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Editorial on the Research Topic

Metabolomics perspectives for clinical medicine, volume II
s

Metabolomics, including lipidomics, is a rapidly evolving field that profoundly impacts
clinicalmedicine. It facilitates precise disease diagnosis, personalized treatment strategies, and
the identificationofnovelbiomarkersandmechanismsofpathogenesis.Advancements inmass
spectrometry and computational approaches have enabled the detection and identification of
metabolites and lipids in complex biological samples, providing a comprehensive biochemical
profile of an individual’s health status. Unlike genomics, which reveals genetic predisposition,
metabolomics captures the actual dynamic interplay of biochemical pathways, environmental
influences, and disease progression, making it a powerful tool for clinical applications
(Mohr et al., 2024; Singh et al., 2023; Misra, 2020; Marques et al., 2024). This Research Topic,
“Metabolomics Perspectives for Clinical Medicine: Volume II,” brings together seven original
research articles, one opinion, and one review, offering diverse insights into the evolving role
of metabolomics in clinical research.

The primary objective of the published original reports was to improve diagnostic
accuracy and patient stratification by integrating metabolomic data with traditional clinical
approaches.The study byChamoso-Sánchez et al. focuses on identifyingmetabolic subtypes
(or metabotypes) in childhood obesity using a multiplatform metabolomics approach.
The study recognizes that childhood obesity is a complex condition influenced by genetic
and environmental factors. Therefore, the objective was to improve patient classification
beyond traditional clinical and genetic assessments. The application of factor analysis and
hierarchical clustering resulted in the identification of three distinct metabolic subtypes,
despite traditional genetic and clinical markers failing to classify these patients effectively.
The findings suggest that metabolomics can improve patient stratification and support
personalized treatment strategies, offering a more precise approach to predicting disease
risks and treatment responses. In the articles by Godzien et al. and Sieminska et al., the role
of lipids in non-small cell lung cancer (NSCLC) is explored, focusing on their potential
as biomarkers for differentiating between adenocarcinoma (ADC) and squamous cell
carcinoma (SCC) subtypes, and investigating the role of oxidized phosphatidylcholines
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(oxPCs) in NSCLC patients. In the study by Godzien et al., the
authors observe that long-chain oxPCs (LCh-oxPCs) were the
predominant form in plasma, whereas short-chain oxPCs (SCh-
oxPCs) constitute the main fraction in tissue in NSCLC patients.
The study highlights that oxidized lipids play a dual role in lung
cancer, acting as both protective and harmful agents depending on
their structure and concentration. LCh-oxPCs have been associated
with protective functions in lung endothelium, whereas SCh-
oxPCs contribute to cellular damage and inflammation, potentially
driving tumor progression. The authors conclude that the SCh-
oxPCs accumulated in the cancer tissue of NSCLC patients, due
to their high toxicity, could be considered a potential therapeutic
target. Sieminska et al. reveal differences in the profile of oxPCs
and monoacylglycerol phosphatidic acids (LPAs) between ADC
and SCC subtypes. The study by Lokhov et al. aimed to explore
the application of a clinical blood metabogram (CBM) in early-
stage Parkinson’s disease (PD) diagnosis. The primary objective
was to assess the CBM’s ability to detect metabolic alterations
in the blood characteristic of PD, providing a non-invasive
diagnostic tool that could improve early detection and disease
monitoring. The study employed direct-infusion mass spectrometry
and principal component analysis together with metabolite set
enrichment analysis to analyze blood samples. The findings indicate
that CBM can effectively distinguish PD patients from healthy
controls, with a diagnostic accuracy of 77%, a specificity of
71%, and a sensitivity of 82%. The authors conclude that CBM
could be integrated into clinical practice for PD diagnosis, disease
progression monitoring, and treatment evaluation, offering a
promising avenue for personalized medicine. The novelty in the
study by Dudzik et al. lies in the application of metabolomics
to distinguish between early-onset and late-onset gestational
diabetes mellitus (GDM) using both targeted and untargeted
approaches. The study’s findings indicate that specific lipid and
carbohydrate metabolism alterations are strongly associated with
GDM, with distinct metabolic signatures differentiating early-onset
and late-onset cases. These findings suggest that metabolomics can
enhance GDM diagnostics by providing deeper insights beyond
traditional glucose measurements and clinical markers, paving
the way for more personalized treatment strategies. The research
by Warmuzińska et al. investigates lipidomic alterations in kidney
grafts during warm ischemia and preservation, utilizing solid-
phasemicroextraction combinedwith liquid chromatography-high-
resolutionmass spectrometry.The primary objective was to evaluate
how different preservation methods, including normothermic and
hypothermic perfusion, affect lipid metabolism in kidney grafts.
By employing a minimally invasive chemical biopsy technique, the
study enabled repeated sampling of the same tissue, allowing real-
time monitoring of metabolic alterations during the transplantation
process. The study’s findings indicate that normothermic ex vivo
kidney perfusion has a beneficial effect on graft function and
the chemical biopsy technique allows tracking alterations in the
graft throughout the entire transplantation procedure. Pietrowska
et al., using targeted metabolomics based on the AbsoluteIDQ

®p180 kit, investigate differences in concentrations of various
metabolites in aqueous humor collected from both eyes of the
same patients. The authors conclude that with a few exceptions,
a single eye was representative of the fellow eye in terms of the
concentration of most of the analyzed metabolites. The review by

Ye et al. focuses on the role of glutamine metabolic reprogramming
in hepatocellular carcinoma (HCC), a highly lethal liver cancer.
The study highlights how altered glutamine metabolism supports
tumor growth, immune evasion, and therapy resistance. The
authors discuss how cancer cells rewire glutamine metabolism to
fuel biosynthetic pathways, maintain redox balance, and activate
key signalling pathways like mTORC1, which promotes tumor
progression. Additionally, the review explores glutamine-related
metabolites as potential biomarkers for early HCC detection and
treatment response monitoring. The authors evaluate metabolic
targeting therapies, such as glutaminase inhibitors, which aim
to disrupt tumor-specific glutamine dependencies, offering new
therapeutic opportunities. Finally, the opinion paper by Yang et al.
discusses recent advancements inmass spectrometry imaging (MSI)
for metabolomics and its potential impact on biomedical research
and clinical applications. This powerful analytical technique enables
the spatial localization of metabolites within biological tissues,
providing valuable insights into disease mechanisms and metabolic
alterations at the cellular level. Therefore, the authors highlight
how MSI overcomes the limitations of traditional metabolomics
by preserving spatial context, which is crucial for understanding
tissue-specific metabolic variations in diseases like cancer and
neurodegenerative disorders. Additionally, the paper explores the
integration of MSI with other omics approaches, to achieve a more
comprehensive molecular profile.

All studies highlight the potential of metabolomics and
lipidomics in advancing personalized medicine by improving disease
classification, early diagnosis, and targeted treatment strategies.
However, all the authors recognize the challenges that remain in
translating these findings into clinical practice, including the need for
standardized methodologies, addressing environmental and lifestyle
influences on metabolic phenotypes, and the need to improve data
interpretation. Consequently, future studies should prioritize the
validation of metabolic biomarkers, the optimization of analytical
workflows, and the identificationofpatient subgroups thatwouldmost
benefit frommetabolic-based interventions.This, in turn, should pave
the way for more effective and individualized healthcare solutions.
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Extent of interocular (a)symmetry
based on the metabolomic profile
of human aqueous humor

Karolina Pietrowska1†, Diana Anna Dmuchowska2*†,
Adrian Godlewski1, Emil Tomasz Grochowski2,
Malgorzata Wojnar2, Wioleta Gosk1, Joanna Konopinska2,
Adam Kretowski1,3 and Michal Ciborowski1*
1Clinical Research Center, Medical University of Bialystok, Bialystok, Poland, 2Department of
Ophthalmology, Medical University of Bialystok, Bialystok, Poland, 3Department of Endocrinology,
Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland

Aims: Interocular comparison of the metabolomic signature of aqueous humor
(AH) was performed. The aim of the study was to quantitatively evaluate the
symmetry in concentrations of various metabolites belonging to different
categories.

Methods: The study included AH samples from 23 patients, 74.17 ± 11.52 years old,
undergoing simultaneous bilateral cataract surgery at the Ophthalmology
Department of the Medical University of Bialystok, Poland. Liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based
targeted metabolomics and lipidomics analyses of AH samples were performed
using the AbsoluteIDQ

®
p180 kit. Out of 188 metabolites available in the kit,

67 were measured in the majority (>70%) of the samples: 21/21 amino acids, 10/
22 biogenic amines, 9/40 acylcarnitines, 0/14 lysophosphatidylcholines, 21/
76 phosphatidylcholines, 5/15 sphingolipids, and 1/1sum of hexoses.

Results: The comparison of both eyes revealed that the concentrations of
metabolites did not differ significantly (p < 0.05) except for taurine (p = 0.037).
There was moderate-to-strong positive interocular correlation (r > 0.5) between
most metabolites regarding concentration. This was confirmed by the high
intraclass correlation coefficient (ICC) values of different levels, which varied
for the different metabolites. However, there were exceptions. Correlations
were not significant for 2 acylcarnitines (tiglylcarnitine and decadienylcarnitine)
and 3 glycerophospholipids (PC aa C32:3, PC aa C40:2, and PC aa C40:5).

Conclusion:With a few exceptions, a single eye was found to be representative of
the fellow eye in terms of the concentration of most of the analyzed metabolites.
The degree of intraindividual variability in the AH of fellow eyes differs for particular
metabolites/metabolite categories.

KEYWORDS

ophthalmology (MeSH), symmetry, aqueous humor (AH), mass spectrometry, LC-MS/MS,
metabolomics (OMICS)

OPEN ACCESS

EDITED BY

Julia Kuligowski,
La Fe Health Research Institute, Spain

REVIEWED BY

Guillermo Quintas,
Leitat Technological Center, Spain
Juan Sanchez Naves,
Opthalmedic and I.P.O., Balearic Island,
Spain

*CORRESPONDENCE

Diana Anna Dmuchowska,
diana.dmuchowska@umb.edu.pl

Michal Ciborowski,
michal.ciborowski@umb.edu.pl

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Metabolomics, a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 14 February 2023
ACCEPTED 17 March 2023
PUBLISHED 29 March 2023

CITATION

Pietrowska K, Dmuchowska DA,
Godlewski A, Grochowski ET, Wojnar M,
Gosk W, Konopinska J, Kretowski A and
Ciborowski M (2023), Extent of
interocular (a)symmetry based on the
metabolomic profile of human
aqueous humor.
Front. Mol. Biosci. 10:1166182.
doi: 10.3389/fmolb.2023.1166182

COPYRIGHT

© 2023 Pietrowska, Dmuchowska,
Godlewski, Grochowski, Wojnar, Gosk,
Konopinska, Kretowski and Ciborowski.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 29 March 2023
DOI 10.3389/fmolb.2023.1166182

8

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1166182/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1166182/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1166182/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1166182&domain=pdf&date_stamp=2023-03-29
mailto:diana.dmuchowska@umb.edu.pl
mailto:diana.dmuchowska@umb.edu.pl
mailto:michal.ciborowski@umb.edu.pl
mailto:michal.ciborowski@umb.edu.pl
https://doi.org/10.3389/fmolb.2023.1166182
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1166182


1 Introduction

Although eyes are paired organs, numerous anatomic
asymmetries have been described, even in ophthalmically healthy
patients (Cameron et al., 2017). Asymmetry has been demonstrated,
e.g., for intraocular pressure, axial length, corneal, optic nerve head,
and retinal parameters (Li et al., 2013; Hwang et al., 2014; Jacobsen
et al., 2015; Linderman et al., 2018; Baniasadi et al., 2020; Jiang et al.,
2021; Albarrán-Diego et al., 2022; Song and Hwang, 2022).

Aqueous humor (AH) is produced by the ciliary body, a part of
the uveal tract. Although no studies evaluating the interocular
symmetry of the ciliary body are available, another constituent of
the uveal tract, choroid, has been investigated extensively. Choroidal
differences exist between normal fellow eyes in adults, i.e., in the
absence of obvious pathology (Yang et al., 2016; Kim et al., 2021; Lu
et al., 2022). Consequently, one may expect that the metabolomic
profile of AH may differ between fellow eyes.

Metabolomics is the complex assessment of metabolites, small
molecules, lipids, and carbohydrates, among others (Pietrowska
et al., 2017; Pietrowska et al., 2018a). It facilitates knowledge
about physiology and pathophysiology as well as biomarkers of
occurrence, type and stage of disease, and response to treatment. It
thus allows the identification of disturbed metabolic pathways. One
of the advantages of metabolomics is its close relation with
phenotype (Kell et al., 2005). The identification of sources of bias
is of the utmost importance for proper research planning and the
interpretation of results. Biological variability due to exogenic and
endogenic factors is one such source of bias (Crews et al., 2009; Kim
et al., 2014). It is therefore important to know whether clinically
relevant differences between both eyes can be expected. Previous
reports on the biological variability of other fluids, e.g., serum,
plasma, urine, and cerebrospinal fluid are available (Crews et al.,
2009; Kim et al., 2014). However, they are not transferable to AH due
to differences in their composition. To date, there have been no
reports on the within-subject variability of AH collected at the same
time. Our study aims to address this gap.

Metabolomics is a young and dynamic discipline that is
attracting growing attention in ophthalmic research. The AH
metabolomic profiles are altered in ophthalmic and systemic
diseases, e.g., glaucoma, pseudoexfoliation syndrome, diabetic eye
disease, and myopia, among others (Pietrowska et al., 2018b; Buisset
et al., 2019; Myer et al., 2020a; Myer et al., 2020b; Dmuchowska et al.,
2020; Grochowski et al., 2020; Dmuchowska et al., 2021a). However,
there are still ambiguities, including the issue of biological
variability. Some studies have included one eye of an individual,
selected randomly or according to disease severity. However, the
laterality of the included eyes may have affected the results.
Consequently, the question arises whether one eye is
representative for the other eye of the same patient in terms of
AH metabolomics signatures. The detection of asymmetry may
support proper study planning and interpretation. Furthermore,
it might facilitate personalized medicine and indicate the need for
further assessment of potential local factors (e.g., blood supply) that
may play a significant role and would need to be taken into account
in future studies.

The aim of the study is to quantitatively evaluate the symmetry
of concentrations of various metabolites belonging to different
categories. This targeted metabolomics and lipidomics study

compares the AH composition between fellow eyes of the same
patients. To the best of our knowledge, the current investigation
presents the first report on interocular comparison of the
metabolomic signature of AH.

2 Materials and methods

2.1 Study participants and sample collection

The study included AH samples from 23 patients undergoing
simultaneous bilateral cataract surgery (SBCS) at the
Ophthalmology Department of the Medical University of
Bialystok, Poland, from 21 January 2021 to 02 December 2021
(Dmuchowska et al., 2021b). The systemic comorbidities and
medications used are presented in Supplementary Table S1. The
following were criteria for exclusion from the study: the presence of
concomitant ocular disorders except for cataract, history of surgery
or trauma, and/or diabetes mellitus.

All patients underwent a standard preoperative procedure. At
20 min before the surgery, they simultaneously and bilaterally
received topical application of the following: proxymetacaine
hydrochloride, tropicamide, phenylephrine, levofloxacin,
diclofenac, and timolol. One hour before the surgery, the
patients received oral hydroxyzine for mild sedation. Standard
disinfection with 5% ophthalmic povidone iodine was
implemented 2 min before beginning the procedure. Before
cataract extraction, the anterior chamber of the eye was
punctured using a 30 G needle; approximately 50–100 μL of
AH was aspirated, transferred to Eppendorf tubes (Eppendorf,
Hamburg, Germany), frozen, and stored at −80°C until the
analysis. The surgeries were performed in the morning from
8 a.m. to 12 p.m., with a timespan of within 15–20 min between
fellow eyes of the same patients.

2.2 Metabolomics analysis

The targeted metabolomics analysis of AH samples was
performed using liquid chromatography coupled with tandem
mass spectrometry (6470 LC–MS/MS, Agilent Technologies,
Santa Clara, California, United States), applying the methodology
and reagents included in the AbsoluteIDQ® p180 kit (Biocrates Life
Sciences AG, Innsbruck, Austria). This commercially available kit
allows the quantitative measurement of 188 metabolites: 21 amino
acids, 22 biogenic amines, 40 acylcarnitines,
14 lysophosphatidylcholines, 76 phosphatidylcholines,
15 sphingolipids, and the sum of hexoses. The sample
preparation was performed according to the Kit User Manual,
which has already been described in the literature (Sawicka-
Smiarowska et al., 2021), with minor modifications. The sample
volume used for the analysis was optimized (unpublished data,
2022), and 30 µL of AH sample was used, instead of 10 µL
recommended by the manufacturer for plasma/serum.

Spectral data processing and quantification were conducted
using MetIDQ software (version Oxygen DB110-3005-290,
Biocrates, Life Science AG, Innsbruck, Austria). The performance
of the analytical assay was evaluated by analyzing quality control
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(QC) samples at three concentration levels, where the middle level
(QC2) was injected three times. After normalizing the data based on
the QC samples, metabolites with a coefficient of variation (CV)
higher than 30% in the QC samples were excluded. Primarily, the
data below the limit of detection (LOD) were treated as missing.
Additional filtering was performed to retain metabolites detected in
at least 70% of the samples. Subsequently, missing values were
replaced with concentrations obtained based on the calibration
curves but located below the lowest concentration point on the
calibration curve. All obtained concentrations were divided by three
to take into account higher sample volume used. Finally, a data
matrix consisting of concentrations of 67 metabolites was forwarded
for statistical analysis.

2.3 Statistical analysis

Statistical analysis was carried out using R software, version
4.0.5. For each metabolite, calculations of Spearman’s correlation
coefficient and for paired Wilcoxon test between concentrations
for both eyes were conducted. Chan YH has provided the
following suggestion for interpreting Spearman’s correlation
coefficient (r rho): >0.5 or ≤ 0.5, moderate to strong; −0.3 to
0.3, poor; in between, fair correlation (Chan, 2003). For the
Wilcoxon test, both non-adjusted and adjusted p-values are
presented (based on the Benjamini–Hochberg correction for
multiple comparisons). The interclass correlation coefficient
(ICC) was calculated for each metabolite between two eyes,
assuming a two-way model and absolute agreement. Koo and
Li have provided the following suggestion for interpreting ICC: <
0.50, poor; 0.50–0.75, moderate; 0.75–0.90, good; and >0.90,
excellent (Koo and Li, 2016). In addition, the relative mean
difference was calculated as left eye minus right eye divided by
the average concentration in two eyes. Linear regression analysis
was used to verify the relationship between certain metabolites
and clinical parameters (age, sex, body mass index (BMI), and
axial length (AXL)). All calculations were based on a significance
level of 0.05.

SIMCA−P + 13.0.3.0 (Umetrics, Umeå, Sweden) was used for
multivariate statistical analysis. It was not possible to build
appropriate quality orthogonal partial least squares-discriminant
analysis (OPLS-DA) models discriminating left eye from right one
based on their metabolic profiles.

3 Results

The demographic and clinical data are presented in Table 1. As
the metabolomic signatures of both eyes were analyzed from the
same patients, the demographic and systemic factors remained the
same. There was no statistical difference in axial length (p = 0.818)
between fellow eyes.

Overall, 67 of 188 metabolites fulfilled the criteria for inclusion
based on the cutoff levels of CV and LOD: 21/21 amino
acids, 10/22 biogenic amines, 9/40 acylcarnitines,
0/14 lysophosphatidylcholines, 21/76 phosphatidylcholines,
5/15 sphingolipids, and 1/1 sum of hexoses.

Table 2 presents the mean concentration values and relative
mean difference between both eyes.

After the application of Benjamini–Hochberg correction, the
comparison of both eyes with Wilcoxon tests revealed that the
concentrations of metabolites, except for taurine, did not differ
significantly (Table 3). In general, there was a moderate-to-strong
positive interocular correlation (r > 0.5) for most of the metabolites.
This was confirmed with ICC values of different levels, which were
variable throughout different metabolites. However, there were
exceptions: correlations were not significant for 2 acylcarnitines
(C5:1 and C10:2) and 3 glycerophospholipids (PC aa C32:3, PC aa
C40:2, and PC aa C40:5).

We investigated the following clinical factors for association
with these five metabolites: age, sex, body mass index (BMI), and
axial length (AXL) (Table 4). Only BMI was found to be associated
with C5:1 (p = 0.008).

Although the taurine concentration differed significantly
between fellow eyes and was found lower in the left eye of only
four patients (Figures 1, 2), there was a linear relation (as visualized
in Figure 2) with a good ICC (0.861 CI95 [0.478–0.952]) and strong
correlation (r = 0.89, p < 0.001).

4 Discussion

The partial anatomical asymmetry of both eyes has been
described in the literature (Li et al., 2013; Hwang et al., 2014;
Jacobsen et al., 2015; Yang et al., 2016; Cameron et al., 2017;
Linderman et al., 2018; Baniasadi et al., 2020; Jiang et al., 2021;
Kim et al., 2021; Albarrán-Diego et al., 2022; Lu et al., 2022;
Song and Hwang, 2022). We investigated whether this
extrapolates to the AH metabolomic composition. The aim of
the study was to determine whether concentrations of various
metabolites in one eye are representative of the fellow eye of the
same patient.

In general, there were minimal interocular differences and
substantial interocular correlation in most of the studied
metabolites. However, we found some differences between both
eyes. We demonstrated interocular asymmetry, though with high
correlation, for concentrations of taurine. Taurine is an
aminosulfonic acid that plays a role in several intracellular
biological processes, including osmoregulation, antioxidation, and
retinal development (Ripps and Shen, 2012). The retina is the most
taurine-rich organ in the body, containing more taurine than any
other amino acid (Castelli et al., 2021). People following vegetarian

TABLE 1 Baseline patient characteristics.

Characteristics Value

Number of patients 23

Age, years, mean ± SD (years) 74.17 ± 11.52

Sex, female, n (%) 13 (56.5)

BMI, mean ± SD 27.99 ± 5.45

AXL, right eye, mm, median (Q1; Q3) 23.07 (22.56; 23.88)

AXL, left eye, mm, median (Q1; Q3) 23.01 (22.49; 23.82)

BMI, body mass index; AXL, axial length.
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TABLE 2 Metabolite concentration values in fellow eyes.

Metabolite
category

Metabolite
namea

Eyes with
metabolite
concentration
above LOD (%)

Mean
concentration±SD in
right eye [µM]

Mean
concentration±SD in
left eye [µM]

Relative
mean
difference
(%) between
fellow eyes

Coefficient
of variation
for QC2

Acylcarnitines C0 100.0 17.009 ± 5.352 17.149 ± 5.226 0.8 7.3

C2 100.0 4.208 ± 1.266 4.174 ± 1.193 −0.8 9.8

C3 100.0 0.432 ± 0.246 0.448 ± 0.240 3.6 6.03

C3-DC
(C4-OH)

84.8 0.021 ± 0.007 0.021 ± 0.007 0.8 7.9

C4 100.0 0.129 ± 0.041 0.136 ± 0.044 5.9 7.9

C5 100.0 0.143 ± 0.048 0.150 ± 0.051 4.7 7.7

C5-OH (C3-
DC-M)

97.8 0.031 ± 0.007 0.032 ± 0.010 4.5 9.9

C5:1 89.1 0.015 ± 0.010 0.015 ± 0.009 −3.0 13.4

C10:2 89.1 0.031 ± 0.009 0.029 ± 0.006 −6.3 27.0

Aminoacids Ala 100.0 405.507 ± 117.704 425.304 ± 124.295 4.8 4.4

Arg 100.0 108.304 ± 27.027 111.536 ± 26.590 2.9 10.2

Asn 100.0 36.275 ± 6.141 37.268 ± 6.595 2.7 3.5

Asp 100.0 3.153 ± 1.461 3.806 ± 2.040 18.8 2.2

Cit 100.0 4.942 ± 1.723 4.996 ± 1.803 1.1 4.3

Gln 100.0 830.638 ± 106.162 848.333 ± 124.914 2.1 7.5

Glu 100.0 10.390 ± 4.624 11.655 ± 5.516 11.5 6.02

Gly 100.0 35.270 ± 18.793 37.725 ± 20.386 6.7 8.2

His 100.0 76.246 ± 13.773 78.449 ± 12.471 2.9 9.7

Ile 100.0 70.725 ± 22.952 73.319 ± 23.170 3.6 9.3

Leu 100.0 161.957 ± 38.741 167.768 ± 36.503 3.5 8.9

Lys 100.0 177.449 ± 26.257 186.232 ± 21.099 4.8 9.9

Met 100.0 35.342 ± 5.680 36.412 ± 5.666 3.0 8.9

Orn 100.0 27.881 ± 8.664 28.735 ± 8.760 3.0 10.3

Phe 100.0 108.609 ± 19.193 112.507 ± 16.839 3.5 8.4

Pro 100.0 50.878 ± 23.456 53.620 ± 26.263 5.3 7.2

Ser 100.0 201.681 ± 46.241 204.536 ± 38.421 1.4 8.4

Thr 100.0 125.116 ± 27.449 127.826 ± 28.299 2.1 5.0

Trp 100.0 30.839 ± 4.088 31.946 ± 5.184 3.5 9.1

Tyr 100.0 96.000 ± 12.242 99.913 ± 14.891 4.0 9.4

Val 100.0 275.348 ± 59.049 285.710 ± 52.170 3.7 10.0

Biogenic Amines ADMA 100.0 0.539 ± 0.114 0.548 ± 0.113 1.6 5.6

alpha-AAA 100.0 1.814 ± 0.579 1.705 ± 0.542 −6.2 12.2

Carnosine 100.0 0.026 ± 0.033 0.027 ± 0.030 4.3 10.5

Creatinine 100.0 53.261 ± 18.331 53.604 ± 19.004 0.6 3.8

Kynurenine 100.0 0.948 ± 0.198 0.973 ± 0.241 2.6 8.9

(Continued on following page)
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or vegan diets have been shown to have lower levels of taurine in
their plasma (Laidlaw et al., 1988). However, this would not explain
the interocular difference.

On the other hand, correlations were not significant but the
concentrations were comparable for two acylcarnitines (C5: 1 and
C10: 2) and three glycerophospholipids (PC aa C32: 3, PC aa C40: 2,

TABLE 2 (Continued) Metabolite concentration values in fellow eyes.

Metabolite
category

Metabolite
namea

Eyes with
metabolite
concentration
above LOD (%)

Mean
concentration±SD in
right eye [µM]

Mean
concentration±SD in
left eye [µM]

Relative
mean
difference
(%) between
fellow eyes

Coefficient
of variation
for QC2

Met-SO 100.0 0.533 ± 0.164 0.535 ± 0.176 0.3 11.02

Putrescine 100.0 0.155 ± 0.051 0.160 ± 0.047 3.5 5.6

SDMA 100.0 0.501 ± 0.158 0.507 ± 0.171 1.3 6.5

t4-OH-Pro 100.0 5.038 ± 3.050 5.207 ± 2.820 3.3 8.1

Taurine 100.0 65.652 ± 25.612 75.319 ± 29.669 13.7 5.9

Glycerophospholipids PC aa C32:0 97.8 0.036 ± 0.028 0.038 ± 0.044 6.7 6.4

PC aa C32:1 80.4 0.021 ± 0.016 0.021 ± 0.021 1.5 8.5

PC aa C32:3 71.7 0.001 ± 0.001 0.001 ± 0.001 13.1 18.2

PC aa C34:1 100.0 0.264 ± 0.209 0.258 ± 0.302 −2.2 7.03

PC aa C34:2 87.0 0.135 ± 0.118 0.124 ± 0.158 −8.7 8.03

PC aa C36:1 100.0 0.068 ± 0.054 0.067 ± 0.078 −1.2 9.8

PC aa C36:3 76.1 0.058 ± 0.053 0.054 ± 0.076 −6.9 8.02

PC aa C36:4 95.7 0.086 ± 0.080 0.089 ± 0.126 2.6 9.1

PC aa C38:3 89.1 0.032 ± 0.033 0.030 ± 0.041 −5.4 7.0

PC aa C38:4 73.9 0.077 ± 0.079 0.075 ± 0.102 −3.7 8.7

PC aa C38:5 73.9 0.030 ± 0.029 0.028 ± 0.042 −6.4 8.5

PC aa C38:6 73.9 0.036 ± 0.037 0.036 ± 0.051 −1.4 7.3

PC aa C40:2 76.1 0.001 ± 0.001 0.001 ± 0.001 23.1 5.7

PC aa C40:5 76.1 0.007 ± 0.007 0.007 ± 0.009 3.6 10.03

PC aa C40:6 82.6 0.032 ± 0.022 0.032 ± 0.035 0.1 8.0

PC ae C34:1 97.8 0.013 ± 0.014 0.013 ± 0.018 0.1 8.2

PC ae C36:3 89.1 0.005 ± 0.006 0.006 ± 0.010 3.4 7.9

PC ae C36:4 73.9 0.021 ± 0.018 0.019 ± 0.022 −11.1 6.4

PC ae C36:5 71.7 0.010 ± 0.011 0.010 ± 0.018 2.1 9.7

PC ae C38:4 76.1 0.012 ± 0.014 0.010 ± 0.020 −13.2 8.3

PC ae C40:5 91.3 0.003 ± 0.003 0.003 ± 0.004 23.2 7.0

Sphingolipids SM C16:0 73.9 0.146 ± 0.148 0.143 ± 0.214 −2.4 9.9

SM C16:1 97.8 0.025 ± 0.019 0.024 ± 0.026 −1.8 10.2

SM C18:0 71.7 0.053 ± 0.051 0.055 ± 0.079 4.5 10.6

SM C18:1 95.7 0.032 ± 0.032 0.030 ± 0.034 −8.5 9.9

SM C24:1 71.7 0.076 ± 0.088 0.078 ± 0.130 2.5 12.6

Sugars H1 100.0 4,045.594 ± 2,514.684 3,940.290 ± 2,260.815 −2.6 9.8

aThe full list of individual metabolites is available at https://biocrates.com/wp-content/uploads/2022/02/biocrates-p180-list-of-metabolites-v2-2021.pdf (accessed 30 October 2022).

LOD, limit of detection; QC, quality control.
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TABLE 3 Comparison of metabolite concentrations between fellow eyes.

Metabolite
category

Metabolite
namea

Eyes with
metabolite
concentration
above LOD (%)

ICC between
both eyes

Correlation
between
both eyes

p-value of WILCOXON test

ICC 95% CI r pb Without
correction for
multiple
comparisons

With
BENJAMINI–HOCHBERG
correction for multiple
comparisons

Acylkarnitines C0 100.0 0.928 0.838–0.969 0.93 <0.001 0.6 0.7

C2 100.0 0.927 0.837–0.969 0.87 <0.001 0.8 0.9

C3 100.0 0.974 0.941–0.989 0.95 <0.001 0.2 0.6

C3-DC
(C4-OH)

84.8 0.650 0.328–0.836 0.59 0.003 0.7 0.8

C4 100.0 0.904 0.772–0.960 0.94 <0.001 0.02 0.3

C5 100.0 0.867 0.715–0.941 0.83 <0.001 0.3 0.6

C5-OH (C3-
DC-M)

97.8 0.653 0.344–0.836 0.58 0.004 0.3 0.6

C5:1 89.1 0.085 0.259–0.344 −0.10 0.639 0.9 0.9

C10:2 89.1 0.350 −0.057-
0.659

0.36 0.095 0.3 0.6

Aminoacids Ala 100.0 0.941 0.840–0.976 0.88 <0.001 0.04 0.5

Arg 100.0 0.855 0.692–0.935 0.81 <0.001 0.4 0.6

Asn 100.0 0.870 0.719–0.943 0.87 <0.001 0.2 0.6

Asp 100.0 0.750 0.432–0.893 0.77 <0.001 0.01 0.2

Cit 100.0 0.958 0.905–0.982 0.96 <0.001 0.8 0.9

Gln 100.0 0.709 0.432–0.865 0.60 0.003 0.3 0.6

Glu 100.0 0.896 0.694–0.960 0.95 <0.001 0.006 0.2

Gly 100.0 0.928 0.836–0.969 0.89 <0.001 0.1 0.6

His 100.0 0.784 0.562–0.902 0.68 <0.001 0.3 0.6

Ile 100.0 0.910 0.803–0.961 0.88 <0.001 0.3 0.6

Leu 100.0 0.806 0.600–0.912 0.78 <0.001 0.3 0.6

Lys 100.0 0.475 0.108–0.733 0.45 0.03 0.1 0.6

Met 100.0 0.653 0.344–0.835 0.56 0.006 0.5 0.6

Orn 100.0 0.901 0.785–0.957 0.93 <0.001 0.4 0.6

Phe 100.0 0.648 0.339–0.832 0.42 0.05 0.5 0.6

Pro 100.0 0.953 0.889–0.980 0.89 <0.001 0.1 0.6

Ser 100.0 0.812 0.607–0.916 0.87 <0.001 0.5 0.7

Thr 100.0 0.926 0.836–0.968 0.93 <0.001 0.4 0.6

Trp 100.0 0.548 0.195–0.778 0.57 0.004 0.6 0.7

Tyr 100.0 0.519 0.159–0.760 0.62 0.002 0.3 0.6

Val 100.0 0.790 0.571–0.905 0.73 <0.001 0.4 0.6

Biogenic Amines ADMA 100.0 0.921 0.824–0.965 0.87 <0.001 0.6 0.7

alpha-AAA 100.0 0.688 0.400–0.853 0.60 0.003 0.2 0.6

Carnosine 100.0 0.976 0.944–0.990 0.92 <0.001 0.4 0.6

(Continued on following page)
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TABLE 3 (Continued) Comparison of metabolite concentrations between fellow eyes.

Metabolite
category

Metabolite
namea

Eyes with
metabolite
concentration
above LOD (%)

ICC between
both eyes

Correlation
between
both eyes

p-value of WILCOXON test

ICC 95% CI r pb Without
correction for
multiple
comparisons

With
BENJAMINI–HOCHBERG
correction for multiple
comparisons

Creatinine 100.0 0.987 0.970–0.994 0.97 <0.001 0.7 0.8

Kynurenine 100.0 0.744 0.487–0.882 0.80 <0.001 0.3 0.6

Met-SO 100.0 0.651 0.329–0.836 0.78 <0.001 0.4 0.6

Putrescine 100.0 0.895 0.772–0.954 0.88 <0.001 0.3 0.6

SDMA 100.0 0.964 0.917–0.984 0.97 <0.001 1.0 1.0

t4-OH-Pro 100.0 0.972 0.937–0.988 0.93 <0.001 0.2 0.6

Taurine 100.0 0.861 0.478–0.952 0.89 <0.001 0.001 0.04

Glycerophospholipids PC aa C32:0 97.8 0.770 0.531–0.896 0.77 <0.001 0.99 1.0

PC aa C32:1 80.4 0.763 0.515–0.892 0.77 <0.001 0.97 1.0

PC aa C32:3 71.7 0.154 0.126–0.280 −0.11 0.6 0.7 0.8

PC aa C34:1 100.0 0.778 0.542–0.900 0.75 <0.001 0.2 0.6

PC aa C34:2 87.0 0.576 0.218–0.796 0.54 0.007 0.09 0.6

PC aa C36:1 100.0 0.828 0.634–0.923 0.75 <0.001 0.4 0.6

PC aa C36:3 76.1 0.623 0.287–0.821 0.60 0.003 0.05 0.5

PC aa C36:4 95.7 0.342 −0.087-
0.660

0.52 0.01 0.2 0.6

PC aa C38:3 89.1 0.602 0.256–0.810 0.52 0.010 0.5 0.6

PC aa C38:4 73.9 0.631 0.298–0.826 0.61 0.002 0.4 0.6

PC aa C38:5 73.9 0.510 0.124–0.760 0.65 0.001 0.1 0.6

PC aa C38:6 73.9 0.466 0.065–0.735 0.63 0.001 0.06 0.5

PC aa C40:2 76.1 0.053 −0.359-
0.448

−0.001 >0.9 0.6 0.7

PC aa C40:5 76.1 0.680 0.376–0.851 0.36 0.09 0.7 0.9

PC aa C40:6 82.6 0.669 0.357–0.846 0.70 <0.001 0.3 0.6

PC ae C34:1 97.8 0.853 0.683–0.935 0.50 0.02 0.8 0.9

PC ae C36:3 89.1 0.640 0.312–0.831 0.43 0.04 0.8 0.9

PC ae C36:4 73.9 0.820 0.626–0.919 0.44 0.04 0.2 0.6

PC ae C36:5 71.7 0.773 0.534–0.897 0.55 0.006 0.3 0.6

PC ae C38:4 76.1 0.759 0.513–0.890 0.59 0.003 0.08 0.6

PC ae C40:5 91.3 0.681 0.389–0.850 0.48 0.02 0.4 0.6

Sphingolipids SM C16:0 73.9 0.804 0.590–0.912 0.68 0.001 0.07 0.6

SM C16:1 97.8 0.780 0.545–0.900 0.57 0.004 0.4 0.6

SM C18:0 71.7 0.760 0.511–0.891 0.63 0.001 0.3 0.6

(Continued on following page)
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TABLE 3 (Continued) Comparison of metabolite concentrations between fellow eyes.

Metabolite
category

Metabolite
namea

Eyes with
metabolite
concentration
above LOD (%)

ICC between
both eyes

Correlation
between
both eyes

p-value of WILCOXON test

ICC 95% CI r pb Without
correction for
multiple
comparisons

With
BENJAMINI–HOCHBERG
correction for multiple
comparisons

SM C18:1 95.7 0.852 0.686–0.934 0.66 0.001 0.3 0.6

SM C24:1 71.7 0.814 0.608–0.917 0.75 <0.001 0.2 0.6

Sugars H1 100.0 0.971 0.934–0.988 0.89 <0.001 0.6 0.7

aThe full list of individual metabolites is available at https://biocrates.com/wp-content/uploads/2022/02/biocrates-p180-list-of-metabolites-v2-2021.pdf (accessed 30 October 2022).
bp < 0.05 in bold.

LOD, limit of detection; ICC, interclass correlation coefficient; CI, confidence interval; r rho Spearman correlation coefficient.

TABLE 4 Effect of age, sex, BMI, and AXL on interocular differences (right eye–left eye) on selected metabolites.

Characteristics C5: 1a C10: 2 PC aa C32: 3 PC aa C40: 2 PC aa C40: 5

β (SE) pb β (SE) p β (SE) p β (SE) p β (SE) p

Age, years 0.0003 (0.0004) 0.5 −0.0003 (0.0003) 0.2 −0.0001 (0.0001) 0.2 0.00001 (0.00004) 0.9 0.0001 (0.0003) 0.9

Sex, female 0.002 (0.006) 0.7 −0.0003 (0.004) 0.9 0.001 (0.001) 0.3 −0.001 (0.001) 0.3 −0.002 (0.003) 0.6

BMI −0.001 (0.001) 0.008b −0.0003 (0.0003) 0.4 0.0001 (0.0001) 0.2 −0.00001 (0.0001) 0.9 −0.0001 (0.0003) 0.7

AXL, right eye, mm −0.003 (0.003) 0.3 −0.002 (0.002) 0.3 −0.0002 (0.0004) 0.6 −0.00002 (0.0003) 0.9 0.001 (0.002) 0.5

AXL, left eye, mm −0.001 (0.003) 0.6 −0.0009 (0.002) 0.6 0.00001 (0.0003) 1.0 −0.0001 (0.0002) 0.6 0.001 (0.001) 0.4

Linear regression analysis. β beta coefficient, SE, standard error; BMI, body mass index; AXL, axial length.
aThe full list of individual metabolites is available at https://biocrates.com/wp-content/uploads/2022/02/biocrates-p180-list-of-metabolites-v2-2021.pdf (accessed 30 October 2022).
bp < 0.05 in bold.

FIGURE 1
Box and whisker plot showing differences in the concentration of taurine in fellow eyes (Wilcoxon test with Benjamini–Hochberg correction for
multiple comparisons, p = 0.037).
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and PC aa C40: 5). Using regression analysis, we tested their
association with clinical factors (age, sex, BMI, and AXL). Except
for the association of C5: 1 with BMI, no other relations were
confirmed.

The general role of acylcarnitines is to transport acyl groups
(organic acids and fatty acids) from the cytoplasm into the
mitochondria so they can be broken down to produce energy.
This process is known as beta-oxidation. C5: 1 is a member of
the most abundant group of carnitines in the body, comprising more
than 50% of all acylcarnitines quantified in tissues and biofluids
(Makarova et al., 2019). Glycerophospholipids (including
phosphatidylcholine) are the main component of biological
membranes.

We speculate that the asymmetry of these six metabolites could
be due to different rates of either production or metabolism. In
contrast to this locally based hypothesis, the asymmetry in the
anatomy is worth noting. Lu et al., who assessed the asymmetry
of choroidal thickness, suspected that it can be attributed to
asymmetrical choroidal blood flow. This may result from an
anatomical asymmetry of the aortic arch and common carotid
arteries, as well as from the variable anatomy of ciliary arteries
and choroidal venous drainage (Lu et al., 2022). In case of two
acylcarnitines and two PCs coefficient of variation calculated for the
QC2 samples was higher than observed between-eyes variability
(Table 2), therefore, observed variations can partly be affected by the
analytical variability.

According to Cameron et al., researchers should avoid the potential
pitfall of forcing an expectation of symmetry on paired structures, and
clinicians should be aware of both the benefits and limitations in
extrapolating single-eye data to the fellow eye in diagnosis and
prognosis (Cameron et al., 2017). Based on our results, we confirm

that the assumption of metabolomic symmetry of AH composition in
fellow eyes should be approached with caution, as there may be
asymmetry in the case of certain metabolites/metabolite categories. It
is worth mentioning, that we did not observe the relationship between
inter-individual variability in metabolites’ concentrations and between-
eyes differences in the concentrations (data not shown). Our findings
may have clinical significance when planning studies and interpreting
results.

The main limitation of the study is the relatively low number of
participants, which were all from a single center. The use of a single
ethnicity minimizes the confounding effects of ethnicity but impacts the
generalizability of the results. Furthermore, only selected groups of
metabolites were analyzed in the study. Due to the cross-sectional
design, patients with ocular disease at a very early stage or those who
will later develop ocular diseases may have been included. However, as
opposed to the relatively easy collection of, e.g., blood or urine, AH can
only be obtained surgically in low amounts of about 0.1 mL. Therefore,
longitudinal studies are rather infeasible. Additionally, applied
methodology allows measurement of only 188 specific metabolites.
Untargeted metabolomics may reveal intraocular differences in other
metabolites, not included in the kit used. Another limitation is the lack
of information on the Lens Opacities Classification System (LOCS)
grading. It would be helpful for the interpretation of our results, e.g.,
taurine levels. There is only the information regarding the opacified
layer of the lens but with interindividual variability (cortical/nuclear/
subcapsular, Supplementary Table S1. Baseline characteristics of
patients). However, on the slit lamp examination the cataracts were
symmetrical within the same individuals.

On the other hand applied technology allows quantification of
metabolites, which would not be possible using untargeted
approach. Another strength of the study is the simultaneous

FIGURE 2
Scatterplot showing correlations of the concentration of taurine in fellow eyes (r = 0.89, p < 0.001; ICC = 0.861 [0.478–0.952]). The blue line
indicates the theoretical perfect interocular agreement of concentrations.
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analysis of a relatively high number of metabolites from different
groups. Furthermore, the simultaneous collection of AH from fellow
eyes is a rather unique situation. Samples obtained in such a way
would make it possible to minimize the between-group impacts of
genetic, dietary, lifestyle, systemic, or environmental factors, as their
influence is presumably comparable on both eyes (e.g., age, BMI, sex,
smoking, diet, circadian rhythms, time of year, concomitant
systemic diseases, and medication) (Crews et al., 2009).

Our results may serve as a basis for future studies. An interesting
direction of future research would be the analysis of intraindividual
biological variability of AH in time. As the acquisition of AH is
surgical, patients with bilateral delayed (not simultaneous) cataract
surgery could be included. The knowledge of results from the
current study would be helpful to properly interpret such
findings. Our results require validation in a different cohort and
for different groups of metabolites. Variable analytical methodology
using a multiplatform approach would be valuable for this purpose.
In addition, the correlation of metabolite concentrations in serum
and AHmight help in identifying metabolites whose concentrations
are more locally dependent. The intraindividual variability in the
metabolome between eyes of different axial lengths would be
informative as well as relation to the LOCS grading.

5 Conclusion

On the basis of our findings, we conclude that one eye is
representative of the fellow eye in terms of the concentration of
most of the analyzed metabolites, with only a few exceptions.

The degree of intraindividual variability in the AH of fellow eyes
differs within particular metabolites/metabolite categories.
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Recently, some studies based on analytical methods and the application of mass
spectroscopic imaging technology have been published in some academic journals. These
studies have shown that mass spectrometry imaging (MSI) is the dominant technology
applied in spatial localization, through scanning slices of biological samples and generating
charged ions, obtaining the spatial distribution characteristics of various molecules via ion
detectors, and performing data dimensionality reduction, statistical calculation, and visual
analysis. These articles promote the development of MSI technology, which helps to
efficiently and accurately mine MSI data to identify important molecular signatures,
promote the application of MSI in clinical diagnosis, drug research and other fields, and
lay the foundation for screening biomarkers of related diseases and elucidating the
pharmacodynamic mechanism of drugs in organ microregions.

Spatial metabolomics uses MSI technology to analyze the species, content and spatial
distribution of metabolites in different tissues and organs, can overcome the bottleneck of
spatial information loss in traditional metabolomics research (Qiu et al., 2023). Spatial
metabolomics technology mainly relies on MSI and metabolomics technology. The specific
process should include sample preparation, matrix selection and coverage, data acquisition
and analysis, etc. (Figure 1). Luo et al. (2023) had identified a novel metabolic subtype of type
2b mitotic muscle fibers by cross-analyzing metabolomics analysis with MSI data.
Fingerprint metabolites enriched include acylcarnitines, cyclic ADP-ribose, and thiamine
pyrophosphate, etc., which have anti-fatigue metabolic properties. Visualizing muscle fibers
by using MSI may improve our understanding of muscle fiber remodeling under
physiological and pathological conditions.

Linear dimensionality reduction methods, such as principal component analysis (PCA)
and non-negative matrix factorization (NNMF), are widely used in MSI data analysis. In
recent years, the non-linear dimensionality reduction method T-distributed random
neighbor embedding has been widely used in omics data analysis. By means of
dimensionality reduction, redundant information and noise information in high-
dimensional space can be effectively removed, and the accuracy of image recognition
can be improved. PCA, as one of the commonly used linear dimension reduction
methods, uses the projection method to compress the high dimensional space to the low
dimension, and maintains the characteristics that contribute the most to the variance of the
data set. Non-linear dimensionality reduction is widely used in image data recognition
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problems to obtain better recognition results. As an unsupervised
learning algorithm, NNMF is mainly used to extract useful features
in multi-dimensional data, and has gradually become a widely
accepted method for data processing in research fields such as
biomedicine and image recognition. Recently, Abdelmoula et al.
(2021) had developed a peak processing and data analysis method
based on neural networks. This method is a molecular model used to
predict atomic data by associating encoded features with primary
data by minimizing the error between original and real data. This
method is suitable for analyzing MSI low capacity data without
preprocessing and peak extraction, and is generally applicable to
different acquisition devices. Optimizing the data processing process
and establishing a data clustering analysis scheme are crucial in
MSI’s data analysis.

The brain is the central target of central nervous system diseases,
and most central nervous system (CNS) drugs will produce
pharmacological effects by acting on the brain. Therefore, mining
the spatial information of drugs and related endogenous metabolites
in the brain is of great significance for evaluating the drug efficacy
and elaborating the relevant mechanism of action. Brain imaging
techniques are used for the analysis of brain tissue structure, which
cannot be comprehensively analyzed at the molecular level, and the
types of substances that can be monitored are also limited. To be
precise, a single metabolomics method can only reflect the average
level of metabolites in a sample and lacks spatial distribution
information. Liu D et al. (2022) studied the effects of olanzapine
(OLZ) drugs on brain tissue and found that olanzapine exerted
therapeutic effects or caused adverse reactions by regulating the

metabolism of aspartate, glutamate and glycerophospholipid. Jin B
et al. (2022) also investigated the spatiotemporal and dynamic
distribution characteristics of endogenous metabolites in mouse
brain microregions under YZG-331 intervention, and found the
functional metabolite GABA related to the drug effect of YZG-331,
and located the metabolic pathways “GABAergic synapse” and
“histidine metabolism”. This study is helpful to interpret the
mechanism of drug action of new drug candidates for the central
nervous system and to find potential multi-targets, and to provide a
visual analysis method for drug development.

