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Recent technological advances in single-cell microbiology, using flow cytometry, 
microfluidics, x-ray fluorescence microprobes, and single-cell-omics, allow for 
the observation of individuals within populations. Simultaneously, individual-based 
models (or more generally agent-based models) allow for individual microbes 
to be simulated. Bridging these techniques forms the foundation of individual-
based ecology of microbes (µIBE). µIBE has elucidated genetic and phenotypic 
heterogeneity that has important consequences for a number of human interests, 
including antibiotic or biocide resistance, the productivity and stability of industrial 
fermentations, the efficacy of food preservatives, and the potential of pathogens 
to cause disease. Individual-based models can help us to understand how these 
sets of traits of individual microbes influence the above. This eBook compiles all 
publications from a recent Research Topic in Frontiers in Microbiology. It features 
recent research where individual observational and/or modelling techniques are 
applied to gain unique insights into the ecology of microorganisms.

The Research Topic “The Individual Microbe: Single-Cell Analysis and Agent-Based 
Modelling” arose from the 2016 @ASM conference of the same name hosted by the 
American Society for Microbiology at its headquarters in Washington, D.C. We are 
grateful to ASM for funding and hosting this conference.
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Editorial on the Research Topic

The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling

The field of microbial individual-based ecology, or µIBE (Kreft et al., 2013), is grounded in
the notion that to truly understand the interactions of microorganisms with their biotic and
abiotic environment, one cannot ignore the scales at which such interactions occur. The collection
and interpretation of data along these scales (from very small spatial dimensions to very large
population sizes) remains a major challenge. Embracing the idea that “progress in science depends
on new techniques, new discoveries, and new ideas, probably in that order” (Brenner, 2002), we
introduce here a collection of 14 articles authored by 65 leading experts on the topic of “The
Individual Microbe” (https://www.frontiersin.org/research-topics/5193). We frame these articles
in a narrative that explores the progress made on techniques that extract and process information
from individual microbes (IMs) and their environment, how that information allows the discovery
and prediction of novel single-cell behaviors, and how those discoveries might generate new ideas
about the outcomes and impacts of microscopic activity at macroscopic levels.

NEW TECHNIQUES

Techniques of importance to µIBE fall into one of two categories that we refer to here as “wet”
and “dry.” Both types allow the observation and interrogation of IMs and their surroundings, but
wet techniques do so of “real” IMs (i.e., bacteria, yeast, fungi, protists, etcetera) in a laboratory
or field setting, while dry techniques involve virtual IMs (or “agents”) in computer-simulated
environments (Kreft et al.). For wet approaches, much of the recently reported progress relates to
increased compatibility with other methods that interrogate the same IM for multiple attributes or
experiences, or at increasingly finer spatial or temporal resolution and/or with higher throughput.
Some examples are highlighted here. While flow cytometry is a very useful high-throughput
interrogation technique, it is incompatible with single-cell interrogation methods that are not
fluorochromogenic. Guo et al. describe a variation of flow cytometry called “mass cytometry”
where fluorochromes are replaced with heavy metal ions and which allowed the researchers to
establish a direct link between the uptake of (antibacterial) silver and cell viability at the single-cell

6
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level. Harrison and Berry compare applications of vibrational
microspectroscopy (a combination of spectroscopy and
microscopy) for chemical imaging of microbial cells and their
surroundings at high resolution and high throughput. The
compatibility of Raman and Fourier-transform infrared imaging
with other methods such as fluorescent in situ hybridization,
stable-isotope probing, secondary ion mass spectrometry, and
X-ray computed tomography makes it possible to extract local
environmental context for the behavior or location of IMs. Such
context can help with the interpretation of heterogeneity among
a population of IMs as inherent to the IMs or in response to
environmental heterogeneity (see below). Chen et al. review
tools for DNA- and RNA-based single-cell analysis, which
range from low and medium resolution (DAPI staining of
chromosomal DNA to count IMs and transcriptional fusions
to a reporter such as gfp to monitor expression of a single gene
of interest, respectively) to high resolution (whole-genome
or whole-transcriptome sequencing of single cells). Tools like
the latter are still relatively new and face formidable technical
challenges. Yet, they offer great hope not only for assessing
single-cell variation in DNA and RNA content, but also for
unlocking nucleotide-based information from hard-to-culture
microorganisms.

As for dry µIBE techniques (i.e., agent-based modeling
approaches), key advances often allow handling larger numbers
of IMs per time unit, more attributes per IM, or including
IMs representing multiple taxa or guilds. Such advances may be
achieved by increasing computing power (for example Wilmoth
et al.) or by structuring models more efficiently for faster
(re-)calculations of location, perception, and response of IMs.
Sometimes, the bottleneck for model progress is the lack of
experimental data. For example, Garcia et al. measured cell
volumes of exponentially growing bacterial cells using flow
cytometry, and were able to derive parameters for a stochastic
model of cell elongation and division to predict bacterial
population growth. Similarly, Ginovart et al. used digital image
analysis to determine yeast growth under different oxygen
concentrations and to parameterize individual behavior into
an agent-based model for the interpretation of population-
level measurements. Often, agent-based models are improved
by introducing additional layers of complexity, for example by
modeling the behavior and interactions of IMs as a function of
the behavior and interactions of cellular components within each
IM (Kreft et al.).

NEW DISCOVERIES

One major discovery in recent years is the existence and extent
of heterogeneity among IMs. González-Cabaleiro et al. explore
the magnitudes, sources and consequences of such heterogeneity,
in particular as it pertains to bioprocess industries and design,
where such heterogeneity has macroscopic consequences. Zhao
et al. demonstrated this for IMs in clonal populations of the
beer-spoilage bacterium Lactobacillus brevis. While all cells in
populations of hop-sensitive strains were classified as dead after
exposure to (antimicrobial) hops, a small fraction of cells in
populations of hop-tolerant strains was alive and responsible for

the tolerant phenotype. This type of heterogeneity is referred
to as intrinsic, i.e., inherent to the IM, as opposed to extrinsic
heterogeneity. An example of the latter is Nieß et al. who
showed that long mixing times in large-scale bioreactors cause
spatial variation in nutrient availability, which in turn triggered
heterogeneity in the starvation response among microbes in
the reactor. Intrinsic and extrinsic heterogeneity are often
coupled. For example, Tack et al. combined an individual-
based modeling framework with a metabolic simulation of
the bacterium Escherichia coli to show that local differences
in bacterial activity (i.e., oxygen consumption) lead to local
differences in responses of those bacteria (i.e., secretion of weak
acid products) generating local differences in environmental
conditions (i.e., pH). Oftentimes, heterogeneity among IMs
in their natural environment is observed, but its intrinsic or
extrinsic nature is not well-understood. Ben Rejeb et al. used
GFP-based bioreporters to show significant variation in gene
expression among individual cells of a Bacillus thuringiensis
population during infection of the host insect species Galleria
mellonella. But is this heterogeneity due to the variation in the
IM’s experience of different microenvironments inside the insect
(is it extrinsic heterogeneity?), or does it represent intrinsic
heterogeneity, where variation in gene expression is hardwired
into the B. thuringiensis way of life, representing what is known
as programmed heterogeneity (Kreft et al.)?

Especially exciting (and challenging) are new discoveries that
follow from observations of IMs and that defy or generate
expectations. An example is El-Kirat-Chatel et al. who used
atomic force microscopy to quantify the surface adhesion of
bacteria at the single cell level. Surprisingly, their measurements
did not correlate well with the adhesion forces measured at
the population level. Do such unexpected observations expose
fundamental flaws in our ability to scale microbial behaviors?
How about agent-based models that accurately describe and
validate one type of lab-observed IM behavior, but then also
predict another type of behavior, one that has never been seen
before, but that if experimentally confirmed would challenge
existing theories and/or generate new ideas about the biology and
ecology of IMs?

NEW IDEAS

When asked about the field of biology, the philosopher Rudolf
Carnap offered a definition (Carnap, 1938) that referred to
“the behavior of individual organisms and groups of organisms
within their environment.” This distinction between individual
and group is, in a nutshell, the big idea behind µIBE. As a
discipline, microbiology has long relied on population-based
measurements, with little regard for the fact that life at the
microscale is different from life as humans experience it
(Dusenbery, 2011). Different rules apply at that scale, many
of which are not intuitive and involve laws of small forces,
large numbers, and unexpected probabilities. In reference to
the latter, Jayathilake et al. used an agent-based model of
2-dimensional bacterial biofilm formation to test outcomes
of single-cell variation in the ability to produce extracellular
polymeric substances and to engage in quorum sensing. The

Frontiers in Microbiology | www.frontiersin.org November 2018 | Volume 9 | Article 28257

https://doi.org/10.3389/fmicb.2017.00675
https://doi.org/10.3389/fmicb.2017.01831
https://doi.org/10.3389/fmicb.2018.00033
https://doi.org/10.3389/fmicb.2018.00633
https://doi.org/10.3389/fmicb.2017.02628
https://doi.org/10.3389/fmicb.2017.02299
https://doi.org/10.3389/fmicb.2017.01813
https://doi.org/10.3389/fmicb.2017.00239
https://doi.org/10.3389/fmicb.2017.01195
https://doi.org/10.3389/fmicb.2017.02509
https://doi.org/10.3389/fmicb.2017.02471
https://doi.org/10.3389/fmicb.2017.02299
https://doi.org/10.3389/fmicb.2017.01399
https://doi.org/10.3389/fmicb.2017.01865
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Leveau et al. Editorial: The Individual Microbe

study showed that chance played a key role in the outcome of the
simulations, as the structure of the biofilm was partly determined
by the initial random colonization of bacteria on the surface. For
experimentalists, chance is difficult to accept as a driving force
behind outcomes. Moreover, chance events at the micrometer
scale are hard to control for when most experimental techniques
do not allow high-resolution manipulation of single cells or
their immediate environment. This frustration is in part what
underlies many recent improvements in wet µIBE technology
that deal with the construction of experimental arenas where such
micro-manipulation is possible (for example, microfluidic setups
like the one used by Wilmoth et al.).

And so, Brenner’s postulate (Brenner, 2002) certainly rings
true for the field of µIBE, where progress crucially depends
on new techniques, both wet and dry, not only to allow new
discoveries about the existence and extent of heterogeneity
between IMs, but also in pursuit of testing the idea that such
heterogeneity matters.
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Background: Mass cytometry (Cytometry by Time of Flight, CyTOF) allows single-cell
characterization on the basis of specific metal-based cell markers. In addition, other
metals in the mass range such as silver can be detected per cell. Bacteria are known
to be sensible to silver and a protocol was developed to measure both the number of
affected cells per population and the quantities of silver per cell.

Methods: For mass cytometry ruthenium red was used as a marker for all cells of
a population while parallel application of cisplatin discriminated live from dead cells.
Silver quantities per cell and frequencies of silver containing cells in a population were
measured by mass cytometry. In addition, live/dead subpopulations were analyzed by
flow cytometry and distinguished by cell sorting based on ruthenium red and propidium
iodide double staining. Verification of the cells’ silver load was performed on the bulk
level by using ICP-MS in combination with cell sorting. The protocol was developed by
conveying both, fast and non-growing Pseudomonas putida cells as test organisms.

Results: A workflow for labeling bacteria in order to be analyzed by mass cytometry was
developed. Three different parameters were tested: ruthenium red provided counts for all
bacterial cells in a population while consecutively applied cisplatin marked the frequency
of dead cells. Apparent population heterogeneity was detected by different frequencies
of silver containing cells. Silver quantities per cell were also well measurable. Generally,
AgNP-10 treatment caused higher frequencies of dead cells, higher frequencies of
silver containing cells and higher per-cell silver quantities. Due to an assumed chemical
equilibrium of free and bound silver ions live and dead cells were associated with silver
in equal quantities and this preferably during exponential growth. With ICP-MS up to
1.5 fg silver per bacterial cell were detected.

Conclusion: An effective mass cytometry protocol was developed for the detection
and quantification of silver in single bacterial cells of different physiological states. The
silver quantities were generally heterogeneously distributed among cells in a population,
the degree of which was dependent on micro-environmental conditions and on silver
applied either in ion or nanoparticle-aggregated form.

Keywords: mass cytometry, metal-based cell marker, silver quantification in single cells, silver distribution,
bacterial heterogeneity, silver nanoparticles
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INTRODUCTION

Increasing use of antimicrobial commercial products amended
with silver nanoparticles (AgNP) has caused concerns, and
extensive study was directed on AgNP toxicity of causing
generation of reactive oxygen species (Choi and Hu, 2008; Franci
et al., 2015), cell growth inhibition (Ivask et al., 2014), or cell
viability loss (Guo et al., 2017). The characterization of AgNP
physicochemical behavior with the focus on their dissolution,
aggregation, and transformation in biological environments
became increasingly important (Fabrega et al., 2011). As a result
of these efforts recent studies suggested that dissolved silver
ions can be held responsible for the antimicrobial qualities of
AgNP (Xiu et al., 2012). We confirmed these findings in an
own study but revealed an additional particle effect supposedly
caused by fast formation of huge AgNP-aggregates of about
500 nm in cell solutions and suggested their contribution to
higher cell death ratios (Guo et al., 2017). The attachment of
AgNP-aggregates to single bacterial cells was identified by TEM
and SEM-EDX (Guo et al., 2017). Aside from TEM and SEM-
EDX, other techniques have been used to visualize and identify
metals in single human cells, e.g., AFM, SXFM (Cerchiaro et al.,
2013). However, these microscopy techniques have limitations
including random sample detection, and lack of quantitative
information regarding cellular interactions with nanoparticles.
Flow cytometry has been reported to characterize single cells
in microbial populations with high-throughput by means of
light scatter and fluorescent dyes (Müller and Nebe-von-Caron,
2010). Cellular AgNP uptake was conveyed by this method via
changes of side scatter characteristics but only for eukaryotic
cells (Lankoff et al., 2012; Zucker et al., 2013; Zhao and Ibuki,
2015). For bacterial cells side scatter did not reveal any AgNP
uptake (for sizes of 10 and 30 nm; Guo et al., 2017). Instead,
ICP-MS has been operated widely to quantify the contents of
silver ions in bacterial cells (Swathy et al., 2014; Wakshlak et al.,
2015). It is a destructive technique where entire cell suspensions
are digested and injected which prevents differentiation of silver-
affected cells from unaffected ones. The ICP-MS obtained average
value from a highly heterogeneous cell population disregards
cell subsets and diverse phenotypes that may be relevant to
reveal causality of cell reaction and toxicity in response to
silver.

A growing interest in single-cell analysis can be recognized
and numerous analytical methods have been developed or
improved. One of those technologies is mass cytometry, which
couples mass spectrometry with single-cell analysis and was
introduced as Cytometry by Time of Flight (CyTOF) (Bendall
et al., 2011; Chang et al., 2017). CyTOF offers numerous
potential advantages over fluorescence-based flow cytometry,
e.g., overcoming the challenge of spectral overlap intrinsic to
fluorescent dyes by using rare-earth-metal stable isotopes with
little signal overlap. In addition, more than 35 simultaneously
measured cellular parameters compared to 10 markers in
fluorescence-based flow cytometry can be measured (Bjornson
et al., 2013; Chattopadhyay et al., 2014). To date this promising
technique is mainly used for human cells as an effective tool
for drug development or improvement of therapeutic programs

ranging from infectious disease to cancer (Bendall et al., 2011;
Gavasso et al., 2016; Robinson and Mao, 2016; Baca et al., 2017;
Baumgart et al., 2017). Also other inorganic nanoparticles have
been lables (Vancaeyzeele et al., 2007; Lin et al., 2014; Tong et al.,
2016; Schulz et al., 2017) but were in the focus of biodistribution
experiments (Yang et al., 2017). Limited studies have been
reported on microbial cells (Leipold et al., 2011; Miyashita et al.,
2014), where, e.g., a combination of a metal-based membrane
stain and lectins, conjugated to lanthanide-chelating polymers,
was used to differentiate Escherichia coli cells based on their cell
surface polysaccharides.

In this study, we tested the mass cytometry technology
for discrimination of live/dead cell states and simultaneous
quantification of silver in single bacterial cells. An earlier study
(Guo et al., 2017) revealed random attachment of huge up
to 500-nm-AgNP-aggregates to a limited number of cells in a
population after few minutes treatment of cells with 10- and 30-
nm AgNP at environmental relevant concentrations. A relation
between viability states and increased quantities of silver ions
in cells by those AgNP-aggregates was suggested. Because flow
cytometry does not allow direct detection of these two events
simultaneously, a mass cytometry workflow was developed for
the purpose. Such data may be especially useful to link cell
states and features with cell fate and thus to contribute to the
development of models that implement immanent characteristics
of an individual cell and its individual capacity to notice random,
selective, and perhaps lethal influences from the environment.

MATERIALS AND METHODS

Materials
Silver nitrate (AgNO3) (99.9%) and ruthenium red (RR) was
purchased from Sigma–Aldrich (United States). AgNPs were
provided by nanoComposix (United States) as aqueous
suspensions [citrate coated, mass concentration (Ag)
0.02 mg/mL] of the size 10 nm (9.4 ± 1.7 nm, AgNP-10).
Cis-Platinum (II) diamine dichloride (cisPt) was purchased
from Enzo Life Sciences GmbH (Lörrach, Germany). Nitric acid
(HNO3) was purchased from Merck (Germany). M12 medium
and PBS compositions were shown in Supplementary Table S1.
For washing purposes 18.2 M�·cm water (MilliQ, Germany) was
used.

Bacterial Cultivation
Pseudomonas putida KT2440 was obtained from the German
Collection of Microorganisms and Cell Cultures (DSMZ,
Germany). Bacterial standard-growth was performed in M12
medium on a rotary shaker at 30◦C and 170 rpm. The growth
was monitored by optical density at λ = 600 nm (Spectra max
Plus 384 photometer, Molecular Devices, Sunnyvale, CA, United
States).

Bacterial Cultivation under Silver
Treatment
An overnight pre-culture of P. putida KT2440 was incubated
in M12 medium with an initial OD600 of 0.09 and grown
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for 72 h (30◦C, 170 rpm). Either AgNP-10 (1.29 mg/L) or
AgNO3 (0.19 mg/L) were implemented in the cultivations and
chosen concentrations referred to the determined EC50 values
from an earlier publication (Guo et al., 2017). Cultivations
without silver treatment served as silver-ion negative control
while application of AgNO3 served as silver-ion positive control.
Cells were harvested at 0, 12, 48, and 72 h and treated
separately according to the mass cytometry staining protocol (see
below).

Determination of Cell Number
To analyze bacteria on the single cell level at the mass
cytometer, a concentration of 5.0 × 105 cells/mL was required
for each injection. Therefore, a fast and accurate cell counting
method was required and for this a range of linear relationship
between cell counts and OD600 was exploited. Cell counts
were determined by a flow cytometer (Becton, Dickinson and
Company, Franklin Lakes, NJ, United States) together with
a calibrated suspension of microsphere standard (6.0 µm
diameter microspheres at a concentration of 108 beads/mL
in Milli-Q water containing 2 mM sodium azide, L34856,
Thermo Fisher Scientific, Germany) for accurate cell count
measurements. OD600 was analyzed by a spectrophotometer.
All measurements were done in replicates and shown in
Supplementary Figure S1.

All Cell Indicator for Mass Cytometry
To optimize RR staining for P. putida KT2440 populations, a
stock solution of 1.3 mM of RR in PBS was prepared and stored
at 4◦C. Before use the solution was ultra-sonicated (Ultrasonic
bath, Merck Eurolab, Darmstadt, Germany) for 10 min. 108 cells
were treated with different concentrations of RR (0 to 0.33 µM)
for 30 and 60 min. The final staining protocol requires 0.13 µM
RR/108 cells/200 µL PBS and a staining time of 30 min at room
temperature (RT). Details of staining optimization were shown in
Supplementary Figure S2A.

Dead Cell Indicator for Mass Cytometry
To optimize cisPt staining for P. putida KT2440 populations, a
stock solution of 25 mM of cisPt in dimethyl sulfoxide (Sigma–
Aldrich, United States) was prepared and stored at −20◦C.
108 cells were stained with different concentrations of cisPt
(0 to 20 µM) and treated for 1, 5, 10, 30 min. The final
staining protocol requires 5 µM cisPt/108 cells/1 mL PBS and a
staining time of 10 min at RT. Details of staining optimization
and calibration curves generated on the basis of RR and cisPt
measurements were shown in Supplementary Figures S2B,C.

Dead Cell Indicator for Flow Cytometry
The fluorescent dye propidium iodide (PI) was used as dead
cell indicator for P. putida KT2440. Staining optimization and
calibration were published (Guo et al., 2017). The final protocol
requires 2 µM PI/108 cells/1 mL PBS and a staining time of
2 min. For quantification of PI stained dead cells (PI+dead) of
RR labeled P. putida KT2440, cells were double stained with RR
(0.13 µM, 30 min), followed by PI (2 µM, 2 min) and analyzed
by flow cytometry at log scale.

Workflow for Analysis of Bacterial Cells
at the Mass Cytometer
Harvested cells were diluted to 108 cells/1 mL PBS and
centrifuged at 3200 × g for 10 min. The pelleted cells were re-
suspended in cisPt solution (5 µM, 10 min, RT). Subsequently,
the cisPt stained dead cells (cisPt+dead) were washed (3200× g,
10 min) twice with 3 and 1 mL PBS, respectively, to remove
unbound cisPt. Finally, cells were stained with RR (0.13 µM,
30 min, RT), washed twice (3200× g, 10 min) with 1 mL water to
remove salts and unbound RR. For mass cytometry measurement
the cell concentration was adjusted to 5.0 × 105 cells/mL
in Milli-Q water. Four element calibration beads (Fluidigm,
United States) were added 1:10 v/v before acquisition for later
normalization (Finck et al., 2013).

Mass Cytometry
The CyTOF instrument (Fluidigm Corp, South Francisco, CA,
United States) was tuned, calibrated, and cleaned on the daily
base according to the manufacturer’s advice. Aqueous bacterial
cell suspensions were acquired on a CyTOF instrument version
1 upgraded to the control software of v6.0.626 with a flow rate
of 45 µL/min. Argon gas 5.0 was used to generate the plasma
and for nebulizing the cell suspension. About 1.5 × 105 cells
per sample were subsequently loaded onto a 450 µL sample loop
and measured in a dual instrument mode with noise reduction
turned on, a cell length range from 1 to 75 and with ‘on the
fly’ processing. The initial raw data were processed into standard
FCS file format, randomized and normalized by Software Helios
version 6.5.358 (Fluidigm Corp, South San Francisco, CA, United
States). Data analysis was performed with FlowJo (version 10)
(TreeStar, Ashland, OR, United States). Monitoring was done
by analyzing natural abundance isotopes of ruthenium (102Ru
and 104Ru), platinum (195Pt) and silver (107Ag and 109Ag, 51.8
and 48.2%, respectively). Silver was measured in ionic form and
resulting data were related to the 107Ag isotope.

Flow Cytometry and Cell Sorting
Cytometric measurements were performed with a BD Influx v7
Sorter USB, (Becton, Dickinson and Company, Franklin Lakes,
NJ, United States) equipped with a blue 488-nm Sapphire OPS
laser (400 mW, Coherent, Santa Clara, CA, United States). The
488-nm laser light was used for the analysis of the forward scatter
(FSC, 488/10), the side scatter (SSC, 488/10, trigger signal), and
the PI induced red fluorescence (616/23). The fluidic system was
run at 33 psi using a 70-µm nozzle. The sheath fluid consisted
of 0.5 × FACSFlow buffer (BD). For the optical calibration
of the cytometer in the linear range, 1-µm blue fluorescent
FluoSpheres (Molecular Probes, F-8815, Eugene, OR, United
States) and 2-µm yellow-green fluorescent FluoSpheres (Thermo
Fisher Scientific, F8827, Waltham, MA, United States) were
used. For calibration in the log range, 0.5-µm UV Fluoresbrite
Microspheres (Polysciences, 18339, Warrington, PA, United
States) were applied. Sorting of PI unstained live (PI−live) and
PI stained dead (PI+dead) cells into plastic tubes was performed
at an event rate of 5.000/sec which corresponded to a sort rate of
700–1.500 cells/sec. The sort mode was 1.0 Drop Pure. To obtain
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sufficient cell amounts for the following mass cytometry and ICP-
MS measurements, up to 3.0 × 106 cells were sorted for either
PI−live or PI+dead cells. After sorting cells were pre-processed
before CyTOF or ICP-MS analysis: sorted cells were transferred
from plastic tubes into glass tubes and centrifuged at 3200× g for
10 min, supernatant was removed and the cell pellets were stored
at−20◦C. Before mass cytometry measurements, cell pellets were
washed once with 1 mL Milli-Q water by re-suspension in 1 mL
Milli-Q water for injection.

ICP-MS Analysis
For bulk ICP-MS analysis, the sorted PI−live and PI+dead
cell pellets were digested by addition of 50 µL HNO3 (60%,
ultrapure) for a period of 15 min. Subsequently the solution was
suspended in Milli-Q water dispensed with rhodium (103Rh) as
internal standard [c (Rh) = 0.75 ng/mL] to a 1 mL solution.
The solution was measured with an Inductively Coupled Plasma
Mass Spectrometer (ICP-MS, Element XR, Thermo, Germany)
equipped with a micro-concentric nebulizer (Micromist-100,
Glass Expansion, Australia) consuming 135 µL sample per
minute. Silver was measured and quantified in ionic form related
to the 109Ag isotope.

