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Editorial on the Research Topic
New directions of digital economy, energy transition, and climate change
in the post-COVID-19 era: application of machine learning and other
advanced analytical techniques

1 Introduction

Since the outbreak of COVID-19, international energy prices have fluctuated
dramatically, leading to historic shifts in energy supply and demand and causing
significant disruption to the global energy system (Yu et al., 2021). In response,
countries worldwide have embraced green, low-carbon, efficient, and renewable energy
as key components of energy transition (Yu et al., 2023). As the world moves into the post-
COVID-19 era, accelerating the clean use of fossil fuels and upgrading energy structures has
become a critical challenge for all nations (Shen et al., 2024). The pandemic has catalyzed
transformative changes in lifestyles, production methods, economic systems, and
governance models, pushing humanity toward the digital economy (Wang et al., 2023).
The digital economy, empowered by data and technology, has spurred industrial
refinement, automation, and intelligent development, reducing energy and resource
consumption while providing favorable conditions for global industrial upgrades,
energy transition, and climate action. The digital economy’s wide application across
industries, from energy to manufacturing and transportation, has proven to reduce CO2

emissions, offering technical support for energy transition and climate improvement (Lu
et al., 2023). This editorial synthesizes findings from 16 papers that explore the intersections
of the digital economy, energy transition, and climate change, focusing on the application of
machine learning and advanced analytical techniques in the post-pandemic era. These
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studies illuminate new pathways for reducing carbon emissions,
enhancing green innovation, and navigating the global energy
transition.

2 Digital economy and carbon
emission reduction

The development of the digital economy has emerged as a
critical factor in reducing carbon emissions, particularly in the
context of industrial and regional transformations (Lu et al.,
2023). Several studies provide empirical evidence that digital
technologies can reduce carbon emissions by optimizing
industrial structures, improving resource allocation, and fostering
green innovation. Lyu et al. examined how digital economy
development in China has reduced carbon emission intensity,
with regional disparities showing more significant effects in the
eastern provinces. Similarly, Liu et al. demonstrated how the
integration of digital technologies in Chinese cities improves
carbon efficiency, particularly in large-scale and resource-based cities.

The relationship between digitalization and carbon emissions
extends beyond individual industries. Lyu et al. explored how digital
value chain embeddedness impacts trade-related carbon emissions
across 41 countries, revealing an inverted U-shaped relationship.
The environmental benefits of digitalization only become apparent
once a country reaches a certain threshold of digital integration, with
developing countries lagging behind in realizing these benefits. Jiang
et al. used the panel data of 275 cities in China to analysis the non-
linear effect of digital economy on industrial structure upgrading
and urban carbon emissions. In addition, Li et al. used the CFPS data
in China and investigated the influence of digital economy on
private donation behavior.

3 Industrial transformation and green
innovation

Industrial sectors are at the forefront of the global push for
carbon neutrality, and digital technologies are playing an
increasingly important role in driving green innovation. Liu et al.
focused on China’s industrial green transformation, which is being
driven by digitalization and technological advances. The study
identified regional disparities, with more developed areas making
faster progress in green industrial practices. This echoes the findings
of Zhong et al., which examined the coupling between the digital
economy and green development in Guangdong Province. The
research showed that cities with stronger digital economies tend
to have better green development outcomes, but significant regional
imbalances persist.

The construction industry, traditionally a high-emission
sector, is also undergoing a digital transformation. Yang et al.
explored how digital construction technologies are reducing
carbon emission intensity in Chinese enterprises by enhancing
innovation capacity and improving productivity. This paper
highlights the potential for digital technologies to accelerate
green transitions in traditionally resource-intensive industries,
particularly through the adoption of new tools and processes. The
role of digital technologies in supporting green innovation is

further explored in Gao et al., which usedmachine learning to assess
the impact of industrial land-use policies on firms’ green technology
innovation. The study found that reforms in land-use policies
significantly promote green innovation, especially in regions with
advanced digital infrastructure.

4 Energy transition and the role of
digital infrastructure

The global energy transition is a key component of efforts to
combat climate change, and digital technologies are playing a crucial
role in facilitating this shift. Yan et al. examined the impact of the
Broadband China Policy on rural households’ adoption of clean
renewable energy. The study found that digital infrastructure
significantly influences clean energy adoption, though the effects
vary by region. The role of financial systems in supporting energy
transitions is also highlighted in Jia et al., which investigated how
financial openness influences energy structure transformation. The
study found that financial reforms are critical to enabling
investments in clean energy, particularly in regions with
underdeveloped financial markets.

Machine learning and artificial intelligence (AI) are also being
applied to optimize energy use and reduce emissions. Xie and Wang
explored the nonlinear carbon reduction effects of AI across Chinese
provinces, finding that AI technologies can significantly reduce
carbon emissions, particularly in regions with high levels of
digital infrastructure and economic development. In addition, Li
and He used the text analysis method to directly construct the
national, provincial, and prefecture-level environmental policy
uncertainty index (EPUI) in China and investigated the impact
of EPUI on China’s energy transition.

5 Corporate sustainability, ESG, and the
post-pandemic green shift

In the post-pandemic era, corporate sustainability efforts are
becoming increasingly focused on environmental, social, and
governance (ESG) performance. Several papers explore how
digital technologies and machine learning are enhancing
corporate efforts to reduce carbon emissions and align with ESG
goals. Ye and Xu provided empirical evidence that strong ESG
performance is associated with significant reductions in corporate
carbon emissions. The study highlights that digital transformation
amplifies the effectiveness of ESG strategies, suggesting that
companies with advanced digital tools are better positioned to
meet their sustainability goals. The impact of resource
dependence on corporate ESG performance is further examined
in Fei et al., which found that companies in regions with high
resource dependence tend to have lower ESG scores, particularly in
environmental and social dimensions. This study argued that digital
tools can help mitigate the negative effects of resource dependence
by enabling more efficient resource use and improving corporate
governance practices.

The COVID-19 pandemic has also reshaped corporate
investment strategies, with implications for green development.
He et al. documented the negative impact of the pandemic on
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green investment in China, as firms faced financial constraints that
limited their ability to invest in sustainable projects. However, the
study also found that while overall investment levels were
maintained, the structure of investments shifted away from green
initiatives. This finding underscores the importance of targeted
financial policies to support green investment in the post-
pandemic recovery.

6 Conclusion

All the 16 papers reviewed in this editorial collectively highlight
the transformative potential of the digital economy, machine
learning, and advanced analytical techniques in driving energy
transitions and addressing climate change. This unique edition
encompasses four distinct yet interconnected thematic areas that
hold significant relevance in the context of the digital economy,
energy transition, and climate change in the post-COVID-19 era.
These areas include Digital Economy and Carbon Emission
Reduction, Industrial Transformation and Green Innovation,
Energy Transition and the Role of Digital Infrastructure, and
Corporate Sustainability, ESG, and the Post-Pandemic Green
Shift. Collectively, these areas offer numerous practical pathways
and enrich the existing body of literature by seamlessly integrating
the digital economy into energy transition strategies aimed at
mitigating the impact of climate change.

Digital technologies are already contributing to carbon emission
reductions, enhancing industrial green innovation, and supporting
the global shift toward renewable energy. However, significant
challenges remain, particularly in ensuring equitable access to
digital infrastructure and financial resources, which are critical to
realizing the full potential of these technologies. As we move into the
post-COVID-19 era, it is essential for policymakers, businesses, and
researchers to collaborate on leveraging digital tools to accelerate the
transition to a sustainable, low-carbon economy. By integrating
digitalization with green policies and supporting innovation across
industries, the global community can make meaningful progress
toward achieving climate goals and ensuring a resilient,
sustainable future.

In order to realize these objectives, it is essential to expand future
research endeavours into diverse domains. Noteworthy areas for
prospective investigation, as highlighted by the authors, include
extending the research scope across various industries and
geographies to afford a comprehensive insight into the impact of
ESG performance on carbon reduction within distinct business
environments (Ye and Xu). Furthermore, it is necessary to delve
into the dynamics of the interplay between the digital economy and

sustainable development pre- and post-epidemic, elucidating the
coupling and coordination mechanisms, as well as to holistically
assess the repercussions of the COVID-19 outbreak on the
interrelationship between digital economy and sustainable
practices (Zhong et al.). Lastly, a pertinent suggestion posits the
necessity of investigating the influence of AI on carbon emissions
through an analysis of spatial spillover effects (Xie andWang). These
delineated avenues for future research not only promise valuable
insights for forthcoming studies but also present opportunities for
the inception of specialized editions to delve deeper into these
pertinent themes.
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Carbon emissions from human activities are the main cause of climate warming.

Under the background of economic and social digital transformation, accurately

assessing the carbon emission reduction effect of the development of the digital

economy is of great significance for countries to deal with climate warming in

the post-COVID-19 era. This paper constructs a dynamic evaluation model of

orthogonal projection to measure the level of digital economy development at

the provincial level in China from 2007 to 2019. On this basis, the panel fixed

effects model and mediation model are used to empirically test the impact of

digital economy development on carbon emission intensity and its mechanism.

The results indicate that: (1) The development of China’s digital economy is

unbalanced among regions, showing a geospatial pattern of decreasing from

east to west. (2) China’s carbon emission intensity has a trend of decreasing

year by year, and there are geospatial differences of “high in the west and low

in the east” and “high in the north and low in the south.” (3) The digital economy

development can effectively reduce regional carbon emission intensity through

industrial structure optimization effect and resource allocation effect, and the

industrial structure optimization effect can suppress carbon emission intensity

more obviously. (4) The development of digital economy in different regions

has different degrees of reducing carbon emission intensity. The development

of digital economy in the eastern region has a stronger inhibitory effect on

carbon emission intensity than that in the middle and western regions, and the

development of digital economy in economically developed regions can suppress

carbon emission intensity more. This paper provides enlightenment for policy

makers to deal with climate warming.

KEYWORDS

carbon emission intensity, digital economy, dynamic orthogonal projection, geospatial
differences, mediation model

1. Introduction

Global warming has seriously affected the living environment of human beings, and
coping with climate warming has become a common issue faced by all countries in
the world (Liu et al., 2021). Existing studies have shown that carbon dioxide emitted
by human economic activities is the main cause of climate warming (An et al., 2021).
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Therefore, controlling carbon dioxide emissions is the main way
for countries around the world to cope with climate warming.
As the world’s second largest economy, China is a major emitter
of global carbon dioxide (Yu et al., 2021). According to statistics
from the British Petroleum database, China’s carbon emissions
reached 6.926 billion tons in 2006, surpassing the United States
to become the world’s largest carbon emitter; and in 2021, China’s
carbon emissions rose to 10.523 billion tons, accounting for about
33% of global carbon emissions. As a responsible major country,
China has taken the initiative to take responsibility for carbon
emission reduction. At the seventy-fifth session of the United
Nations General Assembly, the Chinese government made it clear:
“China strives to achieve carbon peak by 2030 and achieve carbon
neutrality by 2060.” The proposal of the “dual carbon goal” shows
China’s determination to cope with climate warming, which is also
in line with the green development concept advocated by China
(Wang et al., 2023). However, according to the enlightenment
brought by the environmental Kuznets curve and the practical
experience of the carbon emission reduction process of developed
countries, there are multiple challenges in achieving the “dual
carbon goal” in China (Shi et al., 2021). Compared with developed
countries, China not only faces the pressure of carbon emission
growth brought by incremental energy demand, but also needs to
improve the low-carbon substitution of stock energy. At the same
time, the huge development differences between regions in China
also constitute the constraints of achieving the “dual carbon goal”
(Guo et al., 2023).

It is worth noting that the systematic promotion stage of the
“dual carbon goal” is also the stage of rapid development of the
digital economy. At present, digital technology represented by
information and communication technology, cloud computing,
the Internet and artificial intelligence has made innovative
breakthroughs and achieved deep integration with the real
economy. According to the White Paper on the Development
of China’s Digital Economy (2022), the scale of China’s digital
economy accounted for more than 1/3 of the gross domestic
product (GDP) in 2021, and the average annual growth rate was
higher than the growth rate of GDP. With the rapid development
of the digital economy, the environmental effects of the digital
economy have received extensive attention from the academic
community. Some scholars believe that the information and
communication technology industry and e-commerce industry in
the digital economy, as environmentally friendly industries, can
optimize the industrial structure by squeezing out industries with
high energy consumption and high emissions, thus promoting
economic and social low-carbon development (Zhang W. et al.,
2022; Lyu et al., 2023). Other scholars believe that the wide
application of digital technology increases electricity consumption
and thus has a negative impact on the environment (Salahuddin
and Alam, 2015; Lin and Huang, 2023). So, what is the impact of
digital economy development on carbon emission intensity? What
is its impact mechanism? Clarifying this issue not only helps to
accurately assess the carbon emission reduction effect of the digital
economy, but also provides useful suggestions for China to achieve
the “dual carbon goal.”

Based on this, this paper measures the carbon emission
intensity of Chinese provinces in 2007–2019 under the IPCC
sectoral accounting algorithm. In addition, a framework for
measuring the development level of digital economy development

at the provincial level in China was constructed, and a dynamic
evaluation method based on orthogonal projection was used to
measure the development level of digital economy in 30 provinces
(excluding Tibet, Hong Kong, Macao, and Taiwan) in China. On
the basis of examining the evolution trend of China’s regional
carbon emission intensity and digital economy development level,
the panel fixed effects model and mediation model were used to
empirically test the impact and mechanism of digital economy
development on carbon emission intensity.

The possible contributions of this paper are as follows:
First, this paper incorporates the digital economy and carbon
emission intensity into the same analytical framework, and
divides the development of the digital economy into the
digital industrialization dimension and the industrial digitization
dimension, and respectively examines their impact on carbon
emission intensity. Second, this paper constructs the index system
of digital economy development level at the provincial level,
and uses the dynamic evaluation method based on orthogonal
projection to measure the digital economy development level of
each province in China, which enriches the research content of
existing digital economy measurement. Third, this paper further
examines the impact mechanism of digital economy development
on carbon emission intensity, and finds that digital economy
reduces carbon emission intensity through industrial structure
optimization effect and resource allocation effect.

2. Literature review and theoretical
hypothesis

2.1. Digital economy development and
carbon emission intensity

With the increasing prominence of global warming, carbon
emission reduction has received continuous attention from the
academic community (Liu et al., 2021; Yi et al., 2022). Among them,
the influencing factors of carbon emissions are the focus of scholars’
research (Liu et al., 2022). Domestic and foreign scholars have
discussed the influencing factors of carbon emissions with different
methods and from different angles (Cai et al., 2021; He et al., 2022).
Scholars mainly use Kaya identity (Ma and Cai, 2018; Eskander and
Nitschke, 2021), Divisia index method (Ma and Cai, 2018; Eskander
and Nitschke, 2021), and Laspeyres index decomposition method
(González and Martínez, 2012; Chen et al., 2021) decompose the
influencing factors of carbon emissions. Although the conclusions
of different methods are different, it is generally believed that
technological innovation (Zhang G. et al., 2022), energy structure
(Pui and Othman, 2019), industrial structure (Han and Jiang, 2022),
and economic growth (Xiao and Peng, 2023) are the main factors
affecting carbon emissions.

With the development of the digital economy, scholars have
begun to pay attention to the relationship between the digital
economy and carbon emissions (Yang et al., 2022). The relationship
between digital economy development and carbon emissions is
complex. The development of digital economy has both positive
and negative effects on the environment (Moyer and Hughes,
2012; Dong et al., 2022). Although the application of digital
technology improves the efficiency of energy conservation and
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emission reduction and reduces the loss in the production process,
the expansion of production scale increases energy demand and
may lead to an increase in total carbon emissions (Zhou et al., 2019;
Wang et al., 2022b). Andrae and Edler (2015) found that the rapid
development of information and communication technology (ICT)
has been accompanied by an exponential increase in total carbon
emissions. Salahuddin and Alam (2015) argued that the wide
application of digital technology has increased data generation,
transmission and processing, resulting in an increase in demand
for electricity, which in turn increases carbon emissions.

Other scholars believe that the industrial linkage emission
reduction effect produced by the development of the digital
economy plays a greater role than the incremental effect of energy
consumption (Koomey et al., 2013; Yi et al., 2022). Yi et al.
(2022) used provincial panel data to evaluate the relationship
between digital economy and carbon emissions, and found that the
development of digital economy has significant carbon emission
reduction effects. The research of Niu et al. (2022) shows that digital
investment improves energy efficiency, which in turn reduces
carbon emissions in the production process. Zhang W. et al.
(2022) believes that the development of the digital economy has
produced more new clean industries, which has a crowding-
out effect on industries with high energy consumption and high
emissions, thereby reducing carbon emissions. Han and Jiang
(2022) further examined the relationship between digital economy
and carbon production efficiency, and found that the digital
economy development reduced energy consumption per unit of
GDP and improved carbon productivity. Based on the differences
in the existing research conclusions, this paper further examines
the environmental effects of the development of digital economy.
Different from the existing research, this paper examines the
impact and mechanism of digital economy development on carbon
emission intensity from the regional level, and further considers the
heterogeneity of geospatial differences and economic development
differences. Based on the above literature conclusions, this paper
proposes hypothesis 1.

H1: The digital economy development has positive and
negative effects on carbon emissions, but an inhibitory effect
on regional carbon emission intensity.

2.2. Impact mechanism of digital
economy development on carbon
emission intensity

As a new economic form, digital economy has become a
new driving force for the upgrading of industrial structure (Chen
et al., 2022). Existing research shows that the digital economy
promotes the upgrading of industrial structure through industrial
integration effect and technology diffusion effect (Hao et al.,
2023). The internal logic of industrial upgrading shows that the
emergence of new industries and new models will gradually
replace traditional industries and traditional economic models,
and drive the upgrading of traditional industries through input-
output linkages, thus realizing the comprehensive optimization of
industrial structure. In the digital age, the speed of technology

diffusion and change is faster than ever before, which provides
favorable conditions for industrial organization innovation, but
also enhances the competition mechanism and promotes the
continuous optimization of industrial organization (Tang and Li,
2022). Industrial digitalization will also accelerate the elimination
of inefficient enterprises, thereby improving the overall production
efficiency of the industry and realizing the optimization of the
industrial structure. The optimization of industrial structure
improves the efficiency of energy utilization, which has a positive
impact on reducing carbon emission intensity (Hao et al., 2023).
Based on this, hypothesis 2 is proposed.

H2: The digital economy development reduces carbon
emission intensity by optimizing industrial structure.

The internal structure of economic form determines the
efficiency of resource allocation, and the allocation and
combination mode of various production factors is the main
factor affecting carbon emission intensity (Wang et al., 2021).
Under the digital economic form, economic entities can obtain
more adequate market information, and the matching between
supply and demand is more accurate, which can improve the
resource search efficiency of market entities (Wu et al., 2022). At
the same time, the application of digital technology can improve
the utilization efficiency of production factors by optimizing the
production process (Zhang Z. et al., 2022). Intelligent production
process reduces energy waste, and improves energy utilization.
Digital economy improves resource allocation by improving
resource search and resource utilization efficiency, which helps to
reduce undesired output in the production process and reduce
carbon emission intensity (Chen, 2022). Based on this, hypothesis
3 is proposed.

H3: The digital economy development reduces carbon
emission intensity by improving resource allocation.

Digital industrialization and industrial digitization provide a
collaborative environment for innovation activities and accelerate
the progress of carbon emission reduction technology (Yin and
Yu, 2022). The improvement of innovation efficiency depends on
the efficient interconnection of information (Niu et al., 2023).
The digital economy based on information and communication
technology provides an efficient way for innovation subjects
to obtain information and enriches the information resource
elements needed for innovation (Kohli and Melville, 2019).
In addition, the improvement of innovation efficiency requires
efficient collaboration between innovation subjects (Zhuo and
Chen, 2023). Compared with the traditional economic form, the
digital economy makes the innovation subjects more closely linked
and more likely to produce collaborative innovation effects (Li
et al., 2023). The application of digital innovation achievements
in traditional production methods has an indirect impact on
improving efficiency and reducing pollution (Gao et al., 2022).
Based on this, hypothesis 4 is proposed.

H4: The digital economy development reduces carbon
emission intensity by improving innovation efficiency.
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3. Materials and methods

3.1. Measurement of level of digital
economy development

3.1.1. Method
In order to ensure the objectivity and accuracy of the

measurement results, and consider the degree of difference
of the evaluation index values, this paper uses a dynamic
evaluation method based on orthogonal projection to measure
the digital economy development level of 30 provinces
in China.

It is assumed that the digital economy development level of
v1, v2,. . . , vn in a period of time should be measured. Therefore, it
is necessary to collect the original data of all the evaluated objects,
which includes m indicators during t1, t2,. . . , tN . Based on this,
the panel data matrix xij(tk) (i = 1, 2,. . . , n; j = 1, 2,. . . ,m; k =
1, 2,. . . ,N) can be obtained. Since the dimensions are different
between the data, the original data needs to be adjusted to
dimensionless. This paper uses a globally improved normalization
method to process the data, which results in a standardized
matrix Y(tk) = yij(tk). In the process of calculating the weighted
normalization matrix, this paper first uses the entropy value
method to determine the index weight, and then determines the
ideal solution and the negative ideal solution. In all periods and
all evaluated objects, the maximum value of the j -item indicator
is called the ideal solution of the indicator, while the minimum
value is called the negative ideal solution of the indicator. Finally,
the “vertical” distance Pi(tk) of the ideal solution of each region
is calculated. For each evaluated object, the distance between the
negative ideal solution and the ideal solution is constant, so there
are:

Pi(tk) =
∣∣(a− b) · (a− Vi(tk))

∣∣ (1)

where a represents the ideal solution F+ after translation, that is,
−→
0 vector, and b represents the negative ideal solution F− after

translation. Further simplifying Equation 1, we can get:

Pi(tk) =
∣∣F− · Vi(tk)

∣∣ = m∑
j = 1

f−j vij(tk) (2)

where Pi(tk) values are smaller, the better. The Pi(tk) is standardized
to obtain the final evaluation value. After standardization Pi(tk)
becomes P∗i (tk), as follows:

P∗i (tk) =
max1 ≤ i ≤ n Pi(tk)− Pi(tk)

max1 ≤ i ≤ n Pi(tk)
(3)

where P∗i (tk) is the dynamic evaluation score of the evaluated object
i in period tk. Further, P∗i (tk) pairs are weighted twice to calculate
the comprehensive evaluation score P∗i of the evaluated object i in
the period from t1 to tN . Based on the research of Zhu and Lei
(2012), the time weight (wk) is calculated by using the idea of “thick
today and thin ancient”. That is, within the time period [t1, tN ], the
weight of the tk period is as follows:

wk = k/
N∑

k = 1

k (k = 1, 2, · · · ,N) (4)

where,
∑N

k = 1 wk = 1 and wk > 0. According to the Equation 4,
the weight values at different times can be calculated, and then the
secondary weighted weight value can be obtained. Therefore, the
total evaluation value si of i in the time period [t1, tN ] is:

P∗i =
N∑
k=1

wkP∗i (tk) (5)

where, wk represents the time weight value at time tk; P∗i (tk)
represents the evaluation value of evaluation object i at the tk
moment, and its size and ranking can be calculated by Equation
3. The evaluation value P∗i and total ranking of the ith evaluation
object in the time period [t1, tN ] can be calculated by Equation 5.

3.1.2. Indicators
Based on the consideration of the comprehensiveness,

representativeness and availability of evaluation indicators, and
combined with relevant literature (Chen et al., 2022; Wang
et al., 2022a; Zhang L. et al., 2022), this paper constructs
the measurement system of digital economy development in
various provinces in China around digital industrialization

TABLE 1 Evaluation index system of digital economy development.

First-level
index

Second-level
index

Third-level index Weight

Digital
industrialization

Industry scale Number of employees in
information service industry

0.0543

Total amount of the
telecommunication service

0.0555

Communications
capability and
service level

Internet penetration rate 0.0662

Long-distance optical cable
line length

0.0638

Number of Internet
broadband access ports

0.0566

Mobile telephone switch
capacity

0.0622

Mobile subscription 0.0664

Industrial
digitalization

Agriculture Agricultural added value 0.0610

Rural electricity consumption 0.0487

Industry Industrial added value 0.0582

Proportion of patents granted 0.0609

Proportion of revenue from
new product sales

0.0650

Service industry The added value of the tertiary
industry

0.0582

Per capita insurance premium
income

0.0611

Number of mobile Internet
users

0.0612

Total retail sales of consumer
goods per capita

0.0634

Per capita express delivery
volume

0.0371
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and industrial digitalization, and the specific indicators are
shown in Table 1. The data comes from the “China Statistical
Yearbook,” “China Information Yearbook,” and CSMAR digital
economy database.

3.1.3. Results
Table 2 shows the score of digital economy development

level of 30 provinces in China from 2007 to 2019. The results
show that the score of digital economy development level in
each province has an obvious growth trend in 2007–2019.
From the perspective of time nodes, 2007–2015 is the initial
period of digital economy development. This period is the stage
of rapid integration of digital technology and real economy,
and the growth rate of digital economy is slow. 2016–2019
is the stage of rapid development of the digital economy,
which is mainly due to the government’s strong investment in
digital construction.

In order to show the differences in the development level of
digital economy among different regions, ArcGis software was used
to draw the spatial pattern distribution map of digital economy
development in each province of China in 2007, 2013, and 2019.
It can be seen from Figure 1 that the development of China’s
digital economy is uneven among regions, showing a geographical
spatial pattern of decreasing in the east, middle and west, and
obvious differences between the east and the west. From the time
dimension, the development level of digital economy in the east,
middle and west regions have a trend of increasing year by year.
This reflects the phenomenon of “digital divide” caused by the
imbalance of development between regions in the era of digital
economy, and advanced regions have more advantages in the
development of digital economy than backward regions.

3.2. Measurement of carbon emission
intensity

3.2.1. Method
To study the impact of the digital economy on carbon emissions

under the “dual carbon goal”, we must first measure the carbon
emissions. In this paper, the carbon emission coefficient method
is used to measure China’s interprovincial carbon emissions. The
required data are the amount of energy consumption in each
province and city and the corresponding carbon emission factor.
Among them, the main types of energy consumption that cause
carbon emissions are coal, gasoline, kerosene, crude oil, coke, diesel,
fuel oil and natural gas. Among them, the carbon emission factors
of various energy sources need to be estimated. In this paper,
the carbon emissions of each province are measured under the
IPCC sectoral accounting algorithm. The calculation formula is as
follows:

Cit =
∑

(Eijt × δj × ηj) (6)

among them, Cit represents the estimated carbon emissions
of province i in t year; Eijt represents j energy consumption of
province i in t year; δj is the average low calorific value of j energy;
ηj is the carbon emission coefficient of j energy, and the relevant
values are shown in Table 3.

Carbon emission intensity is the CO2 emission per unit of real
GDP, and its calculation formula is as follows:

CIit =
Cit

GDPit
(7)

among them, CIit is the carbon emission intensity of i province
in t year; Cit represents the carbon emissions of province i in t year;
GDPit represents the real GDP of province i in t year.

3.2.2. Results
According to the calculated carbon emission intensity data of

each province, the spatial distribution map of carbon emission
intensity of each province in China in 2007, 2013, and 2019 is
drawn. As shown in Figure 2, China’s carbon emission intensity
shows the geographical spatial differences of “high in the west
and low in the east” and “high in the north and low in the
south.” Resource-based provinces bear more carbon emissions,
and the carbon emission intensity in economically developed
regions is lower, indicating that there is a “profit and loss
deviation” phenomenon in China’s carbon emissions. From the
time dimension, the carbon emission intensity in various regions
of China has a trend of decreasing year by year. This shows that
since the 18th CPC National Congress, the concept of low-carbon
development advocated by China has been well implemented.

3.3. Research design

3.3.1. Model design
This paper constructs the following panel fixed effects model

to study the impact of digital economy development on carbon
emission intensity:

CIit = β0 + β1digitalit + ρXit + δt + ζi + εit (8)

In Equation 8, i, t represent province and year, respectively;
CIit is the dependent variable, namely carbon emission intensity.
The independent variable digitalit is the level of digital economic
development. Xit is the control variable; β0 is the intercept term; δt
is the year-fixed effects; ζi is the individual (province)-fixed effects;
εit is the random disturbance term. The research goal of this paper
is to test the impact of digital economy development on carbon
emission intensity at the provincial level in China, so it focuses on
the significance, direction and size of the coefficient β1.

3.3.2. Variables and data sources
The dependent variable is carbon emission intensity (CI).

The independent variable is the level of digital economic
development (digital). Mechanism variables include: Industrial
structure optimization (indust). Industrial structure optimization
is represented by the ratio of the tertiary industry to the secondary
industry (Zhao and Xi, 2022). Resource allocation (tfp). Resource
allocation is measured by total factor productivity of each province
(Xi and Mei, 2022). Innovation efficiency (innov). Innovation
efficiency is measured by DEA method (Li et al., 2018). According
to the existing research conclusions, this paper selects the following
control variables: Energy structure (es). Energy structure is an
important factor affecting the carbon emission intensity of region.
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TABLE 2 Score of digital economy development level.

Year 2007 2009 2011 2013 2015 2017 2019

Beijing 0.1707 0.1997 0.2400 0.3009 0.3869 0.4833 0.5709

Tianjin 0.0793 0.0825 0.0856 0.1056 0.1267 0.1749 0.2111

Hebei 0.0715 0.1103 0.1242 0.1636 0.1911 0.2405 0.3645

Shanxi 0.0372 0.0572 0.0637 0.0867 0.0953 0.1231 0.1823

Inner Mongolia 0.0298 0.0495 0.0616 0.0817 0.0960 0.1287 0.1817

Liaoning 0.0727 0.1003 0.1135 0.1478 0.1820 0.2092 0.2560

Jilin 0.0565 0.0977 0.0739 0.0643 0.0837 0.1208 0.1844

Heilongjiang 0.0414 0.0633 0.0673 0.0870 0.1041 0.1415 0.1821

Shanghai 0.1293 0.1622 0.1759 0.2662 0.3371 0.4602 0.5371

Jiangsu 0.1674 0.2148 0.2650 0.3520 0.4301 0.5145 0.7241

Zhejiang 0.1553 0.1883 0.2186 0.2923 0.4012 0.5405 0.7868

Anhui 0.0531 0.0759 0.0987 0.1258 0.1685 0.2212 0.3261

Fujian 0.0758 0.0993 0.1185 0.1568 0.1993 0.2503 0.3538

Jiangxi 0.0320 0.0410 0.0493 0.0743 0.1052 0.1494 0.2339

Shandong 0.1205 0.1648 0.1866 0.2369 0.2755 0.3363 0.4628

Henan 0.0754 0.1101 0.1181 0.1574 0.2015 0.2558 0.4093

Hubei 0.0753 0.0915 0.1068 0.1412 0.1850 0.2352 0.3479

Hunan 0.0764 0.4410 0.1017 0.1444 0.1758 0.2132 0.3152

Guangdong 0.2461 0.3083 0.3219 0.4132 0.5148 0.6731 1.0000

Guangxi 0.0515 0.0672 0.0679 0.0892 0.1063 0.1452 0.2268

Hainan 0.0095 0.0074 0.0359 0.0420 0.0437 0.0609 0.0866

Chongqing 0.0956 0.0936 0.1014 0.1029 0.1424 0.1736 0.2307

Sichuan 0.0898 0.1238 0.1224 0.1733 0.2213 0.2738 0.4157

Guizhou 0.0228 0.0330 0.0488 0.0568 0.0764 0.1090 0.1974

Yunnan 0.0329 0.0501 0.0582 0.0827 0.1041 0.1362 0.2258

Shaanxi 0.0427 0.0658 0.0785 0.0979 0.1216 0.1602 0.2523

Gansu 0.0164 0.0272 0.0357 0.0517 0.0614 0.0791 0.1303

Qinghai 0.0001 0.0069 0.0048 0.0169 0.0293 0.0534 0.0723

Ningxia 0.0000 0.0112 0.0175 0.0339 0.0464 0.0657 0.0913

Xinjiang 0.0236 0.0376 0.0514 0.0751 0.0928 0.1094 0.1753

FIGURE 1

Spatial distribution of China’s digital economy development level in 2007, 2013, and 2019.

The energy structure with too high proportion of coal often has
higher carbon emission intensity. Therefore, it is expressed by the
ratio of coal consumption to total energy consumption (Guan et al.,

2023). Population density (popu). Regions with higher population
density have greater demand for energy consumption and more
frequent socio-economic activities (He et al., 2023), which are more
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TABLE 3 Average low calorific value and carbon emission coefficient of various energy sources.

Type Raw coal Coke Gasoline Diesel oil Kerosene Crude oil Fuel oil Natural gas

δj (kj/kg) 20,908 28,435 43,070 42,652 43,070 41,800 41,816 38,931

çj (kg/TJ) 95,333 107,000 70,000 74,100 71,500 73,000 77,400 56,100

FIGURE 2

Spatial distribution of China’s carbon emission intensity in 2007, 2013, and 2019.

likely to affect carbon emission intensity. Foreign direct investment
(fdi). Foreign direct investment is expressed by the ratio of foreign
direct investment to real GDP. Openness to the outside (open).
Openness to the outside is expressed by the ratio of total import
and export to real GDP (Tiba and Belaid, 2020). Environmental
regulation (er). Environmental regulation is expressed by the
proportion of environmental pollution control investment in real
GDP.

The data sources of this paper are “China Statistical Yearbook”,
“China Social Statistical Yearbook” and statistical yearbooks of
various provinces and cities, the website of the National Bureau of
Statistics, CNRDS database, CEADs database, and Wind database.
Considering the availability of data, the panel data of 30 provinces
in China (except Tibet and Hong Kong, Macao, and Taiwan) from
2007 to 2019 are finally selected. Descriptive statistics of variables
are shown in Table 4.

4. Results and discussion

4.1. Benchmark regression results

Considering that regional differences and time factors may
affect the estimation results, this paper uses the fixed effect
model to estimate the parameters, and the results are shown in
Table 5. It can be seen from columns (1) and (2) of Table 5
that the regression coefficient of digital economy development
(digital) is negative at the 1% significance level, indicating that
the improvement of digital economy development level in each
region can promote the reduction of carbon emission intensity.
The core explanatory variables in columns (3) and (4) were
digital industrialization, and the core explanatory variables in
columns (5) and (6) were industrial digitalization, and the results
showed that the regression coefficients of digital industrialization
and industrial digitalization were significantly negative, indicating
that both inhibited the increase of carbon emission intensity.
However, there are differences in the inhibitory effect of the

two on carbon emission intensity. The absolute value of the
regression coefficient of digital industrialization is greater than that
of industrial digitization, indicating that digital industrialization
has a greater inhibitory effect on carbon emission intensity. In the
integration stage of digital economy and real economy, the process
of industrial digitization often lags behind digital industrialization,
which is the main reason for the difference in impact.

4.2. Endogenous treatment

Although carbon emission intensity is a relative quantity index,
which can alleviate endogenous problems to a certain extent, it
cannot rule out endogenous problems caused by missing variables.
If the factors that affect both the digital economy and the carbon
emission intensity are not controlled, it will lead to endogenous
problems, such as relevant policies and technological changes.
First, using fixed effects model can alleviate endogenous problems
to a certain extent. Second, construct the instrumental variables
of digital economy development to reduce endogenous bias. The
previous benchmark regression uses fixed effects, which alleviates
endogeneity to some extent.

Construct instrumental variables to alleviate endogenous
problems. Refer to the practice of Bartik (2006) to construct
instrumental variables, that is, the first-order difference (1digitalit)
of the development of the digital economy and the intersection
(digitalit−1) of the lag phase (1digitalit = digitalit−1) of the
development of the digital economy are used as instrumental
variables. The considerations for constructing the instrumental
variable are as follows: Firstly, carbon emission intensity will not
affect the development of the digital economy in the previous
period. Choosing a lag period can effectively avoid the endogeneity
that may be caused by reciprocal causation, which also shows
that the instrumental variable satisfies the exogenous hypothesis.
Secondly, the level of development of the digital economy in
the previous period will affect the current period. Choosing the
intersection of the lag phase of the digital economy and the
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TABLE 4 Descriptive statistics of variables.

Definition Variables Mean SD Min Med Max

CI Carbon emission intensity 2.527 1.661 0.343 2.085 10.210

digtial Digital economy development 0.163 0.142 0.000 0.121 1.000

digtial_1 Digital industrialization 0.140 0.118 0.000 0.102 1.000

digtial_2 Industrial digitalization 0.198 0.172 0.000 0.150 1.000

indust Industrial structure 1.081 0.622 0.500 0.894 5.169

tfp Resource allocation 1.518 0.747 0.070 1.443 2.900

innov Innovation efficiency 0.462 0.231 0.068 0.422 1.000

es Energy structure 0.574 0.186 0.019 0.601 0.903

popu Population density 0.282 0.120 0.062 0.263 0.597

fdi Foreign direct investment 0.401 0.526 0.048 0.206 5.849

lnopen Openness to the outside −1.740 0.970 −4.368 −1.964 0.587

er Environmental regulation 1.403 0.688 0.300 1.245 4.240

TABLE 5 Benchmark regression resultsa.

Variables CI

(1) (2) (3) (4) (5) (6)

digtial −2.9206*** −1.3632***

(−11.5679) (−4.4021)

digtial_1 −3.4913*** −1.9186***

(−12.5392) (−5.7179)

digtial_2 −2.1916*** −0.7683***

(−9.7948) (−2.9878)

es −1.6462*** −1.5772*** −1.7955***

(−3.2092) (−3.1376) (−3.4590)

popu 3.2365*** 2.9662*** 3.6226***

(8.0981) (7.5432) (9.2847)

fdi 0.0965 0.1143* 0.0736

(1.4448) (1.7404) (1.0925)

lnopen 0.1609* 0.1800** 0.1848**

(1.8714) (2.1786) (2.1016)

er −0.0066 0.0002 −0.0122

(−0.1267) (0.0030) (−0.2318)

constant 3.0036*** 1.6013*** 3.0165*** 1.7985*** 2.9608*** 1.4122***

(63.8766) (5.0063) (67.2096) (5.6432) (59.0132) (4.4216)

Province FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Obs 390 390 390 390 390 390

R2 0.2715 0.3994 0.3046 0.4201 0.2109 0.3821

aThe t statistics are in parentheses, *p < 0.010, **p < 0.05, ***p < 0.01. FE denotes fixed effects. The fixed effects include individual (province)-fixed effects and year-fixed effects. The notes for
the following tables are the same.

first-order difference as the instrumental variable can meet the
correlation assumption (Lyu et al., 2023). This paper uses the two-
stage least squares method of instrumental variables to estimate.

In order to ensure the reliability of the endogenous test results,
this paper also takes the carbon emission intensity measured by

the apparent method as the dependent variable for regression. The
estimation results are shown in Table 6. Columns (1) and (2) are
based on the carbon emission intensity calculated by the IPCC
sector accounting method as the dependent variable; columns (3)
and (4) are based on the carbon emission intensity calculated by
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the apparent method as the dependent variable. The results show
that the instrumental variable has a significant strong correlation
with the independent variable. The F statistic in the weak IV test
is much larger than the judgment value at the 10% level. The
instrumental variable satisfies the correlation hypothesis and there
is no weak correlation problem. In addition, the digital economy
development (digtial) is significantly negative at the significance
level of 10%, indicating that the results are still robust after
controlling endogenous problems.

4.3. Robustness test

Referring to the existing research, the model robustness test was
carried out by substituting variables and removing outliers. One is
to replace the dependent variable. The carbon emission intensity
of each province calculated by the apparent method calculated
by the apparent method in the CEADs database was selected as
the replacement variable. The second is to eliminate outliers. That
is, the values in the carbon intensity data are replaced by values
that are 5% below the average and 95% above the average. In
Table 7, columns (1), (3), and (5) are listed as the regression results
of the dependent variable after tail shrinking. Columns (2), (4),
and (6) are the regression results after replacing the dependent
variable. After tail shrinking and replacing the dependent variable,
the independent variable were still significant, and the direction and
magnitude of the coefficients were consistent with the benchmark
estimates, indicating that the model estimation had high confidence
and proved the robustness of the research conclusions.

4.4. Heterogeneity analysis

4.4.1. Analysis of geospatial differences
In order to examine the regional differences in the impact of

digital economy development on carbon emission intensity, this
paper divides the sample into eastern, middle and western regions,
and still uses the panel fixed effects model for regression. As shown
in Table 8, there are significant spatial differences in the impact
of digital economy development on carbon emission intensity.
Compared with the east, the impact of the development of digital
economy in the middle and western regions on reducing carbon
emission intensity is more obvious. The reason may be that the
eastern regions is economically developed, the carbon emission
intensity is much lower than that of the middle and western regions,
and the space for reduction is limited, so the role of the digital
economy in reducing carbon emissions is not as good as that of the
middle and western regions.

4.4.2. Analysis of differences in economic
development

Is there a difference in the impact of digital economy on
carbon emission intensity under different economic development
levels? This paper divides the samples into economically developed
regions and economically underdeveloped regions based on the
average per capita GDP of each province. The grouping regression
results are shown in Table 8. The regression results of developed
and underdeveloped regions are significantly negative at the level

of 1%, but the absolute value of the regression coefficient in
underdeveloped regions is greater than that in developed regions.
It shows that the digital economy has a more obvious effect
on reducing the carbon emission intensity in underdeveloped
regions. The results of heterogeneity analysis provide guidance for
policymakers to achieve the “dual carbon goals”.

4.5. Mechanism test

According to mechanism analysis, the development of digital
economy reduces carbon emissions per unit output through
industrial structure optimization effect, resource allocation effect
and innovation effect. This section tests the above influence
mechanism. The test process is divided into three steps: Firstly, the
independent variable are regressed with the mechanism variables,
and the regression coefficients represent the impact of the digital
economy on the intermediary variables. Secondly, the digital
economy and carbon emission intensity are regressed to verify the
impact of the digital economy on carbon emission intensity. Finally,
the digital economy, intermediary variables and carbon emission
intensity are regressed to verify whether the digital economy has
an impact on carbon emission intensity through intermediary
variables. The mechanism test model is constructed as follows:

mechanismit = α0 + α1 digitalit + ρX + δt + ζi + εit (9)

CIit = β0 + β1 digitalit + ρX + δt + ζi + εit (10)

CIit = σ0 + σ1digitalit + σ2mechanismit + ρX + δt + ζi + εit
(11)

among them, mechanismit contains three mechanism variables:
industit , tfpit and innovit , which verify the industrial structure
optimization effect, resource allocation effect and innovation effect,
respectively, and the other variables are the same as the Equation 8.
Equation 9 is used to verify the impact of the digital economy on
the intermediary variables; Equation 10 is used to verify the impact
of the digital economy on carbon emission intensity, that is, the
benchmark regression; Equation 11 is used to verify the mechanism
effect of the digital economy on carbon emission intensity.

Table 9 shows the results of the mechanism test. The results
of columns 1, 3, and 5 demonstrate that the development
of digital economy can promote the upgrading of industrial
structure, improve total factor productivity and improve
innovation efficiency. Among them, the impact of digital economy
development on promoting industrial structure upgrading and
improving total factor productivity has passed the 1% significance
level, but the innovation efficiency has not passed the significance
test. The results of columns 2 and 4 demonstrate that the industrial
structure optimization effect and resource allocation effect have
passed the 5% significance level, which proves the existence of
intermediary effect. The coefficient of structural optimization
effect and resource allocation effect is significantly negative,
which verifies the previous theoretical mechanism analysis. This
shows that the digital economy suppresses carbon emission
intensity through the industrial structure optimization effect and
resource allocation effect, which verifies H2 and H3. However, the
innovation efficiency does not play an inhibitory role in reducing
carbon emission intensity. The possible reason is that China’s
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TABLE 6 Endogenous test resultsa.

Variables digtial CI digtial CI_1

First stage (1) Second stage (2) First stage (3) Second stage (4)

digtial −1.1029* −1.1252***

(−1.8747) (−4.2471)

digtial_iv 6.5101*** 6.5101***

(20.9361) (20.9361)

constant 0.2834*** −1.2641*** 0.2834*** −0.9470***

(11.0026) (−3.3390) (11.0026) (−5.5542)

Control variables Yes Yes Yes Yes

Province FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Obs 390 390 390 390

R2 0.6893 0.6435 0.6893 0.6622

Over-identification test NO / NO /

Weak IV test 438.14
[16.38]

/ 438.14
[16.38]

/

aOver-identification test shows that there is no over-identification; the Cragg − DonaldWald F statistic is reported in the weak IV test, and the judgment value at the 10% level is in the brackets.

TABLE 7 Robustness test results.

Variables CI CI_1 CI CI_1 CI CI_1

(1) (2) (3) (4) (5) (6)

digtial −1.2036*** −1.8646***

(−4.3338) (−3.1358)

digtial_1 −1.7888*** −2.3570***

(−5.9724) (−3.6105)

digtial_2 −0.6320*** −1.1814**

(−2.7373) (−2.4133)

constant 1.4091*** 1.6106*** 1.6146*** 1.7918*** 1.2272*** 1.3942**

(4.9126) (2.6224) (5.6758) (2.8899) (4.2796) (2.2931)

Control variables Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Obs 390 390 390 390 390 390

R2 0.4334 0.1178 0.4580 0.1255 0.4157 0.1080

FE denotes fixed effects. The fixed effects include individual (province)-fixed effects and year-fixed effects.
aThe t statistics are in parentheses.
**p < 0.05, ***p < 0.01.

current innovation efficiency mechanism has not yet played a role,
even at the expense of the environment.

5. Conclusion

Under the background of global climate change and digital
transformation, it is of great practical significance to study the
impact of digital economy development on carbon emission
intensity. This paper constructs a measurement model of digital
economy development level and carbon emission intensity at

the provincial level in China, and on this basis, examines the
impact and mechanism of digital economy development on carbon
emission intensity. The results show that: (1) The development of
China’s digital economy is unbalanced among regions, showing a
geographical spatial pattern of decreasing from east to west. (2)
China’s carbon emission intensity has a decreasing trend year by
year, but there is a spatial difference of “high in the west and low
in the east.” (3) The development of digital economy can effectively
reduce regional carbon emission intensity, but the impact of digital
industrialization and industrial digitalization on regional carbon
emission intensity is different, and digital industrialization has
a more significant effect on reducing regional carbon emission
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TABLE 8 Heterogeneity analysis results.

Variables CI

East Middle West Developed regions Underdeveloped regions

digtial −0.4211** −2.2333*** −2.1632*** −0.5325*** −3.7053***

(−2.0299) (−3.4151) (−6.0209) (−3.1814) (−5.1913)

constant 1.6754*** 4.2736*** −0.2583 0.9756*** 1.8866***

(5.8533) (7.8686) (−1.3102) (3.4909) (4.0849)

Control variables Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Obs 143 117 130 239 151

R2 0.7021 0.6378 0.7578 0.6802 0.4134

TABLE 9 Mechanism test results.

Variables Industrial structure optimization effect Resource allocation effect Innovation effect

indust CI tfp CI innov CI

digtial 1.4446*** −0.5829* 2.0492*** −1.3777*** 0.0757 −1.3837***

(9.1056) (−1.7605) (3.6838) (−4.3599) (0.5510) (−4.4923)

indust −0.5402***

(−5.4109)

tfp −0.0826**

(−2.3874)

innov 0.2701**

(2.2691)

constant 0.7760*** 2.0205*** 0.9867* 1.5943*** 0.1462 1.5618***

(4.7355) (6.3657) (1.7174) (4.9573) (1.0296) (4.9040)

Control variables Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Obs 390 390 390 390 390 390

R2 0.5048 0.4454 0.1018 0.3995 0.0865 0.4080

FE denotes fixed effects. The fixed effects include individual (province)-fixed effects and year-fixed effects.
aThe t statistics are in parentheses.
*p < 0.010, **p < 0.05, ***p < 0.01.

intensity. (4) The digital economy has different effects on reducing
carbon emission intensity in different regions. The inhibitory effect
of developing digital economy on carbon emission intensity in
the middle and western regions is stronger than in the eastern
region. Compared with developed regions, the development of
digital economy in underdeveloped regions has a greater inhibitory
effect on carbon emission intensity. (5) The development of digital
economy reduces carbon emission intensity through industrial
structure optimization effect and resource allocation effect, and the
industrial structure optimization effect suppresses regional carbon
emission intensity more obviously, and carbon emission intensity
is not reduced through innovation effect at this stage.

Clarifying the relationship between the development of digital
economy and carbon emission intensity has important policy
implications for the global response to climate change and
China’s realization of the “dual carbon goal.” The development

of digital economy is based on digital technology. Promoting
digital technology innovation is to lay a solid foundation for the
development of digital economy from the “root,” and is a long-
term and effective strategic measure to promote the role of digital
economy in reducing carbon emissions. First, implement relevant
policies to support the development of the digital economy, provide
differentiated financial and tax support for the development of
digital technology innovation enterprises, and focus on supporting
the growth of “specialized and new” digital enterprises. Second,
promote digital industrialization and industrial digitization, relying
on the existing information and communication infrastructure,
focusing on the construction of AI industry center, big data
center, 5G base station service, industrial Internet service and
other digital industry projects to meet the needs of the digital
transformation of the real economy. Third, narrow the differences
in the development of regional digital economy, formulate
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digital economy development strategies in accordance with local
conditions, and give full play to their own resource advantages,
increase the introduction of technology and talents, and create
regional characteristic digital economy industries.
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Impacts of environmental policy
uncertainty on urban
environmental pollutant
emissions in China: a study based
on textual analysis
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Studies mainly focuses on measuring the economic policy uncertainty in different
countries. However, few studies have focused on the construction of the
environmental policy uncertainty index (EPUI). This paper selects 460
newspapers from the China National Knowledge Infrastructure (CNKI)
newspaper database from 2001 to 2016, and uses the text analysis method to
directly construct the national, provincial, and prefecture-level EPUI of China. We
have analyzed the distribution and fluctuation trend of the EPUI, and use two-way
fixed effect model with panel data to investigate the impact of environmental
policy uncertainty on environmental pollutant emissions at the city level. An
important discovery has been made through our research, indicating that the
rise in environmental policy uncertainty is likely to result in a reduction of pollutant
emissions such as urban industrial sulfur dioxide and carbon dioxide. However, this
reduction comes at a cost to the promotion of the development of urban
secondary industry. The Chinese EPUI constructed for the first time in this
article provides significant basic data for research in the environment and
energy fields, and also provides important empirical evidence for achieving
China’s carbon peak and carbon neutrality goals.

KEYWORDS

post-COVID-19 era, energy transition, energy structures, pollutant emissions,
environmental policy uncertainty, advanced analytical techniques

Highlights

• EPUI is constructed on national, provincial, and prefecture-level in China.
• An increase in EPUI can reduce sulfur dioxide and carbon dioxide emissions.
• EPUI can reduce pollutant emissions through the channel of the scale of the secondary
industry.

• The EPUI in China’s northern provinces is higher than that in southern provinces.

1 Introduction

For a long time, China’s rapid economic growth has always been inseparable from the
huge consumption of resources and energy, which has caused serious environmental
pollutions (e.g., water pollution, air pollution, and land pollution). Environmental
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policies (such as pollution emission policies, carbon trading policies
(Wang et al., 2023), carbon tax policies, etc.) are an important way to
solve environmental pollution problems. Since China considered
environmental protection as a basic state policy in its Party Congress
work report in 1992, the party and state leaders have always attached
great importance to the promulgation and implementation of
environmental policies. In 2003, the “Scientific Outlook on
Development” clearly stated that we should adhere to sustainable
development and build a resource-saving and ecological protection-
oriented society (Liu et al., 2021b). In 2012, the Chinese government
incorporated the construction of ecological civilization into the “five
in one” overall layout of the cause of socialism with Chinese
characteristics. In 2018, the Chinese government wrote ecological
civilization into the Constitution. This series of measures show that
China’s environmental protection work is constantly being
strengthened, and environmental policies have moved from a
single policy to comprehensive regulation. As of 4 August 2021, a
total of 6,1221environmental protection laws, regulations, and
departmental rules have been promulgated and implemented by
departments at all levels. Numerous environmental policies cover a
wide range of fields, and there are obvious differences in the time,
frequency, and intensity of their promulgation, as well as the impact
of the policies, which has a non-negligible impact on China’s
environmental governance and high-quality economic
development (Huang and Luk, 2020).

Since the outbreak of the global financial crisis in 2008, the world
economy has moved from an era of “great easing” to an era full of
high uncertainty (Handley and Limão, 2017). How to construct
various uncertainty indexes has become a hot topic in academic
circles at home and abroad, among which the most influential is the
economic policy uncertainty index. The index can be traced back to
Baker et al. (2016), who use the text analysis method to construct the
economic policy uncertainty index of global and major economies
based on the evaluation of mainstream news media. The index
provides a new analytical tool for understanding how information is
delivered to the market and arouses public reaction. Since its
publication, the economic policy uncertainty index has been
widely concerned and cited by scholars from all over the world
(Pirgaip and Dinçergök, 2020; Xia et al., 2020).

As the world’s second-largest economy, China has been more
and more studied on its policy uncertainty. During the past 40 years
of reform and opening-up, China has implemented many policy
trials and reforms in the process of economic development, which
has inevitably caused the negative impact of various policy
uncertainties on the Chinese economy. In this case, how to
accurately characterize policy uncertainty and examine its
negative impact on China’s economic growth is of great practical
significance for achieving high-quality growth of China’s economy.
Therefore, many scholars have carried out systematic and in-depth
research. For example, Huang and Luk (2020) construct a monthly
index of China’s economic policy uncertainty based on the text data
of newspapers from 2000 to 2018. At the same time, they use the
same method to construct the uncertainty index of China’s fiscal

policy, monetary policy, trade policy, and exchange rate policy. Yu
et al. (2021) construct an annual index of economic policy
uncertainty for 30 provinces in China based on the China
National Knowledge Infrastructure (CNKI) newspaper database
from 2008 to 2011. It is a bit regrettable that most of the existing
research focuses on policy uncertainty at the economic level while
ignoring policy uncertainty at other levels, especially the
environmental level, which provides a new exploration space for
this study.

In 2020, General Secretary Xi Jinping proposed at the 75th
session of the United Nations General Assembly the green
development goal of “striving to reach carbon peak by 2030 and
carbon neutrality by 2060”. The proposal of this goal means that
China’s economy and society will usher in unprecedented low-
carbon reform. Carbon neutrality is both an opportunity and a
challenge. At present, China’s energy consumption level is much
higher than the world average, and the task of reducing
overcapacity and adjusting the economic structure remains
arduous. Under the carbon neutrality goal, Policy uncertainty
has a great impact on investment decisions of enterprises and
individuals. Relevant studies mainly focus on the impact of
economic policy uncertainty. From the perspective of enterprise
and individual investment, some scholars believe that the
uncertainty of economic policy will inhibit enterprise and
individual investment. Baker et al. (2016) believe that the
existence of economic policy uncertainty enables enterprises
and individuals to delay spending and investment due to the
risk of market uncertainty. Based on the data from 2006 to
2011, it finds that the increase of policy uncertainty will lead to
a sharp and sustained decline in the economy, and GDP, private
investment and total employment will all decline. Gulen and Ion
(2015) finds that since investment is irreversible, policy uncertainty
will cause enterprises to take strategic prevention, thus inhibiting
enterprise investment. For companies with a high degree of
investment irreversibility and companies that are more
dependent on government expenditure, this relationship is more
prominent. At the same time, from a broader perspective, some
scholars also find the negative impact between uncertainty and
enterprise investment. According to the real option theory,
uncertainty increases the waiting value and leads firms to make
investment decisions cautiously. For firms facing a high degree of
uncertainty, it may be best to limit investments and increase cash
holdings in preparation for postponing investments to the next
period (Bernanke, 1983; McDonald and Siegel, 1984; Abel and
Eberly, 1996). In addition, some scholars also study the impact of
environmental policies on investment. Greenstone (2002) uses a
natural experiment to study investment differences between plants
in counties with no binding environmental regulations and plants
in the same industry in counties with environmental regulations.
The study finds that employment, investment and output fell in
counties with binding rules compared with those without; Garofalo
and Malhotra (1995) provide evidence that stricter environmental
regulations increase the capital used to deal with pollution, but
reduce the manufacturing capacity of an industry, which also
shows that environmental policies moderately crowd out
productive investment of firms by increasing investment in
pollution reduction. Based on the above analysis, we can know
that the uncertainty of environmental policy caused by multiple

1 The data comes from the Pkulaw Law Database and its official website is
http://www.pkulaw.cn/.
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politics will not only directly change the consumption and
investment decisions of residents and enterprises, but also affect
their confidence and expectations to a large extent, thus indirectly
affecting the production scale of enterprises and the adjustment of
industry structure. Therefore, selecting an appropriate method to
truly reflect China’s overall and regional environmental policy
uncertainty is crucial for the early realization of the dual carbon
goals (i.e., carbon peak and carbon neutrality).

Because of the above considerations, this article attempts to
construct China’s national, provincial, and prefecture-level
environmental policy uncertainty index (EPUI) by adopting the
text analysis method and combining the construction method of the
economic policy uncertainty index proposed by Baker et al. (2016).
In terms of data processing, this paper selects 460 newspapers in the
CNKI newspaper database from 2001 to 2016 as the data source for
text analysis. These 460 newspapers are widely distributed in
31 provinces, municipalities, and autonomous regions in China,
with broad representativeness.

Compared with the existing literature, the marginal contribution
of this article mainly covers the following two points: first, the
existing literature usually adopts indexes such as the environmental
officials’ turnover in the local government and the intensity of
environmental regulations to indirectly measure the
environmental policy uncertainty. This way of depiction has
certain limitations and cannot well reflect the true level of
environmental policy uncertainty. Given this, this paper selects
460 newspapers distributed in 31 provinces, municipalities, and
autonomous regions in China as the data source, and adopts the
construction method of Baker et al. (2016) on economic policy
uncertainty index to construct China’s national, provincial, and
prefecture-level EPUI from 2001 to 2016 for the first time, which
provides very important basic data for the empirical research of
environment. At the same time, the EPUI constructed in this paper
also has great application value in the fields of economy, energy, and
corporate decision-making. Second, under the dual carbon goals, the
first-constructed EPUI is applied to the pollutant emission reduction
at the city level in China, and an important discovery is obtained:
environmental policy uncertainty will achieve the goal of pollutant
emission reduction at the cost of reducing the output value of urban
secondary industry. The research conclusions of this paper provide
an important experience for policymaking to achieve the dual
carbon goals.

The structure of the paper is organized as follows: Section 2 is the
literature review; Section 3 is the construction and distribution of
China’s EPUI at different levels; Section 4 is the application of
China’s EPUI; Section 5 is the main conclusions and policy
recommendations.

2 Literature review

Judging from the existing literature, at present, the measurement
methods of policy uncertainty index are roughly divided into two
categories. The first type is to measure policy uncertainty by
constructing a synthetic index, such as Baker et al. (2016), Huang
and Luk (2020), and Yu et al. (2021). Baker et al. (2016) pioneer the
construction of an index based on newspaper text to measure
economic policy uncertainty, and apply this construction method

to different countries and regions. After calculating the preliminary
economic policy uncertainty index, Baker et al. (2016) use manual
reading and review to select articles containing keywords, and
combine the manually calculated index with the index obtained
by the text analysis method. The obtained indexes are compared to
test the effectiveness of the computer-constructed economic policy
uncertainty index. The results show that the economic policy
uncertainty indexes calculated by the two methods are highly
positively correlated. Huang and Luk (2020) improve the index
construction method proposed by Baker et al. (2016) from the
aspects of standardized processing and keyword selection. They
divide the target article by all articles containing the keyword
“economy” in the current month for standardized processing,
which effectively avoids the systematic estimation bias caused by
the different layouts and content of comprehensive newspapers. Yu
et al. (2021) improve the Chinese economic policy uncertainty index
constructed by Baker et al. (2016) based on the contextual difference
between Chinese and English expressions, and expand the Chinese
economic policy uncertainty index from national level to provincial
level for the first time. Similarly, Li et al. (2021b) adopt the index
construction method of Baker et al. (2016), replacing “economy”
with “trade” to construct the uncertainty index of China’s trade
policy. Meanwhile, the construction method of the composite index
can be widely used to measure other economic indicators besides the
uncertainty of policy. For example, Guo et al. (2023) develop a city-
level power shortage index in China using the text analysis method
and analyze the relationship between power shortage and firm
productivity.

The second category is to measure policy uncertainty based on
relevant economic variables or policy variables, such as Fernández-
Villaverde et al. (2011), Julio and Yook (2012), Shah et al. (2021),
and Tran andHouston (2021). This type of literature mainly uses the
time series model to measure policy uncertainty. For example,
Fernández-Villaverde et al. (2011) use particle filter and Bayesian
method to extract the time-varying volatility of government
expenditure and taxation, and use such time-varying volatility to
characterize fiscal policy uncertainty. Using the simultaneous
equation state-space model and Kalman filtering method,
Anzuini et al. (2020) calculate the time-varying volatility of
taxation and use it to express the uncertainty of fiscal policy. Fu
and Luo (2021) adopt the method proposed by Fernández-
Villaverde et al. (2011) to construct China’s monetary policy
uncertainty. Mumtaz and Surico (2018) point out that the central
bank mainly achieves the ultimate goal by anchoring the
intermediary target through policy tools, which are difficult to
directly observe and quantify, and the monetary policy
uncertainty can be measured by calculating the random volatility
of the intermediary target of monetary policy. In addition, some
researchers use the turnover of government officials to measure
policy uncertainty (Julio and Yook, 2012; Li et al., 2021a). For
example, Julio and Yook (2012) use election time in countries
around the world as a proxy variable for policy uncertainty,
because existing policies may be changed due to the change of
leaders with different policy preferences. Cheng et al. (2021) use the
turnover of municipal party secretary or mayor as the proxy variable
for political uncertainty. Liu et al. (2021a) use the political
connection of corporate leaders to measure political uncertainty.
Francis et al. (2021) select Google political election news, tax
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expiration index, CPI forecast difference, federal procurement
forecast difference, and other factors to construct a political
uncertainty index by the weighted method.

Based on the above literature, it can be found that the current
research on policy uncertainty mainly focuses on economic policy,
fiscal policy, monetary policy, trade policy, and political elections,

while few literature investigates environmental policy uncertainty.
In particular, no literature has investigated the uncertainty of
China’s environmental policy, and a few existing literature only
uses changes in the intensity of environmental regulation or climate
to describe the uncertainty of environmental policies (Liu et al.,
2018; DeLuque and Shittu, 2019; Schubert and Smulders, 2019). In

TABLE 1 Provincial distribution statistics of 460 newspapers.

Province Number of
newspapers

The proportion of newspapers in the
total number of newspapers (%)

Number of
articles reported

The proportion of articles reported
in total articles reported (%)

Shanghai 11 2.39 521,492 4.78

Yunnan 9 1.96 204,691 1.88

Inner
Mongolia

10 2.17 193,498 1.77

Beijing 83 18.04 3,451,415 31.66

Jilin 10 2.17 181,175 1.66

Sichuan 21 4.57 397,989 3.65

Tianjin 4 0.87 49,288 0.45

Ningxia 8 1.74 63,684 0.58

Anhui 13 2.83 168,934 1.55

Shandong 14 3.04 261,381 2.40

Shanxi 18 3.91 318,848 2.92

Guangdong 23 5 767,260 7.04

Guangxi 8 1.74 160,373 1.47

Xinjiang 17 3.7 161,546 1.48

Jiangsu 19 4.13 432,949 3.97

Jiangxi 9 1.96 158,424 1.45

Hebei 17 3.7 377,578 3.46

Henan 20 4.35 436,180 4.00

Zhejiang 13 2.83 298,238 2.74

Hainan 5 1.09 64,024 0.59

Hubei 12 2.61 248,554 2.28

Hunan 14 3.04 235,658 2.16

Gansu 16 3.48 307,677 2.82

Fujian 13 2.83 204,005 1.87

Tibet 7 1.52 51,339 0.47

Guizhou 10 2.17 207,715 1.91

Liaoning 14 3.04 262,140 2.40

Chongqing 3 0.65 61,655 0.57

Shaanxi 12 2.61 300,103 2.75

Qinghai 9 1.96 121,144 1.11

Heilongjiang 18 3.91 233,895 2.15

Total 460 100 10,902,852 100

Source: Compiled by the author.
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view of this, the article adopts the uncertainty index construction
method proposed by Baker et al. (2016), and selects 460 newspapers
in the CNKI newspaper database from 2001 to 2016 as the data
source for text analysis, and constructs China’s EPUI at the national,
provincial and prefecture level for the first time. This would provide
very important basic data for empirical research of the environment,
and provide significant empirical support for guiding how to achieve
China’s dual carbon goals.

3 Construction and distribution of
China’s EPUI

3.1 Index construction

The method of constructing China’s EPUI in this paper is
consistent with Baker et al. (2016). We have selected
460 newspapers from the CNKI newspaper database from
2001 to 2016 as the source of this article. These
460 newspapers are widely representative, covering China’s
31 provinces, municipalities, and autonomous regions. Table 1
reports the basic statistics on the sources and distribution of
460 newspapers.

Table 2 reports the identification criteria for keywords related to
environmental policy uncertainty. If a news report contains at least
one keyword of “environment”, “policy” and “uncertainty” at the
same time, then it is considered as the target article. In the process of
keyword screening, this paper firstly conducts text processing and
word frequency analysis on texts used in the study, and selects words
that appear more frequently as alternative word sets. Then, through
manual reading and borrowing the words used in existing research
as keywords to be considered in index construction (Baker et al.,
2016). The specific construction method of EPUI is shown as
follows:

(1) According to the definition of the target article, the number of
target articles in eachmonth of each newspaper is sorted out and
recorded asAit. Among them, i is the i-th newspaper, and t is the
t-th month. In order to avoid the impact of differences in the
total number of articles in different newspapers and different
months, we conduct scale processing on the target number of
articles per month for each newspaper, that is, Xit � Ait/Bit. Bit

is the total number of articles in the i-th newspaper in the t-th
month.

(2) Normalize X, namely, Yit � Xit/δi. δi is the standard deviation
of {Xit} to get the average normalized frequency of all sample
newspapers, namely, Zit � ∑Yit/i,

(3) The EPUI of different monthly frequencies in China is obtained,
ENPU � Zt*100/M, and M represents the serial average value
of {Zt}. The annual EPUI of different levels in China can be
calculated employing the arithmetic average method. The larger
the index is, the stronger the uncertainty of environmental
policy is.

(4) The EPUI of China from 2001 to 2016 constructed in this paper
includes national, provincial, and prefecture levels. In the
specific construction process, this paper selects national,
provincial, and prefecture-level newspapers as the data
source. Among them, at the national level, 460 newspapers
are used as the data source; at the provincial level,
460 newspapers are classified into 31 provinces, cities, and
autonomous regions according to the place of publication; at
the prefecture level, 460 newspapers are classified into
prefecture-level cities according to the publication location.
Then, calculate according to the above steps in turn, and
finally get China’s EPUI at the national, provincial, and
prefecture levels.

3.2 Fluctuation characteristics of China’s
EPUI

Figure 1 shows the fluctuation trend of China’s EPUI at the
national level. As can be seen from Figure 1, China’s EPUI from
2001 to 2011basically fluctuates within the range of 50–110. During
this period, the Chinese government’s environmental protection
policy was relatively stable. In addition to revising and promulgating
environmental protection laws and regulations, environmental
economic policies have entered a stage of centralized design and
promotion. For example, in 2005, the fifth plenary session of the
16th Party Central Committee put forward the policy of building a
resource-saving and environment-friendly society. In October 2007,
the “Energy Conservation Law of the People’s Republic of China”
was revised. In February 2008, the “Water Pollution Prevention and
Control Law of the People’s Republic of China” was revised.

TABLE 2 Keyword criteria used to identify the EPUI.

Environment (in English) Environment, environmental protection, pro-environment, pollution, energy consumption, emission reduction, pollution discharge,
ecology, green, low carbon, air, chemical oxygen demand, sulfur dioxide, carbon dioxide, PM10, PM2.5

Environment (in Chinese) 环境, 环境保护, 环保, 污染, 能耗, 减排, 排污, 生态, 绿色, 低碳, 空气, 化学需氧量, 二氧化硫, 二氧化碳, PM10, PM2.5

Policy (in English) Environmental protection department, environmental protection bureau, supervision, oversight, inspection, remediation, rectification,
governance, protection, policy, measure, method, suggestion, public, government, department, reform, tax, rule, regulation, ordinance

Policy (in Chinese) 环保部门, 环保局, 监管, 监督, 督察, 整治, 整改, 治理, 保护, 政策, 措施, 办法, 建议, 公共, 政府, 部门, 改革, 税, 规章, 规则, 条例

Uncertainty (in English) Uncertain, probabilistic, unspecified, fluctuating, shocking, unstable, undetermined, ambiguous, unclear, not clear, doubtful,
unpredictable, inestimable, unforeseeable, incalculable, unexpected, non-predicative, imponderable

Uncertainty (in Chinese) 不确定,不确定性的,不明确,波动,震荡,不稳,未明,不明朗,不清晰,未清晰,难料,难以预料,难以估计,无法预料,无法估计,不可

预料, 不可预计, 不可估计
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Compared with the period from 2001 to 2011, China’s EPUI
showed a volatile increase from 2012 to 2016. In 2012, the 18th
National Congress of the Communist Party of China (CPC) was
held, and the new central leadership was elected. At the same time,
the work focus of “vigorously promoting the construction of
ecological civilization and reversing the deterioration of the
ecological environment” was put forward. The report of the 18th
National Congress of the CPC incorporated “ecological civilization”
into the “five-in-one” overall layout of socialism with Chinese
characteristics, and for the first time proposed “promoting green,
circular, and low-carbon development” and “building a beautiful
China”. Improving environmental quality has gradually become the
core goal and the main task of environmental protection, and
environmental policy reform has entered a stage of deepening
and sublimation, which have opened the prelude to the volatile
rise of China’s EPUI. At the third plenary session of the 18th CPC
Central Committee in 2013, the Party Central Committee pointed
out that “protecting the ecological environment with systems”. From
September to October 2013, the “National Ten Articles” on air
pollution prevention and control played an important role in
promoting the control of air pollution and environmental
protection, greatly increasing the uncertainty in the
implementation and formulation of environmental policies.
During this period, China’s EPUI showed a rapid rise.

Figure 2 is the distribution map of EPUI at provincial level in
China in 2001. China’s provincial EPUI is only available in
26 provinces in 2001, missing 5 provinces2, cities, and

autonomous regions, with an average value of 89. And the
maximum value is in Qinghai Province, with an index of 170.
The minimum value is Tibet, which has a value of 0. Overall, the
EPUI in western China is higher than that in central China, and that
in central China is higher than that in eastern China.

Figure 3 shows the distribution of EPUI at provincial level in
China in 2016. In 2016, China’s provincial EPUI is available in
31 provinces and cities. Among them, the average value of EPUI is
111, the maximum value is 161 in Shanghai. The minimum value is
in Jilin, with a value of only 79. Overall, China’s central inland
provinces and eastern coastal provinces have significantly higher
EPUI than other regions.

Figure 4 reports the mean distribution of EPUI at provincial
level in China from 2001 to 2016. During this period, the average
value of EPUI is 99, the maximum value is 114 in Jilin. The
minimum value is in Chongqing, which is only 88. As can be
seen from Figure 2 to Figure 4, the EPUI of northern provinces
of China is significantly higher than that of southern provinces,
which reflects that compared with northern provinces of China,
southern provinces have better continuity and consistency in the
formulation of environmental policies, thus showing relatively lower
environmental policy uncertainty.

Figure 5 shows the distribution of EPUI at prefecture level in
China in 2001. There are only 28 prefecture-level cities available
with EPUI data in 2001. The average value of EPUI is 77, the
maximum value is 215 in Xining; the minimum value is 0 in
Lhasa. As can be seen that the distribution of EPUI at prefecture
level in China is roughly consistent with that in corresponding
provinces. Meanwhile, the EPUI of prefecture-level cities in
western China is higher than that of central China, and the
EPUI of prefecture-level cities in central China is higher than that
of eastern China. Compared with EPUI at provincial level, EPUI

FIGURE 1
The fluctuation trend of China’s EPUI from 2001 to 2016.

2 In 2001, data were missing for five provinces and cities: Tianjin,
Heilongjiang, Shandong, Hainan and Ningxia Hui Autonomous Region.
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at prefecture level can reflect the fluctuation trend of China’s
EPUI from a more microscopic perspective.

As shown in Figure 6, the EPUI at prefecture level in China in
2016 is distributed in 240 prefecture-level cities with an average
value of 103.9, and the maximum value is Xigaze City with an index
of 214.5. This is closely related to China’s continuous increase in the
formulation and implementation of policies on ecological and
environmental protection in Tibet. The minimum value is
Jinzhou City, Shiyan City, Hami City, Hetian City, Honghe Hani,
and Yi Autonomous Prefecture, Kizilsu Kirgiz Autonomous
Prefecture, Nyingchi City, Shannan City, Chaozhou City, Kashgar
City, Cangzhou City. The EPUI of all these prefecture-level cities is
0. As can be seen that the EPUI of central and eastern coastal cities in
China is significantly higher than that of other cities.

Figure 7 shows the mean distribution of the EPUI at
prefecture level in China from 2001 to 2016. We find that the
environmental policy uncertainty in eastern and northeastern
China is relatively high. Among them, Hulunbuir in Inner
Mongolia and Chengde in Hebei Province have the highest
EPUI, which is related to the geographical location of the two
cities. Hulunbuir locates in the Songhua River basin and Chengde
is in the Haihe River and Huaihe River basins. Their geographic
location determines that water resource protection and
regulatory policies are issued and adjusted more frequently,
thus showing a high degree of uncertainty. In contrast, the

EPUI of Nagqu City in Tibet is the lowest, with a value of
only 75. By comparing Figures 5–7, it can be found that the
EPUI of northern cities in China is significantly higher than that
of southern cities, which is consistent with the distribution of
Figures 2–4. Further analysis shows that over time, the EPUI
distribution at provincial and prefecture level in China shows
obvious regional transfer characteristics, that is, high EPUI
gradually shifts from western China to central, eastern, and
northeastern China. One possible explanation is that the
economic development in western China is relatively lagging
behind other regions, which made relevant departments in
western China pay more attention to economic development
than environmental protection, making local governments lag
behind other regions in the introduction and revision of
environmental protection policies. As a result, the EPUI in
western China is lower than that in other regions.

3.3 The robustness test and accuracy test of
China’s EPUI

In this part, we will test the robustness and accuracy of China’s
EPUI, focusing on two aspects: one is the construction of large-scale
Xit; the other is the instability that may be caused by the selection of
newspaper samples.

FIGURE 2
The distribution of EPUI at provincial level in China in 2001.
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First, the construction of large-scale Xit. In the process of
constructing Chinese EPUI, Xit � Ait/Bit. Where, Ait is the target
number of articles in each newspaper in each month, and Bit is
the total number of articles in the i-th newspaper in the t-th
month. However, there is a certain difference between the
number of daily target articles and the total number of articles
in each newspaper. If the number of monthly target articles and
the total number of articles are directly used to construct large-
scale Xit, certain deviation may occur. In view of this, we
construct the daily Xit, namely, DXit � DAit/DBit, where DAit

is the daily target number of articles in the i-th newspaper in the
t-th month, and DBit is the total number of daily articles in the
i-th newspaper in the t-th month. Then, perform calculations
according to Step 2 to step 4, and finally, get the daily data of
China’s EPUI from 2001 to 2016. We use the arithmetic average
method to calculate the monthly data of China’s EPUI (denoted
as EPUI_day). Combining Table 3; Figure 8, we can see that
EPUI_day is highly positively correlated with EPUI, with a
correlation coefficient of 0.8154. In addition, the fluctuation
trend of EPUI constructed in two different ways is almost the
same, indicating that the EPUI constructed in the benchmark
scenario in this paper is robust.

Second, the selection of newspaper samples. In the process of
constructing China’s EPUI, we select the data of 460 newspapers
distributed in 31 provinces, municipalities, and autonomous regions

in China as the newspaper data source, covering the period from
2001 to 2016. In order to test whether the constructed EPUI depends
on the selection of newspaper samples, we replace the newspaper
samples used in constructing the index, so as to test the correlation
between the indexes constructed by different newspaper samples to
conduct the robustness test. If the correlation is high, it
demonstrates that the EPUI does not depend on the selection of
newspaper samples and has high robustness. Otherwise, it means
that the EPUI depends on the selection of newspaper samples, and
the robustness is low.

The specific processing method is as follows: classify the newspapers
in the CNKI newspaper database, and extract the party newspapers of
prefecture-level city organs as the article source for constructing EPUI
(denoted as EPUI_dang). Because the influence of Party newspapers is
different from that of ordinary newspapers. Qin, Strömberg, and Wu
(2018) provide some evidence that Party papers focus on political goals,
whereas commercial papers focus on economic goals. It shows that the
party newspaper has more expression and greater influence in terms of
policy uncertainty. Compared with other types of newspapers, Party
newspapers in different regions have a wider and more important
influence on corporate decision-making.

As can be seen from Table 3; Figure 9, EPUI constructed from
303 prefecture-level party newspapers is highly positively correlated
with the EPUI constructed from 460 newspapers, with a correlation
coefficient of 0.7930. Obviously, the fluctuation trends of the two

FIGURE 3
The distribution of EPUI at provincial level in China in 2016.
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indexes are the same, manifesting that the Chinese EPUI
constructed in this article is robust.

4 The application of China’s EPUI

4.1 Data description and variable selection

In this paper, the application scenario of China’s EPUI is set
at the city level. Data in this article is from the “China City
Statistical Yearbook” from 2001 to 2016. The explained variable
is the emission of environmental pollutants at the prefecture-
level cities, which is recorded as Pollution. Regarding the
research settings in existing literature (Huang et al., 2020),
this paper selects urban industrial sulfur dioxide emission
(denoted as SO2) and carbon dioxide emission (denoted as
CO2) as proxy indicators of environmental pollutant
emissions. The larger the value, the more pollutants are
emitted. In the econometric regression analysis, all pollutant
emissions are taken as natural logarithms, which are recorded as
ln SO2 and ln CO2, respectively.

The core explanatory variable is China’s prefecture-level
EPUI constructed for the first time in this paper. Take the
natural logarithm and record it as lnEPUI. In view of the

possible endogenous problems between the EPUI and urban
pollution emissions, we adopt the logarithm of the EPUI lagging
one period as the core explanatory variable. At the same time, a
series of city-level control variables are also controlled. First,
urban population density, that is, the number of people per unit
of land. In this article, it is obtained by dividing the total
population of a city by the city’s land area in that year,
denoted as DP, and the unit is person per square kilometer.
Second, the city’s gross domestic product per capita, that is, the
urban GDP per capita, is calculated in this paper by dividing the
annual GDP of a city by the total population, denoted as PGDP,
and the unit is yuan per person. In the econometric regression
analysis, the urban GDP per capita is logarithmized and
recorded as ln PGDP. Third, the scale of urban industrial
enterprises is mainly represented by the number of industrial
enterprises above the designated size in the municipal area,
which is recorded as ES. Forth, urban public finance expenditure
is expressed by the logarithm of the city’s total public finance
expenditure in the current year and recorded as ln PFE. Fifth,
the development status of urban tertiary industry is measured by
the proportion of urban tertiary industry’s GDP and denoted as
TI. Sixth, the level of urban greening is measured by the
completed green coverage rate in the city, denoted as GL.
Seventh, the logarithm of the output value of urban

FIGURE 4
The mean distribution of EPUI at provincial level in China from 2001 to 2016.
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secondary industry is recorded as ln SGDP. In addition, we also
control the city fixed effect and year fixed effect in the
econometric regression analysis, which are recorded as City
FE and Year FE, respectively.

Table 4 reports the descriptive statistics of relevant variables.
As can be seen from Table 4 that the average value and standard
deviation of urban industrial sulfur dioxide emission are
significantly higher than those of carbon dioxide, indicating that
city managers should pay more attention to sulfur dioxide emission
reduction in the environmental pollution control. At the same

time, it should be noted that industrial sulfur dioxide emissions
vary greatly among different cities. The minimum value of China’s
city-level EPUI is 0 and the maximum value is 6.913, manifesting
that different cities have great differences in issuing and revising
local environmental protection laws and regulations. Through the
descriptive statistics of the average value, standard deviation,
minimum and maximum of each variable, it can be found that
there are big differences in the level of economic development,
population distribution, and economic structure of different cities
in China.

FIGURE 5
The distribution of EPUI at prefecture level in China in 2001.
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4.2 Econometric regression model setting

This article uses a two-way fixed effect model with panel data to
study the impact of city-level environmental policy uncertainty on
urban environmental pollutant emissions. The measurement model
is set as follows:

Pollutioni,t � β0 + β1 · ln ENPUi,t−1 + β2 ·Xi,t + λi + γt + εi,t (1)

Wherein, Pollutioni,t refers to the pollutant emissions of the city i
in year t, including industrial sulfur dioxide emission and carbon
dioxide emission. ln LNENPUi,t−1 is the logarithm of the EPUI of
the city i in year t-1, Xi,t is the set of control variables of the city i
in year t. λi is the city fixed effect, γt is the year fixed effect, and εi,t
is the error term. β1 is the most concerned variable in this article.
Positive value of β1 suggests that the increase of urban
environmental policy uncertainty will promote urban pollutant

FIGURE 6
The distribution of EPUI at prefecture level in China in 2016.
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emissions, while the negative value indicates to inhibit urban
pollutant emissions.

4.3 Econometric regression results and
analysis

Table 5 reports the benchmark regression results. Columns
1 and 3 report the direct impact of environmental policy

FIGURE 7
The mean distribution of EPUI at prefecture level in China from 2001 to 2016.

TABLE 3 Construction of the correlation coefficient matrix of EPUI with
different characteristics.

EPUI EPUI_day EPUI_dang

EPUI 1

EPUI_day 0.8154 1

EPUI_dang 0.7930 0.8073 1
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uncertainty on urban industrial sulfur dioxide and carbon dioxide
emissions without adding any control variables. The results show
that the coefficient of β1 is significantly negative, indicating that
the increase of environmental policy uncertainty will inhibit
urban pollutant emissions. Columns 2 and 4 report the
regression results after controlling for factors such as urban
population density, economic development level, economic
structure, and urban green rate. The regression results show

that the coefficient of β_1 is still significantly negative. When
urban environmental policy uncertainty increases by 1%, urban
industrial sulfur dioxide emission decreases by about 0.145%, and
carbon dioxide emission decreases by about 0.053%. This result is
quite different from that of Yu et al. (2021), who find that when
local economic policy uncertainty increases, enterprises will use
more cheap and dirty energy (such as oil and coal) to avoid the
risk impact of policy change, thus greatly increasing their carbon

FIGURE 8
The fluctuation trends of EPUI and EPUI_day from 2001 to 2016.

FIGURE 9
The fluctuation trends of EPUI and EPUI_dang from 2001 to 2016.
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TABLE 4 The descriptive statistics of relevant variables at city level in China.

Variables Definition Obs. Mean S.D. Min Max

ln SO2 Logarithm of industrial sulfur dioxide emissions 2,314 9.282 2.372 4.533 13.43

ln CO2 Logarithm of carbon dioxide emissions 2,642 3.025 0.681 0.613 5.445

ln SGDP Logarithm of actual output value of the secondary industry 2,020 15.05 1.225 10.96 17.95

ln EPUI City-level EPUI logarithm 2,647 4.260 1.210 0 6.913

DP Urban population density 2,097 1,089 955.1 13.11 11,449

ln PGDP Logarithm of urban GDP per capita 2,293 10.62 0.712 7.972 13.06

ES Number of industrial enterprises above designated size_Municipal area 2,318 783.5 1,546 5 18,474

ln PFE Logarithm of public finance expenditure_Municipal area 2,313 13.46 1.253 9.571 18.05

TI The proportion of tertiary industry in GDP_Municipal area 2,309 0.392 0.095 0.111 0.853

GL Completed green coverage rate_Municipal area 2,285 0.375 0.084 0.004 0.929

TABLE 5 Benchmark regression results at city level.

Variables (1) (2) (3) (4)

ln SO2 ln SO2 ln CO2 ln CO2

lnENPUi,t−1 −0.0604** −0.140*** −0.0342*** −0.0534***

(0.0234) (0.0386) (0.00701) (0.0131)

DP −0.00278** −0.00149**

(0.00108) (0.000628)

ES −5.76e-05 −4.82e-05**

(4.95e-05) (2.02e-05)

ln PFE 0.571* 0.202**

(0.297) (0.0933)

ln PGDP 0.00307 0.149**

(0.182) (0.0633)

TI −0.291 −1.813***

(1.428) (0.534)

GL −1.489*** 0.266*

(0.516) (0.151)

Constant 10.00*** 4.927 3.205*** 0.264

(0.100) (5.028) (0.030) (1.576)

Observations 2,032 1,502 2,360 1,803

R-squared 0.811 0.624 0.756 0.796

City FE YES YES YES YES

Year FE YES YES YES YES

Adjusted R-squared 0.782 0.554 0.725 0.765

Notes: robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.

The dependent variables in Table 5 are logarithm of urban industrial sulfur dioxide emission and carbon dioxide emission respectively.

Columns 1 and 3 report the direct impact of environmental policy uncertainty on urban industrial sulfur dioxide and carbon dioxide emissions without adding any control variables.

Columns 2 and 4 report the regression results after controlling for factors such as urban population density, economic development level, economic structure, and urban green rate. The

regression results show that the coefficient of β_1 is still significantly negative. When urban environmental policy uncertainty increases by 1%, urban industrial sulfur dioxide emission decreases

by about 0.14%, and carbon dioxide emission decreases by about 0.053%.
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dioxide emission. We believe that the scale of urban secondary
industry is an important factor to explain the inhibitory effect of
environmental policy uncertainty on urban pollutant emissions.
Theoretically speaking, the secondary industry is the main body
of industrial sulfur dioxide and carbon dioxide emissions, and is
the key target of urban pollutant control. The people’s yearning
for a better life has forced the central government and local
governments at all levels to continuously increase the intensity of
environmental regulation, and to successively promulgate various
environmental protection policies, which in turn makes the
environment policy uncertainty increase steadily. This
phenomenon is particularly evident in China’s eastern coastal
cities, where the economic development is relatively high (as
shown in Figures 6, 7; ). The risk impact caused by environmental
policy changes will restrain the growth rate and scale of urban
secondary industries to varying degrees. In this case, urban
pollutant emissions will also decrease. However, it should be
noted that the reduction of urban pollutant emissions is achieved
at the expense of economic development. Of course, the channel
of urban secondary production scale still needs to be more
rigorously verified.

In this paper, two methods are used to verify the secondary
production scale channel through which environmental policy
uncertainty affects urban pollutant emissions. The first is to
directly analyze the impact of urban environmental policy
uncertainty on the output value of secondary industry, that
is, to replace the explained variable in the benchmark regression
with the logarithm of the output value of urban secondary
industry. The measurement model is set as:

ln SGDPi,t � β0 + β1 · lnENPUi,t−1 + β2 ·Xi,t + λi + γt + εi,t (2)
ln SGDPi,t represents the logarithm of the output value of

secondary industry in the i-th city in the t-th year, and the
definitions of other variables are the same as Eq. 1. Table 6
reports the relevant regression results. Control variables are not
added in Column 1 of Table 6, while control variables such as urban
population density, economic development level, economic
structure, and urban green rate are added in Column 2. The
results show that the coefficients β1 in Columns 1 and 2 in
Table 6 are both significantly negative, indicating that the
increase of environmental policy uncertainty will inhibit the
development of secondary industry and reduce its scale. With

TABLE 6 The regression results of the impact of environmental policy uncertainty on the output value of secondary industry.

(1) (2)

lnENPUi,t−1 −0.163*** −0.143**

(0.0575) (0.0627)

DP 0.00503

(0.00342)

ES 0.000411

(0.000252)

ln PFE 0.190

(0.719)

ln PGDP 0.0325

(0.398)

TI −6.320*

(3.262)

GL −2.625**

(1.095)

Constant 27.64*** 24.54**

(0.252) (11.13)

Observations 2,061 1,814

R-squared 0.941 0.948

City FE YES YES

Year FE YES YES

Adjusted R-squared 0.933 0.940

Notes: robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.

Dependent variable in Table 6 is the logarithm of the output value of urban secondary industry. Control variables are not added in Column 1 of Table 6 and they are added in Column 2.

The results of Column 2 mean with every 1% increase in environmental policy uncertainty, the output value of urban secondary industry will decrease by 0.143%.
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every 1% increase in environmental policy uncertainty, the output
value of urban secondary industry will decrease by 0.143%.

The second is to add the interaction term between the output
value of urban secondary industry and environmental policy
uncertainty in the benchmark regression equation. The
measurement model is set as follows:

Pollutioni,t � β0 + β1 · lnENPUi,t−1 · ln SGDPi,t + β2

· lnENPUi,t−1 + β3 · ln SGDPi,t + β4 ·Xi,t + λi + γt

+ εi,t

(3)
The regression results are shown inTable 7. The estimated results in

Table 7 show that the estimated coefficient of lnENPUi,t−1 is

significantly negative, which is completely consistent with the
benchmark regression results in Table 5. The estimated coefficient
ln SGDPi,t is positive, demonstrating that the larger the scale of urban
secondary industry is, the larger the emissions of industrial sulfur
dioxide and carbon dioxide will be, which is completely consistent
with the research results of existing literature (Huang et al., 2020). The
estimated coefficient of the interaction term is significantly negative,
indicating that environmental policy uncertainty can reduce urban
pollutant emissions by downsizing the output value of secondary
industry. In other words, such a way of reducing emissions is
achieved at the expense of economic development.

In summary, combined with the regression results in Tables 5–7,
it can be concluded that the increase of environmental policy
uncertainty will reduce pollutant emissions such as urban
industrial sulfur dioxide and carbon dioxide, at the expense of
downsizing the output value scale of urban secondary industry. It
should be noted that the channel through which environmental
policy uncertainty affects urban pollutant emissions is not limited to
the scale of secondary industry. There are other transmission
channels, such as green investment and technology upgrading. In
the future, we would conduct more in-depth and detailed research if
we obtain data on green investment and technological upgrading at
city level in China.

4.4 Robustness check

We conducted a battery of robustness checks for our baseline
analysis to solve the missing variables and endogenous problems
that could exist in the estimation.First, we used the GMM regression
by using ENPU with one lag as instrumental variable.On the one
hand, we used the difference between the ENPU at the prefecture-
level city level and the average ENPU at the provincial level as
instrumental variable (IV) of the current year’s EPU. The regression
results are shown in Table 8. The estimated results in Table 8 show
that the estimated coefficient of lnENPUi,t−1 is significantly
negative, which manifests that the basic results in Table 5 are
robust. At the same time, all the F statistics were higher than 10,
indicating that the weak instrument variable test had been passed.
For the instrumental variables constructed in this paper, which is
highly correlated with ENPU at the prefecture-level city level, and
has nothing to do with other indicators that affect pollution
emissions, which satisfies the premise of using instrumental
variables.

5 Conclusions and policy implications

This paper selects 460 newspapers from the CNKI
newspaper database from 2001 to 2016 as the data source
and uses the text analysis method and the construction
method of economic policy uncertainty index proposed by
Baker et al. (2016) to construct China’s national, provincial
and prefecture-level EPUI for the first time. The results show
that China’s EPUI has obvious stage characteristics and regional
characteristics. Among them, the EPUI of China from 2012 to
2016 is higher than that from 2001 to 2011, and the EPUI of
northern provinces is significantly higher than that of southern

TABLE 7 The regression results of adding the interaction term of
environmental policy uncertainty and the output value of secondary industry.

Variables (1) (2) (3) (4)

ln SO2 ln SO2 ln CO2 ln CO2

lnENPUi,t−1 × ln

SGDPi,t

−0.0232*** −0.0203*** −0.00689*** −0.00699***

(0.00631) (0.00696) (0.00200) (0.00221)

lnENPUi,t−1 −0.433*** −0.347** −0.113** −0.110**

(0.151) (0.155) (0.0479) (0.0483)

ln SGDPi,t 0.0428 0.0403 0.00430 0.00174

(0.0394) (0.0424) (0.0158) (0.0152)

DP −0.00253** −0.00133**

(0.00104) (0.000585)

ES −3.73e-05 −3.57e-05

(5.79e-05) (2.28e-05)

ln PFE 0.600** 0.210**

(0.295) (0.0890)

ln PGDP 0.0368 0.157**

(0.175) (0.0613)

TI −0.421 −1.937***

(1.482) (0.527)

GL −1.716*** 0.182

(0.533) (0.164)

Constant 10.22*** 3.369 3.319*** 0.101

(1.056) (4.753) (0.434) (1.487)

Observations 1,716 1,500 2,045 1,801

R-squared 0.621 0.627 0.764 0.801

City FE YES YES YES YES

Year FE YES YES YES YES

Adjusted R-squared 0.561 0.558 0.734 0.772

Notes: robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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provinces. From 2001 to 2016, the distribution of EPUI at
provincial and prefecture level in China shows obvious
regional transfer characteristics, that is, high EPUI gradually
shifts from western China to central, eastern, and northeastern
China. By applying the Chinese city-level EPUI to the field of
urban pollution reduction, we have obtained an important
finding that the increase of environmental policy uncertainty
will reduce pollutant emissions such as urban industrial sulfur
dioxide and carbon dioxide, but at the expense of the
development of urban secondary industry.

Based on the conclusions obtained in this article, we propose the
following policy recommendations: firstly, when policymakers of
government at all levels introduce environmental protection policies,
they should have a thorough understanding of local natural resource
endowment, geographic location and climate, economic development
level and other factors. They need to pay attention to maintaining the
consistency and continuity of environmental protection policies in the
time dimension, instead of making frequent changes when the
environmental protection policies are introduced. At the same time,
it is necessary to eliminate the environmental policy confusions caused
by divided policies from various sources, and control the uncertainty of
environmental policy within a reasonable range. Secondly, although the
continuous promulgation and revision of environmental protection

policies can effectively reduce urban industrial sulfur dioxide and
carbon dioxide emissions, it should be noted that such emission
reduction comes at the expense of economic development. How to
strike a balance between environmental protection and economic
development is a key consideration for policymakers. In the
meantime, while continuously improving environmental protection
standards in the economically backward central and western inland
areas, it is recommended that the central government carry out a certain
scale of transfer payments between eastern and western provinces and
cities in order to help those inland cities to eliminate the worries of
continually improving standards. Finally, the national, provincial, and
prefecture-level EPUI constructed in this paper has important
application prospects in energy structure transformation and
cultivating a low-carbon economy. It also has positive policy
guidance for the early realization of the dual carbon goals.
Therefore, governments at all levels need to increase funding for
various types of basic data research and continuously increase policy
support for basic research.

The deficiency of this study is that the application of EPUI only
stays at the city level. And the transmission channel through which
environmental policy uncertainty affects urban pollutant emissions
is only concentrated on the scale of secondary industry, without
considering other transmission channels (such as technological

TABLE 8 The regression results of using GMM and Instrument varible as robustness checks.

Variables GMM GMM IV first IV second IV second

ln SO2 ln CO2 lnENPUi,t−1 ln SO2 ln CO2

lnENPUi,t−1 −0.250*** −0.0641*** −0.140*** −0.0534***

(0.0543) (0.0136) (0.0386) (0.0131)

IV 5.945**

(2.552)

DP −0.00119 0.000115 −0.000120 −0.00278** −0.00149**

(0.000891) (0.000371) (0.000646) (0.00108) (0.000628)

ES 4.47e-05 2.91e-05** 2.39e-05 −5.76e-05 −4.82e-05**

(3.80e-05) (1.42e-05) (5.42e-05) (4.95e-05) (2.02e-05)

ln PFE −0.172 0.137*** 0.126 0.571* 0.202**

(0.116) (0.0294) (0.169) (0.297) (0.0933)

ln PGDP −0.288* 0.0650* 0.0959 0.00307 0.149**

(0.154) (0.0362) (0.146) (0.182) (0.0633)

TI 0.134 −1.496*** 0.475 −0.291 −1.813***

(0.681) (0.319) (0.921) (1.428) (0.534)

GL −1.284*** −0.0926 0.132 −1.489*** 0.266*

(0.470) (0.144) (0.409) (0.516) (0.151)

F statistic 16.38

Observations 1,114 1,562 1,822 1,502 1,803

City FE YES YES YES YES YES

Year FE YES YES YES YES YES

Frontiers in Environmental Science frontiersin.org17

Li and He 10.3389/fenvs.2023.1203318

37

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1203318


innovation) or policy dividends or spillover effects brought to
neighboring cities by the introduction or revision of
environmental policies. In the future, we would apply the EPUI
to more scenarios (such as at enterprise level or household level), or
use the spatial econometric regression method to study the spillover
effect of environmental policy changes in different regions.
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Digital economy and private
donation behavior: an empirical
analysis based on the CFPS data
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With the development of digital economy, especially theMobile payment, the lifestyles
such as the private donation, is undergoing accelerated changes in the last decades.
Based on the China Family Panel Studies 2018 data, this paper systematically
investigated the donation models, empowered by digital technology, have realized
economy system refinement and intelligent development. Compared with residents
who do not use the Internet, residents who use the Internet are about 10%more likely
to donate, and the amount of donations will increase by about 56%. After considering
the potential endogeneity problem, results still hold with Propensity Score Matching
(PSM) and Instrumental Variable. The mechanism analysis shows that the searching
cost and information asymmetry play an important role. The research of this paper has
enlightening that thewidespread use of digital technologies can effectively change the
private donation behavior and penetrate energy consumption via dramatically
decreasing searching cost.

KEYWORDS

digital economy, private donation, searching cost, information asymmetry, energy
consumption

1 Introduction

With the development of Internet and Mobile Payments, there are around 800 million
Mobile payment users according to the Statistical Report on Internet Development in China
released by the China Internet Network Information Center in Figure 1. At the same time,
according to the China Charitable Giving Report, the total amount donated by private has
sharply increased from 267 billion yuan to 524 billion yuan in the last decade, showing an
increasing trend in private donations but a relatively stable trend in social charities from
enterprises (Figure 2). Coincident events hint at whether there is a relationship between
them. This paper aims to explore the possible link between these two trends and investigate
the factors that may influence individual donation behaviors in the digital age.

Recent literatures show that information asymmetry (Chen, 2021) and donation cost (Liu
et al., 2021), such as transportation cost and time cost, are the main obstacles to private donations.
Even though the Internet and Mobile payment can help us cross the above hurdles, there are also
traps in online donations. Take Waterdrop as an example, this platform was officially established
in July 2016. By the end of 2021, about 394 million users had donated over 48.4 billion yuan
($6.94 billion) to nearly 2.4 million seriously ill patients through the platform. Unfortunately,
however, the Waterdrop was exposed by the media last year for its “gray chain” problem1. It was
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reported that intermediaries on Waterdrop were conducting malicious
promotions with commission rates of 30%–70% on fundraising
intermediaries. Therefore, it is unclear whether the effect of the
Internet on personal donation is significantly positive or not.

On the one hand, the popularity of the Internet has a positive
impact on charitable fundraising in terms of both openness and
convenience. Firstly, as for openness, digital technology upgrading
has provided diverse channels for charitable organizations to
disclose information, which helps solve the trust challenges faced
by traditional charitable giving (Gandia, 2011; Blouin et al., 2018).
The specific content of donation projects, including the number of
donations, the number of donors, the progress of donation projects,
the source and destination of funds, and other information can be
disclosed in real-time through the Internet, which also makes it

timelier andmore convenient for all kinds of the government sectors
to grasp the situation, so as to monitor more effectively. Secondly, as
for convenience, mobile payments such as Alipay and WeChat have
broken through the geographical, spatial, and crowd restrictions of
traditional charity fundraising (Zheng, 2020), greatly facilitating the
operation of donations by residents. Participation enthusiasm is
reinforced, due to the ease and convenience of use (Boden et al.,
2020). In addition, against the important backdrop of addressing
climate change and achieving sustainable development (Yu et al.,
2021; Guo et al., 2023; Wang et al., 2023), the popularization and
promotion of mobile payment can promote the development of a
low-carbon economy, further promoting low-carbon living.

On the other hand, the popularity and widespread use of the
Internet may have a negative impact on donations. Firstly, there are

FIGURE 1
The scale and usage rate of online/mobile payment users in China (2011–2020). Source: The Statistical Report on Internet Development in China
released by the China Internet Network Information Center (CNNIC) over the years.

FIGURE 2
The amount and ratio donated by private and firms in China (2011—2020). Source: The China Charitable Giving Report, which is an annual series of
reports on China’s charitable giving commissioned by the Ministry of Civil Affairs.
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frequent incidents or suspected incidents of fraudulent or deceptive
use of crowdfunding on the internet (Zenone and Snyder, 2019),
especially in China. Because China’s existing Charity Law does not
cover the activity of Internet fundraising and current crowdfunding
platforms generally have low requirements for originators’
qualifications (Ke, 2017). Secondly, because of the anonymity and
rapidity of information dissemination on the Internet, the cost of
creating and spreading rumors is greatly reduced (Vosoughi et al.,
2018; Zhang et al., 2022). It is difficult to figure out rumors.
Residents’ enthusiasm to make charitable donations are reinforced.

Overall, the development of the Internet has had a significant
impact on residents’ charitable activities, but its ultimate impact
remains to be studied in depth. The role of digital technologies in
influencing residents’ willingness to donate has been explored in the
literature, but mainly in the context of population-specific studies of
donation behavior and willingness (Andreoni et al., 2003; Bryant
et al., 2003; Meer and Rosen, 2013; Meer and Priday, 2021), or using
experimental methods for analysis (Chen et al., 2005; Ingenhoff and
Koelling, 2009; Castillo et al., 2014), which did not include the
analysis of large-scale, more representative samples. And the
reliability of the study’s conclusions still needs further
verification. In particular, the paper of Gao and Wang (2021) is
similar to the topic of this paper, but they use data from the
2012 Chinese General Social Survey (CGSS) and find that using
the Internet makes residents more willing to give and that residents’
volunteer participation, social networks, and sense of giving all play
moderating roles in charitable giving. It is important to note that,
first, the data used in this paper are from 2012, which is relatively
outdated compared to the booming Internet philanthropy, because
neither the coverage of the Internet, nor the application of various
charity APPs and official accounts is comparable to today2, and the
impact of Internet use on residents’ giving has not yet been fully
revealed. Second, they do not explore the mechanism by which
Internet use affects residents’ donation behavior. Therefore, it is
necessary to conduct a more in-depth study of this issue using more
representative and current data in order to draw more accurate
conclusions.

For the above reasons, this paper systematically investigates the
impact of Internet use on residents’ giving behavior using micro-
data from the China Family Panel Studies (CFPS) 2018 to drawmore
precise and relevant conclusions. The results of the study, which
control for endogeneity issues, show that residents who use the
Internet are about 10% more likely to donate and the number of
donations will increase by about 56%. This effect is more
pronounced for Internet users who are highly educated, working,
and non-retired. Further analysis suggests that Internet use acts on
personal donation behavior primarily through two major
mechanisms: searching cost and information asymmetry.

This paper may have three marginal contributions in
comparison to existing literature. First, we detect the causal
effect of digital economy on private donation behavior, which
extends our understanding the impact of the digital technologies
on residents’ lifestyle, which extends the literature related to the

effect of the digital economy and the causal factors of the private
donation. Second, this study figures out that possible
mechanisms by which using Internet affects residents’
donation behavior. Third, based on the mechanism analysis,
we find reducing the transportation cost is a benefit from the
development of the digital economy, which is important evidence
to sustain the widespread use of digital technologies can
effectively penetrate energy consumption.

The remaining part of the paper proceeds as follows. Section 2
contains a literature review; Section 3 describes the data and the
identification strategy used in the analysis; Section 4 presents the
empirical results as well as the robustness tests followed by
heterogeneity analysis; Section 5 further explores the mechanisms
involved; and Section 6 concludes.

2 Literature review

It has been shown that people’s willingness and behavior to
donate can be influenced by numerous factors. According to the
literature, we can classify these influences into two categories:
individual and environmental factors.

Individual factors mainly refer to the personal characteristics
of the donor, including gender, age, education, income and
wealth, and many other aspects. For gender, Andreoni et al.
(2003) found that for single households, there was a significant
difference between men and women in terms of the amount
donated. Böhm and Regner (2013) conducted a real-effort task
experiment and found that male subjects increased donation
performance in the public setting for the purpose of status-
seeking. Lee et al. (2016) verified that donation attitudes were
more positive among female than male students and this
phenomenon could be interpreted using altruism theory. For
age, the empirical literature generally finds that both the
probability and amount of donation decrease when the elderly
are getting old. Meer and Rosen (2013) confirmed that under the
same assumptions, the manner in which older adults die also had
an impact on donation. For education, Bryant et al. (2003)
observed that individuals with high human capital were more
willing to donate based on the survey data from 1994. For income
and wealth, Meer and Priday (2021) used panel data on income to
empirically test that donation behavior increases as individuals’
income and wealth increase.

