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A Statistically and Numerically
Efficient Independence Test Based on
Random Projections and Distance
Covariance
Cheng Huang and Xiaoming Huo*

Georgia Institute of Technology, Atlanta, GA, United States

Testing for independence plays a fundamental role in many statistical techniques. Among
the nonparametric approaches, the distance-based methods (such as the distance
correlation-based hypotheses testing for independence) have many advantages,
compared with many other alternatives. A known limitation of the distance-based
method is that its computational complexity can be high. In general, when the sample
size is n, the order of computational complexity of a distance-based method, which
typically requires computing of all pairwise distances, can beO(n2). Recent advances have
discovered that in the univariate cases, a fast method with O(n log n) computational
complexity and O(n) memory requirement exists. In this paper, we introduce a test of
independence method based on random projection and distance correlation, which
achieves nearly the same power as the state-of-the-art distance-based approach,
works in the multivariate cases, and enjoys the O(nK log n) computational complexity
and O( max{n, K}) memory requirement, where K is the number of random projections.
Note that saving is achieved when K < n/ log n. We name our method a Randomly
Projected Distance Covariance (RPDC). The statistical theoretical analysis takes
advantage of some techniques on the random projection which are rooted in
contemporary machine learning. Numerical experiments demonstrate the efficiency of
the proposed method, relative to numerous competitors.

Keywords: independence test, distance covariance, random projection, hypotheses test, multivariate hypothesis
test

1 INTRODUCTION

Test of independence is a fundamental problem in statistics, with many existing work including the
maximal information coefficient (MIC) [1], the copula based measures [2,3], the kernel based
criterion [4] and the distance correlation [5,6], which motivated our current work. Note that the
above works as well as ours focus on the testing for independence, which can be formulated as
statistical hypotheses testing problems. On the other hand, interesting developments (e.g., [7]) aim at
a more general framework for interpretable statistical dependence, which is not the goal of this paper.

Distance correlation proposed by [6] is an important method in the test of independence. The
direct implementation of distance correlation takes O(n2) time, where n is the sample size. The time
cost of distance correlation could be substantial when the sample size is just a few thousand. When
the random variables are univariate, there exist efficient numerical algorithms of time complexity
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O(n log n) [8]. However, for the multivariate random variables,
we have not found any efficient algorithms in existing papers after
an extensive literature survey.

Independence tests of multivariate random variables could have
a wide range of applications. In many problem settings, as
mentioned in [9], each experimental unit will be measured
multiple times, resulting in multivariate data. Researchers are
often interested in exploring potential relationships among
subsets of these measurements. For example, some
measurements may represent attributes of physical
characteristics while others represent attributes of psychological
characteristics. It may be of interest to determine whether there
exists a relationship between the physical and psychological
characteristics. A test of independence between pairs of vectors,
where the vectors may have different dimensions and scales,
becomes crucial. Moreover, the number of experimental units,
or equivalently, sample size, could be massive, which requires the
test to be computationally efficient. This work will meet the
demands for numerically efficient independence tests of
multivariate random variables.

The newly proposed test of independence between two
(potentially multivariate) random variables X and Y works as
follows. Firstly, both X and Y are randomly projected to one-
dimensional spaces. Then the fast computing method for distance
covariances between a pair of univariate random variables is
adopted to compute for a surrogate distance covariance. The
above two steps are repeated numerous times. The final estimate
of the distance covariance is the average of all aforementioned
surrogate distance covariances.

For numerical efficiency, we will show (in Theorem 3.1) that
the newly proposed algorithm enjoys the O(Kn log n)
computational complexity and O(max{n, K}) memory
requirement, where K is the number of random projections
and n is the sample size. On the statistical efficiency, we will
show (in Theorem 4.19) that the asymptotic power of the test of
independence by utilizing the newly proposed statistics is as
efficient as its original multivariate counterpart, which achieves
the state-of-the-art rates.

The rest of this paper is organized as follows. In Section 2, we
review the definition of distance covariance, its fast algorithm in
univariate cases, and related distance-based independence tests.
Section 3 gives the detailed algorithm for distance covariance of
random vectors and corresponding independence tests. In
Section 4, we present some theoretical properties on distance
covariance and the asymptotic distribution of the proposed
estimator. In Section 5, we conduct numerical examples to
compare our method against others in the existing literature.
Some discussions are presented in Section 6. We conclude in
Section 7. All technical proofs, as well as the formal
presentation of algorithms, are relegated to the appendix
when appropriate.

Throughout this paper, we adopt the following notations. We

denote cp � π(p+1)/2
Γ((p+1)/2) and cq � π(q+1)/2

Γ((q+1)/2) as two constants, where
Γ(·) denotes the Gamma function. We will also need the following

constants: Cp � c1cp−1
cp

�
�
π

√ Γ((p+1)/2)
Γ(p/2) and Cq � c1cq−1

cq
�

�
π

√ Γ((q+1)/2)
Γ(q/2) .

For any vector v, let v
t
denote its transpose.

2 REVIEW OF DISTANCE COVARIANCE:
DEFINITION, FAST ALGORITHM, AND
RELATED INDEPENDENCE TESTS
In this section, we review some related existing works. In
Section 2.1, we recall the concept of distance variances
and correlations, as well as some of their properties. In
Section 2.2, we discuss the estimators of distance
covariances and correlations, as well as their computation.
We present their applications in the test of independence in
Section 2.3.

2.1 Definition of Distance Covariances
Measuring and testing the dependency between two random
variables is a fundamental problem in statistics. The classical
Pearson’s correlation coefficient can be inaccurate and even
misleading when nonlinear dependency exists [6]. propose the
novel measure–distance correlation–which is exactly zero if and
only if two random variables are independent. A limitation is
that if the distance correlation is implemented based on its
original definition, the corresponding computational
complexity can be as high as O(n2), which is not desirable
when n is large.

We review the definition of the distance correlation in [6].
Let us consider two random variables X ∈ Rp,
Y ∈ Rq, p≥ 1, q≥ 1. Let the complex-valued functions ϕX,Y(·),
ϕX(·), and ϕY(·) be the characteristic functions of the joint
density of X and Y, the density of X, and the density of Y,
respectively. For any function ϕ, we denote |ϕ|2 � ϕ�ϕ, where �ϕ is
the conjugate of ϕ; in words, |ϕ| is the magnitude of ϕ at a
particular point. For vectors, let us use |·| to denote the
Euclidean norm. In [6], the definition of distance covariance
between random variables X and Y is

V2(X,Y) � ∫
Rp+q

|ϕX,Y(t, s) − ϕX(t)ϕY(s)|2
cpcq|t|p+1|s|q+1 dtds, (2.1)

where two constants cp and cq have been defined at the end of
Section 1. The distance correlation is defined as

R2(X,Y) � V2(X,Y)��������
V2(X,X)√ ��������

V2(Y,Y)√ .

The following property has been established in the
aforementioned paper.

Theorem 2.1. Suppose X ∈ Rp, p≥ 1 and Y ∈ Rq, q≥ 1 are two
random variables, the following statements are equivalent:

1) X is independent of Y;
2) ϕX,Y(t, s) � ϕX(t)ϕY(s), for any t ∈ Rp and s ∈ Rq;
3) V2(X,Y) � 0;
4) R2(X,Y) � 0.

Given sample (X1, Y1), . . ., (Xn, Yn), we can estimate the
distance covariance by replacing the population characteristic
function with the sample characteristic function: for
i � ���−1√

, t ∈ Rp, s ∈ Rq, we define
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ϕ̂X(t) �
1
n
∑n
j�1

eiX
t
jt,

ϕ̂Y(s) �
1
n
∑n
j�1

eiY
t
js, and

ϕ̂X,Y(t, s) �
1
n
∑n
j�1

eiX
t
jt+iYt

js.

Consequently one can have the following estimator for V2(X,Y):

V2
n(X,Y) � ∫

Rp+q

|ϕ̂X,Y(t, s) − ϕ̂X(t)ϕ̂Y(s)|2
cpcq|t|p+1|s|q+1 dt · ds. (2.2)

Note that the above formula is convenient to define a quantity,
however, is not convenient for computation, due to the
integration on the right-hand side. In the literature, other
estimates have been introduced and will be presented in the
following.

2.2 Fast Algorithm in the Univariate Cases
The paper [10] gives an equivalent definition for the distance
covariance between random variables X and Y:

V2(X,Y) � E[d(X,X′)d(Y,Y′)]
� E[|X −X′‖Y − Y′|] − 2E[|X −X′‖Y − Y″|]

+ E[|X −X′|]E[|Y − Y′|], (2.3)

where the double centered distance d(·, ·) is defined as

d(X,X′) � |X −X′| − EX[|X −X′|] − EX′[|X −X′|]
+ E[|X −X′|],

where EX, EX′ and E are expectations over X, X′ and (X, X′),
respectively.

Motivated by the above definition, one can give an unbiased
estimator for V2(X,Y). The following notations will be utilized:
for 1 ≤ i, j ≤ n,

aij � |Xi −Xj|, bij � |Yi − Yj|,
ai· � ∑n

l�1
ail, bi· � ∑n

l�1
bil,

a·· � ∑n
k,l�1

akl, and b·· � ∑n
k,l�1

bkl.

(2.4)

It has been proven [8, 28] that

Ωn(X,Y) � 1
n(n − 3) ∑i≠j aijbij −

2
n(n − 2)(n − 3) ∑

n

i�1
ai·bi·

+ a··b··
n(n − 1)(n − 2)(n − 3) (2.5)

is an unbiased estimator of V2(X, Y). In addition, a fast
algorithm has been proposed [8] for the aforementioned
sample distance covariance in the univariate cases with

complexity order O(n log n) and storage O(n). We list the
result below for reference purpose.

Theorem 2.2. (Theorem 3.2 & Corollary 4.1 in [8]). Suppose X1,
. . ., Xn and Y1, . . . , Yn ∈ R. The unbiased estimatorΩn defined in
(2.5) can be computed by an O(n log n) algorithm.

In addition, as a byproduct, the following result is established
in the same paper.

Corollary 2.3. The quantity

a··b··
n(n − 1)(n − 2)(n − 3) �

∑n
k,l�1akl∑n

k,l�1bkl
n(n − 1)(n − 2)(n − 3)

can be computed by an O(n log n) algorithm.
We will use the above result in our test of independence.

However, as far as we know, in the multivariate cases, there does
not exist any work on the fast algorithm of the order of
complexity O(n log n). This paper will fill in this gap by
introducing an order O(nK log n) complexity algorithm in
multivariate cases.

2.3 Distance Based Independence Tests
Ref. [6] proposed an independence test using the distance
covariance. We summarize it below as a theorem, which
serves as a benchmark. Our test will be aligned with the
following one, except that we introduced a new test statistic,
which can be more efficiently computed, and it has comparable
asymptotic properties with the test statistic that is used below.

Theorem 2.4. ([6], Theorem 6). For potentially multivariate
random variables X and Y, a prescribed level αs, and sample
size n, one rejects the independence if and only if

nV2
n(X,Y)
S2

> (Φ−1(1 − αs/2))2,

where V2
n(X,Y) has been defined in (2.2), Φ(·) denote the

cumulative distribution function of the standard normal
distribution and

S2 � 1
n4

∑n
i,j�1

|Xi −Xj| ∑n
i,j�1

|Yi − Yj|.

Moreover, let α(X, Y, n) denote the achieved significance level of
the above test. If E[|X| + |Y|]<∞, then for all 0 < αs < 0.215, one
can show the following:

lim
n→∞

α(X,Y, n)≤ αs, and

sup
X,Y

lim
n→∞

α(X,Y, n): V(X,Y) � 0{ } � αs.

Note that the quantity V2
n(X,Y) that is used above as in [6] differs

from the one that will be used in our proposed method. As
mentioned, we use the above as an illustration for distance-based
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tests of independence, as well as the theoretical/asymptotic
properties that such a test can achieve.

3 NUMERICALLY EFFICIENT METHOD FOR
RANDOM VECTORS

This section is made of two components. We present a random-
projection-based distance covariance estimator that will be
proven to be unbiased with a computational complexity that is
O(Kn log n) in Section 3.1. In Section 3.2, we describe how the
test of independence can be done by utilizing the above estimator.
For users’ convenience, stand-alone algorithms are furnished in
the Supplementary Appendix.

3.1 Random Projection Based Methods for
Approximating Distance Covariance
We consider how to use a fast algorithm for univariate random
variables to compute or approximate the sample distance
covariance of random vectors. The main idea works as follows:
first, projecting the multivariate observations on some random
directions; then, using the fast algorithm to compute the distance
covariance of the projections; at last, averaging distance
covariances from different projecting directions.

More specifically, our estimator can be computed as follows. For
potentially multivariate X1, . . . , Xn ∈ Rp and Y1, . . . , Yn ∈ Rq, let
K be a predetermined number of iterations, we do:

1) For each k (1 ≤ k ≤ K), randomly generate uk and vk from
Uniform(Sp−1) and Uniform(Sq−1), respectively. Here Sp−1

and Sq−1 are the unit spheres in Rp and Rq, respectively.
2) Let utkX and vtkY denote the projections of X and Y to the

space that are orthogonal to vectors uk and vk, respectively.
That is we have

ut
kX � (ut

kX1, . . . , u
t
kXn), and vtkY � (vtkY1, . . . , v

t
kYn).

Note that samples utkX and vtkY are now univariate.

3) Utilize the fast (i.e., orderO(n log n)) algorithm thatwasmentioned
in Theorem 2.2 to compute for the unbiased estimator in Eq. 2.5
with respect to utkX and vtkY. Formally, we denote

Ω(k)
n � CpCqΩn(ut

kX, vtkY),
where Cp and Cq have been defined at the end of Section 1.

(4) The above three steps are repeated for K times. The final
estimator is

�Ωn � 1
K

∑K
k�1

Ω(k)
n . (3.1)

To emphasize the dependency of the above quantity with K, we
sometimes use a notation �Ωn,K ≜ �Ωn.

SeeAlgorithm 1 in the Supplementary Appendix for a stand-
alone presentation of the above method. In the light of Theorem
2.2, we can handily declare the following.

Theorem 3.1. For potentially multivariateX1, . . . , Xn ∈ Rp and
Y1, . . . , Yn ∈ Rq, the order of computational complexity of
computing the aforementioned �Ωn is O(Kn log n) with
storage O( max{n, K}), where K is the number of random
projections.

The proof of the above theorem is omitted because it is
straightforward from Theorem 2.2. The statistical properties of
the proposed estimator �Ωn will be studied in the subsequent
section (specifically in Section 4.4).

3.2 Test of Independence
By a later result (cf. Theorem 4.19), we can apply �Ωn in the
independence tests. The corresponding asymptotic
distribution of the test statistic �Ωn can be approximated by
a Gamma(α, β) distribution with α and β given in Eq. 4.7. We
can compute the significance level of the test statistic by
permutation and conduct the independence test
accordingly. Recall that we have potentially multivariate
X1, . . . , Xn ∈ Rp and Y1, . . . , Yn ∈ Rq. Recall that K denotes
the number of Monte Carlo iterations in our previous
algorithm. Let αs denote the prescribed significance level of
the independence test. Let L denote the number of random
permutations that we will adopt. We would like to test the null
hypothesis H0—X and Y are independent—against its
alternative. Recall �Ωn is our proposed estimator in Eq. 3.1.
The following algorithm describes a test of independence,
which applies permutation to generate a threshold.

1) For each ℓ, 1 ≤ ℓ ≤ L, generate a random permutation of
Y: Yp,ℓ � (Yp

1, . . .Y
p
n);

2) Using the algorithm in Section 3.1, one can compute the
estimator �Ωn as in Eq. 3.1 for X and Yp,ℓ; denote the outcome
to be Vℓ � �Ωn(X,Yp,ℓ). Note under random permutations, X
and Y p,ℓ are independent.

3) The above two steps are executed for all ℓ � 1, . . ., L. One
rejects H0 if and only if we have

1 +∑L
ℓ�1I( �Ωn >Vℓ)
1 + L

> αs.

SeeAlgorithm 2 in the Supplementary Appendix for a stand-
alone description.

It is notified that one can use the approximate asymptotic
distribution information to estimate a threshold in the
independence test. The following describes such an approach.
Recall that random vectors X1, . . . ,Xn ∈ Rp and Y1, . . . , Yn ∈ Rq,
number of randomprojectionsK, and a prescribed significance levelαs
have been mentioned earlier.

1) For each k (1 ≤ k ≤ K), randomly generate uk and vk from
uniform(Sp−1) and uniform(Sq−1), respectively.

2) Use the fast algorithm in Theorem 2.2 to compute the
following quantities:

Ω(k)
n � CpCqΩn(ut

kX, vtkY),
S(k)n,1 � C2

pC
2
qΩn(ut

kX, ut
kX)Ωn(vtkY, vtkY),

S(k)n,2 � Cp
auk··

n(n − 1), S(k)n,3 � Cq
bvk··

n(n − 1),
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where Cp and Cq have been defined at the end of Section 1 and in
the last equation, the auk·· and bvk·· are defined as follows:

aukij � |ut
k(Xi −Xj)|, bvkij � |vtk(Yi − Yj)|,

auk·· � ∑n
k,l�1

aukkl , bvk·· � ∑n
k,l�1

bvkkl .

3) For the aforementioned k, randomly generate uk′ and vk′ from
uniform(Sp−1) and uniform(Sq−1), respectively. Use the fast
algorithm that is mentioned in Theorem 2.2 to compute the
following.

Ω(k)
n,X � C2

pΩn(ut
kX, u′t

kX), Ω(k)
n,Y � C2

pΩn(vtkY, v′tkY).
where Cp and Cq have been defined at the end of Section 1.

4) Repeat the previous steps for all k � 1, . . ., K. Then we
compute the following quantities:

�Ωn � 1
K

∑K
k�1

Ω(k)
n , �Sn,1 � 1

K
∑K
k�1

S(k)n,1 , �Sn,2 � 1
K

∑K
k�1

S(k)n,2 ,

�Sn,3 � 1
K

∑K
k�1

S(k)n,3 , �Ωn,X � 1
K

∑K
k�1

Ω(k)
n,X, �Ωn,Y � 1

K
∑K
k�1

Ω(k)
n,Y,

α � 1
2

�S
2
n,2
�S
2
n,3

K − 1
K

�Ωn,X
�Ωn,Y + 1

K
�Sn,1

,

(3.2)

β � 1
2

�Sn,2�Sn,3
K − 1
K

�Ωn,X
�Ωn,Y + 1

K
�Sn,1

. (3.3)

5) Reject H0 if n �Ωn + �Sn,2�Sn,3 >Gamma(α, β; 1 − αs); otherwise,
accept it. Here Gamma(α, β; 1 − αs) is the 1 − αs quantile of the
distribution Gamma(α, β).

The above procedure is motivated by the observation that the
asymptotic distribution of the test statistic n �Ωn can be
approximated by a Gamma distribution, whose parameters can
be estimated by Eq. 3.2 and Eq. 3.3. A stand-alone description of
the above procedure can be found in Algorithm 3 in the
Supplementary Appendix.

4 THEORETICAL PROPERTIES

In this section, we establish the theoretical foundation of the
proposed method. In Section 4.1, we study some
properties of the random projections and the subsequent
average estimator. These properties will be needed in
studying the properties of the proposed estimator. We
study the properties of the proposed distance covariance
estimator (Ωn) in Section 4.2, taking advantage of the fact
that Ωn is a U-statistic. It turns out that the properties of
eigenvalues of a particular operator play an important role.

We present the relevant results in Section 4.3. The main
properties of the proposed estimator ( �Ωn) are presented in
Section 4.4.

4.1 Using Random Projections in
Distance-Based Methods
In this section, we will study some properties of distance
covariances of randomly projected random vectors. We begin
with a necessary and sufficient condition of independence.

Lemma 4.1. Suppose u and v are points on the hyper-spheres:
u ∈ Sp−1 � {u ∈ Rp: |u| � 1} and v ∈ Sq−1. We have

random vectorsX ∈ Rp andY ∈ Rq are independent

if and only if

V2(utX, vtY) � 0, for any u ∈ Sp−1, v ∈ Sq−1.

The proof is relatively straightforward. We relegate a formal
proof to the appendix. This lemma indicates that the
independence is somewhat preserved under projections. The
main contribution of the above result is to motivate us to
think of using random projection, to reduce the multivariate
random vectors into univariate random variables. As mentioned
earlier, there exist fast algorithms of distance-based methods for
univariate random variables.

The following result allows us to regard the distance covariance
of random vectors of any dimension as an integral of distance
covariance of univariate random variables, which are the
projections of the aforementioned random vectors. The
formulas in the following lemma provide the foundation for our
proposed method: the distance covariances in the multivariate
cases can be written as integrations of distance covariances in the
univariate cases. our proposed method essentially adopts the
principle of Monte Carlo to approximate such integrals. We
again relegate the proof to the Supplementary Appendix.

Lemma 4.2. Suppose u and v are points on unit hyper-spheres:
u ∈ Sp−1 � {u ∈ Rp: |u| � 1} and v ∈ Sq−1. Let μ and ] denote the
uniform probability measure on Sp−1 and Sq−1, respectively.
Then, we have for random vectors X ∈ Rp and Y ∈ Rq,

V2(X,Y) � CpCq∫
Sp−1×Sq−1

V2(utX, vtY)dμ(u)d](v),

where Cp and Cq are two constants that are defined at the end of
Section 1. Moreover, a similar result holds for the sample distance
covariance:

V2
n(X,Y) � CpCq∫

Sp−1×Sq−1
V2

n(utX, vtY)dμ(u)d](v).

Besides the integral equations in the above lemma, we can also
establish the following result for the unbiased estimator. Such a
result provides the direct foundation of our proposed method.
Recall thatΩn, which is in Eq. 2.5, is an unbiased estimator of the
distance covariance V2(X,Y). A proof is provided in the
Supplementary Appendix.
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Lemma 4.3. Suppose u and v are points on the hyper-spheres:
u ∈ Sp−1 � {u ∈ Rp: |u| � 1} and v ∈ Sq−1. Let μ and ] denote the
measure corresponding to the uniform densities on the surfaces
Sp−1 and Sq−1, respectively. Then, we have

Ωn(X,Y) � CpCq∫
Sp−1×Sq−1

Ωn(utX, vtY)dμ(u)d](v),

where Cp and Cq are constants that were mentioned at the end of
Section 1.

From the above lemma, recalling the design of our
proposed estimator �Ωn as in Eq. 3.1, it is straightforward
to see that the proposed estimator �Ωn is an unbiased estimator
of Ωn(X, Y). For completeness, we state the following without
a proof.

Corollary 4.4. The proposed estimator �Ωn in Eq. 3.1) is an
unbiased estimator of the estimator Ωn(X, Y) that was defined
in Eq. 2.5.

Note that the estimator �Ωn in Eq. 3.1 evidently depends on the
number of random projections K. Recall that to emphasize such a
dependency, we sometimes use a notation �Ωn,K ≜ �Ωn. The
following concentration inequality shows the speed that �Ωn,K

can converge to Ωn as K → ∞.

Lemma 4.5. Suppose E[|X|2] <∞ and E[|Y|2] <∞. For any ϵ > 0,
we have

P | �Ωn,K − Ωn|> ϵ( )≤ 2 exp − CKϵ2
Tr[ΣX]Tr[ΣY]{ },

where ΣX and ΣY are the covariance matrices of X and Y,
respectively, Tr[ΣX] and Tr[ΣY] are their matrix traces, and C �

2
25C2

pC
2
q
is a constant.

The proof is a relatively standard application of
Hoeffding’s inequality [11], which has been relegated to
the appendix. The above lemma essentially indicates that
the quantity | �Ωn,K − Ωn| converges to zero at a rate no worse
than O(1/ ��

K
√ ).

4.2 Asymptotic Properties of the Sample
Distance Covariance Ωn
The asymptotic behavior of the sample distance covariance Ωn

in Eq. 2.5 of this paper, has been studied in many places, seeing
[5,8,10,12]. We found that it is still worthwhile to present them
here, as we will use them to establish the statistical properties
of our proposed estimator. The asymptotic distributions of Ωn

will be studied under two situations: 1) a general case and 2)
when X and Y are assumed to be independent. We will see that
the asymptotic distributions are different in these two
situations.

It has been showed in ([8], Theorem 3.2) that Ωn is a
U-statistic. In the following, we state the result without
formal proof. We will need the following function, denoted
by h4, which takes four pairs of input variables:

h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))
� 1
4

∑
1≤i,j≤4,i≠j

|Xi −Xj||Yi − Yj|

− 1
4
∑4
i�1

∑
1≤j≤4,j≠i

|Xi −Xj| ∑
1≤j≤4,j≠i

|Yi − Yj|⎛⎝ ⎞⎠
+ 1
24

∑
1≤i,j≤4,i≠j

|Xi −Xj| ∑
1≤i,j≤4,i≠j

|Yi − Yj|.

(4.1)

Note that the definition of h4 coincides with Ωn when the
number of observations n � 4.

Lemma 4.6. (U-statistics). Let Ψ4 denote all distinct 4-subset of
{1, . . ., n} and let us define Xψ � {Xi|i ∈ ψ} and Yψ � {Yi|i ∈ ψ}, then
Ωn is a U-statistic and can be expressed as

Ωn � n

4
( )−1 ∑

ψ∈Ψ4

h4 Xψ , Yψ( ).
From the literature of the U-statistics, we know that the

following quantities play critical roles. We state them here:

h1((X1, Y1)) � E2,3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],
h2((X1, Y1), (X2, Y2)) � E3,4[h4((X1, Y1), (X2, Y2),

(X3, Y3), (X4, Y4))],
h3((X1, Y1), (X2, Y2), (X3, Y3)) � E4[h4((X1, Y1), (X2, Y2),

(X3, Y3), (X4, Y4))],
where E2,3,4 stands for taking expectation over (X2, Y2), (X3, Y3)
and (X4, Y4); E3,4 stands for taking expectation over (X3, Y3) and
(X4, Y4); and E4 stands for taking expectation over (X4, Y4);
respectively.

One immediate application of the above notations is the
following result, which quantifies the variance of Ωn. Since the
formula is a known result, seeing ([13], Chapter 5.2.1 Lemma A),
we state it without proof.

Lemma 4.7. (Variance of the U-statistic). The variance of Ωn

could be written as

Var(Ωn) � n

4
( )−1 ∑4

l�1

4
l

( ) n − 4
4 − l

( )Var(hl)
� 16

n
Var(h1) + 240

n2
Var(h1) + 72

n2
Var(h2) + O

1
n3

( ),
where O(·) is the standard big O notation in mathematics.

From the above lemma, we can see that Var(h1) and Var(h2) play
indispensable roles in determining the variance of Ωn. The following
lemma shows that under some conditions, we can ensure that Var(h1)
and Var(h2) are bounded. A proof has been relegated to the appendix.

Lemma 4.8. If we have E[|X|2]<∞, E[|Y|2]<∞ and
E[|X|2|Y|2]<∞, then we have Var(h4) < ∞. Consequently,
we also have Var(h1) < ∞ and Var(h2) < ∞.
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Even though as indicated in Lemma 4.7, the quantities h1(X1,
Y1) and h2((X1, Y1), (X2, Y2)) play important roles in determining
the variance of Ωn, in a generic case, they do not have a simple
formula. The following lemma gives the generic formulas for
h1(X1, Y1) and h2((X1, Y1), (X2, Y2)). Its calculation can be found
in the Supplementary Appendix.

Lemma 4.9. (Generic h1 and h2). In the general case, assuming
(X1, Y1), (X, Y), (X′, Y′), and (X″, Y″) are independent and
identically distributed, we have

h1((X1, Y1)) � 1
2
E[|X1 −X′||Y1 − Y′|] − 1

2
E[|X1 −X′||Y1

− Y″|] + 1
2
E[|X1 −X′||Y − Y″|] − 1

2
E[|X1

−X′||Y′ − Y″|] + 1
2
E[|X −X″||Y1 − Y′|]

− 1
2
E[|X′ −X″||Y1 − Y′|] + 1

2
E[|X −X′||Y

− Y′|] − 1
2
E[|X −X′||Y − Y″|].

We have a similar formula for h2((X1, Y1), (X2, Y2)) in (B.7). Due
to its length, we do not display it here.

If one assumes that X and Y are independent, we can have a
simpler formula for h1, h2, as well as their corresponding
variances. We list the results below, with detailed calculations
relegated to the appendix. One can see that under independence,
the corresponding formulas are much simpler.

Lemma 4.10. When X and Y are independent, we have the
following. For (X, Y) and (X′, Y′) that are independent and
identically distributed as (X1, Y1) and (X2, Y2), we have

h1((X1, Y1)) � 0, (4.2)

h2((X1, Y1), (X2, Y2)) � 1
6

|X1 −X2| − E[|X1 −X|](
−E[|X2 −X|] + E[|X −X′|])

(|Y1 − Y2| − E[|Y1 − Y|] − E[|Y2 − Y|] + E[|Y − Y′|]), (4.3)

Var(h2) � 1
36

V2(X,X)V2(Y,Y), (4.4)

where E stands for the expectation operators with respect to X, X
and X′, Y, or Y and Y′, whenever appropriate, respectively.

If we have 0 < Var(h1) < ∞, it is known that the asymptotic
distribution of Ωn is normal, as stated in the following. Note that
based on Lemma 4.10, X and Y cannot be independent; otherwise
one should have h1 � 0 almost surely. The following theorem is
based on a known result on the convergence of U-statistics, seeing
([13], Chapter 5.5.1 Theorem A). We state it without a proof.

Theorem 4.11. Suppose 0 < Var(h1) <∞ and Var(h4) <∞, then
we have

Ωn→P V2(X,Y)
moreover, we have�

n
√ (Ωn − V2(X,Y))→D N(0, 16Var(h1)), as n → ∞.

When X and Y are independent, the asymptotic distribution of�
n

√ Ωn is no longer normal. In this case, from Lemma 4.10, we
have

h1((X1, Y1)) � 0 almost surely, andVar[h1((X1, Y1))] � 0.

The following theorem, which applies a result in ([13],
Chapter 5.5.2), indicates that nΩn converges to a weighted
sum of (possibly infinitely many) independent χ21 random
variables.

Theorem 4.12. If X and Y are independent, the asymptotic
distribution of Ωn is

nΩn→D ∑∞
i�1

λi(Z2
i − 1) � ∑∞

i�1
λiZ

2
i −∑∞

i�1
λi,

where Z2
i ∼ χ21 i.i.d, λi’s are the eigenvalues of operator G that is

defined as

Gg(x1, y1) � Ex2 ,y2[6h2((x1, y1), (x2, y2))g(x2, y2)],
where function h2((·, ·), (·, ·)) was defined in (4.3).

Proof. The asymptotic distribution of Ωn is from the result in
([13], Chapter 5.5.2).

See Section 4.3 for more details onmethods for computing the
value of λi’s. In particular, we will show that we have ∑∞

i�1λi �
E[|X −X′|]E[|Y − Y′|] (Corollary 4.15) and ∑∞

i�1λ
2
i �

V2(X,X)V2(Y,Y) (which is essentially from Eq. 4.4 and
Lemma 4.7).

4.3 Properties of Eigenvalues λi’s
From Theorem 4.12, we see that the eigenvalues λi’s play
important role in determining the asymptotic distribution
of Ωn. We study its properties here. Throughout this
subsection, we assume that X and Y are independent. Let us
recall that the asymptotic distribution of sample distance
covariance Ωn,

nΩn→D ∑∞
i�1

λi(Z2
i − 1) � ∑∞

i�1
λiZ

2
i −∑∞

i�1
λi,

where λi’s are the eigenvalues of the operator G that is
defined as

Gg(x1, y1) � Ex2 ,y2[6h2((x1, y1), (x2, y2))g(x2, y2)],
where function h2((·, ·), (·, ·)) was defined in Eq. 4.3. By definition,
eigenvalues λ1, λ2, . . . corresponding to distinct solutions of the
following equation

Gg(x1, y1) � λg(x1, y1). (4.5)

We now study the properties of λi’s. Utilizing Lemma 12 and
Eq. 4.4 in [12], we can verify the following result. We give details
of verifications in the Supplementary Appendix.

Lemma 4.13. Both of the following two functions are positive
definite kernels:
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hX(X1, X2) � −|X1 −X2| + E[|X1 −X|] + E[|X2 −X|]
− E[|X −X′|]

and

hY(Y1, Y2) � −|Y1 − Y2| + E[|Y1 − Y|] + E[|Y2 − Y|]
− E[|Y − Y′|].

The above result gives us a foundation to apply the
equivalence result that has been articulated thoroughly in
[12]. Equipped with the above lemma, we have the following
result, which characterizes a property of λi’s. The detailed
proof can be found in the Supplementary Appendix.

Lemma 4.14. Suppose {λ1, λ2, . . .} are the set of eigenvalues of
kernel 6h2((x1, y1), (x2, y2)), {λX1 , λX2 , . . .} and {λY1 , λY2 , . . .} are the
sets of eigenvalues of the positive definite kernels hX and hY,
respectively. We have the following:

{λ1, λ2, . . .} � {λX1 , λX2 , . . .} ⊗ {λY1 , λY2 , . . .};
that is, each λi satisfying (4.5) can be written as, for some j, j′,

λi � λXj · λYj′
where λXj and λYj′ are the eigenvalues corresponding to kernel
functions hX(X1, X2) and hY(Y1, Y2), respectively.

Above lemma implies that eigenvalues of h2 could be
obtained immediately after knowing the eigenvalues of hX
and hY. But, in practice, there usually does not exist
analytic solution for even the eigenvalues of hX or hY.
Instead, given the observations (X1, . . ., Xn) and (Y1, . . .,
Yn), we can compute the eigenvalues of matrices ~KX �
(hX(Xi, Xj))n×n and ~KY � (hY(Yi, Yj))n×n and use those
empirical eigenvalues to approximate λX1 , λ

X
2 , . . . and

λY1 , λ
Y
2 , . . ., and then consequently λ1, λ2, . . .

We end this subsection with the following corollary on the
summations of eigenvalues, which is necessary for the proof of
Theorem 4.12. The proof can be found in the Supplementary
Appendix.

Corollary 4.15. The aforementioned eigenvalues λX1 , λ
X
2 , . . . and

λY1 , λ
Y
2 , . . . satisfy

∑∞
i�1

λXi � E[|X −X′|], and∑∞
i�1

λYi � E[|Y − Y′|].

As a result, we have

∑∞
i�1

λi � E[|X −X′|]E[|Y − Y′|],

and

∑∞
i�1

λ2i � V2(X,X)V2(Y, Y).

4.4 Asymptotic Properties of Averaged
Projected Sample Distance Covariance �Ωn
Wehave reviewed the properties of the statisticsΩn in aprevious section
(Section 4.2). The disadvantage of directly applying Ωn (which is
defined in Eq. 2.5) is that for multivariateX andY, the implementation
may require at leastO(n2) operations. Recall that for univariateX andY,
anO(n log n) algorithm exists, cf. Theorem 2.2. The proposed estimator
(�Ωn in Eq. 3.1) is the averaged distance covariances, after randomly
projecting X and Y to one-dimensional spaces, respectively. In this
section, we will study the asymptotic behavior of �Ωn. It turns out that
the analysis will be similar to the works in Section 4.2. The asymptotic
distribution of �Ωn will differ in two cases: (1) the general case and (2) the
case when X and Y are independent.

As preparation for presenting the main result, we recall and
introduce some notations. Recall the definition of �Ωn:

�Ωn � 1
K

∑K
k�1

Ω(k)
n ,

where

Ω(k)
n � CpCqΩn(ut

kX, vtkY)
and constants Cp, Cq have been defined at the end of Section 1. By
Corollary 4.4, we have E[Ω(k)

n ] � Ωn, where E stands for the
expectation with respect to the random projection. Note that
from the work inSection 4.2, estimator Ω(k)

n is a U-statistic. The
following equation reveals that estimator �Ωn is also a U-statistic,

�Ωn � n

4
( )−1 ∑

ψ∈Ψ4

CpCq

K
∑K
k�1

h4(ut
kXψ , v

t
kYψ) ≜ n

4
( )−1 ∑

ψ∈Ψ4

�h4(Xψ , Yψ),

where

�h4(Xψ , Yψ) � 1
K

∑K
k�1

CpCqh4(ut
kXψ , v

t
kYψ).

We have seen that quantities h1 and h2 play significant roles in the
asymptotic behavior of statistic Ωn. Let us define the counterpart
notations as follows:

�h1((X1, Y1))
� E2,3,4[�h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))] ≜ 1

K
∑K

k�1h
(k)
1 ,

�h2((X1, Y1), (X2, Y2))
� E3,4[�h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))] ≜ 1

K
∑K

k�1h
(k)
2 ,

(4.6)

where E2,3,4 stands for taking expectation over (X2, Y2), (X3, Y3)
and (X4, Y4); E3,4 stands for taking expectation over (X3, Y3) and
(X4, Y4); as well as the following:

h(k)1 � E2,3,4[CpCqh4(ut
kXψ , v

t
kYψ)],

h(k)2 � E3,4[CpCqh4(ut
kXψ , v

t
kYψ)].
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In the general case, we do not assume that X and Y are
independent. Let U � (u1, . . ., uK) and V � (v1, . . ., vK) denote
the collection of random projections. We can write the variance of
�Ωnas follows. The proof is an application of Lemma 4.7 and the law
of total covariance. We relegate it to the Supplementary Appendix.

Lemma 4.16. Suppose EU,V[VarX,Y(�h1|U,V)]> 0 and
Varu,v(V2(utX, vtY))> 0, then, the variance of �Ωn is

Var( �Ωn) � 1
K
Varu,v(V2(utX, vtY)) + 16

n
EU,V[VarX,Y(�h1|U,V)]

+72
n2
EU,V[VarX,Y(�h2|U,V)] + O

1

n3
( ).

Equipped with the above lemma, we can summarize the
asymptotic properties in the following theorem. We state it
without proof as it is an immediate result from Lemma 4.16
as well as the contents in ([13], Chapter 5.5.1 Theorem A).

Theorem 4.17. Suppose 0<EU,V[VarX,Y(�h1|U,V)]<∞,
EU,V[VarX,Y(�h4|U,V)]<∞. Also, let us assume that K → ∞,
n → ∞, then we have

�Ωn→P V2(X,Y).
And, the asymptotic distribution of �Ωn could differ under
different conditions.

1) If K → ∞ and K/n → 0, then��
K

√
�Ωn − V2(X,Y)( )→D N 0, Varu,v(V2(utX, vtY))( ).

2) If n → ∞ and K/n → ∞, then�
n

√
�Ωn − V2(X,Y)( )→D N 0, 16EU,V[VarX,Y(�h1|U,V)]( ).

3) If n → ∞ and K/n → C, where C is some constant, then

�
n

√
�Ωn − V2(X,Y)( )→D N 0,

1
C
Varu,v(V2(utX, vtY)) + 16EU,V(

[VarX,Y(�h1|U,V)]).
Since our main idea is to utilize �Ωn to approximate the

quantity Ωn, it is of interest to compare the asymptotic
variance of Ωn in Theorem 4.11 with the asymptotic variances
in the above theorem. We present some discussions in the
following remark.

Remark 4.18. Let us recall the asymptotic properties of Ωn,�
n

√ (Ωn − V2(X,Y))→D N(0, 16Var(h1)).
Then, we make the comparison in the following different
scenarios.

1) If K → ∞ and K/n → 0, then the convergence rate of �Ωn is
much slower than Ωn as K ≪ n.

2) If n→∞ andK/n→∞, then the convergence rate of �Ωn is the
same with Ωn and their variances is also the same

3) If n → ∞ and K/n → C, where C is some constant, then the
convergence rate of �Ωn is the same withΩn but the variance of
�Ωn is larger than that of Ωn.

Generally, when X is not independent of Y, �Ωn is as good asΩn

in terms of convergence rate. However, in the independence test,
the convergence rate of test statistics under the null hypotheses is
of more interest. In the following context of this section, we will
show that �Ωn has the same convergence rate with Ωn when X is
independent of Y.

Now, let us consider the case that X and Y are independent.
Similarly, by Lemma 4.10, we have

�h
(k)
1 � 0, �h1 � 0, almost surely, and , Var(�h1) � 0.

And, by Lemma 4.1, we know that

V2(utX, vtY) � 0,∀u, v,
which implies

Varu,v V2(utX, vtY)( ) � 0.

Therefore, we only need to consider VarX,Y(�h2|U,V). Suppose
(U, V) is given, a result in ([13], Chapter 5.5.2), together with
Lemma 4.16, indicates that n �Ωn converges to a weighted sum of
(possibly infinitely many) independent χ21 random variables. The
proof can be found in the Supplementary Appendix.
Theorem 4.19If X and Y are independent, given the value of U � (u1,
. . ., uK) and V � (v1, . . ., vK), the asymptotic distribution of �Ωn is

n �Ωn→ D ∑∞
i�1

�λi(Z2
i − 1) � ∑∞

i�1
�λiZ

2
i −∑∞

i�1
�λi,

where Z2
i ∼ χ21 i.i.d, and

∑∞
i�1

�λi � CpCq

K
∑K
k�1

E[|ut
k(X −X′)|]E[|vtk(Y − Y′)|],

∑∞
i�1

�λ
2
i �

C2
pC

2
q

K2
∑K

k,k′�1
V2 ut

kX, ut
k′X( )V2 vtkY, v

t
k′Y( ).

Remark 4.20. Let us recall that if X and Y are independent, the
asymptotic distribution of Ωn is

nΩn→D ∑∞
i�1

λi(Z2
i − 1).

Theorem 4.19. shows that under the null hypotheses, �Ωn enjoys
the same convergence rate with Ωn.

There usually does not exist a close-form expression for∑∞
i�1�λiZ

2
i , but we can approximate it with the Gamma

distribution whose first two moments matched. Thus, we have
that ∑∞

i�1�λiZ
2
i could be approximated by Gamma(α, β) with

probability density function.

βα

Γ(α)x
α−1e−βx, x> 0,

where
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α � 1
2

∑∞
i�1�λi( )2

∑∞
i�1�λ

2
i

, β � 1
2
∑∞

i�1�λi∑∞
i�1�λ

2
i

. (4.7)

See [14] Section 3 for an empirical justification on this Gamma
approximation. See [15] for a survey on different approximation
methods of the weighted sum of the chi-square distribution.

The following result shows that both ∑∞
i�1�λi and ∑∞

i�1�λ
2
i could

be estimated from data, see appendix for the corresponding
justification.

Proposition 4.21. We can approximate ∑∞
i�1�λi and ∑∞

i�1�λi as
follows:

∑∞
i�1

�λi ≈
CpCq

Kn2(n − 1)2 ∑
K

k�1
auk·· b

vk
·· ,

∑∞
i�1

�λ
2
i ≈

K − 1
K

Ωn(X,X)Ωn(Y, Y)

+ C2
pC

2
q

K
∑K
k�1

Ωn(ut
kX, ut

kX)Ωn(vtkY, vtkY).

5 SIMULATIONS

Our numerical studies follow the works of [4,6,12]. In Section 5.1, we
study how the performance of the proposed estimator is influenced by
some parameters, including the sample size, the dimensionalities of

the data, as well as the number of random projections in our
algorithm. We also study and compare the computational
efficiency of the direct method and the proposed method in
Section 5.2. The comparison of the corresponding independence
test with other existing methods will be included in Section 5.3.

5.1 Impact of Sample Size, Data Dimensions
and the Number of Monte Carlo Iterations
In this part, we will use some synthetic data to study the impact of
sample size n, data dimensions (p, q) and the number of the
Monte Carlo iterations K on the convergence and test power of
our proposed test statistic �Ωn. The significance level is set to be αs
� 0.05. Each experiment is repeated for N � 400 times to get
reliable mean and variance of estimators.

In first two examples, we fix data dimensions p � q � 10 and let
the sample size n vary in 100, 500, 1000, 5000, 10000 and let the
number of the Monte Carlo iterations K vary in 10, 50, 100, 500,
and 1000. The data generation mechanism is described as follows,
and it generates independent variables.

Example 5.1.We generate random vectorsX ∈ R10 and Y ∈ R10.
Each entry Xi follows Unif(0, 1), independently. Each entry
Yi � Z2

i , where Zi follows Unif(0, 1), independently.
See Figure 1 for the boxplots of the outcomes of Example 5.1.

In each subfigure, we fix theMonte Carlo Iteration NumberK and
let the number of observations n grow. It is worth noting that the
scale of each subfigure could be different to display the entire

FIGURE 1 | Boxplots of estimators in Example 5.1: dimension of X and Y is fixed to be p � q � 10; the result is based on 400 repeated experiments. In each subplot,
y-axis represents the value of distance covariance estimators.
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boxplots. This experiment shows that the estimator converges to
0 regardless of the number of the Monte Carlo iterations. It also
suggests that K � 50 Monte Carlo iterations should suffice in the
independent cases.

The following example is to study dependent variables.

Example 5.2.We generate random vectors X ∈ R10 and Y ∈ R10

Each entry Xi follows Unif(0, 1), independently. Let Yi denote the
i-th entry of Y. We let Y1 � X2

1 and Y2 � X2
2 The rest entry of Y,

Yi � Z2
i , i � 3, . . ., 10, where Zi follows Unif(0, 1), independently.

See Figure 2 for the boxplots of the outcomes of Example
5.2. In each subfigure, we fix the number of the Monte Carlo
iterations K and let the number of observations n grow. This
example shows that if K is fixed, the variation of the estimator
remains regardless of the sample size n. In the dependent
cases, the number of the Monte Carlo iterations K plays a
more important role in estimator convergence than sample
size n.

The outcomes of Example 5.1 and 5.2 confirm the theoretical
results that the proposed estimator converges to 0 as sample size n
grows in the independent case, and converges to some nonzero
number as the number of the Monte Carlo iterations K grows in
the dependent case.

In the following two examples, we fix the sample size n � 2000
as we noticed that our method is more efficient than the direct
method when n is large. We fix the number of the Monte Carlo
iterations K � 50 and relax the restriction on the data dimensions
to allow p ≠ q and let p, q vary in (10, 50, 100, 500, 1000). We
continue with an independent case as follows.

Example 5.3. We generate random vectors X ∈ Rp and Y ∈ Rq.
Each entry of X follows Unif(0, 1), independently. Each entry
Yi � Z2

i , where Zi follows Unif(0, 1), independently.
See Figure 3 for the boxplots of the outcomes of Example 5.3.

In each subfigure, we fix the dimension of X and let the
dimension of Y grow. It is worth noting that the scale of
each subfigure could be different to display the entire
boxplots. It shows that the proposed estimator converges
fairly fast in independent cases regardless of the dimension
of the data.

The following presents a dependent case. In this case, only
a small number of entries in X and Y are dependent, which
means that the dependency structure between X and Y is low-
dimensional though X or Y could be of high dimensions.

Example 5.4. We generate random vectors X ∈ Rp and Y ∈ Rq.
Each entry of X follows Unif(0, 1), independently. We let the first
5 entries of Y to be the square of the first 5 entries of X and let the
rest entries of Y to be the square of some independent Unif(0, 1)
random variables. Specifically, we let Yi � X2

i , i � 1, . . . , 5, and,
Yi � Z2

i , i � 6, . . . , q, where Zi’s are drawn independently from
Unif(0, 1).

See Figure 4 for the boxplots of the outcomes of Example 5.4.
In each subfigure, we fix the dimension ofX and let the dimension
of Y grow. The test power of the proposed test against data
dimensions can be seen in Table 1. It is worth noting that when
the sample size is fixed, the test power of ourmethod decays as the

dimension of X and Y increase. We use the Direct Distance
Covariance (DDC) defined in Eq. 2.5 on the same data. As a
contrast, the test power of DDC is 1.000 even p � q � 1000. This
example raises a limitation of random projection: it may fail to
detect the low dimensional dependency in high dimensional data.
A possible remedy for this issue is performing dimension
reduction before applying the proposed method. We do not
research further along this direction since it is beyond the
scope of this paper.

5.2 Comparison With Direct Method
In this section, we would like to illustrate the computational and
space efficiency of the proposed method (RPDC). RPDC is
much faster than the direct method (DDC, Eq. 2.5) when the
sample size is large. It is worth noting that DDC is infeasible
when the sample size is too large as its space complexity isO(n2).
See Table 2 for a comparison of computing time (unit: second)
against the sample size n. This experiment is run on a laptop
(MacBook Pro Retina, 13-inch, Early 2015, 2.7 GHz Intel Core
i5, 8 GB 1867 MHz DDR3) with MATLAB R2016b
(9.1.0.441655).

5.3 Comparison With Other Independence
Tests
In this part, we compare the statistical test power of the
proposed test (RPDC) with Hilbert-Schmidt Independence
Criterion (HSIC) [4] as HSIC is gaining attention in machine
learning and statistics communities. In our experiments, a
Gaussian kernel with standard deviation σ � 1 is used for
HSIC. We also compare with Randomized Dependence
Coefficient (RDC) [16], which utilizes the technique of
random projection as we do. Two classical tests for
multivariate independence, which are described below, are
included in the comparison as well as Direct Distance
Covariance (DDC) defined in Eq. 2.5.

• Wilks Lambda (WL): the likelihood ratio test of hypotheses
Σ12 � 0 with μ unknown is based on

det(S)
det(S11)det(S22) �

det(S22 − S21S
−1
11S12)

det(S22) ,

where det(·) is the determinant, S, S11 and S22 denote the sample
covariances of (X, Y), X and Y, respectively, and S12 is the sample
covariance Ĉov(X,Y). Under multivariate normality, the test
statistic

W � −n log det(I − S−122S21S
−1
11S12)

has the Wilks Lambda distribution Λ(q, n − 1 − p, p), see [17].
• Puri-Sen (PS) statistics: [18], Chapter 8, proposed similar
tests based onmore general sample dispersionmatrices T. In
that test S, S11, S12 and S22 are replaced by T, T11, T12 and T22,
where T could be a matrix of Spearman’s rank correlation
statistics. Then, the test statistic becomes

W � −n log det(I − T−1
22T21T

−1
11T12)
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FIGURE 2 | Boxplots of our estimators in Example 5.2: dimension of X and Y is fixed to be p � q � 10; the result is based on 400 repeated experiments. In each
subplot, y-axis represents the value of distance covariance estimators.

FIGURE 3 | Boxplot of Estimators in Example 5.3: both sample size and the number of Monte Carlo iterations is fixed, n � 2000, K � 50; the result is based on 400
repeated experiments. In each subplot, y-axis represents the value of distance covariance estimators.
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The critical values of the Wilks Lambda (WL) and Puri-Sen
(PS) statistics are given by Bartlett’s approximation ([19], Section
5.3.2b): if n is large and p, q > 2, then

− n − 1
2
(p + q + 3)( )log det(I − S−122S21S

−1
11S12)

has an approximation χ2(pq) distribution.
The reference distributions of RDC and HSIC are

approximated by 200 permutations. And the reference
distributions of DDC and RPDC are approximated by Gamma
Distribution. The significance level is set to be αs � 0.05 and each
experiment is repeated for N � 400 times to get reliable type-I
error/test power.

We start with an example that (X, Y) is multivariate normal. In
this case, WL and PS are expected to be optimal as the
assumptions of these two classical tests are satisfied.
Surprisingly, DDC has comparable performance with the

aforementioned two methods. RPDC can achieve satisfactory
performance when the sample size is reasonably large.

Example 5.5. We set the dimension of the data to be p � q � 10.
We generate random vectors X ∈ R10 and Y ∈ R10 from the
standard multivariate normal distribution N (0, I10). The joint
distribution of (X, Y) is also normal and we have Cor(Xi, Yi) � ρ, i
� 1, . . ., 10, and the rest correlation are all 0. We set the value of ρ
to be 0 and 0.1 to represent independent and correlated scenarios,
respectively. The sample size n is set to be from 100 to 1500 with
an increment of 100.

Figure 5 plots the type-I error in subfigure (a) and test power in
subfigure (b) against sample size. In the independence case (ρ � 0.0),
the type-I error of each test is always around the significance level αs

FIGURE 4 |Boxplots of the proposed estimators in Example 5.4: both sample size and the number of the Monte Carlo iterations are fixed: n � 2000 and K � 50; the
result is based on 400 repeated experiments. In each subplot, y-axis represents the value of distance covariance estimators.

TABLE 1 | Test Power in Example 5.4: this result is based 400 repeated
experiments; the significance level is 0.05.

Dimension of X: p Dimension of Y: q

10 50 100 500 1000

10 1.0000 1.0000 1.0000 1.0000 0.9975
50 1.0000 1.0000 1.0000 0.7775 0.4650
100 1.0000 1.0000 0.9925 0.4875 0.1800
500 0.9950 0.8150 0.4425 0.1225 0.0975
1000 0.9900 0.4000 0.2125 0.0900 0.0475

TABLE 2 | Speed Comparison: Direct Distance Covariance vs. Randomly
Projected Distance Covariance.

Sample size Ωn �Ωn

100 0.0043 (0.0047) 0.0207 (0.0037)
500 0.0210 (0.0066) 0.0770 (0.0086)
1000 0.0624 (0.0047) 0.1685 (0.0141)
2000 0.2349 (0.0133) 0.3568 (0.0169)
4000 0.9184 (0.0226) 0.7885 (0.0114)
8000 7.2067 (0.4669) 1.7797 (0.0311)
16000 — 3.7539 (0.0289)

This table is based on 100 repeated experiments, the dimension of X and Y is fixed to be
p � q � 10 and the number of Monte Carlo Iterations in RPDC is K � 50. The number
outside of the brackets is the mean and the number inside of the brackets is the standard
deviation.
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� 0.05, which implies the Gamma approximation works well for
asymptotic distributions. In the dependent case (ρ � 0.1), the overall
performance of RPDC is close to HSIC and RPDC outperforms
when the sample size is smaller and underperforms when the sample
size is larger. Unfortunately, RDC’s test power is insignificant.

Next, we compare those methods when (X, Y) is no longer
multivariate normal and the dependency between X and Y is non-
linear. We even add a noise term to compare their performance in
both low and high noise-to-signal ratio scenarios. In this case,
DDC and RPDC are much better than WL, PS, and RDC. The
performance of HSIC is close to DDC and RPDC when the noise
is low but much worse than those two when the noise is high.

Example 5.6. We set the dimension of data to be p � q � 10. We
generate random vector X ∈ R10 from the standard multivariate
normal distribution N (0, I10). Let the i-th entry of Y be
Yi � log(X2

i ) + ϵi, i � 1, . . . , q, where ϵi’s are independent
random errors, ϵi ∼ N (0, σ2). We set the value of σ to be 1

and 3 to represent low and high noise ratios, respectively. In the σ
� 1 case, the sample size n is from 100 to 1000 with an increment
20; and in the σ � 3 case, the sample size n is from 100 to 4000
with an increment 100.

Figure 6 plots the test power of each test against sample size. In
both low and high noise cases, none ofWL, PS, and RDC has any test
power. In the low noise case, all of RPDC, DDC, and HSIC have
satisfactory test power (> 0.9)when the sample size is greater than 300.
In the highnoise case, RPDCandDDCcould achievemore than 0.8 in
test power once the sample size is greater than 500while the test power
of HSIC reaches 0.8 when the sample size is more than 2000.

In the following example, we generate the data similarly with
Example 5.6 but the difference is that the dependency is changing
over time. Specifically, X and Y are independent at the beginning
but they become dependent after some time point. Since all those
tests are invariant with the order of the observations, this
experiment simply means that only a proportion of
observations are dependent while the rest are not.

FIGURE 5 | Type-I Error/Test Power vs. Sample Size n in Example 5.5: the result is based on 400 repeated experiments.

FIGURE 6 | Test Power vs. Sample Size n in Example 5.6: significance level is αs � 0.05; the result is based on N � 400 repeated experiments.
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Example 5.7. We set the dimension of data to be p � q � 10. We
generate random vector Xt ∈ R10, t � 1, . . . , n, from the
standard multivariate normal distribution N (0, I10). Let the i-th
entry of Yt be Yt,i � log(Z2

t,i) + ϵt,i, t � 1, . . . , T and
Yt,i � log(X2

t,i) + ϵt,i, t � T + 1, . . . , n, where Zt i.i.d. ∼ N (0, I10)
and ϵt,i’s are independent random errors, ϵt,i ∼ N (0, 1). We set the
value of T to be 0.5n and 0.8n to represent early and late
dependency transition, respectively. In the early change case, the
sample size n is from 500 to 2000 with an increment 100; and in the
late change case, the sample size n is from 500 to 4000 with an
increment 100.

Figure 7 plots the test power of each test against sample size. In
both early and late change cases, none of WL, PS, and RDC has any
test power. In the early change case, all of RPDC, DDC, and HSIC
have satisfactory test power (> 0.9) when the sample size is greater
than 1500. In the late change case, DDC and HSIC could achieve
more than 0.8 in test power once sample size reaches 4000 while the
test power of RPDC is only 0.6 when the sample size is 4000. As
expected, the performance ofDDC is better than RPDC in both cases
and the performance of HSIC is between DDC and RPDC.

Remark 5.8. The examples in this subsection show that though
RPDC underperforms DDC when the sample size is relatively
small, RPDC could achieve the same test power with DDC when
the sample size is sufficiently large. Thus, when the sample size is
large enough, RPDC is superior to DDC because of its
computational efficiency in both time and space.

6 DISCUSSIONS

6.1 A Discussion on the Computational
Efficiency
We compare the computational efficiency of the proposed
method (RPDC) and the direct method (DDC) in Section 5.2.
We will discuss this issue here.

As X ∈ Rp and Y ∈ Rq are multivariate random variables, the
effect of p and q on computing time could be significant when p

and q are not negligible compared to sample size n. Now, we
analyze the computational efficiency of DDC and RPDC by
taking p and q into consideration. The computational
complexity of DDC becomes O(n2(p + q)) and that of RPDC
becomes O(nK( log n + p + q)). Let us denote the total number of
operations in DDC by O1 and that in RPDC by O2. Then, there
exist constants L1 and L2 such that

O1 ≈ L1n
2(p + q), andO2 ≈ L2nK(log n + p + q).

There is no doubt that O2 will eventually be much less than O1 as
sample size n grows. Due to the complexity of the fast algorithm,
we expect L2 > L1, which means the computing time of RPDC is
even larger than DDC when the sample size is relatively small.
Then, we need to study an interesting problem: what is the break-
even point in terms of sample size n when RPDC and DDC have
the same computing time?

Let n0 � n0(p + q, K) denote the break-even point, which is a
function of p + q and number of Monte Carlo iterations K. For

FIGURE 7 | Test Power vs. Sample Size n in Example 5.7: significance level is αs � 0.05; the result is based on N � 400 repeated experiments.

FIGURE 8 | Break-Even Sample Size n0 against Data Dimension p + q.
This figure is based on 100 repeated experiments.
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simplicity, we fix K � 50 since 50 iterations could achieve
satisfactory test power as we showed in Example 5.4. Then, n0
becomes a function solely depending on p + q. Since it is hard to
derive the close form of n0, we derive it numerically instead. For
fixed p + q, we let the sample size vary and record the difference
between the running time of the two methods. Then, we fit the
difference of running time against sample size with a smoothing
spline. The root of this spline is the numerical value of n0 at p + q.

We plot the n0 against p + q in Figure 8. As the figure shows,
the break-even sample size decreases as the data dimension
increases, which implies that our proposed method is more
advantageous than the direct method when random variables
are of high dimension. However, as shown in Example 5.4, the
random projection-based method does not perform well when
high dimensional data have a low dimensional dependency
structure. We should be cautious to use the proposed method
when the dimension is high.

6.2 Connections With Existing Literature
It turns out that distance-based methods are not the only choices
in independence tests. See [20] and the references therein to see
alternatives.

Our proposed method utilizes random projections, which
bears a similarity with the randomized feature mapping
strategy [21] that was developed in the machine learning
community. Such an approach has been proven to be effective
in kernel-related methods [22–26]. However, a closer
examination will reveal the following difference: most of the
aforementioned work is rooted in the Bochner’s theorem [27]
from harmonic analysis, which states that a continuous kernel in
the Euclidean space is positive definite if and only if the kernel
function is the Fourier transform of a non-negative measure. In
this paper, we will deal with the distance function which is not a
positive definite kernel. We will manage to derive a counterpart to
the randomized feature mapping, which was the influential idea
that has been used in [21].

Random projections have been used in [28] to develop a
powerful two-sample test in high dimensions. They derived an
asymptotic power function for their proposed test, and then
provide sufficient conditions for their test to achieve greater
power than other state-of-the-art tests. They then used the
receiver operating characteristic (ROC) curves (that are
generated from simulated data) to evaluate its performance
against competing tests. The derivation of the asymptotic
relative efficiency (ARE) is of its own interests. Despite the
usage of random projection, the details of their methodology
are very different from the one that is studied in the present paper.

Several distribution-free tests that are based on sample space
partitions were suggested in [29] for univariate random variables.
They proved that all suggested tests are consistent and showed the
connection between their tests and the mutual information (MI).
Most importantly, they derived fast (polynomial-time)
algorithms, which are essential for large sample size, since the
computational complexity of the naive algorithm is exponential
in sample size. Efficient implementations of all statistics and tests
described in the aforementioned paper are available in the R
package HHG, which can be freely downloaded from the

Comprehensive R Archive Network, http://cran.r-project.org/.
Null tables can be downloaded from the first author’s website.

Distance-based independence/dependence measurements
sometimes have been utilized in performing a greedy feature
selection, often via dependence maximization [8,30,31], and it
has been effective on some real-world datasets. This paper simply
mentions such a potential research line, without pursuing it.

Paper [32] derives an efficient approach to compute for the
conditional distance correlations. We noted that there are strong
resemblances between the distance covariances and its
conditional version. The search for a potential extension of the
work in this paper to conditional distance correlation can be a
meaningful future topic of research.

Paper [33] provides some important insights into the power of
distance covariance for multivariate data. In particular, they
discover that distance-based independence tests have limiting
power under some less common circumstances. As a remedy,
they propose tests based on an aggregation of marginal sample
distance and extend their approach to those based on Hilbert-
Schmidt covariance and marginal distance/Hilbert-Schmidt
covariance. It could be another interesting research direction
but beyond the scope of this paper.

7 CONCLUSION

A significant contribution of this paper is we demonstrated that
the multivariate variables in the independence tests need not
imply the higher-order computational desideratum of the
distance-based methods.

Distance-based methods are important in statistics,
particularly in the test of independence. When the random
variables are univariate, efficient numerical algorithms exist. It
is an open question when the random variables are multivariate.
This paper studies the random projection approach to tackle the
above problem. It first turns the multivariate calculation problem
into univariate calculation one via a random projection. Then
they study how the average of those statistics out of the projected
(therefore univariate) samples can approximate the distance-
based statistics that were intended to use. Theoretical analysis
was carried out, which shows that the loss of asymptotic efficiency
(in the form of the asymptotic variance of the test statistics) is
likely insignificant. The new method can be numerically much
more efficient, when the sample size is large, which is well-
expected under this information (or big-date) era. Simulation
studies validate the theoretical statements. The theoretical
analysis takes advantage of some newly available results, such
as the equivalence of the distance-based methods with the
reproducible kernel Hilbert spaces [12]. The numerical
methods utilize a recently appeared algorithm in [8].
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Time series data play an important role in many applications and their analysis reveals

crucial information for understanding the underlying processes. Among the many time

series learning tasks of great importance, we here focus on semi-supervised learning

based on a graph representation of the data. Two main aspects are studied in this paper.

Namely, suitable distance measures to evaluate the similarities between different time

series, and the choice of learning method to make predictions based on a given number

of pre-labeled data points. However, the relationship between the two aspects has never

been studied systematically in the context of graph-based learning. We describe four

different distancemeasures, including (Soft) DTW andMPDist, a distancemeasure based

on the Matrix Profile, as well as four successful semi-supervised learning methods,

including the recently introduced graph Allen–Cahn method and Graph Convolutional

Neural Network method. We provide results for the novel combination of these distance

measures with both the Allen-Cahn method and the GCN algorithm for binary semi-

supervised learning tasks for various time-series data sets. In our findings we compare

the chosen graph-based methods using all distance measures and observe that the

results vary strongly with respect to the accuracy. We then observe that no clear best

combination to employ in all cases is found. Our study provides a reproducible framework

for future work in the direction of semi-supervised learning for time series with a focus

on graph representations.

Keywords: semi-supervised learning, time series, graph Laplacian, Allen-Cahn equation, graph convolutional

networks

1. INTRODUCTION

Many processes for which data are collected are time-dependent and as a result the study of time
series data is a subject of great importance [1–3]. The case of time series is interesting for tasks such
as anomaly detection [4], motif computation [5] or time series forecasting [6]. We refer to [7–10]
for more general introductions.
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We here focus on the task of classification of time series [11–
16] in the context of semi-supervised learning [17, 18] where we
want to label all data points1 based on the fact that only a small
portion of the data is already pre-labeled.

An example is given in Figure 1where we see some time series
reflecting ECG (electrocardiogram) data and the classification
into normal heartbeats on the one hand and myocardial
infarction on the other hand. In our applications, we assume
that only for some of the time series the corresponding class is
known a priori. Our main contribution is to introduce a novel
combination of incorporating the data into a graph and then
incorporate this representation into several recently introduced
methods for semi-supervised learning. For this, each time series
becomes a node within a weighted undirected graph and the
edge-weight is proportional to the similarity between different
time series. Graph-based approaches have become a standard tool
in many learning tasks (cf. [19–24] and the references mentioned
therein). The matrix representation of the graph via its Laplacian
[25] leads to studying the network using matrix properties. The
Laplacian is the representation of the network that is utilized from
machine learning to mathematical imaging. Recently, it has also
been used network-Lasso-based learning approaches focusing on
data with an inherent network structure, see e.g., [26, 27]. A very
important ingredient in the construction of the Laplacian is the
choice of the appropriate weight function. In many applications,
the computation of the distance between time series or sub-
sequences becomes a crucial task and this will be reflected in our
choice of weight function.We consider several distance measures
such as dynamic time warping DTW [28], soft DTW [29], and
matrix profile [30].

We will embed these measures via the graph Laplacian
into two different recently proposed semi-supervised learning
frameworks. Namely, a diffuse interface approach that originates
from material science [31] via the graph Allen-Cahn equation as
well as a method based on graph convolutional networks [21].
Since these methods have originally been introduced outside of
the field of time series learning, their relationship with time
series distance measures has never been studied. Our goal is
furthermore to compare these approaches with the well-known
1NN approach [11] and a simple optimization formulation
solved relying on a linear system of equations. Our motivation
follows that of [32, 33], where many methods for supervised
learning in the context of time series were compared, namely that
we aim to provide a wide-ranging overview of recent methods
based on a graph representation of the data and combined with
several distance measures.

We structure the paper as follows. In section 2, we introduce
some basic notations and illustrate the basic notion of graph-
based learning motivated with a clustering approach. In section
3, we discuss several distance measures with a focus on the
well-known DTW measure as well as two recently emerged
alternatives, i.e., Soft DTW and the MP distance. We use section
4 to introduce the two semi-supervised learningmethods inmore
detail, followed by a shorter description of their well-known

1We here view one time-series as a data point and the feature vector for this data

point is the vector with the associated data collected in a vector.

competitors. section 5 will allow us to compare the methods and
study the hyperparameter selection.

2. BASICS

We consider discrete time series xi given as a vector of real
numbers of length mi. In general, we allow for the time series to
be of different dimensionality; later we often consider allmi = m.
We assume that we are given n time series xi ∈ R

mi . The goal of
a classification task is to group the n time series into a number k
of different clusters Cj with j = 1, . . . , k. In this paper we focus
on the task of semi-supervised learning [17] where only some of
the data are already labeled but we want to classify all available
data simultaneously. Nevertheless, we review some techniques
for unsupervised learning first as they deliver useful terminology.
As such the k-means algorithm is a prototype-based2 clustering
algorithm that divides the given data into a predefined number
of k clusters [34]. The idea behind k-means is rather simple as
the cluster centroids are repeatedly updated and the data points
are assigned to the nearest centroid until the centroids and data
points have converged. Often the termination condition is not
handled that strictly. For example, the method can be terminated
when only 1% of the points change clusters. The starting classes
are often chosen at random but can also be assigned in a more
systematic way by calculating the centers first and then assign the
points to the nearest center. While k-means remains very popular
it also has certain weaknesses coming from its minimization of
the sum of squared errors loss function [35]. We discuss this
method in some detail here to point out the main mechanism
and this is based on assigning points to clusters and hence the
cluster centroids based on the distance being the Euclidean norm,
which would also be done when k-means is applied to time
series. As a result the clusters might not capture the shape of the
data manifold as illustrated in a simple two-dimensional example
shown in Figure 2. In comparison, the alternativemethod shown,
i.e., a spectral clustering technique, performs much better. We
briefly discuss this method next as it forms the basis of the main
techniques introduced in this paper.

2.1. Graph Laplacian and Spectral
Clustering
As we illustrated in Figure 2 the separation of the data into two-
classes is rather difficult for k-means as the centroids are based
on a 2-norm minimization. One alternative to k-means is based
on interpreting the data points as nodes in a graph. For this,
we assume that we are given data points x1, ..., xn and some
measure of similarity [23]. We define the weighted undirected
similarity graph G = (V ,E) with the vertex or node set V and
the edge set E. We view the data points xi as vertices, V =
{x1, . . . , xn}, and if two nodes (xi, xj) have a positive similarity
function value, they are connected by an edge with weight wij

equal to that similarity. With this reformulation of the data we
turn the clustering problem into a graph partitioning problem
where we want to cut the graph into two or possibly more classes.

2Here the prototype of the cluster is the centroid.
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FIGURE 1 | A typical example for time series classification. Given the dataset ECG200, the goal is to automatically separate all time series into the classes normal

heartbeats and myocardial infarction.

FIGURE 2 | Clustering based on original data via k-means (left) vs. transformed data via spectral clustering (right).

This is usually done in such a way that the weight of the edges
across the partition is minimal.

We collect all edge weights in the adjacency matrix W =
(wij)i,j=1,...,n. The degree of a vertex xi is defined as di =

∑n
j=1 wij

and the degree matrix D is the diagonal matrix holding all n
node degrees. In our case we use a fully connected graph with
the Gaussian similarity function

w(xi, xj) = exp
(

−
dist(xi, xj)

2

σ 2

)

, (1)

where σ is a scaling parameter and dist(xi, xj) is a particular
distance function such as the Euclidean distance dist(xi, xj) : =

‖xi − xj‖2. Note that for similar nodes, the value of the distance
function is smaller than it would be for dissimilar nodes while the
similarity function is relatively large.

We now use both the degree and weight matrix to define
the graph Laplacian as L = D − W. Often the symmetrically
normalized Laplacian defined via

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2WD− 1

2 (2)

provides better clustering information [23]. It has some very
useful properties that we will exploit here. For example, given a

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 January 2022 | Volume 7 | Article 78485524

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bünger et al. Graph-Based Semi-supervised Time Series Classification

non-zero vector u ∈ R
n we obtain the energy term

uTLsymu = 1

2

∑

i,j

wij

(

ui√
di

−
uj
√

dj

)2

. (3)

Using this it is easy to see that Lsym is positive semi-definite with
non-negative eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn. The main
advantage of the graph Laplacian is that based on its spectral
information one can usually rely on transforming the data into
a space where they are easier to separate [23, 25, 36]. As a result
one typically requires the spectral information corresponding to
the smallest eigenvalues of Lsym. The most famed eigenvector is
the Fiedler vector, i.e., the eigenvector corresponding to the first
non-zero eigenvalue, which is bound to have a sign change and as
a result can be used for binary classification. The weight function
(1) is also found in kernel methods [37, 38] when the radial basis
kernel is applied.

2.2. Self-Tuning
In order to improve the performance of the methods based on
the graph Laplacian, tuning the parameter σ is crucial. While
hyperparameter tuning based on a grid search or cross validation
is certainly possible we also consider a σ that adapts to the given
data. For spectral clustering, such a procedure was introduced in
[39]. Here we use this technique to learning with time series data.
For each time series xi we assume a local scaling parameter σi. As
a result, we have the generalized square distance as

dist(xi, xj)

σi

dist(xi, xj)

σj
=

dist(xi, xj)
2

σiσj
(4)

and this gives the entries of the adjacency matrixW via

wi,j = exp

(

−
dist(xi, xj)

2

σiσj

)

. (5)

The authors in [39] choose σi as the distance to the K-th nearest
neighbor of xi where K is a fixed parameter, e.g., K = 9 is used in
[31].

In section 5, we will explore several different values for K and
their influence on the classification behavior.

3. DISTANCE MEASURES

We have seen from the definition of the weight matrix that the
Laplacian depends on the choice of distance measure dist(xi, xj).
If all time series are of the same length then the easiest distance
measure would be a Euclidean distance, which especially for large
n is fast to compute. This makes the Euclidean distance incredibly
popular but it suffers from being sensitive to small shifts in the
time series. As a result we discuss several popular and efficient
methods for different distance measures. Our focus is to illustrate
in an empirical study how the choice of distance measure impacts
the performance of graph-based learning and to provide further
insights for future research (cf. [40]).

3.1. Dynamic Time Warping
We first discuss the distance measure of Dynamic TimeWarping
(DTW, [28]). By construction, DTW is an algorithm to find an
optimal alignment between time series.

In the following, we adapt the notation of [28] to our case.
Consider two time series x and x̃ of lengthsm and m̃, respectively,
with entries xi, x̃i ∈ R for i = 1, . . . ,m and j = 1, . . . , m̃. We
obtain the local cost matrix C ∈ R

m×m̃ by assembling the local
differences for each pair of elements, i.e., Cij = |xi − x̃j|.

The DTW distance is defined via (m, m̃)-warping paths, which
are sequences of index tuples p =

(

(i1, j1), ..., (iL, jL)
)

with
boundary, monotonicity, and step size conditions

1 = i1 ≤ i2 ≤ . . . ≤ iL = m, 1 = j1 ≤ j2 ≤ . . . ≤ m̃,

(iℓ+1 − iℓ, jℓ+1 − jℓ) ∈ {(1, 0), (0, 1), (1, 1)} (ℓ = 1, . . . , L− 1).

The total cost of such a path with respect to x, x̃ is defined as

cp(x, x̃) =
L
∑

ℓ=1

|xiℓ − x̃jℓ |.

The DTW distance is then defined as the minimum cost of any
warping path:

DTW(x, y) : = min{cp(x, y) | p is a (m,m̃)-warping path}. (6)

Both the warping and the warping path are illustrated in Figure 3.
Computing the optimal warping path directly quickly

becomes infeasible. However, we can use dynamic programming
to evaluate the accumulated cost matrix D recursively via

D(i, j) : = |xi−x̃j|+min{D(i, j−1),D(i−1, j),D(i−1, j−1)}. (7)

The actual DTW distance is finally obtained as

DTW(x, y) = D(m, m̃). (8)

The DTW method is a heavily used distance measure for
capturing the sometimes subtle similarities between time series.
In the literature it is typically stated that the computational cost
of DTW being prohibitively large. As a result one is interested in
accelerating theDTWalgorithm itself. One possibility arises from
imposing additional constraints (cf. [28, 41]) such as the Sakoe-
Chiba Band and the Itakura parallelogram as these simplify
the identification of the optimal warping path. While these are
appealing concepts the authors in [42] observe that the well-
known FastDTW algorithm [41] is in fact slower than DTW.
For our purpose we will hence rely on DTW and in particular
on the implementation of DTW provided via https://github.com/
wannesm/dtaidistance. We observe that for this implementation
of DTW indeed FastDTW is outperformed frequently.

3.2. Soft Dynamic Time Warping
Based on a slight reformulation of the above DTW scheme,
we want to look at another time series distance measure, the
Soft Dynamic Time Warping (Soft DTW). It is an extension of
DTW designed allowing a differentiable loss function and it was
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FIGURE 3 | DTW warping (left) and warpings paths (right).

introduced in [29, 43]. We again start from the cost matrix C
with C(i, j) = |xi − x̃j| for time series x and x̃. Each warping

path can equivalently be described by a matrix A ∈ {0, 1}m×m̃

with the following condition: The ones in A form a path starting
in (1, 1) going to (m, m̃), only using steps downwards, to the
right and diagonal downwards. A is called monotonic alignment
matrix and we denote the set containing all these alignment
matrices with A(m, m̃). The Frobenius inner product 〈A,C〉
is then the sum of costs along the alignment A. Solving the
following minimization problem leads us to a reformulation of
the dynamic time warping introduced above as

DTW(C) = min
A∈A(N,M)

〈A,C〉. (9)

With Soft DTWwe involve all alignments possible inA(N,M) by
replacing the minimization with a soft minimum:

min
x∈S

f (x) ≈ minγ
x∈S

f (x) : = −γ log
∑

x∈S
exp

(−f (x)

γ

)

(10)

where S is a discrete subset of the real numbers. This function
approximates the minimum of f (x) and is differentiable. The
parameter γ controls the tuning between smoothness and
approximation of the minimum. Using the DTW-function (9)
within (10) yields the expression for Soft Dynamic TimeWarping
written as

DTWγ (x, x̃) = minγ
A∈A(m,n)

〈A,C〉

= −γ log
∑

A∈A(m,n)

exp

(−〈A,C〉
γ

)

. (11)

This is now a differentiable alternative to DTW, which involves
all alignments in our cost matrix.

Due to entropic bias3, Soft DTW can generate negative values,
which would cause issues for our use in time series classification.
We apply the following remedy to overcome this drawback:

Div(x, y) = DTWγ (x, y)−
1

2
·
(

DTWγ (x, x)+ DTWγ (y, y)
)

.

(12)
This measure is called Soft DTW divergence [43] and will be
employed in our experiments.

3.3. Matrix Profile Distance
Another alternative time series measure that has recently been
introduced is the Matrix Profile Distance (MP distance, [30]).
This measure is designed for fast computation and finding
similarities between time series.

We will again introduce the concept of the matrix profile
of two time series x and x̃. The matrix profile is based on the
subsequences of these two time series. For a fixed window length
L, the subsequence xi,L of a time series x is defined as a contiguous
L-element subset of x via xi,L = (xi, xi+1, . . . , xi+L−1). The all-
subsequences set A of x contains all possible subsequences of x
with length L, A = {x1,L, x2,L, . . . , xm−L+1,L}, where m is again
the length of x.

For the matrix profile, we need the all-subsequences sets A
and B of both time series x and x̃. The matrix profile PABBA is
the set consisting of the closest Euclidean distances from each

3This term is commonly used when the regression results shrink toward a mass at

the barycenter of a target [44].
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subsequence in A to any subsequence in B and vice versa:

PABBA =
{

min
x̃j,L∈B

‖xi,L − x̃j,L‖
∣

∣

∣

∣

xi,L ∈ A

}

∪
{

min
xi,L∈A

‖x̃j,L − xi,L‖
∣

∣

∣

∣

x̃j,L ∈ B

}

With the matrix profile, we can finally define the MP distance
based on the idea that two time series are similar if they have
many similar subsequences. We do not consider the smallest or
the largest value of PABBA because then the MP distance could
be too rough or too detailed. For example, if we would have two
rather similar time series, but either one has a noisy spike or some
missing values, then the largest value of the matrix profile could
give a wrong impression about the similarity of these two time
series. Instead, the distance is defined as

MPdist(X,Y) = k-th smallest value in sorted PABBA,

where the parameter k is typically set to 5% of 2N [30].
We now illustrate the MP distance using an example as

illustrated in section 3.3, where we display three time series of
length N = 100. Our goal is to compare these time series using
the MP distance. We observe that X1 and X2 have quite similar
oscillations. The third time series X3 does not share any obvious
features with the first two sequences.

The MP distance compares the subsequences of the time
series, depending on the window length L. Choosing the window
length to be L = 40, we get the following distances:

MPdist(X1,X2) = 0.433,

MPdist(X1,X3) = 5.425,

MPdist(X2,X3) = 5.404.

As we can see, the MP distance identified the similarity between
X1 and X2 shows that X1,X2 differ from X3. We also want to
show that the MP Distance depends on the window length L.
Let us look at the MP distance between the lower oscillation time
series X2 and X3, which is varying a lot for different values of L as
indicated in Table 1. Choosing L = 10 there is not a large portion
of both time series to compare with and as a result we observe
a small value for the MP distance, which does not describe the
dissimilarity of X2 and X3 in a proper way. If we look at L = 40,
there is a larger part of the time series structure to compare the
two series. If there is a special recurring pattern in the time series,
the length L should be large enough to cover one recurrence. We
illustrate the comparison based on different window lengths in
Figure 4.

For the tests all data sets consist of time series with a certain
length, varying for each data set. Thus we have to decide which

TABLE 1 | MP distance depending on the window length.

L 10 20 30 40

MPdist(X2,X3) 0.270 2,034 3,955 5,404

window length L should be chosen automatically in the classifier.
An empirical study showed that choosing L ≈ N/2 gives good
classification results.

We briefly illustrate the computing times of the different
distance measures when applied to time series of increasing
length shown in Figure 5. It can be seen that DTW is faster
than fastDTW. Obviously, the Euclidean distance shows the best
scalability. We also observe that the computation of the SDTW
is scaling worse than the competing approaches when applied to
longer time series.

4. SEMI-SUPERVISED LEARNING BASED
ON GRAPH LAPLACIANS

In this section, we focus mainly on two methods that have
recently gained wide attention. This first method is inspired by
a partial differential equation model originating from material
science and the second approach is based on neural networks that
incorporate the graph structure of the labeled and unlabeled data.

4.1. Semi-supervised Learning With Phase
Field Methods: Allen–Cahn Model
Within the material science community phase field methods
have been developed to model the phase separation of a
multicomponent alloy system (cf. [45, 46]). The evolution of the
phases over time is described by a partial differential equation
(PDE) model, such as the Allen-Cahn [46] or Cahn-Hilliard
equation [47] both non-linear reaction-diffusion equations of
second and fourth order, respectively. These equations can be
obtained as gradient flows of the Ginzburg–Landau energy
functional

E(u) =
∫

ε

2
|∇u|2 + 1

ε
φ(u)

where u is the order parameter and ε a parameter reflecting the
width of the interface between the pure phases. The polynomial
φ is chosen to have minima at the pure phases, namely u = −1
and u = 1, to enforce that a minimization of the Ginzburg–
Landau energy will lead to phase separation. A common choice
is the well-known double-well potential φ(u) = 1

4 (1 − u2)2. The

Dirichlet energy term |∇u|2 corresponds to minimization of the
interfacial length. The minimization is then performed using a
gradient flow, which leads to the Allen-Cahn equation

ut = 1u− 1

ε
φ′(u) (13)

equipped with appropriate boundary and initial conditions. A
modified Allen–Cahn equation was used for image inpainting,
i.e., restoring damage parts in an image, where a misfit ω

(

f − u
)

term is added to Equation (13) (cf. [48, 49]). Here, ω is a penalty
parameter and f is a function equal to the undamaged image parts
or later training data. In [31], Bertozzi and Flenner extended this
idea to the case of semi-supervised learning where the training
data correspond to the undamaged image parts, i.e, the function
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FIGURE 4 | Illustration of Matrix Profile distance (left), subsequences indicated in red with window length L = 10 (middle) and L = 30 (right).

FIGURE 5 | Runtimes of distance computation between a single pair of time series with increasing length.

TABLE 2 | Default parameters used in the experiments.

Method Parameters and default values

Allen–Cahn me = 20, ε = 1√
n
, c = 3

ε
+ ω, ω = 1e10, τ = 0.01, tol = 1e− 8

GCN 10-NN sparsification, h = 32, dropout p = 0.5, Adam

optimization [62], learning rate 0.01, weight decay 0.0005, 500

epochs

Linear System β = 1, tol = 1e− 5

1NN —

f . Their idea is to consider the modified energy of the following
form

E(u) = ε

2
uTLsymu+ 1

4ε

n
∑

i=1

(u2i − 1)2 +
n
∑

i=1

ωi

2
(fi − ui) (14)

where fi holds the already assigned labels. Here, the first
term in (14) reflects the RatioCut based on the graph Laplacian,
the second term enforces the pure phases, and the third term
corresponds to incorporating the training data. Numerically, this
system is solved using a convexity splitting approach [31] where

we write

E(u) = E1(u)− E2(u)

with

E1(u) : =
ε

2
uTLsymu+ c

2
uTu

and

E2(u) : =
c

2
uTu− 1

4ε
+

n
∑

i=1

(u2i − 1)2 −
n
∑

i=1

ωi

2
(fi − ui)

where the positive parameter c ∈ R ensures convexity of both
energies. In order to compute the minimizer of the above energy
we use a gradient scheme where

ul+1 − ul

τ
= −∇E1(u

l+1)+∇E2(u
l)

where the indices k, k + 1 indicate the current and next time
step, respectively. The variable τ is a hyperparameter but can be
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TABLE 3 | Study of self-tuning parameters.

k = 7 (%) k = 20 (%) k =
√
n (%) k = 0.1n (%) k = 0.05n (%)

ECG200 (n = 200)

MPDist GCN 83.58 81.74 81.90 81.74 82.54

Allen-Cahn 81.00 79.00 80.00 79.00 80.00

SDTW GCN 91.95 91.34 90.70 91.43 90.55

Allen-Cahn 92.00 90.00 91.00 90.00 91.00

DTW GCN 88.92 86.76 87.43 86.76 88.97

Allen-Cahn 82.00 82.00 83.00 82.00 82.00

SonyAIBORobotSurface1 (n = 621)

MPDist GCN 95.45 88.74 93.08 78.10 89.62

Allen-Cahn 75.54 72.88 73.04 75.37 73.71

SDTW GCN 90.32 91.46 92.48 87.34 92.85

Allen-Cahn 93.68 85.19 82.36 81.36 82.36

DTW GCN 97.59 97.58 97.48 96.49 97.35

Allen-Cahn 84.03 86.85 87.69 87.19 88.19

ECGFiveDays (n = 884)

MPDist GCN 99.70 99.77 99.51 99.66 99.15

Allen-Cahn 89.89 90.71 95.35 95.82 96.40

SDTW GCN 97.30 97.11 97.31 96.49 97.06

Allen-Cahn 82.00 86.99 85.48 86.76 87.57

DTW GCN 97.22 97.19 97.39 97.20 97.35

Allen-Cahn 77.35 76.31 75.72 73.17 74.68

TwoLeadECG (n = 1,162)

MPDist GCN 99.81 99.78 99.81 99.62 99.74

Allen-Cahn 99.12 97.10 96.49 97.72 96.57

SDTW GCN 92.10 90.74 90.53 89.98 90.72

Allen-Cahn 97.19 93.24 91.04 87.27 87.71

DTW GCN 92.94 94.04 94.98 93.97 96.49

Allen-Cahn 93.85 92.36 92.10 94.12 93.50

Bold values indicate most accurate classification.

interpreted as a pseudo time-step. In more detail following the
notation of [20], this leads to

ul+1 − ul

τ
+ εLsymul+1 + cul+1 = cul − 1

ε
∇ψ(ul)+∇φ(ul)

with

ψ(ul) =
n
∑

i=1

((uli)
2 − 1)2, φ(ul) =

n
∑

i=1

ωi

2
(fi − uli).

Expanding the order parameter in a number of the small
eigenvectors φi of Lsym via u =

∑me
i=1 aiφi = 8mea where a is

a coefficient vector and 8me = [φ1, . . . ,φme ]. This lets us arrive
at

(1+ετλjal+1
j +cτ )al+1

j = (1+τ c)alj−
1

ε
blj+dlj, ∀j = 1, . . . ,me

using

bl = 8T
me
∇ψ(8mea

l), dl = 8T
me
∇φ(8mea

l).

In [50], the authors extend this to the case of multiple classes
where again the spectral information of the graph Laplacian are
crucial as the energy term includes ε2 tr(U

TLsymU) withU ∈ R
n,s,

s being the number of classes for segmentation, and tr being the
trace of the matrix. Details of the definition of the potential and
the fidelity term incorporating the training data are found in
[50]. Further extensions of this approach have been suggested in
[20, 22, 51–55].

4.2. Semi-supervised Learning Based on
Graph Convolutional Networks
Artificial neural networks and in particular deep neural networks
have shown outstanding performance in many learning tasks [56,
57]. The incorporation of additional structural information via a
graph structure has received wide attention [24] with particular
success within the semi-supervised learning formulation [21].

Let h(l)i denote the hidden feature vector of the i-th node in the
l-th layer. The feature mapping of a simple multilayer perceptron
(MLP) computes the new features by multiplying with a weight
matrix 2(l)T and adding a bias vector b(l), then applying a
(potentially layer-dependent) ReLU activation function σl in all
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TABLE 4 | Varying the number of eigenpairs for the reduced Allen–Cahn equation.

Number of eigenvalues 10 (%) 20 (%) 30 (%) 150 (%) 190 (%)

Dataset ECG200

MPDist 82.00 81.00 86.00 62.00 56.00

SDTW 78.00 92.00 92.00 68.00 66.00

DTW 78.00 82.00 87.00 69.00 54.00

Number of eigenvalues 10 (%) 20 (%) 30 (%) 500 (%) 600 (%)

SonyAIBORobotSurface1

MPDist 85.36 75.54 73.04 51.58 51.08

SDTW 96.17 93.68 83.19 52.08 49.92

DTW 90.01 84.03 72.71 52.41 48.58

Number of eigenvalues 10 (%) 20 (%) 30 (%) 700 (%) 800 (%)

ECGFiveDays

MPDist 87.19 89.89 85.95 50.29 51.22

SDTW 91.52 82.00 84.20 54.00 52.38

DTW 68.87 77.35 77.00 49.82 50.29

Bold values indicate most accurate classification.

layers except the last. This layer operation can be written as

hli = σl

(

2(l)Th
(l−1)
i + b(l)

)

.

In Graph Neural Networks, the features are additionally
propagated along the edges of the graph. This is achieved by
forming weighted sums over the local neighborhood of each
node, leading to

hli = σl

(

∑

j∈Ni∪{i}

ŵij
√

d̂id̂j

2(l)Th
(l−1)
j + b(l)

)

. (15)

Here, Ni denotes the set of neighbors of node i, 2
(l) and b(l) the

trainable parameters of layer l, the ŵij denote the entries of the

adjacency matrix W with added self loops, Ŵ = W + I, and the

d̂i denote the row sums of that matrix. By adding the self loops, it
is ensured that the original features of that node are maintained
in the weighted sum.

To obtain a matrix formulation, we can accumulate state
matrices X(l) whose n rows are the feature vectors h(l)Ti for i =
1, . . . , n. The propagation scheme of a simple two-layer graph
convolutional network can then be written as

X(1) = σ

(

D̂−1/2ŴD̂−1/2X(0)2(1) + b(1)
)

X(2) = D̂−1/2ŴD̂−1/2X(1)2(2) + b(2)
(16)

where D̂ is the diagonal matrix holding the d̂i.
Multiplication with D̂−1/2ŴD̂−1/2 can also be understood

in a spectral sense as performing graph convolution with the
spectral filter function ϕ(λ) = 1 − λ. This filter originates from
truncating a Chebyshev polynomial to first order as discussed
in [58]. As a result of this filter the eigenvalues λ of the graph
Laplacian operator L (formed in this case after adding the self

loops) are transformed via ϕ to obtain damping coefficients
for the corresponding eigenvectors. This filter has been shown
to lead to convolutional layers equivalent to aggregating node
representations from their direct neighborhood (cf. [58] for more
information).