MSI is more suitable for the identification of proteins, activation
peptides, lipids and small biomolecules in tissue samples. These
articles continue to improve MSI technology in the areas of sample
pretreatment, data processing and functional analysis. MSI
technology was used to analyze the spatial distribution of
biological samples and reveal the molecular distribution
mechanism of biological molecules. By combining MSI
technology with multi-omics technology, spatial information and
accurate quantification can be effectively correlated, which is of great
significance for early diagnosis and prognosis of diseases, biomarker
discovery, etc.

AlthoughMSI has been widely used in recent years, there are still
some limitations. For example, the imaging analysis of compounds
with low abundance, low ionization efficiency, and easy interference
by matrix peaks is poor, and the method of dimensionality reduction
and clustering analysis of high-dimensional MSI data is not
immaculate. Future work should focus on developing powerful
statistical and deep learning methods to rapidly extract

FIGURE 1
Analysis workflow for a typical spatial metabolomics. It mainly covers two parts: mass spectrometry imaging (A–C) andmetabolomics studies (D–F).
Sample collection and pretreatment for mass spectrometry imaging (A), selection and embedding of matrix (B), data collection and analysis for mass
spectrometry imaging (C), Data exaction of ROI (D), data processing and analysis (E), and biological function description (F). Biomarker screening and
discovery (G). The figure is created by BioRender and MetaboAnalyst.
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comprehensive molecular information with diagnostic capabilities,
and developing new strategies for various qualitative and
quantitative MSI based on simulated tissue models or standard
deposition. The development of MSI technology has broad
application prospects in the fields of omics analysis, precision
medicine, toxicology and drug metabolism.
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Hepatocellular carcinoma (HCC) is a lethal disease with limited management
strategies and poor prognosis. Metabolism alternations have been frequently
unveiled in HCC, including glutamine metabolic reprogramming. The
components of glutamine metabolism, such as glutamine synthetase,
glutamate dehydrogenase, glutaminase, metabolites, and metabolite
transporters, are validated to be potential biomarkers of HCC. Increased
glutamine consumption is confirmed in HCC, which fuels proliferation by
elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism
also serves as a nitrogen source for amino acid or nucleotide anabolism. In
addition, more glutamine converts to glutathione as an antioxidant in HCC to
protect HCC cells from oxidative stress. Moreover, glutamine metabolic
reprogramming activates the mTORC signaling pathway to support tumor cell
proliferation. Glutamine metabolism targeting therapy includes glutamine
deprivation, related enzyme inhibitors, and transporters inhibitors. Together,
glutamine metabolic reprogramming plays a pivotal role in HCC identification,
proliferation, and progression.

KEYWORDS

hepatocellular carcinoma, glutamine metabolic reprogramming, metabolic targeting
therapy, mTORC, glutamine-related metabolites

1 Introduction

Hepatocellular carcinoma is a heterogeneous and lethal disease with increasing incidence
andmortality globally (Wang et al., 2021; Llovet et al., 2022a). More than 80% of HCC occurs
in Eastern Asia and sub-Saharan Africa with limited medical resources (Yang et al., 2019).
Genetic predisposition, risk factors, tumor microenvironment (TME), and underlying
disease promote the malignant hepatocyte transformation, development, and progression
(Yang et al., 2019; Llovet et al., 2021). The management of HCC is according to the tumor
stages with mostly applicated Barcelona Clinic Liver Cancer (BCLC) staging system. Briefly,
curative therapeutics, including liver resection, transplantation, and tumor ablation, are
selected for early-stage patients; Transarterial chemoembolization (TACE) is suitable for
intermediate stages; systemic therapies are candidates for advanced settings, whereas best
supportive care is most appropriate for end-stage of HCC (Llovet et al., 2021). Extended
morphometric and biological criteria applied for surgery and liver transplantation for HCC
are confirmed to promote the overall survival of some selected patients. However, 22%–25%
of patients are recurrent after resection in 10 years, and 50%–70% are recurrent after
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transplantation (Vibert et al., 2020). For patients in advanced stages,
systemic treatment is recommended as the standard of care.
Molecular targeted monotherapy, including sorafenib or
lenvatinib in the first line, and regorafenib, cabozantinib, or
ramucirumab in the second line, has been confirmed to improve
clinical outcomes with limited median overall survival (Llovet et al.,
2018; Faivre et al., 2020). Immune-checkpoint inhibitor (ICI)-anti-
programmed cell-death protein (ligand)-1 (PD-[L]1), is proven to be
effective in the treatment of HCC. However, the ORR is limited to
10%–20% of HCC patients for monotherapy. The combination of
the anti-angiogenic drug bevacizumab and immune-checkpoint
inhibitor atezolizumab has already reshaped to be the standard
first-line treatment regimen (Llovet et al., 2022a), and the expected
survival of HCC with advanced stage could reach up to more than
2 years (Finn et al., 2020; Reig et al., 2022). Other dual therapies
combing ICIs with multi-kinase inhibitors are proven to be
promising in clinical trials. Oncolytic virus immunotherapy,
adoptive T-cell transfer, and anti-immunosuppressive
environment strategies are under exploration with promising
futures (Foerster et al., 2022).

Molecular classifications with molecular signatures, pathological
features, genetic features, typical signaling pathways, epigenetic
features, and immunological features will be helpful in precise
treatment (Rebouissou and Nault, 2020; Llovet et al., 2022b).
Mutation of Wnt/β-catenin is revealed in 35% of HCC patients;
mounting strategies targeting the Wnt/β-catenin cascade have
provided evidence in preclinical trials in recent decades (Xu
et al., 2022). Tumor-associated exosomes are proven to shape the
local and distant microenvironments of HCC initiation and
development. The preclinical application of biomarkers, drug
resistance, and treatment are under exploration (Wang et al.,
2022). Preclinical studies depict that selective inhibiting tumor-
promoting neutrophils, related signaling pathways, and
chemotaxis are effective (Geh et al., 2022). Non-cellular
components, including hypoxia, cytokines secreted by tumor
stroma, and extracellular matrix, also play a pivotal role in
forming the cancer stem cell niche in HCC, which might be
potential clinical applications in the future (Lam and Ma, 2022).

Metabolic reprogramming has been frequently unveiled in
HCC, such as tumor favors Warburg effect rather than oxidative
phosphorylation, unbalanced lipid intake, and fatty acid
mobilization causing high levels of circulating glucose and fatty
acids, which induces alternative source of energy of cancer cells
(Satriano et al., 2019). The elucidation of metabolic characteristics is
promising in understanding or treating HCC.

2 HCC and metabolism

The liver plays a pivotal role in metabolic homeostasis. The
oxygen gradient from periportal hepatocytes towards pericentral
hepatocytes corresponds to a different function in the hepatic
zonation. Periportal hepatocytes (zone 1) have a substantial
oxygen supply from arterioles responsible for gluconeogenesis,
albumin synthesis, amino acid (AA) catabolism, cholesterol
synthesis, and β-oxidation, which need more ATP for energy
supply. Pericentral hepatocytes (zone 3) serve glycolysis,
glutamine synthesis, lipogenesis, and detoxification. The

hepatocytes located between periportal and pericentral
hepatocytes (zone 2) serve for iron metabolism and insulin-like
growth factor (IGF) homeostasis (Li et al., 2021).

Otto Warburg first demonstrated that HCC tissue consumed
glucose and converted it into lactate rather than untaken by
mitochondria for the TCA cycle, even in the existence of
sufficient oxygen, also termed aerobic glycolysis or the Warburg
effect. Aerobic glycolysis in HCC results in more glucose uptake,
faster ATP generation, and lactate production (Liberti and Locasale,
2016; Satriano et al., 2019). In addition, the Warburg effect also
supports anabolic metabolism by providing the pentose phosphate,
hexosamine, and glycerol pathways without preventing
mitochondrial respiration. The decreasing of oxidative
phosphorylation (OXPHOS) renders the reduction of reactive
oxygen species (ROS). Aerobic glycolysis mediates proliferation,
growth, immune evasion, invasion, migration, angiogenesis, and
drug resistance in HCC (Alannan et al., 2020; Feng et al., 2020).

A higher rate of lipogenesis is a hallmark of cancer cells. HCC
has demonstrated that the enhancement of the Warburg effect
attributes to an increase in the level of β-oxidation by
metabolomics studies. Lipid catabolism also provides energy to
promote cancer cell proliferation and produces metabolites for
biosynthesis to meet fast-growing tumors. Lipid metabolism
reprogramming promotes abnormal gene expression and rewires
many oncogeneses and metastasis-related pathways. Targeting lipid
metabolism has the potential anti-tumor activity in preclinical
studies (Alannan et al., 2020). Dysfunction of lipid metabolism,
like nonalcoholic fatty liver disease (NAFLD), is one of the main risk
factors for HCC. Treatment of NAFLD might have anti-tumor
potential (Orabi et al., 2021). HCV protein has been validated to
hijack the patients’ lipid and glucose metabolism by stimulating de
novo lipogenesis, promoting synthesis of phospholipids and
sphingomyelins, inhibiting mitochondria fatty acid oxidation, and
hijacking the very low-density lipoprotein (VLDL) secretion
pathway. HCV promotes hepatocellular carcinogenesis via
crosstalk with metabolic dysfunction; it will boost oxidative
stress, DNA damage, lipo-toxicity, cell death, and senescence in
patients with adipose tissue dysfunction and insulin resistance
(Leslie et al., 2022). Metabolic impairment might be the potential
reason for HCV-related HCC early recurrence even after direct-
acting antivirals (Reig et al., 2016). Cholesterol metabolisms play a
double-edged sword in hepatocellular carcinoma. Cholesterol can
not only induce ectopic fatty acids accumulation, reshape an
immunosuppressive microenvironment, activate hepatic stellate
cells, and influence membrane fluidity or protein function, to
further promote tumorigenesis in HCC but also activate NK cell
proliferation or recruitment, and promote CD44 translocation into
lipid rafts, so that prohibit HCC (Zhou and Sun, 2021).

Other metabolism alternations such as proline metabolism,
cysteine metabolism, nucleotide metabolism, urea cycle,
hexosamine biosynthetic pathway, pentose-phosphate pathway,
et al. are also validated in HCC(17, 26–28). Proline metabolism
has been confirmed to enhance the tumorigenesis in liver cancer as
two enzymes corresponding to proline biosynthesis are upregulated
(pyrroline-5-carboxylate reductase (PYCR1), aldehyde
dehydrogenase 18 family member A1 (ALDH18A1)), and one
proline catabolic enzyme is downregulated (proline
dehydrogenase (PRODH)) (Ding et al., 2021). Cysteine
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metabolism plays a pivotal role in sorafenib responses during HCC
therapy (Byun et al., 2022), maintaining glutathione synthesis to
protect HCC cells from ferroptosis (Hu et al., 2022).

Moreover, the interplays between metabolism and tumor
microenvironment play crucial roles in the cancerous liver. It
could be subclassified into antitumor immunometabolism and
protumor immunometabolism. For instance, increased fatty acid
synthesis and glycolysis in Th17 cells could enhance the production
of IFN-γ, which will function as an antitumor effect; elevation of β-
oxidation in tumor-associated macrophages promotes
M2 macrophage polarization, which exerts as protumor function
(Li et al., 2021). Hypoxia in the HCC also induces the activation of
lactate metabolism, serine synthesis pathway and folate cycle, and
adenosinergic metabolism to support the growth of tumors (Bao and
Wong, 2021).

Glutamine is an indispensable energy fuel and nitrogen source
for tumor initiation, survival, and progression; It functions not only
as an energy resource but also biosynthesis, signaling pathway
regulator, regulating ROS, and maintaining tumor
microenvironment; and increased glutamine consumption is
conserved in different cancers (Yang et al., 2021; Gyamfi et al.,
2022; Ma et al., 2022). Herein, we will conclude the role of glutamine
metabolic reprogramming in HCC.

3 Glutamine and cancer

Glutamine is a nonessential amino acid (NEAA) that can be
synthesized de novo by glutamine synthetase. In contrast, the
increased demand in tumors results in glutamine, a conditionally
essential amino acid. Glutamine also functions as an intracellular
exchange factor or deamidated to glutamate, an elemental carbon
and nitrogen source, especially for glutamine-addicted cancer cells.
Moreover, glutamine metabolism involves substantial biosynthesis,
including anti-ROS glutathione/NADPH and lipids synthesis. In
addition, glutamine is a nitrogen donor for hexosamine, asparagine,
and nucleotide biosynthesis through aminotransferases (Altman
et al., 2016; Yang et al., 2021).

Glutamine is a major substrate of the TCA cycle’s component; it
participates in the biosynthesis of biomolecules, maintaining redox
homeostasis, ATP generation, oxidative metabolism, and signaling
pathway as one of the major nutrients. Moreover, it also provides the
energy for activated or proliferative cells such as cancer cells and
activated lymphocytes (Gyamfi et al., 2022). Glutamine metabolism
also participates in essential biological processes, including
nucleotide/amino acids/extracellular matrix synthesis, protein
glycosylation/epigenetic modification, cellular redox balance, and
autophagy (Fan et al., 2020). The primary process of glutamine
metabolism includes the following steps: cells uptake glutamine by
specific transporters (SLC1A5/ASCT2) and then convert glutamine
to glutamate in mitochondria by glutaminase (GLS); subsequently,
glutamate will convert to α-ketoglutarate (α-KG) as the main
component of Tricarboxylic Acid cycle (TCA) by mitochondrial
glutamate dehydrogenases (GLUD), α-KG mainly incorporates into
TCA cycles to assist the production of NADPH and nucleotide
synthesis. Furthermore, α-KG will be exported to the cytoplasm as a
source of acetyl-CoA, which is the main substrate of fatty acid
synthesis; Or convert to glutathione (GSH) to further stabilize the

redox homeostasis (DeBerardinis et al., 2007; Zhang et al., 2017),
and it also can transfer the amine group to another nonessential
amino acid by transaminases. Besides, it can be subtracted of proline
and glutathione biosynthesis (Yang et al., 2021); the details are
shown in Figure 1.

Glutamine metabolism also plays a crucial role in the interplay
between TME and tumor cells. The competition of glutamine
consumption by immune cells and tumor cells results in the
immune response from tumor-infiltrating T cells as glutamine
deficiency. Moreover, the shortage of glutamine for tumor cells
will induce the proliferation and activation of Treg cells, which
function as an immunosuppressive effect (Cluntun et al., 2017; Fu
et al., 2019; Edwards et al., 2021). However, cancer-associated
fibroblasts (CAFs) rescue the glutamine-deficiency
microenvironment by complementary secreting glutamine (Yang
et al., 2016). Glutamine reprogramming also impacts other immune
cells’ polarization or function (Ma et al., 2022).

Inhibition of glutamine metabolism has been confirmed to be
promising in glutamine-addicted cancer cells, including glutamine
analogs like DON, acivicin, and azaserine, glutamine transporter
inhibitor GPNA and V-9302, GLS1/2 inhibitors (Shen et al., 2021).
GLS1 plays a crucial role in cancer progression by converting
glutamine to glutamate in mitochondria. It enhances tumor
development, invasion, and migration by maintaining redox
homeostasis, cellular energetics, and proliferative signaling
pathway. GLS1 demonstrates higher expression in solid tumors
such as stomach adenocarcinoma, head and neck squamous cell
carcinoma, thymoma, testicular germ cell tumors, hepatocellular
carcinoma, and colon adenocarcinoma, according to the TCGA
database analysis. It is regulated by Myc, Retinoblastoma, and
nuclear transcription factor-κB in cancer cells. GLS1 inhibitors,
including DON, BPTES, 968, CB-839, UPGL00004, and ebselen,
show promising anti-tumor effects for glutamine-dependent cancers
(Yu et al., 2021). bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)
ethyl sulfide (BPTES) and CB-839, GLS inhibitors are confirmed
to have anti-tumor effective; especially CD839 has been proved to
possess the ability of antiproliferative activity in both solid tumors
like pancreatic cancer and breast cancer (Gross et al., 2014; Biancur
et al., 2017). However, drug resistance has been validated in targeting
glutaminolysis. Numerous studies are trying to explore the
treatments to conquer the drug-resistance, including the
combination of GLS1 and GLS2 inhibitors; GLS1 inhibitors
synergize with glutamate release blockage, targeting
glutaminolysis accompanied with other clinical drugs like
chemotherapy/molecular targeted therapy/immune therapy, and
GLS inhibitors combined with other metabolic inhibitors (Shen
et al., 2021; Lemberg et al., 2022). JHU-083 is a pro-drug proven to
inhibit tumor growth and reshape the tumor immune
microenvironment, promoting CD8+T activation and
proliferation and decreasing immunosuppressive myeloid cells
(Oh et al., 2020). Moreover, inhibition of glutaminolysis will
induce the expression of PD-L1 in tumor cells, which indicates
that the combination of anti-glutaminolysis and immune
checkpoint blockade would have a synergistic antitumor effect
(Byun et al., 2020). Glutamine uptake inhibitors(V-9302),
glutamine antimetabolites(L-DON/JHU-083), and glutaminase
inhibitors (CB-839) are confirmed to be effective in reshaping
glutamine metabolism in immune cells and function as anti-
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tumor immune microenvironment (Ma et al., 2022). Glutamine
transporter is upregulated in various tumors, such as SLC7A5, which
is regulated by oncogene c-Myc. C-Myc or KRAS mutation also
upregulated the expression of GLS(33, 50). MYC, SLC1A5,
mTORC1, and glutaminase could be further utilized as a
biomarker to recognize glutamine-addicted cancers (Yuneva
et al., 2007; Wise and Thompson, 2010; Bhutia and Ganapathy,
2016). SLC1A5 is widely upregulated in tumors among 14 glutamine
transporters (Bhutia and Ganapathy, 2016). V-9302, a glutamine
transporter inhibitor targeting SLC1A5/ASCT2, has validated the
effect of attenuating tumor cell proliferation and increasing the
infiltration of CD8+T cells (Schulte et al., 2018; Pallett et al., 2021).

4 The components of glutamine
metabolism as biomarkers of HCC

Forty-one glutamine metabolism (GM) associated genes are
termed as GMScore from The Cancer Genome Atlas (TCGA)
and the International Cancer Genome Consortium (ICGC)
database. High GMScore indicates tumor growth and poor
overall survival. In addition, High GMscore predicts a low
response to immune checkpoint inhibitors (Ying et al., 2021). A
study tries to depict the different gene expressions between poorly
differentiated HCC cell lines and well-differentiated HCC cell lines
from public databases. Metabolic-related gene analysis demonstrates
that poorly differentiated cell lines profoundly rely on glutamine to
fuel the TCA cycle (GLS, SLC1A5, SDHA). However, well-
differentiated cell lines depend on glycolysis and glutaminolysis

(Nwosu et al., 2018). The components of glutamine metabolism,
including metabolic enzymes, metabolites, and metabolite
transporters, demonstrate high sensitivity and specificity in
diagnosis, relapse monitoring, and stage prediction.

4.1 Glutamine synthetase

Glutamine synthetase (GS) is the feature of Wnt/β-catenin
pathway activation, expressed in the pericentral hepatocytes, and
elevated GS indicates cell proliferation in tissues (Cadoret et al.,
2002; Austinat et al., 2008; Bioulac-Sage et al., 2009; Sohn et al., 2018;
Ruiz de Galarreta et al., 2019; Tao et al., 2021; Hamaguchi et al.,
2022). Liver tumors with different β-catenin activation levels
demonstrate distinct tumor phenotypes. Highly activating β-
catenin with CTNNB1 mutation types is associated with
malignant transformation and intense pattern of GS staining;
However, weak mutations display more frequently for
hepatocellular adenoma (HCA) (Rebouissou et al., 2016).
Activated β-catenin in HCC patients predicts better survival and
less sorafenib resistance than inactive ones. The potential
mechanism of the β-catenin effect might be mediated by
autophagy via increasing GS (Sohn et al., 2018).

Glutamine synthetase could distinguish atypical nodules, early
diagnosis, and invasion of HCC. For instance, GS is considered to
have high specificity and sensitivity to the differential diagnosis of HCC
and dysplastic nodules (Coral et al., 2021). Glypican-3, heat shock
protein 70, and GS are utilized to distinguish a <2 cm hepatocellular
lesion without classic radiological characters of HCC with cirrhosis by

FIGURE 1
Glutaminemetabolic reprogramming in hepatocellular carcinoma. Left: glutaminemetabolism in the normal liver cell. Right: glutaminemetabolism
in hepatocellular carcinoma; the number of glutamine transporters increases, which results inmore glutamine uptake by the cancer cell, related enzymes
such as GLS1/2, GLUD are elevated to enhance sources for carbon and nitrogen, lipids, and nucleotides; improved glutamine uptake activates
mTOR1 pathway and antioxidative effect.
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immunochemistry (IHC) or designed RNA probes (Tremosini et al.,
2012; Di Tommaso and Roncalli, 2017; Bakheet et al., 2020). GS and
glypican3 staining are sensitive and specific to HCC compared to
metastatic cancer, benign hepatocellular lesions, and cirrhosis. They are
associated with large tumor sizes and poorly differentiated specimens
(Wasfy and Shams Eldeen, 2015). GS positive staining has 43.9%–
100% sensitivity for HCC compared with cirrhotic nodules (Dal Bello
et al., 2010; Long et al., 2011; Shin et al., 2011; Witjes et al., 2013;
Uthamalingam et al., 2018). The sensitivity and specificity of IHC GS
staining for the early stage of HCC are 50% and 90%, respectively (Dal
Bello et al., 2010); the sensitivity and specificity of GS in distinguishing
low-grade HCC from hepatocellular adenoma (HCA) are 80% and
50%, respectively (Lagana et al., 2013). GS has upregulated in
steatohepatitis hepatocellular carcinoma, which is validated by
RNAseq or immunochemistry (Van Treeck et al., 2021). However,
another study shows that GS is expressed in relatively few tumors
induced by DEN or metabolic dysfunction associated with fatty liver
disease (MAFLD) in mice (Kurosaki et al., 2021). HCC with
steatohepatitis has a low incidence of glutamine synthetase
overexpression and nuclear accumulation of β-catenin (Ando et al.,
2015). GS is highly expressed in serum and tumor tissues of HCC
patients and is associated with poor prognosis. Moreover, GS promotes
HCC migration and invasion by EMT (Liu et al., 2020). Peri-tumoral
hyperintensity in the hepatobiliary phase of gadoxetic acid-enhanced
MRI (EOB-MRI) positively associated with high GS and organic anion
transporter polypeptides (OATP)1B3 expression in the peri-tumoral
zone. Peri-tumoral hyperintensity indicates a high potential for
microscopic hepatic venous invasion (Yoneda et al., 2018).

Nevertheless, some studies also show that GS staining in HCC
indicates a better prognosis. Wnt/β-catenin related makers (β-
catenin, GS) positive HCC mark better differentiation, less portal
vein invasion, and intrahepatic metastasis (Tsujikawa et al., 2016). β-
catenin activation by fluorescence in situ hybridization and
glutamine synthetase highly staining by immunohistochemistry
demonstrates the character of well-differentiated HCC (Evason
et al., 2013). GS-positive patients have reduced tumor-specific
mortality and overall mortality (Dal Bello et al., 2010). The
positive of glutamine synthetase indicates better survival for HCC
patients treated with liver transplantation (Ataide et al., 2017). In
mice transgenic the full length of hepatitis B virus X protein, EMT
increases, but glutamine synthetase level decreases (Ahodantin et al.,
2020).

Glutamine synthetase also correlates with the PD-1 expression and
treatment response or is influenced by treatment. For instance, GS
overexpression is significantly associatedwith low expression of PD-1 in
HCCpatients (Montasser et al., 2021). LowerGS staining predicts better
OS and RFS for patients treated with adjuvant TACE after curative
resection inHCCpatients (Zhang et al., 2015). Glucocorticoid promotes
GS expression by transcriptional and posttranscriptional levels in
hepatoma cell lines (Gaunitz et al., 2002).

4.2 Other glutamine metabolism-related
enzymes

Glutamate dehydrogenase (GLUD) serves as a catalyticase that
drive L-glutamate towards α-KG and ammonia, and α-KG is a
pivotal component of the tricarboxylic acid cycle (TCA cycle).

hGLUD1 is highly expressed in HCC human samples and
HepG2 cells; The proliferation of HepG2 cells is reduced by
silencing hGLUD1, which is mediated by decreasing
mitochondria-mediated apoptosis (Marsico et al., 2021).
Moreover, Preoperative serum GLUD predicts high microvascular
invasion (MVI) and poor overall survival for HCC patients after
liver transplantation (Gong et al., 2021).

Glutamine metabolism-related genes are upregulated in the HCC
cohort from the TCGA database. Among them, glutaminase (GLS)
1 is increasing in HCC and associated with the stemness of HCC cells,
which is also associated with poor prognosis (Jin et al., 2020). Higher
expression of GLS1 is positively correlated with poor differentiation,
more lymphatic metastasis, advanced stage, more elevated serum
AFP, and lower overall survival. GLS1 promotes HCC cell
proliferation and could be inhibited by GLS1 inhibitors. The
mechanism might relate to GLS1 inducing the activation of the
AKT/GSK3β/CyclinD1 pathway (Xi et al., 2019). Conversely, both
protein and mRNA levels of glutaminase (GLS) 2 display negatively
associated with late stage, vascular invasion, tumor relapse, overall
survival, and disease-free survival.Mechanically, GLS2 stabilizes Dicer
by ubiquitination system; Induced Dicer promotes miR-34a
maturation; mature miR-34a will repress snail expression, which is
reported to facilitate HCC cells invasiveness and epithelial-
mesenchymal transition (Kuo et al., 2016).

4.3 Metabolites

A “serum biomarker model” containing tryptophan, glutamine,
and 2-hydroxybutyric acid based on capillary electrophoresis−time-
of-flight mass spectrometry is established to diagnose HCC from
non-HCC, which is confirmed to be an effective biomarker that
compensatory for AFP (Zeng et al., 2014). 1H- nuclear magnetic
resonance (NMR) metabolomics profiling is used to distinguish the
early or late stage of HCC and find that glutamine decreases in the
late stage of HCC with respect to the early stage of HCC (Casadei-
Gardini et al., 2020). A study elucidates the metabolomics of HCC
with different etiology by 1H-NMR and finds that HCC from
NAFLD has high levels of glutamine/glutamate, which is also
validated by increased expression of GS in immunochemistry and
NMR-spectroscopy glutamine quantification. Nevertheless, HCC
with cirrhosis acquires high levels of β-hydroxybutyrate, tyrosine,
phenylalanine, and histidine (Teilhet et al., 2017). Serum-based
metabolomics by 1H-NMR reveals that pyruvate, glutamine, and
α-ketoglutarate are abundant in liver cirrhosis and HCC (Gao et al.,
2009). Plasma phenylalanine and glutamine levels in patients with
liver cirrhosis are associated with HCC occurrence in the next
3 years. Phenylalanine concentration positively correlates with
HCC, and glutamine level is the opposite effectiveness (Liang
et al., 2020). Another serum NMR-based metabolomics
demonstrates that cirrhosis with large HCC has significant
upregulation of glutamate, acetate, and N-acetyl glycoproteins. In
contrast, the metabolic fingerprint for cirrhosis without HCC
displays a high concentration of lipids and glutamine (Nahon
et al., 2012). NAFLD-HCC with no or mild fibrosis
predominantly overexpressed choline derivatives and glutamine
by 1H-Nuclear Magnetic Resonance spectroscopy (Buchard et al.,
2021).
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4.4 Metabolite transporters

Solute Carrier Family 38 A1 (SLC38A1), a crucial glutamine
transporter, is validated to be upregulated in HCC at both mRNA
and protein by the Cancer Genome Atlas (TCGA) cohort and a
Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort.
Moreover, it is inversely correlated with CD8+ T cell infiltration (Liu
et al., 2021). Solute carrier family 1 member 5 (SLC1A5), also terms as
alanine–serine-cysteine transporter 2 (ASCT2), is a glutamine
transporter. SLC1A5 is highly expressed in HCC and predicts poor
prognosis, confirmed by multiple databases according to
bioinformatics (Zhao et al., 2021). Glucose transporter GLUT1 and
glutamine transporter ASCT2 are upregulated in HCC, and the high
expression of GLUT1 and ASCT2 indicates poor OS and recurrence-
free survival (RFS) (Sun et al., 2016).

5 Glutamine metabolism
reprogramming in HCC

5.1 Glutamine as fuel for HCC proliferation

Increased glutamine uptake and more glutamine converts to the
TCA cycle are confirmed in studies. Glutamate dehydrogenase
(GLUD) serves as a catalyticase that drive L-glutamate towards α-
KG and ammonia, and α-KG is a pivotal component of the TCA cycle.
hGLUD1 is highly expressed in HCC human samples and
HepG2 cells; The proliferation of HepG2 cells is reduced by
silencing hGLUD1, which is mediated by decreasing mitochondria-
mediated apoptosis (Marsico et al., 2021). Discoidin domain receptor
1 (DDR1) is highly expressed in HCC, which promotes glutamine
metabolism as fuel by increasing GLUD1, GLS1, and SLC1A
(glutamate transporter) in HCC (Lin et al., 2020). circGSK3B is
confirmed to promote HCC cell proliferation and metastasis ability
by increasing GLS (Li et al., 2020). SIRT4 localizes in mitochondria
and regulates glutamine or lipidmetabolism. SIRT4 is downregulation
in mRNA and protein levels confirmed by human HCC samples;
knockout or silence of SIRT4 will promote hepatocarcinogenesis in
vivo and in vitro. Mechanically, SIRT4 inhibits the conversion from
glutamine fuel to the TCA cycle. Decreasing glutamine catabolism
results in a deficiency of ATP/ADP, leading to the activation of the
LKB1/AMPKα/mTOR axis (Wang et al., 2019). High-mobility group
box 1 gene (HMGB1) acts as competing endogenous RNAs (ceRNAs)
for the mTORC2 component RICTOR, subsequently promoting the
expression of RICTOR mRNA. The high expression of RICTOR will
induce mTORC2-AKT-C-MYC activation that upregulates GS
expression; on the other hand, GLUD will be enhanced as the
release of inhibition signal from SIRT4 (Wei et al., 2021).

The HGF-MET axis is confirmed to stimulate glycolysis and
glutaminolysis to function as a biogenetic source for HCC cell lines
via inhibiting pyruvate dehydrogenase complex (PDHC) activating
GLS. However, dephosphorylated MET-mediated autophagy
compensates for sustaining biogenesis, leading to the treatment
resistance of HGF-MET axis inhibitors or antibodies. Other
autophagy blockers to HGF-MET axis inhibitors improve the
therapeutic efficiency of HCC in vitro and in vivo (Huang et al.,
2019). High expression of TGF-β in the HCC cell line demonstrates
a mesenchymal-like morphology. Glutamine anaplerosis for the fuel

compensation to the biosynthetic utility of TCA metabolites is
confirmed in TGF-β highly expressed cell line. The mechanism
related to TGF-β in the HCC cell line might be elevated glutamine
transporter solute Carrier Family 7 Member 5 (SLC7A5) and GLS1
(Soukupova et al., 2017). However, in a doxycycline-regulated Myc
transgenic model of HCC, glutamine transporter SLC1A5 is highly
expressed, and GLS1/GLS2 is downregulated in both transcripts and
protein, which indicates increased extracellular glutamine uptake to
anabolic pathway other than fuel source for the TCA cycle (Dolezal
et al., 2017). Chemo-resistance HCC cell lines display cancer stem
cell-like phenotype with rising CSC markers, poorly developed
mitochondrial network, and increasing telomerase activity. The
chemo-resistance character is mediated by drug efflux caused by
high expression of P-gp protein, which is an ATP-consuming
process. However, glucose-dependent OXPHOS and glycolysis are
decreasing, indicating a metabolic quiescent in chemo-resistance cell
lines. An alternative source from the glutamine-OXPHOS pathway
fuels the ATP. Co-treatment of mitochondria-specific antagonist
metformin and glutamine-starving condition attenuates the drug
efflux in chemo-resistance HCC cell lines (Lee et al., 2021). The
details are shown in Figure 1.

5.2 The source of nitrogen

Glutamine metabolism supplies carbon and nitrogen sources for
amino acid or nucleotide anabolism, as shown in Figure 1. Yap
overexpression induces hepatomegaly and promotes carcinogen
dimethylbenzanthracene (DMBA)-induced liver tumor formation
by activating GLUL as a transcriptional factor. Elevated GLUL
enhances glutamine accumulation, which provides sufficient
nitrogen into nucleotide biosynthesis that accelerates liver and
liver tumor proliferation (Cox et al., 2016). However, a study
finds that the serine biosynthesis pathway (SSP) is activated, and
cMyc expression is elevated during glucose or glutamine
deprivation. Potential mechanisms might be related to cMyc-
regulated enzymes like glutathione (GSH) and phosphoserine
phosphatase (PSPH), which promote redox hemostasis for cancer
cells and activate the serine biosynthesis pathway (Sun et al., 2015).

5.3 More glutamine converts to glutathione
as an antioxidant in HCC

Glutathione-glutamine-glutamate metabolism aberration is
involved in the process of hepatic tumorigenesis (Chen et al., 2019).
Glutamine uptake in HCC is not predominantly as carbon or fuel for
the TCA cycle but for increasing the conversion of glutamine into
glutamate, thereby converting more glutamate into glutathione.
Glutathione functions as an antioxidant that prevents oxidative
damage to cancer cells. In an HCC mice model induced by co-
transfection of c-Myc/h-Ras, glutamine synthetase (GS), expressed in
pericentral hepatocytes in a healthy liver, is absent within the tumor in
the c-Myc/h-Ras mice model. Glutamate-cysteine ligase catalytic
subunit (Gclc) increases, and GLUD1 decreases in the c-Myc/h-Ras
mice model, which indicates that more glutamate converts to
glutathione other than α-ketoglutarate (Serra et al., 2022). Metabolic
competition for glutamine is validated to impair hepatocellular
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tumorigenesis. Mitochondrial Pyruvate Carrier (MPC) is located in the
inner membrane of mitochondria and serves as a pyruvate transporter
from the cytoplasm into mitochondria. This crucial metabolic
crossroad links glycolysis and the tricarboxylic acid (TCA) cycle.
MPC is elevated in human HCC samples validated by The Cancer
Genome Database (TCGA). Liver-specific MPC depletion in
N-nitrosodiethylamine (DEN) plus carbon tetrachloride (CCl4)
induced HCC mouse model attenuates HCC tumorigenesis. The
underlying mechanism is correlated with the glutamine competition;
briefly, disrupting MPC causes decreasing pyruvate flux from the
cytosol and, subsequently, glutamine metabolic into α-ketoglutarate
to compensate for reduced pyruvate uptake caused by MPC depletion
in the TCA cycle. Conversely, glutathione synthesis confirmed to
protect cancer cells from reactive oxygen species (ROS) damage, will
be competitive as glutamine consumption for the TCA cycle
(Tompkins et al., 2019), as shown in Figure 1.

GLS1 is highly expressed in HCC patients and cell lines.
Upregulated GLS1 promotes the production of glutamate, the
precursor of GSH, which serves as the main cellular antioxidant.
The reduction of ROS will enhance the translocation of β-catenin,
upregulating the stemness-related genes (KFL4, NANOG, OCT4,
SOX2, CD13, and CD44) in HCC (Li et al., 2019). Oxoglutarate
dehydrogenase-like (OGDHL) is one of the rate-limiting enzymes of
oxoglutarate dehydrogenase complex (OGDHC) in the canonical
TCA cycle. OGDHL is verified to be low expressed in the TCGA
database, Gene Expression Omnibus (GEO) database, and FUDAN
database. The downregulation of OGHDL is associated with HCC
progression, poor prognosis, and recurrence. Mechanically, low
OGDHL reduces the forward TCA cycle for glucose oxidation.
Conversely, reductive carboxylation of α-ketoglutarate (αKG) is
facilitated to promote lipogenesis. Moreover, increasing glutamine
consumption enhances antioxidative function to protect against
oxidative stress in HCC, inhibiting glutamine metabolism could
improve sorafenib resistance (Dai et al., 2020). Glutamine
deprivation promotes a shift of glycolysis towards oxidative
phosphorylation (OXPHOS) in HCC cell lines. The mechanism
underlying this phenomenon is glutamine deprivation inducing
increased NADP1/NADPH ratio and GSH/GSSG ratio that
causes an elevation of cellular reactive oxygen species (ROS);
increased ROS enhances the overexpression of retinoic acid-
related orphan receptor alpha (RORα), and RORα mediates
reprogramming of glucose metabolism towards OXPHOS rather
than glycolysis by attenuating pyruvate dehydrogenase kinase 2
(PDK2) and lactate dehydrogenase A (LDHA) (Byun et al.,
2015). However, a study finds that the serine biosynthesis
pathway (SSP) is activated, and cMyc expression is elevated
during glucose or glutamine deprivation. The potential
mechanism might be related to cMyc-regulated enzymes like
glutathione (GSH) and phosphoserine phosphatase (PSPH),
which promote redox hemostasis for cancer cells and activate the
serine biosynthesis pathway (Sun et al., 2015). Selected sorafenib-
resistant HCC cell lines display higher reductive glutamine
metabolism than parental cell lines. Mechanisms, increased
expression of PPARδ in sorafenib-resistant HCC induces higher
expression of enzymes that catalyze glutamine metabolism and
pentose phosphate pathway, incredibly reductive glutamine
metabolism in the TCA cycle. The redox homeostasis that
protects from oxidative stress will be enhanced by more

glutamate synthesis from glutamine, and more reductive
glutamine metabolism promotes lipid biosynthesis that promotes
HCC proliferation. Moreover, more pentose phosphate pathway
products facilitate HCC proliferation (Kim et al., 2017).

5.4 Glutamine-related metabolites activate
the mTORC signaling pathway

GS and mTORC are highly expressed in the β-Catenin gene
mutated mouse model with HCC or HCA. In clinical samples, cases
with CTNNB1 mutation show intense GS staining, and GS strongly
positive cases display high staining for p-mTOR-S2448. In normal
mice, GS and p-mTOR-S2448 co-staining in pericentral
hepatocytes. The mechanism of β-Catenin mutation-related HCC
is induced by β-Catenin -GS-mTORC1 axis. Briefly, CTNNB1-
mutation induces GS transcription by β-Catenin translocation
and activating transcription factors. The elevated GS will catalyze
more glutamate to glutamine; subsequently, glutamine promotes
p-mTOR activation, promoting the proliferation of HCC (Adebayo
Michael et al., 2019), as shown in Figure 1. Liver receptor homolog 1
(LRH-1) increases in the DEN-induced HCC mouse model. LRH-1
knockout mice display fewer tumors than wild ones. Mechanisms,
LRH-1 enhances noncanonical glutamine metabolism by increasing
GLS2, which catalyzes Gln to Glu, then Glu converts to α-KG by
glutamate pyruvate transaminase 2 (Gpt2). Subsequently, α-KG will
modulate mTORC1, facilitating cell proliferation (Xu et al., 2016).
c-Myc-dependent hepatocarcinogenesis requires mTORC1 pathway
activation to acquire the property of tumorigenesis. Mechanisms,
amplification, or activation of c-Myc as a transcriptional factor leads
to high expression of amino acid transporters SLC1A5/SLC7A6;
increased amino acid transporters are responsible for more amino
acid uptake, especially glutamine. After that, increasing amino acids
results in mTORC1 activation, a typical pathway that induces cell
proliferation (Liu et al., 2017). Nine unique short hairpin RNA
(shRNA) vectors and six unique CRISPR-Cas9 vectors are used to

FIGURE 2
Glutamine-related metabolites regulate other metabolisms or
signaling pathways.
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repress the expression of glutamine transporter (ASCT2), and
L-Type Amino Acid Transporter 1 (LAT1), glutamine or leucine
transportation is restrained. However, the mTORC1 pathway and
cell proliferation are unchanged (Bothwell et al., 2018).

5.5 Glutamine-related metabolites regulate
other metabolisms or signaling pathways

As shown in Figure 2, glutamine and related metabolites not
only activate the mTORC signaling pathway, but also regulate other
metabolisms or signaling pathways. The downstream amino acid of
glutamine metabolism, hydroxyproline, is confirmed to play a
crucial role in promoting a hypoxic response in HCC.
Hydroxyproline is accumulated in HCC according to global
metabolic profiling. A high level of hydroxyproline is correlated
with elevated AFP and poor prognosis. Mechanically,
hydroxyproline blocks hydroxylation of HIF1α and attenuates the
binding of HIF1α to tumor suppressor proteins during hypoxia to
increase the HIF1α expression. Exogenous hydroxyproline could
recover the effect of Myc or ALDH18A1 knockdown, which inhibits
the glutamine–hydroxyproline metabolism or proline metabolic
pathway. Moreover, hydroxyproline inhibition could attenuate
the sorafenib resistance under hypoxia (Tang et al., 2018).
Activated mTORC1 induced by knockout of tumor suppressor
gene tuberous sclerosis complex (TSC) promotes glutaminolysis,
leading to glutamine depletion. Fibroblast growth factor 21 (FGF21)
will be activated by glutamine depletion stress by activating
peroxisome proliferator–activated receptor γ coactivator-1α
(PGC-1α). Elevated FGF21 results in reduced liver triglyceride
content, decreased locomotor activity, and body temperature
(Cornu et al., 2014). Selected sorafenib-resistant HCC cell lines

display higher reductive glutamine metabolism than parental cell
lines. Mechanisms, increased expression of PPARδ in sorafenib-
resistant HCC induces higher expression of enzymes that catalyze
glutamine metabolism and pentose phosphate pathway, incredibly
reductive glutamine metabolism in the TCA cycle. The redox
homeostasis that protects from oxidative stress will be enhanced
by more glutamate synthesis from glutamine, and more reductive
glutamine metabolism promotes lipid biosynthesis that promotes
HCC proliferation. Moreover, more pentose phosphate pathway
products facilitate HCC proliferation (Kim et al., 2017). Uncoupling
protein (UCP) 2 is a type of the mitochondrial carrier family
involved in metabolic disorders. UCP2 promotes glutaminolysis
to decrease glutamine-derived C4 metabolite accumulation in
mitochondria. However, it reduces the oxidation of glucose
(Vozza et al., 2014). Liver-specific miR-122 is validated to play a
critical role in glutamine metabolism. miR-122 is negatively
correlated with the expression of GLS, according to the TCGA
database. The liver-specific knockout of miR-122 promotes
glutaminolysis but inhibits gluconeogenesis in mice by decreasing
targets of GLS and SLC1A5 (Sengupta et al., 2020). Gankyrin is a
seven ankyrin-repeat domains protein. It promotes HCC
tumorigenesis, metastasis, and sorafenib or regrafenib resistance.
Mechanisms, it stabilizes RNA-binding protein HuR, which
subsequently stabilizes β-catenin mRNA and increases its
expression. β-catenin could promote c-myc expression, which
regulates glycolysis and glutaminolysis by transcriptionally
activating crucial enzymes such as GLUT1, ASCT2, HK2, PKM2,
LDHA, and GLS1. Gankyrin displays the characteristics that
facilitate glycolysis and glutaminolysis, which c-myc inhibitors
could abolish in vitro and in vivo. High Gankyrin and high β-
catenin indicate poor prognosis with low overall survival (Liu et al.,
2019).

FIGURE 3
Glutamine metabolism targeting therapy. Glutamine transporters inhibitors, glutamine deprivation, and glutamine metabolism related enzyme
inhibitors are dominant methods that targeting glutamine metabolism.

Frontiers in Molecular Biosciences frontiersin.org08

Ye et al. 10.3389/fmolb.2023.1242059

29

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1242059


6 Glutamine metabolism targeting
therapy

Glutamine metabolism targeting therapy includes glutamine
deprivation, related enzyme inhibitors, and transporters
inhibitors, as shown in Figure 3. Glutamine deprivation impairs
severe metabolism reprogramming in a poorly differentiated cell
line, which results in kinase inhibitors resistance as increased
phosphorylation of extracellular signal-regulated kinase (Nwosu
et al., 2020). Additional glutamine supplement displays dose-
dependent anti-tumor effects in HepG2 and Huh7 cell lines and
increases the sensitivity of histone deacetylase inhibitor vorinostat
in both cell lines (Hassan et al., 2021). 30% of glutamine is
metabolized to produce glutamate in the cytoplasm, which
functions as the substrate of nucleotide synthesis. Inhibition of
glutamate excretion will perturb cell growth in vitro (Nilsson et al.,
2020).

GLS loss or GLS-specific inhibitor bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) attenuates tumor
progression and prolonged survival in Myc-driven HCC mouse
model (Xiang et al., 2015). Noncompetitive allosteric
GLS1 inhibitor CB-839 monotherapy displays insufficient anti-
cancer effectiveness in HCC cell lines. Nevertheless, ASCT-2
inhibitor V-9302 could be synergistic with CB-839 to function
as anti-tumor efficacy. Mechanically, the combination of V-9302
and CB-839 disrupts ROS balance by decreasing important
antioxidant-glutathione (GSH). Moreover, reducing glutamine
intake in TCA results in the reduction of NADPH, which serves
as GSH biosynthesis (Jin et al., 2020). Ginsenoside
Rk1 demonstrates anti-tumor effectiveness by downregulating
GLS1, decreasing GSH, and subsequently accumulating ROS
(Lu et al., 2022); and there are two clinical trials that use
Ginsenoside in hepatocellular carcinoma(NCT01717066,
NCT04523467). Dihydroartemisinin (DHA) induces oxidative
stress in cancer cells by increasing intracellular reactive oxygen
species (ROS). Glutaminase (GLS) 1 increases the production of
antioxidants like GSH by generating the precursor glutamate. The
combination of GLS1 inhibitor and DHA has synergistic
antitumor efficacy in HCC by increasing ROS and decreasing
GSH (Wang et al., 2016).

Berberine inhibits the proliferation of HCC cell lines by
suppressing c-myc-induced glutamine transporter SLC1A5,
subsequently decreasing glutamine uptake (Zhang et al., 2019).
Glutamine depletion by bacterial enzyme Crisantaspase and/or
GS inhibitor methionine-L-sulfoximine (MSO) hinders the tumor
growth of human HCC xenografts induced by CTNNB1-mutated
HCC cell lines (Chiu et al., 2014). β-catenin-mutated HCC cell line is
more sensitive to glutaminolysis drug-asparaginase (ASNase)
(Tardito et al., 2011). Tigecycline, an electron transport system
(ETS) inhibiting antibiotic, is effective in both sorafenib-resistant
advanced-stage HCC in vitro and in xenograft in vivo. The
mechanism disrupts the mitochondrial ETS complex biogenesis
and impairs glutamine oxidation (Meßner et al., 2020). Oral
nutritional supplement (ONS) that contains β-hydroxy-β-methyl
butyrate (HMB), L-arginine, and L-glutamine serves as effective
prophylactic supplementation for Hand-foot skin reaction (HFSR)
caused by sorafenib in advanced HCC patients (Naganuma et al.,
2019).