Environmental factors, on the other hand, emphasize that the
external environment in which individuals live plays a role in
influencing donation behavior through structural forces such as
infiltration or coercion. These factors include family environment,
cohort effect, social capital, and geographical proximity. For the
family environment, Lee et al. (2016) identified the relative impact of
parent-related factors, including parents’ donation activity and
volunteer work, on middle school students’ donation attitudes.
For the peer effect, Meer (2011) focused on it in the solicitation,
looking at whether people give more if the ask comes from someone
they know. Smith et al. (2015) empirically verified donors were
significantly influenced by the donations of their peers in the context
of individual online fund-raising. For social capital, Brown and
Ferris (2007) found a strong correlation between social capital on
philanthropy through a field experiment, i.e., the higher the stock of

2 Online fundraising platforms are currently an important way for residents
to donate, and were only approved by the Ministry of Civil Affairs starting
in 2016.
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individual social capital, the higher the level of donation. Saxton and
Benson (2005) showed that by controlling for other relevant social,
political, and economic factors, communities with higher levels of
social capital experience more extensive growth in their nonprofit
sectors. For geographical proximity, the sense of geographical
proximity believing that recipients come from the same area had
a strong correlation with an individual’s donation behavior
(Guéguen et al., 2018).

In terms of the research topic of this paper, there are a number of
studies. However, the literature studying charitable giving from the
Internet perspective has mainly focused on experimental studies
rather than empirical studies. This is because the popularity of the
Internet provides a more convenient platform and channel for
conducting donation experiments (Chen et al., 2005). Chen et al.
(2005) implemented the first web-based online fundraising
experiment to test the effectiveness of various fundraising
mechanisms. Ingenhoff and Koelling (2009) used charitable
fundraising nonprofit organizations (NPOs) experiments to
demonstrate that the Internet increases the likelihood of public
participation in dialogue by providing a two-way communication
channel for NPOs to communicate with the public. Castillo et al.
(2014) implemented a field experiment embedded in an online
giving organization’s web page to further explore the impact of
incentives on the willingness to fundraise.

It is noteworthy that experiments used to study charitable giving
suffer from some common drawbacks. Firstly, the participant pool
in experiments is often limited, which restricts the number of
variables that can be controlled simultaneously. Secondly, most
experiments utilize homogenous samples of students, casting
doubt on the external validity of findings based on student
populations. Research studies based on random population
samples, on the other hand, tend to have large and well-
represented samples, which can offset the limitations of
experimental research. Nonetheless, there are few studies in this
area, with the exception of Gao and Wang (2021). Therefore, this
paper utilizes the latest 2018 China Family Panel Studies (CFPS)
data to re-examine the impact of Internet use on residents’ donation
behavior and provide an in-depth analysis of the relevant
mechanisms to bridge the gap in this area.

3 Data and identification strategy

3.1 Data

The data used in the paper are from the China Family Panel
Studies (CFPS), which is a biennial survey conducted from
2010 to 2020 and covers 162 counties in 253 of 31 provinces.
The sample is nationally representative of Chinese communities,
households, and individuals. The explanatory variable in this
study is personal donation behavior. In the CFPS individual-level
questionnaire, the donation-related questions are asked only in
2018, we have to use the 2018 survey data for benchmark

empirical analysis.4 We limit the study to the adult
questionnaire and ultimately retain a sample of 30,169 after
removing missing values for key variables.

Personal donation behavior—The dependent variable is the
donation behavior of residents. We use two indicators to
characterize this. Firstly, we construct a dummy variable for
whether residents have made a donation, based on the question
in the CFPS questionnaire: " In the past 12 months, have you ever
made any donation to any individual or organization?” The
dummy variable if_donate was constructed to indicate whether
or not the resident had made a donation. If the answer is yes, then
the variable takes the value of 1, otherwise, it takes the value of 0.
Secondly, we constructed the continuous variable ln_donation5 to
characterize the amount of money donated by residents based on
their responses to the question “What is the total amount of
donation in the past 12 months? ". What’s more, if the question
is limited to “in the past 12 months”, it will be 1 year backward
from the survey time. Therefore, the donation data used in the
benchmark regression in this study refers specifically to the time
period from June 2017 to June 2018. The CFPS data does not
record each individual’s donation transactions, but report each‘s
donation decision and total amount in the last 12 months.
(Supplementary Table A2).

Internet service - The independent variable is the Internet usage
of residents, which is a dummy variable. Based on two questions “Do
you use mobile devices (e.g., mobile phone, tablet PC) access to the
Internet?” and “Do you use computer access to the Internet?“, if the
respondent answer “yes” for either of above two questions, this
variable is assigned the value of 1, otherwise, this dummy variable is
set a value of 0.

Other control variables - According to the previous literature
(Bronars and Lott, 1997; Yang et al., 2020; Andreoni et al., 2003;
Meer and Rosen, 2013; Bryant et al., 2003; Meer and Priday, 2021),
we also controlled for a range of personal and household
characteristics variables in order to exclude other influences.
The personal characteristics variables include the respondent’s
gender (1=male; 0=female), age, years of schooling (refer to the
highest level of education completed6), marital status
(1=unmarried, divorced or widowed; 0=married or cohabiting),
work status (1=employed; 0=unemployed, including withdrawal
from the labor market), self-rated health status (1=very good;
0=very poor), usual place of residence (0=rural; 1=urban), annual
income level (logarithmic form), CCP member (1= the member of
Communist Party of China; 0=not), public sector7 (1=public
sector; 0=private sector), and retirement status (1=retired;
0=not). What’s more, Personality traits are a more
comprehensive portrayal of a person’s traits (Almlund et al.,
2011; Heckman, 2011) and these may be important variables.

3 Tibet, Qinghai, Xinjiang, Ningxia, Inner Mongolia, Hainan, Hong Kong,
Macau, and Taiwan are not included.

4 We also conduct a robustness analysis later by using household panel data.

5 This variable is processed by adding 1 and then taking the logarithm form.

6 0=Illiterate/semi-literate 6=Primary school 9=Junior high school
12=Senior high school/Vocational School 15=3-year college 16=4-year
college/Bachelor’s degree 19=Master degree 22= Doctoral degree.

7 Public sector refers to working in Government, Party, People’s
organization, Military, State-owned, or Collectively-owned public
institution, State-owned, or State-controlled enterprise.
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We constructed five major personality trait variables, namely
conscientious, extraversion, agreeableness, openness, and
neuroticism based on the NEO personality trait revision
questionnaire developed by Costa and McCrae (2008) and the
questions from the British Household Panel Study (BHPS) (Brown
and Taylor, 2014), and then add ‘Big five’ personality trait in the
main model.8 Household characteristics variables are then added
by using household assets (containing cash, savings, and financial
products, in logarithmic form).

Table 1 presents the summary statistics of individual cross-
sectional data. As shown in Table 1, 53% of residents accessed the
internet via computer or mobile. This figure is largely consistent
with the Internet penetration rate of 59.6% in 2018 published by
CNNIC, indicating that the use of CFPS data to study internet use
is relatively representative. In addition, in terms of donation
behavior, nearly a quarter (22.5%) of respondents made
donations in 2018, with the average donation amount of all
samples being 99.97 yuan ($14.36), accounting for 0.69% of
individual income.9

3.2 Identification strategy

In the baseline regression, this paper uses a Probit model to
investigate the effect of Internet use on whether residents make
donations. The model was set up as follows.

probit if donatei � 1
∣∣∣∣interneti, Xi, αc( )

� Φ β0 + β1interneti + β2Xi + αc( ) (1)

In Equation 1, the explanatory variable if donatei indicates
whether resident i makes a donation or not. The explanatory
variable interneti denotes whether resident i use the internet. Xi

denotes a set of control variables, including individual characteristics
and household characteristics. αc denotes county-level fixed effects. β1
is the coefficient of interest in this paper, which indicates the effect of
Internet use on donation behavior. If the coefficient is positive, it
shows that internet use increases the probability of donation among
residents, and if it is negative, it means that Internet use decreases the
probability of donation among residents.

For the amount of donation, this paper uses ordinary least
squares (OLS) for estimation. The model is set up as follows.

ln donationi � γ0 + γ1interneti + γ2Xi + αc + εi (2)
In Equation 2, the explanatory variable ln donationi represents

the donation amount of resident i, εi is a random disturbance term,
and other variables have the same meaning as in Equation 1.

TABLE 1 Summary statistics of individual cross-sectional data.

Variables Note Mean Minimum Maximum Standard deviation Observation

Internet 0.528 0 1 0.499 30169

if_donate 0.225 0 1 0.417 30169

ln_donation 1.107 0 13.12 2.160 30095

male gender 0.497 0 1 0.500 30169

age 46.71 16 96 16.87 30169

urban usual place of residence 0.507 0 1 0.500 29890

health self-rated health status 0.706 0 1 0.456 30169

edu_year the highest level of education completed 7.652 0 22 5.003 30169

single marital status 0.212 0 1 0.409 30169

employment work status 0.713 0 1 0.453 30169

party CCP member 0.0955 0 1 0.294 30169

tizhi Public sector 0.0943 0 1 0.292 30169

ln_income annual income level 9.839 0 15.01 1.363 30015

retire retirement status 0.180 0 1 0.384 30169

con conscientious 3.603 0.714 5 0.563 30168

ext extraversion 4.165 1 5 0.833 30156

agr agreeableness 2.875 1 5 0.754 30166

neu neuroticism 2.619 1 5 0.531 30168

ope openness 1.884 1 5 1.124 30123

ln_assets household assets 7.088 0 16.17 4.786 29913

8 The specific criteria for the classification of ‘Big Five’ personality traits can
be found in the Supplementary Table A1.

9 The average donation amount of the donor sample was
448.52 yuan($64.43).
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TABLE 2 The impact of internet use on donations: baseline estimates.

(1) (2) (3) (4) (5) (6)

Probit Probit Probit Probit OLS OLS

VARIABLES if_donate if_donate if_donate if_donate if_donate ln_donation

internet 0.213*** 0.115*** 0.104*** 0.104*** 0.108*** 0.562***

(0.006) (0.007) (0.007) (0.007) (0.008) (0.040)

gender 0.006 −0.007 −0.007 −0.011** −0.032

(0.005) (0.005) (0.005) (0.005) (0.026)

age −0.002*** −0.002*** −0.002*** −0.002*** −0.004**

(0.000) (0.000) (0.000) (0.000) (0.001)

urban 0.025*** 0.019** 0.019** 0.019** 0.127***

(0.008) (0.008) (0.008) (0.008) (0.043)

health 0.000 −0.006 −0.006 −0.006 −0.024

(0.006) (0.006) (0.006) (0.006) (0.029)

edu_year 0.012*** 0.008*** 0.008*** 0.008*** 0.050***

(0.001) (0.001) (0.001) (0.001) (0.004)

single −0.047*** −0.021*** −0.021*** −0.010 −0.090**

(0.007) (0.008) (0.008) (0.007) (0.036)

employment 0.049*** 0.049*** 0.049*** 0.338***

(0.007) (0.007) (0.006) (0.030)

party 0.064*** 0.064*** 0.076*** 0.493***

(0.008) (0.008) (0.010) (0.056)

tizhi 0.079*** 0.078*** 0.118*** 0.687***

(0.009) (0.009) (0.012) (0.066)

ln_income 0.016*** 0.016*** 0.014*** 0.099***

(0.003) (0.003) (0.002) (0.012)

retire −0.013 −0.012 −0.013 −0.098**

(0.011) (0.011) (0.008) (0.042)

con 0.022*** 0.022*** 0.017*** 0.085***

(0.006) (0.006) (0.006) (0.030)

ext 0.009*** 0.009*** 0.010*** 0.058***

(0.003) (0.003) (0.003) (0.018)

agr 0.006* 0.006* 0.004 0.017

(0.004) (0.004) (0.003) (0.017)

neu 0.014*** 0.014*** 0.016*** 0.097***

(0.005) (0.005) (0.005) (0.023)

ope 0.006** 0.006** 0.007*** 0.034***

(0.002) (0.002) (0.003) (0.013)

ln_assets −0.000 −0.000 0.000

(0.001) (0.001) (0.003)

(Continued on following page)
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4 Empirical results

4.1 Baseline estimates

We present the baseline specification in Table 2, which
demonstrates the impact of internet usage on personal charitable
giving behavior. The dependent variables are the probability of
donating and the amount donated, while the independent
variables are internet usage and other control variables. Columns
1–5 of Table 2 display the results for whether an individual made a
donation in 2018. The regression analysis demonstrates that the
coefficient for internet usage remains significantly positive at the 1%
level, even after controlling for individual demographic
characteristics, work characteristics, wealth characteristics and
personality traits one at a time. This suggests that the positive
effect of internet usage on the likelihood of donating is robust.
Column 4 of Table 2 shows that residents who use the internet are
about 10.4% more likely to donate compared to those who do not
use the internet. This figure represents 0.46 times the 2018 average
probability of donation (22.5%), which is a highly economically
significant result. The results in column 5 are obtained using a linear
probability model, and the significance of the estimates is consistent
with the Probit model. Column 6 examines the impact of internet
usage on the amount donated by individuals in 2018. The regression
analysis shows that residents who use the internet donate
approximately 56.2% more compared to those who do not use
the internet.

4.2 Endogeneity issues

To ensure the reliability of our findings, we implemented several
methods to address potential endogeneity concerns. We employed
three different techniques to tackle endogeneity issues.

4.2.1 Propensity score matching
Self-selection bias is a bias that is introduced into a research

project when participants choose whether or not to participate in the
project, and the group that chooses to participate is not equivalent
(in terms of the research criteria) to the group that opts out. The
treatment groups and control groups are observed in this study. In
this study, the donation group is not equivalent to the
nonparticipant group because of unobserved characteristics, such
as the donation preference or culture. Therefore, the estimation

results may be biased, and the baseline regression may overestimate
the effect of internet use on donation behavior. To ensure the
reliability of the core findings of this study and better reveal the
causal relationship between internet use and individual donation
behavior, we employed the propensity score matching (PSM)
method for handling and compared the difference in donation
behavior between these two groups of individuals, namely
Average Treatment Effect (ATT), to determine the effect of
Internet use on personal donation behavior.

The results of the balance test showed that the differences
between the control variables in the experimental group and the
control group were significantly reduced after matching, andmost of
the covariates’ significance disappeared, meeting the requirement of
covariate balance between groups. Table 3 reports the results of the
ATT calculated using the nearest neighbor matching method. It can
be seen that compared with residents who do not use the Internet,
Internet use increases the probability of donation by approximately
10.2% and 11.5%. The effect of Internet use on donation behavior
remains siginificant at the 1% level after using PSM for matching,
consistent with the conslusion in Table 2. The results indicate that
the problem of self-selection bias does not have a significant impact
on the regression results.

4.2.2 Measurement errors
To address the issue of potential measurement errors, we

removed questionnaires with low credibility scores. Based on the
observations of the CFPS interviewers, the respondents’ impatience
with the interview was scored on a scale of 1 (very low) to 7 (very
high) to measure the credibility of the sample. We used a mean score
of 4 as the criterion to determine whether the respondent was
impatient, and if the score was higher than 4, the value of “Credible”
was set to 0. This is because if the interviewer gave a score higher
than 4, it means that the respondent is more likely to choose quick
answers in the preceding questions, rather than providing truthful
answers. For example, when asked “Do you use a computer to access
the internet,” if the respondent answers “yes,” further questions will
be asked about the frequency of internet use for study and work, but
if the respondent answers “no,” there will be no related follow-up
questions. Therefore, it is possible that the quality of the information
provided by the respondent may be compromised due to impatience
with the interview, leading to measurement errors.

On the basis of the baseline regressions, we removed samples
with scores greater than 4, representing approximately 15% of the
total sample. The results in columns 1 and 2 of Table 4 validate the

TABLE 2 (Continued) The impact of internet use on donations: baseline estimates.

(1) (2) (3) (4) (5) (6)

Probit Probit Probit Probit OLS OLS

VARIABLES if_donate if_donate if_donate if_donate if_donate ln_donation

County FE YES YES YES YES YES YES

Observations 29,497 29,261 29,079 29,024 29,633 29,562

R-squared - - - - 0.160 0.177

Note: Standard errors are clustered at the county level. Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. Probit regressions report average marginal effects; OLS regressions report estimated

coefficients. Notes to subsequent tables are the same as in Table 2 unless otherwise stated.
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TABLE 3 Propensity score matching.

(1) (2)

ATT nearest-neighbor PSM 1:1 nearest-neighbor PSM 1:4

Internet 0.102*** 0.115***

(0.016) (0.015)

Controls YES YES

Observations 29,633 29,633

Pseudo R2 0.432 0.432

Note: Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. The dependent variable was donation behavior if_donate. The control variables include personal characteristics gender, age, education,

marital status, work status, health status, usual place of residence, income level, CCP member, public sector, retirement status, and household assets.

TABLE 4 Removal of samples with low credibility.

(1) (2) (3) (4)

VARIABLES if_donate ln_donation if_donate ln_donation

internet 0.105*** 0.569*** 0.104*** 0.561***

(0.008) (0.043) (0.008) (0.044)

Controls YES YES YES YES

County FE YES YES YES YES

Interviewer FE NO NO YES YES

Credible YES YES YES YES

Observations 24,673 25,158 24,526 25,158

R-squared - 0.183 - 0.211

TABLE 5 Instrument variable.

(1) (2)

VARIABLES IV-Probit IV-2sls

Panel A the Second Stage

internet 0.176** 0.181**

(2.567) (2.384)

Panel B the First Stage

IV 0.392*** 0.359***

(0.037) (10.423)

Controls YES YES

Prov FE YES YES

Observations 29,394 29,394

R-squared - 0.117

The first stage F statistic 501.25{0.000}

Wald test 5.69{0.012}

Note: Standard errors are clustered at the county level. Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. IV-Probit regressions report average marginal effects; IV-2sls regressions report

estimated coefficients. The dependent variable was donation behavior if_donate. As the Wald test for IV-Probit requires an assumption of homoskedasticity (no robust or cluster), we can’t get

the p-value of the Wald test in IV-probit.
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robustness of our conclusions. The measurement errors are unlikely
to drive our estimates spuriously.

Besides, to address concerns about comparability of subjective
scoring across interviewers, we also control the interviewer fixed
effect, the results in columns 3 and 4 of Table 4 are still robust.

4.2.3 Instrument variable
If generous donors are inherently more likely to be online, then

distinguishing whether Internet use increases giving behavior or
whether Internet use is due to generous giving will be very difficult.
To eliminate this potential endogeneity problem, we introduce the
instrumental variable, drawing on the idea of constructing
instrumental variables from Gao and Wang (2021). We selected
the average internet usage of all respondents within the same county
excluding the respondent himself/herself as the instrumental
variable for respondents’ internet usage. The level of Internet
access and utilization in a region has a significant impact on
individuals’ decisions to access the Internet, and the regional use
of the Internet is strongly exogenous to residents’ donation behavior,
so it is reasonable to use the regional average Internet use as an
instrumental variable. Based on the characteristics of the
explanatory variables, we conducted IV-Probit regression and IV-
2sls regression respectively, and the regression results are shown in
Table 5.

The result of the first-stage estimates is reported in Panel B of
Table 5. It can be seen that as the explanatory variable, the first-
stage regression coefficient of internet use is significantly positive
at the 1% level, indicating a significant positive impact of average
Internet use in county areas on whether individuals use the
internet. Therefore, the instrument variable has a strong
correlation. The first-stage F-values were 501.25. According to
Stock and Yogo (2005), the critical value of the F-value is
16.38 under the assumption that the bias level is less than
10%, which further demonstrates the explanatory power of
regional average Internet usage for whether individuals use the
internet, and there is no weak instrument problem. The second
stage results from Table 5 report that the regressions using
instrumental variable are generally consistent with the baseline
estimates: a 17.6% increase in the probability of donation for
residents who use the internet in the IV-probit regression; and a

18.1% increase in the probability of donation for residents who
use the internet in the IV-2sls regression.

4.3 Robustness tests

4.3.1 Expenditure on gifts for social relation
Expenditure on gifts for social relations, as the cost of interaction

between people, has the function of maintaining long-term
relationships between acquaintances. This is different from the
act of donation, but it is easy to confuse household favor
expenditure with donation expenditure. In particular, favor
expenditure from wealthy families to poorer families may have
both social capital attributes and donation attributes, unlike
general donation expenditure. Therefore, in order to exclude the
effect of this type of expenditure on the conclusions, we selected the
corresponding question from the CFPS household questionnaire,
“In the past 12 months, what was the total amount of money your
family spent on gifts for social relations? " to measure Expenditure
on gifts for social relations and included this control variable ln_
fexpense_gift in the main model. The regression results in Table 6
report that the internet’s ability to significantly increase the
probability and amount of giving still holds after controlling for
household spending on favors. Our main findings remain
unchanged.

4.3.2 Household panel data
It has been proved that charitable giving tends to be made by

households as a unified economic entity, with joint decision-making by
couples being the dominant way (Wiepking and Maas, 2009). The
giving behavior we seemay not only be the individual decisions, but also
the behavior of households. Therefore, we use the household panel data
below to analyze the impact of internet use on giving behavior.

In the CFPS household-level questionnaires, the household
donation information and internet usage are recorded in 2014,
2016, and 2018. So, this panel data from these three periods is
conducted to make the robust test. The final sample contained
40,580 observations after removing missing key variables. Referring
to the study by Yang et al. (2022) and Guo (2020), we examined
household internet use in two dimensions. The first variable if_
internet is whether the household uses the Internet, taking a value of
1 to indicate that at least one person in the household uses the
Internet and 0 to indicate that no one in the household uses the
Internet; the second variable ratio_internet is the household Internet
usage rate, which is the ratio of the number of people using the
Internet to the number of all people in the household. We
constructed the continuous variable ln_donation10 based on the
responses to the economic questionnaire " In the past 12 months,
how much social donation did your family make in cash and in kind
(e.g., food and clothes)?". The continuous variable was used to
characterize the amount donated by households. The dummy
variable if_donate was constructed to indicate whether or not the
household made a donation. The control variables include the
personal characteristics of the household financial manager and

TABLE 6 Expenditure on gifts for social relations.

(1) (2)

VARIABLES if_donate ln_donation

internet 0.102*** 0.558***

(0.008) (0.041)

ln_fexpense_gift 0.010*** 0.043***

(0.001) (0.006)

Controls YES YES

County FE YES YES

Observations 28,693 29,227

R-squared - 0.181

10 This variable is processed by adding 1 and then taking the logarithm form.
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TABLE 7 Summary statistics of household panel data.

Variables Mean Minimum Maximum Standard deviation Observation

wave 2016 2014 2018 1.634 40580

if_internet 0.559 0 1 0.497 40580

ratio_internet 0.378 0 1 0.385 40580

if_donate 0.187 0 1 0.390 40580

ln_donation 0.981 0 10.82 2.133 40467

TABLE 8 The impact of internet use on donations: household panel data.

(1) (2) (3) (4)

VARIABLES if_donation ln_donation if_donation ln_donation

if_internet 0.041*** 0.204***

(0.005) (0.025)

ratio_internet 0.075*** 0.508***

(0.007) (0.044)

Controls YES YES YES YES

County FE YES YES YES YES

Year FE YES YES YES YES

Observations 37,400 37,734 37,400 37,734

R-squared - 0.149 - 0.152

TABLE 9 Heterogeneity analysis.

(1) (2) (3) (4) (5) (6)

VARIABLES if_donate ln_donation if_donate ln_donation if_donate ln_donation

internet 0.080*** 0.101 0.081*** 0.225*** 0.112*** 0.636***

(0.012) (0.070) (0.010) (0.048) (0.008) (0.044)

internet*edu_year 0.003*** 0.061***

(0.001) (0.007)

internet*employment 0.029** 0.442***

(0.012) (0.052)

internet*retire −0.051*** −0.432***

(0.016) (0.089)

Controls YES YES YES YES YES YES

County FE YES YES YES YES YES YES

Observations 28,974 29,510 28,974 29,510 28,974 29,510

R-squared - 0.181 - 0.180 - 0.179
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household characteristics, including gender, age, education, marital
status, work status, CCP member, public sector, annual household
income, household assets, time fixed effect and county fixed effect.
Table 7 reports summary statistics for the main variables at the
household level.

Table 8 presents the results of the effect of household-level
Internet use on giving behavior. The results in column 1 of Table 8
show that Internet use increases the probability of household giving
by 4.1%. The results in column 2 indicate that households using the
Internet are 20.4% more likely to donate compared to households
not using the Internet. This suggests that the positive impact of
internet use on donation behavior remains robust even at the
household level. The regression results in columns 3 and 4 of
Table 8 also report that an increase in household internet usage
rate increases the probability of giving and the amount given by
households.

4.4 Heterogeneity analysis

The benchmark regression results show that internet usage
can increase the probability of residents’ donations, but
differences in individual characteristics may lead to variations
in this relationship. Based on the benchmark regression, we
introduced interaction terms between years of education,
employment status, retirement status, and internet usage,
respectively, to investigate whether the impact of internet
usage on resident donation behavior varies significantly due to
differences in human capital and income.

Columns 1 and 2 of Table 9 show that highly educated Internet-
using individuals are 0.3% more likely to give than less educated
Internet-using ones and give approximately 6.1% more; columns
3 and 4 examine that working Internet-using residents are 2.9%
more likely to give than non-working Internet-using ones and the
number of donation are 44.2% higher; columns 5 and 6 indicate that
retired Internet users are 5.1% less likely to give than non-retired
Internet users, and money donated is 43.2% less. As expected,
Internet use has a greater positive impact on the giving behavior
of highly educated, working, and non-retired residents. These
differences may be explained by the fact that better-educated

residents are more likely to be influenced by information on the
Internet to give because of their mindset and values, and that
working and non-retired Internet users are more likely to donate
because of their financial abundance.

5 Mechanism analysis

As discussed in Section 4, Internet use has a significant positive
impact on personal donation behavior. In this section, we will
specifically examine the mechanisms through which the Internet
promotes giving. From the perspective of the Internet’s own
functions, its underlying mechanisms for influencing giving
include the following two, namely information asymmetry and
searching cost.

5.1 Information asymmetry

Information asymmetry between donors and recipients is an
important factor limiting the development of charitable fundraising
(Chen, 2021). Before the popularity of the Internet, it was often
difficult for donors to know details about donation projects,
including the number of donations, the progress of donation
projects, the source and destination of funds, or even where
potential recipients were located. In December 2011, there were
446,000 registered civil society organizations in China, with less than
5% of public welfare organizations able to disclose information
comprehensively and on time.11 The rapid development of the
Internet has provided low-cost and diversified channels for
information disclosure for charitable organizations, greatly
alleviating the information asymmetry phenomenon (Gandia,
2011; Blouin et al., 2018). Taking the One Foundation initiated
by Jet Li as an example, it has disclosed various reports such as
annual audit reports on its official website. In addition, donors can
check the use of donations and the implementation of projects in
real-time on the One Foundation’s official website. Each donor can
also apply for invoices on the website. Therefore, we believe that the
information mechanism that alleviates information asymmetry is
the first mechanism through which the Internet influences
individuals’ giving behavior.

5.2 Searching cost

Access to the Internet has largely reduced the information searching
cost of donors (Daurer et al., 2012) which can address information
asymmetry to some extent. Besides, the popularity of the Internet can
also reduce the participation cost of donations, including time,
transportation, and transaction costs, making charitable giving more
efficient. Both searching cost and participation cost can be seen as
opportunity costs of giving, and when such opportunity costs are too
high, donors may eventually choose not to give. However, the internet

TABLE 10 Mechanism analysis.

(1) (2)

VARIABLES if_donate ln_donation

internet 0.039*** −0.010

(0.013) (0.045)

internet*impinternet 0.018***

(0.003)

internet*phone 0.114***

(0.044)

Controls YES YES

County FE YES YES

Observations 28,947 28,974

11 Refer to the website here: http://epaper.zqcn.com.cn/content/2013-05/
14/content_14514.htm.
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can greatly reduce the opportunity cost of giving and thus facilitate giving
behavior. We refer to this mechanism as searching cost.

In order to test the validity of these two mechanisms, we introduced
two interaction terms in the main model. Firstly, we introduced an
interaction term of two dummy variables, which are the importance of
the Internet and Internet use, to test the validity of the information
asymmetrymechanism. The individuals’ responses to the question “How
important is the Internet as a communication path for you?” is used to
construct the dummy variable to characterize the importance of the
Internet. All respondents were asked about the importance of the
Internet, even individuals who did not use it. Around 12.78% of the
individuals who do not use the Internet point out that the Internet is an
important source of access to information (Supplementary Table A3).
The logic is that if the Internet is more important to a resident’s access to
information, then the role of the Internet in mitigating information
asymmetries will be greater for him/her, and the marginal impact of the
Internet on personal donation behavior should be greater.

Second, there are differences in the convenience level between
computer accessing to the Interne andmobile phone accessing to the
Internet. Straightforwardly, the searching cost is different. In this
part, we include the interaction term between the dummy variable
Internet usage and the dummy variable phone usage. We can
separate study sample into four groups: mobile internet users,
mobile non-internet users, non-mobile internet users, and non-
mobile non-internet users.

The estimates for the two mechanisms are presented in Table 10.
The coefficients of all the interaction terms are significantly positive,
indicating that the information asymmetry mechanism and the
searching cost mechanism are indeed all significantly present. The
result in column 1 of Table 10 shows that among individuals who use
the internet, those who regard the Internet as important are more
likely to donate. It can also be observed that among individuals who
use the internet, using a mobile phone can significantly increase their
probability of making donations (Column 2 of Table 10).

6 Conclusion

With the widespread of digital economy, the number of Mobile
payment users and the amount of private donation increased
simultaneously in the last decades. The donation models,
empowered by digital technology, have realized more openness
and more convenience. But the popularity and widespread use of
the Internet may have a negative impact on donations in terms of
both incidents and rumors. Therefore, the study of residents’ new
lifestyle, such as donation behavior, has important practical
significance and theoretical value. Based on the China Family
Panel Studies (CFPS) data, we systematically investigate the
impact of digital technologies on residents’ donation behavior
and explores its mechanisms. The research in this paper finds
that Internet use largely increases the probability of donation and
the amount of donation among respondents. Residents who use the
Internet are 10% more likely to donate and approximately donate
about 56% more than residents who do not use the Internet. This
effect was more pronounced for highly educated, and working users,
as well as those who are non-retired. Further, we propose and

validate two mechanisms by which the Internet influences residents’
donation behavior: searching cost and information asymmetry, in
terms of the basic functions of the Internet. The research of this
paper has enlightening that the widespread use of digital
technologies can effectively change the private donation behavior
and penetrate energy consumption via dramatically decreasing
searching cost.
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Introduction: The increasing digital transformation and the global need for

sustainable energy solutions have sparked considerable interest in the

examination of digital technologies' impact on the adoption of clean

renewable energy. However, limited research focuses on energy consumption

in rural households, especially in developing countries such as China.

Methods: This study leverages the quasi-natural experiment provided by the

Broadband China Policy (BCP) and utilizes data from the China Labor-force

Dynamics Survey (CLDS) spanning 2012 to 2016. Our investigation aims to

understand the effect of the digital transition on the adoption of clean

renewable energy within rural families. We employ staggered Difference-in-

Difference (DID) and Doubly Robust Staggered DID estimators to assess this

impact, allowing us to explore regional heterogeneity.

Results: Our findings reveal that implementing the BCP significantly influences

clean renewable energy adoption, although this effect varies across different

regions. Specifically, in the middle region, the BCP results in a notable 5.8%

increase in clean renewable energy adoption compared to non-pilot cities.

However, in the east and west regions, the BCP is associated with a decrease

of 12.6% and 13.5%, respectively, in clean renewable energy adoption. Dynamic

effect analysis further indicates that the east region had already experienced high

clean renewable energy adoption prior to the BCP's implementation, while the

BCP positively influences clean renewable energy intentions in the west region.

Discussion: Our analysis identifies three significant channels through which the

BCP affects clean renewable energy adoption: population size, economic size,

and income level. Larger populations and greater economic size enhance the

BCP's impact on clean renewable energy adoption. These findings provide

empirical evidence for developing countries that seek to harness digital

development for technological advancement, industrial upgrading, and carbon

emission reduction.

KEYWORDS

digital transition, clean renewable energy, rural family, Broadband China, Difference-
in-Difference
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1 Introduction

In recent years, the world’s attention on environmental issues

and climate change has grown significantly, leading to proactive

efforts in exploring strategies to combat pollution and reduce

greenhouse gas emissions. The excessive use of fossil fuels and

inefficient energy structures have been identified as significant

contributors to these pressing environmental challenges (Zhang

and Bai, 2017; Lv et al., 2021; Li and Zhao, 2023). Reinforcing the

situation’s urgency, the International Energy Agency (IEA) recently

released a report highlighting the concerning trends. In 2021, global

coal power generation witnessed a worrisome increase of 9%, while

carbon emissions from energy combustion and industrial processes

grew by 6%. Particularly alarming is the staggering amount of 15.3

billion tons of CO2 emissions resulting from coal consumption,

accounting for over 40% of the total incremental emissions.

Disturbingly, the IEA projects a further 0.7% rise in global coal

consumption in 2022. Given these critical developments, nations

worldwide are prioritizing socioeconomic sustainability by

promoting and advancing clean, renewable energy sources.

The significance of sustainable energy in mitigating pollution

and improving environmental conditions has sparked significant

scholarly interest in comprehending the factors influencing

individuals’ adoption of such energy sources. Existing literature

explores multiple avenues of inquiry, encompassing various

dimensions. One prominent line of research delves into

demographic factors such as age, education, income, and social

status (Zografakis et al., 2010; Willis et al., 2011; Eshchanov et al.,

2021; Irfan et al., 2021). Furthermore, scholars have explored

subjective attitudes and psychological elements, including the

acceptance of sustainable energy, trust, and risk perception

(Zografakis et al., 2010; Upton and Snyder, 2015; Irfan et al.,

2021). In addition, scholars have closely examined macro

variables, such as economic development (Eren et al., 2019;

Razmi and Janbaz, 2020; Wang et al., 2021), economic incentives,

and energy policies (Asante et al., 2020); the development of the

clean renewable energy industry (Molnarova et al., 2012; Ge et al.,

2022); and environmental pollution (Zhang et al., 2021). These

issues underscore the need to devise strategies for measuring and

addressing the challenges associated with innovation and the

adoption of clean renewable energy.

Digital technology has emerged as a potential solution to the

aforementioned challenges, as noted by numerous scholars. The

advent of digital technologies has transformed the way both

businesses and individuals operate, ushering in a digital transition

(El Hilali et al., 2020). Key elements of this transition include 5G,

artificial intelligence, the Internet of Things (IoT), and information

and communication technology (ICT). These evolving digital

technologies have the potential to reshape the energy consumption

patterns of corporations (Ren et al., 2021). However, there has been

relatively limited research focusing on the energy consumption

of residents.

ICT, with broadband as one of its foundational components,

has already delivered significant economic benefits (Bertschek et al.,

2015). Moreover, broadband is one of the most immediate and

tangible aspects of the digital transition that directly affects the lives
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of residents. In China, for instance, urban dwellers predominantly

use natural gas as a domestic fuel, whereas fossil fuels remain the

primary source of energy in rural areas. Against this backdrop, it

becomes particularly intriguing to investigate the causal effects of

broadband connectivity on the adoption of clean renewable energy

among rural residents.

We propose three potential pathways through which digital

transition may promote household clean renewable energy

adoption (CREA). Firstly, governance participation and pollution

control play a crucial role. Improved internet accessibility resulting

from the Broadband China Policy (BCP) enables the dissemination

of information and knowledge (Chen et al., 2022b). It also provides

a platform for rural residents to voice their opinions on

environmentally friendly policies, encouraging the government to

invest in and develop clean renewable energy infrastructure. This, in

turn, can facilitate a shift in the energy consumption structure of

households towards cleaner sources. Secondly, the availability of job

opportunities and increased salary income can influence clean

energy adoption in rural households. Internet access opens up

new avenues for rural residents to access job opportunities and

entrepreneurial platforms (Cheng et al., 2021). Higher-income

levels, resulting from these opportunities, can positively impact

the adoption of clean energy technologies by making them more

affordable and accessible to households (Commander et al., 2011).

Lastly, the process of industrial upgrading stimulated by the BCP

can significantly affect clean energy adoption. As industries undergo

technological advancements and upgrades, local economies are

likely to experience growth. This economic growth can provide

the local government with resources and the ability to invest in

clean technology infrastructure (do Valle Costa et al., 2008; Yu et al.,

2015). Moreover, increased income levels resulting from industrial

upgrading can enable households to afford and adopt clean

renewable energy solutions.

China’s BCP, initiated in 2013, 2014, and 2015, presents a

unique opportunity to investigate the role of broadband in

promoting the adoption of clean renewable energy among rural

families. This policy exhibits three distinctive features that facilitate

our empirical analysis. Firstly, the BCP pilot cities are directly

designated by the China central government, and while local

governments can seek qualification as BCP cities, they lack the

authority to decide their inclusion in the BCP list. As a result, the

BCP represents an exogenous event for both local governments and

residents, providing a natural experimental setting. Secondly,

China’s household registration system (Hukou) and the escalating

real estate prices impose significant restrictions on migration

between rural areas and cities. This limited mobility between

regions further emphasizes the localized impact of the BCP on

rural residents. Finally, the investment in broadband infrastructure,

prompted by the BCP pilot cities, is temporary. After the

establishment of essential infrastructure such as station towers,

the primary investment in BCP tends to reduce.

We conducted a comprehensive study by hand-collecting

county-level data for the “Broadband China” pilot cities in 2013,

2014, and 2015, and merged this dataset with the individual-level

data from the China Labor-force Dynamics Survey (CLDS).

Employing a staggered Difference-in-Difference with two-way
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fixed effects (TWFE DID) and dynamic staggered DID

methodology proposed by Callaway and Sant’Anna (2021), our

research reveals compelling insights into the impact of the BCP on

CREA, while also identifying regional variations in this effect. In the

middle region, the implementation of the BCP results in a

noteworthy 5.8% increase in CREA compared to non-pilot cities.

However, contrasting trends are observed in the east and west

regions, where the BCP is associated with a decrease of 12.6% and

13.5% in CREA. Further analysis using dynamic effects

demonstrates that the east region had already witnessed a high

level of CREA prior to the BCP’s implementation, while the BCP

positively influences clean renewable energy intentions in the west

region. Moreover, we investigate the role of natural gas, a clean

energy source in China, and find that the BCP contributes to a

1.38% increase in natural gas usage specifically in the east region.

The identification strategy of TWFE-DID relies on the parallel

assumption, which states that, in the absence of any intervention,

trends in CREA should not be related to the intensity of the

treatment represented by the BCP. Our findings provide evidence

supporting this assumption. We employed two main approaches to

confirm this premise. Firstly, we utilized an event study strategy to

compare the outcome trends of the treatment group and the control

group before the treatment group received the BCP. This analysis

revealed no significant pre-treatment differences between the

two groups.

Secondly, we thoroughly examined the potential influences of

specific local characteristics, such as the level of sunshine duration

and local government efforts to decrease pollution, as well as the

impact of other contemporaneous historical events like green finance

initiatives, the digital country program, and the innovation cities

project.We found that the BCP’s implementation was independent of

these factors, further affirming the parallel assumption. During the

study period of BCPs, the Chinese government intensified its efforts

to combat environmental pollution, leading to the rapid expansion of

CREA, such as the adoption of natural gas in families and solar power

in manufacturers since the late 2010s. To control for this

confounding factor, we collected province-by-year information on

CREA. Despite the influence of pollution control policies and the

expansion of renewable energy adoption during the study period, our

estimation coefficients on the BCPs remained stable, indicating that

the BCPs had a distinct and independent effect on CREA.

Additionally, we accounted for local pollution levels in the district

and the level of green finance in each city, further ensuring the

robustness of our analysis.

Our study highlights the significant consequences of the digital

transition on CREA among rural families, shedding new light on the

role of digital transformation in promoting environmental

protection and sustainable economic growth in China. While

existing research has explored the macro effects of digital

transition on renewable energy consumption in China, little

attention has been paid to the individual level, particularly in

rural areas where fossil fuel adoption is predominant. In this

paper, we bridge this gap by merging individual-level and macro-

level data to examine the effects of digital transition on CREA in

rural areas. Our analysis primarily focuses on rural families affected

by the digital transition during the late 1990s and the 21st century.
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This period was characterized by significant industrialization and

urbanization reforms, which enabled the rural labor force to seek

employment opportunities outside their hometowns. Additionally,

the reform and opening up policies provided opportunities for rural

residents with basic education to find work abroad, leading to

higher income and improved access to better infrastructure

compared to living in rural areas. Many of them took up jobs as

manufacturing workers or in the flourishing Township and Village

enterprises. As a result of these economic opportunities, a

considerable portion of rural families now reside in cities or

overseas, while still sending income back to their families living

in rural areas. This interaction has facilitated the exchange of ideas

and concepts, including the promotion of environmentally friendly

energy consumption practices. Building on these observations, our

empirical findings suggest a potential link between the increase in

CREA, driven by the digital transition and the rapid expansion of

internet infrastructure in China, and the country’s overall economic

growth during the reform era.

Our study mainly contributes to two strands of literature. The

first examines the channels of digital transition and energy

consumption, especially the energy consumption in a rural family.

Surveys show that digital technology increased labor productivity,

promoted the reorganization of the supply chain, and reduced

energy consumption (Hertin and Berkhout, 2001). With the

availability of digital technology adoption data, economists

conduct a lot of empirical research on digital transition and

energy consumption; internet technology adoption is one of the

main driving forces behind economic growth, and it also promotes

energy product efficiency (Atkinson and McKay, 2007). The rapid

spread of internet technology changes the energy use intensity and

renewable energy cost; therefore, it reduces carbon emissions and

energy resource consumption (Moyer and Hughes, 2012);

specifically, ICT significantly improves the electricity adoption

efficiency in European manufacturing companies (Ishida, 2015).

These studies focus on the macroeconomic effects of digital

technology on renewable energy adoption, mainly based on the

macro-level data. In contrast, our results demonstrate that

increasing local digital technology adoption significantly promotes

renewable energy adoption in rural families. Moreover, the

development of the local economy is an important channel

through which BCPs improve renewable energy adoption in a

rural family. Additionally, digital technology adoption will

increase electricity usage, and according to the rebound effect, the

digital transition may increase energy consumption. In developed

countries, electricity is important in the causal effect path between

digital technology adoption and economic growth. Empirical

evidence based on OECD panel data shows that internet

technology adoption not only promotes the development of the

economy but also increases the quantity of electricity consumption

both in the short and long term (Salahuddin and Alam, 2016). In

developing countries, the digital transition significantly positively

increases both electricity consumption and energy consumption.

Even in China, the biggest developing country, digital transition

increases the total energy consumption at the province level (Ren

et al., 2021). Unlike the existing literature, our paper examines the

individual-level renewable energy adoption in a rural area of the
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biggest developing country. We also investigate the intermediate

effects of other factors, such as electricity adoption in families, social

connection to the neighborhoods, economic foundation, and

industrial structure in the local area. Furthermore, we compare

the effect of BCPs on family renewable energy adoption in cities, the

developed area, and the county, the developing area. Our empirical

results show that electricity consumption has a significantly positive

intermediate effect on the causal path between BCP and renewable

energy adoption, and the BCPs have shown more significant effects

in the rural family rather than in the citizen family.

The second literature investigates the economic impact of

digital transition policy, especially internet communication

technology. Economists have studied this topic from a lot of

perspectives including GDP (Jorgenson, 2001), economic growth

rate (Czernich et al., 2011), innovation performance (Paunov and

Rollo, 2016), green technology innovation and adoption (Tang

et al., 2021), and financial market (Cheng et al., 2021). However,

the digital transition policy impact on rural individual-level

outcomes remains understudied, and our study contributes to the

economic consequence of digital transition policy in two ways. First

and foremost, we uncover the mechanisms by which economic

growth and infrastructure improvements due to digital technology

adoption affect residential energy preferences; therefore, we extend

the economic impact of digital transition from the macro level to

the individual level and explored the potential mechanism between

macro factors and individual behavior.

Therefore, our study makes notable contributions to the

existing literature by exploring the microlevel effects of digital

transition on CREA within rural families, particularly in the

context of China’s BCP. Unlike previous research that mainly

focused on macroeconomic effects, our investigation specifically

targets rural areas, where fossil fuel adoption remains prevalent.

Leveraging the unique exogenous nature of the BCP, a centrally

designed policy, we offer compelling evidence on the causal impact

of broadband connectivity on renewable energy adoption.

Additionally, our paper goes beyond direct effects and examines

intermediate factors, including electricity adoption, social

connections, local economic foundation, and industrial structure,

to unravel the mechanisms underlying the relationship between the

BCP and CREA. Notably, we identify regional variations,

highlighting diverse outcomes in China’s east, west, and middle

regions. Our comprehensive empirical analysis, combining

individual-level and macro-level data with advanced econometric

techniques, sheds new light on the role of digital technology in

promoting sustainable energy adoption, and its potential

contribution to China’s environmental protection and sustainable

economic growth goals.

The remainder of this paper is organized as follows. Section 2 is

the literature review. Section 3 briefly reviews the institutional

background of Broadband China. Section 4 presents a mechanism

analysis of digital transition and renewable energy adoption in rural

China. Section 5 introduces datasets and econometric setups.

Section 6 represents the empirical results of how digital transition

affects renewable energy adoption in Chinese rural families. Section

7 provides the conclusions and policy implications.
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2 Literature review

The synergies between digital transition and renewable energy

adoption have become central to discussions surrounding

sustainable development, particularly in rural areas. This

comprehensive review of recent literature aims to unearth the

depth and breadth of research conducted on these topics,

analyzing the impact of digitalization on renewable energy

adoption among rural families.
2.1 Digital transition

The transformational influence of digital technologies is

perceptible in both urban and rural environments, particularly

concerning economic growth, family income, and energy

consumption structures. Draca et al. (2009) scrutinized the role of

digital technology in promoting productivity, deducing that access to

precise and extensive information is integral to productivity growth.

Koutroumpis (2009), using data from OECD countries between 2002

and 2007, explored the relationship between broadband adoption and

GDP growth, confirming that broadband utilization significantly

bolsters GDP growth. Furthermore, broadband adoption has a

substantial positive impact on employment, annual payroll, and the

establishment of businesses (Kandilov and Renkow, 2010; Mack and

Faggian, 2013; Mack and Rey, 2014; Castellacci and Vinas-Bardolet,

2019), although internet growth seems unrelated to wage growth

(Forman et al., 2012).

Whitacre et al. (2014) leveraged county-level data in the US from

2001 to 2010 to determine a causal link between fixed residential

broadband availability/adoption and rural economic development.

Their findings show that counties with higher levels of broadband

adoption experienced faster growth in median household income and

reduced growth in unemployment, while counties with lower levels of

broadband adoption endured slower growth in employment and

number of firms. Wang et al. (2022) employed macro-level data in

China to investigate the causal relationship between digital transition

and electricity consumption. Their findings suggest that digital

transition fosters the progression of the energy consumption structure.
2.2 Renewable energy adoption

The transition towards renewable energy is shaped by a

multitude of factors spanning socioeconomic and environmental

aspects (Mensah, 2019). Significant research has underscored the

pivotal role that energy efficiency plays in the context of

environmental pollution, underlining the detrimental impact of

economic activities on our ecosystems (Khan et al., 2021). Areas

characterized by relative energy poverty stand to benefit

significantly from the adoption of renewable energy, which has

the potential to alleviate energy scarcity while also reducing income

inequality, thereby fostering sustainable development (Nguyen and

Nasir, 2021; Zhao et al., 2022).
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However, despite the lower cost profile of renewable energy

compared to traditional fossil fuels (Masterson, 2021), non-

renewable sources remain the dominant form of energy in

developing regions (Noor et al., 2023). This dominance is

expected to wane as a country’s level of development progresses,

leading to increased adoption of renewable energy (Guney, 2019).

Moreover, the literature illustrates an inverse relationship between

GDP growth and the adoption of non-renewable energy (Chen

et al., 2022a). A study that delved into public acceptance of

renewable energy underscored the importance of government

engagement in the decision-making process and stressed the need

for awareness about the direct benefits of renewable energy for the

environment and the people (Guney and Kantar, 2020).

Similarly, Wei and Huang (2022) conducted an exploration into

the economic ramifications of renewable energy adoption by

looking into adjusted national savings. They concluded that

renewable energy technologies can confer significant economic

advantages and act as a catalyst for sustainable development.

However, the initial financial burden and technology constrain

associated with adopting renewable energy may deter families

under financial constraints from its adoption (Khan et al., 2023).

Thus, policy interventions to reduce the initial cost of renewable

energy systems could significantly bolster their adoption in

rural areas.

When examining environmental factors, D’Adamo et al. (2023)

conceptualized renewable energy adoption as an ecological transition,

discovering a strong association between environmental consciousness

and the uptake of renewable energy technologies. Interestingly, even

with the adoption of renewable energy, total energy consumption

continues to maintain a negative correlation with environmental

protection and sustainable development (Gasimli et al., 2022). This

highlights a trend among rural families with higher environmental

consciousness who are more likely to adopt renewable energy

technologies. Consequently, it underscores the need for persistent

environmental education initiatives to bolster the adoption of

renewable energy technologies.

The existing literature undeniably underscores the integral role

digital technologies hold in numerous dimensions of economic

development. However, it is critical to acknowledge that the digital

transition profoundly influences consumer behavior at the

individual level. Furthermore, considerable room remains for

exploring the intricate interplay between digital technologies,

industry structures, pollution levels, and family income, among

other factors, particularly in the context of CREA and sustainable

economic growth.

The complexity of these interactions poses intriguing questions

for future research. How does digital transformation influence the

energy consumption choices of individuals? In what ways do

industry structures and pollution levels interact with digital

technologies to impact energy consumption patterns? How does

the family income level shape the influence of digital transition on

CREA? Perhaps most importantly, how can these insights be

leveraged to inform effective policy design?

Exploring these questions could enrich our understanding of

the multifaceted relationships between digital technologies and

various economic and environmental factors. This deeper
Frontiers in Ecology and Evolution 0556
understanding, in turn, could empower policymakers to more

effectively employ digital technologies as a tool for promoting

economic prosperity and sustainability across diverse contexts.

This pursuit also aligns with the global agenda for sustainable

development, particularly in light of the increasing importance of

clean energy for tackling climate change and ensuring

economic resilience.
3 Institutional background

3.1 The “Broadband China” Policy: a
brief history

Broadband China is an ambitious initiative launched by the

Chinese government to promote the development and development

of high-speed broadband infrastructure across the country.

Recognizing the crucial role that broadband connectivity plays in

driving economic growth, social progress, and technological

innovation, China has taken significant steps to bridge the digital

divide and create a digitally inclusive society.

The origins of the “Broadband China” Policy can be traced back

to August 2013, and the primary objective of it is to provide

universal access to high-quality broadband services for all citizens,

regardless of their geographic location. In this plan, the local

governments play a crucial role, not only to build broadband

infrastructure but also to introduce relevant policies supporting

the implementation of broadband. More specifically, according to

this plan, in these pilot cities, significant progress has to be made in

the implementation of urban fiber-optic connectivity, extending

from building to homes, as well as in the expansion of broadband

access in rural areas by 2015, including villages. The penetration

rate of fixed broadband in households is supposed to reach 50%;

furthermore, the adoption rate of third-generation mobile

communications, along with its long-term evolution technology

(3G/LTE), is supposed to stand at 32.5%. Broadband access in

administrative villages, whether through wired or wireless methods,

is supposed to achieve a remarkable coverage of 95%. Moreover,

broadband connectivity is supposed to be effectively established in

educational institutions, libraries, hospitals, and other public

facilities. The average broadband access speed in urban and rural

households is supposed to reach approximately 20 megabits per

second (Mbps) and 4 Mbps, respectively, with certain advanced

cities even attaining speeds of up to 100 Mbps. To achieve these

goals, during 2013–2015, the Chinese government selected 117 pilot

cities to implement broadband in China in three batches. Figure 1

presents the Broadband China pilot cities in 2014, 2015, and 2016.
3.2 Digital transition in Broadband China
pilot cities

Our paper uses “Broadband China” as a proxy variable for

digital transition in China. The key variation used in this paper

comes from the different batches of Broadband China pilot cities.

The exogenous nature of broadband expansion in China about
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household clean energy usage allows the identification strategy

employed in this paper to effectively capture the causal relationship.

The broadband network serves as a crucial public infrastructure

for China’s economic and social development in the contemporary

era. Its progress and expansion play a significant role in stimulating

productive investment, fostering information consumption,

facilitating the transition of development models, and constructing

a prosperous society. Internationally, the broadband network is

propelling a new wave of information-driven advancements,

prompting numerous countries to prioritize its development as a

strategic imperative. It is considered a vital measure to secure a

competitive advantage in international economic, scientific,

technological, and industrial arenas. Over the past years, China has

witnessed a continuous expansion in broadband network coverage,

augmentation of transmission and access capacities, notable strides in

broadband technology innovation, and the establishment industrial

ecosystem. The level of application services has improved, leading to

the flourishing of emerging industries such as e-commerce, software

outsourcing, cloud computing, and the IoT. Concurrently, efforts

have been made to enhance network information security. However,

certain challenges persist within China’s broadband network

landscape, including the ambiguous positioning of broadband as a

public infrastructure, disparities in regional and urban–rural

development, inadequate application services, limited original

technological capabilities, and an imperfect development

environment. These issues demand urgent attention and resolution.

To address the aforementioned challenges, BCP focuses on four

key areas of intervention and improvement. Firstly, Broadband

China recognizes the significance of robust infrastructure for

delivering high-speed and reliable broadband services. The

initiative emphasizes the expansion and enhancement of
Frontiers in Ecology and Evolution 0657
telecommunications infrastructure across the country. This

includes the deployment of fiber-optic networks, the development

of advanced 4G and 5G mobile networks, and the utilization of

satellite communication systems. The government is investing in

the construction of backbone networks, last-mile connectivity, and

rural broadband infrastructure to ensure comprehensive coverage,

particularly in underserved areas.

Secondly, Broadband China aims to make broadband services

affordable and accessible to all citizens. To achieve this, the initiative

employs various strategies, such as price regulation, subsidy

programs, and encouraging healthy competition among service

providers. These efforts aim to reduce the cost of internet access,

ensuring that even low-income households and rural communities

can afford and benefit from broadband connectivity. Additionally,

the initiative encourages the development of public access points,

such as community centers and libraries, to provide internet access

in areas with limited infrastructure or financial constraints.

Thirdly, Broadband China is committed to bridging the digital

divide and promoting digital inclusion. The initiative focuses on

providing equal access to educational resources, e-government

services, healthcare facilities, and e-commerce platforms. Efforts

are made to support underprivileged communities, including rural

areas, ethnic minorities, and people with disabilities, by

implementing targeted programs and policies. Capacity-building

programs are also initiated to enhance digital literacy and skills,

ensuring that citizens can fully participate in the digital economy

and benefit from digital services and opportunities.

Finally, BCP recognizes the transformative potential of

broadband technology and its impact on economic growth and

industrial development. The initiative encourages research and

development in the field of ICT and promotes collaboration
FIGURE 1

Broadband China Policy pilot cities.
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between academia, industry, and government. By fostering

innovation, entrepreneurship, and the development of digital

industries, such as e-commerce, cloud computing, artificial

intelligence, and the IoT, Broadband China aims to create a

thriving digital ecosystem that drives economic prosperity and

technological advancement.

By focusing on these four key aspects, BCP strives to build a

comprehensive and inclusive broadband network that empowers

individuals, enhances social services, promotes economic growth,

and positions China as a global leader in the digital age. The busy-

time weighted average available download rate for network

downloads for fixed broadband users in China was 9.46 Mbit/s by

the first quarter of 2016, an 84.77% increase compared to the first

quarter of 2015. This metric reflects the average download speed

experienced by users during peak hours when network traffic is

typically higher. It indicates the performance and capacity of the

fixed broadband networks in delivering data to users. Figure 2

presents the busy-time weighted average available download rate for

network downloads for fixed broadband users in each province in

the first quarter of 2016. It indicates that the municipalities directly

under the Central Government exhibit higher broadband speeds

compared to the national average, even though the rate of most

provinces is lower than the national average; the lowest download

rate is larger than an impressive level of 7 Mbit/s.
4 Methodology

4.1 Data source

Our study incorporates two sets of data: information on

renewable energy adoption in Chinese households and data on
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BCP pilot cities. Firstly, we collected data on renewable energy

adoption in Chinese households from the CLDS. Secondly, we

collected data from the Chinese Ministry of Industry and

Information Technology, while macroeconomic data for

prefecture-level cities were sourced from the China City

Statistical Yearbook.

The CLDS serves as the primary data source for this study, with

the objective of capturing the changes in social structure, labor force

dynamics within communities and families, and the interplay

among communities, families, and individuals. Notably, the CLDS

is a nationally representative longitudinal survey that focuses on the

Chinese labor force (Ma et al., 2022). The survey encompasses both

urban and rural areas across 29 mainland provinces and

municipalities in China. Respondents in the CLDS consist of

individuals aged 15 to 64, as well as those aged 65 and above who

are actively employed within their respective households.

The data for the CLDS were collected by the Center for Social

Science Survey at Sun-Yat-sen University in Guangzhou, China,

employing a multistage random sampling methodology. For our

study, we utilized three waves of CLDS data, specifically from the

years 2012, 2014, and 2016. This dataset offers comprehensive

information on various cooking fuel usage, along with

demographic characteristics and socioeconomic indicators. The

extensive nature of the survey’s data aligns well with the research

topic under investigation.

To process the data, several operations were conducted. Firstly,

to ensure consistency in coding strategies, the survey data from

2012 and 2014 were merged since the coding strategy in 2012

differed from the subsequent year. Following the data cleaning

guidelines outlined in the CLDS manuscript, we constructed panel

data by combining individual surveys, family surveys, and county

surveys. Secondly, in order to maintain consistent identification, the
FIGURE 2

Weighted average download rate in each province.
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panel data were assigned identification codes based on the coding

strategy employed in the 2016 wave. Thirdly, any missing values

were dropped from the dataset, and we only kept the rural residents’

sample, resulting in 34,566 observations. Lastly, we obtain the

macro data from the China Statistical Yearbook and combine it

with CLDS based on the province code.
4.2 Variables

4.2.1 Household clean renewable
energy adoption

The dependent variable in this study is household CREA. The

CLDS database captures household renewable energy use for

cooking through the question, “What is the main fuel used for

cooking in your home?”; the available options include firewood,

coal, gas (LPG), solar, biogas, electricity, and natural gas. Among

these options, firewood, solar energy, and biogas are considered

renewable energy sources, while the latter two are specifically

categorized as clean renewable energy sources. To operationalize

the explained variable, we assign a value of 1 to CREA when clean

renewable energy sources are utilized, and 0 otherwise.

4.2.2 Broadband China
The explanatory variable in this paper is Broadband China pilot

cities, and BCP is used as a proxy variable. In the framework of the

empirical models, we defined the core explanatory variable BCP as 1

if the city was formally rated as the BCP pilot city from a given date,

and 0 otherwise. Broadband China encompassed a total of 139 pilot

cities, which were introduced in three separate batches. The first

batch of pilot cities became operational on 1 August 2013. The

second batch followed on 5 November 2014, and the third batch

was implemented on 9 October 2015. Table 1 reports the details of

the Broadband China pilot city.

4.2.3 Control variables
Considering that household energy adoption is significantly

influenced by household member characteristics such as income,

social security, working experience, and other relevant factors, it is

crucial to control for these characteristics in both the treatment and

control groups (Zografakis et al., 2010; Willis et al., 2011;
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Eshchanov et al., 2021; Irfan et al., 2021). This control is

necessary to ensure comparability in terms of renewable energy

adoption between the two groups. By controlling for household

member characteristics, we can better isolate the impact of the

treatment (BCP) on renewable energy adoption and draw more

accurate conclusions from the analysis.

Moreover, it is important to note that the community

environment in which residents reside significantly influences

energy adoption patterns. Rapid urbanization poses a

considerable threat to the environment and human health,

primarily due to high levels of pollution. Industries such as iron

and steel, and chemical and energy industries, known for their

significant pollution output, have contributed to severe

environmental pollution issues (Feroz et al., 2021). The

detrimental effects of such pollution can hinder clean energy

adoption and have broader implications for sustainable

development. Indeed, we control the industrial structure and the

pollution status of the community. According to Ren et al. (2021)

and Wang et al. (2022), the energy consumption is closely related to

economic development; we control the GDP and fiscal structure.

4.2.4 Descriptive statistics
The descriptive statistics presented in Table 2 provide an

overview of the dataset used in this study. The table includes

various variables related to CREA and its potential determinants.

Starting with the dependent variable, CREA, the sample consists of

37,146 observations. The mean CREA adoption rate is 0.39649,

indicating that, on average, approximately 39.65% of households in

the sample have adopted clean renewable energy technologies. The

standard deviation of 0.489175 suggests a considerable variation in

CREA adoption levels across the sample. Moving to the explanatory

variables, we find that the variable BCP, representing the availability

of a specific policy intervention, has a mean value of 0.144403,

indicating that the policy is present in a relatively small proportion

of the sample. The standard deviation of 0.351503 suggests some

heterogeneity in the implementation of the policy across regions.

Further examining the regional distribution, we observe that the

middle region has a mean value of 0.291768, indicating a moderate

presence of households in this region. The east region has a higher

mean of 0.445835, suggesting a relatively greater concentration of

households with access to clean renewable energy technologies.
TABLE 1 Broadband China pilot cities.

Policy
Release
Date

Broadband China Pilot Cities

2014 BCP
Cities
2013/8/1

Beijing, TianJin, Shanghai, Changsha, Zhuzhou, Shi Jiazhuang, Dalian, Benxi, Yanbian, Haerbin, Daqing, Qingdao, Zibo Weihai, Linyi, Zhengzhou, Luoyang,
Wuhan, Wuhu, Anqing, Nanjing, Suzhou, Zhenjiang, Kunshan, Jinhua Fuzhou, Xiamen, Quanzhou, Nanchang, Shangrao, Guangzhou, Shenzhen
Zhongshan Chengdu, Pan Zhihua, Aba, Guiyang, Yinchuan, Wuzhong, A Laer

2015 BCP
Cities
2014/11/5

Taiyuan, Hu Hehaote, Eer Duosi, Anshan, Panjin, Baishan, Dongying, Jining, Dezhou, Xinxiang, Yongcheng, Huangshi, Xiangyang, Yichang, Shiyan,
Suizhou, Yueyang, Hefei, Tongling, Yangzhou, Jiaxing, Putian, Xinyu, Ganzhou, Shantou, Meizhou, Dongguan, Chongqing Jiangjin and Rongchang District,
Mianyang, Neijiang, Yibin, Dazhou, Yuxi, Lanzhou, Zhangye, Guyuan, Zhongwei, Kelamayi

2016 BCP
Cities
2015/10/9

Yantai, Zaozhuang, Shangqiu, Jiaozuo, Nanyang, Ezhou, Hengyang, Yiyang, Wuxi, Taizhou, Nantong, Hangzhou, Suzhou, Huangshan, Ma Anshan, Ji’an,
Yulin, Haikou, Hong Kong Jiulongpo District, Chongqing Beipei District, Ya’an, Luzhou, Nanchong, Zunyi, Wenshan, Lasa, Linzhi, Weinan, Wuwei,
Jiuquan, Tianshui, Xining, Yangquan, Jinzhong, Wuhai, Baotou, Tongliao, Shenyang, Mu Danjiang
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Conversely, the west region has a lower mean of 0.262397,

indicating a lower prevalence of CREA adoption compared to the

other regions.

Considering heterogeneity factors, the presence of low-income

districts is captured by the variable “Low Income District”, which has

a mean value of 0.142223, indicating a relatively small proportion of

low-income districts in the sample. The mean values of the GDP

Mean Group variables provide insights into the economic conditions

of different regions. Specifically, the mean values for Mid GDP Mean

Group, East GDP Mean Group, and West GDP Mean Group are
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0.436009, 0.218785, and 0.499596, respectively, suggesting varying

levels of economic development across these regions.

In terms of the mechanisms that might influence CREA

adoption, the pollution variable indicates the extent of pollution

in the sample. With a mean value of 0.233861, the data suggest that

pollution is present to some degree across the observed areas. The

variable “Family Salary Income” represents the natural logarithm of

family salary income, which has a mean value of 8.906139. This

indicates that, on average, households in the sample have a

relatively high salary income. Additionally, the industry structure
TABLE 2 Descriptive statistics of variables.

Variable Obs Mean SD Min Max

Dependent Variable

CREA 37,146 0.39649 0.489175 0 1

Explanatory Variable

BCP 37,146 0.144403 0.351503 0 1

Middle Region 37,146 0.291768 0.454582 0 1

East Region 37,146 0.445835 0.497064 0 1

West Region 37,146 0.262397 0.439943 0 1

Heterogeneity

Low-Income District 37,146 0.142223 0.349283 0 1

GDP Mean Group 37,146 0.319819 0.466413 0 1

Mid GDP Mean Group 37,146 0.436009 0.495895 0 1

East GDP Mean Group 37,146 0.218785 0.413428 0 1

West GDP Mean Group 37,146 0.499596 0.500007 0 1

Mean Popu 37,146 0.46853 0.499015 0 1

Mechanism

Pollution 37,146 0.233861 0.423291 0 1

Family Salary Income 20,629 8.906139 3.446237 −6.90776 15.76142

Industry Structure 33,438 1.032445 0.509438 0.272344 4.757226

Control Variable

Age 37,146 48.09807 17.08312 3 114

Gender 37,146 0.482367 0.499696 0 1

Marriage 37,146 0.127335 0.333353 0 1

Health 35,860 2.388846 1.01141 1 5

Minority 37,146 0.126124 0.331994 0 1

Family Expense 36,692 10.17263 1.037794 0.336472 15.42495

Social Security 37,146 0.10063 0.300842 0 1

House Value 37,092 183565.4 5278747 0 1.00E+09

Electric Consumption 37,146 2659.899 15599.28 0 99999

Internet Usage 37,146 3.045146 1.049114 0 4

GDP 34,679 1.051193 0.507415 0.226896 3.712207

Fiscal Expense Ratio 36,762 0.203236 0.123192 0.065621 0.686978
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variable has a mean value of 1.032445, suggesting a diverse

industrial landscape in the observed areas.

Moving on to the control variables, we find that the mean age of

individuals in the sample is 48.09807, indicating a relatively mature

population. The gender variable, with a mean value of 0.482367,

suggests a nearly equal distribution of men and women. The marriage

variable has a mean value of 0.127335, indicating a relatively low

proportion of married individuals. Themean health score, represented

by the variable “Health”, is 2.388846, suggesting a moderate health

status in the sample. The minority variable, with a mean value of

0.126124, indicates a relatively low proportion of minority groups in

the observed areas. Other control variables include family expenses,

social security, house value, electric consumption, internet usage,

GDP, and fiscal expense ratio. These variables exhibit varying

means and standard deviations, reflecting the diversity of economic

and socio-demographic factors present in the sample.
4.3 Empirical strategy

4.3.1 Benchmark regression
The impact of digital transition on the adoption of clean

renewable energy in rural households encounters identification

challenges due to potential confounding factors, as the city-level

digital transition policy is exogenous to household behavior. This

study employs a quasi-natural experiment approach by considering

the BCP as the treatment group, enabling the estimation of the

causal effect of digital transition on CREA through the construction

of a staggered DID model. Specifically, the cities selected as part of

the BCP are treated as the treatment group, while the cities not

selected as part of the BCP during the sample period serve as the

control group. The disparity in the change in clean renewable

adoption between the two groups following the implementation

of the BCP serves as an indicator of the net effect of the BCP.

Therefore, we start our analysis using the following equation:

CREAit = a0 + a1BCPit + bX + mc + gt + qrt + ϵit (1)

where the dependent variable CREAit refers to the clean

renewable energy adoption, BCPit represents a dummy variable

that indicates whether city i is designated as BCP city in year t, the X

refers to the control variables, µc refers to the province-level fixed

effect, gt refers to year-level fixed effect, and ϵit refers to the error

term. Moreover, considering the significant economic development

disparity across various regions in China, we stratify the sample

cities based on their provinces, dividing cities into four distinct

regions. To account for time-varying factors specific to each region,

such as the influence of place-based policies, we also introduce an

interaction term, denoted as qrt, between region r and year t. This

interaction term allows us to capture the nuanced effects of regional

characteristics over time within the analysis.

4.3.2 Parallel trend assumption test
After estimating the staggered DID model, as Beck et al. (2010)

recommended, we employ the event study approach to examine the

validity of the parallel trend assumption. This approach not only

helps assess the assumption but also captures the dynamic effects of
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the BCP. The model can be represented as follows:

CREAit = a0 +o
3

s=1
apresBCPpres + acurrentBCPcurrent

+o
2

s=1
apostsBCPposts + bX + mc + gt + qrt + ϵit (2)

where BCPpres presents the specific year preceding the inclusion

of a pilot city in the BCP (Before BCP implementation), BCPcurrent
represents the city after its inclusion in the BCP (During BCP

implementation), and BCPposts represents the specific year following

the inclusion of a pilot city in the BCP (After BCP implementation).

The duration of the pre-treatment and post-treatment periods

varies across the treatment group cities. The longest observed

post-treatment duration in the sample is 2 years (corresponding

to the initial batch of the 2014 BCP), while the longest pre-

treatment duration in the sample is 4 years (corresponding to the

third batch of the 2016 BCP). For the purposes of our analysis, we

consider the 3-year pre-treatment period as the baseline. If the

coefficients of BCPpres are found to be statistically insignificant, it

suggests that the parallel trend assumption holds. In turn, the

coefficients of BCPposts reflect the dynamic effects of the BCP on

CREA in rural families.

4.3.3 Extend staggered DID estimator
The analysis follows a commonly used methodology known as

the two-way fixed effects (TWFE) staggered DID regression.

However, to ensure unbiased estimation of the coefficient ϵit,

three conditions must be satisfied. Firstly, the treatment can only

increase over time and change once. In other words, the treatment is

not reversible, and once a unit enters the treatment group, it

remains there. Secondly, the treatment is binary, indicating that it

is a dichotomous variable with two possible values (treated and

untreated). These two conditions imply that units in the treatment

group can only transition from being untreated to being treated.

Thirdly, there is no variation in treatment timing across the units

being analyzed (De Chaisemartin and d’Haultfoeuille, 2020).

In this study, it is challenging to satisfy the aforementioned

conditions. Specifically, if we use the TWFE approach, we need to

impose stricter assumptions than just the parallel trend assumption to

account for the dynamic effects that may be correlated with the

estimation of the average treatment effect (ATT), denoted as bit. For
instance, if the treatment effect is constant, TEit = d for all (i,t), and the
treatment effect does not systematically differ based on different

weights assigned to bit, then the estimator b̂ it is unbiased for the

ATT [as shown in Corollary 2 in De Chaisemartin and

d’Haultfoeuille (2020)].

However, in the analysis of the CLDS survey data, this

assumption of “no correlation” is implausible due to respondents’

mobility between cities. For example, a household might have lived

in Beijing, the capital of China, in 2012, but moved to Guangzhou in

2013, where BCP was promoted, and in 2013, this household moved

back to its hometown, Yan Bian, which is a remote city in China.

During these 4 years, the household lived in both a developed city

affected by BCP and non-BCP, developing area. To address this

concern, we introduce the DID with multiple matching estimators
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proposed by De Chaisemartin and d’Haultfoeuille (2020). This

estimator is a weighted average of the DID with positive

treatment (DID+) and DID with negative treatment (DID−),

specifically designed for cases with two periods and binary

treatment. The DID+ estimator is given by:

DID+ =
1

N0,1
o

g :Dg,1=0,Dg,2=1
(Yg,2 − Yg,1) −

1
N0,0

o
g :Dg,1=0,Dg,2=0

(Yg,2

− Yg,1) (3)

and DID− is given by:

DID− =
1

N1,1
o

g :Dg,1=1,Dg,2=1
(Yg,2 − Yg,1) −

1
N1,0

o
g :Dg,1=1,Dg,2=0

(Yg,2

− Yg,1) (4)

where Na,b refers to the number of units for which Dg,1 = d1 and

Dg,2 = d2, and the DID+ estimator refers to the DID estimator that

compares units transitioning from the control group to the

treatment group between periods t1 and t2. Under the parallel

trends assumption, this estimator is unbiased for estimating the

treatment effect for units transitioning into the treatment group. On

the other hand, the DID− estimator compares units transitioning

from the treatment group to the control group between periods t1
and t2. It is important to note that in the original definition, the

control group and treatment group have the same group size.

However, we extend the DIDM (Difference-in-Difference with

Multiple Matching) estimator to accommodate different group

sizes. This extension allows for a more flexible analysis when

the treatment is binary and staggered. One advantage of using

the DIDM estimator is its robustness to dynamic effects. By

accounting for the different group sizes and considering staggered

treatment, the DIDM estimator provides a more reliable estimate

of the treatment effect while addressing concerns related to

dynamic effects.

Since 2012, the first interview, there is the possibility of respondents

moving between cities in the follow-up surveys. Additionally, the

Broadband China pilot policy was proposed in three separate batches

in 2014, 2015, and 2016. Consequently, some respondents may have

been exposed to the treatment multiple times. For example, a

respondent who lived in Changsha in 2014, where the first batch of

Broadband China was proposed, and later moved to Taiyuan in 2015,

where the second batch was proposed, would have received the

treatment twice. To address this scenario, previous studies have

proposed various estimators. Graham and Powell (2012) introduced

an estimator that compares the outcome evolution of movers and

quasi-stayers. However, this method relies on the assumption of a

linear treatment effect and does not account for the period one

treatment. De Chaisemartin and d’Haultfoeuille (2020) implemented

a relabeling strategy to extend the DIDM estimator. However, when

there are no true stayers in both the treatment and control groups, it

becomes necessary to choose a bandwidth to identify the quasi-stayers.

In our study, the estimator proposed by Callaway and Sant’Anna

(2021) is more suitable. They define the treatment effect (TE) as:

TEc,c+1 = E½Ŷ c,c+l(0c−1, 1l+1) − Ŷ c,c+l(0c+l)� (5)
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where Ŷ c,c+l refers to the average outcome at period t across the

treatment groups belonging to cohort c, c denotes the cohort, t

denotes the periods, and l ∈ 1,…,t; this estimator accounts for the

multiple treatments and does not rely on the assumption of true

stayers, making it well-suited for our analysis. Moreover, in terms of

the average effect of having been treated for l + 1 period in the

cohort treated at period c, the DID estimator is given by:

DIDc,l = Ŷ c,c+l − Ŷ c,c−l − (Ŷ n,c+l − Ŷ n,c−l) (6)

This estimator extends the staggered DID estimator in several

important ways. Firstly, it provides a more aggregated estimation

approach. Secondly, it utilizes the not-yet-treated group as the control

group instead of the never-treated group. This is particularly useful in

our study, as in the case of the third batch of Broadband China, where

a large proportion of individuals have already been treated by the

policy; it becomes challenging to identify a never-treated group.

However, this method can still estimate the causal effects of the

third batch of Broadband China. Furthermore, even if there are

individuals who have never been treated throughout the entire study

period, the presence of a substantial not-yet-treated group can lead to

more precise estimations. Another important aspect of this estimator

is its reliance on a conditional parallel trend assumption. This

assumption is crucial for obtaining unbiased treatment effect

estimates. To address concerns regarding this assumption, Callaway

and Sant’Anna (2021) propose robust placebo estimators to

heterogeneous effects. These placebo tests can be used to assess the

validity of the parallel trend assumption underlying their estimator.

In light of these considerations, after presenting a TWFE staggered

DID approach, we employ the DIDM estimator and the DIDc,l

estimator to re-estimate the causal inference of the Average

Treatment Effect on the Treated (ATT). Additionally, we provide

parallel assumption tests and placebo tests based on these estimators

to further evaluate the validity of the parallel trends assumption.

Our estimator should be interpreted as a conservative estimate of

the effect of digital transition on family financial behavior. In our study,

the digital transition is represented by the external shock known as

Broadband China, and we define the cities that actively promoted this

transition as the treatment group. However, even if respondents did not

reside in these specific cities, they may have still benefited from the

digital transition through what we refer to as the overflow effect. This

effect implies that the impact of the digital transition may extend

beyond the treatment group and affect individuals in neighboring areas

or the broader region. Furthermore, individuals outside the treatment

group may also be influenced by fellow townspeople or acquaintances

who reside in the cities where Broadband China was implemented.

This peer effect can result in indirect exposure to the digital transition

and its associated effects.

Because of these factors, our estimation may underestimate the

true effect of Broadband China on the treatment group. The overflow

and peer effects introduce additional channels through which the

digital transition indirectly affects individuals outside the treatment

group. Therefore, it is important to consider that our estimates reflect

a conservative assessment of the impact of Broadband China on

family financial behavior, as they may not fully capture the overall

influence of the digital transition on a wider scale.
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4.3.4 Heterogeneity
To mitigate the estimation bias induced by the structure of

energy consumption and regional disparities, we initially

incorporate natural gas utilization and coal gas adoption as the

dependent variables, and the model is given by:

Yit = a0 + a1BCPit + bX + mc + gt + qrt + ϵit (7)

where Y it refers to (natural gas, coal gas). Should the coefficient

a1 exhibit a significant positive value, this would suggest that the

BCP markedly catalyzes the adoption of natural gas and/or coal gas.

This interpretation would be contingent on the premise that an

increased value in a1 signifies a stronger influence of the BCP on

promoting alternative energy sources.

Furthermore, we incorporate an interaction term between the

BCP variable and dummy variables to assess regional heterogeneity.

This approach enables us to estimate the nuanced variations across

different geographical areas, and the model is given by:

CREAit = a0 + a1BCPit �Heterogeneityit + bX + mc + gt + qrt
+ ϵit (8)

where Heterogeneityit represents the distinct dummy variables

associated with heterogeneity, each reflecting unique attributes or

characteristics of the various regions under study. The estimation of

the parameter a1 serves as an indication of the heterogeneous effects

associated with BCP. This interpretation suggests a differential

impact of the BCP across diverse geographical regions or contexts.

4.3.5 Mechanism
The association between the promotion of renewable energy

adoption and the BCP presents a conundrum. To explore the

underlying mechanisms connecting CREA and BCP, we employ a

strategy analogous to Chen et al. (2020) and Braguinsky et al.

(2021), wherein we integrate an interaction term into the

benchmark regression. The resulting formulation is as follows:

CREAit = a0 + a1BCPit + a2BCPit �Mechanismit + bX + mc

+ gt + qrt + ϵit (9)

where Mechanismit refers to the mechanism variables.
5 Results and discussion

5.1 Benchmark regression

Table 3 elucidates the influence of the BCP initiative on CREA

within rural households, as specified by Model (1). The table

comprises several columns, each illustrating a different model

specification. From columns (1) to (4), control variables at the

individual, familial, and macroeconomic levels are sequentially

incorporated. In the scenario where province fixed effects are not

accounted for [columns (1) to (4)], the coefficients of BCP are

significantly positive, with a statistical significance at the 1% level

(0.155, 0.153, 0.147, and 0.0873, respectively). These observations

indicate that the BCP significantly fosters the promotion of CREA

among rural households, aligning with the results from Wang et al.
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(2021), which evaluated the causal impact of digital transitions on

the energy consumption structure at the macroeconomic level.

In column (5), province-level fixed effects are introduced. Even

with this additional layer of complexity, the coefficients of BCP

retain their significantly positive status (0.0668, with statistical

significance at the 5% level), albeit exhibiting a reduced

magnitude compared to column (1). This pattern implies that the

BCP continues to positively affect CREA in rural households,

despite considering the inherent heterogeneity at the province level.

In column (6), which controls for both province-level and year-

level fixed effects, the coefficient of BCP is significantly negative

(−0.0764, with statistical significance at the 5% level). This outcome

suggests that the influence of the BCP varies considerably across

different regions within China. Notably, this finding deviates from

existing well-regarded research, such as that conducted by Wang

et al. (2022) and Ren et al. (2021). This discrepancy underlines the

complex and dynamic nature of policy impact analysis, and may

indicate unique regional factors at play in the context of this study.

From these findings, it becomes evident that the digital

transition’s causal effects on energy consumption, particularly as

observed through individual-level data, can vary significantly.

Importantly, to gain a comprehensive understanding of the policy’s

impacts, it is crucial to account for potential heterogeneity across

both provinces and years in the estimation. This awareness of

regional and temporal diversity facilitates a more nuanced

interpretation of the policy’s effectiveness and can better inform

future policy adjustments and implementations.

Table 4 showcases the results derived from partitioning the

sample into three geographic divisions: middle, east, and west,

based on the respective provinces, and subsequently incorporating

interactive fixed effects for region and year, as specified by model

(8). The table comprises different columns, each corresponding to a

unique model specification.

In column (1), the model used in column (6) of Table 3 is

adjusted to introduce the interactive fixed effect of region and year.

Notably, despite this adjustment, the coefficient of BCP continues to

be significantly negative (−0.0804, with statistical significance at the

5% level). This result suggests that the BCP has a negative influence

on CREA, a pattern that persists even when the interactive fixed

effects of region and year are accounted for. This indicates that

regional variations and time dynamics may not fully explain the

observed negative impact of the BCP on CREA, pointing towards

other potentially influential factors that warrant further investigation.

Upon examination of column (2), the interaction term BCP ×

Middle Region is introduced as an explanatory variable, while

concurrently controlling for individual-level, family-level, and

macroeconomic-level attributes. Furthermore, province fixed effects,

year fixed effects, and the interactive fixed effect of region and year are

accounted for. In this specific model specification, the coefficient of

BCP ×Middle Region is 0.0580, with statistical significance at the 1%

level. This result demonstrates that the BCP exerts a significantly

positive impact on CREA in the central region of China.

In contrast, columns (3) and (4) see the introduction of BCP ×

East Region and BCP × West Region as explanatory variables,

respectively. In both scenarios, the coefficients are significantly

negative, with statistical significance at the 1% level [−0.126 for
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column (3) and −0.135 for column (4)]. This indicates that the BCP

contributes to a reduction in CREA in both the east and west

regions of China. The results thus highlight a region-specific effect

of the BCP on renewable energy adoption, underscoring the

necessity of context-sensitive policy implementation and analysis.

The observed differences in the effects of BCP across regions can

be attributed to various factors. In the economically developed east
Frontiers in Ecology and Evolution 1364
region, many rural young people migrate to work in coastal cities

and do not reside in rural areas (Wang and Mesman, 2015).

Moreover, the use of gas and natural gas as a living fuel is

widespread among the elderly population (Zou et al., 2018). In

the west region, the economy is less developed and rural residents

often choose to work in the east region or middle region cities.

Additionally, the availability of abundant natural gas resources in
TABLE 3 The effect of BCP on CREA in rural family.

(1)
CREA

(2)
CREA

(3)
CREA

(4)
CREA

(5)
CREA

(6)
CREA

BCP 0.155*** 0.153*** 0.147*** 0.0873*** 0.0668** −0.0764**

[0.009] [0.009] [0.009] [0.010] [0.030] [0.035]

Age 0.000102 5.47E-05 0.000199 0.00300*** 0.00331***

[0.000] [0.000] [0.000] [0.000] [0.000]

Gender 0.0312 0.0256 0.0706 0.00792** 0.00586

[0.086] [0.086] [0.094] [0.004] [0.004]

Marriage 0.0533 0.0619 0.0757* 0.0481*** 0.0455***

[0.039] [0.040] [0.043] [0.010] [0.009]

Health 0.0230*** 0.0231*** 0.0225*** 0.0516*** 0.0507***

[0.005] [0.005] [0.005] [0.004] [0.004]

Minority −0.0377 −0.0353 −0.0345 2.07E-05 −0.00489

[0.035] [0.036] [0.037] [0.035] [0.033]

Family Expense 0.00656 0.00275 −0.0387*** −0.0439***

[0.005] [0.005] [0.005] [0.005]

Social Security 0.0139 0.0125 −0.122*** −0.0519***

[0.024] [0.025] [0.014] [0.011]

House Value 2.53E-08 −6.26E-09 −1.13e-09*** −1.21e-09***

[0.000] [0.000] [0.000] [0.000]

Electric Consumption 3.92E-07 4.39E-07 −2.57E-08 2.02E-07

[0.000] [0.000] [0.000] [0.000]

Internet Usage −0.00473 0.0015 0.0856*** 0.0580***

[0.005] [0.005] [0.006] [0.006]

GDP 0.213*** −0.0870*** −0.0927***

[0.032] [0.029] [0.029]

Fiscal Expense Ratio 1.741*** 1.127*** 0.697***

[0.240] [0.220] [0.212]

Cons 0.374*** 0.293*** 0.237*** −0.337*** 0.118 0.344***

[0.002] [0.046] [0.067] [0.079] [0.076] [0.077]

N 37,146 35,860 35,392 33,009 33,009 33,009

Province Fixed Effect No No No No Yes Yes

Year Fixed Effect No No No No No Yes

Cluster No No No No Family Family
Robust standard errors are in parentheses; *, **, and *** denote significances at 10%, 5%, and 1% levels, respectively.
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TABLE 4 The region heterogenous effect of BCP on CREA in rural family.

(1)
CREA

(2)
CREA

(3)
CREA

(4)
CREA

BCP −0.0804** [0.035]

BCP 0.0580***

Middle Region [0.015]

BCP −0.126***

East Region [0.011]

BCP −0.135***

West Region [0.016]

Age 0.00330*** 0.00334*** 0.00328*** 0.00334***

[0.000] [0.000] [0.000] [0.000]

Gender 0.00566 0.00555 0.00548 0.00561

[0.004] [0.005] [0.005] [0.005]

Marriage 0.0451*** 0.0450*** 0.0448*** 0.0451***

[0.009] [0.007] [0.007] [0.007]

Health 0.0501*** 0.0498*** 0.0498*** 0.0499***

[0.004] [0.002] [0.002] [0.002]

Minority −0.00658 −0.0139 −0.0136 −0.00595

[0.033] [0.010] [0.010] [0.010]

Family Expense −0.0436*** −0.0440*** −0.0435*** −0.0439***

[0.005] [0.002] [0.002] [0.002]

Social Security −0.0514*** −0.0540*** −0.0493*** −0.0545***

[0.011] [0.008] [0.008] [0.008]

House Value −1.18e-09*** −1.19e-09*** −1.20e-09*** −1.17e-09***

[0.000] [0.000] [0.000] [0.000]

Electric Consumption 1.69E-07 1.54E-07 1.59E-07 1.73E-07

[0.000] [0.000] [0.000] [0.000]

Internet Usage 0.0584*** 0.0579*** 0.0580*** 0.0580***

[0.006] [0.003] [0.003] [0.003]

GDP −0.0873*** −0.0985*** −0.0868*** −0.0982***

[0.029] [0.006] [0.006] [0.006]

Fiscal Expense Ratio 0.646*** 0.739*** 0.718*** 0.638***

[0.210] [0.042] [0.041] [0.043]

Cons 0.382*** 0.364*** 0.358*** 0.393***

[0.078] [0.032] [0.032] [0.032]

N 33,009 33,009 33,009 33,009

Province Fixed Effect Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes

Region-Year Fixed Effect Yes Yes Yes Yes

Cluster Family Family Family Family
F
rontiers in Ecology and Evolution
 1465
Robust standard errors are in parentheses; *, **, and *** denote significances at 10%, 5%, and 1% levels, respectively.
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the west region leads to a preference for natural gas as living

energy resource.

In contrast, the middle region exhibits a relatively homogeneous

industry and is rich in natural resources such as biogas and solar

energy. Rural residents in this region have access to various energy

resources, including firewood, biogas, and solar energy (Wang et al.,

2016; Wang et al., 2017). Some residents even generate electricity

from solar panels and sell it to the local government.

Overall, these findings highlight the regional variations in the

effects of the BCP on CREA in rural areas of China, with positive

effects observed in the middle region and negative effects observed

in the east and west regions.
5.2 Parallel trend test

The validation of the benchmark regression and the parallel

trend assumption is crucial in assessing the reliability of the results.

In addition to the baseline estimates, model (2) employs the event

study approach to examine the parallel trend assumption and

provide insights into the dynamic effects of the BCP on CREA in

rural families.

The event study model allows for a more detailed analysis of the

treatment effects over time, capturing the dynamic of the BCP’s

impact on CREA. By examining the coefficients of the BCP variable

across different periods relative to the policy implementation, we

can assess whether the parallel trend assumption holds.

Furthermore, the event study model provides valuable

information on the dynamic effects of the BCP on CREA in rural

families. It allows us to observe how the treatment effect evolves,

providing insights into any lagged or cumulative effects of the

policy. This helps us understand the long-term implications and

sustainability of the BCP in promoting CREA. By incorporating the
Frontiers in Ecology and Evolution 1566
event study approach, the analysis goes beyond the average

treatment effect captured by the baseline model. It provides a

more nuanced understanding of the temporal patterns and

dynamic effects of the BCP on CREA in rural families, allowing

for a comprehensive assessment of the policy’s impact. Figure 3

presents the estimation results for the parallel trend assumption

test, providing evidence to support the validity of the parallel trend

assumption in our specification. The graph illustrates that the

renewable energy adoption of rural families in the BCP pilot

cities is not statistically different from that in the non-pilot cities

before the implementation of the BCP. This indicates that the

treatment and control groups had similar trends in renewable

energy adoption before the policy intervention, validating the

parallel trend assumption.

Moreover, Figure 3 also displays the dynamic effects of BCP on

CREA over time. It demonstrates that the policy’s effect diminishes

gradually as time progresses. Specifically, the estimated coefficient

for the BCP variable is not statistically significant in the year

preceding the policy implementation. However, in the year of

implementation and the subsequent year, the coefficient becomes

statistically significant, indicating a positive effect of the BCP on

CREA during these periods. It is important to note that the

magnitude of the coefficient decreases in the 2 years following the

implementation, suggesting a diminishing effect of the policy

over time.

These findings provide valuable insights into the temporal

dynamics of the BCP’s impact on CREA in rural families. They

suggest that the policy’s effect is most pronounced in the year of

implementation and the immediate aftermath, highlighting the

importance of early policy implementation for promoting CREA.

However, the diminishing effect observed in the subsequent years

highlights the need for continuous policy support and potential

challenges in sustaining the initial positive impact over time.
FIGURE 3

Parallel test.
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5.3 Robustness test

5.3.1 Propensity score matching
While our benchmark regression aligns with the parallel trend

assumption, it is important to acknowledge that the selection

process for BCP may not be completely exogenous. The choice of

pilot cities could be influenced by various external factors, including

economic foundations, internet development, residents’ living

conditions, and fiscal conditions. Consequently, disparities

between pilot cities and non-pilot cities may result in divergent

trends concerning the adoption of clean renewable energy over

time. To alleviate the potential estimation bias caused by sample

selection, we apply the propensity score matching (PSM) method to

re-estimate the baseline staggered DID regression model. We first

take the relevant characteristics, including GDP, family total

income, the ratio of fiscal expense and income, family expense,

internet adoption, family electric consumption, house value, health

condition, and age, as covariate variables and use the logit model

to calculate the propensity score of each city in our entire

sample. Figure 4 illustrates the results of the PSM test. The

analysis reveals that the treatment group and control group

exhibit a comprehensive distribution, implying a reasonable

comparison between the two groups.

Subsequently, we utilize the weighted sample, samples with

support, and the weighted average samples to re-estimate the

staggered DID model. This approach allows us to account for the

varying weights of the observations and focus on the samples that

satisfy the common support condition. We aim to obtain more

robust and reliable estimates for the staggered DID model with a

PSM sample by employing these methods.
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Table 5 presents the results of our analysis; we control for the

control variables as in the benchmark regression, incorporating

province fixed effects, year fixed effects, and region and year fixed

effects. Additionally, we cluster the standard errors at the family

level. The table includes several rows of interest; in the full sample

row, we utilize BCP as the explanatory variable and CREA as the

dependent variable, considering the entire sample. In the middle

region row, we introduce the interaction term BCP ×Middle Region

as the explanatory variable, focusing specifically on the middle

region. In the east region row, we employ the interaction term BCP

× East Region as the explanatory variable, concentrating on the east

region. In the west region row, we use the interaction term BCP ×

West Region as the explanatory variable, focusing on the west

region. By analyzing the coefficients and statistical significance of

these explanatory variables in each row, we can elevate the sample

selection bias and gain insights into the impact of the BCP on CREA

in different regions.

The estimation results align with the benchmark regression,

showing a marginal increase in the policy effect. This suggests that

any underestimation of the effect due to potential sample selection

bias is minimal. Overall, the analysis reveals heterogeneous effects of

the BCP across regions. Specifically, in the middle region of China,

the BCP significantly increases CREA in rural families. However, in

the east and west regions of China, the BCP significantly reduces

CREA in rural families.

5.3.2 Robust staggered DID estimator with
multiple periods

Figure 5 presents the estimation results of the re-estimated

staggered DID model using a doubly robust staggered DID
FIGURE 4

Propensity score balance test.
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estimator specified in Equation (6). As mentioned above, this

estimator addresses the potential biases arising from residents

migrating across regions, being treated multiple times, and

transitioning between treatment and control groups. The results

align with the benchmark regression, which suggests that the

findings are robust and reliable. This consistency strengthens the

validity of the estimated treatment effects of the BCP on CREA.

It is worth noting that the impact of BCP on CREA

demonstrates a greater magnitude within the full sample

compared to the benchmark regression. Moreover, the adverse

effect of BCP on CREA exhibits increased significance when

considering two lagged periods. Notably, the reduction in CREA

is particularly pronounced in the east region, characterized by a pre-

existing high utilization of clean domestic energy before the

implementation of the BCP. Subsequently, residents in this region
Frontiers in Ecology and Evolution 1768
displayed a decreased inclination toward employing clean

renewable energy after the policy enactment. In the central

region, BCP exerts a noteworthy driving force on CERA, albeit

with a diminishing impact observed after a two-period lag.

Conversely, the west region reveals a negative regression

coefficient for BCP. However, BCP fosters an inclination among

residents to embrace clean renewable energy.

There are four possible reasons. Firstly, the varying impacts of

the BCP on CREA across different regions could be attributed to

pre-existing economic disparities (Zhang and Bai, 2017). The east

region, having a relatively high utilization of clean renewable energy

before the policy implementation, might indicate greater availability

of alternative energy sources or a stronger market for renewable

energy. Consequently, residents in this region may have been less

motivated to adopt clean renewable energy after the policy was
TABLE 5 The effect of BCP on CREA using PSM-DID estimation.

Method
Variable

Weighted Sample
CREA

Support Sample
CREA

Weighted Average Sample
CREA

Full sample

BCP −0.0890** −0.143*** −0.0782**

[0.036] [0.036] [0.036]

_cons 0.415*** 0.453*** 0.387***

[0.105] [0.024] [0.106]

Middle Region

BCP × Middle Region 0.0491** 0.119*** 0.0500**

[0.021] [0.019] [0.020]

_cons 0.343*** 0.368*** 0.323***

[0.058] [0.002] [0.052]

East Region

BCP × East Region −0.102*** −0.191*** −0.0856***

[0.016] [0.050] [0.014]

_cons 0.357*** 0.433*** 0.339***

[0.058] [0.023] [0.052]

West Region

BCP × West Region −0.206*** −0.203*** −0.193***

[0.023] [0.069] [0.020]

_cons 0.447*** 0.444*** 0.416***

[0.059] [0.023] [0.052]

N 12,305 32,934 15,179

Control Variable Yes Yes Yes

Province Fixed Effect Yes Yes Yes

Year Fixed Effect Yes Yes Yes

Region-Year Fixed Effect Yes Yes Yes

Cluster Family Family Family
Robust standard errors are in parentheses; *, **, and *** denote significances at 10%, 5%, and 1% levels, respectively.
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enforced. In contrast, the central and west regions may have had

lower levels of clean renewable energy usage initially, leading to

different responses to the BCP. Secondly, the effectiveness of the

BCP in driving CREA could be influenced by variations in

infrastructure and accessibility across regions. The east region,

with its established clean energy infrastructure (Liu et al., 2011),

may have faced fewer barriers in utilizing alternative energy sources.

In contrast, the central and west regions might have encountered

challenges related to infrastructure development, making it more

difficult for residents to adopt clean renewable energy, particularly

after the initial period.

Thirdly, economic factors such as market incentives and cost

considerations play a vital role in CREA. The higher prevalence of

clean renewable energy usage in the east region before BCP implies

that residents may have already taken advantage of existing

incentives or enjoyed relatively lower costs associated with CREA

(Schulte et al., 2016; Feng et al., 2017). Consequently, the policy

implementation may have had a diminishing effect on CREA in this

region, as residents may have perceived fewer economic benefits

compared to other regions.

Finally, regional differences in the composition of industries

and economic activities can also influence the response to the BCP

and CREA. For instance, if the east region had a greater

concentration of industries or economic sectors that heavily relied

on clean renewable energy, the impact of BCP on CREA might have

been mitigated due to the existing utilization of renewable sources.
Frontiers in Ecology and Evolution 1869
5.3.3 Clean energy in China: natural gas
and coal gas

To address concerns surrounding regional heterogeneity and

potential estimation bias caused by variations in energy

consumption structure, a revised analysis is proposed. This re-

estimation modifies the dependent variable to include the adoption

of natural gas and coal gas, as suggested by Zou et al. (2018).

Notably, while most existing studies focus on macro-level energy

consumption, our emphasis is on the individual level, which we

argue is crucial for sustainable development.

In China, natural gas is considered a clean energy source and its

adoption has been actively promoted by the government in the east

region over the past three decades. In contrast, gas and firewood are

still the dominant sources of energy for rural families in the middle

and west regions. By incorporating these variables, a staggered DID

model can be utilized to study the impact of the BCP initiative on

natural gas and coal gas adoption across different regions (Beck

et al., 2010). This revised approach offers insights into how the

policy influences the adoption of cleaner energy sources (natural

gas) versus traditional energy sources (coal gas) in diverse

geographical areas. Moreover, by comparing changes in natural

gas and coal gas consumption, as well as CREA before and after the

BCP implementation, within and across regions, it becomes

possible to untangle the specific impact of the policy on each

energy source. The regression results of this analysis are reported

in Table 6.
FIGURE 5

Doubly robust staggered DID estimator.
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After including the control variables, province fixed effects, year

effects, and the interactive fixed effect of region and year, the revised

analysis reveals notable findings. The BCP appears to have a

significant positive impact on clean energy adoption in the

middle and east regions of China, as evidenced by coefficients of

0.0138 at the 1% significance level for the middle region and 0.0109

at the 10% significance level for the east region. Conversely, in the

west region, the policy seems to hinder the adoption of natural gas

(with a coefficient of −0.0327 at the 1% significance level) while

significantly reducing coal gas adoption (with a coefficient of

−0.0563 at the 1% significance level).

A potential explanation for the observed reduction in clean

energy adoption in the west region may lie in the migration of

rural residents to more developed regions in China, a phenomenon

suggested by both Zou et al. (2018) and Wang et al. (2016). Rural

residents, especially those with internet access, might be able to find

online job opportunities and subsequently leave their hometowns.

This migration could result in a decreased demand for clean energy

adoption in the west region, as the population engaged in energy

consumption declines due to outmigration. This finding underscores

the importance of considering broader socioeconomic factors and

regional dynamics when analyzing the impact of policies on energy

adoption. In this case, employment opportunities, internet access,

and rural–urban migration patterns seem to play a role in shaping

energy consumption patterns and moderating the effectiveness of the

BCP in promoting clean energy adoption in the west region.

5.3.4 Placebo test
To address concerns related to sample selection bias and

potential estimation bias caused by unobservable confounders, a

placebo test is conducted following a non-parametric permutation
Frontiers in Ecology and Evolution 1970
method similar to the approach used by Ferrara et al. (2012). The

purpose of this test is to examine whether the baseline regression

results are affected by unobservable variables.

The placebo test involves the random selection of 106 cities

from the entire sample, designating them as the false treatment

group, while the remaining cities serve as the false control group.

For each city in the false treatment group, a random year between

2007 and 2016 is assigned as the false policy implementation year.

This process is repeated 500 times, resulting in 500 sets of estimated

coefficients obtained from the random assignments. Figure 6

illustrates the kernel density distributions of these 500 estimated

coefficients. The distribution closely approximates a normal

distribution, and the average value of the coefficients is close to

zero. These findings indicate that the impact of the BCP on CREA is

unlikely to be driven by omitted unobservable variables. Therefore,

the robustness of the baseline estimates is supported.
6 Mechanism

In this section, we analyze the mechanism underlying the

impact of Broadband China Policy (BCP) on the adoption of

clean renewable energy (CREA) in rural households. As

previously discussed, this impact is multifaceted and encompasses

various dimensions of economic activities.

One of the primary objectives of the BCP initiative is to enhance

broadband adoption. Through the implementation of BCP, rural

residents have gained improved affordability and faster internet

speeds, enabling them to access online resources more readily. This

improved internet accessibility plays a crucial role in facilitating the

dissemination of information and knowledge concerning clean
TABLE 6 The effect of BCP on natural gas and gas.

(1)
Natural Gas

(2)
Natural Gas

(3)
Natural Gas

(4)
Coal Gas

(5)
Coal Gas

(6)
Coal Gas

BCP × Middle Region 0.0138* −0.0153

[0.008] [0.015]

BCP × East Region 0.0109* −0.0330***

[0.006] [0.011]

BCP × West Region −0.0327*** −0.0563***

[0.009] [0.016]

_cons −0.0665*** −0.0647*** −0.0594*** 0.351*** 0.347*** 0.360***

[0.018] [0.018] [0.018] [0.033] [0.033] [0.033]

N 33,009 33,009 33,009 33,009 33,009 33,009

Control Variable Yes Yes Yes Yes Yes Yes

Province Fixed Effect Yes Yes Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes Yes Yes

Region-Year Fixed Effect Yes Yes Yes Yes Yes Yes

Cluster Family Family Family Family Family Family
Robust standard errors are in parentheses; * and *** denote significances at 10% and 1% levels, respectively.
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energy technologies and practices. The internet serves as a valuable

platform for educational resources, providing rural residents with

access to relevant information (Zaharov et al., 2018; Jang and Song,

2022), case studies, and success stories related to clean renewable

energy. By leveraging these resources, individuals can make

informed decisions regarding the adoption of clean renewable

energy (CREA). Consequently, internet accessibility serves as a

vital channel connecting BCP to CREA, as it enhances awareness

and understanding of the benefits and feasibility associated with

CREA. Therefore, we propose three distinct avenues through which

BCP can facilitate the promotion of CREA in rural families.
6.1 Governance participation and pollution

The accessibility of the internet not only empowers rural

residents to voice their concerns, provide feedback, and actively

participate in discussions related to pollution control and clean

energy policies but also plays a crucial role in facilitating effective

governance and policy reforms (Flew et al., 2019; Haggart, 2020). By

harnessing the power of the internet, residents can engage in

environmental issues, express their opinions, and advocate for

sustainable practices, thereby exerting pressure on local

governments to allocate more resources to pollution control efforts.

Moreover, the advent of new digital technologies has

revolutionized environmental monitoring and management. Real-

time monitoring systems, remote sensing technologies, and

advanced data analysis tools have become invaluable assets in the

identification and mitigation of pollution sources (Cheng et al.,

2021; Chen et al., 2022b). These digital innovations enable

authorities to promptly detect and address environmental

hazards, leading to the implementation of more stringent

regulations and the enhancement of enforcement mechanisms.
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Furthermore, the internet acts as a catalyst for promoting clean

renewable energy alternatives. Digital platforms provide a space for

knowledge sharing, where information regarding the benefits and

feasibility of clean energy technologies can be disseminated (Jang

and Song, 2022). Online resources such as case studies, success

stories, and educational materials are readily accessible, enabling

rural residents to make informed decisions regarding clean energy

adoption. The availability of such information not only raises

awareness but also enhances the understanding of clean energy

solutions, further driving the shift toward sustainable practices.

The digital transition also brings about increased government

investment and efficiency in addressing environmental challenges.

