong. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 6116

https://doi.org/10.1016/j.chaos.2006.01.037
https://doi.org/10.1142/S0218127410028112
https://doi.org/10.1109/TNN.2009.2029102
https://doi.org/10.1109/TNN.2009.2029102
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


ORIGINAL RESEARCH
published: 30 November 2017

doi: 10.3389/fnbot.2017.00065

Frontiers in Neurorobotics | www.frontiersin.org November 2017 | Volume 11 | Article 65

Edited by:

Yangming Li,

University of Washington,

United States

Reviewed by:

Vittorio B. Lippi,

Universitätsklinikum Freiburg,

Germany

Danying Hu,

University of Washington,

United States

*Correspondence:

Paolo Tommasino

p.tommasino@hsantalucia.it

Domenico Campolo

d.campolo@ntu.edu.sg

Received: 30 June 2017

Accepted: 17 November 2017

Published: 30 November 2017

Citation:

Tommasino P and Campolo D (2017)

An Extended Passive Motion

Paradigm for Human-Like Posture and

Movement Planning in Redundant

Manipulators.

Front. Neurorobot. 11:65.

doi: 10.3389/fnbot.2017.00065

An Extended Passive Motion
Paradigm for Human-Like Posture
and Movement Planning in
Redundant Manipulators
Paolo Tommasino 1* and Domenico Campolo 2*

1 Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy, 2 Synergy Lab, Robotics Research Centre,

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore

A major challenge in robotics and computational neuroscience is relative to the

posture/movement problem in presence of kinematic redundancy. We recently

addressed this issue using a principled approach which, in conjunction with nonlinear

inverse optimization, allowed capturing postural strategies such as Donders’ law. In

this work, after presenting this general model specifying it as an extension of the

Passive Motion Paradigm, we show how, once fitted to capture experimental postural

strategies, the model is actually able to also predict movements. More specifically,

the passive motion paradigm embeds two main intrinsic components: joint damping

and joint stiffness. In previous work we showed that joint stiffness is responsible for

static postures and, in this sense, its parameters are regressed to fit to experimental

postural strategies. Here, we show how joint damping, in particular its anisotropy, directly

affects task-space movements. Rather than using damping parameters to fit a posteriori

task-space motions, we make the a priori hypothesis that damping is proportional

to stiffness. This remarkably allows a postural-fitted model to also capture dynamic

performance such as curvature and hysteresis of task-space trajectories during wrist

pointing tasks, confirming and extending previous findings in literature.

Keywords: kinematic redundancy, postural synergies, Donders’ law, posture, movement, pointing

1. INTRODUCTION

Recent trends in both industry and healthcare clearly show the need for robots to be able
to cooperate and assist humans in specific tasks. In order to do so, not only our robots will
need to be safe-by-design, incorporating for example compliant mechanisms (Haddadin et al.,
2010; Vanderborght et al., 2013) and force/impedance control architectures (Ficuciello et al.,
2015) (as opposed to the current rigid and position-controlled deployed in industry) but will
also need to behave naturally. In other words, while working with a robot, human operators
not only need to be safe at all times, but shall also feel comfortable. As an example, imagine
a robotic assistant designed to hand-over tools to a human operator. It is quite important
for the robot to assume natural postures, which carry non-verbal semantics very valuable to
human operators (the same object can be passed in different ways, for different purposes). For
this and other reasons, in the last decades, roboticists have started looking into human motor
strategies as a source of inspiration for the formulation of bio-inspired postural/motion controllers
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(Khatib et al., 2004; Schaal and Schweighofer, 2005; Kim et al.,
2011, 2013; Zanchettin et al., 2013).

Another characteristic of modern robots is that they are
general-purpose (unlike, for example, a CNCmachine) and often
bear human-like functionalities, if not resemblance. In this paper
we shall be mainly interested in robotic manipulators. Currently,
many commercial robotic arms are made available (in single or
bimanual configuration) with kinematic similarities to human
arms (Smith and Rooks, 2006; Albu-Schaffer et al., 2008). One
of the specific similarities lies in the degrees-of-freedom (DOF),
typically 6–7 in current robotic manipulators, and the kinematic
redundancywhich comes with it when dealing with most of tasks.
The coordination of redundant degrees-of-freedom is a central
topic in both robotics and neuroscience and we are interested in
two specific aspects: the redundancy problem (Bernstein, 1967)
and the posture/movement problem (Ostry and Feldman, 2003).
This issue was first addressed by the authors in a recent work
(Tommasino and Campolo, 2017) where a principled approach
was proposed to tackle these very issues with focus on capturing
human-like postural strategies: static (or equilibrium) postures
satisfying a given (static) task constraint. In this work, we shall
specialize the computational model and extend our previous
results to the problem of movement generation: given a desired
task constraint, find human-like motions (and postures), both in
task and joint space, that brings the current robot posture to the
desired task-space target.

The Robotics Approach to Kinematic
Redundancy
Motions for robotic manipulators are typically planned in task-
space as it is much easier and intuitive to define a trajectory for a
robotic end-effector than for its multiple (and often) redundant
joints. For example, if we want a robotic manipulator to reach for
a given object we can easily program the robotic gripper to follow
a desired task-space path xd with a given task-space velocity
ẋd rather than programming the trajectory of each individual
joint. However, due to kinematic redundancy, mapping the
desired task trajectory in joint space is challenging as infinite
combinations of joints trajectories are possible for the same task-
space trajectory. This issue has a very long history in robotics
and it has been tackled by roboticists, either at the kinematic
or at the force level, with a local optimization approach and
the use of weighted pseudo-inverses of the Jacobian matrix of
the robot manipulator (Klein and Huang, 1983; Nenchev, 1989;
English and Maciejewski, 2000). For instance, a simple way to
map a desired task trajectory ẋd in joint space is: q̇d = J#W(q)ẋd,
where J#W is any W-weighted generalized pseudo-inverse of the
Jacobian matrix J. However, it was soon realized that such
solution, although simple, very often results in non-holonomic,
or non-repeatable joint trajectories, i.e., the robot equilibrium
posture satisfying a given task-constraint is not unique but
depends on the path that robot followed before reaching the
desired task constraint (Klein andHuang, 1983;Mussa-Ivaldi and
Hogan, 1991). This type of solution is problematic especially for
cyclic task-space movements as non-repeatable joint motions can
result in instability and/or violations of joint constraints. At the

kinematic level, the problem of repeatability can be tackled by
planning an additional joint trajectory (or null-space motion) q̇0
that does not interfere with the planned task-space motions ẋ:
q̇ = J#W(q)ẋ + NW(q)q̇0 where NW(q) is the null-space projector
operator associated to the weightingmatrixW (Klein andHuang,
1983; Nenchev, 1989; English and Maciejewski, 2000)1. While
kinematic motion planning requires an execution level to track
the desired trajectory in joint space (such as computed torque
control or PD control (Murray et al., 1994), weighted pseudo-
inverses and null-space projectors can also be used to solve
kinematic redundancy at the force/torque level: τ = JT(q)F +

NT
W∇qh(q), where τ is the commanded joint torque, F is a task-

space force fields (Mistry and Schaal, 2015)2 that drives the
robotic end-effector along desired task constraints and ∇qh(q) is
the gradient of a real or virtual potential fields that is mapped
in the null-space of the Jacobian transpose matrix to achieve
repeatable joint motions.