RESULTS AND DISCUSSION

Bacterial Labeling for Mass Cytometry
Analysis
Cytometry by Time of Flight technology substitutes isotopes of
transition elements and lanthanides for fluorescent dyes. The
cells are directed into a narrow flow to be screened one by one
and vaporized. Elements of the cells are atomized, ionized, and
subsequently analyzed by a time-of-flight mass spectrometer.
The measured signal of natural abundance isotopes of the rare-
earth-metals ruthenium and platinum per cell from applied RR
and cisPt provided the number of labeled cells and the isotopes’
quantity per cell. RR is a cationic reagent and has been widely
used to locate acidic polysaccharide-like material (Fletcher and
Floodgate, 1973; Fassel and Edmiston, 1999; Waller et al., 2004)
and to visualize numerous ultra-structural details in and outside
of cells (Lingens et al., 1985; Chatterjee et al., 2010; Perfumo
et al., 2014). Because RR is easy to operate by addressing all cells
in a population directly without pre-treatment (instead of, e.g.,
fixation, necessary for flow cytometric measurements; Günther
et al., 2008) and its atomic mass is within the detectable mass
range of mass cytometers, RR was used as an all cell indicator for
the CyTOF workflow. However, the metal was not used in this
context for bacteria before. The second dye used in this study,
cisPt, is a readily available platinum based chemotherapeutic
agent and reacts with protein nucleophiles, with which it can
form covalent platinum–sulfur or sulfhydryl bonds (Fienberg
et al., 2012). cispt enters cells with compromised cell membranes,
where it non-specifically labels total cellular protein. The reagent
can thus be used to discriminate live from dead cells which is well
practiced for human cells (Bjornson et al., 2013; Nair et al., 2015).
However, applications on bacteria haven’t been tested yet to our
knowledge.

In our study, the Gram-negative bacterium P. putida KT2440
was used as a test organism to establish a protocol for RR and
cisPt staining in order to detect all cells in a population and
to differentiate live from dead cells. The RR stained bacteria
were well detectable by the CyTOF and entirely identified
within a cell gate plotted via the two most natural abundance
ruthenium isotopes 102Ru/104Ru. Protein binding cisPt was used
as second cell marker for dead cells and identified by the 195Pt
isotope. For this combined marker group optimized staining
conditions were tested with regard to dye concentrations and
times of incubation and the trade-off between highest intensity
and shortest staining time was chosen for the final workflow
(Figure 1A and Supplementary Figure S2B). To verify the
reliability of the cisPt marker different ratios of live and dead cells
(70% ethanol treated, 20 min, RT) were prepared and measured
at CyTOF. In parallel the same ratios were analyzed by using the
fluorescent marker PI (binding on nucleic acids) for dead cells
and flow cytometry. While flow cytometry mirrored the precise
ratios, CyTOF gave lower dead cell counts (Supplementary
Figure S2C). Up to now the dye was only applied to cell-wall-
free cells such as human cells effectively (Majonis et al., 2011;
Fienberg et al., 2012). Bacterial cells, however, have rigid cell
walls, subsistent also in dead cells, forming a barrier which must
be overcome by cisPt. It can be assumed that the limitation in the
quantitative detection of dead cells in a population may be caused
by this boundary. Nevertheless, despite the determination of dead
cell numbers by cisPt in a population of P. putida KT2440 was
lower in comparison to PI staining (Supplementary Figure S2C:
kcisPt= 0.45, kPI= 0.98), the stable isotopes’ calibration of RR and
cisPt proved to be useful cell markers. Standard-grown P. putida
KT2440 cells (48 h) were represented in typical 2D-plots for RR
staining (Figure 1B). The number of dead cells was 2.7% (Q2)
measured by cisPt and mass cytometry (Figure 1C), and 4.1%
(R2) measured by PI and flow cytometry (Figure 1D).

Detection of Silver of Single Cells of
P. putida
Pseudomonas putida KT2440 is known to react on various silver
concentrations by changes in growth rates and live/dead cell
ratios. The toxicity of silver was recently assumed to be caused
by the ions only (Xiu et al., 2012; Giao et al., 2017; Juganson
et al., 2017) but we detected an additional particle-related effect
(Guo et al., 2017). We assumed that the typical fast aggregation
of AgNPs to huge complexes in a nature-like environment within
30 min (Guo et al., 2017) might contribute to a further increase of
dead cell counts due to their random attachment to bacterial cell
surfaces and their thereby steady release of additional silver ions
into those cells.

Thus, mass cytometry was involved in this study to clarify
if the treatment of bacteria with either silver ions or AgNP
(1) generates different frequencies of cells that contain silver
which may cause different live/dead cell ratios and (2) produces
disparate quantities of silver per cell suggesting that populations
exposed to AgNP might contain cells with a higher silver load. To
answer these questions P. putida KT2440 cells were treated with
the respective EC50 concentrations of 1.29 mg/L for AgNP-10
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FIGURE 1 | (A) CyTOF workflow for bacteria. Cells were first stained by cisPt for live/dead discrimination, followed by RR staining as an overall bacterial cell
indicator. After washing, cells were subjected to the mass cytometer as a stream of single cells. In the plasma region elements of the cells are atomized and ionized.
Ions of high-mass elements (i.e., ruthenium, platinum, and silver) enter selectively the TOF chamber and are separated according to their mass before detection.
(B) CyTOF analysis of standard-grown and harvested P. putida KT2440 (48 h). CyTOF plots marked all events based on 102Ru/104Ru signal. (C) Dead cisPt+ (Q2)
cells are distinguished from live cisPt– (Q3) cells. (D) Dead (R2) and live (R3) cells are distinguished by PI staining and flow cytometry.

and 0.19 mg/L for AgNO3 as the positive control. As determined
before, the released ion concentrations were nearly similar
because cell-free AgNP-10 dissolution kinetic curves inferred
0.08 mg/L silver ions released from AgNP-10 (1.29 mg/L) in
comparison to 0.12 mg/L silver ions from AgNO3 (0.19 mg/L)
over a time period of 72 h (Guo et al., 2017). Standard-grown
P. putida KT2440 without silver treatment served as the negative
control. The growth curves (Figure 2, bottom) showed a delayed
lag-phase for the AgNP-10 treated bacteria and a slower growth
rate (µ = 0.14/h) for the AgNO3 positive control in comparison

to the negative control (µ= 0.18/h). CyTOF technology was used
to mark all bacterial cells of those populations and to distinguish
live from dead cells. The additional measured silver signal was
used to determine the frequency of silver containing cells as well
as the quantities of silver per cell via the intensity of the mass
cytometric signal for silver (IAg).

After 72 h and in comparison to the negative control AgNP-
10 treatment caused an increase of cisPt+dead cells by a factor
of about 4 while the AgNO3 positive control showed a factor
of 2 (Figure 2), indicating that the particles caused higher
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FIGURE 2 | CyTOF measurements on cisPt−live/cisPt+dead cell discrimination and the number of silver containing cells in a population. P. putida KT2440 cells were
cultivated in M12 medium with AgNP-10 (1.29 mg/L), with AgNO3 (0.19 mg/L) as positive control, and untreated as negative control. Growth curves were shown for
72 h by measuring OD600. Cells were harvested at 12, 48, 72 h and measured by CyTOF. Light gray bars showed cells without silver load, while dark gray bars
showed silver containing cells. Standard errors were from replicate analysis.

frequencies of dead cells. Further, the frequency of cells that
contain silver (Figure 2, dark gray bars) was also higher for
the AgNP-10 treatment in comparison to the positive control
while cells of the untreated negative control were nearly not
loaded with silver (Figure 2). After 72 h AgNP-10 treatment
92% of cisPt+dead cells and 35% of cisPt−live cells were
loaded with silver. Instead, the AgNO3 positive control revealed
48% silver containing cells of the cisPt+dead and only 11%
of the cisPt−live cells (Figure 2). The data show that AgNP-
10 treatment caused the highest frequencies of dead cells in
comparison to both controls after 72 h, and that almost all
of the dead cells were loaded with silver. At the beginning of
the exponential phase (12 h) where cells thrived at merely low
numbers, live cells were still predominant but silver was loaded
to any cell independent of its viability state. At longer exposure
time the high frequency of silver loaded dead cells was almost
consistent between 48 and 72 h. A similar tendency was observed
within the larger fraction of surviving silver containing cells,
indicating that the absorbed silver (ions) do not cause immediate
cell death.

We also determined silver quantities per cell by measuring
their IAg values which were different between AgNO3 positive
control and AgNP-10 treated cells (Table 1). Overall, AgNP-
10 treatment led to much higher silver quantities per cell in
comparison to the positive control. Our data also suggest that the
AgNP-aggregates, formed asap from AgNP-10, were not present
at all or at least in their entirety due to the stringent washing
procedures before CyTOF measurement otherwise we would
expect an elevated silver signal in the 1D-plot of the silver channel
(Supplementary Figure S3). But the silver ions released earlier
by AgNP-aggregates and then bound by the cells were obviously
responsible for the higher silver contents in AgNP-10 treated
cells. In addition, for AgNP-10 treated cells we found nearly
identical IAg values for both cisPt−live and cisPt+dead cells
when cells grew exponentially (12 h: 18.3 ± 0.6 vs. 17.1 ± 1.1,
Table 1) which was different for early and late stationary cells
where the IAg values were higher for the cisPt+dead cells (e.g.,
for 72 h: 1.6± 0.1 vs. 10.3± 0.6). For AgNO3 treated cells the IAg
values per cell were generally much lower and increased finally
to only 3.0 ± 0.3 after 72 h for cisPt+dead cells. Thus, silver
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TABLE 1 | The silver quantities per cell via the intensity of the mass cytometric
signal for silver (IAg).

Time (h) Treatment IAg

cispt−live cells cispt+dead cells

12 Pos. control 0.5 ± 0.0 0.9 ± 0.1

AgNP-10 18.3 ± 0.6 17.1 ± 1.1

48 Pos. control 0.3 ± 0.0 3.4 ± 0.3

AgNP-10 2.1 ± 0.0 11.0 ± 0.5

72 Pos. control 0.3 ± 0.0 3.0 ± 0.3

AgNP-10 1.6 ± 0.1 10.3 ± 0.6

P. putida KT2440 cells were cultivated in M12 medium with AgNP-10 (1.29 mg/L)
and with AgNO3 (0.19 mg/L) as positive control for 72 h. Cells were harvested at
12, 48, 72 h and measured by CyTOF. Median values for intensities of 107Ag (IAg)
in cisPt−live and cisPt+dead cells were shown. Examples of CyTOF plots were in
Supplementary Figure S3.

quantities per cell were higher under AgNP-10 treatment with the
highest IAg values determined for cells from exponential phase
independent if they were dead or alive.

The data of both the calculated frequencies in cell numbers
and the silver quantities per cell follow the same trend. AgNP-
10 treatment cause higher frequencies of dead cells, higher
frequencies of silver affected cells and higher per-cell silver
quantities whereby live and dead cells load silver in equal
quantities and this preferably during exponential growth.

Independent from this, the population showed heterogeneous
cell states with respect to silver quantities which might simply
be caused by chemical equilibria of available free silver ions.
Although we were not able to distinguish a silver signal related
to cell-attached AgNP-aggregates or to distinguish aggregate-
dissolved silver ions from free silver ions with CyTOF technology
we assume that by a fast process an equilibrium is established and
leads to the silver ions’ equal distribution among cells. When the
equilibrium changes in favor of the cells, because of increasing
cell numbers during growth, these mostly new live cells were
found free of silver. This observation was made also with AgNO3
treated cells. It can also be assumed that a continuous uptake of
silver ions by the cells may influence the equilibrium between
AgNP-aggregate bound and unbound silver ions in the medium
and cause further dissolution of silver ions from the aggregates
(Yue et al., 2017).

The equal silver quantities in both live and dead exponential
grown cells were verified by sorting identical numbers (3 × 106

cells each) of PI unstained/PI stained cells, from which an
aliquot of cells of each sample were injected into the mass
cytometer and 106 cells of each sample was used for ICP-MS
measurements. As before, the cells were treated by AgNP-10
at EC50 dosage of 1.29 mg/L. From CyTOF analysis we found
analogous silver quantities per cell among PI−live and PI+dead
cells with IAg = 21.6 and IAg = 17.9, respectively. The equal
silver quantities per cell were by tendency confirmed by the
ICP-MS results with 1.5 fg and 1.1 fg silver per PI−live and
PI+dead cells, respectively. Overall, the equal silver quantity
distribution among live and dead cells suggested that random
AgNP-aggregate attachment is not only affecting and toxic to an
appended cell but also to every other cell in its vicinity.

CONCLUSION

The primary objective of this study was to establish a mass
cytometry method for the analysis of bacteria exemplary taking
the Gram-negative bacterium P. putida KT2440. Our data
show that by using RR, mass cytometry is able to detect all
bacteria in a population, and that, by combining RR with
cisPt, the method differentiates live from dead bacterial cells.
The panel was extended by including natural abundance silver
isotopes in order to measure the silver level in a single bacterial
cell.

In Guo et al. (2017), PI uptake was correlated with silver-cell
toxicity. This proof, however, was indirect. Now, mass cytometry
was not only able to confirm the data of the earlier study by
a direct measurement of silver per cell but provided further
findings. AgNP-10 treatment caused a two times higher number
of dead cells in comparison to AgNO3 treatment after 72 h
cultivation and three times higher numbers of cells with silver
load. The per-cell silver quantities were also higher in AgNP-
10 treated cells. Therefore, mass cytometry clearly supported
the earlier discussion of a particle effect in addition to the
toxicity of silver ions. The origin of this additional silver can
be assumed to come from the AgNP-aggregates. In addition, the
heterogenic distribution of silver ions was verified but seems to
be independent on live/dead cell states but rather on existing
chemical equilibria in the environmental vicinity. Thus, the
action of the silver is clearly dependent on complex effects.
Prediction of toxicant behavior to cells in natural environments
will be even more complex due to the presence of further
affecting parameters and can probably only be predicted when
models implement equilibria of chemical components and their
bioavailability and adjoin such data with the heterogeneous state
or feature of single cells.
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Vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging
of environmental and medical samples. Both Raman and Fourier-transform infrared
(FT-IR) imaging have been applied to obtain detailed information on the chemical
composition of biological materials, ranging from single microbial cells to tissues. Due
to its compatibility with methods such as stable isotope labeling for the monitoring
of cellular activities, vibrational spectroscopy also holds considerable power as a tool
in microbial ecology. Chemical imaging of undisturbed biological systems (such as
live cells in their native habitats) presents unique challenges due to the physical and
chemical complexity of the samples, potential for spectral interference, and frequent
need for real-time measurements. This Mini Review provides a critical synthesis of recent
applications of Raman and FT-IR spectroscopy for characterizing complex biological
samples, with a focus on developments in single-cell imaging. We also discuss how
new spectroscopic methods could be used to overcome current limitations of single-
cell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic
methods, we discuss how combining these approaches could enable us to obtain new
insights into biological activities either in situ or under conditions that simulate selected
properties of the natural environment.

Keywords: imaging, isotope labeling, single-cell analysis, vibrational spectroscopy

INTRODUCTION

Natural habitats are often physically and chemically complex, which has far-reaching consequences
for the spatial distribution of microbial taxa and the processes they mediate (Resat et al.,
2012; Vos et al., 2013; Pande et al., 2016; Ratzke and Gore, 2016). Because controlled laboratory
experiments rarely capture the heterogeneity present within natural environments, our knowledge
of microbial activities is often based on indirect observation. To address this source of uncertainty,
there is a need for methods that facilitate the in situ profiling of microorganisms and their
activities in complex environments. A full understanding of these topics also requires an ability
to study these processes at the level of single cells (Fike et al., 2008; Resat et al., 2012; Roose et al.,
2016). Due to its ability to rapidly and non-destructively probe the physiology and activities of
microorganisms, vibrational (Raman and FT-IR) microspectroscopy (a combination of microscopy
and spectroscopy) shows considerable promise in this respect (Escoriza et al., 2006; Wagner, 2009;
Lu et al., 2011). In particular, Raman and infrared imaging have emerged as useful methods for
the spatially resolved analysis of biological samples. In this Mini Review, we highlight recent

Frontiers in Microbiology | www.frontiersin.org April 2017 | Volume 8 | Article 67518

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.00675
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.00675
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.00675&domain=pdf&date_stamp=2017-04-13
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00675/abstract
http://loop.frontiersin.org/people/242289/overview
http://loop.frontiersin.org/people/103066/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00675 April 11, 2017 Time: 16:10 # 2

Harrison and Berry Chemical Imaging of Complex Samples

studies that have used these techniques to image single microbial
cells within spatially and chemically complex environments.
These include pure cultures incubated in contact with physical
substrata, multi-species assemblages within their native habitats,
as well as other challenging sample types. State-of-the-art
approaches for spectral imaging are critically evaluated in
order to identify guidelines for future applications of single-cell
analyses in microbial ecology.

RAMAN IMAGING

While several types of Raman spectroscopic instrumentation
and analytical approaches have been developed, each of these
relies on measuring the scattering of monochromatic light as it
interacts with a sample. Most photons are elastically scattered and
possess the same energy as the incident light beam (also termed
Rayleigh scattering). However, a small fraction is inelastically
scattered, involving a decrease or an increase in energy compared
with the excitation wavelength (Stokes and anti-Stokes Raman
scattering, respectively). By providing information on vibrational
and other low-frequency transitions in a molecule, both types
of inelastically scattered light can be used to determine and
differentiate between the chemical composition of solids, liquids
and gases. For a more detailed introduction to this technique
(as well as infrared spectroscopy), the reader is referred to
Skoog et al. (2007) and Lu et al. (2011). Recent advances in
the design of high-speed Raman imaging instrumentation have
been summarized by Ando et al. (2016). Moreover, developments
concerning techniques including surface- and tip-enhanced
Raman scattering (SERS and TERS), as well as resonance
Raman and coherent anti-Stokes Raman spectroscopy (CARS),
are discussed in several reviews (Opilik et al., 2013; Camp and
Cicerone, 2015; Cicerone, 2016; Kano et al., 2016).

Two features that make Raman microspectroscopy an ideal
technique for single-cell analyses include its direct compatibility
with aqueous samples (due to water exhibiting only weak Raman
scattering) and its high spatial resolution (Skoog et al., 2007).
While a resolution of ∼1 µm is possible using conventional
Raman instrumentation, measurements at the nanometer scale
are achievable by TERS (Mariani et al., 2010; Opilik et al., 2013;
Rusciano et al., 2014). Raman measurements are also well-suited
for analyzing motile cells using optical tweezers, as well as
monitoring microbial activities by stable isotope probing (SIP)
(Chan et al., 2004; Wagner, 2009; Huang et al., 2010; Berry
et al., 2015; Wang et al., 2016). Although the real-time Raman
imaging of microorganisms remains non-trivial due to issues
including background autofluorescence (Polisetti et al., 2016)
and weak signal intensities (partly due to a need for low laser
excitation power to avoid photodamage), significant progress in
this field has already been made. For example, Li et al. (2012)
used resonance Raman imaging combined with 13C labeling
to identify cells that fixed carbon dioxide in culture and in
field-collected seawater samples. By reducing spectral acquisition
times to milliseconds, resonance Raman spectroscopy – a method
in which the excitation wavelength matches the electronic
transition of a selected molecule – was key to enabling the

rapid imaging of these samples. It is also possible to visualize
selected strains and their locations within habitats including
human endothelial cells (Große et al., 2015), macrophages (Silge
et al., 2015) and other environments, even when the taxa of
interest are present at low abundances (Kalasinsky et al., 2007).
Through combining imaging of Staphylococcus aureus cells with a
multivariate classification model [based on principal component
analysis (PCA) and linear discriminant analysis (LDA)], Große
et al. (2015) were further able to detect small differences in the
spectral profiles that allowed the authors to discern between
intra- and extracellular cells, due to shifts in the physiological
state of the bacteria that occur upon host invasion.

In addition, resonance Raman and SERS have been used
to directly image rhizosphere bacteria (Pantoea sp. YR343) on
Arabidopsis thaliana root surfaces (Polisetti et al., 2016). This
is of interest because Raman-based investigations of plant–
microbial interactions are often challenging or impossible due
to the strong autofluorescence originating from plant materials.
In the study by Polisetti et al. (2016), background interference
from the roots was reduced by aging them for 5–15 days. Similar
to Große et al. (2015), PCA was used to discriminate bacterial
spectra from spectra of other materials. Moreover, using SERS
allowed the authors to circumvent the need for a photo-bleaching
step which is often employed for the analysis of pigmented
cells using conventional Raman instrumentation, but which can
result in the degradation of cell components and metabolites
that are of importance to understanding bacterially mediated
processes in the rhizosphere (Polisetti et al., 2016). Taken
together, the studies highlighted above illustrate how advanced
Raman imaging techniques and multivariate analyses can be used
to generate new insights into the distribution and activities of
microorganisms within diverse environments, including systems
which have previously been difficult to visualize and where
the ability to differentiate between cells and other materials is
dependent on detecting minor differences in spectral features. By
removing the need for sample treatment steps that are likely to
introduce analytical biases, such as sample photo-bleaching prior
to the collection of Raman spectra (Polisetti et al., 2016), these
techniques can also provide increasingly accurate information
on metabolic processes occurring at multiple levels of biological
organization (from individual cells to communities).

While a limited number of studies have been published on
Raman imaging of microbial strains or uncultured cells within
their native environments, new instrumentation is likely to
lead to an expansion of this field by enabling reduced spectral
acquisition times without a loss of signal intensity (Opilik et al.,
2013; Ando et al., 2016; Kano et al., 2016). In addition, combining
this approach with well-established methods in microbial ecology
(including fluorescence in situ hybridization) (Wang et al., 2016)
as well as newer techniques such as bioorthogonal chemical
imaging (Berry et al., 2015; Wei et al., 2016) and Raman
microfluidics (Chrimes et al., 2013) are likely to find increasing
use in the analysis of microbiological samples. Several sample
types which have not yet been subjected to Raman imaging have
already been characterized using single-point measurements, and
therefore represent promising targets for future research. For
example, while the Raman-based detection of meningitis-causing
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pathogens in human cerebrospinal fluid has been achieved
(Harz et al., 2009), spatially resolved imaging of such samples
could facilitate the development of improved diagnostic tests.
One imaging modality that is particularly promising from a
microbiological perspective, but which is yet to find widespread
use in the field of microbial ecology, is CARS (Krafft et al.,
2009; Camp and Cicerone, 2015; Cicerone, 2016). This technique
can enable the acquisition of Raman spectra at a rate that
is approximately 100 times faster than conventional Raman
analyses, making it highly suitable for the real-time imaging
of biological samples (Cicerone, 2016). CARS has already been
used for the rapid profiling of microorganisms at the subcellular
level (Okuno et al., 2010; Yue and Cheng, 2016), and a single
study has also employed it to image bacteria within complex
matrices including milk and urine (Hong et al., 2016). Another
technique which has found surprisingly limited use in the field of
microbial ecology is TERS (Mariani et al., 2010; Opilik et al., 2013;
Rusciano et al., 2014). However, since this method enables Raman
measurements at sub-micron spatial scales, it could be used to
analyze microorganisms that are under the conventional size
detection limit of ∼1 µm, as well as viral particles present within
diverse environmental matrices. Indeed, TERS has already been
used for the analysis and classification of viral strains (Hermann
et al., 2011; Olschewski et al., 2015).

FT-IR IMAGING

While Raman spectroscopy relies on irradiating a sample
with a monochromatic laser beam, Fourier-transform infrared
(FT-IR) spectroscopy is based on measuring the absorption

of polychromatic infrared light. The functional groups in a
given molecule are identified according to their vibrational
modes at different IR frequencies (for detailed information,
see Skoog et al., 2007). Raman analyses depend on a shift in
the polarizability of a molecule, whereas FT-IR measurements
depend on changes in the dipole moment. Indeed, Raman-active
vibrational modes often exhibit weak IR signals and vice versa
(with symmetric and asymmetric moieties producing strong
Raman and IR spectral bands, respectively), and the two
methods provide complementary information on the molecular
composition of microbial cells (Lu et al., 2011; Ojeda and Dittrich,
2012; Tang et al., 2013; Wang et al., 2016). Infrared imaging
could, therefore, provide insights into microbial physiology in
samples that are difficult to analyze using Raman spectroscopy
alone. Indeed, high-speed imaging of large (centimeter-scale)
sample areas can be achieved using a focal plane array (FPA)
detector that enables the simultaneous acquisition of tens of
thousands of IR spectra (Dorling and Baker, 2013). Studies
employing FPA-based FT-IR analysis are common in biomedical
science and have, for example, involved chemical imaging of
tissues (Kastyak-Ibrahim et al., 2012; Miller et al., 2013) and
cancer cells (Kuimova et al., 2009). Chemical mapping by
reflectance FT-IR microspectroscopy has also been used to
characterize bacteria on opaque steel surfaces, without a need
for destructive sampling (Ojeda et al., 2009). In comparison
with Raman analyses, however, few studies have used FT-IR
microspectroscopy to investigate single microbial cells within
their native environments, potentially due to the coarse spatial
resolution (∼10 µm) of conventional FT-IR measurements and
water being a strong absorber of IR radiation. Even so, several
ways to overcome these challenges have been developed. For

TABLE 1 | Experimental goals associated with the Raman and FT-IR imaging of single microbial cells in complex biological samples.