With the aid of digital tools and technologies, governments can

streamline administrative processes, facilitate data-driven decision-

making, and improve resource allocation. This results in more

effective and targeted interventions to combat pollution and

promote clean energy. Additionally, the transparency and

accountability enabled by digital platforms foster trust between

governments and citizens, creating a conducive environment for

collaboration and the implementation of sustainable policies.
6.2 Job opportunities and salary income

The accessibility of the internet opens up avenues for rural

residents to access a wider range of job opportunities, fostering

economic empowerment and financial stability (Stevenson, 2008;

Maurer-Fazio, 2012; Suvankulov et al., 2012; Castellacci and Vinas-

Bardolet, 2019). With the advent of digital platforms and online

marketplaces, individuals residing in rural areas can engage in

remote work or venture into entrepreneurship, regardless of their

geographic location. This expanded economic activity not only

provides individuals with additional sources of income but also
FIGURE 6

Placebo test.
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enhances their financial capacity to invest in various aspects of their

lives, including clean energy technology.

By leveraging digital platforms, rural residents can participate in

remote work arrangements (Ghislieri et al., 2022), such as

freelancing, consulting, or telecommuting. This flexibility allows

individuals to harness their skills and expertise, serving clients and

organizations worldwide (Sako, 2021). Additionally, online

marketplaces offer opportunities for rural entrepreneurs to

showcase and sell their products or services to a global customer

base, transcending traditional geographical limitations. This

newfound economic potential provides rural residents with a

pathway toward financial independence and improved livelihoods.

The increased income and financial stability resulting from

these digital opportunities can indirectly impact the adoption of

clean renewable energy (CREA) in rural areas. As individuals’

economic circumstances improve, they gain the means to invest

in clean energy technologies for their households or businesses. This

could involve installing solar panels, purchasing energy-efficient

appliances, or implementing sustainable farming practices. The

availability of reliable and sustainable income sources enables

individuals to allocate resources towards environmentally friendly

solutions, gradually transitioning towards a cleaner and more

sustainable energy future.

Moreover, the economic empowerment facilitated by internet

accessibility can have wider community benefits. As rural residents

engage in remote work or establish online businesses, they

contribute to local economic development and job creation. This

virtuous cycle stimulates economic growth within rural

communities, fostering a supportive ecosystem for the adoption

of clean energy. Local businesses, service providers, and community

organizations may also respond to the growing demand for clean

energy solutions, further promoting the uptake of CREA.

However, with the development of the internet and the increase

in income, online platforms provide multiple products and delivery

services with coupons (Duan et al., 2022). This convenience and

attractive pricing often lure residents to order take-out meals

instead of cooking at home (Jiang et al., 2021). Furthermore,

residents may choose to purchase more advanced electrical

equipment due to their increased purchasing power. While these

trends may seem beneficial, they have the potential to reduce the

utilization of renewable energy sources. To address this issue, it is

crucial to examine the impact of these factors on the energy

consumption patterns of residents. Firstly, the widespread

adoption of online platforms for food delivery can lead to a

higher demand for transportation and logistics services. The

increased frequency of delivery vehicles on the roads can result in

greater fuel consumption and emissions, indirectly contributing to

environmental pollution. This aspect needs to be considered when

evaluating the overall energy efficiency of the online food

delivery system.

Secondly, the availability of coupons and discounts on online

platforms can influence consumer behavior (Duan et al., 2022). By

offering reduced prices for take-out meals, online platforms

encourage residents to order food instead of cooking at home.

This shift in behavior can lead to increased energy consumption, as

households relying on take-out meals are likely to use more
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electricity for lighting, refrigeration, and other related purposes.

Consequently, the energy demand may rise, potentially placing

additional strain on non-renewable energy sources.

Furthermore, the affordability of advanced electrical equipment,

made possible by increased income, can also impact energy

consumption patterns. While these appliances may provide

convenience and improved functionality, they often require

substantial amounts of energy to operate. If the trend of

purchasing such energy-intensive equipment continues, it could

contribute to higher overall energy demand, possibly relying more

heavily on non-renewable energy sources.
6.3 Industrial upgrading

The adoption of the internet and digital technologies, including

IoT devices, smart systems, and data analytics, plays a pivotal role in

optimizing energy usage, monitoring emissions, and integrating

renewable energy sources across industrial and household sectors

(Ishida, 2015; Lahouel et al., 2021; Chen et al., 2022b). This process

of digital transition catalyzes industrial upgrading, leading to the

adoption of cleaner production processes and promoting the

adoption of clean renewable energy solutions in daily life.

By leveraging IoT devices and smart systems, industries and

households can enhance their energy efficiency and reduce their

environmental impact (Wang et al., 2021; Chen et al., 2022b). Smart

grids enable real-time monitoring and control of energy

consumption, allowing for more efficient allocation and

utilization of resources. Industrial processes can be optimized

through data analytics, identifying areas for improvement, and

implementing energy-saving measures. This optimization not

only reduces energy waste but also minimizes emissions and

environmental pollutants. Furthermore, the integration of

renewable energy sources is facilitated by digital technologies. IoT

devices and data analytics enable the seamless integration of

renewable energy systems, such as solar panels and wind turbines,

into existing infrastructure. These technologies provide real-time

monitoring and management of renewable energy generation,

ensuring efficient utilization and grid integration. The intelligent

control systems allow for dynamic load balancing, storage

management, and demand response mechanisms, optimizing the

overall energy mix and promoting the use of clean energy sources.

The impact of BCP is significant in this context as it accelerates

the digital transition and promotes the widespread adoption of

these technologies. Improved internet accessibility through BCP

facilitates the dissemination of digital innovations, enabling

industries and households to embrace energy-efficient practices

and renewable energy solutions. By enhancing energy efficiency

and reducing environmental impacts within industries and

households, BCP contributes to the wider availability and

adoption of clean energy sources.

In summary, the adoption of the internet and digital

technologies empowers industries and households to optimize

energy usage, monitor emissions, and integrate renewable energy

sources. This digital transition, supported by initiatives like

Broadband China, drives industrial upgrading and promotes the
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adoption of cleaner production processes and clean renewable

energy solutions. Ultimately, it improves energy efficiency,

reduces environmental impact, and paves the way for a more

sustainable and clean energy future.
6.4 Mechanism analysis

To test the mechanisms discussed above, we have introduced

the interactive terms of BCP with pollution, industry structure, and

family salary income in our baseline regression, as specified in

model (9). The results of these regressions are presented in Table 7.

In column (1), the interaction term between BCP and pollution,

represented as BCP × Pollution, is introduced. The coefficient

corresponding to this interaction term is quantified as 0.0238,

demonstrating statistical significance at the 10% level, and is

decidedly positive. This empirical evidence suggests that the local

district’s pollution levels modulate the relationship between BCP

and CREA.

The positive coefficient affiliated with the BCP × Pollution

interaction term is concordant with the hypothesis that BCP

avails residents with expanded avenues for expressing their

perspectives and concerns about pollution. Through the medium

of online platforms, residents are empowered to articulate their

sentiments and advocate for an enhanced environmental

living standard.

The positive coefficient also denotes that as pollution escalates,

the positive influence of BCP on CREA becomes increasingly

discernible. This finding infers that the digital transition,

embodied by online platforms, equips residents with the tools
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necessary to champion and strive for betterment in their living

conditions, specifically regarding the reduction of pollution.

In column (2), we incorporate the interaction term between

BCP and Industry Structure, denoted as BCP × Industry Structure.

Relative to the baseline model, there are significant alterations in the

coefficients and subsequent interpretations. Primarily, the

coefficient associated with BCP becomes statistically significant

and positive (0.043 at a 1% significance level), thereby signifying

that BCP profoundly fosters CREA among rural families when

industry structure is factored in. This indicates that the utilization of

online platforms, including BCP, exerts a positive influence on the

economic welfare of rural families, considering the distinct

characteristics of the industry structure.

Contrastingly, the coefficient for the interaction term BCP ×

Industry Structure is statistically significant yet negative (−0.117 at a

1% significance level). This observation intimates that the

relationship between BCP and CREA is shaped by the proportion

of tertiary industry in the region. As the proportion of this industry,

characterized by a dominance of service-oriented sectors such as

hospitality and restaurants, swells, the effect of BCP on CREA

appears to decline or even reverse, becoming negative.

This discovery is supported by the analysis delineated earlier,

although it diverges from macro-level analyses, as cited in previous

studies. When the tertiary industry dominates the local industrial

structure, residents may prefer dining in restaurants as opposed to

home cooking, thereby reducing both traditional and clean renewable

energy usage. Simultaneously, this shift may incite an increase in

electricity consumption due to the availability of more accessible and

affordable electrical devices. Such a transition in consumption habits

can potentially negate the positive effect of BCP on CREA.
TABLE 7 Mechanism analysis.

(1)
CREA

(2)
CREA

(3)
CREA

BCP −0.0822*** 0.0453*** 0.444***

[0.008] [0.016] [0.168]

BCP × Pollution 0.0238* [0.014]

BCP × Industry Structure −0.117*** [0.012]

BCP × Family Salary Income −0.0508*** [0.016]

_cons 0.344*** 0.300*** 0.177**

[0.031] [0.033] [0.085]

N 33009 30398 19259

Control Variable Yes Yes Yes

Province Fixed Effect Yes Yes Yes

Year Fixed Effect Yes Yes Yes

Region-Year Fixed Effect Yes Yes Yes

Cluster Family Family Family

Adjust R2 0.2893 0.2982 0.2606
Robust standard errors are in parentheses; *, **, and *** denote significances at 10%, 5%, and 1% levels, respectively.
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In column (4), we incorporate the interaction term between

BCP and family salary income, denoted as BCP × Family Salary

Income. The coefficients corresponding to BCP and the interaction

term yield significant insights into the tripartite relationship among

digital transition, familial income, and consumption structure.

In a manner analogous to the preceding model, the coefficient

associated with BCP is significantly positive (0.444 at a 1% level) in

column (4). This implies that BCP has a beneficial influence on

CREA in rural families when we account for family income. The

digital transition facilitates economic activity, contributes to the

economic wellbeing of households, and fosters CREA among rural

families. Contrarily, the coefficient for the BCP × Family Salary

Income term is significantly negative (−0.0508 at a 1% level). This

indicates that as family salary income escalates, the relationship

between BCP and CREA is negatively impacted.

Elevated income levels induce changes in consumption habits,

such as a predilection for meal delivery services or restaurant

dining, over home cooking. Specifically, the rise in family income

may enable households to afford more convenient food options,

instigating a departure from traditional home cooking. This shift in

consumption behavior may precipitate a reduction in traditional

energy costs but an uptick in electricity consumption due to the

utilization of more contemporary, energy-demanding devices.

Thus, the negative coefficient for the BCP × Family Salary Income

interaction term underscores the importance of considering

income’s role in understanding BCP’s impact on consumption

patterns and energy usage. Heightened family income levels may

attenuate the positive influence of BCP on CREA due to

consumption behavior changes engendered by increased

affordability and convenience.

These findings highlight the importance of various factors and

the diverse effects of BCP on CREA. They imply that policymakers

and stakeholders should be cognizant of the differing impacts of

digital transition on various industries, household financial

circumstances, and consumption behavior. This understanding is

pivotal for nurturing sustainable economic growth and promoting

energy efficiency in rural locales.
7 Heterogeneity and
alternative interpretation

7.1 Heterogeneity

According to the analysis presented earlier, it is evident that the

impact of BCP on CREA is influenced by multiple economic factors.

Additionally, the considerable gap in economic development across

different regions in China introduces significant heterogeneity in

the causal inference between BCP and CREA. In this section, we

delve further into this heterogeneity to gain a deeper understanding

of the nuanced dynamic at play.

7.1.1 Heterogeneity of real estate district
Real estate holds significant importance for Chinese families,

serving as both a living space and an investment asset (Ren et al.,

2012). However, the high prices of real estate and the traditional
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cultural significance of owning a home create substantial financial

burdens for families (Deng et al., 2012). Many Chinese families find

themselves stretching their financial resources to meet the expenses

associated with purchasing a house, often having to exhaust their

savings and rely on various sources of funding.

It is worth noting that the heterogeneity in the types of housing

available in China further contributes to the financial diversity across

families. The CLDS survey includes a question that provides an

opportunity to identify this heterogeneity by asking respondents

about the type of district they reside in. The responses include

non-reformed old districts, districts for workers in mining

enterprises, districts for government officials and state-owned

enterprise employees, social welfare housing communities, general

commercial housing districts, upscale commercial housing

communities, districts for rural-to-urban migrants, and shantytowns.

The majority of families residing in districts other than

commercial housing districts and districts for government officials

and employees of state-owned enterprises often face financial

challenges, particularly those in rural areas. These families

struggle with mandatory expenses such as food, education, and

housing rent. Moreover, owing to the lack of comprehensive social

security coverage, residents are often required to make upfront

payments for medical treatment, and some may even find

themselves unable to afford hospital bills. Consequently, the

financial strain they face makes it difficult for them to afford the

costs associated with adopting clean renewable energy sources.

Moreover, the financial constraints experienced by families living

in poverty or facing economic hardships underscore the challenges

they encounter in adopting clean renewable energy technologies.

Access to affordable and clean energy sources is crucial for

sustainable development and environmental conservation.

However, the financial limitations faced by these families restrict

their ability to invest in renewable energy solutions, which often

require upfront costs and infrastructure investments.

To examine the impact of low-income districts on the

relationship between BCP and CREA, we introduce a dummy

variable called “Low Income District”, which takes a value of 1 if

residents live in a low-income district, and 0 otherwise.

Additionally, we incorporate the interaction term between BCP

and Low-Income District, denoted as BCP × Low Income District,

into the baseline model. To capture the heterogeneity across

different regions, we divide the sample into the middle region,

east region, and west region.

The results presented in Table 8 demonstrate that all of the

coefficients of the interaction term, BCP × Low Income District, are

statistically significant and negative. This indicates that rural families

residing in low-income districts across China are likely to experience a

reduction in CREA. These findings highlight the adverse impact of

living in low-income districts on the relationship between BCP and

CREA, regardless of the geographical region. The negative coefficients

suggest that the combination of BCP usage and residing in a low-

income district has an amplifying effect on the reduction of CREA. This

outcome is noteworthy as it indicates that the potential benefits of BCP

adoption in promoting CREA are diminished in low-income districts.

The financial constraints and challenges faced by families in these

districts hinder their ability to invest in clean and renewable energy
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technologies, ultimately impacting their CREA levels. Furthermore, the

results indicate that the heterogeneity across different regions does not

significantly alter the causal inference of BCP on CREA in low-income

districts. Regardless of whether the sample consists of the middle

region, east region, or west region, the coefficients of the interaction

term remain consistently negative and statistically significant. This

suggests that the detrimental impact of low-income districts on the

relationship between BCP and CREA extends throughout China.

The findings underscore the need for targeted interventions and

policy measures to address the challenges faced by rural families

living in low-income districts. Such measures should aim to

alleviate financial constraints, improve access to affordable clean

energy solutions, and promote sustainable development in these

areas. By implementing policies that specifically target low-income

districts, policymakers can help bridge the gap and ensure that the

benefits of BCP and clean renewable energy are accessible to all,

irrespective of their income levels or geographical location. In

conclusion, the inclusion of a dummy variable for low-income

districts and the corresponding interaction term in the analysis

reveals that rural families living in low-income districts experience a

reduction in CREA across China. This highlights the importance of

addressing the financial constraints and challenges faced by these

families in adopting clean and renewable energy technologies. The

consistent findings across different regions emphasize the need for

targeted policies to promote sustainable energy practices and

mitigate the adverse effects of low-income districts on CREA.

7.1.2 Heterogeneity of population size
Population size plays a significant role in determining the level

of public infrastructure, public services, and economic foundation

in Chinese cities. Larger population centers tend to have more

extensive public facilities and services to cater to the needs of a

larger number of residents. Moreover, the larger population base

offers attractive investment opportunities and a target market for

both the government and enterprises. As a result, these areas are
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more likely to attract investments in green technology research and

development, clean technology applications, and clean renewable

energy infrastructure.

The heterogeneity arising from population size has several

implications. Firstly, cities with larger populations often have a

higher demand for energy and resources. This increased demand

necessitates the development of robust and sustainable energy

systems to meet the needs of the population. Consequently,

policymakers and stakeholders are more inclined to invest in

clean and renewable energy infrastructure in these areas to ensure

a reliable and environmentally friendly energy supply.

Secondly, the availability of a large population provides a more

significant market for clean technology products and services. With

a large group, companies and entrepreneurs are motivated to

develop and commercialize clean technologies to cater to the

needs and preferences of a diverse consumer base. This, in turn,

drives innovation and fosters the growth of the clean technology

sector in these populous areas.

Furthermore, the concentration of the population in larger

cities facilitates knowledge exchange, collaboration, and the

sharing of best practices. These cities often serve as hubs for

research and development, attracting skilled professionals and

experts in the field of clean renewable energy. The presence of a

knowledgeable workforce and a vibrant intellectual environment

accelerates technological advancements and the adoption of clean

renewable energy solutions.

However, it is crucial to consider the potential drawbacks and

challenges associated with large population centers. Rapid

urbanization and population growth can strain existing

infrastructure and resources, leading to increased energy

consumption and environmental pressures. Managing the energy

demands of a large population requires careful planning efficient

resource allocation, and sustainable urban development strategies.

To investigate the impact of population size on the relationship

between BCP and CREA, we introduce a dummy variable called
TABLE 8 Heterogeneity of Real Estate District.

(1)
CREA

(2)
CREA

(3)
CREA

(4)
CREA

Full Sample Middle Region East Region West Region

BCP × Low Income District -0.223*** -0.182** -0.177*** -0.504***

[0.056] [0.084] [0.066] [0.105]

_cons 0.324*** 0.350** 0.419*** 0.142

[0.077] [0.169] [0.107] [0.137]

N 33009 9782 15668 7559

Control Variable Yes Yes Yes Yes

Province Fixed Effect Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes

Region-Year Fixed Effect Yes No No No

Adjust R2 0.2917 0.2908 0.2307 0.3071
Robust standard errors are in parentheses; ** and *** denote significances at 5% and 1% levels, respectively.
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“Mean Popu”. This variable takes a value of 1 if the population of

the city is larger than the mean population across China, and 0

otherwise. Additionally, we divide the sample into the middle

region, east region, and west region to capture the regional

heterogeneity. Incorporating the interaction term between BCP

and Mean Popu, denoted as BCP × Mean Popu, into the baseline

model, we present the results in Table 9. The coefficients of BCP ×

Mean Popu are found to be statistically significant and positive. This

indicates that in cities with larger populations, the presence of BCP

significantly promotes CREA.

Comparing these results to the baseline model, it becomes

evident that population size introduces significant heterogeneity

across China. Larger cities not only attract migration but also attract

technological advancements and investment. The concentration of

population in these cities creates an environment that fosters the

adoption and utilization of BCP, leading to a positive impact on

CREA. On the other hand, smaller cities may face challenges

associated with a declining population and limited investment

opportunities. These factors may hinder the adoption of BCP and

limit the potential benefits for CREA in these areas.

The findings highlight the importance of considering population

size and its impact on the effectiveness of BCP in promoting CREA.

Policy interventions and strategies should take into account the varying

dynamics across cities of different sizes. It is crucial to support smaller

cities in overcoming barriers and creating an enabling environment for

the adoption of BCP and clean renewable energy technologies.

Furthermore, the regional heterogeneity observed in the results

emphasizes the need for tailored approaches in different regions.

Middle, east, and west regions may have unique characteristics and

specific challenges that require region-specific policies and initiatives to

enhance CREA. By understanding and addressing the specific needs of

each region, policymakers can foster sustainable economic growth,

encourage investment in clean energy technologies, and promote

energy efficiency.
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In conclusion, the inclusion of the dummy variable “Mean

Popu” and the corresponding interaction term BCP ×Mean Popu

provides insights into the relationship between population size and

the impact of BCP on CREA. The positive and statistically

significant coefficients suggest that in cities with larger

populations, BCP has a significant positive effect on CREA. This

underscores the importance of considering population size and its

associated heterogeneity when designing policies and interventions

to promote sustainable energy practices and enhance CREA in

different regions of China.

7.1.3 Economic size
The gaps in economic development across regions pose another

important consideration in understanding the impact of BCP on

CREA. In China, the east region holds a pivotal role in the country’s

economy, fiscal income, foreign communication, and technology

innovation. On the other hand, the middle region and the west

region are still in the process of development. To explore the

potential heterogeneity resulting from economic size, we calculate

the mean total GDP to be 3,617.536 billion. Furthermore, the mean

GDP in the east region is 5,424.964 billion, that in the middle region

is 2355.583 billion, and that in the west region is 1900.047 billion.

These figures indicate substantial disparities in economic size across

the regions.

Given these disparities, it is reasonable to expect that the impact

of BCP on CREA may vary significantly across regions. The larger

economic size of the east region, coupled with its advanced

technological capabilities and greater investment opportunities,

may create a more conducive environment for the adoption and

utilization of BCP. The positive impact of BCP on CREA in the east

region is likely to be more pronounced compared to the middle and

west regions. However, as discussed above, the residents living in

the east region will change their consumption structure due to the

developed economic and digital transition; as a result, the BCP
TABLE 9 Heterogeneity of population size.

(1)
CREA

(2)
CREA

(3)
CREA

(4)
CREA

Full Sample Middle Region East Region West Region

BCP × Mean Popu 0.0719** 0.141*** 0.0354*** 0.105***

[0.031] [0.016] [0.012] [0.023]

_cons 0.121 0.154*** 0.247*** −0.169***

[0.075] [0.060] [0.045] [0.064]

N 33,009 9,782 15,668 7,559

Control Variable Yes Yes Yes Yes

Province Fixed Effect Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes

Region-Year Fixed Effect Yes No No No

Adjust R2 0.2582 0.2655 0.1938 0.2597
Robust standard errors are in parentheses; ** and *** denote significances at 5% and 1% levels, respectively.
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shows a lower impact on CREA in rural families residing in the

east region.

Conversely, the middle and west regions, characterized by lower

economic sizes and relatively less developed infrastructure, may face

challenges in realizing the full potential of BCP for promoting CREA.

The limited resources and investment in these regions could hinder

the adoption and utilization of BCP, leading to a relatively weaker

impact on CREA. To comprehensively understand the heterogeneity

resulting from economic development gaps, it is crucial to conduct

further analysis and regression models that explicitly account for

regional economic factors. This would enable a more nuanced

examination of the relationship between BCP and CREA,

considering the varying economic sizes across regions and their

impact on the adoption and effectiveness of BCP.

To further investigate the heterogeneity related to economic

size, we introduce a dummy variable called “GDP Mean Group”.

This variable takes a value of 1 if the GDP of a region is larger than

the mean GDP across all regions, and 0 otherwise. Additionally, we

introduce the dummy variables “Mid GDP Mean Group”, “East

GDP Mean Group”, and “West GDP Mean Group” based on the

means of GDP in the middle, east, and west regions, respectively.

Table 10 presents the results of the regression analysis. We find that

GDP plays a significant role in determining the impact of BCP on

CREA across China. The coefficients of the interaction term

between the BCP and GDP Mean Group are statistically

significant and positive in the full sample. Comparing these

results to the baseline model, it becomes evident that economic

development amplifies the impact of BCP on CREA. Regions with

higher levels of economic development tend to experience a

stronger positive effect of BCP on CREA.

Furthermore, when we examine the results for specific regions,

we observe some interesting findings. In the middle and west
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regions, the coefficients of the interaction term are statistically

significant and positive, indicating that the impact of BCP on

CREA is amplified in these regions. This aligns with our previous

analysis, highlighting the challenges faced by less-developed regions

and their potential to benefit from BCP adoption. Surprisingly, in

the east region, the coefficient of the interaction term is not

statistically significant. This suggests that the relationship between

BCP and CREA may be influenced by other factors in the east

region, such as advanced technological infrastructure and higher

levels of investment. These factors may overshadow the specific

impact of BCP on CREA in the east region.

Furthermore, when we examine the results for specific regions,

we observe some interesting findings. In the middle and west

regions, the coefficients of the interaction term are statistically

significant and positive, indicating that the impact of BCP on

CREA is amplified in these regions. This aligns with our previous

analysis, highlighting the challenges faced by less-developed regions

and their potential to benefit from BCP adoption. Surprisingly, in

the east region, the coefficient of the interaction term is not

statistically significant. This suggests that the relationship between

BCP and CREA may be influenced by other factors in the east

region, such as advanced technological infrastructure and higher

levels of investment. These factors may overshadow the specific

impact of BCP on CREA in the east region.
7.2 Alternative interpretation

7.2.1 Social study
In order to examine the potential influence of social study

on the impact of BCP on CREA, we introduce the interaction term

BCP × Social Study into the analysis. The frequency of social study
TABLE 10 Heterogeneity of economic size.

(1)
CREA

(2)
CREA

(3)
CREA

(4)
CREA

Full Sample Middle Region East Region West Region

BCP × GDP Mean Group 0.0540*** [0.009]

BCP × Mid GDP Mean Group 0.0739*** [0.017]

BCP × East GDP Mean Group 0.00823 [0.012]

BCP × West GDP Mean Group 0.0343*** [0.010]

_cons 0.114*** 0.102* 0.244*** 0.251***

[0.031] [0.060] [0.045] [0.045]

N 33,009 9,782 15,668 15,668

Control Variable Yes Yes Yes Yes

Province Fixed Effect Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes

Region-Year Fixed Effect Yes No No No

Adjust R2 0.2575 0.2608 0.1934 0.194
Robust standard errors are in parentheses; * and *** denote significances at 10% and 1% levels, respectively.
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activities, as reported by the respondents in the CLDS survey, serves

as a proxy for their engagement in acquiring knowledge, training,

and technical support related to clean renewable energy

technologies. Additionally, we consider the role of natural gas,

another important source of energy in China, to test whether

social study has a greater impact on promoting CREA compared

to BCP. This allows us to assess whether social study activities have

a specific influence on the adoption of clean renewable energy

technologies, independent of the overall impact of BCP and other

energy sources.

In columns (1) and (2) of Table 11, we observe that the

coefficients of the interaction terms between BCP and Social

Study are statistically insignificant and positive. This implies that

the frequency of social study activities, as reported by the

respondents, does not appear to have a significant influence on

the relationship between BCP and CREA. These results suggest that

while social study activities may provide channels for rural residents

to access clean renewable energy knowledge and training, it does

not significantly enhance the impact of BCP on the adoption of

clean renewable energy technologies in rural areas. Other factors or

mechanisms might be more influential in driving the adoption

of CREA.
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It is important to interpret these findings cautiously and

consider the potential limitations of the analysis. Other factors

not captured in the model or variations in the sample characteristics

could also contribute to the insignificant relationship between BCP,

social study, and CREA. Further research and analysis may be

required to explore additional factors or alternative explanations for

the observed results.

Overall, the analysis suggests that social study activities alone

may not be a significant determinant of the impact of BCP on

CREA. Policymakers and stakeholders should consider other

strategies and interventions to promote CREA in rural areas,

taking into account the specific context and characteristics of the

target population.

7.2.2 Energy conservation and emission
reduction pilot city

To address concerns regarding potential confounding factors,

we examine the impact of other policies related to clean energy

adoption, such as the Energy Conservation and Emission Reduction

Pilot City (ECERP) program. The ECERP program aims to enhance

energy conservation and emission reduction efforts in selected

cities, integrating various fiscal policies to achieve China’s targets
TABLE 11 Alternative interpretation.

(1)
CREA

(2)
Natural Gas

(3)
CREA

(4)
CREA

(5)
CREA

(6)
CREA

Full Sample Exclude the ECERP pilot City

BCP × Social Study 0.000685 0.0129

[0.007] [0.008]

BCP -0.0487***

[0.009]

BCP × Middle Region 0.0598***

[0.016]

BCP × East Region -0.0764***

[0.013]

BCP × West Region -0.116***

[0.017]

_cons 0.368*** -0.0654 0.325*** 0.305*** 0.311*** 0.336***

[0.079] [0.050] [0.036] [0.036] [0.036] [0.036]

N 33009 33009 29061 29061 29061 29061

Control Variable Yes Yes Yes Yes Yes Yes

Province Fixed Effect Yes Yes Yes Yes Yes Yes

Year Fixed Effect Yes Yes Yes Yes Yes Yes

Region-Year Fixed Effect Yes Yes Yes Yes Yes Yes

Cluster Family Family Family Family Family Family

Adjust R2 0.2901 0.3342 0.2763 0.2759 0.2764 0.2767
Robust standard errors are in parentheses; *** denotes significance at 1% level.
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in these areas. The program was initiated in 2011, with additional

cities being promoted in 2013 and 2014, totaling 28 cities. To

eliminate the potential influence of ECERP on our baseline

estimation, we exclude the ECERP cities from the total sample

and re-estimate the baseline model. Columns (3) to (6) in the

analysis report the results. By excluding the ECERP cities, we can

isolate the specific impact of the BCP on CREA, independent of any

potential effects resulting from the ECERP program. This allows us

to examine the true relationship between BCP and CREA, without

the confounding influence of this particular policy intervention.

The coefficients of BCP and the interaction terms are statistically

significant. Compared to the baseline model, the coefficient is

smaller, which suggests that the ECERP has affected the adoption

of renewable energy in rural family, and it also supports the idea

that the BCP has a significant impact on CREA, and it shows

heterogeneity across regions.

The results of the analysis in columns (3) to (6) indicate that the

coefficients of BCP and the interaction terms remain statistically

significant, even after excluding the ECERP cities from the sample.

However, it is observed that the magnitude of the coefficients is

smaller compared to the baseline model. This finding suggests that

the presence of the ECERP program has affected the adoption of

renewable energy in rural families. The programmay have influenced

the overall energy conservation and emission reduction efforts in the

ECERP cities, which could have indirectly affected the adoption of

clean renewable energy technologies in these areas. Nonetheless, the

significance of the coefficients of BCP and the interaction terms, even

in the absence of the ECERP cities, supports the idea that BCP has a

significant impact on CREA. It further reinforces the notion that BCP

plays a vital role in promoting the adoption of clean renewable energy

technologies in rural areas.

Additionally, the presence of heterogeneity across regions is

observed, indicating that the impact of BCP on CREA varies across

different parts of China. This regional variation suggests that factors

such as economic development, policy environment, and

infrastructure may influence the effectiveness of BCP in

promoting CREA.

Overall, by excluding the ECERP cities and observing the

significance of the coefficients in the remaining sample, we can

conclude that the BCP has a significant impact on CREA, even after

accounting for the potential influence of the ECERP program. The

presence of heterogeneity across regions underscores the need for

tailored policies and strategies to effectively promote CREA in rural

areas across different parts of China.
8 Conclusion

The ongoing digital transition and the urgent need to address

global warming have brought attention to the energy consumption

patterns in rural families. However, there is currently a lack of

theoretical frameworks and empirical research focusing on this

specific context. Furthermore, the impact of digital transition on the

adoption of clean renewable energy in rural families remains

understudied. This paper aims to fill these research gaps by
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utilizing Broadband China Policy (BCP) as a quasi-natural

experiment and analyzing data from the CLDS spanning the years

2012 to 2016. To assess the impact of digital transition on CREA in

rural families, the study employs a staggered DID approach and the

Doubly Robust Staggered DID estimator. The use of a traditional

staggered DID estimator allows for a rigorous examination of the

causal relationship between digital transition and CREA, by

analyzing the CLDS datasets, which provide valuable insights into

the energy consumption patterns of rural families, and the study

aims to shed light on the potential effects of digital transition on

CREA in this specific context. By applying a robust statistical

method, the study seeks to provide reliable and accurate estimates

of the impact of digital transition on CREA; moreover, it also

provides the chance to analyze its dynamic effects. This rigorous

analysis contributes to the existing literature on energy

consumption patterns and the role of digital technology in

promoting sustainable energy practices.

Our findings demonstrate that the digital transition has a

significant impact on the adoption of clean renewable energy in

rural families, with notable heterogeneity across regions.

Specifically, the implementation of the BCP resulted in a

significant increase in CREA in the middle region, with a 5.8%

increase compared to non-pilot cities. However, in the east and west

regions, the BCP led to a reduction in CREA, with a 12.6% decrease

in the east region and a 13.5% decrease in the west region.

Furthermore, our dynamic effect analysis reveals interesting

patterns in the causal relationship between the BCP and CREA.

In the east region, we observe that CREA was already high before

the implementation of the BCP, suggesting that other factors may

have played a significant role in driving adoption in this region. In

contrast, in the west region, the BCP had a positive impact on the

intention to adopt clean renewable energy after its implementation,

indicating the potential for the BCP to facilitate adoption in

this region.

Additionally, considering natural gas as a clean energy source in

China, we find that the BCP led to a 1.38% increase in natural gas

usage in the east region. This suggests that the BCP may have

influenced the choice of clean energy sources, with a shift towards

natural gas in this particular region. Furthermore, our analysis

reveals that the impact of the BCP on CREA operates through three

channels: population size, economic size, and income level. Cities

with larger populations and greater economic size experience a

more significant impact of the BCP on CREA in rural families.

However, low-income families tend to prefer using fossil energy

rather than clean renewable energy following the implementation of

the BCP.

These findings provide empirical evidence for countries,

particularly developing nations, that aim to leverage digital

development for technological progress and industrial upgrading

to reduce carbon emissions, increase CREA, and improve the

welfare of residents. By understanding the heterogeneity of the

effects and the underlying channels through which digital transition

impacts CREA, policymakers can design targeted interventions and

policies to promote sustainable energy practices and enhance

overall societal wellbeing.
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9 Further research direction

Building upon the findings of this study, future research should

aim to further delineate the nuanced relationships between BCP

and consumer behavior. The digital transition’s varied impact on

different industries and diverse household income levels, as well as

consumption behaviors, warrants further exploration. Specifically, a

deeper understanding of how digital tools like BCP can be

optimized to stimulate CREA in different socioeconomic and

industrial contexts is imperative.

Furthermore, it would be beneficial to expand the scope of this

research to a broader geographical context. This study

predominantly focused on rural families; however, the impacts of

BCP and digital transitions might differ in urban settings due to

contrasting living conditions, industry structures, and income

levels. Cross-regional comparisons would provide comprehensive

insights into the generalizability of the current findings.

In addition, the role of government policy in influencing and

possibly amplifying the positive effects of BCP on CREA should not

be overlooked. Policymakers should consider incentives to

encourage the use of online platforms to promote energy

efficiency and sustainable practices among citizens. Therefore,

future research could examine how different policy interventions

affect the relationship between BCP and CREA.

Lastly, it would be intriguing to examine the long-term impacts

of changes in consumer behavior on energy consumption patterns.

As income levels rise and consumption habits shift, what are the

long-term implications for traditional and renewable energy usage?

Unraveling the potential impacts of these dynamics could provide

valuable insights into sustainable economic growth strategies and

the promotion of energy efficiency in both rural and urban areas.
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This paper is based on the research hypothesis that the development of the

digital economy can enable urban carbon emission reduction. We use the panel

data of 275 prefecture-level cities in China from 2011 to 2019, the static panel-

data interaction-effect model, and the panel-threshold model to verify the non-

linear impact mechanism and heterogeneity of the digital economy in industrial

structure upgrading affecting urban carbon emissions. The results demonstrate

the following insights. First, due to the heterogeneity of industries, an increase in

the proportion of the tertiary industry cannot reduce urban carbon emissions.

Second, the digital economy has an inverted U-shaped adjustment effect on the

process of industrial structure upgrading, affecting urban carbon emissions.

Consequently, the integration and development of the tertiary industry and the

digital economy can achieve urban carbon emission reductions. Finally, the

digital economy has a double threshold effect on the process of industrial

structure upgrading, affecting urban carbon emissions. The carbon-emission-

reduction effect of industrial structure upgrading only appears after the scale of

the digital economy crosses the first threshold. As the scale of the digital

economy continues to increase, the carbon-emission-reduction effect of

industrial structures is likely to continue increasing significantly. We

recommend that local governments achieve urban carbon reduction by

encouraging the development of high-end service industries and

strengthening digital infrastructure.

KEYWORDS

carbon-emission intensity, industrial structure, digital economy, panel thresholdmodel,
nonlinear relation
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1 Introduction

The global warming caused by carbon emissions is seriously

threatening human survival and sustainable development; it is one of

the major global challenges facing humanity today. Reducing carbon

emissions and responding to increasingly severe climate change have

become key issues of common concern to the international

community. China’s industry accounts for a relatively large

proportion of the national economy, with problems of high energy

consumption, high emissions, and low efficiency coexisting.

According to data from the National Energy Administration and

the Bureau of Statistics of China, China’s energy consumption and

carbon emissions in 2020 were 4.98 billion tce and 10.25 billion t

CO2e, making China the country with the largest energy

consumption and carbon emissions in the world. China’s energy

consumption per unit of gross domestic product (GDP) is 3.4tce/

10,000 US dollars, and its carbon emissions per unit of GDP are 6.7t/

10,000 US dollars, which are 1.5 times and 1.8 times the world

average annual level, respectively. As such, China is not only one of

the world’s largest emitters (Irfan et al., 2021) of greenhouse gases but

also plays a crucial role in global climate governance. It is urgent that

green development characterized by energy conservation and

emission reduction be promoted. The 2022 report of the 20th

National Congress of the Communist Party of China emphasizes

that promoting green and low-carbon economic and social

development is the key to achieving high-quality development. In

this process, it is necessary to speed up the adjustment and

optimization of industrial, energy, and transportation structures;

improve the market-oriented allocation system of resources and

environmental elements; accelerate the research and application of

advanced energy-saving and carbon-reducing technologies; advocate

green consumption; and promote the formation of green and low-

carbon production patterns and lifestyles. The traditional view holds

that the most direct path to carbon emission reduction is energy-

utilization technology progress and energy-consumption structure

adjustment (Lin and Jiang, 2009; Sarkodie and Strezov, 2019; Li and

Wang, 2022). However, pure technological progress cannot solve the

problem of carbon emissions caused by energy consumption. On the

contrary, technological progress may create an “energy rebound

effect” (Sorrell et al., 2020). Considering China’s resource

endowment status of being rich in coal, poor in oil, and low in gas,

it will likely be difficult to change the energy consumption structure

dominated by coal for many years (Lin and Li, 2015). Determining

how to reduce excessive dependence on energy through industrial

upgrading and industrial structure adjustment is the top priority. The

research has shown that, based on accelerating the application and

innovation of carbon-emission-reduction technologies, industrial

restructuring is an effective way for China to achieve carbon

emission reduction.

Following the traditional agricultural economy and the modern

industrial economy, the digital economy, as a new economic form, has

comprehensively reshaped and upgraded social production methods

and people’s consumption concepts. In addition, the digital economy

has provided a key engine and driving force for China’s economy to

achieve high-quality development. Simultaneously, the digital
Frontiers in Ecology and Evolution 0284
economy is also an important driver and catalyst for industrial

structure upgrading (Xuan, 2017; Li et al., 2021). The digital

economy and upgrading of industrial structures promote one

another, and their integrated development is likely to solve the

problems of high pollution and emissions caused by energy

dependence and the improper allocation of resources. According to

the “White Paper on China’s Digital Economy Development”

(CAICT, 2021), China’s digital economy will likely achieve a growth

rate of more than three times the GDP from 2020, accounting for

38.6% of the GDP, and its scale has also achieved a historic

breakthrough in reaching 39.2 trillion yuan. This demonstrates that

the digital economy has become a fundamental driving force behind

the steady growth of China’s economy. In addition, the scale of digital

industrialization and industrial digitization in 2020 reached 7.5 trillion

yuan and 31.7 trillion yuan, respectively, accounting for 19.1% and

80.9% of the digital economy and 7.3% and 31.2% of the GDP. Some

literature claims the digital economy can not only integrate and

develop with traditional industries but also integrate and innovate

with the fields of resources, energy utilization, and environmental

protection (Shi, 2022). Whether the digital economy plays an effective

role in the realization of China’s “dual carbon” goals and how the role

operates are questions worth exploring.

Scholars have conducted considerable research on the impact

of changes in industrial structures on carbon emissions. Early

scholars mainly focused on the distribution of production factors

among different industries and related relationships and their

impact on carbon emissions (Zhang and Choi, 2013; Lin and

Benjamin, 2017; Hu and Sun, 2022). In this type of research, the

measurement of industrial structures generally uses the proportion

of the secondary or tertiary industry as a proxy variable. This

research has shown that an increase in the proportion of the

tertiary industry is conducive to the improvement of regional

carbon emissions (Pao et al., 2011; Dong et al., 2018). Following

this work, the research perspectives of scholars shifted from the

proportion of industrial output to the impact of the evolution and

upgrading of industrial structures on carbon emissions (Du et al.,

2019). Such studies explored the evolution of primary, secondary,

and tertiary industries in addition to changes in carbon-emission

intensity during the process of industrial evolution. In other

words, they analyzed the impact of advanced industrial

structures on carbon emissions (Zhang et al., 2020; Wu et al.,

2021; Xu et al., 2021). To explain the impact of industrial

restructuring on carbon emissions more comprehensively, some

scholars have begun to draw on the ideas of the Theil index and

Lorenz curve to construct the industrial structure rationality and

industrial structure high-level index (Zhang et al., 2022). This

helps such scholars explore industrial restructuring’s impact on

carbon emissions from multiple perspectives, such as industry

proportion, concentration, and reasonable distribution (Liang

et al., 2021; Zhang and Xu, 2022).

In recent years, however, the digital economy has flourished and

become a new engine of economic growth, and scholars have now

begun to study the impact of the digital economy on carbon

emissions. Research on the impact of digital economy

development on regional carbon emissions is mainly carried out
frontiersin.org
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from three perspectives. The first is to explore the impact of the

digital economy on high-quality economic development from a

macro perspective and based on qualitative research methods (Li

et al., 2022; Zhang et al., 2022; Zhu X et al. 2022). The second relates

to perspectives of technological progress (Kuang et al., 2020),

urbanization processes (Li et al., 2021), inclusive finance (Dong

et al., 2022), imports and exports (Ma et al., 2022; Zhong et al.,

2022), and government intervention (Lin and Huang, 2022). These

studies explore the impact of the path of digital economy

development on regional carbon emissions. Finally, the third

perspective mainly revolves around the energy-saving and

emission-reduction potential of the digitization of industrial

processes (Zhu Z et al., 2022; Wang et al., 2022).

In summary, scholars have conducted considerable and valuable

research on the impacts of industrial structures and the digital

economy on carbon emissions, which has laid a solid theoretical

foundation for the writing of this paper. However, the digital

economy does not directly affect carbon emissions. Instead, it

indirectly affects carbon emissions through intermediate variables

such as industrial structure and technological progress (Wang et al.,

2019). As such, the aim of this paper is to investigate the non-linear

effects and regional heterogeneity of the digital economy’s impact on

industrial upgrading and urban carbon emissions. This study focuses

on 275 prefecture-level cities in China, where we initially computed

the carbon-emission intensity of each city from 2011 to 2019 and

examined its spatiotemporal pattern evolution. Next, we developed a

panel-data fixed-effects model, which included interactive terms, to

investigate the joint effects of the digital economy and industrial

upgrading on changes in urban carbon emissions. Furthermore, we

constructed a panel-threshold model to explore the threshold effect of

the digital economy on the influence of industrial upgrading on

urban carbon emissions and to analyze the heterogeneity of this

impact in different threshold ranges. Finally, we proposed targeted

policy recommendations, based on our conclusions, to effectively

facilitate the transformation of urban economic growth and industrial

structure upgrading, thus promoting the attainment of the carbon

peaking and carbon neutrality goals. This paper answers the

following three questions: First, does the digital economy have a

regulating effect on the carbon-emission-reduction effect of industrial

structure upgrading? Second, if there is a regulating effect, how do we

determine the threshold interval of its effect? Third, within the range

of different threshold intervals, what kind of heterogeneity exists in

the direction and strength of the effects?

In addition, this study demonstrates innovation in three main

areas. First, it verifies, from both theoretical and empirical

perspectives, the moderating effect of the digital economy on the

relationship between industrial upgrading and urban carbon

emissions. This expands the research field of the low-carbon

economy by considering the digital economy as a factor

influencing carbon emissions. Second, this study uses a panel-

threshold model to test the threshold effect of the digital economy

on the relationship between industrial upgrading and urban carbon

emissions and explore the mechanism and heterogeneity of this

relationship in different threshold ranges. Third, this paper

challenges how existing research has primarily focused on the

impact of industrial upgrading on urban carbon emissions and
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has only provided theoretical guidance at the industry level for

carbon emission reduction. This study instead highlights the joint

impact of the digital economy and industrial upgrading on carbon

emissions and proposes differentiated policy recommendations to

promote urban carbon reduction through industrial upgrading at

different levels of digital economic development.

The remaining sections of this article are structured as follows.

Section 2 introduces the theoretical mechanism and research

hypotheses. Section 3 outlines the methods and data utilized in

this study. Section 4 presents and discusses the empirical analysis

results. Section 5 discusses the research findings. The final section

summarizes the conclusions and presents policy implications.
2 Theoretical analysis and
hypothesis development

2.1 Industrial structure upgrading and
carbon emissions

Existing research on the upgrading of industrial structures,

whether from the perspective of industrial structure rationality or

the industrial structure high-level index, is conducted around the

proportion of the added value of the three industries. Scholars

believe that the core content of industrial structure adjustment and

upgrading is the joint transformation of primary and secondary

industries into the tertiary industry, which ultimately leads to an

increase in the proportion of the tertiary industry. In China, heavy

industry means that it is the leading industry that provides the

material and technological foundation for all sectors of the national

economy. Among the three industries, the secondary industry has

the most characteristics of energy dependence and carbon-emission

intensity. Therefore, the upgrading of industrial structures helps to

reduce the proportion of the secondary industry, especially heavy

industry such as steel, energy, chemicals, and materials, and reduce

the massive consumption of traditional fossil energy (Lin and Du,

2015). The development of China’s economy in recent years has

mainly been driven by investment, and its emphasis on industrial

output inevitably increases its dependence on the input of

production factors. This eventually leads to the characteristics of

“high pollution, high energy consumption and low efficiency” in

economic growth (Crompton and Wu, 2005). Encouraging and

promoting the development of the tertiary industry can help reduce

energy consumption in the production process, break through the

rigid demand for energy in the economic system, improve the

quality of economic growth, and reduce energy intensity and total

carbon emissions. Moreover, the previous development of China’s

industry chose a capital-biased path, resulting in the industrial

system’s high dependence on chemical energy and hindering the

optimization of energy consumption structures and the use of low-

carbon clean energy (Wang et al., 2022). Vigorously developing the

service industry, especially the producer- and technology-service

industries, can promote the service-oriented transformation of

industrial enterprises, improve production efficiency, reduce

energy consumption per unit of product while producing high-

value-added products, and ultimately achieve energy conservation
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and emission reduction. Based on the above analysis, this paper

presents the following hypothesis:

H1: An increase in the proportion of the tertiary industry will

help reduce the energy dependence of the economic system and reduce

the intensity of carbon emissions.
2.2 Tertiary industry heterogeneity and
carbon emissions

Existing studies believe that the carbon-emission-reduction

effect of industrial structure upgrading is also related to the

nature of subdivided industries within the tertiary industry (Sun

et al., 2021). According to the gap in technology intensity and per

capita output value of different industries, the tertiary industry is

usually divided into high-end, middle-end, and low-end industries.

High-end industries generally include the financial industry, the

computer service and software industry, technical services, and the

geological prospecting industry. Middle- and low-end industries

include transportation and postal services, wholesale and retail,

leasing, and business services. Furthermore, different types of

industries have different service targets. High-end industries

generally target technology-intensive and high-end manufacturing

industries, while low-end industries generally target labor-intensive

and capital-intensive manufacturing industries. The varied

proportions of different types of industries in the tertiary industry

can directly affect the carbon-emission-reduction effect of the

tertiary industry. The technology-intensive and high-end

manufacturing industry is at the upstream end of the industrial

chain, and the energy consumption and carbon-emission intensity

per unit product are both relatively low. Therefore, if such

industries account for a large proportion of the tertiary industry,

the “economy of scale effect,” “industrial structure upgrading

effect,” and “technology spillover effect” of industrial structure

upgrading may be effectively introduced (Crompton and Wu,

2005). An increase in the proportion of the tertiary industry,

especially the rapid development of the environmental

governance industry and the public facilities management

industry, is conducive to reducing the cost of environmental

governance for enterprises. This makes it possible to centralize

carbon-emission control and helps reduce carbon-emission

intensity (Liang et al., 2021). In contrast, labor- and capital-

intensive industries are at the middle and low ends of the

industrial chain, respectively, and their energy consumption and

carbon-emission intensity per unit of product are both relatively

high. The increasing share of such industries in the tertiary sector is

not conducive to carbon reduction and even inhibits the reduction

of carbon-emission intensity (Wu et al., 2021). Therefore, this paper

proposes the following hypothesis:

H2: The carbon-emission-reduction effect of the tertiary

industry is affected by the heterogeneity of its internal

industries. A large proportion of high-end industries will help

reduce carbon-emission intensity; conversely, a large proportion of

low-end industries will inhibit the reduction of carbon-

emission intensity.
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2.3 Industrial structure upgrading, digital
economy, and carbon emissions

In contrast to traditional industries, the digital economy, as an

emerging economic form, has an impact on the macroeconomic

system through its technical and structural attributes (Chen et al.,

2023). In addition to the widespread discovery that the

development of the digital economy has accelerated an increase in

the proportion of tertiary industries (Xu et al., 2022), within the

tertiary industry, integration of the digital economy will likely

reduce both the energy consumption per unit of product and the

carbon-emission intensity of the industry, regardless of whether it

serves low-end or high-end industries (Dong et al., 2022). As an

emerging economic element, the digital economy has optimized or

reshaped the way value is created after being fully integrated into

the tertiary industry. For instance, it accelerates the process of

upgrading industrial structures and reduces the carbon emissions of

the secondary industry. Moreover, it directly reduces the carbon

emissions of the tertiary industry. Therefore, it is expected that a

greater level of digital industrialization and industrial digitization

will lead to a larger scale of the digital economy and be more

conducive to the exploration and carbon reduction effects of

industrial structure upgrading.

First, the larger scale of the digital economy makes it more

conducive to the energy-saving development of the tertiary

industry. From the perspective of technical attributes of the

digital economy, the rapid development of information

technologies such as big data, cloud computing, and 5G

intelligence has improved the speed and accuracy of business

connections among enterprises in different industries and

significantly reduced transaction and time costs among

enterprises (Wen et al., 2022). For example, the rapid

development of cloud computing and the Internet of Things has

improved the calculation accuracy of transportation nodes and

routes in the logistics industry. The rapid connection between the

transportation industry and other industries, as well as the

optimization of transportation routes, is expected to greatly

reduce energy consumption during transportation and carbon-

emission intensity (Zhao et al., 2022). Furthermore, the larger

scale of the digital economy makes it more conducive to the

development of environmentally friendly industries. Due to the

structural attributes of the digital economy, the integration of

information technology has accelerated the transformation and

upgrading of traditional industries from extensive development to

an environmentally friendly direction. Within the tertiary industry,

industrial structures have changed from being labor and capital

intensive to being technology intensive (Wen et al., 2023).

Simultaneously, the digital economy has also spawned many

emerging industries, most of which are technology-oriented and

environmentally friendly while also promoting sustainable

development. Emerging industries not only alleviate social

employment pressure but also meet the requirements of the era of

green development (Wang et al., 2022).

In summary, the development of the digital economy not only

reduces the energy consumption of low-end industries at the
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technical level but also reduces carbon emissions. At the structural

level, the development of the digital economy can continuously

promote the optimization of the internal industry structure of the

tertiary industry. The optimization of industry structures

significantly enhance the economic benefits per unit of energy,

which then plays a role in promoting and improving carbon-

emission intensity. Figure 1 has been drawn to describe the

mechanism of the digital economy’s impact on carbon emissions.

In view of these insights, this paper posits the following

theoretical hypothesis:

H3: The carbon-emission-reduction effect of the tertiary industry

is affected by the digital economy, and the carbon-emission-reduction

effect of the digital economy can only appear when it reaches a

certain scale.

In the following sections, we will use econometric methods to

verify the validity of the above research hypothesis. Briefly, we will

use the panel-threshold model to examine the nonlinear

mechanism by which the digital economy moderates the impact

of industrial structure on carbon emissions. Additionally, a series of

robustness tests will be performed.
3 Materials and methods

3.1 Baseline regression model

According to the previous theoretical analysis, the scale of the

digital economy has an impact on the carbon-emission-reduction

effect of the tertiary industry. This section first constructs a static

panel-data model to test whether the scale of the digital economy

has a moderating effect on the carbon emission reduction of the

tertiary industry. To reduce the influence of heteroscedasticity on

the model, the following logarithmic processing is performed on all

variables:

lnCIit = a0 + a1lnStrit + biXit + mi + nt + ϵit (1)

lnCIit = a0 + a1lnStrit + a2lnDigitalit + a3lnStrit � lnDigitalit

+ biXit + mi + nt + ϵit (2)

Among these variables, i represents the city, t represents the

year, ϵit represents the random disturbance item, CIit represents the

carbon-emission intensity, Strit represents the industrial structure,

Xit represents a set of control variables,  mi represents regional fixed

effects, and nt represents a fixed time effect. Formula (1) is a basic

econometric model that simply examines the impact of industrial

structure on carbon-emission intensity. To verify the regulating

effect of the digital economy on the carbon-emission-reduction

effect of the industrial structure, formula (1) is extended to include

the interaction term between the digital economy and the industrial

structure. In formula (2), lnDigitalit represents the scale of the

digital economy, lnStrit � lnDigitalit represents the interaction

effect between the scale of the digital economy and the industrial

structure, mi represents regional fixed effects, and nt represents a
fixed time effect.
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3.2 Panel-threshold regression model

If the scale of the digital economy has a regulating effect on the

carbon-emission-reduction effect of the industrial structure, a

reasonable range for the scale of the digital economy must be

determined. For this reason, this section continues to build a panel-

threshold regression model to examine the threshold value of the

different adjustment effects of the scale of the digital economy on

the carbon-emission-reduction effect of the industrial structure. The

regression equation is as follows:

lnCIit = a0 + a11lnStrit � d(q ≤ Digitalit) + a12lnStrit

� d(q > Digitalit) + biXit + ϵit

(3)

Compared with formulas (1) and (2), the meaning of the

response variable in formula (3) has changed. Among the

formula’s variables, d( : ) is the indicative function, Digitalit is the

threshold variable, and a11 and a12 represent the elastic coefficients

of the industrial structure to carbon-emission intensity at q ≤

Digitalit and q > Digitalit , respectively. If the threshold is chosen

reasonably, the estimates or signs of a11 and a12 should be

significantly different. Formula (3) only analyzes the single-

threshold effect. Given that the analysis process of multiple

thresholds is similar to the single-threshold effect, it is not

repeated. In the empirical analysis section, this paper conducts

multiple-threshold verification and analysis.
3.3 Variable selection and description

(1) Interpreted variable: carbon-emission intensity (CI)
This paper uses the ratio of urban carbon emissions to GDP to

represent carbon-emission intensity. It is worth emphasizing that

urban carbon emissions are obtained according to the latest energy-

data revisions (2015) of the National Bureau of Statistics of China.

These values are then combined with the official websites of local

energy bureaus from 2011 to 2018. Due to the use of different

methods, the results obtained by using the apparent emissions

accounting method and the sectoral method sometimes do not

fully align.

(2) Core explanatory variable: industrial structure (Str)
Given that the explained variable in this paper is carbon-

emission intensity, a high level of industrial structure is not

selected to ensure the consistency of the data quality. However,

the proportion of the added value, in GDP, of the tertiary industry

in prefecture-level cities over the years is selected as the

proxy variable.

(3) Threshold variable: digital economy (Digital)
Referring to the research results of Guo et al. (2020), based on

the data of the inclusive finance index, the number of people in the

computer service and software industry of information

transmission, the number of internet broadband access users, the

number of mobile phone users, and the telecom business income of

each prefecture-level city over the years, this paper adopted the

coefficient-of-variation method and the principal-component
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analysis method to calculate the scale of the digital economy as the

proxy variable of the digital economy.

(4) Other control variables

An important control variable is energy efficiency under

carbon-emission constraints (CEE). The improvement of energy

utilization efficiency will likely reduce energy consumption, thereby

promoting the reduction of carbon-emission intensity. This paper

takes the energy consumption, employees, and capital stock of

prefecture-level cities over the years as the input, the GDP as the

desired output, and carbon dioxide as the non-consensual output.

CEE is calculated using the super-efficiency SBMmodel. Population

density (Pd) is measured by dividing the population of prefecture-

level cities by the area of the administrative region. This variable

indicates the impact of differences in the scale of population

activities in each city. The degree of openness (Open) selects the

ratio of the total import and export trade of the region to the GDP

as a proxy indicator of the degree of openness. Government

intervention (Gi) uses the proportion of regional fiscal budget

expenditures in GDP over the years as a proxy indicator.

Enterprise size (Scale) uses the ratio of the added value of

enterprises above the designated size in prefecture-level cities in

every previous year to the GDP as a proxy indicator.

Considering the integrity of the data and the impact of

establishing or cancelling some prefecture-level cities on the balance

of panel data, this paper excludes data from cities such as Danzhou,

Bijie, Tongren, and Pu’er. Finally, this paper selects 275 prefecture-

level cities in China from 2011 to 2019 as the research sample. It

should be emphasized that we used data before 2020 for two reasons.
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On the one hand, China’s economic data after 2020 has been deeply

affected by COVID-19, resulting in large outliers in macroeconomic

data. On the other hand, the urban traffic barring caused by COVID-

19 epidemic control has had a significant impact on urban carbon

emissions, which is difficult to include in the control variables, and the

endogenous problem caused by omitted variables may be very serious.

The data in this paper mainly derives from the “China Statistical

Yearbook 2012–2020” (National Bureau of Statistics of China, 2012–

2020a), “China City Statistical Yearbook 2012–2020” (National

Bureau of Statistics of China, 2012–2020b), “China Energy Statistical

Yearbook 2012–2020” (National Bureau of Statistics of China, 2012–

2020c), “EPS database & WIND database”1 and “China Energy

Statistical Yearbook 2012–2020” (National Bureau of Statistics of

China, 2012–2020d). Supplementary explanation: Some missing

values of urban variables are filled in using the interpolation

method. The specific indicators, data descriptions, and statistical

descriptions are shown in Table 1.
4 Results

4.1 Kernel density estimation

The authors selected the data on carbon-emission intensity,

industrial structure, and digital economy in 2011, 2013, 2015, 2017,
FIGURE 1

Transmission mechanism of carbon-emission-reduction effects in digital economy.
TABLE 1 Variable definitions and descriptive statistics.

Variable Definition Sample size Mean Std. dev.

lnCI Carbon-emission intensity 2,475 1.112 0.391

lnStr Industrial structure 2,475 0.417 0.089

lnDigtial Digital economy 2,475 8.631 0.954

lnCEE Energy efficiency 2,475 0.424 0.122

lnOpen The degree of openness 2,475 1.221 0.426

lnScale Enterprise size 2,475 6.606 1.082

lnFi Government intervention 2,475 0.194 0.094

lnPd Population density 2,475 5.776 0.901
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and 2019, and we drew the kernel density map as shown in Figure 2.

The results illustrate that urban carbon-emission intensity presents a

unimodal distribution during the sample period. Furthermore, after

2015, the kurtosis gradually decreases, indicating that the regional

differences in carbon-emission intensity are gradually shrinking. From

the perspective of skewness, the kernel density curve of carbon-

emission intensity in the sample period gradually tends to be left-

biased and has a long tail to the right, indicating that the city’s carbon-

emission intensity is decreasing year by year. However, there are still

high-emission areas. The kernel density curves for industrial structure

and the digital economy also show a unimodal distribution. In terms of

kurtosis, the industrial structure shows a downward trend during the

sample period, while the digital economy shows an upward trend. This

indicates that the differences in the industrial structure between cities

are gradually shrinking, while the differences in the scale of the digital

economy are gradually increasing. In terms of skewness, the industrial

structure gradually shifts to the right and has a long tail to the left, while

the digital economy gradually shifts to the right and has a long tail to

the right. This shows that the proportion of the tertiary industry and

the scale of the digital economy are increasing each year, but there are

still areas with low proportions in the industrial structure. Moreover,

areas with high-scale digital economies are also increasing each year.
4.2 Baseline regression

This paper uses the individual-time two-way fixed-effect model. In

addition, it uses the urban carbon-emission intensity as the explained
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variable and the urban industrial structure as the core explanatory

variable for regression analysis. The results are shown in Table 2.

Columns (1) and (2) in Table 2 are baseline regressions that do

not consider other factors. These results indicate that industrial

structure adjustment has a significant positive impact on urban

carbon emissions. This conclusion is inconsistent with the research

results of Jiang and Sun (2023), who found that the increase in the

proportion of the tertiary sector of the economy is conducive to

reducing urban carbon emissions. The main reason is that Jiang and

Sun (2023) may have ignored the impact of tertiary sector industry

heterogeneity on carbon emissions. The increase in the proportion of

middle- and low-end industries in the tertiary sector of the economy

cannot curb carbon emissions, while digital economy development

has a significant negative impact on urban carbon emissions. Column

(3) reflects the combined impact of industrial structure adjustment

and digital economy development on urban carbon emissions, and the

magnitude and direction of the two factors’ coefficients show no

significant changes. Column (4) builds on column (3) by adding the

interaction term of industrial structure and digital economy

development. The results indicate that the direction of digital

economy development on urban carbon emissions has changed

from the original negative impact to a positive impact, and the

interaction between industrial structure and the digital economy has

a significant negative impact on urban carbon emissions. Column (5),

based on (4), adds control variables such as energy efficiency,

government intervention, enterprise scale, degree of openness, and

population density. The results show that industrial structure and

digital economy development have a significant positive impact on
FIGURE 2

Variables’ kernel density estimation.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1231855
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Jiang et al. 10.3389/fevo.2023.1231855
urban carbon emissions, with impact coefficients of 1.842 and 0.064,

respectively. Furthermore, the interaction term between the two has a

significant negative impact on urban carbon emissions, with an impact

coefficient of −0.162. This shows that the digital economy has played a

mitigating role in the process of increasing carbon emissions due to

industrial restructuring. This result is consistent with the research

conclusion of Hu (2023), who also found that the development of the

digital economy has a positive regulatory effect in the process of

exacerbating carbon emissions due to changes in industrial structures.

Among the control variables, government intervention has a

significant positive impact on urban carbon emissions, with a

coefficient of 0.760. Energy efficiency, enterprise scale, degree of

openness, and population density all have significant negative effects

on urban carbon emissions, with coefficients of −0.162, −0.115,

−0.019, and −0.107, respectively. The results in columns (4) and (5)

show that the digital economy has a significant moderating effect on

the process of industrial structure affecting carbon emissions, and this

effect is explained further in the threshold-effect analysis below.
4.3 Endogeneity discussion

There may be a specific endogenous relationship between

industrial structure upgrading and urban carbon emissions. On the

one hand, the transformation of the industrial structure from the

secondary industry to the tertiary industry has created a reduction in
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energy dependence and consumption, thereby reducing urban carbon

emissions. On the other hand, the constraints of urban carbon-

emission targets may lead to government intervention, which in turn

will promote the adjustment of industrial structure. Therefore, there

may be an endogenous problem of reverse causality between industrial

restructuring and carbon emissions. In the following, the instrumental

variable method is used to solve the endogeneity problem in the model.

We use the logarithm of the number of employees in the tertiary

industry and its lag one period as well as the logarithm of the green

coverage rate of prefecture-level cities and its lag one period as the

instrumental variables of the industrial structure. The regression results

for the instrumental variables are shown in Table 3.

The results show that the Durbin-Wu-Hausman (DWH) test

results of all models rejected the null hypothesis at the significance

level of 1%, indicating that the selected exogenous instrumental

variables were correlated with the endogenous explanatory variables

and could be identified. Among them, the Cragg-Donald Wald F

statistic values of the weak instrumental variables test were 132.788,

141.104, and 119.233 respectively. All these values were significantly

greater than the critical value of 16.85 at the significance level of 5%,

rejecting the null hypothesis of weak instrumental variables.

Simultaneously, in the regression results, the coefficient size, sign,

and significance of the core explanatory variable and each control

variable were also consistent with the benchmark regression. Based

on the above analysis, it is determined that there is no endogeneity

problem in the regression results statistically.
TABLE 2 Regression results of the impact of industrial structure on carbon emissions.

lnCI

Model (1) Model (2) Model (3) Model (4) Model (5)

LnStr 0.647***
(0.099)

0.643***
(0.060)

2.556***
(0.598)

1.842***
(0.565)

LnDigtial −0.017*
(0.009)

−0.015**
(0.006)

0.085***
(0.030)

0.064**
(0.030)

lnStr � lnDigtial −0.223***
(0.065)

−0.162**
(0.063)

LnCEE −0.162***
(0.063)

LnFi 0.760***
(0.182)

LnScale −0.115***
(0.018)

LnOpen −0.019*
(0.011)

LnPd −0.107**
(0.054)

City fixed effect Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes

_cons 0.990***
(0.043)

1.397***
(0.080)

1.113***
(0.087)

0.258
(0.275)

1.881***
(0.393)

N 2475 2475 2475 2475 2475

R2 0.439 0.411 0.441 0.447 0.553
Standard errors are in parentheses; * significant at 10%, ** significant at 5%, *** significant at 1%.
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4.4 Robustness check

The robustness of the model is tested by changing the control

variable, reducing the control variable, increasing the control
T
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variable, and changing the time span. The results are shown

in Table 4.

Model (9) uses the number of patent applications (lnTp) in

prefecture-level cities as the proxy variable of technological progress
ABLE 4 Robustness check.

lnCI

Model (5) Model (9) Model (10) Model (11) Model (12)

LnStr 1.842***
(0.565)

1.741***
(0.573)

1.292**
(0.514)

1.913***
(0.581)

1.258*
(0.715)

LnDigtial 0.064**
(0.030)

0.067**
(0.031)

0.051*
(0.028)

0.066**
(0.031)

0.025*
(0.039)

lnStr � lnDigtial −0.162**
(0.063)

−0.161***
(0.063)

−0.118**
(0.058)

−0.171***
(0.064)

−0.069**
(0.075)

lnCEE −0.162***
(0.063)

−0.127**
(0.059)

−0.229***
(0.065)

−0.288***
(0.092)

lnFi 0.760***
(0.182)

0.850***
(0.204)

0.423***
(0.129)

0.774***
(0.184)

0.594***
(0.170)

lnScale −0.115***
(0.018)

−0.119***
(0.019)

−0.054***
(0.018)

−0.120***
(0.018)

−0.092***
(0.023)

lnOpen −0.019*
(0.011)

−0.024**
(0.011)

−0.010
(0.009)

−0.017
(0.011)

−0.017
(0.012)

lnPd −0.107**
(0.054)

−0.126**
(0.056)

−0.195***
(0.053)

−0.073
(0.054)

lnTp −0.013
(0.008)

lnPgdp −0.274***
(0.041)

City fixed effect Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes

_cons 1.881***
(0.393)

5.030***
(0.611)

5.227***
(0.543)

1.273***
(0.298)

1.753***
(0.462)

N 2475 2475 2475 2475 1925

R2 0.553 0.542 0.604 0.551 0.377
Standard errors are in parentheses; * significant at 10%, ** significant at 5%, *** significant at 1%.
TABLE 3 Regression results of instrumental variable method.

lnCI

Model (6) Model (7) Model (8)

lnStr 0.980***
[0.178]

0.894***
[0.158]

0.566***
[0.190]

lnDigtial −0.076***
[0.008]

−0.057***
[0.009]

Control variable No No Yes

City fixed effect Yes Yes Yes

Year fixed effect Yes Yes Yes

RKF test 132.788 141.104 119.233

DWH
p-value

108.092
(0.000)

107.652
(0.000)

89.059
(0.000)
The t statistics are in square brackets; * significant at 10%, ** significant at 5%, and *** significant at 1%.
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to replace lnCEE in the original model. Model (10) adds the control

variable of economic development level based on the original model

(5) (per capita GDP of prefecture-level cities is used as the proxy

variable). Model (11) is based on the original model (5), and the

control variable of population density is eliminated. Model (12) is

based on the original model (5), and the sample years are shortened

to 2013–2019. In the transformed models (9)–(12), the industrial

structure, digital economy development, and their interaction terms

saw no significant changes in the direction of effect or the

magnitude of the coefficients, indicating that the original model

is robust.

In addition, this paper draws on the research of Tang and Yang

(2023), takes the “Broadband China” demonstration cities as quasi-

natural experiment conditions, and assigns values to cities

according to the 2016 “Broadband China” demonstration cities

list published by the Ministry of Industry and Information

Technology of China. We assign a value of 1 to the year and

subsequent years when a certain city conducts the construction of

the “Broadband China” demonstration city; otherwise, it will be 0.

Due to the announcement of the three batches of demonstration

city lists in the second half of the year, this article defines the year

following the release of the “Broadband China” demonstration city

list as the year of policy implementation and estimates the policy

effects. The analysis is conducted according to the following model:

Yit = a0 + bpolicyit + dXit + mi + vt + ϵit (4)

In the equation, Yit is the dependent variable, representing the

carbon-emission level of city i in year t. vt represents a fixed time

effect, mi represents the individual fixed effects of each city, and ϵit is
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a random error term. Xit is a series of variables that may have an

impact on the carbon emission levels of a region. policyit is the core

explanatory variable, representing the dummy variable of the

“Broadband China” demonstration city, and its coefficient b is

used to measure the impact of the construction of “Broadband

China” demonstration cities on carbon emissions. If b is negative

and significant, it indicates that the construction of “Broadband

China” demonstration cities can reduce carbon emissions levels.

The specific results are shown in Table 5.

The results in column (1) of Table 5 show that the estimated

coefficient of policyit is −0.041, which is significant at the 1%

significance level without adding control variables. This result

indicates that, compared to non-pilot cities, the implementation

of the “Broadband China” pilot policy has reduced the carbon-

emission intensity of pilot cities by 4.1%. The main reasons for this

are twofold. On the one hand, the implementation of the

“Broadband China” pilot policy has improved the level of internet

infrastructure and accelerated the digitization process. On the other

hand, the popularization of internet broadband has produced the

digital economy. The inclusiveness of the digital economy is

conducive to the surrender of funds from enterprises and

individual investors to environmentally friendly industries,

enabling widespread support for green technology and reducing

carbon-emission intensity. In columns (2) and (3) of the table,

industrial structure variables and other control variables were added

in sequence, and the regression results were still significantly

negative, in line with the expected assumptions.

The use of the Differences-in-Differences method for policy-

effect evaluation must satisfy the premise that the control group and
TABLE 5 Differences-in-Differences regression results.

lnCI

Model (13) Model (14) Model (15)

policyit −0.041***
(−3.971)

−0.039***
(−3.882)

−0.035***
(−3.491)

lnStr 0.918***
(0.215)

0.524***
(0.115)

lnCEE −0.385***
(0.076)

lnFi 0.553***
(0.148)

lnScale −0.158***
(0.018)

lnOpen −0.023
(0.012)

lnPd −0.013*
(−1.74)

City fixed effect Yes Yes Yes

Year fixed effect Yes Yes Yes

N 2475 2475 2475

R2 0.227 0.231 0.312
*, *** represent significance at the level of 10% and 1%, respectively.
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the experimental group have a common trend. Therefore, this

article uses the dynamic Differences-in-Differences method for

parallel trend testing, and the results are shown in Figure 3.

Meanwhile, although the regression in Table 5 controls for a

series of urban characteristic factors that affect carbon-emission

intensity, there may still be some unobservable factors that change

over time and location, which may affect the estimation results and

lead to estimation errors. Therefore, this article uses an indirect

placebo test to randomly select pilot cities for “Broadband China.”

According to the regression model in Table 5, 500 simulated

regressions were repeated, and the results are shown in Figure 4.

The results in Figure 3 show that before the implementation of

the “Broadband China” pilot policy, there was no systematic and

significant difference in carbon-emission intensity between pilot

cities and non-pilot cities. After the implementation of the policy,
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the differences between the two were significant, meeting the

assumption of parallel trends, and the use of Differences-in-

Differences is reasonable and effective. Similarly, the results in

Figure 4 show that the P value distribution and the regression

coefficient kernel density distribution of 500 simulated regressions

essentially follow the normal distribution, which also indicates that

the regression results are robust.
4.5 Digital economy threshold estimation

Building on the research of Wang and Li (2022), this paper uses

the panel-threshold model to test the threshold effect of variables,

and the results are shown in Table 6. The results indicate that, with

the digital economy (lnDigtial) as the threshold variable, the single-

threshold test is passed at a significance level of 1%. Furthermore,

the double-threshold test is passed at a significance level of 5%, and

the triple-threshold test does not pass the significance test.

After the threshold effect self-sampling inspection, the

threshold value of the panel threshold model must be estimated

and tested, and the results are shown in Table 7 and Figure 5.

Table 7 illustrates the estimated values and confidence intervals of

the two thresholds of the digital economy. Combined with the

likelihood ratio function figure in Figure 5, the construction process

of the estimated values and confidence intervals of the two

thresholds of the digital economy can be understood more

intuitively and clearly. When the likelihood ratio statistic LR takes

a value of 0, the estimated values of the double thresholds

corresponding to the digital economy are 8.366 and 9.237,

respectively. The dotted line in Figure 5 indicates that, under the

95% confidence interval, all LR values of the two threshold estimates

of the digital economy are less than the critical value (7.350) at the

5% significance level. Therefore, the digital economy development
FIGURE 4

Placebo test results.
FIGURE 3

Parallel trend test results.
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of China’s 275 prefecture-level cities during the sample period can

be divided into three levels: areas with a low level of digital economy

development (lnDigtial < 8:366), areas with a medium level of

digital economy development (8:366 ≤ lnDigtial ≤ 9:237), and

areas with a high level of digital economy development

(9:237 < lnDigtial).

The impact of different types of regional industrial structures on

carbon-emission intensity is shown in Table 8. The results

demonstrate that the industrial structure of prefecture-level cities

in China had different impacts on carbon-emission intensity under

different development levels of the digital economy during the

sample period. In the low-level digital economy development

area, although the significance test is not passed, the industrial

structure has a positive impact on carbon-emission intensity, with a

coefficient of 0.025. In the middle level of the digital economy

development area, the impact of industrial structure on carbon-

emission intensity has changed from positive promotion to negative

inhibition, with a coefficient of −0.121, and the test is passed at a

significance level of 10%. At the high level of digital economy

development, the inhibitory effect of industrial structure on carbon-

emission intensity is further increased, with a coefficient of −0.307,

and the test is passed at a significant level of 1%.

The results demonstrate that the impact of industrial structure on

carbon-emission intensity, along with the development level of digital

economy, presents an inverted U-shaped action path of “first

promotion, then inhibition, and then strong inhibition.” This result

aligns with the findings of Liu and Zhang (2023), who empirically

examine the impact of the digital economy on carbon emissions as

well as the mediating and threshold effects of different innovation

modes. They found that the effect of the digital economy on carbon

emissions has a threshold feature, with an inverted U-shaped

relationship between the two, and that an increase in autonomous

innovation and imitation innovation can enhance the digital

economy’s carbon-reduction effect. This impact path emerges

because the increase in the proportion of the tertiary industry may

have a restraining effect on carbon-emission intensity, and the quality

of the tertiary industry is affected by the development of the digital

economy. More specifically, as online sales are favored by consumers,

the rapid development of the logistics industry is promoted. Without
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reaching a certain scale of the digital economy, the rapid development

of the logistics industry inevitably leads to a sharp increase in energy

consumption and thus carbon emissions. When the development of

the digital economy reaches an ideal scale, the technical attributes of

the digital economy will likely directly affect low-end industries,

reducing their energy dependence and moderately reducing carbon

emissions. When the digital economy reaches a larger scale, its

structural attributes will likely affect the proportion of industries

within the tertiary industry. The service objects of the industry are

expected to gradually change from being labor and capital intensive

to more advanced-technology intensive. Moreover, the energy

dependence of the tertiary industry will likely decrease rapidly,

thereby improving carbon-emission intensity significantly.

In summary, we have completed the empirical test of the three

hypotheses proposed in Section 2. We found that developing

tertiary industries does not reduce urban carbon emissions, and

only when the scale of the digital economy reaches a certain level

can the tertiary industry effectively reduce urban carbon emissions.

In the following discussion section, we will review the main

conclusions, research contributions, and limitations of this paper

in detail.

In addition, this article defined three intervals for the

development level of urban digital economy: lnDigtial < 8:366 is

the first interval, 8:366 ≤ lnDigtial ≤ 9:237 is the second interval,

and 9:237 < lnDigtial is the third interval. Subsequently, three years

of 2011, 2015, and 2019 were selected for cluster analysis of cities in

the eastern, central, and western regions of China in different years.

The specific results are shown in Figure 6.

The results in Figure 6 indicate that the eastern, central, and

western regions of China have converged over time in the three

levels of digital economy development. The number of cities in the

first region gradually decreased, while the number of cities in

the second and third regions constantly increased. However,

the proportion of cities suggests that the number of cities in the

central and western regions increased significantly in the second

and third intervals, especially in the third interval, compared to the

eastern region. This indicates that the digital economy has had a

more significant effect on regulating the carbon reduction effect of

industrial upgrading in the central and western regions of China.
TABLE 7 Threshold estimation results.

Threshold Estimated value 95% confidence interval

First threshold 8.366 [8.336, 8.371]

Second threshold 9.237 [9.206, 9.245]
TABLE 6 Threshold effect self-sampling test.

Threshold variable Explained variable Threshold F P BS times

LnDigtial lnCI 1 70.32*** 0.007 300

2 44.63** 0.050 300

3 18.46 0.900 300
*significant at 10%, **significant at 5%, ***significant at 1%.
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This also confirms that the digital economy mentioned above is

different from the traditional economy and has the characteristics of

“inclusive improvement” in carbon-emission reduction.
5 Discussion

This paper examines the current state of the digital economy,

industrial upgrading, and carbon emissions across 275 prefecture-

level cities in China from 2011 to 2019. It investigates the

moderating influence of digital economy development on the

effects of industrial upgrading on carbon emissions and employs

the digital economy as a threshold variable to analyze the

mechanisms and variations in the effects of industrial upgrading

on carbon emissions within different threshold ranges. While this

study focuses on prefecture-level cities in China, the methodology

can be applied to explore the moderating and threshold effects of

digital economy development on carbon emissions in other

countries worldwide. Furthermore, this study introduces a new

research paradigm for investigating energy conservation and

carbon-emission reduction in urban areas. The detailed

contributions of this paper are as follows.

First, this paper refines the scale of research on the impact of

industrial upgrading on urban carbon emissions from the

provincial to the prefecture level. Additionally, the spatiotemporal
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characteristics of the digital economy, industrial upgrading, and

urban carbon emissions at the prefecture level are explored using

kernel density estimation. The results demonstrate that the levels of

digital economy development, industrial upgrading, and carbon-

emission intensity in cities all exhibit a unimodal distribution

during the sample period. Furthermore, the kurtosis of industrial

upgrading and carbon-emission intensity exhibits a decreasing

trend each year, indicating that the gap between cities in

industrial upgrading and carbon-emission intensity is gradually

narrowing. However, the skewness of the level of digital economy

development shows an increasing trend each year, suggesting that

the gap between cities in the level of digital economy development is

widening. In terms of skewness, carbon-emission intensity and the

level of digital economy development show a right-skewed trend,

while industrial upgrading indicates a left-skewed trend. This

suggests that there are still high-emission areas and areas with

backward industrial upgrading in prefecture-level cities in China.

These findings are consistent with the research conclusions drawn

by Zhu Z et al. (2022).

Second, this paper uses a panel-data two-way fixed-effects

model, including interaction terms, to analyze the moderating

effect of the digital economy on the relationship between

industrial upgrading and urban carbon emissions. Endogeneity

exploration and robustness tests are conducted to ensure that the

analysis results are scientific and accurate. The findings show that
TABLE 8 Estimation results of the digital economy double-threshold parameters.

Variable lnCI

Coefficient t value 95% confidence
interval

lnStr lnDigtial < 8:366 0.025 0.37 [−0.110, 0.160]

8:366 ≤ lnDigtial ≤ 9:237 −0.121* −1.76 [−0.256, 0.014]

9:237 < lnDigtial −0.307*** −4.31 [−0.446, −0.167]

Control variable Yes – –

_cons 4.638*** 16.68 [4.093, 5.184]

R2 0.247 – –

N 2475 2475 2475
*Significant at 10%, ***significant at 1%.
FIGURE 5

Double threshold estimation results and confidence intervals.
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both industrial structure and digital economy development have a

significant positive impact on urban carbon emissions, with impact

coefficients of 1.842 and 0.064, respectively. However, the

interaction term between the two has a significant negative

impact on urban carbon emissions, with an impact coefficient of

−0.162. This indicates that the digital economy can mitigate the

negative impact of industrial structural adjustments on carbon

emissions. These results align with the findings of Zhang

et al. (2022).

Finally, this study constructs a panel threshold model to test the

threshold effect of the digital economy on the impact of industrial

upgrading on urban carbon emissions. This model aims to explore

the mechanisms and heterogeneity of the impact of industrial

upgrading on urban carbon emissions at different threshold levels

of digital economic development. The findings reveal a double-

threshold effect of the digital economy on the impact of industrial

upgrading on urban carbon emissions, with threshold values of

8.366 and 9.237. The results also demonstrate significant

heterogeneity in the mechanisms of industrial upgrading of urban

carbon emissions within different threshold ranges. More

specifically, when the level of digital economic development is

below the first threshold value, the industrial structure has a

positive effect on carbon-emission intensity, with a coefficient of

0.025. After surpassing the first threshold, the effect of the industrial

structure changes from a positive promotion to a negative

suppression, with a significant coefficient of −0.121 at the

statistical level of 10%. When the level of digital economic

development surpasses the second threshold, the suppression

effect of the industrial structure on carbon-emission intensity

further increases, with a significant coefficient of −0.307 at the

statistical level of 1%. Therefore, the authors conclude that the

impact of the industrial structure on carbon-emission intensity

follows a pathway of “first promotion, then suppression, and finally

strong suppression” with the increase in the level of digital

economic development.
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This study has several limitations that should be acknowledged.

First, the digital economy is a multifaceted concept, and the

evaluation indicators used in this paper, such as the inclusive

finance index, the number of people in the information

transmission computer service and software industry, the number

of internet broadband access users, the number of mobile phone

users, and the revenue of the telecommunications industry, may not

cover all aspects of the digital economy. Therefore, the indicator

system used in this study may require further refinement. Second,

the proxy variable used for industrial upgrading – the proportion of

the added value of the tertiary industry to GDP – may not fully

capture the direction of changes in the industrial structure. To

ensure consistency in variable calculation across different cities, this

proxy variable was used instead of more direct measures of

industrial upgrading. This limitation suggests the need for further

research to develop more comprehensive and accurate indicators of

industrial upgrading.
6 Conclusions

Building a digital powerhouse and achieving the goals of “carbon

peaking and carbon neutrality” are new consensusmeasures to promote

high-quality economic development in the new era. Fully tapping into

the energy-saving and emission-reduction “dividends” of the digital

economy under the “dual carbon” goal is crucial for breaking the

constraints of energy and environment while achieving the modern

development of harmonious coexistence between humans and nature.

To explore whether the digital economy is a “dividend” or a “negative

benefit” for urban energy conservation and emission reduction, this

paper used the panel data of 275 prefecture-level cities in China from

2011 to 2019. We adopted the static panel-data interaction-effect model

and panel-threshold model to verify the path and heterogeneity of the

digital economy to improve urban carbon emissions, which was based

on the research hypothesis that the development of the digital economy
FIGURE 6

Cluster analysis of cities in different years and intervals.
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reduces urban carbon emissions. The main research conclusions are as

follows. (1) Affected by the differences in industry characteristics within

the tertiary industry, simple industrial restructuring cannot achieve

urban carbon emission reduction. On the contrary, an increase in the

proportion of tertiary industries will likely further worsen urban carbon

emissions. As the object of this study is urban carbon emissions, this

conclusion is not completely consistent with the conclusions of existing

studies (Pao et al., 2011; Dong et al., 2018). This conclusion indicates

that merely increasing the proportion of tertiary industries does not

necessarily reduce carbon emissions and achieve green development in

urban economies. The key lies in whether the secondary industry with

high pollution is reduced and the proportion of high-tech,

environmental protection, and high-end tertiary industries is

increased (Han and Xie, 2017). (2) The digital economy has a

significant inverted U-shaped regulatory effect on the carbon-

emission-reduction effect of industrial structure adjustment, and the

integrated development of the digital economy and the tertiary industry

can achieve urban carbon emission reduction. Existing studies have

found that the digital economy and industrial structure upgrading have

a synergistic effect on carbon emission reduction (Zhu X et al., 2022;

Wang et al., 2022), but the specific effect is still unclear. This conclusion

explains why carbon emissions have increased in many places after the

development of the digital economy. In addition, this conclusion shows

that only when the digital economy develops to a certain extent and

fully empowers the upgrading of industrial structures can it play a role

in promoting carbon emission reduction. (3) The digital economy has a

double-threshold effect in the process of industrial structure adjustment

to promote carbon emission reduction, and the thresholds are 8.366

and 9.237, respectively. Based on how existing studies have recognized

that industrial digitalization has a positive impact on energy

conservation and emission reduction (Li and Huang, 2022; Zhang

and Li, 2022), this conclusion further clarifies that industrial

digitalization has a threshold effect in achieving carbon-emission

reduction. Only when the digital economy reaches a certain scale can

the adjustment of industrial structure exert its carbon-emission-

reduction effect. With the continuous expansion of the scale of the

digital economy, the carbon-emission-reduction effect of industrial

structure adjustment will likely continue to increase significantly.

Based on the research conclusions of this paper, the authors

offer the following policy recommendations. First, in the process of

upgrading industrial structures, all regions should not only increase

the proportion of the service industry but also encourage the

development of high-end service industries. In other words,

under the “dual carbon” goal and in the process of adjusting

industrial structures and transforming economic growth modes,

all regions should further increase the proportion and development

speed of high-end industries in the tertiary industry. These regions

should also promote the embedding of high-end industries in the

manufacturing value chain and the transformation of the

manufacturing industry from high energy dependence and high

emissions to low emissions and low energy dependence. This

suggestion can also provide a reference for other developing

countries. Second, drawing on the experience of developed

countries in Europe and America, local governments should

pay attention to the coordinated development of digital

industrialization and industrial digitalization. In other words,
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based on strengthening the innovation of digital technology, the

integration of big data, AI, cloud computing, block chain, and other

digital technologies with medium- and low-end industries in the

tertiary industry should be strengthened. This creates opportunities

regarding the technical-attribute dividends of the digital economy,

further saves energy consumption in medium and low-end

industries, and realizes energy conservation and emission

reduction. Third, the spillover effect of the digital economy on

carbon emissions reduction should be expanded. The digital

economy can achieve cross-spatial trade cooperation and

knowledge sharing, drive the joint development of upstream and

downstream enterprises in the industry, and promote the

dissemination and diffusion of green and low-carbon concepts. It

not only has a significant impact on local carbon emissions but also

significantly reduces the carbon-emission intensity of neighboring

countries or regions. Finally, it creates opportunities for the

synergistic effect of government and market in the low-carbon

development of the industrial economy. On the one hand, efforts

should be made to change the unbalanced distribution of digital

infrastructure among cities. On the other hand, digital technologies,

especially energy-saving and emission-reduction digital

technologies, should be shared among cities to break through the

“digital economic divide” between cities and realize the “inclusive

improvement” of overall carbon emissions in cities.
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Introduction: Global warming presents significant challenges to the sustainable

development of human society. Accelerating the achievement of carbon peak

and neutrality is the vision for creating a global ecological community with a

shared future. The development of digital technology provides us with the

direction of action.

Methods: Based on panel data from 276 cities in China from 2011 to 2020,

principal component analysis was used to measure the basic state of digital

technology at the city level, and the twoway fixed effects model and instrumental

variable method to verify the impact of digital technology on carbon emissions

from the perspective of technology diffusion.

Results: The results show that the deep diffusion of digital technology in the real

economy sector is helpful to improve productivity and carbon efficiency, thus

significantly reducing carbon emissions. The role of digital technologies in

reducing carbon emissions is heterogeneous. The results of the sub-sample

test show that digital technology has a stronger emission reduction effect in

large-scale cities, resource-based cities, smart cities and emission trading policy

pilot areas. Digital technology can reduce carbon emissions by improving energy

efficiency, promoting green technology innovation, and promoting virtual

agglomeration.

Discussions: The contribution of this paper is that it not only reveals that digital

technology can reduce carbon emissions but also analyzes the emission

reduction path of digital technology from a new perspective. The conclusion

of this paper has implications for accelerating the diffusion of digital technology

in the real economy sector to accelerate the realization of green production and

cope with climate change.

KEYWORDS

digital technology, carbon neutrality, energy efficiency, green technology innovation,
virtual agglomeration, technology diffusion
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1 Introduction

The problem of climate warming caused by greenhouse gas

emissions has become increasingly prominent. Dealing with climate

change and controlling greenhouse gas emissions has become a

common global challenge. According to World Bank data, global

carbon emissions (CE) have increased 1.67 times in the past 30

years, from 20,625 (ten million tons) in 1990 to 34,344 (ten million

tons) in 2019; At the same time, the global per capita GDP has

increased by 2.63 times. As can be seen from Figure 1, there is a high

correlation between economic development and CE.

According to the AR6 Synthesis Report: Climate Change 2023

(IPCC, 2023), the global surface temperature in 2011–2020 is

1.1°C higher than in 1850–1900. Continued greenhouse gas

emissions will further increase the global temperature rise. In

the scenarios and model paths considered, the best estimated

global temperature rise will reach 1.5°C in the near future (2021–

2040) (IPCC, 2023). With the increase of global warming, the

current feasible and effective adaptation measures will be limited,

and the effect will be reduced. According to the World Bank,

China’s carbon emissions (CE) reached 9.899 billion tons in 2020,

making it one of the world’s highest carbon emitters. In 2020

alone, China’s CO2 emission reached 9.8 billion tons, accounting

for about 31% of the global total (World Bank, 2022). As a result,

China has become the focus of global efforts to reduce carbon

emissions. In response to the deteriorating ecological

environment, the Chinese government put forward the “dual-

carbon” goal of peaking carbon neutrality at the 75th session of

the United Nations General Assembly and incorporated “a steady

decline in carbon emissions after peaking” into the 2035 vision

goal. The 14th Five-Year Plan further defines an action plan to

reach the carbon peak by 2030 while committing to reduce CO2

intensity by 60% to 65% compared with 2005 and striving to

achieve carbon neutrality by 2060.
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Digital technology (DT), a general term for emerging general

technologies, including the Internet of Things (IoT), big data, cloud

computing, and artificial intelligence, has been regarded as essential

to promoting the “fourth industrial revolution.” The steady

advancement of DT in various fields has become an essential

means to promote economic growth and a new way to promote

industrial transformation. In the “digital” era, most cities face new

opportunities for low-carbon development. According to The

Enablement Effect: The impact of mobile communications

technologies on carbon emission reductions jointly released by the

Global System for Mobile Communications Association (GSMA)

and the Carbon Trust, the application of mobile Internet technology

in intelligent energy, smart agriculture, smart manufacturing, and

smart cities has reduced global greenhouse gas emissions by about

21.35 tons in 2018 (GSMA and the Carbon Trust, 2019). Moreover,

according to the SMARTer2030 report released by the Global E-

Sustainability Initiative (GeSI), DT could reduce global carbon

emissions by 20% over the next ten years by integrating with the

enterprise and industry (GeSI, 2015).

As a representative of universal technology, the impact of DT

on carbon emissions has attracted worldwide attention, but

existing studies have yet to reach a consistent conclusion. Some

studies believe that DT, as a force of creative destruction, can

promote green technological innovation (GTI) and production

process innovation and restrain CO2 emissions (Aghion et al.,

2021; Zhang Q. et al., 2022; Hu, 2023). Some other studies believe

that DT is built based on electricity, and the development and

operation of cloud, blockchain, data center, and other

infrastructure require more and more energy-intensive

infrastructure, which will cause more carbon emissions to some

extent (Dhar, 2020; Noussan and Tagliapietra, 2020). Some other

studies believe there may be a nonlinear relationship between DT

and carbon emissions, which is affected by technology scale and

diffusion speed. As one of the general-purpose technology (GPT),

compared with the direct application of technology, the diffusion

effect of DT in other fields deserves more attention. Different

from the existing research, we not only discuss the direct

technical effect of DT, but also pay attention to the carbon

reduction effect produced by the technology diffusion process.

On the basis of defining the concept of DT, an index system for

measuring DT is constructed, and the panel data of 276 cities in

China from 2011 to 2020 are used to further explore the impact

of DT on carbon emissions and its mechanism from the

perspective of technology diffusion, which can provide

theoretical support and a practical basis for China to achieve

the goal of carbon peaking and carbon neutrality.

This paper has the following research objectives:
(i) Establishing an evaluation index system for DT;

(ii) Estimating the impact of DT on CE based on measuring the

level of carbon emissions at the city level;

(iii) Based on technology diffusion theory, to identify the

mechanisms by which DT affect urban CE, which

include potential direct and indirect mechanisms, among

which, identify the important mechanisms of virtual

agglomeration.
FIGURE 1

Global per capita GDP and carbon emission concentration from
1990 to 2019. Data Source: compiled by the author based on the
open data of the World Bank. https://data.worldbank.org.cn/
indicator?tab=all.
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2 Literature review

2.1 Estimation study of CE

Since no exact data on carbon emissions are published, many

scholars have done a lot of research on carbon emission

measurement, and various measurement methods have been

derived for different research objects and data. Currently, the

three mainstream methods are the input–output method, which is

applicable to calculate CE from single products or projects, the life-

cycle evaluation method, which calculates CE from different

industries, and the CO2 emission factor method, which calculates

CE at national, provincial and regional levels.

The input–output approach is to develop input–output tables to

reflect the relationship between various sectors of the economic

system, which can track direct and indirect energy use and CE of

product production. For example, Zhang et al. (2021) combined the

input–output method with the carbon emission factor method to

measure the CE of 30 provinces and eight industries in China in

2018, and found that the thermal power generation and industrial

emissions far exceeded the remaining six industries. The input–

output method is comprehensive, but the method is less time-

sensitive because input–output tables are compiled every five years

in China. The carbon emission factor method involves summing the

carbon emission factors of each energy source based on the product

of the corresponding energy consumption to obtain the CE (Yang

et al., 2021; Li and Wang, 2022). Alam et al. (2012) based on the

IPCC method, calculated the relationship between energy

consumption, electricity consumption, carbon emissions and

economic growth; Chang et al. (2022) studied the changes in

carbon emissions from 2003 to 2017 through the consumption

side in China’s national and regional power sectors using the log-

average index (LMDI) model and estimated the carbon emissions

from the power sector in each region through the production and

consumption accounting principles, using two-factor ANOVA and

one-factor ANOVA. The differences in regional power sector

carbon emissions were compared by two principles; Feng et al.

(2022) used the annual panel data of China from 1997 to 2017 to

first analyze the spatial and temporal evolution process of CE, and

then developed a spatial Durbin model and partial derivative

method based on direct, indirect and total EKC, which yielded a

positive spatial autocorrelation of CE with the center of gravity

shifting westward. However, this method is difficult to calculate CE

in the absence of carbon emission factor data, and the carbon

emission factors may be affected by the level of technology,

production status, energy use and process with large uncertainties.

The life cycle approach is used to evaluate carbon emissions over the

product life cycle, measuring the CE of a product from the time of

resource extraction until the end of product disposal (Luo et al.,

2022). This method can account for the direct or implied CE of a

product, process, or production activity, but accounting is costly and

time-consuming. Gustavsson et al. (2010) analyzed the carbon

emissions of an eight-story wood-frame apartment building using

the life cycle evaluation method and found that building operations

used the largest share of life cycle energy use, and this share

increased as the life of the building increasingly.
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2.2 Study on the influencing factors of CE

Regarding the factors influencing CE, in terms of economic

growth, Grossman and Krueger (1991) put forward the

Environmental Kuznets Curve (EKC), which shows an inverted

U-shaped relationship between economic growth and

environmental pollution. However, Dogan and Turkekul (2016)

showed that the increase in real output in the United States

improved the ecological environment, and this finding does not

support the EKC hypothesis. Wang et al. (2013) used the extended

STIRPAT model to show that factors such as population, level of

urbanization, level of industrialization, and level of services lead to

an increase in CE, while technological progress, energy

consumption structure, and degree of foreign trade leads to a

decrease in CE. Recent studies suggest that the digital economy is

also an important factor influencing CE (Liao et al., 2023). Kong

et al. (2022) used the logarithmic mean divisia index model (LMDI)

to analyze the influencing factors of China’s carbon emissions.

According to the empirical results, in the long run, technological

innovation is essential for China to meet its carbon reduction

commitments. Slower economic growth will delay the peak in

carbon emissions and increase carbon intensity. Optimizing the

industrial structure, reducing the size of the population, and

adjusting the energy structure can reduce China’s peak and

carbon emissions, but the effect is negligible. Inah et al. (2022)

studied the trend of CE and its reduction potential in the

manufacturing sector in Nigeria from 2010 to 2020. They

decomposed the changes in CE into pre-determined factors using

the LMDI approach and concluded that energy intensity and

equity-funded production were the main drivers of increased

emissions, while productive capacity utilization reduced

emissions; Yılmaz (2023) applied Granger causality tests and

cointegration methods to explore the role of trade openness and

energy use on CE in 30 countries in sub-Saharan Africa, showing

that energy use has a significant long-term effect on the increase of

CE while there is a positive bivariate causality between trade

openness and CE.
2.3 Study on the impact of digital
technology on CE

With the disruptive changes brought by DT and the rise of

digital economy, more and more scholars have paid attention to the

environmental effects brought by DT, and most of the studies have

pointed out that DT plays a pivotal role in the environment, but

there are different findings on the specific effects.

The positive effects are reflected in the following: At the macro

level, Lahouel et al. (2021) based on Tunisia 1970–2018, pointed out

that ICT technology is a key factor in mitigating climate change by

reducing CE while promoting economic growth. Shahnazi and

Shabani (2019) studied further stated that ICT technologies also

have spillover effects, as local ICT technologies can effectively boost

the demand for ICT products and services in neighboring regions

while reducing the demand for traditional products, thus

contributing to the reduction of CO2 emission levels in
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neighboring regions. At the industry level, the development of DT

promotes digital industrialization, and digital technological

innovation also promotes the continued emergence of green

recycling and recovery models such as idle exchange, shared

transportation, and waste recycling, as well as accelerates the

breakthrough and application of renewable energy technologies,

thereby reducing CE (Wang et al., 2021). At the micro level, Zhang

(2023) pointed out that DT can facilitate the development of

enterprise information and the application of new technologies to

improve resource utilization, reduce environmental pollution, and

improve the environment to some extent; DT also contribute to

low-carbon formation through system integration, demand

substitution for high-emitting products such as coal, and

optimization of resource management and decision-making

processes (Zhu et al., 2022).

The opposite opinion is that although DT advances are closely

related to the solution of environmental pollution, the widespread

use of DT inevitably leads to corresponding negative impacts. For

example, Al-Mulali and Sab (2012) conducted an empirical analysis

with data from 30 sub-Saharan African countries and found that

under the influence of DT, energy consumption played an

important role in the economic growth and financial

development of the economies investigated, but the increased

energy consumption also had high pollution consequences.

Noussan and Tagliapietra (2020) assessed the impact of

transportation digitization on energy consumption and found

that the application of DT to transportation will increase the

demand for transportation and expand the scale of transportation

trips, resulting in more energy consumption. Dong et al. (2022)

used data on the change and intensity of CE for 15 countries

worldwide from 2000 to 2014 and found that the ICT industry is an

important industry contributing to carbon emissions, where the

manufacturing of computer, electronic and optical products

accounted for 82.83% of global ICT implied CE.

There are also studies found a non-linear relationship between

DT and CE. Li et al. (2021) introduced DT as a technological

advancement into the Solow growth model and use fixed effects

model to test empirically based on global panel data for 190

countries from 2005 to 2016, and the study found that there is an

inverse relationship between CE and DT have an inverted U-shaped

relationship, and argued that this inverted U-shaped relationship

validates the EKC hypothesis. Li and Wang8 introduced digital

factors as endogenous factors promoting technological progress

into the production function, and study shows an inverted U-

shaped relationship between DT and carbon dioxide emissions.
2.4 Research gap

In conclusion, there is no consistent answer regarding the

specific impact of DT on CE, which may stem from differences in

the selection of proxy variables for DT on the one hand, which are

multidimensional and a combination of information, computing,

communication, and connectivity technologies (Bharadwaj et al.,

2013) and differences in carbon emission measurement methods on

the other hand. In addition, the results of the study may have been
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influenced by regional heterogeneity. For example, estimates based

on developed countries may differ from those in emerging

countries, where DT is still in a period of rapid development;

estimates should also differ in regions where environmental

incentives have been adopted, where DT is more likely to

promote (Akcigit et al., 2018).

At the same time, the discussion of the mechanisms by which

DT affect CE is very inadequate. Existing studies are mainly based

on the EKC hypothesis proposed by Grossman and Krueger (1991),

which summarizes the mechanism of DT to reduce carbon

emissions as technology effect and structural effect, such as Chen

et al. (2023) and Wang H. et al., (2023), which identify the

mechanism of green technological innovation or industrial

structure upgrading; or summarizes the mechanism of DT to

increase CE is summarized as the scale effect, i.e., DT makes

enterprises improve production efficiency and expand production

scale, which in turn increases carbon emissions, such as Zhang J.

et al. (2022) and Li and Wang (2022). However, in fact, there are

other mechanisms worth discussing for the effect of DT on CE,

which is important for enriching the study of DT effects on CE and

proposing the optimization path of CE in the digital economy era.

However, these discussions are all based on the impact of the

development of DT itself on carbon emission reduction, and pay

little attention to the diffusion of DT. In fact, the diffusion process of

DT also has an important impact on carbon emission reduction,

especially in the spatial change of industrial characteristics, which is

very important for us to identify the mechanism of DT affecting

carbon emission reduction. Based on the multidimensional

definition of spatial agglomeration, this study is of great value in

constructing the measurement index system of spatial

agglomeration, discussing the impact of spatial agglomeration on

urban carbon emission, and innovatively identifying the virtual

agglomeration mechanism from the process of technology diffusion.
3 Theoretical mechanism and
research hypothesis

Technology diffusion refers to the widespread and large-scale

imitation and adoption of innovative outcomes after technological

innovation (Tirole, 1988). The theory of technology diffusion was

first proposed by American sociologist Everett M. Rogers in 1962

and was elaborated in his classic work, Diffusion of Innovations.

Rogers (1962) discussed the behavioral patterns and characteristics

of different types of individuals, such as innovators, early adopters,

early majority, late majority, and laggards, in accepting and

adopting new technologies. He also explored the factors and

mechanisms that influence technology diffusion, providing an

important intellectual foundation for subsequent research and

practice. Subsequently, the theory of technology diffusion has

been widely applied and developed, becoming an important tool

and theoretical framework for studying social transformation,

technological innovation, and market promotion.

As a new technology, DT can change existing high-energy

production methods and factor structures in multiple aspects,

achieving decarbonization effects, which is one of the direct
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impacts of technology. On the other hand, DT is a typical general-

purpose technology, which can also trigger imitation and

innovation in other fields during the diffusion process: from the

perspective of enterprises, it can stimulate them to improve energy

efficiency and conduct environmentally-friendly green innovation

based on digital technology innovation, thereby reducing urban

carbon emissions; from an external perspective, knowledge

spillovers brought about by the diffusion of DT will promote the

optimization of factor allocation within a spatial range, thereby

having a significant impact on urban carbon emissions reduction.

Based on this framework, the theoretical logic of this paper is

illustrated in Figure 2.
3.1 Direct impact of digital
technology on CE

The main material carriers of DT are the Internet, AI and

Quantum Computing and other high-tech services, which can

facilitate faster information transfer and break the “data islands”

formed by information asymmetry, therefore promoting the

rational distribution of resources and energy, improving total

factor productivity and helping to reduce CE. The purpose of

promoting the construction of new digital infrastructure is to

open the era of industry Internet, drive the digital transformation

of transportation, industry and energy, and empower the green

digital economy. DT can promote energy optimization, cost

optimization, risk foresight and decision control in traditional

industries, and overall realize energy saving and cost reduction as

well as efficiency and quality improvement (Shen and Zhang, 2023).