7 Conclusion

Metabolism reprogramming plays a pivotal role in HCC; It’s not
only the outcome of HCC initiation or progression but also the
mainstay of factors causing HCC occurrence or promoting HCC
metastasis. The components of glutamine metabolism are altered in
HCC, indicating biomarkers’ potential roles, including related
metabolism-related enzymes, metabolites, and metabolites’
transporters. The glutamine metabolism reprogramming support
HCC cancer cells as carbon and nitrogen sources; It provides
antioxidant for HCC survival; It activates the mTORC signaling
pathway to support tumor cell proliferation. Targeting glutamine
reprogramming, including glutamine deprivation, related enzyme
inhibitors, and transporters inhibitors, therefore simultaneously limit
energy availability and increase oxidative stress, demonstrate potential
therapy in HCC; However, cancers can evade this metabolic trap by
reprograming their metabolism (Halama and Suhre, 2022), which is
confirmed in ClinicalTrial. Therefore, the effectiveness that rely solely
on of glutamine inhibition is limited; cotreatment with other strategies
might constitute an attractive and promising option for HCC patients.
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Introduction: Obesity results from an interplay between genetic predisposition
and environmental factors such as diet, physical activity, culture, and
socioeconomic status. Personalized treatments for obesity would be optimal,
thus necessitating the identification of individual characteristics to improve the
effectiveness of therapies. For example, genetic impairment of the leptin-
melanocortin pathway can result in rare cases of severe early-onset obesity.
Metabolomics has the potential to distinguish between a healthy and obese status;
however, differentiating subsets of individuals within the obesity spectrum
remains challenging. Factor analysis can integrate patient features from diverse
sources, allowing an accurate subclassification of individuals.

Methods: This study presents a workflow to identify metabotypes, particularly
when routine clinical studies fail in patient categorization. 110 children with
obesity (BMI > +2 SDS) genotyped for nine genes involved in the leptin-
melanocortin pathway (CPE, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC,
SH2B1, and SIM1) and two glutamate receptor genes (GRM7 and GRIK1) were
studied; 55 harboring heterozygous rare sequence variants and 55 with no
variants. Anthropometric and routine clinical laboratory data were collected,
and serum samples processed for untargeted metabolomic analysis using GC-
q-MS and CE-TOF-MS and reversed-phase U(H)PLC-QTOF-MS/MS in positive
and negative ionization modes. Following signal processing and multialignment,
multivariate and univariate statistical analyses were applied to evaluate the genetic
trait association with metabolomics data and clinical and routine laboratory
features.

Results and Discussion: Neither the presence of a heterozygous rare sequence
variant nor clinical/routine laboratory features determined subgroups in the
metabolomics data. To identify metabolomic subtypes, we applied Factor
Analysis, by constructing a composite matrix from the five analytical platforms.
Six factors were discovered and three different metabotypes. Subtle but neat
differences in the circulating lipids, as well as in insulin sensitivity could be
established, which opens the possibility to personalize the treatment according
to the patients categorization into such obesity subtypes. Metabotyping in clinical
contexts poses challenges due to the influence of various uncontrolled variables
on metabolic phenotypes. However, this strategy reveals the potential to identify
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subsets of patients with similar clinical diagnoses but different metabolic
conditions. This approach underscores the broader applicability of Factor
Analysis in metabotyping across diverse clinical scenarios.

KEYWORDS

multiplatform metabolomics, factor analysis, data integration, obesity, childhood, leptin-
melanocortin pathway

Introduction

Childhood obesity prevalence has increased worldwide in the
last decades, including a higher incidence of severe and early onset
cases, particularly after the COVID-19 outbreak lockdown (Choi
et al., 2023), enhancing the known risk for long-term consequences
in these patients (Rupérez et al., 2020; Handakas et al., 2022).
Children with obesity are more susceptible to maintain their
adiposity in adult life, increasing the risk of multiple
comorbidities at an early age, including type 2 diabetes mellitus
(T2DM), dyslipidemia, cardiovascular disease (CVD), hypertension,
obstructive sleep apnea, cancer and steatohepatitis (da Fonseca et al.,
2017; Cote et al., 2013; Butte et al., 2015; Carde et al., 2020; Berger,
2018; Wahl et al., 2012). Obesity has a multifactorial etiology, with
lifestyle, including nutritional and physical activity habits, as well as
other environmental factors, interacting with an individual’s unique
genetic background to determine a person’s risk to develop obesity
(Trang and Grant, 2023). Among the large set of genes influencing
obesity, those in the leptin-melanocortin satiety signaling pathway
are the most determinant known to date, with homozygous
mutations in some causing early onset severe obesity with
hyperphagia (Jackson et al., 1997; Chiurazzi et al., 2020; Trang
and Grant, 2023). The role of heterozygous variants is under
investigation (Trang and Grant, 2023), particularly those with
confirmed pathogenicity or high Combined Annotation
Dependent Depletion (CADD) scores of “deleteriousness” with
low population prevalence [heterozygous rare sequence variants
(HetRSVs)]. Additionally, variants in glutamate receptors, pivotal
in neuron signaling have also been described in patients with severe
obesity (Bell et al., 2005; Fuente-Martín et al., 2016; Serra-Juhé et al.,
2017; Fairbrother et al., 2018; Chiurazzi et al., 2020).

Whereas some obesity-associated comorbidities commonly
identified in adults can also be observed in children with obesity,
others such as T2DM are far less common, with insulin resistance
(IR) usually found as the first step in carbohydrate metabolism
impairment in childhood obesity (Martos-Moreno et al., 2019).
Additionally, not every patient with obesity shows the same risk
to develop comorbidities, with the “metabolically healthy obesity”
designation proposed for those patients with obesity, even severe
obesity, but with no metabolic comorbidities (Wan Mohd Zin et al.,
2022). However, this term is under discussion and this condition is
known to evolve throughout life in relationship to weight control
(Martos-Moreno et al., 2021). The term “metabotype” was defined
by Gavaghan et al. (Gavaghan et al., 2000) as “a probabilistic
multiparametric description of an organism in a given
physiological state based on analysis of its cell types, biofluids, or
tissues.” Subsequently, this definition has been repeatedly used
(Waldram et al., 2009; Sullivan et al., 2011; Palmnäs et al., 2020),
establishing itself as the characterization of the metabolic phenotype

of an individual. Recent advances in high-throughput sequencing
technologies and computational methods have enabled the
generation of large and complex -omics datasets, providing an
unprecedented opportunity to integrate simultaneous information
from multiple molecular levels to investigate the complexity of
biological systems (T et al., 2019; Park et al., 2022; Argelaguet
et al., 2020; Tanabe et al., 2021; Clark et al., 2021). The
integration of various -omics data, including genomics,
transcriptomics, proteomics, metabolomics, and epigenomics, can
help to understand the intricate interplay between different
biological molecules and pathways, enabling the identification of
key regulators and mechanisms of disease (Hoadley et al., 2014;
Meng et al., 2016; Marabita et al., 2022). In metabolomics, a
multiplatform strategy combines many analytical tools to study
the entire metabolic phenotype. Combining data from multiple
sources could result in a better comprehension of the underlying
biological mechanisms driving complex diseases including cancer,
obesity, and cardiovascular disease (Hoadley et al., 2014; Meng et al.,
2016; Marabita et al., 2022; Park et al., 2022). Although much effort
has been made in recent years to integrate information from
different -omics technologies into a single analysis, it is still usual
to use a multiplatform strategy individually (T et al., 2019;
Argelaguet et al., 2020; Tanabe et al., 2021; Zhang et al., 2022).

Factor Analysis is a multivariate statistical technique that can
identify underlying patterns in a large dataset by reducing the
number of variables into a smaller number of factors (Lee et al.,
2019; Acal et al., 2020). In the context of metabolomics, Factor
Analysis can identify metabolite modules, which are groups of
metabolites that are highly correlated and potentially involved in
a common biological process. This approach provides a more
comprehensive understanding of the underlying molecular
mechanisms of disease and can identify potential biomarkers and
therapeutic targets that may not be identifiable using individual
metabolites. Recent studies have demonstrated the potential of
Factor Analysis in metabolomics for identifying metabolite
modules in various fields of research including cancer biology,
metabolic disorders, and neurodegenerative diseases (Shen et al.,
2009; Zhao et al., 2013; Argelaguet et al., 2018; Kamleh et al., 2018;
Clark et al., 2021). However, there are several challenges associated
with the application of Factor Analysis in metabolomics. One of the
key challenges is the selection of an appropriate Factor Analysis
method (principal component analysis, common Factor Analysis,
maximum likelihood method, etc.) which depends on the specific
research questions and the characteristics of the metabolomics
dataset. Also, multicollinearity is a serious problem that must be
solved before performing a Factor Analysis (Chan et al., 2022).
Another challenge is the interpretation of the identified metabolite
modules, as it may be difficult to determine the biological relevance
of the modules. This challenge can be addressed by integrating the

Frontiers in Molecular Biosciences frontiersin.org02

Chamoso-Sanchez et al. 10.3389/fmolb.2023.1301996

36

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1301996


results of Factor Analysis with other omics data types, such as
genomics, transcriptomics, and proteomics, to provide a more
comprehensive understanding of the underlying biological
processes. Combining Factor Analysis with a hierarchical

clustering analysis enables one to classify patients considering all
metabolic features detected by a multi-platform approach; to
identify patient subgroups based on their metabotype and to
provide the optimal treatment for each patient rather than based

FIGURE 1
Schematic representation of the experimental design.
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upon the usual anthropometric and routine laboratory parameters
used in the clinical setting and even over the presence or absence of
HetRSVs in relevant genes in the studied pathology. Such strategy
becomes even more powerful when there is no classification
available, or the main goal of the research is to unveil the
minimum set of parameters which allow for classification/
stratification.

Patients, materials and methods

We tested a multi-platform strategy in combination with Factor
Analysis and hierarchical clustering for personalized approaches in
the treatment of obesity (Figure 1).

Patients

One hundred and ten children and adolescents (57 females/
53 males) affected with severe obesity referred to a specialized clinic
in a third level monographic pediatric hospital and genotyped for
nine genes in the leptin-melanocortin pathway downstream of the
leptin receptor, and two glutamate receptor genes (Table 1) were
studied: 55 of them harboring one heterozygous rare sequence
variant [HetRSV, defined as populational frequency <0.01 and
with a Combined Annotation Dependent Depletion (CADD)
score of “deleteriousness” > 20] and/or confirmed pathogenicity
according to ACMG criteria in the studied genes [CPE (n = 5),
MC3R (n = 5), MC4R (n = 5), MRAP2 (n = 5), NCOA1 (n = 7),
PCSK1 (n = 5), POMC (n = 5), SH2B1 (n = 5), SIM1 (n = 5), GRM7
(n = 4) or GRIK1 (n = 4)] and 55 with no detected variants.

The whole cohort mean age and standardized body mass index
(BMI) were 11.01 ± 3.36 years and 4.20 ± 2.20 SDS, respectively with
no differences between groups (with vs. without variants) in age,
BMI-SDS, routine laboratory metabolic and hormonal features nor
in sex, ethnicity, or pubertal status distribution. Their main
anthropometric and metabolic features are summarized and
compared in Table 2.

All patients and their parents or guardians gave informed
written consent as required by the ethics committee at the
University Hospital Niño Jesús, which had previously approved
the study in accordance with the “Ethical Principles for Medical
Research Involving Human Subjects” adopted in the Declaration of
Helsinki by the World Medical Association (64th WMA General
Assembly, Fortaleza, Brazil, October 2013).

Methods

Weight, height, BMI, waist circumference, and systolic and diastolic
blood pressure (BP, mean of three measurements) were recorded and
standardized (Cole et al., 2000; Ferná et al., 2004) in all patients. A 12-
hour fasting serum sample (drawn, immediately processed, aliquoted
and stored at −80°C until assayed) was used to determine glucose,
insulin, HbA1c, lipid profile, uric acid, GOT, GPT, GGT, free thyroxin,
thyroid stimulating hormone, IGF-I, IGFBP-3, 25-OH-vitamin D and
intact parathyroid hormone (iPTH) levels by standardized assays as
previously reported (Martos-Moreno et al., 2019). An oral glucose
tolerance test (OGTT, 1.75 g/kg, maximum 75 g) for glucose and
insulin determination at 30, 60 and 120 min was performed,
HOMA (homeostatic model for insulin resistance) and WBISI
(whole body insulin sensitivity) indexes were calculated as previously
reported (Martos-Moreno et al., 2019).

Multiplatform untargeted metabolomics
analysis

Sample treatment
Serum metabolite extraction was carried out according to

previously reported standard protocols (Garcia and Barbas, 2011;
Pellegrino et al., 2014; Naz et al., 2015). Briefly, for LC-MS analysis,
40 µL of serum was mixed with 800 µL of a cold mixture (−20°C) of
methanol:MTBE:Chloroform (1.33:1:1, v/v/v) with Sphinganine
(D17:0) and palmitic acid-d31 as internal standards. Samples
were vortexed for 30 s and shaken for 20 min at maximum speed
at room temperature. Next, samples were centrifuged (13,200 rpm,
room temperature, 5 min). After centrifugation, supernatant was
directly injected into the system. For GC-MS analysis, protein
precipitation was achieved by mixing one volume of serum with
three volumes of cold (−20°C) acetonitrile with 25 ppm of palmitic
acid-d31 as internal standard, followed by methoximation with
O-methoxyamine hydrochloride (15 mg/mL) in pyridine, and
sylation with BSTFA: TMCS (99:1). Finally, 20 ppm of tricosane
in heptane was added as second internal standard. For CE-MS
analysis, 100 µL of serum was mixed with 100 µL of 0.2 M formic
acid containing 5% acetonitrile and 0.4 mM methionine sulfone,
2 mM paracetamol and 0.5 mM 4-Morpholineethanesulfonic acid,
2-(N-Morpholino) ethanesulfonic acid (MES) as internal standards.
The sample was transferred to an ultracentrifugation device
(Millipore Ireland Ltd., Carrigtohill, Ireland) with a 30 kDa
protein cutoff for deproteinization through centrifugation
(2000 × g, 4°C, 90 min). Detailed version of the sample treatment
protocols, the reagents, solvents, standards used for the sample
treatment and subsequent analyses, and the analytical setup for
the LC–MS, GC–MS, and CE–MS analysis are described in

TABLE 1 Gene list.

CPE (MIM* 114855. Carboxypeptidase E)

GRIK1 (MIM* 138245. GLUTAMATE RECEPTOR, IONOTROPIC, KAINATE 1)

GRM7 (MIM* 604101. GLUTAMATE RECEPTOR, METABOTROPIC, 7)

MC3R (MIM* 155540. MELANOCORTIN 3 RECEPTOR)

MC4R (MIM* 155541. MELANOCORTIN 4 RECEPTOR)

MRAP2 (MIM* 615410. MELANOCORTIN 2 RECEPTOR ACCESSORY
PROTEIN 2)

NCOA1 (MIM* 602691. NUCLEAR RECEPTOR COACTIVATOR 1) (Alternative
nomenclature: SRC1)

PCSK1 (MIM* 162150. PROPROTEIN CONVERTASE, SUBTILISIN/KEXIN-
TYPE, 1)

POMC (MIM* 176830. PROOPIOMELANOCORTIN)

SH2B1 (MIM* 608937. SH2B ADAPTOR PROTEIN 1)

SIM1 (MIM* 603128. SIM bHLH TRANSCRIPTION FACTOR 1)
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Supplementary Material. Quality control samples (QC) were
prepared by pooling and mixing equal volumes of each serum
sample and treated as independent samples to check the
performance of the systems and the reproducibility of the sample
treatment. Then, samples were randomized, and QCs were injected
at the beginning, along the sequence, and at the end of the batch.
Finally, two blank solutions were prepared along with the rest of the
samples and analyzed at the beginning and at the end of the
analytical sequence (Dudzik et al., 2018).

LC-MS and CE-MS data pre-processing

The raw data obtained after the LC-MS and CE-MS analysis
were processed using Agilent Technologies MassHunter Profinder
B.10.0.2.162 (Santa Clara, United States) to clean the background
noise and unrelated ions. This algorithm aligns all ions across the
samples using mass and retention time (RT) to create a single
spectrum for each group of compounds, and finally obtaining a
structured data matrix and appropriate format. Missing values were

imputed using the k-nearest neighbors (kNN) algorithm (Armitage
et al., 2015) in Matlab R2022a software (Mathwoks, Inc., Natick,
United States). Then, the data matrix was filtered by coefficient of
variation (CV), maintaining those signals that, in the QCs, presented
a CV below 30%. The filtered data matrix was imported into SIMCA
17 Sartorius (Goettingen, Germany) to generate a PCA and thus
observe the trend of the QCs, detect possible outliers, and look for
natural and analytical trends of the samples. To reduce the impact of
instrumental and experimental variations that can interfere with the
ability to detect biological variations, a correction method called
“quality control samples and support vector regression (QC-SVRC)”
was used to adjust the data (Kuligowski et al., 2015) implemented in
MATLAB R2022a and then normalized by internal standard (IS).

Data pre-processing and compound
identification GC–MS analysis

The chromatograms obtained from each of the serum samples,
the QCs, and the IS signal were visually examined to ensure the

TABLE 2 Anthropometric and metabolic features.

Clinical parameters Whole cohort Variant carriers NO variant Variant carriers vs. NO

Age (years) 11.01 ± 3.36 11.12 ± 3.47 10.91 ± 3.28 N.S.

Height (SDS) 0.84 ± 1.12 0.70 ± 1.05 0.99 ± 1.19 N.S.

BMI-SDS 4.20 ± 2.20 4.29 ± 2.42 4.11 ± 1.99 N.S.

Fasting glucose (mg/dL) 91.10 ± 6.81 90.99 ± 5.98 91.91 ± 7.51 N.S.

Glucose at 120′in OGTT (mg/dL) 120.82 ± 18.87 118.11 ± 13.31 123.31 ± 18.29 N.S.

Fasting insulin (µU/mL) 15.13 ± 7.28 14.83 ± 7.56 15.42 ± 7.05 N.S.

HOMA index 3.45 ± 1.75 3.34 ± 1.78 3.56 ± 1.72 N.S.

WBISI index 3.23 ± 1.67 3.35 ± 1.63 3.13 ± 1.71 N.S.

HbA1c (%) 5.43 ± 0.30 5.44 ± 0.24 5.41 ± 0.35 N.S.

Uric acid (mg/dL) 5.18 ± 1.16 5.04 ± 1.21 5.32 ± 1.11 N.S.

GOT (U/L) 27.72 ± 7.35 26.80 ± 6.73 28.68 ± 7.89 N.S.

GPT (U/L) 22.22 ± 9.27 21.38 ± 8.48 23.19 ± 10.03 N.S.

GGT (U/L) 14.16 ± 4.72 13.91 ± 4.31 14.42 ± 5.13 N.S.

HDL-c (mg/dL) 46.72 ± 14.02 46.63 ± 15.93 46.82 ± 11.90 N.S.

LDL-c (mg/dL) 96.21 ± 27.23 96.82 ± 30.57 97.62 ± 23.55 N.S.

Triglycerides (mg/dL) 78.69 ± 48.61 75.58 ± 42.40 81.85 ± 54.43 N.S.

Free thyroxine (T4) (ng/dL) 0.94 ± 0.13 0.95 ± 1.09 0.92 ± 01.54 N.S.

TSH (µU/mL) 2.78 ± 1.57 2.91 ± 1.64 2.65 ± 1.51 N.S.

IGF-I (ng/mL) 310.8 ± 171.7 324.67 ± 191.76 297.77 ± 151.24 N.S.

IGFBP-3 (µg/mL) 4.90 ± 0.99 4.93 ± 0.97 4.86 ± 1.02 N.S.

25-OH-Vitamin D (ng/mL) 23.36 ± 9.22 23.55 ± 8.69 23.21 ± 9.74 N.S.

Intact PTH (pg/mL) 57.13 ± 21.92 57.03 ± 22.04 57.21 ± 22.13 N.S.

Abbreviations: BMI-SDS, Standardized body mass index (Z-score); OGTT, oral glucose tolerance test; HOMA, homeostatic model assessment; WBISI, Whole-body insulin sensitivity index;

HDL-c, High density lipoprotein cholesterol; LDL-c, Low density lipoprotein cholesterol; GGT, Gamma-glutamyltransferase; GOT, Glutamic-oxalacetic transaminase; GPT, glutamic-pyruvic

transaminase Alanine aminotransferase; IGF-1, Insulin-like growth factor 1; IGFBP3, Insulin-like Growth Factor-binding Protein 3; HbA1c, hemoglobin A1c; TSH, thyroid-stimulating

hormone; PTH, parathyroid hormone.
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quality of the obtained profiles and the reproducibility of the IS
signal using Agilent MassHunter Qualitative
B.10.0.010305.0 software (Santa Clara, United States).
Deconvolution and metabolite identification was achieved using
the Agilent MassHunter Unknowns Analysis Tool 10.0 (Santa Clara,
United States). The software assigned a chemical identity to each of
the signals obtained after the search in two commercial libraries: the
Fiehn library version 2013, and the NIST library version 2017 and
“in-house” libraries. The identities were assigned according to the
retention time (RT) and spectra extracted during deconvolution
when the software compared them with each compound included in
the libraries. Next, the obtained data were aligned using the
MassProfiler Professional B.15.1 software (Agilent Technologies)
(Santa Clara, United States) and exported to Agilent MassHunter
Quantitative Analysis version B10.0.707.0 (Santa Clara,
United States) to assign the main ions and the integration of
each of the signals. As in the LC-MS and CE-MS analysis, the
missing values were estimated using the kNN (k-nearest neighbors)
algorithm (Armitage et al., 2015). Experimental and analytical
variations were excluded by performing normalization. As in the
LC-MS and CE-MS analysis the data matrix was normalized by
applying the QC-SRVC correction, normalized by internal standard,
and filtered by CV in the QCs (Kuligowski et al., 2015).

Compound identification LC-MS and CE-MS
analysis

For the metabolite tentative annotation initially the m/z was
searched against multiple databases available online, including
METLIN (http://metlin.scripps.edu), LipidsMAPS (http://
lipidMAPS.org) and KEGG (http://www.genome.jp/kegg/), all of
which have been joined into an “in-house” developed search
engine, CEU MassMediator (http://ceumass.eps.uspceu.es/) (Gil-
de-la-Fuente et al., 2019). Aiming to obtain additional
information for some identities, HMDB (http://hmdb.ca) was
also consulted. In parallel, three complementary software, MS-
DIAL (http://prime.psc.riken.jp/), LipidAnnotator (Agilent
Technologies) and LipidHunter (Ni et al., 2017; Koelmel et al.,
2020; Tsugawa et al., 2020) by fragmentation mass/mass spectra
were used for LC-MS identification. Features that were tentatively
assigned to metabolites from the databases were based on (1): mass
accuracy (maximum error mass 20 ppm) (2), isotopic pattern
distribution (3), possibility of cation and anion formation (4),
adduct formation (5), elution order of the compounds based on
the chromatographic conditions, and (6) MS/MS spectra.
Additionally, an “in-house” CE-MS library built with authentic
standards was used to compare the relative migration time (RMT)
to increase the confidence of the annotations. The confidence
levels established by the Compound Identification group of the
Metabolomics Society at the 2017 annual meeting of the
Metabolomics Society (Brisbane, Australia) have been used.
The new identification levels (Blaženović et al., 2018) range
from level 0 with full identification based on knowledge of its
3D structure, level 1 2D confidence using comparison with
reference standards, level 2 probable structure when compared
with database, level 3 possible structure or class and level 4 as
unidentified compound.

Statistical analysis

Statistical analysis was carried out by univariate (UVA, Matlab
R2022a) andmultivariate analysis [MVA, SIMCA 17, R v4.1.2 and IBM
SPSS v27 (Armonk, NY, United States)]. For the UVA, parametric
(unpaired t-test) with a Benjamini–Hochberg False Discovery Rate post
hoc correction (q < 0.05) was applied. ForMVA, the PCA plot, PLS-DA
plot and OPLS-DA plot was built. The data matrix was analyzed using
unsupervised machine learning using R environment (https://www.r-
project.org/), applying clustering technique to obtain pattern in our data
independently of the initial groups.

The raw data from the various analytical platforms were merged
using Factor Analysis and hierarchical clustering to generate a broad
perspective of the results and to assign metabotypes based on the
metabolic phenotypes of each patient with obesity. The whole process
of Factor Analysis and hierarchical clustering was carried out by using
IBM SPSS software and Microsoft Excel. First, the Pearson
correlations between the variables in each of the matrices were
analyzed to eliminate multicollinearity. Correlations between the
various matrices (inter-matrix correlations) were examined after
filtering by the specific correlations of each matrix (intra-matrix
correlations). The individual matrices with the resulting variables
were subjected to principal component analysis with varimax rotation
(Acal et al., 2020) to reduce dimensionality. Three rules were applied
to select the number of principal components in each of the individual
matrices, the “Scree plot elbow,” the Kaiser-Guttman test (Eigenvalue
greater than unity) and a total explained variance greater than 60%
(Cattell, 1966). The principal component scores have been analyzed.
The variables that present a principal component score higher than
0.5 in any of the selected components and that do not present double
saturation are kept for the subsequent Factor Analysis. We consider
double saturation to be when the smallest difference in the principal
component score of a variable between two components is less than
0.1. The resulting variables have been subjected to a Factor Analysis by
maximum likelihood (Babakus et al., 1987) with varimax rotation of
each of the matrices separately to further reduce dimensionality. The
same three rules were applied as in the PCA. For the final Factor
Analysis, variables that displayed double saturation or had factor
scores lower than 0.5 in any of the chosen factors were excluded.
Finally, all the resulting variables were pooled into a singlematrix after
applying all these filters and a Factor Analysis was performed using a
maximum likelihood extraction method and a varimax rotation
method. All variables that entered the combined Factor Analysis of
the different platforms were identified using internal databases and
mass/mass fragmentation spectra software (LipidAnnotator, MSDial,
LipidHunter). Following the criteria applied above, the appropriate
number of factors was selected for our data and by regression new
variables were created for each of the factors. A hierarchical clustering
analysis with squared Euclidean distance and Ward method was
applied on the created factors. To select the appropriate number of
metabotypes, a discriminant analysis (DA) was performed (Lee et al.,
2019).

Results

1) The presence of heterozygous rare sequence variant in the
studied genes, associated to human obesity and energy
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homeostasis, does not determine different metabolomic
phenotypes.

After following the procedure described in the patients and
methods section, we obtained 345 and 170 metabolic features in LC-
MS performed in positive and negative ionization modes, 63 signals
in GC-MS, and finally in CE-MS we obtained 242 signals in positive

ionization and 91 in negative ionization mode. The visual inspection
of the PCA plots built for all techniques revealed a tight cluster of the
QCs assessing the analytical stability and reproducibility (Figure 2).
A homogeneous distribution of patients with and without
heterozygous variant was seen in PCA plots.

The identified HetRSVs did not allow for the construction of
multivariate supervised model from the results of only one of the

FIGURE 2
PCA-X score plots (blue dots, patients with heterozygous rare sequence variants (HetRSVs); orange square, patients without variants; red diamonds,
QC samples) for the five analytical platforms. (A) R2 = 0.82, Q2 = 0.78 with log10 transformation and Ctr scale (LC-MS (+)). (B) R2 = 0.937, Q2 = 0.594 with
Ctr scale (LC-MS (−)). (C) R2 = 0.516, Q2 = 0.458 with log10 transformation and Ctr scale. Four samples were eliminated due to the presence of analytical
outliers located outside the hoteling’s ellipse (CE-MS (+)). (D) R2 = 0.536, Q2 = 0.308 with log10 transformation and Ctr scale. Eight samples were
eliminated due to the presence of analytical outliers located outside the Hoteling’s ellipse (CE-MS (−)). (E) R2 = 0.616, Q2 = 0.428 with
log10 transformation and Ctr scale. Eight samples were removed due to problems during sample preparation (GC-MS).
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analytical techniques. Only LC-MS (+), enabled the creation of an
OPLS-DA model (R2X = 0.72, R2Y = 0.82; Q2 = 0.64; p CV-
ANOVAOPLS-DA = 3.1 · 10−19; as illustrated in Supplementary
Figure S1). Correspondingly, the results of three metabolites
derived from LC-MS (+) displayed statistically significant
differences in means between the variant carrier/no variant
groups, whereas no discernible differences between both groups
were observed in the means of all the variables from LC-MS (−), GC-
MS, CE-MS (+), or CE-MS (−). Furthermore, despite the limited
number of samples for each individual gene, the presence of singular
metabolic patterns was not observed for any of the studied genes in
any of the employed platforms (data not shown).

2) Factor Analysis groups the variability into six factors

Imprecise information is obtained from the examination of the
metabolic phenotype using a single analytical platform, which might
result in the description of erroneous metabotypes in patients,
generating different classifications depending on the analytical
platform used (Supplementary Figure S2). Furthermore, the use
of a classification based on anthropometric and routine laboratory
metabolic and hormonal parameters available in daily clinical
practice does not appear to be sufficient to establish distinct
metabotype among patients. We also performed a hierarchical
clustering analysis, with anthropological and clinical parameters
(data not shown).We observed dissimilar outcomes when compared
to the classifications produced by individual analytical platforms.
Additionally, no statistically significant differences were observed in
any of the analytical platforms with the clusters (possible groups)
generated after analyzing these parameters.

The multiplatform strategy provided five matrices with 345, 170,
53, 242 and 91 variables analyzed by LC-MS (+), LC-MS (−), GC-
MS, CE-MS (+) and CE-MS (−), respectively, from 100 of the
studied samples. Due to the presence of analytical outliers caused
by errors during sample preparation in GC-MS and analytical error
in CE-MS (+), 10 samples had to be eliminated from the analysis of
the total of 110 patients enrolled (three patients without genetic
variants, and 7 with genetic variants, with a maximum of two
individuals per gene studied). As described in detail above (see
materials andmethods) a Factor Analysis of each of the matrices was
performed to subsequently combine the variables present in each
Factor Analysis into a single combined Factor Analysis. To eliminate
multicollinearity, Pearson correlations were used to analyze the
relationships between variables in each matrix (intra-matrix
correlations) and between matrices (inter-matrix correlations). In
the final Factor Analysis by maximum likelihood and varimax
rotation performed on the LC-MS matrix (+), three factors were
chosen that explained 75% of the variability accumulated in the
matrix, saturating 57 variables that were kept for the final combined
Factor Analysis. The Kaiser-Meyer-Olkin (KMO) test was used to
determine whether the Factor Analysis was effective, and a result of
0.85 was obtained. In LC-MS (−), two factors were chosen to explain
74.68% of the variability accumulated in the matrix, obtaining a
KMO of 0.85 and saturating 17 variables. In GC-MS, three factors
were chosen that explain 73.54% of the accumulated variability,
obtaining a KMO of 0.89 with 18 variables independently saturated
in these factors. In CE-MS (+) 1 factor was chosen that explained
64.09% of the accumulated variation, obtaining a KMO of 0.77 with

five saturated variables. In CE-MS (−) no satisfactory factor
extraction was achieved, so no variable was retained for the final
Factor Analysis. Using in-house databases and mass/mass
fragmentation spectra software (LipidAnnotator, MSDial,
LipidHunter) all variables that remained after all of these pre-
filtering stages for the combined Factor Analysis of the various
platforms were identified. The removal of non-annotated variables
from the combined Factor Analysis (23 out of 97 variables were
removed due to unsuccessful identification) is performed to
determine the biological interpretation of the obtained factors.
Therefore, variables 43, 11, 14 and 5 analyzed by LC-MS (+),
LC-MS (−), GC-MS and CE-MS (+), respectively, were pooled
together and the Factor Analysis was performed. The adequacy
of the Factor Analysis was tested using the KMO test, obtaining a
value of 0.76. Finally, six factors that explained 75% of the
accumulated variability were selected. The results show a
clustering of the variables into factors depending on the
analytical technique. Table 3 shows the variables corresponding
to each of the factors (see identification details in Supplementary
Table S2). As the resulting factors can be employed to predict
discrete clusters of samples, we used all the inferred factors to
cluster the patients in the latent factor space, collectively
implementing collectively all information from the different
analytical platforms.

3) Hierarchical clustering of factors permits to classify patients into
metabotypes

A hierarchical clustering analysis with Ward method and
squared Euclidean distance was applied in SPSS statistical
software (Figure 3A). To determine the optimal number of
metabotypes, a discriminant was applied to 2, 3 and
4 metabotypes. It appears that grouping the samples into three
distinct metabotypes provides the most robust explanation for the
observed relationships, where 94% accuracy was observed after
cross-validation, demonstrating the existence of 3 clearly
differentiated metabotypes [metabotype 1 (G1) (n = 74),
metabotype 2 (G2) (n = 10), metabotype 3 (G3) (n = 16)]
(Figure 3B).

The identified factors enabled metabotypes to be characterized.
The components of the first two factors, F1 (10 sphingolipids,
4 ether-linked phosphatidylcholines, 2 phosphatidylcholines and
3 cholesterol esters, named “Lipids1”) and F2 (1 di- and
12 tryacylglycerols, named “Lipids2”), accounted for 44% of the
variability and were increased in metabotype 3 and decreased in
metabotype 1. F3 components (named “nutritional amino acids,”
including eight amino acids) showed increased levels in metabotype
2. F4 elements (including nine circulating free fatty acids, named
“Lipids3”) showed increased levels in metabotype 1. F5 elements
(including 10 phosphatidylcholines, named “Lipids4”) and the
components in F6 (glutamic acid, choline, aspartic acid,
glutamine, and arginine, named “signaling amino acids”) showed
an accumulated variation of 75% and were increased in
metabotype 3.

Univariate statistics were performed on each of the matrices.
Each variable was analyzed by ANOVA or its corresponding non-
parametric method (Kruskal–Wallis). The overall results show the
greatest differences between metabotype 1 and metabotype 3
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TABLE 3 Metabolites included in each of the six final factors obtained with their factor scores associated with the factors. Saturations above 0.5 are indicated in
dark red. Confidence level in annotation based on Metabolomics Society (Blaženović et al., 2018).

Factor Identification Confidence level Factor score

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

1 SM (d41:2) 2 0.83 −0.08 −0.06 0.03 0.19 −0.09

1 SM (d42:3) 2 0.85 0 −0.09 0.05 0.03 −0.08

1 SM (d40:1) 2 0.83 0.09 −0.07 0.11 0.1 0.07

1 SM (d39:1) 2 0.72 0 −0.04 0.13 0.24 −0.04

1 SM (d32:1) 2 0.77 0.07 −0.07 0.02 0.3 0.04

1 SM (d36:2) 2 0.82 0.22 −0.1 0.15 0 −0.04

1 SM (d34:2) 2 0.86 0.1 −0.06 −0.03 0.17 0.03

1 SM (d34:0) 2 0.9 0.09 −0.02 0.11 0.1 −0.03

1 SM (d40:2) 2 0.87 0.03 −0.08 −0.02 0.24 −0.01

1 SM (d38:1) 3 0.88 0.16 −0.12 0.1 0.16 −0.01

1 PC (16:0/16:0) 3 0.78 0.26 −0.03 0.04 0.44 −0.06

1 PC (O-34:1) 3 0.82 −0.08 0.01 0.03 0.2 −0.06

1 PC (O-40:4) 3 0.82 −0.03 −0.13 0.2 0.06 −0.06

1 PC (O-32:0) 3 0.8 0.04 −0.01 0.01 0.17 −0.03

1 PC (O-38:4) 3 0.81 −0.02 −0.04 0.04 0.17 0.01

1 PC (O-36:5) 3 0.75 −0.06 0.01 0.01 0.26 0.01

1 PC (16:0/18:2) 3 0.7 0.28 0.11 −0.14 0.28 0

1 CE (18:2) 2 0.86 0.11 0.05 −0.1 0.18 0.06

1 CE (20:4) 2 0.83 0.05 −0.12 0.06 0.15 0.03

1 CE (18:1) 2 0.83 0.23 −0.03 0.01 0.3 0.02

2 DG (36:4) 3 0.13 0.81 0.11 0.06 0.23 0.25

2 TG (16:0_18:0_18:1) 3 0.11 0.77 0.05 −0.1 0.44 0.09

2 TG (56:6) 3 0.36 0.85 −0.07 0.02 0.14 −0.08

2 TG (18:1_18:2_20:4) 3 −0.16 0.74 0.07 0.03 0 −0.07

2 TG (56:3) 3 −0.08 0.83 0.05 −0.04 0.28 0.06

2 TG (58:5) 3 0.05 0.83 0.02 −0.11 0.29 −0.06

2 TG (56:2) 3 0.11 0.76 0.02 −0.12 0.3 0.06

2 TG (54:3) 3 0.21 0.87 0.01 −0.07 0.08 0.05

2 TG (18:1_18:2_18:2) 3 0.05 0.8 −0.02 −0.15 0.01 −0.04

2 TG (57:2) 3 0.08 0.85 0.03 −0.09 0.31 −0.02

2 TG (53:3) 3 −0.06 0.84 0.08 −0.02 0.38 0

2 TG (54:4) 3 0.09 0.89 0.01 −0.11 −0.03 0

2 TG (16:0_18:1_18:2) 3 0.19 0.94 −0.02 −0.07 0.13 0

3 Phenylalanine 2 −0.08 0.02 0.84 0.03 0.05 0.33

3 Oxalic acid 2 −0.17 −0.08 0.64 −0.1 −0.05 −0.24

3 Myo-Inositol 2 0.03 0.02 0.65 0.25 0 0.19

3 Cholesterol 2 0.14 0.15 0.72 0.04 0.06 −0.19

(Continued on following page)
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(208 metabolites with p-Bonferroni< 0.05 out of a total of
964 variables) mainly in triglyceride, diglyceride and
phosphatidylcholine levels. In addition, there are also

differences (125 metabolites) between metabotype 2 and
metabotype 3. Only one of these 125 significant metabolites is
different from the comparison between metabotype 1 and

TABLE 3 (Continued) Metabolites included in each of the six final factors obtained with their factor scores associated with the factors. Saturations above 0.5 are
indicated in dark red. Confidence level in annotation based on Metabolomics Society (Blaženović et al., 2018).

Factor Identification Confidence level Factor score

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

3 Proline 2 −0.05 0.18 0.78 −0.12 0.14 0.17

3 Serine 2 −0.02 −0.09 0.93 −0.03 −0.13 0.16

3 Glycine 2 0 −0.14 0.77 0.05 −0.02 0.15

3 Alanine 2 −0.06 0.14 0.84 −0.13 0.13 0.11

3 Methionine 2 −0.09 0.01 0.84 −0.14 0.03 0.11

3 5-Oxoproline/Pyroglutamic acid 2 −0.12 −0.03 0.81 −0.06 −0.02 −0.08

3 Valine 2 0 0.15 0.81 −0.01 −0.02 0.05

3 Threonine 2 −0.03 −0.03 0.85 −0.21 −0.05 −0.01

4 FA (20:4) 2 0.09 −0.1 −0.03 0.73 −0.08 0.45

4 FA (20:3) 2 −0.04 0.01 −0.06 0.89 0.04 0.2

4 FA (17:0) 2 0.04 −0.14 0.05 0.86 −0.05 0.1

4 FA (22:4) 2 0.07 0 −0.15 0.86 −0.08 0.06

4 FA (18:3) 2 0.04 0.02 0 0.88 0.11 0.03

4 FA (18:0;O6) 4 0.04 −0.03 −0.04 0.92 −0.21 0.03

4 FA (14:0) 2 0.07 −0.03 0 0.87 0.07 0.02

4 FA (22:5) 2 0.16 −0.08 −0.08 0.91 0.01 −0.01

4 FA (22:6) 2 0.2 −0.09 0.04 0.64 −0.05 0

4 FA (14:1) 2 0.04 −0.11 −0.03 0.88 0.01 0

4 FAHFA (2:0_20:4) 4 −0.06 −0.04 0.02 0.88 −0.22 0.05

5 LPC (20:3/0:0) 2 0.21 0.18 0.04 −0.02 0.67 0.16

5 PC (18:0_20:3) 3 0.37 0.33 0.03 −0.06 0.73 0.1

5 PC (30:0) 3 0.32 0.21 0.05 −0.06 0.76 −0.09

5 PC (16:0_16:1) 3 0.36 0.3 0.01 0.02 0.78 −0.07

5 PC (34:3) 3 0.39 0.27 0.03 −0.15 0.79 −0.06

5 PC (40:5) 3 0.51 0.28 0.1 −0.02 0.69 −0.06

5 PC (33:1) 3 0.42 0.22 0.03 −0.04 0.68 −0.06

5 PC (18:0_18:1) 3 0.44 0.21 0.04 −0.07 0.71 0.06

5 PC (18:0_22:4) 3 0.3 0.28 −0.01 −0.02 0.72 0.03

5 PC (38:1) 3 0.52 0.18 −0.04 −0.11 0.65 0.01

6 Glutamic acid 2 −0.04 0.12 0.14 0.18 −0.09 0.85

6 Choline 2 0.01 0.13 0.17 0.03 0.07 0.74

6 Aspartic acid 2 0.02 −0.03 −0.01 0.19 0.04 0.72

6 Glutamine 2 −0.16 −0.1 0.18 0.07 −0.12 0.67

6 Arginine 2 0.01 0.02 0.12 0.02 0.14 0.66

Bold values means the factor score of each variable in its factor.
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metabotype 3, this was lactic acid. However, differences between
metabotype 1 and metabotype 2 are minimal (7 metabolites). It is
important to note that the levels of different triglycerides in

metabotype 3 are found to be increased over two-fold over
those in metabotypes 1 and 2. In addition, we observed a
significant reduction of proline in metabotype 1. Intergroup

FIGURE 3
(A) Hierarchical clustering performed on the factors obtained after Factor Analysis. Ward’s method and Euclidean distance squared. (B) Graph of
individuals on the discriminant dimensions. Shows the relative location of the different groups.
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FIGURE 4
(A) Violin plot of total triglyceride levels in the three identified metabotypes. (B) Progression plot of insulin levels throughout the oral glucose
tolerance test (OGTT). (C) Progression plot of glucose levels throughout the oral glucose tolerance test (OGTT). (D) Violin plot of HOMA-IR (Homeostatic
Model Assessment for Insulin Resistance) levels in the three identified metabotypes. (E) Violin plot of WBISI (whole-body insulin sensitivity index) levels in
the three identified metabotypes.
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comparison of routine clinical laboratory data revealed significant
differences in total triglyceride levels, along with fasting and
glucose-stimulated serum insulin but not glucose level among
these metabotypes (Figure 4; Table 4), with individuals in
metabotype 3 showing lower insulin sensitivity and
hypertriglyceridemia, in a higher risk metabolic profile than
patients in metabotypes 1 and 2.

Discussion

In this study, we have highlighted the significance of conducting
an in-depth analysis of individuals’metabolic phenotypes, yielding a
classification that cannot be attained through anthropometric
features or routine clinical laboratory analyses. Furthermore, we
have observed an absence of pathognomonic metabolic or

TABLE 4 Clinical/biochemical parameters in the studied metabotypes. Values are average ± SEM. p-value was computed according to the parametric or non-
parametric tests applied (ANOVA/Kruskal–Wallis), selected accordingly. Groups homogeneity (Bonferroni) is indicated with superscript letters. Shared letter
involves homogeneous groups.

Clinical features G1 G2 G3 p-value

Age (years) 10.8 ± 0.4 12 ± 0.9 11.8 ± 1 0.34

BMI (kg/m2) 28.4 ± 0.5 28 ± 0.9 29.8 ± 1.5 0.65

BMI-SDS 4.2 ± 2.4 3.6 + 1.0 3.9 + 1.6 0.87

HOMA 3.2 ± 0.2 2.9 ± 0.3 4.2 ± 0.5 0.08

Insulin levels 0 min (µU/mL) 14.2 ± 0.8a 12.6 ± 1.2ab 18.4 ± 1.9b 0.03

Insulin levels 30 min (µU/mL) 116.9 ± 8a 128.7 ± 24.5ab 160.7 ± 17.8b 0.03

Insulin levels 60 min (µU/mL) 105.8 ± 9.3 86.9 ± 24.7 119.6 ± 14.7 0.17

Insulin levels 120 min (µU/mL) 98.4 ± 8.6 91.1 ± 17.9 120.6 ± 18.1 0.36

WBISI 3.5 ± 0.2 3.7 ± 0.6 2.6 ± 0.3 0.05

Glucose levels 0 min (mg/dL) 91.1 ± 0.8 93.7 ± 1.9 89.6 ± 1.9 0.32

Glucose levels 30 min (mg/dL) 147.2 ± 2.9 145.2 ± 7.7 152.5 ± 5.9 0.68

Glucose levels 60 min (mg/dL) 133.1 ± 3.3 120 ± 5.9 132.4 ± 5.7 0.35

Glucose levels 120 min (mg/dL) 119.8 ± 2 122.5 ± 5.1 128.1 ± 5 0.24

Total Cholesterol (mg/dL) 154.2 ± 3.7a 160.9 ± 8.9ab 178.9 ± 9.9b 0.03

TG (mg/dL) 64.2 ± 2.9a 85.5 ± 8.9ab 135.3 ± 22b 0.00

HDL-c (mg/dL) 48 ± 1.8 45.3 ± 3.4 41.4 ± 2.2 0.19

LDL-c (mg/dL) 92.7 ± 3.2 99.5 ± 7 110.5 ± 7.6 0.19

GGT (U/L) 14 ± 0.5 15 ± 1.6 15.9 ± 1.3 0.35

GOT (U/L) 27.4 ± 0.8 26.9 ± 1.4 30.1 ± 2.7 0.87

GPT (U/L) 21.2 ± 0.9 23 ± 3.7 26.9 ± 3.4 0.13

IGF-1 (ng/mL) 320.3 ± 19.9 289.4 ± 41.3 293 ± 49.5 0.64

IGFBP3 (µg/mL) 4.9 ± 0.1 4.6 ± 0.3 5.1 ± 0.3 0.52

HbA1c (%) 5.4 ± 0 5.5 ± 0.1 5.3 ± 0.1 0.58

Free T4 (ng/dL) 0.9 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.61

TSH (µU/mL) 2.7 ± 0.2ab 1.8 ± 0.3a 3.3 ± 0.5b 0.03

DBP mmHg 61.7 ± 0.9 62.2 ± 2.1 64.7 ± 1.9 0.22

SBP mmHg 116.3 ± 1.5 115.6 ± 3.7 123.1 ± 3.5 0.17

Uric Acid mg/dL 5.2 ± 0.1 5.0 ± 0.4 5.3 ± 0.3 0.76

Vitamin D (ng/mL) 24.4 ± 1.3 23.1 ± 3.8 20.6 ± 2.8 0.28

Abbreviations: BMI-SDS, Standardized body mass index (Z-score); HOMA, homeostatic model assessment; WBISI, Whole-body insulin sensitivity index; TG, triglycerides; HDL-c, High

density lipoprotein cholesterol; LDL-c, Low density lipoprotein cholesterol; GGT, Gamma-glutamyltransferase; GOT, aspartate transaminase; GPT, glutamic-pyruvic transaminase Alanine

aminotransferase; IGF-1, Insulin-like growth factor 1; IGFBP3, Insulin-like Growth Factor-binding Protein 3; HbA1c: hemoglobin A1c; TSH, thyroid-stimulating hormone; DBP, diastolic

blood pressure; SBP, diastolic blood pressure.
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metabolomics signatures due to the presence of specific HetRSVs. In
this context, Factor Analysis assumes particular importance in the
integration of data from various analytical platforms, bringing us
closer to personalized medicine.

The term “personalized medicine” stands for the most suitable
specific therapeutic interventions for an individual patient,
underscoring the relevance of developing management strategies
on specific individuals and not average group response to
treatments. This concept has also expanded to nutrition
(i.e., personalized nutrition) and current research focuses on the
intricate interaction between diet, (epi)genome, and the
microbiome, which can determine the effects of bioactive
compounds (González-Sarrías et al., 2017).