Goal Recommended technique Notes Reference

Analysis of motile cells and/or cell
sorting

Raman microspectroscopy Optical tweezers can be used to trap or
move individual cells

Huang et al., 2010; Berry et al., 2015

Detection of cells on
autofluorescent and opaque
surfaces

Both Autofluorescence does not interfere with IR
measurements; Raman measurements
possible using resonance Raman, SERS,
sample photobleaching or aging

Ojeda et al., 2009; Polisetti et al., 2016

Addressing other sources of
background interference

Both Water is a strong IR absorber; using
microfluidics or an ATR accessory can
reduce signal interference

Kuimova et al., 2009; Birarda et al., 2016;
Loutherback et al., 2016

Stable isotope probing Both Approaches currently better-established for
Raman analyses

Wang et al., 2016

Imaging of large (cm-scale) surface
areas

FT-IR microspectroscopy FPA detectors readily available for FT-IR
instruments; Raman instrumentation also
available, but not as widely accessible

Kuimova et al., 2009; Kastyak-Ibrahim et al.,
2012; Miller et al., 2013; Ando et al., 2016

Localization of cells in 3D space Raman microspectroscopy Imaging of z-stacks possible using confocal
Raman measurements

Große et al., 2015; Silge et al., 2015

High-resolution (including
subcellular) measurements

Both Raman analyses (e.g., TERS)
better-established; also possible using
FT-IR but requires specialist equipment or
access to synchrotron beamline

Mariani et al., 2010; Opilik et al., 2013; Saulou
et al., 2013; Rusciano et al., 2014; Findlay
et al., 2015

Label-free discrimination between
individual strains or taxa

FT-IR microspectroscopy FT-IR analyses can outperform Raman
spectroscopy in terms of spectral quality
and reproducibility

AlMasoud et al., 2016; Muhamadali et al., 2016

Recommendations for analytical techniques are provided for meeting each goal.
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example, synchrotron radiation sources have enabled FT-IR
measurements at the micron scale (Nasse et al., 2011; Jamme
et al., 2013; Saulou et al., 2013) and combining this approach with
microfluidics can reduce background interference from water by
making it possible to culture cells within a thin layer of fluid
(Holman et al., 2009; Loutherback et al., 2015, 2016; Birarda et al.,
2016).

While synchrotron-FT-IR analyses require dedicated facilities,
advances in the development of high-magnification optics have
made it possible to perform FPA-based infrared imaging at a
spatial resolution comparable with Raman instruments, even
without access to a synchrotron beamline (Findlay et al.,
2015). Analyses of cells in aqueous suspensions are additionally
possible using attenuated total reflectance (ATR)-FT-IR imaging
(Kuimova et al., 2009). Where required, techniques for
nano-scale infrared imaging have been developed (Reddy et al.,
2013; Centrone, 2015; Amenabar et al., 2017) and even relatively
thick aqueous samples can be analyzed by quantum cascade
laser-based IR microspectroscopy (Haase et al., 2016). Crucially
for the in situ analysis of microbial activities, there is evidence
that FT-IR spectroscopy is compatible with SIP and can be
used to track the cellular uptake of stable-isotope-labeled carbon
(13C) and nitrogen (15N) compounds (Muhamadali et al., 2015).
FT-IR microspectropy can detect differences in the spectra

of water and heavy water (D2O), due to absorbance peaks
corresponding to O–H and O–D bending modes occurring at
different wavenumber regions (Miller et al., 2013). While we are
unaware of studies that have combined D2O labeling with FT-IR
spectroscopy to monitor the activities of individual microbial
cells, this has recently been achieved using Raman spectroscopy
(Berry et al., 2015), and it is likely that both methods can be used
to identify actively metabolizing cells within their native habitats.

Further to the studies discussed above, Muhamadali
et al. (2016) evaluated the applicability of three vibrational
spectroscopy techniques (FT-IR, conventional Raman and
SERS) for differentiating between several clinically relevant taxa
including Escherichia coli, Pseudomonas spp., Bacillus spp. and
Enterococcus faecium. Of these techniques, infrared spectroscopy
was found to provide the most consistent results for the entire
sample set (in terms of spectral quality and reproducibility),
which led the authors to suggest that FT-IR analyses could
be particularly useful for characterizing mixed cultures (also
see Wenning et al., 2005). Indeed, FT-IR microspectroscopy
has already been used to quantify compare the abundances of
bacteria and archaea within subsurface aquifer samples, based on
domain-specific CH3:CH2 absorbance ratios (Igisu et al., 2012).
In comparison with Raman spectroscopy, there is evidence to
suggest that FT-IR analyses can additionally give a higher degree

FIGURE 1 | Techniques which have or could be utilized for the in situ imaging of single microbial cells within physically and chemically complex
environments. Previously demonstrated applications of each approach are discussed in the main text. FT-IR, Fourier-transform infrared; SIP, stable isotope probing;
UV, ultraviolet; (Nano-)SIMS, nanoscale secondary ion mass spectrometry; MALDI-ToF-MS, matrix-assisted laser desorption/ionization mass spectrometry
time-of-flight mass spectrometry; CT, computed tomography.
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of confidence when there is a need to discriminate between
strains belonging to the same species (69 and 89% strain-level
prediction accuracies for Raman and FT-IR, respectively, based
on chemometric analysis; AlMasoud et al., 2016). Given these
results, we anticipate infrared imaging to become an increasingly
common technique in the field of microbial ecology, particularly
when there is a need for quantitatively analyzing multi-species
assemblages and/or in-depth physiological profiling of selected
isolates.

RECOMMENDATIONS AND OUTLOOK

The spectroscopic imaging of microbial cells in physically
and chemically complex samples involves diverse analytical
challenges. While addressing these will often require
sample-specific optimization steps (such as identifying an
appropriate laser wavelength; Edwards et al., 2003; Chan
et al., 2004; Jorge Villar et al., 2005), many of them could
be overcome by carefully selecting between Raman- and
FT-IR-based measurements or a combination of both. Based on
the case studies discussed in this Mini Review, it is possible to
identify several general guidelines for achieving this (Table 1).
The suggestions provided in Table 1 additionally highlight
the promising role that live-cell FT-IR imaging could play
in environmental microbiological research, further to Raman
measurements which have traditionally been more common in
this field. The future development of vibrational spectroscopy
instrumentation and analytical methods may serve to further
enhance the cross-compatibility of Raman and FT-IR techniques
(e.g., via improved access to advanced Raman imaging equipment
and validation of new protocols for FT-IR-SIP).

Additionally to considering the benefits and pitfalls inherent
to Raman vs. FT-IR measurements, experiments focusing on the
imaging of single cells in complex habitats can be expected to
profit from combining these techniques with other analytical
approaches (Figure 1). Synchrotron-FT-IR microspectroscopy
has been paired with synchrotron ultraviolet microspectroscopy
and time-of-flight-secondary ion mass spectrometry (ToF-SIMS)
for the analysis of human liver tissue, with each technique
yielding unique information on the chemical composition of
the sample (Petit et al., 2010). Raman microspectroscopy has
been combined with nanoscale secondary ion mass spectrometry
(NanoSIMS) to quantify the bacterial uptake of deuterium
during heavy water labeling experiments (Berry et al., 2015).
Moreover, matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-ToF-MS) is compatible with
microbiological analyses and Raman imaging (Bocklitz et al.,
2013; Pande et al., 2016; Stasulli and Shank, 2016). Although

it has not yet been applied for the imaging of cells within
complex environments such as soils, MALDI-ToF-MS been
used to characterize individual bacterial colonies (Pande et al.,
2016; Stasulli and Shank, 2016). Promisingly, the technique
can be used for strain identification (Singhal et al., 2015)
and a method for single-cell MALDI analyses has also been
developed (Xiong et al., 2016). Vibrational spectroscopic imaging
of microbial cells could be further combined with techniques
that provide information on the 3D structure of the surrounding
environment. X-ray computed tomography, for example, has
been used to visualize roots within undisturbed soil (Mooney
et al., 2012). The technique has also been used to produce micron-
scale 3D representations of soil pore space (Nunan et al., 2006).

One of the most important challenges involved in the
spectral imaging of microorganisms within their native habitats,
regardless of the techniques involved, concerns the ability to
successfully discriminate between cells and other materials.
Additionally, an ability to discern between diverse taxa is required
to understand the distribution and activities of microbial cells at
the community level. To facilitate research into these topics, we
strongly recommend that databases including relevant reference
spectra are made available as part of future publications. We
also note that using Raman and/or FT-IR spectroscopy alone
for the reliable identification of microbial taxa often remains
challenging (see FT-IR imaging), and that result using these
methods may need to be verified using additional methods.
For example, Raman-activated cell sorting has recently been
combined with single-cell genomics to identify members of
a novel cyanobacterial order within seawater samples (Song
et al., 2017). Ultimately, the approaches discussed in this Mini
Review could enable us to significantly improve our knowledge
of microbial community assembly and the contribution of
interspecies interactions to key ecosystem processes, including
the cycling of carbon within soils, sediments and other spatially
structured habitats.
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Microbiologists traditionally study population rather than individual cells, as it is generally
assumed that the status of individual cells will be similar to that observed in the
population. However, the recent studies have shown that the individual behavior of
each single cell could be quite different from that of the whole population, suggesting
the importance of extending traditional microbiology studies to single-cell level. With
recent technological advances, such as flow cytometry, next-generation sequencing
(NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the
understanding of individuality and heterogeneity of microbes in many biological systems.
Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how
individual cells perceive, respond, and adapt to the environment, how heterogeneity
arises under external stress and finally determines the fate of the whole population,
and how microbes survive under natural conditions. As single-cell analysis involves no
axenic cultivation of target microorganism, it has also been demonstrated as a valuable
tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art
tools and methods for genomic and transcriptomic analysis of microbes at single-cell
level were critically summarized, including single-cell isolation methods and experimental
strategies of single-cell analysis with NGS. In addition, perspectives on the future trends
of technology development in the field of single-cell analysis was also presented.

Keywords: single-cell analysis, microbes, heterogeneity, genomics, transcriptomics, next-generation sequencing

INTRODUCTION

Microbiologists usually study microorganisms by deciphering their physiology, internal
interactions, and even genetic information. Traditionally, these studies are all carried out at the
population level, typically using millions to billions of cells for analysis in bulk, and assuming the
status of individual cells is similar to that observed in the population. Although these results are, no

Abbreviations: CNV, copy-number variation; D-DOP-PCR, displacement DOP-PCR; DOP-PCR, degenerate
oligonucleotide-primed PCR; FACS, fluorescence-activated cell sorting; FluidFM, fluidic force microscope; IPS-PCR,
interspersed repetitive sequence PCR; ISH, in situ hybridization; IVT, in vitro transcription; LA-PCR, linker-adapter
or ligation-anchored PCR; LIANTI, linear amplification via transposon insertion; MALBAC, multiple annealing and
looping-based amplification cycles; MDA, multiple displacement amplification; NGS, next-generation sequencing; PDMS,
polydimethylsiloxane; PEP-PCR, preamplification PCR; poly(A), polyadenylated; RNA-seq, RNA sequencing; SMRT, single
molecule real-time; SNV, single nucleotide variant; SPIA, single primer isothermal amplification; tSMS, true single molecule
sequencing; UMIs, unique molecular identifiers; WGA, whole genomic amplification.
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doubt, informative, they often neglect any heterogeneity that
is possibly present in the population. Meanwhile, the recent
studies have shown that cell-to-cell heterogeneity at both
cellular and molecular levels in isogenic population could be an
order of magnitude greater than previously thought (Lidstrom
and Meldrum, 2003), suggesting the importance of extending
traditional microbiology studies to the single-cell level. It is now
increasingly accepted that conclusions based on conventional
average molecular or phenotypic measurements of a population
could be biased, as the patterns of distinct sub-populations
cannot be revealed (Wang et al., 2015).

Heterogeneities could result from either phenotypic difference
between isogenic cells or genetic diversity at population level
(Davis and Isberg, 2016). Mechanisms responsible for the cell-to-
cell variation could be classified into four categories: stochastic
gene expression, phenotypic plasticity, genotypic plasticity, and
reversible genotypic variation (Roberfroid et al., 2016). While
stochastic gene expression and phenotypic plasticity only lead
to phenotypic differences, genotypic plasticity and reversible
genotypic variation could introduce heterogeneity to an isogenic
population at the genetic level. Stochastic gene expression widely
exists in both prokaryotic and eukaryotic populations and is
not exclusively driven by genomic information. Noise is one
of the mechanisms of stochastic variability, which could be
independent of environmental signals. This variation, either
triggered by intrinsic or extrinsic noise, is usually unimodal.
However, a unimodal noisiness of gene expression may trigger
a bimodal behavior of downstream gene expression, leading
to bimodality and bistability in a population (Dubnau and
Losick, 2006; Veening et al., 2008). As different subpopulations
co-exist, some individual cells may express genes that allow
them to survive stresses prior to environmental changes.
By using this mechanism, microbes could ensure that some
individuals will survive under harsh conditions (Veening
et al., 2008). Phenotypic plasticity is a kind of environmental-
driven viability and could make it possible for cells to adapt
to the fluctuations in the environment (Viney and Reece,
2013). An example is that in heterogeneous environmental
conditions such as biofilm, isogenic cells could differentiate
into various phenotypes and form several sub-populations
for adapting to their local environmental conditions (van
Gestel et al., 2015). Genotypic plasticity usually occurs in
populations subjected to the experimental evolution. Driven
by clonal evolution, clonal cells could evolve and finally
result in genotypic diversification (Korona et al., 1994; Rainey
and Travisano, 1998). Various mechanisms of genotypic
diversification, such as clonal interference (Barrick and Lenski,
2013), niche construction, and niche partitioning (Barrick
and Lenski, 2009), have been reported for both well-mixed
and spatially structured environments (Roberfroid et al.,
2016). As the final cause of variation, reversible genotypic
variations are driven by random site-specific recombination,
gene conversion, or epigenetic modification, leading to phase
variations that play important roles in the virulence of
some pathogens, and causing increased heterogeneity in
the population (Davis and Isberg, 2016; Roberfroid et al.,
2016).

Another major shortage of traditional microbiology
approaches is the dependence on establishing laboratory culture
for studying targeted microbes. Meanwhile, it is well-known that
so far only a small number of microbial species in the biosphere
could be cultivated successfully in the laboratory, leaving a great
deal of microbial information untouched (Cardenas and Tiedje,
2008; Rinke et al., 2013). The hidden information, also known
as microbial ‘dark matter,’ has drawn great interests recently
and provides potential solutions for several critical issues, such
as new drugs and antibiotics discovery (Ling et al., 2015),
toxic chemicals degradation (Jiang et al., 2016), understanding
pathogen virulence and disease mechanisms (Omsland et al.,
2009), and revealing the human microbiome (Browne et al.,
2016). Although obtaining axenic culture from natural isolates
remains important, it is usually labor-intensive (Connon and
Giovannoni, 2002), having a low success rate, and might be biased
(Wu et al., 2009). In addition, comparing with the axenic cultures
in the laboratory, microorganisms usually live in a more complex
and barren environment in nature, making it unable to present
the original state of microorganisms in the laboratory (Stewart,
2012). In recent years, many attempts have been employed for
analyzing the microbe without axenic culture. For example,
metagenomics and metatranscriptomics have been widely used
for studying microbial community (Venter et al., 2004; Tringe
et al., 2005; Mason et al., 2012, 2014; Meng et al., 2014). However,
metagenomics and metatranscriptomics are not well-suited
to reveal unambiguous information about the organization
of discovered genes within genomes, evolutionary histories of
specific organisms, and in situ interactions among organisms
(Yoon et al., 2011; Stepanauskas, 2012). Genomic information,
such as genome rearrangements, gene insertions, duplications
and loss, is hard to obtain from metagenomic analysis since the
assembled results could be mosaics of DNA from cells sharing
high-homology regions but vary in genome-wide similarity
(Stepanauskas, 2012).

Single-cell analysis can be effective for addressing these issues
and providing better and in-depth understanding of the status of
microbial cells. As it starts from only one cell, single-cell analysis
could reveal information about individual cell without laboratory
cultivation. With the help of high-throughput sequencing, it
is possible to obtain functional genomics information of each
single cell in its natural environment, so that its original genetic
and functional status in a complex community can be revealed
globally, quantitatively, and absolutely. Several reports using
single-cell analysis have successfully revealed information like
coexisting subpopulations, organismal interactions, and new
metabolic pathways from uncultivated samples, which could
hardly be obtained by traditional approaches (Marcy et al.,
2007b; Hess et al., 2011; Siegl et al., 2011; Yoon et al.,
2011; Martinez-Garcia et al., 2012a; Kashtan et al., 2014).
In recent years, significant progress has been made to apply
metagenomics and metatranscriptomics approaches to reveal the
genetic information and gene expression patterns of cells in a
population, and uncover microbial species and gene diversity in
a community (Bowler et al., 2009). However, as metagenomics
and metatranscriptomics could not reveal the information such
as repetitive regions or strain heterogeneity comprehensively
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in a complex population, single-cell-based analysis has been
proposed as a valuable supplement to the efficient identification
of novel microbial species and the accurate interpretation of
the metagenomics and metatranscriptomics results (Massana
et al., 2014; Vannier et al., 2016; Ji et al., 2017). In this review,
we summarize current state-of-the-art tools and methods for
genomic and transcriptomic analysis of microbes at single-cell
level, including single-cell isolation methods and experimental
strategies of single-cell analysis with NGS, and provide some
perspectives on the future trends of technology development in
single-cell analysis field.

TOOLS FOR SINGLE-CELL ISOLATION

Single-cell isolation is the very first step in the single-cell analysis
process (Figure 1). The major challenge of this step is: how to
isolate cells of interest accurately in a high-throughput manner
and without causing any genetic or physiological change to the
target cells. Basically, methods being applied for microbial single-
cell isolation could be classified as two principal approaches:
micromanipulation and random encapsulation (Blainey, 2013).
Micromanipulation methods, including micropipette and optical
tweezer approaches, are carried out under high-resolution
microscope. These methods offer a great confidence that every
single cell can be observed, captured and delivered to the next
step. Traditional micropipette method could be easily applied in
any laboratory on an inverted microscope with mechanical liquid
handling. Although very labor-consuming and low-throughput,
approximately in the order of 50 cells/h and person (Picelli, 2016),
it is the first choice if only a small number of cells are required for
the next step analysis (Qi et al., 2014, 2016; Wang et al., 2015). In
addition, commercial robotic manipulation system for automated
single-cell selection has also been developed and applied for
microbial single-cell analysis (Anis et al., 2008; Merza et al., 2009;
Gao et al., 2011; Banerjee et al., 2014), making it possible for
relatively high-throughput single-cell isolation. Optical tweezer
approaches are implemented by tightly focusing a laser beam for
trapping cells in solution (Ashkin et al., 1986, 1987; Ashkin and
Dziedzic, 1987). Usually, by using near-infrared wavelengths of
light, cells could be easily handled without any harm (Neuman
et al., 1999; Ericsson et al., 2000). This method has been
successfully applied in many microbial isolation experiments,
including filamentous bacteria (Pamp et al., 2012) and even
virus (Ashkin and Dziedzic, 1987). More detailed reviews of
this method have been published recently (Moffitt et al., 2008;
Hashemi Shabestari et al., 2017), interested readers could refer to
these articles.

Flow cytometry and microfluidic device are the most widely
used random encapsulation approaches in recent years. Flow
cytometry and FACS have a much higher throughput, and have
been demonstrated as an effective platform for single-cell analysis
in microbial cells (Raghunathan et al., 2005; Stepanauskas and
Sieracki, 2007; Woyke et al., 2009; Swan et al., 2011; Martinez-
Garcia et al., 2012b; Field et al., 2015). Although FACS is
fundamentally based on random encapsulation, flow cytometers
can monitor several parameters of individuals, which means

FIGURE 1 | Overview of current single-cell analysis.

single cells can be sorted according to their size, morphology,
spontaneous fluorescence, fluorescence-labeled antibodies and
staining dyes simultaneously, making it possible to sort even rare
cell types. In addition, it is easy to sort single cells directly into
96- and 384-well plates using commercial instruments, which
means single-cell analysis workflow could be entirely performed
using automated liquid handling robots. However, cells are
typically subjected to physical stresses during the sorting, such as
fluidic pressure, laser beam, electrostatic charges, voltage fields,
and collisions with container surfaces, which could significantly
affect the cell physiology and even the recovery rate during the
cultivation (Marie et al., 2017). In the case when the sorted
cells are used for gene expression or transcriptome analysis,
proper RNA protectant needs to be added (Qi et al., 2014, 2016;
Wang et al., 2015); while in the case when the sorted cells are
used for clonal cultivation, extra efforts to carefully optimize
the cultivation conditions are necessary in order to maximize
the success rates (Marie et al., 2017). Under the conception
of ‘Lab-on-a-chip,’ microfluidic devices have become the most
popular method for single-cell isolation. With these devices,
researchers could integrate single-cell analysis process from cell
isolation to sequencing library preparation in only a coin-sized
microchip, which could be either purchased from commercial
manufacturers or designed and fabricated using materials such as
PDMS in the laboratory. Combining with detection technologies,
such as fluorescence spectroscopy (Wolff et al., 2003) or
raman spectroscopy (Song et al., 2016), microfluidic devices
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could perform specific sorting while encapsulating cells with
reagents for cell lysis and sequencing library preparation at
nanoliter volume with high-throughput (Klein et al., 2015).
Comparing with traditional tube-based reactions, microfluidic
devices require few manual liquid handling, leading to a
significant decrease in contamination and less variations among
samples (de Bourcy et al., 2014). Notably, less contamination
with nanoliter reaction volume means a higher concentration
of substrates, resulting in better uniformity amplification (Fu
et al., 2015; Leung et al., 2016). In addition, comparing with
other methods, microfluidic devices cause less physical stresses
to cells, leading to more accurate physiological analysis and
high success rates of further cultivation analysis (Jiang et al.,
2016; Kim et al., 2017; Song et al., 2017; Zhang et al., 2017).
In general, both flow cytometry and microfluidic devices could
provide high-throughput and accurate single-cell sorting. Flow
cytometers could monitor multiple parameters and are capable
for rare cell detection and sorting, but are usually expensive
and require skilled operators. Before sorting, it is also necessary
to prepare a sterile system for flow cytometers to prevent
contamination. By contrast, microfluidic devices can be designed
and made in the laboratory. They can be disposable in order
to minimize contamination, and are easy to operate. Besides
single-cell sorting, microfluidic devices could offer integrative
single-cell analysis including cell culture and tracking (Yu et al.,
2017), digital PCR (Ottesen et al., 2006), and sequencing library
preparation (Hosokawa et al., 2017; Lan et al., 2017). With
several advantages mentioned above, in recent years, microfluidic
devices tended to be used as an analytic platform rather than
just an isolation method for single-cell analysis (Marshall et al.,
2012; Zhang et al., 2015, 2017; Jiang et al., 2016; Haliburton et al.,
2017; Hosokawa et al., 2017; Kim et al., 2017; Lan et al., 2017;
Shahi et al., 2017; Song et al., 2017). Several detailed reviews
have been published recently on microfluidic devices (Wen et al.,
2016; Caen et al., 2017; Prakadan et al., 2017; Xi et al., 2017), and
interested readers could refer to these articles.

TOOLS FOR GENOMIC ANALYSIS AT
SINGLE-CELL LEVEL

A single microbial cell usually contains picogram to femtogram
level of genomic DNA (Kim et al., 2017). Sequencing
technologies, up to now, are still unable to sequence such a
low amount of nucleic acids directly without any amplification.
Therefore, researches have been applying WGA methods
since 1990 (Lichter et al., 1990). However, as amplification is
conducted using DNA polymerases, the amplified products
could contain genetic information of the original cell as well as
some artifacts, such as genome fragment loss, amplification bias,
mutations, and chimeras. Over the past 20 years, WGA methods
have been optimized with substantial progress, including
less contamination and better amplification performance
(Blainey, 2013). In general, amplification methods could be
classified into three categories: pure PCR-based amplification,
isothermal amplification, and hybrid methods (Gawad et al.,
2016).

Pure PCR-based WGA methods are the primary methods at
early stage in the single-cell genomic analysis. Early approaches
with specific primers, such as linker-adapter (also known as
ligation-anchored) PCR (LA-PCR) (Troutt et al., 1992; Klein
et al., 1999) and IRS-PCR (Lengauer et al., 1990; Lichter et al.,
1990), require ligation reaction or prior knowledge of the target
sequence. Later, methods with random primers, including primer
extension pre-amplification PCR (PEP-PCR) (Hubert et al., 1992)
and DOP-PCR (Telenius et al., 1992) were introduced. As the
most representative method in this category, DOP-PCR typically
contains two stages, with the first facilitating random primer
extension on the template genome DNA and the second favoring
amplicon replication with specific primer (Telenius et al., 1992).