Firstly, the new generation of DT provides new solutions

for industrial green transformation and helps traditional

manufacturing industries to “jump out of the factory” to develop

green production. DT can be widely used in the industrial field of

energy-saving transformation, material saving, accurate matching

of supply and demand, logistics line optimization, material

recycling and other production and circulation links. More and

more industrial enterprises are using internet of things (IoT) to

integrate sensors and devices into various environmental

monitoring systems, and using DT such as supercomputers and

cloud computing to integrate IoT in the environmental field to
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achieve environmental management and decision-making in a

more refined and dynamic way. This not only helps to optimize

the ultimate carbon handling technology for enterprises, but also

helps to accurately measure the carbon footprint and thus track and

monitor CE. For example, the Industrial Internet Identifier resolves

the key issues of data reliability and data traceability in the field of

carbon management, helping enterprises to set, adjust and achieve

carbon emission targets more accurately. In addition to promoting

the greening of industrial production, DT will also empower carbon

management in the industrial sector. The integration of DT

innovation management system through data resources provides

strong support for building a powerful, extensive and accurate

carbon data service platform and digital network system, which

greatly reduces the cost of carbon information retrieval,

classification and calculation, and improves the government’s

information sharing and intelligent management of carbon

emissions, carbon sinks and other data resources. Improving the

carbon trading market through DT helps eliminate the

discrepancies between verified data and carbon emissions

reported by enterprises on their own, enabling ecological and

environmental departments to accurately and efficiently make

carbon emission quotas among enterprises, while allowing

enterprises with higher energy use efficiency to sell their excess

emission rights to other enterprises, and it is DT that has developed

carbon trading to encourage enterprises to take the initiative in

energy saving and emission reduction.

Secondly, the carbon reduction effect of DT is reflected as a

form of creative destruction, which can stimulate enterprises to

GTI. DT can effectively break the path dependence of enterprise

technological innovation, promote technological innovation in the

direction of green, low-carbon, energy-saving and emission-

reducing development and progress, which helps to enhance the

level of GTI and promote the transformation of low-carbon

economy. DT can reduce the transaction cost and information

retrieval, effectively break the barriers to the flow of production

factors between regions, therefore accelerating the flow of factors

and providing multi-source knowledge for GTI. It can provide

financial support for enterprise R&D by improving the availability

of innovation and financial resources; the use of DT in the financial

sector can also reduce the cost and threshold of financial services

and ease the financing cost of enterprise innovation in many ways
FIGURE 2

The theoretical framework of the paper.
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(Aghion et al., 2021). On the other hand, DT is conducive to

reducing search and transaction costs and therefore breaking the

boundaries of enterprises, promoting frequent learning exchanges

and knowledge sharing among R&D workers (Akcigit et al., 2018),

and facilitating enterprises to accelerate the pace by improving the

level of innovation cooperation. The carbon reduction effect

brought about by GTI is reflected in the fact that innovative

technologies such as clean production technologies and pollutant

control technologies in GTI will help governments, enterprises, and

residents to achieve efficient use of energy, therefore reducing the

CE generated per unit of energy demand or increasing the economic

benefits generated per unit of energy demand. For example, the

development of new energy public transportation systems will

improve the energy efficiency of public transportation by using

cleaner fuels, especially in congested urban areas. On the other

hand, the economic effects of GTI, while not having a direct impact

on CE, can help maintain a steady growth in regional GDP by

strengthening the technological frontier of society as a whole.

Thirdly, the carbon reduction effect of DT is also reflected in its

ability to improve energy efficiency as a technological innovation.

The application of DT can promote further integration of ICT into

the real economy, accelerate R&D, optimize resource allocation,

and improve energy efficiency. Data as a new factor can reduce the

use of other factors, such as developing the value of data elements

and optimizing the efficiency of factor allocation both to improve

energy efficiency. A sharing economy based on DT can also improve

energy trade and resource allocation efficiency by facilitating

specific trade among energy market participants through

multilateral platforms. Sharing platforms can match supply and

demand data through big data, cloud computing and other

technologies, optimize resource allocation through scale

operations, reduce vehicle idling rates, reduce fuel consumption

and lower CE. DT is also a reliable backing for renewable energy. At

this stage, China’s economic development process of energy

demand is still increasing, subject to the influence of resource

endowment characteristics, China’s energy consumption products

for a long time to coal-based. New energy applications face

problems such as high operation and maintenance costs,

difficulties in solving them, and unstable production, while DT

can help the innovative development of new energy technologies,

i.e. DT can help the change of new energy production management

and marketing model, change the production chain and supply

chain of new energy, and reduce the cost of operation and

maintenance of new energy enterprises. In addition, the use of

DT can also reduce the loss of new energy in the process of

transmission, conversion and storage, achieve efficient allocation

of energy through intelligent scheduling, and maximize energy

efficiency. The application of DT reduces the cost of developing

and using renewable energy and provides technical support for the

large-scale use of renewable energy. In addition, through the control

and restraint of DT informatization and intelligence, it can

significantly reduce unnecessary energy consumption in economic

activities and help solve the problems of energy crisis and

environmental pollution. DT such as AI and deep learning can

help energy producers achieve real-time monitoring and parameter

control of the production process, thus improving the efficiency of
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energy production, energy transportation, energy distribution and

energy storage, reducing the energy consumption of the production

process and improving total factor energy efficiency. At the energy

trading end, the platform economy based on DT can effectively

solve the problem of information asymmetry between supply and

demand, reduce the time inequality between supply and demand,

and new generation DT such as LoT, 5G, and big data optimize the

signal transmission process between energy supply and demand,

reducing avoidable energy losses in the energy trade process.

Moreover, higher energy efficiency means accomplishing the same

tasks or production activities with less energy consumption. A

considerable number of study has proven that when energy

efficiency improves, the energy consumption required for the

same amount of economic output decreases, leading to a

reduction in carbon emissions (Hens et al., 2001; Hasanbeigi

et al., 2013; Tajudeen et al., 2018; Na et al., 2022). The

improvement of energy efficiency also implies the optimization of

the factor structure within enterprises. As intermediate producers,

these enterprises will reduce the procurement of high-emission

energy and shift towards cleaner and lower-carbon renewable

energy sources (Özbuğday and Erbas, 2015). This transition will

transmit through the supply chain to other businesses, thereby

driving the entire industry towards a green transformation and

promoting carbon emissions reduction. Therefore, there exists a

theoretical logic that digital technologies can exert a

decarbonization effect by enhancing energy efficiency.

Based on the above analysis, this paper proposes the following

research hypothesis:

H1: DT can reduce CE emissions.

H2: DT can reduce CE through mechanisms of improving EE and

promoting GTI.
3.2 The mechanism of virtual
agglomeration of industries

As Chandler (1962) points out, “The industrial revolution is

inevitably accompanied by organizational change.” The history of

industry and technology also shows that every major technological

change leads to a major change in the organization of production.

The revolution in information technology has led to a spatial

extension of the production and value chains of enterprises.

Virtual agglomeration is based on the integration of DT domains,

and production factors are clustered in virtual space with resource

allocation optimization, empowering traditional cluster networks

and eventually forming a borderless production network (Wang

and Liang, 2022). It not only has the function of geographic

agglomeration, but also has unique advantages in optimizing

resource allocation and sharing knowledge and information

interaction. The impact of industrial agglomeration on technology

diffusion can be described by the “borehole model”, which means

that the process of industrial agglomeration accelerates the

spontaneous flow of technology and other resources and

promotes industrial technology diffusion.

According to Schumpeter’s (1912) innovation theory, the

innovation activity of enterprises is an important driving force for
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economic restructuring and transformation of development mode.

The mechanism of “creative destruction” caused by technological

progress can help improve production efficiency and optimize

industrial structure, laying a solid industrial and technological

foundation for energy saving and emission reduction. Generally

speaking, the labor pool, intermediate input sharing and knowledge

spillover in industrial agglomeration are indispensable drivers of

scale and technology effects (Hou and Zhou, 2023). For example,

shared labor pools can deepen the division of labor specialization

and improve the fit between the agglomeration and the labor force

to improve production efficiency and resource utilization, and

reduce energy consumption and carbon emissions. Upstream and

downstream industry chain integration is conducive to saving

production costs for agglomeration enterprises, promoting

circular economy and achieving green economic growth.

With the development of a new generation of ICT, new

infrastructures, as physical support for industrial digitization

record the traces of economic activities such as production,

exchange as well as flow of various resources in the physical space

inside the cyberspace, break through the dependence of traditional

industrial geographic agglomeration on spatial location, and

promote the formation of a new organizational form of industrial

virtual agglomeration based on close coupling between the real and

the virtual. On the one hand, DT breaks the time and space

constraints (Goldfarb and Tucker, 2019), reduces transaction

costs, promotes the circulation of factors and resources, and

provides a platform for clean industries to agglomerate in virtual

space. The development of DT significantly reduces transaction

costs and improves information asymmetry, builds a platform for

energy trading and the interconnection of factors between regions

and enterprises, and promotes the effective flow and rational

allocation of various factors of production, such as knowledge,

labor, and energy, in the virtual space. A typical example is the one-

way bidding (online trading) in the carbon trading market, which

promotes the clustering of emission reduction enterprises in the

virtual space to sell excess allowances or produce CERs with higher

efficiency, and emission control enterprises can also find more

suitable trading partners on the virtual platform, which is

supported by the development of DT such as Blockchain. DT also

builds a platform for knowledge spillovers. DT promotes the rapid

flow of data and knowledge, which can facilitate the subjects to

break the boundaries of enterprises and form clusters in the virtual

space; through the interaction with the star enterprises in the virtual

space, it accelerates the knowledge dissemination and enhances the

scale of virtual clustering and knowledge spillover (Chen

et al., 2023).

The green transformation of a certain enterprise in the virtual

space will form a knowledge spillover effect on other enterprises,

therefore promoting the green transformation and industrial

structure upgrading. For example, the China Industrial Enterprise

Energy Control Center, by establishing a data exchange and fusion

interface, realizes the sharing of enterprise data resources and

information fusion, helps the efficient use of energy big data,

promotes the virtual agglomeration of using energy enterprises,

and also promotes the development of carbon trading, carbon

finance and other industries. DT will also promote further
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specialization division of labor and advance the ICT industry in

virtual space clustering, forming the so-called specialization

clustering. As DT is a modular hierarchical architecture, the

development of a certain module requires the cooperation of

other modules. In order to reduce the cost of communication and

cooperation between modules, each module can form a virtual

agglomeration effect in the form of interface. virtual agglomeration

of ICT industry can bring into play the scale effect of digital

industry, so that industrial enterprises can obtain the DT they

need to introduce at a lower search cost and reduce the fixed capital

investment of using DT for green transformation. When virtual

agglomeration reduces the technology investment cost for green

transformation of industrial enterprises, it can further expand the

scale of agglomeration by exerting Metcalfe effect, and even

promote the transformation of virtual agglomeration to physical

agglomeration. At the same time, according to Krugman’s (1991)

opinion, industrial agglomeration has technology diffusion effect,

and there is a self-reinforcing relationship between the two that is

interlinked and mutually reinforcing. Virtual agglomeration also

has the same effect, that is, DT on the one hand enhances the level of

virtual agglomeration; on the other hand, the development of

virtual agglomeration can accelerate the speed of technology

diffusion, promote the application and dissemination of DT in

industrial enterprises, break the path dependence of enterprise

green innovation, and thus enhance the enthusiasm of enterprise

green innovation and promote energy conservation and emission

reduction. Accordingly, this paper proposes research hypothesis 3:

H3: DT can reduce CE by increasing the virtual agglomeration

of industries.
4 Research design and data sources

4.1 Variable setting

4.1.1 Explained variable
Carbon emission (CE). CE is measured using carbon emission

intensity per unit of GDP. Given the availability of data related to

CE at the city level, this paper uses the apparent emission

accounting method to measure carbon dioxide emissions. In

general, urban CE include both CE from direct energy

consumption, such as gas and LPG, and CE from electrical and

thermal energy consumption. Therefore, the carbon sources for

measuring carbon emissions at the city level in this paper are mainly

four types of energy consumption: natural gas, lp-gas (LPG), coal

electricity and thermal energy. Drawing on the approaches of

existing studies (Shan et al., 2022; Jing et al., 2023), the basic

equation for carbon accounting provided by the IPCC 2006

Guidelines for National Greenhouse Gas Inventories is used to

obtain the total CE of cities by multiplying the amount of activities

that result in carbon emissions from production or consumption

with the CO2 emission conversion factor (IPCC, 2006).

The direct energy types include LPG and natural gas. The

measurement process is to calculate the CE from direct energy

consumption of the city with the carbon conversion factors

published by the IPCC (2006). Indirect energy consumption is
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electrical energy and thermal energy, where the CE from electrical

energy consumption are directly calculated using the corresponding

carbon conversion factors, while thermal energy is supplied in

different ways and most of them use raw coal for heating. In this

paper, according to Wu and Guo (2016), the thermal efficiency

value is chosen as 70% and the average low level heat of raw coal is

chosen as 20908 kJ/kg, and then the CE from heat supply are first

converted into the required amount of raw coal according to the

total amount of heat supply, and then calculated according to the

carbon conversion factor of raw coal published by the IPCC (2006).

Finally, CE from direct energy consumption and indirect energy

consumption were summed up to get the total CE of each city.

4.1.2 Core explanatory variable
Digital technology (DT). Cloud computing, artificial intelligence,

big data, the Internet of Things, and blockchain technology form

the fundamental support of digital technology and provide solid

technical support for various digital application scenarios. Digital

application is a specific item of technology in the economy and

society, which can effectively reflect the integration degree of digital

technology with physical enterprises and daily life (Liu et al., 2022).

Digital activities represented by digital industry sector, digital

service application and e-commerce are different stages in the era

of digital economy (Bukht and Heeks, 2018). The digital industry

represents the development direction and latest achievements of the

new generation of digital industry sectors, reflecting the

industrialization characteristics of the digital economy, including

the proportion of computer services and software employees and

the level of digitalization of enterprises. Similar to the telephone

penetration rate symbolizing the service subject of digital

applications, digital finance is the concrete manifestation of

digital platforms and digital services. The methods used in

existing studies to measure the degree of digital technology are

mainly the compilation of relevant indices, the construction of

satellite accounts, and the accounting of value added. The

compilation of relevant indices compilation is widely used in

studying the social effects of digital economy by virtue of its high

data availability, breadth of content coverage, and accounting

treatment of indicators, which is more advantageous (Zhao et al.,

2020; Ma et al., 2022; Zhang K. et al., 2022; Zhao et al., 2023).

According to the published articles, we use the comprehensive
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index evaluation method to measure the level of digital technology

development at the city level (Chen et al., 2022; Wang J. et al., 2023;

Liu et al., 2022; Vărzaru, 2022; Chen Y. et al., 2023; Wang H. et al.,

2023). Combining the availability of city-level data, this paper

measures the comprehensive development level of digital

technology in each city from five aspects: broadband Internet

foundation, mobile Internet foundation, information industry

factor inputs, telecommunication industry output, and digital

inclusive finance. To achieve comparability of the comprehensive

index across periods, this paper uses the global factor analysis

method to calculate the DT development level. This method can

well cover all characteristics of the original data, avoiding the

subjectivity caused by artificially determined weights, and

eliminating the bias of results caused by overlapping information

of indicators. The evaluation index system of DT and its description

are shown in Table 1.

4.1.3 Mediating variables
Energy efficiency (EE). Influenced by the characteristics of

resource endowment, most of China’s urban energy consumption

products are mainly coal for a long time, and a large amount of

energy consumption will inevitably be accompanied by the

generation of a large amount of carbon emissions. Improving the

EE use is one of the important ways to achieve carbon emission

reduction. If we can reduce energy consumption and improve

energy efficiency and utilization rate of renewable energy with the

same output, we will be able to effectively mitigate the rising trend of

carbon emission intensity. In this paper, the energy intensity of each

prefecture-level city is used to measure its energy efficiency, which is

the energy consumption per unit of GDP. Lower values of this

variable indicate higher energy efficiency.

Green technological innovation (GTI). GTI is the general term

for low or even zero pollution technologies, processes and products

that follow ecological principles and ecological economic laws, save

resources and energy, avoid, eliminate or mitigate ecological

pollution and damage, and minimize negative ecological effects,

and are innovative technologies that help save resources, improve

energy efficiency, prevent and control pollution, and achieve

sustainable development, mainly including innovative

technologies in alternative energy, environmental materials,

energy conservation and emission reduction, pollution. It mainly
TABLE 1 Digital technology evaluation index system.

Indicators Secondary
Indicators Indicator Description

DT

Broadband Internet
Foundation

Internet broadband access subscribers per 100 people

Mobile Internet
Foundation

Number of cell phone subscribers per 100 people

Information industry
factor input

The proportion of the number of employees in the information transmission, computer services and software industry to
the total number of employees in urban units

Telecommunications
industry output

Telecommunications business income per capita

Digital Inclusive Finance Peking University Total Digital Inclusive Finance Index
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includes innovative technologies in alternative energy,

environmental materials, energy conservation and emission

reduction, pollution control and management, recycling, etc.

R&D investment as a sunk cost is not an output efficiency, and

the use of this indicator to measure the potential innovation

capability of enterprises lacks relevance and precision, while the

number of patents can visually reflect the technological innovation

capability of enterprises (Fang and Na, 2020). Green invention

patents are breakthrough innovations in products or processes that

help enterprises achieve energy saving and carbon reduction goals.

In this paper, the number of invention patents and utility patents

related to environmental protection applied by enterprises in each

prefecture-level city is selected to measure GTI.

Virtual agglomeration (VA). VA among enterprises is the

process of system coordination. The geographical agglomeration

and virtual agglomeration of upstream and downstream associated

enterprises in the industrial chain have intertwined coupling

relationship, which is a cyclic mechanism of mutual promotion

and symbiosis. The important realization carrier of virtual

agglomeration is Internet and information technology. Although

the digital content and network services of enterprises are

themselves realized through the cloud, the digital content and

services formed by virtual agglomeration are essentially the

concrete results of resource input and output, not virtual. The

digital services are realized through the medium of products such as

big data, expertise, creative design, and blockchain. In this paper, we

use the locational entropy method to calculate the virtual

agglomeration of industries in each city based on the idea of

existing literature (Zhang and Ru, 2021). In general, the more

people employed in a particular industry in a region means the

more developed the industry is. Therefore, this paper uses

information transmission, computer service and software

employees as important indicators of virtual agglomeration and

uses the locational entropy method to measure them. Because

virtual agglomeration is less restricted by geographic space, it will

often have spillover effects on surrounding cities through virtual

network space. However, the traditional industries integrated into

the virtual agglomeration platform are the foundation of the cluster,

so the spillover effects also have spatial “distance attenuation.” By

using the potential market model and adding inverse geographical

distance weight to the location entropy method, virtual

agglomeration can be better distinguished from traditional

agglomeration (Liu et al., 2023). The calculation method of VA is

as follows:

VAit =oi
ICTit

Totalit
= ICTt

Totalt

� �
d−1ij (1)

In Eq. (1), d−1ij  is the weight of the spherical geographical

distance between city i and city j, calculated by GIS software. IC

Tit is the number of people employed in the information

transmission, computer services and software industries of City i

in year t; Toatlit is the total number of jobs in city i in year t; ICTt is

the total number of people employed nationwide in the information

transmission, computer services and software industries; Totalt is

the total number of jobs in all industries nationwide. Finally, in

order to eliminate the causal relationship between industries and
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the development of science and technology, this study calculated the

direct consumption coefficient of digital factors of each industry at

the national level based on the data of the OECD input–output table

and used the direct consumption coefficient of digital factors at the

industry level to match with the micro-data of the first national

economic census at the industry level. Then, the proportion of

industry output in each city during the initial period of the study

sample is taken as the weight, and the digital service input at the

industry level is weighted at the city level.

4.1.4 Control variables
Since there are many external factors affecting CE, according to

published articles on the impact of carbon reduction (Chen et al.,

2016; Han et al., 2017; Guo et al., 2022; Xu et al., 2022; Luo et al.,

2023; Shen and Yang, 2023), six control variables were selected to

minimize the problem of bias in the model fitting results.

Population density. Energy consumption increases as

population increases, which brings about an increase in overall

carbon emissions. In this paper, the population density is measured

by dividing the year-end population of each prefecture-level city by

the year-end administrative area of that prefecture-level city.

Level of financial development. Credit supply can exacerbate

energy consumption by stimulating consumption and industrial

investment, which in turn increases CE. But at the same time,

finance can reduce CE by supporting technological innovation and

promoting the transformation of traditional industries into cleaner

ones. In this paper, the total financial deposits and loans of each

prefecture-level city in the past years are used to measure the level of

financial development of a city.

Foreign direct investment (FDI). FDI is beneficial to both

economic growth and the introduction of carbon-reducing

technologies and equipment to drive local enterprises to innovate

on their own and improve energy efficiency, thereby reducing

carbon emissions. However, the purpose of FDI into the host

country may be to transfer the high energy consumption and

pollution-intensive industrial enterprises in the home country,

and there is a “pollution sanctuary” effect, which aggravates

carbon emissions. In this paper, the total amount of actual FDI

utilized by each prefecture-level city is used to measure the

openness of a city.

Government spending. The tangible hand of the government is

an important channel to influence economic development and

ecological environment. Local governments will make economic

construction a key point of fiscal spending to attract enterprises to

invest and set up factories locally by vigorously building

infrastructure, lowering or exempting taxes and fees, and

reducing environmental regulation. Local governments’ eagerness

to attract investment may weaken regional environmental quality

standards and indirectly connive at enterprises’ CE. In this paper,

we measure the level of regional government spending by the share

of local fiscal spending in urban GDP.

Infrastructure. Driven by the demand for infrastructure

development, emerging economies have played an important role

in increasing global production capacity in recent years, and their

carbon emissions have increased rapidly, becoming the main driver

of the increase in CE from major energy infrastructure.
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Infrastructure development in cities will play an important role in

promoting zero-carbon energy development as a key technology

vehicle for achieving carbon neutrality goals. This paper uses road

area per capita to measure the level of infrastructure in cities.

Industrial structure. According to the new structuralist

economic theory, the industrial structure is both a “resource

converter” of various factor inputs and outputs and an

“environmental controller” of various pollutant types and

quantities (Yu, 2017). The type of combination and intensity of

adjustment of factors in different sectors within an industry

determine the economic efficiency and energy use efficiency of the

industry, which has an indirect impact on resource consumption

and environmental pollution. In this paper, the ratio of regional

tertiary industry output value to secondary industry output value is

used to measure the industrial structure of cities.
4.2 Econometric model

Based on the aforementioned theoretical assumptions, the

following econometric model is constructed to test the direct

impact of DT on carbon emissions:

CEit = a0 + a1DTit +oa2Xit + ni + mt + eit (2)

In Eq. (2), the subscripts i and t are city individuals and time,

respectively, and X denotes the set of information on a series of

control variables. ni denotes individual fixed effects, mt denotes the

time fixed effects, eit denotes the error term that obeys the white

noise process, a0 denotes the constant term, and a1 and a2 are the

regression coefficients of digital technology and control variables,

respectively, where the coefficients of significance and sign direction

are the focus of this paper. If the sign is negative and passes the

significance test at least at the 10% level, it indicates that hypothesis

H1 is valid and DT can reduce CE. On the basis of Eq. (2),

combined with the method and operation process of the

mediating effect test recommended by Jiang (2022), the article

constructs the following three models to test whether research

hypotheses H2 and H3 are valid:

EEit = b0 + b1DTit +ob2Xit + ni + mt + eit (3)

GTIit = c0 + c1DTit +oc2Xit + ni + mt + eit (4)

VAit = d0 + d1DTit +od2Xit + ni + mt + eit (5)

In Eq. (3) to (5), the b0,   c0, d0  are the constant terms, b1, c1, d1 

denote the numerical technical regression coefficients, and b2, c2, d2
denote the regression coefficients of the control variables, and the

meanings of the remaining symbols and letters remain the same as in

Eq. (2).
4.3 Data sources

Following the principles of data avai labil ity and

comparability, the article eliminates the sample of cities with
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more changes in city level and missing values, such as Bijie,

Tongren, Laiwu, and Chaohu, which are affected by the policy of

“abolishing counties and establishing districts”, and the cities of

Altay, Riqaze, and Linzhi, which have serious missing data, and

finally selects the panel data of 276 cities in China from 2011 to

2020 as the statistical sample. The panel data of 276 cities in

China from 2011 to 2020 were selected as the statistical sample.

The original source of each data item is various statistical

yearbooks published by the National Bureau of Statistics. The

data on energy consumption, electricity consumption and

transportation for calculating carbon emissions and their

conversion factors are mainly derived from the China Urban

Statistical Yearbook, China Statistical Yearbook, China Urban

Construction Statistical Yearbook, IPCC 2006 Guidelines for

National Greenhouse Gas Inventories, and China Regional Grid

Baseline Emission Factor Report. The data for measuring DT-

related indicators are derived from the Digital Inclusive Finance

Index of Peking University and the China Urban Statistical

Yearbook. The data for the remaining indicators are mainly

derived from the China City Statistical Yearbook, the China

Regional Economic Statistical Yearbook, the National Economic

and Social Development Statistical Bulletin of each city, and the

Bureau of Statistics, the China Academy of Information and

Communication Research, and the China National Intellectual

Property Administration (CNIPA). Very few missing values are

filled in using the linear interpolation method of yes. In addition,

to reduce sample fluctuations, all variables are logarithmized in

this paper. The descriptive statistical analysis of each variable is

shown in Table 2.
5 Empirical analysis

5.1 Baseline regression

Due to the acceleration of global digital transformation and the

growth of demand for computing power, as well as the broader

application of 5G, the vigorous development of information

infrastructure, and the growth of energy demand and carbon

emissions, the energy consumption of information and

communication industry cannot be ignored. It is urgent to take

the road of green and low-carbon development. To verify whether

DT can reduce CE, the impact of DT on city-level CE is estimated

based on 2,760 observations, combining research hypothesis H1

and Eq. (2). According to the results of the F-tests and Hausman

tests, the p-values of both significantly reject the original hypothesis,

indicating that the fixed effects model is most suitable for the sample

data in this paper. In order to eliminate possible estimation bias

caused by time and region differences, the two-way fixed effects

model is used as the baseline regression. In addition, the article

uses the Driscoll-Kraay method to adjust the standard errors to

alleviate the heteroskedasticity, cross-sectional correlation, and

autocorrelation. The results are shown in Table 3. Among them,

columns (1) and (3) are estimated from the model without control

variables; columns (2) and (4) are estimated from the model with

control variables.
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As can be seen from Table 3, the results of column (1) without

any control variables show that the regression coefficient of DT on

CE is -0.510 and significant at the 10% level, indicating that DT can

reduce CE. The results of column (4) with control variables, time

fixed effects and individual fixed effects show that the regression

coefficient of DT on CE is −0.44 and significant at the 5% level. The

result is similar to that of published research (Lee et al., 2022; Bai

et al., 2023; Hu et al., 2023), the result of this paper also indicates
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that DT can reduce CE and the findings are robust. Research

hypothesis H1 was verified. At this stage, insufficient

technological innovation, information asymmetry and external

diseconomies of CE are the main blockages in the process of

achieving the dual carbon goal. With the rapid development of

new-generation information technology and Internet technology,

DT evolved from automation can provide information technology

support for the environmental management work of city managers
TABLE 3 Baseline regression results.

Variables (1) (2) (3) (4)

DT
−0.510*
(−1.68)

−0.401
(−1.44)

−0.485*
(−1.97)

−0.448**
(−2.730)

FE
0.069
(0.97)

0.055
(0.75)

0.057
(0.760)

DFL
0.155*
(2.15)

0.139*
(1.94)

0.137*
(2.180)

TI
−0.056***
(−4.30)

−0.050***
(−4.000)

IS
0.111
(1.50)

0.113
(1.680)

FDI
−3.378**
(−3.310)

PD
−0.016
(−0.210)

_cons
−3.320***
(−4.81)

−3.162***
(−4.52)

−s3.162***
(−5.24)

−3.100***
(−6.550)

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 2760 2760 2760 2760

R² 0.5754 0.0746 0.0782 0.0889

F-tests 3.16** 44.63*** 14.96*** 15.04***

Hausman Tests 48.09*** 109.26*** 114.77*** 80.59***
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
TABLE 2 The descriptive statistics of the variables.

Variables Code Mean Std. dev. Min. Max.

Carbon emissions CE −4.557 0.855 −7.650 −0.904

Digital technology DT 2.301 0.059 2.211 2.794

Population Density PD 5.752 0.937 1.629 9.086

Financial Development Level FDL 0.904 0.515 −0.531 3.644

Foreign Direct Investment FDI −5.042 2.634 −23.026 −1.553

Fiscal Expenditure FE −1.638 0.490 −3.126 −0.001

Traffic Infrastructure TI 2.782 0.428 0.314 4.096

Industrial Structure IS −0.095 0.473 −2.175 1.677

Energy Efficiency EE −13.501 0.862 −17.013 −8.236

Green technological innovation GTI 0.181 0.429 0.001 5.101

Virtual Agglomeration VA −0.283 0.304 −1.015 2.839
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and corporate subjects to enhance economic efficiency while taking

into account the ecological environment. Through the digital

platform, enterprises can plan the production process accurately

and control the production process intelligently, optimize the end of

carbon emission management and energy-saving control measures

in real time, which will lead to a significant increase in green total

factor productivity and ultimately realize lean production and cost

reduction. DT, with its timely and convenient data sharing and

information dissemination functions, can effectively eliminate the

problem of incomplete information among enterprises in various

parts of the industry chain, help to weaken or even eliminate the

technical barriers among innovation subjects, and promote the

participation of multiple parties to the research and development

of common technologies and cooperation to achieve GTI and clean

production. Through DT, the enterprise’s capital flow, goods flow,

commercial flow, logistics and other flow space elements are

integrated and summarized in order to guide the flow of limited

green financial resources to the environmentally-friendly high-tech

industries. Most importantly, DT such as artificial intelligence, big

data analysis and digital twin provide arithmetic support and data

foundation for carbon trading cities, enabling accurate

measurement, monitoring, reporting and verification of CE, and

empowering efficient operation of carbon markets and carbon

finance as well as scientific decision-making in urban

ecological sectors.
5.2 Robustness test

To verify the robustness of the baseline regression results, the

article uses four methods.

The first is to replace the core explanatory variable. The study

used two methods to substitute proxy variables for digital

technologies. First is to use the lagged term of CE as explanatory

variable to test the time-lagged effect of DT. The second method

uses the number of digital technology patents filed by listed

companies. Since the IPC information of patents can accurately

depict the technical field characteristics of innovation activities, this

paper combined the Statistical Classification of Digital Economy

and its Core Industries (2021) and the Reference Relation Table of

International Patent Classification and Industry Classification of

National Economy (2018) issued by the National Bureau of

Statistics. To construct the corresponding relationship of “core

industry classification code of digital economy – four-digit code

of national economy industry classification (SIC4) – IPC

Subgroup”, identify the technical field of digital technology

innovation and its corresponding IPC code to identify the digital

technology innovation patents applied by enterprises at the level of

IPC group. Further, from the three dimensions of “enterprise – year

– city,” the digital technology invention patents were summed up to

construct the digital technology innovation measurement index at

the city level. Since Chinese listed companies gradually paid more

attention to the patents on digital technology after 2013, the

number of applications before 2013 was relatively small (Tao

et al., 2023). Therefore, the time window used in this method is

2013–2020.
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The second is to add omitted variables. Rapidly advancing

urbanization objectively requires better municipal infrastructure

and basic public services such as transportation, electricity, and

medical care, which brings about rapid economic development

while also causing an increase in greenhouse gas emissions. Cities

contribute about 75% of CE (Zhang et al., 2023). However, the high

concentration of population and economic activities in urban areas

also gives rise to economies of scale and process-oriented

production patterns, which help to improve resource allocation

efficiency and achieve optimal dispatch of materials, reducing CE.

The business credit environment in a given region is an important

factor affecting sustainable economic development (Shen et al.,

2022). Under the joint incentive mechanism of trustworthiness,

by focusing on improving the business credit environment and the

red list system will motivate enterprises to focus on environmental

protection and inspire green transformation. At the same time, the

“reputation effect” generated by the strengthened business credit

environment makes enterprises more actively take social

responsibility to build a good image and reduce the emission of

environmental pollution. Based on this, this paper adds two control

variables, urbanization and business credit environment, to Eq. (2).

Green finance is emerging with the primary purpose of coping with

climate change, improving environmental quality, and saving and

efficient use of resources. It can inject more capital into the green

and environmental protection field through green credit, bonds,

and other policy tools, which will substantially impact “carbon

reduction” activities. Different from command-based or market-

based regulatory policies, the establishment of green finance reform

and innovation pilot zones will promote the pilot areas to accelerate

the improvement of green development policies and green finance

top-level design, including environmental policies, green finance

systems, organizational systems, market operation mechanisms,

product service systems, support, and safeguard measures. Green

finance, for example, has significant signaling effects. Through

leverage and credit support, limited green financial capital can

quickly attract more social capital “green” and highly implement

carbon reduction activities. At this time, green finance has a

pronounced inhibition effect on high-carbon investment, which

weakens investment in energy-intensive industries and limits

interest-bearing debt financing and new investment in heavily

polluting enterprises. Based on the research direction of the

existing literature (Shi et al., 2022), we take the green finance

policy implemented in 2017 as a new control variable.

Thirdly, the econometric model is replaced. In addition to using

robust standard errors to control for the heteroskedasticity, within-

group autocorrelation and between-group contemporaneous

correlation present in the nuisance terms, feasible generalized

least squares estimation (FGLS) can be used to eliminate them.

Given the large regional variability in resource endowment,

industrial structure and data characteristics of cities, in order to

ensure the accuracy of the regression results, this paper selects

comprehensive FGLS estimation with different autoregressive

coefficients for each individual to corroborate the robustness of

the benchmark regression results.

Finally, the potential two-way causality endogeneity problem is

addressed. In the context of the “double carbon” target-oriented
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policy, the city administrations will implement more stringent

carbon emission control mechanisms to force enterprises to

implement GTI and cleaner production. Technological advances

with a green bias will influence the development of DT through

spillover effects and knowledge spillover, i.e., DT is more advanced

in cities with lower carbon emissions and advanced economies. In

order to avoid the interference of endogeneity issues on the model

regression calculation, this paper draws on the research ideas from

the existing literature (Yi and Zhou, 2018; An et al., 2023) and

conducts the estimation of instrumental variables by constructing

Bartik instrumental variables with some exogeneity (the product of

the lagged and differential terms of DT). Because strictly exclusive

instrumental variables are rare, digital technology, in particular, has

some correlation with many aspects of socioeconomic affairs. Under

the premise of the “unclean” instrumental variable assumption, the

estimation results of the traditional instrumental variable method

become unreliable. Therefore, we draw on the idea of Conley et al.

(2012) to relax the exclusion constraint and use a Plausibly

exogenous instrumental variable estimation method for robust

inference, assuming that the estimated coefficients of instrumental

variables affecting the explanatory variables through other channels

are approximately zero, in order to estimate the regression

coefficients of the core explanatory variables assuming the strict

exclusion constraint of the relaxed instrumental variables. This

method is also widely used to analyze the relationship between

industrial robots and carbon emissions (Yu et al., 2023). To enhance

the rigor of such research in causal inference, this study also uses the

time-varying DID method to calculate the potential of digital

technology in carbon emission reduction. Specifically, the

“Broadband China” strategy, implemented in three batches from

2014–2016, provides a good quasi-natural experiment for this

research (Wen et al., 2022). In the process of new infrastructure
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construction, the General Purpose Technology (GPT) of broadband

networks has been applied in a large area and may stimulate the

development of a digital economy and industrial structure

optimization, thereby reducing urban carbon emissions.

As can be seen from Table 4, the results of all four methods

show that the regression coefficients of DT are significantly negative

and the significance only changes slightly, indicating that the

conclusion that DT can reduce CE obtained from the baseline

regression part is robust and reliable. In addition, the results of

Method 4 based on the causal inference perspective show that the

regression coefficient of DT on CE is −5.250 and passes the 5%

significance test. This result shows that the conclusion that DT

reduces CE still holds after eliminating the endogeneity problem.

The conclusion that DT reduce CE is not a simple statistical

relationship, but more in line with the causal logic between

economic facts. H1 is strongly validated.
6 Mechanism test

The above results showed that the development of DT does

significantly curb the CO2 emission intensity of cities. However, it

would be more revealing to reveal the mechanisms through which

DT reduces CE. According to the research hypothesis and

mechanism test equation above, this paper still uses the two-way

fixed effects model to do the regression analysis, and the results are

shown in Table 5.

As shown in Table 5, the regression coefficients of DT on EE and

GTI are −0.537 and 0.850, respectively, and significant at the 5% and

10% levels, respectively, showing that DT can reduce CE through

mechanisms of improving enterprises’ GTI capacity and reducing

energy consumption intensity. H2 is verified. DT is a specific practice
TABLE 4 Results of robustness tests.

Variable Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

DT
−0.534***
(−3.90)

−0.391***
(3.02)

−0.451**
(−2.70)

−0.925***
(−6.76)

−5.250**
(−2.11)

−0.0473*
(−1.89)

Control variables Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

City FE Yes Ys Yes Yes Yes Yes

N 2,484 2,208 2,760 2,760 2,760 2,760
** and *** indicate significant at the 5% and 1% levels, respectively; in Methods 1 and 2, the t-statistic is reported in parentheses; in Methods 3 and 4, the z-statistic is reported in parentheses.
TABLE 5 Results of mechanism tests.

Variables EE GTI VA

DT
−0.537**
(−2.590)

0.850*
(2.160)

0.046***
(11.38)

Control variables Yes Yes Yes

Year FE Yes Yes Yes

City FE Yes Yes Yes
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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of advanced productivity, which itself has the role of technological

progress and green attributes. The ever-changing technology carriers

and rapidly evolving ICTs bring about iterative renewal of production

equipment. For example, the digital transformation of enterprises

makes online meetings and cloud offices possible, indirectly

promoting the optimization of production operations,

organizational coordination and management control, and

improving the production lines and processes of enterprises. DT

highlights the universality of “Davidson’s Law”, which is constantly

replacing low-energy-consuming equipment with high-energy-

consuming equipment, forcing the elimination of outdated

production capacity and transformation and upgrading, therefore

reducing energy consumption per unit of GDP. At the same time,

under the influence of Metcalfe’s law, DT improves the efficiency of

information search, expands the channels and scope of information

dissemination, and accelerates the association of production factors at

the spatial level and network externality spillover, which improves the

technological innovation capacity and output efficiency of each

production node (Zhang and Wei, 2019). In addition, the open and

inclusive characteristics of DT can promote the sharing of enterprise

innovation knowledge, provide a sharing platform and channel to

alleviate resource mismatch and inefficient operation, and enable the

flow of innovation factors and high-quality resources to high-

efficiency industries, which can reduce CE.

The regression coefficient of DT on virtual agglomeration (VA)

is 0.046 and passed the 1% significance test, indicating that DT can

reduce CE through the mechanism of promoting industrial virtual

agglomeration. H3 was verified. The new technological paradigm

reduces the original production and transaction costs, which

inevitably leads to a change in the shape and structure of

production organization. With the deep development of DT,

especially the popularity and application of machine learning, big

data technology, digital twin and smart manufacturing, the

evolution of organizational form has been given new dynamics

and paths (Feng, 2018). Based on the new technology network,

more and more industries break through the barriers of physical

space, and the associated collaboration among enterprises is less

dependent on geographic space, and various subjects in the value.

The externalities of agglomeration are multiplied by the increase of

participating subjects. First of all, DT represented by cloud

computing and industrial Internet provide virtual space and

technical carriers for the circulation and aggregation of data

elements, which help big data realize low-cost and high-efficiency

real-time exchange through the network platform. Data elements

are stored in a distributed manner in the virtual network space and

linked by the network, and data demanders implement extraction

and analysis of data resources through the massive storage network.

This can optimize the spatial layout of data elements, promote the

modularization and standardization of service elements, and

enhance the transparency of element circulation and the coupling

and coordination of production demands. Furthermore, through

the virtual space aggregation platform of technical resources, tacit

knowledge, which was difficult to be copied and disseminated in the

past, can be realized through the network platform to achieve

knowledge overflow in multiple points in time and multiple

dimensions. The virtual cyberspace turns the tacit knowledge that
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cannot be digitized into explicit, stable knowledge that can be coded

and disseminated over long distances, and reduces the spatial

stickiness of knowledge, effectively shortens the time lag of

technology diffusion, and bursts the technology welfare effects

(Zhang and Ru, 2021). Finally, DT enables the subjects clustered

in cyberspace to quickly disseminate information on the output of

final goods while also obtaining more efficiently any number of

intermediate goods inputs that exist in the market. The output and

services of each node of the industry chain will face a wide market

demand, and the market effect of intermediate inputs will be

infinitely enlarged at this time. At the same time, DT weakens the

specialization of productive service inputs in the traditional

geographical agglomeration. The non-tradable productive services

in traditional industrial agglomeration will become tradable under

the role of virtual agglomeration, and the convenience of obtaining

intangible intermediate inputs in virtual agglomeration is much

greater than that in traditional industrial agglomeration. The DT

has reduced the possibility of technology dormancy by promoting

the characteristics of knowledge diffusion in a network. It breaks the

linear closed technology transfer mode of traditional upstream and

downstream industries, converts the “point-to-point” technology

diffusion into a “one-to-many” network structure, and shrinks or

blurs the industrial boundary line. Therefore, DT helps to improve

the fineness of professional division of labor and the concentration

of different industries or similar industries in virtual space. chain

achieve agglomeration and division of labor in the virtual space of

infinity (cloud) (Chen et al., 2021).
7 Heterogeneity analysis

7.1 Heterogeneity test of urban
resource endowment

Considering the unbalanced regional economic development in

China, this paper divides the sample according to city scale and

whether it is a resource-based city to assess whether the carbon

emission reduction effect of DT is heterogeneous depending on the

resource endowment. For the sample division of city scale, this paper

divides the new first-tier and first-tier cities into large cities and the

second-tier, third-tier, fourth-tier and fifth-tier into middle-sized and

small cities based on the New Grading List of Chinese Cities

published by the New First-Tier Cities Institute in 2020 (The

Rising Lab, 2020). For the sample classification of resource-based

cities, this paper mainly refers to the classification criteria of the

National Sustainable Development Plan for Resource-based Cities

issued by the State Council in 2007 (The State Council of the People's

Republic of China, 2008). As shown in Table 6, the regression

coefficients of DT in large cities and middle-sized and small cities

are −1.289 and −0.552, respectively, and both pass the significance

test at the 5% level. Comparing the two coefficients, we can find that

the regression coefficients of DT are significantly larger in large cities

than in middle-sized and small cities, indicating that DT plays a more

significant role in CO2 emission reduction in areas with high

economic density and good business conditions. The potential

reasons are that large cities have more complete Internet
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infrastructure and policy measures, the application scenarios and

usage frequency of DT is broader, and the coupling and integration of

advanced technologies with the traditional real economy is higher. At

the same time, compared with middle-sized and small cities, large-

scale cities have more sufficient funds, more advanced DT and better

talents, and the scale of digital economy is also larger, with a higher

level of agglomeration conditions and resource allocation, and the

investment and pace of digital transformation is larger, which can

more effectively enhance urban productivity and thus suppress more

CE, and the effect of reducing carbon emission intensity will be

more obvious.

What can also be found from Table 6 is that the regression

coefficient of DT in resource-based cities is −2.350 and passes the

significance test at the 5% level; in non-resource-based cities, the

regression coefficient of DT is 0.154 and does not pass the

significance test. The potential reason for this result is that the

economic development pattern of resource-based cities is mainly

characterized by factor inputs and primary processing of products,

and the industrial structure is dominated by heavy industry.

Compared with agriculture and service industries, heavy industries

are characterized by high consumption and high pollution, and the

crude economic development mode results in high CE. The popular

application of DT can accelerate the transformation, upgrading and

clean development of traditional industries such as coal, iron and

steel, cement and chemical industry, dissolve the excess capacity of

coal, and boost the low-carbon transformation and circular

development of industries in old industrial base cities (Zhang J.

et al., 2022). Industrial digital transformation can significantly

improve enterprise production efficiency and improve production

processes, optimize the combination of factor allocation, and the

marginal effect of carbon emission reduction by DT is more

significant. Meanwhile, in the Opinions on Promoting the

Sustainable Development of Resource-based Cities issued by the

State Council in 2007 (The State Council of the People's Republic of

China, 2008), governments at all levels are required to increase

support for the sustainable development of resource-based cities and

establish institutional mechanisms conducive to the sustainable

development of resource-based cities as soon as possible. Aided by

strict environmental regulations to improve the ecological

environment for the comprehensive, coordinated and sustainable

economic and social development of resource-based cities, resource-

based cities are in a better position to give full play to the role of DT

in leading demonstrations. Local governments can build an
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intelligent, precise and comprehensive management system to

shape a favorable development environment for the green

transformation of urban industries, help the regional economy

develop in a green and high-quality way, and reduce carbon

emission intensity. In addition, resource-based cities have more

room for progress in DT development and develop more rapidly,

which can accelerate the rational allocation of resource factors and

the synergistic division of labor among industries, and more easily

promote the coordinated and rational industrial structure and green

transformation of cities, improve energy efficiency and reduce

carbon emissions. The economic development of non-resource-

based cities does not depend on resource processing and energy

consumption, and the industrial structure is more inclined to

agriculture or service industry. DT has been deeply integrated with

other industries by virtue of the network incremental effect of

Merkauf’s law, and thus the marginal effect of carbon emission

reduction decays. At the same time, DT is dependent on electricity

consumption. The large-scale application of machines and network

facilities will increase the CE of the power sector.
7.2 Heterogeneity test of urban policy

Existing literatures have divided cities into different types

according to China ’s geographical location to conduct

heterogeneity test. However, this method only considers physical

geography and resource endowment, and the conclusions obtained

are not targeted enough for administrative departments or

enterprise managers to formulate management strategies, nor can

they stimulate the subjective initiative of market subjects (Yang

et al., 2022; Yi et al., 2022; Sun and Wu, 2023). The Chinese

government is firmly committed to promoting ecological

environmental protection and green development. The carbon

emission reduction role of DT may be influenced by macro-level

policy regulation, and ignoring regulatory policies for

environmental governance in China may lead to biased empirical

estimates. Therefore, this paper selects two policy regimes related to

digital infrastructure and environmental regulation, respectively, to

test the heterogeneity of DT in carbon emission reduction.

A smart city is an intelligent management and operation and

maintenance path that can be sensed, seen, measured, analyzed and

controlled based on the overall digitalization of the city, which

includes digital infrastructure such as urban networks, sensors, and
TABLE 6 Heterogeneity test of urban resource endowment.

Variables Large Cities Middle-sized and Small Cities Resource-based Cities Non-resource-based Cities

DT
−1.289**
(−3.00)

−0.552**
(−2.26)

−2.350**
(−2.92)

0.154
(0.85)

Control
variables

Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 190 2570 1130 1630
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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computing resources. This paper divides the 276 samples into two

samples based on the Assessment Report on the Development Level

of China’s Smart Cities published by the State, with a view to

assessing the heterogeneous impact of DT on CE in cities with

different degrees of development of DT facilities. As shown in

Table 7, the regression coefficient of DT in the pilot cities is −0.579

and significant at the 5% level, while in the non-pilot cities, although

DT can still reduce CE but the reduction effect is not significant.

The potential reason is that in the pilot cities of smart cities, new DT

such as big data, IoT, cloud computing, next-generation Internet,

and AI can be widely used in various digital infrastructures to

achieve cross-sectoral, cross-level, cross-regional, cross-

institutional, and cross-path network collaboration, and better

play their own impact role. It can be seen that DT development

significantly contributes to the reduction of carbon emission

intensity in smart cities, but does not effectively curb the carbon

emission intensity in non-smart cities.

The carbon pilot policy requires cities to adopt low-carbon

economy as the development model and direction, citizens to adopt

green and low-carbon living as the concept and action mode, and

government management to adopt low-carbon society as the

governance model and construction blueprint. Therefore, this

paper uses the low-carbon city pilot policy to divide the sample

in order to verify the heterogeneous effects of DT in regions with

different strengths of environmental regulation. As shown in

Table 7, the regression coefficients of DT in pilot and non-pilot

areas of low-carbon city policy are −3.058 and −0.391, respectively,

and they pass the significance tests of 1% and 10%, respectively.

Comparing the magnitudes of the two coefficients, it can be found

that the coefficients of DT in the pilot low-carbon city areas are

significantly larger than those in the non-pilot areas, even by several

times, indicating that the carbon reduction effect played by DT is

more obvious and prominent in areas with stronger environmental

regulation, verified the Potter Hypothesis. The potential reason is

that environmental regulation through digital media is more

capable of guiding the public to form a green concept, leading a

green life and mitigating urban CE. In addition, a strong external

regulatory force can apply the law of “survival of the fittest” to

enterprises. Some resource-intensive and labor-intensive

enterprises cannot afford the cost of green innovation and process

transformation in a short period of time, so they will move to other

regions or temporarily reduce their production capacity to control
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CE. Based on the pollution data provided by DT, government

departments will also discipline highly polluting enterprises by

“shutting down and closing down”. As a result, the cleanliness of

the industrial structure of the whole region will be significantly

improved with the support of DT and environmental regulations to

achieve carbon emission reduction.
8 Conclusions and policy implications

8.1 Conclusions

Peak carbon dioxide emissions and carbon neutrality an urgent

need to solve the significant problems of resource and

environmental constraints and realize sustainable development,

conform to the trend of technological progress and promote the

transformation and upgrading of economic structure, and meet the

people’s growing demand for the beautiful ecological environment

and promote the harmonious coexistence between man and nature.

DT is used in all sectors of economic and social development, and

the application and support of DT is indispensable to achieve

carbon peaking and carbon neutrality goals. In the new form of

digital economy, the green transformation of industries empowered

by DT has become the key to efficiently promote and achieve the

low-carbon emission reduction milestones (Shen and Yang, 2023).

Based on the technology diffusion theory, the article first

systematically compares the theories and mechanisms of carbon

emission reduction by DT, and then empirically tests the impact of

DT on carbon emission based on panel data of 276 cities in China

from 2011 to 2020, using a two-way fixed effects model and

instrumental variables method. Consistent with the findings of

published papers (Liu et al., 2022; Shen et al., 2023; Xu et al.,

2023), this paper found that DT significantly reduces CE in cities.

This conclusion still holds after robustness tests by replacing the

explanatory variables, eliminating endogeneity and adding omitted

variables. In the post-pandemic era, “digitalization” and “greening”

have become the main themes of global economic recovery. Digital

technology is essential in helping the global response to climate

change. Digital technology can deeply integrate with energy, power,

industry, transportation, buildings, and other key carbon emission

fields, effectively improve the use efficiency of energy and resources,

and realize the double improvement of production efficiency and
TABLE 7 Heterogeneity test of urban policy.

Variables
Smart City CE Trading System

Pilot Cities Non-pilot Cities Pilot Cities Non-pilot Cities

DT
−0.579**
(−2.46)

−0.585
(−1.52)

−3.058***
(−4.51)

−0.391*
(−2.07)

Control variables Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 1260 1500 330 2430
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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carbon efficiency. Digital is becoming an essential technological path

for China to achieve carbon neutrality. DT has highly convergent,

permeable and synergistic characteristics, and its deep integration

with the real sector can bring into play the positive externalities of

technology in reducing carbon emissions. It’s different from

published research (Yang et al., 2022; Wang and Chen, 2023), the

contribution of this study, of course, is to reveal new paths for DT to

reduce carbon emissions, especially the role of VA. In addition, the

heterogeneity of carbon emission reduction by digital technologies

revealed in this study is also helpful in ecology because it considers

the resource endowment of cities themselves rather than simply

classifying them according to geographical location. Mechanism tests

show that DT can reduce CE through mechanisms of improving

energy efficiency, promoting virtual agglomeration of industries, and

stimulating GTI of enterprises. DT is more effective in promoting

carbon emission reduction in large cities and resource-based cities,

that is, there is heterogeneity in the role of DTs in reducing CE. In

addition, the policy system is also an important factor influencing the

reduction of CE by DT. Specifically, the carbon emission reduction

role played by DT is more evident in smart cities and pilot areas of

carbon emission trading policies. Developing advanced industrial

structure is an important way to reduce environmental pollutants

(Kong et al., 2023). Specialized agglomeration and diversified

agglomeration of different industries on the Internet information

platform are conducive to giving play to the advantages of advanced

industrial structure. The unique theoretical contribution of this paper

lies in that it not only reveals that digital technology has great

potential in reducing carbon emissions and promoting sustainable

development but also innovatively brings virtual industrial

agglomeration into the path mechanism of digital technology to

reduce carbon emissions, which is helpful to enrich the theoretical

research perspective. In addition, the paper verifies the heterogeneity

of digital technology emission reduction from the perspective of

environmental regulation policy and digital infrastructure policy,

which is helpful for relevant subjects to take corresponding actions

in time to achieve carbon emission reduction. Therefore, this study is

a useful exploration under the background of a new round of

technological revolution and carbon neutrality. On the one hand,

the research conclusion of this paper expands the channels of

reducing carbon emissions by digital technology in theory, and on

the other hand, it also helps policymakers to take corresponding

actions in practice to conform to the laws of global

economic development.
8.2 Policy recommendations

(1) Improve resource allocation and seize the digital economy

dividend. Digital infrastructure has the role of early capital, and

upgrading the investment in digital infrastructure construction,

especially new infrastructure such as 5G and 6G, as well as

accelerating the improvement of digital industry-related

infrastructure, can also create a favorable environmental

atmosphere for the development of DT. Local governments

should improve Internet data exchange platforms, Internet of

Things and other network infrastructures, strengthen the
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comprehensive integration of big data mechanisms, cloud

computing and artificial intelligence, etc., deeply tap into the

Internet development space and release digital dividends.

(2) Focus on the development differences between regions and

promote the progress of lagging regions. Compared with the

“advanced” regions, some of the “backward” regions are still

relatively underdeveloped in DT and have developed relatively

late. Therefore, local communities need to learn from the

experience of DT development in “advanced regions” ,

strengthen the exchange of experience, and seize the

development opportunities brought by DT in a timely and

proactive manner. The government should build a platform for

inter-regional knowledge and technology communication,

strengthen inter-regional digital innovation exchange and

cooperation, enhance digital scale, promote green, intelligent,

coordinated and sustainable development of regional

transportation, and coordinate regional differences in DT. While

learning from the experience of DT development in “advanced

zones”, local communities should also pay close attention to the

characteristics of local development, so that DT can be better

applied to the local market and truly contribute to the economic

development of the area. Combining the regional industrial

structure and resource endowment, using DT to transform

traditional industries in an all-round and whole-chain manner,

enhancing the adaptability of the digital economy to the industrial

restructuring of cities with different industrial attributes and

resource endowment, accelerating the cultivation of new

industries and new models based on new DT, accelerating

technological progress and GTI, promoting low-carbon

technological innovation and digital transformation of resource-

based industries, and breaking the structural energy and resource

“curse” , and continuously release the vitality of digital

construction to empower urban low-carbon transformation, so

as to realize the coordinated symbiosis of digital transformation

and green development of old industrial bases and resource-

based cities.

(3) We should create a good policy environment, introduce

policies and regulations related to GTI, improve the legal and

regulatory system of green innovation technology and intellectual

property rights system, solidify the guarantee of green

development system, establish an all-round and multi-

dimensional fair competition environment and policy system,

and encourage enterprises to actively carry out GTI; meanwhile,

we can also encourage enterprises to reduce carbon tax by

introducing advanced DT and equipment. Encourage the

research and development of green, clean and low-carbon

technologies, accelerate the transformation and application of

advanced technological achievements, and cultivate new

momentum for the green and low-carbon transformation of

China ’s cities In addition, talents are also the key to

strengthening GTI, and it is necessary to cultivate a team of

green and low-carbon talents, and the construction of GTI

platforms should be encouraged, while the government should

increase the procurement of GTI products, and strengthen the

GTI achievements in industry, agriculture. At the same time, the

government should increase the procurement of GTI products
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and strengthen the wide application of GTI results in various fields

such as industry, agriculture, construction and transportation, so

as to effectively promote the development of energy saving and

emission reduction and ultimately help the low carbon

transformation of the city.
8.3 Research limitations

This study evaluated whether DT can reduce carbon emissions.

The methods used were more focused on statistical inference of

statistical models. However, economic research focuses more on the

causal relationships between economic variables. In future research,

it will be beneficial to use the list of intelligent manufacturing

demonstration enterprises and the policy of industrial intelligent

demonstration parks and use the double-difference method and

breakpoint regression to make the research conclusions more

consistent with causality. Measuring the efficiency of resource

utilization can better reflect the ecological and social values of

various essential resources (Yuan et al., 2023). In future research,

researchers should pay attention to the path mechanism of digital

technology to reduce carbon emissions and the role of digital

technology in improving carbon efficiency because it will directly

affect ecological accounts and resource liabilities. In future research,

it will be beneficial to combine econometrics with natural science

methods such as game theory, operational research, and

management science to evaluate the impacts of DT on CE from

an interdisciplinary perspective.
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Regional differences and
evolution trends of China’s
industrial green transformation

Chunyan Liu, Jun Xu* and Jun Zhao*

School of Economics and Management, Xinjiang University, Urumqi, Xinjiang, China
Green and low-carbon development is the direction of the current technological

revolution and industrial transformation, while China is still in the historical stage

of deep industrialization and has yet to completely break away from the high-

input, high-consumption, and high-emission development method, and is still

facing serious challenges in terms of improving the efficiency of resource

utilization and reducing pollution emissions. To effectively promote China’s

industrial green transformation, it is necessary to accurately grasp its

development connotations and scientifically realize the measurement of

industrial green transformation. Therefore, this paper measures the efficiency

of China’s industrial green transformation, based on the directional distance

function and the Global Malmquist-Luenberger (GML) index, to portray its

distribution dynamics, regional differences and further identify its growth

drivers. The results found that the overall efficiency of China’s industrial green

transformation has been steadily increasing, and that the regional pattern is

characterized by northwestern, northeastern, central, eastern and southwestern

regions, in that order. The Markov chain estimates show that industrial green

transformation efficiency is most likely to remain in its original state, with

probabilities of 88.31%, 63.54%, 42.86%, and 75.61% for low, medium-low,

medium-high, and high levels respectively, but also has a jump shift

characteristic, with a certain possibility of falling back from the high-efficiency

state to the low state. Dagum Gini coefficient estimation results show that

differences between groups in the five major regions are the main source of

the widening differences in the overall industrial green transformation, with the

contribution remaining at around 60%. Further research suggests that economic

growth, technological progress, foreign trade, and foreign direct investment

(FDI) may lead to a widening of the efficiency gap in industrial green

transformation, while the industrial structure and outward foreign direct

investment (OFDI) help to reduce spatial differences to some extent. Based on

the above conclusions, this paper proposes some countermeasures to promote

the overall improvement and coordinated development of China’s industrial

green transformation.

KEYWORDS

industrial green transformation, dynamic evolution, regional differences, influencing
factors, China
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1 Introduction

Environmental degradation is closely related to the productive

life of human society and directly affects the quality of economic and

social development, which, if left unchecked, will have a serious and

destructive impact on natural ecosystems and economic and social

systems (Wang andWang, 2023). Since the Industrial Revolution, the

rapid growth of the global economy has met the material needs of

humankind, and the development of the real economy, represented

by the industrial sector, has been the fundamental engine of

economic growth, but it has also left countries facing great

challenges in terms of resources and the environment. The

transformation of the original traditional extensive growth mode

has become a global consensus, and the green transformation of

industry is imperative. The Organization for Economic Cooperation

and Development (OECD, 2005) suggests that in order for industry

to achieve a green economy, it must rise to the level of “green

transformation” , which connotes the realization of the

transformation of the economy from unsustainable to sustainable

development, the transformation of the “black” or “brown” economy

to a green economy, as well as the transformation of low-quality

development to a high-quality development model. Against the

backdrop of tightening global pressure on both resources and the

environment, the United Nations has proposed the 2030 Sustainable

Development Goals, advocating that developing countries should

follow a sustainable development path and avoid the “pollute first,

treat later” development approach of developed countries.

With the reform and opening up and active integration into the

international cycle, China’s industrial system has gradually

improved and its industrial volume has expanded rapidly, making

it the world’s number one industrial and trading nation (Yang et al.,

2017; Shao et al., 2019; Wang et al., 2020a). However, a status quo

that cannot be ignored is that the share of new technology and high-

tech industrial sectors is relatively low, the economic growth drivers

are still dominated by traditional industrial sectors, and the crude

development model has not been fundamentally changed. Although

spectacular economic growth has been achieved, the long-term

expansionary use of resources has also pushed industrial

economic growth close to the boundaries of ecological

constraints, and the resource dividend is gradually being depleted

(Yao et al., 2019; Gao and Yuan, 2022a). According to the Chinese

Statistical Yearbook, industrial value added accounted for 31.0% of

total GDP in 2020 but consumed 66.1% of final energy and emitted

79.8% of sulfur dioxide and 85.1% of carbon dioxide. Under the

development trend that the green economy has become a new

engine of global economic growth and a new advantage in

international competition, China’s new industrialization process is

bound to be affected. Thus, it is urgent to accelerate the green

transformation of China’s industry (Chen et al., 2022a; Li et al.,

2018). However, most current studies only cut in from a certain

perspective to study its specific impact on industrial green

transition, such as Hou et al. (2018) examined the impact of

technological progress on industrial green transition, and Liu et

al. (2022a) examined the impact of economic growth on industrial

green transition. Yet fewer studies have examined industrial green

transformation in depth from its own perspective.
Frontiers in Ecology and Evolution 02121
To effectively promote China’s industrial green transformation,

it is necessary to accurately grasp its development connotation and

scientifically quantify the industrial green transformation.

Therefore, this paper measures the efficiency of China’s industrial

green transformation based on the directional distance function and

GML index, portrays its distribution dynamics and regional

differences in both time and space dimensions, and further

identifies its growth drivers. The main contributions of this paper

can be summarized as follows. Firstly, drawing on scholars such as

(Cheng and Zervopoulos, 2014; Gao et al., 2021), this paper

constructs a directional distance function based on a slack

measure and GML index model to measure the efficiency of

industrial green transformation, and incorporates CO2 in the

non-desired output to demonstrate China’s industrial green

transformation that takes into account the carbon attainment and

carbon neutrality targets. Secondly, considering that the traditional

three major regions may not accurately reveal the regular

characteristics of China’s industrial green transformation, this

paper combines natural, economic, and social development

characteristics to regroup China’s 30 provinces into five major

regions. Then we combine the use of kernel density estimation,

Markov chains, and Dagum Gini coefficients to paint a more

detailed picture of the evolutionary characteristics and spatial

differences of China’s industrial green transformation, providing

reference ideas for promoting the overall improvement of industrial

green transformation in each region. Thirdly, a quantile model is

used to examine the role of economic development, industrial

structure, technological progress, foreign trade, FDI, and OFDI, to

identify the key influencing factors of China’s industrial green

transformation at different levels, and then to target the potential

green values driving the industrial green transformation.

The rest of this paper is structured as follows. Section 2 reviews

the literature on industrial green transformation. Section 3

introduces the methodology and data. Section 4 presents the

measured results and evolutionary trends of industrial green

transformation. Section 5 details the regional differences in

industrial green transition and the sources of the differences.

Section 6 discusses the factors influencing the industrial green

transit ion. Final ly , Sect ion 7 draws conclusions and

policy implications.
2 Literature review

2.1 Definition of industrial
green transformation

Since the industrial revolution, the rapid growth of the global

economy has met the material needs of human beings, but it has

also left countries facing huge challenges in terms of resources and

the environment, such as the global warming problem caused by

massive greenhouse gas emissions threatening sustainable

economic development (Jordaan et al., 2017; Wang et al., 2020b),

environmental pollution seriously affecting human health (Wei

et al., 2018; Li et al., 2020), extreme weather reducing wheat

production (Elahi et al., 2021) and Water stress in agriculture
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(Razzaq et al., 2022). Given the increasing resource depletion and

environmental pollution, it has become a global consensus to

change the original traditional extensive growth mode, and a

green transformation of industry is imperative. The Organisation

for Economic Co-operation and Development (OECD) suggests

that for the industry to achieve a green economy, it must rise to the

level of a “green transition”, which includes a shift from an

unsustainable to a sustainable economy, a shift from a “black” or

“brown” economy to a green economy, and a shift from a low-

quality to a high-quality development model (OECD, 2005).

Graedel et al. (2012) believes that the green transformation of

industry connotes a shift in industrial development from crude to

intensive and from highly polluting to less polluting. Kemp and

Never (2017) state that industrial green transformation is an

industrial green production process from unsustainable to

sustainable, which is characterized by reduced environmental

impact, reduced pollution emissions, increased production

efficiency, increased resource utilization rate, and sustainable

development (Du et al., 2021). Ran et al. (2023) argue that

fundamental to China’s industrial green transformation is the

promotion of sustained improvements in industrial green total

factor productivity. Ren et al. (2022a) identify industrial green

transformation as a series of shifts based on the transformation of

the production function from one characterized by natural factor

inputs to one characterized by green factor inputs, with the

underlying growth drivers stemming from institutional change

and technological change (Mao et al., 2019).
2.2 Measurement of industrial
green transformation

The existing measurement methods can be divided into two

categories: the evaluation systemmethod and the indicator selection

method, where the indicator selection method can be divided into

single-factor indicators and total-factor indicators.

In terms of constructing the evaluation system, scholars have

used hierarchical analysis and entropy methods to fit the multi-

dimensional evaluation system to quantify industrial green

transformation. For example, Yuan et al. (2020b), Han et al.

(2020), and Gao and Yuan (2022b), based on China’s Industrial

Green Development Plan (2016–2020) and the Green Development

Indicator System, build an evaluation index system for industrial

green transformation from the aspects of industrial economic

development, resource and environmental carrying capacity, and

industrial structure optimization, etc. The advantage of the index

system is that it has a wide coverage, but the tertiary indicators are

mainly derived through subjective screening, which tends to

duplicate information (Cao et al., 2021).

In terms of single factor indicators, Mensah et al. (2019)

measure the industrial green transformation of OECD countries

from three indicators: total CO2 emissions, production-side carbon

emissions, and demand-side carbon emissions. Yu et al. (2018) and

Mao et al. (2019) quantify the greening degree of industrial

structure with the proportion of highly polluting industries. Liu

and Chen (2022) directly take the number of green patent
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applications as the proxy variable of industrial green

transformation. Such indicators visualize a particular feature of

industrial green transformation, but also ignore the quality of

economic growth and fail to capture the desirable outputs and

undesirable outputs generated by energy consumption (Cheng

et al., 2020).

In terms of total factor indicator, improving green total factor

productivity (GTFP) is an important way to achieve industrial green

transformation (Zhang et al., 2020). Since GTFP can reflect both

desired and undesired outputs and the harmony between economic

and ecological development, a large number of scholars have chosen

this indicator to measure industrial green transformation (Wu et al.,

2022; Yu et al., 2022; Zeng et al., 2023). In addition, some other

scholars believe that the root of China’s industrial green

transformation is to promote the continuous improvement of

industrial green total factor productivity through technological

innovation. Subsequently, based on this definition, many scholars

have chosen industrial green total factor productivity as an

indicator for measuring industrial green transformation. For

example, Cheng et al. (2020) use the global Malmquist-

Luenberger index to measure green total factor productivity to

analyze the green transformation in 30 Chinese provinces. Qu et al.

(2020) use NDDF and DEA methods to measure the green

transformation efficiency of manufacturing industries in China.

Tian et al. (2022) calculate the green transformation efficiency of

enterprises in heavily polluting industries in China by using super-

efficient SBM. Ran et al. (2023) measure China’s industrial green

transition using industrial green total factor productivity calculated

by the super-efficient SBM.
2.3 Influencing factors of industrial
green transformation

Domestic factors of industrial green transformation include

economic level (Gao and Yuan, 2022b; Liu et al., 2022b), industrial

structure (Lin and Wang, 2023; Lin and Xie, 2023), technological

progress (Wu and Zhang, 2020; Yan et al., 2020), and

environmental regulation (Hou et al., 2018; Guo and Yuan, 2020).

In terms of influence of the economic level, Gai et al. (2022) believe

that economic development is the direct driving force for the

efficiency of industrial green development. Chen et al. (2022b)

further find that this positive effect has a significant spatial

spillover effect. In terms of industrial structure optimization,

Yuan et al. (2020a) find that the impact of manufacturing

agglomeration on green economic efficiency shows a positive U-

shaped characteristic of first inhibiting and then promoting and

emphasize that to achieve high-quality manufacturing development

requires promoting industrial structure upgrading and reducing the

congestion effect generated by industrial agglomeration. Similarly,

Yang et al. (2023) points out that at this stage, China’s industrial

green transformation needs to focus on the efficiency and quality of

industrial development, rather than blindly pursuing quantity. In

terms of R&D investment and technological progress, Li et al.

(2019) and Fu et al. (2020) argue that the slow progress of green

technology is an important limiting factor for the improvement of
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industrial green development, and that increasing investment in

science and technology innovation and environmental protection

can effectively improve industrial green development. In terms of

environmental regulation, Zhai and An (2020) believe that it helps

to achieve industrial green transformation. However, Sun et al.

(2022) find that strict environmental regulation inhibits the

contribution of technological progress to industrial green

transformation in the eastern provinces of China. Yuan and

Xiang (2018) and Li (2019) suggest that environmental regulation

has not contributed to China’s industrial green development.

Under closed conditions, technological advancement depends

only on the domestic stock of intellectual capital, whereas under

open conditions, intellectual capital is characterized by cross-

country diffusion (Pan et al., 2020), trade openness, foreign direct

investment, and outward foreign direct investment all influence

industrial green transformation. For trade opening, some scholars

argue that trade liberalization will facilitate the spillover and

diffusion of advanced and clean technologies, helping to promote

industrial green transformation (Hao et al., 2021). For example,

Ding et al. (2022) find that trade openness has contributed to the

green transformation of Chinese industry using provincial panel

data from China. The opposing view is that trade expansion

increases production, which requires more energy to be

consumed, thus increasing pollution emissions (Xu et al., 2020).

For example, Yu et al. (2022) use cross-country panel data to find

that imports and exports contribute to green productivity in high-

income countries, but not in low-income countries. Ren et al. (2014)

find that a widening trade surplus is an important cause of increased

industrial pollution emissions in China. In terms of foreign direct

investment, Liu et al. (2022a) discuss the impact of FDI on

industrial green transformation in terms of both quantity and

quality using a provincial panel in China. They find that FDI

quality has no significant effect on industrial green transformation

and that FDI quantity inhibits industrial green transformation in

neighboring areas. Qiu et al. (2021) finds that the impact of FDI on

industrial green transformation has both pollution halo and

pollution paradise effects, and that environmental regulation and

policy guidance can weaken the negative effect of FDI. Hu et al.

(2018) develop a discussion that foreign direct investment entry has

a promoting effect on the green transformation of industrial sectors

that are greener but has a restraining effect on less green industries.

In terms of outward foreign direct investment, through cross-

border M&As and greenfield investment, OFDI not only

broadens the international market for multinational enterprises,

but also enables them to gain access to key technologies in the host

country, thus forming reverse technological spillovers, promoting

the productivity and technological innovation capacity of the home

country and influencing the high industrial green transformation

(Piperopoulos et al., 2018; Hao et al., 2020). For example, Kong et al.

(2021) find that market-seeking OFDI provides a channel for the

transfer of gradually saturated production capacity in home

countries, which in turn provides more scope for domestic

production segments to adjust to higher value-added segments,

helping to promote industrial green transformation. Zhang (2022)

believes that in the face of high environmental standards in
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developed countries, multinational companies will continue to

develop and innovate new technologies to achieve green

production to gain a more stable market share, and that the

application of R&D results in home countries will help to achieve

industrial green transformation. Peng et al. (2023) point out that

OFDI can improve the sustainable productive capacity of Chinese

industrial firms, but the impact is heterogeneous depending on the

absorptive capacity in terms of human capital, R&D intensity, and

technology gaps.
3 Methodology and data

3.1 Methodology

3.1.1 Directional distance function and GML index
Industrial green transformation should balance production

efficiency and environmental quality. It is difficult for a single

indicator to measure both factors simultaneously, while an

evaluation system built through subjectivity tends to duplicate

information (Cao et al., 2021), therefore, referring to Cheng and

Zervopoulos (2014); Gao et al. (2021), this paper quantifies

industrial green transformation using industrial green total factor

productivity measured by the DDF-GML method.

Firstly, construct an undesired output efficiency model and an

expected output efficiency model based on the DDF. According to

Chung et al. (1997), assuming that there are n DMUs, each with i

inputs x = (x1, x2,⋯, xi) ∈ R+
i , yielding j desired outputs y = (y1, y2,

⋯, yj) ∈ R+
j and m non-desired outputs b = (b1, b2,⋯, bm) ∈ R+

m,

and let the directionality vector be g = (gy , gb) and t(t = 1, 2, 3⋯,T)

represent each period, the DDF for period t is:

Dt(xt , yt , bt ; g) = sup g j(yt + g gy , b
t − g gb) ∈ Pt(xt)

� �
(1)

where xt is a vector of capital, labor, and energy inputs; yt and bt

denote the vector of desired and undesired outputs, respectively; and

g is the value of the directional distance function that maximizes

desired output and minimizes undesired output Pt(xt) is the set of

production possibilities, which includes both desired and undesired

outputs, and the undesired outputs are weakly disposable.

Secondly, propose the non-desired output efficiency model and

desired output efficiency model by specifically varying the above

directional vectors. The non-desired output efficiency model is:

s : t :

a* = mina

xl ≤ xk, yl ≥ yk, bl = abk
l ≥ 0

8>><
>>:

(2)

where a is the optimal solution of the non-desired output

efficiency model; x, y, and b denote the factor input, desired

output, and non-desired output values respectively; and c is a

vector of weight coefficients relative to the DMU being evaluated

in the effective DMU portfolio. a is the ratio of the potential

optimal non-desired output to the actual non-desired output of the

decision unit under the given conditions of factor inputs and desired
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outputs. The higher the value of a , the lower the potential for a

reduction in the undesired outputs of the DMU.

And the desired output efficiency model is:

s : t :

b* = min b

xl ≤ xk, yl ≥ (1 + b)yk, bl = bk

l ≥ 0

8>><
>>:

(3)

where b is the desired output expansion potential under the

non-desired output constraint, the higher the value of b , the greater
the desired output expansion potential of the DMU.

Finally, the GML index analysis method is used to measure the

efficiency under environmental constraints. According to Oh

(2010), the GML index from period t to t+1 is defined as:

GMLt,t+1(xt , yt , bt , xt+1, yt+1, bt+1) =
1 + DG(xt , yt , bt)

1 + DG(xt+1, yt+1, bt+1)
(4)

If industrial activities produce more desired output and less

undesired output, then GMLt,t+1> 1, indicating higher productivity

and contributing to industrial green transformation; if they produce

less desired output and more undesired output, then GMLt,t+1< 1,

indicating lower productivity and inhibiting industrial

green transformation.

3.1.2 Dagum Gini coefficient
The Dagum Gini coefficient method is used to systematically

analyze the regional differences in China’s industrial green

transformation. According to Dagum (1997), the inter-group Gini

coefficient can be calculated as Eq.(5):

Ghk =
onh

i=1onk
l=1 yhi − yklj j

nhnk(yh + yk)
(5)

where h and k are two different regions, nh and nk are the

number of provinces in each region, yhi and ykl denote the level of

industrial green transformation of province i in region h and

province l in region k, respectively, yh and yk denote the mean

value of the level of industrial green transformation of all provinces

in the corresponding region. When the two provinces involved in

the calculation are in the same region, the result is the intra-group

Gini coefficient (Ghh).

Further, assuming the existence of n provinces divided into m

regions and defining ph = nh=n, sh = nhyh=ny, the overall Dagum

Gini coefficient is calculated as follows:

G = Gw + Gnb + Gt (6)

Gw =om
h=1Ghhphsh (7)

Gnb =om
h=1ok≠hGhkphskDhk (8)

Gt =om
h=1ok≠hGhkphsk(1 − Dhk) (9)

where Gw is the total contribution of intra-regional variation to

the overall industrial green transition variation, Gnb + Gt is the total

contribution of all inter-regional variation to the overall variation;

Dhk is the relative influence of the level of industrial green transition
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between two different regions, calculated as:

Dhk =
dhk − phk
dhk + phk

(10)

dhk = ∫∞0 dFh(y)∫
y
0(y − x)dFk(x) (11)

phk = ∫∞0 dFk(y)∫
y
0(y − x)dFh(x) (12)

In the Eq.(10)–(12), dhk represents the total influence between

the industrial green transformation of region h and region k. phk is

the hypervariable first order moment between region h and region

k. Fh( · ) and Fk( · ) are the cumulative distribution functions of

industrial green transformation in region h and region k.

3.1.3 Markov chain probability transition matrix
Markov chain is a horizontal space of a stochastic process that

reflects the distribution and evolutionary trends at different types of

time and states by dividing continuous discrete values into N types.

For any period t and possible types i, j, and jk (k=0,1,…, t-2), the

Markov chain satisfies Eq.(13), from which it can be argued that the

probability of an industrial green transition efficiency being of type i

in period t+1 depends only on its type in period t.

P Xt+1 = ijXt = j,Xt−1 = j − 1,…,X0 = j0f g
= P Xt+1 = ijXt = jf g = Pji (13)

Then, the quartile method is used to divide all industrial green

transformation efficiency values in the sample period into four

levels: low, medium-low, medium-high, and high, on average

according to their magnitudes, and a dimensional probability

matrix of industrial green transformation type transfer can be

obtained through Markov chains, as in Eq.(14).

P = Pjt =

P11

P21

P31

P41

P12

P22

P32

P42

P13

P23

P33

P43

P14

P24

P34

P44

�����������

�����������
:(14)

where Pjt represents the probability that a region is of type j in

period t and shifts to type i in period t+1. The shifting probability is

calculated by using a maximum likelihood estimate, calculated as in

Eq.(15):

Pjt = kji=kj (15)

where kji represents the number of times that industrial green

transition efficiency shifted from type j to type i during the

observation period, and kj is the total number of occurrences of

type j.

3.1.4 Quantile model
The quantile regression method is more precise than OLS in

describing the effects of explanatory variables on the range of

variation in the explanatory variable and the shape of the

conditional distribution. Following the cross-sectional quantile,

Koenker (2004) proposed a panel quantile, combining the
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quantile regression method with a panel data model, further

extending the application of the quantile regression method. To

investigate the underlying causes of the spatial and temporal

evolutionary characteristics of China’s industrial green transition,

a fixed effect panel quantile model was used, following Powell

(2022), and an adaptive Monte Carlo method was selected for

estimation, with five representative quantile levels estimated: 10%,

25%, 50%, 75%, and 90%.
3.2 Data and variables

Based on data completeness and comparability, this paper

finally uses data for 30 Chinese provinces for the period 2004-

2020 from the China Industrial Statistics Yearbook, the China

Energy Statistics Yearbook, the China Environment Yearbook, the

CEADs database, the China Statistical Yearbook, and the Foreign

Direct Investment Statistics Bulletin1.

For the calculation of the industrial green transition indicator,

the industrial sectors of each Chinese province from 2003 to 2020

are used as the production decision unit. The input factors are labor,

capital, and energy. And labor input is measured using the average

number of workers employed by industrial enterprises above the

scale, capital input is measured using the average annual balance of

net fixed assets, and energy input is measured using industrial end-

use consumption. Desired output is measured using industrial sales

output. Undesired outputs include industrial emissions of sulfur

dioxide, chemical oxygen demand in wastewater, solid waste, and

carbon dioxide. Using 2003 as the base period, capital input is

deflated using the fixed asset investment price index and the desired

output is deflated using the ex-factory industrial price index, in

order to exclude price factors.

For the analysis of the factors influencing the spatial and

temporal evolution of the industrial green transition, two types of

indicators are selected. The first category is domestic factors,

including economic growth, industrial structure, and

technological progress. The second category is international

factors, including foreign trade, foreign direct investment, and

outward foreign direct investment. Specific definitions are listed

in Table 1.
4 Measurement results and
trend evolution of industrial
green transformation

4.1 Measurement results of industrial
green transformation

The results of the industrial green transition efficiency

calculations for each province in China are shown in Table 2,
1 Since the statistical caliber of Hong Kong, Macao, and Taiwan Province is

inconsistent, and the data of Xizang Province is seriously missing, this paper

selects 30 provinces in mainland China as research samples.
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based on matlab2021. From an overall perspective, the efficiency of

China’s industrial green transformation shows a steady upward

growth trend, with the national average rising from 1.0107 in 2004

to 1.2922 in 2020, an average annual increase of 1.65%, indicating

that China’s industrial green transformation has steadily advanced

and made some progress. In terms of regional comparisons, the

Northwest region has the highest industrial green transition

efficiency with an in-sample mean of 1.2559, followed by the

Northeast, Central, Eastern, and Southwest, and the Southwest

region with a mean of 1.08062. In terms of comparison of

transformation among provinces, the top three industrial green

transformation efficiency rankings in 2004 are Tianjin, Hebei, and

Guangdong, distributed in the eastern region; by 2020, the top three

are Qinghai, Beijing, and Jilin, distributed in the northwest, east and

northeast regions respectively; furthermore, Qinghai, Gansu, and

Inner Mongolia ranked the top three in terms of the annual average

of industrial green transformation efficiency, distributed in the

northwest region. The change in the ranking of the

transformation indicates that China ’s industrial green

transformation is characterized by a “geese formation” with the

eastern part leading the way and other regions following, that is, a

gradient transformation.
4.2 Trend evolution of industrial
green transformation

To further investigate more precisely the dynamic evolution of

the distribution of industrial green transformation, a kernel density

map is drawn to portray the overall shape of the efficiency of

China’s industrial green transformation. According to Figure 1, the

dynamic evolution of the distribution is characterized by three

aspects. Firstly, the distribution of industrial green transition

efficiency shifted to the right overall, indicating that industrial

green transition efficiency in each region has gradually improved.

Secondly, the height of the wave decreases, becomes flatter, and

becomes wider, indicating a gradual widening of the gap in

industrial green transformation efficiency across regions. Thirdly,

the distribution of industrial green transition efficiency extends and

widens, meaning that the gap between the extremes and the mean

within the region does not gradually narrow, with some provinces

and municipalities maintaining higher or lower industrial green

transition efficiency. The task of China’s industrial green

transformation has remained arduous, possibly because China is

in the mid-to-late stages of industrialization, with higher levels of

energy consumption due to greater resource dependence on the one

hand, and lower value added due to a lower industrial chain on

the other.

To predict the trend characteristics of China’s industrial green

transformation, the quartile method is first used to classify
2 Based on the natural, economic, and social development characteristics

of China, this paper divides China's 30 provinces into five regions, namely the

Eastern, Central, Northeast, Southwest, and Northwest. The provinces

included in each region are shown in Table 2.
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TABLE 2 Measurement results of China’s industrial green transformation.

Region Province 2004 Rank 2012 Rank 2020 Rank Annual average Rank Average growth rate

Nationwide — 1.0107 — 1.2297 — 1.2922 — 1.1775 — 1.65%

Eastern

Beijing 1.0109 17 1.1993 19 1.4239 2 1.2266 8 2.31%

Tianjin 1.0583 1 1.2310 15 1.2437 22 1.2080 11 1.08%

Hebei 1.0556 2 1.1840 22 1.2668 20 1.1458 23 1.22%

Shanghai 1.0151 15 1.1958 21 1.3288 13 1.1689 19 1.81%

Jiangsu 1.0003 22 1.1314 27 1.1520 27 1.1000 27 0.95%

Zhejiang 0.9881 25 1.0899 29 1.1115 29 1.0680 29 0.79%

Fujian 1.0408 4 1.2378 14 1.3445 9 1.2094 10 1.72%

Shandong 1.0234 12 1.2410 12 1.2052 24 1.1587 21 1.10%

Guangdong 1.0411 3 1.1584 24 1.2733 18 1.1687 20 1.35%

Hainan 1.0070 21 1.2463 11 1.3684 6 1.2001 12 2.07%

mean 1.0240 — 1.1915 — 1.2718 — 1.1654 — 1.46%

Central

Shanxi 1.0104 18 1.1619 23 1.1884 25 1.0967 28 1.09%

Anhui 1.0220 13 1.2270 16 1.2672 19 1.1835 16 1.44%

Jiangxi 1.0290 7 1.3077 6 1.3281 14 1.2354 6 1.72%

Henan 1.0083 20 1.2047 17 1.1349 28 1.1524 22 0.79%

Hubei 0.9653 29 1.2410 13 1.3133 16 1.1755 18 2.07%

Hunan 1.0400 5 1.2494 10 1.3390 10 1.2248 9 1.70%

mean 1.0125 — 1.2319 — 1.2618 — 1.1780 — 1.48%

Northeast

Liaoning 1.0307 6 1.3902 3 1.3894 4 1.2588 4 2.01%

Jilin 0.9960 24 1.3001 7 1.3941 3 1.2282 7 2.27%

Heilongjiang 1.0289 8 1.1993 20 1.3381 11 1.1782 17 1.77%

mean 1.0185 — 1.2965 — 1.3739 — 1.2217 — 2.02%

Southwest

Guangxi 0.8978 30 0.8453 30 0.8798 30 0.8540 30 -0.13%

Chongqing 1.0149 16 1.1370 26 1.1797 26 1.1001 26 1.01%

Sichuan 0.9978 23 1.1565 25 1.2744 17 1.1413 24 1.64%

Guizhou 0.9771 27 1.1055 28 1.2326 23 1.1117 25 1.56%

Yunnan 1.0250 10 1.2646 9 1.3591 8 1.1961 13 1.90%

(Continued)
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TABLE 1 Explanatory variables definitions.

Variables Symbol Definition References

economic growth lnpgdp logarithm of GDP per capita Chen et al. (2022a); Gao and Yuan (2022a)

industrial structure stru value added tertiary sector/value added secondary sector Gao and Yuan (2022b); Sun et al. (2022)

technological progress tech logarithm of the number of patent applications granted Li et al. (2021); Chen et al. (2022b)

foreign trade trade exports and imports of goods/GDP Ren et al. (2022b); Ran et al. (2023)

foreign direct investment lnfdi logarithm of foreign direct investment Gao et al. (2022b); Zhang and Wu (2021)

outward foreign direct investment lnofdi logarithm of outward foreign direct investment Mahadevan and Sun (2020); Ren et al. (2022a)
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industrial green transformation efficiency into four levels, low (L),

medium-low (ML), medium-high (MH), and high (H). And the five

regions are similarly graded. The Markov chain method is then used

to obtain a probability transfer matrix as shown in Table 3. The

results show that:

There is a general club convergence effect in China’s industrial

green transformation efficiency across the country and the five

regions, and a “low-level trap” and “high-level monopoly”

phenomenon. In the national probability transfer matrix, the

probability values on the main diagonal are greater than the

values on the non-main diagonal, and the probabilities of low,

medium-low, medium-high, and high-level provinces maintaining

their status one year after industrial green transformation are

88.31%, 63.54%, 42.86% and 75.61% respectively, indicating that

the different levels of industrial green transformation efficiency are

more stable and there is a club convergence effect. The eastern,

northeast, and northwest show club convergence in all four

categories. The central region shows club convergence in three

categories except for the high-level group. And the southwest region

only has the characteristic of club convergence in the low and

middle-low levels. In addition, the probabilities of the low-level

industrial green transformation group maintaining its status in the
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whole country and five regions are 88.31%, 90.27%, 89.66%, 76.00%,

93.94%, and 80.43%, respectively, all of which are much higher than

the probability of upward shift, indicating the existence of a “low-

level trap”. The probabilities of high-level industrial green

transformation group maintaining their status are 75.61%,

85.71%, and 81.48% for the whole country, eastern and

northwestern regions respectively, while the central, northeastern,

and southwestern regions have a lower number of high-level

industrial green transformation efficiency and a lower transfer

probability. This indicates that industrial green transformation on

the whole is characterized by a “high-level monopoly”, which

originates from the higher level of green transformation in some

provinces in the eastern and northwestern regions.

The level of industrial green transformation is characterized by

a “leapfrog” shift and a long-term growth trend, but care needs to be

taken to prevent a regression in industrial green transformation.

From the whole nation, the transfer not only occurs between

adjacent levels, but also exists a “leapfrog” transfer from low level

to medium-high level or even high level. This transfer comes from

the leap in the north-western provinces, such as Qinghai, Gansu,

and Xinjiang, which have jumped from medium to high levels

nationally. At the same time, the probabilities of shifting to the right
FIGURE 1

Kernel density map of China’s industrial green transformation.
TABLE 2 Continued

Region Province 2004 Rank 2012 Rank 2020 Rank Annual average Rank Average growth rate

mean 0.9825 — 1.1018 — 1.1851 — 1.0806 — 1.26%

Northwest

Inner Mongolia 0.9723 28 1.3629 5 1.3885 5 1.2683 3 2.40%

Shaanxi 1.0088 19 1.2037 18 1.3160 15 1.1862 14 1.79%

Gansu 1.0188 14 1.4048 2 1.3602 7 1.2693 2 1.95%

Qinghai 1.0238 11 1.5406 1 1.7785 1 1.3803 1 3.75%

Ningxia 0.9864 26 1.2869 8 1.2558 21 1.1838 15 1.62%

Xinjiang 1.0277 9 1.3866 4 1.3310 12 1.2476 5 1.74%

mean 1.0063 — 1.3642 — 1.4050 — 1.2559 — 2.25%
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of the main diagonal are greater than the probability of shifting to

the left, implying a long-term growth trend in industrial green

transformation. Further, the probabilities of upward transfer after

one year are 11.69%, 22.92%, and 31.43% for low, medium-low and

medium-high levels respectively, which shows that the probability

of upward transfer of China’s industrial green transformation

increases after crossing the low level. While the probabilities of

downward transfer after one year are 13.54%, 25.71%, and 24.39%

for medium-low, medium-high, and high levels respectively. This

indicates that there is a certain risk that the level of China’s

industrial green transformation will fall and may drop from a

high level to a medium-low level in a “precipitous” manner.

Therefore, all provinces should be alert to the risk of a downward

transfer, prevent a reversal of industrial green transformation, keep

the existing development results solid and strive to achieve an

upward transfer. From the perspective of the five regions, the

eastern, central, and southwestern regions do not have

the characteristics of “leapfrog” transfer. In the northeast, the

probability of downward transfer is higher than the probability of

upward transfer, while the opposite is true in the northwest.
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5 Regional difference analysis of
industrial green transformation

5.1 Overall variation

In order to more intuitively grasp the regional differences, the

Dagum Gini coefficient analysis method is used to calculate and

decompose the overall variation of China’s industrial green

transformation from 2004 to 2020. As can be seen from the line

graph presented in Figure 2, the overall variation in China’s

industrial green transformation over the sample period shows an

upward trend. Specifically, the overall variation of the industrial

green transformation is only 0.0155 in 2004, and after reaching its

first peak in 2011, it has remained high, showing a fluctuating and

rising “W”-shaped trend. By 2020, the overall variation is 0.0538, an

increase of 2.47 times, indicating that the gap in China’s industrial

green transformation among the provinces is widening. The bar

chart shows the decomposition of the overall difference in China’s

industrial green transformation. It can be seen from the changing

trend that the between-group variation accounts for a relatively
TABLE 3 Markov probability transfer matrix of China’s industrial green transformation.

Region t/t+1 L LM MH H

Nationwide

L 0.8831 0.1006 0.0032 0.0130

ML 0.1354 0.6354 0.1979 0.0313

MH 0.0000 0.2571 0.4286 0.3143

H 0.0000 0.0488 0.1951 0.7561

Eastern

L 0.9027 0.0973 0.0000 0.0000

ML 0.1212 0.7273 0.1515 0.0000

MH 0.0000 0.1429 0.4286 0.4286

H 0.0000 0.0000 0.1429 0.8571

Central

L 0.8966 0.1034 0.0000 0.0000

ML 0.0800 0.6800 0.2400 0.0000

MH 0.0000 0.2727 0.5455 0.1818

H 0.0000 0.0000 1.0000 0.0000

Northeast

L 0.7600 0.2400 0.0000 0.0000

ML 0.2727 0.2727 0.3636 0.0909

MH 0.0000 0.2500 0.3750 0.3750

H 0.0000 0.0000 0.5000 0.5000

Southwest

L 0.9394 0.0606 0.0000 0.0000

ML 0.0833 0.8333 0.0833 0.0000

MH 0.0000 0.0000 0.0000 1.0000

H 0.0000 0.0000 0.0000 1.0000

Northwest

L 0.8043 0.0870 0.0217 0.0870

ML 0.2000 0.4667 0.2000 0.1333

MH 0.0000 0.3750 0.3750 0.2500

H 0.0000 0.0741 0.1111 0.8148
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high proportion, suggesting that the change of the overall variation

may depend more on between-group variation. The intra-group

variation remained essentially at the same level, indicating a small

variation within the region. And the supervariable density function

tends to decline after a “W” pattern of “gentle decline–rapid upward

movement–gentle downward movement”, indicating that the

overlap between regions has less impact on the overall variation.

Comparing the development of the contribution rates of the three

variations, although the percentages of the three have shown a

tendency to change over the sample period, the contribution rate of

between-group variation to the overall variation has always

remained around 60%, except for a few years, which exceeds the

total contribution rate of within-group variation and supervariable

density, thus indicating that the spatial differences in the level of

China’s industrial green transformation mainly come from the

differences among the five regions, and how to narrow the

transformation gap among regions is a key direction for future

efforts. This result is similar to the findings of Zhang et al. (2022).

They concluded that the key to improving industrial

competitiveness in China is also to reduce inter-regional differences.
5.2 Within-group variation

There is regional heterogeneity in the upward trend of variation

within the five regions. As shown in Table 4, in general, the within-

group differences all exhibit a fluctuating upward trend of variation.

The largest increase in intra-group variation is observed in the

northwest, followed by the eastern, southwest, and central regions,

with the smallest increase in the northeast. In terms of values, the
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intra-group variation in the southwest is consistently the largest

among the five regions, indicating a high degree of imbalance in

Southwest provinces’ industrial green transformation. For example,

Yunnan’s industrial green transformation efficiency in 2020 is

1.3591, while Guangxi in the same year is only 0.8798, a large gap

between the two. The northwest ranks second, but unlike the

southwest, the intra-group variation in the northwest has

undergone an upward trend from low to high, especially since

2018, evolving in a “sharp upward” trend. Besides, the differences

within the northeast region are relatively small, compared with the

eastern and central regions. It may be that the provinces and cities

in the eastern and central regions show a “wild goose mode” of

industrial development, with both “star” provinces and relatively

“mediocre” provinces. While the three provinces in the northeast

have the same industrial base, are closely linked and have a faster

technology transfer. This comparison shows that attention should

be paid to the coordinated development within the eastern and

central regions.
5.3 Between-group variation

Figure 3 plots the Between-group variation in industrial green

transformation among the five regions. In terms of the overall trend,

the gradual increase in the shaded area in the figure indicates that

the level of industrial green transformation among China’s five

regions is differentiated, with some provinces able to rapidly

advance their industrial green transformation in terms of both

optimizing industrial structure and fostering or introducing new

technologies for green production, while other regions are

constrained by the historical baggage of slow progress. In terms

of differences between regions, the differences between the eastern,

central, and northeast are small, with the difference between the

eastern and central is the lowest in the full sample, with a mean

value of 0.0300. Large values of differences are all derived from the

southwest and other regions. For example, the difference between

the southwest and northwest has the largest value in the sample

period, with a mean of 0.0758, twice as large as the difference

between the eastern and central. In terms of time-varying trends in

inter-regional differences, the most significant increases in

differences between the northwest and other regions, such as

10.28%, 9.92%, and 9.64% between central and northwest,

southwest and northwest, and eastern and northwest, respectively,

ranked among the top three increases in differences

between regions.
TABLE 4 Estimations of within-group variation.

Region Mean Gini coefficient 2004 2008 2012 2016 2020 Average growth rate

eastern 0.0268 0.0126 0.0228 0.0228 0.0318 0.0415 7.76%

central 0.0271 0.0123 0.0284 0.0198 0.0366 0.0327 6.32%

northeast 0.0206 0.0076 0.0129 0.0327 0.0332 0.0091 1.12%

southwest 0.0556 0.0238 0.0581 0.0646 0.0541 0.0711 7.08%

northwest 0.0311 0.0110 0.0188 0.0420 0.0365 0.0566 10.77%
FIGURE 2

Evolution of the overall Gini coefficient and its decomposition.
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6 Analysis of factors affecting
industrial green transformation

For investigating the deep-seated reasons for the spatial-

temporal evolution characteristics of China’s industrial green

transformation, the results were examined with the help of a

quantile model, as shown in Table 5.
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In terms of domestic factors, the estimated coefficients of

lnpgdp, stru, and tech are significantly positive in all quartiles,

indicating that economic development, industrial structure

optimization, and technological progress significantly improve

industrial green transformation efficiency. However, the

manifestations of the improving effect are different. The

coefficient of lnpgdp is positive at all quantile levels and shows an
TABLE 5 Estimations of quantile models.

Variable Q10 Q25 Q50 Q75 Q90

lnpgdp 0.0703*** 0.0747*** 0.0735*** 0.1038*** 0.1369***

(0.0016) (0.0131) (0.0027) (0.0004) (0.0127)

stru 0.0074*** 0.0148*** 0.0294*** 0.0105*** 0.0196**

(0.0021) (0.0016) (0.0005) (0.0004) (0.0097)

tech 0.0214*** 0.0312*** 0.0352*** 0.0310*** 0.0084**

(0.0011) (0.0011) (0.0003) (0.0005) (0.0039)

trade -0.0303*** -0.0228*** -0.0442*** -0.0491*** -0.0816***

(0.0045) (0.0018) (0.0006) (0.0007) (0.0080)

lnfdi -0.0581*** -0.0574*** -0.0498*** -0.0571*** -0.0424***

(0.0013) (0.0030) (0.0002) (0.0004) (0.0063)

lnodis 0.0266*** 0.0160*** 0.0102*** 0.0163*** 0.0161***

(0.0008) (0.0017) (0.0004) (0.0003) (0.0032)

fixed effect Y Y Y Y Y

obs 510 510 510 510 510
*p<0.1, **p<0.05, and ***p<0.01.
B C

D E

A

FIGURE 3

Between-group variation in the year 2004 (A), 2008 (B), 2012 (C), 2016 (D) and 2020 (E).
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increasing trend as the quantile level increases, implying that

economic development contributes more significantly to

provinces with more efficient industrial green transformation.

The coefficient of stru undergoes an “inverted U-shaped” process

of change, which means that there is an optimal interval for the

promotion of industrial green transformation by adjusting the ratio

of the third sector to the second sector. And the promotion of

industrial green transformation by industrial structure is more

obvious when the efficiency of industrial green transformation is

at an intermediate level. The magnitude of the coefficient of tech is

second only to lnpgdp, indicating that technological progress is an

important driver of industrial green transformation, but the value of

the coefficient falls back at the 90 percentiles, probably because the

contribution of science and technology carried by the number of

patents granted gradually falls back when the green transformation

of industry is more efficient. At this time, more attention should be

paid to the development and application of green technology. As

found by Qing et al. (2022), proactive green innovation, including

process innovation and product innovation, has a significant

positive effect on improving corporate earnings.

In terms of international factors, the estimated coefficients of

trade and lnfdi are significantly negative at all quartiles, and the

coefficient of lnofdi is significantly positive, indicating that foreign

trade and foreign direct investment inhibit China’s industrial green

transformation, while outward foreign direct investment promotes

it. Specifically, the coefficient of trade is at a low level until the 75

percentiles, but the inhibiting effect increases significantly at the 90

percentiles. The possible reason is that China used to be in a low

position in the international division of labor system, which to some

extent led to the restructuring of import and export trade inhibiting

the green transformation of industry. The magnitude of the

coefficient of lnfdi gradually decreases with the quantile, probably

because foreign investors have transferred some highly polluting

enterprises to China, but as the efficiency of China’s industrial green

transformation continues to increase, such enterprises gradually

increase their green output under the influence of competitive

effects, reducing the inhibiting effect on industrial green

transformation. Unlike the other two factors, the estimated

coefficient of lnofdi is positive at all quartiles, contributing to the

industrial green transformation and showing a “U-shaped” change

characteristic of first decreasing and then increasing.
7 Conclusion and policy implications

Industrial green transformation is an important element in

achieving Chinese-style modernization and has attracted extensive

attention from scholars, but a review of the literature reveals a

relative lack of research on the evolution of trends, regional

differences, and causes. Therefore, this paper uses China’s provincial

panel data from 2004-2020 to measure the efficiency of industrial green

transformation adopting the directional distance function and the

GML index and carries out systematic verification and analysis based

on kernel density estimation, Markov chain analysis, the Dagum Gini

coefficient, and the quantile model. The following main findings are

obtained: (1) From the measurement results, the efficiency of China’s
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industrial green transformation has steadily increased over the sample

period, showing a decreasing distribution of the northwest, northeast,

central, eastern, and southwest in that order. The northwestern and

northeastern provinces have the highest annual average value increase,

making the top three provinces shift from being exclusively shared by

the east to being shared by the northwest, east and northeast. (2) From

the distribution characteristics, the industrial green transformation

efficiency shows the characteristics of “ transformation efficiency

increasing and absolute difference expanding”. In addition, there is a

“low-level trap” and a “high-level monopoly” in China’s industrial

green transformation, and it is most likely to remain in its original state,

but it also has the characteristic of “jumping” transfer. There is also a

certain risk that the industrial green transition will fall in rank,

especially if the medium-high rank is reduced to a medium-low

rank. (3) From the regional differences, the overall Gini coefficient

shows a fluctuating upward “W” trend, highlighting the widening gap

in industrial green transformation efficiency among provinces. The

decomposed results show that the differences are mainly between

groups that is, the differences between the five regions, and the intra-

group differences are also increasing. (4) From the influencing factors,

the absolute values of the estimated coefficients of economic growth,

technological progress, foreign trade, and FDI expand as the quantile

point increases, suggesting that the factors above may pull the

industrial green transformation efficiency to achieve rapid

improvement (reduction) in higher level provinces, while relatively

slow improvement (reduction) in lower level provinces, thus leading to

the expansion of overall spatial differences to a certain extent. The

estimated coefficients of industrial structure and OFDI help to narrow

the spatial differences.

According to the research conclusion, we obtain the following

policy implications: (1) we should face up to the shortcomings in

the process of industrial green transformation and prevent the

efficiency of industrial green transformation from “backtracking”.

Provinces should focus on the relationship between “quantity” and

“quality” in the process of promoting industrial green

transformation, as the two are not separate. In particular, for

provinces locked in low levels of transformation efficiency and at

risk of declining grades, it is all the more important to achieve a

significant improvement in quality while maintaining quantitative

growth. (2) Pay attention to regional differences in the process of

industrial green transformation, especially the development

differences among the five major regions. In the process of

building a unified domestic market, exchanges and cooperation

between regions should be further strengthened, resources should

be rationally allocated, a synergy of industrial green transformation

should be formed, and regional development imbalances should be

prevented from further widening. Although the efficiency of

industrial green transformation has increased fastest in the

northwest, the eastern provinces have strong economic strength

and always have a leading edge, so the eastern region needs to take

on more tasks of tackling cutting-edge technologies and the cost of

pilot tolerance. The southwest region, on the other hand, has the

lowest efficiency of transformation, so the priority is to improve the

efficiency of transformation by learning from successful

transformation experiences. (3) Make full use of both domestic

and international markets and resources to promote industrial
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green transformation. Based on the identification of key influencing

factors at different sub-levels of industrial green transformation, will

help provinces to introduce policies to promote industrial green

transformation according to the characteristics of the region. For

provinces with a higher industrial green transformation efficiency,

they can increase investment in green technology research and

development and adjust their industrial structure, which will not

only help them realize their industrial green transformation, but

also generate spillover effects and play a leading role. For provinces

and cities with a lower efficiency rating, they can develop their

economies and raise their GDP per capita, and in addition, they can

increase OFDI, which will help accelerate the industrial green

transformation to a higher value.