In the last decade, task-space control has been extensively
used in robotics to generate human-like and/or adaptive robot
behavior (Schaal and Schweighofer, 2005) either at the tasks-
space level, in terms of adaptive trajectories (Peters and Schaal,
2007; Degallier and Ijspeert, 2010) and Cartesian impedance
(Calinon et al., 2013), then at the joint space level in terms of
null-space control and weighting matrix W (Khatib et al., 2004;
Nakanishi et al., 2008; Dietrich et al., 2015).

Kinematic Constraints and Computational
Approaches to Human Motor Control
In neuroscience is still debated whether the human brain adopts
a hierarchical approach to plan and control movements and
whether the brain plans and control task-space and null-space
motions independently (Jordan andWolpert, 1999; Mussa-Ivaldi
et al., 2011; Mistry and Schaal, 2015). The experimental evidence
that unconstrained planar reaching movements features straight-
line paths and bell-shaped velocity profiles led to the hypothesis
that the human brain plans hand movement in task-space, by
shifting the equilibrium position of the hand according to a
minimum-jerk trajectory. This trajectory would then be tracked
in joint space (hence at a lower level) by an impedance controller
that exploits muscle visco-elasticity [see the Equilibrium-Point
Hypothesis (EPH); Flash, 1987 for more details]. Later studies
however, showed that in other experimental conditions hand
movements were curved and models such as the minimum-
torque change (Uno et al., 1989) and the minimum-variance
(Harris and Wolpert, 1998) were able to capture these human
movement features by solving an optimal control problem
directly in joint space.

Postural Synergies: Donders’ law, Uncontrolled

Manifold and the Leading Joint Hypothesis
Postures are somewhat static, possibly accounted for as equilibria
of some potential field (Campolo et al., 2011), while movement

1Note that any positive-definite matrix can be used as weight and that in general

W is configuration-dependent.
2The task-space force field is usually generated by combining a desired task-space

trajectory with a task-space impedance.
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is in apparent contrast with the very concept of equilibrium.
The Posture/Movement problem stems out from the possible
interference of postural control mechanisms with general motor
strategies (Ostry and Feldman, 2003). In the last few decades,
various approaches have been proposed in computational
neuroscience as an attempt to reconcile posture and movement.

An extensive number of behavioral studies have shown that,
at the joint-space level, during kinematically redundant tasks,
humans adopt a stereotypical strategy that associates a unique
and path-independent posture to a given task (Hepp, 1990;
Haslwanter, 1995). This kinematic strategy is usually called
Donders’ law, since the Dutch ophthalmologist Donders showed
(1847) that for any steady gazing direction (task), the human eye
assumes a unique combination of elevation, azimuth, and torsion
angles (posture). Donders-like strategies have also been found for
pointing tasks involving the head (Ceylan et al., 2000; Crawford
et al., 2003), the wrist (Campolo et al., 2009), the shoulder (Hore
et al., 1992) and for pointing/reaching tasks involving the upper
arm (Liebermann et al., 2006; Ewart et al., 2016).

It has been suggested that the brain implements Donders’
Law as a flexible family of holonomic constraints (Medendorp
et al., 2000; Crawford et al., 2003) to solve redundancy as well
as to fulfill some optimality criteria that might vary in different
experimental scenarios and physiological conditions (Ceylan
et al., 2000; Medendorp et al., 2000; Wong, 2004).

From a computational perspective, Donders-like postural
strategies, can be captured by solving a constrained optimization
problem which returns the unique optimal posture that
minimizes a given (posture-dependent) objective function while
fulfilling a desired task-constraint (Cruse et al., 1990; De Sapio
et al., 2006; Campolo et al., 2011). Because this type of postural
models only computes static/equilibrium-configurations they are
usually not suitable for planning movements. Transport models
(Vetter et al., 2002) such as minimum-torque-change (Uno
et al., 1989), minimum-work (Soechting et al., 1995), minimum-
variance (Vetter et al., 2002), do provide a solution to the
Posture/Movement problem but, in their original formulation are
incompatible with Donders’ law as they predict path-dependent
equilibrium postures (Admiraal et al., 2004).

Kinematic constraints such as Donders’ law, suggest that
the brain may plan and control equilibrium postures directly
in joint-space, by constraining redundant postures to a sub-
manifold (Donders’ surface) of the joint-space. Experimental
studies involving redundant DOFs however, have also shown that
motor variability is always higher along task-irrelevant directions
(also known in human motor control as uncontrolled manifold)
of the joint-space rather than along task-relevant directions
(Latash et al., 2007). These results led to the Uncontrolled
Manifold hypothesis (Scholz and Schöner, 1999) according
to which the brain does not freeze redundant DOFs into a
holonomic constraint (such as Donders’ law) but instead uses
redundant DOFs to push “bad motor variability” (i.e., directly
affecting the task) along task-irrelevant directions of the joint
space. In other words, according to theUCMhypothesis the brain
would only stabilize elemental variables (such as joint rotations)
that directly affect task performance while leaving task-irrelevant
directions uncontrolled.

An alternative theory on how the brain may simplify the
control of redundant DOFs is the Leading Joint Hypothesis (LJH)
(Dounskaia, 2005). Central to the theory is the fact that link
segments are coupled to each other by non-linear interaction
torques so that motion in one joint unavoidably introduce
motions to nearby joints, especially for fast speed movements.
According to the LJH, the brain, depending on the specific task,
organizes joints hierarchically: the “leading” joint, typically a
proximal joint of the chain, is accelerated/decelerated as in a
single joint movement, hence neglecting interaction torques and
motions at the other joints. Subordinate joints instead, “monitor
the interaction torque effect and create net torque that results
in limb motion characteristics required by the task, including
movement direction, accuracy, and so on.” Although in line with
intuition, the LJH, to the best of authors knowledge, does not
really propose a computational framework.

Optimal Feedback Control and Passive Motion

Paradigm
The UCM and the LJH do provide theories of human
motor control and mathematical frameworks to analyse human
movements in terms of joint variability and leading/subordinate
joints respectively. However, very little is known on how
the brain may actually implement such motor strategies.
Optimal feedback control (OFC) is probably one of the most
accredited computational model of human motor control that
can reproduce both average trajectories of human reaching
movements and, to some extend, can predict the patterns of
motor variability typical of the UCM hypothesis (Todorov and
Jordan, 2002). Contrary to the robotics task-space control, in the
OFC framework there is no distinction between planning and
execution and task and joint space trajectories simply unfolds as
the optimal controller adjusts feedback gains to suit the overall
goals of the system. The OFC also predicts movement variability
in line with the UCM hypothesis as deviations from the average
trajectory are not correct by the controller if they do not affect
task performance (minimum intervention principle).