The second category of WGA is isothermal amplification,
which was first reported in Dean et al. (2001); Zhang et al.
(2001) and has been demonstrated as a powerful tool in microbial
single-cell genomic analysis, especially with MDA (Lasken, 2012).
Unlike PCR-based methods, isothermal amplification methods
use polymerases with strong strand displacement activity, such
as ϕ29 polymerase, and 6-mer 3′-protected random primers for
isothermal extension (Dean et al., 2001; Zhang et al., 2001).
During extension, polymerase creates and displaces synthesized
products from single-stranded DNA template, and the displaced
DNA is the template for further priming and synthesis (Dean
et al., 2001; Zhang et al., 2001). Compared with PCR-based
methods, MDA shows higher genome coverage, lower error rates
and much longer extension length over 10,000 nt (Blanco et al.,
1989; de Bourcy et al., 2014). However, the loci amplified first are
typically found to be overrepresented, indicating non-uniformity
of MDA (de Bourcy et al., 2014). Recently, a novel primer-free
method called TruePrime was reported and has been successfully
used for the amplification of genomic DNA from single human
HEK293 cells (Picher et al., 2016). In this method, an enzyme
called TthPrimPol, which has a wide range of template specificity,
serves as primase for ϕ29 polymerase mediated MDA. During
the reaction, TthPrimPol binds to the denatured DNA and
synthesizes short DNA primers. The DNA primers are recognized
and extended by ϕ29 polymerase. Then, TthPrimPol catalyzes
new rounds of priming on the elongated single-strand DNA,
followed by further rounds of strand-displacement synthesis
and resulting in exponential amplification (Picher et al., 2016).
Another isothermal amplification method, called SPIA, could
achieve linear amplification under isothermal conditions by using
a specific DNA/RNA hybrid primer, together with RNase H
and a strand-displacing DNA polymerase (Kurn et al., 2005). In
SPIA method, strand-displacement only occurs at the DNA/RNA
hybrid primer site of the amplicons, preventing the exponential
amplification in MDA. Recently, a new method called LIANTI
was reported (Chen et al., 2017). As an isothermal amplification
method, this approach depends on RNA polymerase but not
DNA polymerase for linear amplification. In this method,
genomic DNA from a single cell was fragmented and tagged by
Tn5 transposon with a T7 promoter, then linear amplified with
T7 RNA polymerase, and finally converted to DNA by reverse
transcription for further library preparation (Chen et al., 2017).

Two similar hybrid methods, displacement DOP-PCR
(D-DOP-PCR, also known as PicoPLEX or GenomePlex)
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(Langmore, 2002) and MALBAC (Lu et al., 2012; Zong et al.,
2012), were recently developed to overcome the low coverage
of PCR-based methods and the non-uniformity of MDA. These
two methods both use isothermal amplification followed by PCR
amplification, but different primers for extension. D-DOP-PCR
uses degenerated primers in the first step adding an anchor
sequence with isothermal amplification and then using PCR
amplification for the second step (Langmore, 2002). MALBAC,
however, uses a random primer with a designed anchor which
could promote looping of the isothermal amplification products
to prevent further amplification before the second PCR step,
suggesting a more uniform amplification (Lu et al., 2012; Zong
et al., 2012).

In practice, isothermal and hybrid methods are currently
the most commonly used approaches, as they show better
performance comparing with pure PCR-based methods. Several
groups have compared these methods using both microbial and
mammalian cells (Chen et al., 2014; de Bourcy et al., 2014; Deleye
et al., 2015; Hou et al., 2015; Ning et al., 2015). These reports have
drawn similar conclusions that MDA has significantly higher
genome coverage breadth and lower false-positive rates, while
hybrid methods demonstrate better coverage uniformity (Chen
et al., 2014; de Bourcy et al., 2014; Deleye et al., 2015; Hou
et al., 2015; Ning et al., 2015). For example, one report showed
that MDA has better coverage breadth than MALBAC (84%
vs. 52%), resulting in higher detection rates of SNVs (88% vs.
52%) in human cells (Hou et al., 2015). Another report showed
that hybrid methods has better coverage uniformity than MDA,
suggesting that hybrid methods have better performance than
MDA in detecting CNVs (Ning et al., 2015). In the report, the
researchers also found that MALBAC tended to over-amplify
genomic regions with a high-GC content (Ning et al., 2015).
The average GC content of amplified DNA using GenomePlex
(41.6%) was very close to the reference genome (41.9%), while
the average GC contents of amplified DNA regions by MDA
and MALBAC were 43.4 and 46.6%, respectively (Ning et al.,
2015). However, after a GC-correction, the correlation of read
abundance between MALBAC and bulk-cell samples (R2

= 0.53)
was nearly the same as GenomePlex (R2

= 0.56), while MDA
gave a very poor correlation (R2

= 0.02) (Ning et al., 2015).
The TruePrime method was reported to have better coverage
uniformity than the primer-based MDA, leading to an improved
CNV detection accuracy, thus an advantage over the traditional
primer-based MDA protocol (Picher et al., 2016). In addition, by
using human genomic DNA as input, TruePrime could amplify as
low as 1 fg DNA, which is about 100-fold more sensitive than the
primer-based MDA (Picher et al., 2016). This superior sensitivity
could be very valuable for microbial single-cell genomic analysis,
as most microbes are much smaller and contain less DNA
than eukaryotic cells. Notably, the most recent LIANTI method
exhibited significantly improved amplification uniformity and
genome coverage over the previous methods on all scales, and
was capable for both high accuracy of CNV detection and low
SNV false-positive rate (Chen et al., 2017). As new invented
approaches, both TruePrime and LIANTI have the potential but
still need more evaluation to demonstrate their performance
on microbial single-cell genomic analysis. In conclusion, there

is no clear winner in performance between MDA and hybrid
methods yet, and researchers should choose methods depending
on the metric of their interest (Gawad et al., 2016). As microbial
single-cell analysis usually focuses on elucidating the genomic
information of the microbial ‘dark matter,’ genome coverage is
the key to be concerned. Therefore, MDA method has been far
more widely used for microbial single-cell analysis rather than
the others.

Besides amplification methods, previous reports also found
that by using microfluidic devices, microbial single-cell analysis
could obtain a better performance comparing with the traditional
tube-based approach (de Bourcy et al., 2014). With higher
mapping ratio and better repeatability, microfluidic devices could
also reduce the contamination especially from the experiment
operator (de Bourcy et al., 2014). Recently, two groups
independently reported high-throughput microbial single-cell
analysis protocols based on self-designed microfluidic devices
(Hosokawa et al., 2017; Lan et al., 2017). These two protocols
shared some similarities in single microbe encapsulation and
lysis protocols. However, one protocol involved sorting the
positive amplification droplets and re-amplification of the
DNA for further analysis by NGS and qPCR (Hosokawa
et al., 2017), while the other protocol used a strategy
of labeling DNA fragments from the same cell with a
barcode, and then pooling and sequencing of the barcoded
fragments of all cells (Lan et al., 2017). These protocols could
provide reliable pipelines for analyzing 10s of 1000s of single
microbial cells within a couple of hours with a comparable
performance to the conventional techniques. In conclusion,
with further improvements on both amplification methods
and microfluidic devices, microbial single-cell genomic analysis
will be more efficient, reliable, and convenient in the near
future.

TOOLS FOR TRANSCRIPTOMIC
ANALYSIS AT SINGLE-CELL LEVEL

Prior to whole-genome transcriptomic analysis, relative
quantification methodologies have been developed to measure
expression of small number of genes at single-cell level. For
example, methods using fluorescent reporter proteins coupling
with high-throughput data acquisition approaches such as
flow cytometry have been widely applied for detecting gene
expression heterogeneities within the microbial population
(Taniguchi et al., 2010; Roberfroid et al., 2016). In addition,
methods using RT-qPCR for detecting gene expression in single
cells have also been reported and successfully applied to several
types of microbes for heterogeneity analysis (Gao et al., 2011; Shi
et al., 2013; Qi et al., 2014, 2016; Wang et al., 2015; Thompson
et al., 2017; Turkarslan et al., 2017). However, these methods
could only reveal gene expression patterns of a very limited
number of genes, while not able to uncover global information
in a cell. Moreover, application of such approaches typically
requires genetic engineering tools and genomic information
of the target microorganisms, limiting the application to only
model organisms.
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Global transcriptomic analysis could circumvent the above
drawbacks and even possible for unknown species without
genome information using de novo NGS approach. Compared
to genomic analysis, transcriptomic analysis for microbes at
single-cell level is much more challenging for several reasons.
First, microbial cells usually contain picogram to femtogram
level RNA molecules (de Bekker et al., 2011; Kang et al.,
2011; Wang et al., 2015), while mammalian cells could have
up to nanogram level RNA molecules (Picelli, 2016). Besides
the low-RNA content, RNA molecules of prokaryotic cells are
less stable than DNA and could be degraded by ribonucleases
that are widely existing and hard to be deactivated. Moreover,
rRNA and tRNA molecules usually represent over 90% of total
RNA, but offer limited biological information and should be
excluded in the amplification process, as most researches focus
on mRNA and other rare molecules. With a complicated cell
wall, harsher conditions are typically required to lyze a microbial
cell, which may lead to damage or loss of RNA, and accuracy
and efficiency of the downstream transcriptomic analysis (Khan
and Yadav, 2004; Hall et al., 2013; Heera et al., 2015; He et al.,
2016). More importantly, unlike genomic analysis, in which the
methods for mammalian cells could be also readily applied to
prokaryotic microbes, not all methods for mammalian single-
cell transcriptomic analysis could be used to microbes. This is
simply because of the structure differences of mRNA molecules
between eukaryotic and prokaryotic cells. Currently, most of
the mammalian single-cell transcriptomic analysis approaches
use oligo(dT) primers in the first cDNA synthesis step. This
is based on the 3′ poly(A) structure of mRNA molecules from
eukaryotic cells, which makes them easier to be enriched from
rRNA and tRNA. However, mRNA molecules from prokaryotic
cells usually lack the poly(A) tail, and require random primers
for cDNA synthesis. By using random primers, both rRNA and
tRNA will also be included in the resulting transcriptome library,
thus being sequenced together, leading to a low coverage of the
target mRNA. In addition, application of random primers for
cDNA synthesis causes losses of 3′ sequence information, as they
are usually unable to obtain the full-length transcripts. Hence, so
far only a few reports on prokaryotic single-cell transcriptomic
analysis have been reported (Kang et al., 2011, 2015; Wang
et al., 2015). Even for eukaryotic microbes that could be analyzed
with well-developed approaches for mammalian cells, only
one report analyzing single-cell transcriptomics of neighboring

hyphae of Aspergillus niger was reported (de Bekker et al., 2011).
Concerning this circumstance, we summarized below all the
state-of-the-art tools in single-cell transcriptomic analysis and
discussed possibilities for their microbial applications, especially
for prokaryotic microorganisms.

To our knowledge, the earliest study of single-cell
transcriptomics was reported in Eberwine et al. (1992). In
this work, mRNA molecules from single-living neurons were
reverse transcribed to cDNA using oligo(dT)-T7 primer.
Then, the synthesized double-stranded cDNA molecules with
T7 promoter were used as templates for IVT with T7 RNA
polymerase for producing amplified RNA. Next, the amplified
RNA molecules were used as templates for the second turn of
reverse transcription. After this process, over a million-fold
amplification of the original RNA was achieved. Although this
report only used ISH for accessing gene expression, it reveals
the possibility about analyzing gene expression at a single-
cell level. Based on the concept of this study, several studies
have successfully analyzed the whole transcriptome of single
mammalian cells (Morris et al., 2011; Hashimshony et al., 2012,
2016; Jaitin et al., 2014).

In the past decade, several new approaches were developed,
leading to a tremendous progress in mammalian single-cell RNA-
seq (Tang et al., 2009, 2010; Islam et al., 2011, 2012; Goetz
and Trimarchi, 2012; Hashimshony et al., 2012, 2016; Picelli
et al., 2013, 2014; Sasagawa et al., 2013; Jaitin et al., 2014;
Soumillon et al., 2014; Fan H.C. et al., 2015; Klein et al., 2015;
Macosko et al., 2015). The most widely used single-cell RNA-
seq methods are characterized in Table 1. As these methods
have been well reviewed in several excellent articles (Saliba et al.,
2014; Chen et al., 2015; Kolodziejczyk et al., 2015; Picelli, 2016),
we will focus only on some newly developed methods here.
Among the methods listed in Table 1, Smart-seq/Smart-seq2
and Quartz-seq use a method called ‘template switch’ for the
second strand cDNA synthesis, generating full-length double-
stranded cDNA comparing with the others (Goetz and Trimarchi,
2012; Picelli et al., 2013, 2014; Sasagawa et al., 2013). Smart-seq,
CEL-seq2 and STRT-seq are compatible with Fluidigm C1 Single-
Cell Auto Prep system, which is an automated platform and
captured using integrated fluidic circuits (Ziegenhain et al., 2017).
For amplification types, Tang’s method, Smart-seq/Smart-seq2,
Quartz-seq, and STRT-seq are all based on PCR amplification,
while CEL-seq/CEL-seq2 and MARS-seq are based on IVT.

TABLE 1 | Characteristics of several widely used single-cell RNA-seq methods.

Name Transcript coverage Position bias Strand specificity UMI compatible Key reference

Tang’s method Nearly full-length Strongly 3′ No No Tang et al., 2009, 2010

Quartz-seq Full-length Weakly 3′ No No Sasagawa et al., 2013

Smart-seq/Smart-seq2 Full-length Weakly 3′ No No Goetz and Trimarchi, 2012; Picelli et al., 2013, 2014

STRT-seq 5′ only 5′ only Yes Yes Islam et al., 2011, 2012

CEL-seq/CEL-seq2 3′ only 3′ only Yes Yes Hashimshony et al., 2012, 2016

MARS-seq 3′ only 3′ only Yes Yes Jaitin et al., 2014

SCRB-seq 3′ only 3′ only Yes Yes Soumillon et al., 2014

Drop-seq/InDrop 3′ only 3′ only Yes Yes Klein et al., 2015; Macosko et al., 2015

Cyto-seq Pre-defined genes only 3′ only Yes Yes Fan H.C. et al., 2015
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The advantage of IVT is that the amplification efficiency
is sequence independent. However, as it requires a second
time of reverse transcription, there is 3′ coverage bias of the
sequencing results (Kolodziejczyk et al., 2015). When choosing
an appropriate single-cell RNA-seq method, transcript coverage,
strand specificity, position bias, and UMI compatibility should be
concerned depending on the purpose of the research (Table 1).
For example, full-length RNA-seq methods such as Smart-
seq/Smart-Seq2, and Quartz-seq could sequence the transcripts
in their entirety, and thus are suggested for de novo sequencing
and the detection of SNPs and mutations. However, these
methods are not compatible with strand-specific protocol and
UMI. Methods such as STRT-seq, CEL-seq/CEL-seq2, MARS-
seq, and Drop-seq are all compatible with strand-specific protocol
and UMI, although they tend to be 5′ or 3′ end biased. While UMI
approach in single-cell sequencing could reduce amplification
noise and provide more accurate expression quantification,
strand-specific sequencing could provide more information
for antisense transcript discovery, genome annotation, and
expression profiling. In conclusion, current single-cell RNA-
seq methods are still facing a trade-off between coverage and
uniformity (Picelli, 2016). Notably, none of these methods
has been evaluated in eukaryotic microbes, suggesting further
optimization and development are needed for microbial cells.
Recently, a systematically evaluation of six prominent single-cell
RNA-seq methods has been reported (Ziegenhain et al., 2017),
and the results indicated that Smart-seq2 had the best coverage
because of its full-length synthesis ability. However, as Smart-
seq2 is incompatible with UMIs, all methods using UMIs have
less amplification noise. In addition, power simulations showed
that Drop-seq is more cost-efficient for analyzing a large number
of cells, while Smart-seq2, MARS-seq, and SCRB-seq are more
efficient with the analysis of a small number of cells (Ziegenhain
et al., 2017).

Besides the above methods, several new methods have also
been developed recently. Some of them have already been
utilized for single-cell RNA-seq in prokaryotic cells (Kang
et al., 2011, 2015; Wang et al., 2015). The first case of single-
cell microbial transcriptomic analysis, to our knowledge, was
reported in Kang et al. (2011). In this report, transcriptome
of single bacterium Burkholderia thailandensis was analyzed
using microarray through amplification of RNA molecules by
rolling circle amplification. In this report, bacterial cells were
first lysed with Triton X-100 and lysozyme, and then the lysate
was used for direct cDNA synthesis with random primers. After
genomic DNA degradation, single-stranded cDNA molecules
were self-ligated and then used as the template for multiply
primed rolling circle amplification using ϕ29 polymerase with
random primers. The result showed low fold-change bias
and only less than 6% drop-outs with no contamination. In
addition, this method also preferred an optional rRNA/tRNA
elimination step for deep sequencing. By using 5′-phosphate-
dependent exonuclease, rRNA and tRNA molecules, which
have the 5′-phosphate structure, will be specifically degraded,
leaving the mRNA molecules which lacking the 5′-phosphate
structure for the next cDNA synthesis step. This is also the
only report we could find, which has successfully depleted

rRNA from single microbial cells, indicating the requirements
for further innovation of other effective rRNA depletion and
mRNA enrichment methods for microbes. Later in the same
year, another approach using Ribo-SPIA method, that is, derived
from SPIA method for amplification, has successfully been
employed to analyze transcriptomics of neighboring hyphae of
the eukaryotic fungus A. niger using microarray (de Bekker et al.,
2011). In this article, total RNA from different 5 hyphal tips
were isolated using a column based kit and amplified using the
WT-Ovation One-Direct RNA Amplification System (Nugen)
with both oligo(dT) and random primers. Microarray analysis
resulted in a present call for 4–7% of the A. niger genes, of
which 12% showed heterogeneous RNA levels, indicating the
feasibility of using this method for microbial transcriptomic
analysis. In another study with prokaryotic cells, Wang et al.
(2015) successfully conducted single-cell RNA-seq in single
cyanobacterium Synechocystis sp. PCC 6803 cells with Ribo-SPIA
method. To determine the heterogeneity upon environmental
stress, this method was applied to Synechocystis single cells at
24 and 72 h after nitrogen starvation treatment. With up to
98% of all putative Synechocystis genes identified in single cells,
a possible increasing gene-expression heterogeneity from 24 to
72 h after nitrogen starvation stress was also found, indicating
the method could achieve good identification of the transcripts
in single bacterial cells (Wang et al., 2015). More recently,
a technology for targeted depletion of abundant transcripts
was developed by Nugen (Armour et al., 2015). Unlike the
exonuclease-based depletion method that Kang et al. (2011)
reported, this method depleted the unwanted sequences after
cDNA synthesis using probes that target unwanted sequences.
However, the information of the unwanted sequences is required,
making it impossible for de novo single-cell RNA-seq. SUPeR-
seq (Fan X. et al., 2015) is another method to sequence both
polyadenylated and non-polyadenylated RNAs, suggesting its
possible application to prokaryotic microbes. This method shares
some similarities to Tang’s method (Tang et al., 2009, 2010), but
used a primer containing an anchor sequence (AnchorX), 15-
mer dT sequence and 6-mer random sequence for simultaneous
detection of both polyadenylated and non-polyadenylated RNA
molecules and synthesizing the first strand cDNA. After poly(A)
tailing for the first strand cDNA, a primer containing another
anchor sequence (AnchorY) and 24-mer dT sequence was used
for second strand cDNA synthesis, and then the double-stranded
cDNA molecules were amplified by PCR using AnchorX and
AnchorY primers. With this approach, the researchers discovered
2891 circRNAs in mouse preimplantation embryos. Like other
methods using random primers, rRNA could not be excluded
with this method. However, this method provides another
possible method for single-cell RNA-seq in prokaryotic microbes,
especially with the rRNA depletion methods mentioned above.

FUTURE PERSPECTIVES

Current genomic and transcriptomic analysis of single microbial
cells share several similar challenges. Cell lysis is a major
challenge for single-cell analysis. As microbes typically contain
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complicated structure of cell walls, appropriate lysis strategies
need to be chosen carefully without damaging the DNA/RNA
inside. In addition, in the case if the lysate is directly used for
amplification without purification, the lysis condition should also
be carefully optimized to minimize the influence of lysis related
reagents to the downstream reactions. Alternatively, a method
called FluidFM might be a promising approach for DNA/RNA
isolation from microbial cells, as it used a ‘nanosyringe’ to
extract cytoplasmic and nucleoplasmic fractions from single live
cells rather than lysis the cell (Meister et al., 2009; Guillaume-
Gentil et al., 2016). Contamination is another key challenge in
single-cell analysis. As low-input and high-fold amplification
are required for sequencing, single-cell analysis is very sensitive
to contamination, either from the laboratory environment or
reagents and instruments used for sample preparation. Several
approaches have been applied to minimize contamination,
including reducing the reaction volume of lysis and amplification
reaction to nanoliter scale in a sealed, disposable microfluidic
device (Marcy et al., 2007a,b), using UV exposure to inactivate
contaminates in reagents (Zhang et al., 2006; Woyke et al.,
2011), and disposable plasticware produced from virgin materials
(Blainey and Quake, 2011). Another challenge for microbial
single-cell analysis is the ultra-low nuclei acids content in a single
microbial cell. Current microbial single-cell sequencing methods
were all modified from those developed for mammalian cells, as
they contain more nuclei acids. While using these methods in
microbial cells, nuclei acids template could be a 1000-fold less
than using a mammalian cell. With a much lower concentration
of templates, the amplification process could be more sensitive to
any contamination and non-specific amplification. In addition,
less input may also challenge the sensitivity of the polymerase
used for the amplification process (Picher et al., 2016). Using
microfluidic devices for amplification could significantly solve
these problems (de Bourcy et al., 2014). Moreover, the low
input also influences the uniformity of the amplification. Even
for single-cell analysis of mammalian cells, the amplification
uniformity is still not comparable with that at the bulk-cell
level. Therefore, the sequencing depth could be a critical factor
to ensure good genome coverage, especially for unculturable
microbes with unknown genome sizes.

Current single-cell sequencing methods all require
amplification of DNA/RNA from a single cell for NGS

sequencing, which will inevitably introduce bias and loss.
Recently, new sequencing platforms such as true single molecule
sequencing (tSMS, Helicos, now SeqLL), SMRT sequencing
(PacBio), and nanopore sequencing (Oxford Nanopore) could
sequence DNA/RNA molecules at single-molecule level and
prove to be possible to sequence DNA/RNA molecules directly
from bulk-cells without pre-amplification (Ozsolak et al., 2009;
Ozsolak and Milos, 2011; Coupland et al., 2012; Ayub et al.,
2013). Although directly sequencing a single cell without pre-
amplification is still challenging, further innovation of these new
technologies and sequencing platforms could eventually make it
possible for single-cell analysis without any amplification.

CONCLUSION

As a rapidly growing field, single-cell analysis plays a significant
role in extending our understanding of microorganisms by
revealing how individual cells perceive, respond and adapt to the
environment, and determine the fate of the whole population.
The key drivers of new technology for single-cell analysis will
be advancement in throughput, integration of isolation and
amplification, and integrated analysis with multiple ‘omics.’ Even
with many challenges still ahead, we believe that this field will
receive a tremendous boost with progress of several related fields,
such as microfluidic devices and new sequencing platforms.
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The factors leading to changes in the organization of microbial assemblages at fine

spatial scales are not well characterized or understood. However, they are expected

to guide the succession of community development and function toward specific

outcomes that could impact human health and the environment. In this study, we put

forward a combined experimental and agent-based modeling framework and use it to

interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS)

mutants of P. aeruginosa under spatial confinement. We find that key parameters,

such as T6SS-mediated cell contact and lysis, spatial localization, relative species

abundance, cell density and local concentrations of growth substrates and metabolites

are influenced by spatial confinement. The model, written in the accessible programming

language NetLogo, can be adapted to a variety of biological systems of interest and

used to simulate experiments across a broad parameter space. It was implemented

and run in a high-throughput mode by deploying it across multiple CPUs, with each

simulation representing an individual well within a high-throughput microwell array

experimental platform. The microfluidics and agent-based modeling framework we

present in this paper provides an effective means by which to connect experimental

studies in microbiology to model development. The work demonstrates progress in

coupling experimental results to simulation while also highlighting potential sources of

discrepancies between real-world experiments and idealized models.

Keywords: agent-based modeling, Pseudomonas aeruginosa, Type VI secretion, silicon microwell arrays,

microbial succession, microbial organization, spatial confinement
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INTRODUCTION

Spatial organization has a strong influence on the development
and dynamics of biological systems (Kreft et al., 1998; Lardon
et al., 2011; Halsted et al., 2016; Hansen et al., 2016; McNally
et al., 2017; Timm et al., 2017). The factors leading to changes
in organization of multicellular assemblages at fine spatial scales
are not well characterized or understood, however, they are
expected to guide the succession of community development
and function toward specific outcomes (Liu et al., 2009; Cline
and Zak, 2015; Dini-Andreote et al., 2015). The organization
of distinct microbial populations can be shaped by physical
and chemical processes, and affect important activities such
as antibiotic resistance, efficient energy conversion, C and
N cycling and quorum sensing (Ginovart et al., 2005; Gras
et al., 2010, 2011b; Sahari et al., 2014; Wang and Ma, 2014;
Koonin and Wolf, 2015; Biteen et al., 2016). Microbe-microbe
interactions can also depend on direct and indirect competition
for resources between different community members (Kreft,
2004; Hellweger et al., 2008; Borenstein et al., 2015; McNally
et al., 2017). The microscale/local transport of essential microbe-
derived metabolites and cell-to-cell competition are likely to be
strongly influenced by spatial confinement and individual cell
behavior in the environment (Lardon et al., 2011; Pintelon et al.,
2012; Vogel et al., 2015; McNally et al., 2017). Consequently,
investigating the complexity of these processes and emergence
of unique behaviors requires the combination of experimental
and computational tools that can be used to explore the impact
of spatial organization, while correlating individual microbial
behavior and interactions to specific outcomes (Dini-Andreote
et al., 2015; Zhu et al., 2015; Hansen et al., 2016).