It has been noted, e.g., in [59] that traditional graph neural
networks including GCN are mostly targeted at the case of sparse
graphs, where each node is only connected to a small number of
neighbors. The fully connected graphs that we utilize in this work
present challenges for GCN through their spectral properties.
Most notably, these dense graphs typically have large eigengaps,
i.e., the gap between the smallest eigenvalue λ1 = 0 and the
second eigenvalue λ2 > 0may be close to 1. Hence the GCN filter
acts almost like a projection onto the undesirable eigenvector φ1.
However, it has been observed in the same work that in some
applications, GCNs applied to sparsified graphs yield comparable
results to dedicated dense methods. Our experiments justified
only using Standard GCN on a k-nearest neighbor subgraph.

4.3. Other Semi-supervised Learning
Methods
In the context of graph-based semi-supervised learning a rather
straightforward approach follows fromminimizing the following
objective

min
u

1

2

∥

∥u− f
∥

∥

2
2
+ β

2
uTLsymu (17)

where f holds the values 1,−1, and 0 according to the labeled and
unlabeled data. Calculating the derivative shows that in order to
obtain u, we need to solve the following linear system of equations

(

I + βLsym
)

u = f

where I is the identity matrix of the appropriate dimensionality.
Furthermore, we compare our previously introduced

approaches to the well-known one-nearest neighbor (1NN)
method. In the context of time series classification this method
was proposed in [11]. In each iteration, we identify the indices
i, j with the shortest distance between the labeled sample xi and
the unlabeled sample xj. The label of xi is then copied to xj. This
process is repeated until no unlabeled data remain.

In [60], the authors construct several graph Laplacians and
then perform the semi-supervised learning based on a weighted
sum of the Laplacian matrices.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate how the algorithms discussed in this
paper perform when applied to multiple time series data sets. We
here focus on binary classification and use time series taken from
the UCR time series classification archive 4 [61]. All our codes are
to be found at https://github.com/dominikalfke/TimeSeriesSSL.
The distance measure we use here are the previously introduced

4We focussed on all binary classification series listed in

TwoClassProblems.csv within http://www.timeseriesclassification.com/

Downloads/Archives/Univariate2018_arff.zip.
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FIGURE 6 | Comparison of the proposed methods using various distance measures for a variety of time series data. The size of the training set is specified in

TwoClassProblems.csv within http://www.timeseriesclassification.com/Downloads/Archives/Univariate2018_arff.zip.

DTW, Soft DTW divergence, MP, and Euclidean distances. For
completeness, we list the default parameters for all methods
in Table 2.

We split the presentation of the numerical results in the
following way. We start by exploring the dependence of
our schemes on some of the hyperparameters inherent in
their derivation. We start by investigating the self-tuning
parameters, namely the value of the chosen neighbor to

compute the local scaling. We then study the performance
of the Allen–Cahn model depending on the number of
eigenpairs used for the approximation of the graph Laplacian.
For our main study, we pair up all distance measures with
all learning methods and report the results on all datasets.
Furthermore, we investigate how the method’s performance
depends on the number of available training data using random
training splits.
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FIGURE 7 | Comparison of the proposed methods using various distance measures for a variety of time series data.
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FIGURE 8 | Method accuracy comparison for random training splits of different sizes (part 1/5).
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FIGURE 9 | Method accuracy comparison for random training splits of different sizes (part 2/5).
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FIGURE 10 | Method accuracy comparison for random training splits of different sizes (part 3/5).
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FIGURE 11 | Method accuracy comparison for random training splits of different sizes (part 4/5).
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FIGURE 12 | Method accuracy comparison for random training splits of different sizes (part 5/5).
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5.1. Self-Tuning Values
In section 2, we proposed the use of the self-tuning approach
for the Gaussian function within the weight matrix. The
crucial hyperparameter we want to explore now is the choice
of neighbor k for the construction of σi = dist(xi, xk,i)
with xk,i the k-th nearest neighbor of the data point xi.
We can see from Table 3 that the small values k = 7, 20
perform quite well in comparison to the larger self-tuning
parameters. As a result we will use these smaller values in all
further computations.

5.2. Spectral Approximation
As described in section 4 the Allen–Cahn equation is projected
to a lower-dimensional space using the insightful information
provided by the eigenvectors to the smallest eigenvalues of
the graph Laplacian. We now investigate how the number
of used eigenvectors impacts the accuracy. In the following
we vary the number of eigenvalues from 10 to 190 and
compare the performance of the Allen–Cahn method on
three different datasets. The results are shown in Table 4

and it becomes clear that a vast number of eigenvectors
does not lead to better classification accuracy. As a result
we require a smaller number of eigenpair computations
and also fewer computations within the Allen–Cahn
scheme itself. The comparison was done for the self-tuning
parameter k = 7.

5.3. Full Method Comparison
We now compare the Allen-Cahn approach, the GCN
scheme, the linear systems based method, and the 1NN
algorithm, each paired up with each of the distance
measures introduced in section 3. Full results are
listed in Figures 6, 7. We show the comparison for
all 42 datasets.

As can be seen there are several datasets where the
performance of all methods is fairly similar even when the
distance measure is varied. Here, we name Chinatown,
Earthquakes, GunPoint, ItalyPowerDemand,
MoteStrain, Wafer. There are several examples where
the methods do not seem to perform well, with GCN and
1NN relatively similar outperforming the Linear System and
Allen–Cahn approach. Such examples are DodgerLoopGame,
DodgerLoopWeekend. The GCN method clearly does
not perform well with the GunPoint datasets where the
other methods clearly perform well. It is surprising to note
that the Euclidean distance, given its computational speed
and simplicity, does not come out as underperforming
with respect to the accuracy across the different methods.
There are very few datasets where one distance clearly
outperforms the other choice. We name ShapeletSim,
ToeSegementation1 here. One might conjecture that the
varying sizes of the training data might be a reason for the
difference in performance of the models. To investigate this
further we will next vary the training splits for all datasets
and methods.

5.4. Varying Training Splits
In Figures 8–12, we vary the size of the training set from 1 to 20%
of the available data. All reported numbers are averages over 100
random splits. The numbers we observe mirror the performance
of the full training size. We see that the methods show reduced
performance when only 1% of the training data are used but often
reach an accuracy plateau when 5 to 10% of the training data
are used. We observe that the size of the training set alone does
not explain the different performance in the various datasets and
methods applied here.

6. CONCLUSION

In this paper we took to the task of classifying time series data
in a semi-supervised learning setting. For this we proposed to
represent the data as a fully-connected graph where the edge
weights are created based on a Gaussian similarity measure (1).
The heart of this function is the difference measure between
the time series, for which we used the (Soft) Dynamic Time
Warping and Matrix Profile based distance measures as well as
the Euclidean distance. We then investigated several learning
algorithms, namely, the Allen–Cahn-based method, the Graph
Convolutional Network scheme, and a linear system approach,
all reliant on the graph Laplacian, as well as the Nearest Neighbor
method. We then illustrated the performance of all pairs of
distance measure and learning methods. In this empirical study
we observed that the methods tend to show an increased
performance adding more training data. Studying all binary
time-series with the timeseriesclassification.com repository gives
results that in accordance with the no free lunch theorem
show no clear winner. On the positive side the methods
often perform quite well and there are only a few datasets
with decreased performance. The comparison of the distance
measures indicates there are certain cases where they outperform
their competitors but also there is no clear winner with regards
to accuracy. We believe that this empirical, reproducible study
will encourage further research in this direction. Additionally,
it might be interesting to consider model-based representations
of time-series such as ARMA [63, 64] to use within the graph
representations used here.
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The beta regression is a widely known statistical model when the response (or the

dependent) variable has the form of fractions or percentages. In most of the situations in

beta regression, the explanatory variables are related to each other which is commonly

known as the multicollinearity problem. It is well-known that the multicollinearity problem

affects severely the variance of maximum likelihood (ML) estimates. In this article, we

developed a new biased estimator (called a two-parameter estimator) for the beta

regressionmodel to handle this problem and decrease the variance of the estimation. The

properties of the proposed estimator are derived. Furthermore, the performance of the

proposed estimator is compared with the ML estimator and other common biased (ridge,

Liu, and Liu-type) estimators depending on the mean squared error criterion by making

a Monte Carlo simulation study and through two real data applications. The results of

the simulation and applications indicated that the proposed estimator outperformed ML,

ridge, Liu, and Liu-type estimators.

Keywords: biased estimation, Fisher’s scoring, mean squared error (MSE), multicollinearity, Liu beta regression,

relative efficiency, ridge beta regression, two-parameter estimator

INTRODUCTION

The beta regression model has been common in many areas, primarily economic and medical
research, such as income share, unemployment rates in certain nations, the Gini index for each
region, graduation rates inmajor universities, or the percentage of body fat inmedical subjects. Beta
regression model, such as any regression model in the context of generalized linear models (GLMs)
is used to examine the effect of certain explanatory variables on a non-normal response variable.
However, in the case of beta regression, the response component is restricted to an interval (0, 1),
such as proportions, percentages, and fractions.

Multicollinearity is a popular issue in econometric modeling. It indicates that there is a strong
association between the explanatory variables. It is well-established that the covariance matrix of
the maximum likelihood (ML) estimator is ill-conditioned in the case of severing multicollinearity.
One of the negative consequences of this issue is that the variance of the regression coefficients
gets inflated. As a consequence, the significance and the magnitude of the coefficients are affected.
Many of the conventional approaches used to address this issue include: gathering additional data,
re-specifying the model, or removing the correlated variable/s.
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During the last years, shrinkage methods have become a
commonly recognized and more effective methodology for
solving the impact of the multicollinearity problem in several
regression models. To solve this problem, Hoerl and Kennard
[1, 2] proposed the ridge estimator. The concept of the ridge
estimator is to add a small definite amount (k) to the diagonal
entries of the covariance matrix to increase the conditioning of
this matrix, reduce the mean squared error (MSE), and achieve
consistent coefficients. For a review of the ridge estimator in both
linear and GLMs, e.g., as shown in References Rady et al. [3],
Abonazel and Taha [4], Qasim et al. [5], Alobaidi et al. [6], and
Sami et al. [7].

One of the drawbacks of the ridge estimator is that estimated
parameters are non-linear functions of the ridge parameter
and the small k selected might not be high enough to solve
multicollinearity. As a solution to this problem, Liu [8] developed
the Liu estimator which is a linear function of the shrinkage
parameter. The Liu estimator is a combination of the ridge
estimator and the Stein estimator suggested by Stein [9]. For
a review of the Liu estimator in both linear and GLMs,
e.g., as shown in References. Liu [8], Karlsson et al. [10],
Qasim et al. [11], and Naveed et al. [12]. Furthermore, Liu
[13] proved the supremacy of the Liu-type estimator over the
ridge and Liu estimators. Details about Liu-type estimator,
properties, and applications in regression models are shown in
References Liu [14], Özkale and Kaciranlar [15], Li and Yang
[16], Kurnaz and Akay [17], Sahriman and Koerniawan [18],
and Algamal and Abonazel [19]. As a good alternative for the
Liu-type estimator, Özkale and Kaciranlar [15] proposed the two-
parameter estimator, and they proved that the two-parameter
estimator utilizes the power of both the ridge estimator and the
Liu estimator. Extensions of two-parameter estimator in GLMs
include Huang and Yang [20], Algamal [21], Asar and Genç [22],
Rady et al. [23, 24], Çetinkaya and Kaçiranlar [25], Abonazel and
Farghali [26], Akram et al. [27], and Lukman et al. [28].

The rest of the article is arranged as follows: Section
Methodology presents an introduction about the beta regression
model, its estimation using the ML method, and the proposed
two-parameter estimator; Section Choosing the Shrinkage
Parameters provides suggested shrinkage parameters for our
estimator; Sections Simulation Study and Real Data Applications
provide a numerical evaluation using both Monte Carlo
simulation and two empirical data applications, respectively; and
Section Conclusion offers some concluding remarks.

METHODOLOGY

Beta Regression Model
Practitioners usually use linear regressionmodeling to investigate
the relationship and effect of some selected explanatory variables
on the normal response variable. However, this is not suitable
for circumstances where the response variable is constrained
to the interval (0, 1) because it may give fitted values for the
variable of concern that surpass its lower and upper limits.
Therefore, inference based on the normality assumption can
be deceptive. The beta regression model was first developed by
Ferrari and Cribari-Neto [29] by connecting the mean function

of its response variable to a set of linear predictors via a
monotone differentiable function called the link function. This
model contains a precision parameter, the inverse of which is
called a dispersion scale. In the basic type of a beta regression
model, the precision parameter is believed to be constant through
observations. Nevertheless, the precision parameter might not
be constant through findings such as those of Smithson and
Verkuilen [30] and Cribari-Neto and Zeileis [31].

Let y is a continuous random variable that follows a beta
distribution with the following probability density function:

f
(

y; µ,φ
)

= Ŵ(φ)

Ŵ(µφ)Ŵ((1− µ) φ) y
(µφ)−1

(

1− y
)(φ−µφ−1);

0 < y < 1; 0 < µ < 1;φ > 0, (1)

where Ŵ(·) is the gamma function and φ is the precision
parameter [32]:

φ = 1− σ 2

σ 2
.

The mean and variance of the beta probability distribution
are: E

(

y
)

= µ, var
(

y
)

= µ (1− µ) σ 2. Using the logit
link function, the model allows µi, depending on covariates
as follows:

g (µi) = log

(

µi

1− µi

)

= xTi β = ηi, (2)

where g(·) be a monotonic differentiable link function used to
relate the systematic component with the random component,

β =
(

β1, . . . ,βp
)T

is a p × 1 vector of unknown parameters,

xi =
(

xi1, . . . , xip
)T

is the vector of p regressors, and ηi is a
linear predictor.

Estimation of the beta regression parameters is done by using
the ML method [33]. The log-likelihood function of the beta
regression model is given by:

L
(

µi,φ; yi
)

=
∑n

i=1

{

logŴ(φ)− logŴ(µi (φ))

− logŴ((1− µi) (φ))+ (µi (φ)− 1) log
(

yi
)

+ ((1− µi) (φ)− 1) log
(

1− yi
)}

(3)

By differentiating the log-likelihood function in Eq. (3) with
respect to β , gives us the score function for β :

S (β) = φXTA
(

y∗ − µ∗) , (4)

where A = diag
(

1
g
′
(µ1)

, . . . , 1
g
′
(µn)

)

, y∗ =
(

y∗1 , . . . , y
∗
n

)T
,

µ∗ =
(

µ∗
1 , . . . ,µ

∗
n

)T
, y∗i = log

(

yi
1−yi

)

, and µ∗
i = ψ (µiφ) −

ψ ((1− µi) φ), such that ψ(·) denoting the digamma function,
and g′(·) is the first derivative of g(·). The iterative reweighted
least-squares (IWLS) algorithm or Fisher’s scoring algorithm was
used for estimating β [34, 35]. The form of this algorithm can be
written as:

β(r+1) = β(r) +
(

I
(r)
ββ

)−1
S
(r)
β (β) ,
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where S(
r)
β is the score function defined in Eq. (4), and I(

r)
ββ is the

information matrix for β , as shown in References Espinheira
et al. [35] for more details. The initial value of β can be obtained
by the least-squares estimation, while the initial value for each
precision parameter is:

φ̂i =
µ̂i

(

1− µ̂i

)

σ̂ 2
i

, (5)

where µ̂ and σ̂ 2
i values are obtained from linear regression.

Given r = 0, 1, 2, . . . is the number of iterations that are
performed, convergence occurs when the difference between
successive estimates becomes smaller than a given small constant.
At the final step, the ML estimator of β is obtained as:

β̂BML =
(

XTŴX
)−1

XTŴẑ, (6)

whereX is an n×pmatrix of regressors, ẑ = η̂+Ŵ−1Â
(

y∗ − µ∗),
and Ŵ = diag

(

ŵ1, . . . , ŵn

)

;

ŵi =
(

1− σ̂ 2
)

σ̂ 2

{

ψ
′
(

µ̂i

(

1− σ̂ 2
)

σ̂ 2

)

+ψ ′
(

(

1− µ̂i

) (

1− σ̂ 2
)

σ̂ 2

)}

1
{

g
′ (
µ̂i

)}2
,

where Ŵ and Â are the estimated ML matrices of W and A,
respectively. The ML estimator of β is normally distributed

with asymptotic mean vectors E
(

β̂BR

)

= β and asymptotic

covariance matrix:

Cov
(

β̂BML

)

= 1

φ

(

XTŴX
)−1

(7)

Hence, the asymptotic trace mean squared error (TMSE) of
β̂BML is

TMSE
(

β̂BML

)

= tr

[

1

φ
(XTŴX)

−1
]

(8)

Ridge and Liu Estimators
Recently, Abonazel and Taha [4] and Qasim et al. [5] introduced
the ridge beta regression (RBR) estimator as follows:

β̂RBR =
(

XTŴX + kI
)−1

XTŴẑ; k > 0 (9)

It can note that if k = 0, then β̂RBR = β̂BML. The bias vector of
the RBR estimator is

Bias
(

β̂RBR

)

= −k
(

XTŴX + kI
)−1

β (10)

Suppose that λ1 ≥ . . . ≥ λp ≥ 0 are the ordered eigenvalues

of XTŴX matrix and Q is the matrix whose columns are the
eigenvectors of XTŴX matrix. Then 3 = diag

(

λ1, . . . , λp
)

=

QTXTŴXQ and α = QTγ . Then, the matrix mean squared error
(MMSE) of the RBR estimator is:

MMSE
(

β̂RBR

)

= Cov
(

β̂RBR

)

+ Bias
(

β̂RBR

)

Bias
(

β̂RBR

)T

= 1

φ

(

Q3−1
k
33−1

k
QT
)

+ k2Q3−1
k
ααT3−1

k
QT,

(11)

where 3k = diag
(

λ1 + k, . . . , λp + k
)

, and the TMSE of the
RBR estimator is

TMSE
(

β̂RBR

)

= tr
(

MMSE
(

β̂RBR

))

(12)

= 1

φ

∑p

j=1

λj

(λj + k)2
+ k2

∑p

j=1

α2j

(λj + k)2

The first term in Eq. (12) is an asymptotic variance, and the
second term is a square bias. Abonazel and Taha [4] and Qasim
et al. [5] showed the derivation of the MSE properties of the
RBR estimator.

The Liu estimator can be extended to the beta regression
model, the Liu beta regression (LBR) estimator is given by
Karlsson et al. [10] as:

β̂LBR =
(

XTŴX + I
)−1 (

XTŴX + dI
)

β̂BML;
0 < d < 1, (13)

where d is the Liu parameter, the bias vector of the LBR
estimator is:

Bias
(

β̂LBR

)

=
(

XTŴX + I
)−1

(

d − 1
)

β (14)

The MMSE for the LBR estimator can be derived as:

MMSE
(

β̂LBR

)

= Cov
(

β̂LBR

)

+ Bias
(

β̂LBR

)

Bias
(

β̂LBR

)T

= 1

φ

(

Q3−1
1 3d3

−13d3
−1
1 QT

)

+
(

d − 1
)2
Q3−1

1 ααT3−1
1 QT , (15)

where 31 = diag
(

λ1 + 1, . . . , λp + 1
)

and 3d =
diag

(

λ1 + d, . . . , λp + d
)

. The TMSE of the LBR estimator is:

TMSE(β̂LBR) = tr
(

MMSE
(

β̂LBR

))

= 1

φ

p
∑

j=1







(

λj + d
)2

λj
(

λj + 1
)2

+
(

d − 1
)2
α2j φ

(

λj + 1
)2







(16)

Recently, Algamal and Abonazel [19] developed the Liu-type beta
regression (LTBR) estimator:

β̂LTBR = (XTŴX + kI)
−1

(XTŴX − dI)β̂BML;
k > 0,−∞ < d <∞ (17)
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The bias vector of the LTBR estimator is:

Bias
(

β̂LTBR

)

= −
(

d + k
)

(

XTŴX + kI
)−1

β (18)

The MMSE of the LTBR estimator is:

MMSE
(

β̂LTBR

)

= Cov
(

β̂LTBR

)

+ Bias
(

β̂LTBR

)

Bias
(

β̂LTBR

)T

= 1

φ

(

Q3−1
k
3−d3

−13−d3
−1
k

QT
)

+
(

d + k
)2
Q3−1

k
ααT3−1

k
QT (19)

where3−d = diag
(

λ1 − d, . . . , λp − d
)

. Then, theMSE of the
LTBR estimator is

MSE
(

β̂LTBR

)

= tr
(

MMSE
(

β̂LTBR

))

(20)

= 1

φ

∑p

j=1







(

λj − d
)2

λj
(

λj + k
)2

+
(

d + k
)2
α2j φ

(

λj + k
)2







The Proposed Estimator
In this section, we extend the two-parameter estimator
introduced by Özkale and Kaçiranlar [15] to the beta regression
model to combat multicollinearity and obtain more stable and
accurate results. The two-parameter beta regression (TPBR)
estimator can be written as follows:

β̂TPBR = (XTŴX + kI)
−1

(XTŴX + kdI)β̂BML;
k > 0; 0 < d < 1 (21)

It is worth noting that the TPBR estimator is a general class
that has some estimators as special cases. These estimators are
the LBR, RBR, and beta maximum likelihood (BML) estimators,
which can be given, respectively, as follows:

lim
k→1

β̂TPBR = β̂LBR =
(

XTŴX + I
)−1 (

XTŴX + dI
)

β̂BML,

lim
d→0

β̂TPBR = β̂RBR =
(

XTŴX + kI
)−1 (

XTŴX
)

β̂BML,

lim
k→0

β̂TPBR = β̂BML =
(

XTŴX
)−1

(XTŴẑ).

The bias vector of the TPBR estimator is

Bias
(

β̂TPBR

)

= k
(

d − 1
)

(

XTŴX + kI
)−1

β (22)

The MMSE for TPBR estimator can be derived as:

MMSE
(

β̂TPBR

)

= Cov
(

β̂TPBR

)

+ Bias
(

β̂TPBR

)

Bias
(

β̂TPBR

)T

= 1

φ

(

Q3−1
k
3kd3

−13kd3
−1
k

QT
)

+k2
(

d − 1
)2
Q3−1

k
ααT3−1

k
QT , (23)

where 3kd = diag
(

λ1 + kd, λ2 + kd, . . . , λp + kd
)

, the TMSE
of the TPBR estimator is:

TMSE
(

β̂TPBR

)

= tr
(

MMSE
(

β̂TPBR

))

(24)

= 1

φ

∑p

j=1







(

λj + kd
)2

λj
(

λj + k
)2

+
α2j φk

2
(

d − 1
)2

(

λj + k
)2







The Superiority of the New Estimator
The following lemmas prove the superiority of the two-parameter
beta estimator over the other estimators.

Lemma 1. Farebrother [36]: Let M be a positive definite matrix,
δ be a vector of non-zero constants, and c be a positive constant.
Then, cM − δδT > 0 if and only if (iff) δMδT < c.

Two-Parameter Beta Estimator vs. ML Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the ML estimator:

Lemma 2. under the beta regression model, let k > 0, 0 <

d < 1, and bTPBR = Bias
(

β̂TPBR

)

. Then, MMSE
(

β̂BML

)

−

MMSE
(

β̂TPBR

)

> 0 iff k
(

1− d
) (

2λj + k
(

1+ d
))

> 0.

Proof: the difference between the MMSE functions of the ML
estimator and the TPBR estimator is obtained by:

MMSE
(

β̂BML

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

φ3−1 −3−1
k
3kd3

−13kd3
−1
k

)

QT − bTPBRb
T
TPBR,

The matrix
(

φ3−1 −3−1
k
3kd3

−13kd3
−1
k

)

is positive definite,

if φ
(

λj + k
)2 −

(

λj + kd
)2

> 0, which is equivalent to
[(

λj + k
)

+
(

λj + kd
)] [(

λj + k
)

−
(

λj + kd
)]

> 0. Simplifying
the last inequality, one gets k

(

1− d
) (

2λj + k
(

1+ d
))

> 0. The
proof is finished by Lemma 1.

Two-Parameter Estimator vs. Ridge Estimator

The following lemma gives that the TPBR estimator is superior to
the RBR estimator:

Lemma 3. under the beta regression model, consider k > 0, 0 <

d < 1, and bRBR = Bias
(

β̂RBR

)

. Then, MMSE
(

β̂RBR

)

−

MMSE
(

β̂TPBR

)

> 0 iff kd
(

2λj + kd
)

> 0.

Proof: the difference between the MMSE functions of the RBR
estimator and the TPBR estimator is obtained by:

MMSE
(

β̂RBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
k
33−1

k
−3−1

k
3kd3

−13kd3
−1
k

)

QT + bRBRb
T
RBR − bTPBRb

T
TPBR,
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This can be rewritten as:

MMSE
(

β̂RBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

λj
(

λj + k
)2

−
(

λj + kd
)2

λj
(

λj + k
)2

}p

j=1

QT + bRBRb
T
RBR − bTPBRb

T
TPBR,

The matrix 3−1
k
33−1

k
− 3−1

k
3kd3

−13kd3
−1
k

is positive

definite if λ2j −
(

λj + kd
)2

> 0 which is equivalent to
[

λj −
(

λj + kd
)] [

λj +
(

λj + kd
)]

> 0. Simplifying the last
inequality, one gets kd

(

2λj + kd
)

> 0. Then, using Lemma 1,
the proof is finished.

Two-Parameter Estimator vs. Liu Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the LBR estimator:

Lemma 4. under the beta regression model, consider k >

0, 0 < d < 1, and bLBR = Bias
(

β̂LBR

)

. Then,

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

> 0 iff
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0.

Proof: the difference between the MMSE functions of β̂LBR and
β̂TPBR is obtained by:

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
1 3d3

−13d3
−1
1 −3−1

k
3kd3

−13kd3
−1
k

)

QT + bLBRb
T
LBR − bTPBRb

T
TPBR,

This can be rewritten as:

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

(

λj + d
)2

λj
(

λj + I
)2

−
(

λj + kd
)2

λj
(

λj + k
)2

}p

j=1

QT + bLBRb
T
LBR − bTPBRb

T
TPBR,

The matrix 3−1
1 3d3

−13d3
−1
1 − 3−1

k
3kd3

−13kd3
−1
k

is positive definite if
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0, which is equivalent to

[

(

λj + d
)2(
λj + k

)2
>
(

λj + kd
)2(
λj + I

)2
]

. For k >

0, 0 < d < 1, it can be observed that
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0. The proof is finished by Lemma 1.

Two-Parameter Estimator vs. Liu-Type Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the LTBR estimator:

Lemma 5. under the beta regression model, consider k > 0, −
∞ < d1 < ∞, 0 < d2 < 1, and bLTBR = Bias

(

β̂LTBR

)

,

where d1 and d2 are the d values of LTBR and TPBR estimators,

respectively. Then, MMSE
(

β̂LTBR

)

− MMSE
(

β̂TPBR

)

> 0 iff

d1
(

d1 − 2λj
)

− kd2
(

kd2 + 2λj
)

> 0.

Proof: the difference between the MMSE functions of β̂LTBR and
β̂TPBR is obtained by:

MMSE
(

β̂LTBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
k
3−d3

−13−d3
−1
k

−3−1
k
3kd3

−13kd3
−1
k

)

QT + bLTBRb
T
LTBR − bTPBRb

T
TPBR.

This can be rewritten as:

MMSE
(

β̂LTBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

(

λj − d1
)2

λj
(

λj + k
)2

−
(

λj + kd2
)2

λj
(

λj + k
)2

}p

j=1

QT + bLTBRb
T
LTBR − bTPBRb

T
TPBR,

The matrix 3−1
k
3−d3

−13−d3
−1
k

− 3−1
k
3kd3

−13kd3
−1
k

is

positive definite if
(

λj − d1
)2 −

(

λj + kd2
)2

> 0, which is

equivalent to
[

(

λj − d1
)2
>
(

λj + kd2
)2
]

. For k > 0,−∞ <

d1 < ∞, 0 < d2 < 1, it can be observed that d1
(

d1 − 2λj
)

−
kd2

(

kd2 + 2λj
)

> 0. The proof is finished by Lemma 1.

CHOOSING THE SHRINKAGE
PARAMETERS

There is no definite rule for estimating the shrinkage parameters
(k and d). However, we propose somemethods based on the work
of Hoerl et al. [37] and Kibria [38]. For the RBR estimator, we can
use the k parameter of Hoerl and Kennard [1] after modifying
their formula based on the optimal k of the beta regression
model [5]:

k = 1

φ
∑p

j=1 α̂
2
j

, (25)

where α̂j is the jth element of the vector α̂ = QT β̂BML.
For the LBR estimator, we can use the optimal d parameter

proposed by Karlsson et al. [10]:

d =
∑p

j=1

[(

α̂2j − 1
φ

)

/
(

λj + 1
)2
]

∑p
j=1

[(

1
φλj

+ α̂2j
)

/
(

λj + 1
)2
] (26)

For the LTBR estimator, we can use the optimal d parameter
of the LTBR estimator that was proposed by Algamal and
Abonazel [19]:

dLTBR =
∑p

j=1

[(

1
φ

− kα̂2j

)

/
(

λj + k
)2
]

∑p
j=1

[(

1
φ
+ λjα̂2j

)

/λj
(

λj + k
)2
] (27)
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Since dLTBR depends on k, we suggest using the k parameter in
Eq. (25).

For the proposed estimator (TPBR), we start by taking
the derivative of MSE function given in Eq. (24) with
respect to k and equating the resulting function to zero
and by solving for the parameter k, we obtain the following
individual parameters:

kj =
λj

φ

(

λjα̂
2
j

(

1− d
)

− (d/φ)
) ; j = 1, . . . , p. (28)

Since each individual parameter kj should be positive, we obtain
the following upper bound for the kj parameter d’s so that kj > 0:

d < min

(

λjα̂
2
j

1
φ
+ λjα̂2j

)p

j=1

, (29)

where min(·) is the minimum function such that 0 <

d < 1 and α̂j is the jth element of the vector α̂.
Therefore, we propose the following shrinkage parameters for the

TABLE 1 | Mean squared error (MSE) values for different estimators when n = 50.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.259 1.906 1.828 1.8026 1.419

0.95 3.356 2.391 2.117 2.0916 2.033

0.99 4.399 2.908 2.175 2.1496 2.134

8 0.90 2.376 1.736 1.487 1.4616 1.312

0.95 4.421 2.567 2.011 1.9856 1.862

0.99 5.353 3.292 2.518 2.4926 1.669

12 0.90 3.613 1.364 1.189 1.1636 1.013

0.95 6.836 2.715 1.987 1.9616 1.107

0.99 9.375 3.042 1.814 1.7886 1.078

1 4 0.90 1.951 1.598 1.520 1.4946 1.111

0.95 3.048 2.083 1.809 1.7836 1.725

0.99 4.091 2.601 1.867 1.8416 1.826

8 0.90 2.068 1.428 1.179 1.1536 1.004

0.95 4.112 2.259 1.703 1.6776 1.554

0.99 5.045 2.984 2.210 2.1846 1.361

12 0.90 3.305 1.056 0.881 0.8556 0.705

0.95 6.528 2.407 1.679 1.6536 0.799

0.99 9.067 2.734 1.506 1.4806 0.771

1.5 4 0.90 1.829 1.476 1.398 1.3726 0.989

0.95 2.926 1.961 1.687 1.6616 1.603

0.99 3.969 2.478 1.745 1.7196 1.704

8 0.90 1.946 1.306 1.057 1.0316 0.882

0.95 3.990 2.137 1.581 1.5556 1.432

0.99 4.923 2.862 2.088 2.0626 1.239

12 0.90 3.183 0.934 0.759 0.7336 0.583

0.95 6.406 2.285 1.557 1.5316 0.677

0.99 8.945 2.612 1.384 1.3586 0.648

TPBR estimator:

dTPBR = 1

2
min

(

λjα̂
2
j

1
φ
+ λjα̂2j

)p

j=1

; (30)

kTPBR = 1

p

∑p

j=1





λj

φ

(

λjα̂
2
j

(

1− dTPBR
)

− dTPBR/φ

)



 (31)

Note that dTPBR in Eq. (30) is always <1 and bigger than zero,
and kTPBR in Eq. (31) is always positive [15].

SIMULATION STUDY

AMonte Carlo simulation study has been conducted to compare
the performances of BML, RBR, LBR, and LTBR estimators with
the proposed estimator (TPBR estimator). Our simulation study
is computed based on R-software, using the “betareg” package.

Simulation Design
The response variable yi is generated as yi ∼ Beta(µi,φ), with
φ ∈ {0.5,1,1.5} and µi = exp(xTi β)/(1 + exp(xTi β)) for i =

TABLE 2 | Mean squared error values for different estimators when n = 100.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.212 1.859 1.782 1.7566 1.372

0.95 3.309 2.343 2.071 2.0456 1.985

0.99 4.352 2.861 2.128 2.1026 2.087

8 0.90 2.328 1.689 1.439 1.4136 1.265

0.95 4.372 2.519 1.964 1.9386 1.814

0.99 5.306 3.244 2.471 2.4456 1.621

12 0.90 3.565 1.317 1.142 1.1166 0.965

0.95 6.788 2.668 1.941 1.9156 1.063

0.99 9.327 2.994 1.766 1.7406 1.031

1 4 0.90 1.904 1.551 1.472 1.4466 1.064

0.95 3.001 2.035 1.762 1.7366 1.677

0.99 4.044 2.553 1.822 1.7966 1.779

8 0.90 2.022 1.381 1.131 1.1056 0.957

0.95 4.064 2.211 1.656 1.6306 1.506

0.99 4.998 2.936 2.162 2.1366 1.313

12 0.90 3.257 1.009 0.834 0.8086 0.657

0.95 6.483 2.364 1.632 1.6066 0.752

0.99 9.019 2.686 1.458 1.4326 0.723

1.5 4 0.90 1.782 1.429 1.355 1.3296 0.942

0.95 2.879 1.913 1.647 1.6216 1.555

0.99 3.922 2.431 1.698 1.6726 1.657

8 0.90 1.898 1.259 1.009 0.9836 0.835

0.95 3.942 2.089 1.534 1.5086 1.384

0.99 4.876 2.814 2.041 2.0156 1.191

12 0.90 3.135 0.887 0.712 0.6866 0.535

0.95 6.358 2.238 1.513 1.4876 0.631

0.99 8.897 2.564 1.336 1.3106 0.601
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1, 2, . . . , n, and β =
(

β1, . . . ,βp
)T

with
∑ p

j=1 β
2
j = 1 and

β1 = . . . = βp [19, 26, 39–41].

The explanatory variables xi =
(

xi1, . . . , xip
)T

are generated
from the following:

xij = (1− ρ2)0.5wij + ρwip, i = 1, 2, . . . , n,

j = 1, 2, . . . , p, (32)

where ρ is the coefficient of the correlation between the
explanatory variables and wij are independent standard normal
pseudo-random numbers.

It is well-known that the sample size (n), the number
of explanatory variables (p), and the pairwise correlation (ρ)
between the explanatory variables have a direct impact on the
prediction accuracy. Therefore, four values of n are considered:
50, 100, 250, and 400. In addition, three values of p are
considered: 4, 8, and 12. Further, three values of ρ are considered:
0.90, 0.95, and 0.99. For a combination of these different values
of n,φ, p, and ρ, the generated data are repeated L = 1, 000 times
and the average MSE is calculated as:

MSE
(

β̂

)

= 1

L

∑L

l=1

(

β̂l − β
)T (

β̂l − β
)

, (33)

TABLE 3 | Mean squared error values for different estimators when n = 250.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.151 1.798 1.719 1.6936 1.311

0.95 3.248 2.282 2.009 1.9836 1.924

0.99 4.291 2.801 2.067 2.0416 2.026

8 0.90 2.267 1.628 1.378 1.3526 1.204

0.95 4.311 2.458 1.903 1.8776 1.753

0.99 5.245 3.183 2.409 2.3836 1.561

12 0.90 3.504 1.256 1.081 1.0556 0.904

0.95 6.727 2.607 1.879 1.8536 0.999

0.99 9.266 2.933 1.705 1.6796 0.972

1 4 0.90 1.843 1.491 1.411 1.3856 1.003

0.95 2.942 1.974 1.701 1.6756 1.616

0.99 3.983 2.492 1.759 1.7336 1.718

8 0.90 1.959 1.325 1.073 1.0476 0.896

0.95 4.003 2.154 1.595 1.5696 1.445

0.99 4.937 2.875 2.101 2.0756 1.252

12 0.90 3.196 0.948 0.773 0.7476 0.596

0.95 6.419 2.299 1.571 1.5456 0.691

0.99 8.958 2.625 1.397 1.3716 0.662

1.5 4 0.90 1.721 1.368 1.289 1.2636 0.881

0.95 2.818 1.852 1.579 1.5536 1.494

0.99 3.861 2.372 1.637 1.6116 1.596

8 0.90 1.837 1.198 0.948 0.9226 0.774

0.95 3.881 2.028 1.473 1.4476 1.323

0.99 4.815 2.753 1.979 1.9536 1.131

12 0.90 3.074 0.826 0.651 0.6256 0.474

0.95 6.297 2.177 1.449 1.4236 0.569

0.99 8.836 2.503 1.275 1.2496 0.547

where β̂l is the estimated vector of β .

Simulation Results
The averaged MSE for all the combinations of n,φ, p,, and ρ are
summarized in Tables 1–4. According to the simulation results,
we conclude the following:

1. The TPBR estimator has the best performance in all the
situations considered. Moreover, the performance of the TPBR
estimator is better for larger values of ρ.

2. It is noted fromTables 1–4 that the TPBR estimator ranks first
with respect to MSE. In the second rank is the LTBR estimator,
as it performs better than BML, RBR, and LBR estimators.
Additionally, the BML estimator has the worst performance
among RBR, LBR, and TPBR estimators which is significantly
impacted by the multicollinearity.

3. Regarding the number of explanatory variables, it is easily
seen that there is a negative impact on MSE, where there
are increases in their values when the p increase from four
variables to eight and twelve variables. In addition, in terms
of the sample size, the MSE values decrease when n increases,
regardless of the value of ρ, φ, and p.

4. Clearly, the MSE values are decreasing when φ is increasing.

TABLE 4 | Mean squared error values for different estimators when n = 400.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.117 1.764 1.685 1.2596 1.277

0.95 3.214 2.248 1.975 1.7496 1.891

0.99 4.257 2.767 2.033 2.0076 1.992

8 0.90 2.233 1.594 1.344 1.3186 1.172

0.95 4.277 2.424 1.869 1.3436 1.719

0.99 5.211 3.149 2.375 2.3496 1.527

12 0.90 3.47 1.222 1.047 1.0216 0.871

0.95 6.693 2.573 1.845 1.8196 0.965

0.99 9.232 2.899 1.671 1.6456 0.938

1 4 0.90 1.809 1.457 1.377 1.3516 0.969

0.95 2.908 1.94 1.667 1.6416 1.582

0.99 3.949 2.458 1.725 1.6996 1.684

8 0.90 1.925 1.291 1.039 1.0136 0.862

0.95 3.969 2.12 1.561 1.5356 1.411

0.99 4.903 2.841 2.067 2.0416 1.218

12 0.90 3.162 0.914 0.739 0.7136 0.562

0.95 6.385 2.265 1.537 1.5116 0.657

0.99 8.924 2.591 1.363 1.3376 0.628

1.5 4 0.90 1.687 1.334 1.255 1.2296 0.847

0.95 2.784 1.818 1.545 1.5196 1.462

0.99 3.827 2.338 1.603 1.5776 1.562

8 0.90 1.803 1.164 0.914 0.8886 0.742

0.95 3.847 1.994 1.439 1.4136 1.289

0.99 4.781 2.719 1.945 1.9196 1.097

12 0.90 3.04 0.792 0.617 0.5916 0.448

0.95 6.263 2.143 1.415 1.3896 0.535

0.99 8.802 2.469 1.241 1.2156 0.513
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FIGURE 1 | Relative efficiency (RE) of different estimators categorized by levels of n, p, ρ, and φ.

TABLE 5 | The estimated coefficients and MSE values for the used estimators

(football data).

BML RBR LBR LTBR TPBR

x1 −0.01749 −0.01761 −0.026786 −0.002165 −0.003165

x2 0.026057 0.026399 0.052970 0.000354 0.000254

x3 0.030190 0.030276 0.036945 0.000701 −0.000807

x4 −0.032857 −0.031889 0.043208 −0.000355 0.000323

x5 −0.129230 −0.128710 −0.088372 −0.002704 −0.002633

x6 1.643973 1.629061 0.472132 0.021849 0.028245

MSE 0.04345 0.018314 0.006583 0.005208 0.005085

Relative Efficiency
Another comparative performance called relative efficiency (RE)
can be utilized, it is calculated based on the MSE in Eq. (33) as
follows [4, 39]:

RE
(

β̂S

)

=
MSE

(

β̂BML

)

MSE
(

β̂S

) , (34)

where β̂S denotes the estimators of RBR, LBR, LTBR, or TPBR.
The RE results are shown in Figure 1.

Figure 1 shows that the RE of the four biased (RBR, LBR,
LTBR, and TPBR) estimators were increased if the sample
size (n), the number of explanatory variables (p), the degree

TABLE 6 | The estimated coefficients and MSE values for the used estimators

(gasoline yield data).

BML RBR LBR LTBR TPBR

Gravity −0.01749 −0.01761 −0.026786 −0.00571 −0.003165

Pressure 0.026057 0.026399 0.052970 0.04212 0.000254

Temp10 0.030190 0.030276 0.036945 0.04284 −0.000807

Temp −0.032857 −0.031889 0.043208 0.00235 0.000323

MSE 0.04345 0.018314 0.006583 0.00537 0.005085

of correlation between explanatory variables (ρ), and/or the
precision parameter value (φ) are increased. Moreover, we can
observe that the TPBR estimator has higher RE values than the
other estimators.

REAL DATA APPLICATIONS

In this section, we used two real data applications to
investigate the advantage of our proposed (TPBR) estimator in
different fields.

Football Spanish Data
We apply the proposed estimator to the football Spanish La Liga,
season 2016–2017 [19]. The data contain 20 teams. The response
variable is the proportion of won matches. The six considerable
explanatory variables are: x1 is the number of yellow cards, x2 is
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the number of red cards, x3 is the total number of substitutions,
x4 is the number of matches with 2.5 goals on average, x5 is the
number of matches that ended with goals, and x6 is the ratio of
the goal scores to the number of matches.

First, to check whether there is a multicollinearity problem
or not, the correlation matrix and condition number (CN) are
used. Based on the correlation matrix among the six explanatory
variables that are presented, displayed by Algamal and Abonazel
[19]. It is obviously seen that there are correlations >0.82
between x1 and x6, x1 and x4, x2 and x4, and x4 and x6. Second,
the condition number, CN = √

λmax/λmin of the data is 806.63
indicating the existence of multicollinearity. The estimated beta
regression coefficients and MSE values for the BML, RBR, LBR,
LTBR, and TPBR estimators are recorded in Table 5. From
Table 5, it can note that the estimated coefficients of all estimators
have the same signs; this means that the type of relationship
between each explanatory variable and the response variable is
not changed from what it was in the BML estimator. But MSE
values of RBR, LBR, LTBR, and TPBR estimators are lower
than the BML estimator. Whereas, the MSE value of the TPBR
estimator is the lowest.

Gasoline Yield Data
To further investigate the advantage of our proposed estimator
(TPBR), we apply the TPBR estimator to the chemical dataset
(gasoline yield data) which was originally obtained by Prater
[42], and later used by the following authors: Ospina et al.
[43] and Karlsson et al. [10]. The dataset contains 32
observations on the response and four explanatory variables. The
variables in the study are described as follows: the dependent
variable y is the proportion of crude oil after distillation and
fractionation while the explanatory variables are crude oil gravity
(Gravity), vapor pressure of crude oil (Pressure), temperature
at which 10% of the crude oil has vaporized (Temp10), and
temperature at which all petrol in the amount of crude oil
vaporizes (Temp). Atkinson [44] analyzed this dataset using
the linear regression model and observed some anomalies in
the distribution of the error. Recently, Karlsson et al. [10]
showed that the beta regression model is more suitable to model
the data.

The CN for the dataset under study is 11,281.4, which
signals severe multicollinearity. The estimated beta regression
coefficients and MSE values for the used estimators are recorded
in Table 6. From Table 6, it can be noted that the estimated
coefficients of all estimators have the same signs. In addition,
MSE values of RBR, LBR, LTBR, and TPBR estimators are lower

than the BML estimator. Whereas, the MSE value of the TPBR
estimator is the lowest.

CONCLUSION

This article provided a two-parameter (TPBR) estimator for
the beta regression model as a remedy for a multicollinearity
problem. We proved, theoretically, that our proposed estimator
is efficient than other biased estimators (ridge, Liu, and Liu-type
estimators) suggested in the literature. Furthermore, a Monte
Carlo simulation study was conducted to study the performance
of the proposed estimator and ML, ridge, Liu, and Liu-type
estimators. The results indicated that the proposed estimator
outperforms these estimators, especially when there is a high-to-
strong correlation between the explanatory variables. Finally, the
benefit is shown by two empirical applications where the TPBR
estimator performed well by decreasing the MSE compared with
the ML, ridge, Liu, and Liu-type estimators.

For future work, for example, one can study the high-
dimensional case in beta regression as an extension to Arashi
et al. [45] or provide a robust biased estimation of beta
regression as an extension to Awwad et al. [41] and Dawoud and
Abonazel [40].

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: For first application: https://www.laliga.es. For
second application: the R-package betareg.

AUTHOR CONTRIBUTIONS

MA: methodology, relative efficiency, interpreting the results,
abstract, conclusions, writing—original draft, and final revision.
ZA: simulation study and applications, interpreting the results,
and revision. FA: methodology, interpreting the results, and
revision. IT: introduction, methodology, and writing—original
draft. All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

The authors would like to thank the Deanship of Scientific
Research at King Saud University represented by the Research
Center at CBA for supporting this research financially.

REFERENCES

1. Hoerl AE, Kennard RW. Ridge regression: biased estimation

for non-orthogonal problems. Technometrics. (1970) 12:55–

67. doi: 10.1080/00401706.1970.10488634

2. Hoerl AE, Kennard RW. Ridge regression: applications

to non-orthogonal problems. Technometrics. (1970) 12:69–

82. doi: 10.1080/00401706.1970.10488635

3. Rady EA, Abonazel MR, Taha IM. Ridge estimators for the negative binomial

regression model with application. In: The 53rd Annual Conference on

Statistics, Computer Science, and Operation Research 3-5 Dec, 2018. (2018).

Giza: ISSR, Cairo University.

4. Abonazel MR, Taha IM. Beta ridge regression estimators:

simulation and application. Commun Statist Simul

Computat. (2021) 1–13. doi: 10.1080/03610918.2021.19

60373

5. Qasim M, Månsson K, Golam Kibria BM. On some beta ridge regression

estimators: method, simulation and application. J Stat Comput Simul. (2021)

91:1699–712. doi: 10.1080/00949655.2020.1867549

6. Alobaidi NN, Shamany RE, Algamal ZY. A new ridge estimator for the

negative binomial regression model. Thailand Statistician. (2021) 19:116–25.

7. Sami F, Amin M, Butt MM. On the ridge estimation of the Conway-Maxwell

Poisson regression model with multicollinearity: Methods and applications.

Concurr Computat Pract Exp. (2021) 2021:6477. doi: 10.1002/cpe.6477

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 January 2022 | Volume 7 | Article 78032249

https://www.laliga.es
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.1080/03610918.2021.1960373
https://doi.org/10.1080/00949655.2020.1867549
https://doi.org/10.1002/cpe.6477
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Abonazel et al. Two-Parameter Beta Regression Estimator

8. Liu K. A new class of biased estimate in linear regression. Commun Statist

Theor Method. (1993) 22:393–402. doi: 10.1080/03610929308831027

9. Stein C. Inadmissibility of the usual estimator for the mean of a multivariate

normal distribution. In: Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, Volume 1: Contributions to the Theory

of Statistics. Berkeley, CA: University of California Press. (1956). p. 197–

206. doi: 10.1525/9780520313880-018

10. Karlsson P, Månsson K, Kibria BG. A Liu estimator for the beta

regression model and its application to chemical data. J Chemom. (2020)

34:e3300. doi: 10.1002/cem.3300

11. Qasim M, Kibria BMG, Månsson K, Sjölander P. A new Poisson Liu

regression estimator: method and application. J Appl Stat. (2020) 47:2258–

71. doi: 10.1080/02664763.2019.1707485

12. Naveed K, Amin M, Afzal S, Qasim M. New shrinkage parameters for

the inverse Gaussian Liu regression. Commun Statist Theor Method. (2020)

2020:1–21. doi: 10.1080/03610926.2020.1791339

13. Liu K. Using Liu-type estimator to combat collinearity. Commun Statist Theor

Method. (2003) 32:1009–20. doi: 10.1081/STA-120019959

14. Liu K. More on Liu-type estimator in linear regression. Commun Statist Theor

Method. (2004) 33:2723–33. doi: 10.1081/STA-200037930

15. Özkale MR, Kaciranlar S. The restricted and unrestricted two-

parameter estimators. Commun Stat Theor Method. (2007)

36:2707–25. doi: 10.1080/03610920701386877

16. Li Y, Yang H. A new Liu-type estimator in linear regression model. Stat Pap.

(2012) 53:427–37. doi: 10.1007/s00362-010-0349-y

17. Kurnaz FS, Akay KU. A new Liu-type estimator. Stat Pap. (2015) 56:495–

517. doi: 10.1007/s00362-014-0594-6

18. Sahriman S, Koerniawan V. Liu-type regression in statistical

downscaling models for forecasting monthly rainfall salt as

producer regions in Pangkep regency. J Phys Conf Ser. (2019)

1341:092021. doi: 10.1088/1742-6596/1341/9/092021

19. Algamal ZY, Abonazel MR. Developing a Liu-type estimator

in beta regression model. Concurr Computat Pract Exp. (2021)

2021:e6685. doi: 10.1002/cpe.6685

20. Huang J, Yang H. A two-parameter estimator in the negative

binomial regression model. J Stat Comput Simul. (2014) 84:124–

34. doi: 10.1080/00949655.2012.696648

21. Algamal ZY. Shrinkage estimators for gamma regression model. Electr J Appl

Stat Anal. (2018) 11:253–68. doi: 10.1285/i20705948v11n1p253

22. Asar Y, Genç A. A new two-parameter estimator for the Poisson

regression model. Iran J Sci Technol Trans A Sci. (2018) 42:793–

803. doi: 10.1007/s40995-017-0174-4

23. Rady EA, Abonazel MR, Taha IM. A new biased estimator for zero-

inflated count regression models. J Modern Appl Stat Method. (2019).

Available online at: https://www.researchgate.net/publication/337155202_A_

New_Biased_Estimator_for_Zero-Inflated_Count_Regression_Models

24. Rady EA, Abonazel MR, Taha IM. New shrinkage parameters for Liu-type

zero inflated negative binomial estimator. In: The 54th Annual Conference

on Statistics, Computer Science, and Operation Research 3-5 Dec, 2019. Giza:

FGSSR, Cairo University (2019).

25. Çetinkaya M, Kaçiranlar S. Improved two-parameter estimators for the

negative binomial and Poisson regressionmodels. J Stat Comput Simul. (2019)

89:2645–60. doi: 10.1080/00949655.2019.1628235

26. Abonazel MR, Farghali RA. Liu-type multinomial logistic estimator. Sankhya

B. (2019) 81:203–25. doi: 10.1007/s13571-018-0171-4

27. Akram MN, Amin M, Qasim M. A new Liu-type estimator for the

Inverse Gaussian Regression Model. J Stat Comput Simul. (2020) 90:1153–

72. doi: 10.1080/00949655.2020.1718150

28. Lukman AF, Aladeitan B, Ayinde K, Abonazel MR. Modified ridge-type for

the Poisson regression model: simulation and application. J Appl Stat. (2021)

2021:1–13. doi: 10.1080/02664763.2021.1889998

29. Ferrari S, Cribari-Neto F. Beta regression for modelling rates and

proportions. J Appl Stat. (2004) 31:799–815. doi: 10.1080/02664760420002

14501

30. Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood

regression with beta-distributed dependent variables. Psychol Method. (2006)

11:54–71. doi: 10.1037/1082-989X.11.1.54

31. Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw. (2010) 34:1–

24. doi: 10.18637/jss.v034.i02

32. Bayer FM, Cribari-Neto F. Model selection criteria in beta regression

with varying dispersion. Commun Stat Simul Computat. (2017) 46:729–

46. doi: 10.1080/03610918.2014.977918

33. Espinheira PL, Ferrari SL, Cribari-Neto F. On beta regression residuals. J Appl

Stat. (2008) 35:407–19. doi: 10.1080/02664760701834931

34. Espinheira PL, da Silva LCM, Silva ADO. Prediction measures in beta

regression models. arXiv preprint. (2015). arXiv: 1501.04830.

35. Espinheira PL, da Silva LCM, Silva ADO, Ospina R. Model selection criteria

on beta regression for machine learning. Machine Learn Knowl Extr. (2019)

1:427–49. doi: 10.3390/make1010026

36. Farebrother RW. Further results on the mean square error

of ridge regression. J Royal Stat Soc Ser B. (1976) 38:248–

50. doi: 10.1111/j.2517-6161.1976.tb01588.x

37. Hoerl AE, Kennard RW, Baldwin KF. Ridge regression:

some simulations. Commun Stat Theor Method. (1975) 4:105–

23. doi: 10.1080/03610917508548342

38. Kibria BMG. Performance of some new ridge regression estimators. Commun

Stat Simul Computat. (2003) 32:419–35. doi: 10.1081/SAC-120017499

39. Farghali RA, Qasim M, Kibria BG, Abonazel MR. Generalized two-

parameter estimators in the multinomial logit regression model: methods,

simulation and application. Commun Stat Simul Computat. (2021) 1–

16. doi: 10.1080/03610918.2021.1934023

40. Dawoud I, Abonazel MR. Robust Dawoud–Kibria estimator for handling

multicollinearity and outliers in the linear regression model. J Stat Comput

Simul. (2021) 91:3678–92. doi: 10.1080/00949655.2021.1945063

41. Awwad FA, Dawoud I, Abonazel MR. Development of robust Özkale-

Kaçiranlar and Yang-Chang estimators for regression models in the presence

of multicollinearity and outliers. Concurr Computat Pract Exp. (2021)

2021:e6779. doi: 10.1002/cpe.6779

42. Prater NH. Estimate gasoline yields from crude. PetroLium Refiner.

(1956) 35:236–8.

43. Ospina R, Cribari-Neto F, Vasconcellos KL. Improved point and interval

estimation for a beta regression model. Comput Stat Data Anal. (2006)

51:960–81. doi: 10.1016/j.csda.2005.10.002

44. Atkinson AC. Plots, Transformations and Regression: An Introduction to

Graphical Methods of Diagnostic Regression Analysis. New York, NY: Oxford

University Press (1985).

45. Arashi M, Norouzirad M, Roozbeh M, Mamode Khan N. A high-dimensional

counterpart for the ridge estimator in multicollinear situations. Mathematics.

(2021) 9:3057. doi: 10.3390/math9233057

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Abonazel, Algamal, Awwad and Taha. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 January 2022 | Volume 7 | Article 78032250

https://doi.org/10.1080/03610929308831027
https://doi.org/10.1525/9780520313880-018
https://doi.org/10.1002/cem.3300
https://doi.org/10.1080/02664763.2019.1707485
https://doi.org/10.1080/03610926.2020.1791339
https://doi.org/10.1081/STA-120019959
https://doi.org/10.1081/STA-200037930
https://doi.org/10.1080/03610920701386877
https://doi.org/10.1007/s00362-010-0349-y
https://doi.org/10.1007/s00362-014-0594-6
https://doi.org/10.1088/1742-6596/1341/9/092021
https://doi.org/10.1002/cpe.6685
https://doi.org/10.1080/00949655.2012.696648
https://doi.org/10.1285/i20705948v11n1p253
https://doi.org/10.1007/s40995-017-0174-4
https://www.researchgate.net/publication/337155202_A_New_Biased_Estimator_for_Zero-Inflated_Count_Regression_Models
https://www.researchgate.net/publication/337155202_A_New_Biased_Estimator_for_Zero-Inflated_Count_Regression_Models
https://doi.org/10.1080/00949655.2019.1628235
https://doi.org/10.1007/s13571-018-0171-4
https://doi.org/10.1080/00949655.2020.1718150
https://doi.org/10.1080/02664763.2021.1889998
https://doi.org/10.1080/0266476042000214501
https://doi.org/10.1037/1082-989X.11.1.54
https://doi.org/10.18637/jss.v034.i02
https://doi.org/10.1080/03610918.2014.977918
https://doi.org/10.1080/02664760701834931
https://doi.org/10.3390/make1010026
https://doi.org/10.1111/j.2517-6161.1976.tb01588.x
https://doi.org/10.1080/03610917508548342
https://doi.org/10.1081/SAC-120017499
https://doi.org/10.1080/03610918.2021.1934023
https://doi.org/10.1080/00949655.2021.1945063
https://doi.org/10.1002/cpe.6779
https://doi.org/10.1016/j.csda.2005.10.002
https://doi.org/10.3390/math9233057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


ORIGINAL RESEARCH
published: 22 February 2022

doi: 10.3389/fams.2022.775068

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 February 2022 | Volume 8 | Article 775068

Edited by:

Lixin Shen,

Syracuse University, United States

Reviewed by:

Xueying Zeng,

Ocean University of China, China

Erol Egrioglu,

Giresun University, Turkey

Zakariya Yahya Algamal,

University of Mosul, Iraq

Mahdi Roozbeh,

Semnan University, Iran

*Correspondence:

Mohamed R. Abonazel

mabonazel@cu.edu.eg

Specialty section:

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 13 September 2021

Accepted: 17 January 2022

Published: 22 February 2022

Citation:

Abonazel MR, Dawoud I, Awwad FA

and Lukman AF (2022) Dawoud–Kibria

Estimator for Beta Regression Model:

Simulation and Application.

Front. Appl. Math. Stat. 8:775068.

doi: 10.3389/fams.2022.775068

Dawoud–Kibria Estimator for Beta
Regression Model: Simulation and
Application
Mohamed R. Abonazel 1*, Issam Dawoud 2, Fuad A. Awwad 3 and Adewale F. Lukman 4

1Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University,

Giza, Egypt, 2Department of Mathematics, Al-Aqsa University, Gaza City, Palestine, 3Department of Quantitative Analysis,

College of Business Administration, King Saud University, Riyadh, Saudi Arabia, 4 Biostatistics and Epidemiology, University of

Medical Sciences, Ondo City, Nigeria

The linear regression model becomes unsuitable when the response variable is

expressed as percentages, proportions, and rates. The beta regression (BR) model is

more appropriate for the variable of this form. The BR model uses the conventional

maximum likelihood estimator (BML), and this estimator may not be efficient when

the regressors are linearly dependent. The beta ridge estimator was suggested as an

alternative to BML in the literature. In this study, we developed the Dawoud–Kibria

estimator to handle multicollinearity in the BR model. The properties of the new estimator

are derived. We compared the performance of the estimator with the existing estimators

theoretically using the mean squared error criterion. A Monte Carlo simulation and a

real-life application were carried out to show the benefits of the proposed estimator.

The theoretical comparison, simulation, and real-life application results revealed the

superiority of the proposed estimator.

Keywords: beta Kibria–Lukman estimator, beta Özkale–Kaçiranlar estimator, beta ridge estimator, maximum

likelihood, mean square

INTRODUCTION

The linear regression (LR)model is used if the dependent variable follows a normal distribution.
The assumption of the normality of the dependent variable may be violated and then it will fit some
of the exponential family distributions as a negative binomial, Poisson, gamma, inverse Gaussian,
and beta, so in this case, we use the generalized linear (GL) model instead of the LR model. The
beta regression (BR)model is applied inmany different fields such as engineering, medical sciences,
physical sciences, social sciences, environment, and business if the dependent variable observations
are between (0, 1). To estimate the BR model parameters, we use the maximum likelihood (ML)
estimator which is more convenient than the ordinary least squares (OLS) estimator for describing
and investigating different phenomena.

In the LR model, the explanatory variables may be correlated and this causes a problem called
multicollinearity in which this problem may arise in the BR model. The ML estimator is the most
popular used method for estimating the unknown regression parameters in the BRmodel. But also,
in the existence of multicollinearity problems, the regression parameters’ variances and standard
errors are very large. To reduce the multicollinearity effect, different biased estimation methods
are proposed and the most popular method is the ordinary ridge regression (ORR) estimation
method which was proposed by Hoerl and Kennard [1, 2]. Another recent one parameter estimator
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proposed by Kibria and Lukman [3] to solve the multicollinearity
is the Kibria and Lukman estimator. Also, in the case of
an estimator with two parameters, Özkale and Kaçiranlar [4]
proposed a two-parameter estimator. Very recently, Dawoud
and Kibria [5] proposed a new kind of two-parameter estimator
called the Dawoud–Kibria (DK) estimator. There are other
recent studies regarding the one parameter and two-parameter
estimators in LR and GL models, such as Roozbeh et al. [6],
Lukman et al. [7], Arashi et al. [8], Farghali et al. [9], Lukman
et al. [10, 11], Algamal and Abonazel [12], Akram et al. [13],
and Abonazel et al. [14]. In this article, we drive the Dawoud–
Kibria estimator for the BR model in the presence of the
multicollinearity problem. Then, the properties of the Dawoud–
Kibria estimator for the BR model are investigated.

This article is organized as follows. The methodology and
the proposed estimator are given in section methodology. In
section the superiority of the proposed estimator, the theoretical
comparisons among the estimators are conducted. Section
selection of biasing parameters k and d gives the proposed
biasing parameters for the estimators. In sections Monte Carlo
simulation study and real data application, the Monte Carlo
simulation and the real-life dataset results are presented. Finally,
in section conclusion, some conclusions of this article are given.

METHODOLOGY

In this section, we discuss the BR model. Then, the ridge, Kibria–
Lukman, and Özkale–Kaçiranlar estimators are stated to the BR
model. After that, we introduce the Dawoud–Kibria estimator for
the BR model. Finally, the biasing parameters of the Dawoud–
Kibria estimator for the BR model are proposed.

The BR Model
The BR model is popularly used in many different fields such as
economics and medical studies. The BR model is used to show
the effect of explanatory variables on a non-normal response
variable as any generalized LR model. However, the response
variable for the BR model is restricted to the interval (0, 1) as
rates, proportions, and fractions. The BR model was given firstly
by the authors Ferrari and Cribari-Neto [15] with relating the
response variable mean function to linear predictors set through
a link function. The BR model has a precision parameter where
its reciprocal is determined as a dispersion measure [16, 17].

Let y be a continuous random variable having a beta
distribution, then the probability density function of y is given as:

f
(

y;µ,φ
)

= Ŵ(φ)

Ŵ(µφ)Ŵ((1− µ) φ) y
µφ−1

(

1− y
)(1−µ)φ−1;

0 < y < 1, 0 < µ < 1,φ > 0, (1)

where Ŵ(·) is called as the gamma function and φ is called as the
precision parameter. The beta probability distribution mean and
variance are as follows:

E
(

y
)

= µ, Var
(

y
)

= Var (µ)

1+ φ = µ (1− µ)
1+ φ .

Let y1, . . . , yn be independent random variables, where each
yi; i = 1, . . . , n follows the density in Equation (1) with mean µi

and unknown precision φ. The model is obtained by assuming
that the mean of yi can be written as:

g (µi) = log

(

µi

1− µi

)

= xi
′β = ηi, (2)

where g(·) is the used link function, β =
(

β1, . . . ,βp
)′ is an

(

p× 1
)

unknown parameters vector, xi =
(

xi1, . . . , xip
)′ is the

vector of p regressors, and ηi is the linear predictor.

Beta Maximum Likelihood Estimator
The BR parameters estimation is done using the beta maximum
likelihood (BML) method [18]. The BR log-likelihood function is
given as:

L (β) =
n

∑

i=1

{

logŴ(φ)− logŴ(µiφ)− logŴ((1− µi) φ)

+ (µiφ − 1) log
(

yi
)

+ ((1− µi) φ − 1) log
(

1− yi
)}

. (3)

Differentiating the log-likelihood given in Equation (3) with
respect to the parameter β provides us the score function of the
parameter β that is given as:

U (β) = φX′T
(

y∗ − µ∗) , (4)

where T = diag
(

1
g
′
(µ1)

, . . . , 1
g′(µn)

)

; with g′(·) is the first

derivative of g(·); with y∗i = log
(

yi
1−yi

)

, and µ∗ =
(

µ∗
1 , . . . µ

∗
n

)′;

withµ∗
i = ψ (µiφ)−ψ ((1− µi) φ), such thatψ(·) denoting the

digamma function. The iterative reweighted least-squares (IRLS)
algorithm or the Fisher scoring algorithm are used for estimating
the parameter β [19, 20]. This algorithm form is given as:

β(r+1) = β(r) +
(

I
(r)
ββ

)−1
U
(r)
β (β) , (5)

where U
(r)
β is called the score function, and I

(r)
ββ is called the

information matrix for β , for more details, see Espinheira et al.
[20]. With the use of the IRLS algorithm with initial values of β
and φ as in Ferrari and Cribari-Neto [15] and Espinheira et al.
[20], the BML estimator of the parameter β is provided as:

β̂BML =
(

X′ŴX
)−1

X′Ŵz, (6)

where X is an
(

n× p
)

design matrix, z = η̂ + Ŵ−1T̂
(

y∗ − µ̂∗),
and Ŵ = diag

(

ŵ1, . . . , ŵn

)

; with

ŵi = φ̂

{

ψ ′
(

µ̂iφ̂

)

+ ψ ′
(

(

1− µ̂i

)

φ̂

)} 1
[

g′
(

µ̂i

)]2
.

Here, Ŵ, T̂, µ̂i, and µ̂
∗ are the estimates of W, T, µi, andµ

∗,
respectively, evaluated at the ML estimator of β and φ [15].

Now, let Ŵ = diag
(

γ1, . . . , γp
)

= Q′X′ŴXQ, and α =
(

α1, . . . , αp
)′ = Q′β; where γ1 ≥ . . . ≥ γp ≥ 0 and Q is
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the matrix whose columns are the eigenvectors of the
(

X′ŴX
)

matrix. Then, the mean squared error matrix (MSEM) and the
mean squared error (MSE) of an estimator β̃ are defined as
follows:

MSEM(β̃) = Var (β̃)+
(

Bias (β̃)
) (

Bias (β̃)
)′
, (7)

MSE (β̃) = trace
(

MSEM(β̃)
)

. (8)

Then the MSEM and MSE of β̂BML are.

MSEM (β̂BML) = 1

φ
Ŵ−1, (9)

MSE (β̂BML) = 1

φ

p
∑

j=1

1

γj
. (10)

Beta Ridge Regression (BRR) Estimator
To reduce the effects of multicollinearity in the BR model,
Abonazel and Taha [21] and Qasim et al. [22] introduced the BRR
estimator as an alternative to the BML estimator and is given as:

β̂BRR = (X′ ŴX + k Ip)
−1

X′ Ŵz, . . . k > 0. (11)

The MSEM and MSE of β̂BRR are

MSEM(β̂BRR) = 1

φ
UL−1ŴL−1U ′

+ (UL−1ŴU ′ − Ip)αα
′(UL−1ŴU ′ − Ip)

′, (12)

MSE(β̂BRR) = 1

φ

p
∑

j=1

γj

L2j
+ k2

p
∑

j=1

α2j

L2j
(13)

where L = (Ŵ + k Ip) and Lj = (γj + k).

Beta Kibria–Lukman (BKL) Estimator
The BKL estimator is defined as follows:

β̂BKL = (X′ ŴX + k Ip)
−1

(X′ ŴX − k Ip) β̂BML, k > 0. (14)

The MSEM and MSE of β̂BKL are

MSEM(β̂BKL) = 1

φ
UL−1NŴ−1NL−1U ′

+ (UL−1NU ′ − Ip)αα
′(UL−1NU ′ − Ip)

′, (15)

MSE(β̂BKL) = 1

φ

p
∑

j=1

N2
j

γjL
2
j

+ 4k2
p

∑

j=1

α2j

L2j
(16)

where N = (Ŵ − k Ip) and Nj = (γj − k).

TABLE 1 | Simulated mean square error (SMSE) values of different estimators when p = 2 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 6.053 5.233 5.202 4.891 3.394 3.677

0.85 7.303 6.118 6.069 5.503 3.395 3.838

0.90 13.692 11.901 11.848 10.107 4.656 6.070

0.95 31.207 26.815 26.691 19.919 4.923 8.081

0.99 67.136 47.857 46.909 24.971 15.684 7.492

75 0.80 5.348 4.832 4.816 4.652 3.656 3.785

0.85 7.008 6.210 6.185 5.792 3.933 4.325

0.90 10.863 9.611 9.577 8.573 4.808 5.736

0.95 18.291 14.916 14.788 11.584 3.846 5.274

0.99 68.451 53.912 53.360 31.408 8.463 5.586

100 0.80 3.933 3.621 3.609 3.566 3.152 3.153

0.85 9.107 8.289 8.271 7.700 5.047 5.730

0.90 9.991 8.846 8.815 8.019 4.732 5.544

0.95 15.744 13.466 13.396 11.168 4.514 6.142

0.99 115.376 102.758 102.521 65.853 5.542 14.038

150 0.80 6.437 6.100 6.095 5.940 4.889 5.030

0.85 6.972 6.518 6.510 6.286 4.929 5.129

0.90 10.034 9.210 9.195 8.569 5.607 6.456

0.95 18.945 17.151 17.119 14.781 6.782 9.339

0.99 115.789 106.225 106.100 73.332 8.145 23.265

200 0.80 5.511 5.243 5.239 5.150 4.441 4.421

0.85 6.501 6.162 6.157 5.999 4.966 5.051

0.90 8.751 8.133 8.123 7.712 5.521 6.094

0.95 16.097 14.810 14.791 13.240 7.235 9.253

0.99 146.696 138.772 138.709 102.489 19.521 45.366
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Beta Özkale–Kaçiranlar (BOK) Estimator
Recently, Abonazel et al. [14] proposed the BOK estimator as an
extension of the Özkale and Kaçiranlar [4] estimator in the BR
model and is defined as follows:

β̂BOK = (X′ ŴX + k Ip)
−1

(X′Ŵ X + kdIp) β̂BML,

k > 0, 0 < d < 1. (17)

The MSEM and MSE of β̂BOK are

MSEM(β̂BOK) = 1

φ
UL−1GŴ−1GL−1U ′

+ (UL−1GU ′ − Ip)αα
′(UL−1GU ′ − Ip)

′,(18)

MSE(β̂BOK) = 1

φ

p
∑

j=1

G2
j

γjL
2
j

+ (1− d)2k2
p

∑

j=1

α2j

L2j
(19)

where G = (Ŵ + kd Ip) and Gj = (γj + kd).

The Proposed Estimator
Extensions of the two-parameter estimators to the area of GLMs
have been recently developed; such as Qasim et al. [22], Farghali
et al. [9], Lukman et al. [23], Algamal and Abonazel [12], and
Abonazel et al. [14]. Following the previous works, we introduced

the beta version of the two-parameter estimator of Dawoud and
Kibria [5] (BDK) as follows:

β̂BDK = (X′ Ŵ X + k(1+ d)Ip)
−1

(X′ ŴX − k (1+ d)Ip)β̂BML,

k > 0, 0 < d < 1. (20)

We give the MSEM of the proposed β̂BDK as follows:

MSEM(β̂BDK) = 1

φ
UM−1RŴ−1RM−1U ′

+ (UM−1RU ′−Ip)αα
′(UM−1RU ′ − Ip)

′, (21)

MSE(β̂BDK) = 1

φ

p
∑

j=1

R2j

γjM
2
j

+ 4k2(1+ d)2
p

∑

j=1

α2j

M2
j

, (22)

where M = (Ŵ + k(1 + d) Ip), R = (Ŵ − k(1 + d) Ip), Mj =
(γj + k(1+ d)) and Rj = (γj − k(1+ d)).

THE SUPERIORITY OF THE PROPOSED
ESTIMATOR

Theorem 1: If 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

,

thenMSE (β̂BDK) < MSE (β̂BML).

TABLE 2 | SMSE values of different estimators when p = 2 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 11.491 10.645 10.627 9.735 7.130 6.903

0.85 13.247 12.228 12.206 11.035 7.716 7.654

0.90 18.158 16.463 16.425 14.042 7.790 8.644

0.95 35.625 32.457 32.400 25.909 10.109 13.399

0.99 192.874 168.676 168.149 93.746 17.848 12.119

75 0.80 15.037 14.280 14.271 13.177 9.543 9.539

0.85 17.553 16.759 16.751 15.364 10.642 11.255

0.90 27.598 26.653 26.646 24.351 16.533 18.294

0.95 59.231 56.845 56.829 47.709 21.969 30.398

0.99 214.373 186.262 185.683 103.517 16.966 10.659

100 0.80 11.001 10.576 10.571 10.034 8.496 7.578

0.85 14.828 14.055 14.046 13.017 9.301 9.558

0.90 19.577 18.642 18.633 17.090 11.662 12.394

0.95 43.621 41.238 41.215 34.604 15.749 21.251

0.99 265.201 252.353 252.261 175.379 22.736 61.884

150 0.80 10.789 10.545 10.544 10.227 9.133 8.370

0.85 12.325 11.800 11.794 11.136 8.899 8.413

0.90 17.602 16.783 16.775 15.534 10.948 11.554

0.95 46.605 45.329 45.324 40.763 25.761 31.100

0.99 252.047 245.921 245.900 195.177 67.404 114.900

200 0.80 9.358 9.133 9.131 8.897 8.099 7.276

0.85 15.565 15.263 15.262 14.763 12.608 12.707

0.90 21.999 21.571 21.569 20.598 16.733 17.630

0.95 28.486 27.156 27.146 24.343 14.704 17.431

0.99 213.727 207.448 207.422 163.383 53.122 92.802
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Proof: The MSE difference between the BML and the BDK
estimators is written as

11 = MSE (β̂BDK)−MSE (β̂BML)

= 1
φ

p
∑

j=1

[

R2j −M2
j +4k2(1+d)2γjφα

2
j

γjM
2
j

]

. (23)

In the case of R2j −M2
j + 4k2(1+ d)2γjφα

2
j < 0 in the equation

(23), it implies that 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

, then

MSE (β̂BDK) < MSE (β̂BML). That means the BDK estimator

is better than the BML estimator if 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

.

Theorem 2: If
p

∑

j=1

(

R2j L
2
j − γ 2

j M
2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BRR).

Proof: The MSE difference between the BRR and the BDK
estimators is written as

12 = MSE (β̂BDK)−MSE (β̂BRR)

= 1
φ

p
∑

j=1

[

R2j L
2
j −γ 2j M2

j −k2φγjα
2
j (M

2
j −4(1+d)2L2j )

γjL
2
j M

2
j

]

. (24)

In the case of R2j L
2
j − γ 2

j M
2
j − k2φγjα

2
j (M

2
j − 4(1+ d)2L2j ) < 0

in the Equation (24), it implies that
p

∑

j=1

(

R2j L
2
j − γ 2

j M
2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ), then MSE (β̂BDK) <

MSE (β̂BRR). That means the BDK estimator is better

than the BRR estimator if
p

∑

j=1

(

R2j L
2
j − γ 2

j M
2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ).

Theorem 3: If
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

<

4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ).

thenMSE (β̂BDK) < MSE (β̂BKL).

TABLE 3 | SMSE values of different estimators when p = 4 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 8.618 7.044 6.999 6.275 3.469 3.367

0.85 9.465 7.472 7.431 6.421 3.357 3.368

0.90 16.331 13.295 13.254 10.640 4.493 4.428

0.95 35.235 29.336 29.247 20.055 5.494 5.071

0.99 271.828 224.818 223.712 92.905 25.607 41.613

75 0.80 8.023 7.017 7.003 6.611 4.308 4.009

0.85 10.160 8.556 8.535 7.630 4.303 4.124

0.90 17.399 14.616 14.573 12.058 5.093 4.947

0.95 31.134 25.589 25.472 18.173 4.529 4.793

0.99 187.813 161.921 161.693 81.603 6.541 17.808

100 0.80 7.523 6.513 6.494 6.149 4.096 4.124

0.85 9.167 8.000 7.983 7.366 4.665 4.648

0.90 19.593 17.076 17.026 14.578 6.429 6.697

0.95 31.651 27.423 27.365 21.103 6.951 6.707

0.99 217.675 194.858 194.677 112.730 6.734 13.765

150 0.80 7.066 6.454 6.448 6.285 4.672 4.599

0.85 9.429 8.514 8.504 8.044 5.535 5.626

0.90 14.144 12.871 12.861 11.751 7.393 7.420

0.95 33.151 29.960 29.924 24.822 10.332 10.585

0.99 178.793 161.444 161.275 101.082 9.202 10.705

200 0.80 7.135 6.584 6.578 6.434 4.908 5.053

0.85 7.726 7.044 7.036 6.819 4.988 5.190

0.90 13.439 12.248 12.236 11.275 7.226 7.363

0.95 30.354 28.056 28.043 24.286 12.687 12.634

0.99 201.543 188.253 188.153 133.641 21.328 24.457
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Proof: The MSE difference between the BKL and the BDK
estimators is written as

13 = MSE (β̂BDK)−MSE (β̂BKL)

= 1
φ

p
∑

j=1

[

R2j L
2
j −N2

j M
2
j −4k2φγjα

2
j (M

2
j −(1+d)2L2j )

γjL
2
j M

2
j

]

. (25)

In the case of R2j L
2
j − N2

j M
2
j − 4k2φγjα

2
j (M

2
j − (1+ d)2L2j ) < 0

in the Equation (25), it implies that
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

<

4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ), then MSE (β̂BDK) <

MSE (β̂BKL). That means the BDK estimator is better than
the BKL estimator

if
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

< 4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ).

Theorem 4: If
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

< k2φ

p
∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BOK).

Proof: The MSE difference between the BOK and the BDK
estimators is written as

14 = MSE (β̂BDK)−MSE (β̂BOK)

= 1
φ

p
∑

j=1

[

R2j L
2
j −G2

j M
2
j −k2φγjα

2
j ((1−d)2M2

j −4(1+d)2L2j )

γjL
2
j M

2
j

]

. (26)

In the case of R2j L
2
j − G2

jM
2
j − k2φγjα

2
j ((1− d)2M2

j −
4(1+ d)2L2j ) < 0 in the Equation (26), it implies that
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

< k2φ
p

∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BOK). That means the BDK estimator

is better than the BOK estimator if
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

<

k2φ
p

∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ).

SELECTION OF BIASING PARAMETERS
k and d

We will suggest the following biasing parameters’ estimators for
the mentioned estimators.

TABLE 4 | SMSE values of different estimators when p = 4 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 20.276 19.341 19.333 17.555 11.620 11.975

0.85 18.047 17.189 17.185 15.592 10.837 10.841

0.90 27.687 25.923 25.917 22.257 12.368 12.520

0.95 87.147 83.888 83.879 69.421 30.856 31.332

0.99 603.570 577.427 577.263 357.585 36.519 43.205

75 0.80 14.407 13.659 13.653 12.829 9.262 9.390

0.85 25.218 23.940 23.934 21.759 13.710 13.419

0.90 38.729 37.702 37.702 34.643 24.505 26.369

0.95 84.082 80.781 80.767 67.356 30.970 35.892

0.99 472.368 460.962 460.940 338.777 90.885 87.179

100 0.80 16.825 16.274 16.272 15.473 11.865 13.190

0.85 24.909 23.521 23.510 21.343 12.895 15.321

0.90 30.072 28.630 28.622 25.641 15.512 17.823

0.95 67.417 64.185 64.170 53.419 24.947 27.241

0.99 658.305 644.268 644.236 479.563 123.607 135.271

150 0.80 13.969 13.573 13.572 13.099 10.726 11.658

0.85 20.345 19.764 19.762 18.816 14.670 16.154

0.90 33.991 33.263 33.261 31.344 23.972 26.417

0.95 86.685 85.104 85.101 77.562 52.626 58.964

0.99 535.740 526.202 526.187 422.009 160.031 192.949

200 0.80 17.816 17.532 17.532 17.071 14.878 15.815

0.85 21.343 20.971 20.971 20.283 17.201 18.443

0.90 36.550 35.967 35.966 34.245 27.566 29.896

0.95 98.462 96.739 96.736 88.492 60.933 68.280

0.99 516.039 507.722 507.706 413.974 171.268 199.438
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Following Hoerl et al. [24] and Qasim et al. [22], k̂ of the BRR
estimator is written as

k̂BRR = p

φ̂
p

∑

j=1
α̂2j

, (27)

where α̂j is the jth element of α̂ = Q′β̂BML vector and φ̂ is the ML
estimate of φ [15].

- Following Lukman et al. [25], k̂BKL of the BKL estimator is
written as

k̂BKL = p

φ̂
p

∑

j=1

(

1
φ̂γj

+ 2α̂2j

)
(28)

- Following Özkale and Kaçiranlar [4] and Abonazel

et al. [14], k̂BOK and d̂BOK of the BOK estimator are
written as

d̂BOK = min





α̂2j
1
φ̂γj

+ α̂2j





p

j=1

(29)

k̂BOK =











p

φ̂
p

∑

j=1

(

α̂2j − d̂BOK

(

1
φ̂γj

+ α̂2j
))











1/2

(30)

- Following Dawoud and Kibria [5], we suggest two different k̂
of the proposed BDK estimator as follows:

k̂BDK(1) =
(

k̂BRR

)1/p
(31)

k̂BDK(2) =









1

p

p
∑

j=1

1

φ̂

(

1+ d̂BOK

)

(

1
φ̂γj

+ 2α̂2j

)









1/p

(32)

MONTE CARLO SIMULATION STUDY

In this section, a Monte Carlo simulation study has been
conducted to compare the performances of BML, BRR, BKL, and

TABLE 5 | SMSE values of different estimators when p = 6 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 11.105 9.078 9.057 7.810 4.655 3.876

0.85 13.514 10.799 10.772 8.788 4.607 3.753

0.90 25.321 20.354 20.247 14.685 5.540 4.364

0.95 47.497 37.538 37.399 22.139 5.574 5.085

0.99 264.803 213.947 212.957 76.134 20.147 57.276

75 0.80 7.189 5.922 5.914 5.500 3.811 3.354

0.85 13.325 10.910 10.870 9.195 5.001 3.725

0.90 19.350 16.098 16.061 12.725 6.394 4.503

0.95 48.120 38.549 38.286 23.752 6.202 5.768

0.99 243.478 204.310 203.653 83.874 10.836 41.688

100 0.80 9.013 7.461 7.427 6.761 4.419 3.543

0.85 10.948 9.292 9.270 8.258 5.295 4.066

0.90 16.251 13.651 13.624 11.390 6.264 4.555

0.95 30.617 25.870 25.833 19.041 8.188 5.088

0.99 231.060 201.644 201.293 96.261 8.733 20.457

150 0.80 7.345 6.380 6.365 6.074 4.492 3.810

0.85 9.407 8.216 8.201 7.613 5.405 4.359

0.90 15.455 13.587 13.566 11.983 7.540 5.237

0.95 36.480 32.601 32.573 25.971 13.137 7.642

0.99 228.210 207.108 206.955 119.693 20.897 11.495

200 0.80 7.730 6.957 6.950 6.700 5.232 4.412

0.85 9.778 8.752 8.741 8.222 6.035 4.953

0.90 12.742 11.311 11.302 10.195 7.161 5.536

0.95 33.667 30.140 30.105 24.579 12.452 7.475

0.99 219.889 204.152 204.074 131.491 37.952 10.424
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BOK with the suggested estimator (BDK). The program of the
simulation study is written in R programming language based on
the betareg package.

The Design of the Experiment
We simulated the datasets with the following settings:

1) The response variable yi is generated from the
beta distribution as Beta (µi, φ), where µi =
exp

(

xi
′β

)

/
(

1+ exp
(

xi
′β

))

; i = 1, . . . , n, and xi is the
ith row of X. The precision parameter φ chosen in the
simulation is φ = 2 and 6.

2) Sample size: n= 50, 75, 100, 150, and 200.
3) Explanatory variables are generated with a degree of

multicollinearity as in Kibria [26]: xij = uij
√

1− ρ2 +
ρuip, where uij are the independent standard uniform
pseudorandom numbers, and ρ is defined as the correlation
between the explanatory variables, ρ = 0.80, 0.85, 0.90, 0.95,
and 0.99.

4) The number of explanatory variables is p = 2, 4, and 6;
with β′β = 1 and β1 = . . . = βp, as per Kaçiranlar and
Dawoud [27], Rady et al. [28], Abonazel and Farghali [29],
Farghali et al. [9], Dawoud and Abonazel [30], and Awwad
et al. [31].

5) We used the simulated MSE (SMSE) criterion for verification,
which are computed as

SMSE
(

β̂

)

= 1

5000

5000
∑

l=1

(

β̂l − β
)

′
(

β̂l − β
)

, (33)

where β̂l is the estimated value vector at the lth experiment of
the simulation, β is the true parameter vector. The number of
replications is 5,000.

Simulation Results
We have the following comments according to the simulation
results in Tables 1–6: Obviously, from Tables 1–6, the proposed
estimator possesses a smaller SMSE than the BML estimator and
other estimators understudy for all sample sizes. For instance,
from Table 3, when ρ = 0.9, n = 50, the SMSE of BML
is 16.331 while the SMSE for other estimators is as follows:
13.295 (BRR), 13.254 (BKL), 10.640 (BOK), 4.493 (BDK(1)),
and 4.428 (BDK(2)), respectively. Similarly, when the values
of φ increase the SMSE also increases: from Table 1, when
φ = 2, n = 100 and ρ = 0.99, and Table 2, when φ =
6, n = 100 and ρ = 0.99, the SMSE of BRR rises from
102.758 to 252.353. Also, it is evident that the SMSE values
of all the estimators increased as the number of explanatory p
increased. For the one-parameter shrinkage estimator, the BKL
estimator consistently dominates the BRR estimator. For two-
parameter shrinkage estimators, the BDK estimator dominates

TABLE 6 | SMSE values of different estimators when p = 6 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 24.308 23.396 23.396 21.226 16.249 12.890

0.85 32.188 30.588 30.577 26.475 17.289 12.522

0.90 49.485 46.799 46.789 38.084 21.315 13.021

0.95 101.291 97.077 97.075 76.197 39.597 22.003

0.99 693.505 670.736 670.667 410.533 90.039 37.843

75 0.80 24.844 23.949 23.944 21.907 16.472 13.086

0.85 34.987 33.539 33.532 29.804 20.256 16.453

0.90 47.139 44.266 44.241 36.283 19.387 12.870

0.95 93.080 89.724 89.717 73.289 41.415 24.254

0.99 754.197 735.126 735.082 496.580 123.219 36.798

100 0.80 17.825 17.177 17.175 16.127 12.728 11.537

0.85 21.441 20.510 20.506 18.863 13.433 11.505

0.90 49.162 47.478 47.473 42.140 27.865 22.938

0.95 103.039 99.905 99.896 85.178 47.090 35.859

0.99 634.956 619.106 619.078 444.692 140.691 59.963

150 0.80 17.301 16.801 16.800 16.101 13.051 13.019

0.85 32.077 31.463 31.463 30.007 24.389 23.897

0.90 42.623 41.614 41.612 38.705 28.606 27.190

0.95 98.059 95.272 95.263 83.046 49.071 42.380

0.99 724.422 714.279 714.269 583.521 270.776 188.774

200 0.80 19.214 18.795 18.794 18.181 15.345 15.624

0.85 26.161 25.717 25.716 24.805 21.034 21.107

0.90 47.018 46.298 46.297 44.058 35.750 35.533

0.95 108.860 107.407 107.405 99.800 75.129 71.876

0.99 652.981 645.213 645.206 547.813 293.726 233.134
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FIGURE 1 | Visualization of the correlation matrix.

the BOK estimator. Overall, the BDK dominates both the one-
parameter and the two-parameter estimators. However, the
performance of each estimator is a function of the employed
shrinkage parameter.

REAL DATA APPLICATION

The implementation of the proposed estimator is illustrated by a
study applied to the well-being index of Turkey in 2015 [32]. The
index involves the aspects of accommodation, jobs, income and
wealth, health, education, climate, protection, public engagement
and access to community resources and social life. As the life
satisfaction index is between 0 and 1. The values close to 1 refer

to a better standard of living. The data are obtained from the
Turkish Statistics Association. The original dataset consists of
some dimensions that are represented by 41 indicators. Here, we
are interested in only nine indicators used by Abonazel and Taha
[21] and the number of observations is 50. The response variable
is the level of happiness and eight explanatory variables are x1:
Number of rooms per person, x2: Average point of necessary
placement scores of the system for transition to secondary
education from basic education, x3: Satisfaction rate with public
education services, x4: Percentage of the population receiving
waste services, x5: Satisfaction rate with public safety services, x6:
The access rate of the population to sewerage and pipe system, x7:
Satisfaction rate with public health services, and x8: Percentage of
households declaring to fail on meeting basic needs.
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TABLE 7 | Estimation results for the used estimators.

BML BRR BKL BOK BDK(1) BDK(2)

x1 −0.4269 −0.4028 −0.4022 −0.3942 −0.3584 0.2425

x2 0.0014 0.0012 0.0012 0.0012 0.0010 −0.0022

x3 0.0017 0.0018 0.0018 0.0018 0.0020 0.0048

x4 −0.0019 −0.0019 −0.0019 −0.0019 −0.0019 −0.0021

x5 −0.0076 −0.0076 −0.0076 −0.0077 −0.0077 −0.0085

x6 −0.0044 −0.0044 −0.0044 −0.0044 −0.0044 −0.0038

x7 0.0270 0.0269 0.0269 0.0269 0.0266 0.0229

x8 −0.0095 −0.0093 −0.0093 −0.0092 −0.0088 −0.0033

k – 0.4997 0.2489 0.7182 0.7069 29.3690

d – – – 0.0308 0.0308 0.0308

MSE 0.00138 0.00123 0.00122 0.00117 0.00097 0.00047

R2 0.752 0.779 0.780 0.789 0.825 0.915

GCV – 74.714 74.707 74.617 73.795 73.250

To investigate the multicollinearity through correlation
coefficients between the explanatory variables, a visualization of
the correlation matrix of the variables is constructed with the
corresponding coefficients reported in Figure 1. The correlation
coefficients indicate that there are strong relationships (more
than 0.8) between some explanatory variables. This denotes
the severe multicollinearity presence. Moreover, this conclusion
is confirmed by the variance inflation factor (VIF) and the
condition number

(

CN =
√

max(γj)/min(γj)
)

[33]; where the
VIFs of the eight explanatory variables are 7.5, 6.1, 10.8, 10.1, 9.1,
9.8, 9.7, and 4.3, respectively, and the CN is 3,936.055.