Although the OFC framework has been very successful
at modeling movement strategies typical of planar non-
redundant point-to-point reaching movements (Scott, 2004),
some computational studies have reported difficulties in solving
optimal control problem in the presence of both kinematic
redundancy and static forces (gravitational and/or elastic). This
is because, to hold the body still at equilibrium (i.e., at the
end of a movement), suitable boundary conditions must be
specified so that the optimal muscle forces can counterbalance
the static forces acting on the body (see Guigon et al., 2007 and
references therein). Recently, this Posture/Movement problem
has been tackled with the Separation Principle according to
which the brain processes static (i.e., configuration-dependent)
and dynamic (i.e., velocity-dependent) joint torques separately
(Hollerbach and Flash, 1982; Atkeson and Hollerbach, 1985;
Guigon et al., 2007). By combining the optimal control
framework with the Separation Principle, Guigon and colleagues
were able to implement human-like motor strategies in
redundant manipulators (Guigon et al., 2007; Taïx et al., 2013).
However, their approach, formulated at the joint-space level,
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results into path-dependent (i.e., dependent on the movement
history and initial body configuration) terminal postures and
therefore such an approach cannot predict kinematic synergies
such as Donders’ law.

An alternative theory to the OFC framework is the so-called
Passive Motion Paradigm (PMP) (Mussa-Ivaldi et al., 1988;
Mohan and Morasso, 2011; Morasso et al., 2015) PMP can be
considered a computational generalization of the EPH, in that
goals and kinematic constraints can be superimposed when viewed
as force-fields. First proposed in the 80 s (Mussa-Ivaldi et al.,
1988), the PMP has evolved over the years and has been proposed
as a theory of human trajectory formation and as bio-inspired
trajectory planner for redundant robots (Mohan and Morasso,
2007; Morasso et al., 2010; Mohan et al., 2011).

One of the major strengths of the PMP lies in its
computational simplicity. While full details of the PMP are
found in Mohan et al. (2011) and references therein, its basic
features are illustrated in Figure 1. In the standard PMPmodel, a
robotic manipulator is seen as a rigid structure (i.e., an arm-like
kinematic chain) with “intrinsic” properties defined at the level of
joint-space (e.g., joint angles q1, q2, q3) and “extrinsic” properties
defined at the level of task-space (e.g., actual and desired endpoint
postures x and xd, respectively). The redundancy problem is
solved by postural mechanisms implemented via the action
of an intrinsic impedance, for example in the form of purely
viscous (mechanical dampers) or viscoelastic (dampers and
springs) elements interconnected at joint level. On the other
hand, movement is planned at task-level and implemented by
an extrinsic impedance, F = K(xd − x) in Figure 1, acting as a
generalized spring which continuously drives the end-effector (at
some position x) toward the goal xd while the intrinsic impedance
takes care of postures.

The standard PMP comes in two forms, with the only
difference in terms of intrinsic impedance: one being purely
viscous and the other being viscoelastic. In the first case, it
can be easily shown (Tommasino and Campolo, 2017) that a
purely viscous intrinsic impedance solves the posture/movement
problem but is incompatible with Donders’ law (as it does
not yield repeatable postures). In the second case, the
intrinsic viscoelastic impedance ensures unique postures (due
to an elastic potential in joint-space) but does not solve the

posture/movement problem. A simple way to see this is that the
intrinsic springs “pull” the end-effector back to a rest position
(q∗), in contrast with the extrinsic spring which pulls the end-
effector toward a target xd. To ensure task completion (i.e.,
x = xd) one should set the target at a different location, say
xd′, so that the end-effector ends up being in equilibrium at the
planned target xd. Computing xd′ is not trivial and somewhat
blurs the separation between task and posture as xd′ depends on
both the intrinsic and the extrinsic elastic potentials.

An Extended Passive Motion Paradigm
(λ0-PMP)
One way to prevent the interference between intrinsic and
extrinsic elastic potentials is to block any effect of the intrinsic
potential onto the task. Inspired by the Separation Principle (of
static and dynamic torques) (Guigon et al., 2007), we recently
proposed the λ0-PMP model (Tommasino and Campolo, 2017),
an extension of the standard PMP. Experimental evidence
shows that the human brain processes static (or configuration-
dependent) and dynamic (or velocity-dependent) force fields
separately (Hollerbach and Flash, 1982; Atkeson and Hollerbach,
1985; Nishikawa et al., 1999; Kurtzer et al., 2005b). Because static
forces such as gravitational or elastic fields are predominant
during slow movements and are not affected by movement
speed, the Separation Principle (Guigon et al., 2007) has been
proposed as a simplifying control strategy for the brain to learn
new movements (Nishikawa et al., 1999), to efficiently time-
scale arm trajectories (Hollerbach and Flash, 1982; Atkeson and
Hollerbach, 1985) and to robustly cope with the effect of gravity
in different environments (Kurtzer et al., 2005a).

In literature, the Separation Principle is typically applied
at joint-space level (larger than task-space, dimension-wise,
when dealing with redundant manipulators), assuming that
static contributions (either due to gravity or to elastic fields)
are perfectly compensated for by the brain (or by the robot
controller) so that they can be removed from the dynamic
equations of the limb under control (Guigon et al., 2007; Taïx
et al., 2013). In our recent work (Tommasino and Campolo,
2017), we derived the λ0-PMP model by (i) re-framing the
problem within the constrained minimization framework and

FIGURE 1 | λ0-PMP as an extension of the Passive Motion Paradigm. (A) Example of a 3DOF human-like arm performing a redundant 2D reaching task. (B) Block

diagram of the general λ0-PMP model.
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applied the Lagrange Multipliers method; (ii) noting that the
Lagrange Multipliers λ define a task-space force field; (iii)
applying the Separation Principle to λ and defining a static task-
space force field λ0 (from which the name of the method). This
task-space force λ0, also highlighted in Figure 1 as an addition
to the standard PMP, produces partial compensation of joint
torques, blocking their effect only on the tasks space, leaving
joint torques free to act in the null-space, and driving the posture
toward minima of the potential without interfering with task-
space objectives. This captures the essence of postural synergies
such as Donders’ law which can now be seen as generated from a
joint-space potential combined with a task-space force field.

Scope of This Work and Contribution
With reference to Figure 1B, for the λ0-PMP, once the Jacobian
matrix J is defined (given the geometry of the manipulator and
of the task), the parameters which need to be determined are
the intrinsic stiffness matrix KJ ; the intrinsic damping matrix W
(or, equivalently, the admittanceW−1); and the extrinsic stiffness
matrix K. Although all these intrinsic and extrinsic parameters
are required to plan motion, this work will focus on the role
of intrinsic properties and in particular the intrinsic damping
matrixW.

In previous works, we focused on postural strategies and
showed howDonders’ Law can be captured via an intrinsic elastic
potential (Campolo et al., 2011; Tommasino and Campolo, 2016)
and how nonlinear inverse optimization can be used to determine
the coefficients of the intrinsic stiffness KJ to fit experimental
data (Tommasino and Campolo, 2017). In this work, we shift
our focus onmovement dynamics, which are primarily shaped by
the damping matrixW. Rather than trying to use the coefficients
of the matrix W as “extra degrees of freedom” to better fit
experimental data a posteriori, we assume a priori that damping is
proportional to stiffness, in line with experimental evidence (Tsuji
et al., 1995; Perreault et al., 2004; Tee et al., 2004; Peaden and
Charles, 2014). In other words, we hypothesize that the same
biomechanical factors which determine the “shape” of KJ (i.e., its
eigenvectors and eigenvalues) also determine the “shape” ofW.