Using a multiplatform untargeted metabolomics-based
approach, we determined the metabolic fingerprint of children
with obesity, and by integrating all the data generated by using
Factor Analysis to stratify individuals with obesity according to their
metabolic phenotype, we defined three different “metabotypes.”
Bioinformatics tools are currently available to combine
information from different omics technologies or from different
analytical platforms. Some of these tools allow the performance of
supervised multivariate analysis (Westerhuis et al., 1998; Löfstedt
and Trygg, 2011; Boccard and Rutledge, 2013) to determine the
existing differences between different groups combining the
obtained data. Other integrative multi-omics clustering tools are
specific unsupervised integrative methods to find coherent groups
between samples or features using the information obtained in a
multi-omics analysis (Multiblock PCA, iClusterPlus, iClusterBayes,
moCluster, LRAcluster, PINSplus, SNF, etc.) (Mo et al., 2013; Wu
et al., 2015; Meng et al., 2016; Nguyen et al., 2017; Wang et al., 2017;
Mo et al., 2018; Rappoport and Shamir, 2018; Nguyen et al., 2019;
Tanabe et al., 2021; Zhang et al., 2022). However, most of these
algorithms require knowledge about the parameters to be applied,
and some exhibit complex interpretability. The advantage of Factor
Analysis is that it allows us to reduce dimensionality (without losing
statistically relevant information), which facilitates the discovery of
potential biomarkers, as well as simplifies the biological
interpretation of differences between individuals’ metabolic
phenotypes. Data integration based on dimensionality reduction
approaches seems to be a powerful tool to combine all metabolomic
information obtained from different platforms (Zhang et al., 2022).
This study proposes the use of Factor Analysis to combine and
summarize the information from the different data matrices. The
use of Factor Analysis combined with a hierarchical clustering
analysis has made it possible to identify three clearly
differentiated metabotypes between children with obesity. It is
known that cluster analysis has the potential to yield clusters that
are either arbitrary or devoid of biological significance. One strength
of the results obtained relies on the fact that the acquisition of a
notably elevated score in a supervised analysis (discriminant
analysis) employing the metabotypes derived from the cluster
analysis, serves to not only validate the efficacy of the Factor
Analysis but also to enhance the concrete manifestation of the
three identified metabotypes.

In routine clinical laboratories, serum levels of triglycerides,
lipoproteins, and transaminases are frequently increased in patients
with obesity, revealing underlying dyslipidemia and liver dysfunction
(Rauschert et al., 2016). Several studies indicate that some amino acids,

such as the branched chain amino acids (BCAA), tyrosine, valine,
leucine, or isoleucine, can be used as indicators in early stages of
carbohydrate metabolism impairment (Wang et al., 2011; Michaliszyn
et al., 2012; Mccormack et al., 2013; Butte et al., 2015; Mastrangelo
et al., 2016; Suzuki et al., 2019). Moreover, Suzuki et al. reported a
correlation between insulin resistance and free amino acid levels in a
cohort of patients with moderate to severe obesity (Suzuki et al., 2019).
Our results suggest the existence of large metabolic differences between
the identified metabotypes, with a singularly differentiated fingerprint
in metabotype 3. Factor Analysis indicates that metabotype 3 is
characterized by increased levels of “Lipids1,” “Lipids2,” “Lipids4,”
and amino acids related to cell signaling. In addition, univariate
analysis showed mainly significant differences in triglycerides,
diglycerides, and phosphatidylcholines between metabotype 3 and
the rest of the metabotypes, with increased levels of these lipid
species in metabotype 3. These results suggest the presence of
combined hyperlipidemia (cholesterol + triglyceride) in individuals
integrated within metabotype 3. Routine clinical laboratory analyses
are partially in agreement with these results as individuals in
metabotype 3 had increased total triglyceride levels, as well as
impairment of insulin, including increased fasting and glucose
stimulated insulin secretion and lower WBISI, along with
significantly increased levels of isoleucine and proline (UVA, data
not shown), in concordance with Suzuki et al. (Suzuki et al., 2019).
However, routine clinical analysis of cholesterol species did not detect
the higher cholesterol ester levels in metabotype 3 observed by using
metabolomics, even when other studies have associated increased
cholesterol and triglyceride levels with a decrease in HDL-c levels
(Brown et al., 2000) and higher BMI (Huynh et al., 2019). It is pertinent
to emphasize that the more pronounced metabolic perturbation of
individuals in metabotype 3 is not correlated with a higher BMI-SDS
among these individuals compared to those in other metabotypes.
Nevertheless, a higher representation of Hispanic ethnicity was
observed in metabotype 3 (25%) compared to metabotypes 1 (12%)
or 2 (0%). This is consistent with the lower insulin sensitivity and
higher triglyceride levels reported in Hispanic children with obesity
compared to Caucasians (Martos-Moreno et al., 2020), thus suggesting
an eventual ethnic driven influence in obesity associated metabolomic
profiles (Butte et al., 2015), although this does not extend to all
difference observed (i.e., higher cholesterol ester levels in
metabotype 3, not endorsed in inter-ethnic comparisons) (Martos-
Moreno et al., 2019; Martos-Moreno et al., 2020). In contrast, proven
the role of pubertal status on the development of obesity associated
metabolic comorbidities (particularly insulin resistance), we compared
the relative frequence within each defined metabotype of patient
Tanner stage and, additionally, of prepubertal vs. pubertal patients
(pooling TII to T-V in the latter). No significant differences between
metabotypes were observed regarding the distribution of Tanner stages
within each metabotype (χ2 0.491; p = 0.782) nor in the relative
proportion of prepubertal vs. pubertal patients (χ2 8.596; p =
0.378). Despite these results not being supportive, the possibility
of pubertal influence on the patient metabotype cannot be
completely ruled out and this should be further explored in
larger patient cohorts.

Interestingly, Factor Analysis splits the relevant amino acids into
two subsets. Phenylalanine, proline, serine, glycine, alanine,
methionine, valine, and threonine were part of Factor 3, and
were higher in Metabotype 2. Glutamic acid, glutamine, and
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arginine, together with choline were higher in Metabotype 3. Even
though these amino acids have all been shown to correlate with
insulin resistance in childhood obesity (Suzuki et al., 2019), such
grouping points towards a non-homogeneous involvement of the
different amino acids in the complications of obesity. Besides their
role in protein synthesis, each amino acid can be involved in
different functions and processes, and it is beyond the
possibilities of this observational study to determine the exact
relationships between the differences found and the therapeutic
approach to treat obesity. Those amino acids grouped in Factor
3 include 4 essential (phenylalanine, threonine, valine, methionine)
and 3 of the most abundant amino acids (glycine, serine, alanine),
and therefore this factor could be strongly related to the nutritional
status of the patients, as it would represent protein intake and
turnover in the body. In Factor 6, increased in Metabotype 3,
glutamic acid, aspartic acid and glutamine, were grouped with
choline and arginine. In addition to also reflecting the nutritional
status, this group of factors is of particular relevance as they can be
related to neurotransmission (Dalangin et al., 2020), and their
circulating levels have been proposed as biomarkers of visceral
obesity and metabolic alterations (Maltais-Payette et al., 2018)
and have been associated with metabolic stress (Yan et al., 2012).

As stated above, childhood obesity is the result of the action of
multiple environmental factors on eating and activity habits and
lifestyle, in combination with an individual’s unique genetic
fingerprint. GWAS studies yielded a large list of genes with
SNPs, or variants associated to human obesity, but in the vast
majority of cases, a single determinant of childhood obesity cannot
be identified, thus classifying these cases as “polygenic” or
“idiopathic” obesity. In contrast, the rare cases of monogenic
forms of obesity, are mainly caused by biallelic mutations in a
single gene, usually in the leptin-melanocortin satiety pathway, and
are characterized by vary severe, early-onset obesity, usually with
evident hyperphagia, and in some cases associated to other
metabolic comorbidities and influencing growth pattern even in
the first years of life (Handakas et al., 2022). Several metabolomic
studies have been performed in childhood obesity,
comprehensively characterizing the metabolic alterations in
these conditions, as well as in animal models of leptin
resistance thus exploring the effect of the impairment of the
leptin-POMC satiety pathway (Pietiläinen et al., 2007;
Mastrangelo et al., 2016; Martos-Moreno et al., 2017; Rauschert
et al., 2017; Kim et al., 2019; Lawler et al., 2020; Rupérez et al., 2020;
Sanz-Fernandez et al., 2020). However, the pathogenic role of
heterozygous rare sequence variants in the genes of the leptin-
melanocortin pathway (Le Collen et al., 2023), as in other genes
relevant for central energy and glucose homeostasis is under
discussion (Trang and Grant, 2023). Following previous
observations by us and other groups (Serra-Juhé et al., 2017;
Gerl et al., 2019; Gonzalez-Riano et al., 2021), the hypothesis
that they are eventual pathogenicity was proposed. However,
the results of this study, showing no anthropometric, metabolic
nor metabolomic differences between patients with or without
HetRSVs in the studied genes, and the lack of differences in the
prevalence of the different metabotypes between these groups does
not verify their pathogenic role (Supplementary Tables), at least
from a metabolic and metabolomic point of view. To our
knowledge, this study is the first metabolomic study attempting

to identify a specific metabolic phenotype associated with the
presence of HetRSVs in the leptin-POMC pathway, as well as in
glutamate receptors, and demonstrates the absence of a clear
differential metabolic phenotype due to the presence of these
variants.

The association of obesity with lipidomes and the use of
technologies to stratify obesity based on lipidomic data has been
previously investigated by means of machine learning algorithms
(Gerl et al., 2019). However, this is the first study, to combine
metabolomic data from different analytical platforms and genetic
data to stratify obesity. Moreover, Factor Analysis has not been
previously employed for the subclassification of patients with
obesity by using the adequate combination of multiplatform MS
metabolomics data. We distinguished two antagonic
metabotypes (1 and 2 vs. 3) that can be deduced from the
examination of the contributing factors. Such subclassification
was not possible from the information derived from the routine
clinical examination and laboratory analyses. With our approach,
subtle but clear differences arose between the three metabotypes:
Six groups of metabolites can be combined to evaluate the
metabolic phenotype, and promising associations between this
metabolic phenotype and insulin sensitivity, circulating
triglycerides and TSH levels and ethnicity have been
uncovered. Metabotypes 1 and 2 have lower levels of the
factors corresponding to “Lipids1” (F1), “Lipids2” (F2),
“Lipids4” (F5) and “Signaling amino acids” (F6), as compared
to Metabotype 3, suggesting a higher metabolic risk phenotype in
patients with childhood obesity in Metabotype 3 (Table 5).
Among the most promising results, the separation of amino
acids into two different factors, and the differential association
of these factors with different phenotypes opens the possibility of
treating the obese subjects in these two metabotypes with
different approaches. Metabotype 2 was associated with higher
levels of F2, or Nutritional amino acids, than in the other two
metabotypes, suggesting a healthier metabolic phenotype of these
patients, that could speculatively be associated to higher protein
intake in their diet, whereas F6, higher in metabotype 3, could
speculatively be associated to a behavioral component of the
children in this group. However, the lack of precise control of
feeding behavior in these patients, feeding due to the ambulatory
modality of management is a limitation to test this hypothesis.
Apart from this, the limited number of patients studied, along
with the potential confounding factors (such as sex, race or

TABLE 5 Mean values of the factor scores of the new factors obtained after
Factor Analysis.

Factor name G1 G2 G3

Mean Mean Mean

Factor 1 “Lipids1” (SM/CE) −0.06 −0.03 0.32

Factor 2 “Lipids2” (DAG/TAG) −0.30 0.01 1.38

Factor 3 “Nutritional amino acids” −0.33 2.10 0.20

Factor 4 “Lipids3” (FFA) 0.05 −0.13 −0.16

Factor 5 “Lipids4” (PC) −0.15 −0.29 0.88

Factor 6 “Signaling amino acids” −0.08 −0.59 0.75
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pubertal status) potentially influencing the described
metabotypes raise the need of validating the presented results
in larger and independent cohorts, to enhance the reliability and
generalizability of the results, i.e., to support the metabotypes
here identified and to explore an eventual role of these factors.

The challenge for the near future will be to use new technological
advances such as that used here to accurately stratify the state/stage
of different diseases, in order to precisely predict disease progression
and to provide appropriate treatment for each patient, as well as to
monitor their evolution.
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Introduction: Lung cancer is one of the most frequently studied types of cancer
and represents themost common and lethal neoplasm. Our previous research on
non-small cell lung cancer (NSCLC) has revealed deep lipid profile
reprogramming and redox status disruption in cancer patients. Lung cell
membranes are rich in phospholipids that are susceptible to oxidation, leading
to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent
and elevated levels of oxPCs have been shown to induce chronic inflammation,
leading to detrimental effects. However, recent reports suggest that certain
oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-
protective properties. Thus, we aimed to measure the levels of oxPCs in
NSCLC patients and investigate their potential role in lung cancer.

Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth,
multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples
from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous
cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD
patients as a control group. First, we performed oxPC profiling of plasma
samples. Second, we analyzed tumor and non-cancerous lung tissues
collected during the surgical removal of NSCLC tumors. Because of tumor
tissue heterogeneity, subsequent analyses covered the surrounding healthy
tissue and peripheral and central tumors. To assess whether the observed
phenotypic changes in the patients were associated with measured oxPC
levels, metabolomics data were augmented with data from medical records.

Results: We observed a predominance of long-chain oxPCs in plasma samples
and of short-chain oxPCs in tissue samples from patients with NSCLC. The
highest concentration of oxPCs was observed in the central tumor region.
ADC patients showed higher levels of oxPCs compared to the control group,
than patients with SCC.
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Conclusion: The detrimental effects associated with the accumulation of short-
chain oxPCs suggest that thesemolecules may have greater therapeutic utility than
diagnostic value, especially given that elevated oxPC levels are a hallmark of
multiple types of cancer.

KEYWORDS

NSCLC, lung cancer, oxPC, oxidized phospholipids, epilipidomics

1 Introduction

Redox balance is one of the most important factors influencing
the health status of an organism. It is crucial for proper cellular
signaling and communication and is thus essential for the healthy
functioning of living organisms. Disruptions in this balance result in
an excess of reactive oxygen species (ROS), reducing the antioxidant
potential of the cell and causing oxidative stress.

The idea of evaluating the health of an organism based on
oxidative stress levels is not new. Among different oxidation
products, lipids play an important role, especially since lipid
peroxidation is a damaging process that can contribute to the
development and progression of various diseases. Lipid oxidation
has been deeply investigated not only through stable end-products,
such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA)
(Zabłocka-Słowińska et al., 2019) but currently also through early
oxidation products, including oxidized phospholipids (Solati et al.,
2021). Oxidized phosphatidylcholines (oxPCs) are among the most
thoroughly researched oxidized phospholipids and comprise a broad
group of bioactive molecules that differ in structure and function.
OxPCs may exist as long-chain solely (LCh-oxPCs) or as short-chain
forms (SCh-oxPCs) produced by the oxidative fragmentation of
esterified polyunsaturated fatty acids (PUFAs); and cyclized oxPCs
(Cyc-oxPCs) form via cyclization of peroxyl radicals (Davies andGuo,
2014). LCh-oxPCs have oxidized fatty acid, usually in the sn-2
position of glycerol-phospholipid, containing oxidation-derived
functional groups such as hydroxy, hydroperoxy, epoxy or keto.
SCh-oxPCs have truncated fatty acid, usually in the sn-2 position
of glycerol-phospholipid, containing a terminal aldehyde or
carboxylic acid (Gil de la Fuente et al., 2018; Villaseñor et al., 2021).

Historically, oxPCs have been considered toxic oxidation by-
products; however, current evidence acknowledges them as essential
signaling molecules with various, and often pleiotropic, functions
(Bochkov et al., 2017). Researchers are investigating these molecules
through untargeted approaches (Gil de la Fuente et al., 2018), targeted
methods (Solati et al., 2021), or highly sophisticated mechanistic and
functional studies (Slatter et al., 2018). Moreover, over the last decade,
multiple highly advanced computational solutions were developed for
redox lipidomics, with a particular focus on the robust identification
of epilipids (Ni et al., 2019).

oxPCs are associated with cardiovascular diseases (Stamenkovic
et al., 2017; Paynter et al., 2018), neurodegenerative diseases (Tyurina
et al., 2015; Okuzumi et al., 2019), diabetes (Chen et al., 2018; Godzien
et al., 2019; Nie et al., 2019), cancer (Reuter et al., 2010;Mantovani et al.,
2012; Ingram et al., 2021), and non-alcoholic steatohepatitis (Ikura et al.,
2006), all of which can be linked to oxidative stress and chronic
inflammation. As reported previously, oxPCs may induce either
beneficial or detrimental effects in the lungs (Ke et al., 2019; Karki
and Birukov, 2020). Their impact may depend upon their structure and

concentration; LCh-oxPCs exhibit a protective effect, and SCh-oxPCs
are linked with disruptive effects. Moreover, lower levels of oxPCs
protect the endothelial barrier, whereas high concentrations of the same
species induce disruptive effects (Karki and Birukov, 2020). The
beneficial effects of oxPCs are related to the protective effects on the
endothelial barrier (through activation of Rac1, inhibition of Rho,
activation of S1P1, or enhanced assembly of EC junctions) and anti-
inflammatory effects (through inhibition of TLRs signaling, inhibition
of NF-κB activation, increase in cAMP levels, activation of eNOS, Nrf2,
HO-1 or LXA4 production) while detrimental effects are linked to the
pro-inflammatory effects (through increased levels ofMCP1, IL-6, IL-8,
MIP-1, CXCL3, STAT3, NLRP3, TLR4, TLR2 CD36, and PRR
activation), induction of coagulation (through increased expression
of TF and decreased expression of TFPI and thrombomodulin), and
increasing the endothelial permeability (via activation of Src kinase,
ROS production, phosphorylation of VE-cadherin and EC junctional
assembly disruption).

Inflammation and oxidative stress are heavily associated with
two major health concerns worldwide: lung cancer and chronic
obstructive pulmonary disease (COPD). Lung cancer is the most
lethal type of cancer, taking 1.8 million lives annually (Sung et al.,
2021). Non-small cell lung cancer (NSCLC) is the most prevalent
type of lung cancer, accounting for 85%–90% of all cases (Duma
et al., 2019). NSCLC is characterized by high malignancy, strong
invasiveness, and easy metastasis, which, together with poor
diagnosis and lack of effective treatment, result in high mortality.
Therefore, early diagnosis, accurate clinical staging, and subtype
determination are important to determine effective treatment plans,
prolong survival, and improve the quality of life.

COPD and lung cancer are caused by cigarette smoking, and there
is increasing evidence linking the two diseases beyond a common
etiology. Smokers displaying airflow obstruction face a considerably
elevated risk of lung cancer, with up to a fivefold increase compared to
individuals with normal lung function. As pointed out by Durham and
Adcock, the high prevalence of lung cancer in COPD suggests that
there may be common mechanisms, such as inflammation, oxidative
stress, premature aging in the lungs, genetic predispositions to either
disease or common pathogenic factors, such as growth factors,
activation of intracellular pathways or epigenetics (Durham and
Adcock, 2015). Therefore, trying to obtain the oxPCs signature
specific to lung cancer, as opposed to inflammation- and oxidative-
stress-derived lung diseases, we decided to use COPD patients as our
control group instead of healthy volunteers.

For many years, carcinogenesis and cancer proliferation have
been mainly linked to disruptions in carbohydrate metabolism
(Martinez-Outschoorn et al., 2017). However, over the last
decade, researchers have revealed alterations in lipid metabolism
and profound lipid reprogramming in malignant cells (Beloribi-
Djefaflia et al., 2016; Gong et al., 2022).
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Elevated oxidative stress has been reported in patients with lung
cancer, but the exact mechanisms underlying this association are not
fully understood (Mousapasandi et al., 2021). Previous reports have
suggested that enhanced oxidative stress in patients with NSCLC
occurs through either elevated formation of oxidation products or
inactivation of antioxidant mechanisms (Sunnetcioglu et al., 2016).
The overall redox status of NSCLC patients has already been
investigated by other groups. However, in majority of cases, these
studies have focused on end oxidation products, such as reactive
aldehydes (Gęgotek et al., 2016; Karki and Birukov, 2020). Given the
increased oxidative stress and elevated levels of phospholipids
observed in NSCLC patients, it is reasonable to expect elevated
levels of oxPCs. Moreover, the structure-related properties of
different oxPCs highlight the importance of exploring distinct
oxPC species. Therefore, the aim of this study was to determine
the levels of oxPCs in NSCLC patients, including those with
adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the
two most prevalent NSCLC subtypes, and investigate their potential
role in the development of lung cancer.

2 Materials and methods

2.1 Chemicals and reagents

Ultrapure water was used to prepare all aqueous solutions and
was obtained using a Milli-Q Integral 3 system (MilliporeSigma,
Burlington, MA, United States). Zomepirac sodium salt, formic acid,
LC-MS-grade methanol, acetonitrile, and LC-grade ethanol were
purchased from Sigma-Aldrich (St. Louis, MO, United States).

2.2 Cohort

The study was approved by the Ethics Committee of the Medical
University of Bialystok (R-I-003/262/2004, R-I-002/296/2018, and

APK 002 5 2021) and was performed in accordance with the
Declaration of Helsinki. Before sample collection, written informed
consent for specimen collection was obtained from all participants.
Samples were obtained from patients undergoing surgical treatment
for primary NSCLC at the Department of Thoracic Surgery of the
Clinical Hospital of theMedical University of Bialystok in Bialystok in
Poland. Three distinct cohorts of patients were included (Figure 1),
yielding 125 plasma and 242 tissue samples. Plasma samples were
collected from 101 patients with NSCLC (41 ADC and 60 SCC
patients) and 24 COPD controls. Control COPD group consisted
of patients with an increased risk of NSCLC lung cancer diagnosed
with chronic lung disease, chronic cough, wheezing or shortness of
breath showing no focal lesions in lungs X-ray.

We collected tumor tissue and adjacent non-malignant control
tissue from 61 patients with NSCLC (25 ADC and 36 SCC) for total
tumor tissue metabolic fingerprinting, obtaining 122 samples. For
dimensional tumor tissue metabolic fingerprinting, three pieces of
tissues from central and peripheral tumor regions and adjacent non-
malignant control tissues were collected from 40 NSCLC patients
(20 ADC and 20 SCC) resulting in 120 samples. Clinicopathological
characteristics, such as age, sex, smoking status, body mass index
(BMI), tumor grade, lymph node metastases, histological type,
clinical stage, and survival data were available. The basic clinical
parameters describing each of the three cohorts enrolled in this
study are summarized in Table 1.

Whole blood was collected in 9 mL vacuum system tubes with
K2EDTA as an anticoagulant. After gentle mixing, the plasma was
separated by centrifugation at 1,300 × g for 20 min at room
temperature. Plasma fractions (0.5 mL each) were collected in
Eppendorf tubes and stored at −80°C until analysis.

Tissue samples were histologically reviewed and classified. After
lung tumor resection, the whole specimen was examined
macroscopically by a pathologist following previously published
methods (Ciereszko et al., 2022) to determine the exact tumor
localization, identify macroscopic tumor residuals, search for
macroscopic infiltration of pulmonary pleura, and evaluate

FIGURE 1
Workflow summarizing metabolomics analyses performed to explore the differential profiles of the oxPCs in COPD controls and NSCLC patients.
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necrosis in the tumor center. The pathologist cut the tissue samples
into tumor center and periphery subsamples. Moreover, the
pathologist determined the possibility of collecting adjacent
pulmonary tissue (referred to here as normal tissue); if the
distance from the tumor border was greater than 2 cm, the

pathologist took samples of adjacent tissue. Next, nurses from
the biobank placed the tissue samples alternately into cryo-tubes
containing the vapor phase of liquid nitrogen (fresh frozen samples)
and into tubes with 10% buffered formalin (formalin-fixed samples).
In this study we used fresh frozen samples.

TABLE 1 Basic clinical parameters of patients in three cohorts.

Plasma samples: oxPC profiling

Patient characteristics NSCLC (ADC + SCC) n = 101 ADC n = 41 SCC n = 60 COPD controls n = 24

Age [years] median (Q1–Q3) 63.0 (58.0–69.0) 62.0 (58.0–68.0) 63.5 (58.8–69.0) 63.0 (52.8–69.0)

BMI median (Q1–Q3) 25.47 (23.62–27.76) 25.99 (24.17–28.09) 25.39 (23.39–27.23) 24.56 (21.78–27.82)

Gender [F/M] 29/72 15/26 14/46 10/14

pTNM stage

n (%) n (%) n (%)

IA 16 (16%) 10 (24%) 6 (10%)

IB 10 (10%) 6 (15%) 4 (7%)

IIA 24 (24%) 8 (20%) 16 (27%)

IIB 33 (33%) 9 (22%) 24 (40%)

IIIA 18 (18%) 8 (20%) 10 (17%)

Tissue samples: total tumor tissue metabolic fingerprinting

Patient characteristics NSCLC (ADC + SCC) n = 61 ADC n = 25 SCC n = 36

Age [years] median (Q1–Q3) 63.0 (56.0–69.0) 62.0 (55.0–69.0) 63.5 (57.5–69.0)

BMI Median (Q1–Q3) 24.93 (23.41–26.09) 25.00 (23.53–26.37) 24.53 (23.39–25.39)

Gender [F/M] 13/48 6/19 7/29

pTNM stage

n (%) n (%) n (%)

IA 0 (0%) 0 (0%) 0 (0%)

IB 0 (0%) 0 (0%) 0 (0%)

IIA 21 (34%) 9 (36%) 12 (33%)

IIB 20 (33%) 8 (32%) 12 (33%)

IIIA 20 (33%) 8 (32%) 12 (33%)

Tissue samples: dimensional tumor tissue metabolic fingerprinting

Patient characteristics NSCLC (ADC + SCC) n = 40 ADC n = 20 SCC n = 20

Age [years] median (Q1–Q3) 65.5 (59.0–69.0) 67.5 (59.8–69.5) 63 (59.0–69.0)

BMI median (Q1–Q3) 26.565 (22.51–28.23) 27.04 (23.27–29.38) 26.255 (22.36–28.02)

Gender [F/M] 20/20 10/10 10/10

pTNM stage

n (%) n (%) n (%)

IA 1 (3%) 1 (5%) 0 (0%)

IB 10 (27%) 6 (30%) 4 (24%)

IIA 2 (5%) 0 (0%) 2 (12%)

IIB 9 (24%) 3 (15%) 6 (35%)

IIIA 15 (41%) 10 (50%) 5 (29%)
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Cancer stages were determined according to pathological
tumor-node-metastasis (pTNM) staging. All tissue samples were
frozen and stored at −80°C until analysis. Sample collection,
quenching, and storage were performed according to the
approved biobanking standards (Niklinski et al., 2017).

2.3 Clinical parameters

Serum C-reactive protein (CRP) and white blood cell (WBC)
levels were determined the day before the surgical operation for
tumor removal, together with other canonical biochemical
parameters, in the diagnostic laboratory at the Clinical Hospital
of the Medical University of Bialystok.

Metabolic tumor volume (MTV) and standardized uptake
volume (SUV) were determined using simultaneous positron
emission tomography-magnetic resonance imaging (PET/MRI)
examinations performed using a Biograph mMR scanner
(Siemens, Munich, Germany). Whole-body acquisition (from the
top of the head to the mid-thigh) was begun 60 ± 10 min after the
intravenous administration of 18-F-fluorodeoxyglucose at an
activity of 4 MBq/kg body weight. Whole-body MRI was
performed with T1- and T2-weighted images taken in the
transverse plane; PET/MRI of the chest was performed using T1_
vibe, T1_vibe_fatsat, T2_haste sequences, including breath-hold
images were taken in the transverse, coronal, and sagittal planes
and a magnetic resonance contrast agent was used in the absence of
contraindications. The images were assessed by a nuclear medicine
specialist and a radiologist with at least 5 years of experience.
Radiotracer biodistribution was visually assessed, and semi-
quantitative analysis was carried out using the metabolic activity
index of lesions (SUVmax/lbm- SUV/lean body mass), and MTV
was measured using a threshold-based method with 40% SUVmax.

2.4 Plasma and tissue sample preparation

Plasma samples were prepared using a previously described
method (Daniluk et al., 2019). On the day of analysis, the samples
were thawed on ice. For protein precipitation and metabolite
extraction, one volume of plasma sample was mixed with three
volumes of ice-cold methanol/ethanol (1:1) containing 1 ppm of
zomepirac, used as an internal standard (IS). After extraction, the
samples were stored on ice for 10 min and centrifuged at 21,000 × g
for 20 min at 4°C. The supernatant was filtered through a 0.22 μm
nylon filter (Thermo Fisher Scientific,Waltham,MA, United States).

Tissue samples were prepared according to a previously
described method (Ciborowski et al., 2017). On the day of
analysis, the samples were thawed on ice. Ten milligrams of lung
tissue were placed in an Eppendorf tube with two stainless steel
beads (5 mm) and 200 μL of ice-cold 50% methanol. Samples were
homogenized for 8 min at 30 Hz using a TissueLyser LT instrument
(Qiagen, Hilden, Germany). After homogenization, the beads were
removed, and 200 μL of ice-cold acetonitrile containing 1 ppm of
zomepirac (internal standard) was added to the sample. Metabolites
were extracted by vortexing the samples for 1 h. After extraction, the
samples were centrifuged at 21,000 × g for 20 min at 20°C. The
supernatant was filtered through a 0.22 μm nylon filter. The

extraction blank was prepared following the same procedure as
the biological samples but without tissue, and was analyzed together
with biological samples.

Quality control samples (QCs) were prepared by mixing equal
volumes of raw plasma and equal volumes of metabolite extract of
tissue samples. QCs were treated like the rest of the samples and
injected at the beginning of the batch (10 injections) to equilibrate
the system and after every ten samples to monitor the stability of the
measurement (Godzien et al., 2014).

2.5 Analytical setup

Three types of analysis were performed, covering plasma oxPC
profiling, total tumor tissue metabolic fingerprinting and
dimensional tumor tissue metabolic fingerprinting. However,
recoded data was processed in a targeted manner, retrieving from
it solely information about oxPCs.

Plasma oxPC profiling was performed using a 6546 iFunnel ESI-
QTOF (Agilent Technologies, Santa Clara, CA, United States) coupled
with a 1290 Infinity UHPLC system (Agilent Technologies) with a
degasser, quaternary pump, and thermostatted autosampler.

Tissue metabolic fingerprinting was performed using a
6545 iFunnel ESI-QTOF instrument (Agilent Technologies, Santa
Clara, CA, United States) coupled with the 1290 Infinity UHPLC
system (Agilent Technologies) with a degasser, binary pump, and
thermostatted autosampler.

Plasma and tissue samples were analyzed in both polarity
modes. During all analyses, two reference compounds were used:
m/z 121.0509 (protonated purine) and m/z 922.0098 (protonated
hexakis (1H,1H,3H-tetrafluoropropoxy)phosphazine [HP-921]) for
the positive ionization mode, and m/z 112.9856 (proton abstracted
trifluoroacetic acid anion) andm/z 966.0007 (formate adduct of HP-
921) for the negative ionization mode. These masses were
continuously infused into the system to allow internal constant
mass correction during data acquisition.

All datasets were acquired in both polarity modes. However,
data analysis revealed that more abundant and, therefore, more
reproducible signals of oxPCs were obtained in the positive ion
mode. The negative-ion mode provided more detailed structural
information. Consequently, information from the positive ion mode
was used for statistical analyses, whereas information acquired in the
negative ion mode was used for lipid annotation.

2.6 Plasma oxPC profiling

Fourmicroliters of each sample were injected into a thermostatted
Zorbax Extend C18 column (RRHT 2.1 × 50 mm, 1.8 μm; Agilent
Technologies) at 60°C. The flow rate was 0.6 mL/min for aqueous
phase A (water with 0.1% formic acid) and organic phase B
(acetonitrile with 0.1% formic acid). The chromatographic gradient
started at 50% phase B, then increased to 80% (1–6 min) and 100%
(6–8 min). Finally, the system was re-equilibrated by reverting the
phase composition to initial conditions (50% phase B) in 0.5 min, and
this was maintained from 8.5 to 10 min. The mass spectrometer was
operated in full-scan mode (MS1). Data were acquired at m/z values
ranging from 50 to 1,000 at a scan rate of 1.0 scan per second. The
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drying gas flow rate was 12 L/min, the temperature was 250°C, and the
gas nebulizer pressure was set to 52 psig. The nozzle voltage was
1,000 V, and the capillary voltages were 3,000 and 4,000 V in the
positive and negative ion modes, respectively.

All samples were analyzed in scan mode (MS1) for both
polarities. Then, a subset of 70 samples was analyzed in the
negative ion mode using iterative exclusion data-dependent
analysis (IE-DDA). The precursor ions were fragmented using
ramped collision energy adjusted for each molecule according to
its m/z value. The first injection was performed as a conventional
data-dependent analysis where the top three most abundant
precursors were selected for fragmentation considering the active
exclusion lists. During the subsequent injection, precursors selected
for MS/MS fragmentation in the previous injection were excluded
on a rolling basis with a mass error tolerance and 0.5 min retention
time tolerance. Five iterative MS/MS runs were performed for each
sample, resulting in 350 measurements.

2.7 Lung tissue metabolic fingerprinting

One microliter of the extracted sample was injected into a
Zorbax Eclipse Plus C8 column (RRHD 2 × 150 mm, 1.8 μm;
Agilent Technologies) at 60°C. The flow rate was 0.6 mL/min for
aqueous phase A (water with 0.1% formic acid) and organic phase B
(acetonitrile with 0.1% formic acid). The gradient started at 25%
phase B and increased to 95% phase B over 14 min. This was
maintained for 1 min, and then the gradient returned to starting
conditions (25% phase B) in 0.1 min and maintained for 4.9 min to
re-equilibrate the system before the next injection. The mass
spectrometer was operated in the full-scan mode (MS1) from m/
z 50 to 1,000. The drying gas flow rate was 12 L/min, the temperature
was 250°C, and the gas nebulizer pressure was set to 52 psig. The
nozzle voltage was 1,000 V, and the capillary voltages were 3,000 and
4,000 V in the positive and negative ion modes, respectively.

2.8 Determination of protein content in
lung tissue

The precipitated proteins were suspended in
radioimmunoprecipitation assay (RIPA) buffer, denatured at 60°C,
and sonicated for 30 min in a water bath. The samples were then
centrifuged for 15 min at 14,000 × g. Protein concentration was
measured using the Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific) according to the manufacturer’s protocol.

2.9 Data processing: plasma oxPC profiling

MS1 data were reprocessed using a targeted approach to extract
from the acquired data information about oxPCs (Godzien et al.,
2019). IE-DDA data were used to confirm the annotation of oxPCs
based on theMS/MS spectra. For this purpose, we searched for known
fragmentation patterns, inspecting acquired MS/MS spectra in Mass
Hunter Qualitative software (Agilent Technologies, B.07.00) (Gil de la
Fuente et al., 2018). Moreover, all annotations were confirmed using
retention time to compare the elution order between different oxPCs

and their non-oxidized precursors. This step was crucial for
minimizing false annotations of in-source generated lipids. A list
of 45 oxPCs was defined (Supplementary Table S1) and covered
13 LCh-oxPCs and 32 SCh-oxPCs (including isoforms). OxPCs for
which we found isomeric forms are denoted with the postfix “iso”
followed by the number, signifying the identification of multiple
isomers. Conversely, oxPCs lacking this “iso” prefix indicate that
isoforms were not detected for those specific compounds.

Retention time andmass data pairs of annotated oxPCs were used
as input criteria to search them in MS1 data. This processing was
performed using the “Find by Ion” algorithm in Mass Hunter
Profinder software (Agilent Technologies, B.10.00). The integration
of all extracted peaks was manually curated and corrected if necessary.

2.10 Data processing: tissue metabolic
fingerprinting

MS1 data were reprocessed using a targeted approach to extract
information about oxPCs from the acquired data (Godzien et al.,
2019). A list of 45 oxPCs was defined (Supplementary Table S1) and
covered 13 LCh-oxPCs and 32 SCh-oxPCs (including isoforms).
Annotation of these oxPCs was done in previous projects based on
the data-independent analysis (DIA), and incorporated into in-
house built library. Retention time and mass data pairs of
annotated oxPCs were used as input criteria to search them in
MS1 data. This processing was performed using the “Find by Ion”
algorithm inMass Hunter Profinder software (Agilent Technologies,
B.10.00). The integration of all extracted peaks wasmanually curated
and corrected if necessary.

2.11 Statistical analysis

The acquired data underwent evaluation through a Quality
Assurance procedure. oxPCs displaying a Relative Standard
Deviation (RSD) of signals in QC samples below 30% were deemed
reliably measured and retained for subsequent statistical analyses.

Before statistical analyses, data from the plasma analyses were
normalized solely to the IS to minimize analytical drift. Data
from the tissue analyses were normalized to the IS and to protein
content to minimize differences between different pieces of
tissue. Before using IS data for normalization purposes, the
quality of measured signals and integrated peaks was
evaluated, checking the RSD of IS across all the samples to
ensure that its signal was not interfered by co-eluting
molecules changing between compared groups.

Plasma samples were analyzed for general comparisons of i)
control vs. NSCLC; for subtype comparison of ii) control vs. ADC
subtype and iii) control vs. SCC subtype. Tissue samples were
analyzed for general comparison between i) tumor and non-
cancerous lung tissue of NSCLC; for subtype comparison
between ii) tumor and non-cancerous lung tissue in ADC and
iii) tumor and non-cancerous lung tissue in SCC.

Differences between compared groups were described with
p-values and relative differences expressed as percentages, where
a positive value indicated higher values in cancer patients than in
controls, and a negative value indicated lower signals in cancer
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patients than in controls. p-values were computed using a non-
parametric Mann-Whitney test in Mass Profiler Professional (MPP,
Agilent Technologies 15.1). For plasma comparisons between
NSCLC and COPD patients unpaired test was applied, while for
the tissue comparisons of different tissue sections from the same
patients paired test was employed. Obtained p-values were corrected
employing Benjamini–Hochberg False Discovery Rate correction.

However, because of small number of tested variables uncorrected
p < 0.05 was considered significant.

Variations between groups were inspected by calculating the
percentage of change in Excel (Microsoft) and fold change in MPP
15.1 (Agilent Technologies). Furthermore, we calculated using Excel
(Microsoft) the median, Q1, and Q3 for each oxPC level in each
comparison (Tables 2, 3). To evaluate the prevalence of elevated

TABLE 2 Differences in oxPC profiles of NSCLC patients and COPD controls in plasma samples (Panel A) and non-cancerous lung tissue and tumor tissue
from NSCLC patients (Panel B).

A) Relative plasma oxPC abundance between NSCLC patients and COPD controls

oxPC Raw p-value
(Corrected p-value)

Change [%]
(Fold change)

COPD controls NSCLC

Median abundance (Q1–Q3) [counts]

PC 16:0/20:3; OH 2.46E-14 NSCLCa 0 (0–0) 87,985
(76,390–99,205)

(3.20E-13) (16.00)

PC 16:0/18:2; OH 1.95E-13 179 62,930 (56,807–72,151) 145,245
(117,414–190,046)

(1.26E-12) (2.46)

PC 16:0/20:4; OH 2.36E-11 88 107,090 (89,664–114,582) 164,852
(139,989–204,070)

(1.02E-10) (1.74)

PC 18:0/20:4; OH 3.23E-08 54 113,525 (106,043–130,812) 154,079
(131,649–201,613)

(1.05E-07) (1.44)

PC 18:0/18:2; OH 2.44E-02 17 216,912 (179,508–247,975) 232,874
(207,020–285,790)

(5.29E-02) (1.15)

PC 18:0/20:4; OOH 1.75E-02 14 92,188 (84,837–101,544) 102,019
(90,049–117,132)

(4.55E-02) (1.13)

B) Relative oxPC levels between healthy lung tissue and tumor tissue from NSCLC patients

oxPC Raw p-value
(Corrected p-value)

Change [%]
(Fold change)

Healthy tissue Tumor tissue

Median abundance (Q1–Q3) [counts]

PC 16:0/7:0; COOH iso4 6.61E-05 87 920 (646–1,368) 1,440 (648–2,761)

(6.61E-05) (1.70)

PC 16:0/7:0; COOH iso2 8.66E-05 10 290 (199–568) 367 (214–644)

(6.06E-04) (1.09)

PC 16:0/5:0; COOH 2.05E-02 92 567 (433–868) 458 (0–663)

(4.79E-02) (1.34)

PC 16:0/5:0; CHO 7.79E-03 73 1,322 (821–1,867) 1,561 (1,089–2,640)

(2.18E-02) (1.30)

PC 16:0/4:0; CHO iso2 5.62E-03 65 539 (285–754) 636 (356–899)

(1.97E-02) (1.24)

PC 16:0/18:2; OH iso2 1.59E-03 76 3,622 (2,954–4,592) 4,832 (3,829–6,452)

(7.44E-03) (1.37)

Raw p-value computed with the Mann-Whitney unpaired test for plasma comparisons and paired test for tissue comparisons. Corrected p-value was calculated employing Benjamini–Hochberg

FDR, correction.

The positive value of the change indicates that the average amount of oxPC, is higher in plasma of cancer patients than in controls, and higher in tumor tissue than in healthy lung tissue, while a

negative value indicates that the average amount of oxPC, is lower in plasma of cancer patients than in controls, and lower in tumor tissue than in healthy lung tissue.
aNSCLC, oxPCs, observed only in NSCLC, samples and not in COPD.
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TABLE 3 Differential oxPC profiles between ADC, SCC, and COPD patients in plasma (Panel A) and lung tissue (Panel B).

A) oxPC levels between ADC and SCC patients and COPD controls in plasma

oxPC ADC SCC COPD controls ADC SCC

Raw p-value
(Corrected p-value)

Change [%]
and Fold change

Raw p-value
(Corrected p-value)

Change [%]
and Fold change

Median abundance (Q1–Q3) [counts]

PC 16:0/20:3; OH 6.77E-12 ADC 5.45E-13 SCC 0 (0–97,285) 89,546 (80,989–97,285) 81,998 (73,048–102,407)

(8.79E-11) (16.00) (7.09E-12) (16.00)

PC 16:0/18:2; OH 5.19E-11 220 8.37E-12 150 62,930 (56,807–197,594) 166,556 (133,276–197,594) 126,730 (108,060–171,867)

(3.37E-10) (2.77) (5.44E-11) (2.27)

PC 16:0/20:4; OH 7.38E-10 99 1.28E-09 80 107,090 (89,664–194,518) 172,742 (151,500–194,518) 161,365 (131,994–207,264)

(3.20E-09) (1.81) (5.56E-09) (1.69)

PC 18:0/20:4; OH 7.33E-08 72 1.49E-06 43 113,525 (106,043–212,391) 170,713 (141,629–212,391) 149,667 (129,091–196,851)

(2.38E-07) (1.55) (4.85E-06) (1.37)

PC 18:0/18:2; OH 2.16E-02 23
ns

13 216,912 (179,508–289,560) 246,907 (212,977–289,560) 227,509 (206,884–280,635)

(5.62E-02) (1.19) (1.12)

PC 18:0/20:4; OOH
ns

10 8.95E-03 17 92,188 (84,837–118,456) 98,488 (87,384–118,456) 103,146 (92,983–116,214)

(1.09) (2.33E-02) (1.15)

PC 16:0/7:0; COOH
ns

6 2.16E-02 23 8,564 (6,614–12,101) 9,346 (6,642–12,101) 10,701 (8,059–14,467)

(1.04) (4.68E-02) (1.22)

(Continued on following page)
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B) oxPC levels between healthy lung tissue and tumor tissue from ADC and SCC patients

oxPC ADC SCC ADC healthy
tissue

ADC tumor
tissue

SCC healthy
tissue

SCC tumor
tissue

Raw p-value
(Corrected p-value)

Change [%] and
Fold change

Raw p-value
(Corrected p-value)

Change [%] and
Fold change

Median abundance (Q1–Q3) [counts]

PC 16:0/7:0;
COOH iso4

5.76E-05 64 4.60E-02 104 888 (665–1,057) 1,779 (1,259–2,537) 1,046 (568–1,469) 1,146 (593–3,007)

(8.06E-04) (1.79) (1.60E-01) (1.65)

PC 16:0/5:0;
COOH ns

38 3.02E-02 138 293 (224–643) 377 (214–662) 278 (183–559) 352 (219–616)

(1.01) (1.60E-01) (1.65)

PC 16:0/5:
0; CHO ns

22 4.96E-02 113 1,322 (750–2,259) 1,691 (1,167–2,640) 1,321 (843–1,810) 1,549 (907–2,548)

(1.19) (1.60E-01) (1.38)

PC 16:0/4:0;
CHO iso2

4.80E-02 24
ns

96 561 (325–754) 612 (432–914) 515 (277–757) 673 (273–852)

(2.02E-01) (1.16) (1.30)

PC 16:0/18:2;
OH iso2

5.45E-04 93
ns

66 3,658 (3,304–4,237) 5,399 (4,247–6,436) 3,413 (2,828–5,150) 4,349
(2,697–6,645)

(3.82E-03) (1.62) (1.21)

Raw p-value computed with the Mann-Whitney unpaired test for plasma comparisons and paired test for tissue comparisons. Corrected p-value was calculated employing Benjamini–Hochberg FDR, correction.

The positive value of the change indicates that the average amount of oxPC, is higher in plasma of cancer patients than in controls, and higher in tumor tissue than in healthy lung tissue, while a negative value indicates that the average amount of oxPC, is lower in plasma

of cancer patients than in controls, and lower in tumor tissue than in healthy lung tissue.

ns–non-significant.

TABLE 3 (Continued) Differential oxPC profiles between ADC, SCC, and COPD patients in plasma (Panel A) and lung tissue (Panel B).
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oxPC levels, we determined the percentage of patients in whom
increased levels of oxPCs were observed in tumor tissue compared to
healthy lung tissue.

Metabolomic data were correlated with complex clinical data,
including WBC, CRP, PET/MRI, MTV, and SUV values. Spearman
correlation analysis was performed using MetaboAnalyst 5.0 (Pang
et al., 2021).

3 Results

3.1 Baseline characteristics and
general concerns

The baseline characteristics of the patients with NSCLC and
COPD controls are summarized in Table 1. The enrolled subjects
were matched without any statistical differences between groups in
basic anthropometric measurements. However, more male than
female participants were enrolled, reflecting the higher incidence
of lung cancer in men compared to women during the sampling
period (Mederos et al., 2020). The number of samples per group,
splitting the cohort according to the gender, was too small to
perform robust correlational analysis, therefore to check if there
are gender specific differences in the oxPCs level, we calculated the
percentage of change between compared groups separately for
female and male. Results of this analysis are summarized in
Supplementary Table S2.

3.2 Annotation of oxPCs in plasma

Plasma analyses were performed on samples collected from
101 NSCLC patients and 24 COPD controls. Supervised data
processing resulted in the annotation of 13 of the 45 oxPCs used
for the target search (Supplementary Table S1). These oxPCs were
annotated based on DDA-MS/MS structural information and
fragmentation rules (Gil de la Fuente et al., 2018; Lange et al.,
2021). Among the oxPCs identified, five were SCh-oxPCs and eight
were LCh-oxPCs. Among the LCh-oxPCs, six contained hydroxy
groups and only two contained hydroperoxy groups. We found
three aldehyde- and two carboxylic acid-containing SCh-oxPCs.
After the QA procedure, we rejected four oxPCs (one LCh-oxPC and
three SCh-oxPC) which RSD was above 30%. For all other oxPCs
RSD for QC samples was below 30% with an average of 21.4%.

3.3 Annotation of oxPCs in tumor tissue

Total tumor analyses were performed on 122 samples collected
from 61 patients with NSCLC: two samples were collected from each
patient, covering healthy tissue and tumor tissue. Supervised data
processing allowed for the annotation of 16 out of the 45 oxPCs used
for the target search (Supplementary Table S1). These oxPCs were
annotated based on exact mass and RT matching with the in-house
built library. Among these, 15 were SCh-oxPCs and only one was an
LCh-oxPC. The LCh-oxPC contained a hydroxy group. Among the
SCh-oxPCs, we found nine aldehyde- and six carboxylic acid-
containing forms. After the QA procedure, we rejected two

oxPCs (one LCh-oxPC and one SCh-oxPC) which RSD was
above 30%. For all other oxPCs RSD for QC samples was below
30% with an average of 13.9%.