Table 7 provides the regression parameter estimates for the BR
model using BML, BRR, BKL, BOK, and BDK. From Table 7,
it can note that the estimated regression parameters of all
estimators have the same signs (except x1 and x2 in BDK(2) only);
this means that the type of relationship between each explanatory
variable and the response variable is not changed from what
it was in the BML. The estimated MSE of the five estimators
were obtained by Equations (10), (13), (16), (19), and (22),
respectively. The results of Table 7 indicate that the estimated
MSE value of BML is greater than the estimated MSE values
of BRR, BKL, BOK, and BDK estimators. Moreover, the MSE
values of BDK(1) and BDK(2) estimators are lower than other
estimators, which means that the BDK estimator achieves the
best performance. Furthermore, in terms of the prediction, the
R2 value of the proposed estimator (BDK) is the greatest among
all the used estimators. To further highlight the performance of
the BDK estimator, generalized cross-validation (GCV) criterion
is used in comparison [8, 34, 35]. Regarding GCV values, it
can note that the BDK yielded the least value compared with
other estimators.

Through this application, we verify the theoretical results
as follows:

1. Since the condition

4k̂2
BDK(2)(1+ d̂BOK)

2
φ̂

p
∑

j=1
γjα̂

2
j = 7.26e + 7 <

p
∑

j=1

(

M̂2
j − R̂2j

)

= 1.58e + 10 is satisfied, then the BDK

estimator is better than the BML estimator.

2. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − γ 2

j M̂
2
j

)

= −1.35e + 26 <

k̂2
BDK(2)φ̂

p
∑

j=1
γjα̂

2
j (M̂

2
j − 4(1+ d̂BOK)

2
L̂2j ) = −7.83e + 23

is satisfied, then the BDK estimator is better than the
BRR estimator.

3. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − N̂2

j M̂
2
j

)

= −7.84e + 24 <

4 k̂2
BDK(2) φ̂

p
∑

j=1
γjα̂

2
j (M̂

2
j − (1+ d̂BOK)

2
L̂2j ) = −6.03e + 22

is satisfied, then the BDK estimator is better than the
BKL estimator.

4. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − Ĝ2

j M̂
2
j

)

= −1.39e + 26 <

k̂2
BDK(2)φ̂

p
∑

j=1
γjα̂

2
j ((1− d̂BOK)

2
M̂2

j − 4(1+ d̂BOK)
2
L̂2j ) =

−7.98e+ 23 is satisfied, then the BDK estimator is better than
the BOK estimator.

CONCLUSION

Regression modeling describes the relationship that exists
between a dependent variable and one or more explanatory
variables. Linear dependency, a situation called multicollinearity,
is a common problem with two or more explanatory variables.
Multicollinearity is a threat to the efficiency of the maximum
likelihood estimator in both the linear and generalized linear
models, such as the BR model. The ridge regression estimator
serves as an alternative to the maximum likelihood estimator for
parameter estimation in the beta regression model. In this article,
we developed the BDK estimator and compared its performance
theoretically with some other estimators. A simulation study has
been conducted to compare the performance of the estimators.
Real-life data have been analyzed to illustrate the findings of
the article. We concluded that the BDK estimator proposed in
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this articles generally preferred when there is multicollinearity
in the beta regression model. For future work, for example,
one can use new methods to select the shrinkage parameters
as an extension to Uslu et al. [36] and Inan et al. [37] in the
BR model, or provide robust biased estimators for handling
multicollinearity and outliers together in the beta regression
model as an extension to Awwad et al. [31] and Dawoud and
Abonazel [30].
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The synchrosqueezing transform (SST) and its variants have been developed recently as

an alternative to the empirical mode decomposition scheme to model a non-stationary

signal as a superposition of amplitude- and frequency-modulated Fourier-like oscillatory

modes. In particular, SST performs very well in estimating instantaneous frequencies

(IFs) and separating the components of non-stationary multicomponent signals with

slowly changing frequencies. However its performance is not desirable for signals having

fast-changing frequencies. Two approaches have been proposed for this issue. One is

to use the 2nd-order or high-order SST, and the other is to apply the instantaneous

frequency-embedded SST (IFE-SST). For the SST or high order SST approach, one

single phase transformation is applied to estimate the IFs of all components of a signal,

which may yield not very accurate results in IF estimation and component recovery.

IFE-SST uses an estimation of the IF of a targeted component to produce accurate

IF estimation. The phase transformation of IFE-SST is associated with the targeted

component. Hence the IFE-SST has certain advantages over SST in IF estimation and

signal separation. In this article, we provide theoretical study on the instantaneous

frequency-embedded short-time Fourier transform (IFE-STFT) and the associated SST,

called IFE-FSST. We establish reconstructing properties of IFE-STFT with integrals

involving the frequency variable only and provide reconstruction formula for individual

components. We also consider the 2nd-order IFE-FSST.

Keywords: short-time Fourier transform, synchrosqueezing transform, instantaneous frequency-embedded

STFT, instantaneous frequency-embedded SST, instantaneous frequency estimation

AMSMathematics Subject Classification: 42C15, 42A38

1. INTRODUCTION

Recently the continuous wavelet transform-based synchrosqueezed transform (WSST) was
developed in [1] as an empirical mode decomposition (EMD)-like tool to model a non-stationary
signal x(t) as

x(t) = A0(t)+
K

∑

k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)

with Ak(t),φ
′
k
(t) > 0, where Ak(t) is called the instantaneous amplitudes and φ′

k
(t) the

instantaneous frequencies (IFs). The representation (1) of non-stationary signals is important to
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extract information hidden in x(t). WSST not only sharpens the
time-frequency representation of a signal, but also recovers the
components of a multicomponent signal. The synchrosqueezing
transform (SST) provides an alternative to the EMD method
introduced in [2] and its variants considered in many articles
such as [3–12], and it overcomes some limitations of the EMD
and ensemble EMD schemes such as mode-mixing. Many works
on SST have been carried out since the publication of the seminal
article [1]. For example, the short-time Fourier transform
(STFT)-based SST (FSST) [13–15], the 2nd-order SST [16–18],
the higher-order FSST [19, 20], a hybrid EMD-WSST [21], the
WSST with vanishing moment wavelets [22], the multitapered
SST [23], the synchrosqueezed wave packet transform [24] and
the synchrosqueezed curvelet transform [25] were proposed.
Furthermore, the adaptive SST with a window function having
a changing parameter was proposed in [26–31]. SST has been
successfully used in machine fault diagnosis [32, 33], and medical
data analysis applications [see [34] and references therein]. [35]
proposed a direct time-frequency method (called SSO) based on
the ridges of spectrogram for signal separation. This method has
been extended recently to the linear chirp-based models [36, 37]
and the models based on the CWT scaleogram [38, 39]. A hybrid
EMD-SSO computational scheme was developed in [40].

If the IFs φ′
k
(t) of the components xk(t) of a non-

stationary multicomponent signal change slowly or change
slowly compared with φk(t), then SST performs very well in
estimating φ′

k
(t) and separating the components xk(t) from x(t).

However its performance is not desirable for signals having fast-
changing frequencies. The 2nd-order and high-order SSTs were
proposed for this issue and they do improve the accuracy of IF
estimation and component recovery. The problem with the 2nd-
order and high-order SSTs is that, like the convectional SST, one
single phase transformation is applied to estimate the IFs of all
components of a signal, which may not yield desirable results in
IF estimation or component recovery.

Another approach is to demodulate the original signal to
change a wide-band component into a narrow-band component.
Li and Liang [41] and Meignen et al. [42] demodulate the
original signal into a pure carrier signal and apply WSST and
the 2nd-order FSST to the demodulated signal, respectively.
FSST based on another demodulation was proposed in [43]. The
demodulation introduced in [43] transforms a one-dimensional
signal, as a function of time only, into a two-dimensional
bivariate function of time and time-shift. The STFT of the
demodulated signal has more concentrated time-frequency
representation than the conventional STFT, and in the meantime
it well characterizes time-frequency properties of the signal
[43]. The demodulation approach of [43] is considered in
[44] in the setting of CWT. The associated CWT and SST
are called in [44] the instantaneous frequency-embedded CWT
(IFE-CWT) and IFE-SST, respectively. For consistency, we call
the STFT of the demodulated signal and the associated FSST
in [43]: the IFE-STFT and IFE-FSST respectively. [43] shows
that IFE-FSST results in sharp time-frequency representations
of signals. However component recovery of a multicomponent
signal was not discussed in [43]. In this article, we consider
theoretical analysis of IFE-STFT for establishing the component

recovery with IFE-FSST. Compared with the study of IFE-SST
in [44], we derive in this article mathematically rigorous phase
transformation for IFE-FSST. In addition, in this article we
also consider the 2nd-order IFE-FSST and derive the associate
phase transformation.

The rest of this article is organized as follows. In Section 2,
we briefly review FSST and the 2nd-order FSST. After that, we
consider in Section 3 the IFE-STFT and establish reconstructing
properties of IFE-STFT with integrals involving the frequency
variable only. In Section 4, we derive mathematically rigorous
phase transformations for IFE-FSST and the 2nd-order IFE-
FSST. In addition, we provide reconstruction formula for
individual components. Implementations and IFE-FSST-based
component recovery algorithms are discussed in Section 5. Some
experimental results are also provided in Section 5.

2. SHORT-TIME FOURIER
TRANSFORM-BASED SST

The (modified) short-time Fourier transform (STFT) of x(t) is
defined by

Vx(t, η) :=
∫ ∞

−∞
x(τ )g(τ − t)e−i2πη(τ−t)dτ , (2)

where g(t) is a window function with g(0) 6= 0. x(t) can be
reconstructed from its STFT:

x(t) = 1

‖g‖22

∫ ∞

−∞

∫ ∞

−∞
Vx(t, ξ )g(t − τ )e−i2πξ (τ−t)dτdξ . (3)

x(t) can also be recovered back from its STFT with an integral
involving only the frequency variable η:

x(t) = 1

g(0)

∫ ∞

−∞
Vx(t, η)dη. (4)

In addition, one can show that if g(t) and x(t) are real-
valued, then

x(t) = 2

g(0)
Re

(

∫ ∞

0
Vx(t, η)dη

)

. (5)

Furthermore, one can verify that STFT can be written as

Vx(t, η) =
∫ ∞

−∞
x̂(ξ )̂g(η − ξ )ei2π tξdξ . (6)

The STFTVx(t, η) of a slowly growing x(t) is well-defined and the
above formulas still hold if the window function g(t) has certain
smoothness and certain decaying order as t → ∞, for example
g(t) is in the Schwarz class S . In this article, unless otherwise
stated, we always assume that a window function g(t) has certain
smoothness and decaying properties and g(0) 6= 0, and assume
that a signal x(t) is a slowly growing function.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2022 | Volume 8 | Article 83053064

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Jiang et al. Instantaneous Frequency-Embedded Synchrosqueezing Transform

2.1. FSST
The idea of FSST is to re-assign the frequency variable η of
Vx(t, η). First we look at the STFT of x(t) = Aei2πξ0t , where ξ0
is a positive constant. With

Vx(t, η) =
∫ ∞

−∞
Aei2πξ0τ g(τ − t)e−i2πη(τ−t)dτ

= Âg(η − ξ0)e
i2π tξ0 ,

we can obtain the IF ξ0 of x(t) by

∂tVx(t, η)

2π iVx(t, η)
= ξ0,

where throughout this article, ∂t denotes the partial derivative
with respect to variable t. For a general x(t), at (t, η) for which
Vx(t, η) 6= 0, a good candidate for the IF of x(t) is

∂tVx(t, η)

2π iVx(t, η)
.

In the following, denote

ωx(t, η) := Re
{ ∂tVx(t, η)

2π iVx(t, η)

}

, for (t, η) with Vx(t, η) 6= 0,

which is called the “phase transformation” [1], “instantaneous
frequency information” [13], or the “reference IF function”
in [21]. FSST is to re-assign the frequency variable η by
transforming the STFT Vx(t, η) of x(t) to a quantity, denoted by

R
λ,γ
x (t, ξ ), on the time-frequency plane defined by

R
λ,γ
x (t, ξ) :=

∫

{η :|Vx(t,η)|>γ }
Vx(t, η)

1

λ
h

(

ξ − ωx(t, η)

λ

)

dη,

where ξ is the frequency variable, h(t) a compactly supported
function with certain smoothness and

∫ ∞
−∞ h(t)dt = 1, γ > 0

is the threshold for zero and λ > 0 is a dilation. As λ, γ → 0,
FSST is rewritten as

Rx(t, ξ ) :=
∫

{η :Vx(t,η) 6=0}
Vx(t, η)δ

(

ωx(t, η)− ξ
)

dη. (7)

For simplicity of presentation, throughout this article SSTs will be
expressed as (7).

Due to (4), we have that the input signal x(t) can be recovered
from its FSST by

x(t) = 1

g(0)

∫ ∞

−∞
Rx(t, ξ )dξ . (8)

If in addition, g(t) and x(t) are real-valued, then by (5),

x(t) = 2

g(0)
Re

(

∫ ∞

0
Rx(t, ξ )dξ

)

. (9)

For a multicomponent signal x(t) given by (1), when Ak(t),φk(t)
satisfy certain conditions, each component xk(t) can be recovered
from its FSST:

xk(t) ≈
1

g(0)

∫

|ξ−IFk(t)|<Ŵ

Rx(t, ξ )dξ , (10)

for certainŴ > 0, where IFk(t) is an estimate to φ′
k
(t). See [13–15]

for the details.
In practice, t, η, ξ are discretized. Suppose tn, ηj, ξm are the

sampling points of t, η, ξ respectively. Then the FSST of x(t) is
given by

Rx(tn, ξm) =
∑

j : |ωx(tn ,ηj)−ξm|≤1ξ/2,|Vx(tn ,ηj)|≥γ

Vx(tn, ηj)△ηj,

where△ηj = ηj−ηj−1, and γ > 0 is a threshold for the condition
|Vx(t, η)| > 0. The recovering formulas (8) and (9) result in

x(tn) =
1

g(0)

∑

m

Rx(tn, ξm)△ξm,

and for real-valued g(t) and x(t),

x(tn) =
2

g(0)
Re

(

∑

m

Rx(tn, ξm)△ξm

)

,

where△ξm = ξm − ξm−1.

2.2. Second-Order FSST
The 2nd-order FSST was introduced in [16]. The main idea is to
define a new phase transformation ω2nd

x such that when x(t) is
a linear frequency modulation (LFM) signal (also called a linear
chirp), then ω2nd

x is exactly the IF of x(t). We say x(t) is a LFM
signal or a linear chirp if

x(t) = Aei2πφ(t) = Aei2π(ct+
1
2 rt

2) (11)

with phase function φ(t) = ct + 1
2 rt

2, IF φ′(t) = c + rt and
chirp rate φ′′(t) = r. In [16], the reassignment operators are
used to derive ω2nd

x . Different phase transformation ω2nd
x for the

2nd-order SST can be derived without using the reassignment
operators see [28, 29].

Let g be a given window function. Denote

g1(t) = tg(t). (12)

Recall that Vx(t, η) denotes the STFT of x(t) with g defined by
(2). In this article, we let V

g1
x (t, η) denote the STFT of x(t) with

g1(t), namely, the integral on the right-hand side of (2) with g(t)
replaced by g1(t). Define

ω2nd
x (t, η) :=



























Re
{

∂tVx(t,η)
i2πVx(t,η)

}

− Re
{

q0(t, η)
V
g1
x (t,η)

i2πVx(t,η)

}

,

if ∂η

(V
g1
x (t,η)
Vx(t,η)

)

6= 0,Vx(t, η) 6= 0,

Re
{

∂tVx(t,η)
i2πVx(t,η)

}

,

if ∂η

(V
g1
x (t,η)
Vx(t,η)

)

= 0,Vx(t, η) 6= 0,

(13)

where

q0(t, η) :=
1

∂η

(V
g1
x (t,η)
Vx(t,η)

)

∂η

(∂tVx(t, η)

Vx(t, η)

)

.

Then one can show that ω2nd
x (t, η) is exactly the IF φ′(t) of x(t)

if x(t) is an LFM signal given by (11), see [19, 28]. Thus, we may
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define ω2nd
x (t, η) in (13) as the phase transformation for the 2nd-

order FSST. Very recently a simple phase transformation for the
2nd-order FSST was proposed in [18].

3. INSTANTANEOUS
FREQUENCY-EMBEDDED STFT

IFE-FSST is based on the IFE-STFT, which is defined below.

Definition 1. Suppose ϕ(t) is a differentiable function with
ϕ′(t) > 0. Let η0 > 0. The IFE-STFT of x(t) ∈ L2(R) with ϕ(t), η0
and a window function g(t) is defined by

VI
x(t, η) :=

∫ ∞

−∞
x(τ )e−i2π

(

ϕ(τ )−ϕ(t)−ϕ′(t)(τ−t)−η0τ
)

g(τ − t)e−i2πη(τ−t)dτ . (14)

In the above definition, we assume x(t) ∈ L2(R). The definition of
IFE-STFT can be extended to slowly growing functions x(t) if g(t)
has certain smoothness and certain decaying order as t → ∞.

Li and Liang [41] proposed the modulation x(τ ) →
x̃(τ ) = x(τ )e−i2π(ϕ(τ )−η0τ ) and applied WSST to the modulated
signal x̃(τ ), while [42] applied the 2nd-order FSST to x̃(t).
The modulation:

x(τ ) → x(τ )e−i2π
(

ϕ(τ )−ϕ(t)−ϕ′(t)(τ−t)−η0τ
)

introduced in [43] for IFE-FSST and also used in [44] for IFE-
WSST is different from that used in [41, 42]. IFE-STFT and IFE-
CWT with such a modulation not only have more concentrated
time-frequency representation than the conventional STFT and
CWT respectively, but also well keep the IF of the signal. The
reader is referred to [43] and [44] for detailed discussions.

[43] provides a reconstruction formula with IFE-STFT for
the whole signal x(t), which is similar to (3) and involves an
integral with both the time and frequency variables. [43] does not
consider individual component recovery formula with IFE-FSST.
In this article, we provide such a component recovery formula.
To this regard, in this section we establish a reconstruction
formula with IFE-STFT like (4), which involves an integral with
the frequency variable only. First we have the following property
about the IFE-STFT.

Proposition 1. Let VI
x(t, η) be the IFE-STFT of x(t) defined by

(14). Then

VI
x(t, η) = ei2πϕ(t)

∫ ∞

−∞
̂x̃(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξ , (15)

where

x̃(t) = x(t)e−i2π(ϕ(t)−η0t). (16)

Proof: We have

VI
x(t, η) = ei2πϕ(t)

∫ ∞

−∞
x̃(τ )ei2πϕ′(t)(τ−t)g(τ − t)e−i2πη(τ−t)dτ

= ei2πϕ(t)
∫ ∞

−∞
x̃(τ )g(τ − t)e−i2π

(

η−ϕ′(t)
)

(τ−t)dτ

= ei2πϕ(t)
∫ ∞

−∞
̂x̃(ξ )̂g

(

η − ϕ′(t)− ξ
)

ei2π tξdξ ,

where the last equality follows from (6).

The next theorem shows that x(t) can be recovered from its
IFE-STFT with an integral involving η only.

Theorem 1. Let x(t) be a function in L2(R). Then

x(t) = e−i2πη0t

g(0)

∫ ∞

−∞
VI
x(t, η)dη. (17)

Proof: Let x̃(t) be the function defined by (16). From (15),
we have

∫ ∞

−∞
VI
x(t, η)dη = ei2πϕ(t)

∫ ∞

−∞

∫ ∞

−∞
̂x̃(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)
∫ ∞

−∞
̂x̃(ξ )

∫ ∞

−∞
ĝ(η − ϕ′(t)− ξ )dη ei2π tξdξ

= ei2πϕ(t)g(0)

∫ ∞

−∞
̂x̃(ξ )ei2π tξdξ

= ei2πϕ(t)g(0)̃x(t)

= ei2πϕ(t)g(0)x(t)e−i2π
(

ϕ(t)−η0t
)

= g(0)x(t)ei2πη0t .

Thus, Equation (17) holds.

If one is interested in VI
x(t, η) with the positive frequency

η > 0 only, then we have the following result on how to recover
x(t) from VI

x(t, η).

Theorem 2. Suppose supp(̂g) ⊆ [−1,1] for some1, and ϕ′(t) ≥
1. Let y(t) = x(t)e−i2πϕ(t). If ŷ(η) = 0, η ≤ B for some constant
B, then for any η0 ≥ −B,

x(t) = e−i2πη0t

g(0)

∫ ∞

0
VI
x(t, η)dη. (18)

Proof: Let x̃(t) be the function defined by (16). Then x̃(t) =
y(t)ei2πη0t . Thus,̂x̃(ξ ) = ŷ(ξ −η0). Therefore, from (15), we have

∫ ∞

0
VI
x(t, η)dη = ei2πϕ(t)

∫ ∞

0

∫ ∞

−∞
̂x̃(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)
∫ ∞

0

∫ ∞

−∞
ŷ(ξ − η0 )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)
∫ ∞

0

∫ ∞

−∞
ŷ(ξ )̂g(η − ϕ′(t)− ξ − η0)e

i2π t(ξ+η0)dξdη

= ei2π
(

ϕ(t)+tη0
)
∫ ∞

−∞
ŷ(ξ )

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)e

i2π tξdηdξ

= ei2π
(

ϕ(t)+tη0
)
∫ ∞

B
ŷ(ξ )ei2π tξ

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)dηdξ .
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When ξ ≥ B and η0 ≥ −B, we have −ϕ′(t) − ξ − η0 ≤
−1−B+B = −1. This and the assumption supp(̂g) ⊆ [−1,1]
lead to

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)dη =

∫ ∞

−ϕ′(t)−ξ−η0

ĝ(η)dη

=
∫ ∞

−∞
ĝ(η)dη = g(0).

Hence,

∫ ∞

0
VI
x(t, η)dη = ei2π

(

ϕ(t)+tη0
)
∫ ∞

B
ŷ(ξ )ei2π tξ g(0)dξ

= ei2π
(

ϕ(t)+tη0
)

g(0)

∫ ∞

−∞
ŷ(ξ )ei2π tξdξ

= ei2π
(

ϕ(t)+tη0
)

g(0)y(t)

= ei2π
(

ϕ(t)+tη0
)

g(0)x(t)e−i2πϕ(t)

= g(0)x(t)ei2πη0t .

Thus, Equation (18) holds.

Next theorem shows that when the condition ŷ(η) = 0, η ≤ B
in Theorem 2 does not hold, the integral in the right-hand side of
(18) can still approximate x(t) well if η0 is large.

Theorem 3. Let y(t) = x(t)e−i2πϕ(t). Then

x(t) = e−i2πη0t

g(0)

∫ ∞

0
VI
x(t, η)dη + Err, (19)

with

|Err| ≤
∫ ∞
−∞ |̂g(ξ )|dξ

g(0)

∫ −η0

−∞
|̂y(ξ )|dξ .

Proof: By Theorem 1,

∫ ∞

0
VI
x(t, η)dη =

∫ ∞

−∞
VI
x(t, η)dη −

∫ 0

−∞
VI
x(t, η)dη

= ei2πη0tg(0)x(t)−
∫ 0

−∞
VI
x(t, η)dη.

Thus,

Err = e−i2πη0t

g(0)

∫ 0

−∞
VI
x(t, η)dη.

With

∣

∣

∫ 0

−∞
VI
x(t, η)dη

∣

∣ =
∣

∣ei2πϕ(t)
∫ 0

−∞

∫ ∞

−∞
ŷ(ξ − η0 )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

∣

∣

≤
∫ 0

−∞

∫ ∞

−∞
|̂y(ξ − η0)| |̂g(η − ϕ′(t)− ξ )ei2π tξ |dηdξ

≤
∫ 0

−∞
|̂y(ξ − η0)|

∫ ∞

−∞
|̂g(η − ϕ′(t)− ξ )|dηdξ

=
∫ ∞

−∞
|̂g(η)|dη

∫ 0

−∞
|̂y(ξ − η0)|dξ

=
∫ ∞

−∞
|̂g(η)|dη

∫ −η0

−∞
|̂y(ξ )|dξ ,

we conclude that (19) holds.

4. IFE-STFT BASED SYNCHROSQUEEZING
TRANSFORM

In this section, we consider IFE-FSST, the synchrosqueezing
transform based on IFE-STFT. First we show how to derive the
phase transformation associated with (the 1st-order) IFE-FSST.
After that we introduce the 2nd-order IFE-FSST.

4.1. IFE-FSST
To define IFE-FSST, first we need to define the corresponding
phase transformation ωI

x(a, b). Let us consider the case x(t) =
Aei2πξ0t for some ξ0 > 0. With x′(t) = i2πξ0 x(t), we have

VI
x′ (t, η) = i2πξ0V

I
x(t, η).

On the other hand,

VI
x′ (t, η) =

∫ ∞

−∞
∂τ

(

x(t + τ )
)

e−i2π
(

ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )
)

g(τ )e−i2πητ dτ

= −
∫ ∞

−∞
x(t + τ )∂τ

(

e−i2π
(

ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )
)

g(τ )e−i2πητ
)

dτ

= −
∫ ∞

−∞
x(t + τ )(−i2π)

(

ϕ′(t + τ )− ϕ′(t)− η0 + η
)

e−i2π
(

ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )+η)
)

g(τ )dτ

−
∫ ∞

−∞
x(t + τ )e−i2π

(

ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )+η)
)

g′(τ )dτ

= i2πVI
xϕ′ (t, η)+ i2π(η − ϕ′(t)− η0)V

I
x(t, η)− V

I,g′
x (t, η), (20)

where V
I,g′
x (t, η) denotes the IFE-STFT of x(t) defined by (14)

with ϕ(t) and the window function g′ given by (12). Thus, if
VI
x(t, η) 6= 0, then

ξ0 =
VI
x′ (t, η)

i2πVI
x(t, η)

=
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+ η − ϕ′(t)− η0.

Based on the above discussion, for a general signal x(t), we define
the phase transformation ωI

x(a, b) of the IFE-FSST of x(t) to be

ωI
x(t, η) := Re

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)

+η−ϕ′(t)−η0. (21)

Definition 2. Suppose ϕ(t) is a differentiable function with
ϕ′(t) > 0. The IFE-FSST of a signal x(t)with ϕ and ξ0 is defined by

RIx(t, ξ ) :=
∫

{η :VI
x(t,η)6=0}

VI
x(t, η)δ

(

ωI
x(t, η)− ξ

)

dη

where ωI
x(t, η) is the phase transformation defined by (21).
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The IFE-FSST is called the demodulation transform-based
SST in [43]. The corresponding phase transformation in [43] is
different from our ωI

x(t, η) defined in (21).
By (18) in Theorem 1, we know the input signal x(t) can be

recovered from its IFE-FSST as shown in the following:
For x(t) ∈ L2(R),

x(t) = e−i2πη0t

g(0)

∫ ∞

−∞
RIx(t, ξ )dξ ; (22)

and if, in addition, the conditions in Theorem 2 hold, then

x(t) = e−i2πη0t

g(0)

∫ ∞

0
RIx(t, ξ )dξ . (23)

For a multicomponent signal x(t) in the form (1), if RIxk (t, ξ ), 1 ≤
k ≤ K lie in different time-frequency zones, then following (18),
we know xk(t) can be recovered from its IFE-FSST:

xk(t) ≈
e−i2πη0t

g(0)

∫

|ξ−IFk(t)|<Ŵ1

RIx(t, ξ )dξ , (24)

for certain Ŵ1 > 0, where IFk(t) is an estimate of φ′
k
(t). If xk(t)

and g(t) are real-valued, then

xk(t) ≈
2

g(0)
Re

(

e−i2πη0t

∫

|ξ−IFk(t)|<Ŵ1

RIx(t, ξ )dξ
)

. (25)

4.2. 2nd-Order IFE-FSST
In this subsection, we propose the 2nd-order IFE-FSST. The key
point is, based on IFE-STFT, to define a phase transformation
ωI,2nd
x (t, η) which is the IF φ′(t) of x(t) when x(t) is a linear chirp

given by (11). As above, for g1(t) = tg(t), we use V
I,g1
x (t, η) to

denote the IFE-STFT of x(t) with the window function g1(t),
namely, the integral on the right-hand side of (14) with g(t)
replaced by g1(t). Next we define the phase transformation
ωI,2nd
x (t, η) for the 2nd-order IFE-FSST to be:

ωI,2nd
x (t, η) :=



































ωI
x(t, η)− Re

{

Q0(t, η)
V
I,g1
x (t,η)

i2πVI
x(t,η)

}

,

if ∂η

(V
I,g1
x (t,η)
VI
x(t,η)

)

6= 0,VI
x(t, η) 6= 0;

ωI
x(t, η),

if ∂η

(V
I,g1
x (t,η)
VI
x(t,η)

)

= 0,VI
x(t, η) 6= 0,

(26)

where ωI
x(t, η) is defined by (21), and

Q0(t, η) :=
1

∂η

(

V
I,g1
x (t,η)
VI
x(t,η)

)

{

1+ ∂η

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)}

.

(27)

Theorem 4. If x(t) is a linear chirp signal given by (11), then at

(t, η) where VI
x(t, η) 6= 0, ∂η

(

V
I,g1
x (t, η)/VI

x(t, η)
)

6= 0, ωI,2nd
x (t, η)

defined by (26) is the IF of x(t), namely ωI,2nd
x (t, η) = c+ rt.

Proof: Here, we provide the proof ofωI,2nd
x (t, η) = c+rt for more

general linear chirp signals given by

x(t) = A(t)ei2πφ(t) = Aept+
q
2 t

2
ei2π(ct+

1
2 rt

2) (28)

where p, q are real numbers.
For the simplicity of presentation, we denote

Mϕ,g(τ , t, η) := e−i2π
(

ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )
)

g(τ )e−i2πητ ,

and thus, VI
x(t, η) can simply be written as

VI
x(t, η) =

∫ ∞

−∞
x(t + τ )Mϕ,g(τ , t, η)dτ .

Observe that for x(t) given by (28), we have

x′(t) =
(

p+ qt + i2π(c+ rt)
)

x(t).

Thus,

VI
x′ (t, η) =

∫ ∞

−∞
x′(t + τ ) Mϕ,g(τ , t, η)dτ

=
∫ ∞

−∞

(

p+ q(t + τ )+ i2π(c+ rt + rτ )
)

x(t + τ ) Mϕ,g(τ , t, η)dτ

=
(

p+ qt + i2π(c+ rt)
)

VI
x(t, η)

+(q+ i2πr)

∫ ∞

−∞
x(t + τ ) τMϕ,g(τ , t, η)τdτ

=
(

p+ qt + i2π(c+ rt)
)

VI
x(t, η)

+(q+ i2πr)V
I,g1
x (t, η).

On the other hand, as shown above, VI
x′ (t, η) is equal to the

quantity in (20). Therefore,

(

p+ qt + i2π(c+ rt)
)

VI
x(t, η)+ (q+ i2πr)V

I,g1
x (t, η)

= i2πVI
xϕ′ (t, η)+ i2π(η − ϕ′(t)− η0)V

I
x(t, η)

−V
I,g′
x (t, η).

Hence, at (t, η) on which VI
x(t, η) 6= 0, we have

p+ qt

i2π
+ c+ rt + (

q

i2π
+ r)

V
I,g1
x (t, η)

VI
x(t, η)

=
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+ η − ϕ′(t)− η0. (29)

Taking partial derivative ∂η to the both sides of (29), we have

(
q

i2π
+ r)∂η

(V
I,g1
x (t, η)

VI
x(t, η)

)

= 1+ ∂η

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)

,

which leads to

q

i2π
+ r = Q0(t, η),
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for (t, η) with ∂η

(

V
I,g1
x (t, η)/VI

x(t, η)
)

6= 0, where Q0(t, η) is
defined by (27).

Returning back to (29) with
q
i2π + r replaced by Q0(t, η),

we have

c+ rt =
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+η − ϕ′(t)− η0 −
p+ qt

i2π
− Q0(t, η)

V
I,g1
x (t, η)

VI
x(t, η)

.

Since c + rt is real, taking the real parts of the quantities in the
above equation, we have

c+ rt = Re
{ i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

}

+η − ϕ′(t)− η0 − Re
{

Q0(t, η)
V
I,g1
x (t, η)

VI
x(t, η)

}

= ωI
x(t, η)− Re

{

Q0(t, η)
V
I,g1
x (t, η)

VI
x(t, η)

}

,

which is ωI,2nd
x (t, η). This completes the proof of Theorem 4.

With the phase transformation ωI,2nd
x (t, η) in (26), we have the

corresponding 2nd-order IFE-FSST of a signal x(t) with ϕ, ξ0 and
window function g defined by

RI,2x (t, ξ ) :=
∫

{η :VI
x(t,η) 6=0}

VI
x(t, η)δ

(

ωI,2nd
x (t, η)− ξ

)

dη.

(30)

One has reconstruction formulas with RI,2x (t, ξ ) similar
to (22)–(25).

5. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

5.1. Calculating ωI
x(t, η) and ω

I,2nd
x (t, η)

First we consider the IFE-FSST.We need to calculateωI
x(t, η).We

will use (15) so that FFT can be applied to (discrete signals) x

and xϕ′ to calculate VI(t, η), VI
xϕ′ (t, η) and V

I,g′
x (t, η). VI

xϕ′ (t, η)

can be obtained by (15) with x replaced by xϕ′. As long as

V
I,g′
x (t, η) is concerned, observe that the Fourier transform of g′

is i2πξ ĝ(ξ ). Hence

V
I,g′
x (t, η) = ei2πϕ(t)

∫

R

̂x̃(ξ )i2π(η − ϕ′(t)− ξ )

ĝ(η − ϕ′(t)− ξ )ei2π tξdξ .

After obtaining VI(t, η), VI
xϕ′ (t, η) and V

I,g′
x (t, η), we get ωI

x(t, η)

and then the IFE-FSST.
For the 2nd-order IFE-FSST, we need to calculate

V
I,g1
x (t, η), ∂η

(

VI
x(t, η)

)

, ∂η

(

V
I,g1
x (t, η)

)

, ∂η

(

VI
xϕ′ (t, η)

)

,

∂η

(

V
I,g′
x (t, η)

)

.

Note that the Fourier transform of τg(τ ) is

∫

R

τg(τ )e−i2πξτdτ = 1

−i2π

d

dξ

(

∫

R

g(τ )e−i2πξτdτ
)

= 1

−i2π

(

ĝ
)′
(ξ ).

Thus, we conclude

V
I,g1
x (t, η) = −ei2πϕ(t) 1

i2π

∫

R

̂x̃(ξ )
(

ĝ
)′
(η − ϕ′(t)− ξ )ei2π tξdξ .

(31)

By the fact ∂η

(

VI
x(t, η)

)

= −i2πV
I,g1
x (t, η), we can obtain

∂η

(

VI
x(t, η)

)

and ∂η

(

VI
xϕ′ (t, η)

)

as well via (31).

To calculate ∂η

(

V
I,g1
x (t, η)

)

, with ∂η

(

V
I,g1
x (t, η)

)

=
−i2πV

I,g2
x (t, η), where g2(τ ) = τ 2g(τ ), we need to calculate the

Fourier transform of g2(τ ), which is

ĝ2(ξ ) = 1

(−i2π)2
d2

dξ 2

(

∫

R

g(τ )e−i2πξτdτ
)

= − 1

4π2

(

ĝ
)′′
(ξ ).

Therefore,

∂η

(

V
I,g1
x (t, η)

)

= −ei2πϕ(t) 1

i2π

∫

R

̂x̃(ξ )
(

ĝ
)′′
(η−ϕ′(t)−ξ )ei2π tξdξ .

(32)

For ∂η

(

V
I,g′
x (t, η)

)

, we need to calculate the Fourier transform of

τg′(τ ), denoted by
(

τg′(τ )
)∧
(ξ ). Indeed,

(

τg′(τ )
)∧
(ξ ) =

∫

R

τg′(τ )e−i2πξτdτ = 1

−i2π

d

dξ

(

∫

R

g′(τ )e−i2πξτdτ
)

= − 1

−i2π

d

dξ

(

∫

R

g(τ )∂τ

(

e−i2πξτ
)

dτ
)

= − d

dξ

(

ξ

∫

R

g(τ )e−i2πξτdτ
)

= − d

dξ

(

ξ ĝ(ξ )
)

= −̂g(ξ )− ξ
(

ĝ
)′
(ξ ).

Thus,

∂η

(

V
I,g′
x (t, η)

)

= −i2πV
I,τg′(τ )
x (t, η)

= −i2πei2πϕ(t)
∫

R

̂x̃(ξ )
(

τg′(τ )
)∧
(η − ϕ′(t)− ξ )ei2π tξdξ

= i2πVI(t, η)+ i2πei2πϕ(t)

∫

R

̂x̃(ξ ) (η − ϕ′(t)− ξ )
(

ĝ
)′
(η − ϕ′(t)− ξ )ei2π tξdξ . (33)

With the formulas (31), (32), and (33), we can obtainQ0(t, η) and
then, ωI,2nd

x (t, η).
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5.2. IFE-FSST Algorithms for IF Estimation
and Component Recovery and
Experiments
To apply IFE-STFT or IFE-FSST, first of all we need to
choose ϕ(t) and ϕ′(t). For the purpose of estimating the IF
φ′
k
(t) of the kth component xk(t) and/or recover xk(t) of a

multicomponent signal x(t), we should choose ϕ(t) and ϕ′(t)
close to φk(t) (up to a constant) and φ′

k
(t) respectively. One

way is to use the ridges of the STFT. More precisely, suppose
{tn}0≤n<N , {ηj}0≤j<J , {ξm}0≤m<M are the sampling points of t, η, ξ
respectively for STFT Vx(t, η), FSST Rx(t, ξ ), and IFE-FSST
RIx(t, ξ ). Let η̂jn ,k, 0 ≤ n < N be the STFT ridge corresponding to

xk(t) given by

η̂jn,k := argmaxηj∈Gtn ,k
{|Vx(tn, ηj)|}, (34)

for each n, 0 ≤ n < N, where for each n, Gtn ,k is an interval
containing φ′

k
(tn) (with convention: φ0(t) ≡ 0) at the time

instant tn, and Gtn ,k, 0 ≤ k ≤ K form a disjoint union of
{

η : |Vx(tn, η)| > γ
}

, namely for each tn,

{

η : |Vx(tn, η)| > γ
}

= ∪K
k=0Gtn ,k.

See more details on Gt,k in [37].

FIGURE 1 | Experiment with x(t) in (43). 1st row: IF φ′(t); 2nd row: FSST |Rx (t, η)| (left) and IFE-FSST |RI
x (t, η)| (right); 3rd row: 2nd-order FSST (left) and 2nd-order

IFE-FSST |RI,2
x (t, η)| (right).
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{̂ηjn ,k}N−1
n=0 is called a ridge of the STFT plane or a ridge

of the spectrogram |Vx(t, η)|. It provides an approximation to
φ′
k
(tn), 0 ≤ n < N [see [36, 37, 45]]. Thus, we can use

ϕ′(tn) = η̂jn ,k, ϕ(tn) =
n−1
∑

ℓ=0

η̂jℓ ,k△tℓ, 0 ≤ n < N (35)

as discrete ϕ′(t) and ϕ(t) to define IFE-STFT and IFE-FSST,
where△tℓ = tℓ − tℓ−1.

To recover a component by either FSST or IFE-FSST, we
need an estimate IFk(t) for φ′

k
(t) so that (10) or (24)/(25) can be

applied. One way is to use the ridges of FSST and IFE-FSST to
approximate φ′

k
(tn). More precisely, let̂ξmn ,k, 0 ≤ n < N be the

FSST ridge defined similarly to the STFT ridge in (34):

̂ξmn ,k := argmaxξm∈Gtn ,k
{|Rx(tn, ξm)|}, 0 ≤ n < N. (36)

Then Equation (10) becomes

xk(tn) ≈ xreck (tn) :=
1

g(0)

∑

{m : |m−mn|<M0}
Rx(tn, ξm)△ξm,

0 ≤ n < N, (37)

for someM0 ∈ N, where△ξm = ξm − ξm−1.
Similarly, Equation (24) implies that xk(t) can be recovery

from (discrete) IFE-FSST:

xk(tn) ≈ xI,rec
k

(tn) :=
e−i2πη0tn

g(0)

∑

{m : |m−mI
n|<M0}

RIx(tn, ξm)△ξm,

0 ≤ n < N, (38)

where mI
n, 0 ≤ n < N are the indices for IFE-FSST ridge defined

as (36) with Rx(tn, ξm) replaced by RIx(tn, ξm):

̂ξmI
n ,k

:= argmaxξm∈Gtn ,k
{|RIx(tn, ξm)|}, 0 ≤ n < N. (39)

For real-valued xk(t) and g(t), the recovery formulas (37) and
(38) are respectively

xk(tn) ≈ xreck (tn)

:= 2

g(0)
Re

(

∑

{m : |m−mn|<M0}
Rx(tn, ξm)△ξm

)

,

0 ≤ n < N, (40)

and

xk(tn) ≈ xI,rec
k

(tn) (41)

:= 2

g(0)
Re

(

e−i2πη0tn
∑

{m : |m−mI
n|<M0}

RIx(tn, ξm)△ξm

)

,

0 ≤ n < N. (42)

To summarize, we have the following algorithm to estimate IF
φ′
k
(t) and recover xk(t) by IFE-FSST.

Algorithm 1. (IFE-FSST algorithm for IF estimation and
component recovery) Let x(t) be a signal of the form (1). To
estimate φ′

k
(t) and recover xk(t) by IFE-FSST, do the following.

Step 1. Obtain the STFT ridge η̂jn ,k, 0 ≤ n < N by (34) and
ϕ′(tn),ϕ(tn), 0 ≤ n < N by (35).
Step 2. Calculate IFE-FSST with ϕ′,ϕ obtained in Step 1. The
ridgêξmI

n ,k
, 0 ≤ n < N defined by (39) is an estimate of φ′

k
(t)

and xI,rec
k

(t) in (38) is an approximation to xk(t).

We can use Algorithm 1 to recover each component xk(t) one
by one. We can also apply Algorithm 1 to the remainder x(t) −
xI,rec
k

(t) to recover another component after xk(t) is recovered;
and we can repeat this procedure. The procedure of this iterative
method is described as follows.

Algorithm 2. (Iterative IFE-FSST algorithm for IF estimation
and component recovery) Let x(t) be a signal of the form (1).

Step 1. Apply Algorithm 1 to obtain xI,rec1 (t).

Step 2. Let y1 = x − xI,rec1 . Apply Algorithm 1 to y1 to

obtain xI,rec2 (t).

Step 3. Let y2 = x − xI,rec1 − xI,rec2 . Apply Algorithm 1 to

y2 to obtain xI,rec3 (t). Repeat this process to obtain xI,rec4 (t), · · · ,
and finally xI,recK (t).

FIGURE 2 | Recovery errors for x(t) given in (43) on [0.125, 0.875) by FSST (left) and IFE-FSST (right).
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FIGURE 3 | Experiment with x(t) in (44). 1st row: IFs φ′
1(t),φ

′
2(t) (left) and FSST |Rx (t, η)| (right); 2nd row: FSST for x1(t) (left) and FSST for x2(t) (right); 3rd row:

IFE-FSST for x1(t) (left) and IFE-FSST for x2(t) (right). 4th row: recovery errors on [0.125, 1.875) by FSST and IFE-FSST for x1(t) (left) and x2(t) (right).
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Step 4. Apply Algorithm 1 to x −
∑K

k=2 x
I,rec
k

to recover x1(t).

Let x̃I,rec1 (t) be the recovered x1(t). Then Apply Algorithm 1

to x − x̃I,rec1 (t) −
∑K

k=3 x
I,rec
k

to recover x2(t). Let x̃
I,rec
2 (t) be

the recovered x2(t). Obtain x̃I,rec3 (t) by applying Algorithm 1 to

x−x̃I,rec1 (t)−x̃I,rec2 (t)−
∑K

k=4 x
I,rec
k

. Repeat this process to obtain

x̃I,rec4 (t), · · · , and finally x̃I,recK (t).

We can repeat the procedure in Step 4 of Algorithm 2. That is
why we call Algorithm 2 an iterative algorithm.

Next we consider two examples. We let

g(t) = 1

σ
√
2π

e
− t2

2σ2 ,

be the window function, where σ > 0. First we consider a
mono-component signal

x(t) = cos
(

2π(φ(t)
)

= cos
(

2π(16t + 16t2)
)

, t ∈ [0, 1), (43)

where x(t) is uniformly sampled with sample points tn =
n△t, 0 ≤ n < N = 128,△t = 1

128 . The IF of x(t) is φ′(t) =
16+ 32t and it is shown in the 1st row of Figure 1. The FSST and
IFE-FSST of x(t) are provided in the 2nd row; and the 2nd-order
FSST and IFE-FSST are shown in the 3rd row. In this example we
let σ = 1

16 . As mentioned above, discrete ϕ′(t) and ϕ(t) defined
by (35) are used to define IFE-STFT and the 2nd-order IFE-STFT.
Obviously IFE-FSST provides a much sharper time-frequency
representation of x(t) than FSST. Both the 2nd-order FSST
and the 2nd-order IFE-FSST as well give sharp time-frequency
representations of x(t).

For a mono-component signal x(t) as given by (43), since
x(t) can be recovered from FSST or IFE-FSST as shown
in (8) and (22) respectively, theoretically, either (40) or
(41) gives high accurate approximation to x(t) as long as
M0 is large enough. We choose a small M0 so that the
recovery errors with it show how sharp the time-frequency
representations with FSST and IFE-FSST are. Here and below
we setM0 = 8.

In Figure 2, we provide the recovery errors xrec(tn) −
x(tn), xI,rec(tn) − x(tn) for x(t) by FSST and IFE-FSST,
where xrec(tn) and xI,rec(tn) are given by (40) and (41)
respectively with M0 = 8. Here, we show the error on
[0.125, 0.875) only to ignore the boundary effect. Obviously, IFE-
FSST provides a much sharper time-frequency representation
than FSST.

Next we consider a two-component signal given by

x(t) = x1(t)+ x2(t), x1(t) = cos
(

2π
(

32t + 10

π
cos(2π t)

)

)

,

x2(t) = cos
(

2π
(

64t + 10

π
cos(2π t)

)

)

, (44)

where t ∈ [0, 2), and x(t) is uniformly sampled with sample
points tn = n△t, 0 ≤ n < N = 512, △t = 1

256 . Thus, IFs of

x1(t), x2(t) are φ′
1(t) = 32−20 sin(2π t), φ′

2(t) = 64−20 sin(2π t),
which are shown on the top-left panel of Figure 3. In this example
we let σ = 1

32 for the window function.
To this two-component signal, we apply Algorithm 2

to obtain x̃I,rec1 (t) and x̃I,rec2 (t). In the 3rd row of Figure 3

we show the IFE-FSSTs of x̃I,rec1 (t) and x̃I,rec2 (t). The FSST
of x(t) is provided in the top-right panel of Figure 3. Of
course, we can also apply iterative method to FSST to recover
components one by one. Namely, we apply FSST to obtain
xrec1 (t), then apply FSST to x(t) − xrec1 (t) to obtain xrec2 (t).
After that we apply FSST to x(t) − xrec2 (t) to obtain x̃rec1 (t),
and finally to obtain x̃rec2 (t) by applying FSST to x(t) − x̃rec1 (t).
The 2nd row of Figure 3 shows the FSSTs of x̃rec1 (t) and

x̃rec2 (t). Comparing the FSST of x in the top-right panel with
the individual FSSTs in the 2nd row, we see there is not
much improvement of the time-frequency representation
of FSST of x after we apply the iterative component
recovery procedure.

In the 4th row of Figure 3, we provide the recovery errors
for x1(t), x2(t) by FSST and IFE-FSST. Here, we show the error
on [0.125, 1.875). From Figure 3, we see IFE-FSST provides a
much sharper time-frequency representation for x(t). We also
consider FSST and IFE-FSST of two-component x(t) in the noisy
environment and our experiments show that IFE-FSST provides
a sharp time-frequency representation in the noisy environment.
In addition, we consider the 2nd-order IFE-FSST for component
recovery. It does not provide much improvement than IFE-
FSST. This may be due to that the results from IFE-FSST are
hard to improve. Due to that only 15 pictures are allowed to
be included in a article in this journal, we do not present these
results here.
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Power laws (PLs) have been found to describe a wide variety of natural (physical,

biological, astronomic, meteorological, and geological) and man-made (social, financial,

and computational) phenomena over a wide range of magnitudes, although their

underlying mechanisms are not always clear. In statistics, PL distribution is often found

to fit data exceptionally well when the normal (Gaussian) distribution fails. Nevertheless,

predicting PL phenomena is notoriously difficult because of some of its idiosyncratic

properties, such as lack of well-defined average value and potentially unbounded

variance. Taylor’s power law (TPL) is a PL first discovered to characterize the spatial

and/or temporal distribution of biological populations. It has also been extended to

describe the spatiotemporal heterogeneities (distributions) of human microbiomes and

other natural and artificial systems, such as fitness distribution in computational (artificial)

intelligence. The PL with exponential cutoff (PLEC) is a variant of power-law function

that tapers off the exponential growth of power-law function ultimately and can be

particularly useful for certain predictive problems, such as biodiversity estimation and

turning-point prediction for Coronavirus Diease-2019 (COVID-19) infection/fatality. Here,

we propose coupling (integration) of TPL and PLEC to offer a methodology for quantifying

the uncertainty in certain estimation (prediction) problems that can be modeled with

PLs. The coupling takes advantage of variance prediction using TPL and asymptote

estimation using PLEC and delivers CI for the asymptote. We demonstrate the integrated

approach to the estimation of potential (dark) biodiversity of the American gut microbiome

(AGM) and the turning point of COVID-19 fatality. We expect this integrative approach

should have wide applications given duel (contesting) relationship between PL and

normal statistical distributions. Compared with the worldwide COVID-19 fatality number

on January 24th, 2022 (when this paper is online), the error rate of the prediction with

our coupled power laws, made in the May 2021 (based on the fatality data then alone), is

approximately 7% only. It also predicted that the turning (inflection) point of the worldwide

COVID-19 fatality would not occur until the July of 2022, which contrasts with a recent

prediction made by Murray on January 19th of 2022, who suggested that the “end of

the pandemic is near” by March 2022.

Keywords: Taylor’s power law (TPL), power law with exponential cutoff (PLEC), potential (dark) biodiversity,

long-tail skewed distribution, turning point of COVID-19, COVID-19 fatality prediction
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INTRODUCTION

A power law (PL) describes a non-linear functional relationship
between two variables—one varies as a power of another (e.g.,
f (x) = axb) and has certain properties, such as scale invariance,
lack of well-defined average value, and universality [1–4]. The
scale invariance is exhibited by a simple log-transformation of
PL into a straight-line (linear) on log-log scale {e.g., ln[f (x)] =
ln(a)+ b ln(x)}, and it also specifies that all PLs with a particular
scaling exponent are equivalent up to constant factors, e.g.,

f (cx) = a(cx)b = cbf (x) ∝ f (x). The lack of well-
defined average value refers to a reality that arithmetic mean
or average is a poor indicator for the majority of the power-
law variables (e.g., the average income of a population that
includes a billionaire). A PL usually has a well-defined mean only
for a certain range of its scaling exponents, and the variance
of PL seems disproportionally large and is frequently not well
defined, which explains the association between PL phenomena
and black swan behavior. This also makes many classic statistical
methods that are based on the normal distribution and/or on the
homogeneity of variance inapplicable to data of PL phenomena.
The third property of PL is the universality that is to do with
the scale invariance or the equivalence of PLs with a particular
scaling exponent. In dynamic systems, diverse systems with
the same power-law scaling exponents (also known as critical
exponents) can exhibit identical scaling behavior and share the
same fundamental dynamics as they approach criticality, such as
phase transitions. Systems with the same critical exponents are
classified as belonging to the same universality class [1–6].

Taylor’s power law (TPL), first discovered by entomologist and
ecologist L. R. Taylor [7] in investigating the spatial distribution
of insect populations more than a half-century ago [5, 8–12], has
been expanded far beyond its original domains of agricultural
entomology and population ecology [1, 2, 5, 6, 13–19]. The TPL
is one form of PLs that describe the distributions of a wide variety
of natural and man-made phenomena over a wide range of
scales [20–22]. PL patterns have been discovered/rediscovered in
astronomy, biology and ecology, computer science, criminology,
economics, finance, geology, mathematics, meteorology, physics,
statistics, and especially in inter-disciplinary fields [3, 4].

Taylor’s power law, as one of the most well-known PLs in
ecology and biology, shares the three general properties of PLs
mentioned above. It differs from other PLs in choosing its
two variables: the mean (M) and variance (V) of population
abundances (counts) [5, 7, 11], i.e.,V = aMb. It has also been
rediscovered in many other fields beyond its original domain
of population ecologies, such as epidemiology, genomics and
metagenomics, and computer science [5, 6, 14, 15, 20–23]. It
was extended to community ecology, especially the community
and landscape ecology of human microbiomes [6, 23, 24]. In
the present study, we take the advantage of TPL in modeling
the relationship between mean and variance for quantifying the

Abbreviations: AGM, American Gut Microbiome; DAR, Diversity-area

relationship; DTR, Diversity-time relationship; FTR, Fatality-time relationship;

MAD, Maximal accrual diversity; PLEC, Power law with exponential cutoff; SAR,

Species-area relationship; STR, Species-time relationship; TPL, Taylor’s power law.

uncertainty of natural phenomenon. This should be feasible
because variance is arguably the most commonly used statistic
moment for characterizing the uncertainty (variation) of random
variables. The approach is particularly advantageous if the
distribution of random variable follows PL distribution, but it
should still be applicable otherwise since TPL holds across a wide
range of mean-variance relationships as signaled by a wide range
of its scaling parameter (b).

Species-area relationship (SAR) is another classic PL in
ecology, which relates the number of species (species richness:
S) and the area (A) of species habitat, in the form of S = cAz .
Ma [25, 26] further extended the SAR to a general diversity-
area relationship (DAR) by replacing species number (richness)
with the general diversity measured in Hill numbers. Ma [25–
27] further introduced PL with exponential cutoff (PLEC) model
to describe DAR and proposed the concept of maximal accrual
diversity (MAD). Based on the PLECmodel for DAR,Ma derived
the estimation of MAD. MAD can be considered as a proxy
of potential (dark) diversity, which includes both local diversity
and the portion of diversity that are absent locally but present
regionally (or in regional species pools). In other words, potential
diversity measures both visible and invisible (dark) diversities
and is of obvious significance for biodiversity conservation.
Similar to SAR/DAR, there is so-called species-time relationship
(STR) or diversity-time relationship (DTR) [26]. The PLEC
version of DTR was successfully applied to predict the inflection
points (tipping points) of COVID-19 infections [28].

Power law with exponential cutoff, as a variant of PL,
has more general applications beyond the abovementioned
SAR/DAR/STR/DTR/COVID-19 predictions [25–28]. PL
behaves (grows or declines) exponentially, especially at late
stages, and the PLEC possesses an exponential cutoff parameter
that ultimately tapers off the unlimited growth or decline
ultimately. Therefore, the PLEC model is of important practical
significance when prediction or estimation is needed. However,
existing PLEC modeling can only provide point estimation and
not the interval of the estimation (i.e., uncertainty quantification
of the estimation).

The present article is aimed to integrate the TPL with the
PLEC model with the objective to improve the predictive power
of the PLEC model by quantifying the uncertainty of estimation
(prediction) with TPL. Specifically, by harnessing the capacity of
TPL in estimating the variance (SD), we develop an approach to
offering CIs for the estimation of PLEC quantities (see Figure 1).
We demonstrate our method with the estimations of potential
American gut microbiome (AGM) diversity and COVID-19
fatalities. The demonstrated approach can be potentially suitable
for a predictive mathematical model as long as the variance
and mean of its dependent variable can be quantified with the
TPL model.

MATERIALS AND METHODS

Taylor’s Power Law
Compared with other PLs, TPL has two somewhat unique
characteristics, both of which are determined by the two variables
(variance and mean) it aims to quantify. The first is that
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FIGURE 1 | A diagram illustrating the coupling of TPL and PLEC models: for predicting COVID-19 fatality [(A) the left block] and American gut microbiome diversity

[(B) the right block]. The top pair of boxes in both case studies illustrates the format of input data, the middle boxes specify the power law models, and the bottom

boxes list the formulae for computing the CIs.

its scaling parameter (exponent) that measures the population
(community) spatial heterogeneity or temporal stability. This has
to do with the fact that the variance (V) to mean (M) ratio
(V/M) is a measure of the dispersion of data points (population
abundances or counts), while dispersion, aggregation, and
heterogeneity essentially characterize the same or similar system
properties [6, 16]. For example, the TPL scaling parameter (b)
can be used to measure heterogeneity at population, community,
and landscape levels, respectively, depending on the level, the
TPL model is constructed. The second characteristic of TPL is
also related to the variance and mean: the relationship can be
utilized for designing sampling schemes since the variance (level
of variation or heterogeneity) determines the sampling efforts
(sample sizes) necessary for estimating the population (species)
abundances reliably {e.g., [12, 17]}. We take the advantages of
TPL in this study to improve the quality of prediction/estimation
because variance or SD is the foundation for computing CI
of estimation.

Taylor’s power law is one form of PLs, and it establishes the
relationship between the variance and the mean of a random
variable Y (e.g., population counts or abundances of biological
populations) as a power function:

Var(Y) = V = aMb (1)

where V andM are the variance and mean of random variable Y ;
a and b are the parameters that can be estimated by fitting TPL to
the variance-mean pairs of a series of spatial or temporal samples
of populations. TPL can be fitted by a simple log-transformation

{e.g., [5, 7]}, which generates:

ln(V) = ln(a) + b ln(M) (2)

Alternatively, non-linear optimization techniques, such as
Marquardt’s algorithm [29] or Simplex optimization [30], can be
used to fit TPL directly (i.e., Eq. 1). However, log-transformed
linear fitting (Eq. 2) may actually have an advantage from the
perspective of scale-invariance as mentioned in the introduction
section previously.

Ma [23] extended TPL to the community level by specifying
Y as species abundance,M as the mean species abundance (size)
per species in a community, and V is the corresponding variance.
By regressing V-M across a series of communities (samples),
one obtains type-I TPL extension (TPLE) for community
spatial heterogeneity and type-II TPLE for community temporal
stability. Similarly, there were type-III for mixed-species spatial
heterogeneity and type-IV for mixed species temporal stability.
The four TPLEs have the exactly same mathematical form as
the original TPL [1] and [2], but the variables and parameters
are defined and interpreted differently. Taylor [5] conjectured
that TPL is only applied to integers, such as population counts
(abundances), and it works poorly for ratios and very poorly for
bounded ratios.

In this study, we take the advantages of TPL/TPLEs to estimate
variance (V) corresponding to mean (M). The variance or its
squared root (SD) provides necessary quantities for estimating
CIs of PL or PLEC models as introduced below.
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Power Law With Exponential Cutoff Model
Power law with exponential cutoff is a variant of PL model, and it
was initially used to extend another classic PL in ecology, i.e., the
SAR [31, 32]. The PL model for SAR is:

S = cAz (3)

where S is the number of species and A is the area of habitat
occupied by S species.

Ma [25] extended the SAR to the general DAR by replacing the
species richness (number of species) with general biodiversity (in
Hill numbers).

qD = cAz (4)

where qD is diversity measured in the q-th order Hill numbers, A
is the area, and c and z are parameters.

The PLEC model for DAR is:

qD = cAz exp(dA), (5)

where d is a third parameter (taper-off parameter) and should be
negative in DAR scaling models, and exp(dA) is the exponential
decay term that eventually overwhelms the PL behavior at a very
large value of A. The PLEC was originally introduced to SAR
modeling by Plotkin et al. [33] and Ulrich and Buszko [34] (also
see [35]), and Ma [25] extended it to DAR.

Ma [25] further derived the asymptote of the PLECmodel and
termed it as the MAD or potential diversity.

Amax = −z/d (6)

qDmay have a maximum in the following form:

Max(qD) = c(− z

d
)
z
exp(−z) = cAz

max exp(−z) (7)

There are similar STR and corresponding DTR [27, 32].
STR/DTR has the exactly same PL/PLEC models as SAR/DAR
described previously, but the data used to fit the models are
different and so do the model parameters [27]. As further
explained in the next sub-section, the fitting of PLEC can
be performed with non-linear optimization, although log-
transformed linear fitting, similar to fitting of TPL, can be used.

Ma [28] adapted the STR/DTR model to predict the inflection
(turning) points of COVID-19, in which maximal accrual or
potential diversity is equivalent to maximal infection numbers. In
STR/DTR modeling, a convention is to use parameter w in place
of the z of SAR/DAR as a diversity-time scaling parameter.

In the present study, we used the PLEC-DAR model to
demonstrate the prediction of gut microbiome diversity and the
PLEC-DTR model to demonstrate the prediction of COVID-19
fatalities, both augmented by the TPL model to get their CIs, as
outlined below:

Coupling TPL and PLEC Models for
Predicting the Interval of COVID-19
Fatalities
Here, we outline the integration of TPL with PLEC for predicting
the interval of COVID-19 fatalities as following steps (also see
Figure 1).

Step (i) Use the PLEC model (Eq. 5), adapted for fitting the
fatality-time relationship (FTR) datasets as follows, i.e.,

F = cTw exp(dT), (8)

where T is the time in days, and F is the fatality, c, w, and d are
PLEC-FTR parameters. When the taper-off effects of parameter
d is usually rather weak before the fatality numbers reach the
peak, it is reasonable to treat w as an approximation to the
fatality growth rate and c as an approximation to the initial fatality
number. To fit PLEC-FTRmodel (Eq. 8), we adopted a non-linear
optimization algorithm implemented as an R function “nlsLM”
in R package “minpack.lm” (https://www.rdocumentation.org/
packages/minpack.lm/versions/1.2-1/topics/nlsLM) [36]. Since
Tmax > 0 is a necessary condition for the PLEC model to be
biomedically sound, a constraint d < 0 was imposed for the
non-linear fitting of the PLEC-FTR model.

Step (ii) Compute maximal accrual fatality (MAF) number
using eqns. [6] and [7], adapted as:

Fmax = c(−w

d
)
w
exp(−w) = cTw

max exp(−w) (9)

Tmax = −w/d (w > 0, d < 0) (10)

Step (iii) Use TPL model (Eq. 1) for fitting the spatiotemporal
aggregation (heterogeneity) of fatality numbers, i.e., adapting the
original TPL (Eq. 1) as the following TPL for fatality aggregation:

V = aF̄b (11)

where F̄ is the mean fatality number of COVID-19 and V is the
corresponding variance; a and b are the parameters. Parameters
a and b are estimated by fitting Eq. [11] to spatiotemporal data
of COVID-19 fatality, using the same scheme/procedures as used
for fitting TPL to COVID-19 infection numbers [28].

Step (iv) Compute the variance (V) and SD (
√
V) based on

Eq. [11] for fatality (F) (Eq. 8) or MAF (Fmax) (eqn. 9).
Step (v) Compute the lower and upper limits of 95% CI of

COVID-19 fatality with the following pair of equations:

lower = F − 1.96×
√

V/n (12a)

lower = Fmax − 1.96×
√

Vmax/n (12b)

upper = F + 1.96×
√

V/n (13a)

upper = Fmax + 1.96×
√

Vmax/n (13b)

where n is the number of time points that correspond to F or Fmax

in (eqns. 8 and 9).
With eqns. (12a) and (13a), one can obtain the CI of COVID-

19 fatalities at any time (day) points; alternatively, with eqns.
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(12b) and (13b), one can obtain the CI of maximal accrual of
COVID-19 fatality.

When Fmax cannot be predicted (too early to predict), the PL
model for FTR can be used to complete the above procedures for
estimating the intervals of F, i.e., by setting d = 0, there is a PL
model for F = cTw exp(dT) = cTw.

Coupling TPL and PLEC Models for
Predicting the Gut Microbiome Diversity
Similar to the previous integration of TPL and PLEC for
estimating the CIs of COVID-19 fatalities, here we specify the
procedures for predicting the Cis of AGM diversity (also see
Figure 1).

Step (i) Use PLEC model (Eq. 5) for fitting the DAR
datasets, i.e.,

qD = cAz exp(dA), (14)

where A is the number of individuals, and qD is the AGM
diversity in Hill numbers, c, z, and d are PLEC-DAR parameters.
To fit the PLEC-DAR model, we use the same non-linear
optimization procedures as described previously for COVID-19
fatality prediction.

Step (ii) Compute MAD number using eqns. [6] and [7].
Step (iii) Adapt the TPL model (Eq. 1) for fitting the mean

diversity and variance relationship:

V = aD̄b (15)

where D̄ is the mean diversity (Hill numbers) of AGM and
V is the corresponding variance; a and b are the parameters.
Parameters a and b are estimated by fitting Eq. [15] to AGM
diversity data, using the same scheme/procedures as described
above for COVID-19 fatality prediction.

Step (iv) Compute the variance (V) and SD (
√
V) based on

Eq. [15] for diversity (D) (Eq. 5) or MAD (Dmax) (eqn. 7).
Step (v) Compute the lower and upper limits of 95% CI of

diversity with the following pair of equations:

lower = D− 1.96×
√

V/n (16a)

lower = Dmax − 1.96×
√

Vmax/n (16b)

upper = D+ 1.96×
√

V/n (17a)

upper = Dmax + 1.96×
√

Vmax/n (17b)

where n is the number of samples corresponding to D (Eq. 5)
or Dmax (Eq. 7). With eqns. (16a) and (17a), one can obtain the
CI of diversity at any diversity accrual points; alternatively, with
eqns. (16b) and (17b), one can obtain the CI of maximal accrual
of diversity in Hill numbers.

When Dmax cannot be predicted (too early to predict), the PL
model for DAR can be used to complete the above procedures for
estimating the intervals of D, i.e., by setting d = 0, there is a PL
model for D = cAz exp(dA) = cAz .

RESULTS

Coupling TPL and PLEC-FTR for Predicting
the Intervals of COVID-19 Fatalities
The worldwide COVID-19 fatality numbers are available from
the following website (https://github.com/CSSEGISandData/
COVID-19) managed by Johns Hopkins University. Since the
objective of this study was to demonstrate the feasibility of the
coupling PL approach, we only extracted continent-level data
for demonstrative purposes. For the country-level predictions,
which are too extensive to cover in this article, we have another
separate report.

Figure 1A illustrates the procedures to predict COVID-19
fatality, andTable 1 lists the predictions for six continents and the
whole world. The PLECmodeling succeeded in all continents and
the world, except for Asia. The failure in Asia should be that the
new wave of the outbreak in India was still too early to foresee the
turning point of fatality, as discussed in Ma [28] for the similar
prediction of COVID-19 infections.

InTable 1, the first five columns are self-evident given they are
simply the PLEC-FTR parameters. The next three columns are
the predictions by the PLEC model, the MAF (number) (Fmax),
and the days (Tmax) (Julian days or Calendar date) at which
Fmax occurs. The next column is the actual fatality numbers at
May 21, 2021, which happened to be the date we had completed
the modeling work of this study, and which was listed to allow
for a quick and rough reality check. The next column is the
“completion level”—the percentage of past fatality over MAF
(Fmax). The last two columns are the novel contribution of
this study, i.e., the lower and upper limits of predicted fatality
numbers, which are not possible without the coupling of both the
PLs (TPL and PLEC-FTR models).

Table 2 lists the fatality prediction for Asia based on the
PL-FTR model, for which the PLEC model was failed. The
predictions of the PL model should be treated with caution and
are only of a rough reference value. As explained previously,
when the PLEC-FTR modeling efforts fail, it is usually that the
outbreak is still in early stage and there are not yet sufficiently
long time-series datasets to allow for the fitting of the PLEC
model. Although the PL-FTR model can be fitted in these cases,
the predictions from the PL model are not sufficiently reliable.

Similar to the predictions of COVID-19 infections [28], there
are some standard pre-processing procedures to take before
fitting the PLEC-FTR to the fatality-time (day) datasets. For
example, proper selection of starting point by truncating early
data points (possibly including whole previous pandemic waves)
could be necessary for successful model fitting. In fact, the
fitting results presented in Table 1 are obtained by setting the
starting date for modeling on March 21, 2021 (until May 21,
2021). As discussed in detail by Ma [28], the selection of starting
points does not influence the correctness of prediction since
the infection (or death) numbers before truncation points are
accumulated and treated as new starting infection (fatality)
numbers for model-building.

Figure 2 displays the fitting of the TPL model to the COVID-
19 fatality datasets, and the TPL parameters are used to compute
the CIs for the fatality number prediction from the PLEC-FTR
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TABLE 1 | The power law with exponential cutoff for fatality-time relationship (PLEC-FTR) model fitted with nonlinear optimization for daily cumulative counts of COVID-19

fatality, augmented with Taylor’s power law (TPL) to obtain the 95% CIs*.

Continent z d C R2 Tmax Tmax (Date) Fmax Observed (May 21,

2021)

Completion

level (%)

Lower limit

(95%)

Upper limit

(95%)

Africa 1.150 −0.002 180.452 1.000 501 3-Aug-2022 182,643 127,983 70.1 169,865 195,420

Asia** 1.876 0.000 97.019 0.999 NA NA NA 636,068 NA NA NA

Europe 1.301 −0.012 1,734.846 1.000 113 11-Jul-2021 1,100,080 1,060,982 96.5 929,517 1,270,643

North America 1.185 −0.009 983.515 0.999 129 28-Jul-2021 875,359 854,545 97.6 749,159 1,001,560

South America 1.323 −0.007 1,504.372 1.000 193 29-Sep-2021 952,175 762,185 80.0 839,676 1,064,675

Oceania 1.413 −0.007 0.514 0.989 197 1-Oct-2021 1,191 1,095 92.0 1,075 1,306

World# 1.248 −0.003 4,957.140 1.000 485 19-Jul-2022 5,917,523 3,442,873 58.2 5,452,899 6,382,148

* Using fatality-time (date) relationship data from March 21 to May 21, 2021.

** PLEC failed for the dataset of Asia and PL model was fitted to Asia dataset successfully (see Table 2).

TABLE 2 | The power law for fatality-time relationship (PL-FTR) model fitted for the daily cumulative counts of COVID-19 fatality, augmented with Taylor’s power law (TPL)

to obtain the 95% CIs.

Continent z ln(c) R P-value Observed (May 21,

2021)

Predicted (May 21,

2021)

Predicted (June

21, 2021)

Predicted (July 21,

2021)

Predicted

(Aug 21,

2021)

Start date

Asia 2.072 0.498 0.994 0.000 636,068 606,878

[562,269;651,487]

687,070 [637,883;

736,257]

772,420 [718,484;

826,356]

862,949

[804,096;

921,802]

10-Feb-2020

model. Figure 3 displays the predicted COVID-19 fatalities based
on the results, which are listed in Table 1.

Coupling TPL and PLEC-DAR for
Predicting the Intervals of Gut Microbiome
Diversity
Figure 1B shows the procedures for integrating the TPL
and PLEC-DAR PL models for estimating the CIs of AGM
diversity. The AGM datasets used to perform this demonstration
are available for downloading in the public domain (http://
americangut.org).

Table 3 exhibits the results from implementing the coupled
TPL and PLEC-DAR modeling analysis. The first five columns
in Table 3 are simply the parameters of the fitted PLEC-DAR
model for the AGM datasets, and the last four columns are
simply the predicted MAD (species richness) of the AGM, i.e.,
the maximal accrual species richness (Dmax) and the lower and
upper limits of Dmax. Amax is the number of individuals (sample
sizes) at which the Dmax is reached. Given that the samples of
1,473 individuals are used to build the PLEC-DAR model, and
the Amax implies that 533 (=Amax−1,473, where Amax = 2,006,
see Table 3) additional individuals are required to accumulate
the maximal accrual species richness in the AGM cohort or
population. Figure 4 illustrates the fitting of the TPL model,
which helps the estimation of the 95%-level CIs ofDmax. Figure 5
illustrates the predicted species richness (Dmax) (the solid curve
in red color) and its CI (dashed lines) and the observed species
richness (the solid dots in blue color).

Numerous mathematical models have been produced to
forecast the future of COVID-19 epidemics, but models are

not crystal balls for predictions [37]. In particular, estimates
from models about COVID-19 can contribute to uncertainty
and anxiety to the public, lowering uncertainty can be helpful
for alleviating possible anxiety accordingly. Jewell et al. [37]
argued that short-term prediction can be critical for assisting the
planning, but it is usually less productive to focus on long-term
“guesses” for such purposes. The demonstrated application of
the coupling PLs can lower the uncertainty of fatality prediction,
besides being particularly simple and effective for short term (e.g.,
one epidemic wave of a pandemic) forecasting.

There are many alternative models to our proposed approach.

For example, Li et al’s [38] editorial introduces a series of
34 articles, published in the journal “Frontiers in Physics”, on

COVID-19 predictive modeling covering models/methods from

classic Susceptible, Infectious, and/or Recovered (SIR) model
and the associated reproductive number of the SIR to Gaussian
model for the time evolution of the first corona pandemic
wave. The Gaussian model is arguably the simplest analytically
tractable model that allows for quantitative prediction of the time

evolution of infections and fatalities during a pandemic wave.
It can be rather challenging to compare and evaluate specific
models, although rigorously evaluations and validations of model
predictions are critical for their applications. For this, we feel it is
beyond the scope of this article to compare our method with the
existing models, especially those for COVID-19 predictions. On
the other hand, we would like to present a brief discussion on the
general strategy for building mathematical models in the section
“Conclusions and Discussion.”

Before concluding this subsection, an interesting
phenomenon regarding the applications of artificial intelligence

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 March 2022 | Volume 8 | Article 80183081

http://americangut.org
http://americangut.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Ma Coupling Power Laws

FIGURE 2 | Taylor’s power law (TPL) model for the cumulative counts of COVID-19 fatalities: the variance corresponding to the mean fatality (F) is used to compute

the SE and width of CI.

(AI) and machine learning (ML) to COVID-19 predictions
seems to be worthy of particular notice. Vytla et al. [39] reviewed
a slightly surprising phenomenon: the prediction of the COVID-
19 pandemic is described as “the kryptonite of modern AI”
and many predictions “by AI and ML are neither accurate nor
reliable.” The failure of AI can be due to an array of factors, and
most prominent includes the lack of sufficient historic data to
train AI models and the low quality of big data, often collected
from social media. Even though the “garbage-in-garbage-out”
is a well-known trap to modelers, the failure of AI models for
COVID-19 predictions just reminds us that AI or ML is not an
exception. In fact, the failure of big data in predicting epidemics
occurred prior to the COVID-19 pandemic, for example, the
failure of legendary Google Flu Trends (GFT) (https://www.
wired.com/2015/10/can-learn-epic-failure-google-flu-trends/).
According to Vytla et al. [39], the failure of AI and big data
modeling has led to the enthusiasm to simple and traditional
mathematical models for COVID-19 predictions. From this
perspective, the simple PL approach we demonstrated in this
study can be counted as another successful example. However,
it should be emphasized that Vytla et al. [39] review and the
previously discussed opinions on AI/ML may be limited to the
predictions of epidemics/pandemics, and they can still be very
useful for other problems of epidemics/pandemics.

CONCLUSIONS AND DISCUSSION

The following findings can be summarized from
previous sections:

(i) Coupling of TPL and PLEC models, the two PLs from
classic ecological theories with applications beyond their

original domain of ecology and biology, offers a feasible
solution for some important prediction problems of power-
law phenomena. We demonstrate the approach with
two examples.

(ii) For the COVID-19 prediction problem, the PLEC-FTR model
is able to predict the turning (inflection) points of fatality
in the form of (Fmax, Tmax), i.e., the MAF number and
corresponding date at which Fmax is reached. In a previous
study, we have demonstrated that the PLECmodel successfully
predicted the turning points of COVID-19 infections [28].
Both fatality and infection prediction problems are essentially
the same, and therefore, prediction of fatality is undoubtedly
feasible. An issue with our previous infection prediction is
the lack of CI [28]. Thanks to the coupling with the TPL
model, the PLEC-FTR is able to deliver the CI for Fmax by
leveraging the capability of TPL in predicting variance (SD)
at different fatality levels. This is because the TPL in the case
of fatality prediction can be harnessed to establish the power-
function relationship between mean fatality number and
corresponding variance. With the variance (SD), estimation of
CIs is then a trivial statistical exercise. Obviously, the coupling
approach is equally applicable to the prediction of COVID-19
infections, although it was not recognized [28]. This example
also suggests that the TPL-PLEC coupling approach may be
applied to other similar predictive problems in epidemiology
and public health.

(iii) For the biodiversity prediction of AGM diversity, the coupling
of TPL and PLEC-DAR models is able to predict the
maximal accrual species richness (Dmax) of AGM, which
can be considered as potential or “dark” species richness of
gut microbiomes in the American cohort (population). The
potential or dark biodiversity refers to the total diversity that
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FIGURE 3 | Continued
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FIGURE 3 | Continued
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FIGURE 3 | Predicted fatality number (solid curve in red), lower and upper bounds (dashed lines), and observed fatality number (solid cycles in black) for five

continents and the world: Africa, Europe, North America, South America, Oceania, and the World.
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TABLE 3 | The power law with exponential cutoff for diversity-area relationship (PLEC-DAR) model fitted with 1,000 times of re-sampling of the American gut microbiome

(AGM) datasets consisting of 1,473 AGM samples, augmented with Taylor’s power law (TPL) to obtain the 95% CIs.

Dataset z d ln (c) R Amax Dmax Lower limit

(95%)

Upper limit

(95%)

AGM Species

Richness

0.386 −0.0002 6.598 0.995 2,006 9,414 9,310 9,518

FIGURE 4 | Taylor’s power law (TPL) model for the cumulative species richness of American gut microbiome (AGM) data set (the 100 times of re-sampling were used

to fit 100 PL models, and here is one example): for each time of re-sampling, there are 1,473 pairs of variance/mean of species richness, computed for each step of

diversity-area relationship (DAR) accumulation.

includes the portion thatmay be absent locally but is present in
the regional species pool (and therefore is able to colonize local
communities through dispersal/migration) [26]. In the case
of the human gut microbiome, the potential diversity can be
considered as a cohort or population level characteristic of the
gut microbiome. In the case of this study, it can represent the
potential species richness of the American population, given
the datasets were obtained from sampling 1,473 Americans, a
sufficiently large sample size.

In perspective, we expect that the power-law coupling approach
possesses great promises for a wide range of important problems
whenever both TPL and PLEC models can be successfully
applied. The precondition that both PL models must be reliably
built also reminds us that the approach cannot be a silver-bullet
solution. For example, in the case of PLEC-DAR modeling for
the gut microbiome diversity, we only presented the results for
species richness (i.e., the Hill numbers when diversity order
q= 0). The reason was that TPL was failed to fit the mean
and variance of the Hill numbers at other diversity orders. This
made it infeasible to estimate the CIs for other diversity orders.
TPL has been found applicable in many natural and man-made
systems; however, there are situations where it may fail. Taylor

[5] conjectured that TPL might work poorly for ratios and very

poorly for bounded ratios. The Hill number at diversity q = 0

(i.e., species richness) is an integer, but at other diversity orders,

such as q= 1, 2, or 3, the Hill numbers are indeed bounded ratios.

Taylor’s [5] conjecturemay explain the limitation of TPL in fitting

the mean-variance relationship in measuring biodiversity.

Furthermore, the universality property of PLs hints great

promises for our coupling approach, although there have been

occasional debates on proving universally in practical data fitted

to PLs {e.g., [4]}. The universality refers to the equivalence of

PLs with a particular scaling parameter (exponent), such as b in

TPL, z in SAR (DAR), or w in STR (DTR), which are termed

critical exponents. Critical exponents are termed so because the
PL distributions of certain quantities are associated with phase
transitions in dynamic systems as they approach criticality. The
hallmark of universality is therefore the sharing of dynamics,
and the systems with precisely the same critical exponents are
said to belong to the same universality class. In the field of TPL,
the transitions between aggregated (heterogeneous), random
(Poisson), and uniform distribution of biological population
or species abundance distribution can be characterized by
the population aggregation critical density (PACD) [13] or
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FIGURE 5 | Predicted species richness (solid curve in red color) of American gut microbiome (AGM) that includes lower and upper bounds (dashed lines) and

observed species richness (solid tiny circles in blue color).

community heterogeneity critical diversity (CHCD) [23], which
could be generated by self-organizations in the ecosystems (e.g.,
population or community). Different from physics, the processes,
such as self-organization in biology and ecology, are difficult to
prove rigorously. Nevertheless, there are indeed observations of
the equivalence of TPL scaling exponents, such as the apparent
invariance (constancy) of TPL scaling parameter (b) of global
hot spring microbiomes across wide ranges of pH values and
temperatures [40]. If these observations are found general in
ecosystems, then the predictions based on our coupling approach
of PLs can be not only feasible but also be reliable. Unlike the
events that are governed by the normal (Gaussian) distribution,
the events governed by the highly skewed PL distribution
are particularly challenging to predict. In particular, some PL-
governed events often lack of well-defined average values, but
with potentially unbounded variance, tend to be black-swan
and/or catastrophic. This also makes our proposed coupling
method particularly valuable potentially.

Finally, we would like to present a very brief discussion
on the general modeling strategy that is related to the two
demonstrative case studies for illustrating the applications of
the proposed coupling PLs. Since modeling strategy may be
influenced by domain-specific knowledge, the discussion below
is conducted in the context of ecological modeling {e.g., [41]}
and COVID-19 prediction {e.g., [28, 37]}, to keep relevant to the
two demonstrative examples of this article. According to Levins
[42], it is ideal to operate with manageable models that maximize
generality, realism, and precision toward the overlapping, but
not identical goals of understanding, predicting, and modifying
nature. Levins [42] distinguished three alternative strategies,
namely, [1] sacrifice generality to realism and precision (which is

the approach of most simulation models); [2] sacrifice realism to
generality and precision (most physicists who work in population
ecology follow this tradition; the Lotka-Volterra model is an
example); and [3] sacrifice precision to realism and generality,
an example of this strategy is the theory of island biogeography
by MacArthur and Wilson [43], which we have briefly discussed
in the final paragraphs of this article. It is noted that the
term “precision” here, more precisely, refers to more specific or
detailed factors (information) used in modeling works.

AlthoughDarwin’s evolutionary theory answered the question
of where and how biological species are originated and evolved
on the earth’s planet, the evolutionary theory did not explain
how and why species co-exist and form diverse communities
of species. Indeed, the competition or struggle for living, one
essential aspect of evolutionary theory, would predict that the
earth could be dominated by a handful of ultimate winners
from competitions, which is obviously not consistent with
the reality that the earth is cohabited by diverse species that
usually coexist. In fact, biodiversity has been studied and paid
attention by both scientists and the general public extensively
in modern societies [44]. The study of biodiversity distribution,
known as biogeography, was stuck in a “natural history phase”
until the 1960s, due to the dominance by the collection of
data and description of species, which were necessary but
not sufficient. MacArthur and Wilson [43] demonstrated in
their landmark monograph “The Theory of Island Biogeography”
that the first principles of population ecology and genetics
can be applied to explain how distance and area combine to
regulate the balance between immigration and extinction in
island populations. They were motivated to stimulate new forms
of theoretical and empirical studies, rather than synthesizing
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and unifying existing theories or establishing a general new
theory. Somewhat contrary to their unassuming start, their work
does lead to a stronger theory of biodiversity. Today, even a
half of a century has passed, the monograph continues to be
inspiring and remains at the center of discussions about the
geographic distributions of species in biodiversity research. Here
are mentioned the above historical episodes for two reasons.
First, MacArthur and Wilson’s [43] island biogeography theory
is well recognized as a landmark breakthrough in biogeography
and community ecology. It can be considered as an extremely
successful example of the modeling strategy of sacrificing
precision (details) to realism and generality. Second, one of the
key elements of their theory is the SAR PL, which is one of
the PLs coupled in this study, i.e., the DAR extended by Ma
[25–27]. Both factors should have contributed to the success
of the biodiversity and COVID-19 predictions demonstrated in
this study.

Besides the frequent infeasibility in simultaneously
maximizing generality, realism, and precision of mathematical
models, another commonly encountered dilemma for modelers
is the complex vs. simple models. According to Jewell et al. [37],
intuitively, simpler models may offer less valid predictions due
to their limited capacity in capturing complex and unobserved
human mixing patterns and other time-varying properties of
infectious disease spread. However, complex models can be no
more reliable than simple ones if they fail to capture key aspects
of the problem. In addition, complex models may produce the
illusion of realism and make it prone to omit crucial points.
Furthermore, outputs of complex models are usually more
sensitive to changes in parametric assumptions and/or the
estimations of external disease or environmental factors, such
as the lengths of latent/infectious periods due to mutation of a
pathogen [37]. Of course, the disadvantages of complex models
are not necessarily the advantages of simpler models. On the
other hand, simpler models are usually inexpensive to construct
and manage, and they may provide adequate solutions under
certain circumstances. We hope that this work proposes and
demonstrates a simple modeling approach for certain problems
where PLs are applicable.

Finally, one may wonder how accurate the prediction of our
coupling power laws is in forecasting the worldwide COVID-
19 fatality. Compared with the worldwide COVID-19 fatality
number on January 24th, 2022 (when this paper is formally
accepted and online), the error rate of the prediction with our
coupled power laws, made in the May 2021 (based on the fatality
data then alone) is approximately 7% only (i.e., the precision level
is 93%).

Specifically, we computed the worldwide fatality on Jan 24,
2022 with the following parameters and formula: F = CTw

exp(dT) + F0, where C = 4957.140, w = 1.248, T = 308, d
= −0.003, F0 = 2716229 (the fatality number at the starting
date of the model-building, i.e., March 21st, 2021 in the case of
the world model). We obtain F = 5226117, i.e., the predicted
fatality number on January 24, 2022, and the prediction is based
on the power law model established with the worldwide fatality
numbers before May 21st, 2021 (Table 1, Figure 3). According
to the publicly released COVID-19 fatality (https://github.com/
CSSEGISandData/COVID-19), the actual worldwide fatality
number is 5610729 on Janurary 24th, 2022. The precision of point
estimation is then 92.6 or 93% approximately. Furthermore,
the 95% confidence interval of the estimation can be computed
with Eqns. (12, 13) and is [4713112, 5739122].Therefore, the
point estimation of the worldwide COVID-19 fatality number on
January 24th 2022 does fall within the confidence interval with a
precision level of 92.6%. In fact, these results (including Table 1
and Figure 3) had already been released on May 23rd 2021 in the
preprint of this article Ma [45].

Our model (Table 1, Figure 3) also predicted that the turning
point (inflection point) of worldwide COVID-19 fatality would
not occur until the July of 2022, which contrasts with the recent
prediction made by Murray [46] who suggested that the “end of
the pandemic is near” by March 2022.
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In the linear regression model, the multicollinearity effects on the ordinary least squares

(OLS) estimator performance make it inefficient. To solve this, several estimators are

given. The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to

solve the multicollinearity problem. In this paper, a generalized version of the KL estimator

is proposed, along with the optimal biasing parameter of our proposed estimator derived

by minimizing the scalar mean squared error. Theoretically, the performance of the

proposed estimator is compared with the OLS, the generalized ridge, the generalized

Liu, and the KL estimators by the matrix mean squared error. Furthermore, a simulation

study and the numerical example were performed for comparing the performance of

the proposed estimator with the OLS and the KL estimators. The results indicate

that the proposed estimator is better than other estimators, especially in cases where

the standard deviation of the errors was large and when the correlation between the

explanatory variables is very high.

Keywords: generalized liu estimator, multicollinearity, generalized ridge estimator, biasing parameter, ridge-type

estimator

INTRODUCTION

The statistical consequences of multicollinearity are well-known in statistics for a linear regression
model. Multicollinearity is known as the approximately linear dependency among the columns of
the matrix X in the following linear model

y = Xβ + ε, ε ∼ N
(

0, σ 2In
)

(1)

where y is an n × 1 vector of the given dependent variable, X is a known n × p matrix of the
given explanatory variables, β is an p× 1 vector of given unknown regression parameters, and ε is
described as an n × 1 vector of the disturbances. Then, the ordinary least squares (OLS) estimator
of β for the model (1) is given as:

β̂ = (X′X)−1X′y

The multicollinearity problem effects on the behavior of the OLS estimator make it inefficient.
Sometimes, it produces wrong signs [1, 2]. Many studies were conducted to handle this. For
example, Hoerl and Kennard [2] proposed the ordinary ridge and the generalized ridge (GR)
estimators, while Liu [3] introduced the popular Liu and the generalized Liu (GL), and very
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recently, Kibria and Lukman [1] proposed a ridge-type estimator
called the Kibria–Lukman (KL) estimator which is defined by

β̂KL = (X′X + kIp)
−1(X′X − kIp)β̂ , k > 0

This estimator has been extended for use in different generalized
linear models, such as Lukman et al. [4, 5], Akram et al. [6], and
Abonazel et al. [7].

According to recent papers [8–10], we can say that the
efficiency of any bias estimator will increase if the estimator
is modified or generalized using bias parameters that vary
from observation to observation in the sample (ki and/or di)
rather than in fixed bias parameters (k and/or d). Hence, the
main purpose of this paper is to develop a general form of
the KL estimator to combat the multicollinearity in the linear
regression model.

The rest of the discussion in this paper is structured as
follows: Section Statistical Methodology presents the statistical
methodology. In Section Superiority of the Proposed GKL
Estimator, we theoretically compare the proposed general form
of the KL estimator with each of the mentioned estimators. In
Section The Biasing Parameter Estimator of the GKL Estimator,
we give the estimation of the biasing parameter of the proposed
estimator. Different scenarios of the Monte Carlo simulation
are done in Section A Monte Carlo Simulation Study. A real
data is used in Section Empirical Application. Finally, Section
Conclusion presents some conclusions.

STATISTICAL METHODOLOGY

Canonical Form
The canonical form of the model in equation (1) is used
as follows:

y = Zα + ε (2)

where Z = XR, α = R
′
β , and R is an orthogonal matrix such that

Z′Z = R′X′XR = G = diag(g1, g2, . . . , gp). Then, the OLS of α

is as:

α̂ = G−1Z′y (3)

and the matrix mean squared error (MMSE) is given as,

MMSE
(

α̂
)

= σ 2G−1 (4)

Ridge Regression Estimators
The OR and the GR of αare, respectively, defined as follows [2]:

α̂OR = W1Gα̂ (5)

α̂GR = W2Gα̂ (6)

where W1 = [G + kIp]
−1, k > 0 and W2 = [G + K]−1, with

K = diag(k1, k2, ..., kp), ki > 0, and i = 1, 2, ..., p.
The MMSE of the OR and the GR are given respectively as:

MMSE(α̂OR) = σ 2W1GW1
′ + (W1G− Ip)αα′(W1G− Ip)

′ (7)

MMSE(α̂GR) = σ 2W2GW2
′ + (W2G− Ip)αα′(W2G− Ip)

′ (8)

Liu Regression Estimators
The Liu and the GL of αare respectively defined as follows [3]:

α̂Liu = F1α̂ (9)

α̂GL = F2α̂ (10)

where

F1 = [G+ Ip]
−1[G+ dIp], 0 < d < 1 and F2 = [G+ Ip]

−1

[G+ D], with D = diag(d1, d2, ..., dp) and 0 < di < 1.