With this hypothesis in place, the intrinsic stiffness still has
an “indirect effect” as it shapes the intrinsic damping matrix W,
whose dynamic effects are not blocked by λ0. We shall specifically
show how this mechanism determines curvature of task-space
trajectories during pointing tasks performed with the wrist, in
line with the experimental evidence also reported in literature
by Charles and Hogan (2010). Lastly, it should be noted that
any stable task-space force field can be used as a movement
planner and some possible choices have already been reported
in Tommasino and Campolo (2017). In line with the PMP, in
this work we assume that the task planner is a virtual elastic
field driving the end-effector toward the desired target. A detailed
comparison of different task-space planners will be reported in a
separate work.

2. MATERIALS AND METHODS

This section presents the λ0-PMP, a novel extension of the
Passive Motion Paradigm, and its specialization to wrist pointing

tasks which will be later used in a comparative analysis with
experimental data.

Although bearing remarkable similarities with the Passive
Motion Paradigm, the theoretical derivation of the λ0-PMP
follows a principled approach, described in detail in Tommasino
and Campolo (2017). However, this similarity allows presenting
our model as an extension of the PMP, facilitating readers already
familiar with the Passive Motion Paradigm itself. To this end,
Figure 1B highlights the differences between the two standard
PMP models (here denoted as PMP1 and PMP2) and ours.

λ0-PMP
One of the computational advantages of the PMP is its ability
to solve the redundancy problem without explicit kinematic
inversion and cost function computation (Mohan and Morasso,
2011). To see how this is accomplished, consider a redundant
manipulator with forward kinematics

x = FK(q) (1)

where x ∈ R
m is a given end-effector pose, q ∈ R

n is a given
manipulator configuration and the inequality m < n denotes
kinematic redundancy. As an example, Figure 1A shows a planar
human-like arm with a three-dimensional joint space (consisting
of three rotational joints q = [q1 q2 q3]

T) and with a two-
dimensional task-space encoding of the actual hand position x

and the desired hand position xd. Once the Forward Kinematics
(FK) of the manipulator is defined in relation to a specific task,
one can compute the task Jacobian, an n×mmatrix which maps
joint space velocities q̇ into task-space velocities ẋ:

ẋ =
∂FK

∂q
q̇ := J(q)q̇ (2)

The redundancy problem lies in the fact that, even with a full-
ranked Jacobian matrix, there might exist many (infinite) joint
velocities which result in the same velocity at the end-effector ẋ.
This problem can be solved with amechanical analogy, imagining
that a mechanical manipulator, with negligible inertia and purely
viscous (symmetric and positive-definite) joint impedance W
producing viscous joint torques Wq̇, is passively moved at the
end-effector with an imposed velocity ẋ. This action will produce
a unique joint velocity

q̇ = W−1JT(q)
(

J(q)W−1JT(q)
)−1

︸ ︷︷ ︸

B(q)

ẋ (3)

This type of redundancy solution is also known as a W-
weighted generalized pseudo-inverse (Klein and Huang, 1983;
Doty et al., 1993) but, rather than its derivation, here we want
to emphasize its physical interpretation. The highlighted term

B(q) :=
(

J(q)W−1JT(q)
)−1

represents the task-space damping,
i.e., the damping force perceived at the end-effector (task-space)
while imposing a task-space velocity ẋ and solely due to the
joint-space dampingW and its mapping via the Jacobian J(q).

To accomplish a task such as reaching for a target xd, a
simple way is to “pull” the end-effector toward the target with
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the action of an extrinsic spring K, producing a task-space force
F = K(xd−x) on the hand always directed toward the target. The
first and most basic form of PMP (Mohan and Morasso, 2011)
corresponds to the thin-line loop [denoted PMP1 and including
K, W−1, J(q) and JT(q)] in Figure 1B. This form of PMP can
solve redundancy but is incompatible with Donders’ law. More
details can be found in Tommasino and Campolo (2017) but it
is straightforward to see that, once on the target, i.e., x = xd,
no force is produced by the extrinsic spring (x − xd = 0) and
any posture q such that xd = FK(q) will therefore be maintained
indefinitely.

To guarantee unique postures, an elastic scalar potential
can be introduced in the joint-space, for example, via an
intrinsic stiffness matrix KJ at the joint-level. This will subject
the manipulator to joint torques τ el : = KJ(q − q∗) which
continuously drive the manipulator toward a given “rest”
posture q∗ (an equilibrium for the intrinsic elastic potential).
The addition of elastic joint torques τ el leads to the second
form of PMP, denoted as PMP2 and highlighted in Figure 1B.
As shown in Tommasino and Campolo (2017), this solves
redundancy and accounts for Donders’s law but does not solve the
posture/movement problem due to the contrasting effect of the
extrinsic spring K, which pulls the end-effector toward the target
xd, and intrinsic stiffness KJ which pulls the whole manipulator
toward the “rest” posture q∗. It is easy to show that, in general, xd
is not an equilibrium for the system. If x = xd, then the extrinsic
spring K will produce no force (xd − x = 0) and the effect of the
intrinsic stiffness KJ on the task will not be contrasted, moving
the end-effector away from xd.

The unwanted interference due to intrinsic elastic torques τ el

can be removed by adding the task-space force:

λ0 := B(q)J(q)W−1
τ el (4)

The task-force λ0 is the last piece of the puzzle needed to
complete the description of the λ0-PMP model shown in
Figure 1B. For a complete theoretical derivation, the reader
should refer to Tommasino and Campolo (2017), here we only
wish to provide its physical intuition. As mentioned above,
τ el is an elastic torque field responsible for Donders’ law, in
the sense that it constantly drives the manipulator toward
“natural” or “comfortable” postures (Campolo et al., 2011). In
doing so, however, it also interferes with the task completion
(posture/movement problem). In order to block its effect only in
the task-space (so, preserving Donders’ law in joint-space) one
could proceed as follows: the elastic torque τ el, if unblocked,
would produce a joint velocity q̇el = W−1

τ el with a resulting
task velocity ẋel = J(q)q̇el. The task-force λ0 can be seen as
the force needed to contrast the (task-space) damping force
B(q) ẋel = B(q)J(q)W−1

τ el. The novel concept of a task-space
force λ0 is very useful as it provides a force perspective which
allows other force-control strategies to be simply superimposed
onto our postural mechanisms. The extrinsic spring force F =

K(xd − x) plays the role of Task Planner. In fact, as shown in
Tommasino and Campolo (2017), other type of force-control
strategies could be superimposed, such as a visco-elastic task-
space force field or an optimal force field planner minimizing the

total task-space force moving the end-effector toward the desired
target.

Remark: With reference to the diagram in Figure 1B, the
task-space damping B(q) in Equation (3) transforms task-space
velocities ẋ into task-space forces which balance out the effect
of the extrinsic spring K, leading to the following task-space
dynamic equation:

B(q)ẋ = K(xd − x) (5)

Although the task-space damping is posture-dependent and
more equations are needed to fully solve the dynamics, some
remarkable properties can already be noted: (i) the task-
damping B(q) in Equation (3) directly depends on the intrinsic
dampingW which, therefore, directly affects task-space dynamics
(Equation 5); (ii) the intrinsic stiffness KJ does not appear
in Equation (5) and therefore does not directly affect the
task dynamics, however, it does it indirectly through postures
adjustments in the null-space which affect the Jacobian and
therefore B(q).