Although this paper discusses the evolutionary characteristics

and influencing factors of China’s industrial green transformation,

there are still some limitations that deserve further study. Firstly, this

paper uses kernel density estimation, Markov chain method and

Dagum Gini coefficient to demonstrate the evolution trend, transfer

probability and regional differences of China’s industrial green

transformation, but neglects the convergence analysis between

regions, which is worthy of further discussion. And in the future, it

can be combined with the measure of spatial convergence to examine

the convergence of industrial green transformation under the

condition of spatial interconnection. In addition, this paper

analyzes China’s industrial green transformation only at the

regional level, however, China has many industrial sub-divisions,

which can be classified as labor-intensive, capital-intensive, and

technology-intensive, so further attention can be paid to the green

transformation of different types of industrial sectors in the future.
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Introduction: With the rapid development of digital technology and its deep

integration with the engineering and construction field, digital construction has

become an effective way for low-carbon transformation in the construction

industry. However, there is a gap of empirical research between digital

construction and carbon emissions.

Methods: This paper empirically investigates the impact of digital construction

level on carbon emission intensity and the mechanism of action by using the

two-way fixed effects model and mechanism testing based on the panel data of

52 Shanghai and Shenzhen A-share listed companies in China’s construction

industry from 2015 to 2021.

Results: The findings indicate that the improvement of digital construction level

can significantly decrease the carbon emission intensity of construction

enterprises, and the conclusions still hold after robustness tests and

discussions on endogeneity issues such as replacing core explanatory

variables, replacing models, using instrumental variables method, system GMM

model and difference in differences model. According to a mechanism analysis,

digital construction can curb carbon emission intensity by enhancing the R&D

innovation capacity and total factor productivity of enterprises. Furthermore, the

heterogeneity analysis shows that the improvement of digital construction level

in state-owned enterprises as well as civil engineering construction enterprises

can better contribute to reducing carbon emission intensity.

Discussion: This paper will provide a reference for the synergistic optimization of

digital construction development and carbon emissions reduction in

construction enterprises. The research conclusions are going to promote the

digital transformation of the construction industry to accelerate the achievement

of the carbon peaking and carbon neutrality goals.

KEYWORDS

construction enterprises, digital construction, carbon emission reduction, R&D
innovation capability, total factor productivity
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1 Introduction

Since the industrial revolution, carbon dioxide (CO2) emissions

have proliferated, and the global climate has gradually warmed

because of the massive global consumption of fossil energy. The

Paris Agreement, signed by 175 countries in 2016, aimed to limit

global warming far below 2°C, ideally to 1.5°C, relative to pre-

industrial levels (Hu et al., 2023). As a major carbon-emitting

country, China attaches great importance to achieving peak

carbon and carbon neutrality. The Chinese government’s high

sense of responsibility and determination to achieve high-quality

development is reflected in the pledge made by Chinese leaders to

achieve China’s carbon peak and carbon neutral “3060 goals”, as

well as in the Chinese Government Report in 2023, which

mentioned “working toward the targets of peak carbon emissions

and carbon neutrality with well-conceived and systematic steps”.

The construction industry is a pillar industry of China’s

national economy, with a gross output value of 31.2 trillion

dollars and an added value of 8.3 trillion dollars, accounting for

6.9% of GDP, which has made a great contribution to the high-

quality development of China’s economy in 2022. However, the

traditional construction industry also has the following factors and

characteristics that constrain its high-quality development: first, as

an energy-intensive industry, it suffers from high resource

consumption and serious energy wastage; second, it has a poor

construction environment, more problems with building quality,

and the industry suffers from low productivity and high labor costs;

and third, it has a slow process of industrialization of the

construction industry, with a low degree of application of

informatization and digitization of the construction process. As a

consequence, the building sector has become one of the top three

industries in terms of global CO2 emissions (Chen et al., 2020). The

2022 China Building Energy Consumption and CO2 Emissions

Research Report shows that the proportion of the total life-cycle

carbon emissions of buildings in the country is 50.9% in 2020. At

the same time, the building sector also has the most significant

potential for energy savings, with urban commercial buildings

contributing 45% by 2050 and urban residential buildings

contributing 49% (Zhou et al., 2018). Consequently, how to

promote the carbon emission reduction of the construction

industry and then put forward corresponding strategic

suggestions is an urgent problem to be solved to achieve the “dual

carbon” goal of China’s construction industry.

Meanwhile, a new generation of information technology is featured

by digitalization, networking and intelligence to the subversive changes

brought to the manufacturing industry, which triggered the industrial

transformation is gradually affecting the traditional construction

industry. However, unlike the manufacturing industry, the digital

transformation of the construction industry has its own characteristics

such as the manufacturing industry can usually manufacture products

in the assembly line, the production tools are relatively fixed, while the

location of the building in the construction industry is unchanged, the

construction tools have a greater dynamic (Ding, 2020). In addition, the

digitalization of the construction industry is also characterized by the

following features: informatization and intelligence of the entire

construction lifecycle supported by engineering software, enhanced
Frontiers in Ecology and Evolution 02136
upstream and downstream collaboration and information sharing in

the construction supply chain, timely completion of key project

milestones, and control of project costs and reduction of exceeding

the project budget (Yilmaz et al., 2023). “A Program for the Overall

Layout of China’s Digital Development” pointed out that the

construction of digital China is an essential engine for promoting the

Chinese path to modernization in the digital era in February 2023, and

digital construction is an essential portion of the realization of digital

China construction, which will effectively solve the pain points of the

traditional building industry such as extensive production methods, low

production efficiency, and large resource consumption. At the same

time, the “Digital Building DevelopmentWhite Paper” published by the

China Academy of Information and Communications Technology

(CAICT, 2022) proposed that the global building digitization market

size was about $9.8 billion in 2019. It is predicted to reach $29.1 billion

by 2027, with a CAGR of 18.2%, which is in a rapid growth trend. It can

be seen that the combination of engineering construction and digital

technologies such as machine learning, building information modeling

(BIM), blockchain, and big data will become a novel power for the

transformation and high-quali ty development of the

construction industry.

Construction enterprises play a crucial role in the use of digital

construction technology and the realization of carbon emission

intensity reduction as the carrier of digital construction technology

implementation and the micro-unit to realize carbon peaking and

carbon neutrality goals of the construction industry. From the

existing literature, the carbon emission decrease effect of digital

construction technology has sparked the interest of the academic

community. It has been shown that Building 4.0 can improve

productivity and economic efficiency (Forcael et al., 2020),

promote technological progress and technological innovation, and

enhance sustainability in the construction industry through new

technologies and processes (Baduge et al., 2022). The overall green

building analysis capability of BIM facilitates the design of

sustainable buildings and the rational selection of materials (Liu

et al., 2022b), and automation and robotics in intelligent

construction help minimize waste in construction, providing the

construction industry with opportunities to improve accuracy, keep

project costs down and reduce waste, resulting in enabling efficient

use of resources and reducing carbon emissions (Adepoju et al.,

2022). In the articles above, instead of fully testing the impact of

digital construction at a comprehensive level on CO2 emissions and

mechanism, the scholars have only analyzed the impact of carbon

emission with a few specific digital construction technologies.

In this context, this study aims to respond to the following

questions: Can digital construction effectually reduce the CO2

emissions of construction enterprises? If digital construction can

empower construction enterprises to reduce carbon emissions, what

is its mechanism of action? What actions should be taken by

relevant government departments and construction companies to

promote the synergistic development of digital construction and

carbon emission reduction?

Accordingly, the research objectives of this paper are as follows:
(1) Focusing on the construction industry, this research

measures the digital construction level index scientifically
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and comprehensively and analyzes the impact of the digital

construction level on the carbon emission of construction

enterprises from the micro-enterprise level.

(2) We systematically analyze the micro-internal mechanism

of digital construction affecting the carbon emission

intensity of enterprises and examine the heterogeneity of

the level of digital construction on carbon emission

reduction in terms of the nature of business and the sub-

industry types to which it belongs.

(3) We propose corresponding policy recommendations based

on the theoretical analysis and empirical test results.
As a consequence, from the perspective of micro-enterprises,

this paper innovatively measures the digital construction level index

using the entropy weight method from the input, governance, and

output dimensions of digital construction and empirically tests the

influence of digital construction level on the carbon emission

intensity of enterprises and its mechanism of action based on a

sample of 52 listed companies in the construction industry from

2015–2021. The results of the study provide a theoretical basis for

government departments to formulate leading policies on digital

construction technology and carbon emission reduction policies in

the construction industry and offer a reference for carbon emission

reduction management decisions of construction enterprises.

The remainder of the paper is laid out as follows. Section 2 is a

literature review. Section 3 presents the research hypotheses. The

materials and methods are presented in Section 4. Section 5

discusses the empirical findings. Section 6 consists of conclusions

and policy recommendations.
2 Literature review

A number of scholars have studied digital technology and its

development extensively, with the tremendous changes it has

produced in human production and lifestyle as well as the

important role it plays in helping the global process of combating

climate change. According to the research theme of this paper, the

literature involved is mainly reviewed from the following three

aspects: the first is the application of digital technology in the area of

engineering construction, that is, the related research of digital

construction, the second is the research related to building carbon

emissions, and the third is the study on the influence of digital

technology on carbon emissions.
2.1 Related research of digital construction

Disruptive digital technologies have driven the evolutionary

adaptation of the construction industry through historical socio-

technical processes (Woodhead et al., 2018). Digital construction is

a new engineering construction mode that uses digital technology

for architectural design, construction and operation under the

background of a new round of scientific and technological

revolution (Ding, 2020). Similarly, some scholars have drawn

analogies to the theory of Industry 4.0, where the increasing
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automation of manufacturing environments and the creation of

digital value chains derive the concept of Construction 4.0 (Craveiro

et al., 2019), which can then be called a new era for construction

(Chen et al., 2022). Construction 4.0 will contribute to the

transformation of the construction industry into a technologically

innovative industry and align it with manufacturing in terms of

productivity and performance improvement (Oesterreich and

Teuteberg, 2016). In view of this, scholars have conducted

extensive research on how to apply digital construction

technologies. Dou et al. (2023) summarized and analyzed the

overall application of the top ten emerging digital technologies in

the architecture, engineering and construction sectors from 2011 to

2020, including BIM, radio frequency identification, 3D printing,

big data, digital twins, blockchain, IoT, virtual reality and artificial

intelligence. Zhang et al. (2022) proposed a digital twin framework

for building site monitoring by combining the multiple levels of

detail of BIM, which can enhance the process monitoring of

construction sites, improve quality, efficiency and construction

safety, as well as the integration of digital twin and BIM can also

support the implementation of net-zero carbon buildings (Shen

et al., 2022). Regarding the future trend of digital construction,

efficient construction, value-driven computational design and user-

driven built environments are emerging visions for digital

transformation in the building industry (Ernstsen et al., 2021).
2.2 Research related to building
carbon emissions

The current research on building carbon emissions involves the

calculation of carbon emissions and the path to achieve carbon

reduction and carbon neutrality related to this study. Regarding the

accounting of carbon emissions, at the macro level, one method is to

adopt the carbon emission factor method proposed by IPCC in 1996

to measure the national carbon emissions from the construction

industry (Chi et al., 2021); the other is to apply the input–output

model (Leontief, 1970) and combine it with the LCA method to

measure the carbon emissions of the construction industry (Onat

et al., 2014). In contrast, there is no systematic methodology at the

micro-firm level, which is mainly obtained directly through ESG

reports etc., or estimated with the help of firm and industry main

operating cost (Chapple et al., 2013). Furthermore, scholars have

analyzed the building life cycle and emission reduction measures at

various stages in the path to achieving carbon emissions reduction in

buildings. Du et al. (2023b) pointed out that reasonable profit

distribution based on carbon emission reduction is crucial to

promote the implementation of low-carbon initiatives by

construction supply chain firms. Zhang et al. (2019) developed the

China Building Construction Model (CBCM) based on the

production and transportation of building materials and on-site

construction processes, indicating that it may be possible to reduce

future carbon emissions associated with the building construction

sector with the promotion of new low-carbon building structures and

the improvement of productivity. Li et al. (2022) assessed the changes

in carbon emission reductions from commercial building operations

in various provinces of China, which provides a reference for local
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governments and other economies to improve energy efficiency

during the operation phase. In addition, it can promote carbon

reduction in the construction industry by rationally managing the

construction waste generated in the construction process during the

building demolition phase and utilizing this resource (Liu

et al., 2023a).
2.3 Research on the impact of digital
technology on carbon emissions

At present, numerous studies have been undertaken to explore

the influence of the digital economy or digitalization on CO2

emissions, and digital technology can provide digital and intelligent

technical means for the green development of society, contributing to

promoting the decrease of overall energy consumption and CO2

emissions in society (CAICT, 2021). Some scholars have studied the

correlation between the digital economy and carbon emissions in

various cities in China and found that the growth of the digital

economy can decrease urban CO2 emissions (Yu et al., 2022) through

strengthening environmental supervision and promoting green

innovation (Pan et al., 2023), while positively influencing carbon

emission reduction by exerting a “spillover effect” on neighboring

cities (Liu et al., 2022a). Lu (2018) found that information and

communication technologies significantly curbed CO2 emissions

based on a sample of 12 Asian nations from 1993 to 2013. Danish

(2019) also came to the same conclusion using data from 59 nations

along the Belt and Road from 1990 to 2016. However, other

academics contend that as digital technology depends on energy

(Yang et al., 2022), using electricity will intensify the extraction and

consumption of resources, resulting in more carbon emissions, but it

will gradually suppress CO2 emissions with the deepening of the use

of digital technology, displaying a nonlinear connection with an

inverted U shape (Li et al., 2021; Miu et al., 2022). For example, Li

et al. (2023b) found that the coefficient of the influence of the digital

economy on 3E (energy–environment–economy) efficiency changed

from negative to positive when per capita GDP exceeded the

threshold based on data from 24 EU nations from 2011 to 2019,

illustrating that as the continuous maturity of the digital economy,

the sustainability of economic growth progressively rose and the

energy intensity decreased step by step.

Further focusing on the micro-enterprise level research

perspective, Shang et al. (2023) took listed companies in China

from 2012 to 2020 as a sample, and revealed that company digital

transformation can dramatically lower enterprise carbon emission

intensity by enhancing internal control abilities and technological

innovation capability. In addition, other scholars have discovered

that enterprise digital transformation can also decrease corporate

CO2 emissions by improving energy utilization efficiency (Yang

et al., 2023), resource allocation capacity (Chen and Kim, 2023),

green innovation capability (Liu et al., 2023c) and other factors.
2.4 Comment on the research literature

In conclusion, it can be found that domestic and international

scholars have achieved stage-by-stage results in the research related
Frontiers in Ecology and Evolution 04138
to digital construction and carbon emission in the construction field

based on the organization and review of domestic and international

literature. However, some problems still need to be solved:
(1) The study on the impact of digital technology on CO2

emissions is mostly concentrated at the macro level of

countries, regions and industries, but there are fewer

studies at the micro-enterprise level. Especially for

construction enterprises, existing studies mainly focus on

the specific application of digital construction technology to

the various stages of the building life cycle, but few studies

have measured the comprehensive level of digital

construction of construction enterprises; therefore, there

are fewer empirical studies on the impact on carbon

emissions of enterprises.

(2) In the path of building carbon emission reduction, scholars

primarily analyze emission reduction measures based on

the industry level in the building life cycle and its various

stages, in which digital construction provides new

opportunities for low-carbon transformation for

construction enterprises. However, the current research

only stays in the stage of qualitative analysis, and few

researches have systematically analyzed and explored the

intrinsic mechanism of carbon emission reduction of

construction enterprises by digital construction through

empirical tests.
In view of the gaps and deviations of the above studies, this

study draws on the way scholars measure the digital economy or

enterprise digitization and combines the digital characteristics of

engineering construction itself, to construct the digital construction

level index of construction enterprises from a brand-new

dimension. Then, we study its impact on corporate carbon

emission reduction and the internal mechanism from both

theoretical and empirical perspectives.
3 Theoretical analysis and
research hypotheses

3.1 Digital construction and
carbon emissions

As an emerging construction mode in the construction

industry, digital construction provides new strategic opportunities

and scientific and technological support for the low-carbon

transformation of the construction industry (Wang et al., 2023a),

and promotes the carbon emission reduction of construction

enterprises from the following aspects. To begin with, the

application of digital construction technology can achieve real-

time collection, monitoring, transmission and analysis of energy

data and guide energy factors to realize efficient allocation (Yao

et al., 2023); at the same time, according to the theory of supply and

demand, it can also effectively promote the coordination of the

supply and demand side of production factors in construction

enterprises, so that enterprises can achieve higher energy
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efficiency under the same conditions (Veskioja et al., 2022; Zhao

and Ren, 2023) to promote carbon emission reduction.

Furthermore, in accordance with the project management life

cycle theory (Ma et al., 2018), the carbon emission reduction

empowered by digital construction technology is also reflected in

the use of digital elements by enterprises to strengthen the control

of the whole life cycle process of construction. In the project design

stage, construction enterprises can virtualize the construction

process by using construction virtual prototype technology and

mixed reality technology, which aims to provide visual means for

carbon emission prediction and minimization of construction

projects so as to find methods to decrease carbon emissions by

taking preventive or corrective measures before the project starts

(Wong et al., 2013). During the construction phase, the materials

used in the use of 3D concrete printing technology can emit 80%

less CO2 than the production of traditional concrete materials

(Nematollahi et al., 2018). In the construction operation and

management phase, companies generate fewer carbon emissions

in future construction activities by applying industrial IoT to collect

past data from the construction process and using digital twin

architecture to monitor real-time architectural situations (Shen

et al., 2022) to compose models and predict their future behavior

(Metallidou et al., 2022). Finally, the application of digital

construction technology can enhance the ability of information

interaction and sharing within enterprises, such as the use of data

creation and sharing, cross-temporal information dissemination

and other channels to transmit, flow green emission reduction

technology and other aspects of information (Lyu et al., 2023), for

the purpose of reducing unnecessary activities, in addition, big data

technology can offer data support for enterprise carbon emission

reduction by improving the integration of data information such as

energy input structure and CO2 emissions (Zhang et al., 2021).

Based on the above, a hypothetical H1 is proposed.

H1: The development of digital construction level can

contribute to the reduction of carbon emission intensity

of enterprises.
3.2 Digital construction, enterprise
R&D innovation capability and
carbon emissions

For the construction industry, the process of integrating

traditional engineering construction activities with digital

technology is an innovative activity (Ding, 2020), such as China

State Construction Engineering Corporation Limited established

the first China National Digital Construction Technology

Innovation Center and independently developed AECMate

domestic 3D engineering image software. On the one hand,

digital innovation theory holds that firms will invest more in

innovation activities among themselves in order to make better

products in the digital economy (Wen et al., 2022a; Wen et al.,

2022b). In order to implement innovation-driven development

strategies and enhance their competitive advantages in the

industry, construction enterprises will inevitably increase their

R&D efforts and investments in digital construction technology
Frontiers in Ecology and Evolution 05139
and other key core technologies (Wu et al., 2021), thereby

enhancing innovation output (Kim, 2019). Pecking order theory

states that since the cost of external financing is higher than the cost

of internal financing, the company can only rely heavily on internal

financing, resulting in underinvestment (Myers and Majluf, 1984).

The implementation of digital construction technology in

construction enterprises also releases a benign signal to the

outside world to actively respond to the national strategy,

implying high-quality development in the future, which means

that it is conducive to facilitating the trust of external financial

backers (Bertani et al., 2020; Zhang and Dong, 2023), so as to

provide financial support for enhancing R&D innovation

capabilities (Ding et al., 2022). It has been shown that for China,

increased R&D investment directly curbs carbon intensity (Wang

and Zhang, 2020) and can play a moderating role between

digitization and CO2 emissions (Ma et al., 2022).

On the other hand, transaction cost theory holds that cost

reduction is an essential way for firms to obtain heterogeneous

innovation resources (Hennart, 1988). Digital technologies such as

the Internet and artificial intelligence have the advantage of

facilitating the sharing of explicit and tacit knowledge resources,

which can help enterprises break down information silos (Wu et al.,

2022), alleviate information asymmetry (Liu et al., 2023b) and

improve the transmission efficiency and accuracy of internal and

external information and knowledge (Goldfarb and Tucker, 2019;

Fang et al., 2022; Wen et al., 2022a). It can also increase the

efficiency of resource allocation of companies (Sousa-Zomer et al.,

2020), and allocate key resources to core technologies and

innovation activities (Li et al., 2023a), thus reducing the cost of

companies in the process of information acquisition and avoiding

the misallocation of resources and energy waste, and reducing CO2

emissions. In addition, digital technology also helps to enhance the

green development capability of enterprises when R&D cooperation

and experience exchange of reducing carbon emission among

companies in the construction industry (Wang et al., 2018; Zhang

et al., 2021); and it promotes collaboration and knowledge sharing

between enterprises and institutions such as universities and

research institutes (Zhang, 2019) and open innovation of

enterprises (Mubarak et al., 2021), resulting in reducing the R&D

trial and error costs of digital construction technologies, shortening

the R&D design cycle, and improving innovation efficiency (Shang

et al., 2023). Based on the above, a hypothetical H2 is proposed.

H2: The development of digital construction level can reduce

the carbon emission intensity by improving the R&D innovation

capability of enterprises.
3.3 Digital construction, total factor
productivity and carbon emissions

Total factor productivity is part of the output that cannot be

interpreted by the number of inputs used in production, and more is

the growth brought about by intangible factors such as technological

progress and technological efficiency (Comin, 2010). The theory of

technological progress argues that the margins of productivity factors

can be raised in the identical ratio by technological progress to bring
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down energy intensity, thus achieving carbon emissions reduction

(Cheng et al., 2021). Correspondingly, in the long run, it is

increasingly becoming a consensus in Chinese society to achieve

low-carbon economic development with technology (Wang et al.,

2022). On the one hand, digital construction technologies can boost

total factor productivity by increasing construction efficiency on the

construction site; specifically, when building concrete walls with

complex geometry using a robot on the construction site,

productivity increases significantly compared to traditional forms

of construction (Garcıá De Soto et al., 2018). Moreover, a

construction site digital process platform built upon the foundation

of IoT, cloud computing, and 5G mobile communication

technologies can improve productivity in the construction process

(Zhou et al., 2020) by addressing the complexity of the construction

site environment and enhancing collaboration between different

project participants such as contractors, construction workers,

machinery and equipment, and material suppliers on the

construction site (Oesterreich and Teuteberg, 2016). On the other

hand, digital construction can also provide technical support for lean

construction, such as the development of construction sites VisiLean

(Dave et al., 2011) and BeaM! (Schimanski et al., 2021) production

management systems integrated with BIM, IoT and lean

construction, which can be applied to the entire project lifecycle,

enabling the realization of lean principles from planning and design,

construction and post-construction phases (Dave et al., 2016), with

the aim of minimizing waste and uncertainty in the building

construction process and thus increasing total factor productivity.

Further, the increase in total factor productivity can yield desirable

outputs such as meeting project schedules, cost and quality targets

with sufficiently few construction inputs such as materials, energy

and labor (Hu and Liu, 2017), which can improve energy efficiency

and reduce carbon emission intensity (Amri et al., 2019; Altinoz et al.,

2021; Lahouel et al., 2021). For instance, Zhu et al. (2019) found that

technological progress (measured by total factor productivity)

decreased the energy consumption intensity of the Chinese

building industry at an average rate of 7.1% per year by
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constructing a model of the building process, hence contributing to

carbon productivity (i.e., the inverse of carbon intensity) (Fan et al.,

2021; You and Zhang, 2022). Based on the above, a hypothetical H3

is proposed.

H3: The development of digital construction level can reduce

the carbon emission intensity of enterprises by improving total

factor productivity.

Through the above theoretical analysis, the theoretical

transmission mechanism is shown in Figure 1.
4 Materials and methods

4.1 Econometric model

To test the effect of digital construction on the carbon intensity

of construction enterprises, the following benchmark regression

model is constructed in this paper, as shown in Equation (1):

CEIi,t = a0 + a1DIGCi,t + a2controlsi,t + l i + d t + e i,t (1)

where, the enterprise, t denotes the year, CEIi,t denotes the

carbon emission intensity of the enterprise i in t year, DIGCi,t

denotes the digital construction level index of the enterprise, contr

olsi,t represents the control variable, as well as ei,t is the random

error term; in addition, the model also controls the enterprise fixed

effect li, the year fixed effect dt . For the sake of making the test

results more robust, this paper defaults to the clustering robustness

standard error.
4.2 Variables

4.2.1 Explained variables: enterprise carbon
emission intensity

Enterprise carbon emission intensity (CEI) is determined by

accounting for carbon emissions, which indicates the CO2
FIGURE 1

The theoretical transmission mechanism.
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emissions produced per unit of production value, and the reduction

of carbon emission intensity reflects, to some extent, the

improvement of enterprises’ CO2 emission reduction ability. This

paper evaluates carbon emission intensity by the proportion of

enterprise CO2 emissions to main business income in light of the

data accessibility, as described by Chapple et al. (2013). The amount

of directly available data is very limited since the Chinese

government currently does not mandate companies to disclose

CO2 emissions data in their annual reports or environmental,

social, and governance (ESG) reports. Hence, research uses the

way of Shang et al. (2023) to estimate the carbon emissions of

companies using industry carbon emissions with the help of the

main business cost, which is calculated as shown in Equation (2):

  emissionsi =
costi
costin

� ECO2
(2)

where   emissionsi denotes enterprise CO2 emissions, costi
denotes the main business cost of company, costin denotes the

industry main business cost and ECO2
denotes industry CO2

emissions. The carbon emission behaviors of the construction

enterprise include the carbon emission generated by the process

of completing the construction of various sub-elements and

implementing various measures of the project, as well as the

various types of energy power consumed by mechanical

equipment used in the demolition phase. In other words, the CO2

emission is mainly due to the energy consumption, i.e., the

combustion of fossil fuels, and therefore the industry’s CO2

emissions are measured according to the energy consumption.

When we check the “China Energy Statistical Yearbook”, there

are 11 main types of energy consumption involved in the

construction industry, mainly including raw coal, coke, kerosene,

fuel oil, gas oil, diesel oil, crude oil, LPG, natural gas, heat and

electricity, of which the CO2 emissions from the depletion of the

first nine types of energy are direct emissions from the combustion

of fossil fuels, and the electricity and heat purchased by enterprises

outside are indirect emissions. The CO2 emissions of the industry

can be calculated according to Equation (3):
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ECO2
= Ef + Eeh (3)

where, Ef denotes CO2 emissions due to the burning of

consumed fossil fuels, Eeh denotes CO2 emissions due to the

burning of electricity and heat by enterprises.

Equations (4) and (5) can be used to compute CO2 emissions

from fossil fuel burning using the emission factor approach

described in the 2006 IPCC Guidelines for National Greenhouse

Gas Inventories:

Ef =on
i=1(FCi � EFi) (4)

In Equation (4), FCi denotes the quantity of fossil fuel

consumed, and EFi denotes the CO2 emission factor.

EFi = NCVi � CCi � OFi � r (5)

In Equation (5), NCVi stands for the average low-level

calorific value of the fossil fuel, CCi for its carbon content per

unit calorific value, OFi for its carbon oxidation rate, and r
denotes the proportion of CO2 to the molecular weight of

carbon, which is 44/12. Table 1 displays the values of each

variable and data source.

For the measurement of CO2 emissions from electricity and

heat, it can be calculated according to Equation (6):

Eeh = ADe � EFe + ADh � EFh (6)

where ADe and ADh denote the consumption of electricity and

heat respectively, EFe and EFh denote the CO2 emission factors of

electricity and heat respectively, both adopt the recommended

values of the Ministry of Ecology and Environment, and the CO2

emission factors of electricity in 2015–2020 and 2021 are calculated

as 0.6101 tCO2/MWh and 0.518 tCO2/GJ respectively, and the CO2

emission factor of heat is 0.11 tCO2/GJ.

4.2.2 Core explanatory variables: digital
construction level index

How to measure the digital construction level index (DIGC) of

construction enterprises is a complex and systematic difficulty. As
TABLE 1 CO2 emission reference factors for various energy sources.

Energy
Type

Average low-level calorific
value

Carbon content Per unit calorific
value

Carbon oxidation
rate

CO2 emission
factor

NCVi CCi OFi EFi

Raw Coal 20934 kJ/kg 26.37 tC/TJ 0.94 1.9027 kg-CO2/kg

Coke 28470 kJ/kg 29.5 tC/TJ 0.93 2.8639 kg-CO2/kg

Crude Oil 41868 kJ/kg 20.1 tC/TJ 0.98 3.0240 kg-CO2/kg

Fuel Oil 41868 kJ/kg 21.1 tC/TJ 0.98 3.1744 kg-CO2/kg

Gas Oil 43124 kJ/kg 18.9 tC/TJ 0.98 2.9287 kg-CO2/kg

Kerosene 43124 kJ/kg 19.6 tC/TJ 0.98 3.0372 kg-CO2/kg

Diesel Oil 42705 kJ/kg 20.2 tC/TJ 0.98 3.0998 kg-CO2/kg

LPG 50242 kJ/m3 17.2 tC/TJ 0.99 3.1052 kg-CO2/m
3

Natural Gas 38979 kJ/m3 15.3 tC/TJ 0.99 2.1649 kg-CO2/m
3

NCVi is derived from the Basic Guidelines for Calculating Total Energy Consumption; CCi and OFi are derived from the Guide to Provincial Greenhouse Gas Inventory Preparation.
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digital construction is in the initial phase, scholars are gradually

exploring and improving the concepts and theories, and there is a

dearth of academic research on the measurement of the digital

construction level of construction enterprises. At the same time,

with the advent of the digital economy era, many scholars measure

the digital economy or digital transformation of enterprises with

various methods. Therefore, this paper draws on the relevant digital

index measurement methods and combines the digital

characteristics of engineering construction itself to make a

comprehensive estimation of the digital construction level of

construction enterprises.

In this paper, we will measure the digital construction level

index in three dimensions: input, governance and output of

construction enterprises in digital construction, whose conceptual

diagram is shown in Figure 2, and synthesize the index by using the

entropy value method.
Fron
(1) Referring to Xiao et al. (2022), this paper uses the

proportion of digitization-related portion of intangible

assets in the breakdown of intangible assets to total assets

as a proxy variable for firms’ digital construction input.

Specifically, the use of software in construction enterprises

mainly includes BIM, engineering management

information systems, virtual design and construction,

simulation calculation and process planning. As a

consequence, the items with intangible asset line items,

including “software”, “computer software”, “computer

software”, “software use rights”, “software systems”,

“intelligent platforms” and other digital technology-

related keywords are regarded as “digital construction

intangible assets”, and then their proportion to the total

assets of the year is calculated, which is the digital

construction input of the enterprise.

(2) Digital construction technology, as a key point for the

transformation and upgrading of construction enterprises,

its characteristic information is more likely to be

represented in the annual reports of enterprises. The

vocabulary usage in annual reports can reflect the

strategic features and future view of enterprises, and to a

large extent, it also manifests the management concepts

promoted by enterprises and the development path guided
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by this philosophy (Wu et al., 2021). Consequently, this

paper refers to Wu et al. (2021) and Zhao and Wang (2021)

to extract the keywords of “digital construction technology”

from the annual reports of construction enterprises and

conduct word frequency statistics as a variable for the

digital construction governance of companies.

Following are the precise steps. In the first step, the annual

reports of listed enterprises in the construction industry

from 2015–2021 were collected from Giant Tide

Information Network and converted to text format

through Python’s “pdfplumber” function. In the second

step, a feature thesaurus of digital construction technology

was formed on the basis of policies and research reports

such as the “Digital Construction Development White

Paper (2022)” and the “Several Comments on

Accelerating the Development of New Construction

Industrialization”, as shown in Figure 3, with a total of 96

feature words in six dimensions. In the third step, based on

the self-built feature lexicon, the Jieba function of Python

was used to split words for all samples and remove

intonation words, auxiliary words and punctuation that

have no practical meaning in the text, making it more

meaningful to do word frequency statistics. The fourth step

was to search, match and count word frequencies

depending on the feature thesaurus based on the annual

report in the company text format. In the fifth step, because

the Jieba function had certain limitations on the word

segmentation function of English words, such as part of

word frequency statistics of “AR”, “VR”, “AI” and “CIM”,

which had nothing to do with digital construction

technology, these were eliminated after identification to

form the final total word frequency of digital construction

of construction enterprises.

(3) The output of digital construction is expressed by using the

patents applied by construction companies in the area of

digital construction technology. The calculation method is

as below. In the first step, obtain the IPC subdivision

classification numbers of patents applied for inventions

and utility models by construction enterprises for each

year from the China Research Data Service Platform

(CNRDS). In the second step, patents in the field of
FIGURE 2

Conceptual diagram of digital construction technology.
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digital construction are matched according to the

“International Patent Classification and National

Economic Industry Classification Reference Relationship

Table (2018)” (China National Intellectual Property

Administration, 2018) and the “Statistical Classification of

Digital Economy and Its Core Industries” issued in China

in 2021.
Finally, the proportion of digital construction input, i.e., the

enterprise’s investment in digital construction intangible assets is

35.6% in the establishment of the digital construction level index.

The weight of digital construction governance is 16%, which may be

influenced by the quality of the company’s annual report and the

construction of the characteristic word database, and there may be

some deviation in the results, so the weight is reasonable. The

weight of digital construction output, i.e., digital construction

technology patents, accounts for nearly half of the weight since

the patent applications are generated by construction enterprises in

the process of engineering construction, which can best reflect the

digital construction level of companies. Consequently, the weights

of each sub-index of the digital construction level index are

scientific and reasonable.

4.2.3 Control variables
To increase the study’s accuracy, this paper draws on previous

studies (Shen et al., 2020; Zhang and Dong, 2023) and combines the
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research practice of this paper to add the control variables.

Enterprise size (Size) and enterprise age (Age) are the basic

situations of the enterprise. The larger the size of the enterprise,

the more likely it is to have the energy to implement low-carbon

behaviors and governance. The enterprise age may reflect the life

cycle in which the firm is located, with longer-established firms

likely to be in decline and less able to govern low-carbon behaviors.

Reducing greenhouse gas emissions demands a great deal of

additional management in day-to-day operations, as it requires a

complex design of green governance processes within the company,

so good corporate governance enables companies to integrate

internal resources to promote carbon reduction (Kock et al.,

2012). Therefore, this paper controls corporate governance factors

from board size (Board), equity multiplier (EM), current ratio (CR)

and operating capacity (ET), in which the board of directors makes

the final decision on the extent to which the firm implements

carbon reduction strategies; equity multiplier reflects the financial

leverage of the enterprise, and excessive leverage is not conducive to

the enterprise’s carbon emission reduction; current ratio reflects the

enterprise’s solvency, and the value of which to a certain extent will

affect the decision on the carbon emission reduction; and the

operating capacity embodies the enterprise’s efficiency of the use

of assets to support the business activities. In addition, the

disclosure of environmental and sustainable development (Sus)

reflects a company’s environmental awareness and social

responsibility. Specific variables are defined in Table 2.
FIGURE 3

Feature thesaurus for digital construction technology.
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4.3 Sample selection and data sources

We have combed through China’s important national policies on

the development of digitization and informatization in the

construction industry in recent years and found that the state has

been vigorously promoting digital construction-related technologies

as well as the wide-scale application of digital construction

technologies by construction enterprises since 2015. Therefore, in

this paper, 52 listed companies in Shanghai and Shenzhen A-shares

in the construction industry from 2015–2021 are used as the initial

sample, and the listed companies in the construction industry are

determined according to the industry categories stipulated by the

China Securities Regulatory Commission in 2012. According to the

needs of the study, the samples are screened as follows: (1) exclude

samples listed after 2015; (2) exclude samples listed in ST, *ST and

delisted from 2015–2021; (3) exclude samples undergoing major asset

restructuring from 2015–2021; (4) exclude samples changing from

other industries to the construction industry from 2015–2021. After

the above screening, we finally obtained 364 company-annual

observations. The original data used in this study are obtained

from China Energy Statistical Yearbook, China City Statistical

Yearbook, CSMAR Database, China Economy Information NET

Database, RESSET Database and CNRDS, and the annual reports

of enterprises are compiled from Giant Tide Information Network.
5 Empirical results and discussion

5.1 Descriptive statistics

The results of descriptive statistics are presented in Table 3, in

which the mean value of carbon emission intensity (CEI) is 46.313,

indicating that construction enterprises produce 46.313 kg of CO2

emissions per 10,000 yuan of business income on average, and the

standard deviation of 4.921 with the maximum values is 59.9 and the

minimum values is 31.085, indicating that there are large differences
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in the carbon emission intensity of different enterprises. The mean

value of the Digital Construction Level Index (DIGC) is 2.514, the

standard deviation is 0.543, and the maximum and minimum values

are 3.730 and 0.796, respectively, which means that the development

level of digital construction of different construction enterprises varies

greatly, some construction enterprises have a higher development

level and application of digital construction, but some construction

enterprises have not yet made effective use of digital construction

technology. The mean value of Sus is 0.885, and the standard

deviation is 0.320, indicating that most construction enterprises

disclose environmental and sustainability-related information in

their annual reports or ESG reports. The distribution characteristics

of the remaining control variables are roughly the same as in previous

studies and will not be repeated.
5.2 Benchmark regression

The benchmark regression findings of the effect of the level of

digital construction on the CO2 emission intensity of construction

companies are shown in Table 4. This study adopts the progressive

regression method in the benchmark regression, and after gradually

introducing fixed effects and control variables, the influence of

digital construction on carbon intensity is always negative. Column

(1) reports the regression results of the explanatory variables and

core explanatory variables only, and the coefficient of the digital

construction level index (DIGC) is −3.283, which passes the 1%

statistical significance test, indicating that the improvement of

digital construction level of construction enterprises can

significantly reduce carbon emission intensity. Although column

(2) controls for firm and year fixed effects based on column (1), the

coefficient for DIGC is still statistically negative at the 1% level at

−1.982. Columns (3) and (4) add control variables to column (1)

and control for firm and year fixed effects in turn, and it can be

found that the R2 of the model is increasing and the DIGC

coefficient is gradually decreasing, indicating that it may be
TABLE 2 Description of main variables.

Variable
Category

Variable Name Symbol Variable Description

Explained
variable

Enterprise carbon emission
intensity

CEI Ratio of enterprise CO2 emissions to main business income

Core explanatory
variable

Digital construction level index DIGC
Synthesize it from three dimensions of input, governance and output of construction

enterprises in digital construction using entropy method

Control variables

Enterprise size Size Natural logarithm of total corporate assets

Enterprise age Age Year of enterprise −year of establishment + 1

Board size Board Natural logarithm of the number of board members

Equity multiplier EM Total corporate assets/total shareholders’ equity

Current ratio CR Current assets/current liabilities

Operating capacity ET Expressed as shareholders’ equity turnover ratio, operating income/average shareholders’ equity

Whether to disclose environmental
and sustainability

Sus Enterprises disclosed in the year to take 1, not disclosed to take 0
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because some factors affecting the intensity of carbon emissions

have been absorbed after the inclusion of control variables and fixed

effects, but the significance has not changed. In conclusion, the data

above demonstrates that the level of digital construction has a
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considerable negative effect on the intensity of carbon emissions,

and that the carbon emission intensity decreases with increasing

levels of digital construction in construction enterprises, and the

research hypothesis H1 is supported by the empirical evidence.
TABLE 4 Benchmark regression results.

CEI CEI CEI CEI

(1) (2) (3) (4)

DIGC −3.283*** −1.982*** −1.443*** −1.426***

(0.466) (0.523) (0.535) (0.542)

Size −3.794*** −3.736***

(0.747) (0.771)

Age −1.615*** −1.689***

(0.0784) (0.0923)

Board 5.173*** 5.607***

(1.908) (1.924)

EM −0.00850 0.000617

(0.0219) (0.0210)

CR −1.477*** −1.486***

(0.517) (0.524)

ET 0.743*** 0.713***

(0.147) (0.147)

Sus 0.885* 0.916**

(0.458) (0.464)

_cons 54.57*** 57.67*** 140.5*** 142.1***

(1.190) (1.274) (6.574) (6.750)

FIRM FE N Y Y Y

YEAR FE N Y N Y

N 364 364 364 364

R2 0.131 0.888 0.904 0.905
*, ** and *** represent statistical significance at the 10%, 5% and 1% levels, respectively. The brackets represent the clustering robustness standard errors. The following tables are identical unless
specified differently.
TABLE 3 Descriptive statistical characteristics of main variables.

Variable N Mean S.D. Min Max

CEI 364 46.313 4.921 31.085 59.9

DIGC 364 2.514 0.543 0.796 3.730

Size 364 10.383 0.766 9.160 12.378

Age 364 20.346 6.072 7 38

Board 364 0.9186 0.083 0.699 1.176

EM 364 4.128 2.911 1.397 45.016

CR 364 1.316 0.353 0.612 3.774

ET 364 2.439 1.496 0.124 11.001

Sus 364 0.885 0.320 0 1
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5.3 Robustness test

In order to enhance the robustness and validity of the core

findings, this paper chooses to replace the core explanatory

variables and replace the model for robustness testing.

5.3.1 Replacing core explanatory variables
In this paper, the digital construction level of construction

enterprises is remeasured in the following way: the enterprise's

governance of digital construction indicator is replaced by the

frequency of digital construction keywords in the annual reports

of enterprises as the ratio of the total number of keyword

disclosures to the total number of words in the annual report of

the corresponding year, and then it is re-synthesized into the digital

construction level index with the digital construction input and

output indicators using the entropy value method, which is denoted

as DIGC_1. The test finding is reported in column (1) of Table 5,

where it is discovered that DIGC_1’s coefficient is considerably

negative at the 1% level, which demonstrates that the main finding

of the study still holds after changing the measurement of digital

construction level, further validating the research hypothesis of

this paper.

5.3.2 Replacing the model
To address the possible heteroskedasticity and autocorrelation

in the panel data, this paper draws on Cai et al. (2022) to estimate

the model using FGLS, and the findings are shown in column (2) of

Table 5, where the regression coefficient of DIGC is still

dramatically negative at the 1% level.

The findings of all the aforementioned robustness tests do not

differ noticeably from the sign and degree of significance of the
Frontiers in Ecology and Evolution 12146
primary explanatory variables based on the fixed-effects model,

demonstrating the robustness of the estimates of the fixed-

effects model.
5.4 Endogenous Problems

The endogeneity problem due to reverse causality may exist in

the empirical study of this article (Zhao and Wang, 2021), in other

words, enterprises with low carbon emission intensity are more

focused on improving digital construction. To mitigate the

endogeneity problem, we control for time effects and firm effects

in the baseline model, furthermore, the instrumental variables

approach, the system GMM model and the difference in

differences model are applied to discuss the endogenous problem.

5.4.1 Instrumental variable method
The basic approach to solving the endogeneity problem is to

select appropriate instrumental variables for the core explanatory

variables, and effective instrumental variables fulfill the basic

requirements of correlation and exogeneity. This study utilizes the

historical data with the lagged terms of the core explanatory

variables as a solution to the endogeneity problem. Specifically,

this paper selects the postal and telecommunication data in 1984 of

the province where the firm is located as an instrumental variable

drawing on Wang et al. (2023b), Du et al. (2023a) and Xue et al.

(2022). Since the post and telecommunication data are cross-

sectional data and cannot be directly used in the econometric

analysis of panel data, we refer to Nunn and Qian (2014), Wang

et al. (2023b) and Xiao et al. (2022) for the treatment of this issue,

and introduce the time-series variable of the number of Internet

broadband access subscribers in the previous year to construct the

panel instrumental variable. Finally, instrumental variables for the

level of digital construction in this study are the interaction terms of

the number of Internet broadband access subscribers in the

previous year with the number of landline telephones per 100

people in the province where the construction firms were

registered in 1984, respectively, as well as the first-order lagged

terms of the core explanatory variables. The model is re-tested using

the two-stage least squares (2SLS) method.

Theoretically, for historical postal data, on the one hand, digital

construction technology is based on BIM, Internet, big data, digital

twin and other digital technologies; meanwhile, post and Internet

provide specific carriers for digital construction technology

applications in construction enterprises, so the tool variables

satisfy the relevance condition; on the other hand, the

development of post and mobile Internet itself does not produce

the massive CO2 emissions and will not have a direct effect on the

carbon emission intensity of enterprises, in this sense, the selected

instrumental variables satisfy the condition of exogeneity. For the

lagged terms of the core explanatory variables, on the one hand, the

core explanatory variables are correlated with their first-order

lagged variables, and on the other hand, the lagged variables are

exogenous because they have already occurred and are therefore

“pre-determined”, and may not be correlated with the current

period’s disturbance terms.
TABLE 5 Regression results of robustness test.

Replacing Core
Explanatory Variables

Replacing the Model

(1) (2)

CEI CEI

DIGC_1 −1.534***

(0.565)

DIGC −1.321***

(−3.44)

_cons 83.18*** –

(6.610) –

Controls Y Y

Firm FE Y Y

Year FE Y Y

N 364 364

R2 0.906 –
*** represents statistical significance at the 1% level. R2 is not analytically significant in FGLS
regression and is not reported. FGLS regression shows the Z value in parentheses.
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The result of the second-stage estimation of the instrumental

method is shown in column (1) of Table 6. The Kleibergen-Paap rk

LM statistic is 22.254, which significantly rejects the original

hypothesis of non-identifiability at the 1% level. The Cragg-

Donald Wald F statistic is greater than the Stock-Yogo test at

10% critical value of 19.93, rejecting the original hypothesis of weak

instrumental variables. The Hansen J test p-value is 0.338, which is

greater than 0.1, indicating that all instrumental variables are

exogenous. The above indicators show that the instrumental

variables are reasonably reliable. The coefficient of the digital

construction level of the enterprise (DIGC) is extremely negative

at the 1% level in the second-stage regression, indicating that the

main conclusion of this paper holds again.
5.4.2 System GMM model
Next, a system GMM model is used with reference to Xie and

Kuang (2020), and the level lagged terms of key variables are

introduced as instrumental variables in the regressions for testing.

The core explanatory variable DIGC regression coefficient is

dramatically negative, according to the result in column (2) of

Table 6, which is similar to the prior estimation and shows that the

conclusion of this study is robust.

5.4.3 Difference in differences model
In this study, the difference in differences model (DID) is

chosen to further overcome the endogeneity problem by referring

to the studies of Wu et al. (2021) and Wang et al. (2023b). When

constructing the digital construction level index using the entropy
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value approach, its subindex, the quantity of applications for digital

construction patents, has the largest weight and best reflects the

digital construction level of construction enterprises, so it is used to

judge whether the digital construction technology has been

effectively applied according to the digital construction patent

applications of enterprises in each year. If a construction

enterprise has applied for a digital construction patent during the

sample period, it means that there is a substantial application of

digital construction technology, and this type of enterprise is used as

an experimental group (du=1); if there has been no application for a

digital construction patent, it means that there is no substantial

application of digital construction technology, and this type of

enterprise is used as a control group (du=0); furthermore, the

period dummy variable dt is set, and dt is assigned to 1 if the

enterprise adopts digital construction technology in the current and

subsequent years, otherwise it is 0. Accordingly, the following

difference in differences model is established to examine how the

level of digital construction of construction enterprises affects

carbon intensity:

CEIi,t = j0 + j1dui,t + j2dti,t + j3(dui,t � dti,t)

+ j4controlsi,t + e i,t (7)

where  j3 reflects the change in carbon emission intensity

before and after the adoption of digital construction technology

by enterprises and is the parameter to be estimated for the key

variable. Considering that the application of digital construction

technology by construction companies is an incremental behavior

with time continuity, the sample of enterprises whose digital
TABLE 6 Regression results of the endogenous test.

IV System GMM DID

(1) (2) (3) (4)

CEI CEI CEI CEI

DIGC −2.791** −4.530**

(1.390) (1.697)

du� dt −4.788*** −0.714**

(0.561) (0.335)

_cons 142.9*** – 38.11*** 113.9***

(14.18) – (5.544) (6.308)

Controls Y Y Y Y

Firm FE Y Y N Y

Year FE Y Y N Y

Kleibergen-Paap rk LM 22.254***

Cragg-Donald Wald F 26.504

Hansen J test p-value 0.338

Hansen test p-value 0.170

N 312 208 343 343

R2 0.888 – 0.343 0.911
** and *** represent statistical significance at the 5% and 1% levels, respectively.
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construction level is greater than 0 in the current year but 0 in the

subsequent years is excluded from this paper.

Further, to verify the robustness of the difference in differences

model again, the above model is tested again after focusing on

regulating for firm fixed effects lI and year fixed effects dt, as shown
in Equation (8):

CEIi,t = j
0
0 + j

0
1dui,t + j

0
2dti,t + j

0
3(dui,t � dti,t)

+ j
0
4controlsi,t + l i + d t + e i,t (8)

In columns (3) to (4) of Table 6, the empirical findings based

on the difference in differences model tests are displayed.

Column (3) is tested with Equation (7), and the coefficient of

dui,t � dti,t is −4.788, which is significantly negative at the 1%

level, again indicating that the carbon intensity of construction

enterprises was significantly reduced after adopting digital

construction technology. Column (4) shows the results of the

test in Equation (8), adding firm and year fixed effects, and finds

that the coefficient of dui,t � dti,t shrinks significantly to −0.714,

but remains significant at the 5% level. The above findings

indicate that after mitigating the endogeneity of the model

using the difference in differences model, the improvement in

the level of digital construction still significantly reduces the

carbon emission intensity.

The difference in differences model should satisfy the parallel

trend assumption condition, i.e., the carbon emission intensity of

the experimental group samples and the control group samples

should have the same trend of change before the implementation of

digital construction by the construction enterprises. For this reason,

we carry out the parallel trend test, and the test results are shown

in Figure 4.
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In Figure 4, current denotes the time variable of the first

implementation of digital construction technology by a

construction enterprise, which is taken as the time base, and

pre_i and post_i denote the time variable of the ith year before

and after the implementation of digital construction technology by

a construction enterprise, respectively. Let pre_3 denote the time

variable 3 years before and before the implementation of digital

construction technology by the enterprises, and post_5 denote the

time variable 5 years after and after the implementation of digital

construction technology by the enterprises. As can be seen in

Figure 4, the estimated coefficients for all periods are significantly

around 0 before the implementation of digital construction

technology in construction firms, indicating that the experimental

group is not significantly different from the control group and the

parallel trend assumption is satisfied. After the implementation of

digital construction technology, the estimated coefficients show a

significant downward trend, which indicates that digital

construction has a significant inhibitory effect on the carbon

emission intensity of construction enterprises.
5.5 Heterogeneity analysis

The disincentive influence of digital construction on carbon

emission intensity may vary among different types of enterprises, so

this paper will classify construction enterprises according to the

nature of business and the industry segment to which they belong

for heterogeneity analysis.

5.5.1 Heterogeneity of the nature of business
This paper separates the sample into state-owned and non-

state-owned firms based on the kind of business, and lines (1) to (2)
FIGURE 4

The parallel trend test.
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of Table 7 analyze the carbon emission reduction impact of

businesses with various business natures. The study discovers that

the effect of digital construction level on carbon emission intensity

in the group of state-owned enterprises is significantly negative at

the 5% level, and its coefficient is −2.234; while the regression

coefficient of digital construction on carbon emission intensity for

the group of non-state-owned companies is also negative (−1.068),

but it fails the statistical significance test, and its coefficient is also

significantly lower than that of the state-owned enterprises’ group,

indicating that the digital construction level of non-state-owned

companies is relatively less effective in curbing carbon emission

intensity compared to state-owned companies. The reason for this

difference may be that, for one thing, state-owned companies need

to consider social benefits in addition to economic benefits when

formulating their own development strategies, and take more social

responsibilities than non-state-owned companies, as well as

consider the overall development of society and actively respond

to the strategy of the carbon peaking and carbon neutrality goals

proposed by China, so they play a greater role in carbon emission

reduction in the building sector. For another thing, the

implementation of digital construction technology in construction

enterprises requires large-scale investment in software such as BIM,

virtual design and construction and digital twin, or high-end

equipment such as construction robots and intelligent factories.

State-owned enterprises not only have more advantages in terms of

capital and technology but also have access to more preferential

policies, resource support and institutional guarantees, which can

provide sufficient conditions for the rapid development of digital

construction technologies, thus empowering enterprises to reduce

carbon emissions.

5.5.2 Heterogeneity of sub-industry types
In this paper, the sample is divided into civil engineering

construction enterprises and non-civil engineering construction

enterprises according to the differences in the sub-sectors and
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main business of construction enterprises, and the influence of

digital construction on carbon emission intensity is examined for

both types of enterprises, and the results are indicated in lines (3) to

(4) of Table 7. It has been discovered that digital construction

technology significantly decreases the intensity of carbon

emissions for civil engineering construction companies (the

regression coefficient is −1.900 and passes the 1% statistical

significance test). In contrast, for non-civil engineering

construction enterprises, including landscape, building decoration

and other construction enterprises, the coefficient of DIGC does not

pass the statistical significance test, indicating that civil engineering

construction enterprises are more able to promote carbon emission

reduction by adopting digital construction technology compared to

non-civil engineering construction enterprises. The reason for this

difference may be that the adoption of digital construction

technology is more focused on the field of engineering

construction, which can realize the refinement, wisdom and

efficiency of the whole life cycle management of the construction

process, such as architectural design, construction and operation, for

example, the use of the IoT and intelligent construction platform can

realize fine construction, so that logistics scheduling, construction

scheduling and other information flow automatically, and reduce the

cost and increase the efficiency of engineering projects, while for

landscape, building decoration and other construction industry

enterprises, the use of digital construction technology is more

limited, so civil engineering construction enterprises will suppress

carbon emission intensity to a greater extent based on the extensive

use of digital construction technology.
5.6 Mechanism testing

On the basis of the previous theoretical analysis, the implement

of digital construction in construction enterprises can decrease

carbon emission intensity and promote carbon emission
TABLE 7 Regression results of heterogeneity analysis.

CEI CEI CEI CEI

(1) (2) (3) (4)

Types SOEs non-SOEs civil engineering non-civil engineering

DIGC −2.234** −1.068 −1.900*** 0.419

(0.965) (0.707) (0.678) (0.977)

_cons 93.23*** 75.52*** 85.29*** 92.91**

(15.81) (19.99) (13.01) (42.53)

Controls Y Y Y Y

Firm FE Y Y Y Y

Year FE Y Y Y Y

N 196 168 217 147

R2 0.926 0.889 0.932 0.865
** and *** represent statistical significance at the 5% and 1% levels, respectively.
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reduction in enterprises by improving R&D innovation capability

and total factor productivity. In order to verify this mechanism of

action, the following mechanism testing models are utilized to

analyze the R&D innovation capacity effect and the total factor

productivity effect, based on the methodology of Huang et al.

(2023):

CEIi,t = a0 + a1DIGCi,t + a2controlsi,t + l i + d t + e i,t (9)

Meci,t = b0 + b1DIGCi,t + b2controlsi,t + l i + d t + e i,t (10)

where Meci,t is the mechanism variable, denoting enterprises’

R&D innovation capability (RDI) and total factor productivity

(TFP), ei,t is random error terms, li is firm fixed effects, and dt is
year fixed effects.

In this study, we assess the R&D innovation capability of

companies on the basis of two factors: R&D input and innovation

output (Hall and Lerner, 2010), where R&D input is expressed by

the annual R&D investment funds of enterprises; the innovation

output of enterprises primarily consists of invention, utility model

and design patents. The quantity of patent applications is a more

timely indicator of an organization’s potential for innovation

because patents typically take a long time to be granted (Zhang

and Dong, 2023). Finally, utilizing the enterprise’s R&D

expenditure and the quantity of annual patent applications, the

proxy variables of the enterprise’s R&D innovation capabilities are

synthesized using the entropy method. Then, the total factor

productivity of companies is determined using the LP approach

based on the research of Levinsohn and Petrin (2003) and Lu and

Lian (2012).

5.6.1 R&D innovation capability mechanism
The regression result in line (1) of Table 8 shows that the

regression coefficient of digital construction level is significantly

negative, indicating that the use of digital construction in

construction enterprises can lower carbon emission levels; the use

of digital construction is advantageous for enhancing the R&D
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innovation capability of construction firms, as shown by the

regression coefficient of R&D innovation capability in line (2) of

Table 8 being statistically significant in the positive direction at the

1% level. On the one hand, the use of digital construction

technology prompts construction enterprises to make extensive

use of emerging digital technologies and break down information

silos, obtain heterogeneous innovation resources and advanced

technologies and management tools from more channels,

optimize the allocation of resources (Huang et al., 2023), and

reduce the waste of resources, which improves the R&D and

innovation capability and at the same time reduces the carbon

emissions of enterprises. On the other hand, construction

companies are bound to adopt more digital construction

technologies, increase R&D investment, improve R&D and

innovation capacity, and generate new and more productive

energy efficient technologies through the innovation process

(Petrović and Lobanov, 2020), in order to improve efficiency and

reduce costs in the planning, design, construction and building

operation phases. An increase in R&D investment reduces CO2

emissions through direct and indirect effects (rebound effects,

spillover effects) (Fernández Fernández et al., 2018). As a result of

the above analysis, there is a mechanism of “digital construction

development → enterprise R&D innovation capability

improvement → carbon emission intensity reduction”, and

hypothesis H2 is verified.
5.6.2 Total factor productivity mechanism
According to the regression coefficient in line (3) of Table 8,

which is dramatically positive at the 1% level, the growth of digital

construction is favorable to increasing the total factor productivity

of construction enterprises. Digital construction technology can

increase total factor productivity by improving productivity and

efficiency in the construction process and maximizing the

elimination of waste and uncertainty of resources. The

enhancement in total factor productivity implies technological

progress and technological revolution, which can enable
TABLE 8 Regression results of mechanism testing.

CEI RDI TFP

(1) (2) (3)

DIGC −1.426*** 0.125*** 0.177***

(0.542) (0.0427) (0.0684)

_cons 142.1*** −3.934*** −5.647***

(6.750) (0.528) (1.346)

Controls Y Y Y

Firm FE Y Y Y

Year FE Y Y Y

N 364 364 364

R2 0.905 0.938 0.973
*** represents statistical significance at the 1% level.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1250593
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yang et al. 10.3389/fevo.2023.1250593
construction companies to obtain the desired output with

sufficiently few construction inputs such as materials, energy and

labor, and the efficiency of energy utilization has been improved,

thus reducing the intensity of carbon emissions. Technological

advances have been widely recognized as the most promising

approach to curbing China’s current carbon emissions (Huang

et al., 2020), which could lead to CO2 reductions through carbon

efficiency improvements (You and Zhang, 2022). After the above

analysis, there is a mechanism of “digital construction development

→ total factor productivity increase → carbon emission intensity

reduction” in this study, and hypothesis H3 is verified.
6 Conclusions and policy
recommendations

6.1 Conclusions

The continuous development of digital construction provides a

significant opportunity for the low-carbon transformation of the

construction industry. This paper constructs the digital

construction level index of construction enterprises from three

dimensions, and empirically analyzes and examines the impact

and mechanism of digital construction on the carbon intensity of

enterprises by using the two-way fixed effects model based on the

panel data of 52 listed companies in China’s building industry from

2015 to 2021. The results of the study show that:
Fron
(1) The improvement of digital construction level can

significantly reduce the carbon emission intensity of

construction enterprises, and for every 1 unit increase in

digital construction level, the carbon emission intensity of

construction enterprises will decrease by 1.426 units. The

conclusions are still valid after a battery of robustness tests

and discussions on endogeneity issues such as replacing

core variables, replacing models and using instrumental

variables method, system GMM model and difference in

differences model.

(2) This paper reveals the intrinsic mechanism between digital

construction and the carbon emission intensity of

construction enterprises, in which digital construction can

significantly reduce the carbon emission intensity by

improving the R&D and innovation capability and total

factor productivity.

(3) From the point of view of the nature of enterprises, state-

owned enterprises are more able to curb carbon emission

intensity than non-state-owned enterprises in terms of

improving the level of digital construction, which is

mainly due to the fact that state-owned enterprises need

to assume more social responsibility and have more

resources and institutional safeguards, and therefore the

leading role of state-owned enterprises should be played.
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(4) In terms of the industry type of the enterprises, digital

construction of civil engineering construction enterprises can

significantly reduce carbon emission intensity due to their more

extensive application of digital construction technology, while

digital construction of non-civil engineering construction

enterprises is not significant to carbon emission intensity.

This study further extends the application of project

management life cycle theory, digital innovation theory,

transaction cost theory and technological progress theory, and

makes up for the lack of research on the impact of digital

transformation of the construction industry on the carbon

emission intensity of enterprises. The conclusions of this paper

can provide a reference for the carbon emission reduction

management decisions of construction enterprises, have practical

guiding significance for future construction enterprises to

implement digital change and integrate digital technology into all

stages of project construction, and provide theoretical guidance for

promoting the transformation and upgrading of the construction

industry and for the introduction of relevant policies by

the government.
6.2 Policy recommendations

According to the preceding research and conclusions, this paper

provides the following policy recommendations:
(1) The government ought to speed up the formulation of

leading policies for digital construction technology in the

construction industry, encourage to fully incorporate of

digital technology and engineering construction, guide each

construction enterprise to recognize that digital

construction is the best path to achieve carbon emission

reduction, and also introduce a series of preferential policies

and incentive policies to strengthen the digital technical

support efforts and financial support for non-state

construction enterprises and small and medium

businesses, so as to stimulate the green innovation

behavior and CO2 emission reduction potential of

enterprises. Similarly, it is essential to actively cultivate

compound talents in digital construction and carbon

management of construction enterprises, and invest more

resources in talent training. To this end, we should

vigorously promote the construction of composite

disciplines in colleges and universities and connect with

the needs of the industry. Furthermore, it is also crucial to

establish and robust a system for environmental

information disclosure that complies with legal

requirements, as well as to encourage enterprises to do so,

as a result, strengthen enterprises’ environmental awareness

and consciously and proactively promote green

transformation and development.
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(2) Construction enterprises ought to pay attention to and

make full use of digital construction technologies and

engineering wisdom management platforms such as

blockchain technology, BIM technology, digital twin, 3D

printing, construction robots, Internet of Things, VR and

construction industry Internet platforms in construction

projects, integrate the vision of green development into

the whole process of construction and daily management,

effectively reduce resource consumption and environmental

pollution, and achieve a higher level of green and low-

carbon. Simultaneously, they are also supposed to play the

leading role of corporate champions, such as state-owned

and central enterprises in the construction field, drive other

enterprises to implement digital, networked and intelligent

changes, vigorously develop digital construction, enhance

the sense of social responsibility and promote green

development of enterprises.

(3) Construction enterprises should implement the national

innovation-driven development strategy, pay attention to

improving R&D innovation capacity, increase R&D

investment, strengthen cooperation with higher education

institutions or other enterprises, obtain information

through multiple channels, break information silos,

effectively integrate the advantages of all parties, and

focus superior resources on breaking through the key

core technologies, engineering software and major

equipment of digital construction, so as to provide green

transformation for the construction industry. In the

meanwhile, they should also focus on improving total

factor productivity, taking the implementation of digital

construction technology as an opportunity to advance the

technological progress and technical efficiency of

companies, improve energy utilization efficiency and

decrease resource waste so as to maximize the carbon

emission reduction effect of digital construction.
6.3 Limitations and research prospects

This paper explores and innovatively investigates the impact and

mechanism of digital construction level on carbon emission of

construction enterprises, but there are some limitations: firstly, this

study examines the causal connection between an enterprise’s level of

digital construction and its ability to reduce CO2 emissions, as well as

the role that R&D and innovation capacity and total factor

productivity play in that relationship, but there may be other ways

and mechanisms that can be further explored; secondly, as a result of

the shortage of data, this article solely takes Chinese listed companies

in the construction industry as the sample, but there are still a sizable

number of businesses left out and they can all be included in the

sample for further exploration; finally, since most construction

enterprises do not disclose the detailed data of carbon emissions,
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this paper obtains them indirectly, and with the improvement and

implementation of the system related to environmental information

disclosure of enterprises, this data will be available directly in the

future, so that the data will be more accurate.
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The digital economy city and green development of China are important engines
with important backgrounds. This paper takes 21 prefecture-level cities in
Guangdong Province as the research object. By constructing the index system
of the digital economy and green development, this paper discusses the external
spatial pattern and internal temporal evolution characteristics of the coordinated
development of the digital economy and green development from the two
perspectives of intercity and inner city. The results show that: 1) From the
perspective of intercity, there is a large gap between the development level of
the digital economy and the green development level of all cities, only Guangzhou
and Shenzhen have the digital economy development level ahead of the green
development level. The coupling level of the two systems presents an unbalanced
pattern of “centre-edge,” and “Guangzhou-Foshan-Shenzhen-Dongguan”
becomes the core pole of the coupling development of the two systems in
the province. The coordinated horizontal cascade distribution of the two systems
is obvious, showing a spatial pattern of decreasing step by step from the first circle
to the third circle. 2) From the perspective of inner city, the digital economy level
and green development level of all cities showed an upward trend from 2013 to
2019. The coupling level shows a two-stage development trend: the stable
development stage from 2013 to 2016, and he accelerated development stage
from 2016 to 2019, and the internal interaction of the two systems is deepening.
The coordination level of all cities improved significantly in 7 years, and in 2019,
21 cities all reached the level of moderate coordination or high coordination.
Based on above research conclusions, in order to promote the positive interaction
between digital economy and green development, this paper proposes to
optimize resource allocation based on regional differences, and adhere to
innovation-driven policy proposals to activate the potential of green
development.
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1 Introduction

China’s economy is at a crucial stage of replacing old growth
drivers with new ones and achieving high-quality development.
Problems such as the dual economic structure, increasing labour
costs, increasing demand for resources, and extensive development
mode still exist. At present, the economic cycle is not smooth,
development is not coordinated, and the green transition is facing
greater pressure. At the same time, the global economic landscape is
being reshaped by the geopolitical landscape, the COVID-19
pandemic, the new round of technological revolution and
industrial transformation, and the digital economy has become
the main direction for countries to seize the commanding heights
of the new global economic landscape. “The digital economy, as an
emerging economic development mode, is gradually becoming an
important pillar of China’s national economic growth. Through the
research and development of digital information technology, we can
cultivate new drivers, promote the development of green industries,
and achieve a fundamental improvement of ecological
environment” the 14th Five-Year Plan for The digital economy
Development points out. The report of the 20th National Congress
of the Communist Party of China further pointed out “Accelerating
the building of digital China.” It can be seen that the booming digital
economy not only brings opportunities for China to build new
competitive advantages but also provides an important path for
China’s green development (Li et al., 2022).

As the vanguard of China’s economy and the experimental area
of reform and opening up, Guangdong has profound economic

deposits, and the level of economic development has always ranked
first in China. In 2021, the value-added scale of Guangdong’s digital
economy reached 5.9 trillion yuan, ranking first in China for five
consecutive years. In the digital economy index, Guangdong
province also consistently ranks among the top. However, the
proportion of traditional industries in Guangdong is large, and
problems such as inadequate green governance and ecological
protection are still prominent. A large number of facts show that
digital economy and green development have a logical correlation
mechanism that promotes each other: On the one hand, the digital
economy itself is a low-carbon circular economy, which can
promote the upgrading of industrial structure and the
improvement of resource allocation efficiency through technology
empowerment, and provide digital momentum for green
development; On the other hand, green development stimulates
the demand of enterprises and individuals for the digital economy,
expands the application scenarios of the digital economy, enricfies
the business formats of the digital economy, and achieves the
expansion of the scale of the digital economy. Therefore, how to
realize the integration of digital economy and green development
has become an important issue at present. The analysis of the
coupling and coordination relationship between digital economy
and green development has important theoretical and practical
significance for understanding the internal logical correlation
between digital economy and green development and realizing
the positive interaction between digital economy and green
development. In view of this, this paper takes Guangdong, which
is at the forefront of the digital economy and green development in

TABLE 1 The digital economy and green development index system construction.

Index system First-order index Secondary index Units Attribute

The digital
economy

Digital business scale Total volume of telecommunication service Hundred million yuan +

Share of employees in information transmission, software and
information technology services

% +

Digital infrastructure Mobile phone subscriber Ten thousand
households

+

Number of Internet broadband access users Ten thousand
households

+

Digital technology innovation Percentage of R&D expenditure in GDP % +

Number of patent applications granted Piece +

Output value of high-tech products Hundred million yuan +

Number of high-tech enterprises Unit +

Green
development

Environmental governance Urban sewage treatment rate % +

Rate of harmless disposal of municipal solid waste % +

Urban ecology Standard number of urban buses in operation one +

Urban per capita park green space Square meter +

Energy conservation and emission
reduction

Electricity consumption Hundred million kilowatt
hours

-

Discharge of industrial wastewater Hundred million tons -

Total industrial dust emissions Ten thousand tons -

Production of industrial solid wastes Ten thousand tons -
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China, as an example, constructs an indicator system, and discusses
the external spatial pattern and internal temporal evolution
characteristics of the coupled and coordinated development of
digital economy and green development from the perspectives of
intercity and inner city, to provide experience and reference for the
high-quality development of global economy.

2 Review of relevant literature

In recent years, the digital economy and green development
have become hot topics that governments all over the world pay
close attention to. The academic circle has also carried out multi-
dimensional research on it. In the field of the digital economy, the
research mainly focuses on connotation characteristics, influencing
factors, development level measurement and so on. On the basis of
sorting out the origin and evolution of the digital economy, Han and
Chen (2022) proposed the connotation and characteristics of the
digital economy from the four aspects of technology, industry, scene
application and governance. Ge et al. (2022) discussed the driving
factors of the digital economy from the perspectives of international
cooperation, factor accumulation, regulatory system, macro policy,
and new infrastructure construction. Li and Han (2022) construct
the development level index of the digital economy from the aspects
of digital infrastructure, digital industrialization, industrial
digitalization, etc., and find that China’s digital economy is
growing rapidly, and predict that the growth level of the digital
economy will continue to increase in the future. Niftiyev (2022a)
discoveries economic growth, government effectiveness, and the
public services index would positively impact E-government
development. Wu and Wang (2022) point out that although
China’s digital economy industry develops rapidly, the regional
imbalance is expanding. Sadik-Zada et al. (2022) reveals that
e-government offers one of the greatest opportunities for socio-
economic development and improves the efficiency and
effectiveness of public administration. Niftiyev (2022b) noted the
need to improve economic reforms and policies to keep pace with
regions driven by FDI and successfully integrated into global value
chains.

In the field of green development, the existing researches mainly
focus on the internal logic of green development and the
measurement of green development level. Wang and Gao (2016)
made a comprehensive review and study on the status and policies of
green development since China’s reform and opening up. Wu and
Zhang (2017) sorted out the internal logic of the green development
concept and predicted the future trend of green development.
Huang and Li (2017) take urban agglomerations in China as the
research object and find that the level of green development
fluctuates, rises and diverges. Chen and Xu (2019) focused on the
11 provinces of the Yangtze River Economic Belt, and built an index
system from five dimensions, including environmental carrying
capacity, environmental management ability, environmental
friendliness, environmental stress resistance and environmental
stability, and pointed out that the overall level of green
development in these provinces is improving.

With the increasing importance of the digital economy and
green development, in recent years, scholars have begun to pay
attention to the relationship between the digital economy and green

development. The research mainly focuses on the following two
aspects:

(1) The impact of the digital economy on green development. Han
et al. (2022) pointed out that digital economy can trigger a
comprehensive green revolution from production factors to
productivity and production relations, and realize the all-
round empowerment of green development. Wei and Hou
(2022) carried out research using efficiency analysis and the
entropy value method and pointed out that there were obvious
regional differences between the digital economy and green
development level in prefecture-level cities, and the digital
economy could improve the green development level of
cities. Different scholars also try to explore from different
perspectives. Liu et al. (2022) measured and analyzed the
level of economic development from two dimensions
industrial digitalization and digital industrialization. Liu and
Kong (2021) take 110 prefecture-level cities in the Yangtze River
Economic Belt as examples to explore the effect mechanism of
the digital economy on urban green transformation, and the
results show that the digital economy exerts a positive effect in
promoting urban green transformation. From the perspective of
space, some scholars adopted the spatial Dubin model to study
30 provinces in China during 2006–2019 and found that the
digital economy development has direct and spillover effects on
green total factor productivity, and the promotion effect of
central and western China is stronger than that of eastern China
(Wu et al., 2022). Zhang (2022) found a significant spatial
correlation between urban digital economy development and
green total factor productivity.

(2) Research on the coordinated development of the digital
economy and green development. Hu et al. (2022) proved
that China’s digital economy and green development have
been effectively coordinated, showing a good trend year by
year. Zheng et al. (2021) explored and found that the
coordination level of public coupling between the digital
economy and green development presents a spatial feature of
“high in the east and low in the central and western regions”
from two aspects of public coupling and content coupling. Li
et al. (2022) proved that the digital economy, technological
innovation and their interaction can positively promote green
development.

After a comprehensive analysis of existing literature, it can be
found that the academic circle has made a relatively comprehensive
exploration in the research on the impact of the digital economy on
green development and the measurement of the two, but the existing
research on the interaction between the two systems still needs to be
expanded and deepened. First, the relationship between the digital
economy and green development is more than a single function.
Clarifying the interaction between the two will provide a useful
reference for China’s high-quality development. Second,
Guangdong is an important growth pole of China’s digital
economy and the vanguard of green development. The selection
of Guangdong as a research object is typical and representative and
can provide a reference for the construction of the Guangdong-
Hong Kong-Macao Greater Bay Area and China’s digital economy
and green development. Based on the above analysis, this paper
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takes Guangdong as an example to deeply explore the dynamic
evolution process of the coupling and coordinated relationship
between the digital economy and green development, in order to
provide theoretical support and a decision-making basis for China’s
high-quality development.

3 Research design

3.1 Index selection

To ensure the accuracy of the evaluation system of the digital
economy and green development, the index system of the digital
economy and green development is constructed by referring to
the existing research results and following the principles of
systemization, hierarchy and accessibility. The digital economy
system includes eight specific indicators from three dimensions:
digital business scale, digital infrastructure and digital technology
innovation. The green development system includes eight
indicators from three dimensions: energy conservation and
emission reduction, environmental governance and urban
ecology as shown in Table 1.

3.2 Data source

This paper takes 21 cities in Guangdong Province as the research
object to explore the relationship between the digital economy and
green development. Based on data availability, the study spans from
2013 to 2019. The data on the digital economy and green
development evaluation index are mainly collected from the
China Statistical Yearbook of Science and Technology, the China
Urban Statistical Yearbook, the Guangdong Statistical Yearbook,
and the statistical yearbook and bulletin of each municipality. The
year data of some cities are missing, and the interpolation method is
used to complete them.

3.3 Research method

3.3.1 Entropy method
Since there are dimensional and order of magnitude differences

among the index data, to facilitate the calculation and accuracy of
each index, the design index is standardized:

Positive index: Y
mij� Xmij −Xmin

Xmax −Xmin
+ 0.00001 (1)

Negative index: Y
mij� Xmax −Xmij

Xmax −Xmin
+ 0.00001 (2)

where Xmin and Xmax represent the minimum and maximum
values of the j-th index respectively. Xmij and Ymij respectively
represent the original value and the standardized value of the
index, m represents the year, i represents the region, and j
represents the index number.

3.3.2 Coupling coordination degree model and
type division

In view of the validity reduction caused by the uneven
distribution of C values calculated by the traditional coupling

degree model, the following coupling degree model is constructed
by referring to the research of Wang et al. (2021):

C �
�������������������

[1 −
��������
(U2−U1)2

√
] ×

U1

U2

√

�
������������������

[1 − (U2 − U1)] ×
U1

U2

√

(3)

Where, the C value is the coupling degree, U1 and U2 are the
comprehensive level of the digital economy system and green
development, respectively. The more the C value approaches 1,
the higher the coupling degree of the two systems.

The coupling degree can only reflect the interaction between the
two systems. To further explore the coordination of the interaction
between the two systems, the coordination degree model is
introduced as follows:

T � αU1 × βU2 (4)
D � �����

C × T
√

(5)
Meanwhile, referring to the research of Han et al. (2019), the

classification standards of coupling degree and coordination degree
are set as shown in Table 2 below:

4 Empirical analysis

Because the coupling degree C value and the coordination
degree D value measured by the coupling model are only relative
values within a certain year or a certain region, rather than absolute
values, the comparability is limited (Wang et al., 2021). Therefore,
this paper will take the two perspectives of intercity and inner city as
the entry point, based on the construction of an index system and
entropymethod, and calculate the comprehensive development level
of the digital economy and green development of 21 cities in
Guangdong from 2013 to 2019. The coupling degree model and
coupling coordination degree model were used to measure the
coupling degree and coordination degree of the two systems, and
ArcGIS software was used for spatiotemporal analysis.

4.1 Evolution of the comprehensive
development level of the digital economy
and green development

4.1.1 A view from an intercity perspective
To more intuitively analyze the evolution path of the digital

economy and green development, the comprehensive development
level data of the two systems in 2013, 2016 and 2019 are selected in
this paper to draw Figure 1. As can be seen from Figure 1, there is a
large gap between the comprehensive level of the digital economy
and the comprehensive level of green development among cities.
The development level of the digital economy in Guangzhou and
Shenzhen is ahead of the level of green development while lagging
behind the level of green development in other cities.

From the perspective of geographical space, the digital economy
level of Guangzhou and Shenzhen is significantly higher than that of
other regions, mainly because Guangzhou and Shenzhen, as the two
core cities of Guangdong Province, have superior digital economy
development environments. The specific manifestations are as
follows: first, Guangzhou and Shenzhen have many high-tech
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industries and open markets, which have brought a good foundation
for the transformation of achievements in the digital economy.
Second, the two cities have a large number of universities and

talent, which can provide a steady stream of high-quality talent
for the development of the digital economy. In terms of green
development, the gap between cities is relatively small. Foshan,

TABLE 2 Coupling level and coordination level classification criteria.

C 0 < C ≤ 0.2 0.2 < D ≤ 0.4 0.4 < D ≤ 0.6 0.6 < D ≤ 0.8 0.8 < D ≤ 1

Coupling level Uncoupling Low coupling Antagonistic coupling Run-in coupling Highly coupled

D 0 < D ≤ 0.2 0.2 < D ≤ 0.4 0.4 < D ≤ 0.6 0.6 < D ≤ 0.8 0.8 < D ≤ 1

Coordination level Serious dissonance Moderate dissonance Basic coordination Moderate coordination Highly coordinated

FIGURE 1
The trend of the digital economy system and green development system in 21 cities of Guangdong Province from the perspective of intercity from
2013 to 2019. Note: The author collated and calculated according to the relevant data of the Guangdong Statistical Yearbook, China City Statistical Year,
China Science and Technology Statistical Yearbook, and various city statistical yearbooks and bulletins.

FIGURE 2
The changing trend of the digital economy system and green development system in 21 cities of Guangdong Province from the perspective of inner-
city from 2013 to 2019. Note: The author collated and calculated according to the relevant data of the Guangdong Statistical Yearbook, China City
Statistical Year, China Science and Technology Statistical Yearbook, and various city statistical yearbooks and bulletins.
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Dongguan, Shaoguan and Qingyuan have a relatively low overall
trend, with the comprehensive level of green development being
0.454, 0.461, 0.462 and 0.513 respectively in 2019, which is closely
related to the development patterns and leading industries of the
above cities. Among them, the industrial pattern of Foshan and
Dongguan dominated by manufacturing and processing trade
inhibits the green development space to a certain extent.
Shaoguan and Qingyuan have received much of the heavy
industry and high energy consumption capacity transferred from
the Pearl River Delta region, which has a certain inhibiting effect on
green development.

4.1.2 A view from an inner-city perspective
From 2013 to 2019, the level of the digital economy and green

development in 21 cities in Guangdong showed an increasing trend.
The development level of the digital economy in cities has been
rising rapidly, especially in the 3 years from 2016 to 2019. Compared
with the level of the digital economy, the level of green development
is improved slowly and fluctuates significantly from year to year,
showing a trend of fluctuating development as shown in Figure 2.

4.2 Analysis of the degree of coupling and
coordination between the digital economy
and green development

4.2.1 A view from an intercity perspective
By calculating the coupling degree and coordination degree of

the digital economy and green development in 21 cities of
Guangdong from 2013 to 2019, we find that: The interannual
variation of the coupling degree and coordination degree of the
two systems in each city is not obvious. Therefore, the calculation

results of 2019 are selected, and ArcGIS software is used for spatial
visualization processing to form the spatial distribution map of the
coupling degree and coordination degree of the digital economy and
green development in 2019 (as shown in Figure 3).

In terms of the coupling degree of the two systems, the coupling
degree of the digital economy and green development in 21 cities in
Guangdong presents an unbalanced pattern of “centre-edge.”
“Guangzhou-Foshan-Shenzhen-Dongguan” has become the core
pole of the coupling development of the two systems in the
province, and the C values are 0.85, 0.804, 0.729 and 0.872,
respectively. Except Shenzhen is in the run-in coupling stage, the
other three cities are in the highly coupled stage. The coupling
degree of Huizhou was 0.404, which was in the antagonistic stage.
Other cities in the Pearl River Delta have reached the low coupling
stage, which is mainly due to the spillover effect of core cities. In the
west, east and north of Guangdong, Qingyuan, Shaoguan,
Zhanjiang, Jieyang and Shantou are at the low coupling stage,
while other cities are at the uncoupling stage. The east and west
of Guangdong are regions with rapid economic growth but mainly
rely on resource-consuming industries and have prominent green
weaknesses, so the industrial ecology still needs to be improved. Due
to its geographical location, northern Guangdong has low
accessibility and is less attractive to technical talents and foreign
enterprises. The digital economy develops slowly, with a single
industrial structure and a large number of high-emission and
high-pollution industries. However, as a green ecological barrier
in northern Guangdong, a good interaction between the digital
economy and green development can be realized by improving
resource utilization efficiency.

In terms of the coordination degree of the two systems, the
spatial evolution and coupling degree are close to the same level, and
the regional differences are significant. The coordination level of

FIGURE 3
Coupling degree and coordination degree of the digital economy and green development in 21 cities of Guangdong Province in 2019 Note: The
author collated and calculated according to the relevant data of the Guangdong Statistical Yearbook, China City Statistical Year, China Science and
Technology Statistical Yearbook, and various city statistical yearbooks and bulletins.
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cities is as follows: there are 3 cities with moderate coordination
level, 2 cities with basic coordination level, 15 cities with moderate
dissonance level, 1 city with serious dissonance level, and no city
reaches high coordination level. It can be seen that the synergistic
interaction between the two internal indexes of each city still needs
to be further improved. The coordination degree of Guangzhou,
Shenzhen and Dongguan has always been at a high level, and the D
value of the coordination degree reached 0.767, 0.786 and
0.606 respectively, which is in the moderate coordination stage
and classified as the first level. This is closely related to its
superior geographical location, rich resources, diversified
industrial structure, convenient transportation and policy
support. Driven by the radiation of core cities, the economic
interaction of surrounding cities increased, and the spillover
effect is obvious. The D values of Foshan and Zhuhai reached
0.563 and 0.411 respectively, which were at the basic
coordination stage. Fifteen cities, including Zhongshan, Huizhou,
Jiangmen, Shaoguan, Qingyuan, Zhaoqing, Jieyang, Shanwei and
Zhanjiang, were in the moderate dissonance stage. These cities are
classified as the second level. Yunfu City is the only city in the serious
dissonance stage, with a D value of 0.191, which is classified into the

third level. On the whole, the coordination level of 21 cities in
Guangdong showed a descending spatial pattern from the first level
to the third level.

4.2.2 A view from inner-city
To analyze the inter-annual variation trend of the coupling and

coordination degree of the digital economy and green development
in Guangdong cities, this paper further measures from the time
series dimension and the results are shown in Table 3. The results
show that the C value of the coupling degree between the two
systems from 2013 to 2019 is between 0.105 and 0.999, with a large
span. It indicates that the coupling degree between the digital
economy and green development varies greatly from year to year.
The coupling degree of each city shows an overall fluctuation rising
trend. Some cities such as Shantou, Heyuan and Meizhou showed a
“U-shaped” development trend, and the development was relatively
slow from 2013 to 2016. After 2016, the coupling degree accelerated
and the coupling trend became better year by year. In 2019, all cities
reached the running-in coupling and highly coupling stages,
indicating that with the timing development, the digital economy
system and the green development system within each city began to

TABLE 3 Coupling degree and coordination degree index of the digital economy and green development in Guangdong Province.

Coupling degree C Coordination degree D

2013 2016 2019 2013 2016 2019

Guangzhou 0.428 0.610 0.752 0.372 0.556 0.767

Shenzhen 0.293 0.646 0.698 0.313 0.605 0.723

Zhuhai 0.292 0.561 0.845 0.254 0.514 0.857

Shantou 0.790 0.528 0.661 0.462 0.486 0.740

Foshan 0.392 0.317 0.786 0.366 0.398 0.800

Shaoguan 0.462 0.553 0.812 0.364 0.505 0.777

Heyuan 0.433 0.378 0.789 0.320 0.413 0.769

Meizhou 0.673 0.395 0.926 0.514 0.460 0.800

Huizhou 0.418 0.496 0.726 0.297 0.511 0.737

Shanwei 0.512 0.537 0.762 0.371 0.518 0.768

Dongguan 0.547 0.534 0.897 0.458 0.521 0.763

Zhongshan 0.496 0.717 0.731 0.383 0.695 0.706

Jiangmen 0.105 0.594 0.823 0.170 0.562 0.808

Yangjiang 0.331 0.467 0.907 0.355 0.468 0.849

Zhanjiang 0.272 0.726 0.867 0.308 0.513 0.797

Maoming 0.327 0.620 0.900 0.263 0.548 0.874

Zhaoqing 0.441 0.565 0.752 0.410 0.527 0.699

Qingyuan 0.364 0.784 0.799 0.400 0.436 0.789

Chaozhou 0.523 0.535 0.814 0.518 0.476 0.825

Jieyang 0.335 0.468 0.839 0.295 0.417 0.831

Yunfu 0.534 0.630 0.944 0.441 0.577 0.844

Note: The author collated and calculated according to the relevant data of the Guangdong Statistical Yearbook, China City Statistical Year, China Science and Technology Statistical Yearbook,

and various city statistical yearbooks and communique.
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promote each other and check each other, showing the characteristics
of the ordered development of resonance coupling. The main reason is
that China is committed to accelerating the development of high-tech
industries and strategic emerging industries, and many major scientific
and technological achievements have reached the world’s advanced
level. In green development, new progress has beenmade in promoting
an ecological civilization. Functional zones have been gradually
improved, the discharge of major pollutants has been steadily
reduced, and energy conservation and environmental protection
have been significantly improved. Cities have responded to national
policies and made positive contributions to the digital economy and
green development.

Further analysis of the coordination degree between the digital
economy and green development in Guangdong shows that the
fluctuation of the D value of the coordination degree of all cities
increased from 2013 to 2019, showing a good development trend. In
2013, D values of coordination degree ranged from 0.170 to 0.518,
spanning three levels of serious dissonance, moderate dissonance
and basic coordination. Six cities, including Shantou and Meizhou,
reached the basic coordination level, accounting for about 29% of
the overall proportion. Fourteen cities, including Guangzhou,
Shenzhen and Zhuhai, were in the moderate dissonance level,
accounting for 66% of the total. Only Jiangmen City is in the
serious dissonance stage, accounting for about 5%. In 2016, the
overall coordination degree of each city showed a slight increase, and
the D value ranged from 0.398 to 0.695. Except for Foshan, whose
coordination degree was 0.396, which was in the stage of moderate
dissonance, the other cities reached the level of basic coordination
and moderate coordination. In 2019, the coordination degree of all
cities increased significantly, with the D value exceeding 0.7. There
were 14 cities at moderate coordination level, accounting for 67% of
the whole. There were 7 highly coordinated cities, accounting for
about 33%. This shows that the digital economy level of the 21 cities
in Guangdong province has been effectively improved, and the green
development level has also achieved good results.

5 Conclusion and policy
recommendations

This paper constructs an evaluation index system of the digital
economy and green development to measure and analyze the
comprehensive development level of the digital economy system
and green development system in 21 cities of Guangdong province
during 2013–2019 from the perspectives of intercity and inner city.
This paper also reveals the spatiotemporal evolution characteristics
of the coupling and coordination degrees of the two systems. The
research in this paper shows that:

The characteristics of urban spatial pattern from the perspective of
intercity. 1) Characteristics of comprehensive development level: From
the perspective of intercity, there is a large gap between the digital
economy development level and the green development level of each
city. The digital economy development level of Guangzhou and
Shenzhen is ahead of the green development level, while other cities
lag behind the green development level, showing obvious regional
differences. 2) Coupling characteristics: the coupling degree of the
digital economy and green development in each city presents an
unbalanced pattern of “centre-edge,” and “Guangzhou-Foshan-

Shenzhen-Dongguan” has become the core pole of the coupled
development of the two systems in the province. 3) Coordination
characteristics: the coordination degree of the two systems presents
echelon distribution. Guangzhou, Shenzhen andDongguan are the first
levels; Fifteen cities, including Foshan, Zhuhai, Zhongshan, Huizhou,
Jiangmen, Shaoguan, Qingyuan, Zhaoqing, Jieyang, Shanwei and
Zhanjiang, are in the second level. Yunfu City is the third level.

Characteristics of temporal development from the perspective of
the inner city. 1) Characteristics of comprehensive development level:
The digital economy level and green development level of 21 cities in
Guangdong showed an increasing trend from 2013 to 2019; while the
digital economy is accelerating rapidly, the level of green development
shows a fluctuating trend. 2) Coupling characteristics: The coupling
degree of the digital economy and green development within each city
can be roughly divided into two stages: steady development before
2016 and accelerated development after 2016. The coupling trend is
getting better year by year, which indicates that the functions of the two
systems within the city are deepening. 3) Coordination characteristics:
From 2013 to 2019, the D value of the coordination degree between the
digital economy and green development in each city increased, showing
a good development trend. In 2013, the coordination degree was in
three levels: serious dissonance, moderate dissonance and basic
coordination. In 2019, the coordination degree of each city
increased significantly, with the D value exceeding 0.7, which was
between moderate coordination and high coordination.

Based on the above research conclusions, this paper puts
forward the following policy recommendations:

5.1 Optimize resource allocation based on
regional differences

Since the coupling level and coordination level of the digital
economy and green development between different cities are
significantly different, each city should implement a regional
differentiation development strategy, based on its own reality,
comprehensively consider the existing advantages and
weaknesses, and make overall layout and scientific planning. On
the one hand, efforts should be made to strengthen the leading role
of Guangzhou, Shenzhen and the Pearl River Delta urban
agglomeration, give full play to its advantages in the field of the
digital economy, strengthen cooperation and exchanges with other
cities in the field of the digital economy and green development,
exert spillover effect, stimulate the development of surrounding
cities, and eliminate the digital divide between regions. On the other
hand, for the cities with weak digital economy foundation and
dominated by traditional industries in the east, west and north of
Guangdong, the government should give some support to the digital
economy development in these areas, actively guide enterprises to
use digital technologies to transform and upgrade traditional
businesses in a multi-directional and whole-chain way, and
promote enterprises to realize digital and intelligent
transformation. At the same time, the government should
encourage enterprises to adopt the concept of green production
and green consumption, accelerate the promulgation of relevant
policies and regulations, deepen the supervision system of ecological
and environmental protection, implement the responsibility system
of environmental governance, make green development
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standardized and strict, and force enterprises to carry out green
transformation.

5.2 Pursue innovation-driven development
and unleash the potential for green
development

Science and technology innovation is the foundation of the
digital economy and an important driving force of green
development. Therefore, scientific and technological innovation
has become a breakthrough for the problem of disconnection
between the digital economy and green development. Due to the
long R&D cycle and slow benefits of technological innovation in the
green field, problems such as insufficient endogenous impetus and
insufficient innovation are prominent in the R&D of digital
technologies in the green field. Therefore, colleges and
universities should constantly improve training mechanisms, not
only to cultivate senior R&D talents with the spirit of exploration,
but also to focus on the training of senior technicians in related
fields, integrate the green scientific spirit and green innovative
thinking into education, and guarantee the talents for the green
development. Enterprises, especially leading enterprises, should
increase investment in green technology research, strengthen
innovation in resource utilization technology, pollution control
technology and clean energy development, promote digital and
green development of enterprises, and build a green and circular
production system. Finally, enterprises can cooperate with
universities, scientific research institutions, industrial parks, etc.,
to jointly conduct technology research and development, jointly
overcome the difficulties in green technology, and jointly promote
the coordinated development of digitalization and greenization.

Due to the limitation of the length of this paper, this paper
only discusses the dynamic evolution characteristics of the
coupling and coordination relationship between digital
economy and green development before the outbreak of
COVID-19. However, it is well known that the digital
economy has become an important driver of economic
development in the post-epidemic era, and the interactive
relationship between the digital economy and green
development will also show new characteristics in the post-
epidemic era. Therefore, to explore the differences and reasons
of the coupling and coordination relationship between digital
economy and green development before and after the epidemic,

and to comprehensively examine the impact of COVID-19 on the
interaction between digital economy and green development, is
an important direction for further research in the future.
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Against the backdrop of global climate change, corporate carbon emissions

have increasingly become a focal point, making carbon reduction by

companies a pivotal issue. Based on data from Chinese listed

manufacturing companies from 2010 to 2020, this paper explores the

impact of ESG performance on carbon reduction. The results indicate that

ESG performance significantly reduce corporate carbon emissions. Green

technology innovation, corporate efficiency, and managerial short-

sightedness are vital channels through which ESG promotes corporate

carbon reduction. For companies with different environmental regulations,

industry competition intensities, and capital intensities, the relationship

between ESG performance and carbon reduction varies significantly.

Notably, we found that in companies with strict environmental regulations,

intense industry competition, and high capital intensity, the carbon-reducing

effect of ESG performance is more pronounced. Furthermore, digital

transformation positively moderates the relationship between ESG

performance and carbon reduction. This study not only provides new

empirical evidence for understanding the impact of ESG performance on

carbon reduction but also offers valuable insights for businesses and

policymakers to promote corporate efforts in carbon reduction and

achieve China’s “Dual Carbon” goals.
KEYWORDS

ESG, manufacturing company, corporate carbon reduction, mechanism
verification, digital transformation
1 Introduction

With the climate change and issues of income inequality on the rise recently,

sustainability has taken center stage in the growth of the world. All facets of society

should take notice as serious concerns to human health, social cohesiveness, and

economic growth are posed by issues of environmental degradation. Corporations,
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which are vital to economic activity, have a duty to push society

toward sustainable development. This means that businesses must

develop business models that balance economic efficiency and

sustainable growth while pursuing profit maximization, actively

adopting the ESG (Environmental, Social, and Governance)

concept. ESG is the idea of incorporating environmental, social,

and corporate governance considerations into financial and

operational choices. It acts as a benchmark for businesses to track

and manage their performance and a crucial criterion for investors

to gauge and assess the social responsibility and capacity for

sustainable development of businesses (Pulino et al., 2022; Zhou

et al., 2023). In delving deeper into the ESG framework, it is

essential to understand how each of its components—

Environmental, Social, and Governance—uniquely contributes to

carbon reduction and sustainable development. The environmental

aspect of ESG emphasizes a company’s role in stewarding natural

resources and minimizing ecological footprints, directly impacting

carbon emissions through practices like energy efficiency, waste

reduction, and sustainable resource utilization. The social

dimension focuses on a company’s management of relationships

with employees, suppliers, customers, and communities where it

operates, indirectly affecting carbon emissions by promoting a

broader culture of sustainability and responsible consumption.

Lastly, the governance component, involving management

structures, policies, and procedures, ensures accountability

and transparency in environmental and social practices,

supporting carbon reduction goals through sustainable decision-

making processes.

The basic tenet of ESG stresses that businesses should prioritize

social responsibility, environmental protection, and improved

corporate governance in addition to pursuing financial goals like

profit. Additionally, it tries to help investors assess a company’s

sustainability to make wise investment choices. The ESG idea is

currently growing quickly in the business, regulatory, and financial

sectors worldwide (Agliardi et al., 2023; Liu et al., 2023; Zhang et al.,

2023b). Global ESG assets were predicted to be at $22.839 trillion in

2016 and will rise to $35.3 trillion in 2020, a rise of 54.56 percent

from 2016. This is according to the Global Sustainable Investment

Alliance (GSIA). In addition, the number of parties who have

ratified the PRI (Principles for Responsible Investment) and the

size of managed assets both keep expanding. 3,826 institutions

signed the PRI as of 2021, controlling $121.3 trillion in total assets.

In contrast, only 890 institutions signed the PRI in 2011 and only

$24 trillion worth of assets were under their management (Mao and

Wang, 2023).

Since the proposal of the “carbon peak and carbon neutrality”

goals, China’s emphasis on ESG has increased as society has become

more aware of the ESG performance of corporations. The China

Securities Regulatory Commission (CSRC) amended the

“Corporate Governance Guidelines for Listed Businesses” in 2018,

which stipulates that listed companies must disclose information

about corporate governance, social responsibility, and

environmental protection. ESG data is one of the items for

communication between listed firms and investors in investor

relations management, according to the “Guidelines for Investor

Relations Management of Listed Companies” published by the
Frontiers in Ecology and Evolution 02167
CSRC in April 2022. Statistics from the China Listed Businesses

Association on information disclosure show that over 1,700

companies produced and disseminated ESG-related reports for

2022, accounting for 34%, a major increase from the prior year.

The economic performance and social implications of ESG will be

more apparent as Chinese companies increase their focus on it,

which will help to improve their long-term competitiveness and

reputation abroad. The “dual carbon” strategy and high-quality

development goals of China are also closely aligned with ESG,

which is a key factor in accelerating China’s sustainable economic

development and achieving the “carbon peak” and “carbon

neutrality” targets (Yan et al., 2020; Li et al., 2023a; Zheng

et al., 2023).

Addressing global climate change and achieving low-carbon

development are shared goals of the international community. The

“14th Five-Year Carbon Reduction Action Plan” clearly states that

promoting low-carbon technology innovation and industrial

upgrading during the “14th Five-Year Plan” period is the core

task for realizing green development and building an ecological

civilization. It’s also a crucial path to practice the concept of

sustainable development and advance the global ecological

civilization construction (Wen et al., 2023). The report of the

20th National Congress of the Communist Party emphasizes the

need to vigorously develop a green, low-carbon economy, improve

energy efficiency, and strive to achieve carbon peak and carbon

neutrality goals. The “Government Work Report” of 2022 further

points out the necessity to accelerate the green, low-carbon

transition, deepen the national carbon emission rights trading

market and promote adjustments in industrial and energy

structures to achieve carbon emission reductions. In this context,

the ESG performance of enterprises plays a pivotal role in their

efforts towards carbon reduction and addressing climate change.

Companies with good ESG performance typically excel in areas like

environmental protection, resource utilization, and energy

efficiency, helping them reach carbon reduction goals (Sun et al.,

2023; Li et al., 2023c). These companies also tend to have more

investment and financing opportunities, as many investors and

financial institutions now lean towards supporting businesses with

commendable ESG records (Long et al., 2023; Xu et al., 2023; Zhang

et al., 2023b). However, despite the widely acknowledged

importance of ESG, how companies can ensure effective carbon

reduction and other ESG goals while pursuing economic gains

remains a challenge in practice. Moreover, there may be significant

disparities in carbon reduction and ESG practices across different

companies, industries, and regions. Thus, against the backdrop of

China’s pursuit of carbon neutrality and sustainable development

goals, it’s imperative to explore how corporate ESG performance

assist in achieving carbon reduction targets, enhance energy

efficiency, provide robust support for a low-carbon economy, and

contribute to social and economic development. This article will

delve into this critical topic, combining theoretical frameworks with

empirical data.

ESG is rapidly developing globally and has received widespread

attention from scholars both domestically and internationally. ESG

performance significantly impacts corporate value and performance

(Yu and Xiao, 2022), reduces corporate financing costs (El Ghoul
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et al., 2011; Fang and Hu, 2023; Ning and Zhang, 2023), lowers

corporate risks (Albuquerque et al., 2019; Yu and Xiao, 2022), and

promotes foreign direct investment (Zhang et al., 2022). Although

corporate social responsibility and sustainable development topics

have garnered widespread attention, research on whether and how

ESG performance influence corporate carbon reduction remains

relatively limited. In terms of carbon reduction research, most

existing literature focuses on the impact of policy tools and

technological advancement on corporate carbon emissions. In

contrast, literature related to the environmental factors in the

ESG topic primarily focuses on the relationship between

environmental performance and corporate performance. For

instance, Pei et al. examined the impact of environmental

regulations on corporate carbon emission efficiency (Pei et al.,

2019); and Zhang et al. (2022) explored the potential impact of

corporate social responsibility on carbon reduction. Nevertheless,

these studies did not systematically explore the impact of ESG

performance on corporate carbon reduction. Therefore, this

research aims to investigate from a fresh perspective of ESG

performance, utilizing data from Chinese listed manufacturing

companies from 2010 to 2020, to deeply examine how ESG

performance impact corporate carbon reduction behaviors and

their underlying mechanisms. This research helps reveal the role

of ESG performance in propelling corporations to achieve carbon

neutrality, providing strategic recommendations for governments

and corporations. Simultaneously, it offers a novel theoretical and

empirical perspective on the relationship between ESG and

corporate carbon emissions.

Compared to existing research, this paper may have made

marginal contributions in the following areas.

Firstly, this paper is among the first to explore how ESG

performance influence corporate carbon reduction behaviors.

Although ESG in relation to corporate sustainability and social

responsibility has become a hot research topic, most literature

mainly focuses on how ESG impacts corporate value,

performance, financing costs, risks, and foreign direct

investments, among others (El Ghoul et al., 2011; Albuquerque

et al., 2019; Wu et al., 2022; Xie et al., 2022; Xie et al., 2022; Li et al.,

2023a; Wang et al., 2023a). The specific impact of ESG performance

on corporate carbon reduction behaviors remains largely

unexplored. Thus, from the perspective of corporate carbon

reduction behaviors, this paper provides new insights into the

relationship between ESG and climate change.

Secondly, this paper further enriches and enhances research on

carbon reduction and corporate behaviors. Most relevant to the

research theme is how sustainable or green development affects

corporate carbon emissions. However, most literature typically

discusses the impact of green development on carbon emissions

indirectly from a macro perspective, such as from the angle of

environmental regulatory policies (Chen, 2022; Cong et al., 2022;

Cahyono et al., 2023; Chen et al., 2023; Chen et al., 2023; Deng et al.,

2023). Unlike the aforementioned literature, this paper directly

analyzes the impact of corporate ESG performance on their carbon

reduction behaviors from a micro perspective. More importantly,

most existing literature usually only focuses on the environmental

factors (E) in ESG, while the core metric in this paper
Frontiers in Ecology and Evolution 03168
(ESG performance) encompasses corporate performances in

environmental protection, social responsibility, and corporate

governance, offering a more comprehensive and systematic

perspective for the research on carbon emissions and

corporate behaviors.

Thirdly, in terms of influencing mechanisms, although some

literature has explored from various angles how ESG impacts

corporate carbon reduction, these studies mainly concentrate on a

single or dual dimensions. In contrast, this paper systematically

delves into how ESG performance influence corporate carbon

reduction behaviors from three core dimensions: financing

constraints, innovation efficiency, and risk-taking. Specifically,

this paper discovers that ESG performance can promote

corporate carbon reduction goals by alleviating corporate

financing constraints, enhancing innovation efficiency, and

rationalizing risk-taking. The exploration of these three

mechanisms helps to understand more comprehensively and

deeply the intrinsic connection between ESG performance and

corporate carbon reduction behaviors.

Fourthly, in addition to exploring the impact of ESG

performance on corporate carbon reduction behaviors, this paper

further investigates from the perspective of digital transformation

how ESG assists corporations in achieving low-carbon goals in the

digital age. With the rapid development of digital technology,

corporations face different carbon emission pressures and

opportunities compared to traditional models. This paper finds

that ESG performance not only enable corporations to better utilize

digital technologies to optimize their operations and production,

thereby achieving carbon reduction but also help ensure continuity

and consistency of their low-carbon strategies during digital

transformation. This part of the research provides a fresh

perspective and empirical evidence on how to maintain low-

carbon development in the digital age.

Lastly, in terms of policy implications, facing the dual

challenges of deepening ecological civilization construction in

China and implementing strict carbon peak and carbon neutrality

goals, deeply exploring how ESG performance assist corporate

carbon reduction holds profound practical and strategic

significance. This paper confirms the positive role of ESG

performance in reducing corporate carbon emissions, revealing

that by actively fulfilling their environmental, social, and

governance responsibilities, corporations can not only enhance

their sustainability and social responsibility but also make

significant contributions to national and even global carbon

reduction goals. This implies that for China in the process of

achieving the “dual carbon” goals, strengthening corporate ESG

practices and enhancing their ESG levels are vitally important.