The MMSE of the Liu and the GL are, respectively, given as:

MMSE(α̂Liu) = σ 2F1G
−1F1

′ + (F1 − Ip)αα′(F1 − Ip)
′ (11)

MMSE(α̂GL) = σ 2F2G
−1F2

′ + (F2 − Ip)αα′(F2 − Ip)
′ (12)

Kibria–Lukman Estimator
The KL estimator of αis given as Kibria and Lukman [1]:

α̂KL = W1M1α̂ (13)

whereM1 = [G−kIp] and theMMSE of this estimator is given as:

MMSE(α̂KL) = σ 2W1M1G
−1M1

′W1
′

+[W1M1 − Ip]αα′[W1M1 − Ip]
′ (14)

The Proposed GKL Estimator
Now, by replacingW1 withW2 andM1 withM2 = [G−K] in the
KL estimator, we obtain the general form of the GKL estimator
as follows:

α̂GKL = W2M2α̂ (15)

then, the MMSE of the proposed GKL estimator is computed by,

MMSE(α̂GKL) = σ 2W2M2G
−1M2

′W2
′ + [W2M2 − Ip]

αα′[W2M2 − Ip]
′ (16)

SUPERIORITY OF THE PROPOSED GKL
ESTIMATOR

In this section, we make a comparison of the proposed GKL
estimator with each of OLS, GR, GL, and KL estimators. First,
we offer some useful lemmas for our comparisons of estimators.

Lemma1:Wang et al. [11]: SupposeM andN are n×n positive
definite matrices, thenM > N if and only if (iff) λ − 1max, where
λ − 1max is the maximum eigenvalue of NM−1 matrix.

Lemma 2: Farebrother [12]: Let S be an n× n positive definite
matrix. That is, S > 0 and α be some vector. Then, S − αα

′
> 0

iff α′S−1α < 1.
Lemma 3: Trenkler and Toutenburg [13]: Let αi = Uiw,

i = 1, 2 be any two linear estimators of α. Suppose that Q =
Cov(α̂1)−Cov(α̂2) > 0, where Cov(α̂i), i = 1, 2 be the covariance
matrix of α̂i and bi = Bias(α̂i) = (UiX − I)α. Then,

1
(

α̂1 − α̂2
)

= MMSE
(

α̂1
)

−MMSE
(

α̂2
)

= σ 2Q

+b1b1
′ − b2b2

′ > 0 (17)
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iff b2
′[σ 2Q+b1

′b1]−1b2 < 1 whereMMSE(α̂i) = Cov(α̂i)+ bibi
′

Theorem 1: α̂GKL is superior to α̂ iff

α′[W2M2 − Ip]
′[σ 2(G−1 −W2M2G

−1M2
′W2

′)]

[W2M2 − Ip]α < 1 (18)

Proof : The covariance matrices difference is written as

Difference = σ 2
(

G−1 −W2M2G
−1M2

′W2
′)

= σ 2diag

{

1

gi
− (gi − ki)

2

gi(gi + ki)2

}p

i=1

(19)

where G−1 − W2M2G
−1M2

′W2
′ becomes positive definite iff

(gi + ki)
2 − (gi − ki)

2 > 0 or (gi + ki) − (gi − ki) > 0. It is
clear that for ki > 0, i = 1, 2, ..., p, (gi + ki)− (gi − ki) = 2ki > 0.
Therefore, this is done using Lemma 3.

Theorem 2:When λ − 1max, α̂GKL is superior to α̂GR iff

α′[W2M2 − Ip]
′[V1 + (W2G− Ip)αα′(W2G− Ip)

′]

[W2M2 − Ip]α < 1 (20)

λ − 1max (21)

where V1 = σ 2(W2GW2
′ − W2M2G

−1M2
′W2

′), N =
W2KG

−1KW2
′, andM = 2W2KKW2

′.
Proof :

V1 = σ 2
(

W2GW2
′ −W2M2G

−1M2
′W2

′)

= σ 2
(

W2GW2
′ −W2 (G− K)G−1 (G− K)W2

′)

= σ 2
(

2W2KKW
′
2 −W2KG

−1KW2
′
)

= σ 2(M − N)

For ki > 0, it is obvious thatM > 0 and N > 0. Then,M − N >

0 iff λ − 1max, where λ − 1max is the maximum eigenvalue of
NM−1. So, this is done by Lemma 1.

Theorem 3: α̂GKL is superior to α̂GL iff

α′[W2M2 − Ip]
′[V2 + (F2 − Ip)αα′(F2 − Ip)

′][W2M2 − Ip]

α < 1 (22)

where V2 = σ 2(F2G
−1F2

′ −W2M2G
−1M2

′W2
′).

Proof : The covariance matrices difference is written as

V2 = σ 2
(

F2G
−1F2

′ −W2M2G
−1M2

′W2
′)

= σ 2diag

{

(gi + di)
2

gi(gi + 1)2
− (gi − ki)

2

gi(gi + ki)2

}p

i=1

(23)

where F2G
−1F2

′ − W2M2G
−1M2

′W2
′ becomes positive definite

iff (gi + ki)
2(gi + di)

2 − (gi − ki)
2(gi + 1)2 > 0 or (gi + ki)(gi +

di) − (gi − ki)(gi + 1) > 0. So, if ki > 0 and 0 < di < 1,
(gi+ki)(gi+di)−(gi−ki)(gi+1) = ki(2gi+di+1)+gi(di−1) > 0.
So, this is done by Lemma 3.

Theorem 4: α̂GKL is superior to α̂KL iff

α′[W2M2 − Ip]
′[V3 + (W1M1 − Ip)αα′(W1M1 − Ip)

′]

[W2M2 − Ip]α < 1 (24)

where V3 = σ 2(W1M1G
−1M1

′W1
′ −W2M2G

− 1M2
′W2

′).
Proof : The covariance matrices difference is written as

V3 = σ 2
(

W1M1G
−1M1

′W1
′ −W2M2G

−1M2
′W2

′)

= σ 2diag

{

(gi − k)2

gi(gi + k)2
− (gi − ki)

2

gi(gi + ki)2

}p

i=1

(25)

whereW1M1G
−1M1

′W1
′ −W2M2G

−1M2
′W2

′ becomes positive
definite iff (gi + ki)

2(gi − k)2 − (gi − ki)
2(gi + k)2 > 0 or

(gi + ki)(gi − k)− (gi − ki)(gi + k) > 0. So, if ki > 0 and ki > k,
(gi + ki)(gi − k)− (gi − ki)(gi + k) = 2gi(ki − k) > 0. So, this is
done by Lemma 3.

THE BIASING PARAMETER ESTIMATOR
OF THE GKL ESTIMATOR

The performance of any estimator depends on its biasing
parameter. Therefore, the determination of the biasing parameter
of an estimator is an important issue. Different studies analyzed
this issue (e.g., [2, 3, 8–10, 14–24]).

Kibria and Lukman [1] proposed the biasing parameter
estimator of the KL estimator as follows:

k̂ = min

{

σ̂ 2

[(σ̂ 2/gi)+ 2α̂2
i ]

}p

i=1

(26)

Here, we find the estimation of the optimal values of ki for the
proposed GKL estimator. The optimal values of ki are obtained
by minimizing

MMSE(α̂GKL) = E[(α̂GKL − α)′
(

α̂GKL − α
)

],

m(k1, k2, ..., kp) = tr(MMSE(α̂GKL), and

m(k1, k2, ..., kp) = σ 2
p

∑

i=1

(gi − ki)
2

gi(gi + ki)2
+

p
∑

i=1

4k2i α
2
i

(gi + ki)2
(27)

Differentiating m(k1, k2, ..., kp) with respect to ki and setting

[
∂m(k1,k2 ,...,kp)

∂ki
] = 0, the optimal values of ki after replacing σ 2

and α2
i by their unbiased estimators become as follows:

k̂i =
σ̂ 2

((σ̂ 2/gi)+ 2α̂2
i )
, i = 1, 2, ..., p (28)

A MONTE CARLO SIMULATION STUDY

The explanatory variables are generated as follows [25–27]:

xji = (1− ρ2)
1
2 aji + ρajp, j = 1, 2, ..., n, i = 1, 2, ..., p (29)

where aji are the independent pseudo-random numbers that
have the standard normal distribution and ρ is known that
the correlation between two given explanatory variables. The
dependent variable y are given by:

yj = β1xj1 + β2xj2 + . . . + βpxjp + εj, j = 1, 2, . . . , n (30)
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TABLE 1 | The factors’ values of the simulation study.

Factor Symbol Levels

Sample size n 50, 100, 150

Standard deviation σ 1, 5, 10

Degree of correlation ρ 0.8, 0.9, 0.99

Explanatory variables number p 3, 7

Replicates number MCN 5,000

TABLE 2 | Estimated mean squared error (EMSE) values of the estimators when

p = 3.

n σ ρ OLS KL GKL

50 1 0.8 0.1249 0.1094 0.1548

0.9 0.2260 0.1829 0.2738

0.99 2.0641 1.1439 1.1208

5 0.8 3.1235 1.7550 1.6052

0.9 5.6491 2.8600 2.4774

0.99 51.6036 22.2378 17.6275

10 0.8 12.4940 6.2898 5.3865

0.9 22.5965 10.5775 8.7621

0.99 206.4144 87.8850 69.2762

100 1 0.8 0.0605 0.0557 0.0701

0.9 0.1107 0.0964 0.1373

0.99 1.0308 0.6454 0.7558

5 0.8 1.5118 0.9306 0.9509

0.9 2.7663 1.5097 1.4056

0.99 25.7697 11.3736 8.9376

10 0.8 6.0471 3.1436 2.7244

0.9 11.0651 5.2952 4.3648

0.99 103.0788 44.4958 34.4270

150 1 0.8 0.0420 0.0393 0.0469

0.9 0.0768 0.0687 0.0928

0.99 0.7125 0.4700 0.6113

5 0.8 1.0497 0.6763 0.7487

0.9 1.9189 1.0893 1.0826

0.99 17.8124 7.7631 6.1352

10 0.8 4.1988 2.2214 1.9830

0.9 7.6756 3.6905 3.1029

0.99 71.2496 29.9827 23.1604

For each case, the smallest EMSE value is bolded.

where εj are the i.i.dN(0, σ 2). The values of β are given such that
β ′β = 1 as discussed in Dawoud and Abonazel [28], Algamal
and Abonazel [29], Abonazel et al. [7, 30], and Awwad et al. [31].
Also, all factors that used in the simulation are given in Table 1.

In order to see the performance of the OLS, KL, and
the proposed GKL estimators with their biasing parameters
estimators presented in Section Statistical Methodology, the
estimated mean squared error (EMSE) are calculated for each
replicate with different values of σ , ρ, n, and p using the

TABLE 3 | EMSE values of the estimators when p = 7.

n σ ρ OLS KL GKL

50 1 0.8 0.4143 0.3129 0.4302

0.9 0.6792 0.5399 0.6831

0.99 7.3867 3.9941 3.0983

5 0.8 10.3568 5.5139 4.1882

0.9 19.4796 10.0849 7.4658

0.99 184.6673 92.8175 66.6994

10 0.8 41.4272 21.1839 15.5082

0.9 77.9186 39.4124 28.5547

0.99 738.6690 370.3048 265.3667

100 1 0.8 0.1766 0.1529 0.2137

0.9 0.3322 0.2702 0.3652

0.99 3.1561 1.9888 1.7020

5 0.8 4.4159 2.7275 2.2455

0.9 8.3060 4.8911 3.8358

0.99 78.9019 43.6091 32.3890

10 0.8 17.6638 10.1544 7.7808

0.9 33.2240 18.6747 14.0582

0.99 315.6077 173.4003 128.2151

150 1 0.8 0.1105 0.0992 0.1341

0.9 0.2081 0.1773 0.2504

0.99 1.9769 1.3108 1.2036

5 0.8 2.7632 1.7804 1.5371

0.9 5.2014 3.1588 2.5389

0.99 49.4224 27.3769 20.2601

10 0.8 11.0529 6.4542 4.9732

0.9 20.8054 11.8006 8.8790

0.99 197.6896 108.306 79.6545

For each case, the smallest EMSE value is bolded.

TABLE 4 | Estimated coefficients and mean squared error (MSE) values of the

estimators.

Estimator β̂1 β̂2 β̂3 β̂4 MSE

OLS 2.1930 1.1533 0.7585 0.4863 0.0638

KL 2.1764 1.1572 0.7465 0.4888 0.0629

GKL 2.1653 1.1613 0.7312 0.4904 0.0620

following formula:

EMSE(α∗) = 1

MCN

MCN
∑

l=1

(α∗
l − α)′(α∗

l − α) (31)

where α∗
l
is the estimated vector of α at the lth experiment of

the simulation.
The EMSE values of the OLS, KL, and GKL estimators are

presented in Tables 2, 3. We can conclude the following based
on the simulation results:

1. When the standard deviation (σ), the degree of
multicollinearity (ρ), and the explanatory variables number
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(p) get an increase, the EMSE values of estimators get
an increase.

2. The EMSE values of estimators get a decrease in case of the
sample size gets an increase.

3. TheGKL is better than theOLS estimator in all different values
of factors except when σ = 1 and ρ = 0.80, 0.90 with the
considered values of p and n.

4. The GKL is better than the KL estimator in all different values
of factors except the following cases: (i) for n = 50 when
σ = 1 and ρ = 0.80, 0.90 with p = 3 or 7, (ii) for n = 100, 150
when σ = 1 in all presented values of ρ with p = 3 or when
σ = 5 and ρ = 0.80 with p = 3, and (iii) for n = 100, 150
when σ = 1 and ρ = 0.80, 0.90 with p = 7.

5. Finally, we see that the proposed GKL estimator is obviously
efficient in case of the standard deviation getting large and
when the correlation among the explanatory variables are
very high.

EMPIRICAL APPLICATION

For clarifying the performance of the proposed GKL estimator,
the dataset of the Portland cement that was originally due
to Woods et al. [32], which was considered in Kibria and
Lukman [1], where the dependent variable is the heat evolved
after 180 days of curing and measured in calories per gram of
cement. In this study, the first explanatory variable is tricalcium
aluminate, the second explanatory variable is tricalcium silicate,
the third explanatory variable is tetracalcium aluminoferrite,
and the fourth explanatory variable is β-dicalcium silicate.
The eigenvalues of X′X matrix are 44,676.21, 5,965.42, 809.95,
and 105.42. Then, the condition number is 20.58. Therefore,
multicollinearity exists among the predictors. The estimated
error variance is σ̂ 2 = 5.84, which shows high noise in the
data. The estimated values of the optimal parameters in the
GKL estimator are calculated as derived in Section Statistical
Methodology. Also, the equation proposed by Kibria and
Lukman [1] for estimating the biasing parameter of the KL
estimator is used. Consequently, the mean square error (MSE)

of the OLS, KL, and GKL estimators are presented in Table 4.
From Table 4, we can note that the KL estimator is better than
the OLS estimator, and the GKL estimator is better than the OLS
and KL estimators.

CONCLUSION

In this paper, we proposed the GKL estimator. The performance
of the proposed GKL estimator is theoretically compared with
the OLS, GR, GL, and KL estimators in terms of known matrix
mean squared error. Moreover, the optimal shrinkage parameter
of the proposed GKL estimator is presented. A simulation study
and the numerical example were performed for comparing the
performance of the proposed GKL estimator with the OLS
and KL estimators based on the estimated mean squared error
criterion. The results indicate that the proposed estimator is
better than other estimators, in particular, in the case the standard
deviation of the errors was large and when the correlation
between the explanatory variables is very high.
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Nonlinear data assimilation methods like particle filters aim to improve the numerical

weather prediction (NWP) in non-Gaussian setting. In this manuscript, two recent

versions of particle filters, namely the Localized Adaptive Particle Filter (LAPF) and the

Localized Mixture Coefficient Particle Filter (LMCPF) are studied in comparison with the

Ensemble Kalman Filter when applied to the popular Lorenz 1963 and 1996 models.

As these particle filters showed mixed results in the global NWP system at the German

meteorological service (DWD), the goal of this work is to show that the LMCPF is able

to outperform the LETKF within an experimental design reflecting a standard NWP

setup and standard NWP scores. We focus on the root-mean-square-error (RMSE)

of truth minus background, respectively, analysis ensemble mean to measure the filter

performance. To simulate a standard NWP setup, the methods are studied in the realistic

situation where the numerical model is different from the true model or the nature run,

respectively. In this study, an improved version of the LMCPF with exact Gaussian mixture

particle weights instead of approximate weights is derived and used for the comparison

to the Localized Ensemble Transform Kalman Filter (LETKF). The advantages of the

LMCPF with exact weights are discovered and the two versions are compared. As in

complex NWP systems the individual steps of data assimilation methods are overlaid by

a multitude of other processes, the ingredients of the LMCPF are illustrated in a single

assimilation step with respect to the three-dimensional Lorenz 1963 model.

Keywords: data assimilation, particle filter, nonlinear systems, ensemble filter, Kalman filter, Lorenz 1963 system,

Lorenz 1996 system

1. INTRODUCTION

Data assimilation methods combine numerical models and observations to generate an improved
state estimate. Besides optimization approaches, ensemble methods use an ensemble of states
to approximate underlying probability distributions. For example the ensemble Kalman filter
presented in Evensen [1] (see also [2, 3]) carries out Bayesian state estimation and samples from
Gaussian distributions which equals a linearity assumption of the underlying system. However,
the local ensemble transform Kalman filter (LETKF; [4]) is widely used in high dimensional
environments. For example, the LETKF is successfully used as ensemble data assimilation method
in the numerical weather prediction (NWP) system at the German meteorological service (DWD).
Nevertheless, there is the aim to develop more general ensemble methods to account for the
increasing complexity of numerical models.
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Particle filter methods are based on Monte Carlo schemes and
aim to solve the nonlinear filtering problem without any further
assumptions on the distributions. Since Monte Carlo methods
suffer the curse of dimensionality, the application of classical or
bootstrap particle filters to high- dimensional problems results in
filter divergence or filter collapse (see [5–7]). After first attempts
to carry out nonlinear Bayesian state estimation approximately
by Gordon et al. [8], further particle filters are developed, which
are able to overcome filter collapse. For an overview of particle
filters we refer to van Leeuwen [5] and van Leeuwen et al. [9].

One idea to prevent filter collapse is to develop hybrid
methods between particle filters and ensemble Kalman filters.
Examples for hybrid filters are the adaptive Gaussian mixture
filters [10], the ensemble Kalman particle filter [11], which
is further developed in Robert and Künsch [12] and Robert
et al. [13], the merging particle filter [14] and the nonlinear
ensemble transform filter (e.g., [15, 16]) which resembles the
ensemble transform Kalman filter [17]. Transportation particle
filters follow the approach to use transformations to transport
particles in a deterministic way. A one-step transportation is
carried out in Reich [18] and tempering of the likelihood, which
leads to a multi-step transportation, is presented in, e.g., Neal
[19], DelMoral et al. [20], Emerick and Reynolds [21], and Beskos
et al. [22]. The guided particle filter described in van Leeuwen
et al. [23] and van Leeuwen [5] tempers in the time domain,
which means that background particles at each time step between
two observations are used. The transportation of particle filters
can also be described by differential equations. In Reich [24]
and Reich and Cotter [25], the differential equation is simulated
using more and more tempering steps. Approximations to the
differential equation can also be derived byMarkov-ChainMonte
Carlo methods [25–27]. Localization is another approach in
particle filter methods to overcome filter collapse. Localization
schemes based on resampling are used in e.g., the local particle
filter [28] which is applied for mesoscale weather prediction [29].
Additionally, the local particle filter (LPF) [30], the localized
adaptive particle filter (LAPF; [31]) and the localized mixture
coefficients particle filter (LMCPF; [32]) are based on localization
schemes.

Moreover, the localized mixture coefficients particle
filter (LMCPF) is based on Gaussian mixture distributions.
In 1972, Alspach and Sorenson already introduced an
approach to nonlinear Bayesian estimation using Gaussian
sum approximations combined with linearization ideas [33].
Anderson and Anderson first presented a Monte Carlo approach
with prior approximation by Gaussian or sum of Gaussian
kernels in geophysical literature [34]. They proposed to extend
the presented kernel filter by the transformation of the equations
to a subspace spanned by the ensemble members to apply the
filter in high-dimensional systems. The LMCPF is based on
this kind of transformation. The first attempts were followed
from various approaches to filtering with the usage of Gaussian
mixture distributions (e.g., [35–38]). Some of the particle filters
mentioned above are based on Gaussian mixture distributions as
well (e.g., [10, 11, 24]).

The localized particle filter methods LPF [30], LAPF and
LMCPF are structured in a way that a consistent implementation

in existing LETKF code is possible. In Kotsuki et al. [39], the
LPF and its Gaussian mixture extension, which resembles the
LMCPF, are tested in an intermediate AGCM (SPEEDY model).
Moreover, LAPF and LMCPF are applied in the global NWP
system at DWD (see [31, 32]). The comparison of the LMCPF to
the LETKF for the global ICON model [40] yields mixed results.
In this study, we investigate if the LMCPF can outperform the
LETKF with respect to a standard NWP setup and standard
NWP score in the dynamical systems Lorenz 1963 and Lorenz
1996. We will see later that the answer is indeed positive and
that the LMCPF yields far better results than the LAPF. To
this end, a model error is introduced by applying different
model parameters for the true run and in the forecast step.
Furthermore, we focus on the root-mean-square-error of truth
minus background, respectively, analysis ensemble mean, which
is an important score in NWP, rather than looking at an entire
collection of measures. In this study, we present and apply a
revised version of the LMCPF. We derive the exact Gaussian
particle weights, which are then used in the resampling step
instead of approximate weights. This promising completion of
the method was also recently introduced in Kotsuki et al. [39]
and tested for an intermediate AGCM model. We will see that
the revised method leads to the survival of a larger selection of
background particles and as a consequence thereof to a higher
filter stability concerning the spread control parameters.

In addition, the individual ingredients of the LMCPF method
are portrayed in one assimilation step with respect to the
Lorenz 1963 model. Background and analysis ensemble as
well as the true state and observation vector can be easily
displayed for this three dimensional model. With this part,
we want to illustrate the advantage of LMCPF compared to
LAPF in the case that the observation is far away from the
ensemble. Furthermore, the difference between the approximate
and exact particle weights are discussed and the improvement of
LMCPF over LETKF for a bimodal background distribution is
shown.

The manuscript is structured as follows. Section 2 covers
the experimental setup based on the dynamical systems
Lorenz 1963 and Lorenz 1996. The three localized ensemble
data assimilation methods LMCPF, LAPF and LETKF are
mathematically described in Section 3, which includes the
derivation of the exact particle weights for the LMCPF.
In Section 4, the LMCPF is studied for one assimilation
step with respect to the Lorenz 1963 model. Finally,
LMCPF is compared to LETKF and LAPF for Lorenz 1963
and Lorenz 1996 in Section 5 and the conclusion follows
in Section 6.

2. EXPERIMENTAL SETUP: LORENZ
MODELS

The mathematician Edward Lorenz first presented the chaotic
dynamical systems Lorenz 1963 and 1996. These are frequently
used to develop and test data assimilation methods in a well
understood and controllable environment. This section aims to
state the experimental setup.
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2.1. Lorenz 1963 Model
In Lorenz [41], Edward Lorenz introduced a nonlinear dynamical
model, which is denoted as Lorenz 1963. Due to its chaotic
behavior, the system has become a popular toy model to
investigate and compare data assimilation methods (e.g., [34, 38,
42]).

The dynamics of Lorenz 1963 represent a simplified version
of thermal convection. The three coupled nonlinear differential
equations are given by

dx1

dt
= σ (x2 − x1) (1)

dx2

dt
= ρx1 − x2 − x1x3 (2)

dx3

dt
= x1x2 − βx3 (3)

where x1(t), x2(t), and x3(t) are the prognostic variables and σ ,
ρ, and β denote the parameters of the model. In terms of the
physical interpretation, σ is the Prandtl number, ρ a normalized
Rayleigh number and β a non-dimensional wave number (see
[43]). In this work, we follow Lorenz’ suggestion to set σ = 10,
ρ = 28 and β = 8/3, for which the system shows chaotic
behavior [41]. In case of this parameter setting, the popular
butterfly attractor is obtained (see Figure 5). Furthermore,
x1 describes the intensity of the convective motion, x2 the
temperature difference between the ascending and descending
currents and the last variable x3 denotes the distortion of the
vertical temperature profile from linearity [41].

2.2. Lorenz 1996 Model
Since the introduction of the Lorenz 1996 model in Lorenz
[44], the dynamical system is used as popular test bed
for data assimilation methods (e.g., [28, 36, 45]). Not only
different adaptions of the ensemble Kalman filter but also
particle filter schemes or hybrid methods combining particle
filter and EnKF schemes are tested in the high-dimensional
and chaotic environment given by Lorenz 1996 with specific
parameter settings (e.g., [30, 46, 47]). In contrast to Lorenz
1963, localization is an important component of the investigation
of data assimilation methods and the later Lorenz 1996 model
invites to test localization schemes (e.g., [48]).

The model considers n ∈ N coupled time-dependent
variables, whose dynamics are described by a system of n ordinary
differential equations. We consider the state variable as x(t) =
(x(1)(t), . . . , x(n)(t)) ∈ R

n for t ∈ R+. The dynamics of the N-th
component are governed by the ordinary differential equation

dx(N)

dt
= −x(N−2)x(N−1) + x(N−1)x(N+1) − x(N) + F (4)

where the constant F is independent of N and describes a forcing
term. Furthermore, we define

x(N−n)
: = x(N) (5)

x(N+n)
: = x(N) (6)

so that Equation (4) is valid for any N = 1, . . . , n. In addition
to the external forcing term, the linear terms describe internal
dissipation whereas the nonlinear, respectively, quadratic terms
simulate advection. In this study, we use F = 8 as forcing
term for the true run and choose differing values for the model
propagation step.

In a meteorological context, each variable represents an
atmospheric quantity, e.g., temperature, at one longitude on a
latitude circle. The equidistant distribution of the nodes on a
latitude circle for n = 40 variables is illustrated in Figure 1.

2.3. Data Assimilation Setup
To test data assimilation methods with the Lorenz models,
observations are produced at equidistant distributed
measurement times. The system of differential equations of
Lorenz 1963 model, respectively, Lorenz 1996 model is solved by
a fourth-order Runge-Kutta scheme using a time-step of 0.05.
The integration over a certain time is stored as truth, from which
observations are generated with a distance of 1t time units.
The true run is performed with model parameters σ true = 10,
ρ = 28 and β = 8/3 for Lorenz 1963 and with the forcing
term Ftrue = 8 for the 40-dimensional Lorenz 1996 model. The
integration of the ensemble of states is accomplished for different
model parameters σ for Lorenz 1963 and F for Lorenz 1996 in
order to simulate model error. Furthermore, the observation
operatorH ∈ R

m×n is chosen linear for both dynamical systems.
The observation vector yk at the k−th measurement at time tk is
defined by

yk = H · xtruek + η ∈ R
m (7)

whereas the entries of η ∈ R
m are randomly drawn from

a Gaussian distribution with zero expectation and standard
deviation σobs. Additionally, the observation error covariance
matrix is represented by

R = σ 2
obs · Im ∈ R

m×m (8)

with the m × m-identity matrix Im. The ensemble is initialized
by random draws from a uniform distribution around the true
starting point xtrue0 .

3. LOCALIZED ENSEMBLE DATA
ASSIMILATION METHODS

Data assimilation methods aim to estimate some state vector.
Methods based on an ensemble of states can additionally estimate
the uncertainty of the state and provide an idea for the associated
distribution. This section covers three localized ensemble data
assimilation methods, which are compared against each other
later in this paper. The localized adaptive particle filter (LAPF;
[31]) describes a particle filter method which is applicable
to real-size numerical weather prediction and implemented in
the system of the German meteorological service (DWD). To
improve the method and approximate the scores, the LAPF
was further developed, which resulted in the localized mixture
coefficients particle filter (LMCPF). The LMCPF combines a
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FIGURE 1 | Set-up for Lorenz 1996 model with n = 40 variables.

resampling step following the Monte Carlo approach with a shift
of the particles toward the observation. The shift results from the
application of Gaussian (mixture) distributions and exists in the
localized ensemble transform Kalman filter (LETKF) [4] in the
form that the ensemble mean is shifted. The LETKF is widely
used in the data assimilation community and therefore already
improved. Due to similarities between LETKF and the particle
filter methods LAPF and LMCPF, the ensemble Kalman filter
represents a good method to compare the newer methods LAPF
and LMCPF with.

All of these ensemble methods fulfill Bayes’ theorem in
approximation. With the aid of Bayes’ formula, a given prior
or background distribution can be combined with the so-
called likelihood distribution to obtain a posterior or analysis
distribution. In terms of probability density functions, the
theorem yields

p(a)(x) = cap(y|x)p(b)(x), x ∈ R
n, y ∈ R

m (9)

for the prior probability density function (pdf) p(b) :Rn →
[0,∞), the likelihood pdf p(·|x) :Rm → [0,∞) for x ∈ R

n

and the resulting posterior pdf p(a) :Rn → [0,∞) with n,m ∈
N. In realistic NWP, the model space dimension n ∈ N is
in general larger than the dimension of the observation space
described by m ∈ N. Furthermore, the constant ca ∈ R in
Equation (9) ensures that the resulting function is again a pdf.
Due to the normalization constant, the likelihood function does

not necessarily have to be a pdf to satisfy Bayes’ formula. This
form of Bayes’ theorem is derived from the formula of the density
function of a conditional probability function which is proven in
Section 4-4 of Papoulis and Pillai [49].

In data assimilation, the likelihood is given by the observation
error pdf as function of x ∈ R

n for given observation vector
y ∈ R

m. We assume a Gaussian distributed observation error
for all presented filters, i.e.,

p(y|x) = 1√
(2π)m det(R)

· exp
(

−1

2
(y−Hx)TR−1(y−Hx)

)

,

(10)

for x ∈ R
n, some observation vector y ∈ R

m, the linear
observation operator H :R

n → R
m and the observation error

covariance matrix R ∈ R
m×m. The derivations of the following

methods are carried out for a time-constant linear observation
operator H. The assumption on the prior distribution differs for
the filters. In the LAPF, the prior pdf is approximated by a sum
of delta functions following the idea of the classical particle filter.
The LMCPF assumes a sum of Gaussian kernels while the LETKF
approximates the prior pdf by a Gaussian pdf.

All of the following methods are based on localization so that
the steps are carried out locally at a series of analysis points.
Furthermore, the observations are weighted depending on the
distance to the current location. As Lorenz 1963 is only built on
three variables, localization is not implemented for this model.
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For the Lorenz 1996 model, the implementation is based on the
smallest distance between two variables along the circle (e.g.,
[50]), which is plotted in Figure 1. The distances are weighted
by the fifth-order polynomial localizationGaspari-Cohn function
described in Gaspari and Cohn [51]. Moreover, the function
depends from the localization radius rloc > 0. The resulting
weight matrix is applied by the Schur-product to the observation
error covariance matrix R, which is then used to derive the
analysis ensemble by one of the following methods.

In addition, the equations of the following localized methods
are carried out in ensemble space to reduce the dimension. The
ensemble space is spanned by the columns of

X : =
(

x(b,1) − x̄(b), x(b,2) − x̄(b), . . . , x(b,L) − x̄(b)
)

∈ R
n×L (11)

with ensemble size L ∈ N>1, respectively

Y : =
(

y(b,1) − ȳ(b), y(b,2) − ȳ(b), . . . , y(b,L) − ȳ(b)
)

∈ R
m×L (12)

where x̄(b) and ȳ(b) denote the mean of the background ensemble
(x(b,l))l=1,...,L, i.e.,

x̄(b) = 1

L

L
∑

l=1

x(b,l) (13)

respectively the mean of the ensemble in observation space

ȳ(b) = 1

L

L
∑

l=1

y(b,l). (14)

The ensemble in observation space is obtained by the application
of the observation operator H to the background ensemble, i.e.,

y(b,l) : = Hx(b,l), l = 1, . . . , L. (15)

The orthogonal projection P onto the ensemble space span(Y)
weighted by R−1 is defined as

P : = Y(Y∗Y)−1Y∗ = Y(YTR−1Y)−1YTR−1 (16)

whereas

Y∗ = YTR−1 (17)

denotes the adjoint of Y with respect to the weighted scalar
product < ·, · >R−1 on R

m and the standard scalar product on
R

L. To ensure the invertibility of Y∗Y , the formulas are restricted
to C(Y∗) – the column space or range of Y∗ – which is a subset of
N(Y)⊥ ⊂ R

L (see Lemma 3.2.1 and Lemma 3.2.3 in Nakamura
and Potthast [52]). Additionally, the matrix Y∗Y is denoted as

A : = Y∗Y = YTR−1Y . (18)

3.1. Localized Adaptive Particle Filter
The LAPF, introduced in Potthast et al. [31], is based on the
idea for classical particle filters (e.g., the Sequential Importance
Resampling Filter by Gordon et al. [8]) to approximate the
background distribution by a sum of delta distributions. Let x(b,l)

for l = 1, . . . , L be an ensemble of background particles with
ensemble size L ∈ N>1. The background pdf is described by

p(b)(x) : = 1

L

L
∑

l=1

δ(x− x(b,l)). (19)

With Bayes’ Theorem for pdfs in Equation (9) and the
observation error pdf p(y|x), the posterior pdf results in

p(a)(x) = c(a)
L

∑

l=1

p(y|x)δ(x− x(b,l)) (20)

with the normalization factor c(a) ∈ R>0. Following Anderson
and Anderson [34], the relative probability pl that a sample
should be taken from the l-th summand of p(a) in the resampling
step, is derived by

pl =
∫

c(a)p(y|x)δ(x− x(b,l)) dx
∫

p(a)(x) dx
= p(y|x(b,l))

∑L
l=1 p(y|x(b,l))

,

(21)

for l = 1, . . . , L. With the choice of a normal distributed
observation error (Equation 10) this leads to

pl =
e−

1
2 (y−Hx(b,l))TR−1(y−Hx(b,l))

∑L
l=1 e

− 1
2 (y−Hx(b,l))TR−1(y−Hx(b,l))

(22)

as the normalization factor in Equation (10) does not depend on l
and can be canceled. To resample from the posterior distribution,
stratified resampling is performed in ensemble space. To this end,
the weights

w̃(l)
: = e

1
2 (y−Hx(b,l))TR−1(y−Hx(b,l)), l = 1, . . . , L (23)

are transformed to ensemble space with the help of the
orthogonal projection P defined in Equation (16). With an
analogous approach as in Section 3.2.1, the weights in ensemble
space yield

w̃(l)
ens = e−

1
2 (C−el)

TA(C−el) (24)

for l = 1, . . . , Lwith A = YTR−1Y and the projected observation
vector

C = A−1YTR−1(y− ȳ(b)). (25)

A detailed derivation of the weights in ensemble space is given
in Potthast et al. [31]. These weights are normalized to obtain the
relative weights

w̃(a,l) = L · w̃
(l)
ens

∑L
l=1 w̃

(l)
ens

, l = 1, . . . , L (26)
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which sum up to L. As next step, stratified resampling [53]
is performed based on the ensemble weights. To this end,
accumulated weights are calculated. For l = 1, . . . , L, the
accumulated weights are defined by

wac0 = 0, wacl = wacl−1
+ w̃(a,l). (27)

Additionally, L on the interval [0, 1] uniformly distributed
random numbers rl are generated to introduce the variable Rl =
l−1+rl for l = 1, . . . , L. Then, the stratified resampling approach

yields a matrix

(

W ∈ {0, 1}L×L with entries

(

W =
{

1, Rl ∈ (waci−1 ,waci ]

0, else
(28)

where the number of ones in the i-th row indicates how often the
i-th particle is chosen.

The particles chosen in the stratified resampling step build
an ensemble of the background particles, which can be
contained multiple times. To increase the ensemble variation,
new particles are drawn from a Gaussian mixture distribution.
Let each chosen particle represent the expectation of a Gaussian
distribution with covariance σ (ρ)2/(L − 1) · IL ∈ R

L×L.
Under allowance of the frequency, new particles are drawn
from the Gaussian distribution. The covariance matrix equals
the estimated background covariance matrix in ensemble space
Bens = 1/(L − 1)· IL ∈ R

L×L multiplied with an inflation
factor σ (ρ). The inflation factor is a rescaled version of the
adaptive inflation factor ρ which is used in the LETKF (see [4]).
The parameter ρ is defined by Equations (86) and (87). The
dependence of σ (ρ) on ρ is given by Equation (88). The detailed
description is given in Potthast et al. [31] and in Section 3.2.3.

All in all, the steps can be combined in a matrix WLAPF. Let
Z ∈ R

L×L be a matrix whose entries originate from a standard

normal distribution. Together with the resampling matrix

(

W, the
matrixWLAPF is defined by

WLAPF = (

W+ σ (ρ)√
L− 1

· Z. (29)

The full analysis ensemble is calculated by multiplication of the
background ensemble with the matrixWLAPF, i.e.,

(x(a,l))l=1,...,L = x̄(b) · 1+ X ·WLAPF (30)

where X describes the ensemble pertubation matrix defined in
Equation (11) and 1 ∈ R

1×L denotes a row vector with ones as
entries. The multiplication of background mean with 1 results in
a matrix of size n × L with the mean vector replicated in each of
the L columns.

3.2. Localized Mixture Coefficients Particle
Filter
The LMCPF, presented in Walter et al. [32], builds on the LAPF
but differs in the assumption on the background distribution. In
difference to the ansatz of classical particle filters, the background
particles are interpreted as the mean of Gaussian distributions.

The background pdf is described as the sum of these Gaussians
where each distribution has the same covariance matrix, i.e.,

p(b)(x) : = c(b)
L

∑

l=1

e−
1
2 (x−x(b,l))TB−1(x−x(b,l)) (31)

with ensemble size L ∈ N>1 and the normalization factor

c(b) : = 1

L ·
√
(2π)n det (B)

. (32)

The covariance matrix is estimated by the background particles,
i.e.,

B : = γXXT (33)

with the ensemble pertubation matrix X defined in Equation (11)
and the parameter

γ = κ

L− 1
∈ R+. (34)

With the parameter κ , the background uncertainty can be
controlled. The general covariance estimator is given for κ =
1. To ensure the invertibility of B, the formulas are restricted
to C(X) – the range of X. From definition (Equation 33) the
covariance matrix in ensemble space is derived by

Bens = γ IL ∈ R
L×L (35)

with the identity matrix IL ∈ R
L×L. Following Bayes’ Theorem,

the analysis pdf is given by

p(a)(x) : = p(y|x) · p(b)(x) = c̃(a)
L

∑

l=1

p(y|x) · p(b,l)(x) (36)

where p(b,l)(x) denotes the l-th summand of the background pdf
in Equation (31). The likelihood p(y|x) is chosen as Gaussian (see
Equation 10). Following Theorem 4.1 in Anderson and Moore
[54], the analysis pdf can be explicitly calculated. The result is
again a Gaussian mixture pdf, i.e.,

p(a)(x) = c(a)
L

∑

l=1

w(l) · e
(

− 1
2 (x−x(a,l))T (B(a))−1(x−x(a,l))

)

(37)

with

B(a) : = (B−1 +HTR−1H)−1 (38)

x(a,l) : = x(b,l) + B(a)HTR−1(y−Hx(b,l)) (39)

w(l)
: = e

(

− 1
2 (y−Hx(b,l))Tγ−1(γ−1R+YYT )−1(y−Hx(b,l))

)

(40)

and a normalization factor c(a) such that the integral of p(a)(x)

over the range of X denoted by C(X) yields one. The weights w(l)

are important to obtain a sample from the posterior distribution.
The relative probability that a sample from the l-th summand of
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p(a) should be taken is described in Anderson and Anderson [34]
by

pl =
∫

c(a)w(l) · e
(

− 1
2 (x−x(a,l))T (B(a))−1(x−x(a,l))

)

dx
∫

p(a)(x) dx
= w(l)

∑L
l=1 w

(l)
. (41)

With the following steps, a posterior ensemble is generated as a
sample of the posterior distribution in Equation (37).

3.2.1. Stratified Resampling
In the original version of the LMCPF described in Walter et al.
[32], the particle weights are approximated by those of the
LAPF defined in Equation (23). In this work, the exact Gaussian
mixture weights are derived and applied in the resampling step.
Furthermore, the effect on the filter performance is discovered. In
Kotsuki et al. [39], the exact weights are applied to the Gaussian
mixture extension of the LPF [30] and an improvement of the
stability of the method is detected with respect to the inflation
parameters within an intermediate AGCM.

To reduce the dimensionality, the weights in Equation (40) are
transformed and projected in ensemble space. To this end, the
sum of the projection P defined in Equation (16) and I − P with
the identity matrix I is applied to the exponent of Equation (40).
The weights are transformed to

w(l) = e

(

− 1
2 ([P+(I−P)](y−Hx(b,l)))Tγ−1(γ−1R+YYT )−1[P+(I−P)](y−Hx(b,l))

)

(42)

= cI−P · e
(

− 1
2 (y−Hx(b,l))TPTγ−1(γ−1R+YYT )−1P(y−Hx(b,l))

)

(43)

whereas cI−P is defined by

cI−P : = e

(

− 1
2 (y−Hx(b,l))T (I−P)Tγ−1(γ−1R+YYT )−1(I−P)(y−Hx(b,l))

)

. (44)

First, the observation minus first guess vector can be reshaped to

y−Hx(b,l) = (y− ȳ(b))+ (ȳ(b) −Hx(b,l)) = y− ȳ(b) − Yel (45)

with the l-th unit vector el ∈ R
L. The application of the

projection matrix to Equation (45) leads to

P(y− Hx(b,l)) = YA−1YTR−1[(y− ȳ(b))− Yel] = Y(C − el) (46)

whereas C denotes the projected observation vector in ensemble
space

C : = A−1YTR−1(y− ȳ(b)). (47)

With the aid of Equation (45), the application of I − P to
observation minus first guess vector yields

(I − P)(y−Hx(b,l)) = (I − P)(y− ȳ(b))− (I − P)Yel (48)

= (y− ȳ(b))− YA−1YTR−1(y− ȳ(b))

− Yel + YA−1YTR−1Yel (49)

= (y− ȳ(b))− YC. (50)

This expression do not depend on l so that cI−P of Equation
(44) is constant and has no impact on the relative weights of the
particles [see Equation (43)]. To derive the transformation, the
equality

YT(γ−1R+ YYT)−1 = (γ−1I + YTR−1Y)−1YTR−1 (51)

is used. Equation (51) is shown by multiplying

(γ−1I + YTR−1Y)YT = YTR−1(γ−1R+ YYT) (52)

from the left with the inverse

(γ−1I + YTR−1Y)−1 (53)

and from the right with the inverse matrix

(γ−1R+ YYT)−1 = R−1(γ−1I + YYTR−1)−1. (54)

The invertibility of γ−1I + Y∗Y and γ−1I + YY∗ on N(Y)⊥,
respectively, C(Y) follows from Theorem 3.1.8 in Nakamura and
Potthast [52]. Y∗ denotes the adjoint matrix defined in Equation
(17). The first mixed term

(P(y−Hx(b,l)))Tγ−1(γ−1R+ YYT)−1(I − P)(y−Hx(b,l))

(55)

= (y−Hx(b,l))TPTγ−1(γ−1R+ YYT)−1(y−Hx(b,l)) (56)

−(y−Hx(b,l))TPTγ−1(γ−1R+ YYT)−1P(y−Hx(b,l)) (57)

reduce to zero if the equality

PT(γ−1R+ YYT)−1 = PT(γ−1R+ YYT)−1P (58)

holds. Starting with the right hand side of the equation, we obtain

PT(γ−1R+ YYT)−1P = R−1YA−1(γ−1I

+YTR−1Y)−1YTR−1YA−1YTR−1 (59)

= R−1YA−1(γ−1I + YTR−1Y)−1YTR−1

(60)

= PT(γ−1R+ YYT)−1 (61)

with the application of equality [Equation (51)] in the first and
last step and the definition of A in Equation (18) in the second
step. The reduction of the second mixed term to zero can be
proven following an analog approach. The combination of the
formulation in Equation (46) with Equation (51) leads to the
exponent

(P(y−Hx(b,l)))Tγ−1(γ−1R+ YYT)−1P(y−Hx(b,l))(62)

= (C − el)
TYTγ−1(γ−1R+ YYT)−1Y(C − el) (63)

= (C − el)
Tγ−1(γ−1I + YTR−1Y)−1YTR−1Y(C − el) (64)

Finally, the particle weights in ensemble space yield

w(l)
ens = e−

1
2 (C−el)

Tγ−1(γ−1I+A)−1A(C−el), l = 1, . . . , L. (65)
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with the relation w
(l)
ens = cI−P · w(l) to the weights in model

space with cI−P defined in Equation (44). In the following, the
normalized weights

w(a,l) = L · w
(l)
ens

∑L
l=1 w

(l)
ens

, l = 1, . . . , L (66)

are used which sum up to L.
Following the approach of stratified resampling [53],

uniformly distributed random numbers are used to calculate
the frequency of each particle with the aid of the respective
accumulated weights. For l = 1, . . . , L, the accumulated weights
are defined by

wac0 = 0, wacl = wacl−1
+ w(a,l). (67)

Then, L on the interval [0, 1] uniformly distributed random
numbers rl are generated to introduce the variable Rl = l− 1+ rl
for l = 1, . . . , L. The approach of stratified resampling then leads

to the matrix

(

W ∈ {0, 1}L×L with entries

(

W =
{

1, Rl ∈ (waci−1 ,waci ]

0, else
(68)

where the number of ones in the i-th row indicates how often the
i-th particle is chosen.

3.2.2. Shift of Particles
Compared to the LAPF, the Gaussian mixture representation
leads to a shift of the particles toward the observation. The
shift resembles the shift of the mean of all particles toward the
observation in ensemble space in the LETKF (see [4]). The new
location of the particles is described by the expectation vectors in
Equation (39) of the kernels of the posterior Gaussian mixture
distribution. To carry out the particle shift, the transformed
formula of Equation (39) is derived. First, the representation of
the analysis covariance matrix B(a) defined in Equation (38) is
derived. To this end, the analysis covariance matrix is reshaped
to the known representation

B(a) = (I − BHT(R+HBHT))−1B. (69)

The equivalence of both formulas is proven in Lemma 5.4.2 in
Nakamura and Potthast [52] for example. With the help of the
definition of B in Equation (33), the representation can further
reformulated to

B(a) = (I − γXXTHT(R+HγXXTHT)−1H)γXXT (70)

= γX(I − γYT(R+ γYYT)−1Y)XT (71)

= γX(I − YT(γ−1R+ YYT)−1Y)XT . (72)

The application of equality Equation (51) in Equation (72) in
combination with the definition of A (Equation (18)) leads to

B(a) = γX(I − (γ−1I + A)−1A)XT (73)

= γX((γ−1I + A)−1(γ−1I + A− A))XT (74)

= X(γ−1I + A)−1XT . (75)

so that the analysis covariance matrix in ensemble space is given
by

B(a)ens : = (γ−1I + A)−1. (76)

The insertion of Equation (75) in the definition of x(a,l) in
Equation (39) yields

x(a,l) = x(b,l) + X(γ−1I + A)−1XTHTR−1(y−Hx(b,l)) (77)

= x̄(b) + x(b,l) − x̄(b)X(γ−1I + A)−1YTR−1(y− ȳ(b) − Yel).

(78)

The second step results from the application of Equation (45).
The equation can be further reshaped with the equality x(b,l) −
x̄(b) = Xel and the multiplication of I = AA−1, i.e.,

x(a,l) = x̄(b) + X(el + (γ−1I + A)−1AA−1YTR−1(y− ȳ(b) − Yel))

(79)

= x̄(b) + X(el + (γ−1I + A)−1A(C − el)). (80)

The last formulation results from the definition of the
projected observation vector C given in Equation (47) and the
definition of A in Equation (18). The ensemble representation of
the analysis expectation is then given by

β(a,l)
: = el + (γ−1I + A)−1A(C − el) ∈ R

L. (81)

Since the l-th unit vector el ∈ R
L denotes the l-th background

particle in ensemble space, the second summand denotes the shift
vectors, i.e.,

β(shift,l)
: = (γ−1I + A)−1A(C − el) ∈ R

L. (82)

All shift vectors are taken together in the matrix

W(shift)
: =

(

β(shift,1), . . . ,β(shift,L)
)

∈ R
L×L. (83)

3.2.3. Draw Particles From Gaussian Mixture

Distribution
In the last part of the LMCPF method the analysis ensemble
is perturbed to increase the variability. To this end, new
particles are drawn from a Gaussian distribution around each
shifted particle which was previously selected. If a particle is
selected multiple times, the same amount of particles is drawn
from the respective Gaussian distribution. This approach equals
the generation of L particles following the Gaussian mixture
distribution in ensemble space, i.e.,

p(a)ens(β) : = c(a)ens

L
∑

l=1

e−
1
2 (β−β(a,l))T (σ (ρ)2B(a)ens)

−1(β−β(a,l)),

β ∈ R
L. (84)

The covariance matrix of each Gaussian is inflated by the factor
σ (ρ) ∈ R>0 to control the ensemble spread. The variable ρ

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 June 2022 | Volume 8 | Article 920186103

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Schenk et al. On Two Localized Particle Filters

denotes the inflation factor implemented in the LETKF method
(see [4]), which follows an ansatz introduced by Desroziers et al.
[55] and Li et al. [45]. Based on statistics of observations minus
background

do−b = y−Hx̄(b) (85)

an adaptive inflation factor is calculated (see [55] or section e on
page 352f. of Potthast et al. [31]), i.e.,

ρ̃ = (do−b)Tdo−b − trace(R)

trace(HBHT)
. (86)

To smooth the factor over time, the formula

ρ = αρ̃ + (1− α)ρold (87)

is applied for some α ∈ [0, 1] and the inflation factor ρold of the
previous time step. In the LMCPF method as well as the LAPF
method, the inflation factor ρ of the LETKF method is scaled.
The factor σ (ρ) is derived by

σ (ρ) : =















c0, ρ < ρ(0),

c0 + (c1 − c0) · ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1),

c1, ρ > ρ(1)

(88)

with parameters ρ(0), ρ(1) ∈ R+ and c0, c1 ∈ R+. In the LETKF
method, the analysis ensemble is inflated around the analysis
ensemble mean. In the LAPF and LMCPF method, particles are
resampled from the background ensemble, shifted (in case of the
LMCPF) and then randomly perturbed to increase the ensemble
variability. Due to these differences in the multiplicative inflation
approach, the application of a scaled version of ρ is necessary and
yielded better results in experiments. The boundaries c0 and c1
are tuning parameters. Due to the random drawing around each
resampled particle, the parameters c0 and c1 should be chosen
smaller than the parameters ρ(0), ρ(1) in the LETKF method.
These parameters describe the upper and lower bound of ρ.

All in all, the steps of selecting, moving and drawing can be
combined in the matrixWLMCPF, i.e.,

WLMCPF : =

(

W+W(shift) (

W+σ (ρ) · [B(a)ens]
1/2 · Z. (89)

with

(

W defined in Equation (68), W(shift) following Equation
(83) and a random matrix Z ∈ R

L×L with standard normally
distributed random numbers as entries. Then, the full analysis
ensemble is obtained by

(x(a,l))l=1,...,L = x̄(b) · 1+ X ·WLMCPF (90)

where 1 ∈ R
1×L describes a row vector with ones as entries and

X the ensemble pertubation matrix defined in Equation (11).
In Feng et al. [56], two nonlinear filters are compared which

can preserve the first and secondmoments of the classical particle
filter. First, the local particle filter in its version introduced
in Poterjoy et al. [57] represent a localized adaption of the

classical particle filter. Second, the local nonlinear ensemble
transform filter (LNETF; [16]) is an approximation to the
classical particle filter as well but instead of a classical resampling
step a deterministic square root approach is followed. This is
based on ideas of LETKF. Compared to the local particle filter
and LNETF, the LMCPF uses a Gaussian mixture probability
density function to approximate the background. With the
stratified resampling step the particles are resampled following
the posterior distribution, which is exact for Gaussian mixtures
and Gaussian observation error. Due to the assumption of
Gaussian mixture densities, the resampled particles are shifted
which results in the exact mean vectors of the Gaussians of the
posterior pdf, and also, temporarily, the exact covariances. To
increase the variability of the ensemble, new particles are drawn
from the posterior distribution as follows. Around each particle,
new particles are randomly drawn from a Gaussian distribution
with the exact mean vector and the exact covariance multiplied
with an inflation factor. In contrast to the local particle filter, there
is no rescaling of the ensemble applied in the LMCPF method.
That means, the LMCPF will preserve the moments of a Gaussian
mixture filter approximately up to sampling errors and inflation.

3.3. Localized Ensemble Transform Kalman
Filter
The Localized Ensemble Transform Kalman Filter (LETKF)
is first introduced in Hunt et al. [4] and is widely used in
numerical weather prediction (e.g., [58]). The LETKF is based
on equations of the Ensemble Kalman Filter (EnKF; [1, 3, 59])
transformed and performed in ensemble space. As the LAPF
and LMCPF the observation error is chosen to be Gaussian
distributed with the pdf described in Equation (10). In contrast
to the methods described previously, this method assumes the
background ensemble to represent a Gaussian distribution as
well, i.e.,

p(b)(x) : = c(b) · e− 1
2 (x−x̄(b))TG−1(x−x̄(b)), x ∈ R

n. (91)

G denotes the estimated background covariance matrix following
Equation (33) with γ = 1/(L− 1), i.e.,

G : = 1

L− 1
XXT ∈ R

n×n. (92)

To distinguish from the more general version of the covariance
matrix introduced in Section 3.2 about the LMCPF method,
the standard covariance estimator is named G. The transformed
version in ensemble space—which is spanned by the columns of
X in Equation (11)—is then given by

Gens : =
1

L− 1
IL ∈ R

L×L (93)

with the L × L - identity matrix IL. The application of
Bayes’ formula (9) to the background distribution p(b) and
the observation error pdf Equation (10) leads to the Gaussian
analysis pdf

p(a)(x) = c(a)e

(

− 1
2 (x−x̄(a))T (G(a))−1(x−x̄(a))

)

(94)
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with the covariance matrix

G(a) = (G−1 +HTR−1H)−1 (95)

and the expectation vector

x̄(a) = x̄(b) + G(a)HTR−1(y−Hx̄(b)). (96)

The derivation can be found for example in Nakamura and
Potthast [52] or in Evensen et al. [3]. A more common
formulation of the update equations can be derived by
rearrangement of Equations (95) and (96). Following Lemma
5.4.2 in Nakamura and Potthast [52], an equivalent form of the
covariance matrix is given by

G(a) = (In − GHT(R+HGHT))−1G = (In − K)−1G (97)

with the Kalman gain matrix K ∈ R
n×n and identity matrix

In ∈ R
n×n. The covariance matrix in ensemble space is derived

in Equations (70)–(98), i.e.,

G(a)
ens : = ((L− 1) · IL + A)−1 (98)

with identity matrix IL ∈ R
L×L and A defined in Equation (18).

The insertion of Equation (75) applied to G(a)
ens in the definition of

x̄(a) in Equation (96) leads to

x̄(a) = x̄(b) + X((L− 1) · I + A)−1XTHTR−1(y−Hx̄(b))(99)

= x̄(b) + X · G(a)
ensY

TR−1(y− ȳ(b)). (100)

That means, the analysis mean in ensemble space is given by

β̄(a)
: = G(a)

ensY
TR−1(y− ȳ(b)) ∈ R

L. (101)

There are multiple approaches to obtain the full analysis
ensemble in dependence on the analysis covariance matrix. The
LETKF is based on the square root method. The weightingmatrix
WLETKF is defined by the square root

WLETKF = [(L− 1)G(a)
ens]

1
2 (102)

which is related to the covariance matrix by

G(a)
ens = (L− 1)WLETKF(WLETKF)

T . (103)

Additionally, the posterior covariance is inflated. To this end,
an adaptive inflation factor ρ based on observation minus
background statistics is derived by Equations (86) and (87). Then,
the full analysis ensemble is calculated by

(x(a,l))l=1,...,L = x̄(a) · 1+ X · √ρ ·WLETKF (104)

where 1 ∈ R
1×L describes a row vector with ones as entries and

X the ensemble pertubation matrix defined in Equation (11).

4. STUDY OF INDIVIDUAL STEPS OF
LMCPF

The LMCPF method can be divided in three parts: stratified
resampling (Section 3.2.1), shift of particles (Section 3.2.2) and
drawing new particles from a Gaussian mixture distribution
(Section 3.2.3). In this section, we discuss the behavior of the
ensemble during the different parts of a single data assimilation
step performed by the LMCPF method.

4.1. Stratified Resampling
The stratified resampling step represents the main idea of the
particle filter method. Only the particles with sufficient weight
are chosen. In the LAPF and LMCPF methods, the resampling
step is carried out in the ensemble space in order to reduce
the dimension and prevent filter collapse. This step occurs in
both methods but different particle weights are used. The relative
weights of the LAPF Equation (26) depend on the distance
of the particles to the observation and the observation error
covariance. In case of the LMCPF, the exact weights Equation (66)
additionally depend on the particle uncertainty parameter κ .

Figure 2 illustrates the relation between these two weights.
If κ tends to zero, the normalized Gaussian mixture weights
tend to the classical particle filter weights, which are used in
the LAPF and were previously used in the LMCPF method. The
particle weights are derived from the case illustrated in Figure 3.
The approximate weights in Figure 2 suggest that in the LAPF
method only one particle would have been chosen as one particle
gets all the weight. Furthermore, the exact weights approach each
other for larger κ . That means, more particles would be chosen
in the stratified resampling step for larger κ . If κ tends to infinity,
the exact weights tend to one so that the probability to sample a
particle is the same for each particle.

Since the relative weights depend on the distance of the
particles to the observation, these background particles, which
are close to the observation, are chosen. This is illustrated in
Figure 3 as well as in the example with a bimodal background
distribution in Figure 4. In the bimodal case, all the particles
of the mode close to the observation are resampled. In both
examples, the observation is located outside of the background
ensemble. After the stratified resampling step, the particles are
still far from the observation. In Figure 4B, the shifted ensemble
mean of the LETKFmethod is even closer to the observation than
the nearest background particles. That leads to the idea, to use a
Gaussian mixture representation in the LMCPF, to include the
shifting step of the LETKF, which is discussed in the next part.

4.2. Shift of Particles
In contrast to the ensemble Kalman filter method, particle filters
do not shift particles toward the observation but only choose the
nearest ones, so that the ensemble mean is pulled toward the
observation. In the LMCPF, each remaining particle is shifted
as the ensemble mean in the ensemble Kalman filter method.
Furthermore, the shift is affected by the particle uncertainty
described by the background covariance matrix. Modification of
the parameter κ in Equation (34) yields changes in the valuation
of the particle uncertainty. If κ is set to a larger value, there is less
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FIGURE 2 | The exact Gaussian mixture weights w(a,l) Equation (66) are compared against the approximate weights w̃(a,l) Equation (26), which are used in the LAPF

method. Each color denotes the pair of weights (approximate and exact) for one of the 10 particles. The particle weights come from the scenario illustrated in

Figure 3. For the exact weights, the particle uncertainty parameter κ is varied.

confidence in the background ensemble. Hence, the confidence in
the observation ascends, relatively seen. Finally, this results in a
stronger shift of the remaining particles toward the observation.
To validate this intuition mathematically, the spectral norm of
the posterior covariance matrix

B(a)ens =
(

L− 1

κ
IL + A

)−1

(105)

with κ > 0, the identity matrix IL ∈ R
L×L and projected

observation error covariance matrix

A = YTR−1Y ∈ R
L×L (106)

is observed. The spectral norm is induced from the euclidean
vector norm and is defined by the square root of the maximal
eigenvalue ofATA. In the case of complex matrices, the transpose
matrix is replaced by the adjoint matrix. MatrixA is symmetric as
the observation error covariance matrix R is a symmetric matrix
by definition. Furthermore, every symmetric matrix is normal.
Let be U ∈ R

L×L the matrix with eigenvectors of the normal
matrix A as columns and D ∈ R

L×L the diagonal matrix with the
respective eigenvalues as diagonal entries ordered from maximal
to minimal eigenvalue such that

A = UDUT (107)

holds. Since U is a unitary matrix, i.e., UUT = IL, the inverse

term of B(a)ens can be reshaped to

L− 1

κ
IL + UDUT = U

(

L− 1

κ
IL + D

)

UT . (108)

That means,U also describes the unitary matrix of the eigenvalue

decomposition of the inverse of B(a)ens and the eigenvalues are
given by

λi =
L− 1

κ
+ µi, i = 1, . . . , L (109)

with eigenvalues (µi)i of A. We remark that µi > 0 holds for
all i = 1, . . . , L as A is positive definite. The spectral norm of
the inverse matrix equals the inverse of the smallest eigenvalue
min{λi|i = 1, . . . , L}, i.e.,

‖B(a)ens‖2 =
(

L− 1

κ
+ min

i=1,...,L
(µi)

)−1

. (110)

On the basis of this term, we can easily see that larger values for
κ leads to a larger spectral norm of B(a).

Furthermore, the shift vectors are defined by

β(shift,l) =
(

L− 1

κ
IL + A

)−1

A(C − el), l = 1, . . . , L. (111)
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FIGURE 3 | A single assimilation step is carried out with the LMCPF method. The observation (green point) is located outside of the background ensemble of size

L = 10 with the ensemble mean represented by the dark blue point. The particles chosen in the stratified resampling step (light blue points) are shifted toward the

observation (orange points). The particle uncertainty parameter κ is set to one. The shaded areas denote Gaussian ellipsoids with respect to the corresponding

covariance matrices. Darker colored ellipsoids around the background particles denote larger weights w(a,l) defined in Equation (66).

To discover the shifting strength for different κ , the spectral

norm of B(a)ens multiplied with A is examined. With the eigenvalue
decomposition of A, we obtain

(

L− 1

κ
IL + UDUT

)−1

UDUT

= (UT)−1

(

L− 1

κ
IL + D

)−1

U−1UDUT (112)

= U

(

L− 1

κ
IL + D

)−1

DUT (113)

which follows from the property U−1 = UT of a unitary matrix
U. This results in the spectral norm

‖B(a)ensA‖2 = max
i=1,...,L

{

(

L− 1

κ
+ µi

)−1

µi

}

(114)

which gets larger for greater κ .
In Figure 3, the shift of the two particles, which are chosen

in the stratified resampling step results in particles close to

the observation even for κ = 1. For this parameter choice,
the background error covariance matrix B equals the standard
covariance estimator. The shaded areas around the dots describe
the uncertainty. Compared to the background uncertainty, the
observation error covariance matrix R = 0.32 · I is smaller, which
explains the strong shift toward the observation. In comparison,
the difference between background and observation uncertainty
is smaller in the bimodal case in Figure 4. This results in shifted
particles, which are not as close to the observation as in Figure 3.

4.3. Draw Particles From Gaussian Mixture
Distribution
In the LMCPF as well as in the LAPF method, new particles
are drawn from a Gaussian mixture distribution but different
covariance matrices are applied. In the LAPF, an inflated version
of the background error covariance matrix in ensemble space
1/(L − 1) · I is used. The covariance matrix is adapted by the
spread control factor σ (ρ)2, which is derived in Equation (88). In

contrast, the newly derived covariance matrix B(a)ens Equation (98)
in ensemble space is applied in an inflated version in the LMCPF.
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FIGURE 4 | The background ensemble (blue circles) is generated from a bimodal distribution and the observation (green point) is located near one of the modes. The

dark blue point illustrates the background ensemble mean. In (A), the assimilation step is performed with the LMCPF method and in (B) with the LETKF method. The

light blue points in (A) illustrate the resampled particles and the orange points describe the shifted particles for κ = 1. The analysis particles resulting from LMCPF and

LETKF are represented by the red circles and the red point illustrates the analysis ensemble mean. In the LMCPF method, these particles are randomly generated

from Gaussian distributions with the shifted particles as expectation vectors. The shaded areas denote Gaussian ellipsoids with respect to the corresponding

covariance matrices.

TABLE 1 | Parameters of the model configuration and experimental setup for the Lorenz 1963 (L63) and 1996 (L96) models.

Forecast length 1t Model param. Std of obs error σobs Obs. variables DA steps

L63 0.15;0.3; 0.5 σ true = 10; σ = 12 0.5 First 1, 000

L96 0.3; 0.5 F true = 8; F = 8 : 9.5 0.2; 0.5; 0.8; 1.1 Every second 1, 000

The draw from a Gaussian mixture distribution is carried out
by drawing new particles from Gaussian distributions around
each chosen particle. For all Gaussian distributions, the same
covariance matrix is applied. In case of the LMCPF, the spectral

norm of the covariance matrix B(a)ens results in a larger value if the
particle uncertainty parameter κ is set to a greater value. This
counteracts the effect that a stronger shift toward the observation
vector leads to smaller distances among the particles.

Figure 4 shows the results of one LMCPF and LETKF
step for a bimodal background distribution. The Gaussian
ellipsoids cover random draws from the same three dimensional
distribution with a high probability. Nevertheless, the analysis
particles of LMCPF and LETKF are located outside of the
ellipsoids. The particles are resampled in the L − 1-dimensional
ensemble space and not in the three-dimensional model space.
This leads to a wider analysis ensemble for L > n than we
would obtain by drawing in the n-dimensional model space. In
practice, the dimension of the model space is much larger than
the dimension of the ensemble space so that this case does not
occur.

In comparison to the particle filter method, the analysis
ensemble derived by the LETKF method maintains the structure
of the background ensemble and is only shifted and contracted.
In that case, the ensemble mean, which represents the state
estimate, is not located in an area with high probability density
but in between the two modes (see Figure 4B). The analysis

ensemble aims to approximate the uncertainty distribution of the
state estimate. This more realistic uncertainty estimation is one
of the advantages of the particle filter methods over the ensemble
Kalman filter.

5. RESULTS FOR LONGER ASSIMILATION
PERIODS

In the following, the results of longer data assimilation
experiments for the Lorenz 1963 model as well as the 40-
dimensional Lorenz 1996 model are discussed. Beside the
comparison of root-mean-square errors following Equations
(115) and (116) for different methods, the development of the
effective ensemble size [see Equations (119) and (120)] in the
particle filter methods are observed. For both models, the initial
ensemble size is set to L = 20 in the following experiments.
Further parameters of the model configuration and experimental
setup, which are used in this section, are summarized in Table 1.

For the 40-dimensional Lorenz 1996 model, the methods
are used in a localized form, as described at the beginning of
Section 3. The localization depends on the localization radius rloc,
which affects the number of observations used in the analysis
step. Moreover, the optimal localization radius depends on the
method as well as the model parameters. For the LETKF method,
we choose rloc in between 4 and 7 in depending on the model
error, the integration time 1t and the observation noise after
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the investigation of different localization radii. With respect to
the LMCPF with exact weights, the localization radius rloc is set
to a value between 4 and 6 in the experiments of this section.
In addition, experiments revealed larger effective ensemble sizes
for smaller localization radii. Moreover, an automatic restart was
introduced for all methods to catch extreme cases.

5.1. Definition of RMSE and Effective
Ensemble Size
To compare different data assimilation methods, a measure is
needed. In general, the goodness of a DA method is associated
with the distance between the background or analysis state
estimate and the truth, or alternatively the observation if the
truth is not available. For that purpose, the normalized euclidean
norm or root-mean-square-error (RMSE) is used to calculate the
distance of background or analysis state estimate and the truth at
time tk, i.e.,

e
(b)
k

: = e(b)(tk) = 1√
n

∥

∥

∥
x̄
(b)
k

− xtrue
k

∥

∥

∥

2
, (115)

e
(a)
k

: = e(a)(tk) = 1√
n

∥

∥

∥
x̄
(a)
k

− xtrue
k

∥

∥

∥

2
, (116)

where n ∈ N denotes the number of variables of the underlying

model and x̄(b)
k
, x̄(a)

k
describe the background or analysis ensemble

means. For a time period given, where data assimilation is carried
out at the measurement points t1, . . . , tK , the averaged errors are
denoted by

e(b) = 1
K

K
∑

k=1

e
(b)
k
, (117)

e(a) = 1
K

K
∑

k=1

e
(a)
k
. (118)

In terms of particle filter methods, the development of the
effective ensemble size is an important quantity to examine the
stability of the filter. The effective ensemble size is defined by

Leff = 1
∑L

l=1(w
(a,l)/L)2

(119)

with the relative particle weights in ensemble space w(a,l) of the
LMCPF described in Equation (66) or with the classical particle
filter weights w̃(a,l) of the LAPF defined in Equation (26). In
general, particle filter methods suffer in high-dimensional spaces
from filter degeneracy due to the finite ensemble size (see [6]). In
that case, the effective ensemble size tends to one, which means
that the weights become strongly non-uniform. With respect to
the 40-dimensional Lorenz 1996 model, the effective ensemble
size is computed at each localization point and the average at each
data assimilation cycle is derived. The mean effective ensemble
size over all localization points is denoted by

L̄eff = 1

P

∑

p

Leff(p) (120)

where P describes the number of localization points (P = n for
Lorenz 1996) and Leff is calculated at each localization point using
the respective weights.

5.2. LMCPF Results in Dependence of the
Particle Uncertainty Parameter κ
The results of data assimilation methods vary in dependence
of the model parameters integration time 1t of the dynamical
model, the model error between true and model run and
observation noise σobs. The chaotic behavior of the Lorenz
systems means that small differences in the initial conditions
can lead to significantly different future trajectories. In average,
greater propagation or forecast time intervals result in greater
perturbations of the model run. The nonlinearity of the Lorenz
models causes the propagation of some Gaussian distributed
ensemble to result in non-Gaussian structures even at shorter
lead times.

Figure 5 shows the integration of a Gaussian distributed
ensemble over time with Lorenz 1963 model dynamics. For
1t = 0.3 and 1t = 0.5, the resulting ensemble is clearly non-
Gaussian so that the main assumption of the Kalman filter to
the background distribution does not hold. As a consequence,
we expect improvements of LMCPF over LETKF especially for
longer forecast times.

Moreover, model error means that true states, respectively,
observations are generated by a slightly different dynamical
model than the first guess from the previous analysis ensemble.
For the Lorenz systems, the model error is produced by the
application of different values for the Prandtl number σ (Lorenz
1963) and for the forcing term F (Lorenz 1996). In NWP systems,
the atmospheric model is known to have errors. Hence, it is
important to investigate the application of data assimilation
methods in case of model error. Naturally, we expect the model
run to differ stronger from the true run for greater differences in
the model parameters.

In addition, the observation noise σobs strongly affects the data
assimilation results. As in the case of the model error, this is

no surprise, since the observation is used in data assimilation
to obtain an analysis state. The LMCPF is quite sensitive to

the observation noise because the resampling as well as the

shift moves the ensemble toward the observation. To generate

the observations for experiments with the Lorenz models, the

true trajectory is randomly perturbed at time points, where data

assimilation is performed. If some observation is far from the

truth by chance, an overestimation of the importance of this

observation might lead to worse results of the LMCPF compared
to LETKF or LAPF.

There are six parameters in the LMCPF method to adapt the

method to model and observation error as well as the integration

time. The five parameters ρ0, ρ1, c0, c1 and α are used to control

the spread of the analysis ensemble in the last step, where new

particles are drawn from a Gaussian mixture distribution (see
Section 3.2.3) . But the sixth, the particle uncertainty parameter
κ , respectively, γ defined in Equation (34), is the most important

parameter since the variable affects the spread of the analysis

ensemble as well as the movement of the particles toward the

observation.
In the following, the results for LMCPF compared to LETKF

are shown for different settings of Lorenz 1963 and 1996.
To identify a reasonable particle uncertainty parameter κ , the
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FIGURE 5 | A thousand particles drawn from a Gaussian distribution (red points) are integrated in time with respect to the Lorenz 1963 model dynamics for 1t = 0.15

(blue), 1t = 0.3 (lightblue) and 1t = 0.5 (cyan) time units.

FIGURE 6 | Comparison of background errors of LMCPF and LETKF following Equation (121) for different forecast lengths 1t = 0.15,1t = 0.3 and 1t = 0.5. Positive

values denote a smaller RMSE of truth minus background for the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps are

carried out for the Lorenz 1963 model whereas the last 900 steps are used to compute the statistics. The experiments are repeated 10 times with different seeds and

the average error is reported. The true trajectory is generated with σ true = 10, the integration of the ensemble of states is performed with σ = 12 and the observation

noise equals σobs = 0.5. Only the first variable is observed. The ensemble size is set to L = 20 for both methods.
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parameter is varied. In Figure 6, experiments for different
forecast lengths 1t are performed with respect to the Lorenz
1963 model. The observation error standard deviation is chosen
as σobs = 0.5 and only the first variable is observed. The true
trajectory is generated with the Prandtl number σ true = 10, while
the forecast ensemble is integrated with σ = 12 to introduce
model error. For each parameter setting, 1, 000 data assimilation
cycles are carried out with both methods, whereas the average
errors over the last 900 cycles are computed. That means the first
100 steps are not used. Furthermore, each experiment is repeated
ten times with different seeds to generate different random
numbers and the average error is reported. Themean background
errors [see Equations (117) and (118)] of both methods are
compared by

δ =
e
(b)
LETKF − e

(b)
LMCPF

e
(b)
LETKF

· 100. (121)

Positive values (blue arrays) for δ denote better results for
LMCPF than LETKF. Following Figure 5, the background
ensemble is less Gaussian distributed for longer forecast lengths.
Figure 6 illustrates the improvement of LMCPF over LETKF in
particular for 1t = 0.5. In case of 1t = 0.15, the results for
LMCPF are worse than for LETKF. For a longer forecast length,
the RMSE of background minus truth is lower than the RMSE of
LETKF for a wider range of values for κ .

In Figure 7, the results for a range of values of κ are shown
for the 40-dimensional Lorenz 1996 model with respect to
differentmodel errors. Similar to Figure 6, the background errors
of LMCPF and LETKF are compared by Equation (121). One
thousand data assimilation cycles are carried out, whereas the
first 100 steps are considered as spin-up time and are not used in
the computation of the mean errors. Moreover, the experiments
are repeated ten times with different random seeds. To receive
the results displayed in Figure 7, the truth is generated with the
forcing term Ftrue = 8, while the forecast ensemble is derived
with different forcing terms between F = 8 and F = 9.5.
In addition, the observation error standard deviation is set to
σobs = 0.5 and a longer forecast length 1t = 0.5 is applied.
The results indicate, that in most cases there is some particle
uncertainty parameter κ , so that the LMCPF outperforms the
LETKF.

Following Lei and Bickel [60], longer forecast lengths
(1t > 0.4) lead to highly non-Gaussian ensembles for the
40-dimensional Lorenz 1996 model with forcing term F = 8.
To verify this, we integrated a standard Gaussian distributed
ensemble (L = 10, 000) in time for 1t = 0.5 and with
forcing term F = 8. The distance of the resulting distribution
to a Gaussian distribution with the same mean and variance
can be measured by the distance of the skewness and kurtosis
to the characteristic values 0 and 3 for skewness and kurtosis
of a Gaussian distribution. For the integrated ensemble, we
obtain 0.56 as absolute skewness averaged over all N = 40
model variables. The averaged absolute distance of the empirical
kurtosis of the integrated ensemble to the characteristic value 3
of a Gaussian distribution is 0.99. This indicates a non-Gaussian
ensemble.

An increasing value of F up to 9.5 leads to a larger distance
of the background to the true state or the observations which
denotes a larger systematic model bias. Figure 7 illustrates that
for larger model error, the RMSE of LMCPF is lower than for
LETKF for a wider range of values for κ . That means, the
parameter adjustment of the LMCPF is easier for larger model
error. In case of no model error for the forcing term F = 8, the
distance between observations and background is smaller than in
cases with model error. In theory, we suggest that smaller values
for the particle uncertainty parameter κ yield better results in that
case since this leads to less uncertainty in the background. If κ

tends to zero, the LMCPF gets more similar to LAPF. For the
LAPF, we have observed a greater sensitivity to sampling errors.
To this end, experiments for increased ensemble size (L = 100)
were performed which showed better scores of LMCPF than
LETKF in case of no model error and for smaller values of κ .
Finally, the perfect model scenario with small distances between
background and observation is a difficult case for the LMCPF
with small ensemble sizes while this case is less relevant for the
application in real NWP systems. In realistic applications, model
errors occur and the applicable ensemble size is relatively small
compared to the model dimension.

Furthermore, the effective ensemble size depends on the
parameter κ . If κ tends to infinity, the effective ensemble size
tends to the upper boundary L. This can be explained by Figure 2,
which illustrates that the particle weights approach each other
if κ tends to infinity. This means, that all the particles get the
same weight, which results in the effective ensemble size Leff = L.
With respect to the experiments in Figure 7, the mean effective
ensemble size varies for κ > 0.5 between Leff = 8 and Leff =
15. The variabilty of the effective ensemble size for different
model errors is negligible. As remark, further experiments with
different localization schemes and localization radii have shown
that smaller localization radii lead to larger effective ensemble
sizes up to a certain point. To ensure that the ability of the
LMCPF to outperform the LETKF (see Figure 7) do not depend
solely on the special selection on forcing terms Ftrue and F,
additional combinations between 6.5 and 9.5 were tested.

In Figures 6, 7, the results for different integration times
and model errors are shown. Figure 8 illustrates the changes
for different observation standard deviations σobs. On the one
hand, the LMCPF is able to outperform the LETKF for a wider
range of values for κ . On the other hand, there is the tendency
that for larger observation standard deviation smaller values
for κ lead to good results. As the parameter κ adapts the
particle uncertainty, smaller values decrease the uncertainty of
the background ensemble and relatively increase the uncertainty
of the observation. That means the particles are pulled less
strongly in the direction of the observation.

In addition, we compared LMCPF and LETKF in case of
non-Gaussian distributed observations. To this end, observations
are generated with errors following a univariate non-Gaussian
double exponential Laplace distribution [16], which are also
applied in [56], and an equivalent experiment to Figure 7 was
performed. The observation error standard deviation is chosen as
σobs = 0.5 again. There is no significant improvement of LMCPF
compared to LETKF in case of non-Gaussian observations. Since

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 June 2022 | Volume 8 | Article 920186111

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Schenk et al. On Two Localized Particle Filters

FIGURE 7 | Comparison of background errors of LMCPF and LETKF following Equation (121). Positive values denote a smaller RMSE of truth minus background for

the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps for the Lorenz 1996 model are carried out whereas the last 900

steps are used to compute the statistics. The experiments are repeated ten times with different seeds and the average error is reported. The true trajectory is

generated with F true = 8, the forecast length is set to 1t = 0.5 and the observation noise equals σobs = 0.5. Every second variable is observed. The ensemble size is

set to L = 20 for both methods.

FIGURE 8 | The background errors of LMCPF and LETKF following Equation (121) are compared for different observation error standard deviations σobs. Positive

values denote a smaller RMSE of truth minus background for the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps for

the Lorenz 1996 model are carried out whereas the last 900 steps are used to compute the statistics. The experiments are repeated ten times with different seeds and

the average error is reported. The true trajectory is generated with F true = 8 and the integration of the ensemble of states is performed with F = 8.5. The forecast

length is set to 1t = 0.5. Every second variable is observed. The ensemble size is set to L = 20 for both methods.
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both methods assume Gaussian distributed observation errors
by definition, the results confirmed the expectation, that LMCPF
does not have an advantage over LETKF in case of non-Gaussian
observations. But there is the possibility to adapt the LMCPF in
future to account for non-Gaussian observation error. Similar
to the idea of a Gaussian mixture filter, the observation error
distribution may be approximated by a sum of Gaussians. This
would lead to new particle weights and shift vectors.

5.3. LMCPF With Gaussian Mixture and
Approximate Weights
In the first version of the LMCPF method presented in Walter
et al. [32], the particle weights are approximated by the classical
particle filter weights in ensemble space, which are used in
the LAPF method. This is reasonable if the covariance B of
the Gaussians kernels is small compared to the distance of
observation minus background particles. But this assumption
may not be justified in practice. If the uncertainty parameter κ

tend to zero the assumption is fulfilled and the exact Gaussian
mixture weights tend to the approximate weights (see Figure 2).

In Figure 9, the LMCPF method with exact Gaussian mixture
weights [see Equation (66)] is compared to the LMCPF method
with approximate weights [see Equation (26)] in the case that
every second variable is observed. To compare the methods for
a variety of model parameters, the forecast length is set to 1t =
0.3 for the experiments in the following sections. The results
of LMCPF with exact and approximate weights are comparable
but the overall background and analysis errors are higher for
the version with approximate weights. Moreover, the adaptive
inflation parameters ρ0, ρ1, c0, c1 and α are set to the same values
for both methods and both methods have a similar ensemble
spread averaged over the whole experiment. Furthermore, the
ensemble spread is overestimated for both methods compared to
the background, respectively, analysis error.

In Figure 10, the development of the effective ensemble size
Leff over the last 200 assimilation steps of this experiment is
plotted for the LMCPF with exact and approximate weights as
well as the LAPF method. The effective ensemble size of the
LMCPF with approximate weights is only slightly higher than
for the LAPF method, while the line of LMCPF with exact
weights is significantly higher. Also, the localization radius has
a large effect on the effective ensemble size. Smaller localization
radii rloc lead to larger effective ensemble sizes. Regarding the
results in Figure 10, for the LMCPF method with exact weights,
the localization radius is set to rloc = 4, while for the other
two methods, the radius is chosen as rloc = 2. That means,
for the same localization radius the effective ensemble size of
LMPCF with exact weights would be even larger. Moreover, the
localization radius is an important parameter to achieve stable
results in case of the LAPF method. For the LMCPF method, the
application of the exact Gaussian mixture weights lead to higher
effective ensemble sizes so that the filter performance does not
depend so heavily on the localization radius and optimal results
are obtained for higher localization radii than for the version with
approximate weights. Further experiments for longer forecast
lengths (1t = 0.5 and 1t = 0.8) have also shown that the

effective ensemble size decreases for increasing integration time
for all three particle filter versions. While the effective ensemble
size of the LMCPF with exact weights still take values around
Leff = 10 for an initial ensemble size of L = 20, the variable
decreases to values around Leff = 3 for LAPF and LMCPF with
approximate weights. The increase of the effective ensemble size
shows the improvement of the stability of the LMCPF method
with exact particle weights. In case of a larger effective ensemble
size, more information of the background ensemble is used. If
only few particles are chosen in the stratified resampling step, the
ensemble spread depends more on the adaptive spread control
parameters ρ0, ρ1, c0, c1 and α. In a worst case scenario where
only one particle is chosen, all analysis particles are drawn
from the same Gaussian distribution with inflated covariance
matrix. Small changes in the covariance matrix of the Gaussian
distribution effect the ensemble spread stronger compared to
drawing the analysis particles from Gaussians with different
expectation vectors. Using the exact Gaussian mixture weights,
Kotsuki et al. [39] also detected an improvement of the stability
of the LMCPF method with respect to the inflation parameters
within an intermediate AGCM. Nevertheless, the application

of the analysis covariance matrix B
(a)
ens [see Equation (98)] in

the Gaussian mixture distribution, from which new particles
are drawn in the last step, leads for both LMCPF versions to
more stable results with respect to the spread control parameters
compared to the LAPF method.

5.4. Comparison of LMCPF, LAPF, and
LETKF
In this section, the three localized methods LMCPF, LAPF and
LETKF are compared with respect to the 40-dimensional Lorenz
1996 model.

Figures 11, 12 describe the results for the true forcing term
Ftrue = 8 and F = 9 for the model integration with
integration time 1t = 0.3. Compared to the overall results
in Figure 9 for an experiment with larger model error F =
9.5, the RMSE of background or analysis mean minus truth
for the LMCPF method takes lower values. Furthermore, the
results for the last 200 data assimilation steps of the experiment
in Figure 11 illustrate that the higher errors for the LAPF
method mostly come from high peaks at some points, while
the errors are comparable for most regions. The tuning of the
spread control parameters is essential to obtain good results
for the LAPF. Compared to the LMCPF, the filter is more
sensitive to these parameters. Additionally, background and
analysis errors of the LMCPF method are lower than the errors
of the LETKF and the LAPF methods for the majority of the
shown time steps. The mean errors over the whole period
except a spin-up phase, take lower values even if there are high
peaks at some steps. Some outliers occur for each of the three
methods.

The RMSE development gives an impression for the overall
performance of the filters. In contrast, Figure 12 illustrates the
behavior for individual variables over the full period except a
spin-up phase of 100 data assimilation steps. The difference
between the background (Figure 12A) and analysis (Figure 12B)
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FIGURE 9 | The evolution of the background and analysis errors [see Equations (115) and (116)] for LMCPF with exact and approximate weights is illustrated for the

last 200 data assimilation steps of an experiment over 1, 000 steps. For both methods, the ensemble size is set to L = 20. Every second variable of the

40-dimensional Lorenz 1996 model is observed. The forcing terms are set to F true = 8 and F = 9.5 and the forecast length is set to 1t = 0.3. The observation

standard deviation is chosen as σobs = 0.5 and the observation error covariance matrix as diagonal matrix R = σ 2
obs · Im. The particle uncertainty parameter is set to

κ = 1.1 for the LMCPF with exact weights and to κ = 1.0 for the LMCPF with approximate weights. The background error mean of the last 900 data assimilation

steps of the LMCPF with exact weights equals e(b) ≈ 1.54 and the analysis error mean is approximately e(a) ≈ 0.95. The respective error means for the LMCPF with

approximate weights are given by e(b) ≈ 1.62 and e(a) ≈ 1.06.

FIGURE 10 | The effective ensemble size L̄eff defined in Equation (120) of the LMCPF method with exact and approximate weights as well as the LAPF method is

shown for the last 200 steps of the data assimilation experiment described in Figure 9. The ensemble size is set to L = 20 which is the highest value L̄eff can take on.

The dotted lines denote the mean effective ensemble size over the whole experiment except a spin-up phase (last 900 data assimilation steps).
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FIGURE 11 | The evolution of the background errors and analysis errors [see Equations (115) and (116)] for LMCPF (κ = 1.1), LETKF and LAPF is illustrated for the last

200 steps of an experiment over 1, 000 steps. The dotted lines denote the mean errors over the whole experiment except a spin-up phase (last 900 data assimilation

steps). For all methods, the ensemble size is set to L = 20. Every second variable of the 40-dimensional Lorenz 1996 model is observed. The forcing terms are set to

F true = 8 and F = 9. The forecast length is set to 1t = 0.3. The observation standard deviation is chosen as σobs = 0.5 and the observation error covariance matrix as

diagonal matrix R = σ 2
obs · Im. The background error mean of the last 900 data assimilation steps of the LMCPF equals e(b) ≈ 1.28 and the analysis error mean is

approximately e(a) ≈ 0.77. The respective error means for the LETKF are given by e(b) ≈ 1.38 and e(a) ≈ 0.86, respectively by e(b) ≈ 1.46 and e(a) ≈ 0.97 for the LAPF.

mean and the true trajectory is shown for the LMCPF method.
For the experiment, every second variable of the 40 nodes
of the Lorenz 1996 model is observed. The vertical structure
in Figure 12B indicates a lower distance of analysis mean
and truth for observed variables. Figure 12A shows that the
background errors for observed and unobserved variables are
largely mixed and the vertical structure can only be guessed at
some points. This results from the relatively long integration
time and the large model error induced by the different
model parameter F = 9 in the time integration of the
ensemble.

In this study, we focused on the Lorenz 1996 model
with 40 variables. This setting is widely used for tests of
data assimilation methods and tuning of filter parameters is
possible in a reasonable amount of time. Nevertheless, it is
important to investigate if the particle filter methods still
work for much higher dimensions. To this end, we made
first experiments with respect to the Lorenz 1996 model
with 1, 000 variables. LAPF and LMCPF (as well as LETKF)
run stably with initial ensemble size L = 40 and no
filter divergence occured. Moreover, LAPF and LMCPF with
approximate weights were already tested with respect to the
global ICON model in the data assimilation framework at
DWD.

6. CONCLUSION

Standard algorithms for data assimilation in the application
of NWP in high-dimensional spaces are in general ensemble
methods, where the ensemble describes the sample of an
underlying distribution. The ensemble Kalman filter is an
example for a standard algorithm, which is based on normality
assumptions. However, the application of nonlinear models to a
Gaussian distribution leads to a loss of the normality property in
general. In future, the dynamical models used in NWP will get
even more nonlinear due to higher resolution and more complex
physical schemes, so that this approach might be not optimal
in highly nonlinear situations. Hence, there is a need for fully
nonlinear data assimilation methods, which are applicable in
high dimensional spaces.

This work covers two nonlinear particle filter methods,
which are already implemented and tested in the operational
data assimilation system of the German Weather Service
(DWD). Previous studies of the localized adaptive particle filter
(LAPF; [31]) and the localized mixture coefficients particle filter
(LMCPF; [32]) showed mixed results for the global NWP system
at DWD. The particle filter methods were compared to the
local ensemble transform Kalman filter (LETKF). With this
manuscript, we examine the question if the LMCPF is able to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 June 2022 | Volume 8 | Article 920186115

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Schenk et al. On Two Localized Particle Filters

FIGURE 12 | (A) shows the difference of background mean and truth for the LMCPF method for all 40 variables for the experiment described in Figure 11. In (B), the

analysis mean minus truth is illustrated for the LMCPF method.

outperform the LETKF, with respect to a standard NWP setup
and standard NWP scores for the dynamical models Lorenz 1963
and Lorenz 1996. The experiments are performed with a revised
version of the LMCPF method. The exact particle weights are
derived in this work. Previously, the weights were approximated
by those of the LAPF. Recently, the revised method is also
presented in Kotsuki et al. [39] and tested for an intermediate
AGCM. The effective ensemble size is increased for the exact
weights, which results in a more stable filter with respect to the
parameters of the LMCPF. In case of higher effective ensemble
sizes, more background information is contained, while the filter
degenerates if the effective ensemble size tends to one. In this
study, we demonstrated that the LMCPF is able to outperform
the LETKF method with respect to the root-mean-square-error
(RMSE) of background/analysis ensemble mean minus truth in
case of model error for both systems. That means, the inital
question, if the LMCPF is capable to outperform the LETKF
within an experimental design reflecting a standard NWP setup
and standard NWP scores, can be answered with yes. The
experiments with Lorenz 1963 show that the longer the forecast
length is chosen, which results in a higher nonlinearity, the
better are the scores of LMCPF compared to LETKF. In that
case, the LMCPF outperforms the LETKF for a wide range of
parameter settings of the LMCPF. Even if the particle uncertainty
parameter κ , which affects the ensemble spread as well as the shift
toward the observation, is not perfectly adjusted, the RMSE of
background ensemble mean minus truth is lower than the error

of LETKF. A similar effect is visible for larger systematic model
error, which is exemplarily shown with respect to the dynamical
system Lorenz 1996. Moreover, further experiments for all of
these localized methods, LMCPF (with exact and approximate
particle weights), LAPF and LETKF, suggest, that the revised
LMCPF is an improvement compared to the previous version of
the LMCPF as well as the LAPF and is able to outperform the
LETKF.