FIGURE 2
Box-and-whisker plots comparing oxPC levels between
101NSCLCpatients and 24COPDcontrols in plasma samples (Panel (A))
and between healthy lung tissue and tumor tissue from 61 NSCLC
patients (Panel (B)); non-malignant tissue and in peripheral and
central tumor regions in 20ADCpatients (Panel (C)) and 20 SCCpatients
(Panel (D)). The levels of oxPCs shown on the figure were found to be
significantly different between the compared groups according to the
Mann-Whitney unpaired test for plasma comparisons and paired test for
tissue comparisons. The y-axis in the graph represents the normalized
signal of oxPCs (counts), which have been log-transformed and UV-
scaled. The black dots in the graph represent the concentrations of
oxPCs from all samples in a given group. The notch represents the 95%
confidence interval around the median of each group, which is defined
as ±1.58 times the interquartile range divided by the square root of the
number of samples. Themean concentration of each group is indicated
with a yellow diamond in the graph.
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Dimensional tumor tissue analyses were performed on
120 samples collected from 40 NSCLC patients: three samples
were collected from each patient, covering healthy tissue,
peripheral tumor tissue and central tumor tissue. Supervised data
processing resulted in the annotation of 20 out of the 45 oxPCs used
for the target search (Supplementary Table S1). These oxPCs were
annotated based on exact mass and RT matching with the in-house
built library. Among these oxPCs, 14 were SCh-oxPCs and six were
LCh-oxPCs. Among the LCh-oxPCs, three contained hydroxy
groups and three contained hydroperoxy groups. Among the
SCh-oxPCs, we found five aldehyde- and nine carboxylic acid-
containing forms. After the QA procedure, we rejected five
oxPCs (two LCh-oxPC and three SCh-oxPC) which RSD was
above 30%. For all other oxPCs RSD for QC samples was below
30% with an average of 12.3%.

3.4 oxPCs in NSCLC vs. COPD: a general
comparison

oxPC levels were significantly higher in NSCLC patients than
in COPD patients (Table 2). The variation among samples in the
NSCLC group was greater than that in the COPD group
(Figure 2A). An overall general increase in oxPC levels was also
observed in tissue samples; in NSCLC patients, tumor tissues
exhibited higher levels of oxPCs than healthy lung tissue
(Figure 2B). The magnitude of this difference was smaller than
in plasma samples. We also inspected the levels of oxPCs in each
patient separately, comparing the levels of oxPCs between healthy
and tumor tissues, and we observed elevated oxPC levels in tumor
tissue in 63% of NSCLC patients.

Dimensional tissue analyses revealed that oxPC levels were
overall lower in the peripheral tumor regions in comparison to
both, healthy tissue and central tumor region (Figures 2C, D).

3.5 oxPCs in NSCLC vs. COPD:
NSCLC subtypes

Next, we assessed oxPC levels by NSCLC subtype (ADC and SCC).
We observed a generally higher elevation of oxPC levels in the plasma
and tumor tissues of ADC patients than in SCC patients (Figure 3). The
observed differences were larger for plasma than for tissue samples. In
addition, themagnitude of the difference in oxPC levels between COPD
and ADC patients was higher than that between COPD and SCC
patients (Table 3). Similar findings were also observed in tissue samples,
where a greater difference in oxPC levels was observed between tumor
and healthy lung tissue in patients with ADC compared to patients with
SCC. Comparisons of tissue oxPC levels, between healthy and tumor
tissue, for individual patients revealed elevated levels in 85% of ADC
patients and only 56% of SCC patients.

3.6 Correlation analysis

Correlation analysis between plasma oxPC levels and clinical
parameters revealed a statistically significant (p-value<0.05) but
weak (correlation coefficient less than 0.5) negative correlation

between two oxPCs (PC 16:0/20:3; OH and PC 16:0/18:2; OH)
and WBC. No statistically significant correlation was observed
between oxPC and CRP levels.

Correlation analysis of tumor oxPC levels with metabolic
activity index of lesions, expressed as SUV and MTV, did not
reveal any correlations, regardless of whether the correlation was
calculated for all NSCLC patients or for only ADC or SCC patients.

4 Discussion

The obtained oxPC profiles of the plasma and tumor tissue were
different. LCh-oxPCs were the predominant form in the plasma,
accounting for 62% of all detected oxPCs. In contrast, SCh-oxPCs
were the primary fraction in tissues, representing 94% and 70% of all
detected oxPCs in the total tumor and dimensional tissue analyses,
respectively. Solati et al. (2021) reported a similar observation of
locally predominant SCh-oxPCs in the thrombi of patients with ST-
segment elevation myocardial infarction tissue, however it was a
different tissue and disease context. It is important to emphasize that
the results obtained from plasma samples pertain to the comparison
between NSCLC and COPD patients. Conversely, the results
obtained from tissue samples involve the comparison between
cancerous and healthy lung tissues from NSCLC patients.
Therefore, to compare these results directly, ideally, we should
include also lung tissue from COPD patients, however we were
not able to obtain such biopsy, which is one of the limitations of
this study.

We observed an overall elevation of oxPCs in NSCLC patients,
including elevated plasma oxPC levels compared to controls and
elevated tissue oxPC levels in tumor tissue compared to healthy
lung tissue (Figure 2). We observed an overall elevation of oxPC
levels in patients with NSCLC compared to those in COPD
controls. Considering that oxidative stress is a hallmark of
numerous airway diseases (Sunnetcioglu et al., 2016), it can be
assumed that the observed elevation would be even more
significant if patients with NSCLC were compared with
healthy controls.

An interesting observation was made for the results obtained
considering gender differences. As can be seen in Supplementary
Table S2, a higher magnitude of change is observed for males than
for females. This phenomenon is attributed to the protective
antioxidant properties of estrogen, frequently combined with
lower exposure to exogenous risk factors, including alcohol and
tobacco use, leading to diminished levels of ROS generation and
mitochondrial impairment in females compared to males (Ethun,
2016; Allegra et al., 2023). However, it is important to mention, that
according to the evidence, the number of smoking women during
the last decade is increasing, resulting in a higher prevalence of
NSCLC in women but also weakening their antioxidant defense
capacity (Jafari et al., 2021).

Sunnetcioglu et al. (2016) investigated oxidative damage in three
respiratory diseases (COPD, lung cancer, and obstructive sleep
apnea syndrome) and revealed oxidative stress and stress
responses in plasma samples for all three diagnoses. The highest
level of oxidative stress, reflected via levels of coenzyme Q10 and 8-
oxo7,8-dihydro-2-deoxyguanosine (8-oxodG), was observed in lung
cancer. MDA levels were highest in patients with sleep apnea, but
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were also significantly higher in lung cancer and COPD patients
than in controls. Primary oxidation products are known to be
intermediates in the formation of end products. Therefore, it is

crucial to investigate the relationship between them in the context of
oxidative stress in NSCLC. For instance, higher levels of primary
products may be associated with lower levels of end products. In

FIGURE 3
Box-and-whisker plots comparing oxPCs levels between plasma samples from 41 ADC and 60 SCC patients and 24 COPD controls (panel (A)) and
between healthy, non-malignant tissue and tumor tissue in 25 ADC and 36 SCC patients (panel (B)). The levels of oxPCs shown on the figure were found
to be significantly different between the compared groups according to the Mann-Whitney test. The y-axis in the graph represents the normalized signal
of oxPCs (counts), which have been log-transformed and UV-scaled. The black dots in the graph represent the concentrations of oxPCs from all
samples in a given group. The notch represents the 95% confidence interval around the median of each group, which is defined as ±1.58 times the
interquartile range divided by the square root of the number of samples. Themean concentration of each group is indicated with a yellow diamond in the
graph. * indicates statistically significant comparisons.
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comparison, lower levels of primary products could be indicative of
a greater accumulation of end products. The reported elevation of
end oxidation products and our observation of elevated levels of
primary oxidation products suggest that oxidative stress is elevated
to such an extent that all oxidation products are increased.

Although both types of oxPCs originate from the same
precursors, their formation and biological activity differ. LCh-
oxPCs can be formed enzymatically and non-enzymatically,
whereas SCh-oxPCs are formed only non-enzymatically (Davies
and Guo, 2014). Our data do not provide details about the origin of
LCh-oxPCs in the plasma. Furthermore, the measured quantities
may correspond to both enzymatically and non-enzymatically
formed LCh-oxPCs. Therefore, precise interpretation of the
obtained plasma results is challenging.

The origin of tissue SCh-oxPCs is non-enzymatic and most
likely induced by ROS (Davies and Guo, 2014). Dimensional tissue
analyses revealed that oxPC levels were lower in the peripheral than
in the central region of the tumors and healthy lung tissue (Figures
2C, D). It can be concluded that the elevated level of oxPCs observed
in tumor tissue resulted from the accumulation of these lipids in the
central region. To the best of our knowledge, this is the first study to
report the spatial localization of oxPCs in tumor tissue.

The elevated levels of oxPCs in healthy tissue might be linked to
the smoking, since it induces oxidative stress. The formation and
accumulation of SCh-oxPCs in tumor tissue may occur due to
hypoxia of the metabolically hyperactive growing tumor, along
with insufficient vascularization (Emami Nejad et al., 2021).
Moreover, in agreement with our previous study (Kowalczyk
et al., 2021), Marien et al. (2015) demonstrated changes in
phospholipid profiles in NSCLC patients, indicating an increase
in phosphatidylcholine species in tumor tissue compared to that in
healthy lung tissue. Furthermore, previous studies have reported a
reduced antioxidant capacity in malignant lung tissues (Gęgotek
et al., 2016). Therefore, accumulated phosphatidylcholines can be
easily oxidized under hypoxic conditions to form oxPCs. This may
explain the accumulation of oxPCs in the tumor.

The magnitude of observed differences between groups in this
study was generally smaller in tumor tissues than in the plasma
samples (Figures 2, 3). This may be because plasma samples were
collected from NSCLC patients and compared with samples from
COPD patients, whereas tissue samples (tumor and non-cancerous
tissue) were collected from NSCLC patients. Although histologically
malignant and non-malignant tissues were separated, non-
malignant tissues were collected from the surrounding area, and
were likely affected by tumor metabolism. Moreover, tumors are
complex and highly heterogeneous structures comprising many
different cellular and noncellular elements (Xing et al., 2010).
Therefore, different pieces of tumor tissue may not have exactly
the same metabolic content, which might contribute to the observed
intra-group heterogeneity reflected in the wide range of measured
oxPC levels. This phenomenon is common for these molecules and
has been observed previously (Solati et al., 2021).

We correlated the levels of tissue oxPCs withMTV values, which
reflect tumor size and SUV, which provide evidence of tumor
activity. We expected to observe a correlation between the MTV
values and the levels of oxPCs since greater tumor size can result in
poorer oxygenation leading to increased oxidative stress and
consequently higher levels of oxPCs. Similarly, we expected to

observe a correlation between SUV values and the levels of
oxPCs since metabolic hyperactivity often leads to increased
oxidative stress and subsequently higher levels of oxPCs.
Surprisingly, no SCh-oxPCs showed a correlation with tumor size
or activity. This finding may suggest the non-enzymatic origin of
these oxidative products. Indeed, (ROS)-induced formation of
oxPCs is uncontrolled and generates wide range oxidation
products with wide range of concentrations (O’Donnell et al., 2019).

We observed some differences in oxPC levels between the two
cancer subtypes and COPD controls. Our data showed a greater
elevation of oxPC levels relative to controls in ADC patients than in
SCC patients. This elevation was also more common in the tumor
tissue of ADC patients (85%) than in that of SCC patients (56%).
Differences between the two NSCLC subtypes concerning redox
status have already been reported; however, to our knowledge, this is
the first report regarding primary oxidation products. Gęgotek et al.
(2016) reported alterations in tissue MDA and 4-HNE levels
between ADC and SCC patients. MDA was nearly four times
higher in SCC than in healthy tissue and six times higher in
ADC than in healthy tissue. Differences in 4-HNE levels were
not as substantial (2.7 and 2.3 times higher in SCC and ADC,
respectively, than in healthy tissues). Elevated 4-HNE levels relative
to those in healthy tissues were seen in 83% of ADC tissues and 46%
of SCC tissues. Gęgotek et al. (2016) concluded that lipid
peroxidation is more involved in ADC development, whereas
endocannabinoids contribute more to SCC growth and
development. While we cannot draw conclusions regarding
endocannabinoid metabolism, our results do suggest enhanced
lipid oxidation in ADC patients compared to those with SCC.

Because oxidative stress is closely related to inflammation, we
decided to investigate potential correlations between oxPC levels,
CRP, and WBC, which are used as inflammation markers.
Moreover, CRP and WBC have been used as markers of the risk
of incident lung cancer (Wong et al., 2020), and as predictors of early
mortality (Isaksson et al., 2022) or survival (Bacha et al., 2017). We
observed a correlation betweenWBC counts and the plasma levels of
two oxPCs, PC 16:0/18:2; OH and PC 16:0/20:3; OH. Elevated
neutrophil counts primarily drive the association between WBCs
and NSCLC; therefore, further research considering different
subtypes of WBCs (e.g., neutrophils or lymphocytes), especially
that the neutrophil-to-lymphocyte ratio has been used as a
prognostic factor in NSCLC patients (Bacha et al., 2017; Yang
et al., 2021).

Both COPD and NSCLC are associated with oxidative stress and
inflammation. Our results demonstrate elevated oxidative stress in
NSCLC patients compared to that in COPD patients. Interestingly,
Berg et al. (2018) observed that markers reflecting inflammation,
endothelial activation, and extracellular matrix remodeling were
elevated in the serum of patients with COPD compared to levels in
lung cancer patients. The observed elevation of oxPC in NSCLC
compared to that in COPD patients (our data), together with
elevated levels of oxidative stress markers in NSCLC tissues
(Gęgotek et al., 2016) and enhanced inflammation mediators in
COPD patients (Berg et al., 2018), suggest that the observed
alterations in oxPC levels in NSCLC subjects were related to
oxidative stress rather than inflammation.

Considering the variety of factors influencing the activity and
properties of oxPCs, the very precise interpretation of our results
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obtained is challenging. Instead, these results demonstrate a clear
need to explore the involvement of oxPCs in NSCLC. Furthermore,
because oxPCs are potent stimulators of endothelial barrier
disruption, therapies that attenuate their activities can result in
novel therapeutic tools for anti-cancer treatment. However,
elevated oxidative stress is associated with several tumor types,
and increased levels of oxPCs are associated with prostate
(Ingram et al., 2021), pancreatic (Stevens et al., 2012) and
neuroendocrine cancers (López-López et al., 2020). Therefore,
oxPCs themselves cannot be used as potential biomarkers of
NSCLC due to their lack of specificity. However, Philippova et al.
(2019) pointed out that simultaneous determination of plasma levels
of oxPCs and estimation of the detoxifying capacity of plasma to
neutralize these lipids can significantly improve the diagnostic
importance of oxPCs as a disease biomarker. In the context of our
results, oxPCs might be rather considered as potential markers to
distinguish between different NSCLC subtypes instead, however
this requires more investigation, including the quantification of
these lipids in plasma. Although, the implementation of oxPCs
into the clinical diagnosis process requires their quantification in
plasma samples, this will be very difficult due to the limited
availability of standards of these substances, let alone
labeled ones.

5 Conclusion

Our results revealed that the oxPC profiles of patients with
NSCLC were different between plasma and tumor tissues. LCh-
oxPCs were the predominant form in plasma (62% of all detected
oxPCs), and SCh-oxPCs were the main fraction in tissue (94% and
70% of all detected oxPCs in the total tumor and dimensional
tumor tissue analyses, respectively). OxPC levels were significantly
elevated in the plasma of patients with NSCLC compared to those
in COPD controls. They were also elevated in the tumor tissue of
patients with NSCLC compared to levels in the non-cancerous
adjacent lung tissue, with the lowest level of oxPCs observed in the
peripheral part of the tumor. Moreover, a higher level of oxPCs was
observed in ADC patients than in SCC patients compared to that in
COPD controls. A higher level of oxPCs was also observed in the
tumor tissue of both ADC and SCC patients than in the
surrounding non-cancerous lung tissue, but this difference was
more prominent in ADC patients. Circulating oxPC levels
correlated with WBC count but not with CRP level, whereas
tissue oxPC levels did not correlate with tumor size (MTV) or
activity (SUV).

Finally, the elevation of oxPC levels in NSCLC relative to that in
COPD patients, together with higher levels of oxidative stress
markers in NSCLC (Gęgotek et al., 2016) and enhanced
inflammation mediators (Berg et al., 2018) in COPD patients,
suggest that the observed alterations in oxPC levels in NSCLC
are more closely related to oxidative stress than inflammation.

The obtained results confirm the involvement of oxPCs in
NSCLC. Given that oxPCs are a common hallmark of oxidative
stress accompanying multiple cancer types and the high toxicity of
SCh-oxPCs, their accumulation in NSCLC patients highlights their
potential as therapeutic targets rather than biomarkers.
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Introduction: Discrimination between adenocarcinoma (ADC) and squamous
cell carcinoma (SCC) subtypes in non-small cell lung cancer (NSCLC) patients is a
significant challenge in oncology. Lipidomics analysis provides a promising
approach for this differentiation.

Methods: In an accompanying paper, we explored oxPCs levels in a cohort of
200 NSCLC patients. In this research, we utilized liquid chromatography coupled
with mass spectrometry (LC-MS) to analyze the lipidomics profile of matching
tissue and plasma samples from 25 NSCLC patients, comprising 11 ADC and
14 SCC cases. This study builds upon our previous findings, which highlighted the
elevation of oxidised phosphatidylcholines (oxPCs) in NSCLC patients.

Results:We identified eight lipid biomarkers that effectively differentiate between
ADC and SCC subtypes using an untargeted approach. Notably, we observed a
significant increase in plasma LPA 20:4, LPA 18:1, and LPA 18:2 levels in the ADC
group compared to the SCC group. Conversely, tumour PC 16:0/18:2, PC 16:0/4:
0; CHO, and plasma PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC 16:0/20:4; OOH
levels were significantly higher in the ADC group.
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Discussion: Our study is the first to report that plasma LPA levels can distinguish
between ADC and SCC patients in NSCLC, suggesting a potential role for LPAs in
NSCLC subtyping. This finding warrants further investigation into the mechanisms
underlying these differences and their clinical implications.

KEYWORDS

non-small cell lung cancer NSCLC, adenocarcioma ADC, squamous call carcinoma SCC,
oxidised glycerophosphatidylcholine oxPC, monoacylglycerophosphatidic acid LPA,
lipidomics, metabolomics

1 Introduction

Lung cancer is the most lethal cancer worldwide, causing
1.80 million deaths in 2020 (Bray et al., 2018). Two types of lung
cancer are distinguished: non-small cell lung cancer (NSCLC) (85%
cases) and small cell lung cancer. The most common histological
subtypes of NSCLC are adenocarcinoma (ADC), squamous cell
carcinoma (SCC), and large cell carcinoma (LCC). Within the
NSCLC subtypes, ADC and SCC are predominant (Wang et al.,
2020). ADC represents around 40% of NSCLC cases and is the most
frequent subtype of lung cancer in non-smokers (Subramanian and
Govindan, 2007; Kenfield et al., 2008; Schabath and Cote, 2019). In
this subtype, cancer progression starts from lung glandular cells that
produce mucin and surfactants. On the other hand, the SCC
subtype, representing around 25% of NSCLC cases, is closely
related to smoking and usually originates from the central areas
of the lung bronchi (Campbell et al., 2016). Despite sharing several
characteristics, they differ in clinical parameters and histopathology.
The importance of the precise determination of the NSCLC subtype
arises from the available treatment and its potential outcomes, which
in turn are related to the presence of particular mutations prevalent
in the majority of ADC and are rarely detected in SCC patients
(Chen et al., 2019). The presence of mutation facilitates the selection
of dedicated treatment, however, only around 60% of ADC and
50%–80% of SCC subjects have known oncogenic driver mutation
(Yuan et al., 2019). The presence of these abnormalities allowed to
propose several molecular targets for therapy, including vascular
endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), insulin-like growth factor I
(IGF-I) or anaplastic lymphoma kinase (ALK) (Ray et al., 2010).
However, specific mutations were highly associated with ADC
subjects. Moreover, for some therapies, even 60% of patients
develop drug resistance (Yuan et al., 2019). As a result, despite
availability of new treatments and strategies, still for many NSCLC
patients’ classic histopathology-based therapies are the choice
(Niemira et al., 2019), thus proper NSCLC subtyping is crucial
(Ettinger et al., 2017).

Even though there are several findings describing differences
between ADC and SCC, non-invasive early diagnostic techniques
discriminating ADC and SCC are still not available. Recent
lipidomics and metabolomics findings revealed a significant
variation in lipids in NSCLC samples (Marien et al., 2015; Chen
et al., 2018; Zhang et al., 2019; Fan et al., 2020; You et al., 2020;
Jianyong et al., 2021; Kowalczyk et al., 2021).

Lipidomics emerged from metabolomics and can be defined as
“the large-scale study of lipid species and their related networks and
metabolic pathways that exist in cells or any other biologic system”

(Sethi and Brietzke, 2017). Thanks to the untargeted approach, a

very wide range of lipids can be analysed also in metabolomics
studies. The most frequently used separation technique employed
for determining lipid profiles is liquid chromatography (LC)
coupled with accurate mass spectrometry (MS) (Fan et al., 2020;
You et al., 2020).

In the work of our group, LC-MS-based untargeted
metabolomics was implemented to discriminate NSCLC subtypes
at different stages of the disease. This work covered patients with
chronic obstructive pulmonary disease (COPD) as controls as well
as ADC, SCC and LCC subjects in early and late stages. All analyses
were performed on plasma and tissue samples, covering tumour and
adjacent non-malignant lung tissue employing RP- and HILIC-LC/
MS. It is important to highlight that this was not a lipidomics but a
metabolomics study; however despite amino acids, most of the
identified metabolites were lipids, including fatty acids, carnitines,
lyso-glycerophospholipids (LPCs), glycerophospholipids,
plasmalogens, sphingomyelins (SMs), and glycerophospho
(N-acyl)ethanolamines (Kowalczyk et al., 2021). Fan et al.
performed RP-LC/MS analyses over the lung cancer tissue and
benign lung tissue, both paired with distal noncancerous tissue
from the same patient. They reported and described changes in the
lipid profile of lung cancer but also provided receiver operating
characteristic (ROC) curve analysis of combinational lipid markers
to assist in the disease diagnosis (Fan et al., 2020). A similar design
was used by You et al., who also analysed the lung cancer tissue and
benign lung tissue and paired distal and adjunct noncancerous
tissue. They employed RP-LC/MS to explore metabolic
reprogramming of lung cancer and to distinguish NSCLC
subtypes. They found changes among different metabolite
classes associated with the alterations in energy and purine
metabolism, biosynthesis of amino acids, membrane lipid
metabolism, and glutamine and cysteine and methionine
metabolism (You et al., 2020). Zhang et al. used MS imaging to
discriminate between post-operative NSCLC tumours and paired
normal tissues. This research covered also the recognition of
mutations of epidermal growth factor receptor (EGFR), which
is crucial from a diagnostic and therapeutic perspective.
Glycerophospholipids were found to differentiate between ADC
and SCC subtypes, but also between EGFR-mutated-positive and
EGFR-wild-type tissue (Zhang et al., 2019). Marien et al. used
direct infusion and 2D-imagingMS to profile glycerophospholipids in
malignant and non-malignant lung tissue of NSCLC patients. Their
results revealed decreased levels of sphingomyelins and
glycerophosphoserines (PSs) and elevated levels of
glycerophosphoinositols (PIs), glycerophosphoethanolamines (PEs)
and glycerophosphocholines (PCs) (Marien et al., 2015).

All these publications pointed to the alterations in the lipid
profile, including glycerophospholipids. Glycerophospholipids are
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susceptible to oxidation, and oxidative stress was reported as one of
the underlying processes accompanying NSCLC; therefore, in our
previous study, we decided to explore the profile of oxidised
glycerophosphocholines (oxPCs) in lung cancer patients (Godzien
et al., 2024). We proved, that these early oxidation products are
altered in the NSCLC patients in comparison to COPD controls. In
this companion paper, we decided to explore oxPCs changes deeper,
making direct comparison between NSCLC subtypes but also
combining information about oxPCs with lipid profiles of SCC
and ADC patients. Considering the high interconnectivity between
distinct lipid classes along with the fact that oxidised lipids originate
from the native, non-oxidised lipids, we believed that such a strategy
can benefit in data interpretation.

OxPCs are currently deeply investigated since their role went
beyond oxidation by-products, and nowadays, they are recognised
as important molecules with multiple functions. They were
associated with cardiovascular diseases (Paynter et al., 2018),
diabetes (Godzien et al., 2019), neurogenerative disorders
(Okuzumi et al., 2019) and cancer (López-López et al., 2020).
Oxidation of PCs can lead to the formation of different types of
epi-lipids, a subset of the natural lipidome formed by either
enzymatic or non-enzymatic modifications such as, e.g.,
oxidation, nitration, or sulfation with their own biological
functions. oxPCs cover mildly oxidised long-chain oxPCs (LCh-
oxPCs), truncated short-chain oxPCs (SCh-oxPCs), and cyclised
oxPCs. These molecules have different structures and, therefore,
different bio-activities: each group of oxPCs can have a distinct
function, or they might have contradictory effects. Moreover,
pleiotropic functions of oxPCs were also observed. Because of
this, exploration of the involvement of oxPCs in different
pathologies is so important.

As pointed above, NSCLC is the most lethal, and, therefore, one
of the most frequently studied cancer; however, despite all available
knowledge, new diagnostic tools are needed. To propose valid and
reliable methods for unequivocal subtypes discrimination, we need
to explore and understand metabolic alterations underlying the
ADC and SCC. In this study, we have focused on identification
of lipids, including oxPCs, in plasma and tissue samples that would
allow discrimination between the SCC and ADC subtypes.

2 Materials and methods

2.1 Chemical and reagents

Ultrapure water was used to prepare all the aqueous solutions
and was obtained “in-house” from a Milli-Q Integral three system
(Millipore, SAS, Molsheim, France). Zomepirac sodium salt, formic
acid, LC-MS-grade methanol and acetonitrile, and LC-grade ethanol
were purchased from Sigma-Aldrich Chemie GmbH
(Steinheim, Germany).

2.2 Cohort study

Samples were obtained from patients undergoing surgical
treatment for primary NSCLC at the Thoracic Surgery
Department of Medical University of Bialystok Clinical Hospital

in Poland. The study was approved by the Ethics Committee of the
Medical University of Bialystok (R-I-003/262/2004, R-I-002/296/
2018 and APK 002 5 2021) and performed in accordance with the
Declaration of Helsinki. Before collecting the samples, written
informed consent for specimen collection was obtained from all
participants.

In this project we included 122 tissue samples collected from
61 NSCLC patients. There were two tissue samples per patient:
tumour tissue and adjacent non-malignant control tissue. Among
these 61 patients, 25 were classified as ADC and 36 as SCC subjects.
Plasma analyses covered samples collected from 101 NSCLC
patients, among which 41 were diagnosed with ADC and 60 with

TABLE 1 Basic clinical parameters characterising three cohorts of patients
enrolled in the study.

Plasmametabolic fingerprinting whole cohort/subcohort

Patients’ characteristic NSCLC ADC SCC

Age [years] (median) 63.0/62.0 62.0/62.0 63.5/61.0

Q1 58.0/56.0 58.0/55.5 58.8/56.5

Q3 69.0/66.0 68.0/67.5 69.0/65.8

BMI (median) 25.47/24.69 25.99/25.00 25.4/24.07

Q1 23.62/23.50 24.17/23.9 23.4/23.3

Q3 27.76/26.00 28.09/25.7 27.23/25.9

Gender [F/M] [29/72]/
[5/20]

[15/26]/
[3/8]

[14/46]/
[2/12]

pTNM

IIA 24/6 8/4 16/2

IIB 33/13 9/5 24/8

IIIA 18/6 8/2 10/4

Tumour tissue metabolic fingerprinting whole cohort/
subcohort

Patients’ characteristic NSCLC ADC SCC

Age [years] (median) 63.0/63.0 62.0/62.0 63.5/63.5

Q1 56.0/56.0 55.0/55.5 57.5/59.3

Q3 69.0/69.0 69.0/67.5 69.0/68.3

BMI (median) 24.93/25.00 25.00/25.00 24.53/25.06

Q1 23.41/23.83 23.53/23.90 23.39/23.91

Q3 26.09/25.69 26.37/25.73 25.98/25.60

Gender [F/M] [13/48]/
[7/18]

[6/19]/
[3/8]

[7/29]/
[4/10]

pTNM

IIA 21/5 9/3 12/2

IIB 20/10 8/5 12/5

IIIA 20/10 8/3 12/7

pTNM, pathological tumour-nodemetastasis. For pTNM staging number of patients

assigned to given stage is provided for the whole cohort and subcohort.
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SCC. Analyses of clinical records revealed that 25 patients were
common between the plasma and tissue cohorts, covering 11 ADC
and 14 SCC subjects. In this study, we focused on these 25 subjects,
performing joined analyses of plasma and tissue lipids. Basic clinical
parameters describing the available cohort and selected sub-cohort
are summarised in Table 1.

Whole blood was collected in 9 mL vacuum system tubes with
K2EDTA as an anticoagulant. After gentle mixing, plasma was
separated by centrifugation at 1300 g for 20 min at room
temperature. Plasma fractions (0.5 mL each) were then collected
in Eppendorf tubes and stored at −80°C until analysis.

Collected tissue samples were histologically reviewed and
classified. After lung tumour resection, whole specimen was
examined macroscopically by the pathologist to determine the
exact tumour localization, presence or absence of macroscopic
residual tumour, presence or absence of macroscopic infiltration
of pulmonary pleura, macroscopic evaluation of possible presence of
necrosis in the tumour centre. The pathologist cut the exact tissue
samples that represent the tumour centre and tumour margin.
Moreover, the pathologist determined the possibility to collect
adjacent pulmonary tissue (referred as normal tissue): if the
distance from the tumour border was greater than 2 cm, the
pathologist cut the samples of adjacent tissue. Then, immediately
after resection, study nurses from the Biobank put the tissue samples
alternately into cryotubes for vapor phase of liquid nitrogen (fresh
frozen samples) and into tubes with 10% buffered formalin
(formalin-fixed samples). The exact time of resection start, vessel
ligation, resection end, and tissue sample preservation were recorded
and documented. The details of tissue samples collection in the
clinical setting–macroscopic evaluation resected specimens were
described previously (Ciereszko et al., 2022), together with the
biobanking conditions and Standard Operating Procedures
(Niklinski et al., 2017; Michalska-Falkowska et al., 2023). Cancer
stages were determined following pathological tumour-node-
metastasis (pTNM) staging. All tissue samples were frozen and
stored at −80°C until the day of analyses. Sample collection,
quenching and storage were performed following approved
biobanking standards (Niklinski et al., 2017).

2.3 Sample preparation

Plasma samples were prepared using the previously described
method (Daniluk et al., 2019). On the day of analysis, samples were
thawed on ice. For protein precipitation and metabolite extraction,
one plasma sample volume was mixed with three volumes of ice-
cold methanol/ethanol (1:1) containing 1 ppm of Zomepirac
(internal standard IS). After extraction, samples were stored on
ice for 10 min and centrifuged at 21,000 × g for 20 min at 4°C. The
supernatant was filtered into a glass HPLC-vial through a 0.22 μm
nylon filter (ThermoFisher Scientific, Waltham, Massachusetts,
United States of America).

Tissue samples were prepared following the previously described
method (Ciborowski et al., 2017). On the day of analysis, samples were
thawed on ice. Ten milligrams of lung tissue sample were placed in an
Eppendorf tube with two stainless steel beads (5mm) and 200 μL of ice-
cold 50%methanol. Samples were homogenised for 8 min at 30 Hz using
Tissue Lyser (LT; Qiagen Hilden, Germany). After homogenisation,

beads were removed and 200 μL of ice-cold acetonitrile containing
1 ppm of IS was added to the sample. Metabolites were extracted by
vortex-mixing the samples for 1 hour. After extraction, samples were
centrifuged at 21,000 × g for 20 min at 20°C. After centrifugation, the
supernatant was filtered through a 0.22 μm nylon filter (ThermoFisher
Scientific,Waltham,Massachusetts, United States ofAmerica). Extraction
blank was prepared following the same procedure as biological samples,
but without tissue, and was analysed together with biological samples.

Quality control (QCs) samples were prepared by mixing equal
volumes of all raw plasma samples and all extracts for tissue samples.
QCs were treated like the rest of the samples and injected at the
beginning of the batch (10 injections) to equilibrate the system and
every ten samples further to monitor the stability of the
measurement (Godzien et al., 2014).

2.4 Analytical set-up

Plasma analyses were performed using a 6546 iFunnel ESI-Q-
TOF (Agilent Technologies, Germany) coupled with a 1290 Infinity
UHPLC system (Agilent Technologies, Germany) with a degasser,
quaternary pump and thermostated autosampler.

Tissue analyses were performed using a 6545 iFunnel ESI-Q-
TOF (Agilent Technologies, Germany) coupled to a 1290 Infinity
UHPLC system (Agilent Technologies, Germany) with a degasser,
binary pump and thermostated autosampler.

Plasma and tissue samples were analysed in both polarity modes.
During all analyses, two reference compounds were used: m/z
121.0509 (protonated purine) and m/z 922.0098 (protonated
hexakis (1H,1H,3H-tetrafluoropropoxy)phosphazine (HP-921))
for positive ionisation mode and m/z 112.9856 (proton abstracted
trifluoroacetic acid anion) andm/z 966.0007 (formate adduct of HP-
921) for negative ionisation mode. These masses were continuously
infused into the system to allow internal constant mass correction
during data acquisition.

2.5 Metabolic profiling

2.5.1 Plasma analyses
Four microliters of each sample were injected into a

thermostated at 60°C Zorbax Extend C18 column (RRHT 2.1 ×
50 mm, 1.8 μm Agilent Technologies, Santa Clara, California,
United States of America). The flow rate was 0.6 mL/min with
solvent A (water with 0.1% formic acid) and solvent B (acetonitrile
with 0.1% formic acid). The chromatographic gradient started at
50% of phase B, then increased the amount of phase B to 80% (from
1 to 6 min) and 100% (from 6 to 8 min). Finally, the system was re-
equilibrated by reverting phase composition to initial conditions
(50% phase B) in 0.5 min, which was kept from 8.5 to 10 min. The
mass spectrometer was operated in full scan mode. Data were
acquired at m/z ranging from 50 to 1,000 at the scan rate of
1.0 scans per second. Nebulizer pressure was set at 52 psig,
nozzle voltage at 1,000 V, and capillary voltages at 3,000 and
4,000 V in the positive and negative ion mode, respectively.

All samples were analysed in scan mode in both polarity modes.
Then, a subset of 70 samples was analysed in negative ion mode using
iterative exclusion data-dependent analysis (IE-DDA). Precursor ions

Frontiers in Molecular Biosciences frontiersin.org04

Sieminska et al. 10.3389/fmolb.2024.1379631

72

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1379631


were fragmented using ramped collision energy, adjusted for each
molecule according to its m/z. The first injection was performed as a
conventional data-dependent MS/MS analysis, where the top three
most abundant precursors were selected for fragmentation,
considering active exclusion lists. In subsequent injection,
precursors selected for MS/MS fragmentation in the previous
injection were excluded on a rolling basis with 20 ppm mass error
tolerance and 0.5 min retention time tolerance. Five iterative-MS/MS
runs were set for each sample, resulting in 350 measurements.

2.5.2 Lung tissue analyses
One μL of the extracted sample was injected into a thermostated

at 60°C Zorbax Eclipse Plus C8 column (RRHD 2.1 × 150 mm,
1.8 μm Agilent Technologies, Santa Clara, California, United States
of America). The flow rate was 0.6 mL/min with solvent A (water
with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic
acid). The gradient started at 25% phase B and increased to reach
95% of phase B in 14 min. This proportion was kept for 1 min, and
after that, the gradient returned to starting conditions (25% phase B)
in 0.1 min and was maintained for 4.9 min to re-equilibrate the
system before the next injection. The mass spectrometer was
operated in full scan mode from m/z 50 to 1,000. The capillary
voltage was set to 3,000 V for ESI+, and 4,000 V for ESI- mode; the
drying gas flow rate was 12 L/min, temperature 250°C and gas
nebuliser 52 psig. Fragmentor voltage was 250 V for both ESI modes.

2.6 Determination of protein content in
lung tissue

The precipitated proteins were suspended in
radioimmunoprecipitation assay (RIPA) buffer and then
denatured at 60°C and sonicated for 30 min in a water bath. The
samples were then centrifuged for 15 min at 14,000 × g. Protein
concentration was measured with the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific) according to the included protocol.

2.7 Data processing

2.7.1 Plasma metabolic profiling
Plasma data was reprocessed twice: searching for oxPCs and for

other lipids. MS1 data were reprocessed using a targeted approach and
searching solely for oxPCs (Godzien et al., 2019). Data from iterative
exclusion data-dependent analyses were used to confirm the annotation
of oxPCs. For this, we searched for known fragmentation patterns (Gil
de la Fuente et al., 2018). Moreover, all annotations were confirmed
using retention time (RT) to compare the elution order between different
oxPCs and their non-oxidised precursors. The list of 45 oxPCs was
defined, covering 13 LCh-oxPCs and 32 SCh-oxPCs (including iso-
forms). RT andmass data pairs were used as input criteria to find oxPCs.
Processing was performed using an algorithm “Find by Ion” in Mass
Hunter Profinder software (Agilent, B.10.00). The integration of all
extracted peaks was manually curated and corrected if necessary.

Data from IE-DDAs were reprocessed using the untargeted
approach in Lipid Annotator software (Agilent, B.01.00). For lipid
annotation, a fragmentation-based (MS/MS) library was used. The
resulting data comprise the m/z of all the precursors identified as

lipids, their corresponding RT, and their classification into lipid
categories and classes. During the reprocessing, allowed ions
covered [M-H]−, [M + HCOOH-H]−, and [M + Cl]−. The Q-Score
was set at ≥ 50, the mass deviation was established as ≤ 20 ppm, the
fragment score threshold was fixed as ≥ 30, and the total score was set
at ≥ 60. The list of annotated lipids was then used in Mass Hunter
Profinder software (Agilent, B.10.00) for the targeted search, where a
sophisticated algorithm searched selected ions across MS1 data. Data
were reprocessed considering ions [M + H]+, [M + Na]+, [M + K]+,
[CHNaO2]

+ and [C2H2Na2O4]
+ in positive ionisation mode and [M-

H]-, [M + HCOO]-, [M + Cl]-, [C2HF3O2], [C3H2F3NaO4] in negative
ionisation mode. Neutral loss of [C2H4O2] and [CH3] was used in
negative ion mode, while water loss was considered in both polarities.
The maximum permitted charge state was double. Alignment was
performed based on m/z and RT similarities within the samples.
Parameters applied were 0.5% and 0.20 min for the RT window and
20 ppm and 2 mDa for mass tolerance. These were selected based on
the assessment of raw data.

2.7.2 Tissue metabolic profiling
Raw data was reprocessed, searching for oxPCs implementing

the targeted approach (Godzien et al., 2019). The list of 45 oxPCs
was defined, covering 13 LCh-oxPCs and 32 SCh-oxPCs (including
iso-forms). Annotation of these oxPCs was done in previous projects
based on the data-independent analysis (DIA), and incorporated
into in-house built library. RT and mass data pairs of annotated
oxPCs were used as input criteria to search them in MS1 data.
Processing was performed using the same algorithm “Find by Ion”
in Mass Hunter Profinder software (Agilent, B.10.00) as described
above. The integration of all extracted peaks was manually curated
and corrected if necessary.

2.8 Data analysis

The acquired data underwent evaluation through a Quality
Assurance procedure. Lipids displaying a Relative Standard
Deviation (RSD) of signals in QC samples below 30% were
considered reliably measured and retained for subsequent
analyses. An additional filter was applied to keep signals detected
in at least 75% of samples in at least one sample group.

Before the statistical analyses, reprocessed data were normalised.
Data from plasma analyses were normalised solely to the internal
standard to minimise analytical drift. Data from tissue analyses were
normalised to the internal standard and the protein content to
minimise differences between different pieces of tissue.

Data analyses were done over each matrix, matching the patients,
plasma, and tissue samples. Statistics were computed by comparing
ADC and SCC subtypes. Differences between compared groups were
described with p-value and percentage of change, where a positive
value indicated an increase in ADC patients compared to the SCC
patients, while a negative value illustrated a decrease of the signal in
ADC patients compared to the SCC patients. Furthermore, we
calculated the median, Q1 and Q3 for the level of each oxPC for
each comparison (Table 2). Percentage of change, median, Q1 and
Q3 were computed using Excel (Microsoft). p-value was computed
employing a non-parametric Mann-Whitney test and then corrected
by applying Benjamini–Hochberg FDR using in-house-built Matlab
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scripts (version 2020a, Mathworks, Natick, MA, United States of
America). FDR was performed only for metabolites with the absolute
percentage of change equal or greater than 25%. Random Forest
analysis was performed using the in-house-written code in RStudio
software (version 2023.12 + 369, PBC, Boston, MA, United States of
America). Used Matblab scripts and R code are provided in the
Supplementary Material (Data Sheet 2). The ROC curve analysis was
used to test the discriminating metabolites as potential biomarkers
and to evaluate their performance. Areas under the curve (AUCs)
were calculated by implementing Random Forest in
MetaboAnalyst (version 5.0).

2.9 Pathway analysis

Pathway analysis was performed based on the LIPID MAPS®
reaction explorer. Different lipid species were linked based on the
reactions from various sources, including scientific literature, the
lipid research community, and other existing databases such as
Rhea, WikiPathways, KEGG, Ecocyc, and MetaCyc. In the analysis,
we included all detected and annotated lipids.

3 Results and discussion

3.1 General concerns

Baseline characteristics of ADC and SCC patients is summarised
in Table 1. Enrolled subjects were matched in basic anthropometric
measurements, and no between-group statistical differences were
observed. The only concern is with the lack of gender balance since
more men than women were enrolled. However, this corresponds to

a greater number of diagnosed men than women at the time of
sample collection.

All samples were analysed in both polarity modes. Metabolite
annotation was performed using information acquired in negative
ion mode since this polarity provides more details, such as the exact
composition of fatty acids. Statistical analysis was performed on the
data acquired in positive ion mode because more abundant and,
therefore, more reproducible signals for oxPCs were obtained in this
polarity mode (Godzien et al., 2024).

Analyses performed for 122 tissue samples collected from
61 NSCLC patients, covering two samples per patient: adjacent non-
cancerous lung tissue and lung tumour tissue, allowed measurement
and annotation of 16 oxPCs: 15 SCh-oxPCs and only 1 LCh-oxPCs.
Analyses performed for 101 plasma samples allowed measurement and
annotation of 13 oxPCs: 5 SCh-oxPCs and 8 LCh-oxPCs. Automatic
annotation based on IE-DDA provided information about 120 plasma
lipids, covering: 17 sphingolipids (2 ceramides (Cer) and 15 SMs),
54 monoacylglycerophospholipids (5 LPAs, 30 LPCs, 14 LPEs, 4 LPIs
and 1 LPGs), 31 diacylglycerophospholipids (17 PCs, 9 PEs, 4 PIs and
1 PSs), 11 ether-glycerophospholipids (4 ether PCs and seven ether PEs)
and seven fatty acids. Although the maximum allowed error for
annotation was set to 20 ppm, the greatest mass error was 1.3 Da,
with the average error for all 294 annotated lipids of 0.36 Da. The
obtained matrix contained 8% of missing values which were present
only in 12 out of 165 features.

3.2 Differences in the lipid profile between
ADC and SCC subjects

In recent years, lipidomics (especially the untargeted approach)
has emerged as a promising tool for medicine, allowing the selection

TABLE 2 Lipids discriminate significantly between plasma and tumor tissue samples from ADC and SCC patients.

Compound raw p-value
(corrected p-value)

Gini importance score % of change ADC SCC

Median (Q1-Q3)

tumour tissue

PC 16:0/4:0; CHO 0.0331 (0.1214) 0.1088 −59.3 0
(0–546)

497
(399–609)

PC 16:0/18:2 0.0231 (0.1214) 0.1245 +40.5 184,585
(172,541–226,863)

113,284
(91,216–162,270)

plasma

PC 16:0/20:4; OOH 0.0068 (0.0466) 0.0944 +25.1 182,738
(159,665–218,149)

136,157
(118,852–152,437)

PC 18:0/20:4; OH 0.0199 (0.0466) 0.0904 +74.7 260,157
(212,240–311,125)

188,303
(133,987–225,592)

PC 16:0/18:2; OH 0.0172 (0.0466) 0.1039 +95.4 244,459
(213,149–444,861)

157,436
(118,621–236,128)

LPA 18:1 0.0172 (0.0862) 0.0934 −59.3 15,060 (13,913–18,269) 23,460 (17,022–41,625)

LPA 18:2 0.0306 (0.0982) 0.0965 −37.5 15,713 (12,755–16,926) 23,896 (19,512–33,909)

LPA 20:4 0.0040 (0.0405) 0.1476 −88.7 15,689 (13,393–26,941) 87,239 (36,585–321,949)

+means an increase in ADC, group in comparison to SCC, group.

- means a decrease in ADC, group in comparison to SCC, group. % of change and median (Q1-Q3) are provided for the signal intensity for a given lipid.

Frontiers in Molecular Biosciences frontiersin.org06

Sieminska et al. 10.3389/fmolb.2024.1379631

74

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1379631


of potential biomarkers but also providing insight into the
mechanisms underlying different diseases. For this reason, we
decided to apply the LC-MS method to search for lipids
differentiating main NSCLC subtypes.

We analysed tissue and plasma samples collected from
patients diagnosed with ADC or SCC. Univariate Mann-Whitney
analysis, followed by Benjamini–Hochberg post-correction, allowed
the selection of eight discriminating variables, which are listed in
Table 2. We focused on lipids, for which the raw p-value was below
0.05. However, considering that the corrected p-value was not
significant for all of these lipids, we decided to support the
statistical evaluation of pre-selected variables by Random Forest
and ROC analysis. The given lipid was considered statistically
significant if it met three conditions: the p-value was below
0.05 and ranked in the top 20 variables according to the Gini

score (Table 2), and the AUC for ROC was above 0.75. Random
Forest analysis performed for 2000 trees resulted in the model with
an out-of-bag (OOB) error rate of 0.32. Among the top 20 most
important variables were all eight significant lipids: four of them
were in the top 10.

All statistically significant lipids belong to glycerophospholipids.
As far as plasma samples are concerned, we found differences in the
level of several oxPCs and LPAs. In non-malignant lung samples,
there were no discriminating lipids, while in tumour tissue samples,
the only lipids discriminating these two subtypes were PC 16:0/18:
2 and PC 16:0/4:0; CHO.

Before discussing discriminating lipids, we want to comment on
the lipid profile obtained for NSCLC patients. Averaged changes
observed for each lipid class are graphically represented in Figure 1.
Only three types of lipids, marked with the asterisk, were found to be
statistically different between the two lung cancer subtypes.
However, as can be noticed, some of the changes, despite their
magnitude, are not significant. Not all lipids belonging to a
particular class exhibited the same direction of change.

For this reason, we visualised the data and compared the number
of individual lipid species in each class that was increasing and
decreasing in the ADC compared to the SCC group. Results of this
visualisation are presented in Panel A of Figure 2. The first
observation leads to the conclusion that most noted changes
correspond to the decrease of the signal in ADC patients. It is
the case of SMs, plasma PCs, PI, PS, etherPCs and etherPEs, LPA
and LPG. An increased signal was observed for oxPCs in healthy
lung tissue; however, this change was insignificant for oxPCs in
plasma samples. Very different changes, corresponding almost
equally to both the increase and the decrease of the signal, were
observed mainly for FAs, LPEs, LPIs, PEs, and tumour tissue PCs.
Panel B of Figure 2 illustrates the average signal for lipids belonging
to a particular class for ADC patients (brown colour) and SCC
subjects (green colour). It is essential to highlight that this data can
be used to compare ADC and SCC subjects within a given lipid
group. A comparison of absolute values for lipids measured in tissue
and plasma cannot be performed. This data corresponds to the
measured signal and not the total quantitative value. Observed
averaged changes are in concordance with the direction of
change of lipids: SMs, plasma PCs, PI, PS, etherPCs and
etherPEs, LPA and LPG are reduced in ADC patients in
comparison to the SCC subjects, while in plasma oxPCs, PCs
detected in healthy lung tissue and Cer the signal is higher in
ADC patients.