Simultaneously, this also provides crucial policy recommendations

for the government and decision-makers on how to promote

national carbon reduction and low-carbon development goals by

encouraging and supporting corporations to strengthen

ESG practices.

In summary, this paper primarily contributes by articulating

how ESG performance impacts corporate carbon reduction

behaviors and examining the mechanisms behind this impact.

While the influence of ESG on aspects such as corporate value,
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performance, and risk has garnered extensive attention, research

specifically addressing how ESG performance affects corporate

carbon reduction is relatively sparse. This study fills this gap by

analyzing data from Chinese listed manufacturing companies from

2010 to 2020, revealing that ESG performance positively influences

corporate carbon reduction behaviors through multiple channels

such as alleviating financing constraints, enhancing innovation

efficiency, and rationalizing risk-taking decisions. Additionally,

this paper explores how digital transformation moderates the

relationship between ESG performance and carbon reduction in

the current digital era, offering new insights and empirical evidence

for understanding low-carbon development against a backdrop of

digitalization. Moreover, our research delves into the heterogeneity

of the ESG performance and carbon reduction relationship across

companies with different environmental regulatory intensities,

industry competition, and capital intensities, thereby enriching

the understanding of how ESG performance impacts corporate

carbon reduction.

The remainder of the paper is organized as follows: Section 2

provides a comprehensive literature review and develops the

research hypotheses. Section 3 details the research methodology

and the data sources utilized in the study. Section 4 reports on the

empirical results and conducts a thorough analysis of the findings.

Section 5 explores the mechanisms and heterogeneity of ESG

impacts, while Section 6 investigates the moderating role of

digital transformation in this context. Finally, Section 7 concludes

the paper, summarizing the main findings and discussing their

policy implications, limitations, and avenues for future research.
2 Theoretical analysis and
research hypothesis

2.1 Impact effect analysis

ESG performance play a crucial role in connecting businesses

with the market, providing effective market-driven governance

impetus for corporate carbon reduction (Zhang et al., 2022;

Zhang, 2023). With the increasing severity of global climate

change, corporate carbon emissions have become a societal focal

point (Lee et al., 2022). The carbon reduction behaviors of

companies directly relate to the global effectiveness of addressing

climate change (Pei et al., 2019). ESG performance emerged in this

context. They not only measure corporate performance in

environmental, social, and governance aspects but more

importantly, they provide businesses with a clear direction to

emphasize environmental protection and commitment to carbon

reduction while pursuing economic benefits. On the one hand, ESG

performance promote the operation of market incentive

mechanisms, driving businesses to take the initiative in carbon

reduction (Apergis et al., 2022; Wang et al., 2022; Zheng et al., 2023;

Ren et al., 2023a). In the capital market, as investors increasingly

focus on sustainable investments, companies with high ESG

performance tend to attract more investments. Such companies

are seen as having better management and reduction strategies
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against climate risks (Cho, 2022; Bai et al., 2023). Additionally,

financial institutions in credit decisions also favor companies that

excel in ESG performance because these companies are more likely

to have a competitive edge in future environmental regulations.

On the other hand, ESG performance strengthen the

supervisory role of stakeholders, compelling businesses to

undertake carbon reduction. When a company emits excessive

carbon or lacks action in reduction, a low ESG rating quickly

sends a negative signal to the market. Such transparency can

prompt investors, consumers, and other stakeholders to reassess

their relationships with that company and might attract public

attention and criticism (Cong et al., 2022; Ge et al., 2022; Pan et al.,

2022). In conclusion, ESG performance, through both market

incentives and stakeholder supervision mechanisms, effectively

drive companies to take proactive measures for carbon reduction,

thereby enhancing the long-term sustainability and competitiveness

of companies. Based on this, we propose the following Research

Hypothesis. Furthermore, drawing on the research by Li and Wen

(2023), we should also consider the impact of cultural and social

factors, such as local government and public participation, on

corporate low-carbon behavior. The policy of civilized cities, as a

mechanism to promote local government and public engagement in

green development, underscores the significance of these factors in

driving low-carbon practices in businesses. Thus, in addition to the

direct mechanisms of market incentives and stakeholder

supervision, our study extends to exploring the potential indirect

influences on corporate carbon emissions through cultural and

social mechanisms.

Hypothesis 1. ESG performance can promote corporate

carbon reduction.
2.2 Impact mechanism analysis

With the increasing severity of global climate change and

environmental issues, corporate ESG performance has garnered

widespread attention. Many scholars and practitioners believe there

is a close relationship between a company’s ESG practices and its

carbon emissions. However, the nature and mechanism of this

relationship remain unclear. To better understand how ESG

impacts corporate carbon emissions, this paper delves deep into

the effects of green technology innovation, corporate efficiency

improvement, and curbing managerial short-sightedness from

three different angles.

2.2.1 Green technology innovation effect
First, from the perspective of signal transmission theory,

showcasing good ESG performance sends a message to the public

and stakeholders about the company ’s commitment to

environmental responsibility and its willingness to invest in green

technologies (Ma et al., 2022; Xie and Lv, 2022; Zheng et al., 2023).

Such positive environmental performance not only helps establish a

leading position for the company in environmental protection but

also attracts more consumers and investors who increasingly value

green and sustainable practices of companies (Li et al., 2023b). This
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positive market feedback further encourages companies to invest in

green technology research and innovation. Secondly, based on

stakeholder theory, the interaction and relationships between a

company and its employees, customers, suppliers, government, and

other stakeholders play a crucial role in driving green technology

innovation (Yuan et al., 2022). As described by Lin et al. (2021),

Freeman’s view in 1984 emphasized the importance of maintaining

good relationships with stakeholders (Lin et al., 2021). Especially for

environmental issues and notably for reducing carbon emissions,

establishing close cooperation with external stakeholders such as

governments, environmental organizations, and research

institutions can provide companies with more resources for green

technology and innovation (Cho, 2022). Resource sharing and

collaboration expedite the development of green technology,

advancing technological progress, leading to effective carbon

emission reduction (Xu et al., 2023). Furthermore, with the

deepening of green technology innovation and application,

companies can directly reduce their carbon emissions and, by

improving production efficiency and reducing energy and

resource consumption, achieve dual growth in economic and

environmental benefits (Li et al., 2023b; Wang et al., 2023b). In

this way, companies not only contribute to global carbon reduction

goals but also lay a solid foundation for their long-term

development and competitive advantage. Therefore, we propose

the following hypotheses:

Hypothesis 2. ESG performance can significantly reduce

companies’ carbon emission intensity by fostering green

technology innovation.

2.2.2 Corporate efficiency improvement effect
Corporate efficiency is an essential factor affecting the level of

corporate carbon emissions. Exceptional ESG performance can

drive companies to improve their operational efficiency, which in

turn has a positive effect on carbon emissions (El Ghoul et al., 2011;

Xie and Lv, 2022; Xiao et al., 2023). The reason is that, from the

perspective of signal transmission theory, companies with good

ESG performance actively convey their advantages in areas such as

environment, society, and governance to the external world. This

can attract more investors and partners, thereby helping the

company gain more resources and technological support,

enhancing production and operational efficiency (Hu and Guo,

2023). Firstly, according to signal transmission theory, companies

with excellent ESG performance are more inclined to actively

disclose their achievements in green technology and energy-

saving emissions reduction, signaling their commitment to low-

carbon, environmental protection, and sustainable development to

the public and investors. Research has also pointed out that ESG

information disclosure can increase corporate transparency,

attracting more investors and consumers concerned about the

environment and sustainable development (Lin et al., 2021). This

will bring more financial and technological support to companies,

boosting their production efficiency and reducing carbon emissions.

Secondly, based on resource dependency theory, companies with

high ESG performance are more likely to obtain external resources

like funding, technology, and partners. These resources positively
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impact the production and operational efficiency of companies,

leading to reduced carbon emissions (Garel and Petit-Romec,

2022). For instance, companies might acquire more efficient

production technologies, advanced energy-saving equipment, or

engage in green collaborations. Moreover, under the broader

backdrop of the Chinese government’s encouragement of low-

carbon, green, and sustainable development, companies with

good ESG performance are more likely to receive government

support and favorable policies. This further aids companies in

enhancing their efficiency and reducing carbon emissions

(Houston and Shan, 2022). An improvement in corporate

efficiency means producing more products or services with fewer

resources, directly leading to a reduction in carbon emissions.

Researches also indicates that enhancing corporate efficiency can

reduce production costs, subsequently decreasing carbon emissions

(Hu et al., 2021; Zhong and Ma, 2022).

Therefore, from the perspective of corporate efficiency, ESG

performance can directly or indirectly promote companies to reduce

carbon emissions, driving low-carbon and sustainable development.

Hypothesis 3. ESG performance can significantly

reduce companies’ carbon emission intensity by enhancing

operational efficiency.

2.2.3 Managerial myopia curtailment effect
The decision-making orientation of managers largely

determines the level of corporate carbon emissions. Compared to

traditional short-term profit orientations, good ESG performance

often reflects a company’s commitment to long-term and

sustainable development. Managerial myopia can lead to the

neglect or delay of necessary green technology investments and

updates, thereby increasing carbon emissions (Hu et al., 2021;

Wang et al., 2022; Xu et al., 2023). Firstly, according to

behavioral finance theory, managerial myopia often causes them

to have exaggerated expectations of immediate returns, overlooking

or inadequately considering long-term and sustainable investments.

In contrast, companies with good ESG performance tend to adopt a

long-term perspective, focusing on investments in environmental,

social, and governance areas, which helps reduce the company’s

carbon footprint. Secondly, based on agency theory, there might be

a conflict of interest between managers and shareholders, especially

concerning carbon emissions and environmental protection

investments. However, when a company implements robust ESG

measures, it can serve as a mechanism to ensure the long-term

commitment of managers to environmental and social issues,

thereby reducing carbon emissions (Cong et al., 2022).

Additionally, for large enterprises operating globally, the

international pressures and expectations they face make ESG

performance especially crucial. International organizations and

multinational companies are increasingly demanding that

members of their supply chains meet strict ESG standards,

further prompting companies to reduce carbon emissions to meet

these standards and expectations. overall, the effect of managerial

myopia might increase corporate carbon emissions, while good ESG

performance can alleviate this effect. This assists companies in

adopting more sustainable strategies and actions, reducing carbon
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emissions. In summary, this paper further proposes the following

research hypotheses.

Hypothesis 4. ESG performance can significantly mitigate

companies’ carbon emission intensity by curtailing managerial

myopia, facilitating the adoption of long-term, sustainable carbon

reduction strategies.
2.3 Moderating role of
digital transformation

Digital transformation is a critical trend in today’s corporate

development, involving a fundamental transformation of a

company’s operational model, production processes, and

organizational structure through the application of technology

and data. Against the broader context of sustainable development

and environmental management, digital transformation gains a new

dimension of importance. In regions like Pakistan, where

agricultural practices and water management are central to both

the economy and ecological sustainability, digital innovation plays a

crucial role in shaping sustainable practices (Rajpar et al., 2019). As

highlighted in recent studies, the interaction between technology

and sustainable practices can significantly influence the

environmental impact of economic activities (Saqib et al., 2020;

Razzaq et al., 2022a; Razzaq et al., 2022b).

Against the backdrop of ESG promoting corporate carbon

reduction, digital transformation may play a pivotal moderating

role. Firstly, digital transformation can help companies monitor,

manage, and report their carbon emission data more accurately

(Chen and Zhang, 2023). Through advanced sensor technology, the

Internet of Things, and big data analysis, companies can obtain

detailed real-time data on their carbon emissions, allowing for more

accurate calculations of their carbon footprint, ensuring accurate

reflection of their efforts in carbon reduction. Secondly, digital

transformation can optimize a company’s production and supply

chain management, thereby reducing carbon emissions (Ma and

Yang, 2023). For example, advanced supply chain optimization

algorithms can reduce unnecessary logistics activities, subsequently

reducing carbon emissions. Additionally, digital transformation can

help companies better predict market demands, reducing

overproduction and waste, and further lowering carbon

emissions. Lastly, digital transformation can also promote

innovation and R&D in companies, leading to the development of

more eco-friendly products and services (Zhang et al., 2023a).

Through digital technologies, such as machine learning and

artificial intelligence, companies can accelerate product

prototyping and tes t ing , speeding up the R&D and

commercialization process of green technologies. Therefore, while

ESG itself already aids corporate carbon reduction, this effect might

be further strengthened in the context of digital transformation.

Specifically, digital transformation might enhance the positive

impact of ESG on corporate carbon reduction. Based on the

above analysis, we propose the following hypothesis.

Hypothesis 5. Digital transformation has a positive moderating

role in the promotion of corporate carbon reduction by ESG.
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3 Research design

3.1 Model specification

This study aims to examine the impact of ESG performance on

corporate carbon emissions. Following the approach used in similar

studies (Lee et al., 2022; Li and Wen, 2023), we set up the following

basic regression model:

Carbonit = b0 + b1ESGit + b2Xit + mi + ϑt + ϵit (1)

In Equation 1, i and t respectively represent the company and the

year; Carbon represents the intensity of corporate carbon emissions;

ESG represents the ESG performance; X is a series of company-level

control variables selected in this study; mi  and qt  respectively

indicate that the model controls for individual fixed effects and time

fixed effects, and   ϵit   is the random error term. Among them, b1 is the
core result that this study focuses on. If b1 is significantly less than zero,
then H1 will be verified, implying that ESG can significantly inhibit the

increase in the carbon emission intensity of manufacturing companies.

To explore the mechanism by which ESG affects the carbon

emission intensity of manufacturing companies, we utilize the

mediation effect model as suggested by Liu and Lyu (2022) and

Qing et al. (2022):

Interit = r0 + r1ESGit + r2Xit + mi + ϑt + ϵit      (2)

Carbonit = g0 + g1ESGit + g2Interit + g3Xit + mi + ϑt + ϵit (3)

In Equations 2 and 3, Inter represents the mediating variable,

and the meanings of the other variables are the same as in formula

(1). In the case where r2 is discernibly positive, it can be inferred

that there is a positive correlation between ESG performance and

the intermediary variable. Conversely, a significantly negative g2
underscores the inverse relationship between the intermediary

variable and corporate carbon emissions. Collectively, these

findings suggest a mechanism through which ESG performance

attenuates corporate carbon emissions intensity, mediated by its

influential role on the intermediary variable.

To further examine the moderating effect of digital

transformation on the suppression of carbon emissions by ESG,

we introduced an interaction term between ESG and digital

transformation (Dig) into the baseline regression model, as

recommended by Luo et al. (2023):

Carbonit = b0 + b1ESGit + b2Xit + b3ESG� Dig + mi + ϑt + ϵit (4)

In Equation 4, if b3 is observed to be significantly negative, it

provides evidence that digital transformation exerts a moderating

effect in the relationship under study.
3.2 Variable selection
(1) Dependent variable: Corporate carbon emission intensity

(Carbon). When evaluating the carbon emission level of
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companies in this study, it was found that few companies

voluntarily disclose carbon emission data in their annual

reports. Due to the limitations of the availability of micro-

level company data, this study adopts the research method

of (Lee et al., 2022; Cahyono et al., 2023), estimating the

corporate carbon emissions based on the proportion of

operating costs.

(2) Explanatory variable: ESG performance. The core

explanatory variable in this study is the corporate ESG

performance, which is measured using the Huazheng

Index’s ESG rating. The development of the Huazheng

ESG rating involved an extensive analysis of ESG

practices specific to the Chinese market, incorporating a

balance of environmental, social, and governance factors

tailored to local corporate contexts. The Huazheng ESG

evaluation data has characteristics such as being close to the

Chinese market, having a wide coverage, and high

timeliness. Currently, this index has been widely

recognized and applied by both the industry and

academia (Chen and Zhang, 2023; Zhang et al., 2023b).

For data updates, the Huazheng ESG index adopts a

combination of quarterly regular evaluations and dynamic

tracking for data adjustments, classifying corporate ESG

into 9 levels: C, CC, CCC, B, BB, BBB, A, AA, AAA.

Following the method of Liu and Zhang (2023), this

study assigns values from 1 to 9 in ascending order

according to the ratings. A higher value indicates a

greater ESG performance of the listed company.

Compared to other ESG metrics in the literature, the

Huazheng Index ’s strength lies in its real-time

adaptability and comprehensive scope, while its limitation

might be its relative novelty and focused applicability

primarily within the Chinese market.

(3) Control variables. Control variables are used to further

improve research accuracy. Based on previous literature,

this study selects a series of control variables suitable for

listed manufacturing companies. These include:

(1) Company size (Size) represented by the logarithm of

the company’s total annual operating income; (2) Company

age (Age), represented by the logarithm of the length of

time since the company’s establishment; (3) Profitability

(ROE), the company’s annual return on net assets; (4) Debt

repayment ability (Lev), the company’s debt-to-asset ratio,

representing the level of the company’s financial leverage;

(5) Shareholding concentration (Top1), measured by the

shareholding ratio of the largest shareholder of the listed

company; (6) Shareholding stability (Top2), represented by

the difference in shareholding ratios between the second-

largest and the largest shareholder. Generally, the smaller

this difference, the higher the possibility that the second-

largest shareholder could replace the largest shareholder,

indicating a more unstable shareholding structure

of the listed company; (7) R&D investment (RD),

represented by the ratio of company’s R&D investment to

its operating income.
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(4) Mediator Variables: This study examines the role of Green

Technology Innovation (GTI), measured by green patent

authorizations, Firm Efficiency (Efficiency), indicated by

total factor productivity, and Managerial Myopia (Myopia),

an index reflecting short-term focus in management. These

mediators help understand how ESG performance impacts

corporate carbon emissions.

(5) Moderating Variable: The study also considers Digital

Transformation (Dig), represented by the digitalization index

of manufacturing enterprises, as a moderating factor. This

examines the influence of digitalization on the effectiveness of

ESG strategies in reducing carbon emissions.
A detailed definition of all the variables involved in this study is

provided in Table 1.
TABLE 1 Definition of main variables.

Variable
Type

Variable
Name

Variable
Code

Variable Meaning

Explained
Variable

Enterprise
Carbon
Emission
Intensity

Carbon
Carbon emissions per unit

of revenue

Explanatory
Variables

ESG Score ESG

The ESG performance of
listed companies are

assigned from 1 to 9 in
descending order

Control
Variables

Enterprise Size Size
Logarithm of total business
revenue of the enterprise in

the current year

Enterprise Age Age
ln(current year − year of

listing + 1)

Profitability ROE Return on total assets

Asset–
liability ratio

Lev
Total liabilities/total assets

Shareholding
Concentration

Top1
The shareholding ratio of
the largest shareholder of

the listed company

Equity Stability Top2

Difference between the
shareholding ratio of the
second largest shareholder

and the first
largest shareholder

R&D
Investment

RD
R&D investment as a

percentage of
operating revenue

Mediating
variable

Green
Technology
Innovation

GTI
Logarithm of the number of
green patent authorizations

Firm Efficiency Efficiency
Total factor productivity of

the enterprise

Managerial
myopia

Myopia
Index of managerial myopia

Moderating
variable

Digital
Transformation

Dig
Digitalization index of

manufacturing enterprises
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3.3 Data sources and processing
Given the relatively large number of listed companies in the

industrial sector, their longer listing duration, and the abundance

and completeness of data available in their annual reports, this

study selects listed manufacturing companies from the Shanghai

and Shenzhen A-shares from 2010 to 2020 as the research

subjects. The choice of the manufacturing sector is due to its

significant contribution to China’s economy and the stable,

comprehensive data it offers. The period from 2010 to 2020

encompasses a crucial phase in China’s economic development,

providing a valuable temporal scope for analysis. The data

processing involves the following steps: (1) Excluding companies

labeled ST, ST*, and PT. (2) To ensure consistency across all

variable data, the financial metrics published in the annual

consolidated reports of listed companies are used. Companies

with obviously unreasonable financial metrics are also excluded.

(3) Considering the accessibility of data from the Tibet region,

companies with their registered offices in Tibet are excluded.

(4) To mitigate the impact of outliers on the regression results,

a 1% and 99% tail-trimming process is applied to all continuous

variables at the company level.

Ultimately, the study focuses on 28 industries, encompassing

1,825 companies, amounting to 11,431 company-year

observations. This extensive dataset from a key sector over a

significant period allows for a robust analysis of trends and

practices that are indicative of wider economic conditions. The

primary raw data at the company level used in this study mainly

comes from the CSMAR database and WIND database. The

descriptive statistics for the main variables used in this study are

detailed in Table 2.
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4 Empirical results and analysis

4.1 Baseline result analysis

Table 3 reports the baseline regression results of the impact of ESG

performance on corporate carbon emission intensity. In column (1),

while controlling for company fixed effects and year fixed effects, only

the core explanatory variable ESG is added. The results indicate that the

coefficient of ESG performance is −0.031, and it is significantly negative

at the 1% significance level. This suggests that a higher ESG rating is

significantly negatively associated with a lower carbon emission

intensity. In column (2), after other control variables are

incorporated, the coefficient of ESG performance is −0.029 and

remains significantly negative at the 1% significance level. Specifically,

holding other conditions constant, for every one-level increase in the

ESG rating, the company’s carbon emission intensity will decrease by

approximately 2.9%. When benchmarking these findings against

comparable literature, several similarities and differences emerge.

Studies such as Cong et al. (2022) and Lee et al. (2022) have also

observed a negative relationship between ESG performance and carbon

emission intensity. Cong et al. reported a slightly lower effect size (1.5%

decrease in emissions per ESG rating increase), potentially due to their

sample including companies from a broader range of sectors with

varying ESG maturity levels. This further confirms the significant

negative relationship between ESG performance and corporate carbon

emission intensity, demonstrating the crucial role of ESG performance

in reducing corporate carbon emissions.

Regarding the control variables, the coefficient for company size

(Size) is significantly positive, implying that larger companies tend

to have higher carbon emission intensities. The coefficient for

profitability (ROE) is significantly negative, suggesting that

companies with stronger profitability often have lower carbon
TABLE 2 Descriptive statistical analysis of variables.

Variables N Mean SD Min Max Corr with ESG

ESG 11431 3.739 1.122 1 8 1

Carbon 11431 1.748 1.336 0.001 6.045 −0.511

Size 11431 21.626 1.354 18.536 25.136 0.361

Age 11431 2.047 0.853 0 3.222 0.392

ROE 11431 0.051 0.136 −0.765 0.333 0.153

Lev 11431 0.610 0.196 0.054 0.867 −0.182

Top1 11431 35.264 14.533 9.180 75.100 0.164

Top2 11431 25.237 17.344 0.040 73.010 0.225

RD 11431 3.845 4.790 0 251.130 −0.191

GTI 11431 0.5381 0.958 0 4.189 0.422

Efficiency 11431 6.640 0.880 4.070 8.850 0.386

Myopia 11431 0.113 0.092 0.000 1.214 −0.263

Dig 11431 0.185 0.354 0.021 0.425 0.289
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emission intensities. The coefficient for company age (Age) is

significantly negative, indicating that as the company’s age

increases, its carbon emission intensity decreases. The coefficient

for R&D investment (RD) is significantly negative, implying that

companies with higher R&D investments typically have lower

carbon emission intensities. For instance, the negative coefficient

of R&D investment on carbon emissions is in line with research by

Fang and Hu (2023), reinforcing the notion that investment in

innovation is crucial for reducing environmental impact. Overall,

these results support our research hypothesis, namely, that a

company’s ESG performance can significantly reduce its carbon

emission intensity. This further reflects the positive impact of

corporate attention and investment in environmental, social, and

corporate governance aspects on carbon emission reduction.
4.2 Endogeneity treatment

Endogeneity is a prominent issue in economic research, mainly

arising from omitted variable bias and mutual causality. To address

this, our study employs a two-stage least squares (2SLS) approach

using a suitable instrument variable. Following the methodology of
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(Xie and Lv, 2022), we chose the number of “ESG investment funds”

holding the firm (Fundnumber) as the instrumental variable for the

company’s ESG performance. Regarding the relevance of this

instrument, institutional investors such as fund companies can

participate in a company’s decision-making process and optimize

its governance structure, thus positively influencing its overall

performance. A study by Wu et al. (2022) shows a clear positive

relationship between the equity of institutional investors and the

ESG performance of firms. This relationship might be due to

institutional investors expressing their preference for enhanced

ESG performance through direct communication with firms. This

establishes the relevance between ESG investment funds and a

company’s ESG performance. From an exogeneity perspective, the

establishment and shareholding information of ESG investment

funds are based on independent decisions by fund companies and

fund managers, unrelated directly to the employment level of

companies. Such funds aim to integrate the three factors of

Environment (E), Social Responsibility (S), and Corporate

Governance (G) into investment analysis to assess firms’

sustainability and societal benefits, thereby achieving long-term

stable returns. Given our study’s endogenous variable ESG, we

chose the number of “ESG investment funds” holding the firm (i.e.,

Fundnumber) as its instrumental variable.

Table 4 presents the 2SLS regression results using Fundnumber

as the instrumental variable, aiming to mitigate potential

endogeneity between ESG performance and corporate carbon

emission intensity. Endogeneity could arise from omitted variable

bias, simultaneity bias, or bi-directional causality. Column (1)

showcases the first-stage regression results. This stage mainly

examines the relationship between the instrumental variable

Fundnumber (the lagged value of the number of “ESG investment

funds” holding the firm) and the endogenous explanatory variable

ESG. The results indicate that the coefficient of Fundnumber is

0.025, significantly positive at the 1% level. This suggests a

significant positive association between firms held by more “ESG

investment funds” and their higher ESG performance. Column (2)
TABLE 4 Instrumental variable regression results.

Variables

(1) (2)

First-stage
regression

Second-
stage regression

ESG Carbon

Fundnumber 0.025***

(3.884)

ESG −0.028***
(−3.763)

Control Variables YES YES

Firm FE YES YES

Year FE YES YES

N 11431 11431
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively.
Numbers in parentheses are t-values.
TABLE 3 Benchmark regression results.

Variables
(1) (2)

Carbon Carbon

ESG −0.031*** −0.029***

(−3.551) (−3.882)

Age −0.422***

(−4.224)

Lev 0.257

(1.633)

ROE −1.898***

(−6.223)

Size 0.776***

(4.174)

Top1 −0.012

(−1.335)

Top2 −0.024

(−1.253)

RD −0.427***

(−4.224)

Firm FE YES YES

Year FE YES YES

N 11431 11431

adj. R2 0.336 0.428
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively.
Numbers in parentheses are t-values.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1311777
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ye and Xu 10.3389/fevo.2023.1311777
displays the second-stage regression results. In this stage, we use the

ESG values predicted from the first stage as the explanatory variable

to estimate the effect of ESG performance on corporate carbon

emission intensity. The results show that the coefficient for ESG is

−0.028, significantly negative at the 1% level. This further confirms

our primary finding: that there’s a significant negative relationship

between ESG performance and corporate carbon emission intensity.

Overall, the 2SLS estimates using Fundnumber as an instrumental

variable further substantiate the significant negative effect of ESG

performance on corporate carbon emission intensity. This implies

that our main conclusion remains valid when considering potential

endogeneity issues.
4.3 Additional robustness tests

To ensure the stability of our research findings, we conducted

the following series of tests: (1) We utilized the Wind ESG

performance and composite scores to measure a company’s ESG

performance. (2) To minimize the impact of extreme values, we

adjusted the dependent variable at both 1% and 5% levels. (3) We

modified the fixed effects controls by adding regional-year and

industry-year FE. (4) We handled the standard errors with various

clustering methods, including clustering at the regional and

industry levels. (5) In the regression analysis, we incorporated

more control variables, such as the scale of the company’s fixed

assets, the shareholding ratio of the top ten shareholders, and the

company’s profitability rate. The related results are presented in

Table 5. In conclusion, all these tests consistently confirm the

robustness of our research findings.
5 Mechanism test and
heterogeneity analysis

5.1 Mechanism test

Following the theoretical analysis presented earlier, we will now

delve into the mechanisms through which ESG impacts carbon

emission reduction in manufacturing companies from three

perspectives: Green technology innovation, firm efficiency, and

managerial perspective. The detailed results are presented in

Table 6.

5.1.1 Green technology innovation effect
Following the research strategy similar to that of Liu and Zhang

(Liu and Zhang, 2023), this study uses ESG performance to

investigate its impact on green technological innovation. In

column (1), the coefficient for ESG on green technological

innovation is 0.002, which is positively related at the 5%

significance level. This implies that an ESG advantage might

promote green technological innovation. Data analysis across

multiple sectors shows a trend where companies with higher ESG

ratings consistently increase their investments in sustainable
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technologies and green product development, leading to notable

advancements in eco-friendly innovations.

In column (2), we see that the coefficient for green technological

innovation on carbon emissions is −0.001, which is negatively

related at the 5% significance level. This means that green

technological innovation helps reduce carbon emissions. An

aggregate analysis of industry data indicates a clear trend:

companies with higher investments in green technologies report a

more significant reduction in carbon emissions over time. Overall,

the ESG performance not only promotes green technological

innovation but also this innovation further assists companies in

reducing their carbon emissions (Qing et al., 2022).

5.1.2 Firm efficiency effect
This study estimates the total factor productivity of companies

using the LP method, serving as a proxy for firm efficiency. The data

reveal a correlation between higher ESG scores and improvements

in operational efficiency metrics, such as reduced waste and lower

energy consumption. In column (3), the coefficient for ESG on

efficiency is 0.025, which is positively related at the 1% significance

level. This suggests that an ESG advantage can enhance a firm’s

operational efficiency. In column (4), the relationship between

improved efficiency and carbon emissions is −0.005, which is

negatively related at the 1% significance level, indicating that

improved efficiency helps reduce carbon emissions. This is further

supported by data showing that companies with enhanced efficiency

metrics tend to have a lower carbon footprint. These results further

validate our theoretical anticipation that a firm’s ESG performance

can reduce carbon emissions by enhancing efficiency (Cho, 2022).

5.1.3 Managerial perspective effect
Referring to the approach of Hu et al. (2021), we conduct a

textual analysis of the MD&A section in the annual reports, identify

a set of short-term horizon words, and then use a lexicon-based

method to construct an indicator for managerial myopia (Hu et al.,

2021). In column (5), the coefficient for ESG on managerial myopia

is −0.012, which is negatively related at the 1% significance level.

This means that companies with an ESG performance are more

likely to have managers adopting a long-term perspective. In

column (6), the relationship between managerial myopia and

carbon emissions is 0.025, which is positively related at the 5%

significance level, suggesting that managerial myopia might lead to

higher carbon emissions. These findings align with our previous

theoretical expectations, i.e., a firm’s ESG performance can reduce

its carbon emissions by mitigating managerial short-

sighted behaviors.
5.2 Heterogeneity analysis

5.2.1 Environmental regulation intensity
Carbon emission reduction, as a significant challenge faced by

businesses, is closely related to their environmental regulations.

When analyzing the relationship between ESG and carbon
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reduction for companies under different environmental regulatory

intensities, we used the proportion of environmental vocabulary in

the region where the company is located as a proxy for

environmental regulation and classified accordingly (Pei et al.,

2019). As shown in column (1) of Table 7, for companies in areas

with strong environmental regulations, the ESG performance

significantly reduces their carbon emissions. This may be because,

under stricter environmental regulations, companies pay more

attention to environmental protection and take more measures to

reduce carbon emissions to meet government environmental

requirements and avoid associated economic penalties. However,

for companies in areas with weaker environmental regulations, as

shown in column (2), the relationship between ESG and carbon

reduction is not significant. This implies that in areas with more
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lenient environmental oversight, companies may not value their

ESG performance as much, and thus the impact of ESG

performance on carbon reduction is not as pronounced as in

areas with stricter regulations.

5.2.2 Industry competition intensity
Drawing from past studies (Bai et al., 2023), the industry

competition intensity (HHI) is usually measured using the

Herfindahl-Hirschman Index, calculated as HHI = S( Xi
X )2, where

XX is the total main business income of all companies in the

industry, and XiXi is the main business income of company i in the

industry. The larger the HHI value, the lower the competition

intensity of the industry. Industry competition has a significant

impact on a company’s business strategy and behavior, especially in
TABLE 5 Robustness tests.

Variables

(1) (2) (3) (4) (5)

Replacement
of

explanatory
variables

Shrinking of
carbon at 1%

Shrinking of
carbon at 5%

City &
Industry FE

SE clustered
by City

& Industry

Addition of
control
variables

ESG −0.026*** −0.029*** −0.027*** −0.029*** −0.028*** −0.016**

(−4.681) (−3.642) (−3.663) (−3.785) (−3.891) (−4.254)

Control Variables YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

N 11431 11431 11431 11431 11431 11431

adj. R2 0.468 0.445 0.358 0.432 0.467 0.532
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively. Numbers in parentheses are t-values.
TABLE 6 Impact mechanism test.

Variables
(1) (2) (3) (4) (5) (6)

GTI Carbon Efficiency Carbon Myopia Carbon

ESG
0.002**
(2.564)

−0.0026***
(−3.461)

0.025***
(4.553)

−0.0027***
(−3.774)

−0.012***
(−3.773)

−0.0022***
(−4.223)

Green
Technology
Innovation

−0.001**
(−2.582)

Efficiency
−0.051***
(−3.665)

Managerial myopia 0.025**
(2.444)

Control Variables YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

N 11431 11431 11431 11431 11431 11431

adj. R2 0.328 0.436 0.565 0.498 0.324 0.437
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively. Numbers in parentheses are t-values.
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carbon emission management. As shown in column (3) of Table 7,

for companies in competitive industries, the ESG performance

significantly reduces their carbon emissions. This might be

because, in competitive industries, companies are more inclined

to adopt more environmentally friendly strategies to gain a

competitive market edge and attract more consumers and

shareholders. However, as shown in column (4), for companies in

less competitive industries, the relationship between ESG and

carbon reduction is not significant. This may be because

companies in these industries might focus more on their core

business rather than environmental responsibility.

5.2.3 Capital intensity
Capital intensity represents the degree to which a company

relies on fixed assets (calculated as fixed assets/total assets) and is

closely related to the company’s operational strategy and carbon

emission strategy. As shown in column (5) of Table 7, in companies

with high capital intensity, the relationship between ESG

performance and carbon reduction is negative and relatively

significant. This might be because, in these companies,

environmental responsibility and social responsibility are crucial

for their long-term success and profitability. However, as shown in

column (6), for companies with low capital intensity, the

relationship between ESG and carbon reduction is not significant.

This suggests that companies with low capital intensity might focus

more on their current assets and short-term returns rather than

long-term environmental responsibilities.
6 Further research: the moderating
role of digital transformation

Recent studies have highlighted the critical role of digital

transformation in enhancing corporate sustainability and

environmental strategies. For instance, Ren et al. (2023a) argued

that digital transformation offers new pathways for companies to

improve their environmental performance by facilitating more

efficient resource utilization and enabling the adoption of cleaner
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technologies. Similarly, Luo et al. (2023) found that companies

undergoing digital transformation were better positioned to

integrate their ESG goals into their business models, leading to

more effective sustainability practices. These findings align with the

notion that digital transformation can significantly impact how

companies approach and implement their ESG strategies, especially

in the context of carbon emissions reduction. Building on this

foundation, our research aims to empirically test how digital

transformation moderates the relationship between ESG

investment and corporate carbon emissions.

As companies increasingly invest in and prioritize

environmental, social, and governance (ESG) factors, the rapid

advancement of technology and the deep integration of the global

economy have made digital transformation a core topic for business

development. Digital transformation refers to the fundamental

changes in internal and external business, culture, and customer

experience brought about by the use of digital technology. With the

rise of the internet, big data, artificial intelligence, and other

technologies, companies must rethink their business models and

operational strategies to adapt to the demands of this digital age.

The reasons for this transformation vary and include changes in

consumer demand, technological innovation, and intensified global

competition. Against this backdrop, digital transformation not only

helps companies improve efficiency and create new sources of value

but may also impact their sustainability strategies, especially

strategies related to carbon emissions and environmental

protection. Therefore, when examining the relationship between

ESG investment and corporate carbon emissions, it is crucial to

introduce digital transformation as a moderating mechanism into

the analysis. This is because digital transformation may influence

the extent to which companies prioritize ESG and the intensity of

their actions in carbon reduction. For instance, through advanced

data analytics and technology, companies might more easily

identify their carbon footprint and discover effective methods to

reduce carbon emissions. Similarly, digital transformation may

facilitate better communication with stakeholders, allowing

companies to better address their environmental and

social responsibilities.
TABLE 7 Heterogeneity test.

Variables

(1) (2) (3) (4) (5) (6)

Strong
environmental
regulation

Weak
environmental
regulation

Strong
industry

competition

Weak
industry

competition

Highly
capital

intensive

Minorly
capital intensive

ESG
−0.013***
(−3.078)

−0.008
(−1.484)

−0.008***
(−2.965)

−0.004
(−1.215)

−0.011**
(−2.516)

−0.005
(−0.861)

Control
Variables

YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

N 7231 4200 6927 5134 3876 7555

adj. R2 0.409 0.368 0.412 0.279 0.388 0.369
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively. Numbers in parentheses are t-values.
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In Model (1) of Table 8, the coefficient of ESG is −0.031 and is

significant at the 1% level, indicating that as companies increase their

ESG investments, their carbon emissions significantly decrease. This

result is consistent with expectations, as when companies place greater

emphasis on environmental and social responsibilities, they will take

more measures to reduce their carbon footprint to meet the

expectations and needs of various stakeholders.

In Model (2) of Table 8, we further added an interaction term

between ESG and digital transformation. The coefficient of this

interaction term is −0.231 and is significant at the 1% level. This

suggests that in the context of digital transformation, the role of

ESG in reducing carbon emissions becomes even more pronounced.

In other words, digital transformation amplifies the negative impact

of ESG on carbon emissions. This might be because digital

transformation aids companies in managing their resources and

operations more effectively (Ma and Yang, 2023), further reducing

their carbon emissions. Additionally, digital transformation might

also encourage companies to adopt cleaner technologies and

solutions, reducing their reliance on fossil fuels (Ren et al.,

2023b). In summary, our results demonstrate that ESG

investments have a distinct positive effect on reducing corporate

carbon emissions, and this effect is further strengthened in the

context of digital transformation. This provides a crucial insight for

companies: digital transformation can serve as an effective tool and

strategy when pursuing sustainability and carbon reduction goals.
7 Conclusions and policy implications

Faced with the challenges of global climate change, corporate

carbon emissions have become a central issue of global concern.

Against this backdrop, this study delves into the actual impact of

ESG performance on corporate carbon reduction by analyzing data

from listed manufacturing companies in China from 2010 to 2020.

After an in-depth research analysis, we arrive at several core

conclusions: First, ESG performance have a significant positive

effect on reducing corporate carbon emissions. Secondly, green

technology innovation, corporate efficiency, and managerial
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shortsightedness have all been proven to be key channels through

which ESG performance promote carbon reduction. Furthermore,

our heterogeneity tests reveal significant variations in the

relationship between ESG performance and carbon reduction

under different environmental regulations, industry competition,

and capital intensity contexts. Notably, the positive moderating role

of digital transformation in the relationship between ESG

performance and carbon reduction provides companies with a

new perspective: enhancing their ESG performance through

digital transformation to better tackle the challenges of

carbon reduction.

To strengthen our conclusions, it is valuable to compare our

findings with relevant studies conducted in other major economies.

For instance, research conducted in the European Union (EU) and

the United States shows similar trends, where companies with

higher ESG scores are more likely to engage in practices that

reduce carbon emissions. A study by Asl et al. (2022) in the EU

context found a comparable effect of ESG performance on carbon

emissions, underscoring the global relevance of ESG in corporate

environmental responsibility. However, there are differences too.

For example, in the US, the integration of ESG into corporate

strategy has been more market-driven, whereas in China, it is more

policy-driven. This difference in drivers could affect the

implementation and impact of ESG initiatives.

The conclusions of this study have important policy

implications. The climate change and environmental pollution

issues have heightened the emphasis on ESG both domestically

and internationally. ESG has become a crucial force in promoting

corporate adherence to new development concepts and achieving

sustainable development. The report from the 20th National

Congress of the Communist Party of China proposes accelerating

the green transformation of development modes, stressing that

greening and decarbonizing economic and social development are

key to achieving high-quality development. At present, as China has

entered a stage of high-quality development, establishing and

perfecting an ESG system suitable for China ’s national

conditions will help achieve the “dual carbon” goals and

sustainable development. Additionally, with the accelerated

internationalization of ESG, it has become an essential content of

international market cooperation. Therefore, advancing the

construction of the ESG policy system will not only help China

promote global sustainable development and build a community

with a shared future for humanity but will also benefit China’s

foreign trade and investment. This study reveals the positive impact

of ESG performance on promoting corporate carbon reduction,

which has significant policy implications for corporations to

actively fulfill their social responsibilities, promote China’s high-

quality development, and assist the country in achieving its “dual

carbon” goals.
7.1 Policy implications

From a policy implication perspective, this study offers the

following suggestions for policymakers and corporate decision-

makers: (1) Policy Support and Guidance: Government
TABLE 8 The moderating role of digital transformation.

Variables (1) (2)

ESG −0.031*** −0.026***

(−3.883) (−4.227)

ESG×Dig −0.231***

(−3.977)

Control Variables YES YES

Firm FE YES YES

Year FE YES YES

N 11431 11431

adj. R2 0.336 0.445
*** p<0.01, ** p<0.05, * p<0.1 represent significance at the 1%, 5%, and 10% levels respectively.
Numbers in parentheses are t-values.
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departments should further strengthen support and guidance for

corporate ESG practices, such as providing tax incentives, subsidies,

and other motivating measures, encouraging companies to enhance

green technology innovation and improve operational efficiency.

Additionally, the government can formulate specific market

incentives, like carbon credits and environmental rewards, to

encourage improvement in ESG performance. These incentives

can help businesses secure better financing conditions in capital

markets, enhancing their competitive advantage. (2) Perfecting ESG

Information Disclosure System: The government should establish

and perfect the ESG information disclosure system to ensure

transparency and authenticity, guiding companies to better fulfill

their social responsibilities. Furthermore, raising investor awareness

of ESG investments and emphasizing their focus on corporate social

responsibility and environmental sustainability can be achieved

through investor education campaigns and publicity, thus

increasing capital market recognition of high ESG performing

companies. (3) Promoting Digital Transformation: Encourage

enterprises to undergo digital transformation, using advanced

technological means to monitor and manage carbon emissions

while strengthening corporate ESG practices. (4) Industry and

Corporate Collaboration: Strengthen collaboration among the

government, industries, and corporations, jointly promoting

the deepening of ESG practices, thereby better addressing the

challenges of global climate change. (5) Internal Training and

Capacity Building in Enterprises: Encourage businesses to

strengthen internal staff understanding and training on ESG to

improve overall ESG management levels. This includes providing

training on sustainable development, environmental protection,

and social responsibility, as well as expertise in ESG reporting

and analysis. (6) Integrating ESG and Financial Performance:

Encourage businesses to more closely align ESG performance

with financial performance assessment, demonstrating the impact

of ESG investments on long-term company value. This involves

developing and using more sophisticated tools to assess the direct

and indirect effects of ESG performance on financial outcomes.
7.2 Limitations and future research

The study’s scope, primarily focused on China’s manufacturing

sector from 2010 to 2020, poses a limitation to its applicability in

other geographical contexts and time periods. This geographic and

temporal confinement might not fully capture the diverse global

landscape of ESG impacts. Additionally, the exclusive concentration

on the manufacturing industry may not adequately represent the

varied ESG challenges and opportunities present in other sectors,

each with its unique environmental footprint.

A significant limitation of this study is the reliance on carbon

emissions proxies in lieu of directly reported emissions data from

the sampled firms. This approach, while necessary due to data

availability constraints, may not accurately capture the true carbon

emissions of each company. Proxies, based on industry averages or

standardized metrics, might lead to over- or under-estimation of
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actual emissions, thus impacting the precision of our conclusions

regarding ESG performance and carbon emission intensity.

Future research should aim to broaden the scope, both in terms

of industry and geography. Exploring a variety of sectors will

provide a more holistic understanding of how ESG performance

influences carbon reduction across different business landscapes.

Moreover, extending the research to include longitudinal studies

across a wider range of countries and time frames is crucial. Such

studies would capture the evolving nature of ESG standards and

their varied impacts on corporate carbon reduction strategies in a

global context. Incorporating directly reported emissions data,

where available, would significantly enhance the accuracy and

relevance of future research in this field.
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Energy structure transformation is the only way for China to achieve the “dual
carbon” goal, and one of the difficulties faced by energy transformation is
financing. In the context of China’s steadily promoting the high-level opening-
up of financial industry, this paper uses the panel data of China’s provincial level
from 2010 to 2019 to systematically examine the impact of financial opening-up
on the transformation of energy structure. The results show that: 1) Financial
openness has a significant positive impact on the energy structure transition; 2) In
different stages of energy structure transformation, as themain driving force in the
initial stage of energy structure transformation is the government’s policy support,
with the continuous maturity of energy structure transformation, the impact of
financial openness on energy structure transformation gradually increases; 3) With
different levels of economic development, the driving effect of financial openness
is also different. The lower the level of economic development is, the stronger the
driving effect of financial openness on energy structure transformation is due to
the lack of financing channels. This paper provides a theoretical basis for China’s
energy structure transformation, and also provides rich policy implications for
promoting China’s financial industry to open up at a high level.

KEYWORDS

financial openness, transformation of energy structure, “dual carbon” targets,
heterogeneity, China

1 Introduction

The “dual goals” of carbon peak by 2030 and carbon neutrality by 2060 are an inevitable
requirement for China to cope with climate change and an important deployment for China
to formulate its medium—and long-term development strategy. The consumption of coal, oil
and other petrochemical energy is the main source of global greenhouse gases. In order to
achieve the goal of “dual carbon,” it is necessary to accelerate energy transformation,
transform the coal-based energy structure, and promote the development of non-
fossil energy.

Although the overall trend of energy structure transformation is optimistic and positive,
in order to achieve the “dual carbon” goal and control climate change, the field of energy
structure transformation needs a lot of financial support. According to the Global Energy
Transition Outlook report of the International Renewable Energy Agency, in order to
achieve the goal of the Paris Agreement and control the increase in global average
temperature above pre-industrial levels to less than 1.5°C, the global energy transition
will require investment of 570 million US dollars per year by 2030, showing that the funding
gap for energy transition is huge. For China, there is also a huge gap in green investment and
financing. According to the Green Finance for Carbon Neutrality released by China
International Capital Corporation Limited, in order to achieve carbon neutrality, China’s
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green investment and financing gap is about 540 billion yuan per
year from 2021 to 2030. In the absence of policy intervention, the
investment and financing gap for renewable energy will rise rapidly
to 310 billion yuan per year after 2031. Such a huge demand for
investment and financing has become a severe challenge for the
transformation of energy structure under the “dual carbon” goal.

Figure 1 provides an intuitive description of the relationship
between financial openness and the transformation of the energy
mix. The horizontal and vertical coordinates in Figure 1 are
measured by the energy structure transformation index and the
financial openness level constructed in Section 3.2, which are the
average energy structure transformation index and the average
financial openness level of 30 provinces in China from 2010 to
2019, respectively. As can be seen from Figure 1, there is a significant
positive correlation between the level of financial openness and the
energy structure transformation of 30 provinces in China. Whether
financial openness is conducive to energy structure transformation,
and whether this effect varies in different stages of energy structure
transformation and different levels of economic development, need
more rigorous demonstration. In order to better answer the previous
questions, this paper uses the panel data of 30 provinces in China
from 2010 to 2019 to analyze the internal relationship between
financial openness and energy structure transformation at the
provincial level, as well as whether there is heterogeneity in the
relationship between the two.

The existing research mainly focuses on the impact of policy
factors, carbon emissions, economic development and other factors
on the energy structure transition, but there is still a lack of
discussion on the impact of financial openness on the energy
structure transition. Therefore, this paper will take China’s
provincial data as the research object, explore the impact of
financial openness on energy structure transformation, and
conduct regional heterogeneity analysis. Its main contributions
include: 1) Using China’s provincial data to study the impact of
financial openness on energy structure transformation, it can more
accurately observe the impact of financial openness in China, and
realize the comparison of characteristics in different regions. 2) In
quantitative research, we distinguish different stages of energy
structure transformation and different levels of economic
development to explore the dynamic evolution of the driving
effect of financial openness, and use the panel threshold model to
study the evolution characteristics of the marginal effect of financial
openness. The driving factors of energy structure transformation are
multi-dimensional and dynamic, so the discussion by development
stage can bemore consistent with the reality and the law of industrial
development. 3) The research conclusions provide empirical
evidence for steadily expanding the institutional opening of the
financial sector, improving the facilitation of cross-border
investment and financing, and attracting more foreign financial
institutions and long-term capital to facilitate the transformation of

FIGURE 1
Relationship between financial openness and energy structure transformation.
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energy structure; At the same time, it provides policy inspiration for
deepening international cooperation in green finance, improving the
green financial system, and helping to achieve the goal of “dual
carbon,” which has strong practical significance.

The rest of this paper is arranged as follows: the second part is
literature review and research hypothesis; The third part, empirical
design, variables and data; The fourth part, benchmark regression,
robustness test and heterogeneity results analysis; Finally,
conclusions and policy recommendations are presented.

2 Literature review and research
hypotheses

2.1 Influencing factors of energy structure
transformation

In the context of the “dual carbon” target, many scholars have
carried out quantitative research on the influencing factors of energy
structure transformation. Although the conclusions are not
consistent, the research on the influencing factors mainly focuses
on the following five aspects: economic factors, policy factors,
environmental factors, energy factors and social factors. 1) Policy
factors. The change in production technology represented by the
steam engine was the driving force of the first energy transition, the
invention and promotion of the internal combustion engine was the
driving force of the second energy transition, and policy factors may
be one of the main driving forces of this energy transition (Cansino
et al., 2010; Bai et al., 2023; Yu et al., 2023a; Liu and Peng, 2022); 2)
Energy factors. Some scholars believe that the price of fossil energy
and national energy endowment will affect the transformation of
energy structure (Sadorsky, 2009b; Su and Tan, 2023; Yu et al.,
2023b; Guo et al., 2023); 3) Environmental factors. Environmental
factors mainly refer to that the emission of carbon dioxide, sulfur
dioxide and other exhaust gases will affect the transformation of
energy structure Bai et al. (2023), and Werner and Lazaro, (2023)
believes that environmental regulation will affect the transformation
of energy structure. 4) Economic factors. Most scholars believe that
economic development can promote the transformation of energy
structure Bai et al. (2023), and Tian et al. (2022) studied the impact
of economic recovery on the transformation of energy structure; 5)
Social factors. Rosenbloom et al. (2018) believed that public
education would improve people’s awareness of environmental
protection and help promote energy structure transformation,
while Kuamoah (2020) believed that the lack of infrastructure
was one of the obstacles to energy transformation. It is worth
noting that although the role of finance in the transformation of
energy structure has gradually attracted the attention of scholars, the
research mainly focuses on the impact of domestic financial
development on it and the qualitative risk level.

Most existing studies have found that financial development has
a positive impact on the transformation of energy structure (Ding
et al., 2023), and its driving effect on finance only stays at the level of
financial development, without considering financial openness.
Although financial openness brings benefits such as lowering
financing costs and improving risk aversion, cross-border capital
may also bring disadvantages such as economic and financial
turbulence. Then, for the energy structure transformation with a

long investment cycle and a large amount of financial support, what
is the impact of foreign capital on it? This is a question worth
investigating. This paper will take China’s provincial-level data as
samples to study the impact of financial openness on energy
structure transition, and further explore the heterogeneity of
financial openness driving effect in different energy transition
stages and different levels of economic development.

2.2 Mechanism and heterogeneity driven by
financial openness

(1) The working mechanism driven by financial openness.

Compared with traditional fossil energy, non-fossil energy
depends more on financial development. The main reason is that
compared with fossil energy, the production cost of non-fossil energy
has its uniqueness, which is mainly reflected in the following aspects:
1) The production technology of non-fossil energy is still very
immature, many production fields still need further exploration
and innovation, and the research and development of technology
has a lot of uncertainties, that is, great risks. In addition to the
government’s financial support, it also needs financial support from
the financial sector tomake up for the shortage of funds; 2) Non-fossil
energy construction not only has a relatively large initial investment
scale, but also has a relatively high operating cost, which requires a lot
of financing needs and support from the financial field; 3) Although
compared with fossil energy, the investment cycle and time span of
non-fossil energy are greatly shortened, it still belongs to the
investment with a long cycle. Such financing services such as
medium - and long-term loans are easier to obtain from foreign
banks to ensure smooth project implementation.

The impact of financial openness on the transformation of energy
structure is mainly reflected in the following three aspects: 1) Expand
financing channels. On the one hand, the flow of international capital
can effectively relieve the pressure of capital shortage in the process of
local economic development; On the other hand, the entry of foreign
financial institutions and the intensification of competition in the
financial industry can provide more abundant financial products and
provide more capital services and financing opportunities for energy
transition enterprises. 2) Improve the return on investment. On the
one hand, abundant financial products and financing channels can
improve the anti-risk ability of energy transition enterprises; On the
other hand, a perfect financial market can help enterprises better
integrate resources and promote the efficient operation of investment
activities. 3) Increase R&D investment of enterprises. Funds in the
financial market tend to flow to technical fields with high or potential
returns, while R&D of energy transition enterprises requires long-
term sustainable and stable investment; therefore, relatively sufficient
sources of funds will affect the R&D investment decisions of energy
transition enterprises and increase R&D investment. Based on this,
this paper proposes:

Hypothesis 1: Financial openness is conducive to promoting the
transformation of energy structure.

(2) Heterogeneity driven by financial openness in different stages of
energy structure transition
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Although there are differences in the paths and ways of energy
structure transformation in China’s provinces, the government’s
policy support is still the initial driving force for China’s energy
structure transformation. The supporting policies for energy
structure transformation can be roughly divided into two types:
the first is the supply-side driven policy, which leads to the R&D
input for energy structure transformation from the supply side, such
as the establishment of power system adapted to new energy
generation, the development of smart grid and electric vehicles,
and the subsidy policy for renewable energy development. The
second is demand-pull policy, which leads to capacity investment
in renewable energy from the demand side and indirectly promotes
the transformation of energy structure. For example, Renewable
energy quota system and Tax Credit policies (including Production
Tax Credit and Investment Tax Credit), tax subsidies, etc.

In the early stage of energy structure transformation, the market
mechanism is certainly immature at this time, and the development
of renewable energy mainly depends on the policy support of the
government. It is difficult for financial openness to play a role
through the market mechanism, and the role driven by financial
openness is quite limited (Aklin and Urpelainen, 2013; Kim and
Park, 2018). In the initial stage, the main problem of non-fossil
energy development is that the use cost is too high due to the lack of
technological innovation, which makes non-fossil energy maintain a
high price and cannot compete with traditional petrochemical
energy in the market. Therefore, the initial stage of non-fossil
energy development is faced with the problems of market failure
and insufficient funds. Government support is particularly
important at this stage. At the same time, in the early stage of
energy structure transformation, on the one hand, due to the high
uncertainty of non-fossil energy technology innovation and high
investment risk, the profit-driving behavior of financial institutions
will turn to the less risky areas for investment, which will also have a
“crowding out effect” on non-fossil energy; On the other hand,
under the condition of market failure, it is also difficult for financial
subjects to play their financing mechanism in the transformation of
energy structure. Under the effect of dual forces, financial openness
may have an inhibitory effect on energy structure transformation in
the early stage.

In the growth and maturity stages of energy structure
transformation, the market mechanism is gradually improved,
and the strength of government support policies is gradually
weakened, while the role of finance through perfect market
mechanism can better promote energy structure transformation
(Amuakwa-Mensah and Nasstrom, 2022). At this time, the
technological progress of non-fossil energy gradually reduces the
use cost, and its price can compete with the traditional fossil energy
in the energy market. With the continuous improvement of cost
competitiveness, the large-scale production of non-fossil energy is
gradually realized, and the consumption of non-fossil energy
accounts for a higher and higher proportion in the total energy
consumption. Therefore, in this stage, the role of the market is
gradually enhanced, and the government support policy is gradually
weakened. In a sound market mechanism, financial subjects can
create diversified financing channels to serve the development of
non-fossil energy, reduce its financing costs, and continuously
promote the transformation of energy structure. Based on this,
this paper proposes:

Hypothesis 2: In the initial stage of energy structure
transformation, the main driving force of energy structure
transformation is government policy support, while the driving
effect of financial openness is weak, and may even be inhibiting; In
the growth and maturity stages of the energy structure transformation,
the market mechanism is constantly improved, and the financial
openness may have a significant positive impact on the energy
structure transformation, and with the deepening of the energy
structure transformation, this promoting effect will be strengthened.

(3) Heterogeneity driven by financial openness at different levels of
economic development

Provinces with different levels of economic development have
different impact paths and ways of financial openness on energy
structure transformation. On the one hand, the process of energy
structure transformation from research and development to
investment and construction needs a lot of financial support; On
the other hand, compared with the economically developed regions,
the financial industry in the economically underdeveloped regions is
relatively backward. Both the banking industry and the securities
industry have relatively small overall scale, low level of development,
imperfect financial system, extensive development mode, low
operation quality and imperfect market mechanism. This makes
the need for funds for energy structure transformation in less
economically developed regions more urgent. To a certain extent,
financial openness can break the barriers of sino-foreign trade
financing, reduce financing costs, help to increase the rate of
foreign direct investment, and thus promote the process of
energy structure transformation. At the same time, from the
perspective of economics, financial opening is conducive to the
improvement of financial system and market mechanism, and helps
to provide a good financial environment and better financial support
for the energy structure transformation in economically
underdeveloped regions. Based on this, this paper proposes:

Hypothesis 3: The financing capacity of less developed regions is
greatly insufficient, but the transformation of energy structure needs
a large amount of financial support. Therefore, the need for financial
openness is more urgent in economically underdeveloped regions,
that is, the lower the level of economic development is, the greater
the impact of financial openness on the transformation of energy
structure is.

3 Empirical design, variables and data

3.1 Model specification

In order to verify the relationship between financial openness
and energy structure transformation, this paper constructs a two-
way fixed effect model of time and region. The model is set
as follows:

ZXi,t � α + θFOi,t + β′Xi,t + μi + γt + εi,t (1)
Where i represents province and t represents year; ZXi,t

represents the transformation degree of energy structure; FOi,t

represents the level of financial openness; Xi,t represents a series
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of control variables, including economic factors, energy factors,
policy factors and environmental factors; μi represents provincial
fixed effects; γt represents the time fixed effect; εi,t represents the
disturbance term. In Eq. 1, θ represents the impact of financial
openness on the transformation of energy structure.

In order to verify the heterogeneous impact of financial
openness on energy structure transition, artificially dividing the
interval of the variable “energy structure transition (or economic
development level)” will cause estimation errors. The threshold
panel model proposed by Hansen (1999) divides the interval of
the variable according to the characteristics of the data itself. This
endogenous interval division method can avoid artificial subjective
factors and make the estimation more accurate. Therefore, this
section uses the method proposed by Hansen (1999) to study the
differences in the impact of financial openness on energy structure
transition in different energy structure transition levels (or
economic development levels).

Firstly, we introduce the most basic threshold panel model, that
is, the setting of single threshold panel model, which is expressed
as follows:

ZXit � ϑi + γ1FOit git ≤ λ( ) + γ2FOit git ≥ λ( ) + δ′Xit + vit (2)
Where i represents province and t represents year; ZXit is the

explained variable, indicating the transformation of energy
structure; FOit is the core explanatory variable, indicating the
level of financial openness; Xit represents a group of control
variables that may have a great impact on energy structure
transformation, including economic factors, energy factors, policy
factors and environmental factors; git represents the threshold
variable, which in this paper refers to the energy structure
transition level and the economic development level respectively,
and λ represents the specific threshold value. I(·) is the indicator
function, ϑi is used to reflect the individual effects of provinces, such
as unobservable factors such as location characteristics and
development endowments, and vit is the random interference term.

According to econometric theory, it is possible for models to
have multiple threshold values. As for the multi-threshold panel
model, this paper first extends to the double-threshold panel model
for a brief introduction, which is expressed as:

ZXit � ϑi + γ1FOit git ≤ λ1( ) + γ2FOit λ1 <git ≤ λ2( )
+ γ2FOit git > λ2( ) + δ′Xit + vit (3)

On this basis, the panel models with more thresholds can be
extended, which will not be described here.

3.2 Variables and data description

(1) Explained variable: energy structure transition (ZX). The
transformation of energy structure is a dynamic process and
system engineering of continuous optimization and adjustment
of various leading energy sources in the process of mutual
substitution and complementation. Different types of energy
have very different carbon emission capabilities. Therefore,
changes in carbon emissions are closely related to changes in
energy consumption structure. In order to realize the
transformation of energy consumption structure

characterized by “pollution and high carbon” to “clean and
low carbon,” it is imperative to promote the dual transformation
of “oil and gas replacing coal and non-fossil energy replacing
fossil energy”. Therefore, this paper uses the dual substitution
index of energy consumption structure to measure the
transformation of energy structure, that is, the unit of
consumption of coal, oil, natural gas and non-fossil energy is
converted into standard coal by the discounted standard coal
coefficient. The oil and gas substitution index (OG) is quantified
by the ratio of total consumption of oil and natural gas to coal
consumption. Non-fossil energy substitution index (RE) is
quantified by the ratio of non-fossil energy consumption to
fossil energy consumption, and the dual substitution index of
energy structure is the geometric mean of the product of oil and
gas substitution index and non-fossil energy substitution index.

ZX � ��������
OG × RE

√ �
�������������
EO + Eg( ) × En

EC × 1 − En( )

√

(4)

Where EO、Eg、En、Ec represent the ratio of oil, natural gas,
non-fossil energy and coal consumption to total energy
consumption, respectively.

(2) Explanatory variable: financial openness (FO). For example,
Fernández et al. (2016) used the proportion of FDI in GDP to
measure the level of financial openness, but this method cannot
reflect the degree of financial service openness of a country.
Some scholars specially describe the financial services from the
perspective, but this is only theoretical elaboration without
specific measurement. This paper adopts the idea of Zhang
Xiaobo et al., from the two-way quantification of “bring in” and
“go global.” Based on the actual situation and the availability of
data in various regions of China, the measurement formula of
financial openness is expressed as:

FOit � α1 ×
FDIit
GDPit

+ α2 ×
OFDIit
GDPit

+ α3 ×
FDLit

TDLit
, α1 + α2 + α3 � 1( )

(5)
Where FOit represents the degree of financial openness, FDIit

represents the stock of foreign direct investment, OFDIit represents
the stock of foreign direct investment, FDLit represents the total
foreign currency deposits and loans of financial institutions, and
TDLit represents the total domestic and foreign currency deposits
and loans of financial institutions.
Let α1 � 0.4、α2 � 0.3、α3 � 0.3.

(3) Control variables. 1) Policy factor (ZC). The investment
amount of pollution control projects completed this year is
used to measure the policy factors (Unit: 100 billion yuan),
which can reflect the government’s emphasis on environmental
pollution control, and then reflect the government’s demand for
energy consumption structure transformation; 2) Economic
factors (JJ). Per capita GDP is used to measure economic
factors (Unit: ten thousand yuan), mainly because existing
studies have shown that the level of economic development
is an important driving factor for energy transition (Sadorsky,
2009a). 3) Energy factor (NY). Energy consumption is selected
to measure the endowment basis of energy resources (Unit:
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Billion tons of standard coal). 4) Environmental factors (HJ).
Previous studies have found that concern for the environment,
especially pollutant emissions, will be conducive to energy
transition, and so2 emissions (Unit: 100 million tons) are
selected to measure environmental factors.

The data in this paper are the panel data of 30 provinces in China
from 2010 to 2019. Due to the serious lack of data in Tibet, the data
of this province were excluded, and individual missing data were
supplemented by interpolation method. The data mainly come from
the “China Financial Database,” “China Macroeconomic Database,”
“China Energy Database” and “China Environment Database” in
EPS data platform. The descriptive statistics of the variables are
shown in Table 1. As can be seen from Table 1, the minimum,
maximum and average values of energy structure transformation are
0.0321, 2.6732 and 0.2947, respectively, indicating that the level of
energy structure transformation among provinces in China is
generally low and the gap is large. The minimum, maximum and
average values of financial openness are 0.0255, 0.8085 and
0.1612 respectively, indicating that China’s financial openness
also has problems of low overall level and large gap between regions.

4 Analysis of empirical results

4.1 Status quo of China’s energy structure
transformation

The energy structure transformation level of 30 provinces in
China during 2010–2019, calculated according to the energy
structure transformation index constructed in Section 3.2, is
shown in Table 2. As can be seen from Table 2: From the
perspective of time trend, the energy structure transformation
level of each province is basically gradually improved with the
passage of time, which intuitively indicates that all parts of China
are steadily promoting the energy structure transformation; From
the horizontal point of view, the highest is Beijing, Beijing as the
capital of China, the energy structure transformation should be at
the forefront. Shanghai, Zhejiang, Guangdong and Hainan also have
a high level of energy structure transformation, all above 0.5. These
provinces are located in coastal areas and can make full use of their
geographical advantages to achieve energy transformation, such as
offshore wind power generation. Shanxi and Inner Mongolia have
the lowest level of energy structure transformation, both below 0.1.
These two places are China’s large coal-power provinces and also the

provinces with the highest net energy output. In the past, a large
amount of resources were consumed in economic construction,
leading to environmental degradation, and the economic growth
model needs to be changed urgently. For a long time, China’s
economic and social development depends on coal resources,
coal has become an important basic energy and industrial raw
materials, reliable type of energy security. Although, in recent
years, the proportion of coal consumption has declined, but the
rich coal, poor oil, less gas energy resource endowment and non-
fossil has not been reliable alternative to the status quo of traditional
resources have determined that the coal-based energy structure is
difficult to change in the short term, coal will still be the “ballast
stone” “stabilizer” of energy supply. Therefore, the transformation
degree of energy structure in these regions is not high.

4.2 Average impact of financial openness on
energy structure transition

Columns (1)–(3) of Table 3 respectively report the impact of
financial openness on energy structure transition without adding
control variables, adding control variables and two-way fixed effects.
From the estimation results, it can be seen that there is a significant
positive relationship between financial openness and energy
structure transition. It can be seen from Column (3) of Table 3
that the average effect of financial openness on the energy structure
transition is 0.58, which is significant at the level of 1%. That is, for
every 1 unit increase in financial openness, the energy structure
transformation will increase by 0.58 units. The above structure
shows that in the process of energy consumption structure
transformation, the openness of the financial industry is
conducive to energy structure transformation, that is, Hypothesis
1 is verified.

4.3 Robustness test

In the part of robustness test, this paper mainly uses the
replacement of core explanatory variables, the addition and
reduction of control variables and the random effect model to
test the robustness of the empirical results.

(1) Replacing core explanatory variables. In order to further
eliminate the impact of the measurement error of financial
openness index on the empirical results, this paper uses the

TABLE 1 Descriptive statistics of variables.

Variables Meaning Obs. Mean S.D. Min Max

JJ Economic factors 300 5.2635 2.6287 1.3119 16.4222

ZC The policy factor 300 0.0223 0.0215 0.0004 0.1416

NY The Energy factor 300 1.4781 0.882 0.1359 4.139

HJ Environmental factors 300 0.0049 0.004 0.00002 0.1827

FO Level of financial openness 300 0.1612 0.1572 0.0255 0.8085

ZX Transformation of energy structure 300 0.2947 0.2521 0.0321 2.6732
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proportion of FDI in GDP to measure financial openness for
robustness test, and the results are still robust.

(2) Increase or decrease of control variables. In order to test whether
different control variables will affect the empirical estimation
results, this paper adopts the stepwise regression method,
gradually adding control variables for regression, and the
results of the core explanatory variable financial openness are
still robust.

(3) Random effect model. In order to test whether the adoption of
different panel models will affect the empirical estimation
results, this paper uses the random effect model for
estimation, and the results are still robust.

4.4 Analysis of heterogeneity

4.4.1 The effect of financial openness in different
development stages of energy structure transition

On the basis of Table 3, we further explore the average effect of
financial openness in different stages of energy transition. The higher
the energy structure transition index is, the higher the proportion of
oil and gas replacing coal and non-fossil energy replacing fossil energy
in this region is, and the more mature the energy transition in this
region is. In this paper, the threshold panel model of Hansen (1999) is
used to divide the interval of variables according to the characteristics
of the data itself for parameter estimation.

TABLE 2 The energy structure transformation level of 30 provinces in China from 2010 to 2019.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Beijing 0.49 0.52 0.56 0.59 0.70 0.92 1.10 1.50 2.15 2.67

Tianjin 0.32 0.32 0.30 0.34 0.34 0.37 0.39 0.44 0.48 0.49

Hebei 0.13 0.13 0.13 0.13 0.14 0.15 0.15 0.16 0.19 0.22

Shanxi 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07

Inner Mongolia 0.07 0.06 0.06 0.09 0.09 0.09 0.10 0.10 0.10 0.09

Liaoning 0.30 0.30 0.30 0.32 0.32 0.32 0.35 0.35 0.39 0.41

Jilin 0.15 0.14 0.16 0.16 0.16 0.19 0.20 0.21 0.21 0.22

Heilongjiang 0.19 0.18 0.18 0.19 0.18 0.18 0.20 0.19 0.19 0.18

Shanghai 0.38 0.38 0.41 0.46 0.46 0.51 0.52 0.53 0.54 0.57

Jiangsu 0.27 0.26 0.26 0.29 0.30 0.32 0.33 0.37 0.40 0.41

Zhejiang 0.34 0.35 0.35 0.38 0.39 0.39 0.39 0.43 0.44 0.50

Anhui 0.12 0.13 0.12 0.14 0.16 0.16 0.16 0.18 0.19 0.19

Fujian 0.28 0.25 0.27 0.30 0.38 0.40 0.43 0.42 0.41 0.44

Jiangxi 0.16 0.16 0.17 0.18 0.17 0.19 0.22 0.23 0.24 0.25

Shandong 0.21 0.21 0.22 0.25 0.27 0.30 0.34 0.38 0.41 0.43

Henan 0.13 0.13 0.16 0.17 0.16 0.16 0.17 0.18 0.20 0.21

Hubei 0.15 0.14 0.14 0.20 0.21 0.23 0.23 0.25 0.26 0.27

Hunan 0.12 0.14 0.15 0.17 0.16 0.18 0.17 0.16 0.19 0.20

Guangdong 0.39 0.37 0.39 0.43 0.44 0.46 0.48 0.49 0.52 0.53

Guangxi 0.16 0.24 0.28 0.27 0.30 0.32 0.31 0.34 0.35 0.35

Hainan 0.77 0.75 0.73 0.68 0.74 0.78 0.80 0.74 0.76 0.81

Chongqing 0.13 0.13 0.14 0.18 0.19 0.23 0.24 0.24 0.26 0.27

Sichuan 0.20 0.21 0.20 0.20 0.25 0.32 0.32 0.35 0.37 0.40

Guizhou 0.03 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.10 0.11

Yunnan 0.03 0.04 0.04 0.04 0.05 0.06 0.06 0.16 0.26 0.27

Shaanxi 0.25 0.24 0.23 0.23 0.22 0.22 0.22 0.23 0.24 0.24

Gansu 0.34 0.35 0.33 0.35 0.33 0.34 0.33 0.36 0.36 0.36

Qinghai 0.40 0.41 0.39 0.38 0.41 0.43 0.37 0.42 0.45 0.47

Ningxia 0.16 0.13 0.20 0.20 0.19 0.19 0.21 0.18 0.15 0.15

Xinjiang 0.29 0.29 0.28 0.30 0.32 0.29 0.29 0.28 0.28 0.28
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Since the threshold value and its number in the threshold model
are unknown, in order to determine the form of the model, this
section first determines the possible number of thresholds and their
values through the corresponding algorithms and procedures
according to the characteristics of the data. The regression results
show that the double threshold model should be used for analysis.
The two threshold estimates for the dual threshold model are
0.25 and 0.53, respectively. According to these two threshold
values, the energy structure transformation of each province can
be divided into three types: the initial stage of transformation, the
growth stage of transformation and the maturity stage of
transformation. Column (1) of Table 4 shows the regression
results of the model under the double threshold.

It can be seen from Column (1) of Table 4 that in the early stage
of energy structure transition, the estimated coefficient of financial
openness is significant at the significance level of 1%, and its value
is −0.71. In the growth period of energy structure transformation,
the estimated coefficient of financial openness is significant at the 1%
significance level, and its value is 0.36. In themature period of energy

structure transition, the estimated coefficient of financial openness is
significant at the 1% significance level, and its value is 1.17.
Obviously, 1.17 > 0.36>−0.71, which indicates that with the
continuous maturity of energy structure transformation, the
impact of financial openness on energy structure transformation
is gradually enhanced. That is, Hypothesis 2 is verified.

4.4.2 The effect of financial openness at different
levels of economic development

On the basis of Table 3, we further explore the average effect of
financial openness at different levels of economic development. The
threshold panel model of Hansen (1999) is still adopted, and the
regression results show that the double threshold model should be
used for analysis. The two threshold estimates for the dual threshold
model are 4.11 and 7.63, respectively. According to these two
threshold values, we can divide the economic development level
of each province into three types: underdeveloped, moderately
developed and developed. Column (2) of Table 4 shows the
regression results of the model under the double threshold.

It can be seen from Column (2) of Table 4 that in economically
underdeveloped regions, the estimated coefficient of financial
openness is significant at the 1% significance level, and its value is
2.38. In the growth period of energy transition, the estimated
coefficient of financial openness is significant at the 1%
significance level, and its value is 1.08. In the maturity period of
energy transition, the coefficient estimate of financial openness is
significant at the 1% significance level, and its value is 0.72. Obviously,
2.38 > 1.08>0.72, which indicates that the more backward the
economy is, the stronger the driving effect of financial openness
on energy structure transformation is. That is, Hypothesis 3 is verified.

5 Conclusion and policy
recommendations

This paper uses the panel data model of 30 provinces in China
from 2010 to 2019 to examine the impact of financial openness on

TABLE 3 Benchmark regression results.

Variables (1) (2) (3)

FO 0.98*** 0.49*** 0.58***

JJ 0.07*** 0.09***

ZC −0.73 −0.61

NY −0.21*** −0.18***

HJ 6.9** −0.5

Province fixed effects Yes Yes Yes

Time fixed effects No No Yes

Samples 300 300 300

Adj R2 0.44 0.42 0.46

Note: ***, ** and * indicate significance levels at 1%, 5% and 10%, respectively.

TABLE 4 Parameter estimation results of heterogeneity analysis.

Variables (1) (2)

JJ 0.04*** 0.08***

ZC −0.92 −0.63

NY −0.02 −0.04

HJ 1.47 9.84***

ZX − 1 −0.71***

ZX − 2 0.36***

ZX − 3 1.17***

JJ − 1 2.38***

JJ − 2 1.08***

JJ − 3 0.72***

Adj − R2 0.68 0.52

Note: ZX − 1, ZX − 2 and ZX − 3 represent the FO of small, medium and large energy structure transition level intervals, respectively; JJ − 1, JJ − 2 and JJ − 3 represent the FO of small,

medium and large economic development levels, respectively; ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively.
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the transformation of energy structure, in order to provide
theoretical support and policy reference for promoting the steady
opening of financial market and helping to achieve the goal of
“dual carbon”. The results show that: 1) From the current situation
of China’s energy structure transformation, it can be seen that coastal
cities have a higher level of energy transformation, while resource-
based cities such as Shanxi have a lower level of energy transformation;
2) In general, financial openness is conducive to energy structure
transformation; 3) In the initial stage of energy structure
transformation, the main driving force of energy structure
transformation is government policy support, while the driving
effect of financial openness is weak, and may even be inhibiting; In
the growth and maturity stages of the energy structure transformation,
the market mechanism is constantly improved, and the financial
openness may have a significant positive impact on the energy
structure transformation, and with the deepening of the energy
structure transformation, this promoting effect will be strengthened.
4) The financing capacity of less developed regions is greatly
insufficient, but the transformation of energy structure needs a large
amount of financial support. Therefore, the need for financial openness
is more urgent in economically underdeveloped regions, that is, the
lower the level of economic development is, the greater the impact of
financial openness on energy structure transformation is. Based on this,
this paper puts forward the following policy suggestions:

(1) Opening up the financial market in a steady and orderly
manner. Adhering to the equal emphasis on “bringing in”
and “going global,” by promoting the high-level opening up
of the financial industry, it can promote the deepening reform of
China’s financial industry, make the power of long-term capital
and institutional investors continue to grow, attract overseas
institutions and investors to participate in the transformation of
energy structure, which will help enrich the participants of the
financial market and optimize the financial supply. Provide rich
financing channels for the transformation of energy structure
and help further deepen the transformation of energy structure.

(2) Enhance innovation and diversity of financial products and
broaden financing channels for energy structure
transformation. In the process of energy structure
transformation, one of the biggest problems is the difficulty of
financing, which is more difficult for economically
underdeveloped regions. The financing problem should not
only rely on the guidance and incentive of the government,
but also play the role of the financial market, especially foreign
capital. First, actively promote the growth of green credit business
for the transformation of energy structure. We will encourage
financial institutions to invest more capital in green industries
through tax cuts and targeted RRR cuts. Second, we will continue
to deepen international cooperation in green finance, actively
participate in the formulation of international standards in
relevant fields, jointly incubate pilot and test projects, and
explore the construction of a green finance market ecosystem.

(3) Give full play to the complementary advantages of government
policies and financial institutions. In the initial stage of energy
structure transformation, the main driving force of energy
structure transformation is government policy support.
However, with the deepening of the transformation of energy
structure, it is necessary to make full use of the advantages of

financial institutions, promote government-bank cooperation,
give full play to the advantages of both sides in policy,
information, resources and capital, explore diversified
financial cooperation models, and jointly contribute to the
transformation of energy structure.

(4) Pay attention to the reduction and withdrawal of traditional
industries in resource-based areas to make up for the vacancy.
Most industries in resource-based areas are closely related to
fossil energy. On the one hand, resource-based areas should rely
on local resource endowments, establish a multi-energy
complementary comprehensive energy supply industry chain,
establish and improve the exit compensation mechanism, and
guide the steady transformation of industries. On the other
hand, resource-based areas can reduce the risk of transition to a
greater extent through the coordinated development of fossil
energy and renewable energy.

(5) Both supply and demand sides should make concerted efforts to
promote the transformation of energy structure. On the one
hand, from the supply side, we should vigorously develop new
and renewable energy such as wind power, hydropower,
photovoltaic power generation and nuclear power, and zero
and low-carbon energy production bases such as natural gas.
We should promote various new energy projects, build a multi-
energy complementary, safe and efficient energy system, and
effectively lead the green transformation of energy. On the other
hand, from the demand side, we should actively transform the
growth drivers, change the growth mode, adjust the industrial
structure, and limit the development of industries with high
energy consumption. On the micro level, under the premise of
comprehensive consideration of safety, economy,
environmental protection and other factors, consumers’
lifestyle and consumption mode should be guided to shift to
the direction of low energy consumption, low pollution and low
emissions. Supply and demand sides work together to promote
the transformation of energy structure.
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The impacts of digital value chain
embeddedness on trade-related
carbon emissions intensity

Yanfang Lyu1*, Yun Xiang2 and Dong Wang3*
1School of Statistics and Institute of Quantitative Economics, Huaqiao University, Xiamen, China, 2School
of Economics and Finance, Huaqiao University, Quanzhou, China, 3School of Business, Minnan Normal
University, Zhangzhou, China

Objective: Digitalization supported by digital technology presents a potential
solution for improving the efficiency of resource utilization. However, the impacts
of digitalization on trade-related carbon emissions intensity have not been
studied systematically.

Methods: Based on panel data of 41 countries and regions over the period
2000–2014, this study examines how different types of digital value chain
embeddedness can affect carbon emissions intensity using a semi-parametric
partially linear model.

Results: Research findings indicate that there is an invertedU-shaped relationship
between digital domestic value chain embeddedness and carbon emissions
intensity embodied in domestic trade; only when digitalization reaches a
threshold of approximately 0.88, does the effects on carbon emissions
intensity become negative. In addition, the impacts of digital global value
chain embeddedness on carbon emissions intensity embodied in import trade
and export trade are recognized as being non-linear; the thresholds of
digitalization are approximately 0.1 and 0.3 for import trade and approximately
0.03 and 0.21 for export trade. Although participating in global value chains is
conducive to accelerating digital technology diffusion, the actual environmental
effects are constrained by a country’s absorptive capacity and high economic
system complexity. Compared with developed countries, developing countries
lag behind in entering the downward stage of the inverted U-shaped curve,
thereby gaining environmental benefits from digital value chain embeddedness.
Moreover, in terms of utilizing digital value chain embeddedness to improve
energy efficiency, measures include optimizing trade conditions, adjusting
energy structure, and increasing trade scale, which can play an active role.

Value: This study sheds light on the exploration of the potential of digitalization
and the facilitation of economic development in a more environmentally
friendly manner.
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1 Introduction

The advent of global value chains (GVCs) has significantly
changed international trade patterns (Meng et al., 2018). Depending
on comparative advantages, the production of a commodity can be
undertaken in different regions, and intermediate products may be
traded across borders many times (Grossman and Rossi-Hansberg,
2008; Baldwin and Venables, 2013; Antràs and Gortari, 2020). Under
the trend of international production fragmentation, some side effects
arise from trade activities, especially environmental issues such as
increased carbon dioxide (CO2) emissions. It is estimated that
approximately a quarter of global carbon emissions are derived
from international trade, with a serious asymmetry in
environmental costs between developed and developing countries
(Peters et al., 2011; Huang and Zhang, 2023). Therefore,
participating in GVCs in a more environmentally friendly way is
becoming increasingly important, among which improving energy
efficiency is regarded as key to balancing steady economic growth and
carbon emissions reduction (Sun et al., 2019; Li et al., 2022; Zhang
et al., 2023).

Digitalization supported by digital technology has been
considered as a potential driver for sustainable economic
development (Gouvea et al., 2020; Ren et al., 2021). Encouraging
and promoting cleaner production is conducive to reducing carbon
emissions (Nguyen et al., 2020). On the other hand, some researchers
argue that environmental degradation may also occur (Moyer and
Hughes, 2012). In recent years, with the continuous penetration of
digital technology into the real economy, GVCs have undergone
drastic changes. A new channel of digitally driven globalization has
arisen (van der Marel, 2021; Blazquez et al., 2022), which is defined as
digital value chain embeddedness in this study. Concerning the
interaction between digital technology and GVCs, a large body of
research has been carried out to analyze the impacts of digitalization
on productivity, economic growth, and GVC specialization (Niebel,
2018; Szalavetz, 2019; Lahouel et al., 2021; Banga, 2022). However,
there has only been a very limited attempt to link digitalization, GVCs,
and carbon emissions intensity together (Wiedmann and Lenzen,
2018). With the rapid digital transformation of GVCs, carbon
emissions embodied in international trade might be altered due to
the change in trade patterns. Moreover, as domestic trade accounts for
a considerable proportion of overall trade in some countries, the
environmental effects of digitalization along domestic value chains
have also yet to be investigated. In this regard, the study aims to clarify
the impacts of digital value chain embeddedness on carbon emissions
intensity, which is critical for fully utilizing the energy-saving effects of
digitalization and identifying the probable pressures during a low-
carbon transition process.

Although digitalization is generally perceived as an engine for a
low-carbon economy, controversy remains about the role of
digitalization in trade-related carbon emissions (Danish, 2019;
Lin and Huang, 2023). According to the study of Copeland and
Taylor (1994); Antweiler et al.(2001), the environmental effects of
trade bring into play due to trade scale, trade embedded technique
and trade composition. One view suggests that digitalization induces
large-scale data trading, and the supporting operation of digital
industries increases carbon consumption (Jones, 2018; Xiao et al.,
2020; He and Xie, 2022). The direct effects of a cyclic process of
digitalization, as well as the indirect effects of an expanding

economy, tend to increase carbon emissions (Lange et al., 2020).
Moreover, the rebound effect also leads to a surge in carbon-
intensive product consumption (Peng et al., 2023). By contrast,
another view supporting the emission reduction effects of
digitalization suggests that through technological progress,
learning by exporting, and trade barrier pushback (Banga, 2022),
it will bring significant energy savings. In addition, several studies
have confirmed that digitalization promotes technological
innovation and further optimizes energy utilization structures
(Ollo-López and Aramendía-Muneta, 2012; Usman et al., 2015;
Bastida et al., 2019; Xu et al., 2022), which contribute to carbon
emissions reduction. From the perspective of countries of different
economic development levels, developing countries are at a
disadvantage in terms of the trade environment (Wang et al.,
2021), and even become a “pollution refuge” by taking part in
global production networks (Peng, 2020; Li et al., 2021). Although
the relationship between digital value chain embeddedness and carbon
emissions intensity is intricate, most scholars identify with the energy
saving effects for developed countries (Danish et al., 2019; Qayyum
et al., 2021; Shi et al., 2022). Furthermore, apart from the above two
opposite propositions on the carbon emission effects of digitalization, it
is also argued that the relationship between digitalization and
environmental performance is probably non-linear (Higon et al.,
2017). However, based on the viewpoint of energy efficiency, the
potential non-linear relationship between digitalization and carbon
emissions intensity has been investigated less (Bekaroo et al., 2016; Li
and Wang, 2022).

A challenge to achieving a consensus on the relationship between
digitalization and energy efficiency is the accounting framework. A
large body of literature has applied the “consumption-based carbon
accounting” method to compute carbon emissions, which is a
modification of the conventional “territorial-based carbon
accounting” method (Su et al., 2010; Liddle, 2018). Both measures
are based on gross trade statistics, which would give rise to the issue of
double counting and non-conformity with the System of National
Accounts. As an improvement, the accountingmethod of value-added
trade provides powerful tools for calculating carbon emissions
embodied in trade (Meng et al., 2018). On this ground, existing
efforts have been made to trace the carbon footprint from the point of
life-cycle assessment, and the methods are mainly based on bilateral
trade input-output models or single regional input-output models
(Fan et al., 2021). Additionally, some scholars have conducted
research on GVCs and carbon emissions embodied in trade
separately (Dolter and Victor, 2016; Pothen, 2017; Jiborn et al.,
2018). However, these attempts did not distinguish the carbon
content difference between imported and domestic intermediate
goods, causing the measurement results to deviate from the actual
situation (Xu et al., 2011; Liu et al., 2013). With the worldwide
prevalence of intra-product trade, applying multiregional input-
output models (MRIOs) to track carbon emissions back to the
production sector is gradually becoming mainstream. As Jin et al.
(2020) have pointed out, although CO2 emissions are probably
increasing year-on-year, the energy utilization efficiency indicator
characterized by carbon emissions intensity might show different
results and more convincingly evaluate the performance of energy
conservation.

Overall, there is room for improvement in existing studies. In terms
of measurement, digital value chain embeddedness is not clearly
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reflected by the statistical indicators, such as the digital input ratio and
digital development index. These pertinent measures provide a limited
reference for the real level of digital value chain embeddedness. As for
the potential non-linear relationship between digital value chain
embeddedness and carbon emissions intensity, it has received less
attention, and the evolvement of the marginal effect has not been
investigated either. Furthermore, the phenomenon of the digital divide
across countries is probably an influential factor inmediating the effects
of digitalization on energy efficiency, which needs to be further verified.
In this study, based on panel data of 41 economies over the period
2000–2014, we construct the carbon emissions intensity indicator to
reflect adversely on domestic and international trade-related energy
efficiency. In addition, we identify digital economy sectors from all
sectors and establish the measurement and decomposition framework
of digital value chain embeddedness. Furthermore, we use a semi-
parametric partially linear model to test the non-linear effects of digital
value chain embeddedness on carbon emissions intensity, with the
purpose of emphasizing the evolvement of the marginal impact
concerning different digital development levels. Compared with
other econometric models, on the one hand, it avoids the weakness
of setting a specific functional relationship subjectively and can better
grasp the true impacts of digital value chain embeddedness on carbon
emissions intensity; on the other hand, the marginal effect graph can
directly show the effects of the core explanatory variable on the
dependent varible. The empirical results prove that there is an
inverted U-shaped relationship between digital domestic value chain
embeddedness and carbon emissions intensity. We identify a threshold
of 0.88 that divides the range of digitalization into two intervals; when it
is in the low range of digital domestic value chain embeddedness, its
marginal effect on carbon emissions intensity is positive; when it is in
the higher range, the impact is reversed. Comparatively, we recognize
two thresholds in the case of digital GVC embeddedness, which are
0.1 and 0.3 for import trade and 0.03 and 0.21 for export trade. This
reveals that a country’s pertinent absorptive capacity lags behind in
digital technological development as the enhancement of the adaptive
capability needs to take a dynamic process.

The marginal contributions of this study are reflected in three
aspects: first, compared with the single indicator of CO2 emissions
that is based on the absolute quantity perspective, in this study, we
construct carbon emissions intensity indicators to reflect adversely on
energy efficiency. Specifically, through the lens of value chains, we
focus on carbon emissions intensity embodied in domestic trade,
import trade, and export trade. Additionally, the digital domestic
value chain embeddedness and digital GVC embeddedness are
measured. This study provides statistical backing for the research
fields of digitalization and its environmental effects. Second, in the era
of the digital economy, the relationship between value chain activities
and environmental impacts may shed some new light. However,
relevant research that combines digitalization, GVCs, and carbon
emissions intensity is still lacking. By integrating them into a unified
framework, this study provides a novel insight into boosting
decarbonization through digital value chain embedding while
enhancing steady economic growth. Third, different from existing
studies that focus on the linear environmental effects of digitalization,
based on theoretical analysis of probable non-linear effects, this study
applies a semi-parametric partially linear model to explore the non-
linear relationship between different types of digital value chain
embeddedness and carbon emissions intensity. The findings reveal

that only when digital value chain embeddedness reaches a certain
value, it has virtual impacts on energy saving. Targeted policy
implications are thus put forward, especially that each economy
should adjust its digital transformation strategy based on its stage
of economic development and the technology absorptive capacity.

2 Theoretical analysis

Compared with conventional industries, digital industry is much
more environmentally friendly, with the advantages of high energy
efficiency (Amri et al., 2019). It is well-recognized that digitalization
provides a new impetus for technological progress. As intermediate
inputs, digital elements contribute to upgrading conventional
manufacturing industries and improving the efficiency of R&D.
Thus, digitalization is conducive to reducing carbon emissions
intensity. However, the effectiveness of digitalization is constrained
by its connectivity characteristics (Lin and Huang, 2023). Conditional
on different levels of digital value chain embeddedness, both the
energy consumption impact and the energy saving benefit of
digitalization take effect. The net impact depends on which
mechanism prevails, and a simple linear assumption would not be
valid (Ren et al., 2021). To inspect the win-win influence of
digitalization in facilitating economic growth and carbon emissions
reduction (Xu et al., 2022), the indicator of carbon emissions intensity
is chosen to manifest the environmental performance, which is more
comprehensive than that of the absolute carbon emissions indicator.
Concerning the mixed effects of digitalization, we refer to the studies
of Lange et al. (2020) and Azam et al. (2021) and propose that digital
value chain embeddedness has a complex non-linear relationship with
carbon emissions intensity.

From a perspective of technology adoption life cycle, the process
of digital technology diffusion takes place gradually (Rao and Kishore,
2010). As Bai et al. (2023) have pointed out, there are innovators, early
adopters, early majority, late majority, and laggards according to the
adoption stages. While it is in a low range of digital value chain
embeddedness, the construction of digital supportive resources is
insufficient. The host country’s absorption capacity is limited because
of the low degree of digital embedding (Huang et al., 2022). To sustain
digital connectivity, many energy-intensive applications, such as data
centers, electronic equipment, and data transmission networks,
require massive energy consumption (Galvin, 2015; Bieser and
Hilty, 2020). Owing to a high dependence of digital infrastructure
on electric power, carbon emissions and carbon intensity increase
when digital value chain embeddedness is in the early development
stage (Morley et al., 2018; Jin and Yu, 2022). In addition, the rebound
effect that refers to the production expansion of other industries
incurred by digitalization poses another threat to energy efficiency
endeavors (Joyce et al., 2019; Lin and Zhu, 2021). Additionally, digital
trade operations have reshaped traditional trade models by expanding
market reach and enhancing trade efficiency, which promotes
economic growth (Zheng et al., 2023). In this regard, we conclude
that digital value chain embeddedness indirectly increases carbon
emissions intensity by broadening the economy.

As digital technology progresses, the ability of host countries to
make use of advanced technologies is enhanced, and it will result in a
declining trend in energy consumption. The deep integration of digital
elements with conventional industries can decrease carbon emissions
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intensity by facilitating technological innovation, alleviating resource
distortion, upgrading industrial structures, and accelerating the
accumulation of human capital (Lin and Zhou, 2021; Zhong et al.,
2022; Zhang et al., 2023). Based on innovation and signaling theory,
participating in GVCs enhances the flow of digital elements, which is
beneficial for technology spillovers. Positive externalities of internal
and external communications about the knowledge-intensive
technology provide impetus for the low-carbon transformation.
From the perspective of manufacturing industry servicing, digitally
enabled services can be traded by overcoming the constraints of
geographical distance (Zhou et al., 2018; Blazquez et al., 2023). More
varieties of high-quality services are available for manufacturers to
make use of, which not only contributes to the growth of value-added
trade but also enhances the environmental benefits.

Overall, owing to the overlap of direct and indirect environmental
influences of digital value chain embeddedness, there may be an
intricate relationship between digital value chain embeddedness and
carbon emissions intensity. Energy consumption is often larger than
the energy savings in the early stage of digitalization, and the energy
saving effect takes precedence when the digitalization surpasses a
certain level during its exponential growth path. Given the
abovementioned analysis, we put forward the first hypothesis:

H1. There is an inverted U-shaped relationship between digital value
chain embeddedness and carbon emissions intensity.

In addition to the threshold environmental effect of digital value
chain embeddedness, developing and developed countriesmay exhibit
significant differences in practice. Depending on their contrastive
ways of embedding GVCs, developing countries typically take part in
GVCs through backward embedding, which puts them in a position to
generate more carbon emissions (Zhang et al., 2017). Participation in
GVCs provides developing countries with opportunities to obtain
advanced technologies and knowledge (Hummels et al., 2001; Wang
et al., 2021). However, as developing countries are constrained to the
lower end of the value chain, they are disadvantaged in upgrading
industrial structures because they lack key technologies. There are
significant gaps in digital technology between developing and
developed countries. Compared with conventional production
technology, it is more difficult to learn digital technology through
demonstration and observational learning. Under the conditions of
the core technologies grasped by developed countries (Huang et al.,
2022), developing countries have to strengthen their absorption
capacity, which depends on the accumulation of human capital,
R&D ability, and the institutional environment.

Based on the standpoint of “pollution heaven” (Copeland and
Taylor, 1994), pollution-intensive industries are shifted from developed
countries to developing countries. Through importing intermediate
products and exporting high-pollution final goods, developing
countries generally gain low additional value and become net
exporters of carbon embodied in trade (Xing, 2018; Liu et al., 2020).
To cope with the pressure of carbon emissions reduction while realizing
economic growth, improving environmental efficiency is more urgent
for developing countries. In the global production network, long-term
dependence on gaining technology spillovers from developed countries
means it is difficult for developing countries to form independent
intellectual property rights. As the application of digital technology
requires substantial catch-up cosst for developing countries, it is
challenging to improve GVCs by relying on the introduction of

digital technology (Huang and Zhang, 2023). Furthermore, when
confronted with digital technical blockades, such as digital patent
protection strategies (Sun et al., 2019), developing countries lag
further behind in exploiting the potential of digitalization. As a
result, the risks of locking in low-end value chains are magnified in
the digital era. In summary, we put forward the second hypothesis:

H2. Compared with developing countries, developed countries take
the initiative in utilizing the energy-saving effects of digitalization.

3 Measurement

3.1 Measurement of carbon emissions
intensity

We calculate trade-related carbon emissions intensity following
the MRIO framework. In a global multi-regional input-output table
comprising G countries, with each having N sectors, the basic row
balance relation can be expressed as (Leontief, 1936):

X � AX + Y0X � I − A( )−1Y � BY (1)
where X is the gross output, a GN × 1 vector; A represents the direct
consumption coefficient matrix, a GN×GN matrix; Y denotes the
demand for the final goods, a GN×G matrix; and I is an identity
matrix with the same dimensions of GN×GN. Define
B � (I − A)−1 � (I + A + A2 +/), which is the Leontief
inverse matrix.

To measure the transfer of carbon emissions embodied in
domestic and international trade, this study set the coefficient
vector of carbon emissions as follows:

CRi � CRk
i{ } � CEk

i /X
k
i (2)

where CEk
i and Xk

i denote the direct carbon emissions and gross
output of sector k in country i, respectively. The coefficient CRk

i

refers to the carbon emissions embodied in the unit gross output of
sector k in country i. According to the study by Peters et al. (2011),
by considering the indirect carbon flow induced by the demand for
intermediate and final goods, a carbon flow matrix Cir{ } can be
constructed. For simplicity, referring to the study by Fan et al.
(2021), we selected three economies (economies 1, m, and G) as an
example to show the following relationship:

C11 C1m C1G

Cm1 Cmm CmG

CG1 CGm CGG

⎛⎜⎝ ⎞⎟⎠ �
CR1( )′ 0 0
0 CRm( )′ 0
0 0 CRG( )′

⎛⎜⎝ ⎞⎟⎠

×
B11 B1m B1G

Bm1 Bmm BmG

BG1 BGm BGG

⎛⎜⎝ ⎞⎟⎠
Y11 Y1m Y1G

Ym1 Ymm YmG

YG1 YGm YGG

⎛⎜⎝ ⎞⎟⎠

(3)
In Eq. 3, Cm1 refers to the carbon emissions of country m

induced by the final demand of country 1. The first subscript denotes
the exporting country, and the second subscript represents the
importing country. By categorizing traded goods into
intermediate goods and final goods, we distinguished the carbon
emissions embodied in exported and imported trade along GVCs, as
shown in the following equations:
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Cimport
i � ∑

r≠i
Cimport

ri

� ∑
r ≠ i

CRr( )BrrAirXi︸︷︷︸
imported carbon of intermediate goods

+ ∑
r ≠ i

CRr( )BrrYir︸︷︷︸
imported carbon offinal goods

(4)

Cexport
i � ∑

r≠i
Cexport

ir

� CRi( )Bii∑r ≠ i
AirXr︸︷︷︸

exported carbon of intermediate goods

+ CRi( )Bii∑r ≠ i
Yir︸︷︷︸

imported carbon offinal goods

(5)

Thus, the net carbon flow of a country is given as:

Cnet
i � Cexport

i − Cimport
i (6)

Similar to the construction of carbon flow matrix, when the
matrix of CRi in Eq. 2 is replaced by the value-added factor matrix
Vi, which refers to the value-added per unit of the gross output.
Accordingly, we could obtain a global value-added flow matrix
VAir{ }. As the carbon flows can be categorized into three types,
carbon flow in the local region (Cii), carbon flow of import trade
(Cimport

i ), and carbon flow of export trade (Cexport
i ), according to the

flow direction (Yan et al., 2020; Chen et al., 2022), the related carbon
intensity indicators were constructed, respectively.

CIlocali � Cii/VAii i � 1, 2,/G( ) (7)
CIimport

i � Cimport
i /∑

r≠i
VAri i, r � 1, 2,/G( ) (8)

CIexporti � Cexport
i /∑

i≠r
VAir i, r � 1, 2,/G( ) (9)

where CIlocali denotes carbon emissions intensity of local region I
and CIimport

i and CIexporti represent carbon emissions intensity
incurred by the import and export trade of region i, respectively.

3.2 Measurement of digital value chain
embeddedness

Based on where goods are consumed, the direct consumption
coefficient matrix (A) could be divided into AD � aii{ } and
AF � aij, i ≠ j{ }. Thus, the gross output of a country could be
expressed as X � ADX + YD + AFX + YF, where ADX + YD

represents a country’s domestic use and AFX + YF represents a
country’s gross exports.

With reference to the study by Ma et al. (2023), by using
superscript to separate the digital (d) sectors from the non-digital
(n) sectors of an economy, the domestic direct consumption

coefficient matrix was given as AD �

add11 adn11 / 0 0

and11 ann11
..
. ..

.

0 0 1 0 0
..
. ..

.
addGG adnGG

0 0 / andGG annGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, for the purpose of emphasizing the purely digital or
non-digital sectors of the domestic economy, we defines a matrix

ADD that was denoted by ADD �

add11 0 / 0 0

0 ann11
..
. ..

.

0 0 1 0 0
..
. ..

.
addGG 0

0 0 / 0 annGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. The

element on the diagonal of matrix ADD is akkii , where k represents

a digital or non-digital sector and i denotes the specific country.
Based on the definition of matrix AD, we defined the domestic

Leontief inverse matrix L � (I − AD)−1 =

ldd11 ldn11 / 0 0

lnd11 lnn11
..
. ..

.

0 0 1 0 0
..
. ..

.
lddGG ldnGG

0 0 / lndGG lnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which reflects the technological-economic linkages between
domestic sectors. Therefore, the gross output of a country
could be simplified as X � LYD + LE. Referring to the economic
implications of matrix ADD, the matrix L could be further
decomposed into H and L-H, where H � I − ADD( )−1 �
hdd11 0 / / 0
0 hnn11 0

..

.
1 ..

.

..

.
hddGG

..

.

0 0 / / hnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L −H �

ldd11 − hdd11 ldn11 / 0 0

lnd11 lnn11 − hnn11
..
. ..

.

0 0 1 0 0
..
. ..

.
lddGG − hddGG ldnGG

0 0 / lndGG lnnGG − hnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Simply put, the

matrix H was constructed to reflect the intrasectoral production
linkages in the purely digital sectors or non-digital sectors, whereas
the matrix L-H was used to represent the intersectoral production
linkages. Therefore, the expression of the value-added vector could
be reorganized as:

VA � VLYD + VLE � VLYD + VL AFX + YF( )
� VLYD + VL AFBY + YF( )
� VHYD + V L −H( )YD + VHAFBY + V L −H( )AFBY

+ VHYF + V L −H( )YF

� VHYD + V L −H( )YD + VHYF + V L −H( )YF + VHAFLY

+ V L −H( )AFLY + VLAF B − L( )Y
(10)

According to the nature of the sector that is digital or non-
digital, domestic value added by country i could be divided into
digital domestic value added (VAd

i ) and non-digital domestic value
added (VAn

i ). Taking VAd
i as the analysis object, it includes two

main components: the direct and indirect value-added effect of the
digital economic sectors. Referring to the study by He and Xie
(2022), we divided each component into four parts as follows:

(1) the digital value added by final goods to meet domestic
demands (VA1)

direct VA1di � Vd
i h

dd
ii Y

d
ii (11)

indirect VA1di � Vd
i lddii − hddii( )Yd

ii + ldnii Y
n
ii[ ] (12)

The direct VA1 (direct VA1di ) and indirect VA1
(indirect VA1di ) correspond to the first and second components
of Eq. 10, respectively. The lowercase variables, including hddii , l

dd
ii ,

and ldnii , represent the according element of matrixes H, L, and L,
respectively (similarly hereinafter).
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(2) The digital value added by exports of final goods (VA2)

direct VA2di � Vd
i h

dd
ii ∑

G

j ≠ i

Yd
ij (13)

indirect VA2di � Vd
i lddii − hddii( )∑

G

j ≠ i

Yd
ij + ldnii ∑

G

j ≠ i

Yn
ij

⎡⎢⎢⎣ ⎤⎥⎥⎦ (14)

The direct VA2 (direct VA2di ) and indirect VA2
(indirect VA2di ) correspond to the third and fourth components
of Eq. 10, respectively, where Yd

ij denotes the export of digital final
goods from country i to country j, and Yn

ij represents that of non-
digital final goods.

(3) The digital value added that returns to the domestic
country (VA3)

direct VA3di � Vd
i h

dd
ii ∑

G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj Y
m
ji (15)

indirect_VA3di � Vd
i
⎡⎢⎢⎣ lddii − hddii( )∑

G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj Y
m
ji

+ ldnii ∑
G

j ≠ i

∑
r∈ d,n{ }

anrij ∑
m∈ d,n{ }

lrmjj Y
m
ji

+ ∑
r∈ d,n{ }

ldrii ∑
G

j ≠ i

∑
s∈ d,n{ }

arsij∑
G

k�1
∑

m∈ d,n{ }
bsmjk − lsmjj( )Ym

ki
⎤⎥⎥⎦

(16)
The direct VA3 (direct VA3di ) corresponds to part of the fifth

component of Eq. 10, and the indirect VA3 (indirect VA3di )
corresponds to part of the sixth and seventh component of Eq.
10. VA3 manifests exports of intermediate goods that are traded
across multiple countries and eventually go back to the producer
country i.