In the application of data assimilation methods in complex
NWP systems, the behavior of the methods is overlaid by a
multitude of other processes. In this work, we present the
individual ingredients of the LMCPF method in one assimilation
step with respect to the Lorenz 1963 model. In case of a bimodal
background distribution, the analysis ensemble of the LMCPF
method builds a more realistic uncertainty estimation than for
the LETKF. Furthermore, the improvement of LMCPF over
LAPF is demonstrated in the case of a large distance between the
particles and the observation, respectively, true state. In contrast
to the LAPF, the analysis ensemble, generated by the LMCPF
method, is pulled stronger toward the observation due to the
additional shift.

All in all, the results suggest that particle filter methods and
the LMCPF in particular represent a serious alternative to the
LETKF in nonlinear environments in the future. As next steps,
we want to test the improved LMCPF method with respect to
the global ICON model as well as the convective-scale ICON-
LAM. Additionally, the application within a higher dimensional
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Lorenz 1996 model (starting from 1, 000 variables) is interesting
to investigate further. Moreover, we plan to focus on further
scores to compare LMCPF to LETKF.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

NS, RP, and AR conceived the study. Execution of the numerical
calculations were performed by NS. Writing the publication was

done by NS. Revising the manuscript was done by RP and
NS. All authors contributed to the article and approved the
submitted version.

FUNDING

Funding is provided by Deutscher Wetterdienst (German
Meteorological Service).

ACKNOWLEDGMENTS

The authors would like to thank Bastian von Harrach from
Goethe-University for scientific support.

REFERENCES

1. Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. J Geophys Res

Oceans. (1994) 99:10143–62. doi: 10.1029/94JC00572

2. Evensen G, van Leeuwen PJ. An ensemble kalman smoother for nonlinear

dynamics. Mon Weather Rev. (2000) 128:1852–67. doi: 10.1175/1520-

0493(2000)128<1852:AEKSFN>2.0.CO;2

3. Evensen G. Data Assimilation: The Ensemble Kalman Filter. Earth and

Environmental Science. 2nd ed. Dordrecht: Springer (2009). Available online

at: http://books.google.de/books?id=2_zaTb_O1AkC

4. Hunt BR, Kostelich EJ, Szunyogh I. Efficient data assimilation for

spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D.

(2007) 230:112–26. doi: 10.1016/j.physd.2006.11.008

5. van Leeuwen PJ. Particle filtering in geophysical systems. Mon Weather Rev.

(2009) 137:4089–114. doi: 10.1175/2009MWR2835.1

6. Snyder C, Bengtsson T, Bickel P, Anderson J. Obstacles to high-

dimensional particle filtering. Mon Weather Rev. (2008) 136:4629–40.

doi: 10.1175/2008MWR2529.1

7. Bickel P, Li B, Bengtsson T. Sharp failure rates for the bootstrap particle

filter in high dimensions. In: Pushing the Limits of Contemporary Statistics:

Contributions in Honor of Jayanta K Ghosh. Beachwood, OH (2008). p.

318–29.

8. Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEE Proc F Radar Signal Process. (1993)

140:107–13. doi: 10.1049/ip-f-2.1993.0015

9. van Leeuwen PJ, Künsch HR, Nerger L, Potthast R, Reich S. Particle filters for

high-dimensional geoscience applications: a review.Q J RMeteorol Soc. (2019)

145:2335–65. doi: 10.1002/qj.3551

10. Stordal A, Karlsen H, Nævdal G, Skaug H, Vallès B. Bridging the ensemble

Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput

Geosci. (2011) 15:293–305. doi: 10.1007/s10596-010-9207-1

11. Frei M, Künsch HR. Bridging the ensemble Kalman and particle filters.

Biometrika. (2013) 100:781–800. doi: 10.1093/biomet/ast020

12. Robert S, Künsch H. Localizing the Ensemble Kalman particle filter. Tellus A.

(2017) 69:1–14. doi: 10.1080/16000870.2017.1282016

13. Robert S, Leuenberger D, Künsch HR. A local ensemble transform Kalman

particle filter for convective-scale data assimilation.Q J RMeteorol Soc. (2018)

144:1279–96. doi: 10.1002/qj.3116

14. Nakano S, Ueno G, Higuchi T. Merging particle filter for sequential

data assimilation. Nonlinear Process Geophys. (2007) 14:395–408.

doi: 10.5194/npg-14-395-2007

15. Xiong X, Navon IM, Uzunoglu B. A note on the particle filter

with posterior gaussian resampling. Tellus A. (2006) 58:456–60.

doi: 10.1111/j.1600-0870.2006.00185.x

16. Tödter J, Ahrens B. A second-order exact ensemble square root filter

for nonlinear data assimilation. Mon Weather Rev. (2015) 143:1347–67.

doi: 10.1175/MWR-D-14-00108.1

17. Bishop CH, Etherton BJ, Majumdar SJ. Adaptive sampling with the ensemble

transform Kalman filter. Part I: theoretical aspects. Mon Weather Rev. (2001)

129:420–36. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2

18. Reich S. A nonparametric ensemble transformmethod for bayesian inference.

SIAM J Scientific Comput. (2013) 35:A2013–24. doi: 10.1137/130907367

19. Neal RM. Sampling from multimodal distributions using tempered

transitions. Stat Comput. (1996) 6:353–66. doi: 10.1007/BF00143556

20. Del Moral P, Doucet A, Jasra A. Sequential monte carlo samplers. J R Stat Soc

B. (2006) 68:411–36. doi: 10.1111/j.1467-9868.2006.00553.x

21. Emerick AA, Reynolds AC. Ensemble smoother with multiple data

assimilation. Comput Geosci. (2013) 55:3–15. doi: 10.1016/j.cageo.2012.03.011

22. Beskos A, Crisan D, Jasra A. On the stability of sequential Monte Carlo

methods in high dimensions. Ann Appl Probab. (2014) 24:1396–445.

doi: 10.1214/13-AAP951

23. van Leeuwen PJ. Nonlinear ensemble data assimilation for the ocean. In:

Seminar on Recent Developments in Data Assimilation for Atmosphere Ocean,

8–12 September 2003 ECMWF. Shinfield Park; Reading: ECMWF (2003). p.

265–86.

24. Reich S. A Gaussian-mixture ensemble transform filter. Q J R Meteorol Soc.

(2012) 138:222–33. doi: 10.1002/qj.898

25. Reich S, Cotter C. Probabilistic Forecasting and Bayesian Data Assimilation.

Cambridge: Cambridge University Press (2015).

26. Liu Q,Wang D. Stein variational gradient descent: a general purpose Bayesian

inference algorithm. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett

R, editors.Advances in Neural Information Processing Systems, Vol. 29. Curran

Associates, Inc. (2016). p. 2378–86. Available online at: https://proceedings.

neurips.cc/paper/2016/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf

(accessed June 10, 2022).

27. Lu J, Lu Y, Nolen J. Scaling limit of the stein variational gradient

descent: the mean field regime. SIAM J Math Anal. (2019) 51:648–71.

doi: 10.1137/18M1187611

28. Poterjoy J. A localized particle filter for high-dimensional nonlinear systems.

MonWeather Rev. (2016) 144:59–76. doi: 10.1175/MWR-D-15-0163.1

29. Poterjoy J, Sobash RA, Anderson JL. Convective-Scale data assimilation for

the weather research and forecasting model using the local particle filter.Mon

Weather Rev. (2017) 145:1897–918. doi: 10.1175/MWR-D-16-0298.1

30. Penny SG, Miyoshi T. A local particle filter for high-dimensional

geophysical systems. Nonlinear Process Geophys. (2016) 23:391–405.

doi: 10.5194/npg-23-391-2016

31. Potthast R, Walter A, Rhodin A. A localized adaptive particle filter within

an operational nwp framework. Mon Weather Rev. (2019) 147:345–62.

doi: 10.1175/MWR-D-18-0028.1

32. Rojahn, A., Schenk, N., van Leeuwen, P. J., and Potthast, R. (2022). Particle

filtering and Gaussian mixtures – On a localized mixture coefficients particle

filter (LMCPF) for global NWP. Preprint. doi: 10.48550/arXiv.2206.07433

33. Alspach D, Sorenson H. Nonlinear Bayesian estimation using Gaussian

sum approximations. IEEE Trans Automat Contr. (1972) 17:439–48.

doi: 10.1109/TAC.1972.1100034

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 22 June 2022 | Volume 8 | Article 920186117

https://doi.org/10.1029/94JC00572
https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
http://books.google.de/books?id=2_zaTb_O1AkC
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1175/2009MWR2835.1
https://doi.org/10.1175/2008MWR2529.1
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1002/qj.3551
https://doi.org/10.1007/s10596-010-9207-1
https://doi.org/10.1093/biomet/ast020
https://doi.org/10.1080/16000870.2017.1282016
https://doi.org/10.1002/qj.3116
https://doi.org/10.5194/npg-14-395-2007
https://doi.org/10.1111/j.1600-0870.2006.00185.x
https://doi.org/10.1175/MWR-D-14-00108.1
https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
https://doi.org/10.1137/130907367
https://doi.org/10.1007/BF00143556
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1016/j.cageo.2012.03.011
https://doi.org/10.1214/13-AAP951
https://doi.org/10.1002/qj.898
https://proceedings.neurips.cc/paper/2016/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://doi.org/10.1137/18M1187611
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.1175/MWR-D-16-0298.1
https://doi.org/10.5194/npg-23-391-2016
https://doi.org/10.1175/MWR-D-18-0028.1
https://doi.org/10.48550/arXiv.2206.07433
https://doi.org/10.1109/TAC.1972.1100034
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Schenk et al. On Two Localized Particle Filters

34. Anderson JL, Anderson SL. A monte carlo implementation of the

nonlinear filtering problem to produce ensemble assimilations and

forecasts. Mon Weather Rev. (1999) 127:2741–58. doi: 10.1175/1520-

0493(1999)127<2741:AMCIOT>2.0.CO;2

35. Chen R, Liu J. Mixture Kalman Filter. J Roy Statist Soc Ser B. (2000)

62:493–508. doi: 10.1111/1467-9868.00246

36. Bengtsson T, Snyder C, Nychka D. Toward a nonlinear ensemble filter

for high-dimensional systems. J Geophys Res Atmospheres. (2003) 108:8775.

doi: 10.1029/2002JD002900

37. Kotecha JH, Djuric PM. Gaussian particle filtering. IEEE Trans Signal Process.

(2003) 51:2592–601. doi: 10.1109/TSP.2003.816758

38. Hoteit I, Pham DT, Triantafyllou G, Korres G. A new approximate

solution of the optimal nonlinear filter for data assimilation in

meteorology and oceanography. Mon Weather Rev. (2008) 136:317–34.

doi: 10.1175/2007MWR1927.1

39. Kotsuki S, Miyoshi T, Kondo K, Potthast R. A Local Particle Filter and

Its Gaussian Mixture Extension: Comparison With the LETKF Using an

Intermediate AGCM. (2022). doi: 10.5194/gmd-2022-69

40. Zängl G, Reinert D, Rípodas P, Baldauf M. The ICON (ICOsahedral Non-

hydrostatic) modelling framework of DWD and MPI-M: description of the

non-hydrostatic dynamical core. Q J R Meteorol Soc. (2015) 141:563–79.

doi: 10.1002/qj.2378

41. Lorenz EN. Deterministic nonperiodic flow. J Atmosphere Sci. (1963)

20:130–41. doi: 10.1175/1520-04691963020<0130:DNF>gt;2.0.CO;2

42. Goodliff M, Amezcua J, Leeuwen PJV. Comparing hybrid data assimilation

methods on the Lorenz 1963 model with increasing non-linearity. Tellus A.

(2015) 67:26928. doi: 10.3402/tellusa.v67.26928

43. Miller RN, Ghil M, Gauthiez F. Advanced data assimilation in strongly

nonlinear dynamical systems. J Atmospher Sci. (1994) 51:1037–56. doi: 10.

1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2

44. Lorenz EN. Predictability: a problem partly solved. In: Seminar on

Predictability, 4-8 September 1995, vol. 1. ECMWF. Shinfield Park, Reading:

ECMWF (1995). p. 1–18.

45. Li H, Kalnay E, Miyoshi T. Simultaneous estimation of covariance inflation

and observation errors within an ensemble Kalman filter. Q J R Meteorol Soc.

(2009) 135:523–33. doi: 10.1002/qj.371

46. van Leeuwen PJ. Nonlinear data assimilation in geosciences: an

extremely efficient particle filter. Q J R Meteorol Soc. (2010) 136:1991–9.

doi: 10.1002/qj.699

47. Frei M, Künsch HR. Sequential state and observation noise covariance

estimation using combined ensemble Kalman and particle filters. Mon

Weather Rev. (2012) 140:1476–95. doi: 10.1175/MWR-D-10-05088.1
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Mathematical analysis of cholera
typhoid co-infection
transmission dynamics

Lunga Matsebula* and Farai Nyabadza

Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg,

South Africa

Typhoid fever and cholera remain a huge public health problem on the

African continent due to deteriorating infrastructure and declining funding for

infrastructure development. The diseases are both caused by bacteria, and

they are associated with poor hygiene and waste disposal systems. In this

paper, we consider a nonlinear system of ordinary di�erential equations for the

co-infection of typhoid and cholera in a homogeneously mixing population.

Themodel’s steady states are determined and analyzed in terms of themodel’s

reproduction number. Impact analysis—how the diseases impact on each

other—is carried out. Numerical simulations and sensitivity analysis are also

given. The results show that the control of the diseases should be carried out

in tandem for the greatest impact of disease control. The results have important

implications in the management of the two diseases.
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1. Introduction

Cholera, an acute gastro-intestinal water-borne infection, is caused by the bacterium

Vibrio Cholerae, V. cholerae O1 or O139. Some of the symptoms are vomiting and

diarrhea. If treatment is delayed, it can lead to severe dehydration and death within a

few hours. The disease has two modes of transmission: direct and indirect transmission.

Direct transmission (human-human) is very uncommon, whilst indirect transmission

(environment-human), which occurs through the ingestion of contaminated food or

water [1], is more frequent. Known estimates of the incubation period for the cholera

disease is 1.4 days [2]. On the other hand, the Salmonella Typhi bacteria is responsible

for causing the life threatening typhoid fever disease. Cholera and typhoid fever have

the same transmission modes. The recticuloendothelical system, the intestinal lymphoid,

and the gall bladder are severely damaged by the typhoid fever disease. Once a susceptible

individuals is infected by the disease, roughly 19 days are required for the disease to

incubate within the host [3].

Mathematical models have been used for the past decades to give insights into the

transmission dynamics of co-infections within the human population. Akinyi et al.

[4], showed that whenever the basic reproduction number is lowered to below one,

then the malaria and the pneumonia cases will be reduced in a model of malaria-

pneumonia coinfection. Onyinge et al. [5] modeled the co-dynamics of pneumonia
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and HIV, and they showed that the model was mathematically

and epidemiologically sound; Mushayabasa et al. [6] modeled

malaria-typhoid co-infection and demonstrated that a typhoid

outbreak will inevitably lead to a spike in the malaria cases.

A number of mathematical models on typhoid have been

proposed by a number of researchers.Mushayabasa [7], modeled

how vaccines can help mitigate the spread of typhoid in Ghana.

Pitzer et al. [8], extended the work in Mushayabasa [7] by

applying the model to South Asia. Khan et al. [9], studied the

typhoid disease with a saturated incidence rate.

To the best of our knowledge, the co-dynamics of typhoid

and cholera have not been investigated in the literature. A recent

outbreak of these two infections in Zimbabwe prompted this

theoretical inquiry into how these infections interact. Due to

the complicated nature of the co-infection model, we begin

our analysis by studying the underlying sub-models; namely,

the cholera only and the typhoid only sub-models. For each of

the models, a number of pertinent questions are investigated.

The questions explored include: Which factors in the models

are key to decreasing the prevalence of each disease and

the co-infection? Within the population, are the infections

in competition with each other, or are they symbiotic? The

implications of the results to the public health are discussed.

The paper is arranged as follows; the development of the

model and the properties of the basic reproduction number are

established in Section 2. Section 3 contains the stability analysis

of the model at the fixed points. Numerical simulations and

parameter estimations are done in section 4. Section 5 concludes

the articles.

2. Methodology

2.1. Model development

Our typhoid cholera co-infection model partitions the

human population N(t), at time t, into a susceptible class S(t),

a cholera infection class Ic(t), a typhoid infection class It(t), a

coinfection class Ict(t), a cholera recovery class Rc(t), a typhoid

recovery class Rc(t), and a coinfection recovery class Rct(t).

Thus,

N(t) =S(t)+ Ic(t)+ Rc(t)+ It(t)+ Rt(t)+ Ict(t)+ Rct(t).

The bacterial concentration of Salmonella Typhi, Bt(t), and

Vibrio Cholerae, Bc(t), in the environment are incorporated into

the model as well. The formulation of this model is an extension

to the work carried out by Matsebula et al. [10].

Since the incubation periods of the two infections are

different, we assume that dually infected individuals can only

transmit either cholera or typhoid but not both infections

simultaneously. Transmission of cholera to susceptible

individuals occurs in one of two routes—the direct transmission

route (human-to-human) and the indirect transmission route

(envirnment-to-human). The rates of the transmission routes,

respectively, are given by

λc1 = βc1 (Ic + ηcIct)

N
, λc2 = βc2Bc

Bc + κc
.

The parameter βc1 denotes the person-to-person cholera

transmission. The effective contact rate for cholera multiplied

by the probability of cholera transmission per contact gives

the person to person cholera transmission. The modification

parameter ηc, accounts for the relative infectiousness of

individuals in class Ic relative to individuals in class Ict . We

assume that ηc ∈ (0, 1). This assumption is motivated by

the fewer numbers of co-infected individuals as compared to

those infected with cholera only. The parameter βc2 denotes

the environment-to-humans per capita contact rate and the

Vibrio Cholerae in the contaminated environment, whilst the

parameter κc denotes the half saturation constant of the

Vibrio Cholerae. The half saturation constant is the bacterial

concentration that is required to support half of the maximum

rate, βc2 .

Similarly, the transmission of typhoid to susceptible

individuals occurs in one of two routes—the direct transmission

route (human-to-human) and the indirect transmission route

(envirnment-to-human). The rates of the transmission routes,

respectively, are given by

λt1 = βt1 (It + ηtIct)

N
, λt2 = βt2Bt

Bt + κt
.

The parameter βt1 denotes the effective person-to-person

typhoid transmission rate. The effective contact rate for typhoid

multiplied by the probability of typhoid transmission per

contact gives the person to person typhoid transmission.

The modification parameter ηt , accounts for the relative

infectiousness of individuals in class It relative to individuals

in class Ict . We also assume that ηt ∈ (0, 1) following the

assumptions given in the cholera infection dynamics. The per

capita contact rate between the susceptibles and Salmonela typhi

is represented by βt2 , and the half saturation constant for λc2 is

κt .

Transmission of cholera to typhoid infected individuals

occurs in one of two routes—the direct transmission route

(human-to-human) and the indirect transmission route

(environment-to-human). The rates of the transmission routes,

respectively, are given by

λc3 = βc3 (Ic + ηcIct)

N
, λc4 = βc4Bc

Bc + κc
.

The parameter βc3 denotes the effective person-to-person

cholera transmission rate of individuals in class It . The

parameter βc4 denotes the environment-to-humans per capita

contact rate for individuals in class It and the Vibrio Cholerae

in the contaminated environment. Transmission of typhoid to
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FIGURE 1

The cholera typhoid co-infection compartmental model. For

the concise presentation of our model flow diagram, we make

use of the following expressions:

χ1 = gcBc

(

1− Bc
kc

)

+ αcIc + θcIct, χ2 = gtBt

(

1− Bt
kt

)

+ αtIt +
θtIct, λc = λc1 + λc2 , λt = λt1 + λt2 , λ1 = λt3 + λt4 , λ2 = λc3 + λc4 .

cholera infected individuals occurs in one of two routes—the

direct transmission route (human-to-human) and the indirect

transmission route (environment-to-human). The rates of the

transmission routes, respectively, are given by

λt3 = βt3 (It + ηtIct)

N
, λt4 = βt4Bt

Bt + κt
.

The parameter βt3 denotes the person-to-person typhoid

transmission rate of individuals in class Ic. The parameter βt4

denotes the environment-to-humans per capita contact rate

for individuals in class Ic and the Salmonella Typhi in the

contaminated environment.

Infected individuals in classes Ic, It and Ict experience disease

related death at rates given, respectively by δc, δt and δct .

Individuals in the infectious states Ic and It , respectively, excrete

Vibrio Cholerae bacteria and Salmonella Typhi bacteria into the

environment at rates αc and αt . Coinfected individuals shed

Vibrio Cholerae and Salmonella Typhi into the environments

at rates θc and θt , respectively. Infection is assume to confer

temporary immunity. The cholera and typhoid immunity wanes

at rates ρc, ρt and ρct .

The generation rate of Vibrio Cholerae is gcBc
(

1− Bc
kc

)

, and

its growth is enhanced by cholera infected individuals and the

coinfected individuals that are shedding into the environment.

The generation rate of Salmonella Typhi is gtBt

(

1− Bt
kt

)

and its growth is enhanced by typhoid infected individuals

and the coinfected individuals that are shedding into the

environment. We assume that the Vibrio Cholerae and the

Salmonella Typhi bacteria in the environment are respectively

removed by interventions such as improved sanitation and

treatment of contaminated environments at ratesµc andµt . The

parameter 3 represents the recruitment into the susceptibles,

while the parameter µ represents the natural death rate. It is

assumes that individuals mix homogeneously and that they are

indistinguishable in each of the classes. The model diagram is

shown in Figure 1.

The dynamical system associated with the schematic

diagram in Figure 1 is;

dS

dt
=3 − (λc1 + λc2 + λt1 + λt2 )S− µS+ ρcRc + ρtRt

+ρctRct ,

dIc

dt
=(λc1 + λc2 )S− (λt3 + λt4 )Ic − (µ + δc + ǫc)Ic,

dIt

dt
=(λt1 + λt2 )S− (λc3 + λc4 )It − (µ + δt + ǫt)It ,

dIct

dt
=(λt3 + λt4 )Ic + (λc3 + λc4 )It − (µ + δct + ǫct)Ict ,

dRc

dt
=ǫcIc − (µ + ρc)Rc, (1)

dRt

dt
=ǫtIt − (µ + ρt)Rt ,

dRct

dt
=ǫctIct − (µ + ρct)Rct ,

dBc

dt
=gcBc

(

1− Bc

kc

)

+ αcIc + θcIct − µcBc,

dBt

dt
=gtBt

(

1− Bt

kt

)

+ αtIt + θtIct − µtBt ,

with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Bt(0) = Bt0 ≥ 0,

Ic(0) =Ic0 ≥ 0, It(0) = It0 ≥ 0, Ict(0) = Ict0 ≥ 0,

Rc(0) =Rc0 ≥ 0, Rt(0) = Rt0 ≥ 0,Rct(0) = Rct0 ≥ 0.

2.2. Cholera only model

We define the cholera only model as the model obtained

from setting all the typhoid classes and its associated parameters

to zero. We thus have the following

dS

dt
= 3 − (λ̃c1 + λc2 )S− µS+ ρcRc,

dIc

dt
= (λ̃c1 + λc2 )S− qcIc,

dRc

dt
= ǫcIc − (µ + ρc)Rc, (2)

dBc

dt
= gcBc

(

1− Bc

kc

)

+ αcIc − µcBc,

where

λ̃c1 = βc1 Ic

Nc
, qc = µ + δc + ǫc, Nc = S+ Ic + Rc,
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with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Ic(0) = Ic0 ≥ 0,

Rc(0) =Rc0 ≥ 0.

2.2.1. Boundedness and non-negative
trajectories

We argue that model (Equation 2) yields bounded-

non negative-trajectories in this section provided the initial

conditions are non-negative.

Theorem 1. All solutions of the cholera only sub-model

(Equation 2) are non-negative if all the initial conditions are

non-negative.

Proof. Define t1 = sup
{

t > 0|S(τ1) > 0, Ic(τ1) ≥ 0,

Rc(τ1) ≥ 0,Bc(τ1) ≥ 0,∀τ1 ∈ [0, t]
}

. It follows t1 > 0

since

S0 > 0, Ic0 ≥ 0,Rc0 ≥ 0,Bc0 ≥ 0.

Assume t1 < ∞, then S(t1) > 0, Ic(t1) = 0,Rc(t1) = 0,Bc(t1) =
0. Applying variation of constants to

dS

dt
= 3 − (λ̃c1 + λc2 )S− µS+ ρcRc,

yields

S(t1) =
∫ t1

0
f (r) exp

(

−
∫ t1

r
P(x)dx

)

dr

+S0 exp

(

−
∫ t1

0
P(x)dx

)

,

where P(x) = (λ̃c1 + λc2 +µ) and f (r) = 3+ ρcRc. Clearly,

S(t1) > 0

Since f (r) > 0 and P(x) > 0 when x, r ∈ [0, t1]. Similarly,

Ic(t1) > 0 and Rc(t1) > 0. This produces a contradiction, hence

t1 = ∞.

Theorem 2. All solutions of the cholera only sub-model

(Equation 2) are bounded within � whenever gc ≥ µc.

Proof. The time derivative of the population for the cholera

model (Equation 2) is bounded above by

dNc

dt
= 3 − µNc − δcIc ≤ 3 − µNc,

Upper bounds for the human population,Nc(t), are obtained

by integrating the separable differential inequality as follows,

Nc ≤
3 −M exp(−µt)

µ
≤ 3

µ
.

By extension, 3/µ is also the upper bound for each of the

human classes. Whereas, owing to Ic ≤ Nc ≤ 3/µ, an upper

bound for the bacterial classes can be obtained as follows,

dBc

dt
= gcBc

(

1− Bc

kc

)

+ αcIc − µcBc ≤ gcBc

(

1− Bc

kc

)

+ αc
3

µ
− µcBc. (3)

From inequality (3), if

Bc ≥ αc
3

µ
, (4)

Where αc
3

µ
is the maximum shedding rate from the cholera

infected individuals, then

dBc

dt
≤ (gc − µc)Bc − gc

kc
B2c + Bc

= (gc − µc + 1)Bc

(

1− gcBc

kc(gc − µc + 1)

)

. (5)

The constant

kc(gc − µc + 1)

gc
, (6)

is the upper bound for the differential inequality (Equation 5)

since (Equation 5) is the logistic growth model with carrying

capacity (Equation 6). For some t ≥ 0, (αc + θc)3/µ is an

upper bound for Bc whenever (Equation 4) is false, whilst Bc is

bounded above by Equation (6) for the rest of the time points

in the domain of Bc if (Equation 4) is true. Thus, in both cases,

Bc ≤ max

{

kc(gc − µc + 1)

gc
,αc

3

µ

}

.

Within the feasible region,

�c =
{

(S, Ic,Rc,Bc)

∣

∣

∣

∣

0 ≤ Nc ≤
3

µ

]

,

Bc ∈
[

0,max

{

kc(gc − µc + 1)

gc
,αc

3

µ

}]}

,

We have summarized the results on the boundedness and

positivity of the solutions of the cholera only sub-model 2.

2.2.2. The stability of the disease free
equilibrium and the reproduction number,RC

The disease free equilibria of system (Equation 2) is given by

x0 = (S, Ic,Rc,Bc) =
(

3

µ
, 0, 0, 0

)

,

x1 = (S, Ic,Rc,Bc) = (c1, 0, 0, c2),
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where c1 = 3(gc − µc)kc + gcκc

(µ + βc2 )(gc − µc)kc + µκcgc
and c2 =

gc − µc

gc
kc. The equilibrium x1 > 0 if gc > µc. The Jacobian

of dynamical system (Equation 2) is given by

J(x0) =













−µ −βc1 ρc −3βc2
µκc

0 βc1 − qc 0
3βc2
µκc

0 ǫ −(µ + ρc) 0

0 αc 0 gc − µc













.

The dynamical system (Equation 2) is locally asymptotically

stable if all four of its eigenvalues have negative real parts. Two

of the eigenvalues for the Jacobian, J, are λ1 = −µ and λ2 =
−(µ + ρc). The other two eigenvalues for J are the eigenvalues

from the sub-matrix

J̄ =
(

βc1 − qc
3βc2
µκc

αc gc − µc

)

.

The characteristic equation for matrix J̄ is λ2 + ν̄1λ + ν̄2,

where

ν̄1 =−
(

(gc − µc)+ (βc1 − qc)
)

,

ν̄2 =(βc1 − qc)(gc − µc)

(

1− αcβc23

(βc1 − qc)(gc − µc)κcµ

)

=(βc1 − qc)(gc − µc) (1−RC) ,

and

RC = αcβc23

κcµµcqc(1−Rh)(1−Rb)
, Rh = βc1

qc
Rb = gc

µc
.

The constants Rb and Rh are the bacterial regeneration

threshold and the human-to-human sub reproduction number,

respectively. The constantRC is the so-called basic reproduction

number for the system (Equation 2). Clearly, Rh,Rb < 1 or

Rh,Rb > 1 if and only ifRC > 0.

It follows from the Routh Hurwitz criterion that the two

eigenvalues of J̄ have negative real parts if ν̄1, ν̄2 > 0. It is easy

to see that ν̄1, ν̄2 > 0 ifRh < 1,Rh < 1 andRC < 1. Hence, a

positive basic reproduction number for system (Equation 2) that

is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

2.2.3. Endemic equilibrium

Setting the derivatives of the classes to zero gives the endemic

equilibrium for the cholera only sub-model (Equation 2). Let

λ = λ̃c1 + λc2 .

0 = 3 − (λ∗ + µ)S∗ + ρcR
∗
c , (7)

0 = λ∗S∗ − qcI
∗
c , (8)

0 = ǫcI
∗
c − (µ + ρc)R

∗
c , (9)

0 = gcB
∗
c

(

1− B∗c
kc

)

+ αcI
∗
c − µcB

∗
c . (10)

From Equation (8),

S∗ = qc

λ∗
I∗c .

From Equation (7),

R∗c = 1

ρc

[

(

λ∗ + µ
)

qcI
∗
c

λ∗
− 3

]

.

Consider (Equation 9),

ǫI∗c − (µ + ρc)

ρc

[

(

λ∗ + µ
)

qcI
∗
c

λ∗
− 3

]

= 0,

therefore

I∗c = λ∗3 (µ + ρc)

qc (λ∗ + µ) (µ + ρc) − ǫcρcλ∗
.

Given that

λ∗ = βc1 I
∗
c

S+ Ic + Rc
+ βc2Bc

Bc + κc
.

Using (Equation 10), we have a quadratic equation in Bc of

the form

ν̄2B
2
c + ν1Bc + ν0 = 0,

where

ν2 = gc
[

qc
(

λ∗ + µ
)

(µ + ρc) − ǫcρcλ
∗] ,

ν1 = −µcκc(Rb − 1)ν2, ν0 = −λ∗3κcαc (µ + ρc) ,

with

Rb = gc

µc
.

Clearly, ν0 < 0, ν1 < 0 ifRb > 1. Since

Bc =
−ν1 ±

√

ν21 − 4ν2ν0

2ν2
, (11)

it follows that if ν2 < 0, Rb > 1, then it follows from Descartes’

rule of signs that Bc has no positive roots, and if ν2 > 0, Rb > 1,

then Bc has only one positive root. We shall call the positive root

B+c .
Let

B = B+c
B+c + κc

.

Then

λ∗c2 = βc2B
+
c

B+c + κc
= βc2B.
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We have an expression for λ∗ such that

a2λ
∗2 + a1λ

∗ + a0 = 0 (12)

where,

a2 =µ + ǫc + ρc > 0, a1 = qc (µ + ρc) − (βc1 (µ + ρc)

+ Bβc2 (µ + ǫc + ρc)),

a0 =− Bqcβc2 (µ + ρc) < 0.

Since

λ =
−a1 ±

√

a21 − 4a2a0

2a2
,

it follows that if a1 > 0, then the polynomial (Equation 12) has a

positive root, and if a1 < 0, then the polynomial (Equation 12)

has a positive root. So the polynomial (Equation 12) will always

have one positive root.

So system (Equation 2) has a unique endemic equilibrium if

Rb > 1.

Remark 1.Due to the symmetric structure of the cholera only

and typhoid only sub-models, the typhoid only sub-model has

similar structural results to those obtained for the cholera only

sub-model. To avoid repetition, we have not shown the analysis

of the typhoid only sub-model.

2.3. Cholera-typhoid co-infection model

We study the full co-infection model (Equation 1) in

this section.

2.3.1. Non-negative trajectories and
boundedness

We prove in this subsection that model (Equation 1) has

non-negative trajectories.

Theorem 3. All solutions of the co-infection model (Equation 1)

are non-negative if all the initial conditions are non-negative.

Proof. Define t1 = sup{t > 0|S(τ1) > 0, Ic(τ1) ≥ 0, It(τ1) ≥
0, Ict(τ1) ≥ 0,Rc(τ1) ≥ 0,Rt(τ1) ≥ 0,Rct(τ1) ≥ 0,

Bc(τ1) ≥ 0,Bt(τ1) ≥ 0,∀τ1 ∈ [0, t]}. It follows that t1 > 0 since

S0 > 0, Ic0 ≥ 0, It0 ≥ 0, Ict0 ≥ 0,Rc0 ≥ 0,

Rt0 ≥ 0,Rt0 ≥ 0,Bc0 ≥ 0,Bt0 ≥ 0.

Assume t1 < ∞, then S(t1) > 0, Ic(t1) = 0, It(t1) = 0, Ict(t1) =
0,Rc(t1) = 0,Rt(t1) = 0,Rct(t1) = 0,

Bc(t1) = 0,Bt(t1) = 0. Applying variation of constants to

dS

dt
= 3− (λc1 +λc2 +λt1 +λt2 )S−µS+ρcRc+ρtRt +ρctRct

yields

S(t1) =
∫ t1

0
f (r) exp

(

−
∫ t1

r
P(x)dx

)

dr

+S0 exp

(

−
∫ t1

0
P(x)dx

)

,

Where P(x) = λc1 +λc2 +λt1 +λt2 +µ and f (r) = 3+ρcRc+
ρtRt + ρctRct . Clearly,

S(t1) > 0

since f (r) > 0 and P(x) > 0 when x, r ∈ [0, t1]. Similarly,

Ic(t1) > 0, It(t1) > 0, Ict(t1) > 0,Rt(t1) > 0 and Rc(t1) > 0.

This produces a contradiction, hence t1 = ∞.

Theorem 4. All solutions of the co-infection model (Equation 1)

are bounded within � whenever gc ≥ µc and gt ≥ µt .

Proof. Since δct(Ic + Ict) ≥ 0, it follows that the upper bound

for the time derivative of the total human population, N(t), is

dN

dt
= 3 − µN − δct(Ic + Ict) ≤ 3 − µN.

Using separation of variables, we obtain the following upper

bound for the human population,

N ≤ 3 −M exp(−µt)

µ
≤ 3

µ
.

This upper bound for the population implies that each of the

classes are also bounded above by the same constant 3/µ. Since

Ic, Ict ≤ 3/µ, it follows that the upper bound for the bacterial

concentration of Vibros Cholerae is bounded above by

dBc

dt
=gcBc

(

1− Bc

kc

)

+ αcIc + θcIct − µcBc

≤gcBc

(

1− Bc

kc

)

+ (αc + θc)
3

µ
− µcBc. (13)

From inequality (Equation 13), if

Bc ≥ (αc + θc)
3

µ
, (14)

then

dBc

dt
≤ (gc − µc)Bc −

gc

kc
B2c + Bc

= (gc − µc + 1)Bc

(

1− gcBc

kc(gc − µc + 1)

)

. (15)

The constant

kc(gc − µc + 1)

gc
, (16)

is the upper bound for the differential inequality (Equation 15)

since (Equation 15) is the logistic growth model with carrying

capacity (Equation 16). For some t ≥ 0, (αc + θc)3/µ is an

upper bound for Bc whenever (Equation 14) is false, whilst Bc is

bounded above by Equation (16) for the rest of the time points

in the domain of Bc if (Equation 14) is true. The constant (αc +
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θc)
3

µ
is the maximum shedding rate from the cholera infected

individuals and dually infected individuals. In both cases,

Bc ≤ max

{

kc(gc − µc + 1)

gc
, (αc + θc)

3

µ

}

.

J(X0) =

































−µ −βc1 −βt1 −(βc1ηc + βt1ηt) ρc ρt ρct −3βc2
µκc

−3βt2
µκt

0 βc1 − qc 0 ηcβc1 0 0 0
3βc2
µκc

0

0 0 βt1 − qt ηtβt1 0 0 0 0
3βt2
µκt

0 0 0 −(µ + δct + ǫct) 0 0 0 0 0

0 ǫc 0 0 −(µ + ρc) 0 0 0 0

0 0 ǫt 0 0 −(µ + ρt) 0 0 0

0 0 0 ǫct 0 0 −(µ + ρct) 0 0

0 αc 0 θc 0 0 0 gc − µc 0

0 0 αt θt 0 0 0 0 gt − µt

































, (17)

Within the feasible region,

�co =
{

(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) ∈ R
9
+

∣

∣

∣

∣

0 ≤ N ≤ 3

µ
,

Bc ∈
[

0,max

{

kc(gc − µc + 1)

gc
, (αc + θc)

3

µ

}]

,

Bt ∈
[

0,max

{

kt(gt − µt + 1)

gt
, (αt + θt)

3

µ

}]}

,

We have summarized the results on the boundedness

and positivity of the solutions to the co-infection model

(Equation 1).

2.3.2. Stability analysis of the disease free
equilibrium and reproduction number,R0

We find the conditions required for the disease free

equilibrium for dynamical system (Equation 1) to be locally

asymptotically stable in this section. The disease free equilibria

of dynamical system (Equation 1) are

X0 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) =
(

3

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)

,

X1 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c3, 0, 0, 0, 0, 0, 0, c4, c5) ,

X2 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c6, 0, 0, 0, 0, 0, 0, c4, 0) ,

X3 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c7, 0, 0, 0, 0, 0, 0, 0, c5) ,

where

c3 =
3
(

(gc − µc)kc + gcκc
) (

(gt − µt)kt + gtκt
)

µ
(

(gc − µc)kc + gcκc
) (

(gt − µt)kt + gtκt
)

+ βc2 gt(gc − µc)kc + βt2 gc(gt − µt)kt
,

c4 = gc − µc

gc
kc, c5 = gt − µt

gt
kt ,

c6 =
3
(

(gc − µc)kc + gcκc
) (

gtκt
)

µ
(

(gc − µc)kc + gcκc
) (

gtκt
)

+ βc2gt(gc − µc)kc
,

c7 =
3
(

gcκc
) (

(gt − µt)kt + gtκt
)

µ
(

gcκc
) (

(gt − µt)kt + gtκt
)

+ βt2gc(gt − µt)kt
.

It is observed that the disease free equilibria, X1,X2,X3,

are always unstable due to the condition, gc ≥ µc, that is requires

for their existence.

The Jacobian of the full system is

The dynamical system (Equation 1) is locally asymptotically

stable if all nine of its eigenvalues have negative real parts. Five

of the eigenvalues for the Jacobian, J, are λ1 = −µ, λ2 = −(µ+
ρc), λ3 = −(µ+ρt), λ4 = −(µ+ρct) and λ5 = −(µ+δct+ǫct).

The other four eigenvalues for J are the eigenvalues from the

sub-matrix

J̄ =













βc1 − qc 0
3βc2
µκc

0

0 βt1 − qt 0
3βt2
µκt

αc 0 gc − µc 0

0 αt 0 gt − µt













.

The characteristic equation for matrix J̄ is (λ2 + ν1λ +
ν2)(λ

2 + ν3λ + ν4), where

ν1 = −
(

(gc − µc)+ (βc1 − qc)
)

,

ν2 = (βc1 − qc)(gc − µc) (1−RC) ,

ν3 = −
(

(gt − µt)+ (βt1 − qt)
)

,

ν4 = (βt1 − qt)(gt − µt) (1−RT) ,

and

RC = αcβc23

κcµµcqc(1−Rc
h
)(1−Rc

b
)
,

RT = αtβt23

κtµµtqt(1−Rt
h
)(1−Rt

b
)
,

Rc
h = βc1

qc
Rc

b = gc

µc
, Rt

h = βt1

qt
Rt

b = gt

µt
.

The constants Rc
b
and Rc

h
are the bacterial regeneration

threshold and the human-to-human sub reproduction number,

respectively, for the cholera only sub-model. The constants Rt
b

and Rt
h
are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the typhoid

only sub-model. The constants RC and RT are the so-called

basic reproduction numbers for the cholera only sub-model and

the typhoid only sub-model, respectively. Clearly, Rc
h
,Rc

b
< 1

orRc
h
,Rc

b
> 1 if and only ifRC > 0; Similarly,Rt

h
,Rt

b
< 1 or

Rt
h
,Rt

b
> 1 if and only ifRT > 0.
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TABLE 1 Parameter values used for numerical simulation.

Par. Range Point value Source Par. Range Point value Source

βc1 1 Assumed gt 0.014 [21]

βt1 1 [7] αc 10 Assumed

βc2 (0.1—1) 1.97× 10−11 [11–14] αt 10 [21]

βt2 1.97× 10−11 [15] µ (0.017—0.123) 0.02 [14, 22, 23]

βc3 0.5 Assumed µt 0.0345 [21]

βt3 1 Assumed 3 (100—467) 449.32 [24]

βc4 10−1 Assumed µc 0.0345 Assumed

βt4 10−1 Assumed ǫc (0.07—0.245) 0.07 [14, 16, 19, 25]

kc (106—109) 5× 106 [11] ǫt 0.1 [26, 27]

kt 5× 106 Assumed ǫct 0.1 Assumed

δc 6.58× 10−1 [14, 16, 17] κc 0.62 Assumed

δt 0.6 [15] κt 0.62 Assumed

ρc 8.12× 10−3 [18, 19] θc 0.8 Assumed

ρt 1.3× 10−3 [20] θt 0.8 Assumed

ρct 1.3× 10−3 Assumed ηc 7× 10−4 Assumed

gc 0.014 Assumed ηc 7× 10−2 Assumed

We note that

ν2 >(βc1 − qc)(gc − µc) (1−max {RC ,RT}) ,
ν4 >(βt1 − qt)(gt − µt) (1−max {RC ,RT}) .

Thus

R0 = max {RC ,RT} .

The constant R0 is the basic reproduction number for

the systems (Equation 1). It follows from the Routh Hurwitz

criterion that the four eigenvalues of J̄ have negative real parts

if ν1, ν2, ν3, ν4 > 0. It is easy to see that ν1, ν2, ν3, ν4 > 0 if

Rt
h

< 1,Rt
b

< 1, Rt
h

< 1,Rt
b

< 1 and R0 < 1. Hence, a

positive basic reproduction number for system (Equation 1) that

is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

2.3.3. Impact analysis

In this section, we show how cholera affects typhoid, and

through symmetry, we show how typhoid affects cholera.

The reproduction numbers for cholera and typhoid are

RC = αcβc23

κcµµcqc(1−Rc
h
)(1−Rc

b
)
,

RT = αtβt23

κtµµtqt(1−Rt
h
)(1−Rt

b
)
, (18)

respectively. These two reproduction numbers are dependent on

each other. The constant, 3/µ, allows for the expression of one

reproduction number in terms of the other. From the second

equation above, Equation (18), isolating, 3/µ, yields

RC = RT

αcβc2κtµtqt(1−Rt
h
)(1−Rt

b
)

αtβt2κcµcqc(1−Rc
h
)(1−Rc

b
)
. (19)

DifferentiatingRC with respect toRT gives

∂RC

∂RT
=

αcβc2κtµtqt(1−Rt
h
)(1−Rt

b
)

αtβt2κcµcqc(1−Rc
h
)(1−Rc

b
)
. (20)

We conclude that an increase in cholera cases may be

associated with an increase in typhoid cases, and an increase

in typhoid cases may be associated with an increase in cholera

cases. This conclusion is subject to the following conditions:

firstly, the the bacterial regeneration threshold for both cholera

and typhoid must be less than unity; secondly, the human-to-

human sub reproduction number for both cholera and typhoid

must also be less than unity. This result proves the symbiotic

nature of the relationship between the typhoid disease and the

Cholera disease.

3. Numerical simulations

In this section, we give a brief outline of the numerical results

obtained in the investigation. Table 1 shows the parameters of

the cholera typhoid co-infection model (Equation 1). The basic

reproduction number,R0, obtained from the Table 1 is 1.4. The

initial conditions used to produce the figures in this section were:

S(0) = 99980, Ic(0) = 20, It(0) = 20, Ict(0) = 20, Rc(0) =
0, Rt(0) = 0, Rct(0) = 0, Bc(0) = 40000, Bt(0) = 40000. Note
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FIGURE 2

The correlation between the co-infected class and each of the model’s parameter are shown in this bar graph (PRCC). (A) Shows the PRCC

values for {3,βc1 ,βt1 ,βc2 ,βt2 , κc, κt,µ}. (B) Shows the PRCC values for {ρc, ρt, ρct, δc, δt, ǫc, ǫt, ǫct}. (C) Shows the PRCC values for

{gc,gt, kc, kt,αc,αt,µc,µt}. (D) Shows the PRCC values for {βt3 , βt4 , βc3 , βc4 , θc, θt, ηc, ηt}.

that all figures in this section are presented in the logarithmic

scale since the range of some of the plots spanned several orders

of magnitude.

Coupled with the parameters from Table 1, the sensitivity

indices of the variables above are shown on Figure 2. Latin

Hypercube sampling was utilized to generate the plot above

(Figure 2). Thismethod returns the correlation between the state

variable Ict and each of the model parameters, and it also returns

the ranks of all these correlations (PRCC). The simulation was

carried out over 1,000 runs. A parameter with a negative PRCC

value means that parameter is negatively correlated with Ict ,

whilst a parameter with a positive PRCC value represents a

positive correlation between that parameter and Ict . Relative to

the current model parameters, we note that the coinfection class

is most sensitive to changes to the person-to-person typhoid

transmission rate, βt1 , and the correlation is positive between

this parameter and the state variable. The typhoid induced death

rate is that second most sensitive parameter to the coinfection

class, and it is negatively correlated to the coinfection class. Due

to the large number of parameters in model 1, we have opted to

split the PRCC values into 4 equal sets, see Figure 2.

The contour map of R0 as a function of the typhoid

recovery rate, ǫt , and the cholera recovery rate, ǫc is shown

in Figure 3. Using the parameters from Table 1, the base case
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FIGURE 3

The contour map of the basic reproduction number, R0, as a

function of the typhoid recovery rate, ǫt, and the cholera

recovery rate, ǫc.

as well as the contour levels are also shown in Figure 3. The

basic reproduction number R0 attains its global minimum if

both the typhoid and cholera recovery rate are maximized. It

is be observed that, locally, a reduction in the reproduction

number,R0, —moving the base case to a lower contour level—is

only achieved by increasing the cholera recovery rate. Since the

reproduction number,R0, is the maximum of the reproduction

numbers of the individual diseases, it follows that a reduction

in the reproduction number, R0, means a reduction in the

reproduction numbers of each of the diseases. Hence, locally,

an increase in the cholera recovery rate will not only reduce the

cholera reproduction number,Rc, but it has the added benefit of

indirectly reducing the reproduction number for typhoid,Rt , as

well. It is also observed that increasing the typhoid recovery rate

exclusively will have no immediate benefits locally. This finding

is consistent with the previous findings of an optimal treatment

plan being centered around the recovery rate of cholera.

We show the trajectories of the three infectious classes of

model (Equation 1). An initial surge in infections followed

closely by an immediate recovery is shown in Figure 4. The

phenomenon of waning immunity results in the smaller second

wave of infections. The co-infected class is the only exception

to this observation. We see the co-infected class reach a local

minimum before the first surge in cholera only or typhoid only

infections is reached. A possible reason for this is that, unlike the

cholera and typhoid classes, the co-infected class does not recruit

directly from the susceptible class. This is due to the fact that the

cholera disease has a shorter incubation period than the typhoid

disease. The incubation periods are 1.4 days for cholera [2] and

19 days for typhoid [3]. What is then observed in the co-infected

class is a case of people leaving the class either through death or

FIGURE 4

The trajectories of the infectious classes.

recovery coupled with the delayed recruitment into the class. All

the diseases reach stability after the second waves of infection.

In order to understand how the diseases interact with each

other, we vary the different recovery rates and observe how the

prevalence of each of the infections change. In Figures 5A,B

show the impact of varying the recovery rate of the co-infected

on the cholera and typhoid prevalence, whilst (Figures 5C,D)

show the impact of varying the recovery rates of cholera

and typhoid on the prevalence of the co-infected individuals.

Figure 5C shows a significant reduction in the co-infected class’

prevalence when the cholera recovery rate is increased, whilst

plots (Figure 5D) shows that this reduction is negligible when

the typhoid recovery rate was increased. Figures 5A,B show

that an increase in the co-infected class’ recovery rate reduces

the typhoid prevalence more than the cholera prevalence.

The net effect is that an increased cholera recovery rate may

be associated with a decreased prevalence of the co-infected

individuals and a higher co-infected recovery rate. This in turn,

produces a reduced typhoid prevalence. Given the currentmodel

parameters, this finding suggests that an optimal treatment plan

for the two infections should primarily focus on increasing the

cholera recovery rate as opposed to the typhoid recovery rate.

This also underscores the point made earlier about the symbiotic

nature of the two diseases.

4. Discussion and conclusion

In this article, we formulated and analyzed a theoretical

model for the transmission dynamics of a cholera typhoid co-

infection model. Through numerical simulations, we were able

to verify a number of the results obtained analytically.

The birth and death rates of the bacteria are central

to proving the boundedness and positivity of all three
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FIGURE 5

Plots (A,B) show the cholera and typhoid prevalence, respectively, as the co-infection recovery rate, ǫct, runs through {0.1, 0.6, 1.1, 1.6}. Plots
(C,D) show the prevalence of the co-infected as the cholera and typhoid recovery rates are varied through the sets {0.07, 0.075, 0.08, 0.085} and
{0.1, 0.2, 0.3, 0.4}, respectively.

models—cholera only sub-model, typhoid only sub-model,

and the full cholera typhoid co-infection model. For the

cholera-only model, if the birth rate of the Vibrio Cholerae

bacteria exceeds its death rate, then the cholera only model

has non-negative and bounded trajectories. For the typhoid

only model, if the birth rate of the Salmonella Typhi

bacteria exceeds its death rate, then the typhoid only

model has non-negative and bounded trajectories. For the

full cholera typhoid co-infection model, if the birth rates

of the Vibrio Cholerae bacteria and the Salmonella Typhi

bacteria exceed their death rates, simultaneously, then the

cholera-typhoid co-infection model has non-negative and

bounded trajectories.

In analyzing the equilibria of the co-infection models,

several key sights were discovered. We showed the existence of

the disease free equilibria, by finding them, for all three models.

Sufficient conditions for the existence of the endemic equilibria

for the cholera only sub-model and the typhoid only sub-model

were documented. We showed that if the reproduction number

is less than one for the all the models, then the disease free

equilibria are locally asymptotically stable, otherwise they are

unstable. Global stability could not be guaranteed, both at the
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disease free equilibria and the endemic equilibria, in any of

the models. Sensitivity analysis revealed the parameters in the

model were at the heart of the spread of the cholera typhoid

co-infection. The prevalence of cholera is decreased whenever

ηt , βt3 , βt4 are increased and/or βc1 , βc2 , ǫct , ηc and θc are

decreased. The prevalence of typhoid is decreased whenever ηc,

βc3 , βc4 are increased and/or βt1 , βt2 , ǫct , ηt and θt are decreased.

From the impact analysis section, we found that an increase

in cholera cases may be associated with an increased risk

of typhoid and that an increase in typhoid cases may be

associated with an increased risk of cholera. This result proves

the symbiotic nature of the relationship between the typhoid

disease and the cholera disease.

The findings in this investigation come with some

limitations. The most glaring of all is the lack of data to fit

the model to. Our model also fails to take into account the

highly seasonal nature of each of the diseases. For the two

infections, fear has a significant impact on the transmission

dynamics. Future work should also be able to account for the

effects of fear in the transmission dynamics of both infections.

Notwithstanding these limitations, we believe that the findings

of this investigation can still be useful to policy makers in

containing an outbreak of these two diseases.
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Double sampling (DS) control charts are widely regarded as an e�ective

process monitoring tool owing to their remarkable properties, such as the

ability to detect small and moderate process shifts e�ciently with the

reduced sample size. Since the shape of the run length distribution is highly

right-skewed for the process small shift size and becomes almost symmetric

when the process shift size is large, the use of median run length (MRL) as a

performance measure is therefore more representative. Existing works on the

DS np chart construction were performed by taking an approach that the shift

size of the process fraction nonconforming is assumed to be known. However,

the shift size of the fraction nonconforming is usually unknown by the quality

practitioners in practice. Herein, to address this issue, the expectedmedian run

length (EMRL) has been suggested as a performancemeasure for the unknown

shift size. This paper suggests an optimal design procedure for the DS np

chart based on the EMRL criterion. An example is provided to illustrate the

construction of the EMRL-based DS np chart. The DS np chart is compared

with a competing chart based on the EMRL criterion. Findings obtained reveal

that when the shift size is unknown, the EMRL is an alternative performance

measure for the DS np chart, with greater sensitivity observed for the DS np

chart in contrast to the standard np chart for detecting a wide range of shifts.

KEYWORDS

median run length, unknown shift size, fraction nonconforming, numerical

integration, standard np chart

Introduction

Control chart is one of the most useful tools in Statistical Process Control since

control charts play a key role in detecting the assignable cause(s) [1]. Other effective way

to mitigate the incidence of false alarm rate and to increase the control chart sensitivity

includes the fuzzy logic scheme [2–6], which combines the probability and fuzzy set

theories for enabling inference of process state based on fuzzified sensitivity criteria.

When the quality characteristics can only be classified into two possible outcomes, for

instance, “Yes or No,” “Good or Bad,” “Conforming or Nonconforming,” and “Defective

or Non-defective,” it is not possible to monitor the process using the variable control
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charts, such as the X̄, s, and R charts. In such a scenario, attribute

control charts will be the right choice.

The standard np chart is one of the attribute control charts

that has been widely used for process monitoring. Compared to

the p chart, the standard np chart is also easier to understand by

managers who are lack of statistical knowledge and new to the

quality control system. This provides more persuasive evidence

of quality issues to management [7]. However, the standard

np chart is well known to be slow in detecting moderate and

small process fraction nonconforming (p) shifts. Consequently,

considerable attentions have been devoted to develop np chart

with various approaches for enhancing the sensitivity of the

standard np chart in the literature, such as the optimal design

for the cumulative sum (CUSUM) np chart by Gan [8] and

the modified exponentially weighted moving average (EWMA)

np chart by Gan [9]. Adaptive technique to develop np control

chart has also been studied. Case in point, Epprecht and Costa

[10] investigated the np properties for sample size that fluctuates

between small and large sizes, while Luo and Wu [11] proposed

optimal designs of variable sample size and variable sampling

intervals np charts under steady-state mode.

Croasdale [12] was the first to introduce the DS scheme,

bringing the concept of DS process from the acceptance

sampling field and applying the technique to the X̄ chart.

Following Croasdale [12], Daudin [13] demonstrated that by

employing the sample size of n1 at stage 1 and combining two

samples of size n1 and n2 at stage 2 can improve the performance

of the X̄ chart and this reduces the number of items to be

inspected, resulting in a cost-saving benefit in themanufacturing

process. As a result, the DS scheme developed after 1992, such as

He and Grigoryan [14], Costa and Claro [15], Torng and Lee

[16], Khoo et al. [17], and De Araujo Rodrigues et al. [18], to

name a few, were based on themethod proposed by Daudin [13].

De Araujo Rodrigues et al. [18] were the first to introduce the DS

np chart. Chong et al. [19], Joekes et al. [20], Lee and Khoo [21],

and Tuh et al. [22] have since focused their studies around the

proposed DS np chart.

The performance of the control charts is usually evaluated

by the average run length (ARL). ARL is defined as the average

number of samples to be plotted on the control chart before the

out-of-control signal is observed. However, many researchers

criticized the sole dependence of the ARL as the performance

measure of control charts, for example, see Teoh et al. [23], Khoo

et al. [24], Lee and Khoo [25], Smajdorová and Noskievičová

[26]. In addition, as pointed out by Graham et al. [27], the ARL

as a performance measure has many drawbacks. It is noted that

the run length (RL) distribution is changing from highly right-

skewed when process shift size is small to almost symmetric

when process shift size is large. Consequently, utilizing the ARL

as a performance measure may neglect some vital statistical

properties of control charts. Chakraborti [28] recommended to

investigate the percentiles of the run length distribution such as

5, 25, 50 (median), 75, and 95th percentiles to have a better vision

and evaluation of the RL distribution. Utilizing the median run

length (MRL) that is the 50th percentile of the RL has some

additional benefits in designing control charts [29–31]. This is

due to the fact that the MRL is less impacted by the skewness

of the RL distribution. Thus, the MRL provides a more accurate

measure of the central tendency compared to the ARL [32].

Existing work on the DS np control chart based on MRL

by Tuh et al. [22] assumes the shift size is known. However,

the shift size of the process fraction nonconforming is usually

unknown by quality practitioners. The performance of control

charts may be negatively impacted if the determined shift size

differs from the actual value. To overcome this issue, it is crucial

to consider the expected median run length (EMRL) as an

alternative performance measure, where only a range of process

shift sizes is required. You et al. [33], Teoh et al. [34], Tang

et al. [35], Chong et al. [36], and Yeong et al. [37], to name

a few, evaluated the performance of control charts when the

process shift size is unknown. Motivated by these studies, we

suggest the optimal design of the DS np chart based on EMRL

in this paper.

The paper is structured as follows: Section Theories

and formulations begins with a brief introduction of the

standard np and DS np charts, followed by a discussion of

the RL distribution properties of the DS np chart. Section

Computational methods and results presents the optimization

design of the EMRL-based DS np chart, performance of the

DS np chart, and comparison to that of the standard np

chart. The operability of the DS np chart is also furnished

through an illustrative example incorporating event within a

data processing department. Finally, the conclusion is given in

section Conclusions.

Theories and formulations

The standard np chart

The goal of the standard np chart is to detect the

assignable causes for increasing shift in the process fraction

nonconforming. As a result, the standard np chart is designed

without a lower control limit. According to Lee and Khoo [29],

the probability that d < UCL is calculated as follows:

AS = P
(

d ≤ ⌊UCL⌋
)

=
⌊UCL⌋
∑

d=0

n!

d!
(

n− d
)

!
pd

(

1− p
)n−d

(1)

where p = p0 when γ = 1, and p = p1 when γ 6= 1. The d

and UCL represent the number of nonconforming items found

in a sample of size n and upper control limit of the standard np

chart, respectively.
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FIGURE 1

Regions at stages 1 and 2 of the DS schemes.

The DS np chart

In this section, we give a brief review of the DS np chart,

which was first introduced by De Araujo Rodrigues [18]. To

achieve the desired statistical performance, the DS np chart is

designed with five charting parameters. We define the set of

charting parameters as n1, n2, WL, CL1, and CL2, where n1, n2,

WL, CL1, and CL2 denote the size of the first sample, the size

of second sample, the stage 1 warning limit, the stage 1 control

limit, and the stage 2 control limit, respectively. The three non-

integer control limits are set asWL=Ac1 + 0.5, CL1 = Re – 0.5,

and CL2 = Ac2 + 0.5 to avoid doubt by quality practitioners

when the number of nonconforming items in a sample falls

within or outside the control limits. In these expressions, Ac1,

Re1, and Ac2 are the acceptance number in the first sample, the

rejection number in the first sample, and the acceptance number

in the stage 2, respectively. The operation of the DS np chart

is elaborated in the following steps. The graphical summary is

shown in Figure 1.

Step 1. Determine the limits that are WL, CL1, and CL2.

Step 2. Take the first sample of size n1 from the process and

check the number of nonconforming items (d1).

Step 3. At the stage 1 of the DS scheme,

a) if d1 < WL, the process is considered as in-control and

return to Step 2.

b) if d1 > CL1, the process is considered as out-of-control.

For the purpose of identifying and eliminating the

assignable cause(s), corrective measure is performed.

Repeat Step 2.

c) if WL < d1 < CL1, take a second sample with size n2.

Count the number of nonconforming items (d2) for the

second sample. Then, move to the next step, which is

stage 2 of the DS scheme.

Step 4. If (d1 + d2) < CL2, the process is considered to be

in-control and return to Step 2. Else, the process is deemed

to be out-of-control. To locate and remove the assignable

cause(s), corrective action is once again performed. Repeat

Step 2.

The run length properties of the DS np

chart

In general, RL denotes the number of sample points plotted

on the DS np chart before the first signal is observed. The

probability mass function (pmf) fRL (ζ ) and the cumulative

distribution function (cdf) FRL (ζ ) of the RL distribution for a

control chart are

fRL (ζ ) = (1− A)Aζ−1 (2)

and

FRL (ζ ) = P (RL ≤ ζ ) = 1− Aζ , (3)

respectively [38], where ζ ∈ {1, 2, 3, 4, . . .} and A is calculated

by Equations (5) and (6).
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As suggested by Chakraborti [28], the smallest integer of the

percentile run length, ζα , can be obtained from

ζα ≥ ln (1− α)

lnA
(4)

facilitates the computation for the 100αth (0< α < 1) percentile

of the RL.

The probability that the process is in-control is given by

A = A1 + A2. Here, A1 denotes the probability that d1 < WL

at the stage 1 of the DS scheme, while A2 is the probability that

WL < d1 < CL1 at the stage 1 of the DS scheme and (d1 + d2)

< CL2 at the stage 2 of the DS scheme, where

A1 = P
(

d1 ≤ ⌊WL⌋
)

=
⌊WL⌋
∑

d1=0

n1!

d1!
(

n1 − d1
)

!
pd1

(

1− p
)n1−d1

(5)

and

A2 = P
(

⌊WL⌋ < d1 < ⌈CL1⌉
)

∩ P
(

d1 + d2 ≤ ⌊CL2⌋
)

=
⌈CL1⌉−1

∑

d1=⌊WL⌋+1





n1!

d1!
(

n1 − d1
)

!
pd1

(

1− p
)n1−d1





⌊CL2⌋−d1
∑

d2=0

n2!

d2!
(

n2 − d2
)

!
pd2

(

1− p
)n2−d2







 , (6)

where ⌊ · ⌋ denotes the round down to the nearest integer and

⌈ · ⌉ represents the round up to the nearest integer.

The efficiency of the DS np chart is determined by how fast

the chart can detect an increasing shift in the process fraction

nonconforming p with the shift size γ = p1
p0
, where p1 > p0.

Note that p= p0 and p= p1 for the in-control (γ = 1) and out-

of-control (γ > 1) states, respectively. According to De Araujo

Rodrigues et al. [18], the ARL and the average sample size (ASS)

can be computed as

ARL = 1

1− A
and (7)

ASS = n1 + n2Ps , (8)

respectively, where Ps = P
(

⌊WL⌋ < d1 < ⌈CL1⌉
)

. The in-

control ARL (ARL0) and ASS (ASS0) are calculated when p =
p0, while the out-of-control ARL (ARL1) and ASS (ASS1) can be

obtained when p= p1.

The MRL is the RL with a cumulative probability of at least

50% of the time. The MRL can be computed using Equation (4)

by putting α = 0.5, where Equation (4) can be rewritten as

ζ0.5 ≥ ln (0.5)

lnA
, (9)

where ζ0.5 = MRL. Note that MRL = MRL0 is the in-control

MRL when γ = 1, whereas MRL = MRL1 is the out-of-control

MRL when γ > 1.

The computation of the percentiles of the RL requires

the shift size to be known in advance. However, in

practical, it is usually tough for practitioners to quantify

the magnitude of process shift due to insufficient

historical data. Aside from that, the shift size varies

according to various undetermined or random events

[39]. Thus, the percentile of the RL can be replaced by

the expected percentile of the RL (E (ζα)). Herein, a

specific value for γ is not required and can be determined

as follows:

E (ζα) =
∫ γmax

γmin

fγ (γ )ζα (γ ) dγ. (10)

Hence, the expected median run length, EMRL, that is

E (ζ0.5) can be computed as

EMRL = E (ζ0.5) =
∫ γmax

γmin

fγ (γ )MRL (γ ) dγ. (11)

In this paper, the EMRL in Equation (11) is evaluated

by using a numerical integration over the probability density

function fγ (γ ) for a shift size interval of γmin (the lower

limit of the integral) to γmax (the upper limit of the

integral). The function fγ (γ ) is assumed to have a continuous

uniform distribution over the interval (γmin, γmax) [39], with

probability density function of fγ (γ ) = 1
(γmax−γmin)

, where

γmax − γmin denotes the interval length. To incorporate exact

shift sizes, γ ∈ {1.5, 2.0, 3.0}, that were considered in Tuh

et al. [22], two intervals of the shift size, therefore, are set

in this paper: (i) (γmin , γmax] = (1.1 , 2.0] and (ii)

(γmin , γmax] = (2.0 , 3.0]. For example, the interval

(γmin , γmax] = (1.1 , 2.0] and (γmin , γmax] =
(2.0 , 3.0] include γ = {1.5, 2.0} and γ = {3.0}, respectively.
Note that MRL(γ ) denotes the MRL1 at γ . The Gauss Legendre

Quadrature is employed to estimate approximately the definite

integral in Equation (11).

This paper also evaluates the expected average run

length (EARL) and the expected average sample size (EASS)

values through

EARL =
∫ γmax

γmin

fγ (γ )ARL (γ ) dγ (12)

and

EASS =
∫ γmax

γmin

fγ (γ )ASS (γ ) dγ, (13)

respectively.
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Computational methods and results

Optimal design of the EMRL-based DS np

chart

Tuh et al. [22] investigated the performance of the DS np

chart using the MRL as the performance measure. Interested

readers may refer to Tuh et al. [22] for the detailed optimization

procedure for the DS np chart based on the MRL.

Nevertheless, the actual process shift size is usually

unknown. Thus, the DS np chart can be designed for a given

range of shift sizes (γmin, γmax], which is an alternativemethod.

The optimization design of the DS np chart by minimizing the

out-of-control expected median run length (EMRL1) is given as

minn1,n2,WL,CL1,CL2EMRL1 (14)

subject to:

EMRL0 ≥ MRL0min and (15)

EASS0 = n. (16)

MRL0min [in Constraint (15)] and n [in Constraint (16)]

are denoted as the predetermined in-control median run length

and predetermined in-control average sample size, respectively,

where n1 < n < n2, with both n1 and n2 are integers. Note

that EMRL0 = MRL0 and EASS0 = ASS0 are considered in

this paper.

The procedure for searching optimal (n1, n2, WL, CL1, CL2)

combination, based on the optimizationmodel in (14)–(16), and

the DS np chart based on EMRL is outlined as follows:

Step 1: Specify the desired values of p0, n, MRL0min, γmin,

and γmax. Here, n is the average sample size in each

sampling when the process is in a state of control; n is also

the fixed sample size for the standard np chart.

Step 2: Initialize EMRL1min with a very large value, say 10
5.

EMRL1min is used to keep track of the lowest EMRL1 value.

Step 3: Begin with n1 = 1.

Step 4: With the current n1 value, determine the

combination of (n1, n2, WL, CL1) for a specified n when

γ = 1, such that the Constraint (16) is fulfilled. The value

of n2 is computed through the rearrangement of Equation

(8), that is, n2 = (n−n1)�P(⌊WL⌋<d1<⌈CL1⌉) , and is rounded up
to the nearest integer, where 0 < WL < CL1.

Step 5: Then determine CL2 based on the Equation (9)

and Constraint (15), in which the computed EMRL equals

to EMRL0 when γ = 1, where CL2 > CL1. The values

of WL, CL1, and CL2 are determined based on operating

procedure discussed in Section 2.2. In this step, the possible

(n1, n2, WL, CL1, CL2) combination is identified.

Step 6: Once the possible (n1, n2, WL, CL1, CL2)

combination has been determined, EMRL1 will be

computed for p = p1, by means of Equation (11). If the

calculated EMRL1 is less than the current EMRL1min, the

EMRL1min value will be replaced by the newly computed

EMRL1. The current (n1, n2, WL, CL1, CL2) combination

is temporarily stored as the possible combination before

any new lower EMRL1 value is found. If the (n1, n2, WL,

CL1, CL2) combination obtained in the following search

yields similar EMRL1min, the combination will be saved

together as a possible combination. Otherwise, the (n1, n2,

WL, CL1, CL2) combination will not be considered if it

results in larger EMRL1 value.

Step 7: Once the search with n1 = 1 is complete, increase

n1 by one. Repeat Steps 4–6, for the remaining n1 = 2,

3. . . , (n − 1), to search for the possible (n1, n2, WL, CL1,

CL2) combinations that satisfy the Constraints (15)–(16)

and having the smallest value of EMRL1.

Step 8: If more than one combinations of (n1, n2,

WL, CL1, CL2) produce a similar lowest EMRL1 value,

the combination that yields the smallest out-of-control

expected average sample size (EASS1) value is selected as

the optimal combination.

An optimization MATLAB program is developed to execute

the above procedure to search for the optimal (n1, n2, WL, CL1,

CL2) combination for the EMRL-based DS np chart.

In this paper, based on the Gauss Legendre Quadrature rule,

the weights (wi) and nodes (xi) values are obtainable through

the MATLAB coding written by Winckel [40]. These values

are considered for the computation of E (ζα)1, EARL1, and

EASS1. According to Hale and Townsend [41], the fundamental

accuracy can be achieved for any number of ordinates (N)

that exceeds 100. Therefore, N = 200 is considered for all

these computations.

Comparative studies

In this section, the EMRL1 performance of the standard

np chart with unknown shift size is compared with that

of the DS np chart. The computational procedure for the

standard np chart based on the EMRL1 is to find the minimal

value of UCL given the sample size n, by attaining the

constraint EMRL0 ≥ MRL0min. The E (ζ0.5)0 (= MRL0) and

EARL0 (= ARL0) of the standard np chart are computed using

Equations (9) and (7), respectively, by replacing A with AS

from Equation (1). The optimal charting parameters of the

DS np chart are computed using the optimization procedure

described in Section Optimal design of the EMRL-based DS

np chart. The different combinations of input parameters as

follows are considered: p0 ∈ {0.005, 0.01, 0.02}, MRL0min ∈
{200, 370.4}, n ∈ {25, 50, 100, 200, 400, 800} , and two

intervals of process shift sizes: (1) ( γmin, γmax] = (1.1, 2.0]

and (2) (γmin , γmax] = (2.0 , 3.0]. We only provide
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TABLE 1 Charting parameters with corresponding (E(ζ0.05)0, EMRL0, E(ζ0.95)0) and EARL0 for standard np and optimal DS np charts, when MRL0min = 200.

Standard np chart DS np chart

Expected Percentile RL Expected Percentile RL

γmin γmax p0 n UCL (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0 (n1, n2, WL, CL1, CL2) (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0

1.1 2.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (8, 2,340, 0.5, 2.5, 17.5) (16, 205, 882) 294.82

200 5.5 (91, 1,229, 5,311) 1773.23 (57, 4,298, 1.5, 4.5, 29.5) (15, 200, 861) 287.76

400 7.5 (49, 658, 2,841) 948.59 (151, 6,111, 2.5, 6.5, 41.5) (15, 200, 864) 288.73

800 10.5 (19, 251, 1,084) 362.20 (293, 8,333, 3.5, 8.5, 56.5) (15, 200, 863) 288.52

0.01 50 3.5 (33, 434, 1,876) 626.50 (24, 1,090, 1.5, 4.5, 16.5) (15, 203, 876) 292.60

100 4.5 (15, 202, 872) 291.35 (33, 1,557, 1.5, 4.5, 23.5) (16, 213, 920) 307.44

200 7.5 (51, 685, 2,958) 987.60 (80, 2,578, 2.5, 6.5, 36.5) (15, 200, 864) 288.80

400 10.5 (20, 258, 1,116) 372.71 (144, 4,459, 3.5, 9.5, 59.5) (15, 200, 862) 287.94

0.02 25 3.5 (36, 480, 2,071) 691.62 (2, 580, 0.5, 2.5, 17.5) (17, 221, 952) 318.03

50 4.5 (16, 216, 932) 311.55 (17, 740, 1.5, 4.5, 22.5) (15, 201, 868) 289.95

100 7.5 (56, 744, 3,214) 1,073.03 (39, 1,427, 2.5, 5.5, 39.5) (16, 206, 891) 297.69

200 10.5 (21, 274, 1,183) 395.16 (101, 1,882, 4.5, 9.5, 52.5) (15, 201, 866) 289.25

2.0 3.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (23, 708, 0.5, 2.5, 8.5) (15, 200, 862) 288.00

200 5.5 (91, 1,229, 5,311) 1,773.23 (99, 1,143, 1.5, 5.5, 12.5) (16, 206, 888) 296.84

400 7.5 (49, 658, 2,841) 948.59 (233, 1,506, 2.5, 7.5, 16.5) (15, 202, 870) 290.61

800 10.5 (19, 251, 1,084) 362.20 (528, 2,135, 4.5, 9.5, 23.5) (16, 213, 920) 307.47

0.01 50 3.5 (33, 434, 1,876) 626.50 (34, 352, 1.5, 4.5, 8.5) (15, 202, 873) 291.78

100 4.5 (15, 202, 872) 291.35 (47, 658, 1.5, 5.5, 13.5) (16, 206, 887) 296.29

200 7.5 (51, 685, 2,958) 987.60 (116, 756, 2.5, 7.5, 16.5) (15, 200, 864) 288.60

400 10.5 (20, 258, 1,116) 372.71 (268, 994, 4.5, 9.5, 22.5) (15, 200, 865) 288.96

0.02 25 3.5 (36, 480, 2,071) 691.62 (7, 136, 0.5, 2.5, 7.5) (17, 218, 940) 314.11

50 4.5 (16, 216, 932) 311.55 (25, 282, 1.5, 4.5, 12.5) (17, 224, 967) 323.19

100 7.5 (56, 744, 3,214) 1,073.03 (60, 336, 2.5, 7.5, 15.5) (16, 208, 897) 299.89

200 10.5 (21, 274, 1,183) 395.16 (134, 500, 4.5, 9.5, 22.5) (15, 201, 868) 290.14
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TABLE 2 Charting parameters with corresponding and EARL0 for standard np and optimal DS np charts, when MRL0min = 370.4.

Standard np chart DS np chart

Expected Percentile RL Expected Percentile RL

γmin γmax p0 n UCL (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0 (n1, n2, WL, CL1, CL2) (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0

1.1 2.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (38, 3,985, 1.5, 3.5, 27.5) (30, 393, 1,697) 566.84

200 5.5 (91, 1,229, 5,311) 1,773.23 (59, 3,979, 1.5, 4.5, 29.5) (28, 375, 1,617) 540.25

400 7.5 (49, 658, 2,841) 948.59 (144, 7,069, 2.5, 7.5, 48.5) (28, 372, 1,606) 536.36

800 11.5 (59, 786, 3,396) 1,133.91 (374, 10,324, 4.5, 10.5, 69.5) (28, 372, 1,605) 536.07

0.01 50 3.5 (33, 434, 1,876) 626.50 (23, 1,230, 1.5, 3.5, 19.5) (30, 393, 1,696) 566.43

100 5.5 (96, 1,297, 5,603) 1,870.79 (27, 2,454, 1.5, 4.5, 34.5) (29, 385, 1,661) 554.77

200 7.5 (51, 685, 2,958) 987.60 (66, 4,670, 2.5, 6.5, 60.5) (29, 382, 1,650) 551.07

400 11.5 (61, 816, 3,526) 1,177.46 (189, 4,974, 4.5, 10.5, 67.5) (28, 375, 1,621) 541.40

0.02 25 3.5 (36, 480, 2,071) 691.62 (11, 719, 1.5, 3.5, 21.5) (28, 371, 1,602) 535.00

50 5.5 (108, 1,450, 6,263) 2,091.10 (13, 1,373, 1.5, 4.5, 37.5) (29, 383, 1,652) 551.81

100 7.5 (56, 744, 3,214) 1,073.03 (37, 1,679, 2.5, 8.5, 46.5) (28, 371, 1,600) 534.37

200 11.5 (66, 882, 3,810) 1,272.00 (93, 2,728, 4.5, 9.5, 72.5) (28, 373, 1,609) 537.32

2.0 3.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (58, 1,223, 1.5, 4.5, 12.5) (29, 389, 1,679) 560.71

200 5.5 (91, 1,229, 5,311) 1,773.23 (98, 1,175, 1.5, 5.5, 13.5) (28, 378, 1,631) 544.67

400 7.5 (49, 658, 2,841) 948.59 (143, 1,599, 1.5, 5.5, 17.5) (29, 381, 1,646) 549.64

800 11.5 (59, 786, 3,396) 1,133.91 (497, 2,850, 4.5, 11.5, 28.5) (28, 372, 1,608) 537.15

0.01 50 3.5 (33, 434, 1,876) 626.50 (32, 442, 1.5, 4.5, 10.5) (31, 416, 1,794) 599.25

100 5.5 (96, 1,297, 5,603) 1,870.79 (49, 590, 1.5, 5.5, 13.5) (28, 376, 1,623) 542.01

200 7.5 (51, 685, 2,958) 987.60 (116, 756, 2.5, 7.5, 17.5) (30, 399, 1,724) 575.89

400 11.5 (61, 816, 3,526) 1,177.46 (252, 1,340, 4.5, 10.5, 27.5) (28, 372, 1,605) 536.00

0.02 25 3.5 (36, 480, 2,071) 691.62 (16, 225, 1.5, 4.5, 10.5) (30, 399, 1,722) 575.27

50 5.5 (108, 1,450, 6,263) 2,091.10 (26, 253, 1.5, 4.5, 12.5) (29, 387, 1,671) 558.17

100 7.5 (56, 744, 3,214) 1,073.03 (58, 381, 2.5, 7.5, 17.5) (30, 395, 1,706) 569.92

200 11.5 (66, 882, 3,810) 1,272.00 (126, 675, 4.5, 12.5, 27.5) (28, 371, 1,602) 535.05
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the results for the combinations of n and p0 such that

np0 = {0.5, 1.0, 2.0, 4.0}. The and p0 combinations that

generate np0 = {0.5, 1.0, 2.0, 4.0} were also adopted by several

researchers [see [10], [29], and [19]] for clarity and unbiased

comparison between competing charts.

Performance of the standard np and DS np

charts based on EMRL

The charting parameter UCL for the standard np and the

optimal charting parameters (n1, n2, WL, CL1, CL2) of the

DS np chart based on the EMRL1 are listed in Tables 1, 2.

The corresponding values of E (ζ0.05)0, EMRL0, E (ζ0.95)0 , and

EARL0 are also provided in the tables. Note that E (ζ0.05)0 and

E (ζ0.95)0 denote the in-control 5th and 95th percentiles of the

RL, respectively. For example, Table 2 shows that when p0 =
0.01, n= 100 and ( γmin, γmax] = (1.1, 2.0], for the standard

np chart, while (n1, n2, WL, CL1, CL2) = (27, 2454, 1.5, 4.5,

34.5) for the optimal DS np chart. The DS np chart with these

charting parameters gives the smallest EMRL1 value, while the

EMRL0 is at least 370.4. Subsequently, the corresponding values

of (E (ζ0.05)0, EMRL0, E (ζ0.95)0, EARL0) for the standard np

and optimal DS np charts are computed as (96, 1,297, 5,603,

1,870.79) and (29, 385, 1,661, 554.77), respectively. The optimal

design makes the DS np chart easier to implement in practice.

Consider the case of a plastic component created via injection

molding, for which a rapid detection within the range of process

shift sizes ( γmin, γmax] = (1.1, 2.0] is required. Table 1

suggests (n1, n2, WL, CL1, CL2) = (24, 1,090, 1.5, 4.5, 16.5) as

the best charting parameter for detecting this range of shift sizes

if p0 = 0.01, n= 50, and MRL0min = 200.

In Table 3, the E (ζ0.05)1, EMRL1, E (ζ0.95)1 , and EARL1
values, for the out-of-control case, can be obtained using the

charting parameter UCL for the standard np and optimal

charting parameters (n1, n2, WL, CL1, CL2) of the DS np charts

(refer to Tables 1, 2). For instance, when p0 = 0.02, n = 50,

MRL0min = 200, and ( γmin, γmax] = (1.1, 2.0], Table 1

gives (n1, n2, WL, CL1, CL2) = (17, 740, 1.5, 4.5, 22.5) as the

optimal charting parameters for the DS np chart. With these

optimal charting parameters, (E (ζ0.05)1, EMRL1, E (ζ0.95)1,

EARL1)= (1.83, 18.50, 78.34, 26.49). The equations used for the

evaluation of E (ζ0.05)1, EMRL1, E (ζ0.95)1, and EARL1 values

can be found in Section The run length properties of the DS

np chart.

Numerical results in Tables 1, 2 clearly demonstrate that

the EMRL0 values are lower than EARL0, for both standard

np and optimal DS np charts for the in-control case (γ =
1). For instance, referring to Table 1, the DS np chart gives

EARL0 = 314.11 when p0 = 0.02, = 25, (γmin , γmax] =
(2.0 , 3.0], and MRL0min = 200. Practitioners may interpret

a false alarm happens by the 314th sample in half of the time.

In fact, this value is located in between 60 and 70th (= 378)

percentile of the RL distribution, and the false alarm actually

happens before 314th sample, that is by the 218th sample

(EMRL0 = 218), occurs in half of the time. On the contrary,

for the out-of-control case (see Table 3), when p0 = 0.02, n

= 100, (γmin , γmax] = (2.0 , 3.0], and MRL0min =
200, the DS np chart gives EARL1 = 2.06, while EMRL1 =
1.44, showing small difference between the EARL1 and EMRL1
values. This demonstrates that when the RL distribution is

highly right-skewed, the average is significantly larger than the

median. In contrast, the average is relatively closer to the median

in symmetric distribution. Consequently, we recommend the

EMRL over EARL as a performance measure which delivers

a clearer interpretation for the performance DS np chart. In

addition, based on the EMRL performance measure, Table 3

shows that the optimal DS np chart outperforms the standard

np chart for all shift sizes, (γmin, γmax], with the former giving

lower EMRL1 than the latter for identical p0, n, MRL0min, and

(γmin, γmax] combination.

Performance of the standard np and DS np

charts based on expected percentile of the RL
distribution

The percentiles of RL distribution can help to reveal more

information about the entire RL distribution, including the early

false alarm rates. In this paper, the E (ζ0.05) and E (ζ0.95) are also

analyzed to equip practitioners with a better view on the spread

of the entire RL distribution of the standard np and optimal DS

np charts.

The lower percentile, such as E (ζ0.05) evaluated in this

paper for the in-control case (γ = 1) , provides information

concerning early false alarm rates. Let us consider standard np

chart in Table 1, when p0 = 0.01, n = 50, MRL0min = 200, and

( γmin, γmax] = (1.1, 2.0], gives E (ζ0.05)0 = 33. This result

suggests a false alarm will occur by 33rd sample point in 5% of

the time. On the contrary, a false alarm will happen in half of

the time by the 434th sample
(

E (ζ0.5)0 = 434
)

, meaning that

sample 434 has a chance of 0.5 of detecting a false alarm, whereas

the EARL0 is indicated as 626.50.

On the other hand, the higher percentile of the RL

distribution, for example, E (ζ0.95)1, provides information about

the out-of-control condition which will be issued by the control

chart with a high possibility at a certain magnitude of the

shift. Based on DS np chart, as shown in Table 3, when p0 =
0.005, MRL0min = 370.4, n = 100, and ( γmin, γmax] =
(2.0, 3.0], this chart is anticipated to signal within the

first 20.83 samples with a probability of 0.95 (E (ζ0.95)1 =
20.83). In other words, practitioners can claim with 95%

confidence that an out-of-control signal will be discovered by

the 20.83rd sample.

Moreover, both the standard np and DS np charts, shown in

Tables 1, 2, clearly demonstrate that the in-control RL is subject

to significant variation. Expectedly, in Table 2, the in-control

extreme percentile of the DS np chart is 1,722 – 30 = 1,692 and
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TABLE 3 Performance of the DS np and standard np charts with MRL0min = 200 and 370.4.

MRL0min = 200 MRL0min = 370.4

Standard np chart DS np chart Standard np chart DS np chart

Expected percentile RL Expected percentile RL Expected percentile RL Expected percentile RL

γmin γmin p0 n (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1

1.1 2.0 0.005 100 (8.71, 111.50, 480.36) 160.69 (2.45, 27.62, 117.74) 39.65 (8.71, 111.50, 480.36) 160.69 (3.35, 38.73, 165.72) 55.66

200 (16.11, 211.50, 912.32) 304.86 (1.80, 18.69, 79.09) 26.73 (16.11, 211.50, 912.32) 304.86 (2.27, 24.92, 106.04) 35.74

400 (6.95, 87.11, 374.84) 125.46 (1.44, 12.42, 51.91) 17.67 (6.95, 87.11, 374.84) 125.46 (1.68, 15.88, 67.01) 22.71

800 (2.45, 26.60, 113.20) 38.12 (1.22, 7.82, 32.23) 11.10 (5.27, 65.39, 280.74) 94.06 (1.36, 9.85, 40.88) 14.00

0.01 50 (9.08, 116.26, 500.90) 167.54 (2.47, 27.91, 119.09) 40.08 (9.08, 116.26, 500.90) 167.54 (3.33, 39.35, 168.48) 56.57

100 (3.94, 46.33, 198.60) 66.63 (1.88, 19.12, 80.96) 27.36 (16.86, 221.47, 955.66) 319.34 (2.24, 24.84, 105.66) 35.61

200 (7.16, 89.97, 387.16) 129.58 (1.45, 12.33, 51.61) 17.58 (7.16, 89.97, 387.16) 129.58 (1.65, 16.13, 68.13) 23.07

400 (2.48, 27.09, 115.47) 38.89 (1.22, 7.81, 32.04) 11.05 (5.41, 67.17, 288.87) 96.75 (1.36, 9.86, 41.03) 14.04

0.02 25 (9.88, 126.99, 547.04) 182.93 (2.51, 28.45, 121.28) 40.82 (9.88, 126.99, 547.04) 182.93 (3.20, 37.50, 106.37) 53.86

50 (4.12, 48.91, 209.81) 70.38 (1.83, 18.50, 78.34) 26.49 (18.53, 244.00, 1052.93) 351.80 (2.23, 24.64, 105.00) 35.39

100 (7.60, 96.17, 413.94) 138.52 (1.46, 12.50, 52.26) 17.78 (7.60, 96.17, 413.94) 138.52 (1.68, 15.72, 66.41) 22.51

200 (2.57, 28.24, 120.35) 40.51 (1.24, 7.82, 32.28) 11.13 (5.70, 71.23, 306.20) 102.54 (1.34, 9.72, 40.41) 13.83

2.0 3.0 0.005 100 (1.96, 20.56, 87.20) 29.44 (1.00, 4.56, 18.15) 6.41 (1.96, 20.56, 87.20) 29.44 (1.00, 5.24, 20.83) 7.30

200 (1.88, 19.86, 84.05) 28.39 (1.00, 2.59, 9.54) 3.55 (1.88, 19.86, 84.05) 28.39 (1.00, 2.80, 10.48) 3.86

400 (1.00, 6.30, 25.64) 8.90 (1.00, 1.45, 5.08) 2.09 (1.00, 6.30, 25.64) 8.90 (1.00, 1.67, 5.86) 2.33

800 (1.00, 1.97, 7.04) 2.73 (1.00, 1.00, 2.74) 1.37 (1.00, 2.88, 10.73) 3.94 (1.00, 1.01, 2.91) 1.42

0.01 50 (2.01, 21.16, 89.81) 30.32 (1.00, 4.62, 18.41) 6.49 (2.01, 21.16, 89.81) 30.32 (1.00, 5.17, 20.79) 7.28

100 (1.00, 7.36, 30.15) 10.41 (1.00, 2.60, 9.66) 3.59 (1.93, 20.40, 86.51) 29.21 (1.00, 2.78, 10.38) 3.83

200 (1.01, 6.38, 25.95) 9.01 (1.00, 1.45, 5.03) 2.08 (1.01, 6.38, 25.95) 9.01 (1.00, 1.57, 5.45) 2.21

400 (1.00, 1.97, 7.05) 2.74 (1.00, 1.00, 2.71) 1.36 (1.00, 2.90, 10.78) 3.96 (1.00, 1.01, 2.86) 1.41

0.02 25 (2.13, 22.52, 95.71) 32.28 (1.00, 4.75, 18.92) 6.67 (2.13, 22.52, 95.71) 32.28 (1.00, 5.08, 20.37) 7.15

50 (1.01, 7.55, 31.03) 10.70 (1.00, 2.58, 9.48) 3.53 (2.02, 21.64, 91.88) 31.01 (1.00, 2.84, 10.58) 3.89

100 (1.02, 6.55, 26.69) 9.25 (1.00, 1.44, 4.96) 2.06 (1.02, 6.55, 26.69) 9.25 (1.00, 1.54, 5.34) 2.18

200 (1.00, 1.98, 7.08) 2.74 (1.00, 1.00, 2.67) 1.35 (1.00, 2.92, 10.88) 4.00 (1.00, 1.00, 2.83) 1.40
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TABLE 4 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.005,

n = 100, and EMRL0 ∈ {200, 370.4}.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 59 20 10 –

(2.0, 3.0] – – – 3

MRL-based design chart – 59 20 8 3

370.4 EMRL-based design chart (1.1, 2.0] 86 27 13 –

(2.0, 3.0] – – – 3

MRL-based design chart – 82 26 9 3

TABLE 5 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.01, n =

100, and EMRL0 ∈ 200, 370.4.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 45 12 5 –

(2.0, 3.0] – – – 2

MRL-based design chart – 41 12 4 2

370.4 EMRL-based design chart (1.1, 2.0] 59 15 7

(2.0, 3.0] – – – 2

MRL-based design chart - 56 15 5 2

TABLE 6 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.02, n =

100, and EMRL0 ∈ {200, 370.4}.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 29 7 4 –

(2.0, 3.0] – – – 1

MRL-based design chart - 28 7 2 1

370.4 EMRL-based design chart (1.1, 2.0] 38 8 4 –

(2.0, 3.0] – – – 1

MRL-based design chart - 37 8 3 1

the standard np chart is 2,071 – 36= 2,035 when p0 = 0.02, n=
25, ( γmin, γmax] = (2.0, 3.0], and MRL0min = 370.4.

However, by referring to Table 3 for the out-of-control

condition, the extreme percentile (the difference between the

E(ζ0.05) and E(ζ0.95)) reduces as n increases and the shifts

interval changes from ( γmin, γmax] = (1.1, 2.0] (small shifts

interval) to ( γmin, γmax] = (2.0, 3.0] (large shifts interval),

for both standard np and DS np charts. This trend suggests that

there is small variation for the out-of-control RL over large shift

interval and larger n values. For example, the out-of-control

extreme percentile of the DS np chart is 103.17 when MRL0min

= 370.4, p0 = 0.02, n = 25, and ( γmin, γmax] = (1.1, 2.0],

diminishes to 19.37 when ( γmin, γmax] = (2.0, 3.0], for

identical p0, n, and MRL0min. In addition, the numerical results

reveal that the optimal DS np chart has smaller variation in RL

distribution compared to the competing standard np chart for

small and large shift interval.