Although in this work we only consider elastic joint-space
potentials, other potentials (for example due to gravity) and their
gradient can be simply added in parallel to the elastic torque
τ el in Figure 1 and, the λ0 would only block, in task-space, the
effects of these posture-dependent torque fields but not velocity-
dependent (i.e., dynamic) torques, such as viscous effects due to
W. The reader is referred to our previous work (Tommasino and
Campolo, 2017) for this and other details. The role of the λ0 also
offers a force field perspective to the UCM and LJH hypothesis.
By compensating only the task-space components of intrinsic
potential fields, the null-space is left uncontrolled and motions
along task-irrelevant directions are due exclusively to the passive
dynamics of the limb under control.

Application to Wrist Pointing Tasks
Building on previous experimental and computational studies
(Campolo et al., 2009, 2010, 2011; Charles and Hogan, 2012;
Formica et al., 2012; Tommasino and Campolo, 2017), we are
specifically interested in capturing human-like motor strategies
during pointing tasks performed with the wrist. To implement
the model in Figure 1B, we shall first determine the Jacobian J
from the forward kinematics; the intrinsic stiffness (KJ) matrix
and the rest posture q∗; the damping (W) matrix as well as the
extrinsic stiffness matrix K.

Forward Kinematics
With reference to Figure 2, we assume that the wrist is used to
point a virtual laser beam onto a point on a computer screen,
i.e., a two-dimensional task-space of coordinates x = [x1 x2]

T ∈

R
2. The human wrist is modeled as an ideal, three-dimensional

gimbal comprising the following three orthogonal, rotational
axes (from proximal to distal):

– the Prono-Supination (PS) axis, aligned along ex := [1 0 0]T ;
– the Flexion-Extension (FE) axis, aligned along ez := [0 0 1]T ;
– the Radial-Ulnar-Deviation (RUD) axis, aligned along

ey := [0 1 0]T .
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FIGURE 2 | Center-out task and kinematic spaces involved in wrist pointing. 3D wrist configurations can be equivalently expressed in terms of 3× 3 rotation matrices

R(q), rotation vectors r or joint rotations q. The forward kinematics x = FK(q) maps 3D wrist orientations onto the 2D task, expressed in screen coordinates x. Adapted

from Campolo et al. (2011).

The joint-space is therefore three-dimensional and can be
described via a joint vector q = [qPS qFE qRUD]T ∈ R

3 or,
alternatively, via rotation vectors (Campolo et al., 2010, 2011).
as shown in Figure 2.

The forward kinematics (Equation 1) for a 3DOF wrist at
distance d = 1 m and initially pointing in the [1 0 0]T direction
can be written as

[

x1
x2

]

=

[

0 −d 0
0 0 d

]

︸ ︷︷ ︸

screen projection

·R(q) ·





1
0
0



 (6)

where R(q) represents the 3D hand orientation, computed
as R(q) = exp(−̂exq

PS) exp(̂ezq
FE) exp(̂eyq

RUD) where the
exponential notation exp(̂e θ) represents the rotation about an
axis e by and angle θ (Murray et al., 1994). Further details are
given in Campolo et al. (2011) and references therein. Once
the forward kinematics is given, the Jacobian can be analytically
computed based on its definition given in Equation (2).

Subject-Specific Intrinsic Stiffness KJ and Rest

Posture q∗ from Experimental Data
For the 3DOF wrist, the intrinsic stiffness (as well as the
damping) is represented by a 3 × 3 symmetric matrix. The
rest posture q∗ represents the posture (three joint angles) of
minimum elastic energy. Using nonlinear inverse optimization
(NIO) techniques (Tommasino and Campolo, 2016), a subject-
specific matrix KJ and rest posture q∗ can be directly derived
from experimental data. As detailed in Tommasino and Campolo
(2016), experimental data consisting of thousands of data points
are fitted to a quadratic surface, typically used in literature to
encode Donders’ law. This can be seen as an extreme down-
sampling of experimental data and the resultant quadratic surface
can be seen as an average Donders’ surface. The reader is referred

to Tommasino and Campolo (2016) for the detailed procedure
based on nonlinear inverse optimization. One thing to highlight
is that it is the relative ratio between eigenvalues of KJ which
determines a specific Donders’ law, not the absolute values. For
this reason, the trace of the matrix can be set to any arbitrary
(positive) number. To be in line with biomechanical (passive)
stiffness values found in literature (Peaden and Charles, 2014),
we set this value to be trace(KJ) = 4 Nm/rad.

Damping W and Intrinsic Time Constant
While the intrinsic stiffness matrix is derived directly from a
fitting process of experimental data, for the intrinsic damping
matrix W, rather than trying to use the coefficients of the
matrixW as “extra degrees of freedom” to better fit experimental

data, we assume that damping is proportional to stiffness, in line
with experimental evidence (Tsuji et al., 1995; Perreault et al.,
2004; Tee et al., 2004; Peaden and Charles, 2014). In other
words, we hypothesize that the same biomechanical factors which
determine the “shape” (in terms of eigenvectors and eigenvalues)
of KJ will determine a similar “shape” for W. For this reason we
set the damping to be proportional to the intrinsic stiffness

W = τ0K
J (7)

where τ0 is a scalar (positive) value with the units of time, and
can be therefore thought of as an intrinsic time constant. The
reason is that, for a simple scalar, linear spring-damper system,
the ratio between damping and stiffness determines exactly the
time constant of the system.

Extrinsic Stiffness K and Task-Space Dynamics
The extrinsic stiffness K is responsible for the task-space
dynamics together with the task-space damping B(q), as
highlighted in Equation (5). However, B(q) is determined once
J and W are given, as in Equation (3). In this work, we are
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considering very simple center-out tasks, as described below.
As there is no a priory preferential direction in the task-space,
we shall consider an isotropic extrinsic stiffness K, although
other choices of task planners are possible (Tommasino and
Campolo, 2017) and will be the focus of future works. When the
extrinsic stiffness is constant, our computational model predicts
trajectories that evolve in time according to a first order dynamic
typical of a visco-elastic system with constant parameters. In
other words, the desired target is reached with an exponential
velocity profiles that decays to zero only after an infinite amount
of time. This feature is clearly not bio-inspired as biological
movements are characterized by bell-shaped velocity profiles. In
the PMP, Morasso and colleagues have overcome this issue with
the introduction of a time base generator, i.e., a time-dependent
gain matrix that rescales end-effector velocities according to
a minimum-jerk profiles (Morasso et al., 2010). However, in
this work we pursue the approach proposed by Arimoto et al.
(2005), as it could reproduce velocity profiles more similar to our
experiments. More specifically, a time-varying extrinsic stiffness
matrix:

K(t) = k ·

(

1− e−
t
τ −

t

τ
e−

t
τ

)

·

[

1 0
0 1

]

(8)

with the property of increasing its stiffness value from zero to k
with an extrinsic time constant τ (notice that when pointing to a
new target the time t is reset to zero), is used to avoid first order
dynamics typical of visco-elastic systems with constant stiffness
and damping parameters.