Cells can compete directly with surrounding species through

physical contact, and in more specialized cases, are capable of
transferring toxic effector proteins to susceptible cells. The Type

VI secretion system (T6SS) is an important example of such a

pathway, being responsible for the assembly of a pilus apparatus
that can be used to contact neighboring cells and potentially
induce cell death (Hood et al., 2010; Chou et al., 2012; LeRoux
et al., 2012). Hood et al. (2010) showed that the H1-T6SS of
Pseudomonas aeruginosa is required to direct the injection of
toxins from T6SS active cells (T6SS+) into T6SS-susceptible
cells (T6SS−) that lack immunity. Other important secretion
systems such as H2- and H3-T6SS in P. aeruginosa direct
toxins preferentially to eukaryotic cells. However, because the
H1-T6SS toxin is preferentially directed toward other bacteria,
it is particularly well suited for studies of contact-mediated
interactions between neighboring and competing prokaryotes
(Mougous et al., 2006; Sana et al., 2016, 2017). T6SS interactions
in mixed microbial populations also play an important role
in the regulation of more complex biological processes and
microbial community dynamics (Russell et al., 2014; Verster
et al., 2017). For instance, the T6SS interactions occurring
amongst commensal bacteria in the mammalian gut microbiome
have been shown to modulate community composition and
interactions, as well as provide a mechanism for defending
commensal bacteria from invading pathogens (Hecht et al.,
2016). Furthermore, these T6SS interactions are highly active and

prevalent, where > 109 T6SS firing events (i.e., predicted pilus
injections) min−1 g−1 colonic contents can occur and nearly 25%
of human gut microbiota have been shown to encode a T6SS
pathway (Wexler et al., 2016; Sana et al., 2017).

Using two-member communities as a model system of
T6SS interactions in the laboratory, Borenstein et al. (2015)
demonstrated that established colonies of T6SS− Escherichia
coli could survive contact with T6SS+ Vibrio cholerae. Agent-
based modeling (ABM) simulations further showed that T6SS−
cells could survive T6SS+ attack when placed in situations
of nutrient limitation and relatively slow growth rates, and
could even outcompete the T6SS+ cells, as long as T6SS−
cells were able to establish microcolonies within the mixed
community (Borenstein et al., 2015). These results demonstrate
the importance of spatial confinement and local organization on
cell growth and survival. Thus, competition between neighboring
microbial cells and spatial confinement are expected to drive
changes in cell assemblage and organization (Borenstein et al.,
2015; Halsted et al., 2016; Hansen et al., 2016).

Numerous advances in our understanding of cell-to-cell
behavior and interactions at fine spatial scales have stemmed
from the use and development of nano/micro-fabricated
platforms (Wang et al., 2013; Yamazaki et al., 2014; Swennenhuis
et al., 2015; Xue et al., 2015; Hansen et al., 2016; Zhang et al.,
2016; Timm et al., 2017; Yeh et al., 2017). Timm et al. (2017)
used a microwell array platform to study the contact-mediated
T6SS interactions of P. aeruginosa. The microwell array platform
enabled high-resolution and high-throughput imaging of mixed
T6SS+ and T6SS− cells growing under spatial confinement
within microwells, with well diameters ranging from 20 to
100µm and 5µm depth. Interpreting the results of these cell-
to-cell interactions with simplified analytical models of overall
growth within each well becomes challenging and potentially
unreliable when trying to capture the complex interactions
reflected by spatial organization of microorganisms within the
microwells. Alternatively, ABM simulations can capture how
changes at the level of individual microbial interactions lead
to changes observed at the community and microcolony levels.
In conjunction with laboratory experiments ABM simulations
can be used to infer and test important growth parameters that
impact spatial organization within colonies (Borenstein et al.,
2015).

In this study, we have developed an ABM model around
experimental data obtained from a microwell array platform.
We use the model to interpret spatial organization patterns
of P. aeruginosa mutants growing under spatial confinement.
The novelty of our approach relies on the high throughput
nature of both the experiment and ABM simulations, which
allows investigating how the initial ratio of community member
abundances, initial growth location and T6SS interactions affect
spatial organization during growth. The model is written in
the language NetLogo (Wilensky(1999), NetLogo, http://ccl.
northwestern.edu/netlogo/; Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston,
IL) and is linked to a computational framework that permits
submitting many calculations in parallel for different initial
parameters, where each combination of parameters can be
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conceptualized to represent a micro-environment of interest.
The ABM model has been deployed in the Compute and Data
Environment for Science, CADES (http://cades.ornl.gov/), which
also stores the relevant experimental data used during fitting
routines. We find that key parameters, such as spatial constraints,
local concentrations of growth substrates/metabolites and
associated rate constants alter the impact of P. aeruginosa Type
VI secretion activity on the spatial organization of cells in
confined environments.

MATERIALS AND METHODS

Bacterial Cell Culture
Two P. aeruginosa PAO1 mutants were modeled during growth
simulations to investigate the effects of Type VI secretion
on cell organization. Cultures included a 1retS mutant that
constitutively expresses GFP and the toxic effector proteins
associated with Type VI secretion, and a 1retS/1tse/i1-6
deletion mutant that constitutively expresses m-Cherry and is
susceptible to Type VI secretion interactions (i.e., injection
of toxic effector proteins) (Timm et al., 2017). Cell culture
conditions for growth experiments followed Hood et al. (2010)
and Timm et al. (2017).

Microwell Fabrication
Fabrication of Si microwells followed the methods outlined in
(Hansen et al., 2016). Briefly, a 1µm parylene film was deposited
on a 4 inch diameter silicon wafer with a silicon dioxide coating.
An adhesion promoter and positive photoresist were spun onto
the wafer with a spin coater, followed by 1min of baking on a
hot plate at 115◦C. The substrate was exposed to UV light using
a contact mask aligner, baked on a hot plate for an additional
minute at 115◦C, then developed. The parylene exposed in the
patterned photoresist was etched with O2 plasma in a Reactive
Ion Etch (RIE), and was followed by a Bosch process to etch into
the silicon to formmicrowells. Residual photoresist was removed
by etching with O2 plasma. The final well depth was 5µm. The
layout of the microwell platform can be found in Hansen et al.
(2016). It contains arrays of microwells ranging in size from 5 to
50µm in diameter, in increments of 5 microns, along with wells
that are 100µm in diameter. Twelve arrays of each size, including
four replicates of three different well spacing, are included in each
array. Individual microwell-array chips were sectioned from the
Si wafers and subsequently used for growth experiments with P.
aeruginosamutants.

Microwell Culture Experiments and Image
Analysis
The cell-seeding, growth, imaging and image analysis methods
used in this study correspond to those described in Timm
et al. (2017). Timm et al. (2017) provides a detailed step-by-
step description of those protocols along with online video
content displaying those techniques. Representative data, as well
as the image collection and correction procedures, are provided
there. Specifically, we provide additional analysis of a more
comprehensive data set and describe the development of a new
ABM framework that helps explain some of the unresolved

questions reported by Timm et al. (2017). Briefly, cells of P.
aeruginosa were mixed in a 1:2 ratio (GFP:m-Cherry) suspended
in growth media and incubated on bovine serum albumin (BSA)-
functionalized microwell chips in a humid environment for 1 h
(Timm et al., 2017). The number of cells that attach within
any given well is dependent on the number of cells present in
solution and the time allowed for the cells to attach. Not all
of the cells will attach inside a microwell during a 1 h interval.
Some cells remain in suspension or attach outside of the wells
on the parylene cover. Following 1 h incubation the solution is
removed and the parylene is peeled, leaving behind only cells
that were attached inside the wells. The entire microwell array
is then sealed under a nutrient agarose layer and grown in a
live cell chamber on an automated microscope stage. Details of
fluorescence microscopy used to measure growth are given in
Timm et al. (2017). Images were collected every 30min over a
24 h period, and were then processed and analyzed using ImageJ
and Matlab software (Timm et al., 2017). Data presented here is
taken from images collected from multiple chips imaged during
experiments performed on different days. Experimental data
for co-culture experiments represents analysis from 63 (20µm),
35 (25µm), 49 (30µm), 16 (35µm), 16 (40µm), 16 (45µm),
16 (50µm), and 4 (100µm) wells. Mono-culture experiments
were performed as controls, with equivalent numbers of wells
examined for T6SS+ and T6SS− only cultures at each well
size. Representative images taken from a single 100µm diameter
well are shown in Figure 1A. Growth curves were established
by measuring total fluorescence from both GFP and m-Cherry
expressing mutants over time in each well and corrected for
background fluorescence (Timm et al., 2017).

Analysis of Experimental Imaging Data
Amulti-stage fitting was performed on both the ABM population
curves and time series fluorescence data corresponding to the
experimental population curves of T6SS+ and T6SS− in each
well. Using a derivative zero crossing algorithm, the growth
period of each fluorescence series was separated from the decay
stage (Figure 2). The data from the cell growth period was then
fit to the logistic function, Equation 1, using the least squares
Trust Region Reflective algorithm implemented in the Python
scipy 0.19.0 library:

a

1+ e4 µ

a (τ − t)+ 2
+ a0 (1)

where a0 is the initial fluorescence intensity, which reflects the
number of living cells present inside the well at the beginning
of the experiment. In this form, a is the maximum intensity, µ

is the maximum growth rate and τ is the lag time. The analysis
presented in this paper deals exclusively with observations of the
growth phase. The parameters a, µ and τ for each well were
collected and a and µ scaled as shown in (Eq. 2) to represent per
unit intensity values; the scaled a′, µ′, and τ were then plotted vs.
the initial ratio T6SS+:T6SS− for each well size and a linear fit
was performed. The slope of each line, i.e., a′/ratio, µ′/ratio and
τ /ratio, for each well was then plotted vs. all the well sizes.
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FIGURE 1 | Experimental and simulated images of P. aeruginosa T6SS + and − mutants during growth in microwells (green and red fluorescence, respectively). (A)

Mutants shown during growth in 100µm well and images collected with a fluorescence microscope at 3.5, 5, 6.5 and 9 h post seeding (hps). Scale bar is 20µm.

Experimental images are those presented in Figure 6 of Timm et al. (2017) and reproduced here with permission. Further analytical details of how the images were

acquired can be found in Timm et al. (2017). (B) Early and late stages of simulated growth using the agent-based model (left to right).

a′ =
a

a0
(2)

µ′
=

µ

a0

ABM Development and Simulations
Themodel is described following the protocol ODD (Overview—
Design Concepts—Details) that was initially established by
Grimm et al. (2006) and later revised and updated by Grimm
et al. (2010). This protocol was specifically developed in order
to provide a standard way to describe ABMs, so that both the
basic features and the details of the models could be correctly
communicated to the scientific community. In the following, we
provide a concise description of our particular ABM (see full
details in the Supplementary text and Supplementary Figure 1

flowchart).
The basic principles of the bacterial model and protocol

system developed here are taken from the INDISIM model
(Ginovart et al., 2002; Gras and Ginovart, 2006; Gras et al.,
2011a; Granda et al., 2016). The basic entities of our model
represent bacterial cells of the two P. aeruginosa mutants,
including the 1retS mutant (T6SS+) and the 1retS/1tse/i1-6
deletion mutant (T6SS−) that is susceptible to Type VI secretion
(Hood et al., 2010), and spatially confined areas (or grids)
of a two-dimensional circular well that represents the growth

environment on the microwell array chip used for laboratory
experiments. The bacterial cells are defined by several individual
variables and parameters: bacterial species (T6SS+ or T6SS−),
mass, mass to initiate the division process, energy, and viability.
Spatial grid variables contain the local content of a carbon (C)
source, together with the x-y spatial coordinates. Global variables
account for the global balance of bacteria (in terms of number
and biomass for each of the two mutants of P. aeruginosa) and
nutrient source, as well as the emerging bacterial and biomass
mean growth rates, and the bacterial biomass distributions. The
model can simulate a population of up to 105 bacterial cells in
spatial grid domain. This is a qualitative version of the model as
it currently uses values that are given in relative units.

It is assumed that bacteria are able to respond to and
detect the nutrient concentration in the space in which they
are located. Both T6SS+ and T6SS− bacteria are modeled to
consume resources at the same rate. The nutrient consumption
is adjusted according to its local availability and the uptake is
driven by the local concentration of available C. Cell movement
and reproduction may also be driven by the occupation of the
surrounding growth space. The mutants interact by direct cell-
to-cell contact via the Type VI secretion system and, in this case,
a T6SS+ can kill a contacted T6SS− cell. Additionally, indirect
interaction can occur through the competition for available C and
for the occupation of space. Stochasticity is introduced through
setting initial individual locations at random by using a Gaussian
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FIGURE 2 | Growth trajectories of P. aeruginosa T6SS + and − mutants during growth in microwells (green and red lines, respectively). Experimental data from 30µm

wells are shown as closed circles. Solid lines show the logistic fit to the growth phase. Dotted lines show the fit of an exponential to the decay phase. The gradient

zero crossing used as the division between the growth and decay phases is shown by a vertical line in the plot. Vertical y-axis values represent the relative microbial

population (pop) abundances based on corrected fluorescence intensities and horizontal x-axis values represent time in hours. The notation auf stands for arbitrary

units of fluorescence intensity.

distribution around an expected mean value (initial individual
mass, mass to start the reproduction cycle, viability time and
cell lysis when optimal conditions for cellular maintenance are
not met). Random variation is applied to individuals within grid
spaces to deal with the initiation of the reproduction cycle in each
bacterium and with the change in location of cells. For instance,
the model permits assigning a probability of initial growth at the
edge of the well, a behavior that, as it will be discussed later,
is observed experimentally. Moreover, in the predation process
by T6SS+ cells, randomness is considered in the identification
of a neighboring T6SS− cell. This randomness accounts for the
uncertainty in these processes and reflects the high variety of
mechanisms that underlie the variability observed in real systems.
In order to avoid privileged first-acting bacteria in the model,
the order of the bacteria to perform simulated actions is chosen
randomly at each time step.

Overall, the execution of the model consists of four main
parts: (1) initialization of the system, where the initial population
of T6SS+ and T6SS− mutants are defined and distributed
according to the user’s input parameters, the spatial cells are set
up with the corresponding initial amount of nutrient, and global
variables are formally evaluated for the first time; (2) the core
of the simulation, with the main loop where all the individual
actions and environmental processes take place iteratively until
the end of the simulation; (3) the output of results at the end
of each time step, both graphical representation and numerical
evaluation, as well as a final external text file with the simulation
outcome for further analysis; (4) analysis of the results and
comparison to experimental data.

The population curves obtained with the ABMmodel were fit
using Equation 1 and scaled as in Equation 2, and the resultant
parameters a′, µ′, τ plotted vs. the initial T6SS+:T6SS− ratio,
similarly to what it was done with the experimental parameters.
The ABM model, however, contains many input values that
define a very large parameter space, where different results are
obtained by using a different set of input values. In this paper, we

have chosen to inspect a range of input values in order to examine
how the level of aggressiveness of T6SS+ cells affect the outcomes
of the simulations. Specifically, for each well and T6SS+:T6SS−
initial ratio, 100 simulations were run, each corresponding to the
same set of input values. To mimic the experimental conditions
better, T6SS+ and T6SS− cells were initially constrained to
areas corresponding to the well dimensions, and the bacteria
were added in initial ratios and densities corresponding to those
observed in the experimental wells of the same size.

RESULTS

Previously, Timm et al. (2017) demonstrated that the GFP 1retS
mutant T6SS+ and the m-Cherry 1retS/1tse/i1-6 deletion
mutant T6SS− that is susceptible to Type VI secretion,
formed discrete microcolony assemblages during co-growth
in microwells. Observed well populations were heterogeneous
(Figure 1A) with distinct assemblages of individual species
forming across the wells. Instances of T6SS− microcolony
formation were unexpected based on the hypothesis that T6SS+
cells would dominate each well environment due to their directed
injection of toxic effector proteins into susceptible cells. In
the present study, we used ABM simulations (Figure 1B) to
examine how spatial confinement and Type VI secretion can lead
to growth conditions that allow the formation of microcolony
assemblages and enable susceptible T6SS− cells to persist.

In Figure 3, we show how the experimental values for a′, µ′, τ
change with the initial T6SS+: T6SS− seeding ratio for both types
of cells in 30µm diameter wells. Although the initial ratio of cells
in the solution used to seed the wells is 1:2, natural variability in
the number of cells of each type that seed into the wells provides
initial ratios ranging between nearly 0 (all T6SS−) to 3:1 (3 times
more T6SS+ than T6SS−). For both types of cells, τ is practically
independent of the initial ratio, whereas a′ and µ′ for T6SS+
linearly decrease as the T6SS+:T6SS− ratio increases. Likewise,
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FIGURE 3 | Experimental growth parameters vs. initial relative ratios of mutants. a′ (red), µ′ (blue) and τ (green) variables refer to maximum corrected fluorescence

intensity (i.e., maximum relative cell abundance), maximum rate in change of fluorescence intensity (i.e., relative growth rate) and lag time to start of growth,

respectively. Closed circles indicate corrected experimental data and lines represent regression trends. (A) T6SS+ growth parameters as a function of initial relative

ratios of mutants when both mutants are grown together. (B) T6SS– growth parameters as a function of initial relative ratios of mutants when both mutants are grown

together.

µ′ and a′ values decrease as cultures have an increasing number
of T6SS− cells compared to T6SS+. For both T6SS− and T6SS+
the maximum number of cells per initial number of cells (a′), as
well as the maximum rate of increase per initial numbers of cells
(µ′), decreases as the corresponding cell type is initially present in
excess. As seen in Figure 4, for each 30µmwell, the initial density
is relatively constant, independent of the initial T6SS+:T6SS−
ratio. Cells are, for the most part, segregated into domains
that contain either T6SS + or − cells. The latter is observed
both in experiment and simulations (Figures 1A,B, respectively),
though some overlap can be seen within the experimental images
(Figure 1A, yellow region). We speculate that larger clusters
or colonies of cells will grow more slowly on a per cell basis
because of nutrient limitations that may occur at the center
of those microcolonies relative to growth at the edges. Thus,
even though the overall density within the wells is the same,
local microcolony size may influence the maximum growth rate
per initial number of cells (µ′) and maximum number of cells
per initial number of cells (a′). A more detailed image analysis
strategy that allows quantitative description of microcolony size
and patchiness within wells throughout these experiments is
warranted and under development.

During growth on the experimental microwell platform,
both T6SS + and − cells showed a general preference for
seeding at the well edges regardless of well size (Timm et al.,
2017). During ABM-simulated growth in a circular well with
preferential seeding at the boundaries, microcolony formation
qualitatively mirrors the experimental results of Timm et al.
(2017) (Figure 1) though, again, a more quantitative analysis of
microcolony size and patchiness within wells is needed to make
a direct comparison. In the simulations, the cell placement is
biased so that there is a higher probability of cells beginning the
simulation at the edges of a well. Cells seeded near the edge of
wells, in both the experiments and the simulations, propagate
toward the interior because of confinement imposed by the well
edge. Based on the contact mediated pathogenesis associated
with T6SS interactions, we expect that subsequent cell-to-cell
interactions would help maintain bacterial domain segregation
and minimize co-localization.

FIGURE 4 | Well area (%) covered by initially seeded cells vs. well size. T6SS+

mutant only data (blue circle), combined mutant data (black square) and

T6SS– mutant only data (orange triangle). The expected ratio of T6SS(+):(−)

was 1:2. Error bars represent standard deviations around the mean value.

In Figure 5 we have plotted the slope of the straight
lines, i.e., a′/ratio, µ′/ratio and τ /ratio, for each well size vs.
the well diameter. In the case of T6SS+ cells, the slope of
these lines shows more variation than that seen for T6SS−
cells. The reason for this remains unclear and may result
from T6SS+ cells growing outside the wells and outside the
analytical region of interest (see Supplementary Movie 1). Also,
fluctuations in GFP expression or loss of GFP intensity may
contribute to this variation across experiments. For T6SS−
cells, the sensitivity (slope, µ′/ratio and a′/ratio) of maximum
growth rate per initial number of T6SS-cells and maximum
number of cells per initial number of cells, increases slightly
with well diameter. Figure 4 shows that the initial seeded cell
density per well on the experimental platform decreased as a
function of increasing well diameter between 15 and 100µm.
One might expect that at lower cell densities, the sensitivity to
initial ratio of T6SS+ to T6SS− cells would decrease because
lower densities should correspond to fewer T6SS+ to T6SS−
interactions. However, if increasingmicrocolony size is suspected
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FIGURE 5 | Growth parameters vs. well size. a′/initial T6SS+:T6SS– ratio (red), µ′/initial ratio (blue) and τ /initial ratio (green) are the slopes of the linear fit of the

growth parameters with respect to the initial ratio as determine for each well size. (A) T6SS+ growth parameters as a function of well size when mutants are grown

together. (B) T6SS– growth parameters as a function of well size when mutants are grown together. Error bars represent the 95% confidence interval for the linear fit

demonstrated in Figure 3.

to cause reductions in µ′ and a′, as described above, larger
wells could facilitate formation of these larger domains by (i)
allowing unimpeded growth of microcolonies and (ii) increasing
the possibility for the seeding of larger microbial aggregates
or flocs from solution. Again, more detailed image analysis
techniques should facilitate future investigations using the array
platform.

Using the ABM model, we performed a similar study of
microcolony formation in a population of T6SS+ and T6SS−
cells, where the aggressiveness of the former was changed from
high to moderate to low. For simulating the experimental
conditions closely, we computed the experimental distribution
of T6SS+:T6SS− initial ratios and densities and used similar
initial values in the simulations. The results of the simulations are
shown in Figure 6 for a well size of 30µm, where we have plotted
a′, µ′ and τ for initial T6SS+:T6SS− ratios that resemble those
obtained experimentally. When the aggressiveness was 1 (i.e.,
each contact occurring between a T6SS+ and a T6SS - cell results
in the death of a T6SS− cell), the behavior of a′, µ′ and τ for
T6SS+ resembles that seen experimentally (compare Figure 6A
to Figure 3A). The opposite is true for T6SS− cells (Figure 6B vs.
Figure 3B), and the results indicate that the fewer T6SS− there
are present, the more poorly T6SS− cells grow. The trend seen
in Figure 6B for T6SS− cells can be explained as follows: while
T6SS+ cells are not affected by their own aggressiveness, T6SS−
cells are, and although it is theoretically advantageous for T6SS−
cells to have relatively fewer neighboring T6SS− competitors, this
advantage is offset by a high rate of lysis caused by the highly
aggressive T6SS+ cells. Lowering the aggressiveness of T6SS+
from 100 to 10% does not significantly change the behavior of a′,
µ′ and τ for both T6SS+ and T6SS− mutants (Figures 6C,D).
However, if the aggressiveness is lowered to 1% (Figures 6E,F),
then a′ and µ′ of T6SS− cells follow the same trend as in the
experiment (Figure 3B). At this low killing rate, however, the
growth rate of T6SS+ cells decreases (compare Figure 6E to
Figure 3A). Specifically, as the aggressiveness of T6SS+ cells is
reduced, the linear fit of a′ intersects the y-axis at a lower point.
Thus, at lower abundances and lower levels of aggressiveness,
T6SS+ cells can no longer effectively compete with T6SS− cells.

DISCUSSION

The T6SS of P. aeruginosa is an important biological model for
understanding how cell-to-cell contact directs the succession
and organization of microbial communities (Robinson et al.,
2009; Hood et al., 2010; Sarris and Scoulica, 2011; LeRoux
et al., 2012; Das et al., 2013). As mentioned in the introduction,
T6SS interactions play a significant role in the regulation of
microbiomes, which has important implications for biomedical
and pathogen research, particularly for understanding
mammalian gut microbiomes, and also environmental
biogeochemistry relevant to native microbial interactions
with plants and soil. However, the factors leading to changes
in organization of microbial cells at fine spatial scales, driven
by T6SS interactions, are not well characterized or understood.
Recent laboratory investigations and ABM simulations indicated
that established T6SS− colonies of Escherichia coli could persist
during cell-to-cell interactions with Vibrio cholerae T6SS+ cells
(Borenstein et al., 2015). The results of Timm et al. (2017) further
suggested that spatial confinement, as well as T6SS activity
between growing effector and susceptible P. aeruginosamutants,
could potentially direct cell organization in micro-colonies and
affect the survival of susceptible cells. In the present study,
building upon additional analysis of the complete dataset of
Timm et al. (2017), and in combination with ABM simulations,
we provide supporting evidence that both spatial confinement
and T6SS activity can lead to changes in the organization and
persistence of P. aeruginosa.

We found that discrete zones of clearing occurred around

T6SS− cell assemblages during co-growth with T6SS+ cells in

ABM simulations (Figure 1; see also Supplementary Movie 2).
This cell-to-cell organization of T6SS− cells, surrounded by a

zone of clearing, is consistent with T6SS-induced cell lysis at
the boundary between both P. aeruginosa mutants (Hood et al.,
2010; Borenstein et al., 2015). This zone of clearing provides a
mechanism of P. aeruginosa cellular organization, as previously
observed in Si-based microwell arrays (Timm et al., 2017). We
speculate that during growth of both mutant strains, these buffer
zones can occur randomly during growth, perhaps forming
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FIGURE 6 | Simulated growth parameters vs. initial relative ratios of mutants. a′ (red), µ′ (blue) and τ (green) variables refer to maximum corrected fluorescence

intensity (i.e., maximum relative cell abundance), maximum rate in change of fluorescence intensity (i.e., relative growth rate) and lag time to start of growth,

respectively. Closed circles indicate ABM data and lines represent regression trends. (Left) T6SS+ growth parameters as a function of initial relative ratios of mutants

when both mutants are grown together. (Right) T6SS– growth parameters as a function of initial relative ratios of mutants when both mutants are grown together.