Performance of the DS np chart when shift size
is unknown

The most interesting finding emerges from the analysis

shown in Tables 4–6, utilizing the optimal parameters by

minimizing EMRL1 to compute the MRL1 when unknown shift

size is a viable option, providing γ ǫ (γmin, γmax]. The optimal

charting parameters for the EMRL-based DS np chart can be
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obtained from Tables 1, 2. For ease of reference and comparison,

the MRL1 of MRL-based design chart found by Tuh et al. [22] is

listed in Tables 4–6. For a comprehensive comparison, theMRL1
values for bothMRL-based and EMRL-based design charts when

γ = 1.2 are also added to this section. Due to space constraint,

we only present the results with n= 100.

FromTables 4–6, it is worth noting that theMRL1 computed

in Tables 4–6 bymeans of (n1, n2,WL, CL1, CL2) for DS np chart

with EMRL-based design is nearly identical to those based on

specific shift sizes (MRL-based design chart) for most cases, on

condition that γ ǫ (γmin, γmax]. For instance, in Table 5, when

n = 100, MRL0min = 200, p0 = 0.02, and ( γmin, γmax] =
(1.1, 2.0], the optimal charting parameters of the DS np chart

are (n1, n2, WL, CL1, CL2) = (39, 1,427, 2.5, 5.5, 39.5) (see

Table 1), obtained by minimizing EMRL1. This optimal charting

parameters yieldMRL1 = {29, 7, 4} for γ = {1.2, 1.5, 2.0}, while
the MRL-based design chart gives MRL1 = {28, 7, 2}. As a result,

the optimal parameters listed in Tables 1, 2 (as determined by

minimizing EMRL1) can be directly and reliably substituted for

the optimal parameters by assuming a known shift size, in the

event that γ ǫ (γmin, γmax].

An illustrative example

The performance of the DS np chart is assessed with the

use of an example, as follows. The information used in this

illustration was extracted from Gitlow and Hertz [42]. The

information is relevant to the keypunching operation that

normally takes place in a data processing department. To

establish the control chart, a sample size of 200 cards (n =
200) was selected at random from the output of each day’s

production over the course of 24 days (subgroups m = 24)

and inspected for defects. After establishing the control chart,

it was discovered that samples 8 and 22 were not within the

control limits and were subsequently discarded following further

investigation. Using the remaining samples of m = 22 and n

= 200, revised control limits were computed. All the verified

points fall within the control limits, pointing toward in-control

process. This represents phase I analysis. As a result, we may

estimate the in-control process fraction nonconforming (p0)

using following equation:

p0 =
∑m

i=1 pi

m
=

∑m
i=1 di

m× n
= 73

22 × 200
≈ 0.02 (17)

We illustrate the proposed optimal EMRL-based DS np

chart by applying a simulated data generated using the RStudio

software. Herein, we use the optimal charting parameters based

on MRL0min = 200, ( γmin, γmax] = (1.1, 2.0], p0 = 0.02,

and n = 200 obtained from Table 1. The optimal parameter

combination for the DS np chart is (n1, n2, WL, CL1, CL2)

= (101, 1,882, 4.5, 9.5, 52.5). The data for the 30 samples are

TABLE 7 Dataset for the illustrative example.

Sample number DS np chart

d1 d2 d1 + d2

1 2

2 0

3 2

4 1

5 2

6 1

7 5 36 41

8 3

9 2

10 1

11 3

12 1

13 2

14 1

15 6 54 60

16 4

17 2

18 4

19 1

20 2

21 3

22 1

23 2

24 1

25 3

26 0

27 1

28 0

29 1

30 7 40 47

simulated, where the first eight samples come from the in-

control state with p0 = 0.02. The subsequent 22 samples depict

the out-of-control state with p1 = γ p0 = 1.3 × 0.02 = 0.026,

where a process shift of γ = 1.3 is presumed to have occurred.

Note that the number of nonconforming items in the first sample

d1 is simulated from the binomial distribution with parameters
(

n1, p0
)

= (101, 0.02) and
(

n1, p1
)

= (101, 0.026) for the in-

control and out-of-control states, respectively, while the number

of nonconforming items for the second sample d2 is generated

from the same distribution but with parameters
(

n2, p0
)

=
(1, 882, 0.02) and

(

n2, p1
)

= (1, 882, 0.026) for the in-control

and out-of-control cases, respectively.

The thirty samples from Table 7 are plotted in Figure 2’s DS

np chart. The solid dots (•) and hollow dots (◦) represent the
stages 1 and 2 of the DS scheme, respectively. One can observe
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FIGURE 2

DS np chart.

that the process remains at the stage 1 of the DS scheme for

samples 1 through 6 as the points lie lower than 4.5 (<WL) and

is deemed to be in-control. Note that at sample 7, d1 = 5 for the

first sample at the stage 1 of the DS scheme corresponds to size

n1 = 101. Since 4.5 < d1 < 9.5, the operation moves to the stage

2 of the DS scheme, which involves taking a second sample of

size n2 = 1,882 and number of nonconforming items d2 = 36

is observed. As a result, d1 + d2 = 5 + 36 = 41. Since d1 + d2

is below 52.5 (<CL2), this sample is considered as in-control.

The process remains in-control condition up to sample 14. At

sample 15, d1 = 6, d2 = 54 in which d1 + d2 = 60 exceeds

the control limit CL2 of 52.5. This indicates that sample 15 is

out-of-control. Clearly, DS np chart detects the process shift at

sample 15. Corrective action should be taken immediately to

identify and remove the assignable cause(s) that resulting to the

out-of-control condition in the process.

Conclusion

A good understanding of a control chart is crucial as it helps

to increase the confidence of quality practitioners. Therefore, in

this study, EMRL has been proposed as a performance measure

for designing DS np chart. The results obtained indicate that

the EMRL is an effective optional performance measure for

the DS np chart when it is not possible to specify the shift

size of the fraction nonconforming beforehand. Alternatively,

practitioners can utilize the recommended optimal charting

parameters based on EMRL1 minimization if the process shift

size is within the acceptable range ( γmin, γmax] . In the case

of inexperienced practitioners who are not familiar with the

establishment of process shift size, this approach can help

to minimize inaccuracy that may arise when practicing and

implementing the DS np control chart. It should be noted

that the conclusion in this research depends on the data

independence and binomially distributed assumptions. For

future research purposes, additional work can be carried out

without applying these assumptions. In addition, the effect of

parameter estimation may also be conducted for the unknown

shift size.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

MT: conceptualization, methodology, software, formal

analysis, investigation, data curation, project administration,

and writing—original draft. CK and HC: software, validation,

resources, and writing—reviewing and editing. ML:

validation, visualization, and writing—reviewing and editing.

All authors contributed to the article and approved the

submitted version.

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

143

https://doi.org/10.3389/fams.2022.993152
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tuh et al. 10.3389/fams.2022.993152

Acknowledgments

We gratefully acknowledge Dr. Robin Chang

Yee Hui for lending us his personal computing

resources to carry out part of the calculations shown in

this study.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Montgomery DC. Introduction to Statistical Quality Control. New York: John
Wiley & Sons (2020).

2. Kumar PS. A simple method for solving type-2 and type-4
fuzzy transportation problems. Int J Fuzzy Logic Intell Syst. (2016)
16:225–37. doi: 10.5391/IJFIS.2016.16.4.225

3. Kumar PS. Algorithms for solving the optimization problems using fuzzy
and intuitionistic fuzzy set. Int J Syst Assur Eng Manage. (2020) 11:189–
222. doi: 10.1007/s13198-019-00941-3

4. Kumar PS. Intuitionistic fuzzy solid assignment problems:
a software-based approach. Int J Syst Assur Eng Manage. (2019)
10:661–75. doi: 10.1007/s13198-019-00794-w

5. Kumar PS, Hussain RJ. Computationally simple approach for solving fully
intuitionistic fuzzy real life transportation problems. Int J Syst Assur Eng Manage.
(2016) 7:90–101. doi: 10.1007/s13198-014-0334-2

6. Kumar PS. Computationally simple and efficient method for solving real-life
mixed intuitionistic fuzzy solid assignment problems. Int J Fuzzy Syst Appl. (2022)

7. Shah S, Shridhar P, Gohil D. Control chart: a statistical process control tool in
pharmacy. Asian J. Pharm. (2014) 4:184–92. doi: 10.4103/0973-8398.72116

8. Gan FF. An optimal design of cusum control charts for binomial counts. J Appl
Stat. (1993) 20:445–60. doi: 10.1080/02664769300000045

9. Gan FF. Monitoring observations generated from a binomial distribution
using modified exponentially weighted moving average control chart. J Stat
Comput Simul. (1990) 37:45–60. doi: 10.1080/00949659008811293

10. Epprecht EK, Costa AFB. Adaptive sample size control charts for attributes.
Qual Eng. (2001) 13:465–73. doi: 10.1080/08982110108918675

11. LuoH,WuZ. Optimal np control charts with variable sample sizes or variable
sampling intervals. Econ. Q. Cont. (2002) 17:39–61. doi: 10.1515/EQC.2002.39

12. Croasdale R. Control charts for a double-sampling scheme
based on average production run lengths. Int. J. Prod. Res. (1974)
12:585–92. doi: 10.1080/00207547408919577

13. Daudin JJ. Double sampling X charts. J Qual Technol. (1992) 24:78–
87. doi: 10.1080/00224065.1992.12015231

14. He D, Grigoryan A. An improved double sampling s chart. Int J Prod Res.
(2003) 41:2663–79. doi: 10.1080/0020754031000093187

15. Costa AFB, Claro FAE. Double sampling X control chart for a first-order
autoregressive moving average process model. Int J Adv Manuf Technol. (2008)
39:521–42. doi: 10.1007/s00170-007-1230-6

16. Torng CC, Lee PH. The performance of double sampling control
charts under non-normality. Commun Stat Simul Comput. (2009) 38:541–
57. doi: 10.1080/03610910802571188

17. Khoo MBC, Lee HC, Wu Z, Chen CH, Castagliola P. A synthetic
double sampling control chart for the process mean. IIE Transac. (2010) 43:23–
38. doi: 10.1080/0740817X.2010.491503

18. De Araujo Rodrigues AA, Epprecht EK, De Magalhaes MS.
Double sampling control charts for attributes. J Appl Stat. (2011)
38:87–112. doi: 10.1080/02664760903266007

19. Chong ZL, Khoo MBC, Castagliola P. Synthetic double
sampling np control chart for attributes. Comput Indus Eng. (2014)
75:157–69. doi: 10.1016/j.cie.2014.06.016

20. Joekes S, Smrekar M, Barbosa EP. Extending a double sampling control
chart for non-conforming proportion in high quality processes to the case of small
samples. Stat Methodol. (2015) 23:35–49. doi: 10.1016/j.stamet.2014.09.003

21. Lee MH, Khoo MBC. Double sampling np chart with estimated
process parameter. Commun Stat Simul Comput. (2021) 50:2232–
50. doi: 10.1080/03610918.2019.1599017

22. Tuh MH, Lee MH, Lau EMF, Then PHH. Performance of the double
sampling np chart based on the median run length. Adv Math Sci J. (2020)
9:7429–38. doi: 10.37418/amsj.9.9.89

23. Teoh WL, Khoo MBC, Castagliola P, Chakraborti S. Optimal design of the
double sampling X chart with estimated parameters based on median run length.
Comput Indus Eng. (2014) 67:104–15. doi: 10.1371/journal.pone.0068580

24. Khoo MBC, Wong VH, Wu Z, Castagliola P. Optimal design of the synthetic
chart for the process mean based on median run length. IIE Transac. (2012)
44:765–79. doi: 10.1080/0740817X.2011.609526

25. Lee MH, Khoo MBC. Optimal designs of multivariate synthetic |S| control
chart based on median run length. Commun Stat Theor Methods. (2017) 46:3034–
53. doi: 10.1080/03610926.2015.1048884
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University of Technology, Łódź, Poland, 4Department of Physics, National University of Singapore,

Singapore, Singapore, 5Department of Mathematics, National Institute of Technology, Durgapur,

India, 6Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India, 7Center for

Computational Natural Sciences and Bioinformatics, International Institute of Information

Technology Gachibowli, Hyderabad, India, 8Institute of Physics, Humboldt Universität zu Berlin,

Berlin, Germany, 9Institute of Geoscience, University of Potsdam, Potsdam, Germany

Extreme events are defined as events that largely deviate from the nominal

state of the system as observed in a time series. Due to the rarity

and uncertainty of their occurrence, predicting extreme events has been

challenging. In real life, some variables (passive variables) often encode

significant information about the occurrence of extreme events manifested

in another variable (active variable). For example, observables such as

temperature, pressure, etc., act as passive variables in case of extreme

precipitation events. These passive variables do not show any large excursion

from the nominal condition yet carry the fingerprint of the extreme events.

In this study, we propose a reservoir computation-based framework that

can predict the preceding structure or pattern in the time evolution of the

active variable that leads to an extreme event using information from the

passive variable. An appropriate threshold height of events is a prerequisite

for detecting extreme events and improving the skill of their prediction. We

demonstrate that the magnitude of extreme events and the appearance of a

coherent pattern before the arrival of the extreme event in a time series a�ect

the prediction skill. Quantitatively, we confirm this using ametric describing the

mean phase di�erence between the input time signals, which decreases when

the magnitude of the extreme event is relatively higher, thereby increasing the

predictability skill.
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Introduction

In recent years, extreme events (EEs) have gained attention

of the researchers and decision-makers due to increase in

the occurrence of highly intense climate extremes, such as

hurricanes, floods, heatwaves, etc., due to global warming and

climate change [1–3]. They have devastating impact on life

and infrastructure. There are several other examples of such

extraordinary devastating events in various other disciplines

aside from climate, like rogue waves in lasers and tsunamis

in the ocean, earthquakes in seismology, share market crashes

in finance, regime shift in ecosystems, etc., which are also

rare but may have a long-term correlation in their return

periods [4–11]. The study of extreme events focuses on the

self-organizing principles [5, 12–19] that may enable us to

forecast and mitigate the after effect. Various tools have been

developed to study the underlying dynamics of such extreme

events, e.g., complex networks have been extensively used to

analyze climate extremes [20–24], numerous studies have been

conducted to analyze extreme events based on their statistical

properties [25, 26]. Recurrence plot analysis has been used to

study the recurring behavior of flood events [27]. Because of

their rare occurrence and complex dynamics, understanding and

predicting extreme events is a challenge in the studies of complex

natural systems using the dynamical system approach only

[15, 28–30]. Alternatively, data-based and model-free machine

learning techniques have been recently shown to be more

promising for predicting such events [31–36]. To put it simply,

such a prediction process involves training of the machine using

past data records of EEs from other observable and then testing

the ability of machine to successfully predict the prior shape of

the observable which leads to extreme event.

As the term “extreme event” is used in various disciplines, a

precise definition of EEs is not available. Rather, it depends on

the particular discipline where this term is being used. In this

work, we select the EEs based on their magnitude. Therefore,

it is crucial to set a threshold height so that we can call an

event “extreme” when it exceeds the threshold. The choice of an

appropriate threshold plays a pivotal role in prediction [37, 38].

In our study, we found that for data-based machine learning, a

certain threshold height augments the efficient detection of the

arrival of a coherent pattern and thereby leverage the prediction

process. In particular, we raise the following question here that

for a given multivariate data set in which one of the variables

exhibits EEs, whether a seemingly benign variable (with no

signature of EE) can be used in a machine for the prediction of

the preceding structure or pattern indicative of the forthcoming

EE expressed in another observed variable. We refer to the

preceding structure pattern as a precursory signal in the data

that is typically correlated with the occurrence of EE in near

future. For example, farmers anticipate rain when they observe

red clouds in the early morning sky.

The aforementioned question is motivated from the fact that

the occurrence of EEs in one variable are a manifestation of

the rich dynamics of a multivariate higher dimensional system

as caused by the non-linear interactions among its various

constituents [5, 13]. Due to the paucity of observations of some

EEs occurring in nature, collection or reconstruction of data

directly from a dynamic variable that flares up with an extreme

value (active variable) such as the extreme precipitation, over a

long time period is seldom possible. It is easier to reconstruct

data for those observables which are slow varying (temperature,

pressure, etc.). Some of these observables may remain silent or

passive with a weak response and do not show up with any

manifestation of large size extreme value. However, such passive

variables carry significant information related to the EEs. We

emphasize here that the data collected from the passive variable

is used as inputs to a reservoir computing machine, i.e., the

echo-state network (ESN), in order to check how efficiently

the machine can capture the a priori structure in the active

observable that precedes the EE. ESN is a simple version of

recurrent neural networks [39] that has been used extensively to

predict complex signals ranging from time series generated from

chaotic model, stock-price data to tune hyperparameter [40–50].

Recently, it has been shown that ESN can efficiently capture

the onset of generalized synchronization [51–55], quenching

of oscillation [56, 57], detect collective bursting in neuron

populations [58], and predict epidemic spreading [59]. ESN has

been shown to have great potential in handling multiple inputs

of temporal data, and ability to trace the relation between them

[52, 58, 60]. Due to its simple and computationally effective

character and its suitability for dynamical systems, we use ESN

for our study. Other machine learning-based methods, such as

deep learning [61] might also be useful for the problem we

address in this work.

While collecting data, the first important task is to detect

the EE by assigning an appropriate threshold height and collect

a number of data segments prior to all the available EE in a

time series, to address the question of predictability as suggested

earlier [38, 62, 63]. In the present work, we rely on data

generated from numerical simulations of a model system for

training and testing of the ESN for efficient detection of the

structure preceding the extreme events. Firstly, we identify a

large number of visible EEs from the active variable using a

threshold height and save a data segment of identical length

prior to the occurrence of each EE from the active variable

along with the corresponding data segment from the passive

variable. A multiple number of data segments of identical length

corresponding to EEs in the active variable are thus collected

from the passive variable and used as inputs to the machine. A

part or fraction of the data points from each segment is used

for training and the rest of the data points is kept aside for

predicting the preceding structure of EE in the active variable

during testing.
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We repeat the whole process of data collection, training

and testing of the machine by varying the choice of the

threshold height and then make a quantitative comparison

based on predictability skill to select the most suitable threshold

height for detection and prediction of EE. It must be noted

that by prediction we imply the identification of a common

pattern or structure in the test signal that always appears

quite ahead of time before the arrival of extreme events

and hence, effectively works as a precursor to the extreme

events. Our machine learning based recipe unfolds two useful

information: (i) Data collected from a passive variable before

the appearance of EE in an active variable can provide clues

to capture the future trend of an active variable and thereby

predict the precursory shape of the forthcoming EE, (ii)

machine can efficiently suggest a choice of appropriate threshold

height that may augment the prediction process. A possible

reason for the necessity of a critical threshold for accurate

prediction by the machine is explained further in light of

a coherent pattern that always appears in the ensemble of

multiple segments of data inputs that has been collected prior

to the EE.

For demonstration purpose, we use a paradigmatic model

neuron that consists of active variables (fast variables) expressing

the triggering of extreme events when its passive counterpart

(slow variable) shows no signature of extremes.

Methodology

Dataset

For data generation of EEs, we numerically simulate a

synaptically (chemically) coupled slow-fast Hindmarsh-Rose

(HR) neurons model [64],

ẋi = yi + bx2i − ax3i − zi + I − θi(xi − vs)Ŵ(xj)

ẏi = c− κx2i − yi

żi = ρ[s(xi − xR)− zi],

(1)

where xi and yi (i, j = 1, 2; i 6= j) are the fast variables and

oscillate with firing of spiking or bursting potentials. The slow

variable zi controls the fast oscillations. Each variable has its

specific biological functional meaning. The system parameters

a, b, c, and s are appropriately chosen where r < 1 is the slow

parameter. xR and vs are constant biases and Ŵ(x) = 1
1+e−λ(x−2)

is a sigmoidal function, typically used [65] to represent chemical

synaptic coupling. The parameters, a = 1, b = 3, c = 1, κ =
5, xR = −1.6, ρ = 0.01, s = 5, I = 4, vs = 2, λ = 10,2 =
−0.25, are kept fixed for generating data. The coupling constant

θ1,2 decides the strength of mutual communication between the

neurons via chemical synapses. We collect data on xi and zi (i =
1, 2) from numerical simulations and define two new variables,

u = x1+x2 and v = z1+z2. Extreme events are expressed [65] in

the fast variable u, which is denoted as our active variable, while

the slow variable v is defined as the passive variable. The passive

variable does show a signature of rising amplitude when extreme

events arrive in the active variable. However, we have to make a

cut-off in the range of the threshold as usually used from 4σ to

8σ in the literature. The rising peaks in the slow variable are not

significantly large than our considered significant height (3.5σ

to 6σ ). Our motivation is to predict the precursory structures for

rare peaks, and for this purpose, we consider the v variable as a

passive variable. Information from the passive variable v is then

used as input data to the machine for predicting the preceding

structure of extremes in u.

The local maxima of a time series are identified as events and

accordingly all the events are extracted from u for a long run. A

standard definition is used for the identification of an extreme

event [14, 15, 66] with a threshold Hs = 〈µ〉 + dσ , where 〈µ〉
is the mean of the time series, σ is the standard deviation and

d is a constant. Any event larger than Hs is considered as an

extreme where d is allowed to vary from system to system or

for a measured time series under consideration. The question

of prediction and enhancing predictability is addressed here by

setting different threshold limits of Hs by varying d.

For the purpose of numerical experimentation, we first

detect a number of extreme peaks n from a long time series of u

(total length of the time series : 2×107) that crosses a predefined

threshold Hs for a particular choice of d. Next, we collect k data

points prior to each of the n peaks from u, i.e.,

û1 = (u1(t), u1(t − 1), u1(t − 2), ..., u1(t − k))

û2 = (u2(t), u2(t − 1), u2(t − 2), ..., u2(t − k))

:

:

ûn = (un(t), un(t − 1), un(t − 2), ..., un(t − k)),

(2)

where û1, û2, ..., ûn are the n events selected from active variable

u. We also collect the corresponding data points from the v-time

series, i.e.,

v̂1 = (v1(t), v1(t − 1), v1(t − 2), ..., v1(t − k))

v̂2 = (v2(t), v2(t − 1), v2(t − 2), ..., v2(t − k))

:

:

v̂n = (vn(t), vn(t − 1), vn(t − 2), ..., vn(t − k)).

(3)

In other words, we collect n time segments each containing

k data points prior to all the n extreme events, and construct a

matrix called event matrix E of size n×k from the active variable

and, similarly, construct a matrix P of the same size n × k by

storing the corresponding data points from the passive variable.

A set of m (m < n) (gray region A in Figure 2A) time segments

each with data points p (p < k) (Figure 2B) as collected from v

is then fed into the machine for training to predict the preceding
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structure of (n − m) segments in u signals (light red region B

in Figure 2), which is considered as a precursor to the arrival

of extreme events later. How the machine extracts information

from the inputs of v and transforms them into u at the output

is defined in the input-output functional relation of the machine

as a description of the ESN in the next section. Once the training

is over, the rest of the (k − p) data points for each of the m time

segments are used for testing whether the machine can predict

the future structure of (n − m) time segments of u. The whole

process is repeated multiple times by using four different choices

of d (3.5, 4, 5, 6) for detecting extremes from the time series

of u. We emphasize once again that an input to the machine

for training and testing consists of multiple segments of data

points of identical length collected from v corresponding to the

successive number of EE detected in u for each d-value. The data

points collected from u are used at a later stage for comparison

with the machine output during the testing process. Certainly

this recipe works only when certain amount of data prior to

the extreme events is available from both the variables, and the

passive variable of the system can be identified. However, the

advantage of such a methodology is that it is data-driven and

model-free.

Reservoir computing: Echo-state
network model

An echo state network (ESN) is a type of recurrent

neural network and is extensively used due to its simple

architecture [39]. It has three parts—(1) input layer—in which

the weights are randomly chosen and fixed, (2) reservoir or

hidden layer—it is formed by randomly and sparsely connected

neurons and (3) output layer—in which the output weights

are the only trainable part by input data. A standard leaky

network with a tanh activation function is considered here as

the ESN. The dynamics of each reservoir node is governed by

the following recursive relation:

r(t + 1) = (1− α)r(t)+ α tanh
(

Wresr(t)+Win[1; v(t)]
)

, (4)

where r(t) is a nres-dimensional vector that denotes the state of

the reservoir nodes at time instant t, v(t) is the m-dimensional

input vector and 1 is the bias term. The matrices Wres (nres ×
nres) and Win (nres × (m + 1)) represent the weights of the

internal connection of the reservoir nodes and weights of the

input, respectively. The parameter α is the leakage constant,

which can take any values between 0 to 1. It is to be noted that

the tanh function operates element-wise. The choices of α and

nres can be varied. Here, we have fixed α = 0.6 and nres = 600

throughout all simulations. The reservoir weight matrix Wres

is constructed by drawing random numbers uniformly over an

interval [−1, 1] and the spectral radius of the matrixWres is re-

scaled to less than unity. The elements of the input weight matrix

Win are also generated randomly from the interval [−1, 1]. Next

we consider data of n-segments sequentially from the time series

of v corresponding to n extreme peaks in u from which a set

of first m-segments of length p of the total length of k data

points are fed into the ESN for training. Thereafter, the output

weight Wout is optimized to capture the trend of the (n − m)

segments (each length: (k − p)) of u signals. Once the machine

is trained, the input ofm-segments each with (k− p) data points

are fed into the machine to predict the trend of the (n − m)-

segments of the u signals prior to the arrival of EE in time. At

each instant of time t, the m−dimensional input vector of data,

v(t):[v1(t), v2(t), ..., vm(t)]
T is fed intom-number of input nodes

of the machine when the contribution of the input weight matrix

in the dynamics of the reservoir (see Equation 4) is written as,













Win(1, 1) · · · Win(1,m+ 1)

Win(2, 1) · · · Win(2,m+ 1)
...

...
...

...

Win(nres, 1) · · · Win(nres,m+ 1)













×

















1

v1(t)

v2(t)
...

vm(t)

















.

During the training process, at each time instant t, the reservoir

state r(t) and input v(t) are accumulated in Vtrain(t) =
[1; v(t); r(t)]. The matrix Vtrain having dimension (nres + m +
1)× p look like,







































1 1 · · · 1

v(1, 1) v(1, 2) · · · v(1, p)

v(2, 1) v(2, 2) · · · v(2, p)
...

...
...

...

v(m, 1) v(m, 2) · · · v(m, p)

r(1, 1) r(1, 2) · · · r(1, p)

r(2, 1) r(2, 2) · · · r(2, p)
...

...
...

...

r(nres, 1) r(nres, 2) · · · r(nres, p)







































.

The output weight is determined by:

Wout = UtrainV
T
train(VtrainV

T
train + λI)−1, (5)

where Utrain is a matrix which stores the value of u from

(n − m) segments of training length p, and λ = 10−8 is the

regularization factor that avoids over-fitting. Now, the output

weight is optimized, the final output is obtained by,

U = WoutV, (6)

An important point to note is that we use the information of

u only to optimize the output weight.
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FIGURE 1

Time series of slow variable v and fast variable u of the coupled Hindmarsh-Rose (HR) system. (A) Horizontal red lines in the time series of u

(lower panel) and v (upper panel), indicate two threshold heights Hs1 = 〈µ〉 + 3.5σ (thin line), Hs2 = 〈µ〉 + 6σ (bold line); µ and σ are the mean

and standard deviation of the time series, respectively. Threshold height Hs2 filters out many large peaks that are otherwise qualified as extremes

by the lower threshold Hs1 , and thereby allows a selection of rarer extreme events only. One particular extreme peak (shaded region) is marked

in (A) as shown in u, and zoomed in the lower panel of (B) for illustration. This extreme peak is larger than both the horizontal lines Hs1 and Hs2

so as to qualify as a rare extreme event. The corresponding part of the time series of the slow variable v in the upper panel of (A) that never

crosses either of the thresholds, Hs1 and Hs2 , is zoomed in and shown in the upper panel of (B). Although a slight increase in size of the peak is

seen (B) compared to its neighboring peaks (upper panel), there is not much significant change in height in comparison to the extreme peak

observed in u in the lower panel.

Results

For illustration of our proposed scheme, the original time

series of u and v for a long run of numerical simulations are

plotted in Figure 1A. As the threshold height is increased from

Hs1 = 〈µ〉 + 3.5σ and Hs2 = 〈µ〉 + 6σ by varying d from

3.5 to 6, many large peaks are filtered out that declares only a

few peaks as rare and extremes. The extreme peaks are selected

as those which are higher than a selected threshold height Hs

(horizontal line, Figure 1A) for a particular choice of d, and

used as data for training and testing the reservoir shown in

Figures 2B–D. It is clear that some of the peaks in u are higher

than the designated thresholds Hs1 and Hs2 whereas the height

of all the peaks in v are lower than both thresholds. A zoomed

version is shown in Figure 1B to demonstrate the time evolution

of u and v around a single extreme peak marked by a shaded

region in Figure 1A. Extremes are only expressed in the active

variable u with no similar manifestation in the passive variable

v, which is considered here as the input candidate to themachine

for the prediction of the a priori structure of successive EEs

in u.

An exemplary predicted output of u for (k − p) = 200

data points (blue circles) vis-à-vis the original u signal of the

same length (blue line) is plotted in Figures 3A–D for four

different d-values. A visual impression provides a clear evidence

that the error between the predicted signal (blue circles) and

the original input signal (blue line) during 1, 300 to 1, 500

time units decreases with the increase in the value of d.

For a more comprehensive understanding of the scenario, the

root mean square error (RMSE) estimated for 20 predicted

output signals and the original signals of u is plotted

which confirms the increasing predictability with higher Hs

(Figures 3E–H). To verify the robustness of the outcome, we

repeat the whole process for 400 realizations drawn from 400

different initial conditions. RMSE is calculated as follows:

RMSE =

√

√

√

√

√

1

tf − tr

tf
∑

t=tr

(uoriginal(t)− umachine(t))
2. (7)

where tr and tf are training and final time respectively and

tf − tr = k− p.

To understand the reason for the machine’s improved

performance with higher a Hs, we compare all the

180 input signals of the passive variable (v) as well as

the active variable (u) prior to the occurrence of EEs

(p = 1, 300 data points) (Figure 4). Upper row plots in

Figures 4A–D represent the input signals v before the

EEs for four different threshold values. As we increase

the threshold Hs (by increasing d from 3.5, 4, 5, 6),

signals observed to get less dispersed and tend to form a

coherent bundle.

In fact, the increasing coherent pattern among the input

signals is more prominent in the corresponding active variable

u in the lower row of Figures 4E–H than the v variable. For the

highest threshold value, the time signals are almost coherent
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FIGURE 2

Schematic diagram of the ESN and the prediction process. (A) Time series of the passive variable v (upper panel) and active variable u (lower

panel) with a number of extreme events, here selected using a threshold height Hs = µ+ 6σ , are shown. Data points (k = 1, 500) from v, and u

prior to n extreme peaks are saved. A few exemplary extreme peaks are shown for demonstration. For our proposed scheme, data points around

such n = 200 extreme peaks are collected. (B) Two exemplary input signals corresponding to two extreme events are shown here, while the

actual number of input signals are m = 180 as for the training purpose. For each input node, p = 1, 300 data points (solid red line) are used for

training purpose and the rest of (k− p) = 200 data points (dotted red line) are used for testing, which are separated by a vertical line (black line).

(C) Echo state network structure: input layer consists of Am nodes, where m = 180 input signals (data segments prior to each of the extreme

events) are used for training. The output layer consists of Bn−m = 20 nodes. (D) Preceding pattern of predicted u signals from 20 nodes each for

(k− p) = 200 datapoints (blue circles) and the original u signal (blue line) for 200 datapoints are plotted for comparison. Two such output signals

are shown as examples.

similar to what was reported by [62], where they showed the

formation of coherent structure before the arrival of extreme

events in the active variables. The increasing coherence in v with

higher Hs enhances the machine’s predictability skill for higher

amplitude events compared to the lower amplitude ones. Thus,

the machine establishes a general fact, in quantitative terms, that

predictability is enhanced for larger value of threshold height

when the input signals are more coherent for a longer duration

of time [62, 63].

We repeat our experiments using the same ESN by

considering two different length of data inputs (p = 800, 1, 300)

prior to each of the extreme events for training, and keeping

the same set length of data points (k − p) = 200 for

testing as done above. The number of inputs (Am; m =
180) for training and outputs for testing (Bn−m; n − m =
20) remain unchanged. Thereafter, we calculate the RMSE of

the predicted output signals from 20 output nodes for each

length of data inputs (p) and repeat the whole process for

increasings d-values. We plot the RMSE against the d-values

and for two different time lengths (800, 1, 300) in Figure 5A.

The RMSE is high for d = 3.5, and it gradually decreases

and converges to a low value for higher threshold values.

We confirm that our results machine learning framework also

work for changing the number of inputs and outputs, and

also by changing the length of the testing data length (see

Supplementary material).
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FIGURE 3

Prediction of extreme events by the ESN. Upper panels in (A–D) show original active signal u for (k− p) = 200 data points (blue line) along with

the predicted signal for (k− p) = 200 data points (blue circles) for comparison for EEs selected using four di�erent threshold heights computed

using: (A) d = 3.5, (B) d = 4, (C) d = 5, and (D) d = 6. It shows an increased resemblance between the predicted and original extreme peaks with

increasing d. Lower panels in (E–H) show RMSE between the original signal u and their predicted signals for (k− p) = 200 data during testing,

estimated over 20 extreme events, corresponding to (A–D), respectively. Results of 400 realizations of data from numerical simulations of the

model using 400 di�erent initial conditions for each d-value are presented in (E–H) and the vertical bars mark their standard deviation.

FIGURE 4

Comparative picture of coherence in the input time signals (p) extracted before an extreme events. (A–D) Input signal of passive variable v for

threshold values (d = 3.5, 4, 5, 6). (E–H) are the corresponding active variable u for threshold values (d = 3.5, 4, 5, 6). Coherence between the

input time signals increases with the threshold height determined by higher d-values. Di�erent color signifies di�erent trajectories.

Next we introduce another measure ψ based on the

instantaneous phases of the time signal inputs,

ψ = 2

n(n− 1)

n
∑

i=1

n
∑

j=i+1
j6=i





1

T

T
∑

t=1

| φi(t)− φj(t) |



 (8)

where φi(t) is the instantaneous phase of the i-th signal of the

passive variable v at time t, n is the total number of segments

and T is the segment length. Here, φi(t) of i th signal is

calculated using the Hilbert transform [67]. High value of ψ

indicates less coherent structure and vice-versa. This variable

ψ represents the average phase difference (on the number of

segment and segment length) between all the 180 input signals

of different length.

We plot values of ψ against d for the two different time

lengths (800, 1, 300) in Figure 5B. A phase coherence is observed

with increasing d. When the threshold is low (lower value of d),

the time signals of v are dispersed (see Figure 5A). As a result,

the average phase difference ψ is high. ψ gradually converges
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FIGURE 5

Predictability of extreme events. For 20 extreme events, (A) RSME against threshold d for di�erent length of input data, (B) average phase against

threshold d for di�erent length of input data. Here, for both cases the average of 400 realizations are presented. Instantaneous phase φi(t) of ith

signal is estimated using the Hilbert transform [67].

for higher values of d with the formation of a coherent bundle of

the input signals. This indicates that there is a higher tendency

of phase coherence between input signals for higher magnitude

EEs which enhances the ability of the machine to predict their

precursory structure.

Conclusion and discussion

We have proposed an Echo State Network based scheme

for the prediction of the preceding shape of extreme events

from a passive variable which shows no visible manifestation

of extreme events, but connected to an active variable that has

clear indications of rare and recurrent high amplitude events.

Such a situation occurs in the real world where maintaining

data records of subsidiary variable is easier, and may be useful

for studies related to prediction of extreme events in another

observable that is difficult to record. To test our scheme, we

generated data using a synaptically (chemical) coupled model

of two Hindmarsh-Rose (HR) neurons. Two types of variables

are involved in the HR model, two fast variables (defined as

active) that exhibit extreme events in their time evolution, and a

slow variable (defined here as passive) having a slower time-scale

and most importantly, showing no visible signs of extremes. The

passive variable was considered as our input candidate for the

machine for the purpose of predicting the preceding structure of

extreme events in the active variable.

Our strategy was first to identify the extreme events in a long

time series of an active variable with a choice of an appropriate

threshold height and collect data from the passive variable that

corresponds to each extreme in the active variable. We saved

the data only prior to the arrival of extreme events barring all

extremes, then a part of the collected dataset from the passive

variable is used for testing a multi-input machine and another

part of the data for testing/predicting the prior structure of

the forthcoming extremes. Our results indicated that higher the

magnitude of extreme events, the efficiency of the machine to

predict its precursory structure is higher. Higher intensity events

are defined only by increasing the threshold height. On further

investigation, we found that for higher intensity extreme events

the input signals collectively form a coherent pattern, which

aided the machine to predict the prior structure with increased

efficiency. Thus, coherence of the multi-input time signals is the

key to a better prediction of the forthcoming extreme events

by the machine. A possible quantitative explanation of the

enhanced predictability is provided. For this purpose, a new

coherence measure ψ is introduced to represent the average

phase differences between the segmented time signals. It was

observed that ψ decreases with increasing threshold height,

therefore confirming our finding that the enhanced ability of the

machine to predict higher amplitude extreme events is related to

an increase in the phase coherence of the input signals.

Our machine learning scheme opens up an alternative

strategy for predicting extreme events from passive variables

in the real world. Furthermore, our findings maintains those

reported by [37, 38] that higher the magnitude of extreme

events, higher is the predictability skill. Finding suitable passive

variables for real world systems is a challenge. Most of the

time they typically belong to very high dimensional system and

often can be a combination of multiple variables. For example,

Moon and Ha [68] identified the relation between the onset of

Indian summer monsoon with the soil moisture in the Iranian

desert, our method could be used to predict the early warning or

precursory signal to the forthcoming climate extreme if we can

identify the slow variables properly.
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This paper presents numerical treatments for a class of singularly perturbed

parabolic partial di�erential equations with nonlocal boundary conditions. The

problem has strong boundary layers at x = 0 and x = 1. The nonstandard

finite di�erence method was developed to solve the considered problem in

the spatial direction, and the implicit Euler method was proposed to solve

the resulting system of IVPs in the temporal direction. The nonlocal boundary

condition is approximated by Simpsons 1
3

rule. The stability and uniform

convergence analysis of the scheme are studied. The developed scheme is

second-order uniformly convergent in the spatial direction and first-order

in the temporal direction. Two test examples are carried out to validate the

applicability of the developed numerical scheme. The obtained numerical

results reflect the theoretical estimate.

KEYWORDS

singularly perturbed problems, partial di�erential equations, reaction-di�usion,

method of lines, uniform convergence, nonlocal boundary condition

1. Introduction

Differential equations that involve a small parameter in their higher order

derivative term are said to be singularly perturbed problems (SPPs) or singularly

perturbed differential equations (SPDEs). Many mathematical models, starting

from fluid dynamics to mathematical biology, are modeled using (SPPs). For

example, high Reynold’s number flow in fluid dynamics, heat transport problems

with large Péclet numbers, elastic vibration, etc. [1] and the references therein.

Such mathematical problems are extremely difficult to solve exactly. Thus, for

treating such problems numerical methods are preferable. Various scientific and

engineering processes can be modeled as integral terms over the spatial domain

that appear inside or outside of the boundary conditions [2, 3]. Such problems

are said to be nonlocal problems. Many physical phenomena are formulated as

nonlocal mathematical models. For instance, problems in thermodynamics [4],
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plasma physics [5], heat conduction [6], underground water

flow, and populace dynamics [7] can be reduced to nonlocal

problems with integral conditions. SPPs having nonlocal

boundary conditions in which the highest order derivative term

is multiplied by way of a small parameter are referred to as

SPPs with integral boundary conditions. Such problems exhibit

boundary layer phenomena wherein the solution changes.

However, the numerical treatments of SPPs attract the attention

of researchers due to the boundary layer behavior of the solution.

Since the small parameter multiplies the highest derivative,

the small regions adjoin the domain of interest’s boundaries

or any interior stage at which the variable quantity undergoes

a very unexpected change. As a result, these problems have

strong boundary layers, which ensures that there are small areas

where the solution rapidly changes within very small layers near

the boundary or within the problem domain [8]. Numerically

treating such SPPs with nonlocal boundary conditions is a

challenging task due to a very small perturbation parameter (ε).

In recent times, a class of SPPs involving nonlocal boundary

conditions have been obtained great attention from scholars.

To mention few of them, the authors in Bahuguna and Dabas

[9], Feng et al. [10], and Li and Sun [11] studied the existence

and uniqueness of a class of SPPs with nonlocal boundary

conditions. The authors in Raja and Tamilselvan [12] developed

a finite difference scheme for solving a class of a system of

singularly perturbed reaction diffusion equations with integral

boundary conditions. Debala and Duressa [13] built a uniformly

convergent numerical scheme for solving SPPs with nonlocal

boundary conditions. Numerical methods for solving singularly

perturbed delay differential equations (SPDDEs) are considered

in Sekar and Tamilselvan [14–17]. The authors developed finite

difference schemes with suitable piecewise uniform Shiskin

meshes. The authors in Debela and Duressa [18] used an

exponentially fitted numerical scheme to solve SPDDEs of the

convection-diffusion kind with nonlocal boundary conditions.

Debela and Duressa [19] improved the order of accuracy for

the method proposed in Debela and Duressa [18]. Kumar

and Kumari [20] developed the method based on the idea

of B-spline functions and an efficient numerical method on

a piecewise-uniform mesh was recommended to approximate

the solutions of SPPs having a delay of unit magnitude with

an integral boundary condition. In the literature, only few

authors considered a class of singularly perturbed parabolic

partial differential equations (SPPPDEs) with integral boundary

conditions. Sekar and Tamislevan [21] investigate a numerical

solution for singularly perturbed delay partial differential

equations (SPDPDEs) of the reaction-diffusion type with

integral boundary conditions. They developed the standard

finite difference on a rectangular piecewise uniform mesh for

spatial discretization and a backward difference scheme in

time derivative. Gobena and Duressa [22] constructed and

analyzed an accurate numerical method for solving SPDPDEs

with integral boundary conditions.

In general, the classical numerical methods used for solving

SPDEs are not well-posed and fail to provide an exact solution

when a perturbation parameter (ε) goes to zero. Therefore, it

is essential to develop a numerical method that offers suitable

results for small values of the perturbation parameter. As far

as the researchers’ knowledge, singularly perturbed parabolic

partial differential equations with nonlocal boundary conditions

are first being considered and have not yet been treated

numerically. In this study, we investigate a uniformly convergent

numerical method for solving the problem under consideration.

We used the nonstandard finite difference method for space

direction and the implicit Euler method for time direction.

The contents of the paper are arranged in the following

manner: A brief introduction of the given problem is discussed

in Section 1. In Section 2, the properties of continuous solutions

are given. In Section 3, a numerical method is formulated by

using the method of lines for the given problem. Stability and

convergence analysis for developed numerical methods are also

studied. Numerical results and discussions are given in Section

4. In Section 5, the conclusion of the paper is given.

Notation: In this paper, N and M denote the number

of mesh intervals in spatial and temporal discretization,

respectively. C is a generic positive constant independent of

ε, N, and M. The norm used for studying the convergence

of numerical solutions is the maximum norm defined as
∣

∣

∣

∣z(s, t)
∣

∣

∣

∣ : = sup
∣

∣z(s, t)
∣

∣ , (s, t) ∈ D.

2. Properties of continuous problem

In this paper, we consider a class of singularly perturbed 1D

parabolic partial differential equations of the reaction-diffusion

type with non-local boundary conditions,



































Lz(s, t) =
(

−ε ∂2

∂s2
+ ∂

∂t + a(s, t)
)

z(s, t) = f (s, t) (s, t) ∈ D,

z(s, 0) = φb(s), φb(s, t) ∈ Ŵb =
{

(s, 0)
}

,

z(0, t) = φl(t), φl(s, t) ∈ Ŵl =
{

(0, t); 0 ≤ t ≤ T
}

,

Kz(s, t) = z(1, t)− ε
∫ 1
0 g(s)z(s, t)ds = φr(s, t), φr(s, t) ∈

Ŵr =
{

(1, t); 0 ≤ t ≤ T
}

.

(1)

where (s, t) ∈ D = �x × �t = (0, 1) × (0,T], D̄ =
[0, 1] × [0,T], and ε is a small parameter (0 < ε ≪ 1). Suppose

that a(s, t) ≥ α > 0, f (s, t), φl, φr , φb are sufficiently

smooth functions and g(s) is nonnegative monotone function

and satisfies
∫ 1
0 g(s)ds < 1. The existence and uniqueness

of the problem (1) can be established under the assumption

that the data are Hölder continuous and imposing proper

compatibility conditions at the corners [23]. Note that φl

and φr are only functions of t, while φb is a function of x

only. The problems necessarily satisfies the following sufficient

compatibility conditions φb(0, 0) = φl(0, 0), φb(1, 0) =
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φr(1, 0), and

− ε
∂2φb(0, 0)

∂s2
+ a(0, 0)φb(0, 0)+

∂φl(0, 0)

∂t
= f (0, 0),

−ε
∂2φb(1, 0)

∂s2
+ a(1, 0)φb(1, 0)+

∂φr(1, 0)

∂t
= f (1, 0).

Note that φl,φr , and φb are assumed to be sufficiently smooth

for Equation (1) to make sense, namely φl,φr ∈ C1([0,T]), and

φb ∈ C(2,1)(Ŵb).

Next, we analyze some properties of the continuous solution

(Equation 1) which guarantee the existence and uniqueness of

the analytical solution. A replication of this belonging in semi-

discrete form can be used to present the approximate solution,

which we provide in the following section.

Lemma 1. (Continuous Maximum Principle) Let 9(s, t) ∈
C(0,0)(D̄)∩C(1,0)(D)∩C(2,1)(D) be a sufficiently smooth function

such that 9(0, t) ≥ 0,9(s, 0) ≥ 0,K9(1, t) ≥ 0,L9(s, t) ≥
0,∀(s, t) ∈ D. Then 9(s, t) ≥ 0, ∀(s, t) ∈ D̄, where L9(s, t) =
9t(s, t)− ε9ss(s, t)+ a9(s, t).

Proof. Assume (s∗, t∗) be defined as 9(s∗, t∗) =
min(s,t)∈D̄ 9(s, t) and suppose that 9(s∗, t∗) ≤ 0. It is

known that (s∗, t∗) /∈ ∂D. Thus,

L9(s∗, t∗) = 9t(s
∗, t∗) − ε9ss(s

∗, t∗) + a(s, t)9(s∗, t∗).
Since 9(s∗, t∗) = min(s,t)∈D̄ 9(s, t), which indicates that

9(s∗, t∗) = 0, 9t(s
∗, t∗) = 0, 9ss(s

∗, t∗) ≥ 0 and implies that

L9(s∗, t∗) < 0, which is contradicts with the above assumption.

L9(s∗, t∗) > 0,∀s ∈ D. So that, 9(s, t) ≥ 0, ∀(s, t) ∈ D. �

Lemma 2. (Stability Result) Assume z(s, t) is the solution to the

continuous problem in Equation (1). Then we have the bound

z(s, t) ≤ α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

,

where
∣

∣

∣

∣f
∣

∣

∣

∣ = max
{

f (s, t)
}

.

Proof. We prove this by using the maximum principle Lemma

(1) and by constructing the barrier functions θ±(s, t) =
CM ± z(s, t), (s, t) ∈ D̄, where M = α−1

∣

∣

∣

∣f
∣

∣

∣

∣ +
max

{

φb(s),max
{

φl(s, t),φr(s, t)
}}

. At initial, we have

θ±(s, 0) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, 0),φr(s, 0)
}}

±z(s, 0)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s)
}

± φb(s) ≥ 0.

For x = 0, we have

θ±(0, t) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(0),max
{

φl(0, t),φr(0, t)
}}

±z(0, t)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φl(t)
}

± φl(t) ≥ 0.

For x = 1, we have

Kθ±(1, t) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(1),max
{

φl(1, t),Kφr(1, t)
}}

±Kz(1, t)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φr(1, t)
}

± φr(1, t) ≥ 0.

For 0 < s < 1, we have

Lθ±(s, t)

= θ±t (s, t)− εθ±ss (s, t)+ a(s, t)θ±(s, t),

=
[

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
]

t

−ε
[

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
]

ss

+a(s, t)
(

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
)

= max
{

φl t(s, t),φr t(s, t)
}

± zt(s, t)− εmax
{

φbss(s),φl ss(s, t),φr ss(s, t)
}

±− εuss(s, t)+ αα−1
∣

∣

∣

∣f
∣

∣

∣

∣+ αmax
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

±αz(s, t)

≥ 0,

where ε > 0, a(s, t) ≥ α > 0. This implies that Lθ±(s, t) ≥
0. Hence, by Lemma 1, we have, θ±(s, t) ≥ 0, ∀(s, t) ∈ D̄,

which indicates

z(s, t) ≤ α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s),max
{

φl(s, t),φr(s, t)
}}

. �

The sufficient conditions for the existence of a unique solution is

given in Lemma 3 and Theorem 1.

Lemma 3. If the coefficient satisfies a(s, t), f (s, t) ∈ C0(D̄)

and boundary conditions satisfies φl ∈ C1([0,T]),φb ∈
C(2,1)(Ŵb),φr ∈ C1([0,T]) and suppose that the compatibility

conditions are satisfied. Then, the problem (Equation 1) has a

unique solution z(s, t) which is satisfy z(s, t) ∈ C(2,1)(D̄).

Proof. Refer to Ladyženskaja et al. [23] �

To estimate the error for the fitted numerical technique below,

the idea that the solution of Equation (1) is more regular than

the one guaranteed by using the result in Theorem 1. To attain

this greater regularity, stronger compatibility conditions are

imposed at the corners.

Theorem 1. If the coefficient satisfies a(s, t), f (s, t) ∈ C(2,1)(D̄)

and boundary conditions satisfies φl ∈ C2([0,T]),φb ∈
C(4,2)(Ŵb),φr ∈ C2([0,T]), Then the problem (Equation 1)

having a unique solution z which satisfies z ∈ C(4,2)(D̄). And

also the derivatives of solution z are bounded, ∀i, j ∈ Z ≥ 0 such

that 0 ≤ i+ 2j ≤ 4,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz

∂si∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cε
−i
2 .

Proof. The boundedness of the solutions and its derivative is

given as follows. Under the stretched transformation s̃ = s√
ε

problem (Equation 1) can be rewritten as























Lz̃(s̃, t) =
(

−ε ∂2

∂ s̃2
+ ∂

∂t + ã(s̃, t)
)

z̃(s̃, t) = f (s̃, t), (s̃, t) ∈ D̃ε

z̃(s̃, t) = φl(s̃, t), (s̃, t) ∈ Ŵ̃l

Kz̃(s̃, t) = z̃(1, t)− ε
∫ 1
0 g(s)z̃(s̃, t)ds = φr(s̃, t), (s̃, t) ∈ Ŵ̃r

z̃(s̃, t) = φb(s̃, t), (s̃, t) ∈ Ŵ̃b

(2)
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where D̃ε = (0, 1√
ε
)× (0,T), and the boundary condition Ŵ̃ to

Ŵ, where Equation (2) is independent of ε. Then, by taking the

idea of estimation (10.6) of Ladyženskaja et al. [23] (p. 352), we

will obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz̃

∂ s̃i∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ñδ

≤ C
(

1+ ||z̃||Ñ2δ

)

,

∀ Ñδ in D̃ε . Here, Ñδ , δ > 0 is a neighborhood with diameter δ

in D̃ε . Returning to the original variable

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz

∂ s̃i∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

D̄

≤ Cε
−i
2
(

1+ ||z||D̄
)

.

Hence, the proof is complete by using the bound on z of

Lemma 2. �

The bounds of the derivatives of the solution given in Theorem 1

were derived from classical results. They are not adequate for the

proof of the ε -uniform error estimate. Stronger bounds on these

derivatives are now obtained by a method originally devised in

Shishkin [24]. The main idea is to decompose the solution z into

smooth and singular components.

Lemma 4. If the coefficient satisfies a(s, t), f (s, t) ∈ C(4,2)(D̄),

and the boundary conditions satisfies φl ∈ C(3)([0,T]),φb ∈
C(6,3)(Ŵb),φr ∈ C(3)([0,T]). Then we have

‖ ∂ i+jv

∂si∂tj
‖D̄ ≤ C

(

1+ ε1−i/2
)

, (s, t) ∈ D

|∂
i+jwl

∂si∂tj
| ≤ Cε

−i
2 e

s√
ε , (s, t) ∈ D

|∂
i+jwr

∂si∂tj
| ≤ Cε

−i
2 e

−(1−s)√
ε , (s, t) ∈ D

where C is a constant independent of parameter ε, (s, t) ∈
D̄, i, j ≥ 0, 0 ≤ i+ 2j ≤ 4.

Proof. For proof, the interested reader can refer to Elango et al.

[21]. �

3. Numerical scheme

3.1. Spatial semi-discretization

The fundamental idea of non-standard discrete modeling

techniques is the development of the exact finite difference

technique. Micken presented methods and rules for developing

nonstandard FDMs for various types of problems [25]. To

develop a discrete scheme in keeping with Mickens’ guidelines,

the denominator characteristic for the discrete derivatives

should be described in terms of more complicated functions

with larger step sizes than those used in classical methods. These

complicated functions are a general property of the method

that may be useful when constructing dependable methods for

such problems.

To construct a genuine finite difference scheme for the

problem of the form in Equation (1), we use the methods

described in Woldaregay and Duressa [26]. The constant

coefficient given in Equation (3) without the time variable is

considered as follows.

− ε
d2z(s)

ds2
+ az(s) = 0. (3)

By solving Equation (3), we obtain two independent solutions

eµ1s and eµ2s, where

µ1,2 = ±
√

α/ε.

The spatial domain [0, 1] is discretized on uniform

mesh length 1s = h as follows. DN =
{

si = s0 + ih, i = 1(1)N, s0 = 0, sN = 1, h = 1/N
}

, N is

taken as number of mesh points in the spatial discretization.

The approximate solution of z(si) will be denoted by Zi. Here,

the main aim is to compute difference equations that have

similar results with the problem (Equation 1) at the mesh point

si which is given by Zi = B1e
µ1si + B2e

µ2si . Applying the

procedures given in Mickens [25], we get

det







Zi−1 exp
(

µ1si−1
)

exp
(

µ2si−1
)

Zi exp (µ1si) exp (µ2si)

Zi+1 exp
(

µ1si+1
)

exp
(

µ2si+1
)






= 0. (4)

After simplification, Equation (4) becomes

Zi−1 − 2 cosh

(
√

α

ε
h

)

Zi + Zi+1 = 0. (5)

which is an exact difference scheme for Equation (3).

By performing some arithmetic manipulation and making

rearrangement on Equation (5) for the variable coefficient

problem, we obtain

− ε
Zi+1 − 2Zi + Zi−1

λ2i

+ aiZi = 0. (6)

The denominator function λ2i becomes

λ2i = 4

β2
i

sinh2
(

βi

2
h

)

, (7)

where λ2 is a function of ε,βi, h, and βi =
√

ai
ε .

For more information about nonstandard finite difference

methods for reaction diffusion problems, an interested reader

can refer to the study of Munyakazi and Patidar [27].

By using Equation (7), and applying the nonstandard finite

difference method to a semi-discrete problem, we have

dZi(t)

dt
− ε

Zi+1(t)− 2Zi(t)+ Zi−1(t)

λ2i (ε, h, t)
+ aiZi(t) = f (si, t). (8)
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with boundary conditions



























Zi = φl i(t), i = 0,

Zi = φb, i = 1(1)N − 1,

K
NZN = ZN7− ε

∑N
i=1

gi−1Z
j+1
i−1 + 4giZ

j+1
i + gi+1Z

j+1
i+1

3
h = φrN , i = N.

(9)

Here, for i = N, the integral boundary condition
∫ 1
0 g(s)z(s)ds approximated by composite Simpson’s

integration rule.

∫ 1

0
g(s)z(s)ds =

h

3



g(0)z(0)+ g(N)z(N)+ 2

N−1
∑

i=1

g(s2i)z(s2i)

+ 4

N
∑

i=1

g(s2i−1)z(s2i−1)





= φr . (10)

Substituting Equation (10) in to Equation (9), we obtain

z(N)− h

3



g(0)z(0)+ g(N)z(N)+ 2

N−1
∑

i=1

g(s2i)z(s2i)

+4

N
∑

i=1

g(s2i−1)z(s2i−1)



 = φr . (11)

Equation (11) can be rewritten as

−4εh

3

N
∑

i=1

g(s2i−1)z(s2i−1)−
2εh

3

N−1
∑

i=1

g(s2i)z(s2i)

+
(

1− εh

3
g(N)

)

z(N) = φr +
εh

3
g(0)z(0).

Assume that the approximation of z(si, t) is denoted as Zi(t),

by using the non-standard finite difference approximation. At

this level, Equation (1) is reduced in the form of semi-discrete

as follows.











































LhZi(t) = dZi(t)
dt

−ε
Zi+1(t)− 2Zi(t)+ Zi−1(t)

λ2i (ε, h, t)
+ aiZi(t) = f (si, t),

Zi(0) = φb(si),

Z0(t) = φl(0, t),

KZN (t) = φr(N, t).

(12)

Equation (12) is the system of IVPs and its compact form is

written as

dZi(t)

dt
+ BZi(t) = Fi(t), (13)

where B is (N − 1)× (N − 1) tridiagonal matrix, Zi(t) and Fi(t)

are (N − 1) entries of the column vector. The entries of B and F

respectively given as























bi,i = 2ε
λ2i (ε,h,t)

+ a(si), i = 1(1)N − 1

bi,i−1 = − 2ε
λ2i (ε,h,t)

, i = 2(1)N − 1

bi,i+1 = − 2ε
λ2i (ε,h,t)

, i = 1(1)N − 1,

and























F1(t) = f1(t)−
(

a(s1)+ 2ε
λ21(ε,h,t)

)

φl(0, t),

Fi(t) = fi(t), i = 2(1)N − 1

FN−1(t) = fN−1(t)− 2ε
λ2N−1(ε,h,t)

φrN (t)

3.2. Stability and convergence analysis

Here, we present the maximum principle and uniform

stability estimate of the semi-discrete operator Lh and its

convergence analysis.

Lemma 5. (Semi-discrete Maximum Principle): Assume that

Z0(t) ≥ 0, KZN (t) ≥ 0. Then LhZi(t) ≥ 0 ∀ i = 1(1)N − 1,

implies that Zi(t) ≥ 0 ∀ i = 0(1)N.

Proof. Assume there exists q ∈ {0, · · · ,N} such that Zq(t) =
min0≤i≤N Zi(t). Suppose Zq(t) ≤ 0, which implies q 6= 0,N.

Also, we have Zq+1−Zq > 0 and Zq−Zq−1 < 0. Here, we have

LhZq(t) =
dZq(t)

dt
− ε

Zq+1(t)− 2Zq(t)+ Zq−1(t)

λ2q
+ aqZq(t).

By using the above assumption, we get that LhZi(t) < 0, for

i = 1(1)N − 1. Thus, the assumption Zi(t) < 0, i = 0(1)N is not

correct. Hence, Zi(t) ≥ 0 ∀ i = 0(1)N. �

This Lemma 5 is used to obtain the bounds of the discrete

solution given in Lemma 6. In general, the discrete maximum

principle is widely used to show the boundedness and positivity

of a discrete solution.

Lemma 6. The solution Zi(t) of the semidiscrete problem in

Equations (12) or (13) satisfies the following bound.

∣

∣Zi(t)
∣

∣ = 1

α
max
i

∣

∣

∣
LhZi(t)

∣

∣

∣
+max

i

{

φb(si), max
i

{

φl(si, t),φr(si, t)
}

}

.

Proof. Suppose q = 1
α maxi

∣

∣

∣
LhZi(t)

∣

∣

∣
+

maxi
{

φb(si), maxi
{

φl(si, t),φr(si, t)
}}

and define a comparison

function θ±i (t) as

θ±i (t) = q± Zi(t).
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For the points on the boundary, we have

θ±0 (t) = q± Z0(t) = q± φl(0, t) ≥ 0,

KNθ±N (t) = q±KNZN (t) = q± φr(1, t) ≥ 0.

For 1 ≤ i ≤ N − 1, we have

Lhθ±i (t) = d(q± Zi(t))

dt

− ε

(

q± Zi−1(t)− 2(q± Zi(t))+ q± Zi+1(t)
)

λ2

+ ai(q± Zi(t))

= aiq± LhZi(t)

= ai

(

α−1max
i

∣

∣

∣
LhZi(t)

∣

∣

∣

+ max
i

{

φb(si), max
i

{

φl(si, t),φr(si, t)
}

})

± fi,j

≥ 0, since ai ≥ α.

From Lemma 5, we get, θ±i (t) ≥ 0, ∀ (si, t) ∈ �̄N
x × (0,T). �

Next, we present the convergence analysis of spatial

discretization. We denoted Zi(t) as approximate solution

for the spatial semidiscretization to the exact solution z(s, t) at

s = si , i = 0(1)N. Let us define the backward and forward finite

differences in space as:

D−z(si, t) =
z(si, t)− z(si−1)

h
, D+z(si, t) =

z(si+1, t)− z(si, t)

h
,

respectively, and the second order central finite difference

operator as

δ2z(si, t) = D+D−z(si, t) =
D+z(si, t)− D−z(si, t)

h
.

Lemma 7. Let N be a fixed mesh. Then, for ε → 0, we have

lim
ε→0

max
1≤i≤N−1

exp(−psi/
√

ε)

εm/2
= 0 and

lim
ε→0

max
1≤i≤N−1

exp(−p(1− si)/
√

ε)

εm/2
= 0.

wherem = 1, 2, 3, · · · .

Proof. Refer to Munyakazi and Patidar [27]

Theorem 2. Let the coefficient function a(s) and the

function f (s, t) in Equation (12) be sufficiently smooth

and z(s, t) ∈ C4
(

D̄
)

. Then the semidiscrete solution Zi(t) of

Equation (12) satisfies

∣

∣

∣
Lh (z(si, t)− Zi(t)

)

∣

∣

∣
≤ Ch2.

Proof. The truncation error in spatial direction is considered as

L
h
(

z(si, t)− Zi(t)
)

= L
hz(si, t)− L

hZi(t)

= −ε
d2

ds2
z(si, t)+

D+
s D

+
s h

2

λ2
z(si, t)

= −ε
d2

ds2
z(si, t)+

ε

λ2

(

h2
d2

ds2
z(si, t)+

h4

12

d4

ds4
z(si, t)

)

. (14)

Note that we have used Taylor expansions of zi−1(t) and

zi+1(t). A truncated Taylor expansion of 1
λ2

of order five

becomes

1

λ2
= β2

4

(

4

β2h2
− 1

3
+ β2h2

60

)

. (15)

Using Equation (15) in Equation (14), we obtain

Lh (z(si, t)− Zi(t)
)

= ε

12

(

d4

ds4
z(si, t)− β2 d2

ds2
z(si, t)

)

h2

+ εβ2h4

(

β2

240

d2z(si, t)

ds2
− 1

144

d4z(si, t)

ds4

)

+ h6
εβ4

2880

d4z(si, t)

ds4
.

(16)

We use Lemma (7), to obtain the boundedness of Equation (16).

Using Lemma (7) and Theorem (1), we obtain

∣

∣

∣
Lh (z(si, t)− Zi(t)

)

∣

∣

∣
≤ CN−2.

The truncation error at s = sN , become

KN (Z(si)− z(si)
)

= KNZ(sN )−KN s(si),

= φr −KNZ(sN ),

= Kz(si)−KNZ(sN ),

= z(sN )− ε

∫ 1

0
g(s)z(s)ds−

(

Z(sN )− ε

∫ sN

s0

g(s)z(s)ds

)

,

= ε

∫ sN

s0

g(s)z(s)ds− ε

N
∑

i=1

gi−1zi−1 + 4gizi + gi+1zi+1

3
h,

= ε

[∫ s1

s0

g(s)z(s)ds+
∫ s2

s1

g(s)z(s)ds+ · · · (17)

+
∫ sN+1

sN

g(s)z(s)ds

]

−ε

[

g0z0 + 4g1z1 + g2z2

3
h+ · · ·

+ gN−1zN−1 + 4gNzN + gN+1zN+1

3
h

]

,

∣

∣

∣
KN (Z(si)− z(si)

)

∣

∣

∣

=
∣

∣

∣
Cε

(

h4z(4)(ξ1)+ h4z(4)(ξ2)+ · · · + h4z(4)(ξN )
)∣

∣

∣
,

∣

∣

∣
KN (Z(si)− z(si)

)

∣

∣

∣

≤ Cεh4
(

z(4)(ξ1)+ z(4)(ξ2)+ · · · + z(4)(ξN )
)

,

≤ Cεh4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d4z(ξi)

dx4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Ch2 = CN−2. �
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Theorem 3. The semidiscrete solutions satisfy the uniform

error bound

sup
0<ε≪1

max
i

∣

∣z(si, t)− Zi(t)
∣

∣

D̄ ≤ CN−2. (18)

Proof. The proof follows from Theorem (1) and Lemma (7)

under the properties of boundedness of a semi-discrete solution

and the required bound is satisfied.

3.3. Temporal discretization

A mesh with length 1t = tj+1 − tj, j = 0(1)M − 1

is constructed on the time domain Dt = [0,T], where M

is a positive integer. The IVPs Equation (13) are discretized

using the implicit Euler method on a uniform mesh. By

denoting the approximation of zi(tj) as Z
j
i , we construct the time

discretization as follows.

Z
j
i − Z

j−1
i

1t
= BZ

j
i + F

j
i (19)

with the initial condition Z0(t) = φl(tj), and by rearranging

Equation (19), we obtain

Z
j
i = [I + 1tB]−1

[

1tF
j
i + Zi−1

i

]

. (20)

Lemma 8. Suppose

∣

∣

∣

∣

∂ iz(s,tj)

∂ti

∣

∣

∣

∣

≤ C, ∀(s, t) ∈ D̄, i = 0, 1, 2. Then

the local truncation error associated with the time direction

satisfies
∣

∣ej
∣

∣ ≤ C(1t)2.

Proof. The local truncation error is defined as

ej = z(tj)− Z
j
i

= z(tj)− [I + 1tB]−1
[

1tF
j
i + Z

j−1
i

]

.

Using Taylor expansion, we obtain z(tj−1) as

z(tj−1) = z(tj)−1tzt(tj)+
(1t)2

2
ztt(tj)+

(1t)3

3!
zttt(tj)+O((1t)4).

However, zt(tj) = F(tj)− B(tj)z(tj). Thus,

z(tj−1) = z(tj)− 1t[F(tj)− B(tj)z(tj)]+
(1t)2

2
ztt(tj)

+ (1t)3

3!
zttt(tj)+O((1t)4).

Now, the local truncation error ej becomes

ej = z(tj)− [I + 1tB]−1
[

1tF
j
i + Z

j−1
i

]

= z(tj)− [I + 1tB]−1

[

[I + 1tB(tj)]z(tj)+
(1t)2

2
ztt(tj)+ · · ·

]

= [I + 1tB]−1

[

(1t)2

2
ztt(tj)−

(1t)3

3!
zttt(tj)+O((1t)4)

]

.

Since the matrix B is invertible, using the relation (1t)2 > (1t)3

for small 1t and z(tj) ≤ C , we obtain

∣

∣

∣

∣ej
∣

∣

∣

∣ ≤
∣

∣

∣

∣[I + 1tB]−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1t)2

2
ztt(tj)−

(v)3

3!
zttt(tj)+O((1t)4)

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣[I + 1tB]−1
∣

∣

∣

∣ (1t)2 ≤ C(1t)2.

�

Lemma 9. The global error estimate in the time direction is

given by
∣

∣

∣

∣Ej+1
∣

∣

∣

∣ ≤ C1t, ∀j ≤ T/1t, where Ej+1 =
maxi

∣

∣Zi(tj+1)− Zi,j+1
∣

∣

D
.

Proof. The global error estimate at (j+1)th time step is obtained

by using the local error estimate up to jth time step as follows.

∣

∣

∣

∣Ej+1
∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i=1

ej

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j ≤ T/1t

≤ ||e1|| + ||e2|| + ||e3|| + ||e4|| + · · · +
∣

∣

∣

∣ej
∣

∣

∣

∣

≤ C1(j1t)1t

≤ C1T1t since j1t ≤ T

≤ C1t.

Hence,
∣

∣

∣

∣

∣

∣
Ej+1

∣

∣

∣

∣

∣

∣
= max

i

∣

∣

∣
Zi(tj+1)− Z

j+1
i

∣

∣

∣

D
≤ C1t. (21)

where C is a positive constant independent of ε and 1t. By

taking the supremum ∀ ε ∈ (0, 1], we obtained

sup
0<ε≪1

max
i

∣

∣

∣
Zi(tj+1)− Z

j+1
i

∣

∣

∣

D
≤ C1t. (22)

�

We summarizes the results of this work by considering the error

estimate obtained in Equations (18) and (22) and we conclude

by the following theorem.

Theorem 4. The error estimate for the solution of the

continuous and fully discrete problems is given by

sup
0<ε<<1

max
0≤i≤N

max
0≤i≤M

∣

∣

∣

∣

∣

∣
z(s, t)− Z

j+1
i

∣

∣

∣

∣

∣

∣
≤ C

(

N−2 + 1t
)

,

where z(s, t) and Z
j+1
i are the solutions to problems Equations

(1) and (12), respectively.

Proof. The error estimation of the fully discrete scheme is given

as follows.

sup
ε

max
i,j

∣

∣

∣
z(si, tj)− Z

j
i

∣

∣

∣
= sup

ε
max
i,j

∣

∣

∣
z(si, tj)− Zi(tj)+ Zi(tj)− Z

j
i

∣

∣

∣

≤ sup
ε

max
i,j

∣

∣z(si, tj)− Zi(tj)
∣

∣+ sup
ε

max
i,j

∣

∣

∣
Zi(tj)− Z

j
i

∣

∣

∣
.

Then, by combining the bound given in Theorem 3 and

Lemma 9, the theorem gets proved.
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FIGURE 1

3-D graph of numerical solution for Example (1) which displays the existing layer. (A) ε = 10−2. (B) ε = 10−12.

FIGURE 2

3-D graph of numerical solution for Example (2) that displays the existing layer. (A) ε = 10−2. (B) ε = 10−12.

4. Numerical examples, results, and
discussions

Here, we developed an algorithm for the proposed method

for the problem and perform experiments to validate the

theoretical justifications and results. Since the exact solutions

of the given examples are not known, we use double mesh

techniques to obtain the maximum pointwise error of the

developed scheme. Now, let UN,1t be a conducted solution of

a problem using mesh points N and time step size 1t. Again,

U
2N,1t/2
i,j be a conducted solution on double mesh points of 2N

and half of time step size 1t/2.

We calculate the maximum absolute error as EN,1t
ε =

maxi,j

∣

∣

∣
ZN,1t
i,j − Z

2N,1t/2
i,j

∣

∣

∣
, and the parameter uniform error

estimate by using EN,1t = maxε
(

EN,1t
ε

)

. We calculate

the rate of convergence of the developed scheme by using

PN,1t
ε = log2(E

N,1t
ε ) − log2(E

2N,1t/2
ε ). The parameter rate

of convergence is calculated as PN,1t = log2(E
N,1t) −

log2(E
2N,1t/2).

Example 1.







































∂z(s,t)
∂t − ε

∂2z(s,t)
∂s2

+ 1+s2

2 z(s, t) = e−t − 1

+ sin(π s), (s, t) ∈ (0, 1)× (0, 1]

z(s, 0) = 0, s ∈ (0, 1),

z(0, t) = 0, t ∈ (0, 1],

Kz(1, t) = z(1, t)− ε
∫ 1
0

s
6 z(s, t)ds = 0, t ∈ (0, 1].
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TABLE 1 Maximum absolute error and rate of convergence of the scheme for Example (1).

ε N = 32 N = 64 N = 128 N = 256 N = 512

↓ 1t = 0.1 1t = 0.1/4 1t = 0.1/42 1t = 0.1/43 1t = 0.1/44

10−6 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−8 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−10 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−12 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−14 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

EN,1t 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

PN,1t 1.8951 1.9645 1.9859 1.9938 -

TABLE 2 Maximum absolute error and rate of convergence of the scheme for Example (2).

ε N = 32 N = 64 N = 128 N = 256 N = 512

↓ 1t = 0.1 1t = 0.1/4 1t = 0.1/42 1t = 0.1/43 1t = 0.1/44

10−6 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−8 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−10 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−12 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−14 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

EN,1t 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

PN,1t 1.5354 1.8919 1.9736 1.9935 -

Example 2.



























∂z(s,t)
∂t − ε

∂2z(s,t)
∂s2

+ 1+s2

2 z(s, t) = t3, (s, t) ∈ (0, 1)× (0, 1]

z(s, 0) = 0, s ∈ (0, 1),

z(0, t) = 0, t ∈ (0, 1],

Kz(1, t) = z(1, t)− ε
∫ 1
0 cos(s)z(s, t)ds = 0, t ∈ (0, 1].

The solutions of the above two examples exhibit strong

boundary layers near x = 0 and x = 1. We presented the

surface plots for numerical solutions of Examples 1 and 2 in

Figures 1, 2 respectively, which display the presence of boundary

layers formation on the left and right side of the spatial domain

for different values of ε. The maximum pointwise error and

rate of convergence of the proposed schemes of Examples 1

and 2 are given in Tables 1, 2 respectively for various values of

the perturbation parameter ε, mesh number N and time step

size 1t. From these tables, one can observe that the developed

scheme is parameter uniform convergent, which supports the

theoretical results. Figure 3 indicates the Log-Log plots for the
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FIGURE 3

The Log-Log plot of the maximum absolute error for di�erent values of ε for Examples 1 and 2, respectively. (A) Log-Log plot for Example (1). (B)

Log-Log plot for Example (2).

maximum absolute error vs. mesh number N for the singular

perturbation parameter ε. One can observe that as ε goes very

small, the developed method converges uniformly independent

of the perturbation parameter ε.

5. Conclusion

This paper investigates a numerical treatment for a class of

singularly perturbed parabolic partial differential equations of

the reaction-diffusion type with nonlocal boundary conditions.

To solve the problem at hand, we employed the method of

lines. A nonstandard finite difference scheme is used to semi-

discretize the spatial direction, and the implicit Euler method

is used to discretize the results of initial value problems. To

deal with the integral boundary condition, we used a composite

Simpson’s 1
3 rule. The stability of the evolved numerical

scheme is established, and the scheme’s uniform convergence is

demonstrated. To validate the problem’s applicability, two test

examples are carried out for numerical computation for different

values of the perturbation parameter ε and mesh points. The

entire procedure has been demonstrated to be second-order

uniformly convergent in the spatial direction and first-order in

the temporal direction. The theoretical estimation is reflected in

our numerical results.
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With the enormous usage of digital media in almost every sphere from

education to entertainment, the security of sensitive information has been a

concern. As images are themost frequently usedmeans to convey information,

the issue related to the privacy preservation needs to be addressed in each

of the application domains. There are various security methods proposed by

researchers from time to time. This paper presents a review of various image

encryption schemes based on fractional integral transform. As the fractional

integral transforms have evolved through their applications from optical signal

processing to digital signal and digital image processing over the decades.

In this article, we have adopted an architecture and corresponding domain-

based taxonomy to classify various existing schemes in the literature. The

schemes are classified according to the implementation platform, that may

be an optical setup comprising of the spatial modulators, lenses, and charge-

coupled devices or it can be a mathematical modeling of such transforms.

Various schemes are classified according to the methodology adopted in

each of them and a comparative analysis is also presented in tabular form.

Based on the observations, the work is converged into a summary of various

challenges and some constructive guidelines are provided for consideration

in future works. Such a narrative review of encryption algorithm based on

various architectural schematics in fractional integral transforms has not been

presented before at one place.

KEYWORDS

fractional integral transform, image encryption, double random phase encoding,

discrete fractional Fourier transform, robust encryption

Introduction

Fractional transforms are the generalization of full transforms which we refer to as

ordinary transforms in a more generic sense. Interestingly, the idea of fractional order

in a transform first came into existence in 1695 during discussions between Leibnez

and L’ Hospital [1]: “Can the meaning of derivatives with integer order be generalized

to derivatives with non-integer orders?” The question that was put up more than 300

years ago did not get a solution till the work on fractional calculus got explored. Later

Jean-Baptiste Joseph Fourier in 1807 made important contributions to the study of
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trigonometric series and claimed that a periodic signal could

be represented by a series of harmonically related sinusoids

for the solution of 1D problems. Thus, the well-known Fourier

transform is named in honor of Joseph Fourier for his significant

contribution and application of the Fourier transform (FT) in

many scientific disciplines. However, with the ever-expanding

scope of research, it was found that FT has some shortcomings.

As it is a holistic transform, the time domain signal is converted

to the frequency domain and therefore is able to analyze only

time-invariant signals. In other words, it is not possible to obtain

a local time-frequency analysis which is pivotal for processing

a time-variant or nonstationary signal. Thus, fractional Fourier

transforms (FrFT), Short time Fourier transform (STFT),

Wigner-Ville distribution, Wavelet transform, Gabor transform

etc. were proposed as an alternative.

The initial work on fractional transform by Namias [2]

presented a theory on fractional powers of Fourier transform

and its application to quantum mechanics. The formal

mathematical elaboration to Namias’s theory was given by Mc

Bride and Kerr [3]. Later, Lohmann [4] illustrated the relation

of FrFT to Wigner rotation and image rotation. Almeida [5]

further elaborated the concept by proposing a time-frequency

representation of FrFT. Further, Ozakatas and Mendelovic

proposed optical implementation and interpretation of FrFT

[6–8]. With the evolution of digital channels, the digital

computation of FrFT [9] and its discrete version [10] gave

a new perspective to the application of FrFT in optical

signal processing and related applications [11]. Pei et al.

[12] established a relationship between FrFT and Discrete

fractional Fourier transform (DFrFT) using Hermite eigen

vectors based on the postulate in [13]. Various methods of

DFrFT representations are given [14–16] with the extension to

other similar transform domains [17–20]. We won’t elaborate

much on the mathematical details of the transforms here,

interested readers may refer to above-mentioned references

for the mathematical aspect of integral transforms and more

specifically fractional Fourier transform and its variants.

However, we give a conceptual description of the definition

of fractional integral transforms. The term “fractional” in a

transform indicates that some parameter has non-integer value.

We can define any integral transform of the input function, f (x)

using any transform operator, as:

T
[

f (x)
]

(u) =
∫ ∞

−∞
K (x, u) f (x) dx (1)

where K (x, u) is operator kernel. For example, in Fourier

transform, K (x, u) = exp (−i2πux) . If it is a fractional

transform then the operator is denoted as Tα with ‘α’ as a

parameter of fractionalization. Therefore,

Tα
[

f (x)
]

(u) =
∫ ∞

−∞
K (α, x, u) f (x) dx (2)

For instance, continuous fractional Fourier transform is the

generalization of a continuous Fourier transform. The ath order

continuous fractional Fourier Transform of a function, y(t), is

given as:

Yα (u) =
∫ +∞

−∞
Qa (u, t) y(t)dt (2.a)

where Qa (u, t) is transform kernel given by

Qa (u, t) =
√

1− jcotα.ejπ(t
2cotα−2tucsc(α)+u2cotα)

=
∞
∑

k=0

exp

(

− jkαπ

2

)

ψk (t) .ψk (u) (2.b)

ψk (t) is kth-order Hermite Gaussian function , α = aπ/2

ψk (t) =
2
1
4

√

2k k!
Hk

(√
2π t

)

e−π t
2

(2.c)

where Hk is k
th Hermite polynomial with k real zeros.

For the discrete version of these fractional transforms, the

postulate of discrete Fourier transform (DFT) is followed. As,

N × N DFT matrix F is defined as

Fkn = 1√
N

e−
j2π
N .kn 0 ≤ k, n ≤ N − 1 (2.d)

where N is the length of the input sequence. Thus, αth order

N × N DFRFT matrix is defined [12] as:

Fα = V 3a VT

=



















N−1
∑

k=0
e−

jπ
2 kavkv

T
k
, for N : odd

N−2
∑

k=0
e−

jπ
2 kavkv

T
k
+ e−

jπ
2 NavNv

T
N , for N : even

(3)

where V =
[

v1 v2 . . . vN−2 vN−1
]

for N : odd and V =
[

v1 v2 . . . vN−2 vN
]

for N : even, vk is kth-order Hermite-

gaussian like eigenvector,3 is a diagonal matrix with its diagonal

entries corresponding to eigenvalues of each column vector

vk . However, there are certain properties [2, 6, 7] that are

desirable for fractional integral transform used in Eq. (2). Some

of them are:

1. The fractional transform has to be continuous for any real

value of the parameter, ‘α’.

2. It should be additive: Tα1+α2 = Tα1Tα2 .

3. It should be reproducible for full transform if the

parameter is replaced by integer values.

4. For α = 1, it should give T1 = T, a full transform.

5. For α = 0, it should give T0 = I, an identity matrix.

6. From the additivity property,

∫ ∞

−∞
K (α1, x, u) .K(α2, y, u)du = K

(

α1 + α2, x, y
)

(4)
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TABLE 1 Various fractional integral transforms.

Frequently used Less frequently used

Fractional Fourier Transforms

[15, 21–46]

Fractional Riesz Transforms

Fractional Cosine Transform

[18, 20, 41, 47–49]

Fractional F-Kravchuk

Transform

Fractional Sine Transforms [18, 20] Fractional Cauchy

Transforms

Fractional Hartley Transforms [50–54] Fractional Slant Transform

Fractional Mellin Transforms [55–59] Fractional Stieltjes

Transforms

Fractional Angular Transform [60–64] Fractional Abel Transforms

Fractional Hadamard Transforms [19] Fractional Sumudu

Transforms

Fractional Gyrator Transform [65–71] Fractional Brownian

Transforms

Fractional Hilbert Transforms Fractional Walsh Transforms

Fractional Affine Transforms Fractional JigsawTransforms

Fractional Random Transforms Fractional Kekre Transforms

Fractional Hankel Transforms Fractional Schrodinger

Transforms

Fractional Radon Transforms Fractional Riemann

Derivative

Fractional Wigner Distribution Fractional Fokker-Plank

Equation

Fractional DCT Transforms Fractional Lagendre

Transform

Fractional Hilbert Transforms

Fractional Laplace Transforms

Fractional S –Transform

Fractional Wavelet Transforms [69, 72]

Fractional Dual Tree Complex Wavelet

Transform

Fractional Haar Transforms

Fractional Polar Harmonic Transform

It is likely to mention here that the fractional parameter in

a fractional Fourier transform refers to an angle of rotation

(Wigner distribution) [4]. In some references, the fractional

parameter is represented as α = aπ/2, where a : fractional

number. If the angle of rotation, α = 0, the transform

is said to be in purely time domain. If α = 1, it gives

the transformation to the frequency domain whereas if the

parameter is some fractional value then the transformation

output results in a collective time-frequency domain. Table 1

lists some of the fractional transforms that are used in various

applications of signal processing. Very few of them are used for

image encryption applications due to certain properties that are

required to be fulfilled for cryptographic applications.

Contributions and outline

The major contributions of this review article are

summarized as:

• Information regarding the background and evolution of

fractional integral transforms and their application in

image encryption.

• Detailed taxonomy on various methods and corresponding

architectural schematics for implementing these transforms

in different domains.

• A brief overview and recent developments in optical

transforms for image encryption with a tabulated

description of recent review articles and various

cryptanalytic strategies that are adopted to break

the encryption.

• Review recent articles on the digital implementation of

fractional integral transforms that have been merged with

other domains/schemes for enhanced of security. Each of

the classification is separately described and reviewed.

• The performance parameters adopted to evaluate an image

encryption scheme are also summarized for reference in the

comparative analysis of schemes.

• Based on the observations made in the review article, some

issues are highlighted along with some viable solutions.

A set of constructive guidelines are summarized that may

be helpful to future researchers in designing a robust

and highly sensitive encryption algorithm based on digital

implementation of these fractional integral transforms.

The paper is further organized into five more sections.

Section Taxonomy of fractional integral transforms provides

the taxonomy along with a description of each classification

and the review. Section Performance metrics for image

encryption elaborates on the performance measures of

encryption algorithms. Section Comparative analysis provides a

comparative analysis of the results of some recently proposed

articles. A summary on observations based on the literature

review is included in Section Observations based on published

literature. The review is concluded in Section Conclusion.

Taxonomy of fractional integral
transforms

The fractional integral transforms have evolved through

their applications from optical signal processing to digital

signal and digital image processing over the decades.

In this article, we have adopted an architecture and

corresponding domain-based taxonomy to classify various

existing schemes in the literature. The architecture can be

broadly classified on the bases of the platforms used for

implementation as shown in Figure 1. The platform can
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FIGURE 1

Classification of architectures for fractional transform-based image encryption.

be an optical setup that comprises of lenses, spatial light

modulators (SLM), and charge-coupled devices (CCD).

Another platform is based on the use of random phase masks

(RPM) in transforming image pixels. Yet another is a digital

platform, where mathematical modeling is followed to achieve

the transformation.

Optical data processing

Optical data processing got introduced almost four decades

before by Van der Lugt as an optical correlator which is based

on the usage of the thin lens to produce two-dimensional

Fourier transform of an image. This further led to the

invention of other more advanced optical and optoelectronic

processors. The classical methods for the realization of the

optical scheme are based on two architectures [73]: a 4f-

Vander Lugt (VL) and a joint transform correlator (JTC)

architecture. In both of these methods, the input image is

displayed in the form of transparency or as on SLM. With

the advancement in technology, SLMs that are used these

days are electrically addressed liquid crystal-based SLMs. The

randomness in phase is obtained with ground glass or with

a nonuniform coating of gelatine on glass plates. The RPMs

thus obtained are recorded on SLMs during encryption or

decryption. The outcome of a DRPE encryption is a random

noise-like pattern with complex nature. In order to record these

complex coefficients for storage and transmission, a holographic

technique is required. Although both architectures require two

RPMs to convert an image (amplitude or phase) to a stationary

random noise, JTC is considered superior to VLC architecture.

The VLC architecture requires conjugate RPMs and stringent

alignment for decryption, whereas JTC does not require these

two conditions and it is considered as alleviated from these

limitations. Hence, a JTC architecture is considered superior

to the VLC. To record the decrypted image, either a CCD

(charge-couple device) or a conjugate of input plane RPM is

used. In another method known as the optical phase conjugation

method [74], a conjugation of an encrypted image is obtained

with the use of optical phase conjugation in a photo-refractive

crystal through 4 wave mixing. This phase conjugation can

nullify the effect of RPM in the decryption process. A most

recent classical implementation of fractional Fourier transform

in terms of wave functions is presented in Weimann et al.

[75].

We provide a brief overview of the various optical setups that

are used for obtaining an optical transform of the scene or image.

These are categorized as:

• Holographic methods: Holography is based on using

an interference pattern generated by diffraction of the

light field in 3 dimensions. Their resultant 3D image

retains depth, parallax, and other such properties of the

scene. Thus, the hologram is an unintelligible pattern

formed by an image. Digital holography is further divided

into two categories, namely, off-axis digital holography
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and phase-shifting digital holography. Javidi et al. [76]

first presented a combined approach to providing image

security through Double Random Phase encryption

(DRPE) and holography. The author further extended his

work to 3D information encryption [77]. Some of the most

recent reviews are available in the literature [78, 79] that

give insight into the evolution of this scheme over the

last decade.

• Ptychography: It is based on coherent imaging generated

using multiple probes that generate multiple diffraction

patterns in a far field. Ptychography offers good quality of

both recovered amplitude and phase distribution. Similar

to holography, it also generates complex amplitude of the

object but it does not require any reference beam like

in holography. The application of Ptychography in image

encryption has been proposed by many researchers [80–82]

and most recently in [83, 84].

• Ghost imaging: It is also known as coherent imaging or

two-photon imaging or photon-correlated imaging. It is a

technique that produces an image formed by combining

effects from two light detectors: one from the multipixel

detector that does not view the object and another is

a single pixel detector that views the object. Clemente

et al. [85] proposed to use of ghost imaging for image

encryption. Some of the recent works [86, 87] are based on

a similar strategy.

• Diffractive imaging: It is referred to as imaging formed by a

highly coherent beam of wavelike particles like electrons, X-

rays, or other wavelike particles. The waves thus diffracted

from the object form a pattern which is recorded on

a detector. The pattern is used to reconstruct an image

with an iterative feedback algorithm. The advantage of

the absence of lenses is that the final image has no

aberrations and therefore resolution is only dependent

on the wavelength, aperture size, and exposure. The

application of diffractive imaging in image encryption is

proposed in Chen et al. [88], Quin et al. [89], He et al. [90]

and Hazer et al. [91].

• Polarization encoding: An optical plane wave is used to

illuminate the intensity key image and encoded into a

polarization state. It is then passed through a polarizer

(pixelated polarizer) to obtain the encrypted image.

Gopinathan et al. [92] proposed to use of polarization

encoding in image encryption. Some of the recent works

in encryption application are proposed in Wang et al. [93].

• Joint Transform Correlators: The joint power spectrum of

the plane image and key codes are the encrypted data in

the JTCs [94]. Joint correlator-based encryption uses the

same key code for decryption as used in encryption. This

is unlike a classical DRPE scheme where a conjugate key

is required. Many encryption schemes have been recently

proposed based on JTC in fractional transform domain

[65, 95].

• Phase retrieval method: In addition to the methods

described above, there is an iterative phase retrieval method

[96–98] wherein a digital approach is usually applied for

embedding the input image into phase-only mask(POM),

and either a digital or optical method is employed for

image decryption. The main objective of a phase retrieval

algorithm is to find either the correct or an estimate of POM

under some constraint for a measured amplitude. Phase

retrieval algorithms can be 2D or 3D. Unlike holographic-

based or diffractive imaging-based optical encoding, a

phase retrieval-based optical security system generates

POMs as ciphertexts. Various transform domains such as

FrFT and Gyrator transform can be employed in these

encoding schemes.

Advantages of optical encryption

1. Optical instruments such as SLM and lenses have inherent

characteristics of parallel processing.

2. Optical encryption methods possess multiple-dimensional

and multiple-parameter capabilities. The optical

parameters for security keys can be wavelength,

polarization, and phase.

3. For optical encryption, researchers require

multidisciplinary knowledge regarding optical signal

processing, image processing, optical theories, and

computer technologies as well.

Applications of optical signal processing

Fractional transforms and more precisely, fractional

Fourier transform have gained keen interest from researchers

in the area of optical signal processing. Thus, it is also

commonly referred to as “Fourier Optics” or “Information

optics.” Fractional transforms have a widespread application

in signal processing and image processing, in the area of time-

variant signal filtering, phase retrieval, image restoration,

pattern recognition, tomography, image compression,

encryption, and watermarking. This article focuses on

the image encryption application of various fractional

integral transforms.