Example: Anisotropic Damping and Curved
Task-Space Trajectories
As an example, Figure 3 shows the trajectories predicted
via the λ0-PMP with an anisotropic intrinsic damping W.
More specifically, every outbound and inbound movement was
simulated for a duration T = 0.4 [s] , and with time-constants
τ = τ0 = 0.08 [s], i.e., one-fifth of T. The anisotropic damping
W was set according to Equation (7) as:

W = τ0K
J = 0.08





0.5 0 0
0 1.5 0
0 0 2





Nms

rad
(9)

hence proportional to an anisotropic intrinsic stiffness KJ . The
rest posture was set as q∗ = [5 0 0]T [deg] and the scalar stiffness
k = 22.5[Nm

rad
].

As shown in Figure 3A the anisotropic damping results
into paths of different degree of curvature depending on the
specific movement direction. Moreover, outbound and inbound
movements follow different paths, especially along the (NW-
SE) and (SW-NE) directions. Figure 3B shows the joint space
trajectories predicted by the model and Figure 3C shows that
task-space tangential velocity profiles are bell-shaped thanks to
the time-varying stiffness K(t) (Arimoto et al., 2005).

3. COMPARATIVE ANALYSIS OF
TASK-DYNAMICS: EXPERIMENTAL
POINTING TASKS VS. DONDERS-FITTED
λ0-PMP MODEL PREDICTIONS

In this section, we will compare the average experimental task-
space trajectories, as previously measured in Campolo et al.
(2011) from human subjects during wrist pointing tasks, with
those predicted via a Donders-fitted λ0-PMP model, i.e., a λ0-
PMP model for which the only postural parameters are fitted
to capture the Donders’ law for a specific subject. The major
limitation of our previous model (Campolo et al., 2011) is that
it was limited to static postures, while our current λ0-PMPmodel
can also generate movements.

The main hypothesis is that a Donders-fitted model λ0-PMP,
i.e., fitted to only capture postural strategies, is also able to
display path dynamics such as curved task-space trajectories as
experimentally found by Charles and Hogan (2010). A major
difference with their experimental paradigm is that their subjects
only used FE and RUD movements, as PS movements were
restrained, so it was not a redundant task. In our case, subjects
are free to rotate the forearm about the PS axis, adding a degree
of redundancy.

Donders-Fitted λ0-PMP Model for
Wrist-Pointing Tasks
Our λ0-PMP model in Figure 1B requires specification of a
Jacobian [J(q)], a task-planner (K) as well as intrinsic damping
(W) and intrinsic postural parameters (KJ and q∗). Once
specialized to wrist-pointing tasks and ideally assuming a
similar wrist structure for all subjects, the forward kinematics
(Equation 6), and therefore the Jacobian J(q), will be the same
for all subjects. On the other hand, we shall fit subject-specific
postural parameters KJ and q∗. Note that these parameters alone
only capture Donders’ law, i.e., they can identify optimal postures
for giving pointing directions (Campolo et al., 2011; Tommasino
and Campolo, 2016) but cannot tell where to point. The actual
motion, in particular the geometry of task-space trajectories, will
be shaped by the task dynamics (Equation 5). Here, rather than
fitting every single movement a posterioriwith a specific damping
W, we make the a priori hypothesis that intrinsic damping is
proportional to intrinsic stiffness, via an intrinsic time constant
as in Equation (7).

As shown in Equation (5), task-space dynamics depend on K
and on B(q) which, in turn, depends on the intrinsic damping
W via Equation (3). For the task-planner, we shall assume an
extrinsic K(t) as in Equation (8) hence isotropic and therefore
not directly responsible for path curvatures. Both the intrinsic
and extrinsic time constant, in Equations (7), (8) respectively,
affect the speed of the simulated trajectory, in particular, the time
required for the simulated wrist, to reach the target in “steady-
state” (i.e., an equilibrium posture compatible with Donders’
law) after the beginning of the movement. In general, movement
speed can be target and subject specific, hence we set both time
constants to be proportional to the average movement duration
Tsj that subject s needs to point to the target j. More specifically,
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FIGURE 3 | Task space paths (A), joint trajectories (B) and task-space tangential velocity profiles (C) predicted via the λ0-PMP with the anisotropic damping W of

Equation (9).

we heuristically found that, by setting τ = τ0 = Tsj/5 the
model predicts both task-space and joint space dynamics that
are compatible with the experimental ones (see results below).
Similar to Equation (7), we used the time-constant τ0 to tune the
scalar stiffness k in Equation (8) as:

k = bmax/τ0 (10)

where bmax is the maximum eigenvalue of the matrix B(q0) and
q0 is the initial wrist configuration prior to the starting of the
movement. Therefore, k was set on a subject-specific (because
of B(q)) and movement-specific basis (because τ depends on the
average time T that the subject needs to perform the movement).

We know that our model predicts curvatures in task-space, as
shown in Figure 3. We shall now compare the average curvature
displayed by a specific human subject with the curvature
predicted by our λ0-PMPmodel, onceDonders-fitted to a specific
subject.

Experimental Protocol
We asked six subjects to perform center-out pointing tasks
toward nine targets on a computer screen. As shown in Figure 2,
the nine targets consist of a central target and eight peripheral
ones arranged over a circle (with a radius of 15◦) and oriented
along the eight cardinal directions, i.e., North (N), NorthEast
(NE), etc., which also define the naming convention).

Each subject performs 10 trials at self-paced speed. Each trial
consists of eight outbound movements (from the center to a
peripheral target) and 8 inbound movements (from a peripheral
target to the center). In a trial, each peripheral target is visited
only once and an outbound movement is always followed by
an inbound movement. The order in which targets are visited

is computed prior to the start of the trial as a pseudo-random
permutation.

Throughout the experiment, subjects grasp a light-weight 3D
printed handle mounting an inertial measurement unit (IMU)
that records hand orientations R(q), with respect to the fixed
reference frame, at 120Hz. A computermonitor is used to display
the center-out task to the subject. The visual feedback consists of
the desired target position (a red circle) and the current location
pointed at by the subject (a yellow circle). The current location is
displayed at coordinates x = [x1 x2]

T computed as in Equation
(1), is updated realtime via Equation (6), where R(q) is sensed by
the IMU.

Data Analysis
In this work, we are mainly interested in task-space dynamics, in
particular the fact that trajectories during pointing tasks with the
wrist appear more curved than in similar tasks performed with
the arm (Charles and Hogan, 2010).

Movement Start and End Times
To this end, we follow the same data analysis method proposed in
Charles and Hogan (2010). Specifically, the recorded kinematic
data is first filtered with smoothing splines (Dohrmann et al.,
1988; Charles and Hogan, 2010) to ease numerical differentiation
in estimating task-space velocity profiles. The starting and ending
times of a movement are identified from the task-space tangential
velocity profiles: the start of movement is set to occur at the time
of the first data sample before the velocity peak with a value below
20% peak velocity. Similarly, the end of a movement is set to
occur at the time of the first data sample after the velocity peak
with a value below 20% the peak velocity. Movements featuring
a path length and/or a duration beyond two interquartile from
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the (subject-specific) median were excluded from the analysis.
To compute the average trajectory of a movement, the data was
normalized with respect to the movement time and then linearly
interpolated at 20 equally temporally spaced samples.