Aggressiveness of the T6SS+ in an immediate kill mode was set to a probability of kill on attack of 1.0 (A,B), 0.1 (C,D), and 0.01 (E,F).

safe-pockets for susceptible cells to continue growing, and can
become more defined as microcolonies of both species expand
and interact at their outer boundaries. Fitting of the complete
experimental dataset indicated that starting at the apparent
peak in cell growth for both strains, a general decay in T6SS+
GFP signal intensities began, while T6SS− m-Cherry intensities
subsequently remained more persistent over time (Figure 2).
Borenstein et al. (2015) demonstrated that more-established
microcolonies of T6SS-susceptible cells can potentially survive
T6SS attack, which helps explain the persistence of susceptible P.
aeruginosa mutants as deduced from the fluorescence intensities
taken from our experimental data. We also observed that T6SS+
cells could outgrow a well once the interior of the well cavity had
become nearly filled by growing cells (Supplementary Movie 1);
this may explain, to some extent, the sharp decay phase generally
observed for T6SS+ GFP intensities (Figure 2).

We found that the initial seeded cell density per well on the
experimental platform decreased as a function of increasing well
diameter between 15 and 100µm (Figure 4), but cell density
did not have an apparent effect on cell organization during
different growth simulations, which is consistent with the results
of Timm et al. (2017) that demonstrated microcolony formation

across all well sizes between 20 and 100µm diameters. The
correlation between initial cell density after seeding and well
size likely reflects the preparation of the experimental microwell
platform. For instance, following the experimental cell seeding
step (Timm et al., 2017): (1) slight drying of the aqueous
culture media before contact with the nutrient agarose cover;
(2) difficulty rinsing cells from smaller diameter wells during
the final water rinse step; or (3) a larger side-wall to floor
area ratio per well could have affected initial cell densities such
that smaller wells were more densely packed than larger wells,
particularly at well edge boundaries. However, qualitatively,
we found that spatial organization into distinct T6SS mutant
assemblages during experimental and simulated growth was not
strongly influenced by cell density or close packing. Future
quantitative analysis of assemblage size and spacing for different
well sizes may reveal a more defined mechanism. Densely packed
cell assemblages have been shown in previous studies to follow
similar biological-phase separation where distinct microcolony
formation is favored regardless of cell-to-cell density in spatially
confined environments (Tolker-Nielsen and Molin, 2000; Berk
et al., 2011; Borenstein et al., 2015; Cutler et al., 2015; McNally
et al., 2017).
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We generally found the impact of well size to be negligible
for the size ranges explored in experiments, see Figures 5A,B.
Well size did not have a significant impact on overall growth
rates per initial cell number or maximum growth rate per initial
cell number. This was unexpected. Indeed, in well diameters
<25µm, competition for resources and cell-to-cell interactions
would have been expected to suppress T6SS− growth. Reductions
in spatial confinement within larger wells would, in principle,
allow T6SS− cells to grow more efficiently with increasing
well diameters, reducing the likelihood of encountering T6SS+
because of the lower seeding densities and more available area.
In wells of 45µm diameter and greater, at much lower initial
densities (Figure 4), the individual T6SS− colonies may have
had the potential to develop with less competition and become
more established before interacting with the more aggressive
mutant strain. In this case, the perimeter of T6SS-interactions
around a colony would be overshadowed by the more established
interior of each mutant colony. In other words, with larger wells
above 40 microns, T6SS-killing should have become secondary
to the size of mutant colonies by the time they interact at their
edges. Clearly, a more systematic study of micro-colony size and
distribution is needed to understand these results. The behavior
of T6SS+ cells across well sizes displays variation in the data
that makes it difficult to draw specific conclusions about T6SS+
growth as a function of well size.

Finally, average a′, µ′ and τ for each well size vs. the entire
well size distribution were also calculated, see Figure 7; the
results obtained in a mixed population of T6SS+ and T6SS−
cells were compared to those obtained in control experiments

comprising only one cell type. As seen in Figure 7D, for the
control experiments, the average a′, µ′ and τ of T6SS− cells
are practically insensitive to the well size, whereas the same data
for T6SS+, Figure 7C, shows variation and an increase at larger
well sizes. In mixed populations, the data for T6SS− cells shows
a similar trend, Figure 7B, although the error bars are larger,
illustrating the interactions with T6SS+ cells. The data for T6SS+
cells, Figure 7A, shows even larger error bars, which is surprising
because these cells should not be negatively impacted by the
presence of T6SS− strains. As mentioned above, inspection
of the data reveals that on some occasions T6SS+ cells can
outgrow/leave the well boundaries (Supplementary Movie 1).
We believe this is one of the primary reasons for the large
variation observed in Figures 7A,B. Consequently, whether or
not T6SS+ cells outgrow or escape the wells should also affect
the growth of T6SS− cells remaining within the same wells.

In this study we have developed an experimental-ABM
framework that can be used to interpret unique spatial-
organization patterns of P. aeruginosa cells growing under
spatial confinement. The ABM model developed here, although
qualitative, is capable of showing microcolony formation
regardless of initial density, or whether the bacteria prefer
to begin growth at the well edges, which is consistent with
other recent studies that have examined different microbial
species under T6SS interactions. Our model was also capable
of reproducing the behavior of a′, µ′ and τ of T6SS+
cells for a particular well size, and the same was true for
T6SS− cells once the aggressiveness level of T6SS+ cells
was lowered. As such, this model can be used to extract

FIGURE 7 | Growth parameters vs. well size. Average a′ (red), µ′ (blue) and τ (green) growth parameters over all the T6SS+:T6SS– initial ratios across wells of

different size. (A) T6SS+ average growth parameters as a function of well size when mutants are grown together. (B) T6SS– average growth parameters as a function

of well size when mutants are grown together. Error bars represent the 95% confidence interval for the linear fit demonstrated in Figure 3. (C,D) Panels show

equivalent parameters in monoculture.
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information regarding aggressiveness levels, amount of available
resources, and rate of consumption of nutrients, as well as
how all these variables affect the growth of the bacterial
colony. Yet, there are some uncertainties that the current
model does not take into account. Future work will focus on
optimizing the model by identifying the most essential growth
parameters and developing a more quantitative description of
variables used for running the simulations. Further, the ABM
model is capable of investigating 5000 wells in 30min, and
in connection with the microfluidic platform, constitutes a
powerful framework to connect microbiological experiments to
ABM simulations, while improving the ABM models to more
accurately reproduce the experimental observations. Finally,
this new microfluidic-ABM framework could be used in the
future to predict the types of microcolonies that are likely to
develop when different microbial species are mixed, which is
expected to advance our understanding of microbial ecology
at fine spatial scales, as well as mechanistically describe how
microbial succession occurs in nature and shapes environments
of interest.
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A realistic description of the variability in bacterial growth and division is critical to

produce reliable predictions of safety risks along the food chain. Individual-based

modeling of bacteria provides the theoretical framework to deal with this variability, but

it requires information about the individual behavior of bacteria inside populations. In

this work, we overcome this problem by estimating the individual behavior of bacteria

from population statistics obtained with flow cytometry. For this objective, a stochastic

individual-based modeling framework is defined based on standard assumptions during

division and exponential growth. The unknown single-cell parameters required for running

the individual-based modeling simulations, such as cell size growth rate, are estimated

from the flow cytometry data. Instead of using directly the individual-based model,

we make use of a modified Fokker-Plank equation. This only equation simulates the

population statistics in function of the unknown single-cell parameters.We test the validity

of the approach by modeling the growth and division of Pediococcus acidilactici within

the exponential phase. Estimations reveal the statistics of cell growth and division using

only data from flow cytometry at a given time. From the relationship between the mother

and daughter volumes, we also predict that P. acidilactici divide into two successive

parallel planes.

Keywords: individual-based modeling, stochastic modeling, cell cycle, bacterial growth and division, modified

Fokker-Planck equation, flow cytometry, coccoid bacteria, predictive microbiology

1. INTRODUCTION

Population- and individual-based modeling are usually presented as incompatible approaches,
although both describe the same system at different levels (Fahse et al., 1998; Wilson, 1998).

Traditionally, deterministic population-based models have been the underlying method behind
predictive microbiology (Baranyi and Roberts, 1995). These models have been successfully applied
to, for example, monitoring of food spoilage andmicrobial safety (Koutsoumanis andNychas, 2000;
Ross et al., 2000), smart sensing of food quality (García et al., 2015, 2017), Quantitative Microbial
Risk Assessment (Cassin et al., 1998; Membré and Lambert, 2008), and design and control of food
processes (Simpson et al., 1993; Alonso et al., 2013).

Over the last 15 years, stochastic individual-based modeling emerged as a promising tool to
produce realistic estimations of safety risks along the food chain by describing the variability of

48

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02626
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02626&domain=pdf&date_stamp=2018-01-05
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miriamr@iim.csic.es
mailto:antonio@iim.csic.es
https://doi.org/10.3389/fmicb.2017.02626
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02626/full
http://loop.frontiersin.org/people/68687/overview
http://loop.frontiersin.org/people/472539/overview
http://loop.frontiersin.org/people/510143/overview


García et al. IBM of Bacterial Growth and Division

single-cell behavior and small populations (Ferrer et al., 2009;
Augustin et al., 2015; Koutsoumanis and Aspridou, 2017).
Often, contamination of food starts with a small number of
bacteria that adapt and proliferate on a given food matrix.
At low cell concentrations, standard deterministic population
models fail to predict the variability of the bacterial population.
This is so because, at low initial cell numbers, heterogeneity
between individuals and its influence on the division times
become relevant and have a net influence on the population.
Consequently, the behavior of individual cells cannot be
neglected when assessing possible health risks along the food
chain, either during storage or during distribution.

There are still many challenges in individual-based modeling,
including the lack of information about single-cell behavior
inside a population. The emergence of individual-based
modeling was possible thanks to two main factors: (1) the
increase of computer processing power and (2) the availability
of single-cell measurements using new techniques such as the
“mother machine” microfluidic device (Wang et al., 2010).
However, the information from single-cell measurements is
limited in those techniques where cells have to be isolated from
the population. That was illustrated for example by Gangan and
Athale (2017), who showed the difference in single-cell growth
in a “mother machine” or in a population.

In this work, we hypothesize that population statistics of
cell volume encode information about single-cell growth and
division that can be used for individual-based modeling. For
this purpose, we derive a modified Fokker-Planck Equation
(forward Kolmogorov equation) describing the population
volume distribution. The underlying idea is similar to that
in Alonso et al. (2014) who derived a backward Kolmogorov
equation to estimate single-cell growth using time-to-division
distributions. We should remark that not only our approach is
different, but it extends the previous theory to consider not only
single-cell growth but also single-cell division. This allows us to
simulate the individual-based modeling of bacterial growth and
division.

In the first part of the work, we will test theoretically
how population statistics obey a modified Fokker-Planck
equation that encodes single-cell information. The equivalent
individual-based modeling approach is derived in parallel to
check consistency. Both models simulate single-cell growth
and division assuming that cell volumes grow exponentially
and cells divide following the sizer principle, i.e., division
occurs at a critical volume (Métris et al., 2005; Alonso et al.,
2014; Robert et al., 2014). Whereas, exponential growth of
cell volume is a standard principle in bacterial physiology
(Fishov et al., 1995), the main trigger of bacterial division
is still a matter of controversy (Taheri-Araghi et al., 2015).
There are three major paradigms: the sizer, timer, and adder
principle depending on whether division is triggered by a
certain volume, time, or after growing a given volume. As
in most predictive microbiology studies (Métris et al., 2005;
Alonso et al., 2014), we focus on fully adapted cells (medium
growth is kept constant and measurements are within the
exponential phase) and the sizer principle remains the reasonable
assumption.

Once the theory is established, we combine the modified
Fokker-Planck equation with flow cytometry data to find
the single-cell behavior of Pediococcus acidilactici within the
exponential phase. The food industry is interested in this species
for several reasons, including its probiotic attributes (Planas
et al., 2004; Standen et al., 2015), its ability to valorize food
wastes (Vázquez et al., 2011; Banwo et al., 2013; Scatassa et al.,
2015), and its ability to produce a very potent and broad-
spectrum bacteriocin (pediocin SA-1) with high capacities as
food biopreservative (Ray, 1992; Anastasiadou et al., 2008;
Vázquez and Murado, 2008). P. acidilactici has been also selected
for being coccoid cells with interest in the food industry. This
shape makes easier to find correlations between side scatter
and volume, and differ from the well-studied Escherichia coli
(model of rod-shaped cells). We should stress that cell volume,
membrane area and diameter scale similarly when the cell is rod-
shaped, although that is not the case for round cells. For such
reason, along this work we consider the term size as equivalent to
volume, but not bacterial diameter or membrane area.

2. MATERIALS AND METHODS

This work combines theory with experimental data and requires
three types of methodologies to (1) develop models at the single-
cell and population level, (2) acquire data with flow cytometry
and optical density, and (3) determine the best parameters to
reconcile the theory with the experimental results.

2.1. Modeling at Single-Cell and Population
Levels
2.1.1. Individual-Based Modeling of Single-Cell

Bacterial Growth and Division
We tested different alternatives with stochastic or deterministic
division and growth, that are specific cases of the general
individual-based modeling approach we describe in this section.

The model assumes that the growth of the logarithm of
the single-cell volume is subject to a stochastic fluctuation δW
characterized by a Wiener process (Alonso et al., 2014):

δXi
= µδt + ξδW with Xi

= ln (V i) (1a)

where Xi represents the volume of cell i (V i) in a logarithmic
scale, µ represents the growth rate within the exponential phase
and ξ is the intensity of the stochastic fluctuation. For the
case of deterministic division ξ = 0 and cell volumes grow
exponentially.

The division was modeled by adding a new cell to the
population and resizing mother and newborn cell to the daughter
size. The division event is triggered when the size of one or
more cells is greater than a continuous random variable Xm with
statistics defined by the probability density function (pdf) of
mother sizes (fXm (x)):

If Xi
≥ Xm ∼ fXm (x), Xn+1

→ Xi
− ln (2) (1b)

Xi
→ Xi

− ln (2) (1c)

where n is the number of cells in the population, i runs from 1 to n
and the daughter volume is half the mother volume (υd = υm/2).
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We tested different probability density functions to describe
the statistics of cell division, i.e., for the probability density
function of mother sizes fXm (x). The probability showing the best
agreement with the data suggests that the volume of the mothers
Vm is a random variable following a log-normal distribution
(Koch, 1966; Amir, 2014):

fXm (x) = N (xm, σ
2) with xm = ln (υm) (1d)

For simulating the deterministic division, σ was set to zero so that
the normal distribution turns into Dirac delta function centered
at the logarithm of the mother size xm.

Simulations were initialized with a single cell (X1
= xd =

ln (υd)) and run for a given time horizon where a given cell
and its offspring grow following (1a) and divide according to
the rule in (1b). We selected the Euler-Maruyama algorithm
to solve the stochastic differential equations for its simplicity
as compared with other numerical methods (Higham, 2001).
The bins of all the histograms to represent the population
statistics were determined using the Freedman-Diaconis rule
(Freedman and Diaconis, 1981). For convenience, simulations
of population dynamics from the proposed single-cell stochastic
model were performed on a cluster composed of 12 processing
nodes (openSUSE 11.0 Linux with 23.5 GB of RAM) and 160
processors in total, using the SGE task manager to distribute the
calculations among them.

2.1.2. Population Modeling Using the Modified

Fokker-Planck Equation
The statistic of the cell sizes in the population is formally
described by a probability density function (pdf) p(t, x) that
depends on size x and time t. For the sake of clarity, we keep
previous subsection notation: υ and x denote size in terms
of volume and natural logarithm of the volume, respectively.
Subindexes d and m denote daughter and mother respectively,
whereas fXm and fXd

are the corresponding pdfs for sizes. As
before, growth rate and fluctuation intensity are denoted by µ

and ξ , respectively. The function p(t, x) is the solution of the
following modified Fokker-Planck equation:

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 2fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− p(t, x)Z
︸ ︷︷ ︸

normalization

(2a)

being

Z =

∫ x

x
Fm(x)

∂J(t, x)

∂x
dx (2b)

p(t, x) = p(t, x) = 0 ∀t boundary conditions (2c)

p(0, x) = δ(x− xd) ∀x initial conditions (2d)

where fXd
(x) = N (xd, σ

2) is the pdf of daughter sizes, fXm (x) =
N (xm, σ

2) the pdf of mother sizes and FXm its cumulative
distribution function. The model is valid only for large domains
x ∈ [x, x] where no cell sizes are close to their (minimum and
maximum) boundaries.

Without the terms of division and normalization, Equation
(2a) is the classical Fokker-Planck equation of the stochastic

differential Equation (1a). It explains how the change in the
distribution of volumes depends on a diffusion term which is
proportional to the square of the fluctuation plus a convective
term proportional to the cell growth rate (Gardiner, 2004; Alonso
et al., 2014). To account for division, we have added two terms
proportional to the pdfs of daughter and mother volumes.
Normalization is required for p(t, x) to be a pdf. This is performed
via the last term in the right hand side.

Simulations were performed using the finite difference
discretization scheme in http://www.matmol.org/ (Vande
Wouwer et al., 2014) for the x domain. For all cases, the
discretization scheme consisted of 501 elements. That was
considered enough to approximate the equation since further
refinements resulted in negligible improvements in the accuracy
of the results. First derivatives were calculated using an upwind 5
points in the stencil and second derivatives with centred 5 points
in the stencil. Due to the hard non-linearity at division, not only
is a refined mesh in x required, but also a stiff time integrator.
Ode15s in Matlab (Shampine and Reichelt, 1997) was selected
for time integration of the resulted set of ordinary differential
equations after the spatial discretization.

2.2. Data Acquisition and Analysis
2.2.1. Microbiological Methods
Pediococcus acidilacticiNRRL B-5627 was kindly provided by the
Northern Regional Research Laboratory (Peoria, IL, USA). Stock
cultures of bacterium were stored at −80 ◦C in MRS commercial
medium (Pronadisa, Hispanlab S.A., Spain) with 25% glycerol.
The inoculum to study the growth dynamics of P. acidilactici was
prepared as follows:

1. One hundred and fifty milliliters of cellular suspension from
the cryotube was transferred to 5mL of MRS fresh medium
and then incubated at 30 ◦C in an orbital shaker at 200 rpm
for 16 h.

2. From the obtained culture, 1mL was added to an Erlenmeyer
flask with 150mL of MRS fresh medium and fermented at
30 ◦C/200 rpm for 22 h.

3. From the previous cultivation, serial 10-fold dilutions were
prepared in peptone-buffered solutions, and 0.1mL samples
were plated (MRS agar medium) in triplicate and incubated at
30 ◦C for 48 h.

Five individual colonies from plates were isolated and transferred
to 5 Erlenmeyer flasks with 200mL of MRS fresh medium and
cultivated at 30 ◦C/200 rpm. Samples from flasks were taken
each hour up to 17 h (except at 12 and 16 h). All samples
were separated in two aliquots, one of them was prepared
for cytometer evaluation following the indications described in
the next section. The other aliquot was centrifuged at 4,000 g
for 15min and the sediment washed twice and re-suspended
in distilled water at an appropriate dilution to measure the
optical density at 700 nm. The dry weight was estimated from a
calibration curve (G(g/L) = −0.008+ 0.342A700 + 0.028A2

700).
The percentage of viable cells smaller than certain diameters

was calculated during the exponential phase. The cultures at
8 h were filtered, under sterile conditions, through 1.2 and 1 µm
glass microfiber filters (Filter-Lab, Filtros Anoia S.A., Barcelona,
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Spain). Thus, in these filtered solutions and in the final unfiltered
culture (control), viable cells (colony forming units per mL) were
quantified by count onMRS-agar plate as it was mentioned in the
previous paragraph.

2.2.2. Flow Cytometer Data Acquisition
The abundance and size of P. acidilactici were determined with
a BD FACSCalibur flow cytometer (BD Biosciences, San José,
CA, USA) equipped with a laser emitting at 488 nm. Bacteria
samples were fixed with a P+G solution (1% paraformaldehyde
+ 0.05% glutaraldehyde) at 10% final concentration for 15min
in the dark. Then, samples were quickly frozen in liquid nitrogen
and stored at −80 ◦C. Prior to analysis, bacteria were stained
with SybrGreen I DNA dye (5mM final concentration) and
diluted adequately. Bacteria were detected in the flow cytometer
by their signature in a plot of Side Scatter (SSC) vs. FL1 (green
fluorescence). All the reagents and chemicals were purchased
from Sigma-Aldrich S.A. (St. Louis, MO, USA).

2.2.3. Estimation of P. acidilactici Population Growth
The logistic equation was used to fit the population growth data
(Zwietering et al., 1990; Peleg and Shetty, 1997). Biomass and
number of cells were obtained respectively by dry weight and
cytometry of P. acidilactici :

G =
Gm

1+ exp
[

2+ µp(λ − t)
] (3)

where G is the P. acidilactici growth as biomass or cells (g L−1

or cells mL−1). Gm represents the maximum growth or plateau
phase (g L−1 or cells mL−1), λ is the lag phase (h), t denotes the

time of culture (h) andµp
=

4µ
p
m

Gm
is the specific growth rate of the

population (h−1) with µ
p
m being the maximum specific growth

rate (g L−1 h−1 or cells mL−1 h−1).
Non-linear least-squares method (quasi-Newton) was

applied for growth data modeling. Confidence intervals from
the parametric estimates (Student’s t-test) and consistency of
mathematical models (Fisher’s F-test) and residual analysis
(Durbin-Watson test) were evaluated by “SolverAid” macro
(Levie’s Excellaneous website: http://www.bowdoin.edu/~
rdelevie/excellaneous)

2.3. Model Calibration
Reliable single-cell parameters of P. acidilactici are unknown and
were estimated by minimizing the distance between the modified
Fokker-Planck Equations (2a–2d) and the data from the flow
cytometry. The unknown parameters are the growth rate µ, the
fluctuation intensity ξ , the statistics of the mother distribution
(xd and σ ) and the parameter relating mother and daughter
sizes ω. The estimated parameters were used to simulate single-
cell dynamics based on the individual-based modeling approach
(1a–1d).

The method of least squares was used to define the distance
between the model and the data. Essentially, it aims at
minimizing the differences between the stationary distribution
of sizes calculated with (2a–2d) and the stationary distribution
estimated from the data. The experimental distribution was

obtained using different replicates at one given time using
histograms with a number of bins given by the Freedman-
Diaconis rule. For noisy data, optimization could lead to a
multimodal problem, i.e., it has several sub-optimal solutions
(Vilas et al., 2017). To assure convergence to the global solution in
a reasonable time, the global optimizer Enhanced Scatter Search
(eSS) was employed (Egea et al., 2009).

3. RESULTS AND DISCUSSION

3.1. Population Statistics of Single-Cell
Growth and Division Obey a Modified
Fokker-Planck Equation
3.1.1. Deterministic Growth and Division
We first simulate the individual-based modeling of deterministic
growth and division. We assume that cell volumes grow
exponentially and cells divide following the sizer principle, i.e.,
division occurs at a critical volume (Métris et al., 2005; Alonso
et al., 2014; Robert et al., 2014). The adder model is more
realistic while cells are adapting to the growth media (lag phase),
but it becomes a sizer when, as in our case, cells are fully
adapted within the exponential phase (see Figure 1B in Sauls
et al., 2016). It should be noted that considering an adder model
would complicate considerably the derivation of the equivalent
Fokker-Planck equation without altering the final results.

Figure 1A shows the simulations of the deterministic single-
cell dynamics. All the cells have the same volume because they
grow and divide at the same velocity and time. For this example
only 3 parameters are required: the daughter volume (υd) and
the mother volume (υm = 4), depicted in dashed blue and red
lines, and the single-cell growth rate µ = 0.7. At time 0 there
is only one cell that grows until reaching the critical volume of
division (or mother volume). This cell divides into two cells of
half their volumes (daughter volume). Therefore, at time 1 there
are two cells that cannot be distinguished in the figure because
their dynamics overlap. The process is repeated until reaching a
population of 32 cells at time 5.

The dynamics of the population volume distribution obey a
modified Fokker-Planck equation that, as shown in Figure 1B,
consists of a pulse that oscillates between the daughter and
mother volumes. Each color line represents the distribution at
a different time and are simulated using the partial derivative
Equation (2a) with stochastic parameters set to zero (ξ = 0
and σ = 0) and the single-cell parameters in Figure 1A (υd =

2, υm = 4,µ = 0.7).
This model with deterministic growth and division is invalid

since the population statistics fluctuates instead of evolving to
a stationary distribution. Fishov et al. (1995) explained how
balanced exponential growth implies steady-state growth and
stationary frequency distribution of the various components that
constitute the cell. In words by Painter and Marr (1968) “the
distribution of each intensive random variable is time-invariant.”

3.1.2. Stochastic Growth and Deterministic Division
Single-cell measurements of bacteria suggest that growth is a
stochastic process (see for example Figure 1A in Deforet et al.,
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FIGURE 1 | Population statistics of bacterial growth obey a modified Fokker-Planck equation from which we can extract information about single-cell behavior.