DRPE model for image encryption

DRPE-based image encryption has its roots in the work of

Refregier and Javidi [21] where two random-phase functions

in fractional Fourier domains are used to encrypt input plain

image into stationary white noise. Hennelly and Sheridan

[99] have shown image encryption as random shifting in the

fractional Fourier domain. Unnikrishnan [22] has generalized

the DRPE scheme in the fractional Fourier domain. The DRPE
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architecture is most exhaustively used and explored in various

optical processing-based applications. The research community

has been continuously exploring the possibilities to improve the

security of DRPE [23, 50, 66, 67, 100] and has also successfully

extended the DRPE scheme to other linear canonical transforms

(LCTs) domains. Figure 2 shows the schematic architecture of

DRPE-based image encryption scheme. As shown in Figure 2,

there are two RPMs also known as POMs. One of the POM

is placed at the input plane and another is placed at the

Fourier plane. The POM1 at the input plane makes the input

signal/image white noise-like but nonstationary and POM2 at

the Fourier plane is also a white noise but is stationary. Let

POM1 at the input plane be exp(jφ
(

x, y
)

) and POM2 at Fourier

plane as exp(jϕ (µ, ν)), both being randomly distributed in the

range [0, 2π]. Therefore, wavefront after POM1 is given by

F (µ, ν) = FT
{

I
(

x, y
)

exp
(

jϕ
(

x, y
))}

(5)

where I
(

x, y
)

is input image in the spatial domain, FT denotes

a Fourier transform operation. The wavefront, F (µ,ϑ), gets

modified by POM2 in the Fourier domain and an inverse

Fourier (IFT) is performed over it. This gives a complex domain

wavefront as

C (ξ , η) = IFT{F (µ, ν) exp
[

jφ
(

µ, ν)
]}

(6)

The complex-valued coefficients are recorded on a CCD

in optical processing while the terms can be electronically

recorded in a computer. During the decryption/reverse process,

the complex domain wavefront is first transformed to POM2 as

F̂(µ, ν) = {FT
[

Ĉ (ξ , η)
]

{

exp
(

jφ (µ, ν)
)}∗

(7)

where ∗ represents a conjugate operation. IFT of Fourier

wavefront is obtained with POM1 conjugate as

Î
(

x, y
)

=
{

IFT
[

F̂ (µ, ν)
]}

{

exp
(

jϕ
(

x, y
))}∗

(8)

Thus, Î
(

x, y
)

is the decoded wavefront in the spatial domain.

DRPE schemes are broadly classified as (1) Amplitude-only

DRPE where decoding is done without using POM1. (2) Full-

phase DRPE where the input image is fully converted into

a full-phase map. This POM is used to encode images with

the DRPE procedure. The only difference is that the input

image is first normalized and converted into a phase image as

exp
[

jI
(

x, y
)]

before encoding. Details of each classification are

beyond the scope of this review work. However, it is likely to

mention that each POM at the input as well as Fourier domain

can be used as secret keys. This enlarges the key space thereby

enhancing security.

Previous review articles and contributed
evaluations

There are many review articles available in the literature

[101–103] that provide the evolution of classical DRPE-based

architecture. Some of the significant contributions in reviewing

fractional transforms are listed in Table 2. The contribution of

these reviews is summarized on various aspects and evaluations

included in them. Each review article is categorized according to

the evaluation of various schemes in the work. Whereas some

of these are based on just conceptual and theoretical aspects,

while others provide an evaluation of quantitative, qualitative,

comparative, applications, etc. We have nomenclated these

evaluations from E01 to E09 based on the criteria mentioned at

the bottom of Table 2.

This will give better clarity to the reader and future

researchers regarding various aspects discussed in each review. It

is not possible to include all the related work in this paper for the

sake of brevity. However, best efforts are put to include the most

recent developments in DRPE-based encryption schemes as

listed in Table 3. DRPE-based architecture has been extensively

used and is considered as an effective method. DRPE methods

require an RPM as the secret key that needs to be stored at the

receiver for decryption. Besides that, a careful alignment of the

RPM with received encrypted data has to be done. The inherent

property of linearity and symmetricity proves to be a bane of

encryption applications as the linearity may lead to vulnerability

to different types of attacks. Based on these vulnerabilities, some

of the recent works on cryptanalysis are summarized in Table 4.

Each reference is included with a short description of the work

and methodology adopted to cryptanalyze the security scheme.

Mathematical modeling of optical
transforms with FRFT and its variants

LCTs, time-frequency transforms, and fractional Fourier

transform (FrFT) are closely related. Since the application of

FrFT to signal processing is proposed [4, 5, 8], there has

been tremendous development in the application of FrFT

and its variants to image encryption. As fractional transform

orders serve as the secret key, the digital implementation is

particularly suitable for encryption applications [99]. Since

this work is mainly focused on the application of fractional

transform in image encryption only, we won’t elaborate the

mathematical eloquence behind the fractional transforms here.

This section specifically emphasizes the discrete realizations

(DFrFT) and their application to image encryption. There are

various methods proposed in the literature for the discretization

of fractional transforms; some of them are classified as shown in

Table 5 with pros and cons of each type. It is worth noting that

Table 5 includes only a fractional version of Fourier transform.

This is due to the fact that the fractionalization of LCTs started

with Fourier transform itself and later was extended to other

transform domains. The methods of discretization mentioned

below are therefore conceptually applicable to variants of

Fourier transforms as well, namely, Gyrator transform [57, 66],
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FIGURE 2

Architectural model for DRPE-based encryption scheme.

Mellin transform [25, 26, 58], Hillbert transform [137], Hartley

transform [17, 20], Hadamard transform [19], etc.

Figure 3 shows the basic architecture for fractional

transform-based image encryption that is digitally implemented

without an RPM in either domain (without DRPE). As depicted

in Figure 1, this method requires the knowledge of fractional

transform orders that are used along both dimensions within

a range [0,1]. The decryption is exactly similar to the forward

process and requires the same fractional orders but with

negative values to decrypt the image correctly. The encryption

is thus a symmetric scheme and a slight change in the key value

will result in incorrect decryption.

The major limitation of such a scheme is shorter key space

which makes it vulnerable to brute force attacks. The input

image is pre-processed for enhanced security and enlarging a

key space. The pre-processing can be a scrambling operation

that only shuffles the pixel positions to make the image,

unintelligible. In some cases, this pre-processing can be a

nonlinear operation that can be a substitution of pixel intensity

values. There are various schemes that employ either scrambling

[27–29, 47], substitution [30] or both [23, 48, 138] to enhance

the security. The following section includes all major schemes

that are proposed to improve the performance of fractional

transform-based image encryption. We have categorized them
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TABLE 2 Recent review articles on fractional transforms-based image encryption schemes.

Author[Ref] Year Description Evaluations done

Moreno and Ferreira

[101]

2010 On the usage of optical signal processing and its conceptual and theoretical

details

E01, E08

Sejdić et al. [104] 2011 On FrFT digital realizations and related application areas E01, E05, E06, E09

Saxena and Singh [105] 2013 On FrFT and its properties, versions in the discrete domain and some

application areas

E01, E05, E09

Chen et al. [102] 2014 On the advances in optical security, various optical signal processing

schemes illustrated

E01, E02, E06, E07, E08,

E09

Yang et al. [106] 2016 On fractional calculus and MATLAB functions defined for same, various

application areas reviewed

E01, E02, E05

Javidi et al. [103] 2016 On recent advances and challenges of optical security using free space

optics, cryptanalysis and road map to the development of secure theory in

optics.

E01, E02, E05, E06, E08,

E09

Guo and Muniraj [107] 2016 On the vulnerability of LCT-DRPE based encryption to COA with

numerical implementation

E01, E02, E03, E07, E08

Situ and Wang [108] 2017 A review on phase problems in optical imaging E01, E05, E07, E08, E09

Guo et al. [97] 2017 On recent development in iterative phase retrieval and application in

information security

E01, E02, E05, E07, E08,

E09

Kaurl and Kumar [109] 2018 On the latest developments in the meta-heuristic methods of image

encryption

E01, E02, E03, E04, E06,

E07, E09

Jinming et al. [110] 2018 On research progress in theory and applications of fractional Fourier

transform

E01, E02, E05, E06, E07

Gadhrili et al. [111] 2019 On different algorithms for color image encryption E02, E03, E04

Jindal and Singh [112] 2019 On the applications of fractional transforms in image processing E04, E07

Gómez-Echavarría et al.

[113]

2020 On the applications of fractional Fourier transform in biomedical signal

processing

E01, E05

E01, Conceptual and Theoretical; E02, Quantitative; E03, Qualitative; E04, Comparative on results; E05, Applications explored; E06, Vulnerabilities; E07, Architecture; E08, DRPE based;

E09, Mathematical details.

in accordance with the strategical amalgamation of scheme

with fractional transform domain. The schemes proposed in

the literature are nomenclated in eight major categories (T01–

T08). Each amalgamated scheme is reviewed separately. This

portion of review article is elaborated as our emphasis is on

the digital implementation of fractional integral transforms for

image encryption.

Reality preserving with optical transform
domain (T01)

The optical transform results in complex coefficients output

corresponding to a real domain input image. Although it is

easy to process these complex coefficients with a holography

method but in a digital domain, it requires two images to be

processed in the encrypted domain, one for real terms and

other for imaginary terms. Therefore, storage and transmission

increase complexity and overhead in digital channels. To

overcome this limitation, Venturi and Duhamel [139] proposed

a mathematical solution based on the properties of the complex

transform output. Reality preserving refers to real domain

output for a real domain input signal. The algorithm still

has computational complexity, O(N2) for matrix order of N.

Reality preserving transforms that are formulated with this

algorithm have most of the required properties of fractional

transforms along with a monotonously decreasing decorrelation

power. Such transforms are beneficial where orthogonal reality

preserving transform is required with their decorrelation power

controlled by some parameters such as in joint source and

channel coding. Initially, the algorithm was proposed in

fractional sine and cosine transforms. It is further extended to

other transforms with the basic properties of the transforms

retained well. Recently, Zhao et. al [25, 59] used it to

obtain fractional Mellin transform for triple image encryption.

Reality preserving is also used in discrete fractional Cosine

transform (FrCT) [47, 140], fractional Angular transform [60,

61], fractional Hartley transform [52–54, 141], besides fractional

Fourier transform [28, 29, 31].
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TABLE 3 Recent publications on evolutionary methods adopted in optical transform with DRPE-based architecture (2016–2021).

References Method Security Advantages Limitations

Abd-El-Atty

et al. [114]

Based on the application of DRPE and quantum

walks. An alternate quantum walk (AQW) is used

to generate random masks as well as for

permutation.

Moderate 1. Higher key space

2. Resistance to digital and

quantum computer attacks.

1. Non uniform histograms

2. Classical attack analysis missing

3. Differential attack analysis not

discussed.

Zhou et al.

[115]

Image is transformed in DRPE domain. The phase

information is quantized for its usage in the

authentication. The plaintext is compressed by CS

where the measurement matrix is also quantized

using a sigmoid function.

High 1. Simultaneous compression

and encryption.

2. Faster and efficient.

3. Robust to differential attacks

1. Higher complexity

2. PSNR is lower indicating

degraded reconstructed image.

Huang et al.

[116]

Low-frequency subbands are extracted by

contourlet transform. Scrambled with 2D logistic

map. 2DLCT is applied to obtain phase truncation

and phase reservation. This is followed by an XOR

operation with a logistic map.

High 1. Multiple image encryption

2. Uniform histograms

3. optimum entropy and CC

of encrypted

4. Robust to classical and

differential attacks

1. Performance degrades

considerably with data loss and

noise attack

Wang et al.

[55]

Based on apertured Mellin transform realized by

log-polar transform followed by apertured

fractional Fourier transform.

High 1. Key size increased

2. Non linearity in transform is

able to resist potential attacks

1. Quality of decrypted images vary

with aperture length parameter

2. Mellin transform gives a lossy

recovery, resulting in significant

degradation in recovered image

Huang et al.

[98]

Original image is encoded with a modified

Gerchberg-Saxton algorithm, which is controlled

by hyperchaos system derived from Chen chaotic

map. Josephus traversing is used for scrambling

the phase function followed by

diffusion-confusion by hyperchaos.

High 1. Uniform histograms

2. High sensitivity to keys

3. Optimum entropy

4. Resistant to all potential attacks

1. Hyperchaotic map has high

complexity in hardware

implementation.

2. G-S algorithm based on

hyperchaos increase

encryption/decryption time

Huo et al.

[117]

Based on DNA theory with DRPE technique with

PWLCM based keys and random phase masks.

Initial values of PWLCM are generated by massage

digest algo5(MD5). Two rounds of process gives

ciphertext.

High 1. High security to input keys

2. key space is large

1. Axis alignment is required for

optical setup

2. Lack in differential attack

analysis

Liansheng

et al. [100]

Based on customized data container. Using phase

masks that are generated from Hadamard matrix

to collect intensities of data containers. After XOR

coding, data is scrambled with logistic map

High 1. Solves issues related to inherent

linearity of computation

ghost imaging.

2. High sensitivity to keys

1D logistic map has its own

limitations

Gong et al.

[118]

Based on compressive sensing (CS) and public key

RSA algo with optical compressive imaging system

to sample input image. Walsh Hadamard

transform, followed by scrambling with

compound chaos

High 1. Enlarged key space

2. Resistant to CPA

3. Entropy is optimum for both

global and local values

4. Robust to noise and data

loss attack

1. Higher complexity for

implementation

Chen et al.

[119]

Chaotic Ushiki map is used to generate random

phase masks. A single intensity image is encrypted

from color image. An equal modulus

decomposition used to create asymmetric keys

High 1. Enhanced security by Ushiki

chaotic map

2. Enlarged key space

3. Immune to CPA and KPA

1. Lossy recovery

2. Entropy not reported

3. Differential attack analysis not

done

(Continued)
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TABLE 3 (Continued)

References Method Security Advantages Limitations

Yadav et al.

[51]

Input is first transformed with chaotic Arnold

transform. Phase masks are based on devil’s vortex

Fresnel lens (DVFL)

High 1. Use of DVFL eliminates

axis-alignment issues.

2. Parameters of DVFL, orders of

FrHT and AT serve as secret key

Robustness to classical and

differential attacks not presented

Faragallah

et al. [50]

Arnold transform is used to scramble RGB of

image followed by a Fresnel based Hartley

transform from random phase masks generated

with a Logistic adjusted sine map

High 1. Enhanced security due to

enlarged key size

2. limitations of logistic map

are eliminated

3. Optimal CC of encrypted

1. Histograms are not independent

of plane image input to some

extent

2. UACI=0

3. Leakage of information due to

low entropy values

Kumar et al.

[120]

security key generated from a phase retrieval

algorithm is used obtain 2D non-separable linear

canonical transform of complex image formed by

combining two plane images

High 1. Double image encryption with

asymmetric keys

2. Robust to data loss attack

3. Chosen plain text

attack addressed

1. Phase retrieval has its inherent

complexity

Jiao et al. [121] QR (quick response) code for speckle noise

removal in Fresnel based optical transform

High 1. Speckle noise reduced in optical

transformed output

1. Applicable only to gray scale

images

Khurana et al.

[122]

Phase-truncated Fourier and discrete cosine

transform (PTFDCT) with random phase as keys.

Decryption requires a cube root operation

High 1. Robust to differential attack

2. Enhanced security

3. Enlarged key space

1. Entropy is less than optimum

2. Correlation plots show unequal

distributions along both

dimensions leading to

information leakage.

Su et al. [123] Chaotic phase masks for cascaded Fresnel

transform holography and constrained

optimization for retrieval

Moderate 1. Reduces retrieval time using

constrained optimization

2. Key sensitivity high due to use

of chaotic Henon map

1. decrypted image is considerably

deteriorated

2. performance will degrade under

noisy and occlusion attacks

Li et al. [124] Depth conversion integral imaging and hybrid

cellular automata (CA)

High 1. PSNR of reconstructed images

degraded with noise are higher

2. Key space is

high (multidimensional)

3. Good resistance to data

loss attack

1. Lossy decryption

2. Differential attack analysis not

proved

Although certain probable drawbacks/limitations are mentioned corresponding to each scheme, some specific solutions like security enhancement methods can be applied in practice.

Application of chaos theory in optical
transforms-based image encryption (T02)

Chaos theory refers to the study of unpredictable behavior in

systems governed by deterministic laws. Chaotic properties are

closely related to cryptography [142] owing to their sensitivity

to initial conditions, randomness and ergodicity. Due to such

intrinsic characteristics, chaoticmaps have been extensively used

in data encryption. Chaotic maps are used as pseudorandom

generators [143], for substitution, and permutation of image

pixels. Various schemes for encryption based on permutation

only [144, 145], or substitution only [146] or a combination

of both [138, 143] with the usage of either one-dimensional

basic maps like logistic [147], sine, the tent [148], 2D Chirikov

standard map [143], or higher dimensional compound chaos or

higher dimensional hyperchaoticmaps [149–151], depending on

the application and level of security.

Chaotic maps have been extensively used in amalgamation

with optical transforms-based image encryption for enhancing

security. Fractional transform-based image encryption schemes

have only transform orders as the secret key. However, this

key space is not large enough and is therefore vulnerable to

cryptanalysis. To enhance security, chaotic maps are used that

also enlarge the key space. There are various schemes proposed

in the literature that have used permutation with chaotic maps

along with an optical transform [23, 28, 29, 50, 66, 69, 72, 152].

The order in which these two schemes are amalgamated may

vary. Permutation in the spatial domain followed by transform

or transform followed by permutation in the transform domain.
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TABLE 4 Cryptanalytic approaches in optical/DRPE-based encryption schemes (2016–2021).

Author Year Description Methodology/ strategy

Guo et al. [107] 2016 Phase retrieval attacks on LCT based DRPE

schemes

Hybrid input–output algorithm, error reduction algorithm, and

combinations of both type of phase retrieval algorithms are applied for

ciphertext-only attacks on Separable LCT DRPE system.

Yuan et al. [125] 2016 Cryptanalysis and its remedy in encryption based

on computational ghost imaging

Due to linear relation between input and output of the encryption with

computational ghost imaging is attacked.

Li et al. [126] 2016 Vulnerability of impulse attack-free DRPE scheme

to chosen plaintext attack

CPA on impulse attack free-DRPE is breached using a new

three-dimensional phase retrieval algorithm.

Wang et al. [127] 2016 Cryptanalysis in phase space Phase space information vulnerable to chosen plaintext attack (CPA) and

known plain text attack (KPA).

Liao et al. [128] 2017 Ciphertext only attack on optical cryptosystem Based on autocorrelation between plaintext and ciphertext, COA is

imposed.

Hai et al. [129] 2018 Cryptanalysis of DRPE scheme with deep learning Vulnerability to CPA with working mechanism-based learning with neural

network.

Xiong et al. [130] 2018 Cryptanalysis of optical cryptosystem with

combined phase truncated Fourier transform and

nonlinear operations

A phase retrieval attack with normalization and bilateral filter is proposed.

Dou et al. [131] 2019 Known plaintext attack in JTC-DRPE scheme Application of denoizing operations make the cryptosystem linear. Thus,

KPA is possible.

Xiong et al. [24] 2019 Cryptanalysis in optical encryption based on

vector decomposition of Fourier plane

Cascaded EMD (equal modulus decomposition)-based cryptosystem is

attacked with CPA and a special attack.

Chang et al. [132] 2020 Ciphertext only attack in optical scanning

cryptography (OSC)

A linear system property analyzed in the ciphertext expression equation of

OSC lead to COA.

Jiao et al. [133] 2020 Known plaintext attack in cryptosystem based on

space and polarization encoding

Matrix regression based on training samples is proposed to crack a

space-based optical encoding and double random polarization encoding

with KPA.

Zhou et al. [134] 2020 Vulnerability of encryption scheme based on

diffractive imaging to machine learning attacks

An end-to-end machine-learning strategy is adopted to establish

relationship between ciphertext and plaintext in case of diffractive imaging.

He et al. [135] 2020 Cryptanalysis of optical cryptosystem using

untrained neural network

Untrained NN is used to break a phase-truncated Fourier transform-based

optical asymmetric cryptosystem. Parameters are optimized by

plain-ciphertext encryption model of phase truncated Fourier transform.

Song et al. [136] 2021 Cryptanalysis of phase only information as it is

vulnerable to chosen plaintext attack.

Deep learning structure is trained using sparse phase information of the

encrypted domain image as phase only information is vulnerable to classical

attacks.

Li et al. [126] 2016 Vulnerability of impulse attack-free DRPE scheme

to chosen plaintext attack

CPA on impulse attack free-DRPE is breached using a new

three-dimensional phase retrieval algorithm.

Wang et al. [127] 2016 Cryptanalysis in phase space Phase space information vulnerable to chosen plaintext attack (CPA) and

known plain text attack (KPA).

Liao et al. [128] 2017 Ciphertext only attack on optical cryptosystem Based on autocorrelation between plaintext and ciphertext, COA is

imposed.

Hai et al. [129] 2018 Cryptanalysis of DRPE scheme with deep learning Vulnerability to CPA with working mechanism-based learning with neural

network.

Some of the schemes follow substitution-permutation and

transform collectively [138, 153, 154] to further enhance

security. We have reviewed some of the most recently proposed

schemes that use chaos-based permutation/substitution with

optical transforms.

Wu et al. [48] proposed a color image encryption scheme

in random fractional discrete cosine transform (RFrDCT) along

with scrambling and diffusion paradigm (DSD). A logistic map

is used to generate a randomized vector of fractional order. This

enlarges key space and increases sensitivity.
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TABLE 5 Various methods for discretization of Linear Canonical transforms.

Type References Pros Cons

Sampling type DFrFT [68] A direct and simplest of all methods Discrete version is derived at the cost of losing many

important properties like unitary, reversibility, and

additivity. Therefore, it has limited applications.

Improved Sampling type

DFrFT

[9] It works like a continuous FrFT and is a fast algo Doesn’t have orthogonal and additive property. Also, it

requires to put some constraints on input signal.

Eigen vector

decomposition based

DFrFT

[10, 12, 16, 17] Based on eigen values and eigen vector of DFT

matrix and then evaluating their fractional power.

Retains orthogonality, reversibility, and additivity.

Further improved by orthogonal projection in [12]

This type of DFrFT lack fast computation, and the

eigen vectors cannot be written in closed form.

Linear combination type

DFrFT

[13, 19, 20] Eigen vectors are derived by linear combination of

identity operation, DFT, time inverse operation

and IDFT. Satisfies properties of reversibility,

additivity and orthogonality.

The outcome of transform does not match with

continuous transform. It works very much similar to

Fourier transform and lose characteristics of

fractionalization of powers.

Chirp type DFrFT [56] DFrFT is derived as multiplication of DFT and

periodic chirp signals. Satisfies additivity,

reversibility property along with Wigner

distribution’s rotation property.

There are constraints on the selection of rotation angles

and also N (sample length) should not be a prime

number. This makes it complicated

Closed form DFrFT [15] Derived 2 types of DFrFT and Discrete Affine

transform (DAFT). Performance is similar to

continuous FrFT for Type I and can be calculated

using FFT. Type II is improved form of Type I and

is applicable to signal processing. Has lowest

complexity.

Scaling property exists for only Type I and not for Type

II.

Amultiple parameter fractional Hartley transform (FrHT) is

proposed by Kang et al. [141] with its reality preserved for a color

image encryption. The chaos is embedded into the algorithm

at each step. The original color image with individual color

components is first combined into a single image. This single

image is divided into different sub-blocks. The blocks are then

shuffled based on a pseudo-random sequence generated from

non-adjacent-coupled map lattices (NCML) based on logistic

maps. The initial parameters of NCML are generated from yet

another chaotic map (Arnold Cat map). The initial parameters

of chaotic maps at this stage serves as secret keys. Next stage

of encryption is based on a pixel scrambling operator which is

based on a 2D Chirikov standard chaotic map (CSM). Using

CSM, a series of 2D and 3D angle matrices are generated that

are used to convert images in RGB space to newer space. The

final stage is to obtain anMPFrHT in real domain (RPMPFrHT)

and to divide the image into three to get concatenated encrypted

image as ciphertext.

A new fractional transform coined as the non-separable

fractional Fourier transform is proposed by Ran et al. [32].

RPMs are generated by Arnold transform. The advantage of

this type of transform is that it is able to tangle information

along and across two dimensions together. It is closely related

to the Gyrator transform. Also, the proposed scheme is resistant

to decryption with multiple keys, unlike ordinary fractional

Fourier transform.

Wu et al. [155] proposed a RFrDCT for image encryption.

The RFrDCT domain image is subjected to confusion-diffusion

paradigm. The confusion is obtained using a game-of-life (GoL)

algorithm and diffusion in the next stage is based on an XOR

operation with another chaotic map. The initial parameters of

chaos serve as secret keys of encryption. Enhanced performance

is claimed with the adopted strategy. A perturbation factor is

applied for resistance against differential attacks.

An encryption scheme with S-box generation is proposed

in Wu et al. [72] which is unique in the way these S-boxes

are generated. Chaotic Chebyshev map and linear fractional

transform are used for the construction of S-box. Partial

image encryption is achieved by a permutation-substitution-

diffusion (PSD) network and multiple chaotic maps in the

linear wavelet transform (LWT) domain. Using dynamic keys

for controlling encryption aids in security against differential

attacks. Partial encryption of only sensitive portions not

only reduces computation complexity but is also faster and

more efficient.

Jamal et al. [156] proposed yet another scheme that

uses a combination of linear fractional transform and

chaotic systems to generate substitution boxes for image
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FIGURE 3

Schematic architecture for Fractional transform-based image encryption in digital domain.

encryption. The chaotic maps used in the scheme are generated

from a combination of seed maps to enhance the security

and chaotic range. The investigation for complexity thus

obtained with the proposed scheme is based on various

algebraic and statistical tests. The investigation gives

testimony of improved perplexity and confusion in the

encrypted domain.

A novel Fresnel-based Hartley transform is proposed in

Faragallah [50] for an optical-double color image encryption

scheme. The color image is first separated into individual

channels and are scrambled separately with the Arnold

transform (AT) in spatial domain. Each scrambled image is then

multiplied with a 2D chaotic Sine-adjusted logistic map (LASM)

and then a Hartley transform is applied to each channel. This

procedure is repeated once again with another set of AT-based

scrambling (now in Hartley domain), and then each channel

is multiplied with another set of 2D-LASM. The final step is

obtaining inverse Hartley transform which gives an outcome

across each channel in Fresnel domain. The color channels in

Fresnel domain are concatenated to obtain a single image which

is the final ciphered image.

A fractional angular transform (FrAT) is used in Sui et al.

[62] where plain image is substituted with a chaotic logistic

map prior to transform. The transform orders along with initial

value of logistic map serve as secret keys of encryption. The

scheme performs marginally as there are certain limitations due

to similarity in histograms of plain and encrypted domain and

correlation coefficients in encrypted domain are considerably

higher. Moreover, the scheme is not evaluated for entropy

measure and differential attack analysis.

Compressive sensing (T03)

Compressive sensing (CS), also referred to sparse signal

sampling, was introduced by work of Donoho, Candes [157,

158]. CS is able to achieve compression and signal sampling

simultaneously [118, 159, 160]. For a signal of bandwidth, BW =
�, the sampling frequency (fs) required to represent the signal

is much smaller than Nyquist frequency (fs ≪ �). Let RN be

the set of N-tuples of real numbers. If x ∈ RN is input 1D

signal sampled using CS, then x can be sparsely represented

using an appropriate basis function9 = [ψ1,ψ2 . . . ψN ]. Thus,

x = 9s =
∑N

i=1 siψi. Let yM×N be the measured matrix

with M ≪ N. Then, y = ∅x = ∅9s = As where y ∈ RN .

Thus if measurement matrix, A that is used to measure sparse

signal, s is given, then the construction of signal requires solving

an underdetermined linear system and the sparse signal can be

obtained by solving a combinatorial optimization problem given

by : min ‖s‖0 : y = ∅9s = A s.

A collective compression-encryption scheme is proposed in

Santhanam and McClellan [26] with 2D compressive sensing

and fractional Mellin transform. The original image is first

measured using a measurement matrix in both dimensions to

reduce data volume with 2D CS. The measurement matrix is

constructed using partial Hadamard matrices. Chaos is used to

control the measurement matrix with its initial conditions. The

non-linear Mellin transform is used to overcome the security

issue related to linear transform.

Zhao et al. [161] proposed a double-image encryption

scheme which is claimed to be faster and more efficient.

The scheme utilizes DWT as the basis for the measurement

matrix. Both images are first transformed into DWT basis and
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are compressed with the measurement matrix derived from

2D Sine-Logistic modulation map (2D-SLMM). The images

are then combined and Arnold transformation is applied for

scrambling the coefficients. Two circular random matrices are

generated using 2D-SLMM with different seed values. These

random matrices are used to obtain DFrRT. The encrypted

image is thus in DFrRT domain.

In another CS-based scheme proposed by Zhang et al. [33],

Kronecker product (KP) is combined with the chaotic map

for the generation of measurement matrix and RPMs. Low-

dimensionality seed maps are extended to high-dimensional KP.

These high-dimensional maps are used for the measurement

matrix. The scheme is able to provide an efficient and fast

approach to color image encryption.

A comparatively simpler scheme is proposed in Deng et al.

[162] where image compression-encryption uses a combination

of 2D CS and DFrRT. The basis function for the measurement

matrix is a discrete cosine transform (DCT). The measurement

matrix is constructed with a chaotic logistic map to control row

vectors of the Hadamard matrix. The compressed image is then

encrypted by DFrRT. Reconstruction of CS requires Newton’s

smoothed l0 norm (NSL0) algorithm.

An asymmetric cryptosystem for color images based on CS

and equal modulus decomposition (EMD) is proposed by Chen

et al. [163]. In this scheme, the color image is initially combined

to a single image. With the application of DWT, this image

is converted into low-frequency and high-frequency images.

The high-frequency image is compressed by a measurement

matrix generated from logistic map. The compressed image is

segmented into two matrices. One of the matrices is used as

a private key (a random matrix related to the plain image) for

DFrRT and another matrix is combined with the low-frequency

image to form a complex function. This complex function is

transformed into DFrRT with the private key (random matrix)

that is plain image-dependent. This enables the cryptosystem to

resist known and chosen plaintext attacks. The output of DFrRT

is decomposed into 2 masks using EMD where one mask is a

cipher image and another is a private key. The inverse CS in the

decryption process is based on the basis pursuit (BP) algorithm.

Yi et al. [34] proposed to use multiple measurement matrices

instead of a single measurement matrix that is used to sample all

blocks of an image. This strategy enables to overcome the issue

of chosen plaintext attacks. The mother measurement matrix

is derived from a single chaotic map and other measurement

matrices are generated by exchanging rows using a random row

exchanging method. However, another chaotic map is required

to control the row-exchanging operation. The compressed image

is then transformed with FrFT. The transform is followed

by two consecutive pixel scrambling operations to guarantee

nonlinearity and to increase key sensitivity in the proposed

scheme. Ye et al. [164] proposed a compressed-sensed color

image encryption scheme based on quaternion discrete multi-

fractional random transform with the hash function SHA-512.

The parameters of chaos are updated by randomly selected hash

values. The use of multifunctional transform not only increases

the key space but also improves the key sensitivity.

On the basis of fixed/multiparameter (T04)

Fractional transforms can decorrelate the spatial domain

pixels based on the fractional value of the transform orders.

The fractional transforms are also looked upon as Wigner

distribution where each fractional order corresponds to an

angle of rotation in the optical domain [4]. With a fixed

value of transform orders, the key space is limited and the

cryptosystem is vulnerable to brute force attack. To overcome

this limitation, various researchers proposed to use multiple

parameter-based fractional transforms [35–39, 153, 165] with

their own definitions and postulates. Mathematically, a FrFT

has multiplicity which is due to different choices of both Eigen

function and eigen value classes [35]. Thus, the multiplicity

is intrinsic in a fractional operator. Lang [31] proposed a

multiparameter FrFT where the periodicity of M is utilized.

The transform order vector, n, can be M-dimensional integer

vector. This provides an extra degree of freedom as the

periodicity parameter; M serves as a secret key along with the

vector parameters.

Sui et al. [63] proposed a multiparameter discrete fractional

angular transform (MPFAT) for image encryption that uses

fractional order and periodicity parameters to provide multiple

parameters in the transform. Similar to a discrete fractional

Angular transform (DFAT), MPDFAT also satisfies properties

such as linearity, multiplicity, and index additivity. Zhong et al.

[166] proposed a discrete multiple parameter FrFT (DMPFrFT)

for image encryption using the periodicity parameter for

extending to multiple parameters.

Azoug et al. [23] proposed yet another opto-digital image

encryption with a multiple parameter DFrFT after a non-linear

pre-processing of the image in spatial domain with a chaotic

map. The multiparameter scheme is extended based on the work

of Pei et al. [40] which extend the DFrFT to have multiple order

parameters equal to the number of input data points. If all the

parameters are made equal in an MPDFrFT, then it reduces to a

single parameter DFrFT.

A general theoretical framework of MPDFrFT is presented

in Kang et al. [153]. The work proposed two different

frameworks as Type I and Type II MPDFrFT that include

existing multiparameter transforms as their special cases.

Further, an in-detail analysis of the properties of such transforms

is discussed and higher dimensional operators are also defined.

Some new types of transforms such as MPDFrCT, MPDFrST,

and MPDFrHT (Cosine, Sine, Hartley) are constructed under

the proposed framework along with their applications such as

feature extraction and 2D image encryption.

A quaternion algebra is used with multiple parameter

fractional Fourier transform (MPFrQFT) by Chen et al. [30]

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

180

https://doi.org/10.3389/fams.2022.1039758
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kaur et al. 10.3389/fams.2022.1039758

for generalizing MPFrFT. Both forward and reverse MPFrQFT

transform are defined and a color image encryption based on

the proposed transform is evaluated for its performance as

compared to other encryption algorithms. The proposed scheme

has larger key space and is more sensitive to transform orders.

Ren et al. [41] proposed a multiple image encryption

scheme based on discrete multiple parameter fractional Fourier

transform (DMPFrFT) for which original images are filtered in

DCT domain and multiplexed into a single image. The multiple

parameters are again generated using a periodicity parameter

which serves as one of the keys. Other keys are the parameters

for scrambling the multiplexed image (random matrix), and

transform orders of DMPFrFT.

A multiparameter discrete fractional Hartley transforms for

image encryption is proposed by Kang and Tao [141]. The

multiple parameters are generated by extending the fractional

order to N-dimensional vector and the FRHT kernel is

represented as a linear summation with weighting coefficients.

DNA sequence (T05)

DNA coding method is inferred from the Deoxyribonucleic

acid and is a branch of computing based on DNA, biochemistry

and molecular biology hardware. DNA sequences appear in the

form of double helices in living cells. A DNA code is simply a

code of alphabetic set Q = {A,T,C,G}. These alphabets refer

to 4 nucleic acid bases: A (adenine), C (cytosine), G (guanine),

and T (thymine): A and T, G and C are complimentary.

The complimentary rules are referred to as Watson-Crick

compliment [167]. Thus, pairing can be described as: A =
T, T = A, C = G, G = C and if a binary code is given to each as

00, 11, 01, 10 with (00, 11) and (01, 10) as complimentary. With

vector algebraic operations based on DNA computing [168,

169], pixel permutation and substitution can be performed if the

image pixels are represented in the form of binary sequences.

Recently Farah et. al [27] proposed to use FRFT along with

chaos and DNA for image encryption. Initially, a random phase

matrix is generated using a chaotic Lorenz map. The plain

image is converted to a binary matrix and encoded according

to chosen DNA encoding rule. Also, the random phase matrix

is encoded to DNA sequence with the same rule. The coded

plain image is XORed with that of the encoded random phase

matrix. Using the RPMs generated from the 3D chaotic map

(Lorenz map), iterative FrFT is performed and the resultant

image is XORed with the third chaotic sequence to obtain the

final ciphered image.

An optical image encryption set-up based on DNA coding is

proposed by Huo et al. [117] where a piecewise linear chaotic

map (PWLCM) is used to generate a key matrix as well as a

random phase matrix. A message digest hash algorithm (MD5)

is used to generate initial values of PWLCM. An MD5 hash of

plaintext consists of 128 bits. XOR operation for DNA is used.

Initially, the plain image and key matrix are converted to binary

sequences with DNA coding rules that are different for different

rows in the image. TheDNA-encoded plain image isXORed with

a key matrix and a forward Fresnel domain DRPE is applied to

obtain the final-ciphered image.

Cellular automata (T06)

Cellular Automata (CA) also called cellular spaces,

tessellation automata/structures, cellular structures, or

iteration arrays find application in various fields like physics,

microstructure modeling etc. CA consists of regular rigid

cells that are generated in accordance with a fixed rule

which is nothing but a mathematical function. CA is used in

cryptography due to the possibility of pseudo-random number

generation with such rule (Rule 30) which is a class III rule

displaying aperiodic chaotic behavior [42, 170]. Li et. al [171]

proposed a 3D image encryption using computer-generated

integral imaging (CIIR) and cellular automata transform. An

elemental image array (EIA) recorded by light rays coming

from 3D image is mapped according to a ray-tracing theory. An

encrypted image is then generated from 2D EIA using cellular

automata transform. It is claimed that CA-based encryption

is error-free and being an orthogonal transformation, it offers

simplicity. The performance of the scheme is measured in terms

of bit correct ratio (BCR) and PSNR for reconstructed and is

compared to some similar proposed schemes. This scheme of

combining optical transforms to that of CA is unique in its

methodology. Recently, there is no further exploration of the

proposed idea.

Double image (T07.1)/multiple image (T07.2)

Double image encryption schemes are aimed to provide

more efficiency in terms of resources. A double image is

simultaneously encrypted and decrypted. Such schemes

also provide higher speed and better sensitivity besides

less storage space requirement. Therefore, double image

encryption schemes have drawn attention of various

researchers [29, 63, 70, 152, 161, 172].

Recently, Yuan et al. [173] proposed an image authentication

with double image encryption based on non-separable fractional

Fourier transform (NFrFT). The two images are combined to

form a complex image matrix and is transformed with NFrFT.

The output of the transform is also a complex matrix. The

transform orders and coefficient parameters serve as secret keys.

Novelty of the proposed work is in the selection of a partial

phase that is reserved for decryption. A nonlinear correlation

algorithm is to authenticate the two recovered images. The

cross-correlation of two compared images is referred to as

non-linear correlation (NC) whose strength is specified by a

parameter, k ∈ [0, 1]. An appropriate value of k is selected

to authenticate the images. Peak to correlation energy (PCE)
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is a ratio of maximum peak intensity value and total energy

of the non-linear correlation plane. Thus, PCE is measured to

determine k and hence authenticity.

A double image encryption scheme based on interference

and logistic map is proposed in Liansheng et al. [174] to

overcome the silhouette problem. The two input images

are initially joined to make an enlarged image. This joined

image is subjected to scrambling based on chaotic sequence

generated from a logistic map. Then, the scrambled image

is again separated into two. One of the images is directly

used to generate two-phase keys/masks based on optical

interference. Another scrambled image is encrypted with DRPE

method using first phase mask (key). This is followed by

multiplying the complex outcome with another phase mask

for transformation to the ciphertext. The author suggests to

use input parameters of the logistic map, wavelength and

axial mask as secret encryption keys to further enhance

the security.

Singh et al. [67] proposed a full-phase encryption scheme

for its better security compared to amplitude image. The scheme

uses two spatial domain input images and converts each of them

to a phase image. The phase images are then multiplied with

RPMs and transformed in the Gyrator domain with rotation

angle, α. The gyrator domain images are then added and

subtracted to get two intermediate images. The intermediate

images are then bonded with structured phase masks based on

the Devils vortex lens (DVFL) specified with certain parameters.

This is followed by another Gyrator transform with a different

rotation angle, β to obtain two encrypted images. Decryption is

exactly the inverse of the encryption process.

Similar to double image encryption schemes, there is

another category where multiple images are simultaneously

encrypted to reduce the key space as compared to the data to

be encrypted (images) but at the cost of increased complexity

[69, 175]. Recently Sui et al. [64] proposed a double image

encryption where two images are initially combined into a single

image along the column of the first image followed by the

second image. This combined image is scrambled with a 2D

sine logistic modulation map. Next, the scrambled image is

divided into two components to constitute a complex image.

One of the components is the phase part and another part is

the amplitude of the complex image. The complex image is

shared using Shamir’s three-pass protocol where the encryption

function is a multiparameter fractional angular transform which

is preferred for its commutative property.

Sui et al. [43] proposed multiple image encryption with

asymmetric keys in the FrFT domain. Initially, a sequence of

chaotic pairs is generated using symmetrically coupled logistic

maps. This chaotic sequence is used to scramble the spatial

domain images. Phase only function (POF) of image is retrieved

using an iterative process of FrFT domain. In the next stage, all

the POFs are modulated into an interim which is transformed to

real-value ciphertext by FrFT and chaotic diffusion. The three

random phase functions are used as keys to retrieve POFs of

plain images and three decryption keys are generated in the

encryption process.

A multiple image encryption scheme is proposed [49] by

combining a non-linear fractionalMellin transformwith a FrCT.

Fractional Mellin transform is used for its robustness to classical

attacks. The original images are simultaneously transformed

into a DCT domain and then re-encrypted with amplitude and

phase encoding. The transformed images have changed center-

coordinates due to fractional Mellin transform since FrMT is

a log-polar transform of the image followed by a FrFT of log-

polar image. The fractional orders of FrFT, phases ψj, θj are the

secret keys.

Recently, Guleria et al. [176] proposed to encrypt three

RGB images simultaneously using RSA cryptosystem followed

by a discrete reality preserving FrCT and the final stage of

scrambling with Arnold transform. To accomplish multiple

image encryption, 3 RGB images are combined into a single

image using a single color component of each image as R,G,B

components. All three indexed images are individually ciphered

with the proposed algorithm and then combined as a single

ciphered image. The security of the scheme depends not

only on the input parameters of RSA, Arnold transform and

orders of transform but also on their sequence of arrangement.

Decryption is exactly the inverse of the encryption scheme.

Watermarking in the encrypted domain (T08)

Recently, many researchers have proposed to use of optical

transform for watermarking applications [69, 71, 177–179].

Watermarking an image is a data-hiding method for copyright

protection and copy prevention. Depending on the application,

a watermark can be a visible pattern or can be hidden in

the host image. For copyright, its generally a visible pattern

and for resolving an authorship problem, the watermark is

secretly embedded into image which can be recovered by an

authorized user only. In the latter case, the watermark is usually

a binary logo that is encrypted into a noise-like pattern and

then embedded in the image for enhanced security. Many

researchers have followed this approach in the watermarking

algorithm. Some of the recent watermarking schemes with an

encryption algorithm using fractional transforms are reviewed

in this section.

Singh et al. [180] proposed to embed an encrypted

watermark in fractional Mellin transform (FrMT) into the host

image. The two deterministic phase masks (DPM) are generated

to be used in the input and frequency plane. The watermark

image is first converted into a log-polar image. After multiplying

the log-polar image with the first DPM, it is transformed to

a FrFT domain. This is FrMT transformation. In the next

step, again the second DPM is multiplied by the complex

outcome and inverse FrFT is obtained. For embedding, the

outcome is attenuated by a factor and then added to the host
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image. SVD decomposition is applied in the last stage to make

the watermarked image unrecognizable and is transmitted as

individual S, V, D matrices.

A quaternion algebra is used to define a quaternion discrete

fractional random transform (QDFRNT) which generalizes

DFRNT for its application in watermarking [181]. The host

image is divided into blocks and QDFRNT is applied to each

block. The scrambled watermark image is used to modify the

mid-frequency coefficients of the QDFRNT host image. The

transform orders and parameters of the scrambling scheme in

the watermark image are used as secret keys of encryption.

Liu et al. [182] proposed a novel transform, known

as fractional Krawchouk transform (FrKT), to generalize

the Krawchouk transform. Derivation of FrKT is based on

eigenvalue decomposition and eigen vectors. For validating the

imperceptibility of the proposed transform, a watermarking

application is illustrated in the work. A better robustness and

imperceptibility with proposed transform have been claimed in

the work.

Performance metrics for image
encryption

Image data have high redundancy and large volumes

as compared to text or binary data. It may also have

some real-time operations or may also be incorporated with

compressed data of a certain format. Thus, an image encryption

scheme needs to satisfy certain requirements. Some of the

commonly used performance requirements are discussed in

this section. The categorization of such performance analysis

is shown in Figure 4. Performance analysis of encryption

requires a comprehensive investigation of perceptual security

and cryptographic security. Perceptual analysis requires that the

outcome of an algorithm is unintelligible to human perception

whereas cryptographic analysis refers to the ability of the

algorithm to resist cryptanalysis that includes all possible attacks

in terms of the secret key, data statistics etc.

Perceptual security analysis

Perceptual security can be investigated with some subjective

metrics [183]. The ciphertext can be classified into typical

quality levels as shown in Table 6. QL0: signifies a completely

recognizable image which indicates that the encryption is not

valid, QL1: signifies a partially recognizable image contour like

edges and boundaries are visible but the texture is not clear.

QL2: signifies that the image is completely unintelligible and is

considered perceptually secure.

Another measure of perceptual quality is done by evaluating

a set of parameters for comparison of encrypted images with

reference to the plain image. Some of the commonly used

objective metrics are explained below.

i. Peak signal to noise ratio (PSNR): PSNR is the measure of

spectral information in an image. A higher value indicates

greater similarity in the test images. In an encryption

algorithm, PSNR values are evaluated to quantify the

dissimilarity in the encrypted image with respect to plain

image. During decryption, the same measure indicates the

efficacy of the algorithm in the reverse process. Practically

PSNR ≥ 28 indicates that the test images are similar. For

any pair of images, plain image (P) and ciphered image (C),

the PSNR is mathematically defined as:

PSNR (P,C) = 10 log10
(L− 1)2

1
MN

∑M
i=1

∑N
j=1

[

Pi,j − Ci,j
]2

(9)

ii. Mean square error (MSE): It is also an error metric like

PSNR that indicates the dissimilarity between the test

images. In an ideal case, for two similar images,MSE should

be zero. PSNR andMSE are mathematically related to each

other as:

PSNR (P,C) = 10 log10
(L− 1)2

MSE
(10)

∴ MSE = 1

MN

M
∑

i=1

N
∑

j=1

[Pi,j − Ci,j]
2 (11)

iii. Spectral Distortion measure (SD): It indicates the spectral

dissimilarity between the reference image and test image.

The SD measure evaluates as to how far is the spectrum of

the test image from that of the reference image. The spectral

distortion is defined as:

SD (P,C) = 1

MN

M
∑

u=1

N
∑

v=1

|FP (u, v)− FC (u, v)| (12)

where FP (u, v) , FC (u, v) are Fourier transforms of plain

image, fP(m, n) and encrypted image, fC(m, n), respectively.

iv. Structural Similarity Index Measure (SSIM): Wang et al.

[184] proposed a metric based on the human visual system

(HVS) that considers biological factors, namely, luminance,

contrast, and structural comparison between the image and

a reference image. This measure known as SSIM, is used to

quantify the visual image quality.

SSIM
(

x, y
)

= f
(

l
(

x, y
)

, c
(

x, y
)

, s
(

x, y
) )

(13)

where l(x,y), c(x,y) and s(x,y) are luminance, contrast, and

structural comparison, respectively. For any two pairs of

images P and C, it is mathematically defined as:

SSIM (P,C) = (2µPµC + C1) (2σPC + C2)
(

µ2P + µ2C + C1
) (

σ 2P + σ 2C + C2
)\n (14)
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FIGURE 4

Performance requirements of image encryption scheme.
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TABLE 6 Subjective metrics for perceptual security analysis.

Quality Level Ciphertext quality

QL0 Image contours are

completely recognizable

QL1 Partially recognizable

contours of the image

QL2 Completely

unintelligent/ white

noise like image

v. Histogram variance: In order to quantify the

uniformity of cipher images, variances of histograms

are evaluated [185]. Variances are also evaluated

for two different cipher images that are encrypted

from two different secret keys on the same plain

images. The lower values of variance indicate higher

uniformity. The variance of histogram is mathematically

evaluated as:

var (Z) = 1/n2
n

∑

i=1

n
∑

j=1

1

2
(zi − zj)

2 (15)

where Z = {z1, z2, z3,, . . . z256} is vector of

histogram values, zi, zj are the number of

pixels that have grey values equal to i and

j, respectively.

vi. Encryption Quality is a subjective measure

that collectively evaluates an algorithm for

the level of security it provides. There are 4

different levels for evaluation as explained in

Table 7.

Statistical analysis

According to Shannon’s communication theory

of perfect secrecy [186], “It is possible to evaluate

most of the encryption techniques by statistical

analysis”. He suggested two methods for such

analysis. One is histogram analysis and another is

correlation analysis for the adjacent pixels in the

encrypted image.

Histogram analysis

Histogram is the pixel frequency distribution where

each grey level is plotted for the number of pixels with that

particular value in the image. An effective cryptosystem

should be able to generate ciphertext with fairly uniform

histograms, which are also significantly different from

the plaintext.

TABLE 7 Evaluation of encryption quality.

Security Level Performance

SL0 High cryptography security+
High perceptual equality (QL2)

SL1 High cryptography security+Low

perceptual security (QL0, QL1)

SL2 Low cryptography security+High

perceptual security (QL2)

SL3 Low cryptography security+ Low

perceptual security (QL0, QL1)

Chi-square test

In order to verify the uniformity of the histogram, a chi-

square test is performed [187] and defined as:

χ2test =
K

∑

k=1

(oi − ei)
2

ei
(16)

where k is gray-level (256 for 8-bit image), oi, ei are the observed

and expected times occurrence of each gray-level, respectively.

The test is performed with different significance levels (generally

at 0.05) for a null hypothesis.

Correlation analysis

For a perceptually meaningful image, the correlation

between adjacent pixels is very high. It is necessary for an

effective cryptosystem to significantly reduce these correlation

values by decorrelating them in the encrypted domain. For

such analysis, either all or a few pixels are randomly selected

and correlation plots are obtained for horizontally, vertically,

and diagonally adjacent pixels. The correlation plots in each

direction should display the pixels to be uniformly scattered over

the entire intensity range. For quantitative analysis, correlation

coefficients are evaluated for two adjacent pixels in horizontal,

vertical, and diagonal directions using Eqs. (17)–(19). For

xi, yi as gray values of ith pair of selected adjacent pixels,

ρ(x,y) =
cov

(

x, y
)

√
D(x)

√

D
(

y
)

(17)

where cov
(

x, y
)

= E[x− E (x))(y− E
(

y
)

)]

= 1

N

i=N
∑

i=1

[( xi −
1

N

i=N
∑

i=1

xi )
∗(yi −

1

N

i=N
∑

i=1

yi ) ] (18)

D (x) = 1

N

i=N
∑

i=1

( xi −
1

N

i=N
∑

i=1

xi )

2

,

D
(

y
)

= 1

N

i=N
∑

i=1

(yi −
1

N

i=N
∑

i=1

yi)

2

(19)
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Entropy analysis

Information entropy is a mathematical property that depicts

the randomness associated with the information source. The

entropy of a message source s is given as:

H
(

d
)

= −
L−1
∑

i=0

P (si) log2 P (si) (20)

where L is the highest intensity value of pixels in image, si is

the ith symbol in message, P(.) refers to the probability. The

entropy defined in Eq. (20) is termed as Shannon’s entropy

[186]. Besides, a local entropy has been recently proposed [188]

as an extension of Shannon’s entropy measure. It is the mean

entropy of several randomly selected non-overlapping blocks

of information source. For an 8-bit image, L = 256, there

are K = 30, nonoverlapping blocks to be randomly selected

from the image with each block having 1,936 pixels (TB=1936).

Therefore, this entropy measure is also termed as (K,TB)-local

entropy and is evaluated using Eq. (21)

Hk,TB (S) =
k

∑

i=1

H (Si)

k
(21)

where Si are randomly selected non-overlapping image blocks

with TB pixels in each block of S with total of L intensity scales.

Sensitivity analysis

Key sensitivity analysis

The sensitivity of an encryption scheme can be evaluated

in two aspects: (1) at encryption stage which means that a

completely different ciphertext should be generated with a very

minute change in the input key value, (2) at the decryption stage,

the ciphertext should not be correctly recovered if there is very

slight change in the correct key values. Key sensitivity (KS) is

mathematically defined as:

KS = 1

M × N

M
∑

m=1

N
∑

n=1

C1(m, n)
⊗

C2(m, n)× 100% (22)

where C1 and C2 are two different ciphered images with slight

change in key values corresponding to same plain image, P.

M × N is total number of image pixels in the image.

C1 (m, n)
⊗

C2 (m, n) =
{

1,C1 (m, n) 6= C2 (m, n)

0,C1 (m, n) = C2 (m, n)
(23)

The value of KS should be as close to 100% [183].

Key space analysis

Key space refers to the set of all possible keys that are used

in encryption of information. A brute force attack is possible if

an intruder manages to make an exhaustive search on the set

of possibilities until the correct one is found. Thus, feasibility

of brute-force attack depends on the total number of valid keys.

This number is an important feature to determine the strength

of a cryptosystem, and it has to be large enough (> 2100) [142]

as per today’s computing power.

Di�erential analysis

With reference to plaintext, the sensitivity refers to change

in ciphertext with slight change in plaintext. This is termed

as differential analysis where an adversary can change a single

pixel in plaintext and compare the corresponding ciphertexts

to get some clue about secret keys. The diffusion property of

a cryptosystem enables it to spread any change in plaintext to

the entire ciphertext. There are two indicators for numerical

evaluation of resistance to such attack: NPCR (number of pixel

change rate) and UACI (unified average change in intensity).

Theoretically, the closer values of NPCR and UACI are 99.6093

and 33.4635%, respectively, indicating the effectiveness of the

applied algorithm [189]. These indicators are mathematically

defined as:

NPCR = 1

M × N

∑

i,j

D
(

i, j
)

× 100% (24)

UACI = 1

M × N

∑

i,j

∣

∣C
(

i, j
)

− C̃
(

i, j
)
∣

∣

L− 1
× 100% (25)

where C , C̃ are two encrypted images with the same keys but

with a slight change in the corresponding plain image of size,

[M N] with the highest intensity value, L.

D
(

i, j
)

=
{

1, C
(

i, j
)

6= C̃
(

i, j
)

0, otherwise
(26)

Avalanche e�ect

The avalanche criterion is referred to as an average number

of bits that differ between C and C̃ while changing a pixel in

plaintext. The ideal value of the avalanche effect is 0.5 (50%).

Noise analysis

The communication channels over which the image

information is transferred are responsible for the addition of

some noise in the form of degradation or distortion. The

performance of a cryptosystem in such a scenario requires

analysis. Gaussian noise with zero mean and varying values

for variance is added to the encrypted image for Gaussian

noise analysis. The quality of the decrypted image is checked in

perceptual as well as numerical terms with different variances

in noise [60, 190]. The results thus obtained are compared
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for the noise analysis. The Occlusion attack refers to the loss

of data or cropping of a portion of the image due to noisy

channels. The cryptosystem should be capable of recovering the

appropriate amount of information even after some occlusion

in data. In order to check for the robustness to occlusion

attack, some pixels of encrypted image (10, 15, 25, 50, 75%) are

cropped and corresponding decrypted image quality is evaluated

in perceptual and numerical analysis [25, 66, 190].

Speed analysis

Speed analysis refers to the critical execution time for

forward and reverse process in an encryption scheme. As typical

configuration and capacity of a system greatly determine its

computation speed, therefore a comparison of encryption and

decryption time is a trivial task. Different machines perform

differently. However, time analysis is an important feature,

especially where real-time application is involved. Time analysis

is performed in terms of encryption time and decryption

time separately. Generally, a large sample set of images are

considered for evaluating the average time taken in the

encryption and decryption process on a present-day commonly

used system configuration.

Randomness analysis

NIST SP800-22 is a statistical test suite for random

and pseudorandom number generators that are used for

cryptographic applications. The advantage of this test suite is

that it does not require any assumptions on the generator.

Rather, it only looks for a particular statistical recurrence in the

generated sequence (random). It consists of 15 p-value-based

tests that include frequency test, run test, and spectral test. These

tests are generally not used in transform-based cryptography.

However, we mention it here due to usage of it in some classical

methods of image encryption.

GVD analysis

The gray value difference of a pixel form its four neighboring

pixels in an image is given by:

G
(

i, j
)

=
∑

[ I
(

i, j
)

− I
(

i
′
, j
′)
]

4
(27)

The average difference in gray values corresponding to each pixel

in image is

Gav
(

i, j
)

= 1

(M − 2)(N − 2)

M−1
∑

i=2

N−1
∑

j=2

G
(

i, j
)

(28)

Thus, gray value difference (GVD) parameter [191] of an

encryption scheme is defined as:

GVD = GP
av(i, j)− GC

av(i, j)

GP
av

(

i, j
)

+ GC
av(i, j)

(29)

where GP
av and GC

av are the average differences in gray values for

original plain image and ciphered image, respectively. The ideal

value of GVD parameter is unity. For a good encryption scheme,

this parameter should be as close to 1.

Classical attack analysis

In cryptography, classical attacks are launched to

cryptanalyze an encryption scheme. The adversary can

have certain information regarding plain text or ciphertext

that provide for cryptanalysis. If the adversary has access to

set of ciphertext, then it can launch a ciphertext only attack. If

it is able to get access to set of plain texts and corresponding

ciphertexts, then a known plaintext attack can be launched. In

a chosen plaintext attack, it is assumed that the adversary has

access to arbitrary plaintexts and can obtain the corresponding

ciphertexts. From the above-stated assumptions, a chosen

plaintext attack provides the most information to the adversary.

Thus, if a cryptosystem is able to resist chosen plaintext attack,

it is believed to be able to resist other classical attacks as well

[154, 192]. Therefore, an image encryption scheme should have

excellent diffusion properties for providing robustness to a

chosen plaintext attack analysis.

Comparative analysis

As shown in Table 8, each of the proposed schemes is

accompanied by the parameters used to evaluate the encryption

algorithm and the technique that is merged with the fractional

transform. We have categorized these techniques into eight, as

reality preserving (T01), chaos theory based (T02), compressive

sensing (T03), multiple parameters (T04), DNA sequence (T05),

cellular automata (T06), double image encryption (T07.1),

multiple image encryption (T07.2), and with watermarking

(T08). The comparative analysis is based on the results

available for Lena image only. Table 9 illustrates the subjective

comparison for the same references as listed in Table 8 along

with the probable vulnerabilities associated with each of them.

These vulnerabilities are expressed as V01–V07 (mentioned

below the Table 9). It is worth mentioning here that the

vulnerabilities of each scheme can be removed by specific

methodology in practice.

It is evident from the values in Table 8 that studies in

which chaos-based permutation or substitution is merged with

fractional transform domain have higher entropy measure, low
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TABLE 8 Comparative analysis for performance metrics of proposed schemes (for Lena image).

[Reference] Year Technique Correlation Average Key Average Average Encryption

used analysis entropy space NPCR(%) UACI(%) quality

Horizontal Vertical Diagonal

Kaur et al. [53] 2021 T02, T05 0.0015 0.0014 0.0059 7.9952 10247 99.6348 33.5816 SL0

Ye et al. [164] 2021 T02, T03,T04 – – – – 2259 – – SL1

Kaur et al. [54] 2021 T02, T05 0.0033 −0.0099 −0.0046 7.9768 10228 99.5956 33.8798 SL1

Farah et al. [27] 2020 T02, T05 0.0693 0.0610 −0.0242 7.9991 — 99.5677 33.4353 SL0

Guleria et al. [176] 2020 T02,T07.2 0.0223 0.0187 0.0137 1.0149 1070 99.4664 34.1316 SL1

Kaur and Agarwal

[190]

2020 T01,T02 −0.0006 −0.0057 0.0009 7.9938 10102 99.6006 34.6379 SL0

Kaur et al. [52] 2019 T01,T02, T07.2 0.0036 −0.0038 0.0023 7.99 – – – SL2

Faragallah [50] 2018 T02,T07.1 0.0001 −0.0029 −0.0019 7.5907 – 99.7400 0 SL2

Zhang et al. [33] 2018 T02, T03 0.0127 0.0101 0.0139 – 10136 – – SL2

Kang and Tao [141] 2018 T01, T02, T04 −0.0001 −0.0014 0.0004 – – 99.8640 33.3330 SL0

Kang et al. [60] 2018 T01, T02, T04 0.0015 0.0017 −0.0033 – 1098 = 2325 99.9949 33.3616 SL0

Mishra et al. [28] 2018 T02 0.0020 −0.0007 0.00006 7.4739 – – – SL0

Ref. [29] 2018 T01, T02, T07.1 – – – SL3

Kaur et al. [48] 2017 T02 0.01513 −0.0024 −0.0045 7.9974 2297 – – SL2

Yu et al. [62] 2017 T02 0.1068 0.0766 0.0182 – ≈ 1016 – – SL3

Deng et al. [162] 2017 T02, T03 0.0909 0.2389 0.0126 – 1037 – – SL2

Pan et al. [49] 2017 T07.2 0.0249 0.0505 0.0280 – 275 × 305 99.6279 33.4599 SL2

Sui et al. [64] 2016 T02, T07.1 – – – – 1055 – – SL2

Santhanam and

McClellan [26]

2015 T02 0.0104 0.0299 0.0062 – 1034 × 135 × 115 – – SL2

Zhou et al. [161] 2015 T02, T03 0.0119 0.0925 0.0325 – 1064 – – SL2

Singh et al. [67] 2015 T07.1 0.0093 0.0172 0.0021 – – – – SL2

Sui et al. [43] 2014 T07.2 0.0040 −0.0018 0.0266 7.9976 – – – SL2

correlation coefficients, high NPCR and UACI, higher key space,

excellent key sensitivity, robustness to noise and data occlusion

attacks, hence having higher security levels. Reality preserving

algorithm has contributed toward the digital implementation

of optical transforms and has enabled researchers to overcome

major limitations regarding complexity issues of fractional

transforms in the digital domain. Compressive sensing is used

to reduce the data deluge while dealing with large images

for encryption but their performance is marginal in terms

of higher correlation coefficients and vulnerability to leakage

in information.

CS-based encryption schemes are highly complex [193] and

reconstruction is time-consuming. It has been observed in the

results of the above-reviewed articles that CS-based schemes lack

uniform histograms in the encrypted domain and CC values are

considerably higher. Also, CS-based simultaneous compression

and encryption schemes are vulnerable to cryptanalysis due to

linearity [194]. In a broad sense, if the plaintext is sparse, the key

of the cryptosystemmay not be safe as it is possible to exploit the

prior sparsity knowledge to extract information of the key from

ciphertext. The key and the plaintext may be partly accessed

using some information processing technology such as Blind

source separation (BSS) [195].

Multiple parameter-based fractional transform schemes

perform better than fixed/single transform order-based schemes.

This is due to enlarged key space and better uniformity in

encrypted histograms. However, there are some deficiencies

related to multiple parameter schemes [44–46] due to linearity

that need to be avoided. The linear relation among consecutive

transform orders and periodicity is the major limitation that

can lead to multiple decryption keys corresponding to an

encryption key. This depicts its vulnerability to various attacks.

To overcome this issue, it is necessary to introduce some means

of breaking the linear relationship among consecutive transform

orders or by careful selection of transform orders through a

random selection scheme [38], [190].

DNA sequence operation is little less explored with optical

transforms. However, it is able to enhance security with

increased key space and randomness in encrypted data. Double

and multiple image encryption schemes are preferred for
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TABLE 9 Comparative analysis for subjective parameters (refer Table 8 for performance metrics).

Reference Metrics for

perceptual

analysis

Noise

analysis

Occlusion

attack

Classical

attacks

Differential

attack

Statistical

attack

Time

analysis

Probable

Vulnerabilities

Kaur et al. [53] X X X X X X X V06, V07

Ye et al. [164] X X X X X X X V02, V05, V07

Kaur et al. [54] X X X X X X X V07

Farah et al. [27] X X X X X X X V01, V03, V06, V07

Guleria et al. [176] X X X X X X X V03, V07

Kaur and Agarwal [190] X X X X X X X V03, V07

Kaur et al. [52] X X X X X X X V01, V02,

Faragallah [50] X X X X X X X V02

Zhang et al. [33] X X X X X X X V01, V02, V07

Kang and Tao [141] X X X X X X X V03, V07

Kang et al. [60] X X X X X X X V07

Mishra et al. [28] X X X X X X X V03, V04, V05, V07

Kaur et al. [29] X X X X X X X V02, V04, V06, V07

Wu et al. [48] X X X X X X X V02, V03, V07

Yu et al.. [62] X X X X X X X V02, V03, V07

Deng et al. [162] X X X X X X X V01, V02, V07

Pam et al. [49] X X X X X X X V01

Sui et al. [64] X X X X X X X V02, V03, V07

Santhanam and

McClellan [26]

X X X X X X X V02, V07

Zhou et al. [161] X X X X X X X V02, V06

Singh et al. [67] X X X X X X X V02, V07

Sui et al. [43] X X X X X X X V02, V07

V01, High complexity; V02, Low encryption quality; V03, Dependent on diffusion; V04, Smaller key space; V05, poor efficiency; V06, Lossy; V07, may not be applicable for real

time applications.

speed and increasing encryption efficiency. Watermarking is

another domain where fractional transforms are used to

encrypt the watermark before embedding in a blind watermark

scenario. The encryption of the watermark logo in the

collective time-frequency domain increases the robustness to

various attacks.

Observations based on published
literature

In an exhaustive search performed in the month of

December 2021 on the various online databases: ACM Digital

library, Elsevier, Google Scholar, IEEE explore, Springer link,

Taylor and Francis and Wiley for the number of research papers

published related to the encryption of different multimedia

contents during the period 2015–2021. The pictorial view to

highlight the percentage of papers published on the encryption

of various multimedia contents like: images, video, audio, text

data etc. has been shown in Figure 5.

According to search results, it is observed that the number of

publications is majorly in text and image encryption. However,

the number of image encryption works is dominating with

42% of all the metadata available. We believe that it is due to

the wide application area of image data, from platforms like

social media to sensitive data like military and telemedicine

fields. Almost every sector of communication is dependent

on image transmission in one way or the other. It is also

observed that amongst various mathematical implementations

of the fractional transforms, FrFT is most popular with more

than 60% of the total publications in fractional integral-based

image encryption schemes. This is followed by fractional wavelet

transform (FrWT) with a contribution of 16%, fractional Hartley

transform, FrHT (10%), fractional Cosine transform, FrCT (7%)

and the remaining few on other transforms (namely, Mellin,

angular, sine etc.).

As the present manuscript is mainly concerned with

image encryption using optical/fractional integral transforms,

therefore, we narrowed down our search for the number of

papers published year-wise on the fractional transform-based
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FIGURE 5

Percentage of research papers published on the encryption of

various multimedia contents like: images, video, audio, text data

during 2015–2021.

image encryption schemes. Figure 6 illustrates a graphical

representation of the related publications in all the major online

databases during the period 2015–2021.

It is observed that the number of publications on image

encryption in the fractional transform domain has considerably

increased every year. This gives testimony to the fact that

with the advent of evolutionary algorithms based on fractional

integral transforms in the digital domain has increased its

popularity and is receiving significant attention from the

researcher community.

It has been also observed that most of the encryption

algorithms with fractional transform as the main component

are evaluated for statistical analysis, noise attack, and occlusion

attack analysis only. This is probably the reason for less

popularity of optical transform-based image encryption schemes

as compared to purely chaos-based schemes or other number

theory-based approaches. According to a recent survey on

color image encryption [111], only 8.65% of the proposed

schemes are based on optical transforms. In order to widen

the contribution of optical transform-based schemes to image

encryption, certain limitations need solutions for encouraging

practical implementations.

In Section Mathematical modelling of optical transforms

with FRFT and its variants, we have described the categorization

of fractional transform-based image encryption schemes in

accordance with the strategical amalgamation of the fractional

transform domain with other evolutionary methods. There

are total of eight major categories T01 to T08 (one of

them T07 having two subcategories). In Figure 7, we have

shown the relative contributions in terms of the number

of papers published in each of these categories so far.

We observe that the major contributions come from the

T07: Double Image/Multiple Image category, followed by

T02: chaos-based, T08: Watermarking, T03: Compressive

Sensing, T01: Reality Preserving category T04: Multiple/fixed

parameter transforms, T05: DNA Sequences, and least in T06:

Cellular Automata.

Based on the observations related to security levels and

vulnerabilities mentioned in Tables 8, 9, we elaborate on the

possible ways to overcome some limitations. Most of the

algorithms mainly lack in the following aspects: (1) uniform

histograms, (2) entropy measure, (3) smaller key space, (4)

differential analysis, (5) classical attack analysis, (6) speed

analysis. In the discussion below, we try to highlight some of the

possible solutions as:

• Uniform Histogram: A majority of fractional transform-

based image encryption schemes produce cipher images

having Gaussian distribution like histograms [23, 29, 141].

It is due to the fact that the energy of a transform is

concentrated at the center. Authors have claimed the

robustness of encryption schemes only on the basis of

similarity in the distribution of histograms irrespective of

the content of the plain image. The entropy measure for

such distributions has values that is significantly less than

the ideal value (8 for 256 intensity levels image). However,

in cryptography, it is expected that the cipher image pixels

should have a uniform distribution over the entire intensity

ranges having entropy measure very near or equal to the

ideal value. This points to some information leakage, that

can make a scheme vulnerable to entropy attacks. To

overcome such limitation, a hybrid algorithm in which

fractional integral transform domains are amalgamated

with chaos based pseudorandom substitutions should

be used.

• Smaller Key space: Adopting multiple layer security for

image encryption algorithm will lead to an increase in key

space. Apart from this, making a selection of transform

orders to depend on some chaotic parameters or a similar

analogy will result in larger key space [141, 190]. Most

of the proposed schemes have added a permutation layer

along with the transform domain. Some of the schemes

that are based on permutation and substitution paradigm

are able to offer larger key space to overcome brute

force attack.

• Differential Analysis: In order to fulfill the requirement of

effective encryption algorithm, the scheme should be able

to resist differential attack analysis. The parameters NPCR

and UACI are its measures. From Table 9, it is clear that

majority of schemes lack such analysis. Even if done, the

UACI values are not optimum or even zero. This is due

to the fact that there is no significant change in intensity

values with a single pixel change in input. Therefore, for

a successful strategy, the change should be diffused over
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FIGURE 6

Number of papers published on fractional integral transform-based image encryption schemes on various online databases.

FIGURE 7

Relative contribution in terms of the number of papers published belonging to di�erent categories (T01-T08) of fractional transform-based

image encryption techniques.

the entire image coefficients. One of the solutions to this

issue is to make the initial parameters of diffusion scheme

to depend on some significant feature of the input image

like mean or average values.

• Time analysis: A run time for an encryption algorithm

refers to the time required for its execution. Various factors

need to be considered for time analysis like the size of

image, system configuration, programming language etc.

[109]. To compare the computational performance of an

algorithm, is a crucial task as different host machines have

their own set of configurations. Due to this reason, some

researchers have used an average time Vs size paradigm to

evaluate computational performance [143] wherein input

images with variable size are selected and the average

time of encryption is evaluated using large set of different

keys. Fractional transform-based encryption schemes have

inherent advantage of high speed and parallel processing.

However, while merging of these schemes with other

domains like chaos etc., computational optimization should

be taken care of. In summary, there should be trade-

off management between complexity and security while

designing an algorithm and some optimum suggestion for
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the choice of parameters, number of rounds etc. should

be given.

• Careful Selection of chaotic maps: The chaotic maps

wherever used in an encryption scheme, need a careful

selection. As most of the schemes that are reviewed

have employed one dimensional chaotic map [28, 66,

69]. Although 1D maps are simplest in hardware

implementation but are less secure. For instance, 1D

logistic maps have some periodic windows in the chaotic

range [196] and that Arnold transform also has periodicity

[197], hence are vulnerable. At the same time, the higher

dimensional chaotic maps are sometimes secure but

complex. To keep a balance, it is recommended to use a

coupled map scheme where two or more 1D chaotic maps

are coupled for enhanced security [50] and also robust

chaotic maps may be used with proper specification of

the range of parameters where robust chaos is observed.

Prior to selection of such chaotic map, a proper bifurcation

analysis and investigation of dynamical behavior in the

entire parameter space must be done to identify the suitable

regions of parameter space exhibiting robust chaos.

Conclusion

The evolution of digital media over the past two decades

has revolutionized the development of strategies pertaining to

security preservation of the multimedia contents. Encryption is

the most effective way to secure the data. It has been observed

in the study that out of all the data types, (audio, video,

text, image) image data are most frequently used to convey

the information. Consequently, the percentage of published

work on image encryption is dominating with 42% of all the

metadata available. However, cryptography for image data is

challenging when it comes to classical methods of encryption

due to huge volume of data and also due to the high correlation

among adjacent pixel values. Various research works have been

proposed in the literature that are specifically suitable for image

encryption. Application of fractional integral transforms in

image encryption has been an active research area and the review

work in this paper is also focused on the same. The fractional

integral transform provide an extra degree of freedom to the

encrypted data as the fractional order of the transform is used

as secret key.

The aim of this review is to build an understanding of the

reader toward application of fractional integral transforms in

image encryption. The initial description of the paper gives

a conceptual idea on using these transforms and also the

domain-based taxonomy to classify various existing schemes

in the literature. The optical image encryption that comprises

of optical setup and double random phase encoding (DRPE)

has been discussed. Few recent review works and cryptanalysis

of these schemes are tabulated and analyzed. The digital

implementation of the fractional integral transforms is discussed

with its analogy to the optical setup. Further, various algorithms

are categorized in accordance with their merging techniques

and a comprehensive review is presented on some of the

most recently published articles. The performance criteria and

standards to be followed have been discussed. A performance

comparison in tabular format is presented for objective as

well as subjective metrics of some of the recent publications.

Finally, based on the observations, some major concerns are

listed and a few constructive guidelines are provided. This work

intends to provide the readers with an understanding of why

and how fractional integral transformations are applicable to

the encryption of images. In addition, the study highlights some

vulnerabilities and threats associated with the usage of fractional

transforms along with the probable solutions that may help

in the future design and development of hybrid and robust

encryption schemes.
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Practical data assimilation algorithms often contain hyper-parameters, which

may arise due to, for instance, the use of certain auxiliary techniques like

covariance inflation and localization in an ensemble Kalman filter, the re-

parameterization of certain quantities such as model and/or observation

error covariance matrices, and so on. Given the richness of the established

assimilation algorithms, and the abundance of the approaches through which

hyper-parameters are introduced to the assimilation algorithms, one may ask

whether it is possible to develop a sound and generic method to e�ciently

choose various types of (sometimes high-dimensional) hyper-parameters. This

work aims to explore a feasible, although likely partial, answer to this question.

Our main idea is built upon the notion that a data assimilation algorithm with

hyper-parameters can be considered as a parametric mapping that links a

set of quantities of interest (e.g., model state variables and/or parameters) to

a corresponding set of predicted observations in the observation space. As

such, the choice of hyper-parameters can be recast as a parameter estimation

problem, in which our objective is to tune the hyper-parameters in such a

way that the resulted predicted observations can match the real observations

to a good extent. From this perspective, we propose a hyper-parameter

estimation workflow and investigate the performance of this workflow in

an ensemble Kalman filter. In a series of experiments, we observe that the

proposed workflow works e�ciently even in the presence of a relatively large

amount (up to 103) of hyper-parameters, and exhibits reasonably good and

consistent performance under various conditions.

KEYWORDS

ensemble data assimilation, ensemble Kalman filter, iterative ensemble smoother,

hyper-parameter optimization, correlation-based adaptive localization

1. Introduction

Data assimilation leverages the information contents of observational data to

improve our understanding of quantities of interest (QoI), which could be model state

variables and/or parameters, or their probability density functions (PDF) in a Bayesian

estimation framework. Various challenges encountered in data assimilation problems

lead to a rich list of assimilation algorithms developed from different perspectives,

including, for instance, Kalman filter [1], extended Kalman filter [2], unscented Kalman

filter [3], particle filter [4, 5], Gaussian sum filter [6], for sequential data assimilation
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problems; 3D- or 4-variational assimilation algorithms [7, 8];

and smoother algorithms for retrospective analysis [9].

To mitigate the computational costs in practical

data assimilation problems, Monte Carlo or low-rank

implementations of certain assimilation algorithms are

investigated. Examples in this regard include ensemble Kalman

filter (EnKF) and its variants [10–16], ensemble Kalman

smoother [17], ensemble smoother [18], and their iterative

versions [19–22], low-rank unscented Kalman filter [23, 24],

ensemble or low-rank Gaussian sum filter [25–27].

In their practical forms, many assimilation algorithms

may contain a certain number of hyper-parameters. Different

from model parameters, hyper-parameters are variables that

stem from assimilation algorithms and have influences on

the assimilation results. As examples, one may consider the

inflation factor and the length scale in covariance inflation and

localization methods [13, 28–38], respectively, or parameters

that are related to model error simulations or representations

[39–42].

Often, a proper choice of algorithmic hyper-parameters

is essential for obtaining a descent performance of data

assimilation. With the presence of various mechanisms through

which algorithmic hyper-parameters are introduced, in the

literature there is a vast list of methods that are proposed

to estimate hyper-parameters (while sometimes relying on

empirical tuning). To the best of our knowledge, it appears

that the current best practice is to focus on developing tailored

estimation/tuning methods for individual mechanisms. With

this observation, a natural question would be: Is it possible

to develop a common method that can be employed to

estimate different types of hyper-parameters associated with an

assimilation algorithm?

This work can be considered as an attempt to find an

affirmative answer to the above question. Our main idea here

is to treat a data assimilation algorithm with hyper-parameters

as a parametric mapping, which maps QoI (e.g., model state

variables and/or parameters) to predicted observations in the

observation space. From this perspective, it will be shown later

that the choice of hyper-parameters can be converted to a

nonlinear parameter estimation problem, which in turn can be

solved through an iterative ensemble assimilation algorithm,

similar to what have been done in the recent work of Luo [41]

and Scheffler et al. [42]. Since ensemble-based data assimilation

methods can be interpreted as some local gradient-based

optimization algorithms [16, 43], we impose a restriction on

the hyper-parameters under estimation, that is, they have to

admit continuous values. In other words, we focus on the

Continuous Hyper-parameter OPtimization (CHOP) problem,

whereas tuning discrete hyper-parameters is beyond the scope

of the current work.

It is worth mentioning that hyper-parameter optimization

is a topic also often encountered in other research areas. For

instance, in machine learning problems, there may exist various

hyper-parameters (e.g., learning rate and batch size used in a

training algorithm) that need to be optimized. Consequently,

there are many techniques and tools developed in machine

learning community to tackle hyper-parameter optimization

problems [44–46]. Given the fact that data assimilation and

machine learning problems bear certain differences [41], and

the consideration that the focus of the current work is on

developing an ensemble-based CHOP workflow for ensemble

data assimilation algorithms, we do not introduce or compare

hyper-parameter optimization techniques adopted in machine

learning problems, although we do expect that hyper-parameter

optimization techniques in machine learning community may

also be extended to data assimilation problems.

In terms of novelty in the current work, to the best of

our knowledge, CHOP appears to be the first ensemble-based

hyper-parameter optimization workflow in the data assimilation

community. As will be elaborated later, instead of producing

a point estimation of hyper-parameters, the CHOP workflow

generates an ensemble of such estimations. In doing so, a few

practical advantages (similar to those pertaining to ensemble-

based data assimilation algorithms) can be obtained, which

include the ability of conducting uncertainty quantification and

the derivative-free nature in the course of optimizing hyper-

parameters. In addition to these practical advantages, CHOP can

be seamlessly integrated into ensemble-based data assimilation

algorithms to form a more automated assimilation workflow,

which can automatically determine an ensemble of (near)

optimal hyper-parameters with minimal manual interference,

and possesses the capacity to simultaneously handle a large

amount of hyper-parameters (a challenging issue seemingly not

addressed by existing hyper-parameter optimization methods in

the data assimilation community).

This work is organized as follows: We first formulate

the CHOP problem, and propose a workflow (called CHOP

workflow hereafter) to tackle the CHOP problem, which

involves the use of an iterative ensemble smoother (IES) and

a correlation-based adaptive localization scheme. We then

investigate and report the performance of the CHOP workflow

in a series of experiments. Finally, we conclude this study with

some technical discussions and possible future works.

2. Problem statement and
methodology

2.1. The CHOP problem

We illustrate the main idea behind the CHOP workflow in

the setting of a sequential data assimilation problem, in which

an EnKF is adopted with a certain number of hyper-parameters.

Let m ∈ R
m be an m-dimensional vector, which contains a set

of model state variables and/or parameters. In the subsequent

derivation of the solution to the CHOP problem, the dynamical
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system is not involved. As a result, we exclude the forecast

step, and focus more on the analysis step, which applies an

EnKF to update a background estimation mb to the analysis

ma.

Essentially, the EnKF can be treated as a parameterized

vector mapping fθ :m
b → ma that transforms mb to ma,

where θ represents a set of algorithmic hyper-parameters to be

estimated. In the context of data assimilation, the information

contents of observational data, denoted by do ∈ R
d in this

work, are utilized for state and/or parameter update, whereas

the update process also involves an observation operator,

denoted by h here, which maps a background estimation

mb to some predicted data h
(

mb
)

in the observation space.

We assume that the observations do contain some Gaussian

white noise, which follows the normal distribution N
(

0,Cd

)

with mean 0 and covariance Cd. In addition, we denote

the background ensemble by Mb ≡ {mb
j }
Ne
j=1, and the

analysis ensemble by Ma ≡ {ma
j }
Ne
j=1, where j is the

index of ensemble member, and Ne represents the number of

ensemble members.

Under these settings, an analysis step of the EnKF can be

represented as follows:

ma
j = fθ

(

mb
j ,M

b, doj , h
)

≡ f
(

θ;mb
j ,M

b, doj , h
)

, for j = 1, 2, · · · ,Ne. (1)

In Equation (1), the concrete form of the mapping f will

depend on the specific EnKF algorithm of choice. The quantities

mb
j , M

b, doj and h are known, whereas the hyper-parameter

vector θ is to be estimated under a certain criterion, leading to a

CHOP problem.

As an example, one may consider the case that an EnKF with

perturbed observations is adopted, and covariance localization

is introduced to the EnKF, such that the update formula is given

as follows:

f
(

θ;mb
j ,M

b, doj , h
)

= mb
j +

(

Lθ ◦ Cm
)

hT
(

h
(

Lθ ◦ Cm
)

hT

+ Cd

)−1
(

doj − hmb
j

)

. (2)

In Equation (2), we have assumed that h is a linear

observation operator in this particular example, whereas Cm

is the sample covariance matrix induced by the background

ensemble Mb; Lθ the localization matrix, which depends on

some hyper-parameter(s) θ (e.g., the length scale); and Lθ ◦ Cm

stands for the Schur product of Lθ and Cm. One insight from

Equation (2) is that even f is a linear function ofmb
j , in general f

may have a nonlinear relation to the hyper-parameters θ .

2.2. Solution to the CHOP problem

In the current work, we treat CHOP as a parameter

estimation problem, which can be solved through an ensemble-

based, iterative assimilation algorithm, given the presence of

nonlinearity in the CHOP problem. Specifically, we follow the

idea in [22] to tackle the CHOP problem by minimizing the

average of an ensemble of Ne cost functions Cij

(

θ ij

)

at each

iteration step (indexed by i):

argmin

{θ ij}
Ne
j=1

1

Ne

Ne
∑

j=1

Cij

(

θ ij

)

, (3)

Cij

(

θ ij

)

≡ 1

2

{

(

doj − g
(

θ ij

))T
C−1
d

(

doj − g
(

θ ij

))

+ γ i−1
(

θ ij − θ i−1
j

)T (

Ci−1
θ

)−1 (

θ ij − θ i−1
j

)

}

, (4)

g
(

θ ij

)

≡ h
(

mi
j

)

= h
(

f
(

θ ij;m
b
j ,M

b, doj , h
))

. (5)

In Equation (5), g
(

θ ij

)

, equal to h
(

mi
j

)

, corresponds to

the predicted observations of mi
j, which in turn depends on the

hyper-parameters θ ij for a chosen assimilation algorithm f. At

the end of the iteration process, suppose that in total K iteration

steps are executed to obtain θKj , then we take ma
j = mK

j =
f
(

θKj ;m
b
j ,M

b, doj , h
)

, ∀j = 1, 2, · · · ,Ne.

As implied in Equations (3) and (4), the main idea behind

the proposed CHOP workflow is to find, at each iteration step,

an ensemble of hyper-parameters 2i ≡
{

θ ij

}Ne

j=1
that renders

lower average data mismatch, in terms of

Ne
∑

j=1

(

doj − g
(

θ ij

))T
C−1
d

(

doj − g
(

θ ij

))

/Ne,

than the previous ensemble 2i−1 does. However, as in many

ill-posed inverse problems, it is desirable to avoid over-fitting

the observations. To this end, a regularization term, in the form

of
(

θ ij − θ i−1
j

)T (

Ci−1
θ

)−1 (

θ ij − θ i−1
j

)

, is introduced into the

cost functionCij

(

θ ij

)

in Equation (4), whereasCi−1
θ

corresponds

to the sample covariance matrix induced by the ensemble of

hyper-parameters 2i−1 =
{

θ i−1
j

}Ne

j=1
, and can be expressed

as Ci−1
θ

= Si−1
θ

(Si−1
θ

)T , with Si−1
θ

being a square root matrix

defined in Equation (9) later. The positive scalar γ i−1 can

be considered a coefficient that determines the relative weight

between the data mismatch and the regularization terms at each

iteration step, and we will discuss its choice later.

Another implication from Equations (3) to (5) is that instead

of rendering a single estimation of the hyper-parameters, we

provide an ensemble of such estimates, and each of them (e.g.,

θ ij) is associated with a model state and/or parameter vector
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mi
j. The presence of multiple estimates θ ij not only provides the

possibility of uncertainty analysis in a CHOP problem, but also

avoids the need to explicitly evaluate the gradients of g with

respect to θ ij in the course of solving the minimization problem

in Equation (3).

Equation (3) can be approximately solved by an IES, given as

follows [22]:

θ ij = θ i−1
j + Ki−1

(

doj − g
(

θ i−1
j

))

, j = 1, 2, · · · ,Ne; (6)

Ki−1 ≡ Si−1
θ

(Si−1
g )T

(

Si−1
g (Si−1

g )T + γ i−1Cd

)−1
; (7)

θ̄
i−1 ≡ 1

Ne

Ne
∑

j=1

θ i−1
j ; (8)

Si−1
θ

≡
1√

Ne − 1

[

θ i−1
1 − θ̄

i−1
, θ i−1

2 − θ̄
i−1

, · · · , θ i−1
Ne

− θ̄
i−1
]

;(9)

Si−1
g ≡ 1√

Ne − 1

[

g
(

θ i−1
1

)

− g
(

θ̄
i−1
)

, g
(

θ i−1
2

)

− g
(

θ̄
i−1
)

, · · · , g
(

θ i−1
Ne

)

− g
(

θ̄
i−1
)]

. (10)

As one of the attractive properties of various ensemble-based

assimilation algorithms, this iteration process does not explicitly

involve the gradients of g, h (the observation operator) or f (the

assimilation algorithm) with respect to the hyper-parameters θ ,

which helps to reduce the complexities of implementing the IES

algorithm.

In a practical implementation, the update formulas from

Equations (6) to (7) are re-written as follows:

θ ij = θ i−1
j + Si−1

θ
(S̃i−1

g )T
(

S̃i−1
g (S̃i−1

g )T + γ i−1Id

)−1

(

d̃oj − g̃
(

θ i−1
j

))

; (11)

S̃i−1
g ≡ C

−1/2
d

Si−1
g ; d̃oj ≡ C

−1/2
d

doj ; g̃
(

θ i−1
j

)

≡ C
−1/2
d

g
(

θ i−1
j

)

. (12)

In Equation (11), Id represents the d-dimensional identity

matrix. In Equation (12), the quantities Si−1
g , doj and g

(

θ i−1
j

)

in the observation space are normalized by a square root

C
−1/2
d

of the observation error covariance matrix. After

this normalization, a singular value decomposition (SVD) is

applied to S̃i−1
g , while avoiding the potential issue of different

magnitudes of observations when forming the square root

matrix Si−1
g . Suppose that through the SVD, we have

S̃i−1
g = Ũi−16̃

i−1
(

Ṽi−1
)T

. (13)

To strengthen the numerical stability of the IES algorithm,

we discard a number of relatively small singular values, which

results in a truncated SVD such that

S̃i−1
g ≈ Ûi−16̂

i−1
(

V̂i−1
)T

. (14)

The truncation criterion adopted in the current work

is as follows: Suppose that the matrix 6̃
i−1

contains a

number of R singular values σ̃ i−1
1 , σ̃ i−1

2 , · · · , σ̃ i−1
R arranged

in the descending order, then we keep the first r leading

singular values such that
∑r

ℓ=1 σ̃ i−1
ℓ

/
∑R

ℓ=1 σ̃ i−1
ℓ

≤ 99% and
∑r+1

ℓ=1 σ̃ i−1
ℓ

/
∑R

ℓ=1 σ̃ i−1
ℓ

> 99%. In Equation (14), the matrix

6̂
i−1

takes the leading singular values σ̃ i−1
1 , σ̃ i−1

2 , · · · , σ̃ i−1
r as

its diagonal elements. Accordingly, the matrices Ûi−1 and V̂i−1

consist of eigen-vectors that correspond to these kept leading

singular values.

Inserting Equation (14) into Equation (11), one obtains a

modified update formula:

θ ij ≈ θ i−1
j + Si−1

θ
V̂i−16̂

i−1
(

(

6̂
i−1
)2

+ γ i−1Ir

)−1

(

Ûi−1
)T (

d̃oj − g̃
(

θ i−1
j

))

, (15)

which is used in all numerical experiments later. In Equation

(15),
(

6̂
i−1
)2

≡ 6̂
i−1

6̂
i−1

, and Ir stands for the r-

dimensional identity matrix.

As mentioned previously, γ i−1 can be considered as a

coefficient that determines the relative weight between the data

mismatch and regularization terms. In the update formula,

e.g., Equation (11) or (15), one can see that in effect, γ i−1

affects the change θ ij − θ i−1
j of the hyper-parameters, which

is also referred to as the step size of the iteration hereafter.

Following the discussions in [22, 43], it can be shown that the

update formula, Equation (11) or (15), is derived by implicitly

linearizing g
(

θ ij

)

,∀j = 1, 2, · · · ,Ne, around the ensemble

mean θ̄
i−1

(through the first-order Taylor approximation) at

each iteration step1. In this regard, an implication is that the

step size cannot be too big in order to make the linearization

strategy approximately valid. On the other hand, a too small

step size will slow down the convergence of the iteration

process. As a result, in our implementation of the IES algorithm

(e.g., Equation 11), we choose γ i−1 in such a way that the

influences of the two terms, S̃i−1
g (S̃i−1

g )T and γ i−1Id are

comparable (in contrast to the choice that one term dominates

the other). Here, the influence is measured in terms of the

trace of the respective term. As a consequence of this notion,

we have γ i−1 = αi−1 trace
(

S̃i−1
g (S̃i−1

g )T
)

/ trace
(

Id
)

=

αi−1 trace
(

S̃i−1
g (S̃i−1

g )T
)

/d, where αi−1 > 0 is the actual

coefficient to be tuned.