A comparison of NSCLC patients showed that PC 16:0/18:2 was
increased in ADC group in comparison to SCC group, and PC 16:0/
4:0; CHO was decreased in ADC group compared to SCC
group (Figure 3).

Analysis of plasma samples showed a higher number of
significant metabolites as compared to tissue results. All
differentiating lipids belong to two classes of
glycerophospholipids, namely, LPAs and oxPCs. A comparison of
NSCLC patients showed that the levels of LPA 20:4, LPA 18:1, and
LPA 18:2 in ADC group were significantly decreased compared with
SCC, whereas the levels of PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC
16:0/20:4; OOH were significantly increased (Figure 4).

To illustrate the connectivity of measured lipids, we performed
pathway analysis. Because lipids, especially complex, are poorly

FIGURE 1
The bar plot illustrates the percentage of averaged change
between the ADC and SCC patients across the different lipid classes.
Panel (A) portraits the changes observed in plasma samples, while
panel (B) shows the changes observed for tumour tissue samples
(TT) and healthy lung tissue (LT). A negative value means a decrease in
the ADC group compared to the SCC group (marked with bluish
colours), and a positive value reflects an increase in the ADC group
compared to the SCC group (marked with orangish colours). *
indicates the groups of lipids for which observed changes were
statistically significant.
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represented in “classic” pathways, we decided to use LIPID MAPS®
reaction explorer to connect detected lipids into a network. Lipids
were represented as a class instead of individual species. Figure 5
shows the results of this analysis. To build this network, we used all
measured lipids marked with grey dotted circles, while the
statistically significant lipids were annotated with red dotted
circles. All other lipids were kept to maintain the connectivity
between other lipid classes.

3.3 Implications of found lipid profile
differences between ADC and SCC subjects

In order to provide better differential diagnosis and
treatment methods, the discovery of molecular patterns of
different lung cancer subtypes is needed. Thus, analysis of
tissue samples seems to be a key to explore metabolic changes
occurring at the site of the action where tumour development
and growth occur. On the other hand, plasma samples must be
also included since they are minimally invasively collected and
routinely used in diagnostics.

In our study, we found the elevated level of PC 16:0/18:2 in tissue
samples in ADC compared to SCC patients. It is in line with our
previous research where tissue levels of PCs were increased in ADC
(compared to SCC) (Kowalczyk et al., 2021). Other researchers also
studied differences in lipidome of tumour samples between NSCLC
subtypes, and some of the findings are in line with our results. Fan
et al. observed elevated levels of PC 18:1_20:4, Cer d18:1/26:0, and
several PEs and diradylglycerols (DGs) in ADC compared to SCC
(Fan et al., 2020). Direct comparison of these results with our data is
impossible, because the method we applied did not allow detection
of either Cer or DG. Zhang et al. obtained similar results as they
found the increased intensity of PC 34:0 in ADC compared to SCC
(Zhang et al., 2019). Although PC 18:1_20:4 and PC 34:0 have
different compositions of fatty acids than PC 16:0/18:2 we detected,
all these molecules belong to the same lipid class and behave
similarly. In contrast, You et al. found a lower level of PC 38:
2 in ADC than in SCC samples. They also noted different tendencies
in lipidome alterations, depending on the lipid class: PCs (LPC 20:
1 and PC 38:2), free fatty acids (FAs) (FA 22:1 and FA 24:1) and
carnitines (CARs) (CAR 2:0 and CAR 3:0) exhibited higher levels,
while PEs (LPE 16:0 and PE 34:3), SM 35:2, and CAR 18:1 showed

FIGURE 2
Panel (A) The number of measured and identified lipids for each class, assigned as elevated (orange colour) and reduced (blue colour) in ADC
patients in comparison to the SCC subjects; Panel (B) The averaged signal for lipids belonging to each class measured for SCC patients (green colour) and
ADC patients (brown colour). The y-axes in the graph represent the abundance of metabolites. The whiskers show the standard deviation of the averaged
signal. * indicates the groups of lipids for which observed changes were statistically significant; LT: healthy lung tissue; TT: tumour tissue; P: plasma.
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lower levels in ADC than in SCC (You et al., 2020). Our dataset
contains six FAs, but none of them was found significantly different.
However, despite the lack of significance, we observed a decrease in

the signals of unsaturated FAs (FA 16:1, FA 18:1, FA 18:2, FA 18:3)
and a very slight increase in the signals of saturated FAs (FA 16:0 and
FA 18:0). Marien et al. discovered that eight phospholipids,

FIGURE 3
Levels of lipid discriminating between tumour tissue samples of ADC and SCC sam-ples. *p < 0.05. The y-axes in the graph represent the abundance
ofmetabolites. The whiskers show theminimum andmaximum values. The bottom and top of the box are the 25th and 75th percentiles, and the line inside
the box is the 50th percentile (median).

FIGURE 4
Levels of lipid discriminating between plasma samples of ADC and SCC samples. *p < 0.05; **p < 0.01. The y-axes in the graph represent the
abundance of metabolites. The whiskers show to the min and max values. The bottom and top of the box are the 25th and 75th percentiles, and the line
inside the box is the 50th percentile (median).
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including PC, (PC 40:2, PE 42:2, PE 44:5, PI 36:3, PI 36:4, PS 40:8, PS
42:9, SM 36:2) discriminated ADC and SCC, although the direction
of change was not mentioned; therefore, a more detailed comparison
of this results with our findings is not possible (Marien et al., 2015).

To the best of our knowledge, this study is the first to show
significant differences in the level of several plasma LPAs between
ADC and SCC patients. Patients suffering from ADC exhibited
significantly higher levels of LPA 18:1, LPA 18:2, and LPA 20:4 than
those diagnosed with SCC. LPAs originate from LPCs by the action
of extracellular autotaxin (ATX) (Xie and Meier, 2004). ATX was
found in many body fluids, e.g., plasma or malignant effusions
(Tokumura, 2002). So far, there have been seven LPA receptors
discovered (Gardell et al., 2006; Lin et al., 2010). LPAs act through
activating cell proliferation, differentiation and migration, playing
an important role in wound healing (van Corven et al., 1989; Willier
et al., 2013; Aiello and Casiraghi, 2021). To date, many findings have
shown overexpression of ATX in different pathological conditions,
especially in different types of cancer (Yang et al., 2002; Kehlen et al.,
2004; Wu et al., 2010). Elevated expression of ATX results in
increased LPAs levels which are associated with tumour severity.
Among patients with hepatocellular cancer, those with metastasis
were characterized with higher serum LPAs level in comparison to
those with no metastasis (Mazzocca et al., 2011). What is more,
higher serum LPAs level was associated with larger tumour size as
well as with poorer survival (Mazzocca et al., 2011). As for studies on
lung cancer, LPAs was found to be involved in tumour
microenvironment fibrosis. LPA-stimulated fibroblasts produced
larger amounts of collagen (type I and VI) and fibronectin
(Gudmann et al., 2019). Also, ATX-LPA axis was pointed to play
a significant role in inflammation and lung cancer through the
increase of proinflammatory cytokines (Valdés-Rives and González-
Arenas, 2017). In our study, we noted reduced levels of three
different LPAs in the serum of patients with ADC, compared to
SCC. Since SCC is considered as more severe and characterized with

poorer prognosis (Cooke et al., 2010; Fukui et al., 2015; Wang et al.,
2020), our results suggest one of possible explanations for that and
indicate the need for further investigation to better understand this
phenomenon.

It is worth to note that around 4%–9% of NSCLC tumours
contain mixed adenomatous and squamous pathologies within a
single lesion, named adenosquamous cell carcinoma (AD-SCC),
being the most lethal form of NSCLC with the worst prognosis
(Hou et al., 2017). This indicates a potential phenotypic transition
between ADC and SCC components in this pathologically mixed lung
cancer (Yao et al., 2018). Moreover, there is an evidence that oxidative
stress triggers ADC-to-SCC transdifferentiation, thus resistance to
therapy. Some studies pointed out the essential role of extracellular
matrix remodelling and metabolic reprogramming during this
phenotypic transition. As reported, lipoxygenase (LOX) inhibitors
and reactive oxygen species (ROS) significantly accelerate this
transition. Although more profound research is needed to explain
the exact mechanistic principles of this process, already our own
evidence suggests that LOX downregulation results in decreased
collagen deposition and extracellular matrix remodelling, leading to
the transdifferentiation (Li et al., 2015; Yao et al., 2018). These indicate
that balanced redox status is critical to control tumour plasticity and
therapeutic response in NSCLC (Arfin et al., 2021), pointing to the
need to explore changes in the oxPCs either in the transdifferentiation
process or in AD-SCC patients.

OxPCs differentiate NSCLC subtypes on the tissue and plasma
level. However, stronger differences were observed on plasma level.
Three LCh-oxPCs (PC 16:0/20:4; OOH, PC 18:0/20:4; OH and PC
16:0/18:2; OH) were elevated in plasma of ADC patients in
comparison to the SCC subjects, while:. in case of tissue samples
only one SCh-oxPCs (PC 16:0/4:0; CHO) was significantly reduced
in ADC subjects. Smaller differences in case of tumour tissue
samples might be related to tumour heterogeneity and presence
of different cellular and non-cellular components.

FIGURE 5
The visualization of lipid connectivity is based on the biochemical reactions and metabolic pathways involving lipids. Lipids were linked into a
network employing the LIPID MAPS

®
reaction explorer. To build this network, we used all measured lipids marked with grey dotted circles, while the

statistically significant lipids were annotated with red dotted circles. All other lipids were kept to maintain the connectivity between other lipid classes.
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These results are very important since the relevance of
glycerophospholipids, and oxidised phospholipids in lung
functioning were already reported. Karki et al. pointed out that
circulating and cell membrane oxPCs exhibit protective and
deleterious effects on lung endothelium (Karki and Birukov,
2020). LCh-oxPCs were indicated as those with protective
functions, while SCh-oxPCs as inducing harmful effects.
However, the majority of these reports refer rather to the local
activity of tissue oxPCs.

In our other work (Godzien et al., 2024), we found an elevation
of oxPCs in NSCLC patients in comparison to the control
group. Moreover, it has been reported that oxidative stress is
elevated in ADC patients in comparison to SCC subjects
(Gęgotek et al., 2016; Zalewska-Ziob et al., 2019), what stays in
line with the changes observed in this study. The escalation of
oxidative stress and impairment of the antioxidative defence system
is greater in ADC patients, which can explain higher plasma levels of
oxPCs in these subjects. However, in tumour tissue, we observed a
reduced level of PC 16:0/4:0; CHO in ADC subjects. This might be
due to already mentioned heterogeneity of tumour tissue or the fact
that different oxidation products might exhibit different behaviour
under a given condition. This concerns early and end-oxidation
products, as well as different oxPCs fractions. Moreover, oxPCs may
exhibit different effects depending on the concentration (Karki and
Birukov, 2020). This clearly illustrates, that despite already available
evidence, there is a need to even further explore the role of oxPCs
and other oxidation products in NSCLC patients.

It is essential to mention that oxPCs were found to act as ligands
for VEGF receptors (Mohammad and Srivastava, 2012). VEGF
promotes tumour angiogenesis through its potent mitogenic effect
on vascular endothelial cells (ECs). This links oxPCs with
angiogenesis: it was demonstrated that oxPCs, precisely oxPAPC,
an LCh-oxPC, stimulate angiogenic reactions in endothelial cells
(Bochkov et al., 2017). This is particularly important, because

VEGF receptors are known molecular targets for NSCLC therapy
(Qu et al., 2018). Moreover, it was reported that hypoxia upregulates
the protein levels of VEGF-A in lung cancer cell lines; however, the
role of VEGF-A is distinct in ADC and SCC. VEGF-A protein levels
were found significantly associated with tumour size and lymph node
metastasis, and negatively correlated with the overall survival of ADC
subjects, but not SCC patients (Qin et al., 2020). This, together with
the differences in the profile of oxPCs between ADC and SCC patients
that we observe, suggests that oxPCs should be evaluated as potential
prognostic markers to monitor the effectiveness of the treatment and
stop or prevent tumour growth. Among all tested lipids, only LPAs
and oxPCs were found significantly altered. The linkage between these
two groups of phospholipids is inflammation (Figure 5). It was
reported that LPAs induce cytokines and interleukin 8 (IL-8)
production, promote nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) transcription and lymphocyte infiltration.
This promotes inflammation and further production of inflammatory
cells, white blood cells and interleukins. Inflammatory cells produce a
highly oxidative environment, leading to ROS generation. Lipids
subjected to the high concentration of ROS undergo oxidation,
causing the formation of oxidation products, including also oxPCs.
The elevated level of oxPCs (and other peroxidation products) results
in excessive ROS generation by ECs. Finally, this increases
inflammatory response even more.

Our data show elevated levels of LPAs in SCC patients. For this
cohort of patients previous study showed elevated levels of
inflammation factor NF-κB (Gęgotek et al., 2016). On the other
hand, we observed higher levels of oxPCs for ADC subjects, and
higher lipid peroxidation was reported for these patients (Gęgotek
et al., 2016). Oxidative stress and inflammation can lead to
cancerogenesis; however exact mechanisms underlying this
process are distinct. Our results, combined with previously
reported evidence, suggest that inflammation might be more
involved in SCC development, while oxidative stress underlies

FIGURE 6
The involvement of LPA and oxPCs in the cancerogenesis: LPAs were linked to the inflammation and oxPCs were connected to the oxidative stress.
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ADC development. However, this statement can be a preliminary
hypothesis that requires further examination in a larger group of
patients, performing quantitative measurements of discriminating
lipids together with determination of inflammatory and oxidative
stress markers.

These results provide new insight into the mechanism
underlying the development of both NSCLC subtypes. However,
the ultimate goal of lipidomics study prognostic, diagnostic,
predictive or therapeutic markers can be proposed (Carlomagno
et al., 2017). As diagnosis of NSCLC subtypes poses a challenge, we
decided to test discriminating LPAs and oxPCs as potential

diagnostic markers. For this purpose, we constructed ROC curves
for each discriminating lipid (Figure 7). Obtained AUCs were: 0.851,
0.786 and 0.773 for LPA 20:4, LPA 18:1 and LPA 18:2, respectively
(Figure 7, panels A–C). For plasma oxPCs computed AUCs were:
0.825, 0.786 and 0.786 for PC 16:0/20:4; OOH, PC 16:0/18:0; OH
and PC 18:0/20:4; OH respectively (Figure 6, panels D–F). For
tumour PCs calculated AUCs were: 0.773 and 0.766 for PC 16:0/18:
2 and PC 16:0/4:0; CHO, correspondingly (Figure 7, panels
G and H).

Moreover, we tested different combinations of these lipids to
create a biomarker model. The best results, with the highest AUC,

FIGURE 7
ROC curves obtained for each discriminating lipid in plasma (panels (A–F)) and tumour tissue panels (G, H). Panel (I) shows the ROC obtained for all
discriminating lipids simultaneously.
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were obtained for the combination of discriminating metabolites,
i.e., AUC raised up to 0.873 (Figure 6, panel I). Other researchers
used a similar strategy and tested the combined discrimination
performance of several metabolites. For five DGs and one Cer,
Fan et al. obtained AUC of 0.92 and 0.77 in the discovery and
validation set, respectively (Fan et al., 2020). You et al. received even
more robust results with AUC of 0.935 and 0.924 for discovery and
validation cohorts, respectively. They used a relatively large set of
metabolites, which included three carnitines, two free fatty acids,
several phospholipids and five polar metabolites such as guanosine,
creatinine and oxidised glutathione, among others (You et al., 2020).
Zhang et al. performed ROC curve analysis over succinic anhydride,
serine phosphorylcholine and PC 34:0, obtaining AUC of 0.827
(Zhang et al., 2019). Analysis of all these reported AUCs suggests
that stronger values are obtained either for larger sample sets or for
larger sets of discriminating metabolites. Therefore, the performance
of our potential markers might be improved by validating them on a
larger set of samples or by augmenting them with other metabolites,
also polar. All these results show a clear potential of oxPCs and LPAs
in the NSCLC subtypes diagnosis; however, they must be validated,
covering proper quantification of these molecular lipid species on a
larger cohort of patients. This should include a larger number of
participants, but also patients with LCC, which were not included in
this study due to low availability of the samples. Moreover,
diagnostic utility of these glycerophospholipids must be tested in
the context of presence of driver mutations such as, e.g.,
EGFRL858R, KRAS, ALK, among other.

4 Conclusion

Our results revealed differences in the profiles of oxPCs and
LPAs between ADC and SCC patients. We observed elevated LPAs
levels in SCC patients and increased levels of oxPCs in ADC subjects.
These results align with publications reporting altered oxidative
stress and inflammation markers in NSCLC subtypes. By combining
our results with literature reports, we linked the observed increased
level of LPAs with inflammation and noticed an increased level of
oxPC with oxidative stress. All this suggests that inflammation
might be more involved in the SCC development, while oxidative
stress seems to underly the development of ADC. However,
inflammation and oxidative stress are inherently connected;
therefore, their impact on cancer development permeates each
other. These results open a new line of research, pointing oxPCs
and LPAs as potential markers and/or therapeutic targets in
ADC and SCC.
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Glossary

4-HNE 4-hydroxynonenal

ADC adenocarcinoma

AD-SCC adenosquamous cell carcinoma

ALK anaplastic lymphoma kinase

ATX autotaxin

BMI body mass index

CAR carnitine

Cer ceramide

COPD chronic obstructive pulmonary disease

DG diradylglycerol

EC endothelial cell

EGF epidermal growth factor

EGFR epidermal growth factor receptor

FA free fatty acid

HILIC hydrophilic interactions chromatography

HPLC high performance liquid chromatography

IE-DDA iterative exclusion data-dependent analysis

IGF-I insulin-like growth factor I

IL-8 interleukin 8

LC liquid chromatography

LCC large-cell carcinoma

LCh-oxPC long-chain oxidised phosphocholine

LC-MS liquid chromatography mass spectrometry

LOX lipoxygenase

LPA lysophosphatidic acid

LPC lysophosphatidylcholine

LPE lysophosphatidylethanolamine

LPG lysophosphatidylglycerol

LPI lysophosphatidylinositol

MDA malondialdehyde

MS mass spectrometry

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NSCLC non-small cell lung cancer

oxPC oxidised phosphatidylcholine

PC phosphatidylcholine

PDFG platelet-derived growth factor

PE glycerophosphoethanolamine

PI glycerophosphoinositol

PS glycerophosphoserine

pTNM pathological tumour-node-metastasis staging

QC quality control

ROS reactive oxygen species

RP reversed-phase chromatography

RT retention time

SCC squamous cell carcinoma

SCh-oxPC short-chain oxidised phosphocholine

SM sphingomyelin

UHPLC ultra-high-performance liquid chromatography

VEGF vascular endothelial growth factor
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The impact of normothermic and
hypothermic preservation
methods on kidney lipidome
—comparative study using
chemical biopsy with
microextraction probes

Natalia Warmuzińska1, Kamil Łuczykowski1, Iga Stryjak1,
Hernando Rosales-Solano2, Peter Urbanellis3, Janusz Pawliszyn2,
Markus Selzner3,4 and Barbara Bojko1*
1Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus
Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, 2Department of
Chemistry, University of Waterloo, Waterloo, ON, Canada, 3Ajmera Transplant Center, Department of
Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada, 4Department of
Medicine, Toronto General Hospital, Toronto, ON, Canada

Introduction: Normothermic ex vivo kidney perfusion (NEVKP) is designed to
replicate physiological conditions to improve graft outcomes. A comparison of
the impact of hypothermic and normothermic preservation techniques on graft
quality was performed by lipidomic profiling using solid-phase microextraction
(SPME) chemical biopsy as a minimally invasive sampling approach.

Methods:Direct kidney sampling was conducted using SPME probes coated with
a mixed-mode extraction phase in a porcine autotransplantation model of the
renal donor after cardiac death, comparing three preservation methods: static
cold storage (SCS), NEVKP, and hypothermic machine perfusion (HMP). The
lipidomic analysis was done using ultra-high-performance liquid
chromatography coupled with a Q-Exactive Focus Orbitrap mass spectrometer.

Results: Chemometric analysis showed that the NEVLP group was separated
from SCS and HMP groups. Further in-depth analyses indicated significantly (p <
0.05, VIP > 1) higher levels of acylcarnitines, phosphocholines, ether-linked and
longer-chain phosphoethanolamines, triacylglycerols and most
lysophosphocholines and lysophosphoethanolamines in the hypothermic
preservation group. The results showed that the preservation temperature has
a more significant impact on the lipidomic profile of the kidney than the
preservation method’s mechanical characteristics.

Conclusion: Higher levels of lipids detected in the hypothermic preservation
group may be related to ischemia-reperfusion injury, mitochondrial dysfunction,
pro-inflammatory effect, and oxidative stress. Obtained results suggest the
NEVKP method’s beneficial effect on graft function and confirm that SPME
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chemical biopsy enables low-invasive and repeated sampling of the same tissue,
allowing tracking alterations in the graft throughout the entire
transplantation procedure.

KEYWORDS

solid-phase microextraction, SPME, LC-MS, kidney transplantation, lipidomics, graft
quality assessment, kidney perfusion

1 Introduction

Kidney transplantation is a life-saving method for patients with
end-stage renal dysfunction that enables higher survival rates and
patient quality of life compared to dialysis treatment. Unfortunately,
an ongoing organ shortage has led to the rapid growth in the number
of patients on kidney waiting lists (Swanson et al., 2020;
Warmuzińska et al., 2022). This growing gap in supply and
demand has led clinicians to explore the possibility of using
kidneys recovered from extended criteria donors (ECD) or
donation after circulatory death (DCD) donors; however,
recipients of ECD kidney grafts tend to have worse outcomes
than those receiving organs from standard criteria donors,
including being at a higher risk of delayed graft function (DGF)
and primary nonfunction incidence (Urbanellis et al., 2020;
Warmuzińska et al., 2022). Hence, strategies for reducing
preservation injury and monitoring graft function are of intense
interest. At present, static cold storage (SCS) and hypothermic
machine perfusion (HMP) are the most common preservation
methods applied in clinical settings. SCS involves submerging the
kidney in a cold preservation fluid and then placing it on ice in an
icebox; in contrast, HMP entails using a device to pump cold
preservation fluid through the renal vasculature, which has been
demonstrated to be more effective at preserving marginal and DCD
grafts compared to SCS (Lindell et al., 2013; Urbanellis et al., 2020;
Warmuzińska et al., 2022). Normothermic ex vivo kidney perfusion
(NEVKP) is a novel dynamic preservation strategy applying a
perfusion solution’s circulation through the kidney. NEVKP
conditions are developed to replicate physiological conditions as
closely as possible to reduce cold ischemia damage and improve
graft outcome (Resch et al., 2020; Hosgood et al., 2021). While
several studies have attained promising results indicating NEVKP’s
superiority over SCS, this application is still in the experimental
stage (Kaths et al., 2017; Urbanellis et al., 2020). One notable
problem is the need for more accurate methods of evaluating
graft quality and assessing donor risk, especially concerning
marginal grafts. A kidney’s suitability for transplantation is
determined based on detailed parameters, including the donor’s
medical history, visual assessment, and examination results
(Warmuzińska et al., 2022). The visual evaluation of donor
organs is frequently fundamental in decision-making. However,
although macroscopic inspection can help diagnose tumors and
anatomical changes, this method is subjective and depends on the
transplant team’s experience level (Dare et al., 2014). Consequently,
pretransplant biopsies remain the gold standard for identifying
donor kidney injury. Histological examinations are often applied
selectively, mainly in marginal grafts, and the frequency of
performed biopsies varies between medical facilities and countries
(Dare et al., 2014; Moeckli et al., 2019; Warmuzińska et al., 2022).

Moreover, the use of biopsies is hampered by two significant
limitations: the low reproducibility of results between on-call
pathologists and their time-consuming nature (Azancot et al.,
2014). Additionally, the number of allowable biopsies during the
transplantation procedure is usually restricted to a single sampling
due to their invasiveness, which limits their application for capturing
dynamic changes and time-series analyses (Bojko, 2022). Therefore,
new representative organ-quality assessment methods are needed to
increase the number of organs available for transplantation. In this
study, we assess the viability of solid-phase microextraction (SPME)
chemical biopsy as a method for evaluating the impact of
hypothermic and normothermic preservation techniques on the
lipidomic profile of the kidney. The small diameter of the SPME
probe (~200 μm) enables minimal invasiveness and allows for
several samplings of the same organ without damaging the tissue.
Furthermore, SPME combines sampling, extraction, and metabolite
quenching into a single step, which makes it a valuable tool for on-
site analysis. Finally, SPME’s low invasiveness enables its application
for monitoring of changes in the organ throughout the entire
transplantation procedure, beginning with its removal from the
donor’s body, through its preservation, and ending with its
revascularization in the recipient’s body (Łuczykowski et al., 2023).

2 Materials and methods

2.1 Animals

Eight 3-month-old male Yorkshire pigs (≈30 kg) were housed
for 1 week prior to the experiments, with water and food being
provided ad libitum. All animals received humane care in
compliance with the “Principles of Laboratory Animal Care”
formulated by the National Society for Medical Research and the
“Guide for the Care of Laboratory Animals” published by the
National Institutes of Health and the ARRIVE guidelines 2.0.
The study protocol was approved by the Animal Care Committee
at the Toronto General Research Institute, Ontario, Canada.

2.2 Study design

SPME fibers coated with a mixed-mode extraction phase
(coating length: 7 mm) were applied for direct kidney sampling
in three porcine models of renal DCD autotransplantation using
different preservation methods: an 8-h SCS group (n = 3), an 8-h
NEVKP group (n = 3), and an 8-h HMP group (n = 2). The
autotransplantation and anesthetic procedures, warm ischemia
induction, and NEVKP, HMP, and SCS conditions are described
elsewhere (Kaths et al., 2015; Kaths et al., 2016; Kaths et al., 2018;
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Urbanellis et al., 2020). SPME sampling was performed in vivo prior
to kidney procurement; after 1 h and 2 h of warm ischemia; after 1 h,
3 h, 5 h, and 7 h of perfusion; in vivo immediately after
revascularization (reperfusion), and in vivo under deep anesthesia
at the time of sacrifice on postoperative day 3 (POD3). The study
protocol is illustrated in Figure 1. Before sampling, all fibers were
preconditioned for 60 min in a methanol/water (50:50 v/v) solution,
followed by rinsing with purified water for a few seconds. The
extractions were performed by inserting the SPME fiber into the
kidney cortex for 30 min at each time point. After sampling, the
fibers were removed from the organ, quickly rinsed with water, and
then gently dried with kimwipes to remove any tissue or blood
residue. Next, the fibers were placed into empty glass vials and stored
in a freezer at −80°C until analysis. All fibers were desorbed
immediately before instrumental analysis. For desorption, the
fibers were inserted into 200 μL of isopropanol:methanol (1:1 v/
v) solution with the use of silanized inserts and agitated (1,200 rpm)
using a BenchMixer™ MultiTube Vortexer (Benchmark Scientific,
Edison, United States) for 120 min. After desorption, extracts were
ready for instrumental analysis. The extraction blanks consisted of
fibers that were prepared using the same protocol as the rest of the
fibers, but with the extraction step being omitted.

2.3 Liquid chromatography–high resolution
mass spectrometry analysis (LC-HRMS)

Untargeted lipidomics analysis was performed using an LC-HRMS
procedure based on the coupling of an ultra-high performance liquid
chromatograph and a Q-Exactive Focus Orbitrap mass spectrometer.
Data acquisition was performed using dedicated Thermo Scientific
software, namely, Xcalibur 4.2 and Free Style 1.4 (Thermo Fisher
Scientific, San Jose, California, United States). The instrument was
calibrated by injecting calibrants every 72 h, resulting in amass accuracy
of <2 ppm. During analysis, the samples were randomized and pooled
quality control (QC) samples containing 10 μL of each sample were run
every 8–10 injections to monitor instrument performance and analyte
stability. Chromatographic separation was carried out on a hydrophilic
interaction liquid chromatography (HILIC) column (SeQuant ZIC-
cHILIC, 3 μm, 100 mm × 2.1 mm) and in reversed-phase (RP) using a
C18 column (Waters, XSelect CSH C18, 3.5 µm, 2.1 mm × 75 mm) to

cover a wide range of lipids. The mobile phases for the HILIC column
were 5 mM ammonium acetate in water (A) and acetonitrile (B). The
mobile phases for the RP column were: phase A consisted of water:
methanol (60:40; v/v) and phase B of isopropanol: methanol (90:10; v/
v), both containing 10 mM ammonium acetate and 1 mM acetic acid.
The gradients were as described previously (Stryjak et al., 2020). The
analyses were performed in positive and negative electrospray
ionization mode. For positive ionization mode, the mass
spectrometer parameters for the HILIC separations were as follows:
a spray voltage of 1,500V; a capillary temperature of 325°C; sheath gas at
60 a.u.; an aux gas flow rate of 30 a.u.; a spare gas flow rate of 2 a.u.; a
probe heater temperature of 325°C; an S-Lens radio frequency level of
55%; an S-lens voltage of 25 V; and a skimmer voltage of 15 V. For the
RP analysis, the following parameters were employed: a spray voltage of
3500V; a capillary temperature of 275°C; sheath gas at 20 a.u.; an aux gas
flow rate of 10 a.u.; a spare gas flow rate of 2 a.u.; a probe heater
temperature of 300 °C; an S-Lens radio frequency level of 55%; an S-lens
voltage of 25 V; and a skimmer voltage of 15 V. For negative ionization
mode, the mass spectrometer parameters for the HILIC separations
were as follows: a spray voltage of 1300V; a capillary temperature of
263°C; sheath gas at 60 a.u.; an aux gas flow rate of 30 a.u.; a spare gas
flow rate of 2 a.u.; a probe heater temperature of 425°C; an S-Lens radio
frequency level of 55%; an S-lens voltage of 25 V; and a skimmer voltage
of 15 V. For the RP analysis, the following HESI ion source parameters
were employed: a spray voltage of 3,500V; a capillary temperature of
275°C; sheath gas at 30 a.u.; an aux gas flow rate of 10 a.u.; a spare gas
flow rate of 2 a.u.; a probe heater temperature of 300°C; an S-Lens radio
frequency level of 55%; an S-lens voltage of 25 V; and a skimmer voltage
of 15 V. The putative identification of compounds was confirmed in
Full MS/dd-MS2 mode using the following fragmentation parameters:
mass resolution—35,000 full width at half maximum (FWHM); AGC
target—2E4; minimum AGC—8E3; intensity threshold—auto;
maximum IT—auto; isolation window—3.0 m/z; stepped collision
energy—20 V, 30 V, 50 V; loop count—2; dynamic exclusion—auto.

2.4 Data processing and statistical analysis

Raw data from each LC-HRMS analysis were processed
independently using LipidSearch 4.1.30 (Thermo Fisher Scientific,
San Jose, California, United States) software with the following

FIGURE 1
Study design. SPME sampling was performed in vivo prior to kidney procurement; after 1 h and 2 h of warm ischemia; after 1 h, 3 h, 5 h, and 7 h of
perfusion; in vivo immediately after revascularization (reperfusion), and in vivo under deep anesthesia at the time of sacrifice on postoperative day 3
(POD3). Three types of kidney preservation methods—SCS, HMP, and NEVKP—were compared in the DCD porcine model of renal autotransplantation.
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parameters: peak intensity >10,000; a precursor tolerance of 5 ppm;
a product tolerance of 10 ppm; an m-score threshold of 2; a Quanm/
z tolerance of ±5 ppm; a Quan RT (retention time) range of 0.5 min;
and the use of a main isomer filter. H+, NH4+, and Na+ adducts were
considered in positive ion mode, while H− and +CH3COO were
considered in negative ion mode. After completing the lipid
identification step, the alignment process was performed using
the LipidSearch software with the following parameters: an
m-Score threshold of 10; a retention time tolerance of 0.25 min;
a QC-to-extraction-blank ratio of >5; and a max 30% RSD in the
QC. The search mode function of the software sought matches of
parent peaks (full scan MS) and product peaks (fragments, MS/MS)
with the lipid database entries. The software assigns four grades of
identification of decreasing quality (A–D) to each feature.
Identification grade filtering was applied to filter false positive
lipid ID from LipidSearch results. Only lipids species with grades
A and B were considered in further analyses. Grade A indicates that
both lipid class and all fatty acid chains belonging to a given lipid
were completely identified; grade B indicates full identification of
lipid class and partial identification of fatty acid chains. The peak
areas for the obtained compounds were analyzed using
MetaboAnalyst 4.0 and Statistica 13.3 PL software (StatSoft, Inc.,
Tulsa, Oklahoma, United States). All missing values were replaced
with small values that were assumed to be a detection limit. A UpSet
plot was made with the lists of compounds annotated in the different
LC-HRMS analyses using the UpSet plot generator tool (https://
www.chiplot.online/upset_plot.html) to evaluate the number of
lipids species identified in each analytical block. Data were
normalized by median, log-transformation, and Pareto scaling,
and statistical significance was calculated based on the Kruskal-
Wallis test and the Mann–Whitney U test with FDR correction. A
post hoc test with multiple comparisons of mean ranks for all groups
with a Bonferroni correction followed the Kruskal-Wallis test. A
p-value of <0.05 was considered significant. In addition, principal
component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) were conducted to visually assess the separation
between sample groups, with variable importance in projection
(VIP) scores >1 being used as a criterion for detecting the
relevant variables in the context of the model’s predictive
capability. Each model was validated via Leave-one-out cross-
validation and refined with a permutation test. The model was
considered to have passed permutation when the p-value was lower
than 0.05. The Friedman test was employed to search for
compounds with relative concentrations that changed throughout
perfusion (across specific time points). After statistical analysis, the
results from each LC-HRMS block were combined in tables to
increase the clarity of the results. If a compound was considered
statistically significant from more than one analytical condition, it
was placed in tables only once with the most significant p-value to
avoid duplication of information.

3 Results

The proposed method was employed to investigate changes in
the lipidomic profiles of kidneys during transplantation and
preservation. Principal component analysis was employed to
confirm the quality of the instrumental analysis for all

combinations of chromatographic separation and ionization
mode. As shown in Supplementary Figure S1, the pooled QC
samples formed a tight cluster, thus confirming the good quality
of the analytical performance. Using all four blocks of LC-HRMS
analysis, 128 lipid species belonging to 14 lipid classes were
annotated with level 2 confidence in metabolomics compound
identification. A UpSet plot representing the number of
compounds annotated in each analytical block is shown in
Figure 2. A list of the identified lipid species is provided in
Supplementary Table S1.

The analysis of the results was divided into four parts: 1) analysis
of how warm ischemia influenced the lipidomic profiles of the
kidneys; 2) comparison of the three organ-preservation methods;
3) monitoring changes across time; and 4) investigation of the
influence of transplantation procedure on kidney grafts.

3.1 Influence of warm ischemia on kidney
lipidomic profiles

The Kruskal-Wallis test, followed by post hoc test, was used to
identify changes that occurred during warm ischemia. The results
indicated that discriminative changes were mostly visible at the first
sampling point of warm ischemia time (WIT). Among the identified
lipids, an increase in acylcarnitines (CARs), lysophosphocholines
(LPCs), and lysophosphoethanolamines (LPEs) was observed after
45 min of warm ischemia, while a corresponding decrease in
phosphocholines (PCs) and sphingomyelins (SMs) was also
noted. Boxplots of statistically significant lipids are shown
in Figure 3.

3.2 Comparison of different kidney
preservation methods

Chemometric analysis was conducted to visualize the data and
investigate the differences in the kidney lipidomic profiles in the
SCS, NEVKP, and HMP groups. The two-dimensional scoring plots
(PC1 vs. PC2) presented in Supplementary Figure S2 revealed major
differences in the lipidomic patterns of samples harvested under
different preservation conditions. In all analyses, the lipidomes of
the renal tissue from the NEVLP group showed clear separation
from those of the SCS and HMP groups. In contrast, the data points
in the scoring plots for the SCS and HMP groups had slightly
overlapping distributions (Supplementary Figure S2). PLS-DA was
applied to more accurately model differences in the lipidomic
profiles of the kidneys in each preservation method group
(Figure 4). Each model was validated via leave-one-out cross-
validation and refined using a permutation test (permutation
number = 1,000), which yielded significant (p < 0.05) quality
parameters. This statistical analysis produced a set of compounds
that successfully differentiated the different types of kidney
preservation. A VIP score value > 1 was selected as a cut-off
value. Furthermore, the Kruskal-Wallis test (p < 0.05) was used
to compare the NEVKP, HMP, and SCS groups, while the
discriminative compounds were selected based on chemometric
and univariate analysis. Supplementary Table S2 lists the
compounds meeting the above-mentioned criteria.
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Given that unsupervised analysis indicated that the observed
differences were mainly related to the preservation temperature,
additional PCA (Supplementary Figure S3) and PLS-DA (Figure 5)
analyses were conducted to identify the compounds that statistically
differentiated the hypothermic and normothermic preservation
methods. These analyses were confirmed via leave-one-out cross-
validation and a positive permutation test (permutation number =
1,000; p < 0.05). In addition, the Mann–Whitney U test with FDR
correction was also applied to select statistically important
compounds. Supplementary Table S3 lists the compounds with a
p-value < 0.05 and/or a VIP value > 1. Moreover, samples collected
from all preservation groups after reperfusion were compared to
identify differences occurring in kidney tissue in vivo after using a
given preservation method. Strip plots of statistically significant
compounds are shown in Figure 6. After reperfusion, significantly
fewer differentiating compounds were identified than during
preservation. A similar comparison was performed for samples
collected on postoperative day 3. However, this comparison was
possible only for the samples from the NEVKP and SCS groups, as
the POD3 samples from the HMP group were rendered
unrepresentative due to damage, and therefore had to be omitted.
Nonetheless, a comparison of samples collected from the NEVKP
and SCS groups at POD3 did not reveal any significant
differentiating lipids.

3.3 Changes across time

The Friedman test was used to evaluate changes throughout
perfusion. The majority of statistically significant changes in lipids

levels were found in the samples collected during mechanical
perfusion (especially HMP). For NEVKP, a decrease was
observed for CARs (CAR 12:0, CAR 14:1) and triacylglycerol
(TG) 56:7. For HMP samples, changes throughout perfusion
were mainly observed for PCs, phosphoethanolamines (PEs), and
SMs but no dominant trend was observed. Strip plots of the selected
compounds are shown in Figure 7, and a list of statistically
significant compounds is provided in Supplementary Table S4.

Next, differences between the reperfusion and POD3 samples
were evaluated. As mentioned before, the POD3 samples from the
HMP group were removed from the analysis; hence, comparisons
were performed only for the samples from the NEVKP and SCS
groups. The analysis revealed more differentiating lipids in the SCS
group (21 compounds) than in the NEVKP group (3 compounds).
In the NEVKP group, all statistically significant lipids were present
at higher levels on POD3 than after reperfusion. In the SCS group,
elevated levels of ether-linked phospholipids and PCs with
32 carbon chains were observed on POD3, along with a
corresponding reduction in SMs, PEs, PC 35:6, and PC 38:5. A
list of statistically significant compounds is shown in
Supplementary Table S5.

3.4 Influence of transplantation procedure
on kidney grafts

AMann-Whitney U test with FDR correction was carried out to
determine how the transplantation and preservation procedures
affected the lipidomic profiles of the kidneys. For the SCS and
NEVKP groups, comparisons of lipidomic profiles at donation and

FIGURE 2
UpSet plot representing the number of compounds annotated in each analytical block. RP pos- reversed-phase in positive ionizationmode; RP neg-
reversed-phase in negative ionization mode; HILIC pos- hydrophilic interaction liquid chromatography in positive ionization; HILIC neg- hydrophilic
interaction liquid chromatography in negative ionization mode.
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reperfusion and donation and POD3 were performed. For the HMP
group, a comparison at donation and reperfusion was conducted. As
shown in Supplementary Table S6, most of the statistically
significant compounds in the SCS group were found in the
donor and POD3 comparison. Conversely, in the comparison of

donors and reperfusion, most of the significantly differentiating
compounds were found in the NEVKP group; however, most of
these compounds were present at lower levels after reperfusion.
While the comparison of donors and POD 3 revealed similar change
trends for the SCS and NEVKP groups, the alterations were usually

FIGURE 3
Changes in levels of selected lipids during warm ischemia (n = 8). The boxplots display normalized peak areas. The rectangle’s height represents the
normalized peak areas in the interquartile range (Q1 and Q3). The upper whisker denotes the largest data point (excluding any outliers), while the lower
whisker denotes the lowest data point (excluding any outliers). The median normalized peak area of each group is indicated with a yellow square. * is a
p-value < 0.05. WIT1—1 h of warm ischemia; WIT2—2 h of warm ischemia.
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more noticeable in the SCS group, as evidenced by the fold change.
On POD3, both groups exhibited elevated levels CARs, LPEs, and
PCs and PEs (including ether-linked) with relatively shorter chains,
along with a corresponding in PCs with longer chains. Additionally,
a reduction in PSs, SMs, and PEs with longer chains was also
observed in the SCS group.

4 Discussion

Organ-preservation methods have garnered significant interest
in graft quality evaluation, advanced organ monitoring, and the
treatment of transplanted kidneys during machine perfusion. This
study further explores these trends and, to the best of our knowledge,
it is the first to apply SPME to compare SCS, NEVKP, and HMP
preservation methods in a porcine DCD autotransplantation model.

Moreover, this study highlights the alterations in the lipidomic
profile during warm ischemia and perfusion, as well as after
transplantation. The minimally invasive SPME chemical biopsy
allows for the repeated direct sampling of the organ, as it does
not require any tissue collection. Thanks to this undisputed
advantage, it was possible to validate the PLS-DA models and
identify significantly differentiating lipids using a relatively small
number of animals. Additionally, this study employed four LC-
HRMS analyses to cover a wide range of lipids. The analysis showed
that this approach allowed the identification of more lipids than was
possible using only one type of chromatographic separation. The
largest number of unique compounds were identified with the use of
RP and HILIC separation in positive ionization mode. In negative
ionization mode, using HILIC and RP separations, 9 and 4 unique
compounds were identified, respectively. Therefore, based on the
results obtained and taking into account the time-consuming nature

FIGURE 4
Score plots (PLS-DA) showing separation based on different types of kidney preservation. HILIC analyses in (A) positive and (B) negative ionization
modes and RP analyses in (C) positive and (D) negative ionization modes. For HILIC analyses, the Q2 and R2 values for the PLS-DA model were 71% and
88% for positive ionization mode and 57% and 74% for negative ionization mode, respectively. For the RP analyses, the Q2 and R2 values for the PLS-DA
model were 76% and 92% for positive ionization mode and 59% and 87% for negative ionization mode, respectively.
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of the analyses, the consumption of organic reagents, the amount of
data obtained, and the benefits of using additional LC-HRMS
analyses in future studies, it is worth considering limiting the
number of analyzes used, thus choosing the best compromise
between advantages and disadvantages.

A thorough analysis of kidney graft tissue during warm ischemia
indicated increased levels of CARs, LPCs, and LPEs. CARs are
established mitochondrial biomarkers in neonatal screening;
however, they are not routinely used beyond this screening,
despite the growing evidence of their biomarker potential among
disorders such as diabetes, sepsis, cancer, and heart failure (Breit and
Weinberger, 2016; McCann et al., 2021). Moreover, alterations of
CARs related to kidney disease, including acute kidney injury,
progression of chronic kidney disease (CKD), and diabetic
nephropathy, have been previously reported in several reports
(Breit and Weinberger, 2016; Hocher and Adamski, 2017;
Afshinnia et al., 2018; Kordalewska et al., 2019; Andrianova

et al., 2020). In this study, significantly elevated levels of four
long-chain CARs (CAR 14:0, CAR 14:1, CAR 14:2, CAR 18:2)
and one medium-chain CAR (CAR 12:0) were mainly observed
after 45 min of warm ischemia. CARs are crucial for transporting
long-chain fatty acids into the mitochondria to ensure the β-
oxidation process (Breit and Weinberger, 2016; Kordalewska
et al., 2019). Thus, the increase of CARs observed during warm
ischemia may be related to mitochondria dysfunction. Indeed, a
similar accumulation of long-chain CARs in ischemic tissue has
been reported elsewhere, and it is thought that this accumulation
inhibits oxidative phosphorylation, induces mitochondrial
membrane hyperpolarization, and stimulates the production of
reactive oxygen species (ROS) (Liepinsh et al., 2016; Andrianova
et al., 2020). LPCs and LPEs are the products of the phospholipase-
induced hydrolysis of PCs and PEs (Xu et al., 2015; Law et al., 2019).
These compounds play a role in cellular signal transduction,
tumorigenesis, angiogenesis, immunity, atherosclerosis, cancer,

FIGURE 5
Score plots (PLS-DA) showing separation between the normothermic and hypothermic preservation methods. HILIC analyses in (A) positive and (B)
negative ionization modes and RP analyses in (C) positive and (D) negative ionization modes. For HILIC analyses, the Q2 and R2 values for the PLS-DA
model were 84% and 95% for positive ionization mode and 88% and 95% for negative ionization mode, respectively. For the RP analyses, the Q2 and
R2 values for the PLS-DA model were 94% and 97% for positive ionization mode and 88% and 95% for negative ionization mode, respectively.
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and neuronal survival (Kordalewska et al., 2019). Previously, higher
levels of LPCs have been associated with oxidative stress and pro-
inflammatory effects (Kordalewska et al., 2019). Moreover, similar
to the results obtained in this study, Xu et al. (2015) observed higher
pretransplant levels of LPCs (LPC 16:0, LPC 18:0) and LPEs (LPE 16:
0, LPE 18:0) in donors after circulatory death compared to donors
after brain death. Conversely, Rao et al. found higher levels of LPC
18:0, LPC 26:6, LPE 16:0, and LPC 18:0, along with a corresponding
reduction in LPC 20:0, LPC 20:4, LPE 22:0, and LPE 24:6, 24 h after
IR-induced acute kidney injury (Rao et al., 2016). The inconclusive
results obtained in recent studies may be related to the complexity of

the enzymatic cascade involved in LPC metabolism (Law
et al., 2019).

Chemometric analysis revealed significant differences between
the SCS, HMP, and NEVKP preservation methods, with further in-
depth analysis demonstrating that the method’s preservation
temperature has a greater impact on the lipidomic profile than
its mechanical character. Higher levels of CARs, PCs, ether-linked
PCs, ether-linked PEs, phosphatidylinositols (PIs), TGs, most LPCs
and LPEs, and longer-chain PEs were observed in the hypothermic
group, while higher levels of ceramides (Cer), PSs, and shorter-chain
PEs were observed in the normothermic group. Numerous SMs

FIGURE 6
Differences in levels of selected compounds detected at reperfusion between the three preservation groups. * is a p-value < 0.05. NEVKP = green;
HMP = pink; SCS = blue.
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differentiated the preservation methods, but no dominant trend was
observed. As mentioned above, increased levels of long-chain CARs
may be related to mitochondria dysfunction and increased
production of ROS (Liepinsh et al., 2016; Andrianova et al.,
2020), and higher levels of LPCs may be associated with

oxidative stress and pro-inflammatory effects (Kordalewska et al.,
2019). Moreover, higher levels of LPEs were observed in DCD livers
compared to livers from donors after brain death (Xu et al., 2015),
and increased LPE levels were observed in CKD progression
(Kordalewska et al., 2019). Rao et al. (2016) and Solati et al.

