Clinical implementation of pharmacogenetics (PGx) into routine care will elevate the current paradigm of treatment decisions. However, while PGx tests are increasingly becoming reliable and affordable, several barriers have limited their widespread usage in Canada. Globally, over ninety successful PGx implementors can serve as models. The purpose of this paper is to outline the PGx implementation barriers documented in Quebec (Canada) to suggest efficient solutions based on existing PGx clinics and propose an adapted clinical implementation model. We conclude that the province of Quebec is ready to implement PGx.
Introduction: Several polymorphisms altering the NAT2 activity have already been identified. The geographical distribution of NAT2 variants has been extensively studied and has been demonstrated to vary significantly among different ethnic population. Here, we describe the genetic variability of human N-acetyltransferase 2 (NAT2) gene and the predominant genotype-deduced acetylation profiles of Brazilians.
Methods: A total of 964 individuals, from five geographical different regions, were genotyped for NAT2 by sequencing the entire coding exon.
Results: Twenty-three previously described NAT2 single nucleotide polymorphisms (SNPs) were identified, including the seven most common ones globally (c.191G>A, c.282C>T, c.341T>C, c.481C>T, c.590G>A, c.803A>G and c.857G>A). The main allelic groups were NAT2*5 (36%) and NAT2*6 (18.2%), followed to the reference allele NAT2*4 (20.4%). Combined into genotypes, the most prevalent allelic groups were NAT2*5/*5 (14.6%), NAT2*5/*6 (11.9%) and NAT2*6/*6 (6.2%). The genotype deduced NAT2 slow acetylation phenotype was predominant but showed significant variability between geographical regions. The prevalence of slow acetylation phenotype was higher in the Northeast, North and Midwest (51.3%, 45.5% and 41.5%, respectively) of the country. In the Southeast, the intermediate acetylation phenotype was the most prevalent (40.3%) and, in the South, the prevalence of rapid acetylation phenotype was significantly higher (36.7%), when compared to other Brazilian states (p < 0.0001). Comparison of the predicted acetylation profile among regions showed homogeneity among the North and Northeast but was significantly different when compared to the Southeast (p = 0.0396). The Southern region was significantly different from all other regions (p < 0.0001).
Discussion: This study contributes not only to current knowledge of the NAT2 population genetic diversity in different geographical regions of Brazil, but also to the reconstruction of a more accurate phenotypic picture of NAT2 acetylator profiles in those regions.
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals’ genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current “one-size-fits-all” approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Nanopore sequencing has been examined as a method for rapid and high-resolution human leukocyte antigen (HLA) typing in recent years. We aimed to apply ultrarapid nanopore-based HLA typing for HLA class I alleles associated with drug hypersensitivity, including HLA-A*31:01, HLA-B*15:02, and HLA-C*08:01. Most studies have used the Oxford Nanopore Ligation Sequencing kit for HLA typing, which requires several enzymatic reactions and remains relatively expensive, even when the samples are multiplexed. Here, we used the Oxford Nanopore Rapid Barcoding kit, which is transposase-based, with library preparation taking less than 1 h of hands-on time and requiring minimal reagents. Twenty DNA samples were genotyped for HLA-A, -B, and -C; 11 samples were from individuals of different ethnicity and nine were from Thai individuals. Two primer sets, a commercial set and a published set, were used to amplify the HLA-A, -B, and -C genes. HLA-typing tools that used different algorithms were applied and compared. We found that without using several third-party reagents, the transposase-based method reduced the hands-on time from approximately 9 h to 4 h, making this a viable approach for obtaining same-day results from 2 to 24 samples. However, an imbalance in the PCR amplification of different haplotypes could affect the accuracy of typing results. This work demonstrates the ability of transposase-based sequencing to report 3-field HLA alleles and its potential for race- and population-independent testing at considerably decreased time and cost.
Drug-induced delayed hypersensitivity reactions (DHRs) is still a clinical and healthcare burden in every country. Increasing reports of DHRs have caught our attention to explore the genetic relationship, especially life-threatening severe cutaneous adverse drug reactions (SCARs), including acute generalized exanthematous pustulosis (AGEP), drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens–Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). In recent years, many studies have investigated the immune mechanism and genetic markers of DHRs. Besides, several studies have stated the associations between antibiotics-as well as anti-osteoporotic drugs (AOD)-induced SCARs and specific human leukocyte antigens (HLA) alleles. Strong associations between drugs and HLA alleles such as co-trimoxazole-induced DRESS and HLA-B*13:01 (Odds ratio (OR) = 45), dapsone-DRESS and HLA-B*13:01 (OR = 122.1), vancomycin-DRESS and HLA-A*32:01 (OR = 403), clindamycin-DHRs and HLA-B*15:27 (OR = 55.6), and strontium ranelate (SR)-SJS/TEN and HLA-A*33:03 (OR = 25.97) are listed. We summarized the immune mechanism of SCARs, update the latest knowledge of pharmacogenomics of antibiotics- and AOD-induced SCARs, and indicate the potential clinical use of these genetic markers for SCARs prevention in this mini review article.
Frontiers in Pharmacology
Innovations in Pharmacogenomics: Embracing Diversity and Clinical Application