Path Curvature and Hysteresis
To assess path curvature in task-space, we follow the method
proposed in Charles and Hogan (2010) to test whether task-space
paths are on average curved and if so, whether outbound and
inbound movements had different direction of curvatures. More
specifically, since each movement occurs between two targets, we
consider the straight-line connecting the two targets and directed
from the initial target to the final one. This direction is used to
determine whether the actual movement is on the left or on the
right of the straight line, as depicted in Figure 4. In particular,
we shall consider the whole area enclosed between the actual
movement and the straight line and split this area into “right”
area (AR), i.e., the enclosed area to the right of the straight line
and “left” area (AL) as the enclosed area to the left of the straight
line. Both left and right areas are defined non-negative and are
normalized with respect to the square of the nominal target-to-
target distance (( π

12 )
2 [m2]). For each movement, either inbound

or outbound, we compute the following measures:

– total area Asum : = AR + AL (non-negative by definition),
indicating deviations of the actual movement from the
straight-line.

– net area Anet := AR − AL, indicating tendency of a path to
deviate more on the right (Anet > 0) or to the left (Anet < 0).

Finally, since an outbound movement is always followed by an
inbound movement, we also consider the path hysteresis defined
as Ahyst : = AOUT

net + AIN
net , i.e., the area enclosed in between

outbound and inbound paths.
To assess the statistical significance of each measure, we use a

t-test (with α = 0.05) to test the following hypotheses: (1) paths
are curved (Asum 6= 0); (2) outbound paths have a preferred
curvature direction (AOUT

net 6= 0); (3) inbound paths have a
preferred curvature direction (AIN

net 6= 0); and (4) an outbound-
inbound sequence presents hysteresis (AOUT

net 6= −AIN
net).

Results
For all subjects and for all movements we found Asum to be
statistically different from zero suggesting that task-space paths
executed with the wrist are not straight also in presence of
redundancy (this was not the case in Charles and Hogan, 2010,
where PS was locked) .

Figure 5 shows the average outbound and inbound paths
of the six subjects together with their standard deviations
(shaded areas). Thick lines mark movements for which Anet

was statistically different from zero (i.e., a preferred curvature
direction) while stars mark segments with statistically significant
hysteresis (i.e., outbound and inbound follow different paths).
Superimposed with experimental trajectories, Figure 5 also
shows the task-space trajectories predicted via a Donders-fitted
λ0-PMP model (dashed lines). The subject-specific postural
parameters KJ and q∗ (estimated with method proposed in

FIGURE 4 | Movement curvature is assessed by calculating the area enclosed

to the left (AL) and to the right (AR) of the straight-line connecting the starting

and ending of a movement. The total area Asum = AL + AR indicates whether

movements are curved and the net area Anet whether there is a tendency to

veer more on the right (Anet > 0) or to the left Anet < 0.

Tommasino and Campolo (2016)), used to simulate the model
for each subject, are shown in Tables 1–2.

Figure 6 compares the experimental Anet (average and
standard deviation) with the model predicted Anet . This
comparison indicates whether the simulated paths have the same
curvature direction and magnitude as the experimental ones. A
t-test (p < 0.05) was used for each movement to assess if the
average Anet was statistically different from the model predicted
Anet (stars).

With reference to Figure 5A, subject 1 shows path hysteresis
only for the (SW) target, while, the only statistically different Anet

where found for inboundmovements from the (W) and the (SW)
target (red thick lines) that both veer to the right. With reference
to Figure 6A, there is no statistical difference between the model
and the experimental curvatures when pointing to and from the
(N) and the (W), from (NW) and to (S) targets. The model is
particularly accurate in capturing the average curvature of the (N)
inbound, the (S) inbound and the (W) outbound and inbound.
Overall, for this subject the model can only capture the curvature
of 6 out of 16 movement direction (37%).

With reference to Figure 5B, subject 2 presents hysteresis for
most of the targets, except for the (E), (SW) and (SE). This subject
presents preferred curvature direction when pointing to and
from the (W) target, with outbound and inbound both veering to
the right. There is also a preference to veer to the right and to the
left when performing outboundmovements toward the (SW) and
(S) targets, respectively. Figure 6B shows that, for all movements,
the model predicts curvatures that are not statistically different
from the experimental ones.

Similar analysis can be conducted for the remaining subjects.
Here we limit ourselves to observe that for subject 3 there
were no differences in terms of curvatures in 11 out of
16 movements (about 70% of movements). For subject 4
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FIGURE 5 | Average task-space trajectories. Shaded areas show the standard deviations for both outbound and inbound movements. Thick lines are relative to paths

with Anet statistically different from zero (i.e., a preferred curvature direction). The stars mark movement for which AINnet was statistically different from AOUTnet , i.e., those

movement that present hysteresis.

there were no differences between model and experimental
curvatures in 10 out of 16 movements (62% of movements).
For subject 5 there were no differences between model and

experimental curvatures in 8 out of 16 movements (50% of
movements) and for subject 6 in 9 out of 16 movements
(56%).
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TABLE 1 | Subject-specific intrinsic stiffness (KJ ) parameters estimated via NIO

from the average postural strategy.

[Nm
rad

] KJ11 KJ
12 KJ13 KJ22 KJ23 KJ33

Subj 1 1.22 0.07 0.08 1.68 0.03 1.09

Subj 2 1.20 0.04 −0.12 1.47 0.26 1.33

Subj 3 1.25 −0.08 0.00 1.63 0.11 1.12

Subj 4 1.21 0.10 −0.15 1.24 0.29 1.54

Subj 5 1.26 0.00 −0.08 1.21 0.16 1.52

Subj 6 1.30 −0.01 −0.04 1.42 −0.05 1.27

Stiffness subscript correspond to: 1 = PS, 2 = FE, 3 = RUD, so that the stiffness K12

corresponds to the stiffness along the PS-FE direction.

TABLE 2 | Subject-specific equilibrium postures (q∗) estimated via NIO from the

average postural strategy.

[rad] Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6

q∗
PS

0.26 0.51 0.06 0.36 0.35 0.23

q∗
FE

−0.08 0.11 0.04 0.25 0.12 0.03

q∗
RUD

0.13 −0.11 −0.19 −0.09 −0.07 −0.04

In summary, task-space curvature and hysteresis appear to
be subject- and movement-specific and the model can capture
most of this features for the majority of movements and
subjects.

The experimental and simulated joint space trajectories are
shown in Figure 7 (only outbound and inbound movements
from the (E) the (W) target are shown). All subjects show high
variability when coordinating the PS rotation (red area), most
likely because this is the joint that adds redundancy to the
pointing task. The model can accurately reproduce the average
FE (magenta color) and RUD (green) trajectories for most of
the subjects and movements, while for PS rotations, there are
larger errors between the average experimental trajectory and the
model.

At the starting and ending times of each movement, i.e.,
when the wrist is stationary, the model predicted postures only
depends on the estimated parameters KJ and q∗. So, the larger
the error between the model and the experimental posture, the
less accurate is the estimate of KJ and q∗. Because we are setting
W proportional to KJ , part of the errors between the model and
the experimental trajectories may be due to the error between
the real intrinsic subject stiffness and the one estimated from the
data. In addition, the model does not take into account inertial
and gravitational contributions. While the former has very little
effect on wrist and forearm rotations (Peaden and Charles, 2014),
gravity torques have been found to be non-negligible (Peaden and
Charles, 2014).