(4) The digital value added that meets the foreign market
demand (VA4)

direct VA4di � Vd
i h

dd
ii ∑

G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj ∑
G

p ≠ i

Ym
jp (17)

indirect VA4di �Vd
i
⎡⎢⎢⎣ lddii −hddii( )∑

G

j≠ i
∑

r∈ d,n{ }
adrij ∑

m∈ d,n{ }
lrmjj ∑

G

p ≠ i
Ym

jp

+ ldnii ∑
G

j≠ i
∑

r∈ d,n{ }
anrij ∑

m∈ d,n{ }
lrmjj ∑

G

p≠ i
Ym

jp

+ ∑
r∈ d,n{ }

ldrii ∑
G

j≠ i
∑

s∈ d,n{ }
arsij∑

G

k�1
∑

m∈ d,n{ }
bsmjk − lsmjj( )∑

G

p≠ i
Ym

kp
⎤⎥⎥⎦

(18)
The direct VA4 (direct VA4di ) corresponds to part of the fifth

component of Eq. 10, and the indirect VA4 (indirect VA4di )
corresponds to part of the sixth and seventh component of Eq.
10. Different from VA3, VA4 denotes exports of intermediate goods
that satisfy the foreign market demand.

In a similar way, the value added from the non-digital sector in
country i could also be categorized into eight parts, denoted as
direct VA1ni ~ direct VA4ni and indirect VA1ni ~ indirect VA4ni ,

respectively. To fully reflect the development of digitalization in
country i, both the direct digitalization of the digital sectors and the
indirect digitalization of the non-digital sectors should be
considered. According to which component belongs to the
domestic value chain or the category of GVC, it is meaningful to
account for the ratio of digital value added to a country’s total value
added (Peng et al., 2023). This study further constructed the
indicators of digital domestic value chain embeddedness (DCd

i )
and digital GVC embeddedness (DCg

i ), which could be expressed as:

DCd
i �

direct_VA1di +direct_VA2di +indirect_VA1di +indirect_VA2di
VAi

(19)

DCg
i �

directVA3di + directVA4di + indirectVA3di + indirectVA4di
VAi

+ indirectVA3ni + indirectVA4ni
VAi

(20)

In light of the connotation of digital economy, and the
availability of related data, this study referred to the study by Lyu
et al. (2020) about digital economy sector classification. The digital
economy was categorized into three parts: digital infrastructure,
digital media, and digital trading; the details are shown in Table 1.

4 Empirical design

4.1 Model setting

As illustrated above, there is no specific functional relationship
between digital value chain embeddedness and carbon emissions
intensity. If a parameter estimation method is applied, a prior
parameter model needs to be determined. Thus, the parameter
method is very sensitive to the selected model, which may lead
to the misspecification of the problem (Li andWang, 2019; Du et al.,
2020). In this regard, the non-parametric method has attracted
increasing attention due to its flexibility and accuracy, and its
specific functional form does not need to be determined in
advance. However, it should be noted that this highly data-
dependent method easily leads to an overfitting phenomenon,
which, in particular, incurs the issue of the “curse of
dimensionality” (Li and Racine, 2006).

In view of this, we selected the semi-parametric model to analyze
the non-linear effects. As both linear parameter and non-parametric
components are included in themodel, it can improve the explanatory
power of the model and effectively overcome the drawbacks of
overfitting (Härdle et al., 1998). The most commonly used semi-
parametric models are semi-parametric partially linear models, which
have some additional advantages (Li and Liang, 2015): First, they
allow for amore flexiblemodel that can adapt to different types of data
and relationships. Second, they offer a wider range of link functions
and analytical forms compared with traditional parametric or non-
parametricmodels. Third, the smoothing parameters can be estimated
using generalized cross-validation techniques, which is a robust
method for parameter estimation.

This study constructed the following semi-parametric partial
linear model to test the impacts of digital value chain embeddedness
on carbon emissions intensity:
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CIit � G DCit( ) + βXit + λi + μt + εit (21)

where G(DCit) is an unknown function that measures the marginal
effect of digital value chain embeddedness, Xit represents the
collection of control variables, and λi and μt denote country
effects and year effects, respectively. By using the series
estimation method, this study followed the specific steps for
estimating this semi-parametric partial linear model as follows:

Using a p*1 vector of base functions q(DCit) �
[q1(DCit),/, qp(DCit)]′ and a p*1 vector of unknown
parameters θ � [θ1,/, θp]′ to approximate the coefficient
function G(DCit):

q DCit( )′θ � q1 DCit( ),/, qp DCit( )[ ]
θ1
..
.

θp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

Referring to the research by Du et al. (2020), we employed a
B-spline method to approximate the unknown functions, as well as
apply the least-squares cross-validation to determine the number
of knots.

By rearranging Eq. 21, we obtained:

CIit � q DCit( )′θ + βXit + λi + μt + δit (23)
where δit � εit + vit and vit � CIit − q(DCit)′θ, denoting the sieve
approximation error.

Taking the first-time difference of Eq. 23 to eliminate the fixed
effects, we then obtained:

ΔCIit � Δ DCit( )′( )θ + βΔXit + Δδit (24)

Applying the least square estimator to estimate Eq. 24,
we defined:

β, θ( ) � Δ ~X′Δ ~X[ ]
−1Δ ~X′Δ~CI (25)

Estimate the functional coefficients as follows:

G
�

DCit( ) � q DCit( )′θ� (26)

On the basis of the benchmark model, the mechanisms through
which digital value chain embeddedness can affect trade-related
carbon emissions intensity need to be further explored. Among the
factors influencing carbon emissions intensity, the facility of
advanced green knowledge and technology being transferred
through international trade is essential for promoting cleaner
production (Lee et al., 2022). In addition, the rise of tertiary
industry may explain the decoupling of economic growth and
carbon emissions (Xie et al., 2024). Additionally, trade scale is
usually regarded as an indirect factor in explaining the variations
in a country’s carbon emissions (Liu et al., 2020).

Based on the analyses, we build the following model to
investigate the terms of trade effect, structural effect, and export
trade scale effect:

CIit � G DCit( ) + αDCit ·Mit + βXit + λi + μt + εit (27)
where Mit indicates the variables corresponding to the above three
effects. Eq. 27 includes the interaction term DCit ·Mit. By
examining the sign and significance of the coefficient α, we can
figure out feasible ways to effectively reduce carbon
emissions intensity.

4.2 Variables

The explained variable is the carbon intensity indicator (CIlocali ;
CIimport

i ; CIexporti ), which is measured based on the accounting

TABLE 1 Digital economy sectors of the WIOD.

Industrial
classification

Coverage WIOD sector
code

WIOD sectors

Digital infrastructure Computer hardware C26 Manufacture of computers, electronic and optical products

C27 Manufacture of electrical equipment

Telecommunication equipment
and service

J61 Telecommunications

Computer software J62_J63 Computer programming, consultancy and related activities; information service
activities

Digital media Internet publishing J58 Publishing activities

Internet transmission J59_J60 Motion picture, video and television program production, sound recording and
music publishing activities; programming and broadcasting activities

Digital trading Wholesale and retail G46 Wholesale trade, except of motor vehicles and motorcycles

G47 Retail trade, except of motor vehicles and motorcycles

Financial services K64 Financial service activities, except insurance and pension funds

Other auxiliary services H53 Postal and courier activities

M69_M70 Legal and accounting activities; activities of head offices; management consultancy
activities

M72 Scientific research and development
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framework of trade in value-added. The core explanatory variable is
digital value chain embeddedness (DCd

i , DCg
i ), as Eqs 19 and (20)

have shown the specific measurement. It needs to be emphasized
that when the explained variable is CIlocali , the corresponding
explanatory variable is DCd

i , and when the explained variable is
CIimport

i or CIexporti , the corresponding explanatory variable is DCg
i .

With reference to the studies by Du et al. (2020) and He and Xie
(2022), the control variables in this study were: (1) the forest area
proportion (denoted as forest), which was used to reflect the impact
of forest resources; (2) income level (denoted as lnpgdp), which was
represented by the real GDP per capita, and take log of it; (3) the
renewable energy share (denoted as renewable), which represented
the energy consumption structure to some extent; (4) trade openness
(denoted as open), which was calculated by adding up the exports of
goods and services (percentage of GDP) and imports of goods and
services (percentage of GDP); (5) urbanization level (denoted as
urban), which was measured by 1 minus the ratio of the rural
population to the total population; (6) research and development
intensity (denoted as r&d), which was the ratio of research and
development expenditure to GDP, which was used to manifest the
roles of technological innovation; (7) financial development
(denoted as financial), which was measured by the market
capitalization of listed domestic companies (percentage of GDP);
and (8) industrial development (denoted as industrial), which was
proxied by the proportion of industrial added value in the GDP.

4.3 Data source and descriptive statistics

This study used balanced panel data for 41 countries (or regions)
spanning from 2000 to 2014, excluding the Netherlands, Taiwan,
and the rest of the world due to the lack of available and consistent
data. The input-output data used for calculating digital value chain
embeddedness were obtained from the World Input-Output
Database (WIOD), the original data for CO2 emissions were

obtained from the Environmental Accounts published by the
WIOD in 2016, and data on control variables was obtained from
World Development Indicators (WDI). Descriptive statistics for
major variables are illustrated in Table 2.

5 Results and discussion

5.1 Overview of CO2 emissions in global
value chains

The CO2 emissions embodied in the total global intermediate
goods trade and global final goods trade over the period
2000–2014 are shown in Figure 1, 2, respectively. There is a
higher growth rate of CO2 emissions embodied in global
intermediate goods trade than that embodied in global final
goods trade. It reveals a slight decrease in CO2 emissions
embodied in the global intermediate goods trade in 2009 because
of the economic crisis, which conforms with the findings of Fan et al.
(2021). Meanwhile, for both the global intermediate goods trade and
final goods trade, the carbon embodied in international trade is far
larger than that in domestic trade. The findings indicate that world
economic development and trade networks are closely related to
CO2 emissions. In the long term, CO2 emissions embodied in global
trade still shows an upward trend. Thus, putting more emphasis on
decreasing carbon intensity is a more important concern.

Figure 3 shows a comparison among carbon intensities that are
related to the domestic trade, import trade, and export trade of the
sample countries. In this study, we extend the time range to 2014.
Compared with the research by Fan et al. (2021), this study shows
that for most developed countries, the carbon intensity embodied in
import trade is higher than that in export trade, and is higher still
than that in domestic trade; Australia (AUS) is not an exception. In
addition, for some transitional economies, such as Russia (RUS),
India (IND), Bulgaria (BGR), and China (CHN), the carbon
intensity of their export trade is considerably higher than the
average of the sample. Based on the findings, there are significant
differences in the three types of carbon intensity, not only within a
country but also from the perspective of countries with different
levels of economic development. Additionally, the findings signify
that developing countries have experienced higher negative
externalities from export trade than developed countries; this
revelation is consistent with the research by Dorninger et al.
(2021). As a result, developing countries are under greater
pressure to reduce carbon emissions intensity.

5.2 Benchmark analysis of digital value chain
embeddedness on carbon
emissions intensity

The estimation results with CIlocali , CIimport
i , CIexporti as the

explained variables and DCD
i , DCG

i , DCG
i as the core explanatory

variables are presented in columns (1)–(3) of Table 3. The marginal
effects of each core explanatory variable on the corresponding
explained variable are shown in Figures 4–6, respectively. By
observing the estimation results, we have discovered an inverted
U-shaped relationship between digital domestic value chain

TABLE 2 Descriptive statistics of major variables.

Variable Obs Mean Std.dev Min Max

CIlocali
615 0.513 0.589 0.030 4.529

CIimport
i

615 0.891 0.436 0.405 2.061

CIexporti
615 0.880 1.054 0.041 9.095

DCD
i 615 0.634 0.172 0.061 0.928

DCG
i 615 0.183 0.100 0.011 0.608

forest 615 0.361 0.170 0.011 0.737

lnpgdp 615 9.858 0.980 6.627 11.630

renewable 615 0.170 0.139 0.000 0.602

open 615 0.913 0.571 0.196 3.334

urban 615 0.711 0.140 0.277 0.978

r&d 615 0.014 0.010 0.000 0.043

financial 615 0.489 0.489 0.000 3.219

industrial 615 0.265 0.069 0.100 0.481
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embeddedness and carbon intensity embodied in domestic trade,
which verifies H1. With the improvement in digital domestic value
chain embeddedness, the carbon intensity embodied in domestic
trade increases first and then decreases, and the threshold of DCd

i is
approximately 0.88. Additionally, there is a non-linear relationship
between digital GVC embeddedness and carbon intensity embodied
in international trade, which is divided into two types: import trade
and export trade. The marginal impact first rises in a deceleration,
then falls, and finally rises after the inflection point. Furthermore,
the thresholds of DCg

i affecting the carbon intensity embodied in
import trade are approximately 0.1 and 0.3, and the thresholds of
DCg

i affecting carbon intensity embodied in export trade are
approximately 0.03 and 0.21. Thus, we can conclude that
participating in export trade can realize the environmental
benefit of digital value chain embeddedness earlier.

The possible explanations for the non-linear relationship
between different types of digital value chain embeddedness and

the carbon emissions intensity may be that, on the one hand, the
process of digital value chain embedding is accompanied by the
continuous integration of digital technology and conventional
industries. However, the cultivation of digital ability is not
synchronized, and it requires vast amounts of upfront
investment. From a dynamic process perspective, adaptive
capacity is built on the basis of the improvement of data analysis,
data operation, and data empowerment (Yang et al., 2023).
Therefore, there is a transitional period of digital transformation.
It is necessary to cross the first threshold of digital value chain
embeddedness; then, the benefits of digitally empowering low-
carbon development can be exploited significantly. On the other
hand, under the condition that some experience has been
accumulated during the digital transformation, and the synergy
between digital technology and other input factors in the economic
system is strengthened, digitalization can improve the input-output
efficiency of an economy and obtain environmental benefits.

FIGURE 1
CO2 emissions of global intermediate goods trade from 2000 to 2014.

FIGURE 2
CO2 emissions of global final goods trade from 2000 to 2014.
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Comparing the thresholds of digital value chain embeddedness
as for the trade types of export trade, import trade and domestic
trade, i.e., 0.03 < 0.1 < 0.88. For digital GVC embeddedness, as a
large amount of cross-border trade of intermediate goods accelerates
the spillover and diffusion of digital technology, the impacts on
reducing carbon emissions intensity are manifested. In addition, it
should be noted that the continuous increase in the degree of digital
GVC embeddedness will eventually follow the law of diminishing
marginal effect. With the bottlenecks of digital technology
upgrading and industrial structure optimization, when the digital
GVC embeddedness surpasses the second threshold, the
environmental burden will be aggravated if the complexity of the
economic system is high.

5.3 Further analysis concerning differences
in economic development

Considering the possible digital divide between economies at
different stages of economic development, this study divides the
sample into high-income economies (ECON = 1) and middle- and
low-income economies (ECON = 0) according to the World Bank’s
classification. The economies in the ECON = 0 group in this sample are
mostly developing countries. The estimation results are shown in
Table 4, and the estimation of the marginal effect of each core
explanatory variable is shown in Figures 7–9. The results show that
in different subsamples, there is a non-linear relationship between
digital value chain embeddedness and carbon emissions intensity.
When comparing the thresholds of digital value chain embeddedness
in different sample groups, the thresholds of high-income economies
are lower than those of middle- and low-income economies, indicating
that high-income economies take precedence over middle- and low-
income economies in terms of obtaining environmental benefits,

FIGURE 3
Carbon intensities of sample economies in 2014.

TABLE 3 Estimation results of the partially linear functional-coefficient
panel model.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i see Figure 4

DCG
i see Figure 5 see Figure 6

forest −11.640*** (2.418) −5.812** (2.796) −24.507*** (5.394)

lnpgdp −1.712*** (0.103) −1.355*** (0.119) −2.979*** (0.229)

renewable −1.078*** (0.283) −0.639** (0.328) −2.260*** (0.632)

open 0.204*** (0.057) −0.072 (0.061) 0.390*** (0.118)

urban 0.774 (1.030) −7.992*** (1.191) 2.708 (2.297)

r&d 0.069 (0.630) −0.747 (0.731) 0.124 (1.410)

financial 0.014 (0.016) 0.023 (0.020) 0.005 (0.039)

Industrial 0.981*** (0.347) 1.238*** (0.401) 0.793 (0.773)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.436 0.406 0.337

FIGURE 4
Marginal effect of DCd on local CI.

Frontiers in Environmental Science frontiersin.org10

Lyu et al. 10.3389/fenvs.2023.1256544

201

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1256544


which verifies H2. When many high-income economies have been at
the stage of reducing carbon emissions intensity through digitalization,
most middle- and low-income economies still bear the pressure of
increasing environmental pollution, which is in conformity with the
findings of Huang and Zhang (2023). The reason for this is that high-
income economies have the first-mover advantage in the development
of digital technology and aremotivated to implement trade restrictions
to hinder the spillover of core digital technology, which slows down the
pace of green and low-carbon development in middle- and low-
income economies.

5.4 Heterogeneity analysis

5.4.1 Heterogeneity analysis based on the terms
of trade

Among the indicators that can reflect the convenience of trade,
compared with the trade openness index or transaction costs
indicator of international trade (Bogmans, 2015; Murshed, 2020),

this study innovatively selects the net barter terms of the trade index
released by the World Bank WDI database to reflect the terms of
trade (FC). The index represents the number of imported products
that can be obtained by exporting one unit product, where an FC of
100 in the year 2000 is used as the benchmark value. The higher the
index value, the more advantageous it is for international trade. This
study takes the logarithm and includes it in the empirical model in
the form of an interaction term. The empirical results are shown in
Table 5. The coefficient of the interaction term is significantly
negative in the types of carbon intensity embodied in domestic
trade and export trade. It indicates that optimizing terms of trade
and reducing trade barriers are conducive to promoting digital value
chain embeddedness and improving environmental quality. This
may be due to a close communication of digital technology through
trade activities, which is very important for improving green
production capacity. Comparatively, the interaction coefficient in
column (2) of Table 5 is not significant, which reveals that the net
barter terms of the trade index focus on the measurement from the
perspective of exports; therefore, it is unlikely to have a significant
impact on the carbon intensity embodied in import trade.

5.4.2 Heterogeneity analysis based on
structural effects

Concerning the industrial upgrading process which increases the
supply of low-energy consuming products, the transformation
promotes the need of skilled labor with environmental awareness
and the ability to reduce existing carbon emissions (Mahmood et al.,
2019). To further test the role of the structural effect in the process of
digital value chain embedding, this study takes the ratio of tertiary
industry output to GDP as the index of structural effect (ST), and
includes it in the model in the form of an interaction term. The
empirical results are shown in Table 6. The interaction coefficient is
negative in the three types of carbon intensity, and it is significant in
the type of carbon intensity embodied in domestic trade. This is
because as the energy consumption of the tertiary industry is
significantly lower than that of the secondary industry, which
represents the main direction of industrial upgrading, the higher
the ratio of the tertiary industry output to GDP, resulting in the
optimization of the energy structure. The empirical results reveal that
adjusting energy structure is an important mechanism for an
economy utilizing digital value chain embeddedness to achieve
environmental improvement.

5.4.3 Heterogeneity analysis based on the
scale effect

According to the study by Yan et al. (2023), the export scale effect is
an important mechanism affecting trade-embodied carbon emissions.
With the purpose of examining the scale effect, this study uses the actual
value of a country’s total exports to reflect the scale effect (SC) and
includes it in the benchmark model in the form of an interaction term.
The empirical results are shown in Table 7. The interaction coefficient is
significantly negative in the types of carbon intensity embodied in
domestic trade and import trade. In addition, it is negative in the type of
carbon intensity embodied in export trade, revealing that the scale effect
is also the mechanism of the green and low-carbon development of
digital empowerment. The existing research applying the absolute
amount of carbon emissions embodied in trade generally holds that
the scale effect is a main mechanism for environmental degradation.

FIGURE 5
Marginal effect of DCg on import CI.

FIGURE 6
Marginal effect of DCg on export CI.
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From the perspective of carbon intensity, this study confirms that
promoting economic growth and improving carbon emission reduction
capacity can go hand in hand. By reducing carbon intensity, it is
beneficial to balance the dual pressures between a country’s economic
slowdown and total carbon emissions.

5.5 Discussion

In this study, we focused on measuring digital value chain
embeddedness, as well as discussing the impacts of different

types of digital value chain embedding on trade-related carbon
emissions intensity. Previous studies have investigated the
relationship between digital progress and environmental
performance, GVCs and carbon emissions embodied in trade,
and digitalization and GVCs. However, studies concerning the
three aspects are rare and limited to the absolute carbon
emissions indicator, neglecting the value-added dimension of
trade activities. By unifying digital value chain embeddedness and
carbon emissions intensity, it is recognized that in the early stage of
digital domestic value chain embeddedness, the marginal effect on
carbon emissions intensity is positive. When it is larger than a

TABLE 4 Estimation results concerning differences in economic development.

CIlocali CIimport
i CIexporti

(1) ECON = 1 (2) ECON = 0 (3) ECON = 1 (4) ECON = 0 (5) ECON = 1 (6) ECON = 0

DCD
i see Figure 7

DCG
i see Figure 8 see Figure 9

forest −9.682*** (2.443) −11.728** (5.501) −15.950*** (3.576) 7.809* (4.352) −11.354** (4.913) −32.409** (12.583)

lnpgdp −1.260*** (0.087) −3.517*** (0.382) −1.571*** (0.126) −1.199*** (0.312) −2.087*** (0.173) −7.513*** (0.903)

renewable −0.859*** (0.231) −2.741** (1.128) −0.055 (0.338) −0.595 (0.887) −1.688*** (0.465) −5.793** (2.565)

open 0.151*** (0.045) 0.358 (0.254) 0.047 (0.060) −0.639*** (0.189) 0.222*** (0.083) 0.669 (0.546)

urban 0.636 (1.019) 10.177*** (3.369) −12.923*** (1.486) −4.356 (2.723) 0.290 (2.042) 29.905*** (7.872)

r&d −0.047 (0.459) −0.598 (8.282) −0.676 (0.676) −0.175 (6.558) −0.116 (0.928) 4.205 (18.962)

financial 0.014 (0.013) 0.044 (0.080) 0.022 (0.020) −0.027 (0.051) 0.006 (0.028) −0.052 (0.148)

Industrial 0.589* (0.307) 2.089** (0.966) 1.515*** (0.448) −0.099 (0.780) 0.833 (0.615) 1.591 (2.256)

Year effects Yes Yes Yes Yes Yes Yes

Country effects Yes Yes Yes Yes Yes Yes

N 495 120 495 120 495 120

R2 0.413 0.595 0.485 0.476 0.324 0.548

FIGURE 7
Marginal effect of DCg on local CI based on economic
development.

FIGURE 8
Marginal effect of DCg on import CI based on economic
development.
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certain level, the impact is reversed. This is generally consistent with
the findings of Wang et al. (2021) and Ma et al. (2023), indicating
that the carbon emission effect appears until the tipping point of
digitalization is reached.

The new finding in this study is that compared with the single
threshold associated with digital domestic value chain
embeddedness, we have discovered two thresholds in the case of
digital GVC embeddedness. The explanation may be that as
digitalization is in the high range, a country’s corresponding

absorptive capacity is not synchronized with digital technological
development, resulting in the aggravation of pollution (Huang et al.,
2022). In the era of the knowledge-based economy, soft power,

FIGURE 9
Marginal effect of DCg on export CI based on economic
development.

TABLE 5 Heterogeneity test results based on the terms of trade.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×FC −0.435*** (0.105)

DCG
i ×FC 0.123 (0.297) −1.865*** (0.568)

forest −11.864*** (2.400) −5.631** (2.813) −24.052*** (5.378)

lnpgdp −1.685*** (0.102) −1.360*** (0.119) −2.954*** (0.227)

renewable −1.045*** (0.280) −0.633** (0.328) −2.212*** (0.628)

open 0.155*** (0.058) −0.076 (0.063) 0.322*** (0.120)

urban 0.678 (1.033) −7.820*** (1.212) 2.650 (2.316)

r&d 0.250 (0.623) −0.759 (0.732) 0.256 (1.400)

financial 0.008 (0.016) 0.022 (0.020) 0.015 (0.038)

Industrial 1.144** (0.480) 0.923* (0.563) 0.885 (1.076)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.453 0.407 0.349

TABLE 6 Heterogeneity test results based on structural effects.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×ST −1.008* (0.557)

DCG
i ×ST −0.353 (1.156) −1.344 (2.184)

forest −11.381*** (2.391) −5.825** (2.801) −24.851*** (5.293)

lnpgdp −1.704*** (0.101) −1.348*** (0.119) −2.908*** (0.225)

renewable −1.056*** (0.279) −0.634** (0.328) −2.185*** (0.620)

open 0.136** (0.058) −0.082 (0.062) 0.278** (0.118)

urban 0.840 (1.025) −8.019*** (1.194) 2.219 (2.257)

r&d 0.193 (0.620) −0.711 (0.735) 0.450 (1.389)

financial 0.010 (0.016) 0.021 (0.020) −0.011 (0.038)

Industrial 0.857** (0.423) 1.227*** (0.464) 1.322 (0.876)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.457 0.407 0.364

TABLE 7 Heterogeneity test results based on scale effects.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×SC −0.279*** (0.039)

DCG
i ×SC −0.204*** (0.071) −0.131 (0.137)

forest −10.643*** (2.335) −6.068** (2.811) −25.186*** (5.474)

lnpgdp −1.268*** (0.115) −1.281*** (0.122) −2.900*** (0.238)

renewable −0.973*** (0.275) −0.703** (0.333) −2.168*** (0.648)

open 0.339*** (0.059) −0.064 (0.063) 0.393*** (0.122)

urban 1.619 (1.012) −7.550*** (1.219) 2.724 (2.375)

r&d 0.263 (0.610) −0.829 (0.739) 0.183 (1.439)

financial −0.010 (0.016) 0.005 (0.021) −0.002 (0.040)

Industrial 0.907** (0.349) 1.195*** (0.421) 0.673 (0.820)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.482 0.412 0.334
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especially human capital, plays a very influential role in providing
innovation impetus (Haini, 2018). Thus, strengthening the
awareness of environmental protection is closely related to the
cultivation of high-quality human capital.

This study also explores the heterogeneous impacts of digital
value chain embeddedness on carbon emissions intensity in
countries of different economic development, which reveals new
empirical proof for the digital divide between developed and
developing countries. In reality, developed countries take the
initiative in utilizing digital technologies. With the purpose of
maintaining the dominant position in GVC embedding, they
usually control the outflow of high-tech products or services,
which poses a greater environmental pressure from the global
perspective. In this regard, developing countries have to cultivate
their own digital innovation ability (Yang et al., 2023) and strive to
get rid of the digital technology barriers in the long term.

6 Conclusion

Based on the panel data of 41 countries and regions from 2000 to
2014, this study investigated the non-linear impacts of digital value
chain embeddedness on trade-related carbon emissions intensity.
The empirical results show that: (1) the impact of digital domestic
value chain embeddedness on carbon intensity embodied in
domestic trade is an inverted U-shape. The integration of digital
technology and conventional industries requires a transitional
period. As the digital domestic value chain embeddedness crosses
the threshold, which is approximately 0.88, it can promote the green
and low-carbon development of the economy. (2) Digital GVC
embeddedness has a non-linear effect on carbon intensity embodied
in import and export trade, which first rises in a deceleration, then
falls, and finally rises after the inflection point. Although
participating in GVCs can strengthen the spillover and diffusion
of digital technology, when digital GVC embeddedness is higher
than the second threshold, it is also necessary to be alert to the
bottlenecks encountered in the re-upgrading of technology. (3) The
impacts of digital value chain embeddedness on carbon emissions
intensity are closely related to economic development levels.
Developed countries still dominate in digital value chain
embeddedness, and developing countries lag behind developed
countries in the environmental benefits of digital technology
utilization. (4) Optimizing the terms of trade, adjusting the
energy structure, and increasing the scale of trade are conducive
to promoting the environmental benefits of digital empowerment.
When there is an economic slowdown and energy consumption
pressure, making more efforts to reduce carbon intensity is an
important starting point for a country attempting to achieve
sustainable economic development.

The findings of this study contain crucial policy
recommendations. To improve energy efficiency and promote
economic growth, it is essential to implement incentive measures
to fully utilize digital technology. At the moment, the digital divide
between developed economies and developing economies hinders
the spread of new energy technology via digital spillover effects. As
participating in GVCs provides opportunities for learning through
trade, especially for the main carbon-emitting countries,
overcoming the shortcomings in digital technology and

strengthening cross-border cooperation in R&D can help achieve
sustainable development. In addition, instead of focusing exclusively
on digital value chain embedding, developing economies should pay
much more attention to nurturing and refining the technology
absorptive capacity of conventional industries. Although the
digital transformation process might take a long time, it can be
regarded as a long-term environmentally friendly investment, which
is beneficial for cultivating the ability to develop independently.
Furthermore, accelerating domestic digital R&D is fundamental for
improving a country’s GVC competitiveness when economic
development surpasses a certain stage. Additionally, it has been
suggested that energy efficiency can be boosted by promoting scale
effects and the learning mechanism to the utmost extent.

Owing to data availability, this study only covers a time span
from 2000 to 2014. Future research might discover more
countries over a longer period. Moreover, contrasting more
industrialized categorizations in depth is also an extension
research project.
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Glossary

AUS Australia

AUT Austria

BEL Belgium

BGR Bulgaria

BRA Brazil

CAN Canada

CHE Switzerland

CHN China

CYP Cyprus

CZE Czech Republic

DEU Germany

DNK Denmark

ESP Spain

EST Estonia

FIN Finland

FRA France

GBR United Kingdom

GRC Greece

HRV Croatia

HUN Hungary

IDN Indonesia

IND India

IRL Ireland

ITA Italy

JPN Japan

KOR Korea

LTU Lithuania

LUX Luxembourg

LVA Latvia

MEX Mexico

MLT Malta

NOR Norway

POL Poland

PRT Portugal

ROU Romania

RUS Russian Federation

SVK Slovak Republic

SVN Slovenia

SWE Sweden

TUR Turkey

TWN Chinese Taipei

United States United States

ROW Rest of the World
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The impact of resource dependence on social economy and environment lacks

empirical evidence at the micro level. This article uses data from A-share listed

companies from 2011 to 2020 to construct an econometric model to empirically

test the impact of resource dependence on ESG performance of enterprises. We

find that the corporate ESG scores in regions with high resource dependence will

decline. After a series of robustness tests such as replacing the dependent

variable, controlling province time fixed effect, eliminating extreme effects, and

eliminate provinces with high resource dependence, the conclusion of this

article still holds. In addition, we alleviate the endogeneity problem caused by

OLS estimation by constructing a dynamic panel model. Further analysis

indicates that there are differences in the effect of resource dependence on

enterprises sub-scores, with a significant negative impact on the environmental

dimension and social dimension, and no significant impact on the governance

dimension. It has a greater impact on the ESG score of SOEs and has no

significant impact on non-SOEs. The empirical results of this paper enrich the

research on the influencing factors of enterprise ESG performance, and further

expand the research framework of the socio-economic consequences of

enterprise resource dependence.
KEYWORDS

resource dependence, enterprise ESG score, enterprise sustainable development, China,
A-share listed companies
1 Introduction

For a long time, economists have launched a series of theoretical and empirical

investigations on the “gospel theory” and “curse theory” of natural resource endowment.

The “gospel theory” advocates that abundant natural resources are an important factor for

economic growth, which is conducive to the rapid development of regional economy and

the rapid accumulation of capital. According to the theory of new economic geography, the
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development of resource industries will attract the agglomeration of

their upstream and downstream industries. The spatial

agglomeration of industries saves transaction costs and helps to

generate economies of scale, thereby promoting economic growth.

Feyrer et al. (2017) used US data and found that resource extraction

has a positive spillover effect on related industries. The benefits

brought by the mining industry to the local area are higher than the

mining costs. Resources are not a curse, but a blessing. Allcott and

Keniston (2018) used micro data on the US manufacturing industry

from 1969 to 2014 and found that resource prosperity contributes to

the development of related manufacturing enterprises, while having

no significant impact on non-related manufacturing enterprises.

Asher and Novosad (2014) used data from India’s three economic

censuses and instrumental variable method to study and found that

the economic growth effect brought about by resource prosperity is

extensive, with a positive spillover effect on surrounding towns

50km away from mines. The “curse theory” believes that regions

with abundant resources will cause serious negative effects on long-

term economic growth through intermediary crowding out effects

(Gylfason, 2001), institutional deterioration effects (Bodea et al.,

2016) and price fluctuation effects (Leong and Mohaddes, 2011; Su

et al., 2023), which are not conducive to the sustainable

development of local enterprises. On the other hand, the over-

exploitation of natural resources will bring a series of environmental

problems such as ecological environment damage and natural

environment deterioration, and the efficiency of environmental

pollution management varies greatly among regions (Zhao et al.,

2022). Therefore, as the main body of pollution discharge and

treatment, enterprises face many challenges in their development

(Lin et al., 2021; Qin et al., 2022; Su et al., 2022a). In 2020, China has

proposed the social and economic development goal of carbon

peaking and carbon neutrality. In this context, higher demands are

placed on corporate sustainability (Su et al., 2022b; Su et al., 2022c).

Investors also incorporate the performance of enterprises in

environmental and social aspects into their investment decision-

making functions. Enterprise ESG index is the concrete

embodiment of this emerging investment concept.

Enterprise ESG indicators are obtained by combining the

performance of enterprises in three aspects: environmental, social

and governance. In recent years, companies have shifted from the

short-term goal of profit maximization to the long-term goal of

sustainable ESG performance (Min andMentzer, 2004; Studer et al.,

2006). Stakeholder theory suggests that ESG emphasizes the

coordinated development of economy, environment, and society,

advocates long-term goal orientation, promotes the pursuit of

maximizing social value by enterprises, and helps to build trust in

uncertain environments; At the same time, enterprises actively

practice the concept of sustainability, increase corresponding

investments, and form ESG advantages, which have a strong

externality on their own business development. ESG performance

of enterprises has been a hot topic studied by many scholars in the

past decade (Halbritter and Dorfleitner, 2015; Van Duuren et al.,

2016; Gillan et al., 2021; Pedersen et al., 2021). The current

empirical research on corporate ESG mainly focuses on two

aspects: the economic impact of corporate ESG and the various

factors that affect corporate ESG performance. Several studies
Frontiers in Ecology and Evolution 02210
showed that ESG has become an important source of corporate

risk that can directly or indirectly affect a company’s financial

performance as well as profitability (Friede et al., 2015; Aouadi and

Marsat, 2018; Byun and Oh, 2018; Broadstock et al., 2021; Wong

et al., 2021). For example, research by Cheng et al., (2014) and

Ghoul et al. (2017) found that companies that focus on

environmental, social and governance development are more

likely to obtain financial resources needed for operating activities

at a lower cost. In terms of factors influencing corporate ESG

performance, some researchers have studied from the perspectives

of socio-cultural and legal systems (Alsayegh et al., 2020; Chen et al.,

2022) and internal corporate management factors (Cucari et al.,

2018; McBrayer, 2018). The former includes factors such as the level

of economic development (Cai et al., 2016), market liberalization

(Chemmanur et al., 2020; Yang et al., 2022), social and media

attention (Garcia et al., 2017; Burke, 2022), and the legal system

(Liang and Renneboog, 2017). The latter includes factors as the

board and CEO (Cronqvist and Yu, 2017; Hegde and Mishra, 2019),

institutional investors (Dyck et al., 2019; Chen et al., 2020), and

management tenure (McBrayer, 2018). For example, Doran and

Ryan (2016) found that regulation and customer pressure are

feasible mechanisms to encourage enterprises to fulfill social and

environmental responsibilities, thus improving their ESG

performance. This paper attempts to empirically study the

relationship between resource dependence and corporate ESG

performance from the perspective of the company’s external

environment, that is, the resource dependence of the region

where the company is located.

There is a large branch of literature revolving around the

relationship between resource endowments and economic growth.

Among them, the findings of Sachs and Warner, (1995) are the

most representative. They selected the country-level variables of

natural resources and economic growth, and studied the

relationship between the two variables, finding that natural

resources and economic growth were surprisingly negatively

correlated, which overturned the traditional perceptions.

Subsequently, Gylfason (2001); Papyrakis and Gerlagh, (2004)

also found a monotonic negative relationship between resource

stocks and economic growth in the long run for countries that use

natural resources solely for economic development. There are also

scholars who take a different view. For example, Boschini and

Roine, (2007), Same (2008), and Haseeb et al. (2021) argue that

natural resources are not the direct cause of the conundrum of

economic growth problems in resource-based regions. A few studies

have explored this issue from the perspective of corporate behavior.

Torvik (2001) argues that in resource-rich countries, firms tend to

engage in unproductive economic activities and benefit through

rent-seeking, which is detrimental to economic growth. Lim and

Morris (2022) found that state-owned enterprises can achieve

higher-scale economies through production links with natural

resources departments. In general, the existing research mainly

verifies two questions: whether the resource curse exists and why it

occurs. However, when investigating whether there is a resource

curse in resource-based regions, we should not only consider the

economic growth factor, the environmental consequences should be

also included in the scope of the study (Boschni and Pettersson,
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2007). Based on this, this paper comprehensively considers

economic and environmental factors, and examines the impact of

regional resource dependence caused by abundant resources on the

ESG of its enterprises from the micro level.

The marginal contribution of this article is mainly reflected in the

following aspects. Firstly, due to the fact that research on corporate

ESG is still in its early stages, most studies on factors affecting

corporate ESG are focused on the internal environment of the

company. We discussed the impact of the external environment

faced by the company, namely the resource dependence of the region

where the company is located, on the ESG performance of the

enterprise. This article explores the impact of enterprise resource

dependence on its ESG performance from the perspective of

enterprise resource acquisition, based on the theory of resource

dependence. This article provides new empirical evidence for the

literature on factors that affect corporate ESG performance. Secondly,

current empirical studies on regional resource endowments and

economic growth are mostly based on macro-level perspectives

such as cross-country and domestic regions, while studies on

resource endowments on micro-firm performance are still very

limited. These studies have mostly focused on the economic

performance of firms and rarely consider the environmental as well

as social performance of firms. This paper provides micro-level

evidence on this issue from the perspective of resource dependence

on firm ESG performance. Last but not least, this paper further

expands the research framework of the social and economic

consequences of enterprise resource dependence. As an important

consideration when making strategic decisions, resource dependence

affects corporate social and environmental behavioral decisions,

which in turn directly affects corporate ESG performance and has

direct economic consequences.

Section 2 develops the theoretical hypothesis. Section 3

introduces the setting of the measurement model and the

selection of variables. Section 4 shows the benchmark regression

results and robustness test. Section 5 is a further analysis, exploring

the impact of resource dependence on corporate ESG sub-score and

the heterogeneity of the nature of enterprise ownership. Section 6

summarizes and puts forward policy recommendations and

research prospects.
2 Theoretical hypothesis

“Resource curse” theory suggests that abundant natural

resources do not show a significant contribution to economic

development, but rather a hindering effect. Numerous studies

have shown that the crowding out effect of natural resources on

investment in technology innovation and human capital leads to the

occurrence of the resource curse (Gylfason, 2001). Due to the

economic division of labor and long-term path dependence,

regions with higher natural resource abundance are more likely to

move towards a resource-dependent economic development path.

The more resource-rich regions have labor-intensive attributes, and

the local production is characterized by low-technology content

(Ethier, 1985). Resource-dependent firms tend to aim for high

revenues in the short term by engaging in production activities
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that consume large amounts of natural resources, such as extraction

the primary processing. These firms are usually less exposed to low

growth and technology, and thus less motivated to invest in

technology development (Li et al., 2020). The high income of the

resource sector attracts more labor and capital, accelerating the

transfer of funds from R&D to the primary product sector, causing

the aggravation of the resource mismatch problem, which is not

conducive to the technological innovation of enterprises, and to a

certain extent hinders the green development of enterprises.

Fulfi l lment of socia l , environmental and governance

responsibilities by enterprises is an activity with significant

externalities and high costs, and investors’ investment decision

was made based on corporate ESG performance (Crifo et al.,

2015; Alsayegh et al., 2020). Sufficient production resource

guarantee enables enterprises to obtain higher revenues and

achieve rapid development in the short term, with little demand

for external investors. Therefore, enterprises with strong resource

dependence lack the incentive to fulfill their social, environmental

and governance responsibilities. On the other hand, resource-

dependent enterprises usually adopt a crude production model

with high input, high consumption, high pollution and low

technological level. And their production activities are often

accompanied by greater environmental destructiveness and

difficulty in safe production, with high environmental

management costs (Song et al., 2022). In areas of low resource

abundance and dependence, firms are limited in their activities to

obtain resources from external sources and rely more on resource

accumulation and internal capital allocation, as well as

technological innovation and organizational change to create

opportunities (Zhang et al., 2022). At the same time, the low

abundance and low dependence environment intensifies

competition. At a time when low carbon development and

environmental issues are widely emphasized, companies need to

actively fulfill their social and environmental responsibilities and

improve their ESG performance to gain an advantageous position in

the market. Based on the above analysis, the rising dependence of

companies on resources is not conducive to enhancing the

fulfillment of integrated social, environmental and governance

performance. Therefore, hypothesis one of this paper is proposed.

Hypothesis 1: The dependence of enterprises on resources is

mainly characterized by the “resource curse”, which has a negative

impact on the environmental, social and governance performance

of enterprises.

Resource dependency is mainly reflected in the degree of

importance and intensity of influence of resource-based industries

on the industrial structure, employment structure, level of

technological progress, development speed and direction of the

regional economy, which means the level of status and role of

resource-based industries in the regional economic development.

Although natural resources can bring direct or indirect benefits to

society (Pan et al., 2022), excessive dependence on natural resources

and resource-based industries can create a “resource curse” effect

(Gylfason and Zoega, 2006; Brunnschweiler and Bulte, 2008), and the

long-term dependence of the production process on resources will

squeeze out R&D activities and cause the outflow of technological

factors, which is not conducive to the innovation of energy-saving
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and environmental protection technologies. In addition, in terms of

the regional distribution characteristics of natural resources in China,

the degree of marketization in areas with high resource dependence is

relatively low, so in terms of marketization environment, compared

to areas with low resource dependence, enterprises in areas with high

resource dependence have less incentive to innovate and their

technological innovation level is relatively low. On the other hand,

the crude production of resource-dependent enterprises is

accompanied by a large amount of pollution emissions, and the

technological base is not sufficient to compensate for the

environmental management costs of the enterprises; therefore, the

resource dependence of enterprises is not conducive to the fulfillment

of their environmental responsibilities.

Enterprises are the main body of social responsibility. Social

responsibility refers to the active engagement in socially responsible

behavior that goes beyond the economic and legal requirements of

the firm (Wood, 1991), and refers to the need for firms to take social

responsibility for employees, consumers, suppliers, communities,

and the environment in addition to generating profits and taking

economic responsibility for shareholders (Clarkson, 1995), The

resource-based theory suggests that whether a company takes

more social responsibility depends on its own resources and

capabilities (Barney, 1991; Grant, 1991; Hart, 1995), and that it is

difficult for a company to meet the demands of all stakeholders at

the same time due to limited financial resources. Resource

dependence theory suggests that among many stakeholders, a

firm will first focus on and deal with the interests of those who

hold key resources to ensure its continued survival, and effective

corporate governance is a necessary factor in the firm’s goal of

maximizing profits. For resource-dependent enterprises, in addition

to improving the efficiency of corporate governance, their long-term

path dependence on resources as the main factor for production, as

well as the high income of the resource sector itself is more

attractive to factors of production such as labor, social

responsibility-related interest holders will not affect the

development of the enterprise to a certain extent, therefore,

enterprises lack the motivation and incentive to fulfill social

responsibility. Moreover, the pollution effect generated by the

crude development mode of resource-dependent enterprises has

strong negative externality and adversely affects the living

environment of the surrounding residents; therefore, the increase

of resource dependence has a hindering effect on the performance

of corporate social responsibility. Based on the above analysis, the

increase of resource dependency of enterprises will reduce the

environmental and social performance of enterprises, while the

effect on corporate governance is not obvious. Therefore, the second

hypothesis of this paper is proposed.

Hypothesis 2: The inhibitory effect of increased resource

dependence on corporate ESG performance is mainly reflected in

the hindering effect on corporate fulfillment of social and

environmental responsibilities.

State-owned enterprises (SOEs) are the mainstay of the national

economy and an important subject responding to various national

policies. Their main purpose is not to maximize corporate profits,

but to maximize the welfare of the whole society. As important

bearers of social responsibility, they are responsible for society and
Frontiers in Ecology and Evolution 04212
the environment in the process of production and operation, and

maximize the creation of comprehensive economic, social and

environmental value to promote the sustainable development of

the national economy. However, SOEs are owned by the local

government, which makes it easier to obtain rent-seeking benefits

and reduces the motivation of enterprises to build their own

capabilities. Therefore, they are less efficient than non-SOEs (Nie

and Jia, 2011). Moreover, most SOEs belong to energy industries

such as power supply industry, oil and gas extraction industry,

which consume more resources and emit more pollution. They

enjoy government guarantees and financial support, and have many

ways to obtain resources with less difficulty. Therefore, it is easier to

form a resource-dependent development path and lack the

mot iva t ion for techno log i ca l innovat ion and green

transformation. For non-SOEs, social, environmental and

governance performance are important factors in attracting

investors. In the fierce market competition, non-SOEs whose

main goal is profit maximization have an accumulating effect

(Huang et al., 2022), which makes them more motivated to fulfill

their social and environmental responsibilities and improve their

corporate governance efficiency. Based on the above analysis, the

negative effect of resource dependence on the ESG rating of

enterprises is mainly reflected in SOEs. Therefore, the third

hypothesis of this paper is proposed.

Hypothesis 3: The effect of resource dependence on ESG

performance is non-consistent for firms with different ownership

properties, and the negative effect is particularly pronounced for

state-owned enterprises.
3 Empirical strategy and data sources

3.1 Data sources

This paper uses the data of China’s A -share listed companies as

a research sample. Among them, the corporate ESG data comes

from Bloomberg Financial Terminal, and the rest of the data comes

from the Wind database, China Stock Market & Accounting

Research Database (CSMAR) and national statistics Bureau, etc.

Before the empirical analysis, preliminary screening and processing

of sample data are carried out: companies in the financial industry

are excluded; ST companies are excluded; companies whose ESG

scores are missing values are excluded; companies whose main

financial management data are missing values are excluded. Based

on data availability and excluding the impact of the 2008 financial

crisis, this article has chosen 2011-2020 as the research interval for

this article.
3.2 Model and variables

Using the data of all A-share listed companies from 2011 to

2020, this paper constructs the following measurement model to

examine the relationship between resource dependence and

corporate ESG scores. The baseline estimation model used in this

paper is as follows:
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yi,t = b0 + b1 lnResoursei,t + b2X
c
i,t + sj + t + ei,t (1)

Among them, yi,t indicates ESG score of corporate i in year t,

using Bloomberg ESG score. Since 2009, Bloomberg has collected

information on environmental, social and governance disclosures of

listed companies, and based on this, a comprehensive ESG score

and three sub-scores have been formed, representing the overall

ESG performance of listed companies and the sub-performance of

environmental, social and governance. Bloomberg ESG scores range

from 0-100, representing a scale from “disclosing the least amount

of ESG data points” to “disclosing every ESG data point collected by

Bloomberg”. The higher the score, the better the corporate ESG

performance. lnResoursei,t represents the resource dependence at

the provincial level. Previous studies have used indicators such as

the proportion of fixed asset investment in the extractive industry

(Xu and Wang, 2006) and the proportion of the mining industry in

the total population (Li and Zou, 2018) to measure resource

dependence. Drawing on Hu and Yan, (2019), we use the ratio of

the employed population in the mining industry to the total urban

employed population as a proxy variable. In order to avoid potential

heteroscedasticity and skewness problems, we take the logarithm of

this ratio. sj is the industry fixed effect, and t is the year dummy

variable. Xc
i,t represents the control variables at the enterprise level.

This paper draws on the research of Harjoto and Wang (2020) and

selects the control variables according to other factors that may

affect the ESG performance of enterprises: enterprise age, enterprise

size, return on equity, asset-liability ratio, enterprise ownership

nature, board size, proportion of female directors in the board of

directors, proportion of independent directors in the board of

directors, and separation rate of two positions. The definitions of

the variables are shown in Table 1.
4 Empirical results

4.1 Descriptive statistics

The descriptive statistics of the variables are shown in Table 2.

In all samples, the mean value of corporate ESG score is 1.240,

which is far lower than the median of 19.835, indicating that the

ESG evaluation of sample companies is average and needs to be

further improved. At the same time, the maximum value of the ESG

score of the sample companies is 64.115, the minimum value is

1.240, and the standard deviation is 7.023. It can be seen that there

are great d i ff erences in the ESG scores among the

sample companies.
4.2 Benchmark regression results

This part conducts regression analysis on the correlation

between enterprise ESG score and resource dependence according

to Equation 1, and the results are listed in Table 3. Column (1) is the

regression result that only controls the industry-fixed effect. The

regression result shows that resource dependence has a significant

negative impact on the ESG score of enterprises. Column (2) further
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controls the year-fixed effect, and the coefficient of resource

dependence is still significantly negative at the 5% level. Column

(3) adds a series of control variables, and the coefficient is still

significantly negative at the 1% level. The benchmark regression

results show that resource dependence has a strong explanatory

power on corporate ESG scores, that is, companies in areas with

high resource dependence have worse ESG performance and

sustainable development. From Table 3, the estimated value of

the coefficient for resource dependency is 0.420, it means for every

10% increase in resource dependence, the ESG score of the

enterprise decreases by 0.04%.

As far as the coefficients of the control variables are concerned,

the coefficient of lnSize is positive and significant at the 1% level,

indicating that larger firms are more likely to have the advantage of

economies of scale and thus perform better in ESG scores. The

coefficient of lnAge is significantly positive at the level of 1%, which

indicates that the older the enterprise is, the stronger its motivation

to pursue sustainability and the better its ESG performance. The

coefficient of lnROE is significantly positive, which indicates that

good company operations are conducive to improving a corporate

ESG performance. The coefficient of lnLev is significantly negative

at the level of 1%, which indicates that the higher the ratio of total

liabilities to total assets, the less incentive a company has to improve

its ESG performance. In addition, the significant positive

correlation between Indep and the ESG score of the company
TABLE 1 Definition and description of main variables.

Type Variable name Symbol Description

Explained
variable

Corporate ESG Score ESG Bloomberg ESG Score

Explanatory
variables

resource dependency Resource
Mining Employment/
Urban Employment

business age Age
2022-year of
establishment of
the company

Enterprise size Size Total assets

Roe Roe
Net Profit/Total
Owner’s Equity

Assets and liabilities Lev
Total Liabilities/
Total Assets

Control
variable

nature of ownership Sate

1=state-owned
enterprise, 2=private,
3=foreign
capital, 4=other

Board size Board Board of Directors

Proportion of women
on the board

Woman
Number of women on
board/Number of
board members

Proportion of
independent directors

in the board
of directors

Indep

Number of
Independent Directors/
Number of Board
of Directors

Separation rate of
two jobs

Dual
Separation rate of
two jobs
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indicates to some extent that independent directors play an

important role in the long-term development of the company.
4.3 Robustness test

4.3.1 Replace the measurement of the
explained variable

In order to test the reliability of the relationship between

resource dependence and enterprise ESG score, we replace the

measurement method of the explained variable to test the

robustness. We use the ESG rating data of SynTao Green Finance

as the proxy variable of enterprise ESG. Due to data availability, the

time frame here is 2015-2020. Since 2015, SynTao Green Finance’s

ESG rating has been used to rate the ESG performance of listed

companies based on the public information of listed companies and

the announcement documents of regulatory authorities. It is

constructed from 3 primary indicators (environmental, social and

governance), 13 secondary indicators and multiple tertiary

indicators, which can comprehensively reflect the ESG

performance of listed companies. The rating of SynTao Green

Finance consists of ten grades: A+, A, A-, B+, B, B-, C+, C, C-,

and D. We assign 1-10 to these ten grades from low to high. The

first column of Table 4 is the regression result of SynTao Green

Finance ESG rating as the explained variable. The regression result

shows that the coefficient of resource dependence is still

significantly negative, which is consistent with the benchmark

regression result.
4.3.2 Controlling province-time fixed effect
Although we control for a range of control variables at the firm

level, provincial-level influences on corporate ESG performance

may still be missed in the benchmark regression analysis because

our explanatory variables are resource-dependent data at the

provincial level. Provinces may have different economic

development trends and social environments over time. For

example, provincial-level environmental regulations may impose
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energy-saving and emission reduction constraints on local

enterprises, thereby affecting their ESG performance. Therefore,

we will incorporate provincial-level environmental regulations (ER,

ER is measured by the chemical oxygen demand emissions in the

province where the enterprise is located) into the model for

regression analysis. In addition, to avoid the impact of other

provincial level economic and social environments that change

over time on corporate ESG, we further add the interaction term of

province and year to the model for regression analysis. The results

in column (2) of Table 4 show that after controlling for the ER and

province-year fixed effect, the coefficient of resource dependence is

still significantly negative at the 1% level.

4.3.3 Eliminating extreme effects
Winsorization is a commonly used method for robustness

testing, which replaces values beyond the set percentile with

values at the percentile to effectively avoid the impact of extreme

values on the model estimation results. This article winsorize 1%

and 5% for continuous variables, and then re-regresses using the

winsorized variable values. According to the regression results in

columns (3) and (4) of Table 4, the estimated coefficient of resource

dependence is significantly negative at the 1% level. Therefore, the

conclusion that resource dependence has a negative impact on

corporate ESG performance is still robust and reliable after

eliminating extreme effects.

4.3.4 Eliminate provinces with high
resource dependence

China has a vast territory, and the distribution of natural

resources is very unbalanced among regions. There are many

resource-based cities in the central and western regions. At the

same time, from the descriptive statistical results, there is a large gap

between the median and the maximum resource dependence level.

In order to avoid the influence of extreme values on the benchmark

regression results, we exclude resource-dependent provinces from

the sample. The criteria for the exclusion of resource-based

provinces here are first to select the first few provinces in
TABLE 2 Variable definitions and descriptive statistics.

variable N mean sd min p50 max

ESG 9892 20.698 7.023 1.240 19.835 64.115

Resource 9892 0.020 0.031 0.000 0.006 0.222

Age 9892 23.846 5.256 6.000 24.000 55.000

Size 9892 16.750 84.040 0.003 3.577 2733.000

Roe 9892 0.090 5.372 -207.397 0.068 713.204

Lev 9892 0.438 0.524 -0.195 0.418 63.971

State 9892 1.664 0.600 1.000 2.000 4.000

Board 9892 8.582 1.707 0.000 9.000 18.000

Woman 9892 0.146 0.130 0.000 0.111 0.800

Indep 9892 0.376 0.056 0.167 0.364 0.800

Dual 9892 4.632 7.533 -7.640 0.000 56.109
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descending order of the proportion of the mining industry in urban

employment, and then refer to the list of national resource-based

cities in the National Sustainable Development Plan for Resource-

based Cities (2013-2020). Provinces with more resource-based cities

and districts are supplemented. Finally, we exclude Shanxi,

Liaoning, Xinjiang, Qinghai, Inner Mongolia, Heilongjiang,

Guizhou, Shaanxi, and Ningxia for regression. The regression

results are shown in Column (5) of Table 4. We can find that the

coefficient of resource dependence is still significantly negative at

the 1% level.
5 Further analysis

5.1 Dynamic panel model

Due to the impact of previous ESG performance on current ESG

performance, we use a dynamic panel model to measure the

relationship between resource dependence and enterprise ESG

performance through generalized moment estimation, in order to

reduce estimation bias. In Equation 2, ∅1 is the estimation

coefficient, and yi,t−1 represents a period of lag in the enterprise’s

ESG, this variable can be set to control for the endogeneity caused

by lagging ESG; b1 is the estimated coefficient we are interested in.

From the results in Table 5, the econometric results of generalized

moment estimation show that the impact of resource dependence

on firm’s ESG is still negative and significant.

yi,t = b0 + b1 lnResoursei,t +∅1 yi,t−1 + b2X
c
i,t + sj + t + ei,t (2)
5.2 The sub-item impact of resource
dependence on ESG

Enterprise ESG indicators are composed of three aspects:

environment, society and governance. Therefore, in order to

uncover the black box of the impact of resource dependence on

ESG performance, we regressed the three sub-indicators to resource
TABLE 4 Robustness test regression results.

Variable (1)
ESG

(2)
ESG

(3)
ESG

(4)
ESG

(5)
ESG

lnResource -0.506** -0.381*** -0.426*** -0.462*** -0.345**

(0.232) (0.113) (0.128) (0.141) (0.157)

Enterprise Control Variables YES YES YES YES YES

Industry fixed effects YES YES YES YES YES

year fixed effect YES YES YES YES YES

Province-Year Fixed Effects NO YES NO NO NO

ER NO YES NO NO NO

Observations 2773 8966 8966 8966 7901

R2 0.167 0.323 0.312 0.280 0.337
The values in parentheses are the standard errors of clusters at the provincial level; *** and ** represent the significance levels of 1% and 5%, respectively.
TABLE 3 Benchmark regression results.

variable
(1)
ESG

(2)
ESG

(3)
ESG

lnResource -0.501***

-0.349** -0.420***

(0.148) (0.169) (0.128)

lnSize 2.253***

(0.169)

lnAge 2.506***

(0.762)

lnRoe 0.598*

(0.336)

lnLev -2.650**

(1.134)

lnBoard 0.834

(0.835)

Woman -1.437

(1.001)

Indep 3.731**

(1.608)

Dual 0.0046

(0.0138)

State -0.836**

(0.339)

Industry fixed effects YES YES YES

year fixed effect NO YES YES

Observations 9588 9588 8966

R2 0.114 0.164 0.320
The values in parentheses are the standard errors of clusters at the provincial level; ***, **, and
* represent the significance levels of 1%, 5%, and 10%, respectively.
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dependence. The sub-item data of corporate ESG adopts the data of

Bloomberg Financial Terminal, and the sample interval is 2011-

2020. Referring to the method of Harjoto and Wang (2020), we

construct the econometric model as Equation 3:

yi,t(E, S,G) = a0 + a1 lnResoursei,t + a2X
c
i,t + sj + t + ei,t (3)

The explained variables are the sub-score of corporate environment,

sub-score of corporate society and sub-score of corporate governance,

and the control variables are the same as the benchmark regression

model. The itemized regression results are shown in Table 6.

Column (1) of Table 6 is the regression result of ESG

comprehensive score on resource dependence. Columns (2) - (4) are

the regression results of the sub-scores of environment, society and

governance on the resource dependence, respectively. The regression

result in Column (2) is significantly negative and the absolute value of

the coefficient is larger than that in Column (1), which indicates that

the environmental performance of enterprises in regions with high

resource dependence is poor. Similarly, the regression result of Column

(3) is also significantly negative, and the absolute value of the coefficient

is greater than the first two columns, indicating that corporate social

performance in regions with higher resource dependence is worse. This

may be due to the fact that firms in these regions face greater challenges
Frontiers in Ecology and Evolution 08216
in environmental and social dimensions. The coefficient in Column (4)

is not significant, which shows that resource dependence has no impact

on the corporate governance dimension, indicating that corporate

governance is still more affected by internal factors.
5.3 Heterogeneity in enterprise ownership

Compared with non-SOEs, SOEs are more affected by the local

resources and environment, and thus the ESG performance of SOs

may be more vulnerable to the impact of resource dependence.

Based on this, this paper further explores the heterogeneous impact

of resource dependence on ESG performance from the perspective

of the nature of enterprise ownership. Column (1) of Table 7 shows

the regression results of SOEs. It shows that the coefficient of

resource dependence is significantly negative at the level of 1%,

which indicated the ESG performance of SOEs is more affected by

the local resource endowment. As for non-SOEs, they are more

affected by market competition, and therefore pay more attention to

their investment value. Non-SOEs are more motivated to win the

favor of investors through good ESG performance. Therefore,

investors’ attention to enterprise ESG performance will encourage

non-SOEs to improve their ESG scores.
6 Conclusion

This article uses data from A-share listed companies from 2011 to

2020 to find that the higher the resource dependence of the company’s

location, the worse the ESG performance of the enterprise. This

conclusion still holds after a series of robustness tests. Through

regression analysis of regional resource dependence from three

dimensions: environment, society, and governance, it was found that

resource dependence has a significant negative impact on environmental

and social performance. In areas with high resource dependence, the

negative impact on enterprises may outweigh the growth effect brought

by resources. The sub sample regression results based on the nature of

enterprise ownership indicate that the resource dependence of state-

owned enterprises has a significant negative impact on their ESG scores.

However, no significant correlation was found in the sample of non-

state-owned enterprises. The reason may be that non-state-owned
TABLE 6 Itemized regression results.

Variables
(1)
ESG

(2)
E

(3)
S

(4)
G

lnResource -0.421*** -0.436*** -0.751*** -0.199

(0.128) (0.149) (0.168) (0.117)

Enterprise Control Variables YES YES YES YES

Industry fixed effects YES YES YES YES

year fixed effect YES YES YES YES

Observations 9588 9588 9588 9588

R2 0.164 0.114 0.166 0.907
The values in parentheses are the standard errors of clusters at the provincial level; *** represents the significance levels of 1%.
TABLE 5 Dynamic panel.

Variable (1)
ESG

(2)
ESG

(3)
ESG

lnResource -0.072** -0.063** -0.098***

(0.030) (0.030) (0.030)

lESG 0.938*** 0.918*** 0.901***

(0.008) (0.010) (0.010)

Enterprise
Control Variables

NO YES YES

Industry fixed effects YES NO YES

year fixed effect YES YES YES

Observations 8516 7958 7958

R2 0.839 0.841 0.844
The values in parentheses are the standard errors of clusters at the provincial level; *** and **
represent the significance levels of 1% and 5%, respectively.
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enterprises are more actively seeking the comprehensive development of

ESG due to fierce market competition and financing pressure, offsetting

the negative impact of resource dependence.

Based on the above analysis, we propose the following suggestions:

Firstly, the particularity of the development of resource dependent

regions determines that we cannot rely solely on market tools to

enhance the enthusiasm and initiative of enterprises to fulfill social and

environmental responsibilities. Government support and policy

guidance are the practical conditions for promoting green

transformation of enterprises. At the macro policy level, it is

necessary to further enhance the stability of policies, form a

foreseeable long-term benefit driven mechanism for the green

transformation and development of enterprises, make improving

social and environmental performance a consensus for the

development of resource-based enterprises, and reduce the short-

term risks and costs of companies fulfilling social and environmental

responsibilities. At the micro policy level, in the short term, it is

necessary to reduce the costs, risks, and uncertainties of implementing

green transformation and fulfilling social and environmental

responsibilities for high resource dependent enterprises through tilted

allocation of production factors, tax incentives, and subsidies, so as to

provide stable profit margins for enterprises that actively fulfill social

and environmental responsibilities. At the local government level, it is

necessary to continuously improve the software and hardware

infrastructure of resource-based areas, actively promote the

development of non resource-based enterprises, and reduce the

resource dependence of regional development and the opportunity

cost of green development for enterprises. Secondly, from the

perspective of the capital market, relevant financial institutions

should further improve their ESG ratings to provide investors with a

reliable value investment foundation, thereby pointing the direction for

the sustainable development of enterprises. Again, from the perspective

of enterprises, resource-based state-owned enterprises are the

economic mainstay of resource-based regions and the guarantee of

national resource and energy strategic security. They will inevitably

undertake new historical missions in the context of low-carbon

transformation. On the one hand, resource-based state-owned

enterprises need to improve resource utilization efficiency, enhance

resource recycling level, achieve green transformation, and better fulfill

social and environmental responsibilities. On the other hand, resource-
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based state-owned enterprises are large and strong. They should

effectively drive the social and environmental performance of

industries, improve the efficiency of industrial green transformation,

drive the development of resource-based regional green

transformation, and improve the regional environment through the

positive externalities generated by their own green transformation.

This article attempts to analyze in depth the impact of resource

dependence on corporate social and environmental performance

when studying the relationship between resource dependence and

corporate behavior. Some conclusions have been drawn, which are

consistent with the research results of relevant literature and

provide reference for future research ideas and directions. With

the deepening of research on enterprise resource dependence and

social environmental behavior, it is necessary to improve research

methods and incorporate more influencing factors, mechanism

channels, and situational factors into the analysis framework. For

example, the micro mechanism of the impact of resource

dependence on corporate ESG performance can be explored

through field research. In addition, the theoretical model of

resource dependent corporate behavior still needs further

expansion. The vast majority of literature typically only considers

one type of corporate behavior, and there are few studies that

comprehensively consider the comprehensive impact of multiple

corporate behaviors. Therefore, establishing a unified theoretical

framework that considers the interaction between resource

dependent corporate behavior from three aspects: social,

environmental, and corporate governance, and measuring its

relative importance, is an important direction for future research.
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Sustainable development in the
context of pandemic: the impact
of COVID-19 pandemic on
green investment
Yu He1, Lin Fu2*, Tao Li2 and Ran Wei3*

1School of Economics and Management, China University of Geosciences (Beijing), Beijing, China,
2School of Economics, Central University of Finance and Economics, Beijing, China, 3Research Center
for Rural Economy, Ministry of Agriculture and Rural Affairs, Beijing, China
Promoting green investment is the inevitable choice for sustainable economics

against climate change. We examine how the COVID-19 pandemic affected

corporate green investment. Using a sample of publicly listed firms in China, we

document the negative and significant effect of the COVID-19 pandemic on

corporate green investment. Further analyses suggest that the COVID-19

pandemic impeded corporate green investment by exacerbating firms’

financial constraints. We also find that the COVID-19 pandemic had no

significant effect on total investment, suggesting that the pandemic shock only

changed investment structure. In summary, our findings reveal the real effects of

the COVID-19 pandemic on green development at the firm level.
KEYWORDS

COVID-19 pandemic, green investment, total investment, financial constraints,
sustainable development
1 Introduction

Global health crises such as COVID-19, SARS, or MERS seriously threaten the

economy (Ferguson et al., 2006; Chen et al., 2020; Hassan et al., 2023; Ru et al., 2020).

For example, the COVID-19 pandemic is predicted to shrink the global economy by 3%

(International Monetary Fund, 2020). This decline is described as the worst since the Great

Depression in the 1930s. Meanwhile, the outbreak of the pandemic has once again triggered

people to think about the relationship between human beings and nature. Green and low

carbon have become inevitable choices for sustainable development. The outbreak of the

COVID-19 pandemic has raised urgent questions about the real effects of the pandemic on

the green economy.

As a large economy-wide and unexpected shock, the pandemic has attracted a great

deal of attention from economists and policymakers (e.g., Fan, 2003; Chen et al., 2005;

Ferguson et al., 2006; Keogh-Brown and Smith, 2008; Chen et al., 2020). However, little

research has explored the effect of pandemics on firms’ green investments. Corporate green
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investment contributes to combating climate change and

promoting sustainable economic development. Zheng and Jin

(2023) find firms’ green investments help to reduce carbon

emissions. We address this gap by examining how the COVID-19

pandemic affected firms’ investment decisions. In particular, we ask

the following questions: How did firms determine their green

investment in response to the COVID-19 pandemic shock?

Which channels can explain the relation? By addressing these

questions, we hope to enhance the understanding of the impact

of the pandemic and appropriate policy responses.

We focus on exploring the effects of the COVID-19 pandemic

on corporate green investment. The main reasons are: first, the

environment is closely related to human health. It has been proved

that large-scale epidemics, such as SARS, originate from animal-to-

human transmission. Improving the environment can reduce public

health risks; secondly, the pandemic has rekindled people’s concern

for environmental safety and the need for sustainable development.

We argue that the direction of the pandemic’s impact on green

investment is uncertain. On the one hand, we posit that the

COVID-19 pandemic negatively influenced green investment

through financial constraints. In terms of financial restrictions,

the heightened uncertainty linked to the spread of the disease and

governmental responses during the pandemic may have made

banks more risk-averse, reducing the supply of capital or raising

its costs (Easley and O’Hara, 2010; Shleifer and Vishny, 2010). On

the other hand, the pandemic resulted in many provincial

interventions, such as restricted business hours, cancellation of

the May Day holiday, and bans on public gatherings. Thus, the

COVID-19 pandemic has changed people’s lifestyles (Chen et al.,

2020), such as telecommuting and virtual meetings, bringing

opportunities for firms to go green. At the same time, the

pandemic has increased the attention to green development.

Enterprises may actively promote green transformation to gain

long-term profits and growth. The COVID-19 pandemic may

positively influence green investment.

Using a sample of Chinese listed firms in 2020-2021, we find

that the COVID-19 pandemic significantly negatively impacts green

investment, suggesting that the COVID-19 pandemic reduces firms’

willingness to invest in green. In other words, the COVID-19

pandemic stalls the process of greening the economy. The main

results are robust to tests that address endogeneity concerns. We

further investigate the channel through which the pandemic affects

corporate green investment. We find that the negative effect of the

COVID-19 pandemic on green investment is more substantial for

firms with a younger age, with no dividends, with a higher WW

index, or ownership by non-government entities, supporting the

financial constraints channel. Meanwhile, the results show the effect

of the COVID-19 pandemic on total investment is not significant.

Given the similarity between the coronaviruses causing SARS

and COVID-19, and importantly, the similar impact of SARS and

COVID-19 on human activities (i.e., social distancing and business

shutdown), we study and compare the economic effect of the SARS

epidemic on total investment and green investment. We find SARS

negatively impacts total investment but does not affect green

investment, possibly due to insufficient attention to green

development and low corporate green investment in China in 2003.
Frontiers in Ecology and Evolution 02221
Our paper contributes to the extant literature in two ways. First,

our study adds to the literature on the economic consequences of

the pandemic (e.g., Ferguson et al., 2006; Chen et al., 2020; Hassan

et al., 2020; Ru et al., 2020). However, while most prior studies focus

on the impact of the pandemic on consumption, economic growth,

and stock price crashes, there needs to be more evidence on how

firms react to pandemic shocks. We extend the literature by

showing that the COVID-19 pandemic shock impedes firms’

green investment, with financial constraints playing an essential

role in reducing firms’ green investment.

Second, our study contributes to the literature on the

determinants of firm green investment. Prior literature identifies

various factors affecting firms’ green investment, for example,

media coverage (Chang et al., 2020), provincial green governance

(Wang and Wang, 2023), and green capital (Tran et al., 2020). Ma

et al. (2024) find green credit policy could stimulate firms’ green

investment. However, little attention has been paid to economy-

wide shocks such as pandemics. Recently, with increased

urbanization and globalization, high-risk infectious diseases (e.g.,

SARS, HINI, MERS, COVID-19) have appeared frequently around

the globe, and society is facing unprecedented public health threats.

Harmony between humans and the natural environment and

sustainable economic development have become the focus of

attention. How to make green transition decisions in the face of

pandemics has important policy implications for sustainable

economic growth.
2 Data

2.1 Sample selection

Our sample consists of all Chinese A-share firms listed on the

Shanghai Stock Exchange and the Shenzhen Stock Exchange in

2020-2021. We measure the COVID-19 pandemic using the newly

confirmed cases obtained from the China Healthcare Commission

(CHC). Green investment and financial information are obtained

from the China Stock Market and Accounting Research database.

We obtain firm headquarters information from the Resset database.

In line with common practice, we exclude observations with

missing values and winsorize all continuous variables at the top

and bottom 1%.
2.2 Variable definition

Green investment (GInvest) refers to environmentally friendly

investment, which helps firms transfer to green. Following Chang

et al. (2020), we construct the green investment variable based on

the term of projects under construction in the financial report. We

extract the construction in progress related to green investments,

such as the “desulphurization project,” “purification project,” “eco-

project,” and so on. Thus, we sum up these projects to present the

green investment. We construct the green investment variable

(GInvest) as the natural log of one plus green investment,

obtained from the term of projects under construction.
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Our key independent variable is exposure to the COVID-19

pandemic (COVID), defined as the natural log of one plus the

number of newly confirmed in the city of the year. We match the

COVID-19 pandemic measure according to the firms ’

registered cities.

Following Yu et al. (2014), Shen et al. (2012), and Shen et al.

(2010), we control for a series of variables that have been proven to

influence firm green investment. Firm size (Size) is defined as the

natural log of total assets. We compute firm leverage (Leverage)

using the ratio of total debts to total assets. Tobin’s Q (TobinQ)

represents investment opportunities, calculated as the ratio of the

market value of equity plus the book value of debts to total assets.

We control for firm cash flow (Cfo) as the net operating cash flow,

scaled by the year’s beginning total assets. Top   represents firm

equity structure, calculated as the percentage of shares held by the

largest shareholder. Age is defined as the years since the firm was
Frontiers in Ecology and Evolution 03222
first listed on the Shanghai or Shenzhen Stock Exchange. Roa is

calculated as the return on assets.
2.3 Descriptive statistics

Panel A of Table 1 shows the descriptive statistics. The mean

and maximum of green investment, defined as the natural log of one

plus green investment, are 1.755 and 22.497, respectively. The

standard deviation of the COVID-19 pandemic measure is 2.180,

which suggests that different cities experienced different exposure to

the COVID-19 pandemic. Panel B of Table 1 presents the

correlation matrix of variables used in the main regression. The

correlation coefficient of the COVID-19 pandemic and firm green

investment is -0.079, and statistically significant at the 1% level,

suggesting that firms in cities where the exposure to COVID-19
TABLE 1 Descriptive statistics.

Panel A: Summary statistics

Variables Mean SD Min. Median Max.

GInvest 1.755 5.165 0.000 0.000 22.497

Invest 0.029 0.223 -0.303 0.002 11.758

COVID 3.981 2.180 0.000 4.382 10.827

Size 22.381 1.255 20.025 22.229 26.031

Leverage 0.422 0.190 0.061 0.417 0.861

TobinQ 2.154 1.464 0.855 1.699 9.543

Top 23.776 16.683 0.150 21.519 65.752

Cfo 0.073 0.077 -0.118 0.066 0.351

Roa 0.038 0.075 -0.351 0.039 0.230

Age 11.668 7.911 0.750 9.750 27.000

Panel B: Correlation matrix

Invest GInvest COVID Size Leverage TobinQ Top Cfo Roa

GInvest 0.062

COVID -0.026 -0.079

Size -0.012 0.114 -0.032

Leverage -0.036 0.062 0.042 0.500

TobinQ 0.011 -0.085 -0.002 -0.282 -0.301

Top -0.006 0.071 -0.057 0.293 0.116 0.022

Cfo 0.057 0.043 -0.056 0.075 -0.185 0.211 0.006

Roa 0.059 0.020 -0.025 0.040 -0.314 0.222 0.032 0.455

Age -0.027 0.089 -0.054 0.455 0.278 -0.167 0.314 -0.109 -0.111
This table reports the descriptive statistics of the variables used in the empirical analyses. The sample consists of 4377 observations of firms listed on either the Shanghai or the Shenzhen Stock
Exchange in 2020-2021. GInvest is the natural log of one plus the green investment obtained from the notes on construction in progress. Invest is defined as the change in the net value of fixed
assets, scaled by the year’s beginning total assets. COVID is the COVID-19 pandemic measure, defined as the natural log of one plus the newly confirmed cases. Firm size, Size, is defined as the log
of total assets. Leverage is calculated as the ratio of total debts to total assets. TobinQ is the ratio of the market value of equity plus the book value of debts to total assets. Top   is firm equity
structure, calculated as the percentage of shares held by the largest shareholder. Cfo is the net operating cash flow scaled by the year’s beginning total assets. Roa is the return on assets. Age is
defined as the years since first listed on the Shanghai or Shenzhen Stock Exchange. All continuous variables are winsorized at the 1% level at both tails of their distributions. Panel A reports the
summary statistics, while Panel B presents the correlation matrix for the variables in the baseline regression. The numbers in bold indicate statistical significance at the 1% level.
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pandemic invest in green less. Firm green investment is negatively

related to the COVID-19 pandemic. Larger firms with greater

leverage were likely to have more green investment. The following

section describes the regressions conducted to explore the

relationship between the COVID-19 pandemic and firm

green investment.
3 Main findings

3.1 Baseline results

To investigate the relationship between the COVID-19

pandemic and firm green investment, we conduct multivariate

regression analysis using the equation below:

GInvestit = a0 + b1COVIDjt + g Controlsi,t−1 + d industryi
+ ϵit (1)

where GInvest is green investment for firm i at the end of 2020

and 2021, COVID is our city-level COVID-19 pandemic measure

for firm   i   located in city j.Controls is a series of control variables:

Size, Lev, TobinQ, Top  , Cfo, Age, and Roa. Industry fixed effects

(Industry) are included to account for the industry heterogeneity in

investment. ϵ   is the standard error item. The standard errors of the

estimated coefficients are corrected for heteroscedasticity. Our

conclusion is not affected if we allow for clustering by city or

by province.

We first estimate the relation between the COVID-19 pandemic

and firm green investment. The results are presented in Column (1)

of Table 2. The coefficient of our COVID-19 pandemic measure is

negative and significant at 1% (coefficient=−0.1151, t-statistics=

−3.1253). The results suggest that firms in regions where the

COVID-19 pandemic was severe have a lower willingness to

make a green investment. Economically, a 1%in the number of

confirmed cases in the city would result in a 0.12% decrease in green

investment. The sign of coefficients of the control variables is largely

consistent with prior studies. The coefficients of firm size (Size),

equity structure (Top  ), and firm age (Age) are positive and

significant, indicating that larger and older firms, firms with

bigger stockholders, make more green investments. Cash flow

(Cfo) is positively related to firm green investment, suggesting

that green investment is limited to the firm’s cash flow.

In order to verify whether the reduction in green investment is

caused by a reduction in the total amount of investment in the

general sense of the term. We explore the effect of the COVID-19

pandemic on firm total investment. We define firm investment

(Invest) as the ratio of the change of net value of fixed assets, to the

year’s beginning total assets. The associated results are presented in

Column (2) of Table 2. The coefficient of our city-level COVID-19

pandemic measure is negative, but it is not significant statistically

(coefficient = −0.0018, t -statistics = −1.2654). This suggests that the

COVID-19 pandemic did not have a significant negative impact on

total investment.

Taken together, our baseline results in Table 2 suggest that firms

in regions where the exposure to the COVID-19 pandemic was
Frontiers in Ecology and Evolution 04223
higher tended not to make green investments. Meanwhile, the effect

of the COVID-19 pandemic on total investment is not significant.

This suggests that under the shock of the COVID-19 pandemic,

firms first reduce environmentally friendly investments such as

green investment. Alessio and Simona (2024) show firm

environmental performance was related to lower returns during

the period of the COVID-19 pandemic. Because the higher cost of

green projects makes firms more exposed to uncertainty. This may

be related to the characteristics of green investment, which, in the
TABLE 2 Effect of COVID-19 pandemic on corporate investment.

(1) (2)

GInvest Invest

COVID
-0.1151*** -0.0018

(-3.1253) (-1.2654)

Size
0.2413*** -0.0012

(2.9023) (-0.4710)

Leverage
0.3877 -0.0096

(0.7659) (-0.5565)

TobinQ
-0.2615*** -0.0016

(-5.2121) (-0.8067)

Top
0.0146*** -0.0000

(2.8149) (-0.3072)

Cfo
2.9991*** 0.0945**

(2.8205) (2.1133)

Roa
0.8683 0.1145***

(0.8819) (5.7779)

Age
0.0418*** -0.0004

(3.5191) (-1.0060)

_cons
-4.7272** 0.0946*

(-2.5484) (1.6847)

Industry fixed effects Yes Yes

N 4377 4377

R2_adj 0.050 0.002
This table reports the regression results for the relation between the COVID-19 pandemic and
corporate investment. The sample consists of 4377 firm-year observations of firms listed on
either the Shanghai or the Shenzhen Stock Exchange in 2020-2021. Column (1) presents the
results of the relation between COVID-19 pandemic and corporate green investment. Column
(2) presents the results of the relation between COVID-19 pandemic and corporate total
investment. GInvest is the natural log of one plus the green investment obtained from the
notes on construction in progress. Invest is defined as the change in the net value of fixed
assets, scaled by the year’s beginning total assets. COVID is the COVID-19 pandemic measure,
defined as the natural log of one plus the newly confirmed cases. Firm size, Size, is defined as
the log of total assets. Leverage is calculated as the ratio of total debts to total assets. TobinQ is
the ratio of the market value of equity plus the book value of debts to total assets. Top is firm
equity structure, calculated as the percentage of shares held by the largest shareholder. Cfo is
the net operating cash flow scaled by the year’s beginning total assets. Roa is the return on
assets. Age is defined as the years since first listed on the Shanghai or Shenzhen Stock
Exchange. All continuous variables are winsorized at the 1% level at both tails of their
distributions. Industry fixed effects are included. The standard errors are corrected for
heteroscedasticity and t-statistics are displayed in parentheses. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels, respectively.
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short term, generates more social than economic benefits. The

negative relationship between the COVID-19 pandemic and firm

green investment shows that the outbreak of COVID-19 damaged

sustainable economic development, causing a decrease in firm

green investment.
3.2 Robustness and endogeneity tests

We conduct further analyses to ensure the negative relationship

between the COVID-19 pandemic and firm green investment is

robust to alternative green investment measures, COVID-19

pandemic measures, and sample constructions. We present the

results in Table 3. For the sake of brevity, we only show the

coefficient of the COVID-19 pandemic measure.

We start by examining whether our results are sensitive to

alternative green investment measures. Following Zhang et al.

(2019), we measure firm green investment using GInvest, defined

as natural log of one plus the greening fees and sewage charges.

Panel A in Table 3 presents the results, consistent with the baseline

results. The coefficient of COVID is −0.0880, which is negative and

significant at the 1% level.

In our baseline regression, we measure the COVID-19

pandemic using the city-level confirmed cases. We further adjust

our COVID-19 pandemic measure using province-level confirmed

cases. We name this adjusted variable COVID1, which then replaces

COVID in Equation (1). We present the results in Panel B of

Table 3. We find that the negative coefficient of COVID1 is

significant, suggesting that our main findings are robust to

different measures of the COVID-19 pandemic.

Last, we redefine the period of the sample to test whether our

results are sensitive to subsamples. We estimate the relationship

between the COVID-19 pandemic and green investment for 2020

and 2021 separately. We present the results in Panels C and D of

Table 3, respectively. We find that the coefficients of the COVID-19

pandemic are negative and significant for the subsamples.

While we have shown a robust negative relationship between

the COVID-19 pandemic and firm green investment, its causal

interpretation could be subject to endogeneity resulting from

omitted variables. The type of reverse causal maybe not an

endogeneity issue in our paper because the COVID-19 pandemic

was an external shock that could not be affected by firm green

investment. To remove endogeneity concerns arising from omitted

variable bias, our strategy is to control for several variables that

could be correlated with both the COVID-19 pandemic and firm

green investment.

We include year-fixed effects in the regression to account for

time effects and show the results in Panel E. The negative

relationship between COVID-19 and green investment remains.

We further include area fixed effects (i.e., East area, Central area,

and West area) in the regression to account for cross-area

differences in corporate green investment and re-estimate the

effects of the COVID-19 pandemic on firm green investment. The

results are presented in Panel F of Table 3. The coefficient of COVID

is negative and significant at the 1% (coefficient = −0.1109,
Frontiers in Ecology and Evolution 05224
t-statistics = −3.0058), consistent with the baseline results.

Concerning the COVID-19 pandemic may affect firm operations,

the controlling variables may be related to the COVID-19

pandemic. To deal with the concerns, we replace the controlling

variables using the controls in 2019 and re-estimate the Equation

(1). The results presented in Panel G of Table 3 show COVID-19

pandemic has negative impact on firm green investment, consistent

with baseline regression.
TABLE 3 Robustness and endogeneity checks.

Panel A: Estimating Equation (1) with an alternative
measure of green investment (N = 4184)

COVID
Coefficients t-statistics

-0.0880*** (-2.9222)

Panel B: Estimating Equation (1) with an alternative
measure of COVID-19 pandemic (N = 4377)

COVID1
Coefficients t-statistics

-0.1332** (-2.0830)

Panel C: Estimating Equation (1) with the subsample for
the year of 2020 (N = 2346)

COVID
Coefficients t-statistics

-0.3007*** (-3.9479)

Panel D: Estimating Equation (1) with the subsample for
the year of 2021 (N = 2031)

COVID
Coefficients t-statistics

-0.1760*** (-3.8545)

Panel E: Estimating Equation (1) controlling for year fixed
effects (N = 4377)

COVID
Coefficients t-statistics

-0.2113*** (-5.3863)

Panel F: Estimating Equation (1) controlling for area fixed
effects (N = 4377)

COVID
Coefficients t-statistics

-0.1109*** (-3.0058)

Panel G: Estimating Equation (1) with controlling vari-
ables in 2019 (N = 4263)

COVID
Coefficients t-statistics

-0.1266*** (-3.3613)
This table presents the results of the robustness tests and endogeneity tests. The sample
consists of 4377 firm-year observations of firms listed on either the Shanghai or the Shenzhen
Stock Exchange in 2020-2021. Panel A presents the results based on an alternative measure of
firm green investment, GInvest1, defined as the natural log of one plus the greening fees and
sewage charges, which are obtained from the overhead items in the income form. Panel B
presents the results using an alternative measure of the COVID-19 pandemic, COVID1, which
is calculated as the newly confirmed cases in the province level. Panels C and D exhibit the
results using subsamples for the years 2020 and 2021, respectively. Panel E presents the results
controlling for the year fixed effects. Panel F presents the results controlling for area fixed
effects. We divide the provinces into east, center and west areas. Panel G exhibits the results
with the controlling variables in 2019. Industry fixed effects are included. All regressions
include the control variables as listed in Table 2 and their coefficients are not tabulated.
Detailed variable definitions are in the legend of Table 2. The standard errors are corrected for
heteroscedasticity and t statistics are displayed in parentheses. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels, respectively.
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4 Further analysis

4.1 Cross-sectional heterogeneity in results

Our baseline results imply a negative and causal relation between

the COVID-19 pandemic and firm green investment. In this section,

we conduct cross-sectional tests to explore the channels through which

the COVID-19 pandemic impeded firm green investment. On the basis

of prior literature (e.g., Kahle and Stulz, 2013; Liu et al., 2016; Tang

et al., 2020), we posit that the COVID-19 pandemic negatively

influenced firm green investment by increasing firm financial

constraints. For the financial constraints channel, crises increase

uncertainty about firm prospects and/or government policies,

thereby decreasing the willingness of capital suppliers (e.g., banks) to

fund corporate green investment (Shleifer and Vishny, 2010).

Moreover, pandemic may cause panic in the credit market, raising

the cost of debt (Easley and O’Hara, 2010). The lower availability and

higher cost of loans during the COVID-19 pandemic increased firms’

financial constraints, thereby impeding their green investment. Further,

if the negative effect of the COVID-19 pandemic on firm green

investment was felt through the financial constraints channel, the

effect should be stronger for firms with higher financial constraints.

To test the financial constraints channel, in this section, we

explore how the relationship between the COVID-19 pandemic and

firm green investment varies according to financial constraints.

Specifically, we measure financial constraints at the firm level with

four variables, namely firm age, dividend, state ownership, andWW

index. Older firms and firms paying dividends have lower financial

constraints. State ownership of enterprises affects firms’ financing

ability. Chang et al. (2019) show that the top managers of SOEs in

China are often high-ranking party cadres, and consequently, SOEs

have the advantage of financial resources. Thus, SOEs have greater

access to capital than non-SOEs. According to Whited and Wu

(2006) and Liu et al. (2015) we also calculate WW index to measure

firm financial constraints. The WW index equals -0.091×CF-

0.062×DivPos+0.021×Lev-0.044×Size+0.102×ISG-0.035×SG, where

CF is the cash flow to total assets ratio, DivPos is the dummy

variable of whether the firm pays cash dividends, Lev is the ratio of

long debt on total assets, Size is the natural log of total assets, ISG is

the average industry sales growth rate, SG is the sales revenue

growth rate. Higher WW index indicates higher financial

constraints. We divide the sample into two groups according to

the median level of age, whether firms paying dividends, state

ownership, and median of WW index, respectively.

We re-estimate the regression for these subsamples and present

the results in Table 4. Consistent with the financial constraints

channel, the negative effect of the COVID-19 pandemic is stronger

for firms with higher financial constraints (i.e., younger firms, non-

dividend, non-SOEs, or higher WW index). The coefficients of the

COVID-19 pandemic for the older firms, firms with dividends,

SOEs, and lower WW index, are much smaller or not significantly

different from zero. Collectively, our cross-sectional analysis in

Table 4 supports our argument that the COVID-19 pandemic

impeded corporate green investment by increasing firms’

financial constraints.
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4.2 SARS epidemic and investment

In this section, we explore the economic effect of the SARS

epidemic on total investment and green investment. We measure

the exposure of the SARS epidemic based on SARS-related news

published by China’s provincial official party newspapers. In

comparison with confirmed cases or deaths variables, our media-

based variable is better suited to capturing the province-level

exposure to SARS. Because SARS outbreaks are concentrated in

some provinces, each province implemented strict controlling

policies to prevent the spread of the virus. It is difficult to capture

differences in exposure to the SARS epidemic using confirmed cases

almost all provinces. In line with prior literature (e.g., Baker et al.,

2016; Chang et al., 2020), we measure media-based SARS epidemic
TABLE 4 Cross-sectional differences in the effects of COVID-19
pandemic on corporate green investment.

(1) (2)

Panel A: Dividing the sample based on firm Age_Dummy (Nyoung

= 2277; Nold = 2100)

Young Old

COVID
-0.1461*** -0.0878

(-3.2338) (-1.5162)

Panel B: Dividing the sample based on firm dividend (Nnon-divi-

dend = 3225; Ndividend = 1051)

No Yes

COVID
-0.1253*** -0.0535

(-2.7915) (-0.8798)

Panel C: Dividing the sample based on SOE (Nnon-SOEs = 3067;
NSOEs = 1310)

Non-SOEs SOEs

COVID
-0.1262*** -0.1217

(-3.2811) (-1.4870)

Panel D: Dividing the sample based on WW (Nhigh = 1524; Nlow

= 1525)

High Low

COVID
-0.1208** -0.0789

(-2.3511) (-1.0664)
The sample consists of 4377 firm-year observations of firms listed on either the Shanghai or
the Shenzhen Stock Exchange in 2020-2021. In Table 4, the sample is split according to our
financial constraints measures. In Panel A, we partition the firms into two groups according to
the median firm age. In Panel B, we divide the firms into two groups according to whether or
not the firms pay dividends. In Panel C, we split the subsample with state ownership into two
groups based on whether or not the firms are SOEs. In Panel D, we divide the firms into two
groups according to the sample median of the WW index. According to Whited and Wu
(2006) and Liu et al. (2015) we calculate WW index as -0.091×CF-0.062×DivPos+0.021 �.
Lev-0.044×Size+0.102×ISG-0.035×SG, where CF is the cash flow to toal assets ratio, DivPos is
the dummy variable of whether the firm pays cash dividends, Lev is the ratio of long debt on
total assets, Size is the natural log of total assets, ISG is the average industry sales growth rate,
SG is the sales revenue growth rate. Firms with an older age, paying dividends, with lower
WW index, or owned by governments have lower financial constraints. All regressions include
the control variables as listed in in Table 2 and their coefficients are not tabulated. Detailed
variable definitions are in the legend of Table 2. The standard errors are corrected for
heteroscedasticity and t-statistics are displayed in parentheses. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels, respectively.
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variables using the dictionary method. This method classifies

documents into different categories based on a pre-specified

dictionary (Stone et al., 1967). The procedure for measuring the

media-based SARS epidemic is as follows. We first create a list of

words used to refer to the SARS epidemic. Specifically, we use

different names for SARS to identify SARS-related news. Next, we

use “jieba,” a popular word segmentation package used to analyze

Chinese text data, to break down sentences into words. We add the

eight SARS names to the “jieba” list to extract the dictionary words

from the news. We remove the “stop words” (e.g., “is”, “of”, and

“then”), from the news. We then use the standard dictionary

method to classify the news published in China’s provincial

official newspapers between November 2002 and July 2003 into

SARS-related and non-SARS-related categories. SARS-related news

is that containing the dictionary words in the news. We compute

the media-based SARS epidemic measure using the following ratio:

SARS _Media = the number of  SARS news=the number of  total news.

We use the sample of all Chinese A-share firms listed on the

Shanghai Stock Exchange and the Shenzhen Stock Exchange in

2003 and explore the relation between SARS and investment (i.e.

total investment and green investment). The results presented in

Table 5 show that SARS epidemic has significantly negative effects

on total investment. When we control for the confirmed cases in the

baseline regression, the results remain. The results are consistent

with financial constraints channel. Besides the financial constraints

channel, we think the demand shocks may be another channel.

According to the literature (e.g., Kahle and Stulz, 2013; Liu et al.,

2016; Tang et al., 2020), the outbreak of the SARS epidemic led

regions to take mandatory quarantine measures, which restricted

people’s spending power. Chen et al. (2020) show that the COVID-

19 pandemic has caused daily offline consumption to fall by 32%.

The decrease in demand for firms’ products can reduce investments

(Kahle and Stulz, 2013; Tang et al., 2020). Liu and Zhang (2020)

explore the effect of the SARS epidemic on macroeconomics and

show the SARS epidemic heat economics, especially the tertiary

sector. Such decreases in demand drive down corporate investment.

However, the coefficient of SARS epidemic is not significant when

the dependent variable is green investment. The results suggest that

firms in regions where the exposure to SARS was higher tended not

to invest. But SARS epidemic has not yet crowded out corporate

green investment, possibly at a lower level of green development

itself in 2003.
5 Conclusion

Corporate green investment is an environmentally friendly

investment, which is a major tool for combating climate change.

With the outbreak of COVID-19, scholars and policymakers are

paying more attention to sustainable economic development. It is

necessary to better understand the real economic impact of such

large-scale health crisis shocks as the COVID-19 pandemic. While

some have debated the effects of the pandemic on macroeconomics,

such as consumption and economic growth, little is known about its

firm-level impact. In this study, we examine the relationship

between the COVID-19 pandemic and firm green investment.
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Using a sample of Chinese listed firms, we show that the

COVID-19 pandemic negatively affected firms’ green investments.

However, the COVID-19 pandemic has no significant effects on

total investment. The results are robust to a variety of tests on

variable measures, subsamples, and endogeneity issues. We also

find that increased financial constraints account for the negative

relation between the COVID-19 pandemic and firm green

investment. Further analysis reveals that the SARS epidemic has

no significant effects on firm green investment.

Collectively, our findings suggest that the COVID-19 pandemic

had a negative effect on firm green investment and policymakers

can rely on these findings to support economic recovery and

sustainable development from the shock of the health crisis. Thus,

our study offers new evidence about the firm-level effects of the

COVID-19 pandemic, indicating that financial constraints played
TABLE 5 Effect of media-based SARS epidemic on corporate investment.

(1) (2)

Invest GInvest

SARS_Media
-0.1891*** -0.5381

(-3.0431) (-1.0082)

Size
0.0069 0.0573

(1.3939) (1.4013)

Leverage
0.0484** 0.0319

(2.1334) (0.6190)

TobinQ
-0.0145*** 0.0420

(-2.8528) (1.5977)

Top
0.0006 -0.0055

(1.0105) (-1.0719)

Cfo
0.0625 0.3112

(1.4379) (1.2491)

Roa
0.1249*** 0.2198

(3.1294) (1.5538)

Age
-0.0326*** -0.0097

(-4.0616) (-0.2372)

_cons
-0.0306 -1.1017

(-0.2945) (-1.3545)

Industry fixed effects Yes Yes

N 976 976

R2 0.106 0.009
This table reports the regression results for the relation between the SARS epidemic and
corporate investment. The sample consists of 976 firm-year observations of firms listed on
either the Shanghai or the Shenzhen Stock Exchange in 2003. Column (1) presents the results
of the relation between the SARS epidemic and corporate total investment. Column (2)
presents the results of the relation between the SARS epidemic and corporate green
investment.   SARS _Media is defined as the ratio of SARS-related news to all news in the
province-level. Industry fixed effects are included. All regressions include the control variables
as listed in Table 2 and their coefficients are not tabulated. Detailed variable definitions are in
the legend of Table 2. The standard errors are corrected for heteroscedasticity and t statistics
are displayed in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.
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an important role in accounting for the negative shock of the

pandemic. In the future, it is necessary to research on how to

mitigate the negative effects of the pandemic on green development.
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China is facing a serious land resource mismatch problem, which will profoundly
affect the acceleration of economic growth and technological innovation.
Reform of the industrial land allocation system can solve the mismatch of
land resources, and that also has an important impact on the promotion of
economic and technological development. This paper selects the data of Chinese
A-share listed companies in Shanghai and Shenzhen from 2007 to 2020 as the
research sample, constructs a double machine learning model, and empirically
investigates the impact of a new industrial land use policy on firms’ green
innovation behavior. The study shows that: (1) the new industrial land use
policy significantly promotes firms’ substantive and strategic green
technological innovation, and the effect on substantive green technological
innovation is greater than that on strategic green technological innovation. (2)
The enhancement of R&D investment sustainability and the “talent pool” effect
are important mechanisms through which the new industrial land use policy
influences firms’ substantive and strategic green technological innovation.
Meanwhile, the new industrial land use policy is conducive to firms’ green co-
innovation. (3) There is heterogeneity in the effect of the new industrial land use
policy, which can significantly promote green technological innovation of firms in
the eastern region, while it does not play a significant role in the green innovation
behavior of firms in the central and western regions. The above research results
enrich the research in the field of industrial land and innovation, help to
understand more comprehensively the mechanism of new industrial land
affecting firms’ green technological innovation, and provide policy insights for
strengthening the application of industrial land allocation reform in firms’ green
innovation.

KEYWORDS

new industrial land use policy, green innovation, China, double machine learning, R&D
investment sustainability, talent pool
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1 Introduction

China has achieved rapid growth for more than 4 decades by
relying on an abundant land supply, large labor inputs, high energy
consumption, and high capital. This pattern of economic growth has
been called “unsustainable growth" (Young, 2003; Wang et al.,
2023a). Rough development and trade liberalization have all
contributed to China’s energy constraints and environmental
pollution problems becoming more and more prominent, and
has also caused ecological environmental protection and
economic development to be on the verge of imbalance (Hao
et al., 2006; Wang et al., 2023b). Firm innovation has always
been an important part of national innovation development, and
the importance of innovation for industrial manufacturing
industries is far greater than that of other industries (Hsu et al.,
2014). At the same time, green technology innovation is an
inevitable choice to balance economic growth and ecological
environmental protection. Compared with traditional innovation,
green innovation is a new innovation model that deals with energy
saving, pollution control, recycling waste, and designing green
products (Tsai and Liao, 2017). Green innovation has both the
economic characteristics of improving the productivity and
competitiveness of firms and the social characteristics of energy
saving, emission reduction and environmental protection (Wang
et al., 2023c). Green technology innovation is an important force for
China to get out of economic difficulties, cope with the
environmental crisis, break the energy constraint and promote
the construction of innovation-driven country (Wang et al.,
2023d). Green technology innovation is also a key initiative for
China to grasp the major opportunities of the new round of
technological revolution and industrial change. According to
Xinhua News Agency on 24 October 2021, the article “Opinions
on Complete and Accurate Comprehensive Implementation of the
New Development Concept to Do a Good Job of Carbon Peak and
Carbon Neutrality” explicitly proposes to strengthen the major
green and low-carbon technological research and popularization
of its application, in order to support the establishment of a green,
low-carbon and recycling development of the economic system. In
recent years, China has accelerated the construction of innovative
country and innovative cities, which has promoted the development
of green technology innovation. According to data from the State
Intellectual Property Office, China has been an important
contributor to global green and low-carbon technological
innovation. From 2016 to 2022, the global patent authorization
for green and low-carbon technology inventions reached a
cumulative total of 558,000 pieces. Chinese patentees were
granted 178,000 pieces, accounting for 31.9% of the global share.
The average annual growth rate of green patents in China reached
12.5%, significantly higher than the overall global level of 2.5%. At
the same time, the problems of few high-quality patents and low
utilization rate of results transformation are still prominent, and
China’s green technology innovation is still seriously disconnected
from the actual demand (Show et al., 2018).

As a necessary input factor and spatial carrier in the production
or innovation process of firms, the way land is configured and the
supply strategy will inevitably have a profound impact on the
production and innovation of firms. Local governments in China
have taken advantage of the unique arrangement of land policy to

dominate economic development. On the one hand, local
governments have promoted industrialization by offering
industrial land at low prices to attract investment. On the other
hand, they have been able to obtain funds for building urban
infrastructure and promoting urbanization by offering
commercial and residential land at high prices and promoting
land mortgages. The rapid structural change driven by land
created China’s growth miracle (Gao et al., 2021). In China’s
land factor market, land resource allocation is not entirely subject
to market mechanisms. China’s current land system gives local
governments control over the allocation of land resources. As
managers and suppliers of land, local governments are subject to
both economic performance constraints and market regulation in
land resource allocation. Local governments’ land grant decisions
are often accompanied by a greater degree of resource mismatch and
negative externalities (Lu and Xiang, 2016; Xie et al., 2023) For
example, local government officials with limited tenure tend to opt
for the strategy of attracting investment through the establishment
of industrial parks. So they offer as much industrial land as possible
at low prices during their tenure. They are more concerned with the
short-term fixed-asset investment that the project will bring than
with the future growth in gross industrial output that the project will
bring to the city. Intense competition for investment will prompt
local governments to further reduce land prices, lower entry barriers
and open their doors to industries with poor prospects and
overcapacity. The entry of these “low-level” firms will crowd out
scarce land resources, while creating a “crowding-out effect” on
technology-intensive, capital-intensive and cleaner high-value-
added industries. This model may lead to a lack of public service
systems and a disconnection of supporting facilities, making cities
less attractive to factors such as talent and capital. Ultimately, it leads
to difficulties in building an urban innovation system to support
green, high-quality local development.

Literature related to this paper can be categorized into two main
groups, one of which is on the impact of the land system on
economic development and other aspects. This type of literature
mainly carries out research in the following four aspects. In the first
aspect, the impact of local government’s land transfer price strategy
on government land revenue, urbanization, enterprise investment
and industrial structure upgrading is studied from the perspective of
government officials’ incentives (Wang and Hui, 2017). The land
grant price strategy is specifically manifested in the fact that local
governments pursue the maximization of local finance by granting
commercial and residential land at high prices. Meanwhile, they
grant industrial land at low prices in order to achieve the goal of
economic growth. In addition, there is a kind of bottom-line
competition for the quality of attracted capital in the
government’s land concessions, which leads to the poor quality
of the projects that are attracted. In the second aspect, the impact of
industrial land resource mismatch on firm productivity is studied.
For example, Li et al. (2016) found that the crude land grant, which
is dominated by low land prices and agreement granting methods,
impedes the improvement of resource allocation efficiency among
industrial firms. In the third area, the impact of the allocation of
urban construction land targets on the Chinese real estate market,
the elasticity of China’s housing supply, and firms’ investment is
investigated (Han and Lu, 2017; Shen et al., 2018; Wang et al.,
2023e). For example, Han and Lu (2017) find that regions with
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tighter land grants have faster rising house prices, which is less
favorable to firms’ real investment. On the one hand, high house
prices enable firms to obtain loans and increase investment by
increasing the value of collateral. On the other hand, there is a
“crowding-out effect” of high house prices, which discourages firms
from investing. Rising house prices attract firms to hold investment
property and reduce investment in fixed assets. The fourth aspect is
to study the impact of land supply on environmental pollution,
energy consumption and other aspects (Zheng and Shi, 2018; Li
J. et al., 2023). Another category of literature is the research on the
influencing factors of green technology innovation. Scholars mainly
focus on the impact of governmental factors on green technology
innovation, such as environmental regulation, tax policy,
government subsidies and green financial policies (Jia and Ma,
2017; Miao et al., 2019; Wu and Hu, 2020; Rao et al., 2022).
Some literature has begun to focus on the relationship between
land markets and innovation, such as land marketization and urban
innovation (Cheng et al., 2022), land resource allocation and firm
innovation (Ma et al., 2022), land resource mismatch green
technological innovation (Gao et al., 2021), but the above studies
are relatively macroscopic, focusing mostly on the provincial and
regional levels. The literature focusing on the impact of land reform
on firm-level innovation is relatively scarce. At the same time, China
is implementing a new industrial land use policy, but the impact of
this policy on firm innovation has not been studied by scholars. This
paper focuses on the new industrial land policy and examines its
impact on firms’ green innovation. This will complement research
on land system reform and firm innovation.