FIGURE 7
Strip plots of selected statistically significant changes between lipids and time points throughout kidney perfusion. NEVKP = green; HMP = pink.
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(2018) have reported elevated levels of PCs in mice and rat ischemia/
reperfusion (I/R) models. Similar to our results, they observed
increases in PC 34:1, PC 34:2, PC 36:1, PC 36:2, PC 36:3, PC 36:
4, PC 38:3, PC 38:4, PC 38:5, PC 38:6, PC 40:4 and PC 40:5.
Additionally, Solati et al. reported increased levels of PIs 6 h and
12 h after I/R, while in this study higher levels of PI 36:2 and PI 38:
4 were observed in the hypothermic preservation group (Solati et al.,
2018). Ether-linked PCs and ether-linked PE were present at higher
levels in the hypothermic group compared to the normothermic
group. In Rao et al.’s study, significantly elevated levels of a small
number of ether-linked phospholipids were observed 6 h after renal
I/R (vs. control animals); notably, levels of these ether phospholipids
were correlated with plasma creatinine. However, 24 h after I/R, only
PC O-38:1 was still elevated, while ether-linked PEs were reduced at
this later time point (Rao et al., 2016). Ether lipids differ from their
diacyl counterparts, allowing them to contribute unique structural
characteristics to biological membranes. Moreover, previous
findings suggest that ether lipids play a role in various biological
processes, including cell differentiation, cellular signalling, and
oxidative-stress reduction (Dean and Lodhi, 2018). While
alterations of ether lipids have been reported in several disorders,
including neurodegenerative disease, cancer, and metabolic
disorders (Rao et al., 2016; Dean and Lodhi, 2018), the molecular
mechanism underlying their role in these pathologies remains
unclear. Higher levels of three TGs (TG 44:1, TG 56:6, TG 56:7)
and three longer-chain PEs (PE 38:4, PE 38:5, PE 40:4) were also
observed in the hypothermic group. Similar elevations were reported
by Afshinnia et al. (2018) in their study of lipid profiles in CKD.
Their results indicated that higher quantities of long
polyunsaturated lipids are related to CKD progression. Elsewhere,
Solati et al. (2018) observed an increase in longer-chain PEs and a
reduction in shorter-chain PEs 24 h after I/R, which aligns with the
trend observed for the hypothermic group in our study. The
alterations described above suggest the NEVKP method’s
beneficial effects with respect to kidney grafts. The lower
accumulation of lipids in NEVKP kidneys, especially those with
pro-inflammatory properties, results in improved graft function
following NEVKP compared to hypothermic preservation
methods. Additionally, the reductions of CAR 12:0 and CAR 14:
1 across perfusion time points may also be indicative of NEVKP’s
beneficial effects.

Amuch smaller number of compounds differentiating the HMP,
NEVKP, and SCS methods were identified post-perfusion (vs.
during preservation). However, after reperfusion, the trend in
changes was similar to that observed during perfusion, with most
of the significant changes differentiating NEVKP from other
hypothermic methods, rather than from HMP and SCS.

A comparison of the kidneys during reperfusion and on
POD3 revealed more significant changes in the SCS group
compared to the NEVKP group. In particular, the SCS group
exhibited elevated levels of ether-linked PEs and PC P-38:4 on
POD3. As noted above, Rao et al. reported higher levels of PC O-38:
1, PE O-42:3, and PE O-40:4 6 h after I/R, but only PC O-38:
1 remained elevated in I/R at 24 h. However, more research is
required to investigate the molecular mechanisms underlying the
role of ether lipids in kidney disease. Additionally, in the SCS group,
lower levels of SMs were identified on POD3. Previous findings have
shown an increase in SMs 24 h after I/R in animal models (Rao et al.,

2016; Solati et al., 2018). In contrast, Zhao et al. (2014) observed
lower SMs levels in an acute graft rejection group after
transplantation, while Tofte et al. (2019) demonstrated that
higher levels of specific SMs were associated with a lower risk of
end-stage renal disease and all-cause mortality in type 1 diabetes.
These findings indicate that lower levels of SMs may be related to
impaired graft function. The results of this comparison (donor vs.
POD3) provide further evidence that NEKVP enables improved
graft function compared to SCS.

The last step of untargeted analysis entailed a comparison of the
lipidomic profiles at baseline (donation) and reperfusion and at
baseline and POD3. The largest number of statistically significant
compounds was identified in the donor-POD3 comparison for the
SCS group. While the trends in changes were similar for the SCS and
NEVKP groups, the alterations were usually more noticeable in the
SCS group. The observed alterations mainly concerned lipids
described previously in this study. Higher levels of CARs, a few
LPCs and LPEs, several PCs and PEs, and ether-linked PCs on
POD3 were observed for both the SCS and NEVKP groups.
However, more compounds among these lipid classes were
statistically significant for the SCS group. As discussed above, the
elevated levels of these lipids may be related to I/R injury,
mitochondrial dysfunction, pro-inflammatory effect, and/or
oxidative stress. Significant reductions in SM levels on
POD3 were observed only for the SCS group. As previously
noted, prior findings have shown a connection between reduced
SM levels and acute graft rejection (Zhao et al., 2014).

Despite these promising results, this study has several
limitations. The first limitation is the small sample sizes.
However, since SPME enables multiple analyses over time, it is
possible to acquire a large number of samples without requiring
more animals. Another limitation was that the obtained results were
not compared with routinely assessed clinical parameters; as such,
the analysis was not as comprehensive as it might have otherwise
been. A final limitation of this study design is the relatively short
follow-up period of 3 days post-transplantation. Unfortunately, this
interval was necessary, as the porcine experimental setup makes it
difficult to investigate over a longer follow-up period of months, or
even years.

5 Conclusion

SPME chemical biopsy followed by LC-MS/MS analysis enables
the minimally invasive and repeated sampling of the same tissue. As
such, this method was successfully applied to track alterations in a
graft throughout the entire transplantation procedure, and to
compare kidney lipidomic profiles during storage with different
preservation methods. As a result, we observed that the preservation
temperature has a more significant impact on the lipidomic profile
of the kidney than the preservation method’s mechanical
characteristics. Higher levels of CARs, PCs, ether-linked PCs,
ether-linked PEs, PIs, TGs, most LPC and LPE, and longer-chain
PEs were observed in the hypothermic preservation group, which
may be related to I/R injury, mitochondrial dysfunction, pro-
inflammatory effect, and oxidative stress. Hence, the obtained
results suggest that the use of NEVKP can have a beneficial effect
on graft function.
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In terms of time, cost, and reproducibility of clinical laboratory tests, a mass
spectrometric clinical blood metabogram (CBM) enables the investigation of
the blood metabolome. Metabogram’s components provide clinically relevant
information by describing related groups of blood metabolites connected
to humoral regulation, the metabolism of lipids, carbohydrates and amines,
lipid intake into the organism, and liver function. For further development
of the CBM approach, the ability of CBM to detect metabolic changes in
the blood in the early stages of Parkinson’s disease (PD) was studied in this
work. In a case-control study (n = 56), CBM enabled the detection of the
signature in blood metabolites related to 1–2.5 clinical stages of PD, according
to the modified Hoehn and Yahr scale, which is formed by alterations in
eicosanoids, phospholipids and, presumably, in the butadione metabolism. The
CBM component-based diagnostic accuracy reached 77%, with a specificity of
71% and sensitivity of 82%. The research results extend the range of disorders for
which CBM is applicable and offer new opportunities for revealing PD-specific
metabolic alterations and diagnosing early-stage PD.

KEYWORDS

metabolomics, clinical blood metabogram, Parkinson’s disease, diagnostics, mass
spectrometry, blood plasma, clinical metabolomics, personalized metabolomics

1 Introduction

Parkinson’s disease (PD), which usually affects elderly people, is the second most
prevalent neurodegenerative condition of the central nervous system. Due to the aging
population, the incidence of PD has substantially grown. Since the first description of
PD by James Parkinson in 1817 (Parkinson, 2002), the exact mechanism causing this
disease is still unknown. Hallmarked dopaminergic neurons that are destroyed in the
substantia nigra and the formation of Lewy bodies that are largely made of fibrillar α-
synuclein are pathological characteristics of PD (Tansey and Goldberg, 2010). Genetic
studies of familial PD have identified mutations in individual genes in monogenic
PD. In particular, mutations leading to the development of PD are localized in the
genes encoding α-synuclein, dardarin, vacuolar protein sorting-associated protein 35,
parkin ligase, DJ1 deglycase, and acid β-glucosidase (Ross, 2013; Deng et al., 2018).
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There are evidences that oxidative damage and mitochondrial
dysfunction lead to a cascade of events and ultimately contribute
to the degeneration of dopaminergic neurons (Rani and Mondal,
2020). Other studies demonstrated that apoptosis plays a substantial
role in neurological disorders (Tompkins et al., 1997). Recent studies
have linked astrogliosis to the development of PD (Heo et al., 2020).

The neuroinflammatory theory appears to be the most plausible
of the potential causes of PD (Tansey and Goldberg, 2010;
Gelders et al., 2018).The inflammatory process, which is a protective
mechanism against various types of damage, when prolonged,
enhances the progression of neurodegeneration (Snyder et al.,
2017). A role of neuroinflammation in the pathology of PD
was demonstrated in a large number of studies, indicating that
neuroinflammatory processes may play a causative role in the
development of PD (Salama et al., 2020).

Several other factors causing PD, such as reduced Parkin
activity, altered metabolism, aberrant epigenetics, exposure to
toxins, telomere shortening, or protein misfolding, were reported in
a number of studies (Le et al., 2013; Scheffold et al., 2016;Wen et al.,
2016; Rokad et al., 2017; Meng et al., 2020). According to some
studies, PD can be classified as a prion-like disease (Olanow and
Brundin, 2013).

Due to the still unclear etiology and pathogenesis of PD, the
identification of biomarkers for its diagnosis is challenging and has
not been successful yet (Chen-Plotkin et al., 2018). In this situation,
the omics technologies, which enable measuring the diversity of
a biologic system’s molecules in a single-run analysis (e.g., DNA
sequencing in genomics, protein identification technologies in
proteomics, and profiling of low-molecular-weight substances in
metabolomics), may be helpful (Omenn et al., 2012). Among the
omics sciences, metabolomics is the most promising for supplying
useful information for disease diagnostics because metabolites
form molecular phenotypes directly reflecting physiological and
pathological situations in organisms. Thus, in metabolomics
studies of blood, the diagnostic accuracy of diseases often
reaches 90%–95% (Trifonova et al., 2013). Such results stimulate
the introduction of metabolomics technologies in medicine for
the diagnosis of difficult-to-diagnose diseases, including PD, the
etiology and pathogenesis of which is often associated with low-
molecular substances.

A clinical blood metabogram (CBM), a new personalized
metabolomics approach that is a simplified single-subject (N-of-
1) metabolomics analysis, was recently introduced (Lokhov et al.,
2023b). Direct-infusion mass spectrometry (DIMS), principal
component analysis (PCA), and metabolite set enrichment analysis
(MSEA) were used to develop the CBM.Themetabogram avoids the
complexity of each N-of-1 metabolomics study and is characterized
by rapid execution, simple data processing, high reproducibility,
and uncomplicated result interpretation, which should make it
easier to apply CBM in the clinic in the laboratory-developed test
(LDT) format (Figure 1). An LDT is a specific kind of diagnostic
test that is created, produced, and utilized in a single laboratory
(Sharfstein, 2015; FDA., 2018; Genzen, 2019; Schreier et al., 2019)
that is commonly used to implement omics tests.

The blood metabolome groups that deal with humoral control,
lipid-carbohydrate and lipid-aminemetabolism, eicosanoids, amino
acids, lipid intake into the body, and liver function are presented
in the CBM that makes it clinically valuable. The main objective

of this study is to examine the metabogram’s clinical potential in
relation to revealing metabolic features and diagnosing early PD.
To do this, the blood metabolome of patients with PD 1–2.5 stages,
as measured by the modified Hoehn and Yahr scale, was examined
using the CBM.

2 Materials and methods

2.1 Blood samples

Samples of blood plasma used in this study were taken from
a previously published study, where study participants (n = 56)
were recruited at the Republican Clinical Diagnostic Centre of
Extrapyramidal Pathology and Botulinum Therapy (Kazan, Russia)
(Balashova et al., 2018). Briefly, study cohort included untreated
PD patients at 1–2.5 stages according to modified Hoehn and
Yahr scale (stage 1 – unilateral involvement only; stage 1.5 –
unilateral and axial involvement; stage 2 – bilateral involvement
without impairment of balance; stage 2.5 – mild bilateral disease
with recovery on pull test) (Goetz et al., 2004) and controls without
neurodegenerative diseases. The following exclusion criteria were
used for PD patients and control subjects: severe systemic disease,
stroke, brain surgery, Alzheimer’s disease or any other medical
history central nervous system disease, chronic renal failure,
systemic infections, malignancy, cardiac or hepatic dysfunction,
and autoimmune disease. Informed consent was obtained from
all subjects involved in the study. The study was conducted
in accordance with the Declaration of Helsinki, and approved
by the Institutional Ethics Committee of Koltzov Institute of
Developmental Biology of Russian Academy of Sciences (protocol
code 55 and date of approval 9 December 2021).

2.2 Mass spectrometry analysis of blood
samples

The same equipment and materials were used as in the
previously reported study (Balashova et al., 2018), including venous
blood sampling, sample preparation, mass spectrometer analysis,
mass spectra processing, and mass list processing (alignment,
standardization, and normalizing).

Blood samples were taken from the vein before the morning
meal. Samples (3 mL) were placed into glass tubes containing
K2EDTA (BD Vacutainer; Becton, Dickinson and Company,
Franklin Lakes, NJ, United States) and centrifuged within 15 min of
blood collection at 1,600 × g and room temperature. The
resultant blood plasma was subdivided into aliquots that were
pipetted into plastic tubes. These tubes were marked, transported
in special thermocontainers, frozen, and then stored at −80°C
until analysis. The analyzed samples were subjected to one
freeze/thaw cycle.

For plasma deproteinization, aliquots (10 µL) were mixed with
10 µL water (LiChrosolv; Merck KGaA, Darmstadt, Germany)
and 80 µL methanol (Fluka, Munich, Germany) and incubated
at room temperature. After 15 min, samples were centrifuged at
13,000 × g (MiniSpin plus centrifuge; Eppendorf AG, Hamburg,
Germany) for 10 min. Deproteinized supernatants were then
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FIGURE 1
Workflow for producing a clinical blood metabogram. Sampled blood, after sample preparation in order to separate the metabolome fraction, is
subjected to direct-infusion mass spectrometry (DIMS). The resulting mass peaks are aligned with the predefined sets of mass spectrometric peaks
corresponding to the components of the metabogram (predesigned template of personal metabogram). Mass peak intensities are converted into
Z-scores and averaged to obtain metabogram component values showing the state (normal, upregulated, or downregulated) of the blood
metabolome (i.e., clinically relevant information). Adapted from (Lokhov et al., 2023b).

transferred to clean plastic Eppendorf tubes, and fifty volumes
of methanol containing 0.1% formic acid (Fluka) were added
to each tube. The resulting solutions were subjected to mass
spectrometry analysis.

Sampleswere analyzedwith amaXis hybrid quadrupole time-of-
flight mass spectrometer (Bruker Daltonics, Billerica, MA, United
States) equipped with an electrospray ionization (ESI) source. The
mass spectrometer was set up to prioritize the detection of ions with
a mass-to-charge ratio (m/z) ranging from 50 to 1,000 and a mass
accuracy of 1–2 parts per million (ppm). Spectra were recorded
in the positive ion charge detection mode. Samples were injected
into the ESI source using a glass syringe (Hamilton Bonaduz AG,
Bonaduz, Switzerland) connected to a syringe injection pump (KD
Scientific, Holliston, MA, United States). The flow rate of samples
to the ionization source was 180 μL/h, and samples were injected in
a randomized order (e.g., control samples were run between case
samples). Mass spectra were obtained using DataAnalysis version
3.4 (Bruker Daltonics) to summarize 1-min signals. Ion metabolite
masses were determined from the mass spectrum peaks obtained
using the DataAnalysis program. All peaks above noise level (signal
to noise ratio >1) were selected, and the metabolite ion masses
were pooled and processed using Matlab program (version R2019a;
MathWorks, Natick, MA, United States). For the recalibration
of all the peak m/z values, the internal standard losartan (m/z
423.169) was used.

Standardization of mass peak intensities was performed as
described previously (Lokhov et al., 2020) by dividing the intensity
by the standardization value, which was calculated for each peak
separately as follows: the 50 Da range (which started 25 Da before
and ended 25 Da after the m/z of the mass peak) was selected; all
peaks inside the range were sorted in descending order according
to their intensities; the intensity of the 150th peak was selected as
the standardization value. Standardized intensities improved further
analysis due to the correction of ion suppression of peak intensities
(Lokhov et al., 2020). Standardized mass lists were normalized by
applying the normalize function (which brings the sum of the
intensities of the peaks in the spectrum to 1) of the Matlab program.

The alignment of the m/z values of the mass peaks between different
mass spectra was performed as described previously (Lokhov et al.,
2011). The alignment algorithm used was previously specially
developed and tested for the high-resolution mass spectra of blood
metabolites obtained by DIMS and implemented as an iterative
process based on the detection of correlation of mass spectrometry
peak patterns.

2.3 Design of metabogram template for
personal metabograms

The details of the metabogram construction using a reference
cohort of healthy subjects are described in a previous study
(Lokhov et al., 2023b). Briefly, DIMS was used to analyze blood
plasma samples from 48 healthy people (reference cohort) to
develop the metabogram template (Figure 1). The lists of mass
peaks that were produced after mass spectra processing (alignment,
standardization, and normalization) were analyzed using principal
component analysis (PCA). The metabogram components were
formed by the mass peaks corresponding to the highest positive or
lowest negative coefficients (loadings) of the first seven principal
components. The resulting sets of m/z values of mass peaks are
presented in Supplementary Table S1. 70% of blood metabolome
variance is explained by these sets of mass peaks, which were used in
this study as a template to quickly produce personal metabograms.
The composition of metabogram components (Figure 2) was
determined by identifying themetabolite classes with which they are
enriched. For this,MSEAwas used (Xia andWishart, 2010). Clinical
blood tests (n = 71) were also used to determine the biological
significance of the metabogram components (Lokhov et al., 2023b).
Each metabogram component has two Z-score scales reflecting
its measure, named the “positive” and “negative” parts, because
the principal components involved in the development of the
metabogram have both positive and negative coefficients (loadings).
In short, the original variables that comprise the principal
components are linear combinations of their coefficients. The
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FIGURE 2
Composition of the clinical blood metabogram components. The
composition of the metabogram components was measured by
determining with which classes of metabolites they are enriched.
Enrichment reliability expressed in p-values is presented in a
previously published paper (Lokhov et al., 2023b).

structure of the data may be seen in the coefficients of each principal
component. Larger positive or negative values indicate variables
that contribute more to the component. M/z values corresponding
to the highest and lowest coefficients of the first seven principal
components—referred to the “positive” and “negative” parts of the
metabogram components—were used to construct CBM reflecting
the underlying data of the blood metabolome. In total, it amounted
to about 5% each for the “positive” and “negative” parts of the
detected peaks. The Z-score is a common way of representing data
on a unitless scale and is the raw score minus the population
mean, divided by the population standard deviation. With a normal
distribution, the Z-score is connected to the p-values; for example,
1.64 corresponds to p = 0.05 (one-tailed), which is thought to be
the cutoff for statistical significance and enables the detection of the
sample’s deviation from the population. The metabogram’s Z-scores
from −1.64 to +1.64 are considered to be in the normal range; up-
and downregulation are represented by higher and lower Z-score
values, respectively.

The components of the metabogram are formed by the
functionally related metabolites of the blood involved in humoral
regulation (component 1, called “regulatory”), lipid -carbohydrate
metabolism (component 2), phospholypolysis (component 3,
called “phospholipolytic”), lipid-amine metabolism (component
4), oxidized fatty acids (component 5, called “eicosanoid”), lipid
intake into the organism (component 6, called “alimentary”),
and liver function (component 7, called “hepatic”), thereby
providing clinically relevant information. It should be noted that
the identity of obtaining a CBM (sampling, sample processing,
mass spectrometry, CBM design, and composition of metabogram
components as presented in Supplementary Table S1), established in

the first article that introduced the concept of CBM (Lokhov et al.,
2023b) and further tested in subsequent studies, allows the
obtained data to compare and relate the results obtained
to the characteristics of the prototype of the same CBM-
based LDT test.

2.4 Personal clinical blood metabograms

The study cohort (see Section 2.1), which included control
individuals and patients with early-stage PD, was used to obtain
personal CBMs. After standardization and normalization, the
produced mass lists were aligned with the m/z values of the
metabogram template (i.e., with 7 m/z sets corresponding to seven
metabogram components; see Section 2.3). To obtain Z-scores of
the metabogram components, the mass peak intensities belonging
to the same metabogram component were converted into Z-scores
and averaged (Lokhov et al., 2023b).

2.5 Cluster analysis

A cluster analysis was performed to give an overview of the
metabograms of patients with the early clinical stage of PD. To do
this, the pdist function (Matlab) was used to determine the Euclidian
distances between the Z-scores of the metabograms’ components.
The linkage function created an agglomerative hierarchical cluster
tree by calculating the distance between clusters using the
“ward” algorithm. The dendrogram function was used to plot the
dendrogram.

2.6 Diagnostic parameters

To assess the diagnostic potential of the metabogram for
early clinical stage PD, the following diagnostic parameters
were evaluated: sensitivity—the percentage of correctly identified
positive results (the deviation is correctly assigned to metabogram
component with Z-score out of normal range, i.e., Z-score < −1.64
or >1.64); specificity—the percentage of correctly identified negative
results (the deviation from normal range is correctly not assigned
to metabogram component with Z-score in normal range); and
accuracy—the percentage of correctly identified positive and
negative results.

The ROC curve was built by the perfcurve function (Matlab).
The function also returned sensitivity and specificity values for
diagnostics depending on the selected threshold Z-score value
separating cases from controls and the optimal Z-score value for the
highest diagnostic accuracy.

2.7 CBM signature of Parkinson’s disease

Considering the cluster analysis data and using the metabogram
components that exhibit the greatest diagnostic power, a PD
signature was formed. To confirm the inter-disease specificity of
the PD signature, the ROC curves were built to separate control
and patients with type 2 diabetes mellitus and obesity from control.
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TABLE 1 Study cohort characteristics.

Characteristics Values

Control
subjects

Subjects with
PD

Number 28 28

Age (years; mean ± s.d.
(range))

62.8 ± 8.7 (45–77) 62.6 ± 8.6 (37–77)

Gender (males/females) 14/14 14/14

PD stages (1/1.5/2/2.5)a — 6/6/12/4

aPD, stages are according to modified Hoehn and Yahr scale (Goetz et al., 2004).

Metabogram data for these subjects was taken from previous studies
conducted on CBM research (Lokhov et al., 2023c; Lokhov et al.,
2024). In the first case, the PD signature was directly applied
to the metabogram data of diabetic patients. In the second
case, the difference in the signature of obesity and PD, such
as downregulation in the positive part of the first component
of CBM at obesity, was additionally taken into consideration.
Other differences between signatures were not considered
since the absolute unspecificity of the PD signature for obesity
was achieved.

3 Results

3.1 Studied subjects

Equally sized cohorts of patients and control subjects were
obtained, aligned by gender and age, allowing for case-control
comparison. Table 1 presents the clinical characteristics of
the cohorts. The individual characteristics of the subjects are
presented in Supplementary Table S2.

3.2 Metabogram data

Mass spectrometry analysis, as the first analytical step of the
CBM production (Figure 1), generated typical mass spectra of
the low-molecular-weight fraction of blood plasma samples. On
average, ∼9.7 thousand peaks were detected in the spectrum, which
corresponds to the number of mass peaks in spectra used to design
CBM (Lokhov et al., 2023b) and in other CBM-related studies
(Lokhov et al., 2023a; 2023c; Lokhov et al., 2024). Aligned and
standardized mass lists are presented in Supplementary Table S3.
These mass spectrometry data were used to obtain personal
metabograms for all subjects participating in the study
(Figure 3).

Figure 3 demonstrates that the components of the metabogram
of PD patients deviate more frequently than those of controls,
as evidenced by the frequencies of these deviations (Figure 4).
Metabolites related to the negative components 3 and 5 and
the positive component 4 are downregulated most frequently
(Figure 4).

3.3 Statistical data and diagnostic
parameters

The t-test results demonstrating the significance of the difference
in the metabogram components in the case-control comparison are
presented in Table 2. The difference for the negative component
5 is statistically significant (p-value 0.005), which indicates that
PD-specific changes in metabogram can be attributed to the
downregulation of the eicosanoids (Figure 2).

To assess the diagnostic capabilities of the CBM, generally used
diagnostic parameters were calculated. Table 3 displays sensitivity,
specificity, and accuracy calculated based on the divergence of
metabogram’s components from the normal range. The data in the
table show the metabogram’s negative component 5 demonstrates
the most diagnostic power for detecting the early clinical stage of
PD with an accuracy of 62.5% (sensitivity of 32.1%, specificity of
92.9%) when a Z-score of −1.64 (corresponds to p = 0.05) is used
to separate cases from controls. The lower diagnostic capability was
demonstrated by the positive part of component 4 and the negative
part of component 3, with diagnostic accuracy of 55.3% and 57.1%,
respectively.

The diagnostic potential of these components of the CBM
was also assessed by building an ROC curve to determine
the optimal threshold for separating cases from controls that
provides the best diagnostic parameters. Figure 5A demonstrates
that the accuracy of diagnostics was increased for the above-
mentioned metabogram components to 76.8%, 67.9%, and 64.3%.
This result confirms the diagnostic power of the CBM by a generally
accepted method and shows that the Z-scores of the metabogram
components can be further processed to improve diagnostic
parameters.

In addition to the fact that individual components of the
metabogram are associated with PD, and some of them even have
diagnostic power, the combinations formed by these components
of the metabogram are also an important diagnostic feature—a
signature of the disease. To identify such signatures, the patterns
formed by deviating metabogram components were identified
by cluster analysis (Figure 6). Clusters associated with stages of
PD development were not revealed. One cluster, which can be
seen as typical for PD, was created by various combinations
of the most often deviating metabogram components (see
cluster 2 on Figure 6). Therefore, it may be claimed that for a
significant part of patients with early-stage PD, the CBM will
show a PD-specific signature reflecting disease-associatedmetabolic
alterations.

To confirm the inter-disease specificity of the PD signature,
the ROC curves were built and compared with the ROC curves
separating control from patients with type 2 diabetes mellitus
and obesity (Figure 5B). The PD signature showed high sensitivity
to PD at low specificity, while for other diseases the AUC was 0.49
and 0.5, which confirmed the inter-disease specificity of the PD
signature. Therefore, if a PD signature is detected, early-stage PD
is likely to be suspected. However, the absence of the PD signature
does not exclude the underlying pathological condition. Perhaps the
signature has not yet been formed at an early stage of disease in
many patients, or it reflects only the dominant form of metabolic
alterations in PD.
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FIGURE 3
Metabogram data for control subjects and subjects with early-stage PD. Each row corresponds to the Z-scores of the metabogram components for an
individual (components 1 to 7 for the “positive” and “negative” parts). Z-score is a measure of the metabogram components (from −1.64 to +1.64 is the
normal range; up- and downregulation correspond to higher and lower Z-score values, respectively). Background color coding: red indicates
upregulation in the corresponding metabogram component; yellow indicates downregulation in the corresponding metabogram component.

4 Discussion

Thebasicmethods for diagnosing PD, a progressive degenerative
condition of the central nervous system, are a medical history
and a neurological examination (Jankovic, 2008). While effective
treatment for PD depends on an early diagnosis (Gelb et al.,
1999), a clinical diagnosis cannot be made until there is a
large loss of dopaminergic neurons (Gibb and Lees, 1988).
Moreover, the cost of the imaging of dopamine (Dopa) uptake

efficiency diagnostic test based on positron emission tomography
(PET) is high. As a result, a novel diagnostic laboratory test
is needed. Biomarker discovery for such tests is hampered by
PD’s ambiguous pathophysiology and complex character, and the
use of panoramic techniques, as suggested, is more promising in
this situation. Unfortunately, because of the consistency needed
for clinical test registration, the clinical use of such ‘panoramic’
procedures, to which metabolomic analysis is related, is quite
difficult. LDT usage gets around this problem. LDTs are defined
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FIGURE 4
The frequency of deviations in the blood metabogram components for early-stage PD. The metabogram component deviates from the norm if the
Z-score of the metabogram component is below −1.64 (indicating downregulation of the metabolites related to the metabogram component) or
above 1.64 (indicating upregulation of the metabolites related to the metabogram component).

TABLE 2 Statistical significance of the deviation of the metabogram
components in early PD (1–2.5 stages) from the control.

Metabogram Component t-test (p-valuea)

Positive 1 0.783

2 0.939

3 0.424

4 0.082

5 0.639

6 0.129

7 0.193

Negative 1 0.46

2 0.499

3 0.124

4 0.184

5 0.005a

6 0.913

7 0.760

All 0.180

ap-value of statistically significant deviation from control.

by the Food and Drug Administration (United States) as tests that
are created, produced, and used in the same laboratory (FDA,
2018). Therefore, the execution of metabolomics analysis in
LDT format is sufficiently streamlined due to putting protocol
development and standardization tasks under the purview of a
single laboratory.

Although metabolomics, which measures the groups of
metabolites that make up the metabolome, has been around for
more than 20 years and the technologies it uses are nearly perfect,
its application in medicine, even as LDT, is quite limited. Main
cause of this is the preciseness of measurements, which allows for
the precise measurement of numerous metabolites in a single run.
Widely used in metabolomics, mass spectrometry techniques are
typically capable of detecting hundreds of metabolites, which is
essential for gathering biochemical data (Viant et al., 2017). Despite
the use of cutting-edge mass spectrometry-based metabolomics
technologies, the vast majority of the sample’s metabolites remain
unknown (de Jong et al., 2017). Typically, only highly abundant and
well-separated metabolites are identified. This is due to the difficulty
of producing a clear mass spectrometric image of low-abundance
metabolites, which constitute the majority of any metabolome.
This means that the complexity of metabolomic measurements
restricts the use of metabolomics in LDT format (Nalbantoglu,
2019; Lichtenberg et al., 2021; Lokhov et al., 2021).

The concept of the metabogram—a simplified single-subject
metabolomics study—was developed to address this issue. The
metabogram technique eliminates metabolite identification step
(Lokhov et al., 2023b). Only groups of related metabolites are
processed in the metabogram for this reason, and the use of MSEA
(Xia and Wishart, 2010) quickly determines the enrichment of these
groups with metabolite classes. As a result, group analysis takes
the place of the challenging identification of individual metabolites.
Additionally, data repeatability is improved by averaging metabolite
data (peak intensities) within groups. Formetabogram components,
the coefficient of variation can be as low as 1.8% (Lokhov et al.,
2023b), which is much lower than what is often found for individual
metabolites (Crews et al., 2009). In order to validate the clinical
utility of CBM for PDdiagnosis, peoplewith early PDwere evaluated
using CBM in this study.

According to the data obtained, it can be argued that, in terms of
the frequency of occurrence and the joint appearance, PD-specific
changes can be attributed to the downregulation of metabolites
related to the eicosanoid component (negative part of component
5), the phospholipolytic component (negative part of component
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TABLE 3 Diagnostic parameters of the metabogram components for the detection of early-stage PD.

Metabogram component Diagnostic parameters (%)

Sensitivity Specificity Accuracy

Upregulation of the metabolites (Z-score >1.64 for the metabogram components)

Positive parts of metabogram components

1 3.6 92.9 48.2

2 3.6 92.9 48.2

3 3.6 96.4 50.0

4 0 92.9 46.4

5 10.7 92.9 51.8

6 0 100.0 50.0

7 10.7 92.9 51.8

All (1–7) 4.6 94.4 49.5

Negative parts of metabogram components

1 21.4 92.9 57.1

2 0 92.9 46.4

3 0 92.9 46.4

4 7.1 92.9 50.0

5 0 96.4 48.2

6 10.7 92.9 51.8

7 0 92.9 46.4

All (1–7) 5.7 93.4 49.5

Downregulation of the metabolites (Z-score < -1.64 for the metabogram components)

Positive parts of metabogram components

1 0 96.4 48.2

2 3.6 92.9 48.2

3 7.1 96.4 51.8

4 14.3 96.4 55.3

5 3.6 96.4 50.0

6 10.7 96.4 53.6

7 0 96.4 48.2

All (1–7) 5.6 95.9 50.8

Negative parts of metabogram components

1 0 100.0 50.0

2 0 100.0 50.0

(Continued on the following page)
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TABLE 3 (Continued) Diagnostic parameters of the metabogram components for the detection of early-stage PD.

Metabogram component Diagnostic parameters (%)

Sensitivity Specificity Accuracy

3 17.9 96.4 57.1

4 0 100.0 50.0

5a 32.1 92.9 62.5

6 10.7 96.4 53.6

7 0 92.9 46.4

All (1–7) 8.9 96.9 52.8

aMetabograms component demonstrating the best diagnostic performance.

FIGURE 5
ROC curves based on the Z-score of the clinical blood metabogram (CBM) components for the diagnosis of Parkinson’s disease (PD). (A) ROC curves
for the three metabogram components, which consist of the PD-specific signature: the negative parts of components 3 and 5, and the positive part of
component 4. (B) ROC curve for the PD-specific signature, which consists of three metabogram components. Z-score −1.64 is used to distinguish
between PD cases and controls. The PD signature was applied to patients with obesity and type 2 diabetes mellitus to show its inter-disease specificity.

3), and the positive part of component 4 (called the “phospholipid-
amine” because of the co-directed changes in phospholipids and
amino acids described by its negative part).

The most frequent deviation from the norm was revealed in
the eicosanoid component of the metabogram (Figure 4). This
deviation in patients with early-stage PD occurred 4.5 times more
often than in the control group. A distinctive feature of this
component of the metabogram is its enrichment with eicosanoids
such as prostaglandins and leukotrienes. The close involvement
of various eicosanoids in the development of PD can be read
in the review by Chiurchiù V. et al. (2022). A variety of studies
using both different biomaterials for research and the diversity of
eicosanoids themselves led to the observation of multidirectional
changes in their concentrations in PD.However, it can be argued that
a group of eicosanoids in the blood decreases with PD (Zhang et al.,
2021; Chistyakov et al., 2023) and even some eicosanoids exhibit

neuroprotective effects (Rajan et al., 2020). Perhaps this group
of eicosanoids is responsible for the decreased Z-score of this
component of the metabogram.

The association of blood phospholipids with PD is an established
fact and was already proposed for diagnostic purposes (Li et al.,
2015). Oxidative stress is a significant factor in the onset and course
of PD. Important elements of cellular membranes, phospholipids
are essential for preserving the integrity and functionality of cells.
Patients with PD have much higher lipid peroxidation products
in their brains, which may be a connection between membrane
damage and changes in phospholipid levels. However, it is possible
that the detected changes in the phospholipolytic component may
be due to a change in the concentration of phospholipids or may
be associated with the activity of phospholipases. Previously, it was
found that there is a link between phospholipases and PD (Mendez-
Gomez et al., 2018; Wu et al., 2021). Thus, phosphatidic acid, a
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FIGURE 6
Cluster analysis of blood metabograms of PD patients involved in the study. Each row corresponds to the metabogram components for an individual
(components 1 to 7 for the “positive ” and “negative ” parts). Color coding: red indicates upregulation in the corresponding metabogram component;
yellow indicates downregulation in the corresponding metabogram component. The metabograms with no deviations (❶ ) in components and
metabograms considered PD-specific (❷ ) are selected.

product of phospholipase PLD2 activity, is a second messenger in
many cellular pathways and appears to be key to PLD2-induced
neurodegeneration. The fact that α-synuclein is a regulator of PLD2
activity suggests that regulation of PLD2 activity may be important
in the progression of PD.

Regarding downregulation reflected by the positive component
4, metabolites associated with it were not identified during the CBM
design (Lokhov et al., 2023b).The list ofmolecularweights forwhich
potential candidates exist was sparse and included several quasi-ions
to which several elemental compositions corresponded (C2H2O4,
С4Н6О3, С4Н6О3, С5Н6О5) (Lokhov et al., 2024). The elemental
composition ofC2H2O4 in themetabolite database corresponds only
to oxalic acids, a degradation product of vitamin C, a deficiency
of which in the body is associated with the development of PD
(Brown, 2017). For the elemental formula C4H6O3, among the
candidates are metabolites related to the butanoate metabolism
pathway, such as acetoacetic acid (ketone body) and succinic acid
semialdehyde. For C5H6O5, there is no alternative to oxoglutaric

acid, which also belongs to butanoate metabolism. Interestingly,
ketone bodies are associatedwith the development of PD, attributing
neuroprotective properties to them (Maalouf et al., 2009).Moreover,
the butadione metabolism pathway includes the formation of
gamma-aminobutyric acid (GABA), and the connection between
its level decrease and PD is well-known (Błaszczyk, 2016). Since
the metabolites of this metabogram component were not reliably
identified either according to metabolomics standards or during the
design of a metabogram, the connection of this component with the
butanoate metabolism pathway is hypothetical.

Based on the results obtained, several types of metabograms
can be distinguished in early PD (Figure 6). A metabogram
without abnormalities, a metabogram with various non-systematic
abnormalities that can be attributed to an individual’s disease course,
or an individual health condition defined by other diseases, and a
metabogram that can be attributed to a PD-specific metabotype.
The last one manifests in the blood level of eicosanoids and
is often associated with changes in the phospholipolytic and
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FIGURE 7
An example of the clinical blood metabogram. The percent of blood metabolome variance that the metabogram component explains is indicated by
the superscript “Var.” The metabogram components are measured by the Z-score value, whose normal range is from −1.64 to 1.64. Higher and lower
Z-scores are related to up- and downregulation of the blood metabolites corresponding to the metabogram component. The metabogram
components most often deviated at PD are highlighted by background color. (Lokhov et al., 2023c).

phospholipid-amine components. Figure 7 shows a metabogram in
a simple format, showing the names of the components, the blood
metabolome variance explained by each component, and the Z-
scores of the components. The figure also provides a PD-specific
signature – the components that contribute to the diagnosis of
PD and can be potentially used to monitor the level of metabolic
alterations during PD development and treatment. The inability to
diagnose PD, as well as to monitor its course and the outcome of
treatment in patients who do not have a PD-specificmetabotype can
be attributed to the limitations of CBM.

As said in the introduction, it's critical to remember that PD
has a diverse pathogenesis involving a range of small molecular
compounds. The specified metabolite composition of CBM
components may cause some PD-specific metabolic alterations in
the blood are undetected by CBM. Such alterations either do not
have a significant effect on the main groups of blood metabolites
reflected in CBM or refer to metabolites assigned to the remaining
30% of the variance of the blood metabolome not covered by CBM.
However, modifying the CBM for a specific disease to increase
its capabilities is beyond the scope of this work, which consists
of testing a previously developed CBM design. The peculiarity of
this approach is visible when comparing the results obtained with
a previously conducted classical metabolomic study to search for
biomarkers or a multimarker diagnostic signature of PD. In contrast
to CBM, an AUC of 0.91 was achieved to diagnose PD in this single
disease-focused study (Balashova et al., 2018). Contrariwise to such
single-disease studies, the same CBM design applied to multiple
diseases is more consistent with omics tests that identify changes at
a significant portion of the metabolomic level, offering diagnostic
capabilities for a variety of diseases.

From the described metabolic alterations, an additional
feature of the PD signature can be suggested. The neuroprotective
eicosanoids, whose reduction is reflected in the signature, not
only inhibit neuroinflammation but also suppress oxidative
stress (Tassoni et al., 2008). The change in the phospholipolytic
component, as above indicated, can be caused by peroxidase
oxidation and activation of phospholipase, which is recognized as an

integral component of the oxidant stress response system (Adibhatla
and Hatcher, 2008). The change in the metabolism of butadione led
to the downregulation of ketone bodieswith antioxidative properties
(Kolb et al., 2021). Thus, the ketone body β-hydroxybutyrate
is a direct antioxidant for hydroxyl radicals, an inhibitor of
mitochondrial reactive oxygen species (ROS) production, and
promotes the transcriptional activity of antioxidant defenses (Rojas-
Morales et al., 2020). It can be assumed that the PD signature not
only reflects the role of oxidative stress in PD development but also
may indicate the risk of developing PD through the reflection of a
reduced level of antioxidant activity in the organism. However, the
confirmation of this assumption requires additional research.

The specificity of the identified signature to PD is also confirmed
by its difference from previously published signatures of obesity and
type 2 diabetesmellitus widespread in the population (Lokhov et al.,
2023c; Lokhov et al., 2024). Moreover, when interpreting a PD-
specific signature, the influence of the gut microbiota on CBM
can be taken into consideration, the link to which was also
described (Lokhov et al., 2023a).

The results of this study should also be assessed in the light
of atypical parkinsonisms, the differential diagnosis of which
from PD remains challenging. Although accurate diagnosis in the
early stages of the disease plays an important role in prognosis
and treatment strategy, distinguishing PD from, for example,
parkinsonian-type multiple system atrophy (MSA-P) due to the
similarity of symptoms can be difficult (Wenning et al., 1997;
Goetz et al., 2004). The existence of the different clusters formed
by metabograms in Figure 6 may be caused by MSA-P or other
atypical parkinsonisms (progressive supranuclear palsy, corticobasal
degeneration, and dementia with Lewy bodies). However, due to
the rarity of their occurrence and the small cohort used, such a
connection cannot be identified in this study, and this hypothetical
statement rather serves as the basis for further research. Further
studies in larger cohorts that include different parkinsonisms
in sufficient numbers to obtain statistically significant data will
demonstrate the potential of CBM in the differential diagnosis of PD
and other parkinsonisms.
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As for the clinical implications of the results of this work, an
interpretation of the CBM can now be made for PD patients. This
makes it possible to accurately analyze the metabolic changes in
such patients and the dysfunctions of the body caused by these
changes, relating or separating them from those specific to PD.
Considering the pilot nature of the study, the feasibility of predicting
the course of PD, assessing the effectiveness of treatment, and
differentiating PD from atypical parkinsonism will become possible
after additional research.

5 Conclusion

The measurement of the metabolome for clinical use is eagerly
awaited and shows great promise. The metabolome, as its name
suggests, is a level of organization of biological systems that is
directly related to the global biochemical phenotype. One such
attempt is the CBM, which, as demonstrated in previous studies,
possesses the performance characteristics of a clinical test, and
provides data that is clinically relevant. In this work, CBM was
used to diagnose early PD, a condition that is very challenging to
diagnose by laboratory testing, and its efficacy was verified. CBM
allowed revealing a PD-specific metabotype, the measure of which
not only provides diagnostic information but also opens up new
opportunities to monitor PD progression and evaluate response to
PD treatment.
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Introduction: Gestational diabetes mellitus (GDM) is a global health concern
with significant short and long-term complications for both mother and baby.
Early prediction of GDM, particularly late-onset, is crucial for implementing
timely interventions to mitigate adverse outcomes. In this study, we conducted
a comprehensivemetabolomic analysis to explore potential biomarkers for early
GDM prediction.

Methods: Plasma samples were collected during the first trimester from
60 women: 20 with early-onset GDM, 20 with late-onset GDM, and
20 with normal glucose tolerance. Using advanced analytical techniques,
including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and
gas chromatography-mass spectrometry (GC-MS), we profiled over 150 lipid
species and central carbon metabolism intermediates.

Results: Significant metabolic alterations were observed in both early- and
late-onset GDM groups compared to healthy controls, with a specific focus
on glycerolipids, fatty acids, and glucose metabolism. Key findings revealed
a 4.0-fold increase in TG(44:0), TG(46:0), TG(46:1) with p-values <0.001 and
TG(46:2) with 4.7-fold increase and p-value <0.0001 as well as changes in
several phospholipids as PC(38:3), PC(40:4) with 1.4-fold increase, p < 0.001
and PE(34:1), PE(34:2) and PE(36:2) with 1.5-fold change, p < 0.001 in late-
onset GDM.

Discussion: Observed lipid changes highlight disruptions in energy metabolism
and inflammatory pathways. It is suggested that lipid profiles with distinct fatty
acid chain lengths and degrees of unsaturation can serve as early biomarkers of
GDM risk. These findings underline the importance of integrating metabolomic
insights with clinical data to develop predictive models for GDM. Such models
could enable early risk stratification, allowing for timely dietary, lifestyle, or
medical interventions aimed at optimizing glucose regulation and preventing
complications such as preeclampsia, macrosomia, and neonatal metabolic
disorders. By focusing on metabolic disruptions evident in the first trimester,
this approach addresses a critical window for improving maternal and fetal
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outcomes. Our study demonstrates the value of metabolomics in understanding
the metabolic perturbations associated with GDM. Future research is needed
to validate these biomarkers in larger cohorts and assess their integration into
clinical workflows for personalized pregnancy care.

KEYWORDS

gestational diabetes mellitus, pregnancy complications, biomarkers, metabolomics,
metabolism, mass spectrometry, metabolic phenotyping, diabetes prediction

Introduction

Gestational diabetes mellitus (GDM) defined as hyperglycemia
first recognised in pregnancy (World Health Organization, 1999)
is a complex condition and a growing health issue worldwide.
This definition includes undiagnosed pre-pregnancy hyperglycemia
and glucose intolerance with first onset during pregnancy, being
one of the most commonly diagnosed pregnancy complications.
According to a recent report by the International Diabetes
Federation (IDF) Atlas, gestational diabetes mellitus affects 2%
to as much as 40% of pregnancies worldwide, depending on
the diagnostic and screening criteria, which vary and remain
controversial. These discrepancies complicate the comparison and
interpretation of research findings (IDF Diabetes Atlas, 2021).
Recently, there has been a shift towards adopting the International
Association of Diabetes and Pregnancy Study Groups (IADPSG)
criteria (IDF Diabetes Atlas, 2021), which has led to an increase
in the reported incidence of GDM (IDF Diabetes Atlas, 2021;
Saeedi et al., 2021). GDM contributes to several short- and long-
term health consequences both for the mother (e.g., cesarean
section, preeclampsia, metabolic syndrome, cardiovascular disease)
(Damm, 2009; Song et al., 2018; Kramer et al., 2019; Yang and
Wu, 2022) and baby (e.g., macrosomia, neonatal hypoglycemia,
metabolic syndrome, cardiovascular disease, diabetes) (Bianco and
Josefson, 2019; Meek, 2023; Rodolaki et al., 2023; American
Diabetes Association Professional Practice Committee, 2024).
Therefore, identifying any glucose impairment, especially in early
pregnancy, can improve clinical outcomes (Sweeting et al., 2022).
It has been demonstrated that patients with gestational diabetes
discovered in early pregnancy represent a higher-risk subgroup
in terms of associated pregnancy complications (Bartha et al.,
2000; Bartha et al., 2003). Bartha et al. were among the first
to suggest the hypothesis that this group is mainly represented
by type 2 pregestational diabetes and to a lesser extent actual
pregnancy-induced glucose intolerance (Bartha et al., 2003). Key
epidemiological factors, including rising obesity rates, advanced
maternal rage and increased instances of undiagnosed pre-
pregnancy diabetes, identified during pregnancy are critical for
identifyingwomen at risk forGDM(AmericanDiabetes Association
Professional Practice Committee, 2024). With the global GDM
concern, it becomes crucial to raise the efforts for early detection
of glucose intolerance in pregnancy through studies focusing on the
development of new predictive models for improved and accurate
GDM diagnosis.

In such a premise, metabolomics offers excellent research
solutions for elucidating biochemical changes in human health
and disease. The global untargeted metabolomics complements

information derived from genomics, transcriptomics and
proteomics, supporting a system “omics” approach that might
impact our ability to understand pathological conditions including
pregnancy complications. Remarkable, disease-specific metabolic
signatures can be captured with the potential to drive new
developments in clinical biomarkers.

Our study aimed to look for differences at the metabolome level
in the first trimester of pregnancy to identify metabolic alterations
that could indicate impaired glucose tolerance associated with early
and late-onset GDM. Our clinical and research interests focus
on giving new insights and directions for the future development
of novel prognostic strategies for improved GDM recognition.
The graphic representation of the study design is illustrated in
Figure 1.