Figure 8 compares the experimental task-space tangential
velocity profile and those predicted by the model for a
representative subject. The time-varying extrinsic spring
(Equation 8) reproduces bell-shaped velocity profiles similar to
the experimental ones, although, task-space velocities predicted
by the model tend to be larger than the experimental ones.

4. CONCLUSION

Motion planning and postural control in the presence of
kinematic redundancy continue to be central topics in both
neuroscience and robotics. For example, it is still debated
why hand movements follows roughly straight-line paths in
some experimental conditions while they are curved in others
experimental settings. For decades, minimum principles (such as
minimum-jerk, minimum variance, and so forth) and optimal
control have been used as a tool to model and capture human-
like trajectories. Although successful in capturing some features
of human movements, when formulated in joint space, these
approaches are not only computational demanding but also fail
to capture postural control mechanisms such as Donders’ law.
While it is still unclear how the brain solves redundancy (Mussa-
Ivaldi et al., 2011), in robotics kinematic redundancy has been
tackled with the task-space control framework that combines
local optimization andW-weighted generalized pseudo-inverses.
However, as robots start to look more anthropomorphic and
to interact with humans, they also need to display natural
and intuitive movements and posture. Hence, roboticists are
looking at bio-inspired approaches to plan and control task-
space trajectories, null-space movements and equilibrium robot
postures. We recently addressed the problem of postural control
and trajectory planning by combining classical robotic motion
planning (velocity resolution control) with neuroscientific
evidence and theories of human motor control. We proposed
a general and unifying force-field based posture and movement
planner that was primarily tested in terms of human-like
postural control (equilibrium postural strategies) (Tommasino
and Campolo, 2017). In this work we extend our previous results
by investigating the trajectory (both in task and joint space)
predicted by a specific instance of our general computational
framework: the λ0-PMP.More specifically, we focused on human
motor strategies during redundant pointing tasks performedwith
wrist (and forearm) rotations. In a previous work, Charles and
Hogan (2010) showed that when pointing with the wrist, task-
space paths are curved and in general, inbound and outbound
movements follow different paths. In a successive work, they
posited that such features of wrist rotations are due to an

anisotropic joint stiffness matrix.

Here, we put forward the hypothesis that anisotropic intrinsic

damping, rather than stiffness, is primarily responsible for curved
task-space paths. The novel aspect of our approach is that our
model was fitted to capture postural strategies and, with the
sole hypothesis that intrinsic damping is proportional to stiffness
(Equation 7), the model also exhibited curvatures and hysteresis
in task-space performance remarkably similar to subject-specific
average motions. More specifically, we found that (i) task-space
paths are curved also in presence of kinematic redundancy,
extending thus the work of Charles and Hogan (2010) where
the PS axis was locked; (ii) curvature and hysteresis found in
experimental trajectories, on a subject-specific and target-specific
basis, are a possible consequence of postural constraints.

It should be noted that our computational framework is
capable of generating human-like task-space trajectories from
the only knowledge of the terminal target position. Hence, for
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FIGURE 6 | Experimental vs. Model predicted Anet. Error bars represent the standard deviation of the experimental ANET. Stars mark a model-predicted Anet that is

statistically different (p < 0.05) from the average experimental Anet.
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FIGURE 7 | Joint space trajectories (PS in red, FE in magenta and RUD in green), predicted by the model (dashed lines) and measured experimentally: mean

(continuous line) and standard deviations (color areas). The letters indicate the target sequence. For instance, the first movement is an outbound movement toward

the target (E), the second movement is an inbound movement from target (E) to target (C) and so forth.
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FIGURE 8 | Task space velocity profiles of a representative subject [mean (continuous line) and standard deviation] and those predicted by the λ0-PMP (dashed line).

robotic applications, task-space trajectories must not be pre-
programmed as in the classical task-space control approach, but
are a direct consequence of the intrinsic and extrinsic impedance
parameters (damping and stiffness) used in the model. For the
pointing task implemented in this work there is no preferred
task-space direction as subjects only receive the final target
position as desired target. Therefore, in the model, for the task-
space planner we used an isotropic elastic attractor to push the
simulated cursor on the desired target. This solution is not only
simple but, when combined with suitable intrinsic impedance
parameters also results in human-like wrist trajectories. However,
as also discussed in Tommasino and Campolo (2017) any task-
space force field can in principle be used as task-planner, and
therefore, for more complex robotic applications future works
will explore the possibility of integrating dynamic movement
primitives in our framework for the generation of adaptive and
compliant skills (Calinon et al., 2013). In summary, in addition
to the desired target location, our extended passive motion
paradigm requires only the knowledge of: (i) an intrinsic stiffness
matrix KJ and an equilibrium posture q0 that, combined with the
λ0 force field, allow the prediction of equilibrium (steady-state)
wrist postures compatible with experimental (subject-specific)
Donders’ laws: (ii) the movement duration T, from which both
the intrinsic and extrinsic time constants, of the joint-space
damping and task-space stiffness respectively, can be set to reach
the desired target in T seconds and with an equilibrium posture
compatible with Donders’ law.

There are of course many approximations and assumptions
in our model which, as mentioned, is not meant to predict exact
trajectories but rather capturing some basic features of human-
like motion. A major limitation is that the intrinsic stiffness KJ is
only a very simplified attempt to approximate the real, nonlinear,
time-variant mechanical stiffness typically of human arm. This
in turn affects not only the predicted postural strategies (i.e.,
wrist configuration at the beginning and ending of a movement)
but also the predicted trajectories as the relationship between
damping and stiffness is certainly more complex than the simple
proportionality assumed in Equation (7). Furthermore, we only
considered an isotropic task planner to investigate the effect
of joint damping on path curvatures. However, future works

need to compare how different and possibly anisotropic task
planners (Tommasino and Campolo, 2017), when combined
with anisotropic joint damping, predict subject-specific path’s
curvature.

A second limitation is that the λ0-PMP totally neglects
feedback, as it is meant to address motion planning rather than
execution. Our model is however useful at a planning stage, while
feedback should be incorporated for movement execution.

As a third limitation, our model is to be considered as a first
order postural and motor planner, in the sense that it does not
take into account the inertial properties of human or robotic
arms. This is a specific choice (in some cases an inertia might
not even be available, e.g., in motor imagery scenarios) and
the model could be extended to include inertial properties. In
fact, the role that the manipulator intrinsic inertia would have
is the same that the intrinsic damping has in our model. Such
an approach would lead to models along the lines proposed
by Khatib et al. (2009). Our approach however, is similar to
Dietrich et al. (2015) where the manipulator joint stiffness (see
Equation 7), compared to manipulator inertia, has been shown
to be a more reliable weighting matrix for the calculation of
W-weighted pseudoinverse and null-space projector operator.

In conclusion this work presents an extended version of the
PMP that can deal with kinematic redundancy in compliance
with Donders’ law and solve the posture/movement problem.
Just like the PMP, our model can find extensive use in planning
human-like motions for humanoid robots and, at the same time,
be able to capture natural postures in compliance with Donders’
Law.
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