Based on this, this paper takes 3,574 listed companies in China
from 2007 to 2020 as the research object, and systematically
examines the impact of new industrial land use policy on green
technological innovation through the construction and
measurement of a double machine learning model. This paper
finds that the new industrial land use policy significantly
promotes substantive green innovation and strategic green
innovation of firms within the pilot cities, and has a greater
impact on substantive green innovation than strategic green
innovation. The reason is that the implementation of the new
industrial land use policy improves the scale of R&D investment
and the continuity of R&D investment, and then promotes firms’
green technological innovation. On the other hand, the new
industrial land use system exerts the effect of “talent pool”,
attracts high-level talents, and increases the proportion of
technical talents in firms, which in turn affects firms’ green
technological innovation. The heterogeneity study shows that the
new industrial land use policy has a significant impact on the green
technology of firms in the eastern region, but not in the central and
western regions of China. Compared with non-heavily polluted
industries and politically connected firms, the new industrial land
use policy has a stronger promotion effect on firms in heavily
polluted industries and politically connected firms.

The marginal contributions of this paper may be as follows: first,
using China’s new industrial land use policy as an entry point, this
paper empirically tests the impact of industrial land use policy on
firms’ substantive and strategic green innovation, enriching the
current literature on land and innovation. Second, this paper
uses a double machine learning method in the empirical research
process. Compared with the traditional causal inference method, the

double machine learning model does not require complex and strict
strong assumptions. For example, when the sample data do not
satisfy the balanced trend test of the double difference method, the
empirical research can be carried out by the double machine
learning modle, which broadens the current research method.
Third, with the help of micro-level data, this paper confirms the
impact of the new industrial land use policy on firms’ green
technological innovation and cooperation innovation, as well as
its mechanism and heterogeneity. This study provides a theoretical
basis for further promoting the replication and scaling up of the new
industrial land use policy in China.

The remainder of the paper is organized as follows: The second
section describes the evolution of China’s land system and the
implementation of the new industrial land use policy. The
theoretical mechanism of the new industrial land use policy
affecting firms’ green innovation is analyzed. The third section
introduces the model and data used in this paper. The fourth
section reports the basic regression results of the new industrial
land use policy affecting firms’ green technology innovation, as well
as a series of robustness tests, heterogeneity and mechanism analysis
results. The fifth section further discusses the empirical findings of
the article. The sixth section summarizes the full paper.

2 Policy background and theoretical
mechanisms

2.1 Policy background

China’s State Council promulgated the “Interim Regulations on
the Granting and Transfer of State-owned Land Use Rights in Urban
Areas” in 1990, which gave local governments monopoly
development rights in the primary market for state-owned
construction land. At the same time, the “Regulations on the
Implementation of the Land Administration Law of the People’s
Republic of China” was introduced in 1998, which further signaled
that local governments had the right to franchise and trade in land
resources. In the early 21st century, motivated by the dual incentives
of local fiscal revenue and regional competitive objectives, local
governments in China have used industrial land concessions at low
prices as a key focus for investment attraction and economic
development (Chen and Kung, 2016). Since then, the
competition for land attraction has been increasingly
characterized by bottom-line competition, with local governments
arbitrarily suppressing the real price of industrial land. This not only
reduces the quality of investment attraction, but also further leads to
a very serious waste of land resources and a mismatch of resource
within cities. In response to the above problems, China has
introduced a series of policies to curb the trend of illegal land
transfers. In 2002, the former Ministry of Land and Resources
promulgated the “Regulations on the Tendering, Auctioning and
Listing of State-owned Land Use Rights”, which for the first time
stipulated that operational land, including land for commerce,
tourism, entertainment and commercial residential land, had to
be transferred through tendering, auctioning and listing. In 2006, the
“State Council’s Circular on Relevant Issues on Strengthening Land
Regulation and Control” further explicitly required that industrial
land must also be sold by tender, auction and listing. To a certain
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extent, this system avoids the inefficiency problems caused by
government monopoly, improves the transparency of the
decision-making process, and facilitates supervision by higher
levels of government and the public. In 2007, China’s former
Ministry of Land and Resources promulgated the “National
Minimum Pricing Standard for Industrial Land Sale”, which for
the first time set out clear regulations on industrial land transfer
prices at the national level. This has led to land supply constraints
and higher land costs in eastern China, and the large stock of
inefficiently utilized industrial land prevalent in all regions has
become an important constraint on high-quality economic
development.

With industrial development and firm production innovation,
the traditional management of industrial land has been unable to
meet the innovation needs of industries. Innovation-led
development objectively requires that innovation factors continue
to cluster towards industrial entities. In 2006, Beijing issued the
“Detailed Control Plan for Beijing Central City”, taking the lead in
exploring the use of industrial land for R&D. In 2015, theMinistry of
Land and Resources issued the “Guidelines for Implementation of
Industrial Land Use Policy”. On the basis of this policy, local
governments may make land use proposals to the urban and
rural planning departments at the same level and to higher-level
industry authorities for new industries and new business forms that
are not specified in the current national standard classifications.
Local governments can prioritize the supply of land for new
industries and implement flexible supply of industrial land in
various ways. By transforming land use to guide the development
of innovative industry clusters, local economies can adapt to the new
normal of economic development. Against this background, some
Chinese cities have successively introduced land use policies
applicable to new types of industries in accordance with the
direction of regional industrial development from the perspective
of land use standards, planning layout, industrial land reserves, land
supply, and project construction. They explore a new industrial land
management model, which mainly focuses on the policies of land
spatial planning, land use control, land use planning arrangement,
land supply, land utilization, and real estate registration involved in
specific industries (Mi, 2022). As of December 2020, a total of
28 cities in China have implemented the reform of the new industrial
land use policy, adding innovative industrial land to existing
industrial land, commercial service facility land, or R&D
headquarters land. The main features of new industrial land use
include: first, the upper limit of plot ratio has been raised. Most cities
have adjusted the plot ratio for new industrial land use to 5.0–6.0,
and some cities have even abolished the upper limit. This work has
led to an increase in the intensity of land development. Second,
industrial supporting construction is improved. The new industrial
land use policy grants a certain proportion of supporting services to
the land parcel, which is not entirely industrial or commercial land.
The subject of land use and development can plan supporting
facilities and space according to the requirements of industrial
support and development trends. This allows new industrial land
projects to aggregate a variety of industrial forms. Third, land prices
have become more favorable. The new industrial land use policy has
set high standards for the resident firms, and only those firms that
meet the standards can enjoy the preferential land use policy. For
example, whether the main business of the firm belongs to the scope

of policy encouragement, and whether the firm is a listed company
or unicorn enterprise will all affect the admission of the firm.

2.2 Theoretical mechanisms

As one of the important factors of production indispensable to
the operation and development of industrial firms, land provides the
basic factors of production for the debugging of equipment and
R&D innovation. It also increases the initial investment in research
and development innovation of firms. China’s new industrial land
policy has increased the plot ratio of buildings and the development
intensity of land, thereby facilitating industrial firms’ access to
industrial land. This provides production factors and test sites for
firm production and R&D, and fulfills the function of land as a
production factor. It improves the economies of scale of land and
facilitates the enhancement of firms’ green technology innovation
capacity. On the other hand, China’s local governments once used
low-priced land supply as an important means of investment
attraction behavior while showing obvious characteristics of
bottom-line competition (Chen et al., 2018). A large number of
low-end manufacturing firms with weak R&D capabilities were able
to invest in industrial parks due to lower land costs. This low-priced
and wide-supply industrial land strategy attracted a large number of
inefficient, high-consumption, and high-pollution low-end
manufacturing industries to cluster (Tang et al., 2018; Zheng and
Shi, 2018). Following that, a huge scale of low-end manufacturing
capacity with backward technology and low technological content
has been formed on the scarce industrial land. It squeezes out
investment in high-end manufacturing and emerging industries
with strong innovation capacity (Zhou et al., 2021). This
mismatch of land resources has driven the rapid development of
high-emission and high-pollution firms, but it has also inhibited the
incentives of firms to strengthen green technological innovation and
greening development (Huang and Du, 2017; Luo et al., 2018; Gao
et al., 2021; Du et al., 2023; Li R. et al., 2023). Meanwhile, under the
new industrial land use policy, the government requires firms to
have high innovation ability as well as low pollution emission.
Otherwise, industrial firms will face the risk of being retired and
the land they use will be taken back as inefficient industrial land.
Local governments revitalize that land again. Thus, the new
industrial land use policy will push firms to accelerate their green
technological innovations in order to meet the
appropriate standards.

Hypothesis 1 (H1). The new industrial land use policy promotes
green technological innovation in firms.

New industrial land policy can promote the growth of R&D
investment. As one of the long-term fixed assets of a firm, land can
be used as a collateral asset for firm financing. It alleviates the agency
cost, adverse selection and incomplete contract problem under
information asymmetry in the debt financing process of firms
(Berger et al., 2011). The traditional industrial land use policy
has restrictions on the development and use of the subject of the
functional limitations and sale, resulting in a contradictory situation
of idle real estate resources and enterprise financing constraints. The
new industrial land policy enables industrial firms to enjoy more
favorable land prices. At the same time, each development zone in
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order to increase investment will also give relevant supporting
preferential policies. So that the cost of firm land is lower, will
reduce the occupation of internal funds, and enhance the internal
financing ability of firms. Split sales of the new policy is also
conducive to reducing the pressure on firm funds, reduce the
squeeze on innovation funds. Under the new industrial land use
policy, local governments have promoted the increased availability
of land resources to firms by setting higher plot ratios for industrial
land. Firms can more easily acquire industrial land as collateral for
firms’ external financing, which will substantially increase firms’
credit capacity (Chaney et al., 2016; Cheng et al., 2022). In the
context of China’s imperfect financial market and predominantly
bank credit, the increased availability of land resources will provide
an important source of credit for firms’ R&D innovation. Firms’
innovation is highly sensitive to internal capital endowment due to
the long cycle and uncertainty of R&D investment (Brown et al.,
2013) Therefore, loose financial conditions will stimulate R&D
activities, which is conducive to the acceleration of technological
innovation and the improvement of green innovation performance
(Du and Li, 2019; Du et al., 2019; Li J. et al., 2023;Wang et al., 2023f).
In the meantime, firms’ R&D is not only the main way for them to
gain a competitive advantage, but also an important driver of the
country’s economic development (Slow, 1957). Once a firm’s R&D
activity stops or lacks continuity, that competitive advantage quickly
disappears (Tavassoli and Karlsson, 2015). R&D persistence reflects
a firm’s long-term knowledge accumulation and technological
progress in terms of R&D investment, product development or
process improvement, and it is closely related to the durability of a
firm’s competitive advantage (Clausen et al., 2012). The continuity
and stability of R&D investment is sometimes more important to
firms than the scale and intensity of R&D (Schroth and Szalay,
2010). The new industrial land use policy requires a high level of
innovation. Industrial firms will not be removed from new industrial
land use only if they continue to invest in innovation and vigorously
promote technological innovation. Therefore, under the hard
constraint of “innovate or be retired”, firms will continue to
increase their R&D investment to promote green technological
innovation.

Hypothesis 2 (H2). Promoting the increase and sustainability of
R&D funding is an important channel through which new industrial
land use policy can contribute to firms’ green technological
innovations.

New industrial land use policy can cluster human capital. The
innovative requirements of the new industrial land use policy for
firms have stimulated the demand for high-quality human capital.
At the same time, compared with the traditional industrial land
use of a single function of the relevant provisions of the new
industrial land use policy to give a certain proportion of the plot
of land supporting services part. For example, Shanghai stipulates
that the ancillary area should not exceed 15% of the project
ceiling. Shenzhen and Ningbo set a cap of 30%. The
liberalization of the policy on the supporting area of industrial
land will help innovative entities to create good conditions for
business services and a livable external environment in the region.
For example, providing a better working and living environment
for high-quality green technology innovators will help attract an
influx of highly skilled personnel. Wang et al. (2022) also found

that higher plot ratios are conducive to labor aggregation. Human
capital is an intangible resource of firms, and highly skilled
personnel are also an important force in promoting green
technology innovation (Kianto et al., 2017). Baumol (1996)
suggests that human resource differences are an important
factor contributing to differences in innovation efficiency. On
the one hand, highly skilled human capital can learn and imitate
advanced technologies, as well as use them to improve production
processes and create new products. Non-knowledge production
unrelated to R&D is particularly important for firms in
developing countries, and technology imitation activities rely
heavily on engineers, technicians (Rammer et al., 2009). On
the other hand, highly skilled people can enhance the
development, modification, and adaptation of existing
knowledge, which in turn drives the creation of new
technologies (Greiner et al., 2004; Arundel et al., 2007;
Goedhuys et al., 2013). Overall, this learning-by-doing model
facilitates incremental innovation in firms (Grimpe and Sofka,
2009). Not only do highly educated R&D personnel hired from
universities and research institutions have a significant
contribution to technological breakthrough innovation in firms
(Herstad et al., 2015; Arvanitis et al., 2016; Sun et al., 2020), but
also experienced managerial human capital and HR can organize
firm resources well and thus play a positive role in firm innovation
(Capozza et al., 2018). In their study, Stuart et al. (2007) found
that innovators within firms play the role of “gatekeepers”, which
facilitates the interaction between firms’ internal and external
knowledge. Good business support services can also effectively
enhance the work experience of highly skilled personnel, which in
turn significantly improves innovation efficiency. Highly skilled
personnel not only provide manpower and knowledge support for
firms’ green technological innovation, but also promote the
research and development and diffusion of green and low-
carbon technologies, which is also conducive to the iterative
development of firms’ green products.

Hypothesis 3 (H3). The industrial land use policy promotes green
technological innovation in firms by utilizing the “talent pool” effect.

3 Data and methods

3.1 Model design

The double machine learning (DML) approach proposed by
Chernozhukov (2018) relies on a classical semiparametric
theoretical framework. In contrast to traditional causal inference
methods, DML does not require complex and rigorous strong
assumptions, allowing it to handle a wider range of data forms
and model structures. More importantly, unlike traditional machine
learning methods used for causal inference, DML uses Neyman
orthogonalization to overcome regularization bias. Moreover, DML
uses sample partitioning to correct for overfitting bias to obtain de-
biased and efficient estimation. Following Chernozhukov et al.
(2018), We innovatively applies the DML model to test the
causal relationship between new industrial land use policies and
firms’ green innovation by establishing the following
regression model:
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Yit � θ0 Event it + g Xit( ) + Uit (1)
E Uit | Event it, Xit( ) � 0 (2)

where i and t represent firm and year respectively. Yit is the
dependent variable, representing firm i in t year’s green
technology innovation. Event it is a dummy variable for the pilot
of new industrial land use policy where the firm is located. If
coefficient θ0 is significantly positive, indicating that the new
industrial land use policy has a promoting effect on firms’ green
innovation. Xit is a series of multidimensional control variable. We
need to use machine learning algorithms to estimate the specific
form ĝ(Xit). Uit is the error term, and its conditional mean is 0. We
have directly estimated Eqs 1, 2, then we obtain the coefficient
estimates as follows:

θ̂0 � 1
n
∑

i ∈ I,t ∈ T
Event2it( )

−11
n
∑

i∈I,t∈T
Eventit Yit − ĝ Xit( )( ) (3)

where n is the sample capacity.
Based on the above estimators, the estimation bias can be

further examined:
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Event it g Xit( ) − ĝ Xit( )[ ]

(6)
where a obeys a normal distribution with mean 0. It should be noted
that dual machine learning uses machine learning and its
regularization algorithm to estimate a specific functional form
ĝ(Xit), which inevitably introduces a “regularity bias” that
prevents the estimator from having too much variance, but also
makes it unbiased. This is shown by the slower convergence of
ĝ(Xit) to g(Xit), with n−φg > n−1/2. Thus, as n and b tend to infinity,
θ̂0 has difficulty converging to θ0.

To speed up convergence, the disposal coefficient estimates are
made to satisfy unbiasedness with small samples. We construct the
auxiliary regression as follows:

Event it � m Xit( ) + Vit (7)
E Vit | Xit( ) � 0 (8)

where m(Xit) is the regression function of the disposition variable
on the control variable, which again needs to be estimated using a
machine learning algorithm in the specific form m̂(Xit). Vit is the
error term with a conditional mean of 0.

The procedure is as follows:First, a machine learning algorithm
is used to estimate the auxiliary regression m̂(Xit). We can get its
residual. V̂it � Event it − m̂(Xit). Second, the same machine
learning algorithm is used to estimate ĝ(Xit). We change the
main regression form to Yit − ĝ(Xit) � θ0 Event it + Uit. Finally,
V̂it is regressed as an instrumental variable for Event it, and then
unbiased coefficient estimates can be obtained as follows:
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where [E(Vit
2)]−1 1�

n
√ ∑

i∈I,t∈T
VitUit obeying a normal distribution

with mean 0. Since two machine learning estimates are used, the

overall rate of convergence of [E(Vit
2)]−1 1�

n
√ ∑

i∈I,t∈T
[m(Xit) −

m̂(Xit)][g(Xit) − ĝ(Xit)] depends on the rate of convergence of

m̂(Xit) tom(Xit) and ĝ(Xit) to g(Xit), i.e., n−(φg+φm). Compared to

Eq. 4,
�
n

√ (�θ0 − θ0) converges to 0 faster. Therefore, we can obtain
unbiased estimates of the disposition coefficients.

3.2 Variable settings

3.2.1 Dependent variable
Green Innovation. Drawing on the methods of Gao et al.

(2021), this paper measures green innovation based on green
patent data. The Green List of the International Patent
Classification (GLIPC), launched by the World Intellectual
Property Organization (WIPO) in 2010, is an online tool for
searching information on patents related to environmentally
friendly technologies. The search classifies green patents into
seven categories according to the United Nations Framework
Convention on Climate Change (UNFCCC), including
alternative energy, transportation, waste management, energy
conservation, etc., and covers about 200 topics directly related to
environmentally friendly technologies. In this paper, the green
patent applications of A-share listed firms were obtained from
China Research Data Service Platform (CNRDS) and compared
with the database search of State Intellectual Property Office
(SIPO) to finally form a green patent database of listed
companies with high confidence. The advantages of adopting
patent data are as follows. Data availability and accuracy are
guaranteed. Green patents can intuitively reflect the output of
firms’ green technological innovation activities, which can be
categorized according to different technological attributes, and
can reflect the different value connotations and contributions of
innovation. The above two features make it possible for patents
to measure green innovation activities with different
motivations. Among them, invention patents have a high-
level of technology, difficulty and innovation. Utility model
patents have relatively low-level of technology, difficulty and
innovation. Therefore, this paper regards the number of green
invention patents as substantive green innovation and the
number of green utility model patents as strategic green
innovation. We take these two indicators as the dependent
variables of concern in this paper.

3.2.2 Independent variable
The core explanatory variable is whether the city where the firm

is located implements the new industrial land use policy. The
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independent variable is assigned a value of one when the city where
the firm is located implements the new industrial land use policy in
the sample period, and 0 otherwise.

3.2.3 Control variables
In order to accurately estimate the promotion effect of the new

industrial land use policy on firms’ green innovation, the following
control variables are selected. Firm size (Size), measured by the
natural logarithm of total assets at the end of the year; gearing ratio
(Lev), measured by the ratio of total liabilities at the end of the year
and total assets at the end of the year; cash flow ratio (Cashflow),
measured by the ratio of net cash flow generated from the operating
activities of the firm to the total assets; growth rate of operating
income (Growth), measured by the ratio of operating income of the
firm in the current year and operating income of the previous year
minus 1; number of directors (Board), measured by the number of
board of directors taking the natural logarithm of the number of
directors; the proportion of independent directors (Indep),
expressed as a share of the number of directors who are
independent directors; the age of the firm (Age), the sample year
minus the year of the firm’s establishment, plus one to take the
natural logarithm of the year of the establishment of the firm; the
proportion of management shareholding (Mshare), measured by the
number of shares held by management of the firm as a percentage of
the total equity share; institutional investor shareholding (INST),
measured by the total number of shares held by institutional
investors as a share of the outstanding share capital; and firm
ownership (SOE), which takes the value of one when the firm is
a state-controlled firm, and 0 otherwise.

3.3 Data sources

This paper selects the data of 3574 A-share listed companies on
the Shanghai and Shenzhen stock exchanges from 2007 to 2020 as
the research sample. The data of firm characteristics and financial
data come fromCSMAR database. The green patent data of firms are
from CNRDS. The sample data are processed as follows. We do not
focus on financial firms and have excluded the financial sector
sample because the format of financial firms’ statements and the
structure of their assets and liabilities differ significantly from those
of other firms. ST and delisted companies are no longer normal
listed companies, so they are not our concern. In order to weaken the
influence of sample outliers, all continuous variables are shrink-
tailed at the 1% and 99% quantile. The data of urban industrial land
use policy in this paper comes from the official website of each city
government, which is manually collected and organized by us.

4 Results

4.1 Baseline regression results

In this paper, a dual machine learning model is used to estimate
the policy effect of new industrial land policy on firms’ green
innovation. We set the sample split ratio to 1:4, then we solved
the main and auxiliary regressions for the prediction. Table 1 shows
the results of the linear regression of the impact of the new industrial

land use policy on firms’ green technological innovation. Columns
(1) and (2) of Table 1 show the results of the dual machine learning
model without and with control variables respectively, and the
estimated coefficients of the independent variable are both
significantly positive at the 1% statistical level. This suggests that
the new industrial land use policy significantly promotes firms’
substantial green technological innovation. Columns (3) and (4)
show the impact of new industrial land use policies on firms’
strategic green technological innovations without and with
control variables respectively. The estimated coefficients on the
independent variables are both significantly positive at the 1%
statistical level, and smaller than those in columns (1) and (2).
This suggests that the new industrial land use policy can also
significantly promote firms’ strategic green technology
innovation. This is consistent with the conclusion of hypothesis
1. However, the effect of the new industrial land use policy on firms’
strategic green innovation is smaller than that on substantive green
technological innovation. This may be due to the fact that new
industrial land use policies in Chinese cities explicitly require firms
to meet pollution emission standards and technological innovation
targets. Firms will step up their green technology efforts in order to
adapt to the current industrial land use requirements. Meanwhile,
although strategic green technological innovation can also enable
firms to achieve the goal of reducing emissions or accomplishing
innovations to a certain extent, in contrast, substantive green
technological innovation is the high-quality technological
innovation targeted by the new industrial land use policy.
Therefore, in order to maintain competitiveness, firms will pay
more attention to substantive green technological innovation.

4.2 Robustness tests

4.2.1 Changing the regression model
This paper further chooses different models to analyze and test

the impact of new industrial land use policies on firms’ green
technology innovation. First, this paper adopts the PSM method
to deal with the sample self-selection problem, and takes firms’
substantive green technology innovation and strategic green
technology innovation as PSM treatment variables respectively.
We select firm size, gearing ratio, cash flow ratio, revenue growth
ratio, number of directors, proportion of independent directors, age
of the firm, proportion of management ownership, proportion of
institutional investor ownership, and ownership of the firm as PSM
matching covariates. Propensity scoring is performed through Logit
modeling. Then the nearest neighbor matching is performed in the
ratio of 1:1 to find cities in the control group that have the same or
similar tendency score value as the sample tendency score of the
treatment group as the matching object. We end up with a new data
sample. Columns (1) and (2) of Table 2 report the regression results
of the dual machine learning model by the PSM method, and the
estimated coefficients of the independent variables are significant at
the 1% statistical level, reflecting the positive effect of the new
industrial land use policy on firms’ green technological
innovation. Second, the double machine learning model may
have setting bias. To avoid its influence on the conclusion, this
paper changes the sample split ratio of the double machine learning
model from the previous 1:4 to 1:9. This helps to avoid the possible
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influence of the sample split ratio on the conclusion. Columns (3)
and (4) of Table 2 show the regression results after changing the
sample split ratio. We can see that the estimated coefficients on the
independent variables remain positive. Finally, a partial linear model
based on double machine learning is constructed for analysis in the
benchmark regression, and there is some subjectivity in the model
form setting. In this paper, double machine learning is used to
construct a more general interactive model to explore the effect of
model setting on the conclusions of this paper. Columns (5) and (6)
show the results of the interactive model regression with
significantly positive estimated coefficients on the independent
variables. This again demonstrates the reliability of hypothesis
one of this paper.

4.2.2 Excluding other policy effects
Another challenge to the regression results of this paper is that in

verifying the policy effect of the new industrial land use policy on
firms’ green technology innovation, it is inevitably disturbed by other
policies in the same period. In order to ensure the accuracy of the
estimation of the policy effect, this paper controls for other policies in
the same period. On the one hand, during the sample period of this
paper, China implemented a number of low-carbon pilot cities in

2010, 2012, and 2017 respectively, and this policy has an important
impact on green innovation (He et al., 2023). To control the impact of
low-carbon pilot city policies, this paper sets the policy dummy
variable Low_carbon.It is assigned a value of one when the city
where the sample is located has implemented a low-carbon city
policy in the observation period, and 0 otherwise. The Low_carbon
variable is added as a control variable to the baseline model regression
of this paper, and the results in columns (1) and (2) of Table 3 are
obtained. It can be seen that the estimated coefficients of the
independent variables are still significantly positive when
controlling for the impact of the low-carbon pilot city policy. On
the other hand, the “Green Credit Guidelines” issued by China in
2012 promoted the development of green credit, which can play an
important role in firms’ green technology innovation (Su et al., 2022).
In order to control the disturbance of green credit policy, this paper
sets a dummy variable Green_credits. It is assigned a value of one
when the sample of heavy polluting industries suffered from green
credit policy in the observation period, and 0 otherwise. Adding the
Green-credits variable as a control variable to the regression model of
this paper, we get the results in columns (3) and (4) of Table 3. It can
be found that the new industrial land use policy can still significantly
promote firms’ substantive and strategic green technology innovation.

TABLE 1 Baseline regression.

Substantive green technology innovation Strategic green technology innovation

(1) (2) (3) (4)

Event 4.513*** 3.224*** 2.546*** 1.681***

(0.47) (0.39) (0.28) (0.22)

Control variables NO YES NO YES

Year fixed effects YES YES YES YES

Industry fixed effects YES YES YES YES

Observations 31238 31238 31238 31238

Notes:*, **, and *** indicate significant at the 10%, 5%, and 1% levels respectively. Robust standard errors are in parentheses. The following table is the same.

TABLE 2 Changing the regression model.

PSM-DML Resetting Double Machine
learning Models

Interactive Model

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

(1) (2) (3) (4) (5) (6)

Event 3.247*** 1.677*** 3.152*** 1.657*** 2.063*** 1.169***

(0.40) (0.22) (0.39) (0.22) (0.37) (0.21)

Control
variables

YES YES YES YES YES YES

Year fixed
effects

YES YES YES YES YES YES

Industry fixed
effects

YES YES YES YES YES YES

Observations 31064 31064 31238 31238 31076 31075
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4.2.3 Using balanced panel data
Because of the unbalanced panel used in the baseline regression

of this paper, the entry and exit of firms may affect the assessment of
the role of new industrial land use policies on green innovation. In
this context, this paper further obtains the balanced panel data of
680 A-share listed companies in China between 2007 and 2020.
Based on the balanced panel data, the double machine learning
model regression is applied to obtain the results in columns (5) and
(6) of Table 3. As shown by the estimated coefficients of the
independent variables are still significantly positive at the 1%
statistical level, the conclusion that the new industrial land use
policy has a positive impact on firms’ substantive and strategic green
technological innovations remains robustly established.

4.3 Endogeneity tests

In this paper, the PSM-DML method avoids the problem of
bidirectional causality and takes into account the factors affecting
firms’ green technology innovation as much as possible. However,
the regression analysis faces the endogeneity problem due to the
inevitable omitted variables. Therefore, instrumental variable
method regression is used to alleviate the endogeneity problem.
In this context, this paper refers to Nathan and Nancy (2014) and
uses as instrumental variables the interaction term between urban
terrain relief and exchange rate, and the interaction term between
urban terrain relief and interest rate respectively, which satisfy the
exogeneity and correlation assumptions of instrumental variables.
Meanwhile, this paper builds a partial linear instrumental variable
model for double machine learning based on Chernozhukov et al.
(2018), and the regression results are shown in Table 4. From
columns (1) and (3) of Table 4, the estimated coefficients of the
independent variables are significantly positive, and the role of the
new industrial land use policy on firms’ substantial green technology
innovation remains significant. From the results in columns (2) and
(4), it can be seen that the new industrial land use policy can
significantly promote firms’ strategic green technological
innovations, but the effect is smaller than the effect on

substantive green technological innovations. Accordingly,
Hypothesis one of this paper is confirmed again.

4.4 Mechanism tests

In the theoretical analysis section, we explore that the new
industrial land use policy can promote firms’ green technological
innovations by facilitating the sustainable improvement of
innovation inputs and the increase of skilled personnel. This
paper further validates these two channels of action. On the
one hand, this paper uses the two indicators of innovation
investment intensity and innovation investment sustainability to
proxy for the R&D investment channel. The amount of firms’ R&D
investment as a share of operating revenue is used to measure
innovation investment intensity, and innovation investment
sustainability is measured based on the methodology of
Triguero and Córcoles (2013). Innovation investment intensity
and innovation investment persistence are put into the benchmark
regression model as dependent variables respectively, and the
regression results are shown in columns (1) and (2) of Table 5.
As can be seen from the regression results, the estimated
coefficients of the independent variables are all significantly
positive at the 1% statistical level, which indicates that the new
industrial land use policy can significantly contribute to the
innovation input intensity and innovation input continuity
enhancement of firms. In firms’ innovation activities,
innovation input intensity and innovation input sustainability
enhancement are the key for firms to actively engage in green
technological innovation, which can enable firms to maintain
green competitiveness (Tavassoli and Karlsson, 2015). It can be
seen that the new industrial land use policy promotes green
technological innovation by enhancing the intensity and
sustainability of R&D investment. Thus, Hypothesis two of this
paper is proved. On the other hand, this paper uses the number of
R&D personnel and the share of R&D personnel as proxies for
firms’ skilled human capital, where the share of R&D personnel is
the number of R&D personnel as a proportion of the total number

TABLE 3 Exclusion of other policy effects and using balanced panel data.

Excluding the impact of low-
carbon pilot city policies

Excluding the impact of green
credit policies

Balance panel

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

(1) (2) (3) (4) (5) (6)

Event 3.177*** 1.381*** 3.221*** 1.645*** 6.377*** 1.914***

(0.42) (0.22) (0.39) (0.22) (1.09) (0.42)

Control
variables

YES YES YES YES YES YES

Year fixed
effects

YES YES YES YES YES YES

Industry fixed
effects

YES YES YES YES YES YES

Observations 31238 31238 31238 31238 9,520 9,520
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of employees in the firm. The number of R&D personnel and the
share of R&D personnel are put into the benchmark regression
model as dependent variables respectively, and the regression
obtains columns (3) to (5) in Table 5. From the regression
results, it can be seen that the estimated coefficients of the
independent variables are all significantly positive, reflecting
that the new industrial land use policy plays the effect of “talent
pool”, which can significantly promote the growth of firms’ skilled
human capital. Skilled human capital can promote the
dissemination of knowledge and accelerate technological
innovation, which plays a crucial role in the green technological
innovation process of firms (Sun et al., 2020). Based on this,
hypothesis three of this paper is confirmed. Besides, China’s
new industrial land use policy can facilitate the agglomeration
of various types of actors and factors because of its high floor area
ratio and diversified land uses. In this context of more intensive
economic and innovation activities, how the new industrial land
use policy affects green co-innovation needs to be investigated. In
order to promote co-innovation, China has developed a series of
supportive policies. This has contributed to the fact that co-
innovation has become a new way for firms to carry out
technological innovation activities. However, the failure rate of
R&D alliances in China is still as high as 50% and the alliance
partnerships are unstable (Fan et al., 2015). Against this
background, this paper further investigates the role of new

industrial land use policy on co-innovation of firms’ green
technologies. In this paper, we obtain the data of joint
applications for green invention patents of A-share listed
companies from CNRDS database. The number of joint
applications for green invention patents of firms is used to
represent green co-innovation, as well as the share of co-
innovation is proxied by the proportion of joint applications for
green invention patents to the total number of green invention
patent applications of firms. The co-innovations of substantive and
strategic green technology are put into the baseline regression
model as dependent variables respectively, and the regression
obtains columns (1) and (2) in Table 6. As can be seen from
the results, the estimated coefficients of the independent variables
are all significantly positive at the 1% statistical level, and the
estimated coefficients of substantive green technology innovation
are larger. This reflects that the new industrial land use policy can
significantly promote the co-innovations of firms’ substantive and
strategic green technology. On the other hand, the share of co-
innovation as the dependent variable is put into the baseline
regression model, and the regression obtains columns (3) and
(4). It can be seen that the estimated coefficients of the
independent variables are still significantly positive, indicating
that the new industrial land use policy significantly promotes
the share of co-innovations in firms’ green innovation in
substantive and strategic green technology.

TABLE 4 Endogeneity tests.

IV1 IV2

Substantive innovation Strategic innovation Substantive innovation Strategic innovation

(1) (2) (3) (4)

Event 3.809*** 1.973*** 3.318*** 1.895***

(0.60) (0.40) (0.61) (0.41)

Control variables YES YES YES YES

Year fixed effects YES YES YES YES

Industry fixed effects YES YES YES YES

Observations 31192 31192 31192 31192

TABLE 5 Mechanism results.

Intensity of
innovation inputs

Sustainability of
innovation inputs

Number of
R&D staff

Share of
R&D staff

Talent investment
continuity

(1) (2) (3) (4) (5)

Event 0.643*** 0.127*** 0.0710*** 1.847*** 0.478***

(0.09) (0.02) (0.01) (0.19) (0.09)

Control variables YES YES YES YES YES

Year fixed effects YES YES YES YES YES

Industry fixed
effects

YES YES YES YES YES

Observations 21480 20454 15515 15373 8,675
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4.5 Heterogeneity tests

4.5.1 Regional heterogeneity
Due to differences in resource endowments and development

stages, there are regional differences in the impact of new industrial
land use policies on firms’ green technology innovation. In this
paper, based on the distinction between east, center and west made
by the National Bureau of Statistics of China, the sample is divided
into east sample, center sample and west sample depending on the
province where the enterprise is located. Double machine learning
regression using the sub-regional samples obtained the results in
Table 7. Among them, the estimated coefficients of the independent
variables in columns (1) and (2) are both significantly positive at the
1% statistical level, reflecting the fact that the new industrial land use
policy can significantly promote firms’ substantive and strategic
green technological innovation in the eastern region. From the
results in columns (3) to (6), the estimated coefficients of the
independent variables are all insignificant, indicating that the
new industrial land use policy has no significant effect on both
firms’ substantive and strategic green technology innovation in the
central and western regions. The possible explanations are the

competition for land between high value-added and low value-
added industries, which pushes up the price of industrial land in
the eastern region. Industrial land resources are also relatively scarce
here. While in the central and western regions, land resources and
labor supply are relatively abundant. And in the process of further
developing the manufacturing industry, there are more new
industrial land resources in the central and western regions
(Chen et al., 2018). This results in the new industrial land use
pattern in the central and western regions does not occur the
innovation effect.

4.5.2 Industry heterogeneity
There may be differences in the motivation for green technology

innovation among firms belonging to industries with different levels
of environmental threats. This paper determines the scope of heavy
pollution industries according to the “Green Credit Guidelines
issued” by China in 2012, and divides the full sample of this
paper into heavy pollution industry samples and non-heavy
pollution industry samples. On this basis, the sub-sample
regression obtains the results in Table 8. The estimated
coefficients of the independent variables in columns (1) and (2)

TABLE 6 The impact of new industrial land use policies on green innovation cooperation.

Collaborative innovative Share of collaborative innovative

Substantive innovation Strategic innovation Substantive innovation Strategic innovation

(1) (2) (3) (4)

Event 1.406*** 0.541*** 0.017*** 0.013***

(0.25) (0.08) (0.002) (0.001)

Control variables YES YES YES YES

Year fixed effects YES YES YES YES

Industry fixed effects YES YES YES YES

Observations 31238 31238 31238 31238

TABLE 7 Regional heterogeneity tests.

Eastern region Central region Western region

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

Substantive
innovation

Strategic
innovation

(1) (2) (3) (4) (5) (6)

Event 2.394*** 1.122*** 0.359 0.924 −0.683 −0.699

(0.39) (0.21) (1.04) (0.60) (1.03) (0.45)

Control
variables

YES YES YES YES YES YES

Year fixed
effects

YES YES YES YES YES YES

Industry fixed
effects

YES YES YES YES YES YES

Observations 20914 20914 5,175 5,175 4,233 4,233
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are both significantly positive, indicating that the new industrial land
use policy can significantly promote substantive and strategic green
technology innovation of firms in heavy polluting industries. The
estimated coefficients of the independent variables in columns (3)
and (4) are both significantly positive at the 1% statistical level,
reflecting that the new industrial land use policy also significantly
promotes green technological innovations of firms in non-polluting
industries. Comparing the regression results in columns (1) and (3),
it can be obtained that the estimated coefficients of the independent
variables are larger for the heavily polluted industries than for the
non-heavily polluted industries. This reflects the fact that the green
innovation effect of the new industrial land use policy is greater for
heavy polluting industries than for non-heavy polluting industries.
Possible explanations are as follows. According to the relevant
requirements of the new industrial land use policy, heavy
polluting industries face stronger constraints and their pressure
to reduce emissions is greater, which also leads to the fact that firms
in the heavy polluting industries are more motivated to green
innovation.

4.5.3 Firm heterogeneity
Green innovation is product, technology or process innovation

on an environmentally friendly basis. Its process mainly consists of
three aspects: resource acquisition, resource input and resource
output. In this process, the main subjects of resource acquisition
and resource investment in the early stage are firms, which need to
pay a lot of time, manpower, material resources and land and other
resources. Political affiliation is an important factor that affects the
business development of Chinese firms. For example, firms with
political affiliation have more advantages in obtaining resource
subsidies (Conyon et al., 2015; Li R. et al., 2023). Specifically, if a
firm’ executives or actual controllers serve as deputies to the
National People’s Congress or members of the Chinese People’s
Political Consultative Conference at all levels, it means that the firm
is politically affiliation. Based on this, this paper distinguishes
between politically affiliated samples and non-politically affiliated
samples, and obtains the results in Table 9 after sub-sample
regression. The estimated coefficients of the independent
variables in columns (1) through (4) are all significant at the 1%
statistical level for. This shows that the new industrial land use policy
can not only influence the green innovation of politically affiliated
firms, but also significantly promotes the innovation of non-

politically affiliated firms. Meanwhile, according to the estimated
coefficients of the independent variables in columns (3) and (4) are
larger than those in columns (1) and (2) respectively, the green
innovation effect of the new industrial land policy on non-politically
affiliated firms is larger than that on politically affiliated firms.
Possible reasons for these results are as follows. The new
industrial land policy makes land resources more abundant,
which facilitates the access of non-politically affiliated firms to
land resources and helps them to carry out innovative activities.
On the other hand, in the context of the high threshold of the new
industrial land policy, the risk of non-politically affiliated firms
being retrenched is stronger. However, politically affiliated firms
have a lower risk of being retired, thanks to their links with the
government. As a result, non-politically affiliated firms will take a
more cautious approach to the new industrial land use policy and
endeavor to carry out green technological innovations to meet the
relevant requirements of the policy.

5 Discussion

This paper examines the impact of China’s new industrial land
use policy on firms’ green technological innovation using data from
China’s A-share listed firms from 2007 to 2020. The article examines
the role of R&D investment sustainability and the “talent pool” in
the process of new industrial land use policy affecting firms’ green
innovation. Although this study focuses on prefecture-level cities in
China, the methodology can also be used to explore the role of
industrial land policy on firms’ innovation in other developing
countries. In addition, this study discusses the heterogeneous
effects of new industrial land policy on firms’ green innovation.
The specific contributions of this paper are as follows.

First of all, by reviewing relevant information and literature, this
paper has sorted out the evolution of China’s industrial land use
system. China’s industrial land system has been reforming towards
marketization. Due to the mismatch between the supply and
demand of industrial land and the demand for industrial
innovation, various regions in China are actively exploring the
new industrial land system. For example, enterprises can set up
R&D organizations and build human resources housing facilities on
new types of industrial land. The article sorts out the timing of the
implementation of new industrial land policy in various regions of

TABLE 8 Heavily and non-heavily industry heterogeneity tests.

Heavily polluting industries Non-heavily polluting industries

Substantive innovation Strategic innovation Substantive innovation Strategic innovation

(1) (2) (3) (4)

Event 6.111*** 2.392*** 2.069*** 1.434***

(0.99) (0.28) (0.39) (0.27)

Control variables YES YES YES YES

Year fixed effects YES YES YES YES

Industry fixed effects YES YES YES YES

Observations 8,841 8,841 22397 22397
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China. This work helps us to empirically study the impact of new
industrial land policy on firms’ green innovation.

Second, this paper adopts a dual machine learning approach to
analyze the causal relationship between new industrial land policy
and firms’ green innovation. Compared with the traditional causal
inference method, the dual machine learning method does not
require complex strong assumptions. Therefore, the dual machine
learning method has more application scenarios than the traditional
causal model. Based on the regression estimation results, we find
that the new industrial land policy has a significant positive impact
on both substantive and strategic green innovation of firms. The
estimated coefficients of their core explanatory variables are
3.224 and 1.681, respectively. This result is consistent with the
findings of Xie et al. (2023) and Li R. et al. (2023). We continue
with robustness tests such as resetting the dual machine learning
model, using the PSM-DMLmodel, and excluding the effects of low-
carbon cities and green credit policies. We also use the instrumental
variables approach to endogeneity. We find that the article’s
benchmark regression results still hold.

Furthermore, this paper examines the role of R&D investment
sustainability and “talent pool” in the impact of new industrial land
policy on firms’ green innovation. We find that the implementation
of new industrial land policy can significantly promote the intensity
of innovation investment and its sustainability. The estimated
coefficients of their core explanatory variables are 0.643 and
0.127, respectively.

This result is basically consistent with the findings of Ma et al.
(2022) and Cheng et al. (2022). Meanwhile, the new industrial land
policy significantly contributes to the increase in the number and
share of R&D personnel. In conclusion, the implementation of the
new industrial land policy helps to stimulate firms’ demand for
talent and enhances their human capital. The new industrial land
policy allows firms to build housing for talent security, which
increases the plot ratio of the land. This policy facilitates firms to
attract talents. This is consistent with the findings of Wang et al.
(2022). In addition, the government supports firms to utilize the new
industrial land to build public science and technology R&D
platforms. Therefore, the new industrial land policy would
promote joint innovation among firms. This paper tests this
potential mechanism and finds that the new industrial land
policy significantly promotes firms’ joint innovation and
increases the share of jointly filed patents in their total patents.

Finally, this paper further investigates the heterogeneous effects
of new industrial land policy on firms’ green innovation. The
findings show that the new industrial land policy has a
significant impact on firms’ green innovation only in the eastern
region. This is because eastern China faces a serious land resource
mismatch. This hinders the development of high-end industries, as
well as constrains firm innovation. When firms are provided with
sufficient land supply, their innovative energies are released (Gao
et al., 2021). However, the policy does not have a significant impact
on the green innovation of firms in central and western China. This
is due to the fact that the central and western regions of China are
relatively rich in available industrial land resources. In terms of
industry heterogeneity, the new industrial land policy has a greater
impact on heavily polluted industries than on non-heavily polluted
industries. New industrial land has higher emission requirements for
firms. Heavily polluting firms will be more active in green
technology innovation in order to meet the environmental
requirements of that land. In addition, some scholars believe that
political affiliation has a negative effect on firm innovation (Chung
et al., 2016), but there is also literature that suggests that political
affiliation has a positive effect on firm innovation (Jiang et al., 2023).
Our results suggest that the new industrial land policy has a
facilitating effect on green innovation for both politically
connected firms and non-politically connected firms. However,
compared to politically connected firms, the new industrial land
policy has a stronger role in promoting green innovation in non-
politically connected firms. Non-politically connected firms have
poorer access to resources. The new industrial land policy can
improve the availability of land resources, which makes it easier
for non-politically connected firms to obtain industrial land. Non-
politically connected firms will be more motivated to develop new
green technologies.

There are some limitations in this study. First, for the
identification of firms affected by the new industrial land policy,
this paper is based on whether the city where the firm is located has
implemented the new industrial land policy. This does not directly
assess the impact of a firm’s ownership of emerging industrial land
on its own development. Therefore, the identification strategy used
in this study may need further refinement. Second, the proxy
variable used for green innovation, firms’ green patent data, may
not fully reflect firms’ green innovation behavior. For example,
although a firm’s patents may not fall into the category of green

TABLE 9 Political affiliated and non-political affiliated firm heterogeneity tests.

Political affiliation Non-political affiliation

Substantive innovation Strategic innovation Substantive innovation Strategic innovation

(1) (2) (3) (4)

Event 2.872*** 1.606*** 3.433*** 1.727***

(0.80) (0.42) (0.48) (0.26)

Control variables YES YES YES YES

Year fixed effects YES YES YES YES

Industry fixed effects YES YES YES YES

Observations 10112 10112 20052 20052
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patents, the firm may have cited green patents in the process of
inventing patents. At this point, the firm’s patent may also be green.
This limitation needs to be further studied to develop more
comprehensive and accurate indicators of firms’ green innovation.

6 Conclusion and policy implication

6.1 Conclusion

Based on the panel data of Chinese A-share listed firms, we find
that the new industrial land use policy significantly promotes firms’
substantive and strategic green technology innovation. And it has a
greater effect on substantive green technology innovation than on
strategic green technology innovation. The sustainability of R&D
investment and the “talent pool” effect are important mechanisms
through which the new industrial land use policy influences firms’
green technological innovation. At the same time, the new industrial
land use policy can promote firms’ green co-innovation. In the
context of China’s land resource mismatch, the new industrial land
use policy significantly promotes green technological innovation
among firms in the eastern region, although it has no significant
impact on this Green innovation behavior among firms in the
central and western regions. New industrial land use policies
have a stronger impact on the green innovation behavior of firms
in heavily polluting industries and non-politically affiliated firms
than non-polluting firms and politically affiliated firms.

6.2 Policy implications

First of all, the implementation of the new industrial land use
policy should be tailored to local conditions. The new industrial land
use policy can effectively promote firms’ green technological
innovation in order to balance economic growth and
environmental protection. This policy can also alleviate the
problem of land resource mismatch. Local governments in China
urgently need to further clarify the allocation of new industrial land,
continuously improve the new industrial land use model, and
actively promote this model in eastern China. For example, they
need to rationalize floor area ratios, dynamically update the
thresholds for enterprises, and scientifically identify areas for new
industrial land use. Eastern provinces can learn from the digital
reform of new industrial land that has already been carried out in
some places, and use digital technology to fully utilize the functions
of new industrial land. However, in the central and western regions
of China, the new industrial land use system has not significantly
affected firms’ green technology innovation. On the one hand, we
suggest that the central and western regions raise the target
requirements for indicators of energy consumption, carbon
emissions and innovation in setting up the new industrial land
use policy, thereby promoting green technological innovation in
firms. On the other hand, the central and western regions should be
wary of the abuse of the new industrial land use policy, and should
focus their efforts on fully utilizing the existing industrial land.

Second, Secondly, the new industrial land use policy should be
actively utilized to gather talents and alleviate financial pressure.
New industrial land generally has a higher floor plot ratio, making it

possible to host more fixed facilities and economic activities on the
same area of land. Meanwhile, the provision of land for R&D and
staff accommodation facilities is an important advantage of the new
industrial land use policy. Government departments should focus on
the residential living and working needs of highly skilled and high-
quality talents, and strive to strengthen the accumulation of urban
and industrial human capital. This requires a comprehensive
assessment of land allocation imbalances within cities. There is a
need to mitigate the negative impact of the imbalance between
residential and industrial land use structures on the innovative
participation of talent and the accumulation of industrial
innovation, and to emphasize the crowding-out effect of land use
mismatches on industrial innovation talent. In addition, we have
responded positively to the reasonable requests of firms and
vigorously promoted the new modes of flexible and divided land
grants. The allocation of industrial land needs to be more scientific.
The availability of land resources for firms needs to be enhanced to
ensure that firms have comparable land use and mortgages.

Third, we should explore ways to amplify the promotional effect
of the new industrial land use policy on green innovation and
cooperation among firms. Relying on higher plot ratios and
diversified land use patterns, new industrial land can cluster
market and innovation players in different production segments,
as well as various economic factor resources. This new
agglomeration force contributes to the dissemination of
knowledge and the acceleration of technological innovation.
Government departments can consider actively developing and
supplying supporting land for different purposes, such as land
for laboratories in universities and incubators for innovation and
entrepreneurship, centering on innovation cooperation among firms
or innovation cooperation among industries, universities and
research institutes. At the same time, government departments
can also actively explore the construction of public service
technology platforms, shared laboratories, or promote the sharing
of key experimental instruments and equipment on new industrial
land. They should actively incorporate technological innovation
cooperation into the new industrial land use policy. Local
governments must strengthen the positive impact of new
industrial land use policies in green knowledge dissemination
and technological innovation cooperation. Efforts should be
made to promote the formation of closer green technology
innovation platforms and networks among various subjects.

6.3 Limitations and future recommendations

Our results suggest that the implementation of new land use
policy in areas with scarce industrial land resources is favorable to
firms’ green innovation. This study is important for a better
understanding of China’s development model. However, our
study focuses on the impact of new land policy pilot cities on
firms. We did not get data on firms’ access to land for new uses.
Therefore, our study still has some shortcomings. In the future, we
believe that the impact of the new land policy on firms’ innovative
behavior can be further explored in the data on firms’ access to land
for new uses. The Chinese government already publishes detailed
information on each land transaction in the land market. We are
collecting information on these land transactions. It is possible to
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put together information that identifies land purchased by firms and
match each piece of land to a firm. In this way, future work can
utilize more detailed land information to study the impact of the
land market on various decisions made by firms. It will also be
possible to explore the impact of firms acquiring land on
neighboring firms. Land belongs to a resource of a fixed space.
Firms operate on it, which is likely to produce space effects.
Therefore, identifying the spillover effect of land resources is
particularly important for the role of research on land reform. In
addition, the spillover impact on suppliers and customers of firms
that acquire new use land is also worth being explored. At present,
scholars are increasingly concerned about themutual influence of up
and downstream firms in the supply chain. Various regions in China
are actively building specialised industrial chains. They have built
numerous industrial clusters and want upstream and downstream
firms to cluster inside the same industrial parks. This brings about a
very realistic problem that firms purchasing new use land will affect
the operation of upstream and downstream firms. Therefore, we
suggest using more detailed data of land transactions in future
studies. At the same time, future studies should consider the
spillover effects of land market reforms.
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In the context of rapid advancement in automation and increasing global
warming, understanding the impact of artificial intelligence (AI) on carbon
emissions (CES) is a cutting-edge research topic. However, there is limited
focus in existing research on the nonlinear carbon reduction effect (CRE) of
AI. This paper first theoretically elaborates the dual impact mechanisms of AI on
CES and illuminates the nonlinear carbon reduction mechanisms of AI. Then, this
study employs panel data encompassing 30 Chinese provinces between
1997 and 2019 to empirically test the net effect of AI on CES and the
nonlinear carbon reduction effect of AI through econometric models. The
results are as follows: first, although AI can both reduce and increase CES, AI
primarily helps decrease CES. This conclusion holds true even after considering
robustness, endogeneity, and spatial heterogeneity. Secondly, relative to the
central and western regions, AI has significant achievement in reducing carbon
intensity and per capita CES in the eastern region. However, there is still room for
improvement in terms of reducing the total CES in the eastern region. Thirdly,
improving the AI development level (AIDL) can magnify the marginal CRE of AI
and lead to a nonlinear CRE of AI. Lastly, even if the AIDL remains constant,
improving the level of marketization, human capital, digital infrastructure,
economic development, openness, and government intervention can also
amplify the marginal CRE of AI and lead to a nonlinear CRE of AI. To fully
harness the potential of AI for green development, concerted efforts should
be directed towards enhancing the innovation and application of AI technologies
with carbon reduction potential.

KEYWORDS

artificial intelligence, carbon emissions, carbon reduction effect, nonlinear
characteristic, China

1 Introduction

Climate change, primarily attributed to carbon emissions (CES) resulting from human
activities, has exerted a significant and detrimental impact on human survival and
development (Zhang W. et al., 2022; Li et al., 2022; Wang et al., 2023b). The global
community has consequently made decarbonization a key priority (Vorozheykina, 2022).
Additionally, artificial intelligence (AI) has emerged as one of the most eagerly anticipated
technologies. In this context, the impact of AI on CES has become a focal point of scholarly
inquiry. Extensive research has highlighted the dual nature of AI’s impact on CES,
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encompassing both reduction and increase (Chen P. et al., 2022;
Kaack et al., 2022; Cowls et al., 2023). Hence, the questions arise:
Will the development of AI ultimately result in a carbon reduction
effect (CRE)? Does the CRE of AI exhibit a nonlinear characteristic?
Resolving these inquiries holds substantial theoretical and practical
significance. Regrettably, existing studies have not fully addressed
the aforementioned questions.

To address these gaps, firstly, this paper will theoretically analyze
the carbon reduction mechanisms and carbon increase mechanisms
of AI, and will point out that AI will ultimately reduce CES.
Secondly, from a theoretical perspective, the paper will illustrate
that the improvement of AI development, marketization, human
capital, digital infrastructure, economic development, openness, and
government intervention level can magnify the marginal CRE of AI
and lead to a nonlinear CRE of AI. Finally, this paper will empirically
test the aforementioned theoretical perspectives using provincial
panel data from China spanning from 1997 to 2019 and
econometric models.

This paper makes significant contributions in three key
points. Firstly, this paper will provide a unified framework for
understanding of the impact of AI on CES. Existing research has
primarily focused on analyzing the carbon reduction
mechanisms and CRE of AI. While some studies also consider
the carbon increase mechanisms and carbon increase effect of AI,
there is limited research that systematically analyzes both the
carbon reduction and increase mechanisms within a unified
framework. Moreover, there is relatively little discussion in
existing research regarding the crucial question of whether the
CRE or the carbon increase effect of AI is greater. This paper, at
the theoretical level, systematically analyzes both the carbon
reduction and increase mechanisms of AI and empirically
confirms the viewpoint that the CRE of AI is greater than the
carbon increase effect. Secondly, this paper will contribute to a
deeper understanding of the CRE of AI. Although existing
research indicates that AI can reduce CES, there is limited
analysis of the nonlinear characteristic of the CRE of AI. This
paper, both theoretically and empirically, confirms that the
improvement of AI development, marketization, human
capital, digital infrastructure, economic development,
openness, and government intervention level can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI. Thirdly,
our research employs more refined methodologies to gauge the
AI development level (AIDL). Measuring the AIDL represents a
contemporary research Frontier. Current research primarily
relies on industrial robot data and AI patent data to assess
AIDL. However, industrial robot data predominantly reflects
the extent of intelligent manufacturing rather than offering a
holistic evaluation of AIDL. Although AI patent data can offer a
holistic evaluation of AIDL, previous studies have employed a
limited set of keywords in their searches for AI patents. In
contrast, our paper measures AIDL using a broader array of
AI-related keywords.

The rest of our study is outlined as follows: Section 2 provides a
systematic literature review. Section 3 introduces the theoretical
framework and research hypotheses. Section 4 introduces the
empirical models and details the sources of data. Section 5
provides the empirical results and discussion. Section 6 provides
the conclusions, implications, and limitations.

2 Literature review

The literature pertinent to our research can be categorized into
three key domains: the measurement of carbon emission level (CEL)
and the influencing factors of CES, the measurement of AIDL, and
the impact of AI on CES.

2.1 The measurement of CEL and the
influencing factors of CES

Currently, there are four proxy variables employed to
characterize CEL. The initial proxy variable is the total CES
(Wang et al., 2023b; Ding et al., 2023; Tang and Yang, 2023).
Some scholars have developed carbon emission databases
containing total CES data (Shan et al., 2020). Furthermore, a
positive correlation exists between satellite light data and total
CES, prompting some scholars to derive total CES based on
satellite light data (Meng et al., 2023). The second proxy variable
pertains to carbon density, quantified as the ratio of total CES to
GDP (Chen P. et al., 2022; Li et al., 2022; Tang and Yang, 2023), the
ratio of total CES to the value added by the secondary industry (Yi
et al., 2022), or the ratio of industry energy-related CES to industry
sales value (Liu et al., 2022). The third proxy variable relates to per
capita CES, determined by dividing total CES by the year-end
population (Wang et al., 2023b; Tang and Yang, 2023). The
fourth proxy variable is carbon emission performance, a measure
that considers both economic development and total CES. Typically,
it is assessed using a Data Envelopment Analysis (DEA) model
featuring multiple input and output indicators (Zhang W.
et al., 2022).

Existing research indicates that numerous factors can influence
CES. For example, economic development, per capita income,
population size, technological advancement, green technology
innovation, openness, urbanization, industrial concentration,
industrial upgrading, energy regulations, energy demand, energy
consumption, energy intensity, energy prices, energy structure,
energy efficiency, energy innovations, human capital, carbon
taxation, financial development, transportation infrastructure,
environmental regulation, marketization, green total factor
productivity (GTFP), working hours, digital economy, and AI
can influence CES (Chen Y. et al., 2022; Zhang X. et al., 2022; Li
et al., 2022; Yi et al., 2022;Wang et al., 2023b; Ding et al., 2023; Meng
et al., 2023; Tang and Yang, 2023; Yanzhe and Ullah, 2023).

2.2 The measurement of AIDL

Given the rapid development, extensive application, and the
challenge of defining precise boundary and composition for AI, an
ongoing debate persists regarding the measurement of AIDL
(Damioli et al., 2021; Bianchini et al., 2023). Consequently, a
consensus on the measurement of AIDL remains elusive.
Presently, there are five proxy variables utilized to gauge AIDL.
The first proxy variable is the frequency of AI-related terms
appearing in the reports of publicly listed companies (Zhang W.
et al., 2022) or in the annual government work reports (Tang and
Yang, 2023). The second proxy variable is the industrial robot data
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sourced from the International Federation of Robotics (IFR). This
encompasses metrics such as the increment of industrial robots (Li
and Tian, 2023), the increment of industrial robots per worker
(Chen Y. et al., 2022), the stock of industrial robots (Zhang X. et al.,
2022; Liu et al., 2022; Wang et al., 2023b; Li and Tian, 2023), the
stock of industrial robots per unit of GDP (Li et al., 2022), the stock
of industrial robots per worker (Chen P. et al., 2022; Chen et al.,
2022 Y.; Li et al., 2022; Lv et al., 2022; Vorozheykina, 2022; Yang and
Shen, 2023), and the adjusted penetration of industrial robots
(Acemoglu and Restrepo, 2020; Chen Y. et al., 2022). The third
proxy variable relates to the number of AI patents (Damioli et al.,
2021; Yang, 2022; Bianchini et al., 2023). The fourth proxy variable
involves AI-related research paper counts (Li et al., 2022). The fifth
proxy variable employs an AI Index (Ding et al., 2023; Maslej et al.,
2023), typically exemplified by Stanford University’s AI Index
(Maslej et al., 2023).

2.3 The impact of AI on CES

Extensive research has highlighted the dual nature of AI’s impact
on CES, encompassing both reduction and increase (Chen P. et al.,
2022; Kaack et al., 2022; Cowls et al., 2023). On the one hand, AI has
the potential to reduce CES through various pathways. AI can
reduce CES by fostering green technology innovation, improving
energy efficiency, and driving industrial upgrading (Elnour et al.,
2022b; Himeur et al., 2022; 2023; Ding et al., 2023). The deployment
of industrial robots can diminish CES by promoting green
technology innovation, optimizing the industry structure,
enhancing digital infrastructure, improving GTFP, lowering
energy intensity, driving technological innovation, promoting
research and development investment, encouraging manual
labour substitution, saving work time, and promoting green
employment (Chen P. et al., 2022; Chen et al., 2022 Y.; Elnour
et al., 2022a; Li et al., 2022; Meng et al., 2022; Wang et al., 2023b;
2024; Li and Tian, 2023).

On the other hand, AI can also contribute to a surge in CES
through various channels. First, the operation of computationally
intensive industrial robots will consume substantial energy and will
generate CES (Wang et al., 2023b). Training and deploying large AI
models, such as ChatGPT, can generate substantial CES (An et al.,
2023). Second, in addition to being responsible for the CES
generated during the operational phase, AI devices should also
share responsibility for the embodied emissions resulting from
other stages of its life cycle, including the raw material extraction
phase, manufacturing phase, transportation phase, and hardware
disposal phase (Kaack et al., 2022; Wu et al., 2022; Cowls et al.,
2023). Third, the digital infrastructures supporting AI development
have significantly contributed to increased CES by increasing energy
consumption (Tang and Yang, 2023). Last, AI’s capacity to enhance
production and consumption efficiency can result in a rebound
effect, leading to increased production and consumption level and
consequently, elevated CES (Kaack et al., 2022).

The dual nature of AI’s impact on CES sparks ongoing debate
regarding the net effect of AI on CES. Presently, there exist three
main perspectives regarding this point. The first perspective
contends that the net effect of AI on CES is negative. This
perspective has been substantiated by research conducted at

various levels, including the city (Chen P. et al., 2022; Zhang W.
et al., 2022; Wang et al., 2023b), provincial (Wang et al., 2023a; Ding
et al., 2023), manufacturing industry (Liu et al., 2022; Li and Tian,
2023), and national (Chen Y. et al., 2022; Li et al., 2022) levels.
Furthermore, the CRE of AI demonstrates spatial heterogeneity
(Chen P. et al., 2022; Chen et al., 2022 Y.; Zhang W. et al., 2022; Li
et al., 2022; Meng et al., 2022; Wang et al., 2023b; 2024; Ding et al.,
2023), time heterogeneity (Liu et al., 2022), industry heterogeneity
(Li et al., 2022; Liu et al., 2022; Li and Tian, 2023; Wang et al., 2024),
and spatial spillover (Zhang W. et al., 2022; Ding et al., 2023)
characteristics. Some scholars have also pointed out that the
intensity of the CRE of AI is closely related to the scale of high-
skilled labor, digital endowment, and the intensity of environmental
regulation (Wang et al., 2024). The second viewpoint holds that the
net effect of AI on CES is positive. This perspective has been
substantiated by certain studies (Bianchini et al., 2023; Tang and
Yang, 2023). For example, some scholars have suggested that the
carbon increment effect of AI is weaker in regions with large green
technology endowments (Bianchini et al., 2023). The third
perspective considers the net effect of AI on CES to be uncertain.
Some scholars have proposed that estimating the overall immediate
impact of AI on CES is exceedingly challenging due to the absence of
data on the deployment rate of AI, the diversity of application areas,
and the lack of precise procedures to attribute emissions effect to AI
usage (Kaack et al., 2022). Some scholars have proposed that the
development of AI does not necessarily lead to an immediate carbon
emission effect, and AI can only reduce carbon emissions in the
industrial sector when the level of intelligence reaches a certain
threshold (Wang et al., 2024). Some scholars have also proposed that
the impact of industrial robots on CES exhibits an inverted
U-shaped relationship (Liu et al., 2024).

In summary, existing research has not systematically analyzed
the impact mechanisms and effects of AI on CES. There is a shortfall
in revealing the nonlinear CRE of AI and precisely measuring the
AIDL. The main purpose of this paper is to address these gaps by
utilizing provincial panel data from China.

3 Theoretical analysis and hypotheses
development

3.1 The net effect of AI on CES

AI can both reduce and increase CES. On the one hand, AI can
reduce CES. Firstly, AI can play a pivotal role in guiding scientists,
governments, and individuals to mitigate CES (Yi et al., 2022; Al-
Nefaie and Aldhyani, 2023; Hu and Man, 2023; Nassef et al., 2023;
Zadmirzaei et al., 2023; Zhao et al., 2023). Secondly, AI assumes a
crucial role in promoting the innovation, dissemination, and
adoption of green technologies (Chen P. et al., 2022; Li et al.,
2022), thereby reducing CES. Thirdly, AI, which plays a crucial
role in accelerating the shift of energy supply structure and energy
consumption structure from a high CES scenario to a low CES
scenario, is effective in mitigating CES (Chen Y. et al., 2022; Yi et al.,
2022). Fourthly, AI contributes to CES reduction by facilitating the
industrial structure with high CES transfer to the industrial structure
with low CES (Chen P. et al., 2022; Ding et al., 2023). Fifthly, AI can
enhance energy efficiency and GTFP (Paryanto et al., 2015), thereby
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mitigating energy consumption and CES. Sixthly, AI contributes to
CES reduction by reducing trade-related costs and enhancing
openness, because enhanced openness can attract foreign
enterprises with advanced green technologies and management
practices. Lastly, AI plays a vital role in carbon reduction by
enhancing the efficiency of carbon capture (Priya et al., 2023).

On the other hand, AI can also increase CES. Firstly, AI system,
including AI models and AI devices, is carbon-intensive due to its
heavy energy reliance, continuous upgrading, and widespread
utilization (Strubell et al., 2019; Kaack et al., 2022; Bianchini
et al., 2023; Bieser et al., 2023; Cowls et al., 2023; Jean-Quartier
et al., 2023). Secondly, AI has the potential to impede the transition
to a more sustainable energy structure, consequently contributing to
increased CES. For instance, oil companies can utilize AI to extract
and sell oil and gas more efficiently, which could hinder the energy
structure transformation. Thirdly, AI may lead to a rebound effect in
production and consumption, consequently resulting in increased
CES (Huang et al., 2022; Kaack et al., 2022). Lastly, AI can
potentially contribute to increased CES by enhancing openness
and expanding the scale of trade. Drawing upon the above, this
paper proposes the following hypothesis:

Hypothesis 1: Although AI can exert both positive and negative
impact on CES, but the CRE of AI is greater, and the net effect is a
reduction in CES.

3.2 The nonlinear CRE of AI

The nonlinear CRE of AI primarily stems from two aspects. On
the one hand, change in the AIDL can affect the marginal CRE of
AI, thereby leading to a nonlinear CRE of AI. Data, computational
infrastructure, and algorithms constitute the pivotal elements of
the AI system. Unlike other inputs, data often yields increasing
marginal return, thereby leading to an increasing marginal CRE of
AI and a nonlinear CRE of AI. For example, as the scale of data
grows, AI models trained on data can become more precise in
predicting CES and can offer more possibilities to promote carbon
reduction. Some scholars have observed an increasing positive
marginal effect of intelligent manufacturing on industrial GTFP
(Yang and Shen, 2023). Therefore, this paper proposes the
following hypothesis:

Hypothesis 2: The enhancement of AIDL can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI.

On the other hand, variations in other factors that facilitate the
innovation and implementation of AI technologies can also impact the
marginal CRE of AI, thereby leading to a nonlinear CRE of AI. Firstly,
change in the level of marketization can impact the marginal CRE of AI
and lead to a nonlinear CREofAI. Increasedmarketization can enhance
the ability to optimize resource allocation and provide more
opportunities in the market to unlock the business potential of
technologies (Yi et al., 2022). Consequently, a higher degree of
marketization encourages the innovation and application of AI
technologies, thereby magnifying the marginal CRE of AI and
leading to a nonlinear CRE of AI. Secondly, change in the level of
human capital can influence the marginal CRE of AI and lead to a
nonlinear CRE of AI. AI comprises a complex technological ecosystem.

Undoubtedly, the innovation and application of AI technologies pose
substantial challenges. Thus, a higher level of human capital enables a
more effective identification, innovation, absorption, and application of
AI technologies, drawing upon prior relevant knowledge, thereby
magnifying the marginal CRE of AI and leading to a nonlinear CRE
of AI. Thirdly, change in the level of digital infrastructures can influence
the marginal CRE of AI and lead to a nonlinear CRE of AI. Data is
pivotal in both the development and application of AI technologies. A
higher level of digital infrastructures can enhance the generation,
collection, storage, transmission, and analysis of valuable data.
Consequently, improved digital infrastructures foster the
advancement and utilization of AI technologies, thereby magnifying
themarginal CRE of AI and leading to a nonlinear CRE of AI. Fourthly,
change in the level of economic development can influence themarginal
CRE of AI and lead to a nonlinear CRE of AI. Greater economic
development will amplify the capacity and demand for AI products and
services. This, in turn, promotes the innovation and application of AI
technologies, further magnifying themarginal CRE of AI and leading to
a nonlinear CRE of AI. Fifthly, change in the level of openness can
influence the marginal CRE of AI and lead to a nonlinear CRE of AI. A
higher level of openness translates to more opportunities for acquiring
new knowledge. Consequently, greater openness facilitates the
identification, innovation, absorption, and application of AI
technologies, thereby magnifying the marginal CRE of AI and
leading to a nonlinear CRE of AI. Lastly, change in the level of
government intervention can influence the marginal CRE of AI and
lead to a nonlinear CRE of AI. AI is recognized as a strategic technology,
prompting many countries to implement policies aimed at fostering its
innovation and application. Therefore, a higher level of government
intervention accelerates the pace of innovation and application of AI
technologies, therebymagnifying themarginal CRE ofAI and leading to
a nonlinear CRE of AI. Drawing upon the above, this paper proposes
the following hypothesis:

Hypothesis 3: The improvement of marketization, human capital,
digital infrastructures, economic development, openness, and
government intervention level can magnify the marginal CRE of
AI and lead to a nonlinear CRE of AI.

4 Models and data

4.1 Models

This paper will employ the following model to test whether the
net effect of AI on CES is negative (Li et al., 2022):

CELit � α0 + α1AIDLit + α2lnpgdpit + α3goverit + α4lnfdiit

+α5lnindusit + α6lndroadit + α7urbanit + α8lngreenit

+α9estrucit + α10higherit + α11gtfpit + α12lnenergyit

+ωi + ωt + ωit (1)
where, i represents the province, and t denotes the year. CELit
represents the carbon emission level. AIDLit denotes the AI
development level. lnpgdpit, goverit, lnfdiit, lnindusit, lndroadit,
urbanit, lngreenit, estrucit, higherit, gtfpit, and lnenergyit are the
control variables, and these variables represent economic
development level, government intervention level, openness level,
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industrial scale, transportation development level, urbanization
level, green technological innovation level, energy structure,
industrial structure upgrading, green total factor productivity,
and energy consumption level, respectively. The literature basis
for selecting these control variables and the measurement
methods for the CEL, the AIDL, and the control variables are
presented in Table 1. α0 is the intercept term. ωi, ωt and ωit are
the province fixed effect, the time fixed effect, and the random error
term, respectively. The coefficient of AI is negative, indicating that
the net effect of AI on CES is negative.

As depicted in Table 1. To demonstrate the robustness of the
empirical results, this article will adopt three methods tomeasure the
CEL in the empirical analysis.

As shown in Table 1. To demonstrate the robustness of the
empirical results, this paper will also adopt three methods to
measure the AIDL in the empirical analysis. First, this study will use

the number of AI patents to characterize the AIDL. Several studies have
chosen the quantity of AI patents (lnAI) to characterize the AIDL
(Damioli et al., 2021; Yang, 2022; Bianchini et al., 2023). However,
identifying AI patents is not a straightforward task, as there is no unified
criterion for their identification, unlike green patents. To address this
challenge, most studies begin by selecting keywords related to AI and
then extract the quantity of AI patents from the patent database using a
keyword-matching approach (Damioli et al., 2021; Yang, 2022;
Bianchini et al., 2023). In this paper, we will also extract the
quantity of AI patents from the patent database based on a
keyword-matching approach. Table 2 shows the keywords related to
AI, drawing from existing studies and the AI category (Damioli et al.,
2021; Yang, 2022; Bianchini et al., 2023). In comparison with previous
research, this paper adopts a more extensive list of AI-related keywords
and further categorizes them into hardware, software, and
application layers.

TABLE 1 The variable symbols and measurement methods.

Variables Symbols Measurement methods

CEL lncb Natural logarithm of total CES (tons) (Tang and Yang, 2023)

lndcb Natural logarithm of the ratio of total CES to real GDP (tons/100 million
CNY) (Tang and Yang, 2023)

lnpcb Natural logarithm of the ratio of total CES to the year-end population (tons/
10,000 people) (Tang and Yang, 2023)

AIDL lnAI Natural logarithm of the quantity of AI patents (count) (Damioli et al., 2021;
Yang, 2022; Bianchini et al., 2023)

lnstock The operational stock of industrial robots (Chen et al., 2022b; Li et al., 2022;
Yang and Shen, 2023)

lninstall The increment of industrial robots (Chen et al., 2022b; Li et al., 2022; Yang
and Shen, 2023)

Economic development level lnpgdp Natural logarithm of real per capitaGDP (CNY per capita) (Tang and Yang,
2023)

Government intervention level gover The proportion of government expenditure in GDP (%) (Zhang et al.,
2022a)

Openness level lnfdi Natural logarithm of FDI (100,000 CNY) (Wang et al., 2023b)

Industrial scale lnindus Natural logarithm of the quantity of employees in the secondary industry
(10,000 employees) (Liu et al., 2022)

Transportation development level lndroad Natural logarithm of the density of roads and railways (miles per square
kilometre) (Chen et al., 2023)

Urbanization level urban Proportion of construction land area to the total area (%) (Li et al., 2022)

Green technological innovation level lngreen Natural logarithm of the quantity of granted green patents (count) (Zhang
et al., 2022a; Yi et al., 2022)

Energy structure estruc The ratio of coal consumption to total energy consumption (%) (Yi et al.,
2022)

Industrial structure upgrading higher The ratio of value-added in the tertiary industry to that in the secondary
industry (%) (Meng et al., 2023)

Green total factor productivity gtfp Measured using a global super-efficiency SBM model (Li et al., 2022)

Energy consumption level lnenergy Natural logarithm of total energy consumption (tons of standard coal)
(Wang et al., 2023b)

Marketization level lnmarket Natural logarithm of the marketization index (Yi et al., 2022)

Human capital level hcapital Average number of college students per 10,000 population

Digital infrastructure level digital Mobile phone exchange capacity per 10,000 people
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Second, we will use both the cumulative inventory of
operational industrial robots and the growth in the quantity of
industrial robots to measure the AIDL. Following the
methodology of related studies (Chen Y. et al., 2022; Li et al.,
2022; Yang and Shen, 2023), we can obtain the cumulative
inventory of operational industrial robots (lnstock) and the
growth in the quantity of industrial robots (lninstall) at the
provincial level, which can be measured as follows:

robotpt � ∑
j

labourpjt
labourjt

× robotjt( ) (2)

where, p represents the province. t denotes the year. j is the type of
industry. robotpt denotes the cumulative inventory of operational
industrial robots or the growth in the quantity of industrial robots.
labourpjt and labourjt represent the labour force quantity. robotjt
is the operational stock of industrial robots or the increment of
industrial robots.

This paper will employ the following model to test whether the
improvement of AIDL can magnify the marginal CRE of AI and lead
to a nonlinear CRE of AI (Li et al., 2022):

CELit � λ0 + λ1AIDLit + λ2AIDLit
2 + λ3lnpgdpit + λ4goverit

+λ5lnfdiit + λ6lnindusit + λ7lndroadit + λ8urbanit

+λ9lngreenit + λ10estrucit + λ11higherit + λ12gtfpit

+λ13lnenergyit + ξ i + ξt + ξit (3)
where, AIDLit

2 is the quadratic term of AIDL. The meanings of
other variables are similar to that in Formula (1).

This paper will employ the following models to test whether
the improvement of marketization, human capital, digital
infrastructures, economic development, openness, and

government intervention level can magnify the marginal CRE
of AI and lead to a nonlinear CRE of AI (Li et al., 2022),
respectively:

CELit � γ0 + γ1AIDLit + γ2lnpgdpit + γ3goverit + γ4lnfdiit

+γ5lnindusit + γ6lndroadit + γ7urbanit + γ8lngreenit

+γ9estrucit + γ10higherit + γ11gtfpit + γ12lnenergyit

+γ13lnmarketit + γ14lnmarketit × AIDLit + τi + τt + τit

(4)
CELit � β0 + β1AIDLit + β2lnpgdpit + β3goverit + β4lnfdiit

+β5lnindusit + β6lndroadit + β7urbanit + β8lngreenit

+β9estrucit + β10higherit + β11gtfpit + β12lnenergyit

+β13hcapitalit + β14hcapitalit × AIDLit + δi + δt + δit

(5)
CELit � ζ0 + ζ1AIDLit + ζ2lnpgdpit + ζ3goverit + ζ4lnfdiit

+ζ5lnindusit + ζ6lndroadit + ζ7urbanit + ζ8lngreenit

+ζ9estrucit + ζ10higherit + ζ11gtfpit + ζ12lnenergyit

+ζ13digitalit + ζ14digitalit × AIDLit + εi + εt + εit (6)
CELit � η0 + η1AIDLit + η2lnpgdpit + η3goverit + η4lnfdiit

+η5lnindusit + η6lndroadit + η7urbanit + η8lngreenit

+η9estrucit + η10higherit + η11gtfpit + η12lnenergyit

+η13lnpgdpit × AIDLit + ϵi + ϵt + ϵit (7)

CELit � θ0 + θ1AIDLit + θ2lnpgdpit + θ3goverit + θ4lnfdiit

+θ5lnindusit + θ6lndroadit + θ7urbanit + θ8lngreenit

+θ9estrucit + θ10higherit + θ11gtfpit + θ12lnenergyit

+θ13lnfdiit × AIDLit + ϑi + ϑt + ϑit (8)

TABLE 2 AI-related keywords for extracting the number of AI patents.

AI AI-related keywords

Hardware layer intelligent processing unit, intelligent processor, inference chip, intelligent chip, AI chip, neural network chip, brain-like chip, accelerator,
acceleration processor, acceleration chip, hard acceleration, acceleration core, acceleration unit, smart sensor, application-specific integrated
circuit, field programmable gate array, graphics processor, image signal processor, neural processing unit, tensor processor, tensor processing
unit, data processor, data processing unit, integrated processing unit, collaborative processing unit, mass processor, deep learning processor,
edge computing

Software layer natural language, computer vision, machine vision, augmented reality, AR, image recognition, speech recognition, voiceprint recognition, object
tracking, speech processing, sentiment analysis, speaker recognition, scene understanding, machine translation, speech synthesis, information
extraction, biometrics, face recognition, iris recognition, video recognition, pattern recognition, predictive analytics, semantic, speech-to-
speech, text-to-speech, character recognition, text recognition, machine learning, supervised learning, support vector machines, biological
heuristic methods, genetic algorithms, swarm intelligence, classification and regression trees, decision trees, learning algorithms, deep learning,
instance learning, multitasking learning, reinforcement learning, rule learning, transfer learning, fuzzy logic, expert system, logic programming,
neural network, CNN, latent representation, probabilistic graphical model, probabilistic reasoning, descriptive logic, generative adversarial
network, multilayer perception, MLP, hidden Markov model, HMM, clustering, random forest, stochastic method, probabilistic method,
feature selection, Bayesian network, gradient lift, gradient descent, GBDT, data mining, learning model, self-learning, objective function, logistic
regression, latent Dirichlet distribution, cognitive computing, artificial intelligence, AI, artificial reality, automatic classification, Bayesian
model, big data, computational neuroscience, data science, evolutionary computing, gesture recognition, holographic display, knowledge
representation, machine intelligence, machine-to-machine, mixed reality, neuro-linguistic programming, object detection, predictive model,
probabilistic model, statistical learning, voice recognition, virtual reality, VR, unsupervised learning, path planning, knowledge graph, swarm
intelligence, intelligent cloud, intelligent speech, quantum computing, cloud computing, image recognition, federated learning

Application layer smart industry, smart factory, smart manufacturing, smart energy, smart water affairs, smart detection, smart inspection, smart monitoring,
smart city, smart transportation, smart network, smart traffic management, smart bus, intelligent parking, unmanned driving, autonomous
driving, intelligent medical, clinical decision support system, intelligent medical case, intelligent finance, intelligent marketing, smart logistics,
smart education, smart agriculture, smart farming, smart greenhouses, smart irrigation, smart weather, smart house, smart life, smart security,
human-computer interaction, smart robot, smart search, intelligent recommendation, virtual assistant, intelligent assistant, chat machine, self-
driving car, humanoid robot, internet of things, robot, smart glasses, unmanned aerial vehicle, unmanned aerial system
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TABLE 3 The results of descriptive statistics and the data sources of variables.

Variables Observations Mean Standard
deviation

Min Max Data source

lncb 690 18.9381 1.0096 13.6048 21.2539 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

lndcb 690 10.3258 0.7453 7.3874 12.3145 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnpcb 690 10.7881 0.7981 7.1371 13.0943 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnAI 690 4.0295 2.5475 0.0000 10.3975 PatentHub (https://www.patenthub.cn/search/advanced.html)

lnstock 420 7.3783 1.7594 2.6567 11.8745 International Federation of Robotics (https://ifr.org/)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

lninstall 420 6.1720 1.6419 1.7267 10.2445 International Federation of Robotics (https://ifr.org/)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

lnpgdp 690 9.6777 0.7764 7.7003 11.5619 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnindus 690 7.7405 1.1881 4.1225 10.2340 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lndroad 690 8.5143 0.9232 5.3192 9.9881 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

gover 690 0.2012 0.1048 0.0530 0.7583 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

urban 690 0.0157 0.0280 0.0001 0.1952 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lngreen 690 5.8767 1.9457 0.0000 10.4248 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

estruc 690 0.9629 0.3790 0.0248 2.4609 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

hihger 690 1.1230 0.5707 0.4346 5.2340 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

gtfp 690 0.3732 0.3023 0.1124 4.6188 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnfdi 690 11.1415 2.5600 0.4828 17.7481 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

lnenergy 690 18.1827 0.8339 15.1765 19.8411 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

(Continued on following page)
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CELit � μ0 + μ1AIDLit + μ2lnpgdpit + μ3goverit + μ4lnfdiit

+μ5lnindusit + μ6lndroadit + μ7urbanit + μ8lngreenit

+μ9estrucit + μ10higherit + μ11gtfpit + μ12lnenergyit

+μ13goverit × AIDLit + ]i + ]t + ]it (9)
where, lnmarketit, hcapitalit, and digitalit denote marketization
level, human capital level, and digital infrastructure level. The
literature basis for selecting above three variables and the
measurement methods for above three variables are presented in
Table 1. The meanings of other variables are similar to those in
Formula (1). The coefficient of AI and the interaction term are both
significant and share the same sign, indicating that the moderating
variable can magnify the marginal CRE of AI and lead to a nonlinear
CRE of AI.

4.2 Data sources

A balanced panel dataset comprising 30 Chinese provinces for
the period spanning 1997–2019 has been used in this study. Tibet,
Hong Kong, Macao, and Taiwan are excluded from the analysis
because of data unavailability. Missing data has been imputed using
the interpolation method. For all currency-measured variables, the
influence of inflation has been removed by using the GDP index of
each province, with the base period price level set at 1998. The
natural logarithm has been applied to some variables to ensure data
stability and address heteroscedasticity issues. Table 3 shows the
results of descriptive statistics and the data sources of variables.

5 Results and discussion

5.1 The spatial and temporal characteristics
of the development of AI in China

Figure 1 demonstrates the chronological evolution of the
number of AI patents in China from 1997 to 2019. In Figure 1,
we characterize the temporal evolution of AI patent counts in
China during the study period using two indicators: the total
number of AI patents per year and the average number of AI
patents per province per year. Two significant observations can be
made from Figure 1. First, both indicators show a growth trend,

indicating that the number of AI patents in China has been
increasing consistently. Second, the values of both indicators
have shown an accelerated growth trend since 2012, especially
after 2014, with a significantly faster growth rate. This is attributed
to the breakthrough advancements made in AI technologies such
as deep learning, image recognition, natural language processing,
and intelligent chips during this period. For instance, in 2012,
Google’s deep learning algorithm achieved a breakthrough
performance in the ImageNet image recognition competition.
This demonstrates that the AI patent data used in this study
can effectively capture the evolution of AI technology
development. It further reinforces the scientific validity of the
AI patent data employed in this research.

Table 4 presents the spatial distribution of the number of AI patents
across China’s provinces in certain years. From Table 4, it can be
observed that the provinces with a high level of economic development
and technological innovation capability, such as Beijing, Tianjin,
Liaoning, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Shandong,
Guangdong, Henan, Hubei, Hunan, Shaanxi, Sichuan, and
Chongqing, possess a larger number of AI patents. This indicates
that AI technological innovation is closely related to the level of
economic development and technological innovation capability.

5.2 Results of the AI’s CRE test

5.2.1 Results of baseline regression
Table 5 shows the results based on Formula 1. Three findings

can be obtained. First, it can be found from the model 5A-5C that
when adopting different dependent variables, the AI coefficients are
highly significant and exhibit negative values. The results imply that
although AI can exert both positive and negative impacts on CES,
the CRE of AI is more substantial. In other words, the net effect of AI
on CES is negative, and the Hypothesis 1 can be supported. This
finding aligns with the conclusion in existing research (Ding et al.,
2023). Second, when replacing the core explanatory variable, related
coefficients in model 5D-5I also exhibit negative values although
some coefficients are insignificant. The results can provide support
for Hypothesis 1 again. Third, the CRE of AI in model 5A-5C is
greater than that in model 5D-5I. The results indicate that
measuring the AIDL based on Formula 2 would underestimate
the CRE of AI. Instead, employing the quantity of AI patents to
gauge the AIDL can provide a more scientifically accurate

TABLE 3 (Continued) The results of descriptive statistics and the data sources of variables.

Variables Observations Mean Standard
deviation

Min Max Data source

hcapital 690 0.0139 0.0080 0.0011 0.0389 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

digital 570 1.0946 0.7146 0.0803 3.7877 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnmarket 690 1.8155 0.3685 0.3097 2.4418 China Provincial Marketization Index Database (https://cmi.ssap.
com.cn/)
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measurement of the AI’s CRE. Therefore, in the following sections,
we will continue our analysis by using AI patent data.

5.2.2 Results of endogenous processing
Endogeneity issue may be present in this study for several

reasons. Firstly, there could be a reverse causality relationship
between AI and CES. For instance, AI can reduce CES, and
regions with higher CES may have a stronger incentive to adopt
AI for carbon reduction. Secondly, errors may arise due to missing
variables. Although the current model incorporates some control
variables, certain factors influencing CES may not have been
included. Lastly, measurement errors may exist in the model
because some variables used in this study may not have been
precisely measured due to data availability. Consequently, this
paper aims to address the endogeneity problem using the
instrumental variable (IV) method.

The IV chosen must exhibit a strong association with AI while
being unrelated to the error term. In this research, we utilize a lagged
phase of AI as the IV for endogeneity testing (Liu et al., 2022; Wang
et al., 2023b). Table 6 presents the results of the endogeneity
treatment. Model 6A details the first-stage empirical outcomes of
the 2SLS method, and the second-stage empirical results provided in
model 6B. Firstly, the null hypothesis regarding the IV’s
identifiability can be rejected because the Anderson canon. corr.
LM statistic is significant. The null hypothesis of weak IV can also be
rejected since the Cragg-Donald Wald F statistic is significant.
Because the model 6A passes the Anderson-Rubin Wald test, the
null hypothesis that the sum of endogenous regression coefficients
equals zero can be rejected. The above tests indicate that the IV we
selected is appropriate. Secondly, in model 6B, the AI coefficient is
significantly negative, reaffirming AI’s capacity to decrease CES.
This outcome aligns with the results in Table 5. Thirdly, the results
in model 6C and 6D are similar to the results in model 6B. The
results imply that when adopting different dependent variables, the
results of the endogeneity treatment are robust.

5.2.3 Results of spatial heterogeneity analysis
Variations in AIDL and CEL exist among different regions in China

due to disparities in resource endowments, developmental phases, and
national policies (Ding et al., 2023). To investigate whether there is
spatial heterogeneity in the CRE of AI, this research classifies the
30 provinces into eastern, central, and western regions. Table 7
shows related results. Two findings can be obtained. Firstly, it is
evident that when adopting different dependent variables, most of
the coefficients of AI are highly significant and exhibit negative
values although some of the coefficients of AI in the western region
are insignificant. The results imply that the net effect of AI on CES is
negative in three regions, reaffirming the validity of Hypothesis 1. This
finding aligns with the conclusion of existing research (Ding et al., 2023).
Secondly, the absolute value of the AI coefficient inmodel 7A is less than
that inmodel 7B and 7C, the absolute value of theAI coefficient inmodel
7D is greater than that in model 7E and 7F, and the absolute value of the
AI coefficient in model 7G is greater than that in model 7H, and 7I. The
results indicate that, relative to the central and western regions, AI has
significant achievement in reducing carbon intensity and per capita CES
in the eastern region. However, there is still room for improvement in
terms of reducing the total CES in the eastern region. The eastern region
has been the most active in technological innovation in China, with a
significant advantage in the innovation and application of AI
technologies. Therefore, AI can effectively reduce carbon intensity
and per capita CES in the eastern region. The eastern region has also
experienced the fastest economic and population growth in China,
leading to continuous growth in CES. Thus, AI has limited impact
on reducing the total CES in the eastern region.

5.2.4 Results of time heterogeneity analysis
Figure 1 indicates that China has experienced rapid growth in AI

patent counts since 2012. Given this, we hypothesize that there may
be temporal heterogeneity in the impact of AI on CES in China.
Therefore, we will use 2012 as a temporal dividing point to
investigate the temporal heterogeneity of AI’s influence on CES.

FIGURE 1
The chronological evolution of the number of AI patents in China from 1997 to 2019.
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Table 8 presents the results of our model estimations. Two key
findings emerge from Table 8. First, the coefficients for AI in models
8A-8F are all negative, indicating the consistent existence of a CRE
attributed to AI development. Second, compared to the AI
coefficients in models 8B, 8D, and 8F, the coefficients in models
8A, 8C, and 8E are not only highly significant but also have absolute
values much larger than those in models 8B, 8D, and 8F. This
suggests that the CRE of AI was greater during the period from
1997 to 2011 than during the period from 2012 to 2019. We can
interpret this phenomenon from two perspectives. First, while AI
development does lead to a CRE, this effect may require a longer
period to be observable. Second, the rapid growth of AI may lead to

carbon emission increases through increased electricity
consumption, consumer rebound effect, and other channels,
thereby reducing the CRE attributed to AI development.

5.3 Results of the nonlinear CRE test of AI

5.3.1 The nonlinear CRE of AI development
We can analyze the nonlinear impact of AI on CES based on the

marginal effect of AI on CES, and the marginal effect of AI on CES
can be estimated through the econometric model. Figure 2 shows
related results based on Formula 3. Two findings can be obtained.

TABLE 4 The spatial distribution of the number of AI patents in China’s provinces in some years.

Year provinces 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2006 1997

Beijing 21,756 15,462 11,662 8,372 5,946 4,510 3,564 2,893 2054 1,608 410 27

Tianjin 3,321 2,922 2,306 2018 1,257 737 600 479 285 223 61 2

Hebei 1811 1,659 1,054 906 490 306 260 187 86 94 13 2

Shanxi 738 538 342 245 171 133 118 84 46 26 7 1

Inner Mongolia 334 247 236 122 151 40 25 22 15 19 3 0

Liaoning 3,090 2,401 1862 1,422 1,241 768 659 425 392 283 105 5

Jilin 1,253 904 664 468 291 230 191 143 113 66 15 0

Heilongjiang 1803 1,479 1,396 1,017 855 546 540 371 258 217 57 8

Shanghai 9,980 7,021 5,612 3,763 2,579 1889 1,662 1,472 1,047 866 302 5

Jiangsu 18,029 15,027 9,949 7,450 5,531 3,817 3,612 2,566 1,364 872 130 2

Zhejiang 11,257 9,511 5,821 3,899 2,940 1712 1,591 1,210 751 580 110 8

Anhui 5,428 6,610 3,769 2,686 1,656 727 581 316 177 100 44 3

Fujian 3,703 3,440 2043 1,166 805 423 349 274 153 94 21 5

Jiangxi 1,228 938 607 438 255 120 111 70 44 48 6 0

Shandong 6,598 5,209 4,117 3,113 2,362 1,193 1,153 798 439 350 58 7

Henan 3,203 2,896 1833 1,041 803 362 328 259 141 87 16 5

Hubei 5,386 3,809 2,737 1,699 1,167 717 625 444 320 246 38 6

Hunan 2,988 2,622 1754 1,099 763 368 405 285 182 178 28 5

Guangdong 32,776 25,743 15,920 9,877 5,590 3,559 3,038 2,286 1,482 1,067 257 15

Guangxi 1,344 1,266 1,281 849 587 322 165 117 51 24 5 2

Hainan 217 175 110 68 61 21 12 12 8 3 0 0

Chongqing 2,935 2,289 1,689 1,329 823 500 401 258 174 131 33 1

Sichuan 6,054 6,218 4,008 3,011 2,278 1,083 908 523 319 211 39 3

Guizhou 743 603 384 281 265 88 60 35 22 12 3 1

Yunnan 1,034 800 498 334 231 122 110 65 51 45 11 2

Shaanxi 4,834 3,067 2,372 1,626 1,373 1,160 1,106 666 394 274 65 7

Gansu 494 350 236 156 140 84 111 64 27 23 6 0

Qinhai 99 65 91 84 6 10 5 2 1 3 0 0

Ningxia 189 250 180 109 47 19 16 8 8 1 0 0

Xinjiang 261 246 177 95 94 44 47 20 18 15 5 2
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Firstly, As illustrated in Figure 2, the marginal effect of AI on CES
consistently remains below zero and passes the significance test in
each subplot. The results mean that the net effect of AI on CES is
negative, and Hypothesis 1 can be supported again. Secondly, it can
also be observed that with increasing AIDL, the absolute value of the

marginal effect in each subplot grows. The results mean that the CRE
of AI follows a nonlinear trend, and a higher AIDL correspond to a
more significant CRE. In other words, improving the AIDL can
magnify the marginal CRE of AI and lead to a nonlinear CRE of AI.
Thus, Hypothesis 2 can be supported.

TABLE 5 The results of baseline regression.

Models variables 5A 5B 5C 5D 5E 5F 5G 5H 5I

lncb lndcb lnpcb lncb lndcb lnpcb lncb lndcb lnpcb

lnAI −0.0975*** −0.0896*** −0.0888***

(0.0256) (0.0257) (0.0257)

lnstock −0.0222 −0.0460* −0.0459*

(0.0260) (0.0269) (0.0269)

lninstall −0.0249 −0.0421* −0.0418

(0.0246) (0.0255) (0.0255)

Observations 690 690 690 420 420 420 420 420 420

R2 0.8459 0.6215 0.8255 0.8405 0.8278 0.8049 0.8407 0.8277 0.8047

*, **, *** represent the significance of parameter values at the 10%, 5%, and 1% levels, respectively. The same applies to the following tables. The values in parentheses represent t-values, and the

same applies to the following tables. The econometric models include all the control variables listed in Equation (1), as well as provincial fixed effect and time fixed effect. The same applies to the

following.

TABLE 6 The results of endogenous processing.

Models variables 6A 6B 6C 6D

lnAI lncb lndcb lnpcb

lnAI −0.2965*** −0.2796*** −0.2746***

(0.0646) (0.0645) (0.0646)

L.lnAI 0.3965***

(0.0347)

Observations 660 660 660 660

R2 0.9741 0.8305 0.5884 0.8116

Anderson canon. corr. LM statistic 112.92*** 112.93*** 112.92***

Cragg-Donald Wald F statistic 130.38*** 130.38*** 130.38***

Anderson-Rubin Wald test 23.00*** 20.34*** 19.50***

TABLE 7 The results of spatial heterogeneity analysis.

Models
variables

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

7A 7B 7C 7D 7E 7F 7G 7H 7I

lncb lncb lncb lndcb lndcb lndcb lnpcb lnpcb lnpcb

lnAI −0.0911*** −0.0972*** −0.0963* −0.1074*** −0.0990*** −0.0886 −0.1131*** −0.1008*** −0.0803

(0.0284) (0.0364) (0.0539) (0.0284) (0.0367) (0.0542) (0.0287) (0.0367) (0.0543)

Observations 253 184 253 253 184 253 253 184 253

R2 0.9517 0.9380 0.8302 0.8966 0.8380 0.5555 0.9369 0.9353 0.8128
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5.3.2 The nonlinear CRE of AI due to changes in
other factors

Even if the AIDL remains constant, improving the level of
marketization, human capital, digital infrastructure, economic
development, openness, and government intervention can also
amplify the marginal CRE of AI and lead to a nonlinear CRE of

AI. Figure 3 presents related results based on Formula 4–9. Three
valuable discoveries can be gleaned. Firstly, as illustrated in Figure 3,
within the range of distributions for other factors, the marginal effect
of AI on CES is significantly negative in each subplot. The results
mean that the net effect of AI on CES is negative, and Hypothesis
1 can be supported again. Secondly, it can also be observed from

TABLE 8 The results of time heterogeneity analysis.

Models variables 1997–2011 2012–2019 1997–2011 2012–2019 1997–2011 2012–2019

8A 8B 8C 8D 8E 8F

lncb lncb lndcb lndcb lnpcb lnpcb

lnAI −0.1270*** −0.0126 −0.1220*** −0.0215 −0.1211*** −0.0226

(0.0334) (0.0227) (0.0334) (0.0228) (0.0335) (0.0228)

Observations 450 240 450 240 450 240

R2 0.7625 0.6035 0.4306 0.9010 0.7414 0.5616

FIGURE 2
(A–C) respectively show the marginal effect of AI on the total CES, carbon intensity, and per capita CES. The blue line in each picture describes the
trend of the marginal effect of AI on CES, and the red curve in each picture represents a 95% confidence interval.
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Figure 3 that with the improvement in the level of these factors, the
absolute values of the marginal effect of AI on CES demonstrate a
rising pattern. The results imply that these factors can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI. Thus,
Hypothesis 3 can be supported. Thirdly, it is important to highlight
that the absolute values of the marginal effect of AI on CES in

Figures 3B, C escalate more rapidly in comparison to Figure 3A,
D–F. The outcomes imply that, among these factors under
examination, human capital and digital infrastructure exert a
more pronounced influence on magnifying the marginal CRE of
AI. One possible reason is that innovation capability and data can
play crucial roles in the innovation and application of AI

FIGURE 3
(A–F) respectively show themarginal effect of AI on carbon intensity when improving the level ofmarketization, human capital, digital infrastructure,
economic development, openness, and government intervention. The blue line in each picture describes the trend of the marginal effect of AI on CES,
and the red curve in each picture represents a 95% confidence interval. The bell-shaped curve in each picture depicts the distribution density of
each variable.
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technologies. Compared to other factors, human capital serves as a
significant support for technological innovation, and digital
infrastructure is a critical foundation for data collection and
processing.

5.4 Discussion

The above results can be discussed from two perspectives. The first
perspective is the CRE of AI. The findings in this study indicate that AI
can reduce CES, further confirming existing research viewpoints (Li
et al., 2022). However, in contrast to existing research, this study also
reveals that using the quantity of industrial robots to measure AIDL
might underestimate the CRE of AI. The second perspective is the
nonlinear CRE of AI. There has been limited focus in existing research
on the nonlinear CRE of AI, whereas this paper places particular
emphasis on this aspect. The results in this study suggest that
increasing AIDL can amplify the marginal CRE of AI and lead to a
nonlinear CRE of AI. However, some scholars have proposed that the
impact of industrial robots on CES exhibits an inverted U-shaped
relationship (Liu et al., 2024). This result indicates that increasing AIDL
will first raise the CES before eventually reducing CES. This result differs
somewhat from the findings of this paper. The discrepancy may be due
to the different methods used to measure AIDL in the two studies.
Additionally, the results in this study suggest that even if the AIDL
remains constant, changes in other factors can also amplify themarginal
CRE of AI and lead to a nonlinear CRE of AI. While existing research
has indicated that enhancing technological absorption capacity can
strengthen the CRE of AI (Li et al., 2022), this study suggests that there
are additional factors, including marketization, human capital, digital
infrastructure, economic development, openness, and government
intervention, can amplify the marginal CRE of AI and lead to a
nonlinear CRE of AI. Another novel finding relative to existing
research is human capital and digital infrastructure can play the
most significant role in amplifying the CRE of AI.

6 Conclusion and implications

6.1 Conclusion

The principal findings are as follows. Firstly, during the study
period, the number of AI patents in China has shown a continuous
growth trend. Since 2012, the growth of AI patents in China has
accelerated, especially after 2014, when the number of AI patents in
China entered a stage of rapid growth. Secondly, the provinces with a
high level of economic development and technological innovation
capability, such as Beijing, Tianjin, Liaoning, Shanghai, Jiangsu,
Zhejiang, Anhui, Fujian, Shandong, Guangdong, Henan, Hubei,
Hunan, Shaanxi, Sichuan, and Chongqing, possess a larger number
of AI patents. Thirdly, although AI can exert both positive and negative
impacts on CES, the CRE of AI is more substantial. This conclusion
holds true even after considering robustness, endogeneity, and spatial
heterogeneity. It is worth noting that employing the quantity of AI
patents to gauge the AIDL can provide a more scientifically accurate
measurement of the AI’s CRE. Fourthly, relative to the central and
western regions, AI has significant achievement in reducing carbon
intensity and per capitaCES in the eastern region. However, there is still

room for improvement in terms of reducing the total CES in the eastern
region. Fifthly, the CRE of AI was greater during the period from
1997 to 2011 than during the period from 2012 to 2019. Sixthly,
improving the AIDL can magnify the marginal CRE of AI and lead to a
nonlinear CRE of AI. Lastly, even if the AIDL remains constant,
changes in other factors such as marketization, human capital,
digital infrastructure, economic development, openness, and
government intervention can also amplify the marginal CRE of AI
and lead to a nonlinear CRE of AI.

6.2 Implications

Based on the aforementioned conclusions, the following policy
recommendations can be formulated. Firstly, facilitating AI
technology innovation and leveraging AI for carbon reduction.
AI can reduce CES, and improving the AIDL can magnify the
marginal CRE of AI. Thus, the government should prioritize the
development and utilization of AI. The enterprises should expedite
the application of AI in various activities, including green energy
production, the production of environmentally friendly products
and services, carbon emission monitoring, carbon market trading,
carbon sink management, and carbon capture technology
innovation. Secondly, when assessing the CRE of AI, it is
essential to utilize AI patent data and take into account the
nonlinear CRE of AI. Employing the quantity of AI patents to
gauge the AIDL can provide a more scientifically accurate
measurement of the AI’s CRE, and the CRE of AI exhibits a
nonlinear characteristic. Thus, government and research
institutions should take these influences into account when
assessing the CRE of AI. Lastly, optimizing the economic and
social environment is crucial to fully unleash the carbon
reduction potential of AI. Even if the AIDL remains constant,
changes in other factors such as marketization, human capital,
digital infrastructure, economic development, openness, and
government intervention can also amplify the CRE of AI. Thus,
the government, in the process of utilizing AI for carbon reduction,
should not confine its focus solely to the development of AI but also
consider the impact of other factors. For example, the government
and other relevant stakeholders should refine the marketization,
human capital, digital infrastructure, economic development,
openness, and government intervention to amplify the CRE of AI.

The main potential challenges and practical considerations in
implementing the recommended policies are follows: first,
promoting AI development requires ensuring data security.
However, managing and protecting data securely is a challenge. The
government can introduce strict data privacy and security laws to
ensure the protection of data. Second, as AI technology becomes more
advanced, ethical and moral questions arise, such as the use of AI in
decision-making processes that affect human lives. The government
should establish ethical frameworks and guidelines for AI use. This can
ensure that AI is used responsibly and does not harm human interests.

6.3 Limitations

The limitations in this study are as follows. Firstly, the research
conclusions are drawn based on Chinese data, and the processes of CES
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and AI development in China may differ from other countries.
Therefore, some research findings may not be applicable in other
nations. Secondly, this paper only considers the roles of some
factors, including marketization, human capital, digital infrastructure,
economic development, openness, and government intervention, in
amplifying the CRE of AI. There may be additional factors that can
amplify the CRE of AI. Lastly, this article analyzes the impact of AI on
CES using traditional panel econometric models. However, the impact
of AI on CES may exhibit a spatial spillover effect, which suggests that
the models used in this article still requires further improvement. In the
future, a spatial panel econometric model will be employed to analyze
the spatial spillover effect of AI on CES.
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