When the truncated SVD is applied to S̃i−1
g ,

the choice of γ i−1 for Equation (15) boils

1 By “implicitly linearizing” we mean that the derivation of the update

formula adopts the concept of linearization, but there is no need to

actually evaluate the gradients of g with respect to θ̄
i−1

.
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down to

γ i−1= αi−1 trace

(

(

6̂
i−1
)2
)

/ trace (Ir)

= αi−1
r
∑

ℓ=1

(

σ̃ i−1
ℓ

)2
/r, (16)

At the beginning of the iteration, we let α0 = 1.

Subsequently, We use a backtrack line search strategy similar

to that in [21] to tune the coefficient value. Specifically, if the

average data mismatch at step i is lower than that at step (i− 1),

then we accept the estimated hyper-parameters θ ij, and move to

the next iteration step. To this end, we reduce the coefficient

value by setting αi = 0.9αi−1, which aims to help increase the

step size at the next iteration step, similar to the idea behind the

trust-region algorithm [47].

On the other hand, if the average data mismatch value at step

i becomes higher than that at step (i − 1), then the estimated

hyper-parameters θ ij are not used for the next iteration step.

Instead, a few attempts (say Ktrial) are conducted to search for

better estimations, leading to a so-called inner-loop iteration

(if any), which is adopted for a distinction from the upper-

level iteration process (called outer-loop iteration). These are

done by doubling the coefficient value αi−1
s = 2αi−1

s−1, s =
1, 2, · · · ,Ktrial, for each trial, with αi−1

0 = αi−1, and then re-

running the update formula (Equation 15) with a new γ i−1 value

calculated by Equation (16), wherein the modified αi−1
s value is

adopted for the calculation. This strategy is again similar to the

setting of the trust-region algorithm, and is also in line with the

analysis in [22], where it is shown that as long as the linearization

strategy is approximately valid, the data mismatch values tend to

decrease over the iteration steps. As such, it is sensible to increase

the coefficient value (hence shrink the step size), as this helps

to improve the accuracy of the first-order Taylor approximation

(hence the validity of the linearization strategy). The trial process

will be terminated if an average data mismatch value (obtained

by using an enlarged coefficient value αi−1
s ) is found lower than

that at the iteration step (i− 1), or if the maximum trial number

(set to 5) is reached. At the end of the trial process, we set

αi = αi−1
Ktrial

, and take θ ij as those obtained from the last trial step.

An additional aspect of the IES algorithm is the stopping

criteria. Three such criteria are adopted in the outer-loop

iteration process, which include: (1) the maximum iteration

step, which is set to be 10; (2) the threshold for the relative

change of the average data mismatch values at two consecutive

iteration steps, which is set to be 0.01%; (3) the threshold for

the average data mismatch value, which is set to be 4 × #(do)

(four times the number of observations, with #(do) being the

number of elements in do). In other words, the iteration process

will stop if the maximum iteration step is reached. Additionally,

the iteration process will also stop if the relative change of the

average data mismatch values at two consecutive iteration steps,

or the average data mismatch value itself at a certain iteration

step, is less than their respective threshold value.

In terms of computational cost, the original analysis scheme

(e.g., Equation 1), applies the update formula only once. In

contrast, in a CHOP problem, one needs to apply the update

formula multiple times during the iteration process. As such,

it becomes computationally more expensive to solve the CHOP

problem than a straightforward application of the EnKF analysis

scheme (if one ignores the potential cost of searching for

proper hyper-parameter values). In practical problems, however,

the computationally most expensive part of an assimilation

workflow often lies in running the dynamical system (i.e., at

the forecast step), whereas it is computationally much cheaper

to execute the analysis step. Within this context, it is expected

that solving the CHOP problem will only lead to a negligible

(hence affordable) overhead of computational cost to the whole

assimilation workflow.

2.3. Localization in the CHOP problem

In many data assimilation problems, the heavy cost of

running the dynamical system also puts a constraint on how

many ensemble members one can afford to use. Often, a trade-

off has to be made so that one employs an ensemble data

assimilation algorithm with a relatively small ensemble size for

runtime reduction. One consequence of this limited ensemble

size is that there could be substantial sampling errors when using

the statistics (e.g., covariance and correlation) estimated from

the small ensemble in the update formula. In addition, rank

deficiencies of estimated covariance matrices would also take

place. These noticed issues often lead to degraded performance

of data assimilation. To mitigate the impacts of sampling errors

and rank deficiency, localization techniques (e.g., [13, 30–32, 48,

49]), are often employed.

In the CHOP problem, we note that localization is

conducted with respect to hyper-parameters (e.g., in Equations

11 or 15), in spite of the possible presence of another localization

scheme adopted in the assimilation algorithm (e.g., as in

Equation 2).

Many localization methods are based on the distances

between the physical locations of certain pairs of quantities,

which can be either pairs of two model variables as in

model-space localization schemes (e.g., [13]), or pairs of one

model variable and one observation as in observation-space

localization schemes (se.g., [49]). In the CHOP problem,

however, in certain circumstances it may be challenging to apply

distance-based localization, as in the update formula, Equations

(11) or (15), certain hyper-parameters may not possess clearly

defined physical locations, so that the concept of physical

distance itself may not be valid.

To circumvent this difficulty, we adopt a correlation-based

adaptive localization scheme proposed in [50]. For illustration,
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without loss of generality, suppose that when localization is not

adopted, the update formula is in the form of

θ ij = θ i−1
j + K̃i−1

(

d̃oj − g̃
(

θ i−1
j

))

, (17)

where K̃i−1 is a Kalman-gain-like matrix and
(

d̃oj − g̃
(

θ i−1
j

))

the corresponding innovation term. With the presence of

localization, then the update formula is modified as

θ ij = θ i−1
j +

(

Li−1 ◦ K̃i−1
) (

d̃oj − g̃
(

θ i−1
j

))

, (18)

where Li−1 is a h × d localization matrix to be constructed,

with h and d being the vector lengths of θ ij and g̃
(

θ i−1
j

)

(or

d̃oj ), respectively. In Equation (18), the localization scheme is

similar to observation-space localization, but the localization

matrix Li−1 acts on the Kalman-gain-like matrix K̃i−1.

The construction of the localization matrix Li−1 is based on

the notion of causality detection between the hyper-parameters

θ ij and the predicted observations g̃
(

θ i−1
j

)

[50]. To see the

rationale behind this notion, let d̃
i−1,pred
j ≡ g̃

(

θ i−1
j

)

and

1d̃i−1
j ≡ d̃oj − d̃

i−1,pred
j , and re-write Equation (18) into an

equivalent, element-wise form

θ ij,s = θ i−1
j,s +

d
∑

t=1

(

Li−1
s,t K̃i−1

s,t

)

1d̃i−1
j,t , for s = 1, 2, · · · , h,

(19)

where θ ij,s, θ i−1
j,s and 1d̃i−1

j,t represent the s−th or the t−th

element of θ ij, θ
i−1
j and 1d̃i−1

j , respectively; while Li−1
s,t ∈ [0, 1]

and K̃i−1
s,t stand for the elements on the s−th row and the t−th

column of the matrices Li−1 and K̃i−1, respectively.

The implication of Equation (19) is that the innovation

elements 1d̃i−1
j,t (t = 1, 2, · · · , d) contribute to the change

θ ij,s − θ i−1
j,s of the s−th hyper-parameter, and the degree of the

contribution of each innovation element 1d̃i−1
j,t is determined

by the element K̃i−1
s,t (if no localization), together with the

tapering coefficient Li−1
s,t (if with localization).

In the notion of causality detection to choose the value of

Li−1
s,t , the main idea is that if there is a causality from the s−th

element of hyper-parameters to the t−th element of innovations,

then 1d̃i−1
j,t should be used for updating θ i−1

j,s to θ ij,s, meaning

that Li−1
s,t 6= 0. In contrast, if there is no causality therein, then it

is sensible to exclude 1d̃i−1
j,t so that it makes no contribution to

the update of θ i−1
j,s to θ ij,s, meaning that Li−1

s,t = 0.

Here, the statistics used to measure the causality is the

sample cross correlations (e.g., denoted by ρi−1
s,t ) between the

elements of an ensemble of hyper-parameters (e.g., θ i−1
j,s for j =

1, 2, · · · ,Ne) and the corresponding ensemble of innovations

(e.g., 1d̃i−1
j,t for j = 1, 2, · · · ,Ne). Intuitively, when the

magnitude of a sample correlation, say ρi−1
s,t , is relatively high

(e.g., close to 1), then one tends to believe that there is a true

causality from the s−th element of hyper-parameters to the

t−th element of innovations. On the other hand, when the

magnitude of ρi−1
s,t is relatively low (e.g., close, but not exactly

equal, to 0), then more caution is needed. This is because when

a limited ensemble size Ne is adopted, the induced sampling

errors can cause spurious correlations, such that even there is no

causality between a hyper-parameter and an innovation element,

the estimated sample correlation may not be identical to zero.

Taking into account the above consideration, we assign

values to Li−1
s,t following a method in [50]:

Li−1
s,t = fGC

(

1− |ρi−1
s,t |

1− 3/
√
Ne

)

,Ne > 9, (20)

where fGC is the Gaspari-Cohn (GC) function [51], which, for a

scalar input z ≥ 0, satisfies

fGC (z) =


















− 1

4
z5 + 1

2
z3 + 5

8
z3 − 5

3
z2 + 1 , if 0 ≤ z ≤ 1 ;

1

12
z5 − 1

2
z4 + 5

8
z3 + 5

3
z2 − 5z + 4− 2

3
z−1 , if 1 < z ≤ 2 ;

0 , if z > 2 .

(21)

Note that in general, choosing Equation (21) as the tapering

function may not be optimal, and other types of tapering

functions may also be considered, see, for instance, [52].

In Equation (20), the factor 3/
√
Ne is adopted for the

following reason: When the true correlation between the s-

th hyper-parameter and the t-th innovation is 0, but the

sample correlation is evaluated with a sample size of Ne, then

the sampling errors follow a Gaussian distribution N(0, 1/Ne)

asymptotically, see [50] and the reference therein. Therefore,

under the hypothesis (denoted by H0 hereafter) that the true

correlation is 0, we compare the magnitude of the sample

correlation ρi−1
s,t with three times the standard deviation (STD)

(3/
√
Ne). The larger |ρi−1

s,t | is, the more confident we are that

H0 should be rejected, meaning it is more likely that there is

a true (non-zero) correlation between the s-th hyper-parameter

and the t-th innovation. As such, Li−1
s,t will receive a larger value.

On the other hand, the value of Li−1
s,t becomes smaller as |ρi−1

s,t |
decreases.

In comparison to distance-based localization, a few

additional benefits of the above correlation-based localization

include: better abilities to hand non-local observations, time-

lapse effects of observations and big observation datasets; and

improved adaptivity to different types of model parameters/state

variables. For more details, readers are referred to [50].
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3. Numerical results

The L96 model [53] is taken as the testbed in the current

study. For a NL-dimensional L96 model, its dynamic behavior

is described by the following ordinary differential equations

(ODEs):

dxe

dt
=
(

xe+1 − xe−2
)

xe−1 − xe + F, e = 1, · · · ,NL. (22)

For consistency, x−1 = xNL−1, x0 = xNL and x1 = xNL+1

in Equation (22). The driving force term F is set to 8 throughout

this work. The L96 model is integrated forward in time by the

fourth-order Runge-Kutta method with a constant integration

step of 0.05 time units (dimensionless).

Similar to the idea of cross-validating the reliability and

performance of a machine learning model through certain

statistical tests [54], in the experiments below, a few statistics

are adopted to characterize the performance of data assimilation.

These include the root mean square error (RMSE) Em, ensemble

spread Sen and data mismatch Ed. As will be seen below,

RMSE computes a normalized Euclidean distance between an

estimate and the ground truth in the model space, whereas data

mismatch calculates a similar distance between predicted and

real observations in the observation space. On the other hand,

ensemble spread provides a measure of ensemble variability.

To compute these statistics, letm be am-dimensional vector

of estimated model state variables and/ or parameters that

are of interest, dpred ≡ h (m) the corresponding predicted

observation, with h being the observation operator, then given

the referencemref (ground truth), we define the RMSE ofm as

Em = ‖m−mref ‖2/
√
m, (23)

where the operator ‖ • ‖2 returns the Euclidean norm of its

operand •.
In addition, assume that the real observation is do, which is

contaminated by some zero-mean Gaussian white noise, and is

associated with an observation error covariance matrix Cd, then

we define the data mismatch ofm as

Ed =
(

do − dpred
)T

C−1
d

(

do − dpred
)

. (24)

For the definition of ensemble spread, let M =
{

mj ≡
[

mj,1,mj,2, · · ·mj,m
]T
}Ne

j=1
be an ensemble of estimated

model state variables/parameters, where mj,k denotes the k-th

element of mj (k = 1, 2, · · · ,m). Based on M, we construct

a vector S ≡ [σ1, σ2, · · · , σm]T , where σk denotes the sample

standard deviation with respect to the ensemble {mj,k}
Ne
j=1, and

compute the ensemble spread as

Sen = ‖S‖2/
√
m. (25)

3.1. Experiments in a 40-dimensional L96
system

3.1.1. Experiment settings

We start from the common choice of NL = 40 in the

literature, while considering a much largerNL value later on.We

run the L96model from time 0 to time 5,000 (which corresponds

to 100,000 integration steps in total), and compute the long-term

(lt) temporal mean m̂lt and covariance Ĉlt based on the model

variables at all integration steps.

In each of the experiments below, we draw a random sample

from the Gaussian distributionN
(

m̂lt , Ĉlt
)

, and use this sample

as the initial condition to start the simulation of the L96 model

in a transition time window of 250 time units (corresponding to

5,000 integration steps).

The model variables obtained at the end of the transition

time window is then taken as the initial values to simulate

reference model variables in an assimilation time window of

250 time units. Data assimilation is conducted within this

assimilation time window to estimate reference model variables

at different time steps, based on a background ensemble of

model variables and noisy observations that are related to

reference model variables through a certain observation system.

The initial background ensemble (at the first time instance

of the assimilation time window) is generated by drawing a

specified number Ne of samples from the Gaussian distribution

N
(

m̂lt , Ĉlt
)

. The ensemble size Ne may change with the

experiments, as will be specified later.

For a generic vector m of model state variables/parameters,

the observation system adopted in the experiments is linear and

in the form of

d = Hm

=
[

m1,m1+1n,m1+21n, · · · ,m1+M1n
]T

,
(26)

where H is a matrix extracting elements

m1,m1+1n,m1+21n, · · · from m, the integer 1n represents

an increment of model-variable index, and M is the largest

integer such that 1 + M1n ≤ NL. The value of 1n may also

vary in different experiments. As such, its concrete value will be

mentioned in individual experiments later. For convenience,

hereafter we may also use the shorthand notation {1 :1n :NL}
to denote the set {1, 1 + 1n, 1 + 21n, · · · } of indices. Similar

notations will also be used elsewhere later.

In the experiments, we assume that the observation operator

H is perfect and known to us. When applying Equation (26)

to reference model variables to generate real observations for

data assimilation, we add to the outputs of Equation (26) some

Gaussian white noise ǫ, which is assumed to follow the Gaussian

distribution N(0M+1, IM+1), with 0M+1 and IM+1 being the

(M + 1)-dimensional zero vector, and the (M + 1)-dimensional

identity matrix, respectively. The frequency for us to collect the
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measurements is every 1t integration steps, whose value will

also be specified in respective experiments.

The base assimilation algorithm adopted here is the EnKF

with perturbed observations [55], in which the update formula

reads:

ma
j = mb

j + CmH
T
(

HCmH
T + Cd

)−1 (

doj −Hmb
j

)

,

for j = 1, 2, · · · ,Ne, (27)

where Cm is the sample covariance matrix of the background

ensembleMb ≡ {mb
j }
Ne
j=1, and doj stands for perturbations with

respect to the real observation do.

Covariance inflation and localization are then introduced

to Equation (27) to strengthen the performance of the EnKF.

We note that our purpose here is to demonstrate how the

CHOP workflow can be implemented on top of certain chosen

inflation and localization techniques, yet the CHOP workflow

itself cannot be used to design new inflation or localization

techniques.

Specifically, in this study, covariance inflation is conducted

on the background ensemble, in such a way thatMb is replaced

by a modified background ensemble M̃b ≡ {m̃b
j }
Ne
j=1 with

m̃b
j = m̄b + (1+ δ)

(

mb
j − m̄b

)

, where m̄b is the ensemble

mean of the members in Mb, and δ ≥ 0 is the inflation factor

to be determined through a certain criterion. Accordingly, the

sample covariance Cm in Equation (27) should be replaced by

C̃m = (1+ δ)2 Cm, which is larger than Cm (hence the name

covariance inflation).

On the other hand, localization is implemented by replacing

the Kalman gain matrix K̃ = C̃mH
T
(

HC̃mH
T + Cd

)−1
by

the Schur product L ◦ K̃, where L is the localization matrix,

whose element, say, Ls,t on the s-th row and the t-th column

of L, is determined by the “physical” distance between the s-

th model variable ms and the t-th observation element dt . For

the observation system in Equation (26), dt corresponds to the

observation at the model-variable location o = (1+ (t − 1)1n)

(in terms of model-variable index). As such, the element Ls,t is

computed as follows:

Ls,t = fGC

(

dists,t

λ

)

, (28)

dists,t= min (|s− o|/NL, 1− |s− o|/NL) . (29)

In Equation (28), fGC is the Gaspari-Cohn function (see

Eq. 21), dists,t represents a normalized distance between the

s-th model variable and the t-th observation element (which

is located on the o-th model grid/index), and λ is the length

scale, whose value is chosen under a certain criterion. Equation

(29) computes the distance between the t-th and o-th model

grids/indices, which is normalized by the total number NL of

the model grids (equal to the dimension of the L96 model in

this case). Note that dists,t takes the minimum value between

|s − o|/NL and 1 − |s − o|/NL, due to the circular nature of the

L96 model. In the sequel, we re-write L as L (λ) to indicate the

dependence of L on λ.

Taking into account the presence of both covariance

inflation and localization, the base assimilation algorithm,

Equation (27), is modified as follows:

ma
j =

[

m̄b + (1+ δ)

(

mb
j − m̄b

)]

+
{

L (λ) ◦
[

CmH
T
(

HCmH
T + Cd/ (1+ δ)2

)−1
]}

(

doj −H
[

m̄b + (1+ δ)

(

mb
j − m̄b

)])

. (30)

The update formula in Equation (30) thus contains two

hyper-parameters, the inflation factor δ and the length scale λ.

With the known background ensembleMb (hencemb
j , m̄

b, and

Cm) and the quantities doj , Cd, and H, the relation between the

analysisma
j and the hyper-parameters is complex (and nonlinear

in general), even with a rather simple observation operatorH.

Equation (30) serves as the reference algorithm hereafter,

and we will compare its performance with that of the CHOP

workflow in a number of different experiments below. In the

comparison, we do not adopt any tailored methods proposed

in the literature to tune δ and/or λ. Instead, we use the

grid search method to find the optimal values of the pair

(δmin, λmin), whereas the optimality is meant in the sense that

the combination (δmin, λmin) results in the lowest value of an

average RMSE within some pre-defined search ranges of δ and

λ. In all the experiments related to the 40-dimensional L96

model, for the reference algorithm (Equation 30), the search

range of δ is set to {0 : 0.1 : 2}, and that of λ to {0.05 : 0.05 : 1}.
For a given experiment, the average RMSE is obtained by first

computing the RMSEs of all analysis ensemblemeans at different

time instances, then averaging these RMSEs over the whole

assimilation time window, and finally averaging the previous

(average) values again over a number of repetitions of the

assimilation run. These repetitions share identical experimental

settings, except that the random seeds used to generate certain

random variables (e.g., the initial background ensemble and

the observation noise) in each repetition of the experiment are

different. In each experiment with respect to the 40-dimensional

L96 model, the number of repetitions is set to 20.

In the CHOP workflow, instead of relying on the grid

search method to find an optimal combination of δ and λ, the

IES algorithm presented in Section 2 is applied to estimate an

ensemble of δ and λ values for the reference algorithm (Equation

30). Note that there are differences between the optimality

criterion used in the grid search method and that in the CHOP

workflow. In this regard, the grid search method aims to find

a single optimal pair (δmin, λmin) that leads to the globally

minimum average RMSE in the model space, within the whole

assimilation time window. In contrast, the CHOP workflow

searches for an ensemble of δ and λ values that help reduce

the average of an ensemble of data mismatch values in the
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observation space (cf. Equation 3) within a given number of

iteration steps, and at each data assimilation cycle (rather than

the whole assimilation time window). In this sense, the obtained

ensemble of δ and λ values represents, at best, locally optimal

estimates at a given time instance, with a prescribed maximum

number of iteration steps.

With these aforementioned differences, it is natural to expect

that the globally optimal criterion (global criterion for short)

used in the grid search method should result in better data

assimilation performance than the locally optimal one (local

criterion for short) adopted in the CHOP workflow. On the

other hand, it is important to notice that the superiority of

the global criterion is achieved on top of the assumption

that one has access to the ground truths of model state

variables and/or parameters during the whole data assimilation

window. As such, it is not a realistic criterion that can be

applied to practical data assimilation problems, where the

underlying ground truths are typically unknown. In contrast,

the local criterion is more realistic and can be implemented

in practice. In the experiments below, however, we still choose

to present the results with respect to the global criterion, as

this serves as a means to cross-validate the performance of the

CHOP workflow.

In the CHOP workflow, the configuration of the IES

algorithm is as follows: Equations (15) and (16) are employed

to estimate ensembles of hyper-parameters

{

θ ij ≡
[

δij , λ
i
j

]T
}Ne

j=1
at different iteration steps (indexed by i, for i = 1, 2, . . . ,K),

and correlation-based localization is applied to Equation

(15) (in addition to distance-based localization adopted in

the reference algorithm, Equation 30). We note that the

size of a hyper-parameter ensemble is the same as that of

a background ensemble Mb = {mb
j }
Ne
j=1 of model state

variables and/or parameters, so that each ensemble member

mb
j is associated with its respective hyper-parameter pair

(

δij , λ
i
j

)

, when using the reference algorithm (Equation 30)

to update mb
j . To start the iteration process of the CHOP

workflow, Latin hypercube sampling (LHS) is adopted

to generate an initial ensemble of hyper-parameters at

each assimilation cycle, whereas the hyper-parameter

ranges used for LHS are the same as those in the grid

search method.

Another remark is that the background ensemble Mb

already exists before the CHOP workflow starts, and is invariant

during the iteration process of the CHOP workflow. On the

other hand, the outputs of the reference algorithm (Equation

30) do depend on the values of
(

δij , λ
i
j

)

, and can change

as the iteration proceeds. The members ma
j of the analysis

ensemble are taken as the outputs of Equation (30) at the

last iteration step K, which is a number jointly determined

by the three stopping criteria mentioned previously (cf.

Section 2).

3.1.2. Results with di�erent ensemble sizes

We first present results in a set of four experiments to

illustrate the impacts of ensemble size. In each experiment,

all state variables are observed (called full observation

scenario hereafter), corresponding to the observation-index

increment 1n = 1, with an observation frequency of

every 4 integration steps (denoted by Nfreq = 4). These

four experiments use ensemble sizes Ne = 15, 20, 25, 30,

respectively, while the remaining experimental settings (e.g.,

real observations/perturbed observations, initial background

ensemble) are identical.

Figure 1 shows the average RMSEs in the full observation

scenario, obtained by applying the grid search method to the

reference algorithm (Equation 30), when different ensemble

sizes Ne are used in the experiments.

For a given ensemble size, the sub-plots of Figure 1 indicate

that in general, relatively low average RMSEs are reached

with suitable amounts of covariance inflation and localization,

whereas relatively high average RMSEs are obtained if there are

insufficient inflation (corresponding to relatively small δ values)

and localization (corresponding to relatively large λ values). On

the other hand, too strong inflation (corresponding to relatively

large δ values) and localization (corresponding to relatively small

λ values) may lead to filter divergence (represented by white

color in the sub-plots)2, which corresponds to the situation

where the RMSE values blow up with a potential issue of

numerical overflow.

On the other hand, comparing the sub-plots of Figure 1, it

can be observed that a larger ensemble size tends to result in a

larger area that is filled with relatively low average RMSEs, while

reducing the chance of filter divergence.

In company with Figure 1, Table 1 reports the minimum

average RMSEs that the grid search method can achieve in

the four sets of experiments, their associated STDs (to reflect

the degrees of fluctuations of the average RMSEs within 20

repetition runs), and the optimal combinations (δmin, λmin)

of the inflation factor and the length scale, with which the

minimum average RMSEs are achieved. As one can see therein,

when the ensemble size increases, the minimum average

RMSE obtained by the grid search method tends to decrease.

Meanwhile, less amounts of covariance inflation (in the sense

of smaller δmin) and localization (in the sense of larger λmin)

are required to achieve the minimum average RMSE, consistent

with the observations in Figure 1.

For comparison, Table 1 also lists the average RMSEs that

are obtained by the CHOP workflow in the full observation

scenario. Note that the CHOP workflow uses the IES to estimate

an ensemble of inflation factors and length scales at each

assimilation cycle. As such, unlike the grid search method, there

2 If filter divergence takes place in any repetition run, then we assign

NaN (not a number) to the average RMSE.
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FIGURE 1

Average RMSEs with respect to the reference algorithm (Equation 30) in the full observation scenario (1n = 1, Nfreq = 4), using an ensemble size

of 15, 20, 25, and 30, respectively. The RMSE values are obtained by searching all the possible combinations of the inflation factor δ ∈ {0 :0.1 :2}
(along the horizontal axis) and the length scale λ ∈ {0.05 :0.05 :1} (along the vertical axis). Note that for certain combinations of δ and λ values,

filter divergence may take place (represented by white color in respective sub-plots). (A) Ne = 15. (B) Ne = 20. (C) Ne = 25. (D) Ne = 30.

TABLE 1 Performance comparison between the grid search method and the CHOP workflow applied to the reference algorithm (Equation 30) in the

full observation scenario, with four di�erent ensemble sizes.

Ensemble size
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

Ne = 15 0.5235± 0.0104 (0.15, 0.15) 1.2212± 0.1832

Ne = 20 0.4845± 0.0112 (0.15, 0.25) 0.6180± 0.0353

Ne = 25 0.4711± 0.0059 (0.15, 0.30) 0.5080± 0.0167

Ne = 30 0.4560± 0.0100 (0.10, 0.20) 0.4766± 0.0096

For the grid search method, we report the minimum average RMSEs within the search ranges, and their associated STDs. In addition, we also present the combination of the inflation

factor and the length scale, (δmin , λmin), that results in the minimum average RMSE in each experiment. For the CHOP workflow, the inflation factor and the length scale are estimated at

each assimilation cycle, and thus vary with time. As such, we only report the average RMSEs and their associated STDs.

is no time-invariant, globally optimal inflation factor or length

scale obtained from the CHOP workflow.

A few observations can be obtained when comparing

the performance of the grid search method and the CHOP

workflow in Table 1. First of all, in terms of the minimum

average RMSE that one can achieve in each experiment, the

CHOP workflow systematically under-performs the grid search

method. This under-performance is not surprising, since, as

discussed previously, the grid search method gains the relative

superiority on top of the assumption that it has access to the

ground truths, which is typically infeasible in practical data

assimilation problems.

In comparison to the grid search method, the CHOP

workflow appears to be more sensitive to the change of ensemble

size. With Ne = 15, there is a relatively large gap (around

0.7) between the average RMSE of the CHOP workflow and

the minimum average RMSE that the grid search method can

achieve. As the ensemble size increases, the performance of the

CHOP workflow substantially improves, such that the gap drops

to only around 0.02 when Ne = 30. This indicates that in
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the full observation scenario, the CHOP workflow can perform

reasonably well with a sufficiently large ensemble size.

A number of factors, including model, data, and ensemble

sizes, observation frequency and density, the number of hyper-

parameters and the searching ranges of their values, would

have an influence on the computational time required to

deploy the grid search method and/or the CHOP workflow.

As such, instead of presenting the computational time in all

possible combinations of these different factors, we compare the

computational time with respect to a normal EnKF equipped

with a specific combination of the inflation factor δ = 0 and

the length scale λ = 0.1 (corresponding to a single grid point

in the grid search method), and that with respect to the EnKF

equipped with the CHOP workflow. In this comparison, the

ensemble size Ne = 30 (1n = 1 and Nfreq = 4), and our

computing system uses Intel(R) Core(TM) i9-10900K CPU @

3.70 GHz with 64 GB memory. Under these settings, the wall-

clock time for the normal EnKF is 15.9261 ± 0.4102 (mean ±
STD) seconds, while the wall-clock time for the EnKF equipped

with the CHOP workflow is 65.5915± 0.6852 s.

As mentioned in Section 2.2, for the EnKF with the CHOP

workflow, the maximum number of iteration steps in the

IES algorithm is set to 10, which means that the maximum

computational time at the analysis step of the EnKF equipped

with the CHOP workflow is around 10 times that at the analysis

step of the normal EnKF. From the above-reported results,

however, it appears that on average the computational time of

the EnKF equipped with the CHOPworkflow is around 4.1 times

that of the normal EnKF, which is substantially lower than 10.

This difference may be attributed to the following two factors:

(1) The IES may stop before reaching the maximum number of

iteration steps, due to the other two stopping criteria specified

in Section 2.2; (2) The reported computational cost includes the

time at both the forecast and the analysis steps of the EnKF

during the whole assimilation time window. While the EnKF

with the CHOP workflow has a higher computational cost at an

analysis step than the normal EnKF, at a forecast step they would

have roughly the same computational cost instead.

Note that so far we have only compared the computational

time between the normal EnKF (at a single grid point) and

the EnKF equipped with the CHOP workflow. When the grid

search method is applied to find the optimal combination of

hyper-parameters, the total computational cost is roughly equal

to the number of grid points times the cost of a single normal

EnKF. In the current experiment setting, the grid search method

considers 21 values for the inflation factor, and 20 values for

the length scale. As such, it needs to compare the results at

21 × 20 grid points (hence 420 normal EnKF runs) in one

repetition of the experiment. Therefore, under this setting, the

grid search method will be roughly 100 times more expensive

than the EnKF with the CHOP workflow. It is expected that

similar conclusions would be obtained under other experiment

settings, but for brevity we do not present further comparison

results in this regard.

3.1.3. Results with di�erent observation
densities

We then examine the impact of observation density on

the performance of the grid search method and the CHOP

workflow. To this end, we conduct three more experiments with

the observation-index increment 1n = 2 (the half observation

scenario), 1n = 4 (the quarter observation scenario), 1n =
8 (the octantal observation scenario), respectively, while these

three experiments share the same ensemble size Ne = 30 and

observation frequency Nfreq = 4.

Figure 2 reports the average RMSEs with different

combinations of the inflation factor and length scale values,

obtained by the grid search method in the half, quarter and

octantal observation scenarios, respectively. For convenience of

comparison, the results of the full observation scenario (with

Ne = 30) in Figure 1D are re-plotted therein. Comparing the

results in Figure 2, it can be seen that, as the observation density

decreases (1n increases), the performance of the grid search

method degrades, in the sense that the resulted average RMSEs

arise, and filter divergence tends to have a higher chance to

take place, except that the quarter observation scenario seems

to have more instances of filter divergence than the octantal

observation scenario. The degraded performance is expected,

since reduced observation density means that less information

contents can be utilized for data assimilation.

Similar to Tables 1, 2 posts the minimum average RMSEs of

the grid search method, their associated STDs, and the optimal

values of the inflation factor and the length scale. Among the

full, half and quarter observation scenarios, as the observation

density decreases, the optimal inflation factor δmin does not

change, but the optimal length scale λmin shows a tendency of

increment, meaning that less localization is required. This trend,

however, is broken in the octantal observation scenario, in which

both δmin and λmin become smaller than those of the other three

scenarios, suggesting that it is better to have less inflation but

more localization.

For comparison, Table 2 also lists the average RMSEs with

respect to the CHOP workflow. As one can see therein, in

different observation scenarios, the average RMSEs of the CHOP

workflow stay in a relatively close vicinity of the minimum

values achieved by the grid search method. In addition, no

filter divergence is spotted in the repetition runs of the CHOP

workflow. As such, the CHOP workflow again appears to work

reasonably well with different observation densities.

3.1.4. Results with di�erent observation
frequencies

We investigate one more aspect, namely, the impact of

observation frequency on the performance of the grid search

method and the CHOP workflow. In line with this goal,

we conduct three additional experiments, with the following
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FIGURE 2

As in Figure 1, but for average RMSEs obtained by the grid search method in the half (1n = 2, Nfreq = 4), quarter (1n = 4, Nfreq = 4), and octantal

(1n = 8, Nfreq = 4) observation scenarios, respectively, with the ensemble sizes Ne = 30. For ease of comparison, the results of the full

observation scenario (1n = 1, Nfreq = 4, Ne = 30) in Figure 1 are re-plotted here. (A) Full observation scenario (1n = 1). (B) Half observation

scenario (1n = 2). (C) Quarter observation scenario (1n = 4). (D) Octantal observation scenario (1n = 8).

TABLE 2 As in Table 1, but for performance comparison between the grid search method and the CHOP workflow with full, half, quarter, and

octantal observations, respectively, whereas the ensemble size and the observation frequency are set to 30 and 4, respectively, in all experiments.

Observation density
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

Full (1n = 1) 0.4560± 0.0100 (0.10, 0.20) 0.4766± 0.0096

Half (1n = 2) 0.7975± 0.0257 (0.10, 0.20) 0.8763± 0.0418

Quarter (1n = 4) 2.0100± 0.0773 (0.10, 0.25) 2.3596± 0.1248

Octantal (1n = 8) 2.9129± 0.0353 (0.05, 0.10) 3.2437± 0.0419

settings: Ne = 30, 1n = 2 (the half observation scenario), and

Nfreq = 1, 2, 8, respectively.

Figure 3 shows the average RMSEs of the grid search

method, when the inflation factor and the length scale take

different values, and the observations arrive at different

frequencies. For convenience of comparison, the results with

Nfreq = 4 (Ne = 30, 1n = 2) in Figure 2 are also included

into Figure 3. It can be clearly seen that, as the observation

frequency decreases (corresponding to increasing Nfreq), the

average RMSE tends to increase. Filter divergence remains a

problem, but in this case, it appears that a lower observation

frequency does not necessarily lead to a higher chance of

filter divergence.

Following Tables 1–3 summarizes the minimum

average RMSEs of the grid search method at different

observation frequencies, their associated STDs and the

optimal inflation factor and length scale. As observed in

Table 3, when the observation frequency decreases (Nfreq

increases), the minimum average RMSE arises. In the

meantime, the corresponding optimal length scale λmin

tends to decline, while the optimal inflation factor δmin

remains unchanged.
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TABLE 3 As in Table 1, but for performance comparison between the grid search method and the CHOP workflow in the half observation scenario

(1n = 2), with the same ensemble size Ne = 30 yet di�erent observation frequencies.

Observation frequency
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

N freq = 1 0.3948± 0.0124 (0.10, 0.45) 0.5409± 0.0117

N freq = 2 0.5015± 0.0123 (0.10, 0.30) 0.5471± 0.0193

N freq = 4 0.7975± 0.0257 (0.10, 0.20) 0.8763± 0.0418

N freq = 8 1.8369± 0.0557 (0.10, 0.20) 2.1022± 0.0473

In terms of the performance of the CHOPworkflow, one can

observe again that its average RMSEs stay relatively close to the

corresponding minimum values of the grid search method. On

the other hand, no filter divergence is found in the repetition

runs of the CHOP workflow. Altogether, the experiment results

confirm that the CHOP workflow also performs reasonably well

at different observation frequencies.

3.2. Experiments in a 1,000-dimensional
L96 system

In this subsection, we conduct an additional experiment in a

1,000-dimensional L96 model (NL =1,000). The main purpose

of the experiment is to demonstrate that the CHOP workflow

can be used to tune a large number of hyper-parameters. This

feature is a natural reflection of the capacity of the IES algorithm,

which has been shown to work well in, e.g., large-scale reservoir

data assimilation problems [20–22].

The experiment settings in this subsection is largely the same

as those of the experiments with respect to the 40-dimensional

L96 model. Therefore, for brevity, in the sequel we focus more

on explaining the places where different experiment settings

are adopted.

Since the dimensionality is significantly increased, the grid

search method becomes more time-consuming. To facilitate the

investigation, we reduce the assimilation time window from

250 time units to 100 time units (corresponding to 2,000

integration steps), and the number of repetition runs of a given

experiment from 20 to 10, while keeping the search ranges

of the inflation factor and the length scale unchanged. In

the meantime, we increase the ensemble size Ne to 100. The

observation system is the same as that in Equation (26), with

the same observation-noise variance. The increment of model-

variable index is set to 1n = 4 (quarter observation scenario),

and the observations are collected every four integration steps

(Nfreq = 4). Given the purpose of the current experiment,

no sensitivity study (e.g., with respect to Ne, 1n and Nfreq)

is conducted.

The base assimilation algorithm is the same as that in

Equation (27), and we introduce both covariance inflation

and localization to the base algorithm. We use the same

localization scheme as in the 40-dimensional case (with the

length scale λ as a hyper-parameter), while considering two

different ways of conducting covariance inflation. One inflation

method is again the same as that in the 40-dimensional

case, which applies a single inflation factor δ to all model

state variables of the background ensemble. This leads to a

reference algorithm identical to that in Equation (30), which

contains two hyper-parameters, δ and λ, and the grid search

method is then applied to find the optimal combination of

δ and λ for the reference algorithm. On the other hand,

the CHOP workflow is employed to estimate an ensemble

of Ne hyper-parameter pairs
{

(δj, λj)
}Ne

j=1
. For distinction

later, we call the application of the CHOP workflow to

estimate the ensemble
{

(δj, λj)
}Ne

j=1
the single-inflation-factor

(SIF) method.

The other inflation method introduces multiple

inflation factors to the base algorithm. Specifically,

each model state variable of the background ensemble

Mb = {mb
j }
Ne
j=1 receives its own inflation factor, in

such a way that after inflation, the modified background

ensemble M̃b ≡ {m̃b
j }
Ne
j=1 has its member m̃b

j in the

form of m̃b
j = m̄b + (1+ δ) ◦

(

mb
j − m̄b

)

, where 1 is

a NL-dimensional vector with all its elements equal to 1,

δ =
[

δ1, δ2, · · · , δNL

]T
contains NL inflation factors, and

◦ stands for the Schur product operator. Replacing the SIF

method in Equation (30) by the multiple-factor one (while

keeping the localization scheme unchanged), one obtains a new

reference algorithm.

ma
j = m̃b

j +
{

L (λ) ◦
[

C̃mH
T
(

HC̃mH
T + Cd

)−1
]}

(

doj −Hm̃b
j

)

; (31)

m̃b
j = m̄b + (1+ δ) ◦

(

mb
j − m̄b

)

, (32)

where C̃m is the sample covariance

matrix with respected to the inflated

ensemble M̃b.

Due to the high dimensionality (NL =1000), it is

computationally prohibitive to apply the grid search method

to optimize the set of hyper-parameters in Equation (31). On

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

210

https://doi.org/10.3389/fams.2022.1021551
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Luo and Xia 10.3389/fams.2022.1021551

FIGURE 3

As in Figure 1, but for average RMSEs obtained by the grid search method in the half observation scenario, with the same ensemble sizes

Ne = 30 yet di�erent observation frequencies. For ease of comparison, the results of the half observation scenario (1n = 2, Nfreq = 4, Ne = 30)

in Figure 2 are re-plotted here. (A) Nfreq = 1. (B) Nfreq = 2. (C) Nfreq = 4. (D) Nfreq = 8.

the other hand, as will be shown later, it is still possible to

apply the CHOP workflow to estimate an ensemble of hyper-

parameters, denoted by
{

(δj, λj)
}Ne

j=1
. Such a workflow is called

the multiple-inflation-factor (MIF) method hereafter.

With these said, in the sequel, we compare the performance

of the grid search method applied to the reference algorithm in

Equation (30), the CHOP workflow with the SIF method, and

the CHOP workflow with the MIF method, respectively.

Figure 4 shows the average RMSEs obtained by the grid

search method with different combinations of δ and λ values.

Similar to what we have seen in the 40-dimensional L96 model,

filter divergence arises in a large portion of the searched region of

hyper-parameters. As reported in Table 4, the minimum average

RMSE of the grid search method is around 2.7667, achieved at

δmin = 0.10 and λmin = 0.05.

For comparison, Table 4 also presents the average RMSEs of

the CHOP workflow equipped with the SIF and MIF methods,

respectively. Again, no filter divergence takes place in the CHOP

workflow. Both the SIF and MIF methods result in RMSE values

that stay relatively close to the minimum RMSE value of the grid

search method. In comparison to the SIF method, however, the

MIF exhibits better performance, largely due to a higher degree

of freedom brought in by the larger number of inflation factors

used in the assimilation algorithm.

3.3. Behavior of the IES algorithm

Finally we take a glance at the behavior of the IES algorithm

that underpins the CHOP workflow. We do this in the 1,000-

dimensional L96 model with the MIF method, to illustrate the

efficacy of the IES algorithm in dealing with high-dimensional

problems. Note that in the CHOP workflow, the IES is adopted

to tune hyper-parameters at each assimilation cycle. For brevity,

we only use one of the assimilation cycles for illustration.

Figures 5, 6 disclose the data mismatch and RMSE values

at each iteration step, in the form of box plots. These

values are obtained as follows: At each iteration step, we first

insert the ensemble of hyper-parameters into the reference

algorithm (Equation 31) of the MIF method, in such a way

that each member of the background ensemble (of model

state variables) is associated with a member of the ensemble

of hyper-parameters. In this way, we obtain an ensemble
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FIGURE 4

Average RMSEs obtained by the grid search method (applied to Equation 30) in the 1,000-dimensional L96 model.

TABLE 4 Performance comparison between the grid search method and the CHOP workflow in the 1,000-dimensional L96 model.

Grid search CHOP (SIF) CHOP (MIF)

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD) Average RMSE (mean ± STD)

2.7667± 0.0099 (0.10, 0.05) 3.4213± 0.0552 3.0264± 0.0116

FIGURE 5

Box plots of data mismatch at di�erent iteration steps at one of the data assimilation cycles of the 1,000-dimensional L96 model.

of updated model state variables at each iteration step. The

data mismatch and RMSE values are then calculated with

respect to the ensemble of updated model state variables.

Note that the ensemble of analysis state variables corresponds

to the ensemble of updated model state variables at the

last iteration step. Meanwhile, at iteration step 0, the data

mismatch and RMSE values are computed based on the

initial ensemble of hyper-parameters generated through the

LHS scheme.

In Figures 5, 6, both the data mismatch and RMSE

values tend to decrease as the iteration proceeds, while

maintaining substantial ensemble varieties in the box

plots (indicating that ensemble collapse does not take

place). The IES converges relatively fast, moving into the
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FIGURE 6

Box plots of RMSE at di�erent iteration steps at one of the data assimilation cycles of the 1,000-dimensional L96 model.

FIGURE 7

Mean RMSE (dashed red line) and ensemble spread (dash-dotted green line) vs. iteration step, at one of the data assimilation cycles of the

1,000-dimensional L96 model.

vicinity of a certain local minimum after only several

iteration steps, which is a behavior also noticed in other

studies [20–22].

Corresponding to Figures 5–7 presents the values of mean

RMSE and ensemble spread at each iteration step. Here, a

mean RMSE is the average of the RMSEs over ensemble

members of the updated model state variables (i.e., the average

of the box-plot values) at a given iteration step, whereas

ensemble spread is evaluated according to Equation (25). In

consistency with Figure 6, the mean RMSE and the ensemble

spread tend to decrease along with the iterations. The overall

change of ensemble spread from the beginning to the end

of the iteration process appears to be less significant than

that of the mean RMSE. In fact, the final ensemble spread

appears to stay close to the initial value, which also suggests

that ensemble collapse does not appear to be a problem.

On the other hand, there are substantial gaps between the

values of mean RMSE and ensemble spread at all iteration

steps, which means that ensemble spread does not match the

estimation errors of the updated model state variables. This

tendency of under-estimation seems to be largely related to

the fact that the ensemble spread at the beginning of the

iteration is already considerably smaller than the mean RMSE,

which could be due to the insufficient ensemble spread in

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

213



Luo and Xia 10.3389/fams.2022.1021551

FIGURE 8

Histograms of (A) the reference model state (truth), (B) the background ensemble mean, and (C) the analysis ensemble mean at one of the

assimilation cycles in the 1,000-dimensional L96 model. Both the reference model state and the background ensemble do not change over the

IES iteration process, whereas the analysis ensemble is obtained by inserting the ensemble of estimated hyper-parameters at the last iteration

step into the reference algorithm (Equation 31), of the MIF method.

the background ensemble, or the initial ensemble of hyper-

parameters, or both.

Figure 8 shows the histograms with respect to the reference

model state variables (the truth), the background-ensemble

mean, and the analysis-ensemble mean, respectively. It is clear

that neither the histogram of the background-ensemble mean,

nor that of the analysis-ensemble mean, resemble the histogram

of the truth well, suggesting that there are substantial estimation

errors in the estimated model state variables.

On the other hand, the results with respect to the

estimated hyper-parameters appears to be more interesting. For

illustration, Figure 9 plots the histograms of the initial (left)

and final (right) ensembles of the inflation factors associated

with model state variable 1 (top) and 500 (middle), and the

histograms of the initial and final ensembles of the length scale

(bottom). Since we use LHS to generate the initial ensemble,

it can be observed that the histograms with respect to three

initial ensembles of hyper-parameters roughly follow certain

uniform distributions. Through the iteration process of the

IES algorithm, the shapes and supports of the histograms are

modified. This is particularly noticeable for the estimated values

of length scale in the final ensemble (Figure 9F). Initially, the

range of the length scale in the initial ensemble is [0.05, 1], at

the end of the iteration, around 80% of the values of estimated

length scale locate at 0.05 (which is the optimal value found

by the grid search method), while the rest of the estimated

values are less than 0.1. On the other hand, for the estimated

inflation factors, one may notice that their values are less

concentrated than the length scale. In comparison to the initial

ensembles of the inflation factors, their final ensembles receive

somewhat narrower supports, but still maintain sufficient

spreads, in consistency with the results in Figure 7. The values

of estimated inflation factors are substantially larger than the

optimal inflation factor (0.10) found by the grid search method.

The main reason behind this is that the original EnKF updates

model state variables only once, whereas the CHOP workflow

does the update multiple times, each time with a smaller step

size (hence larger inflation factors).

4. Discussion and conclusion

This study aims to develop a Continuous Hyper-parameter

OPtimization (CHOP) workflow that helps to tune hyper-

parameters in ensemble data assimilation algorithms. The main

idea is to treat a data assimilation algorithm with certain

hyper-parameters as a parametric mapping that transforms an

ensemble of initial model state variables and/or parameters

to a corresponding ensemble of updated quantities, which in
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FIGURE 9

Histograms of the initial (left) and final (right) ensembles, with respect to the inflation factors associated with model state variables 1 (A,B) and

500 (C,D), and the length scale (E,F), respectively.

turn are related to the predicted observations through the

observation operator.

Following this perspective, the hyper-parameters can be

tuned in such a way that the corresponding updated model state

variables and/or parameters result in lower data mismatch than

their initial values. In doing so, the CHOP problem is recast as a

parameter estimation problem. We adopt an iterative ensemble

smoother (IES) to solve the CHOP problem, as its derive-free

nature allows one to implement the algorithm without explicitly

knowing the relevant gradients. To mitigate the adverse effects

of using a relatively small ensemble size in the IES, we also

equip the IES with a correlation-based adaptive localization

scheme, which helps to handle the issue that hyper-parameters

may not possess physical locations needed for distance-based

localization schemes.

We investigate the performance of the CHOP workflow

in the Lorentz 96 (L96) model with two different dimensions.

Experiments in the 40-dimensional L96 model aim to inspect

the impacts of a few factors on the performance of the

CHOP workflow, whereas those in the 1,000-dimensional L96

model focus on demonstrating the capacity of the CHOP

workflow to deal with a high-dimensional set of hyper-

parameters, which may not be computationally feasible for

the grid search method. Such a capacity would help enable

the developments of more sophisticated auxiliary techniques

(e.g., inflation or localization) that introduce a large number

of hyper-parameters to an assimilation algorithm for further

performance improvements.

In most of the experiments, the CHOP workflow is able to

achieve reasonably good performance, which is relatively close
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to the best performance obtained by the grid search method (an

unverifiable case occurs in the experiments with respect to the

multiple-inflation-factor method in the 1,000-dimensional L96

model, where we are not able to adopt the grid search method

due to its prohibitively expensive cost). Meanwhile, unlike the

grid search method, the optimality criterion in the CHOP

workflow is based on data mismatch between real and predicted

observations, which is realistic and can be implemented in

practical data assimilation problems.

So far, we have only implemented the CHOP workflow in

the ensemble Kalman filter (EnKF) with perturbed observations.

Given the varieties of different assimilation algorithms (some

of them may not even be ensemble-based), the way of

implementing a CHOP workflow may have to adapt to the

particular assimilation algorithm in choice, which is an issue to

be further studied in the future. On the other hand, though, we

expect that the notion of treating an assimilation algorithm with

hyper-parameters as a parametric mapping may still be valid. As

such, it appears sensible that one converts a generic assimilation

problem (being state estimation, parameter estimation or both)

with hyper-parameters into a parameter estimation problem,

and solve it through a certain iterative assimilation algorithm.
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Modified spectral conjugate
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unconstrained optimization
problems with application on
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Depok, Indonesia, 2School of Quantitative Sciences, Institute of Strategic Industrial Decision
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In this work, a new class of spectral conjugate gradient (CG) method is

proposed for solving unconstrained optimizationmodels. The search direction

of the new method uses the ZPRP and JYJLL CG coe�cients. The search

direction satisfies the descent condition independent of the line search. The

global convergence properties of the proposed method under the strong

Wolfe line search are proved with some certain assumptions. Based on some

test functions, numerical experiments are presented to show the proposed

method’s e�ciency compared with other existing methods. The application of

the proposed method for solving regression models of COVID-19 is provided.

Mathematics subject classification: 65K10, 90C52, 90C26.

KEYWORDS

unconstrained optimization, descent condition, global convergence, regression

models, spectral conjugate gradient method

1. Introduction

The coronavirus disease, often called COVID-19, is an acute vector infectious disease

that emerged in 2019. This disease is caused by the newly discovered coronavirus (SARS-

CoV-2) and can be transmitted through droplets produced when an infected person

exhales, sneezes, or coughs. Most people infected with the virus will experience mild to

moderate symptoms, such as low-grade fever, runny nose, and difficulty breathing, and

recover without special treatment [1].

Clinically, as of December 19, 2021, a total of 4,260,544 confirmed cases of COVID-

19, with 4,111,619 recoveries and 144,002 deaths, were recorded from all regions in

Indonesia since the disease was first reported inWuhan, China [2]. To date, many studies

have been carried out to model various aspects related to the coronavirus outbreak,

and several researchers have also applied numerical methods to several COVID-19

models. For instance, Aggarwal et al. [3] proposed a partial differential equationmodel to

calculate the number of COVID-19 cases in Punjab by using the modified cubic B-spline
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function and differential quadrature method. Other numerical

methods which are applied to solve the COVID-19 model

were proposed by Amar et al. [4] and Sulaiman et al. [5].

Amar et al. used various statistics and machine learning

modeling approaches to forecast the COVID-19 spread in Egypt.

Meanwhile, Sulaiman et al. proposed a new three-term conjugate

gradient optimization method for the data from the global

confirmed cases of COVID-19 from January to September 2020.

The conjugate gradient (CG) method plays an important

role in solving large-scale optimization models because it uses

low memory and good convergence properties. This method

was first introduced by Hestenes and Stiefel [26] and is

used to solve a system of linear equations. After that, in

1964, Fletcher and Reeves extended the form of the conjugate

gradient method to solve large-scale nonlinear systems of

equations and optimization problems without constraints. The

results of the expansion carried out by Fletcher and Reeves

prompted researchers to propose a new conjugate gradient

method to improve computational performance and the level

of convergence [6]. In 2020, Jian et al. proposed a conjugate

gradient method with a spectral conjugate gradient type named

the JYJLLmethod which is a modification of the Fletcher-Reeves

(FR) and conjugate descent (CD) methods [7]. The author

has determined the convergence analysis of the JYJLL method

which resulted in an efficient computational performance. In

addition, Zheng and Shi [8] also proposed a modification of the

conjugate gradient method with a three-term type symbolized

by ZPRP. This ZPRP method is an extension of the Polak-

Ribiére-Polyak (PRP) method [9, 10] in which modifications are

made by changing the denominator of the parameters in the

PRP method. The computational performance resulting from

this method is very efficient when compared to the CG-Descent

method [11]. Several CG methods that have been proposed can

be seen in literature [12–17]. Besides the CG method, the class

of accelerated gradient descent schemes of Quasi-Newton type

also contains very efficient and robust methods and can be

considered for solving optimization problems. The accelerated

parameters highlights can be seen in other studies [18–22].

However, in this paper we restrict the discussion to the CG

method.

The CG method has recently been used to solve various

problems related to optimization. For example, image

reconstruction [23–25], compressed sensing [26], signal

processing [27], robotic motion control [5, 15, 16, 28, 29],

portfolio selection [5, 13, 14, 29–31], regression analysis [5, 32]

and many more.

In this paper, we consider the general unconstrained

optimization problems as follows:

min
r∈Rn

f (r), (1)

where f :Rn → R is the continuously differentiable function

and its gradient is written by h(r) = ∇f (r). The iterative formula

of the standard CG method can be formulated as

rk+1 = rk + αkzk, k = 0, 1, 2, ... (2)

and

zk : =







−hk, if k = 0,

−hk + βkzk−1, if k > 0,
(3)

where rk is the current iteration, hk is the gradient value of h

at rk, zk is the search direction, βk is the conjugate parameter

and αk > 0 is the step size to be obtained by some line search

techniques. To calculate the step size αk > 0, we can use exact

line search, weak Wolfe line search, or strong Wolfe line search.

The exact line search is computed such that αk satisfy

f (rk + αkzk) = min f (rk + αzk),α > 0.

The weak Wolfe line search is computed such that αk satisfy

f (rk + αkzk) ≤ f (rk)+ δαkh
T
k zk, (4)

h(rk + αkzk)
Tzk ≥ σhTk zk, (5)

and the strongWolfe line search is computed such that αk satisfy

f (rk + αkzk) ≤ f (rk)+ δαkh
T
k zk,

|h(rk + αkzk)
Tzk| ≤ −σhTk zk,

where 0 < δ < σ < 1.

The most well-known standard CG methods are the

Hestenes-Stiefel (HS) method [33], the Fletcher-Reeves (FR)

method [34], the Polak-Ribiére-Polyak (PRP) method [9,

10], the Conjugate-Descent (CD) method [35], the Dai-Yuan

(DY) method [36], the Liu-Storey (LS) method [37], and the

Rivaie-Mustafa-Ismail-Leong (RMIL) method [38] and their βk

parameters are

βHS
k =

hT
k
qk−1

zT
k−1

qk−1

, βFR
k = ‖hk‖2

‖hk−1‖2
,

βPRP
k =

hT
k
qk−1

‖hk−1‖2
, βCD

k = ‖hk‖2

−zT
k−1

hk−1

,

βDY
k = ‖hk‖2

zT
k−1

qk−1

, βLS
k =

hT
k
qk−1

−hT
k−1

zk−1

, βRMIL
k =

hT
k
qk−1

‖zk−1‖2
,

respectively, where qk−1 : = hk − hk−1 and ‖.‖ is a symbol for

Euclidean norm on R
n.

The zk in formula (2) is the search direction used as a guide

to move to the next point and must satisfy the descent direction

property

hTk zk < 0, ∀k. (6)
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It should be noted that formula (6) is an important property for

the CG method to be globally convergent.

Inspired by the JYJLL method, in this study we propose

a modification of the new CG method to improve the

computational performance. In addition, in this study, we also

apply the new method for solving a model of COVID-19 in

Indonesia in which the data is taken from March 2020 (the

month of the first recorded case) until May 2022.

The paper is structured as follows. In Section 2, we describe

the proposed method, algorithm, and convergence analysis.

In Section 3, we present the numerical experiments to show

the efficiency of our new method. Finally, the application of

regression models of COVID-19 using the new method is

illustrated in Section 4.

2. Proposed method, algorithm and
convergence analysis

Recently, Jian et al. [7] proposed a new spectral JYJLL

CG method where the method satisfies the descent condition

without depending on any line search. The JYJLL method is

globally convergent under a weak Wolfe line search and the

numerical result is efficient compared with HZ [39], KD [40],

AN1 [41], and LPZ [42] methods. This new method has search

direction as follows:

zk : =







−hk, if k = 0,

−θ
JYJLL
k

hk + β
JYJLL
k

zk−1, if k > 0,

where θ
JYJLL
k

is the spectral parameter defined as

θ
JYJLL
k

= 1+
|hT
k
zk−1|

−hT
k−1

zk−1

, (7)

and β
JYJLL
k

is formulated as

β
JYJLL
k

=
‖hk‖2 −

(hT
k
zk−1)

2

‖zk−1‖2

max{‖hk−1‖2, zTk−1
(hk − hk−1)}

.

Additionally, Zheng and Shi [8] proposed a modified three-term

HS method by taking a modification to the denominator of the

HS formula. The new method is named ZHS where the search

direction is defined as follows:

zk : =











−hk, if k = 0,

−hk + βZHS
k

zk−1 − βZHS
k

hT
k
zk−1

hT
k
qk−1

qk−1, if k > 0,

and

βZHS
k =

hT
k
qk−1

max{µ‖zk−1‖‖qk−1‖, zTk−1
qk−1}

, µ > 0.

The ZHS method satisfies the sufficient descent condition

without relying on a certain line search. Under some conditions,

the ZHS method fulfills global convergence properties under a

weak Wolfe line search and the numerical results are better than

the CG-DESCENT method [39].

Motivated by the JYJLL and ZHS parameters, in this paper,

the new conjugate parameter is proposed in the form as follows:

βFMSD
k =

‖hk‖2 −
(hT

k
zk−1)

2

‖zk−1‖2

max{µ‖zk−1‖‖qk−1‖, zTk−1
qk−1}

, µ > 0, (8)

that is, replacing the JYJLL denominator with the ZHS

denominator and retaining the JYJLL numerator. In addition,

we retain the same formula of the spectral parameters θFMSD
k

by

the JYJLL method as in formula (7). So, the search direction of

our proposed method is defined as follows:

zk : =







−hk, if k = 1,

−θFMSD
k

hk + βFMSD
k

zk−1, if k > 1.
(9)

Our proposed method is called the spectral FMSD (Fevi-Malik-

Sulaiman-Dipo) method.

Next, we give the algorithm of our proposed method below.

Step 1: Given any initial point r1 ∈ R
n and tolerance value

0 < ǫ < 1.

Step 2: Set k = 1, compute the gradient hk = ∇f (rk), and set

zk = −hk.

Step 3: Compute the step length αk by using any line search.

Step 4: Update point by rk+1 = rk + αkzk.

Step 5: Compute hk+1. If ‖hk+1‖ < ǫ, then algorithm stop. Print

r∗ = rk+1 is best solution. Otherwise, go to the next step.

Step 6: Compute βFMSD
k

by using Equation (8) and θFMSD
k

by

using Equation (7).

Step 7: Compute the search direction zk+1 by Equation (9).

Step 8: Go to Step 3.

Algorithm 1. Spectral FMSD method.

The following lemma shows that the spectral FMSD always

satisfies the descent direction condition regardless of any line

search.

Lemma 2.1. Suppose that zk is generated by formula (9), then

1. the search direction zk satisfies the descent direction property,

that is, hT
k
zk < 0 for k ≥ 1.

2. 0 ≤ βFMSD
k

≤ hT
k
zk

hT
k−1zk−1

.

Proof: We will prove the theorem by induction. For k = 1,

it is true, i.e., hT1 z1 = ‖h1‖2. Now, assume that hT
k−1

zk−1 < 0 is

true for k− 1, thus we prove hT
k
zk < 0 is true for k. With regard
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to formula (8), the proof is divided into two cases, as presented

below:

• Case 1: if zT
k−1

qk−1 ≤ µ‖zk−1‖‖qk−1‖ and µ > 0, then

zTk−1qk−1 = zTk−1(hk − hk−1)

= hTk zk−1 − hTk−1zk−1 ≤ µ‖zk−1‖‖qk−1‖,

it implies

hTk zk−1 ≤ µ‖zk−1‖‖qk−1‖ + hTk−1zk−1. (10)

Let θk is angle between hk and zk−1, then

cos θk =
hT
k
zk−1

‖hk‖‖zk−1‖
. (11)

From formulas (8), (7), (9), (10) and (11), we have

hTk zk

= hTk (−θFMSD
k hk + βFMSD

k zk−1)

= −θFMSD
k ‖hk‖2 + βFMSD

k hTk zk−1

= −
[

1−
|hT

k
zk−1|

hT
k−1zk−1

]

‖hk‖2 +
‖hk‖2 −

(hT
k
zk−1)

2

‖zk−1‖2

µ‖zk−1‖‖qk−1‖
hTk zk−1

= −‖hk‖2 +
|hT

k
zk−1|

hT
k−1zk−1

‖hk‖2 +
‖hk‖2 − ‖hk‖2 cos2 θk

µ‖zk−1‖‖qk−1‖
hTk zk−1

≤ −‖hk‖2 +
|hT

k
zk−1|

hT
k−1zk−1

‖hk‖2 +
‖hk‖2 − ‖hk‖2 cos2 θk

µ‖zk−1‖‖qk−1‖

×(µ‖zk−1‖‖qk−1‖ + hTk−1zk−1)

=
|hT

k
zk−1|

hT
k−1zk−1

‖hk‖2 +
‖hk‖2(1− cos2 θk)

µ‖zk−1‖‖qk−1‖
hTk−1zk−1

−‖hk‖2 cos2 θk ≤
|hT

k
zk−1|

hT
k−1zk−1

‖hk‖2 +
‖hk‖2 sin2 θk

µ‖zk−1‖‖qk−1‖

hTk−1zk−1 < 0. (12)

• Case 2: if zT
k−1

qk−1 > µ‖zk−1‖‖qk−1‖ and µ > 0, then

zT
k−1

qk−1 > 0. Using formulas (8), (7), (9), and (11), we get

hTk zk = hTk (−θFMSD
k hk + βFMSD

k zk−1)

= −θFMSD
k ‖hk‖2 + βFMSD

k hTk zk−1

= −
[

1−
|hT
k
zk−1|

hT
k−1

zk−1

]

‖hk‖2

+
‖hk‖2 −

(hT
k
zk−1)

2

‖zk−1‖2

zT
k−1

qk−1

hTk zk−1

= −‖hk‖2 +
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2 − ‖hk‖2 cos2 θk

zT
k−1

qk−1

× hTk zk−1

= −‖hk‖2 +
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2 − ‖hk‖2 cos2 θk

zT
k−1

qk−1

× (hTk zk−1 − hTk−1zk−1 + hTk−1zk−1)

= −‖hk‖2 +
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2 − ‖hk‖2 cos2 θk

zT
k−1

qk−1

× (zTk−1qk−1 + hTk−1zk−1)

=
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2(1− cos2 θk)

zT
k−1

qk−1

hTk−1zk−1

− ‖hk‖2 cos2 θk (13)

=
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2 sin2 θk

zT
k−1

qk−1

hTk−1zk−1

− ‖hk‖2 cos2 θk

≤
|hT
k
zk−1|

hT
k−1

zk−1

‖hk‖2 +
‖hk‖2 sin2 θk

zT
k−1

qk−1

hTk−1zk−1 < 0.

Hence, hT
k
zk < 0 is satisfied for k ≥ 1.

Next, we will prove the interval of βFMSD
k

. From formulas

(12 and (13, we obtain the relation hT
k
zk ≤ βFMSD

k
hT
k−1

zk−1.

Furthermore, since hT
k
zk < 0, we have βFMSD

k
≤ hT

k
zk

hT
k−1zk−1

.

Now, from formulas (8) and (7), we get

βFMSD
k =

‖hk‖2 −
(hT

k
zk−1)

2

‖zk−1‖2

max{µ‖zk−1‖‖qk−1‖, zTk−1
qk−1}

= ‖hk‖2 − ‖hk‖2 cos2 θk

max{µ‖zk−1‖‖qk−1‖, zTk−1
qk−1}

= ‖hk‖2 sin2 θk

max{µ‖zk−1‖‖qk−1‖, zTk−1
qk−1}

≥ 0.

Thus, 0 ≤ βFMSD
k

≤ hT
k
zk

hT
k−1zk−1

holds. The proof is complete.

In the analysis below, we establish the global convergence

properties of the spectral FMSD method. First, we need the

following assumption, proposition, and Zoutendijk conditions.

Assumption 2.2. (A1) The level set B : = {r ∈ R
n
: f (r) ≤

f (r0)} is bounded where r0 is the starting point; (A2) In a

neighborhood L of B the function f is continuously differentiable

and its gradient Lipschitz continuous on H. That is, we can find

L > 0 such that

‖h(r)− h(s)‖ ≤ L‖r− s‖, ∀r, s ∈ L.
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Proposition 2.3. Suppose that zk is generated by formula (9) and

Assumption 2.2 holds. If the step length αk is calculated by weak

Wolfe line search (4) and (5), then

αk ≥
(σ − 1)hT

k
zk

L‖zk‖2
, (14)

where σ and L are positive constant in Assumption 2.2 and

formula (5) respectively.

Proof: Both sides of formula (5) are subtracted by hT
k
zk, we

get

(σ − 1)hTk zk ≤ (hk+1 − hk)
Tzk = qTk zk ≤ ‖qk‖‖zk‖,

combining with Lipschitz continuity, we obtain

(σ − 1)hTk zk ≤ αkL‖zk‖2.

Since zk is a descent direction and σ < 1, formula (14 holds

immediately.

Zoutendijk condition [43] is often used to prove the global

convergence of the CGmethod. The following lemma shows that

the Zoutendijk condition holds for the proposed method under

the weak Wolfe line search conditions formulas (4) and (5).

Lemma 2.4. Suppose Assumption 2.2 holds and consider any

iterative expression formula (2, where zk is generated by formula

formula (9). If αk is calculated by weakWolfe line search formulas

(4) and (5), then the following so-called Zoutendijk condition

holds:

∞
∑

k=1

(hT
k
zk)

2

‖zk‖2
< +∞. (15)

Proof: From weak Wolfe condition (4), we have

f (rk)− f (rk + αkzk) ≥ −δαkh
T
k zk,

combining with formula (14), we get

f (rk)− f (rk + αkzk) ≥
δ(1− σ )(hT

k
zk)

2

L‖zk‖2
. (16)

Summing up both sides of formula (16), and applying the

condition (A1) in Assumption 2.2, zoutendijk condition (15)

holds.

Lemma 2.5. Suppose that Assumption 2.2 holds and consider the

sequences {hk} and {zk} are generated by Algorithm 1, where αk

is calculated by weak Wolfe line search (4–(5, then

‖zk‖2

(hT
k
zk)

2
≤

k
∑

i=1

1

‖hi‖2
. (17)

Proof: From formula (9), we have

zk + θFMSD
k hk = βFMSD

k zk−1. (18)

Squaring up both sides of formula (18) and using the first

condition in Lemma 2.1, we obtain

‖zk‖2 = (βFMSD
k )2‖zk−1‖2 − 2θFMSD

k hTk zk − (θFMSD
k )2‖hk‖2

≤
(

hT
k
zk

hT
k−1

zk−1

)2

‖zk−1‖2 − 2θFMSD
k hTk zk

− (θFMSD
k )2‖hk‖2,

multiplying up both sides by 1
(hT

k
zk)2

, we get

‖zk‖2

(hT
k
zk)

2
≤
(

‖zk−1‖
hT
k−1

zk−1

)2

−
2θFMSD

k

hT
k
zk

−
(θFMSD
k

)2‖hk‖2

(hT
k
zk)

2

=
(

‖zk−1‖
hT
k−1

zk−1

)2

−
(

1

‖hk‖
+

θFMSD
k

‖hk‖
hT
k
zk

)2

+ 1

‖hk‖2

≤
(

‖zk−1‖
hT
k−1

zk−1

)2

+ 1

‖hk‖2
.

Since z1 = −h1 holds, we obtain

‖zk‖2

(hT
k
zk)

2
≤
(

‖zk−1‖
hT
k−1

zk−1

)2

+ 1

‖hk‖2

≤
(

‖zk−2‖
hT
k−2

zk−2

)2

+ 1

‖hk−1‖2
+ 1

‖hk‖2

≤
(

‖zk−3‖
hT
k−3

zk−3

)2

+ 1

‖hk−2‖2
+ 1

‖hk−1‖2
+ 1

‖hk‖2

≤ ... ≤
k
∑

i=1

1

‖hi‖2
.

The proof is finished.

Based on Lemmas 2.1, 2.4, and 2.5, we can establish the

theorem of global convergence of the FMSD method.

Theorem 2.6. Suppose that Assumption 2.2 is satisfied. Consider

{rk} is generated by Algorithm 1, where αk is calculated by weak

Wolfe line search (4–5), then

lim inf
k→∞

‖hk‖ = 0. (19)

Proof: We prove this theorem by contradiction. Suppose

that formula (19) is not true, then there exists a positive constant

a > 0 such that

‖hk‖ ≥ a,∀k ≥ 1.
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Using the above relation and formula (17), we obtain

‖zk‖2

(hT
k
zk)

2
≤

k
∑

i=1

1

‖hi‖2
≤ k

a2
.

It implies

∞
∑

k=1

(hT
k
zk)

2

‖zk‖2
≥

∞
∑

k=1

a2

k
= +∞,

which contradicts with the Zoutendijk condition in formula

(15). Hence, formula (19) is true. The proof is finished.

3. Numerical experiments

In this part, we report the numerical experiments of the

FMSD method and compare the computational performance

with the JYJLL method proposed by Jian et al. [7]. Both the

methods were coded inMATLAB 2019a and ran using a personal

computer with an Intel Core i7 processor, 16 GB RAM, 64 bit

Windows 10 Pro operating system. The comparisons are made

under the weak Wolfe line search (4–5) with σ = 0.2 and

δ = 0.02 for the FMSD method and σ = 0.1 and δ = 0.01

for the JYJLL method. We tested 132 unconstrained problems in

the CUTEr library suggested by Andrei [6, 44] and Moré et al.

[45] with dimensions from 2 to 1,000,000. Mostly, we used two

different dimensions for the problem and the iteration stopped

using the ‖hk‖∞ ≤ 10−6 criteria. The initial point used for all

problems can be seen in Jiang et al. [25]. Table 1 details the test

function and dimensions of the test problems.

Detailed numerical results are provided in Table 2 which

include the number of iterations (NOI), the total number of

function evaluations (NOF), and the CPU time in seconds

(CPU). In Table 2, “-” indicates that the methods failed to solve

the corresponding problems within 2000 iterations.

To clearly determine a method that has good computational

performance, here we use the performance profiles suggested by

Dolan andMoré [46] to show the performance under NOI, NOF,

and CPU time, respectively. Comparison results are obtained by

running a solver on a set P of problems and recording relevant

information such as NOI, NOF, and CPU time. Suppose that S is

the set of solvers under consideration and assume S is made up

of ns solvers and P is made up of np problems. For each problem

p ∈ P and solver s ∈ S, we denote tp,s as the CPU time (or

NOI or NOF, etc.) required to solve problem p ∈ P by solver

s ∈ S. The comparison between different solvers is based on the

performance ratio described by

rp,s =
tp,s

min{tp,s : s ∈ S} .

Let ρs(τ ) be the probability for solver s ∈ S that a performance

ratio rp,s is within a factor τ ∈ R
n. For example, the value of

TABLE 1 The problems and their dimensions.

No Problem/Dimension No Problem/Dimension

1 COSINE 6,000 67 Extended DENSCHNB 300,000

2 COSINE 100,000 68 Generalized Quartic 9,000

3 COSINE 800,000 69 Generalized Quartic 90,000

4 DIXMAANA 2,000 70 Generalized Quartic 500,000

5 DIXMAANA 30,000 71 BIGGSB1 110

6 DIXMAANB 8,000 72 BIGGSB1 200

7 DIXMAANB 16,000 73 SINE 100,000

8 DIXMAANC 900 74 SINE 50,000

9 DIXMAANC 9,000 75 FLETCBV 15

10 DIXMAAND 4,000 76 FLETCBV 55

11 DIXMAAND 30,000 77 NONSCOMP 5,000

12 DIXMAANE 800 78 NONSCOMP 80,000

13 DIXMAANE 16,000 79 POWER 150

14 DIXMAANF 5,000 80 POWER 90

15 DIXMAANF 20,000 81 RAYDAN1 500

16 DIXMAANG 4,000 82 RAYDAN1 5,000

17 DIXMAANG 30,000 83 RAYDAN2 2,000

18 DIXMAANH 2,000 84 RAYDAN2 20,000

19 DIXMAANH 50,000 85 RAYDAN2 500,000

20 DIXMAANI 120 86 DIAGONAL1 800

21 DIXMAANI 12 87 DIAGONAL1 2,000

22 DIXMAANJ 1,000 88 DIAGONAL2 100

23 DIXMAANJ 5,000 89 DIAGONAL2 1,000

24 DIXMAANK 4,000 90 DIAGONAL3 500

25 DIXMAANK 40 91 DIAGONAL3 2,000

26 DIXMAANL 800 92 Discrete Boundary Value 2,000

27 DIXMAANL 8,000 93 Discrete Boundary Value 20,000

28 DIXON3DQ 150 94 Discrete Integral Equation 500

29 DIXON3DQ 15 95 Discrete Integral Equation 1,500

30 DQDRTIC 9,000 96 Extended Powell Singular 1,000

31 DQDRTIC 90,000 97 Extended Powell Singular 2,000

32 QUARTICM 5000 98 Linear Full Rank 100

33 QUARTICM 150,000 99 Linear Full Rank 500

34 EDENSCH 7,000 100 Osborne 2 11

35 EDENSCH 40,000 101 Penalty1 200

36 EDENSCH 500,000 102 Penalty1 1,000

37 EG2 100 103 Penalty2 100

38 EG2 35 104 Penalty2 110

39 FLETCHCR 1,000 105 Extended Rosenbrock 500

40 FLETCHCR 50,000 106 Extended Rosenbrock 1,000

41 FLETCHCR 200,000 107 Broyden Tridiagonal 500

42 Freudenstein and Roth

460

108 Broyden Tridiagonal 50

43 Freudenstein and Roth

10

109 HIMMELH 70,000

44 Generalized Rosenbrock

10,000

110 HIMMELH 240,000

(Continued)
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TABLE 1 (Continued)

No Problem/dimension No Problem/dimension

45 Generalized Rosenbrock

100

111 Brown Badly Scaled 2

46 HIMMELBG 70,000 112 Brown and Dennis 4

47 HIMMELBG 240,000 113 Biggs EXP6 6

48 LIARWHD 15 114 Osborne1 5

49 LIARWHD 1,000 115 Extended Beale 5,000

50 Extended Penalty 1,000 116 Extended Beale 10,000

51 Extended Penalty 8,000 117 HIMMELBC 500,000

52 QUARTC 4,000 118 HIMMELBC 1,000,000

53 QUARTC 80,000 119 ARWHEAD 100

54 QUARTC 500,000 120 ARWHEAD 1,000

55 TRIDIA 300 121 ENGVAL1 500,000

56 TRIDIA 50 122 ENGVAL1 1,000,000

57 Extended Woods

150,000

123 DENSCHNA 500,000

58 Extended Woods

200,000

124 DENSCHNA 1,000,000

59 BDEXP 5,000 125 DENSCHNB 500,000

60 BDEXP 50,000 126 DENSCHNB 1,000,000

61 BDEXP 500,000 127 DENSCHNC 10

62 DENSCHNF 90,000 128 DENSCHNC 500

63 DENSCHNF 280,000 129 DENSCHNF 500,000

64 DENSCHNF 600,000 130 DENSCHNF 1,000,000

65 DENSCHNB 6,000 131 ENGVAL8 500,000

66 DENSCHNB 24,000 132 ENGVAL8 1,000,000

ρs(1) is the probability that the solver will win over the rest of

the solvers. The formula of ρs(τ ) is defined as follows:

ρs(τ ) =
1

np
size{p ∈ P : log rp,s ≤ τ }.

According to the rule of the performance profile above, we

can describe the performance curves based on Table 2 as in

Figures 1–3. Based on the three figures, we can see that the

FMSD method is superior to the JYJLL method under the

unconstrained problems in Table 1.

4. Application to regression models
of COVID-19

SARS-CoV-2 virus popularly known as the COVID-19

infection was first reported in the Asian continent from Wuhan

province, Hubei city of China toward the end of 2019. As of 20

June 2022, almost all the countries in Asia except Turkmenistan

have reported at least one case of the infection [47]. However,

countries that include India, South Korea, Vietnam, Japan,

and Iran recorded the highest rates of confirmed cases of the

TABLE 2 Numerical results.

No JYJLL FMSD

NOI NOF CPU NOI NOF CPU

1 33 103 0.1355 30 94 0.0694

2 184 374 2.8852 126 258 1.8144

3 55 170 10.2971 43 155 8.256

4 20 83 0.2293 17 80 0.1863

5 20 89 2.9297 20 92 2.7478

6 24 93 1.0052 22 91 0.7986

7 24 93 1.6604 25 87 1.4167

8 25 89 0.2524 24 87 0.1867

9 10 73 0.7633 15 79 0.7799

10 21 90 0.4765 21 99 0.4898

11 21 87 2.7908 16 89 2.6687

12 - - - 1,400 2,385 2.2021

13 - - - 1,028 1,827 2.1568

14 1,535 2,679 2.3565 744 1,317 1.1824

15 1,887 3,232 3.3751 753 1,312 1.4909

16 - - - 1,029 1,755 1.5518

17 - - - 1,081 1,815 2.0251

18 - - - 795 1,372 1.2811

19 - - - - - -

20 - - - - - -

21 1,465 2,479 0.6701 882 1,537 0.0938

22 - - - - - -

23 1,241 2,239 15.5235 - - -

24 829 1,490 7.6136 515 918 4.8861

25 - - - 1,172 1,994 0.202

26 - - - 1,899 3,277 3.0415

27 853 1,539 14.538 665 1,178 11.0235

28 - - - - - -

29 422 740 0.2037 472 800 0.0249

30 446 822 0.2846 343 646 0.2215

31 414 776 2.0585 301 571 0.878

32 42 143 0.2467 38 143 0.2453

33 84 250 11.6764 110 317 15.0269

34 43 165 0.3478 30 109 0.2601

35 44 192 2.3017 69 421 5.0274

36 85 603 89.6504 121 954 142.2274

37 - - - - - -

38 - - - - - -

39 116 207 0.0085 77 158 0.0066

40 109 235 0.2867 120 278 0.329

41 321 3,144 13.5325 101 777 3.0531

42 - - - 1,814 7,922 0.2898

43 - - - 1,334 2,893 0.0774

44 - - - - - -

45 - - - - - -

46 2 15 0.0425 2 16 0.0477

(Continued)
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TABLE 2 (Continued)

No JYJLL FMSD

NOI NOF CPU NOI NOF CPU

47 2 13 0.6799 2 13 0.1117

48 117 219 0.008 74 163 0.0051

49 836 1,428 0.0472 607 1,063 0.0383

50 32 212 0.3311 20 123 0.1931

51 16 93 10.9861 16 93 10.9116

52 50 156 0.1896 46 149 0.1825

53 89 263 6.926 73 228 5.5093

54 109 323 51.3058 114 346 53.7087

55 - - - - - -

56 1,187 2028 0.2817 508 917 0.0253

57 - - - 1,426 2,464 9.321

58 - - - - - -

59 2 11 0.007 2 12 0.0065

60 2 16 0.0592 2 10 0.0456

61 2 12 2.1566 2 13 0.564

62 24 102 0.154 24 102 0.1715

63 23 106 0.5798 23 106 0.6301

64 25 111 1.5076 30 115 1.309

65 21 86 0.0093 18 79 0.008

66 21 90 0.0416 20 88 0.0446

67 19 91 1.4781 19 91 0.4131

68 19 83 0.0314 18 82 0.0296

69 16 82 0.1376 17 87 0.1665

70 25 101 1.1407 17 89 0.8401

71 1,684 2,890 0.0903 809 1,373 0.0384

72 - - - 1,350 2,316 0.0675

73 61 192 1.4482 44 168 1.2826

74 59 168 0.9694 28 98 0.426

75 91 195 0.0065 67 114 0.0049

76 1,425 2,148 1.066 1,707 2,213 0.0983

77 45 118 0.0164 45 118 0.0216

78 87 203 0.5009 81 184 0.2934

79 239 423 0.0113 127 228 0.0103

80 1,817 3,102 0.0849 733 1,306 0.0503

81 713 1,266 0.0438 636 1,094 0.0428

82 - - - - - -

83 14 71 0.0054 12 67 0.0055

84 15 97 0.1103 17 105 0.1101

85 37 251 3.8983 82 592 8.081

86 904 4,004 0.2162 700 4,172 0.2266

87 - - - 1,357 6,469 0.6286

88 133 265 0.0098 164 294 0.012

89 962 1,696 0.231 748 1,327 0.0893

90 1,068 3,825 0.2293 906 4,470 0.3026

91 - - - 1,818 10,110 1.6853

92 232 425 6.5431 105 200 2.4856

(Continued)

TABLE 2 (Continued)

No JYJLL FMSD

NOI NOF CPU NOI NOF CPU

93 0 0 1.0216 0 0 1.0422

94 13 59 4.3587 13 59 4.4905

95 16 63 43.3358 18 64 44.5679

96 - - - - - -

97 - - - - - -

98 13 63 0.0846 15 71 0.0414

99 18 84 0.4085 18 84 0.3522

100 - - - - - -

101 - - - 1,400 2,966 0.4322

102 - - - 1,268 2,517 19.2961

103 337 880 0.1366 310 746 0.1023

104 202 576 0.2837 176 648 0.0872

105 - - - - - -

106 - - - - - -

107 52 115 0.1412 54 116 0.1451

108 40 95 0.1788 40 95 0.0091

109 33 155 0.952 - - -

110 23 105 2.2911 32 185 3.6654

111 - - - - - -

112 266 1,125 0.0659 271 1,272 0.043

113 - - - - - -

114 - - - - - -

115 369 647 0.8829 344 583 0.8067

116 - - - 418 750 2.253

117 29 110 0.8918 27 102 0.8617

118 28 108 1.713 29 110 1.7295

119 25 74 0.003 22 70 0.0033

120 27 99 0.0063 27 85 0.0038

121 113 1,048 10.5062 86 754 6.7726

122 182 1,647 29.8122 101 836 14.5085

123 37 112 9.4347 36 108 8.7515

124 35 109 17.9446 35 109 18.1365

125 27 106 0.7703 26 108 0.8496

126 23 111 1.5522 28 116 1.6992

127 38 128 0.0045 34 110 0.0061

128 62 170 0.0254 41 127 0.0195

129 343 1,161 12.0093 531 1,857 18.929

130 387 1,366 28.4407 400 1,441 28.0926

131 263 2,557 24.3792 168 1,589 14.9358

132 466 4,731 88.6258 175 1,608 28.5672

infection [48]. The first positive COVID-19 case in Indonesia

was recorded on March 2, 2020, but within the first 6 weeks,

the presence of the virus has been confirmed in almost all

the provinces of the country [49]. Despite the early wide-scale

response from the government, the country has recorded a high
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FIGURE 1

Performance profiles on NOI.

FIGURE 2

Performance profiles on NOF.

number of deaths from the positive cases of the infection [50].

According to the WHO, Indonesia has so far recorded a total of

156,695 deaths from a total of 6,069,255 confirmed cases of the

infection as of 20 June 2022 [51] of which more than 750 deaths

are front-line health workers. Based on recent figures, we can

say that Indonesia has been able to contain the disease outbreak.

This can be attributed to the admirable resilience of the country’s

front-line health workers, strict health protocols, and successful

vaccination programs. Data from the WHO shows that the total

of people that have been administered the vaccine doses as of 15

June 2020 stands at 417,522,347 [51].

In recent times, several works of literature have employed

different mathematical and numerical approaches for modeling

the COVID-19 outbreak [see [5, 32, 52]]. This paper aims

to study the performance of the proposed method on a

parameterized COVID-19 regression model. For deriving the

FIGURE 3

Performance profiles on CPU Time.

COVID-19 regression model, the study will consider the total

Indonesian monthly positive confirmed cases of the infection

from March 2020 (the month of the first recorded case) until

May 2022. The obtained data would be transformed into an

unconstrained optimization model which would later be solved

using the proposed method.

A regression analysis function of the form:

y = h(x1, x2, ..., xp + ε), (20)

has the response variable denoted by y, ε represents the error,

and the predictor is given as xi, i = 1, 2, ..., p, p > 0. The type

of function plays an important role in the statistical modeling

of problems in applied sciences, physical sciences, management

sciences, and more. Based on the above description, we can

describe regression analysis as a statistical procedure employed

to estimate the relationships between a dependent and one or

several independent variables. For any given regression analysis-

related problem, the linear regression function can be derived by

computing y such that

y = a0 + a1x1 + a2x2 + . . . + apxp + ε (21)

with a0, . . . , ap representing the regression parameters. These

parameters a0, a1, . . . , ap are estimated to minimize the error ε

value. Based on several works of literature, the linear regression

process rarely occurs in situations because most problems are

often nonlinear in nature. Based on the non-linearity of the

problems, studies usually consider the nonlinear regression

process [5]. This and other considerations motivated the idea of

using the nonlinear regression procedure in this study.

To construct the parameterized regression model, we

considered the death cases recorded from those infected by

the COVID-19 virus from the first month Indonesia confirmed

the first case; March 2020 until May 2022, totaling 27 months.
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TABLE 3 Statistics of confirmed positive cases and death recorded

from COVID-19 infection in Indonesia from March 2020 to May, 2022.

Monthly data Total confirmed Total death

(Mar 2020 − May 2022) Cases per month Per month

(x) (y)

1 1,528 136

2 8,590 656

3 16,355 821

4 29,912 1,263

5 51,991 2,255

6 66,360 2,212

7 112,212 3,397

8 123,080 3,129

9 128,795 3,076

10 204,315 5,193

11 335,116 7,860

12 256,320 6,168

13 177,078 4,692

14 156,656 4,663

15 156,335 5,057

16 356,569 7,913

17 1,231,386 35,628

18 680,143 38,372

19 125,303 9,448

20 29,254 1,466

21 12,051 425

22 6,311 258

23 90,650 232

24 1,211,078 4,015

25 448,379 6,754

26 33,978 1,166

27 8,177 334

The data were obtained from the Indonesia COVID Coronavirus

Statistics Worldometer [53] and the detailed description of the

model formulation process was presented as follows. Note:

it may be confirmed that the statistics of recorded cases are

less than the actual number, this might be a result of limited

testing. From the data presented in Table 3, the x-variable would

represent the months considered while the y-variable represents

the confirmed death cases for that month. Also, only data of 26

months (March 2020 to April 2022) would be considered for

data fitting because data for May 2022 would be reserved for

error analysis.

Based on the data of x and y given in Table 3, the

approximate function for the nonlinear least square method was

obtained as follows:

f (x) = −842.24+ 35865.66x− 909.17x2. (22)

TABLE 4 Performance results of FMSD method for optimization of the

quadratic model Equation (25).

Initial points NOI CPU time

(0.5,0.5,0.5) 13 0.11176541011740658

(5,5,5) 16 0.04775448062163305

(11,11,11) 17 0.84012854607846890

The above function (22) will be utilized when approximating

the y data values based on x data values. Since this study

considered the monthly confirmed cases, the xj would be used

to denote the months while yj will present the confirmed cases

for that month. Based on this information, the least squares

method defined by function (22) would be transformed into an

unconstrained minimization problem of the form:

min
x∈Rn

f (x) =
n
∑

j=1

((

u0 + u1xj + u2x
2
j

)

− yj

)2
. (23)

The data for the first 26 months from Table 3 will be used

to derive the nonlinear quadratic function for the least square

method. The derived function would be extended to construct

the unconstrained optimization function. Based on the above

discussion, it is obvious that there exist some parabolic relations

between the regression parameters u0, u1, u2, the regression

function (20) with the data xj and the value of yj.

min
x∈R2

n
∑

j=1

E2j =
n
∑

j=1

((

u0 + u1xj + u2x
2
j

)

− yj

)2
. (24)

To define the nonlinear quadratic unconstrained

minimization model, Equation (24 would be transformed

using data from Table 3 as follows:

26u21 + 702u1u2 + 12402u1u3 − 209806038u1 + 2610621u22

+ 246402u2u3 − 17172778u2 + 15333u23

− 4006838782u3 + 4152673772991. (25)

The above nonlinear quadratic model was constructed using

data from the first month until the 26th month because the data

for the 27th month was reserved for relative error analysis of

the predicted data. Now, we can apply the proposed method to

solve the model (25). The results presented in Table 4 illustrate

the performance of the proposed FMSD algorithm for problem

(25) under the weak Wolfe line search conditions (4–5).

The proposed method was employed as an alternative

method to compute the values of u0, u1, u2 because of the

difficulty faced when using matrix inverse. For the proposed

method, different initial points were considered for the model.

The iteration was terminated if the iterations exceeded 1,000 or

the method was unable to solve the problem.
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FIGURE 4

Nonlinear quadratic trend line for indonesia COVID-19 cases.

4.1. Trend line method

In finance and related areas, one of the easiest processes to

boost the likelihood ofmaking a successful trade is to understand

the direction of an underlying trend because it assures that

the overall market dynamics are in your favor. Trend lines

are bounding lines that traders use to connect a sequence of

prices of security on charts. It is created when three or more

price pivot points or more can be connected diagonally. In this

section, the proposed FMSD and existing least squares methods

were employed to estimate data from Table 3. Microsoft Excel

software was used to plot the trend line for data for the first 26

months. The graph demonstrated in Figure 4 was obtained by

plotting the real data from Table 3 with x and y denoting the

x-axis and y-axis respectively.

The efficiency of the proposed method is further

demonstrated by comparing the approximation functions

of FMSD with those of the trend line and least squares methods.

Table 5 presents the estimation Point and relative Errors for the

three methods based on the reserved data for the 27th month.

FromTable 5, we can see that the error ε has beenminimized

which agrees with the main purpose of regression analysis.

This shows that the proposed FMSD method is efficient and

promising, and thus, can find a wider range of other real-

life applications.

TABLE 5 Relative error analysis using the data of the 27th month.

Models Sum of error Average error

Least square –195.0314769076 –7.50119802392

FMSD –195.0314760235 –7.50119626000

5. Conclusions

In this paper, we have presented a spectral conjugate

gradient method for solving unconstrained optimization

problems by modifying the spectral parameter of the JYJLL

method in Jian et al. [7]. Based on some conditions,

the global convergence properties were established under a

weak Wolfe line search. A numerical comparison of the

proposed method with the JYJLL method shows that the

proposed method is efficient, fast, and robust. Moreover,

our proposed method can solve the COVID-19 case model

in Indonesia.
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