Materials and methods

Study population

This is a longitudinal prospective cohort study from the
Obstetrics and Gynecology department, La Paz University Hospital
in Madrid, carried out between December 2017 and June 2020.
The protocol of the study was approved by the local Ethics and
Research Committee from La Paz University Hospital in Madrid,
Spain. All eligible pregnant women without known diabetes, who
were older than 16 years of age and signed the informed consent
in their first trimester were invited to participate in the study.
Exclusion criteria were maternal age under 16 years, gestational age
>14 weeks, multiple pregnancies, known foetal defect at the time
of recruitment and pre-gestational diagnosis of Diabetes Mellitus.
Women with other medical co-morbidities were excluded from the
study. The recruitment took place in the Obstetrical clinics of La
Paz University Hospital and the control of the GDM pregnancies
was carried out in the Diabetes in Pregnancy unit. The healthy
control group had pregnancies followed up in Routine Obstetrical
clinics. For each participant enrolled a record of maternal and
gestational age at the time of recruitment, maternal characteristics
including height, weight, body mass index (BMI), family history
of diabetes, obstetrical record including previous history of GDM,
past medical history, glycemic test results and type of GDM
management including insulin or diet treatment, the course of
gestation (presence or absence of further pregnancy complications),
way of delivery, gestational age at birth, newborn`s weight, Apgar
score and umbilical artery pH at birth was taken. The diagnosis
of gestational diabetes mellitus was made based on a two-step
approach: screening by 1-h 50 g glucose challenge test (GCT) and
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FIGURE 1
The graphic representation of the study design from the selection of the studied cohort to the metabolomics analysis.

diagnostic 3-h oral glucose tolerance test (OGTT)with 100 g glucose
load for the GCT positive (glycaemia >140 mg/dL). The diagnostic
criteria of Carpenter and Coustan (1982) with two or more glucose
plasma levels higher than fasting glucose of 95 mg/dL, 1-h of
180 mg/dL, 2-h of 155 mg/dL, and 3-h glycaemia of 140 mg/dL were
applied for this study.

La Paz University Hospital has a strategy of first-trimester
screening for gestational diabetes mellitus in high-risk patients. The
high-risk group for GDM is determined by the presence of any of
the following risk factors: maternal age older than 35 years; maternal
pre-pregnancy BMI >30 kg/m2; GDM in previous pregnancy;
newborn from previous pregnancy with birth weight >4,500 g; first-
grade family history of diabetes mellitus. The high-risk patients
in this study were screened with CGT (O`Sullivan test) in their
first trimester according to the local protocol. The screen-positive
patients had a 3-h OGTT with 100 g glucose. The patients with
positive results according to CC criteria were included as early-onset
or first-trimester GDM. Patients who screened positive but who had

a negative diagnostic test in the early group had a 3-h OGTT at
24–28 weeks instead of GCT. Thus the overall prevalence of GDM
in the cohort of patients was 5%.

More than 700 women matched with the inclusion criteria were
examined and the control group of healthy pregnant normal glucose
tolerance women (C, n = 20), early-onset first-trimester GDM (I,
n = 20) and late-onset, first-trimester asymptomatic women that
developed GDM in second-trimester (II, n = 20) were selected to
perform metabolomics analysis. The groups were initially matched
for age, pre-gestational BMI and parity. Venous fasting blood was
drawn from each eligible patient in the first trimester (≤14 weeks’
gestation) into EDTA-containing tubes. Samples were stored at
−80°C until analysis.

Chemicals and reagents

Methanol (MeOH) MS grade was obtained from Sigma
Aldrich (Steinheim, Germany). Acetonitrile (ACN) MS grade
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(Fluka Chromassol, Spain), pyridine (Carlo Erba Reagents SAS,
France), 2-propanol (PrOH) (Fischer, Austria), ammonia (NH3,
28%) and glacial acetic acid (AcAc) were supplied by VWR
Chemicals (Pennsylvania, United States). Ethyl acetate (EtAc) and
formic acid (FA, 99.8%) were obtained from Honeywell (New
Jersey, United States). Heptane MS grade, C18:0 Methyl stearate,
N, O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS) obtained from Sigma Aldrich. A
mixture of alkanes standards (Supelco, United States), a mixture
of methyl acids and fatty acids (FAME C8–C22), O-methoxamine,
4-nitrobenzoic acid and tricosane were obtained from Sigma
Aldrich. Ultra-pure water was generated with a Milli-Q Plus 185
water purification system (Millipore S.A., Molsheim, France)).
SPLASH®Lipidomix®Mass Spec Standard, an internal standard
mixture containing 18:1 (d7) LPE, 15:0–18:1 (d7) PC, 15:0–18:1 (d7)
PE, 15:0–18:1 (d7)-15:0 TG, 18:1 (d7) Chol Ester, 18:1 (d7) LPC,
18:1 (d9) SM, 18:1 (d7) DG, 15:0–18:1 (d7)-PA, 15:0–18:1 (d7)-PG,
15:0–18:1 (d7)-PI, 15:0–18:1 (d7)-PS, 18:1 (d7)-MG and cholesterol
(d7) was obtained from Avanti®Polar Lipids, Inc. (Alabama, United
States), and was 20 times diluted (25 µL/500 µL) in MeOH before
analysis. The standard working solution was stored at −20°C.

Sample preparation

The plasma samples were randomized, thawed on ice
and thoroughly vortex-mixed. For lipid extraction 10 µL of
the internal standard mixture (SPLASH®Lipidomix®Mass
Spec Standard) was added to 10 µL of each plasma sample.
Protein precipitation and lipid extraction were performed
with 800 µL solvent mixture (EtAc:EtOH, 2:1), followed by
centrifugation (13,700 rpm, 10 min, 15°C). 250 μL of the
supernatant was transferred to chromatographic vials for LC-
MS/MS analysis (Konjevod et al., 2022).

Samples for GC-MS analysis were prepared as previously
described (Rey-Stolle et al., 2021). Briefly, proteins were
precipitated by mixing 1 volume of plasma with 3 volumes
of cold acetonitrile containing 4-nitrobenzoic acid (IS)
(1:3), followed by methoximation with O-methoxyamine
hydrochloride (15 mg/mL) in pyridine, and silylation with
N,O bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS). 100 μL of heptane containing
20 ppm of tricosane (IS) was added to each vial and vortex-mixed
before GC-MS analysis.

Blank and QC samples were prepared for each analytical
platform following specified quality assurance criteria (Dudzik et al.,
2018). A pool of plasma (QC) was prepared by mixing an equal
volume of all experimental samples, following the same metabolite
extraction protocols. All experimental samples were randomized
and QCs were injected at the beginning, every 5 samples, and at the
end of the batch. The blank samples were analyzed at the beginning
and the end of each analytical run.

LC-MS/MS analysis

The lipidomics analysis was performed on a 1260 Infinity
high-pressure liquid chromatography system equipped with a

degasser, a binary pump, and an autosampler, interfaced to a
6470 triple-quadrupole mass spectrometer (Agilent Technologies,
CA, United States) (Konjevod et al., 2022). 5 μL of the extracted
plasma samples were injected into a Gemini®C6-phenyl column
(3.5 µm, 2.1 mm × 15 cm, Phenomenex®), maintained at 60°C.
The mobile phase consisting of 1 mmol/L ammonium acetate
(NH4Ac) in 30:70 MeOH:H2O (phase A) and MeOH (phase
B), both containing 0.1% formic acid (v/v), with a flow rate of
0.6 mL/min and the gradient started at 0% B, increasing to 100%
B in 1 min, then held until 12 min. Starting conditions were
reached at 13 min, and 5 min of re-equilibration was applied. The
electrospray ionization (ESI) was operated in positive ion mode
and the following parameters: gas temperature: 250°C, gas flow
rate: 7 L/min, nebulizer pressure: 30 psi, sheath gas temperature:
350°C, sheath gas flow rate: 12 L/min, capillary voltage: 4000 V,
and nozzle voltage: 500 V. MS/MS data were acquired in dynamic
multiple reaction monitoring modes (dMRM) by using the most
abundant precursor and product ions of each compound. The list
of 156 targeted compounds with the acquisition parameters is
presented in Supplementary Table S1.

GC/Q-TOF-MS analysis

The analysis was performed with a GC system (7890B,
Agilent Technologies) coupled to an accurate mass Q-TOF mass
spectrometer (7250, Agilent Technologies). The derivatized samples
(1 μL) were injected (autosampler 7693, Agilent Technologies)
in split mode (ratio 1:12) into a deactivated glass-wool split
liner (Restek 20782) in a GC column DB5-MS (30 m length,
0.25 mm internal diameter, 0.25 μm film 95% dimethyl/5%
diphenylpolysiloxane) coupled to a pre-column (10 mJ & W
integrated with Agilent 122-5532G). The injector port was held at
250°C, and the helium carrier gas flow rate was set at 0.917 mL/min.
The temperature gradient was programmed as follows: the initial
oven temperature was set to 60°C (held for 1 min), with a ramping
rate of 10°C/min up to 325°C. The system was allowed to cool
down for 10 min before the next injection. The total analysis time
was 37.5 min per sample. The detector transfer line, the filament
source and the quadrupole temperature were set to 280, 200°C
and 150°C, respectively. MS detection was performed in electron
impact (EI) mode at −70 eV. The mass spectrometer was operated
in scan mode over a mass range of 40–600 m/z at a rate of
10 scan/s (Rey-Stolle et al., 2021).

Fatty Acid Methyl Esters (FAME) mix was analyzed at the
beginning of the analytical batch. This procedure was performed
to establish retention index markers across chromatograms,
ensuring accurate alignment and identification of metabolites using
Fiehn’s library.

Data processing

The acquired LC-MS data were reprocessed with the
MassHunter Qualitative Analysis and MassHunter Quantitative
Analysis software (Ver. B10.00, Agilent Technologies). The
MRM signal runs as well as pressure curves were visually
inspected to confirm homogeneity and reproducibility across
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the chromatograms. In the next step peaks of the targeted
compounds were integrated to determine the peak area size for
each analyzed metabolite. The representative MRM chromatogram
is presented in Supplementary Figure S1.

Spectral deconvolution (GC-MS) and annotation of metabolites
comparing the mass spectrum obtained with those of a compound
library (Fiehn GC-MS Metabolomics Retention Time Locked
(RTL) library and the NIST (National Institute of Standards and
Technology) mass spectra library (Ver. 2014) was performed
with Unknown Analysis tool (Ver. B.08.00. Agilent Technologies).
Alignment of drift (by retention time and mass) and data
filtering were performed with the Mass Profiler Professional
software (Ver. B.12.1, Agilent Technologies). Assignment of
the target ion and the qualifiers, entire batch pre-processing
and manual inspection of the acquired data including peak
area and RT integration was performed with MassHunter
Quantitative Analysis (Ver. B.10.00, Agilent Technologies). The
dataset was interrogated to remove system contaminants. The
data were evaluated for signal drift and corrected by applying
a quality control-based support vector regression algorithm
(QC-SVRC) (Kuligowski et al., 2015).

The metrics of the analysis quality were performed by the
application of the unsupervised Principal Component Analysis
(PCA) for QC sample prediction. Shewhart control charts were
used to plot acquired signals versus the sample acquisition and
the performance of internal standards was evaluated to overview
the analytical performance. The precision of the metabolite
measurements was calculated for QCs and expressed as relative
standard deviation (RSD), with a cut-off value of 20% and 30% for
LC-MS andGC-MSdata, respectively.The assessment of data quality
is presented in Supplementary Figure S2.

Statistical analysis

Statistical analyses for metabolomics data were performed
using Matlab R2015 (Mathworks) and GraphPad Prism 7
(GraphPad Software Inc., San Diego, CA). Statistical significance
was assessed by ANOVA or the Kruskal-Wallis tests according
to the normality of the variable distribution, with a post hoc
test for multiple comparisons. Differences were considered
statistically significant at a value of p < 0.05 (∗p < 0.05,∗∗p
< 0.01,∗∗∗p < 0.001). Multivariate calculations and plots were
performed in SIMCA-P + 16.0 (Umetrics, Umea, Sweden). A
combination of VIP-p (corr) (correlation coefficient combined
with VIP, Variable Influence on the Projection) based on the
OPLS-DA model was applied for specified interpretations with
the threshold value for variable selection set to VIP >1.0
and p (corr) > 0.4. MetaboAnalyst tool for metabolomic data
analysis, visualization, and functional interpretation was used
to test associations between variables and hierarchical heat map
clustering (Chong et al., 2019). For clinical data evaluation, a
Student’s t-test was applied. Stepwise forward logistic binary
multivariate regression was used to account for co-correlations
among clinical variables. The significance level was previously set at
95% (p < 0.05).

Results

Clinical data

The basic characteristics of the study population are
presented in Table 1. In the first-trimester GDM compared with
the control group, the mean maternal age, pre-gestational BMI,
pregnancy BMI and parity were higher and there was a high
proportion of caesarean delivery. Additionally, the GDM-related
groups (I and II) delivered earlier, but their neonates’ birth weights
did not vary. Glucose levels were significantly different in both
GDM-related groups with a p-value <0.05. In the logistic binary
stepwise forward regression model, the R2 value of 0.12 (p =
0.02) refers to the overall explanatory power of the model. When
pregestational BMI was included as an independent variable,
other parameters such as parity (p = 0.19), gestational BMI (p
= 0.45), and maternal age (p = 0.06) lost statistical significance,
indicating that their associations with maternal diabetes were
mediated by their correlation with BMI. This analysis underscores
pregestational BMI as the primary risk factor for maternal diabetes
in our cohort.

Metabolomics analysis

The lipidomics analysis considered 156 lipid species belonging
to the class of glycerophospholipids (68 compounds, including
26 lysoglycerophospholipids, 31 glycerophosphocholines, 11
glycerophosphoethanolamines), sphingolipids (29 compounds,
including 4 ceramides and 25 sphingomyelins), cholesteryl
esters (11 compounds) and glycerolipids (48 compounds,
including 8 diacylglycerols and 40 triacylglycerols). GC-MS-based
metabolomics analysis identified a total of 49 compounds mostly
belonging to the class of organic acids, fatty acids, carbohydrates,
amino acids and derivatives. Statistical analysis revealed significant
metabolic profile differences associated with glucose intolerance
in both in early-onset and late-onset GDM. Following univariate
and multivariate statistical analysis 70 metabolites were significantly
increased or decreased (p-value <0.05 or p (corr) > 0.4 and VIP
>1.0), in the specified comparison (C vs. I, control group compared
to early-onset GDM; C vs. II, control group compared to late-onset
GDM; I vs. II, the differences between early-onset and late-onset
GDM).The statistical significance andmetabolic changes associated
with underlying diabetes are detailed in Tables 2, 3 and Figures 3, 4.
Hexose levels were significantly elevated in both early-onset (p
< 0.001) and late-onset GDM (p < 0.01). Several lipid species
exhibited marked dysregulation, with the most notable changes
observed in diacylglycerols such asDG (32:0), DG (34:0), DG (34:1),
DG (36:1), and DG (36:2), as well as triacylglycerols, including
TG (52:5), TG (56:5), TG (60:8), and TG (60:10), which showed
1.5- to 2.4-fold increases (p < 0.001). In late-onset GDM, our
analysis revealed a 4.0-fold increase in TG (44:0), TG (46:0), and
TG (46:1) (p < 0.001), while TG (46:2) displayed a striking 4.7-
fold increase (p < 0.0001). Additionally, significant changes were
observed in glycerophospholipids, with PC (38:3) and PC (40:4)
showing a 1.4-fold increase (p < 0.001), and PE (34:1), PE (34:2),
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TABLE 1 The basal clinical characteristics of the cohort involved in this study.

Variable Control C Early-onset
GDM (I)

Late-onset
GDM (II)

p-value C vs. I p-value C vs. II p-value I vs. II

Maternal age (years) 33.5 ± 6.16 38.8 ± 5.37 34.9 ± 4.29 0.006 ns 0.016

Parity (number) 0.6 ± 0.88 1.35 ± 1.3 0.8 ± 0.83 0.04 ns ns

Pre-gestational BMI
(kg/m2)

23.9 ± 4.25 29.8 ± 6.12 25.2 ± 6.15 0.001 ns 0.025

Pregnancy BMI
(kg/m2)

28.3 ± 3.46 33.9 ± 6.43 29 ± 5.60 0.002 ns 0.015

Weight gain (kg) 11.7 ± 4.96 10.4 ± 5.34 10.1 ± 3.85 ns ns ns

Fasting glucose 1st
trim (mg/dL)

75.8 ± 5.63 93.9 ± 13.74 82.7 ± 9.79 <0.001 0.01 0.006

Basal glucose 2nd
trim (mg/dL)

76 ± 5.15 94.3 ± 14.04 85.5 (7.32) 0.001 <0.0001 ns

1 h glucose 1st trim
(GCT) (mg/dL)

110.7 ± 20 184.3 (30.6) 149.5 (16.4) <0.0001 <0.0001 0.001

Gestational age at
delivery (weeks)

39.5 ± 1.49 38.3 ± 1.72 37.5 ± 3.04 0.032 0.013 ns

Cesarean delivery, n
(%)

1 ± 5.26 7 ± 35 4 ± 20 0.017 ns ns

Birth weight (kg) 3,161.5 ± 436.07 3,106 ± 758.46 2,830.2 ± 714.35 ns ns ns

Presented data are mean ± SD; Results were considered significant when p < 0.05.

and PE (36:2) exhibiting 1.5-fold increases (p < 0.001), specifically
in late-onset GDM.

Figure 2 represents a specific metabolic signature associated
with glucose disturbance during pregnancy. The constructed
heatmap revealed considerable differences between healthy
pregnant women (C) and those with early-onset GDM (I), what
is even more important these differences could be noticed between
control and late-onset GDM (II). It could be seen the diabetes-
affected groups (I and II) are clustered together, and the metabolite
levels significantly differ from the control (C). Additionally, the
PLS-DA VIP projection algorithm ranked 25 metabolites to retain
the most contrasting metabolic patterns (Figure 2). Among these,
several glycerolipids species, including diacylglycerols (DG) and
triacylglycerols (TG), belong to the group ofmetabolites particularly
associated with observed pregnancy glucose disturbances. As
depicted in Figure 3 and detailed in Table 3 all reported DG and
TG were highly elevated, in both GDM-associated groups (I and
II). Moreover, in most cases, those changes were also statistically
significant, indicating their possible predictive proprieties. The
glucose levels measured in GC-MSwere statistically elevated in both
GDM-related groups (Figure 4). Other compounds like organic
hydroxy acids and fatty acids, with prominent changes under
impaired glucosemetabolism, are depicted in Figure 4. Interestingly,
the Shared and Unique Structures (SUS) plot presented in Figure 5,
based on two OPLS models (C vs. I and C vs. II), further emphasizes
the shared and distinct metabolic alterations, capturing consistent

relationships among variables. Metabolites consistently upregulated
in both groups (I and II) included diacylglycerols (e.g., DG (32:0),
DG (34:0), DG (34:1), DG (36:1), DG (36:2), DG (36:3), DG (36:4),
DG (38:5)), triacylglycerols (e.g., TG (48:1), TG (48:2), TG (50:0),
TG (50:1), TG (50:2), TG (50:3), TG (50:4), TG (52:1), TG (52:2),
TG (52:3), TG (52:4), TG (52:5), TG (52:6), TG (54:1), TG (54:2),
TG (56:4), TG (56:5), TG (56:6), TG (56:7), TG (56:8), TG (58:10),
TG (60:8), TG (60:10)), as well as phosphatidylcholines (PC(36:4),
PC(38:4)), phosphatidylethanolamines (PE (38:4), PE (40:6)),
sphingomyelins (SM (d18:0/18:0)), cholesteryl ester (CE (18:3)),
and hexose. These metabolites are visually represented as red dots.
Conversely, metabolites consistently downregulated in those both
groups, represented as navy blue dots, included L-alanine, glycine, 2-
methylalanine, urea, 2-butyne-1-4-diol, L-5-oxoproline, asparagine,
N-methylguanine, and PC(34:2e). Elevated levels of saturated and
unsaturated fatty acids, including palmitic acid, palmitoleic acid,
linoleic acid, oleic acid, and stearic acid, along with hydroxy acids
such as 2-hydroxybutyric acid, 3-hydroxybutyric acid, and glycerol
(yellow), combined with decreased levels of PC (34:1e), PC (36:2),
PC (36:2e), PC (40:7), PC (40:8), SM (d18:1/21:0), phenylalanine,
and p-cresol (green), are distinctive features of early-onset GDM.
Metabolites uniquely upregulated in group II (late-onset GDM),
represented by orange dots, include PC (30:0), PC (38:3), PC (40:4),
PE (34:1), PE (34:2), PE (36:2), PE (36:3), PE (36:4), PE (38:6), CE
(16:1), CE (14:0), CE (16:2), TG (44:0), TG (46:0), TG (46:1), TG
(46:2), TG (48:0), TG (48:3), and TG (51:0). In contrast, creatinine,
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TABLE 2 The list of the metabolites found to be significant in GC-MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

2-Hydroxybutyric
acid

ns ns ns ns 0.6 1.2 ns ns 0.5 1.5 +26 +4 −17

3-Hydroxybutyric
acid

ns ns ns ns 0.5 1.6 ns ns 0.7 2.5 +51 −10 −41

Glycerol ns ns ns ns 0.6 1.5 ns ns 0.6 1.8 +16 +3 −11

Urea ns ns ns ns 0.6 1.6 0.7 2 ns ns −21 −15 +8

2-butyne-1,4-diol ns ns ns ns 0.6 1.5 0.7 1.9 ns ns −21 −16 +6

p-cresol ns ns ns ns 0.5 1.1 ns ns ns ns −26 −11 +22

L-Proline ns ns ns ns 0.5 1.1 0.7 1.6 ns ns −12 −11 +2

L-5-Oxoproline 2.20E-04 8.41E-05 2.05E-03 ns 0.6 1 ns ns ns ns −21 −16 +6

Creatinine 4.59E-02 ns 1.35E-02 ns ns ns 0.6 2.3 ns ns −29 −62 −47

Glycine 2.42E-02 1.08E-02 3.29E-02 ns 0.6 1.4 0.6 1.3 ns ns −26 −21 +6

Asparagine 1.14E-03 4.16E-04 6.26E-03 ns 0.5 1.4 0.6 2.1 ns ns −43 −33 +18

L-Tryptophan ns ns ns ns 0.5 1 0.5 1.2 ns ns −12 −13 −1

L-serine 2.32E-02 3.50E-02 8.00E-03 ns ns ns ns ns ns ns −11 −12 −1

L-Phenylalanine ns 4.01E-02 ns ns 0.7 1 ns ns ns ns −12 −9 +4

2-Methylalanine 2.88E-02 ns 8.55E-03 ns ns ns 0.6 1.4 ns ns −17 −28 −13

N-Methylguanine 2.46E-02 2.46E-02 ns ns 0.5 1.8 ns ns ns ns −71 −44 +97

Palmitoleic acid ns ns ns ns 0.7 2.1 ns ns 0.7 2.8 +11 −3 −12

Palmitic acid ns ns ns ns 0.7 1.5 ns ns 0.8 2.1 +19 +2 −15

Linoleic acid ns ns ns ns 0.7 1.8 ns ns 0.7 2.2 +26 −6 −25

Oleic acid ns ns ns ns 0.7 2 ns ns 0.8 2.9 +26 −3 −23

Stearic acid ns ns ns ns 0.6 1 ns ns 0.6 1.2 +10 +6 −4

Hexose 2.49E-03 8.35E-04 1.23E-02 ns 0.5 1.2 0.5 1.2 ns ns +43 +31 −8

Percentage of the changes in the specified comparison. The sign indicates the direction of change in the diabetes-associated groups: group I, early-onset GDM or group II, late-onset GDM.

shown as fuchsia, was downregulated and appears to be associated
with late-onset GDM.

Discussion

There is no doubt that gestational diabetes is a major
obstetrical clinical problem carrying a significant health burden
for both the mother and the child. Growing evidence suggests
that GDM imposes a considerable risk of developing type 2
diabetes mellitus (T2DM) postpartum among other conditions

(Khan et al., 2019). Therefore, early recognition of GDM opens
a window for better management of affected women and their
babies (Adam et al., 2023). In most cases, GDM is the result of
impaired glucose tolerance due to pancreatic β-cell dysfunction and
shares the pathophysiological mechanisms withmetabolic disorders
associated with insulin resistance as metabolic syndrome, obesity
or T2DM (Plows et al., 2018). Several risk factors contribute
to the development of gestational insulin resistance, including
placental, hormonal, genetic, and epigenetic variables, alongside
an increase in visceral adipose tissue, changes in gut microbiota,
and the coexistence of overweight or obesity (Kampmann et al.,
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TABLE 3 The list of the metabolites found to be significant in LC-MS/MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

PC (34:2e) ns ns ns ns 0.6 1.2 0.5 1.0 ns ns −22 −16 +7

PC (38:3) 9.90E-03 ns 7.80E-03 ns ns ns 0.5 1.2 ns ns +23 +39 +13

PC (40:4) 3.11E-02 ns 2.61E-02 ns ns ns 0.5 1.0 ns ns +16 +32 +14

PC (40:7) 3.35E-02 2.85E-02 ns ns 0.5 1.1 ns ns 0.4 1.0 −19 −9 +13

PC(40:8) 2.60E-02 2.34E-02 ns ns 0.5 1.0 ns ns ns ns −18 −12 +8

PE (34:1) 1.41E-02 ns 1.13E-02 ns ns ns 0.6 1.2 0.5 1.7 +20 +46 +22

PE (34:2) 3.50E-02 ns 2.98E-02 ns ns ns 0.5 1.2 0.4 1.8 +24 +46 +18

PE (36:2) 3.68E-02 ns 3.19E-02 ns ns ns 0.5 1.2 0.4 1.5 +20 +37 +14

PE (36:3) 3.47E-02 ns 4.15E-02 4.15E-02 ns ns ns ns 0.6 2.2 +1 +29 +27

PE (36:4) 8.20E-03 ns 9.40E-03 3.15E-02 ns ns 0.6 1.2 0.4 2.2 +10 +42 +29

PE (40:6) 2.49E-02 ns 2.05E-02 ns ns ns 0.5 1.2 ns ns +24 +46 +18

SM (d18:0/18:0) 4.00E-03 2.98E-02 3.70E-03 ns 0.4 1.1 0.7 1.2 ns ns +31 +45 +10

Cer (d18:1/22:0) 1.35E-02 3.96E-02 ns 1.62E-02 ns ns ns ns 0.4 2.6 +30 −8 −29

CE (16:1) 1.61E-02 3.73E-02 2.15E-02 ns ns ns 0.6 1.2 ns ns +40 +48 +6

CE (18:3) 2.42E-02 ns 2.09E-02 ns 0.4 1.1 0.6 1.2 ns ns +30 +43 +10

CE (16:2) 9.50E-03 ns 7.70E-03 ns ns ns 0.6 1.4 0.5 1.3 +34 +56 +16

DG (36:2) 1.80E-03 3.20E-03 3.20E-03 ns 0.7 1.7 0.7 1.4 ns ns +59 +60 +1

DG (32:0) 1.80E-03 6.70E-03 3.20E-03 ns 0.6 2.0 0.7 1.8 ns ns +112 +144 +15

DG (34:0) 2.00E-03 5.80E-03 4.20E-03 ns 0.6 1.7 0.7 1.6 ns ns +76 +91 +8

DG (34:1) 9.00E-04 2.70E-03 1.90E-03 ns 0.7 2.1 0.8 1.8 ns ns +97 +107 +5

DG (36:1) 4.00E-04 8.00E-04 8.00E-04 ns 0.7 1.9 0.7 1.6 ns ns +76 +74 −1

DG (36:3) 2.08E-02 2.74E-02 4.78E-02 ns 0.7 1.7 0.4 1.1 ns ns +50 +45 −3

DG (38:5) 2.50E-03 5.30E-03 5.30E-03 ns 0.8 2.0 0.6 1.5 ns ns +73 +78 +3

TG (44:0) 2.03E-02 ns 1.59E-02 ns ns ns 0.6 2.3 0.5 3.0 +109 +295 +89

TG (46:0) 1.19E-02 ns 1.01E-02 ns ns ns 0.6 2.3 ns ns +154 +298 +57

TG (46:1) 2.16E-02 ns 1.78E-02 ns ns ns 0.6 2.1 ns ns +189 +291 +35

TG (46:2) 4.80E-03 ns 3.40E-03 ns ns ns 0.7 2.4 ns ns +188 +371 +64

TG (48:0) 7.90E-03 3.14E-02 9.20E-03 ns ns ns 0.6 2.0 ns ns +120 +168 +22

TG (48:1) 3.30E-03 3.22E-02 2.90E-03 ns 0.4 1.9 0.7 2.2 ns ns +134 +214 +35

TG (48:2) 4.70E-03 5.35E-02 3.80E-03 ns 0.4 1.6 0.7 2.1 ns ns +111 +199 +42

(Continued on the following page)
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TABLE 3 (Continued) The list of the metabolites found to be significant in LC-MS/MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

TG (48:3) 4.92E-02 ns 4.35E-02 ns ns ns 0.6 1.7 ns ns +71 +140 +40

TG (50:0) 2.80E-03 1.37E-02 3.70E-03 ns 0.4 1.7 0.7 1.7 ns ns +82 +98 +9

TG (50:1) 1.12E-02 2.86E-02 1.50E-02 ns 0.5 1.7 0.7 1.7 ns ns +83 +101 +10

TG (50:2) 4.10E-03 2.35E-02 4.50E-03 ns 0.5 1.6 0.7 1.7 ns ns +82 +98 +9

TG (50:3) 6.50E-03 3.60E-02 6.40E-03 ns 0.6 1.5 0.6 1.6 ns ns +64 +88 +15

TG (51:0) 9.50E-03 6.25E-02 8.40E-03 ns ns ns 0.7 2.1 0.4 1.8 +79 +157 +43

TG (52:1) 7.00E-04 1.70E-03 1.70E-03 ns 0.6 1.9 0.8 1.7 ns ns +74 +78 +2

TG (52:2) 6.00E-03 8.60E-03 8.60E-03 ns 0.6 1.5 0.6 1.3 ns ns +54 +55 +1

TG (52:3) 1.30E-02 1.80E-02 1.80E-02 ns 0.6 1.3 0.5 1.0 ns ns +34 +33 −1

TG (52:5) 8.80E-03 1.48E-02 1.48E-02 ns 0.7 1.8 0.5 1.5 ns ns +46 +96 +34

TG (52:6) 8.90E-03 ns 6.80E-03 ns 0.5 1.6 0.6 2.0 ns ns +93 +154 +31

TG (54:1) 5.00E-03 1.40E-02 8.20E-03 ns 0.5 1.6 0.6 1.5 ns ns +64 +71 +4

TG (54:2) 1.03E-02 3.27E-02 1.25E-02 ns 0.5 1.3 0.6 1.3 ns ns +44 +55 +8

TG (56:4) 1.86E-02 ns 2.03E-02 ns 0.5 1.3 0.6 1.4 ns ns +38 +51 +9

TG (56:5) 1.10E-03 3.80E-03 2.00E-03 ns 0.7 1.8 0.7 1.5 ns ns +49 +56 +5

TG (56:6) 1.17E-02 1.44E-02 1.44E-02 ns 0.8 1.4 0.5 1.0 ns ns +32 +32 0

TG (60:10) 1.88E-02 2.40E-02 4.68E-02 ns 0.7 1.9 0.4 1.2 ns ns +79 +60 −11

TG (60:8) 1.80E-03 3.30E-03 3.30E-03 ns 0.8 2.5 0.6 1.9 ns ns +125 +142 +7

Percentage of the changes in the specified comparison. The sign indicates the direction of change in the diabetes-associated groups: group I, early-onset GDM or group II, late-onset GDM.

2019). Understanding the metabolic disturbances underlying GDM
holds promise for advancing our knowledge of its pathophysiology
and developing targeted interventions to mitigate its adverse
effects on maternal and fetal health. This insight is crucial for
identifying women at risk of metabolic complications, enabling
tailored prevention and personalized treatment strategies.

In our study, we look into the metabolic profile of pregnant
women in the first trimester of pregnancy. The value of our research
design was that we were able to select a group of asymptomatic
in the first trimester individuals who had GDM diagnosed in
later pregnancy (late-onset GDM). Our study offers a glimpse into
molecular mechanisms of disease and enables the identification
of compounds that could serve as novel players for early GDM
prediction.

Advanced maternal age is recognized as a contributing factor
to the development of gestational diabetes mellitus. Our study
population consists of controls and women who were diagnosed
with GDM in the first trimester (early onset) or a group diagnosed
with GDM in the second trimester (late onset). Since we initially
cross-matched the control group and the 2nd-trimester GDMgroup

for maternal age, a potential association between maternal age
and risk for GDM could only be looked for in the comparison
between first-trimester GDM group and controls on one hand
and 1st-trimester GDM and 2nd-trimester GDM on the other. We
found statistical differences in both aforementioned comparisons
that confirm the increased risk for GDM with maternal age. This
finding is in line with a comprehensive systemic review and meta-
analysis presented by Li et al. (2020) which involves the data on
127,275,067 participants and demonstrates a clear linear association
between maternal age and the risk for GDM. In our study group,
the parity was also a significantly different variable when controls
were compared to 1st-trimesterGDM.Thecontrol grouphad a lower
parity than the 1st-trimester GDM group.There were no statistically
significant differences between controls and 2nd-trimester GDM
or between 1st- and 2nd-trimester GDM. The literature review
shows little or no impact of parity on subsequent non-insulin
dependent diabetes mellitus (NIDDM) which would be the case
of the women with newly diagnosed or 1st-trimester GDM in our
group. It is known that most women with sufficient pancreatic β-
cell population tolerate well pregnancy-related insulin resistance.
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FIGURE 2
The heatmap and dendrogram show the metabolic differences and a clear cluster formation between control (C) and groups associated with diabetes
(I and II). Only metabolites which were significantly associated with diabetes are presented. Each coloured cell on the map corresponds to an average
of the relative metabolite abundance in the specified group (blue, the lowest; red the highest). The top 25 discriminative metabolites based on the
PLS-DA VIP projection are highlighted. Rows: metabolites; Columns: experimental groups (C, green; I, bright red, II dark red). Hierarchical clustering
based on Euclidean distances and Ward clustering algorithm.

However, according to Peters et al., previous GDM increases close to
threefold the risk of NIDDM (Peters et al., 1996) and our data on the
history of previous GDM in parous women is based on self-reported
information which could have a certain bias. The differences in
parity appear to align, to some extent, with variations in maternal
age and pre-gestational BMI, both of which are well-established risk
factors for GDM. A high pre-gestational BMI not only elevates the
risk of hypertensive disorders during pregnancy but also contributes
to GDM by exacerbating physiological pregnancy-induced insulin
resistance. As noted earlier, the control and second-trimester GDM

groups were matched for pre-gestational BMI. Thus, comparisons
between the first-trimester GDM group and the controls, as well
as between the first- and second-trimester GDM groups, revealed
statistically significant differences. Interestingly the median birth
weight in our study was not elevated and differences in the newborn
birth weight are neither significant between controls and GDM-
related groups (I and II). Therefore we could not associate high
triglyceride levels observed in our study, with increased newborn
birth weight, macrosomia or large for gestational age as was
concluded by other authors (Vrijkotte et al., 2011; Whyte et al.,

Frontiers in Molecular Biosciences 10 frontiersin.org120

https://doi.org/10.3389/fmolb.2024.1452312
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Dudzik et al. 10.3389/fmolb.2024.1452312

FIGURE 3
Scatter plots of the relative abundances for the group of glycerolipids representing observed changes between control (C) and diabetic groups (I,
early-onset GDM and II, late-onset GDM). mean ± SD; P-values∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

2013; Zhu et al., 2022). This could be associated with the sample
size and proper pregnancy management. Maternal lipid metabolism
undergoes significant adaptations during pregnancy to meet the
increased energy demands of the developing fetus and to ensure
proper fetal development (Soma-Pillay et al., 2016). There is no
doubt that we should still deepen our understanding of the complex
interplay between lipid metabolism and other pathophysiological
mechanisms, such as insulin resistance or placental dysfunction.
The rise in triglyceride levels is a result of increased synthesis
by the liver and reduced enzymatic activity of lipoprotein lipase,
leading to decreased catabolism of adipose tissue (Soma-Pillay et al.,
2016). Increased triglycerides were correlated with impaired glucose
metabolism in muscle tissue and inhibited insulin signalling
pathways, leading to insulin resistance (Yaribeygi et al., 2019).
Insulin promotes TG storage by driving the differentiation of pre-
adipocytes into mature adipocytes enhancing lipogenesis through
ADD-1/SREBP-1c which regulates genes for fatty acid synthesis and
lipogenesis in adipocytes and the liver facilitating glucose transport
for conversion into triglycerides and inhibiting lipolysis to prevent
triglyceride breakdown (Kahn and Flier, 2000; Yaribeygi et al., 2019).

Our findings in alterations in TG levels in the early stages of GDM-
affected pregnancies are in line with a vast literature that reported
the association between high TG during pregnancy and increased
risk of GDM (Li et al., 2014; Furse et al., 2019; Zhu et al., 2020).
Hou et al. in a case-control study of 100 GDM and 100 normal
glucose tolerance women defined the lipidomic signature in plasma
across pregnancy, and proposed new lipid biomarkers for GDM
prediction. The authors conclude that particularly diacylglycerols
and triacylglycerols were upregulated across three trimesters of
pregnancy, and demonstrated good performance in the prediction
of GDM in the first and the second trimesters (Hou et al., 2023).
Our data support those findings, making this evidence stronger.
Moreover, Hu et al. in a largemeta-analysis investigated the outcome
of 292 studies, comprising 97,880 pregnant women (28,232 GDM
and 69,648 controls) and also concluded that womenwithGDMhad
significantly higher TG levels that occurred in the first trimester and
persisted afterwards (Hu et al., 2021).

Several studies indicate that high levels of sphingolipids,
including ceramides and sphingosine-1-phosphate are correlated
with pregnancy complications including gestational diabetes
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FIGURE 4
Scatter plots of the relative abundances for selected metabolites representing observed changes between control (C) and diabetic groups (I,
early-onset GDM and II, late-onset GDM). The red asterisk indicates the significance according to multivariate analysis. mean ± SD; P-values∗p <
0.05,∗∗p < 0.01,∗∗∗p < 0.001.

FIGURE 5
The SUS plot is based on two OPLS models (C vs. I and C vs. II). The coordinates of each variable are their correlation coefficients to the predictive
components derived from each model. The position of the variables on the plot reflects their relationships to the responses of specified models. The
X-axis is the predictive component of early-onset GDM, and the Y-axis is the predictive component associated with late-onset GDM. Panel (A). SUS plot
for LC-MS/MS data. Panel (B). SUS plot for GC-MS data. Red dots–metabolites upregulated in both groups (I and II); Orange dots, represent metabolites
upregulated, specific for group II; Yellow dots, metabolites upregulated, specific for group I; Navy blue dots, metabolites downregulated in both groups
(I and II); fuchsia colour dot, downregulated in group II; green dots, metabolites downregulated in early-onset GDM women (I).

(Fakhr et al., 2021; Enthoven et al., 2023; Hou et al., 2023). Those
bioactive compounds have been implicated in the regulation of
insulin signalling pathways. Ceramides represent a major subclass
of sphingolipids that interfere with insulin signalling by inhibiting
Akt phosphorylation and promoting serine phosphorylation of

insulin receptor substrate-1 (IRS-1) (Kanety et al., 1996). Ceramide
triggers β-cell apoptosis by enhancing the permeability of the
mitochondrial membrane, leading to the activation of the intrinsic
apoptosis pathway that, significantly contributes to the pathogenesis
of diabetes (Galadari et al., 2013; Hammad and Lopes-Virella,
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2023). The results of our study are in line with the literature and
indicate elevated levels of Cer(d18:1/22:0) in the group of late-
onset GDM, whereas the level of SM(d18:0/18:0) increased in both
GDM-related groups.

We also found the relationship between plasma
levels of glycerophospholipids such as phosphatidycholines
and phosphatidylethanolamines and GDM. Dysregulated
glycerophospholipid metabolism has been linked to inflammation
which is recognized as a key feature of diabetes. Many of those
compounds can serve as precursors for pro-inflammatory lipid
mediators that can activate inflammatory signalling pathways and
promote the production of inflammatory cytokines, contributing
to insulin resistance. According to the literature disrupted
glycerophospholipidmetabolism is common inGDM (Dudzik et al.,
2014; Liu et al., 2016; Zhan et al., 2021), however, due to the diversity
of glycerophospholipids structures further research is needed to
elucidate the specific role in GDM molecular mechanisms.

Our data confirm the significance of fatty acids in the
pathophysiology ofGDMwhich is consistentwith our first data from
the study performed in GDM plasma from the second trimester
of pregnancy (Dudzik et al., 2014; Dudzik et al., 2017) and others
(Chen et al., 2010; Scholtens et al., 2014; Enquobahrie et al., 2015).
All reported fatty acids including saturated palmitic acid (C16:0),
stearic acid (C18:0) and unsaturated linoleic acid (ω-6, C18:2),
palmitoleic acid (ω-7, C16:1), oleic acid (ω-9, C18:1)were elevated in
the group of early-onset GDM, however, this trendwas not observed
in late-onset GDM. Several studies confirm that the circulation
of maternal free fatty acids (FFAs) plays an important role in
the pathophysiology of GDM due to their involvement in various
metabolic processes. Elevated levels of FFAs in pregnancy inhibit
total body glucose uptake and oxidation. Chronic exposure to high
levels of FFAs can impair pancreatic β-cell function leading to
reduced insulin secretion and insulin resistance (Sivan et al., 1998;
Sun et al., 2022). Meta-analysis and original data presented by Sun
et al. indicate that GDM women are characterized by a particular
circulating saturated FA profile with altered levels of palmitic acid
and lower levels of very-long-chain FA. The results demonstrated
that palmitic acid has a strong positive correlation with GDM both
in the early and second trimesters of pregnancy (Sun et al., 2022).
Other studies conducted by Ogundipe et al. have shown that GDM
has a unique fatty acid profile with elevated levels of omega 6 fatty
acids compared to omega 3 an abnormal pattern of sequential n-6
metabolism (Ogundipe et al., 2020).

Special attention should be also placed onhydroxy acids, namely,
2-hydroxybutyric acid (2-HB) and 3-hydroxybutyric acid (3-HB). Its
specific role in the pathological process that leads to GDM has not
been extensively studied so far however, there are several potential
mechanisms through which those compounds may contribute to
this condition. Gall et al. postulated that 2-HB, an organic acid
derived from 2-ketobutyric acid, could be an early indicator for both
insulin resistance (IR) and impaired glucose regulation (Gall et al.,
2010). Elevated 2-HB is strongly linked to impairment of β-cells
function and may reflect disruptions in metabolic pathways, such as
increased fatty acid oxidation, ketogenesis and oxidative stresswhich
are common features of insulin resistance state andGDM (Gall et al.,
2010; Sousa et al., 2021). Moreover, 2-HB has been implicated in
chronic low-grade inflammation which is a hallmark feature of
obesity and amajor risk factor for GDM (Sousa et al., 2021).The role

of the ketone body as 3-hydroxybutyric acid in the pathophysiology
of GDM remains an area of active investigation. High 3-HB levels
observed in GDM may reflect metabolic dysregulation including
increased lipolysis and ketogenesis, which contribute to alterations
in energy metabolism and glucose homeostasis. 3-HB is produced
during fatty acid oxidation and serves as an alternative energy
substrate (Qi et al., 2022).This compoundwas found to be associated
with GDM reported in many metabolomics studies (White et al.,
2017; Lu et al., 2021; McMichael et al., 2021; Sikorski et al., 2022).
What is more interesting, hydroxybutyric acid has been connected
with gut microbiota-derived metabolites showing significantly
higher levels in women with GDM (Singh et al., 2023; Ye et al.,
2023). Growing evidence suggests that ketone bodies may serve
as immunomodulators to attenuate pathological inflammation
(Qi et al., 2022). A very recent study by Neudorf et al. postulates
that it is plausible that 3-HB could mitigate inflammatory signalling
pathways implicated in diabetes (Neudorf et al., 2024). Considering
the potential of β-HB and the intriguing literature data we believe
this compound is worthy of particular attention. In our study, we
observed that higher levels of both 2-HB and 3-HB were associated
with early-onset GDM, although not significant in late-onset GDM.
The results are consistent with our first data where we identified a
panel of plasma metabolites implicated in GDM pathophysiology
(Dudzik et al., 2014; Dudzik et al., 2017; Burzynska-Pedziwiatr et al.,
2023), however, those studieswere performed on the plasma samples
from the second trimester, different cohort and diagnosis of GDM
were based on different criteria. Nevertheless, in both cases, the
observed changes were associated with glucose impairment and
diagnosed GDM.

It is worth mentioning that our study identified other
metabolites like p-cresol, 2-butyne-1,4-diol or tryptophan (Trp)
linked to the intestinal microbiota. There is limited evidence
linking those compounds to GDM, but their possible association
with inflammation suggests that they may play a role in the
molecular background of GDM. The essential amino acid
L-tryptophan is particularly important in pregnancy due to
the high demand for maternal protein synthesis and fetal
growth and development (Badawy, 2015). Our findings from
present and previous experiments show a reduced level of
tryptophan in GDM (Dudzik et al., 2014), which is in line
with other studies (Leitner et al., 2017; Özdemir et al., 2023).
This decrease may be attributed to increased degradation or
altered utilization of Trp in GDM. The recent systematic review
by van Zundert et al. indicates that decreased Trp levels in
maternal blood in the second and third trimester of pregnancy
was associated with several pregnancy complications including
gestational diabetes (van Zundert et al., 2022).

We found that changes observed in amino acid profile are not
entirely consistent across studies, most likely due to differences in
the trimesters of pregnancy at which the study was performed and
the criteria for GDM definition. In our study, glycine, serine and
proline levels were lower in the GDM group which is consistent
with findings reported in previous studies performed in the
first and the second trimester of pregnancy (Zhao et al., 2019;
Lu et al., 2021).Nevertheless, other studies report that first-trimester,
early-onset GDM was associated with higher concentrations of
glycine and proline compared to the control group (Razo-
Azamar et al., 2023).
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Our study point also an association between significant
depletion in creatinine levels and late-onset GDM. The results are
concordant with the other findings (Chen et al., 2023) and literature
describing a positive correlation between lower serum creatinine
and abnormal glucose metabolism (Harita et al., 2009; Bao et al.,
2018). Finally, our study confirmed high glucose levels observed
both in the early- and late-onset GDM group.

Conclusion

The metabolomics approach provides a powerful tool for
understanding the metabolic changes associated with gestational
diabetes mellitus (GDM). It offers a snapshot of the phenotypic state
at the time of sampling, allowing for hypothesis generation and
translational insights that can serve both researchers and clinicians
in better understanding disease mechanisms and enabling earlier
recognition of impaired glucose tolerance during pregnancy. Our
study indicates several molecules providing biomarker candidates,
especially for late-onset GDM prediction. Although several studies
have been performed so far, no metabolite-based prediction factor
for late-onset GDM exists, therefore, more effort is required
to elucidate the molecular landscape of GDM. Nevertheless, we
recognise some limitations in our study. The relatively small
sample size and single-centre design may limit the significance
of the findings. Expanding the study to larger, multi-centre
cohorts with greater ethnic and geographic diversity would
enhance the robustness of the identified metabolic patterns. Future
research should address the limitations of inter-individual variability
resulting from genetics, diet, and environmental factors.
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Glossary
AcAc Glacial Acetic Acid

ACN Acetonitrile

ADD1 Adipocyte Determination and Differentiation-

Dependent Factor 1

BSTFA N,O bis(trimethylsilyl)trifluoroacetamide

dMRM dynamic Multiple Reaction Monitoring Mode

EI Electron Impact

ESI Electrospray Ionization

EtAc Ethyl Acetate

FA Formic Acid

GC/Q-TOF-MS Gas Chromatography-Quadrupole-Time of Flight Mass

Spectrometry

IRS-1 Insulin Receptor Substrate-1

IR Insulin Resistance

IS Internal Standard

LC-MS/MS Liquid Chromatography-Tandem Mass Spectrometry

MeOH Methanol

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

NIDDM Non-Insulin Dependent Diabetes Mellitus

NIST National Institute of Standards and Technology

OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis

PCA Principal Component Analysis

PrOH 2-propanol

QC-SVRC Quality Control based Support Vector Regression

RSD Relative Standard Deviation

RT Retention Time

RTL Retention Time Locked

SREBP Sterol Regulatory Element Binding Protein

SUS Shared and Unique Structures Plot Analysis

TMCS 1% trimethylchlorosilane

VIP Variable Influence on the Projection
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