(A) Simulation of the deterministic individual-based modeling approach shows that cells grow exponentially at the same rate and divide at the same time into two cells

with equal volume when reaching a critical size (the mother volume). (B) The statistics of the population volume obey a modified Fokker-Planck equation that oscillates

between mother and daughter volumes without reaching a stationary distribution. (C) Individual-based modeling with stochastic growth assumes that the logarithm of

the volume is subject to a stochastic fluctuation δW characterized by a Wiener process. (D) Simulation of the equivalent modified Fokker-Plank now shows that the

population volumes evolve to a stationary distribution. (E) Individual-based modeling can be used to estimate the histogram of the stationary distribution, but at the

expenses of expensive computations that scale exponentially with time and linearly with the number of cells in the population. The distribution is sharp and skewed to

the right and encodes single-cell features such as the mother and daughter volumes, fluctuation, and growth ratios. (F) The modified Fokker-Planck simulates the

continuous shape of the stationary distribution (red line) in a efficient way that is independent on the number of cells within the population. (G) The individual-based

modeling simulates stochastic growth and division. (H) The resulting stationary distribution of the population volumes is smooth and equivalent when calculated using

the individual-based modeling and the modified Fokker-Planck equation.

2015 for Pseudomonas aeruginosa). Alonso et al. (2014) proposed
an individual-basedmodeling approach reproducing such single-
cell dynamics. They assumed that the logarithm of the volume is
subject to a stochastic fluctuation δW characterized by a Wiener
process following Equation (1a). We use the same assumption
to model stochastic growth. Figure 1C shows simulations of the
single-cell dynamics with stochastic growth and deterministic
division. After the first division (time = 0.9) the dynamics of the
two daughter volumes differ and the same happens with division
times.

We confirm how simulations of the population statistics
with stochastic growth now evolve to a stationary distribution
(Figure 1D) as predicted by (Fishov et al., 1995). At time 0 the
distribution is a Dirac delta function that spreads and moves
between mother and daughter volumes. The rate of spread
depends on the intensity of the fluctuation ξ whereas the velocity

of the moving pulse is determined by the growth parameter
µ. Single-cell parameters are as in previous section (υd =

2, υm = 4,µ = 0.7) except for the fluctuation that it is
now ξ = 0.1.

The stationary distribution can be calculated either using a
large number of single-cell simulations (1a–1d) or solving the
modified Fokker-Planck equation (2a–2d). We plot in Figure 1E

the histogram for a population of 1e6 cells using the individual-
based modeling approach. The mode of the histogram coincides
with the daughter volume whereas the end of the histogram is the
mother volume. The shape depends on the growth rate µ and the
fluctuation ξ . Normalizing the area of this histogram we obtain
the blue probability density function in Figure 1F. The modified
Fokker-Planck equation, on the other hand, calculates directly
the probability density function (red line). Both approaches
coincide as shown in Figure 1F.
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Results with stochastic growth and deterministic division
evolve to a stationary distribution, but sharper than observed
experimentally. In fact, the distribution of E. coli is commonly
approximated for some authors by a smooth log-normal
distribution (Kaya and Koser, 2009; Athale and Chaudhari,
2011). In addition, the end of the distribution (the mother
volume) is not exactly the double of the mode (the daughter
volume) in experiments.

3.1.3. Stochastic Growth and Division
A great amount of works in the literature assumes stochastic
division and focus on the distribution of mother or daughter
sizes (Amir, 2014; Taheri-Araghi, 2015; Taheri-Araghi et al., 2015;
Sauls et al., 2016). Some works measure symmetric distributions
close to a normal distribution (Sauls et al., 2016), whereas others
assumed asymmetric distributions. That is the case of Koch
(1966) and Amir (2014) who concluded that the daughter volume
distribution is log-normal.

We extended our model considering that cells divide
stochastically with a certain probability, either normal (Sauls
et al., 2016) or log-normal (Amir, 2014). In other words, we
moved from a strict sizer model to a sizer model with stochastic
division. For the simulations in Figure 1G we assumed log-
normal division. Now cells may divide before or after reaching
the volume of 4 (red dashed line). As the model was implemented
in the logarithm of the volume X, the log-normal stochastic
division in the logarithm becomes a normal probability with
mean υm = 4 and a standard deviation that we assumed to be
σ = 0.1. The remaining parameters are kept as in the previous
section (υd = 2, vm = 4,µ = 0.7, ξ = 0.1).

As shown in Figure 1H, results from the individual-based
modeling coincide with the modified Fokker-Planck also for
stochastic growth and division.

We should note how it is critical to assume stochastic
growth and division to obtain realistic and smooth stationary
distributions where the mode is larger than the daughter
volume (υd).

3.1.4. Comparison of Individual-Based Modeling and

Population Modeling with the Modified

Fokker-Planck Equation
Individual-based modeling is a bottom-up approach providing
valuable information at the single-cell level, but it requires
parameters that cannot be easily measured (Ferrer et al., 2009;
Augustin et al., 2015). Themodified Fokker-Planck equation here
presented focuses on population statistics that can be measured
by flow cytometry. Comparisons between this equation and the
experimental data are sufficient to estimate single-cell parameters
that can be used for individual-based modeling.

The modified Fokker-Planck equation directly provides the
evolution of the volume distribution without the need of
predefining a probability density function. When populations
are not large enough, the histograms calculated with individual-
based modeling are too poor to extract relevant statistics. It is
then usually preferred to assume a certain family of probability
density functions. The precision of the modified Fokker-Planck
equation, however, depends only on the discretization method

to solve the partial differential equation, and works for large
and small populations whenever the assumptions of the Wiener
process are satisfied (Gardiner, 2004).

In addition, individual-based modeling is characterized
by requiring long computational times which make its use
prohibitive in applications that demand many model evaluations
(An et al., 2017), such as parameter estimation. The computation
time of individual-based modeling grows exponentially with
time, whereas the growth is linear for the equivalent modified
Fokker-Planck equation. Note that the individual-based
modeling approach requires one equation per cell. As cells
grow exponentially, computation time scales linearly with the
number of cells and exponentially with time. The modified
Fokker-Planck equation, however, is a unique partial differential
equation (PDE). Its computation time will depend on the degree
of discretization and the simulation time. For the examples in
Figure 1, computational times (2–6 s) are similar until time 15
(population of less than 3e4 cells) for both approaches. However
from this time the modified Fokker-Plank equation becomes
more efficient in orders of magnitude.

Moreover, the partial differential equation for stochastic
growth has a diffusion term allowing efficient simulations using
the appropriate techniques. Classical discretization methods
transform the partial differential equation into a large number
of ordinary differential equations. When the original equation
is diffusive, a number of methods are at hand to take
advantage of this property and significantly reduce the number
of ordinary differential equations, thus reducing computational
times (Trefethen, 2000; García et al., 2008).

3.2. Flow Cytometry Allows Estimation of
Volume Distributions for P. acidilactici
Flow cytometry is the standard technique for fast acquisition
of population statistics. It is commonly employed to estimate
different mammalian cell characteristics such as cell size using
forward scattered light. This technique is also useful for bacteria,
but as their diameters are close to the light wavelength (488 nm or
0.5 µm), side scattered light has better resolution and is preferred.
Figure 2A shows how side scattered light (y-axis) discriminates
among different bead diameters. Events in red, green, pink and
blue correspond with beads of diameters 0.2 , 0.5 , 1 , 2 µm,
respectively. Sizes smaller than 0.2 µm were below the detection
limit of the device.

Estimation of bacterial diameters from side scattered light
requires two steps: (1) to find the correlation between the bead
diameter and side scattered light and (2) to transform the bead
diameters to bacterial diameters. Figure 2B shows that the bead
diameter is a second order polynomial of side scatter (Julià et al.,
2000; Prats et al., 2010). However, bacteria and polystyrene beads
have different refractive indexes. To correct the differences in
the refractive index we make use of the linear relationship in
Chandler et al. (2011). The figure shows in the right y-axis the
final relationship between bacterial diameter (d) and side scatter
(SSC), outlined in the following expression:

d = a(p1 SSC
2
+ p2 SSC + p3)+ b (4)
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FIGURE 2 | Flow cytometry is an efficient technique to extract volume distributions of coccoid bacteria such as Pediococcus acidilactici. (A) Side scatter light (y-axis)

discriminates among round beads of different diameters represented in red, green, pink, and blue for diameters 0.2, 0.5, 1, and 2 µm, respectively. (B) Bead diameter

correlates with side scatter as a second order polynomial (Julià et al., 2000; Prats et al., 2010) and can be transformed into bacterial diameter following the linear

relationship in Chandler et al. (2011). (C) Flow cytometry correlogram and gating (red box) of fluorescent dye Sybrgreen with side scatter light for Pediococcus

acidilactici after 8 h of growth. (D) Growth kinetics of P. acidilactici in terms of biomass and cell counting shows that the selected time where we took the sample

(t = 8 h) is within the exponential phase (error bars are the confidence of intervals for n = 5 and α = 0.05). (E) Estimated diameter distribution of five replicas of the

population of Pediococcus acidilactici at time 8. (F) Population volume distributions of Pediococcus acidilactici at time 8.

where SSC is the side scatter channel, a = 3.2911 and
b = −0.2769 are the parameters provided in Chandler et al.
(2011) to correct the differences in the refractive index and
p = [p1, p2, p3] = [6.13× 10−6 , − 0.0043, 0.94] the estimated
parameters of the second-order polynomial.

We acquired and processed side scatter data of P. acidilactici
at one sampling time after 8 h of growth. Figure 2C shows the
flow cytometry correlogram of Sybrgreen fluorescence and side
scatter for one of the replicates. Red points indicate beads used to
count the number of events.

The red box defines the gating where viable cells lie. We
used two sources of information to define the gating: Sybrgreen
fluorescence and experiments counting viable cells at different
diameters. Sybrgreen was helpful to determine those events with
too low DNA material to be consistent with a viable cell (upper
and lower horizontal lines of red box). They probably represent
either dead cells from the lag phase that have lost some of their
DNA material, or free DNA detected as an event. Only with this
gating, most diameters were between 1 and 2.5 µm as reported in
the literature (Holt, 1994). However, the first calibrations of the
model suggested that smaller cells were not able to divide. We
passed cells through a 1.2 µm filter and found that only about 2%

of the cells were viable. Consequently, we did not consider cells
smaller than 1.2 µm (left vertical line of the red box).

In order to assume that the selected sampling time (t = 8 h)
was within the exponential phase of growth, we estimated growth
kinetics in terms of biomass and cell counting. Figure 2D shows
the experimental curves with the standard sigmoid growth
pattern for lactic acid bacteria. Both cases are described by
the logistic equation (3) (R2

= 0.993–0.999). p-values from
Fisher’s F-test show consistency and robustness of the logistic
to appropriately describe these profiles (Table 1). It is noted
that no autocorrelation was observed in the fittings (data not
shown). All parameters were statistically significant (t-Student
test). The production of biomass was 25–30% lower as compared
to previous cultures (Vázquez and Murado, 2008) which may
be due to the minimum inocula employed in the present study.
Typically, inocula used for the production of bacteriocins from
lactic acid bacteria including P. acidilactici are much more
populated, reaching values of 105 − 107 cfu/mL and longer
productive periods (Vázquez et al., 2008).

Five data replicates at t = 8 h and the relationship in (4) were
combined to estimate the volume distribution of P. acidilactici.
Figure 2E shows the bacterial diameter distribution of different
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replicates at time 8 h calculated from relationship (4). Volume
distributions in Figure 2F are calculated by applying the volume
equation of a sphere to the diameter histograms. Error bars
show the mean and standard deviation of the histogram values
for the five replicates. The distribution is smooth and skewed
to the right, as expected from the modeling analysis in section
3.1. A similar behavior was observed in volume distributions
of E. coli growing inside a population (Gangan and Athale,
2017).

3.3. The Modified Fokker-Planck Equation
Is Combined with Flow Cytometry Data to
Find the Single-Cell Behavior of
P. acidilactici
The volume distributions of the P. acidilactici at time 8 h
provide enough information to find the single-cell parameters of
the modified Fokker-Planck equation. The problem consists in
finding the best set of parameters of the modified Fokker-Planck
equation that represents the experimental volume distributions
by solving a least square problem.

Preliminary computations demonstrated the inability of the
model in (2a–2d) to reproduce the data, suggesting that the

TABLE 1 | Summary of the parameter values obtained from the fittings of

P. acidilactici growths (biomass and cells production) to the logistic Equation (3).

Parameters Biomass Cells

Gm 0.990± 0.021 g L−1 (10.14± 0.72)× 108 cellsmL−1

µp 0.904± 0.021 h−1 1.163± 0.394 h−1

λ 8.23± 0.18 h 6.72± 0.61 h

µ
p
m 0.224± 0.018 g L−1 h−1 (2.95± 0.93)× 108 cellsmL−1h−1

R2 0.999 0.993

p-values <0.0001 <0.0001

Statistical parameters R2 and p-values are also shown.

volume of each daughter is approximately one-fourth of the
mother volume, i.e., υd = (1/4)υm. This hypothesis contradicts
the principle of binary fission and had to be rejected because,
if a mother gives two cells of this size, total volume would
be destroyed and not conserved during division. This would
imply that the specific growth rate of the population µp differs
from the growth rate of the single-cell volumes µ, contradicting
common observations in rod-shaped bacteria (Taheri-Araghi
et al., 2015; Harris and Theriot, 2016). We could devise that
this hypothesis, however, may be plausible in coccoid cells since
cell volume, membrane area, and diameter scale differently.
In fact, assuming that cells are spheres, simple calculations
indicate that membrane area, instead of volume, is conserved if
υd = (1/4)υm. However, it is well-known that coccoid bacteria
create membrane (septal growth) before division (Pinho et al.,
2013; Monteiro et al., 2015), suggesting again, that volume is
conserved.

It resulted that the data pointed out to another mechanism
to explain the daughter volumes: P. acidilactici, like Pediococcus
pentosaceus and other coccoid cells (Zhou et al., 2010; Pinho et al.,
2013; Monteiro et al., 2015), have two planes of division (Turner
et al., 2010). That means that cells undergo two consecutive
divisions and, at the time-scales of interest, one mother
divides into four daughters with fourth of the mother volume.
Hence we derive the individual-based and population-based
modeling approaches considering two planes of division (see
Appendix).

Figure 3A compares experimental data with both models at
the population and single-cell levels considering two planes of
division. Table 2 shows the single-cell parameters used in the
simulations. The three elements exhibit the same steady-state
volume distribution. The black line represents the experimental
data (see also Figure 2F) and the red line and histogram are
the solutions of the modified Fokker-Planck distribution and
individual-based modeling, respectively.

All the estimated parameters are within the selected bounds
(see Table 2) except for the standard deviation of the distribution
of mother volumes (σ ). Probably, this parameter tries to

FIGURE 3 | The modified Fokker-Planck equation allows us to estimate single-cell behavior of Pediococcus acidilactici from acquisition based on cytometry data at

one sampling time within the exponential phase. (A) The stationary distribution of Pediococcus acidilactici (black line) coincides with the modified Fokker-Planck

equation (red line) and the individual-based modeling (blue histogram). The single-cell parameters to simulate both models were obtained by minimizing the differences

between data and the stationary Fokker-Plank equation. (B) Single-cell dynamics of Pediococcus acidilactici with the estimated parameters. During the cycle of a

single-cell, the volume growths four times and it divides in four daughters.
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TABLE 2 | Bounds and estimations of the best set of parameters of the modified

Fokker-Planck equation to reproduce the experimental volume stationary

distribution of P. acidilactici.

θ θmin θmax

υm = 4.5574 1 9

µ = 1.1619 0.7 1.5

ξ = 0.13439 0.075 0.2

σ = 0.3 0 0.3

We assume that bacteria have 2 division planes and therefore one mother produces four

daughters of 1/4 of the mother’s volume. Upper bound on the standard deviation of the

statistics of division σ was considered 0.3 to avoid overlapping between distribution of

mother sizes and daughter sizes.

accommodate the errors for assuming that the mother divides
into four perfectly round daughters. For coccoid cells with
two planes of division, there is a short transition where cells
are not completely round (Pinho et al., 2013; Monteiro et al.,
2015). For the time-scales here considered this is a simplification
that seems appropriate. Moreover, we have tried to reduce
this bound resulting in similar estimations but with worse fit.
For all these reasons we have considered an upper bound for
the standard deviation of the mother distribution sufficiently
small to avoid relevant overlapping between the mother and the
daughter distributions. In this way, we force a scenario where
the probability of having daughter volumes greater than mother
volumes is low. Note that a standard deviation of 0.3 is reasonable
attending to other mother distributions in the literature (Amir,
2014).

We also validate the results confirming that the specific
growth rate of the population, µp in (3), coincides with the
growth rate of the cell volume, µ in (A1a) and (A2a). Both
population and volume should increase by one-fourth in one cell
cycle. The specific growth rate of the population was estimated
using the growth curves of P. acidilactici in Figure 2D. The
calculated specific growth rate (1.1619 h−1) is similar to the
rate using cell counting with cytometry (1.163± 0.394 h−1) and
larger than the rate estimated from the biomass growth curve
(0.904± 0.021 h−1).

Individual-based modeling of P. acidilactici can now be
implemented using the estimated single-cell parameters in
Table 2. Figure 3B depicts the simulations starting with one cell
at the mean of the daughter volumes (υd = υm/4 = 1.14).
We observe how the fluctuations, dependent on ξ , resembles
experimental single-cell dynamics in the literature (Deforet et al.,
2015). In order to obtain such simulations, it is critical to consider
that during division one mother gives four daughters, volume is
conserved and that volumes grow four-fold during a cell-cycle.

4. CONCLUDING REMARKS

In this work, we have developed a modified Fokker-Planck
equation describing the statistics of a population from

their single-cell parameters. The model is based on the
assumptions that cell volumes grow exponentially and cells
divide following the sizer principle. We have tested and
numerically compared the modified Fokker-Planck with its
equivalent individual-based modeling approach. Simulations
resulted critical to understand several observed phenomena
during the exponential phase of growth of bacteria, including
the necessity of considering stochasticity to obtain a distribution
of volumes that is time-invariant and similar to experimental
observations.

The modified Fokker-Planck equation is also a powerful
tool to estimate the behavior of single-cells inside populations.
Instead of requiring single-cell measurements, we make use
of flow cytometry to find the volume distribution of a
population of P. acidilactici within the exponential phase. The
combination of the modified Fokker-Planck equation with data
provides information about the growth rate and stochasticity
of the single-cell volume, as well as the statistics of the
mother and daughter volumes. For a good correspondence
between model and data, it is fundamental to assume that
the P. acidilactici have two planes of division and its volume
and population numbers grow by a fourth during a cell
cycle.

The proposed methods allow efficient analysis of flow
cytometry data to find single-cell behavior. In fact, they pave the
way for studying cell heterogeneity in numerous applications in
food microbiology, such as in quantitative risk assessment and
prediction of shelf life.
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APPENDIX

The individual-based modeling equations assuming 2 planes of
division lead to:

δXi
= µδt + ξδW with Xi

= ln (V i) (A1a)

If Xi
≥ Xm ∼ fXm (x), Xn+1

→ Xi
− ln (4) (A1b)

Xn+2
→ Xi

− ln (4) (A1c)

Xn+3
→ Xi

− ln (4) (A1d)

Xi
→ Xi

− ln (4) (A1e)

and the equivalent modified Fokker-Planck equation now reads:

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 4fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− 3 p(t, x)Z
︸ ︷︷ ︸

normalization

being (A2a)

Z =

∫ x

x
Fm(x)

∂J(t, x)

∂x
dx (A2b)

p(t, x) = p(t, x) = 0 ∀t boundary conditions (A2c)

p(0, x) = δ(x− xd) ∀x initial conditions (A2d)
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A corrigendum on

Stochastic Individual-BasedModeling of Bacterial Growth and Division Using Flow Cytometry
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1. There was a mistake in the writing of the cell growth term in Equation (2a) as published. The
correct version appears below.

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 2fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− p(t, x)Z
︸ ︷︷ ︸

normalization

(1)

2. The same mistake is repeated in equation (A2a). The correct version appears below.

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 4fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− 3 p(t, x)Z
︸ ︷︷ ︸

normalization

being (2)

The authors apologize for these mistakes. This error does not change the scientific conclusions of
the article in any way.

The original article has been updated.
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Nowadays control of the growth of Saccharomyces to obtain biomass or cellular

wall components is crucial for specific industrial applications. The general aim of this

contribution is to deal with experimental data obtained from yeast cells and from

yeast cultures to attempt the integration of the two levels of information, individual and

population, to progress in the control of yeast biotechnological processes by means of

the overall analysis of this set of experimental data, and to assist in the improvement

of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae

growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied.

A set of digital images was taken during the population growth, and a protocol for the

treatment and analyses of the images obtained was established. The piecewise linear

model of Buchanan was adjusted to the temporal evolutions of the yeast populations

to determine the kinetic parameters and changes of growth phases. In parallel, for

all the yeast cells analyzed, values of direct morphological parameters, such as area,

perimeter, major diameter, minor diameter, and derived ones, such as circularity and

elongation, were obtained. Graphical and numerical methods from descriptive statistics

were applied to these data to characterize the growth phases and the budding state

of the yeast cells in both experimental conditions, and inferential statistical methods

were used to compare the diverse groups of data achieved. Oxidative metabolism of

yeast in a medium with oxygen available and low initial sugar concentration can be taken

into account in order to obtain a greater number of cells or larger cells. Morphological

parameters were analyzed statistically to identify which were the most useful for the

discrimination of the different states, according to budding and/or growth phase, in

aerobic and microaerophilic conditions. The use of the experimental data for subsequent

modeling work was then discussed and compared to simulation results generated with

INDISIM-Saccha, which allowed us to advance in the development of this yeast model,

and illustrated the utility of data at different levels of observation and the needs and logic

behind the development of a microbial individual-based model.

Keywords: Saccharomyces cerevisiae, morphometry, image analysis, aerobic, microaerophilic, Buchanan model,

individual-based model, INDISIM-Saccha
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INTRODUCTION

Saccharomyces cerevisiae, known as brewer’s yeast or bread yeast,
is one of the yeasts with the greatest economic and social impact.
Saccharomyces cerevisiae is a facultative anaerobic yeast and
a Crabtree-positive yeast. In the presence of oxygen and low
glucose concentration (e.g., below 10 g/L) it usually uses oxidative
metabolism, but ferments in higher glucose concentrations (e.g.,
above 10 g/L) regardless of oxygen concentration. Alcoholic
fermentation is the most widely used in several industrial
processes. When the conditions of the environment vary
S. cerevisiae must adapt to the environmental changes being
forced to pass in a short period of time from aerobic conditions
to microaerophilic and anaerobic conditions at the end, changing
the type of metabolism depending on the concentration of
oxygen present in its neighborhood.

There is an increasing interest in yeasts because of
the potentiality of whole cells. For some biotechnological
applications, it is very important to obtain large amounts of
yeast biomass (rather than ethanol, as happens in other types of
applications). In order to obtain greater numbers of cells or larger
cells with more cellular components usable in diverse industries,
Saccharomyces must grow in a medium with oxygen available
and low initial sugar concentration, to avoid the Crabtree effect.
The yeast obtained is utilized as starter in fermented beverage
industries, or as probiotic yeast with health benefit, and it
is also used to obtain cellular components such as proteins
and polysaccharides (e.g., glucans), which are of great value as
functional ingredients in the food industry (Arevalo-Villena et al.,
2017).

Like all microorganisms, S. cerevisiae has defined growth
phases that characterize the temporal evolution of population
size in a batch culture: adaptation or latency phase (lag phase),
exponential or logarithmic phase (log phase), stationary phase,
and death phase. The determination of the different growth
phases of a culture can assist in the understanding of the changes
experienced by microbial population and single microorganisms.
Studies about yeast life-history traits involved in the adaptation
to different environments are indispensable. Carrying capacity
(maximum size of the population that can be supported upon the
available resources), reproduction rate or intrinsic growth rate,
and cell size are three life-history traits affected by the medium.
For instance, understanding the causes of the variability and
correlations of life-history traits in a yeast batch culture requires
the analysis of the rate of resource uptake, which depends both on
the amount of resources in the environment and on the activity of
enzymes involved in the uptake (Spor et al., 2008); in that work,
these three life-history traits were strongly affected by the glucose
content in the culture medium, with obvious trade-offs between
carrying capacity and growth rate, and between growth rate and
cell size.

Morphometry, a branch of morphology that refers to
quantitative analysis of form (size and shape), can be applied
to unicellular microorganisms. In the case of S. cerevisiae,
spheroidal cells, ellipsoidal cells, and sometimes cylindrical cells
can be observed. The components of size and shape are obtained
from a set of quantitative variables such as length, width,

height, angles, etc. that can be analyzed statistically in order
to summarize the changes undergone in the object of study,
that is, the microbial cell (Bookstein, 1997). The morphometric
analysis consists of three fundamental stages: image processing,
acquisition of variables, and statistical analysis (Toro et al.,
2010). It should be noted that the growth rate, mutation, and
environmental conditions affect the size and shape of the yeast.
For instance, when S. cerevisae grows in anaerobic conditions,
cells are generally smaller than cells grown under aerobic
conditions (Liesche et al., 2015). In addition, the morphology of
the cells is closely related to their physiological state and their
status in the cell cycle (Coelho et al., 2004). The relevance of cell
size measurements to study the response of yeast cells submitted
to various stresses has also been shown (Tibayrenc et al., 2010;
Portell et al., 2011).

Modeling, from its broadest definition, is a very necessary
tool to represent, analyze and discuss issues related to
biological systems. The classical mathematical modeling
based on continuous functions, derivable functions, differential
equations, optimization methods, function adjustments,
together with statistical modeling are by far the most
widely used methodologies. Computational models are an
interesting alternative to these methodologies and they are a
modeling approach that is gaining pace to investigate microbial
systems. Among them, the agent-based models or individual-
based models (IBMs) are becoming more frequently used
(Gorochowski, 2016; Hellweger et al., 2016; Jayathilake et al.,
2017). In order to investigate a microbial system the above
mentioned tools or methodologies are necessary, and can
complement one another, providing additional information
that benefits the overall modeling task. The diverse sets of
experimental data, from macroscopy or population-level and
from microscopic or individual-level, proceeding from the
system itself, enhance the different modeling methodologies,
since they provide the opportunity to deal with different types of
observations of the same system.

Microbial IBMs are computational models that explicitly
simulate autonomous living entities. Traditionally, they have not
been deemed necessary to deal with microbial liquid cultures,
usually assumed to be performed by axenic populations under
perfectly homogeneous media; however, even clonal populations
show biological heterogeneity in the individual behavior
(González-Cabaleiro et al., 2017). Microbes (individuals) are
treated as unique and discrete entities which have at least
two independent properties plus their position in the medium.
Rules are applied to define the individuals and the behavior
of the medium; hence, the descriptor rule-based approach
fits the methodology. The behavior of the population, of
all existing individuals at any given time, emerges from the
cumulative behavior of biotic interactions (among individuals)
and abiotic interactions (between individuals and surrounding
medium), which are interactions at individual-level. At the same
time, the system-level dynamics constrain the behavior of the
individuals. IBMs facilitate the understanding and formulation
of the connection between individual microbes and properties
at population level (e.g. heterogeneity, diversity, structure), as
well as the interactions of microbes within the population
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and with their changing environment. INDISIM-YEAST is a
microbial IBM that simulates a generic budding yeast, and it
was used to assess the methodology for the investigation of
this microbial population (Ginovart et al., 2007, 2011a,b). After
that, a quantitative IBM which was focused on the fermentative
(anaerobic) growth of the yeast S. cerevisiae was designed and
termed INDISIM-Saccha (Portell et al., 2014). However, the
fact that this model incorporated a fermentative (anaerobic)
yeast metabolism limited its applicability for the study of some
interesting biotechnological processes. Thus INDISIM-Saccha
was extended and adapted to take into account the aerobic
growth of S. cerevisiae, obtaining only some preliminary results
at a population level, but not those results corresponding to an
individual level of observation (Portell, 2014).

Microbial IBMs in general (Hellweger et al., 2016), and
in particular INDISIM-Saccha (Portell et al., 2014) construct
a virtual representation of a real system, which allows the
characterization of the cells by means of their size, shape, and
biomass. Thus, this type of model is capable of dealing with ideas
that configure certain purposes of biotechnological applications
using these individuals (their biomass and/or cellular wall
components), facilitating the investigation of the system by
modeling individual actions or behaviors directly linked with
metabolic pathways, reproduction and viability, limited or
stimulated by the local environmental conditions where the
microbe is located. This representation of a microbial system
allows the inclusion of diverse life-history traits involved in the
adaptation of yeast to its environment, for instance, at population
level, the reproduction rate estimated by the intrinsic growth rate
or the carrying capacity (maximum size of population supported
by the available resources), and, at the same time, at individual
level, the cell size related to lifespan. Aging in the mother cell by
means of an asymmetry and replicative lifespan and aging in the
population by means of nutrient availability and chronological
lifespan of the individual yeast cells (Cipollina et al., 2007;
Carmona-Gutierrez and Büttner, 2014) are taken into account in
the INDISIM-Sacchamodel. These different forms of yeast aging
enable the control of population dynamics.

The need to connect experimentalists and modelers in
general, and in particular, the combination of microbial IBMs
and experimentation has recently been advocated as microbial
individual-based ecology (Kreft et al., 2013; Hellweger et al.,
2016). Microbial IBMs use data provided by individual-
based observations but the integration of these data into the
formulation and implementation of these models is not a direct
task. A gap between modelers and experimentalists does really
exist and efforts to bring together and encourage cooperation
between both communities is indispensable (Hellweger, 2017;
Succurro et al., 2017). Providing clear evidence of the utility of the
experimental data for, and the needs and logic behind the IBMs
can be a valuable and straightforward way of filling the stated gap.

The aims of this work are: (i) to obtain and analyze the
results of the different morphometric parameters from the digital
image analysis of yeast cells growing in two initial oxygen
conditions (aerobic and microaerophilic cultures); (ii) to analyze
the kinetic parameters of the population growth in order to
detect the transition among lag, log, and stationary phases; (iii)

to identify and connect the individual yeast states and population
growth phases using individual-based and population-based
experimental observations; (iv) to detect in both concentrations
of oxygen the population growth phases with either larger cells or
greater number of cells; (v) to explore and critically assess the data
analysis developed in the improvement of the parameterization
and calibration of INDISIM-Saccha, carrying out the testing of
somemodel predictions, both at a population level and single-cell
level.

MATERIALS AND METHODS

Experimental Data
The experimental study was carried out using the Saccharomyces
cerevisiae (LALVIN DV10, LALLEMAND Australia), a yeast
strain with remarkable biotechnological characteristics. The
medium used in the aerobic growth tests was composed of
10 g/L glucose, 3 g/L yeast extract, and 3 g/L of casein peptone.
In microaerophilic conditions, the medium was supplemented
with 0.5 g/L sodium thioglycolate and 0.001 g/L resazurin which
acted by lowering the redox potential of the medium and redox
indicator respectively. The media pH was adjusted to 3.5 with
ortophosphoric acid. In aerobic conditions the inocula were
cultured in 250mL cotton-plugged flasks with 100mL of the
samemedia used in the experimental cultures. Inmicroaerophilic
conditions the inocula were cultured in 50mL tubes completely
filled with the described media. The inocula were incubated at
27◦C and stirred magnetically for 72 h. The cultures for the
experimental data were cultivated in a 1,000mL flask, with
600mL of the same fresh medium, inoculated with 0.1mL of the
preculture and also incubated at 27◦C using a magnetic stirrer
(300 r.p.m.) for approximately 30 h.

The experiments were performed with five replicates. Every
90min a sample was extracted from four flasks to be analyzed,
reserving the fifth flask for measuring the dissolved oxygen.
Viable population, dissolved oxygen and glucose concentration
were determined regularly throughout the 30 h of the study.
Ethanol concentration was determined at 18 h and at the
end of the study. Colony forming units were determined
by using the pour plate method. Glucose concentration was
measured by high-performance liquid chromatography equipped
with RI detector (HPLC; Bekman). Ethanol concentration was
determined with a Hewlett Packard 5890 Series II GC equipped
with flame ionization detection using nitrogen as carrier gas.
Initial dissolved oxygen concentration was determined with an
oxygen electrode (OxyGuard, Handy Polaris).

Acquisition of Digital Images
Images were taken using a Nikon Eclipse LV100 microscope
equipped with a digital camera Nikon Infinity 1 Tv lens C-
0.45x mounting an objective Nikon Lu Plan Fuer 50x/0.08◦

(numerical aperture). After calibration, the software Perfect
Image v7.7 was used to obtain the images. The pixel size found
was 0.0975µm. Cell preparations were obtained every 90min for
the four replicates of the aerobic and microaerophilic conditions,
producing three images per preparation. Samples were not
sonicated before being processed (see also Supplementary
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Material). When necessary, the cell suspension was diluted in
sterile saline solution and homogenized using a Vortex mixer.
Figure 1 shows an example of the images obtained.

Digital Image Analysis
ImageJ is an open source image processing program for
multidimensional image data with a focus on scientific imaging
in the public domain (http://rsb.info.nih.gov/ij/index.html). Fiji
is a distribution of ImageJ that focuses on biological-image
analysis (http://fiji.sc/Fiji). To analyze all digital images obtained
a protocol was designed and performed using the open source
image processing package Fiji (Schindelin et al., 2012). The 32
B color images were transformed to binary files following the
steps summarized in Figure 2. A blurred copy of the image was
subtracted from the original image in order to decrease the noise
coming from the background and the resulting 32 B color image
was saved as an 8 B greyscale image. The image contrast was
enhanced using the options “Saturated pixels” and “Normalize”
from the “Enhance Contrast” tool. After segmentation using the
option “Auto Threshold” from the “Adjust” menu of Fiji, the
image was saved as a 1B black and white image. Four more steps
were then applied to the binary image to obtain separated yeast
cells: automatic object closing, hole filling, object separation, and
manual object closing (Pertusa, 2010).

Each of the cells studied was analyzed individually to
verify that the ImageJ program had complied with the criteria
previously established in the protocol of the digital image analysis
to separate the objects correctly. In order to identify the budded
cells in the image analysis, in the case of pairs of cells, it was
considered that the buds were those cells which were smaller than

the one to which they were adhered. However, when a couple of
cells were of similar sizes they were digitally processed as separate
cells. Thus, from direct visual inspection of the images collected,
the budding state (yes or not) of each one of the cells was

FIGURE 2 | The first steps performed for the digital image analysis.

FIGURE 1 | An image showing yeast cells available for analysis. The labels “B” and “U” exemplify cells classified as budded cells (B) or unbudded cells (U) after the

analysis of the image (see text).
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manually recorded (as would have been done with the help of a
microscope). Figure 1 shows some examples of the classification
applied to the yeast cells as budded cells and unbudded cells.

Imaged objects (yeast cells) were characterized by
measuring direct and derived morphological parameters.
Direct morphological parameters studied were: the area (A),
the perimeter (P), the major diameter (DMAX), and the minor
diameter (DMIN). The derived morphological parameters
computed and studied were circularity and elongation (or aspect
ratio). The circularity (C) is a measure of the agreement of the
shape of the object to a perfect circle (C = 1) that takes into
account the area and perimeter of a cell, and can be computed as
follows:

C = 4 π
A

P2
(1)

The aspect ratio (AR) is the quotient between the major diameter
and minor diameter of the ellipse fitting inside the object surface:

AR =
DMAX

DMIN
(2)

and it can also be regarded as a common measure of elongation
(E) because values moving away from 1 indicate an increasingly
elongated shape.

A macro was implemented in the ImageJ program to carry out
the analysis of all the images in the most automatic way possible
(fix the scale, introduce fixed values of some parameters, improve
image contrast, etc.), obtaining better defined cells with no
dirty spots or background noise around them. After performing
several tests to adjust the threshold, three macros were created
with three different methods for the “Auto Threshold” option
included in Fiji. The most frequently used method was “Default,”
although depending on the image, the options “Intermodes”
or “Yen” were applied since they better defined the cells, with
clearly delimited borders and less noise. However, once a macro
was executed, to evaluate whether a manual intervention was
necessary in this process, it was verified that: (i) all the analyzed
objects were considered as cells of interest, since the program did
not distinguish a yeast cell from other objects (such as air bubbles
or suspended particles); (ii) the budded cells remained attached;
and (iii) the correct execution of the closures of the edges of the
cells was made.

Analysis of Data at Both the Microbial

Population Level and the Individual Level

of Yeast Cells
In a microbial system there are macroscopic observations
that inform about the temporal evolution of the population,
and microscopic observations that provide information on the
specific characteristics of the cells making up this population.
In this study both type of observations were accomplished and
the investigation of the system was carried out by combining
and comparing results on kinetic parameters of adjusted
continuous dynamicmodels at the population level (macroscopic
observations), and on models related to the distributions
of individual properties of the elements that configure this

population (microscopic observations). Thus, for the analysis
of the data two different methodologies were applied according
to the typology of the observations. In the first stage of the
process, the modeling of the growth of the microbial population
with the estimated kinetic parameters that characterized the
temporal evolution was used. In the second stage of the modeling
process, the individual variables (area, perimeter, minor diameter,
major diameter, circularity and elongation) of the cells forming
these populations were studied by means of the evolutions of
their distributions. At this stage, the information obtained in the
first stage of the population analysis was taken into account.

Both numerical summaries (descriptive statistics) and
graphical summaries (boxplots, histograms, and scatterplots)
were performed to synthesize and provide information for the
two growth conditions (aerobic and microaerophilic). Possible
association between pairs of variables were tested using the
Chi-square test of independence.

From the temporal evolutions of number of yeast cells, the
fitting of the three phase linear model known as Buchanan model
(Buchanan et al., 1997) was carried out. It is a simple but good
enough model for the purposes of this work, since it allowed
us to estimate the kinetic parameters involved in the definition
of the three main phases that characterize a typical curve of
microbial growth in a closed liquid culture: lag phase, log phase,
and stationary phase. In the Buchanan model, the three phases
are described as follows:

P (t) =















P0 for t ≤ tlag

P0 + u
(

t − tlag
)

for tlag ≤ t ≤ tmax

Pmax for t ≥ tmax

(3)

where: P(t)is the base 10 logarithm of population density at time t
(Log cfu/mL); P0 is the base 10 logarithm of the initial population
density (Log cfu/mL); Pmax is the base 10 logarithm of the
maximum population density maintained by the environment
or the carrying capacity of the system (Log cfu/mL); t is the
elapsed time (h); tlag is the time at which the adaptation phase
ends (h); tmax is the time in which the maximum population
density is reached (h); and µ is the specific growth rate of the
culture (Log cfu/mL h−1). The model describes the evolution
of the population providing a mathematical method for the
adjustment of growth curves with a good approximation to
the way in which microbiologists have traditionally estimated
the kinetic parameters of growth. The piecewise linear model
of Buchanan was fitted to the experimental data with the
nlsMicrobio package (Baty and Delignette-Muller, 2014) of the
statistical program R (R Core Team, 2013). Point estimations
of all the kinetic parameters involved in the definition of this
model were obtained, identifying and characterizing the three
growth phases, lag, log, and stationary, for each of the eight
temporal evolutions available (four replicates for the two growth
conditions).

To assess the influence of the medium conditions on the
growth kinetic parameters obtained, the Student’s t-test was used
to compare the two means (independent samples for aerobic
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vs. microaerophilic), assuming or not equal standard deviations
depending on the result of the Bonett test (for the comparison of
variances).

In order to analyze the morphologic data acquired from
the individual yeast cells, graphical and numerical summaries
of the direct morphologic variables (area, perimeter, minor
diameter and major diameter) were obtained, as well as of the
variables derived from them (circularity and elongation). Data
were grouped first by sampling times and growth conditions
(aerobic or microaerophilic). Furthermore, the fact that each
yeast cell belonged to one of the three different phases identified
with the Buchanan model (for each replicate) contributed to the
interpretation and comparative analysis of the results.

Contingency tables were used to study the independence
between cell classification variables by considering the growth
medium, the growth phase and the state of the cellular
cycle (budded cell or unbudded cell). Scatterplots and linear
correlation coefficients aided in the examination of linear and
nonlinear relationships between the different variables. The
analysis of variance (ANOVA) was applied to compare the means
of the variables studied for the different groups determined by
growth conditions, growth phase and bud state, followed by the
corresponding separation of means. Nevertheless, because these
data had unequal variances between groups the Welch’s ANOVA
test was run and subsequently Games-Howell method was used
to compare all pairs of groups.

Discriminant analysis, a multivariate technique to classify
observations into two or more groups from a data set with
known groups (the training set), was applied to the data set of
the four replicates taken together. It also helped to investigate
how variables (predictors) contributed to group separation and
to place individuals into defined groups (response). This can
be used to develop rules for classifying other data sets for
which group membership is not known. Linear discriminant
analysis, one of the most commonly used techniques, assumes
multivariate normality of the variables measured within each
group and equal variances and covariances within each group.
Using this model, linear discriminant analysis creates variables
(discriminant functions) that are combinations of the original
variables, which discriminate maximally between groups, and a
quadratic analysis is used instead when the assumption of equal
variances and covariances for all groups is not adequate (Sparks
et al., 1999).

The program Minitab R© 17 (2010) and the significance level
5% were used in the statistical analyses.

INDISIM-Saccha: An Individual-Based

Model of the Yeast Saccharomyces

cerevisiae
The original INDISIM-Sacchamodel focused on the fermentative
growth of S. cerevisiae and was introduced to the scientific
community by the work of Portell et al. (2014), which was
accompanied with Supplementary Material online, with a
detailed description of INDISIM-Saccha and some significant
aspects of the process used for the parameterization of this
model. Here an overview of the modeling methodology used

in the present work is shown. INDISIM-Saccha was developed
to analyze the dynamics of S. cerevisiae in anaerobic batch
cultures evolving in a non-stirred liquid medium with glucose
as a main carbon source and organic and inorganic nitrogen
sources. Global simulation scheduling consisted of initialization
of the simulated system with the entrance of the input data,
establishment of the initial configuration of the population,
initial setting of the space, and the time step loop (which is
repeated until the end of the defined time steps) including the
random order of the individuals’ acting order, the individual
actions loop, the actions over the medium, and the output of
variables. At each time step and at the individual actions loop,
the existing yeast cells carry out, sequentially, the following set of
actions: (i) random motion, (ii) uptake of the three substrates,
namely, glucose, organic nitrogen and ammonium (controlled
by the internal carbon to nitrogen ratio of the yeast cell) using
size-based uptake submodel, (iii) metabolism with maintenance
requirements, creation of carbon reserves, new mass synthesis,
and release of substances, (iv) reproduction of mother cells and
daughter cells, with a budding phase and an unbudded phase,
and (v) lifespan (both chronological and replicative lifespan are
considered).

INDISIM-Saccha assumes that the cellular cycle involves two
differentiated phases. Phase 1, or unbudded phase, covers most
of Gap1 phase (G1) and a very small fraction of synthesis phase
(S) in the traditional division of the cell cycle; while Phase 2, or
budding phase, covers a small fraction of G1, most of S and all
of Gap2 phase (G2) and mitosis phase (M) (see Prats et al., 2010;
Ginovart et al., 2011a,b, and references therein). Conceptually,
the model assumes that in the unbudded phase the yeast cell is
getting ready for budding and that change to the budding phase
takes place only when the cell: (i) has attained aminimum cellular
mass, defined by the parameter mC, the critical or minimum
mass; and (ii) has achieved a minimum growth of its mass, which
is related to the model parameter 1mB1. Within the model, two
conditions must be satisfied for the releasing of the bud, and
the subsequent change to the unbudded phase. These are: (i)
a minimum growth of mass, which is related to the parameter
1mB2; and (ii) a minimum time interval, which is related to the
parameter 1t2.

For further comprehension of the model the reader is referred
to the published work Portell et al. (2014).

Adaptation of INDISIM-Saccha to Tackle Aerobic

Conditions

The model was extended to deal with the analysis of dynamics of
S. cerevisiae batch cultures evolving into a stirred aerobic liquid
medium with glucose as a main C source, organic and inorganic
N sources. This adaptation required the implementation of the
following new features: (i) introduction of oxygen as a metabolic
substrate for the yeast; (ii) utilization of aerobic or anaerobic
catabolic pathways according to the local level of oxygen; and
(iii) control of an individual lag time for the adaptation of
the inoculum to new environmental conditions. When possible,
model parameter values were taken following the work of Portell
et al. (2014), but the new parameters had to be parameterized
anew to guarantee a reasonably good reproduction of some
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experimental macroscopic results of the culture such as glucose,
ethanol and cell density at the first stage of the iterative modeling
process (Portell, 2014).

In INDISIM-Saccha a yeast cell is defined by a set of variables:
the three Cartesians coordinates identifying its position in
the domain; M(t), its structural mass (CNMIC-pmol); B(t), its
genealogical age (bud scars); Ph(t), the reproduction phase in
the cellular cycle in which the cell is currently (unbudded or
budding phase); MStart(t), its “Start mass” (CNMIC-pmol), the
mass required to change from the unbudded to the budding
phase; Minc(t), the increased mass (CNMIC-pmol) since the cell
entered to the budding phase; Tinc(t), time spent into the current
reproduction phase (time steps); RGLU(t), the amount of C
stored in the cell as reserve carbohydrates or in the model as a
glucose polymers (glucose-pmol); RCN(t), the amount of organic
N stored in the cell as a reserve (CN-pmol); Cin

GLU(t), amount
of non-metabolized glucose inside the cell (glucose-pmol); and,
D(t) the mortality index to evaluate cell viability. The values
of these variables of all individual cells are stored internally
and if required, can be used to generate individual based and
global-based simulated observations. The environment simulates
a liquid medium enclosed in a cube whose faces do not allow
neither the ingress nor the egress of either organic or inorganic
elements, with the exception of molecular oxygen that can be, or
not, inflow to the system to maintain aerobic conditions. Four
substrates can be taken up by the yeast cells: glucose (GLU),
organic N (CN), ammonium (NH4), and molecular oxygen
(O2), and ethanol and CO2 can be produced. The reproduction
submodel of INDISIM-Saccha assumes that for a budded cell, the
mass of the bud (MInc) and the mass of the mother cell (M-MInc)
to be spherical. Therefore, it is possible to compute the radius of
the mother (Rm) and the bud mass (Rb).

The metabolism submodel of this extended INDISIM-Saccha
version considers the respiratory catabolic pathway (glycolysis
and Krebs cycle) as the first option in achieving metabolic
energy. Nevertheless, it is assumed that the cell can also use
the fermentative catabolic pathway (glycolysis and alcoholic
fermentation) once the uptaken O2 is depleted (or locally found
at a very low level). This enables to control the level of O2 to
fix growth conditions. Such an assumption allows the model
to be used in aerobic growth conditions with low glucose
contentmedia, i.e., growth conditions not promoting a noticeable
Crabtree effect.

An extra effort needs to be done in order to improve
the parameterization of this new version INDISIM-Saccha able
to tackle yeast growth with oxygen in the medium. The
parameterization and calibration of the model will benefit from
the individual-level data obtained with the digital image analysis
protocol developed in the present work. A new output module
was created so that the INDISIM-Saccha model could mimic the
experimental output obtained in the present contribution. The
stated module stored the reproduction phase (budded cell or
unbudded cell), that is, the values of Rm, and Rb of all the existing
yeast cells at the requested sampling times. It is worth noticing
that displaying the outputs in this way it is possible to simulate
most of the morphologic measures obtained experimentally in
this contribution.

RESULTS

Image Analysis of the Yeast Cells
Table 1 displays the number of cells analyzed in each
experimental replicate for each sampling time for the two
growth conditions, aerobic and microaerophilic.

Before performing the statistical analysis of the obtained
results it was necessary to debug the data set and eliminate some
very extreme outliers.

Examples of data achieved with the digital image analyses are
shown in Figure 3. The sets of boxplots presented are useful for
assessing and comparing sample distributions. They display the
temporal evolutions of 50% of central data with the location of
means and medians of the samples for each time corresponding
to direct (area, perimeter, major and minor diameter) and
derived (circularity and elongation) morphologic parameters
studied for two of the eight replicates, one performed in aerobic
conditions and the other in microaerophilic conditions. From
the boxplots it is clear that the majority of the distributions are
far from Gaussian distributions. These variables change their
values, tendencies and variabilities along the temporal evolutions
studied, and the values for the two growth conditions differ
depending on the ranges used for those representations. These
comments can be generalized to the rest of the experimental
replicates with all variables (data not shown).

TABLE 1 | Number of cells analyzed for the different sampling times and for the

four replicates (R1, R2, R3, and R4) under aerobic (A) and microaerophilic (M)

conditions.

Time

(h)

AR1 AR2 AR3 AR4 ATotal Time

(h)

MR1 MR2 MR3 MR4 MTotal

4.50 40 26 32 35 133 1.50 18 13 10 15 56

6.00 32 31 36 24 123 3.00 11 9 16 0 36

7.50 47 80 45 107 279 4.50 16 11 15 12 54

9.00 67 82 56 59 264 6.00 15 15 13 21 64

12.00 39 34 31 51 155 7.50 22 13 21 16 72

13.50 43 49 35 40 167 9.00 17 17 23 21 78

15.00 35 77 69 12 193 10.50 15 17 24 18 74

16.50 58 41 38 77 214 11.75 19 23 18 25 85

18.00 62 142 138 80 422 12.25 9 9 7 14 39

19.50 207 121 150 202 680 13.50 16 15 16 14 61

21.00 152 127 106 185 570 15.00 17 25 40 24 106

22.50 269 197 154 163 783 16.00 17 30 28 33 108

24.00 254 156 69 171 650 16.50 43 32 26 26 127

25.50 162 172 132 204 670 19.50 29 48 42 35 154

27.00 128 276 245 127 776 21.00 60 31 35 36 162

35.00 104 73 96 215 488 22.50 27 33 38 35 133

36.50 102 78 181 97 458 24.25 52 48 24 33 157

47.75 183 161 183 142 669 25.75 64 80 23 20 187

1,984 1,923 1,796 1,991 7,694 27.25 22 64 36 44 166

28.75 7 17 43 68 135

30.25 71 77 56 59 263

567 627 554 569 2,317
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FIGURE 3 | Temporal evolutions of boxplots for the data of the set of variables studied corresponding to replicate 1 with aerobic conditions (A) and replicate 4 with

microaerophilic conditions (B). On the boxplots, a line is drawn across the box at the median. Asterisks denote outliers (data that were more than 1.5 times the

interquartile range above or below the box), and the “x” symbol represents the mean.
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Population Kinetic Parameters
Before fitting the Buchanan model the data were transformed
using the base-10 (common) logarithm. The visual inspection
of the adjusted piecewise linear model, together with the
information generated by the nlsMicrobio package of
the statistical program R, confirmed that for the eight replicates
the quality of the fitting was very good. Figure 4 shows two
examples of this type of adjusted model, one with aerobic
conditions and the other with microaerophilic conditions,
in which the estimates of the parameters involved are also
displayed.

Once the parameters of the Buchanan model for each of the
experimental replicates were estimated (Table 2), the transition
time between the end of the log phase and the beginning of
the stationary phase (tExp−Stat) could be calculated by replacing
the corresponding values of the estimates in the mathematical
expression of the piecewise linear model. Furthermore, from this
information the duration of the log phase for each replicate was
estimated as the difference between the time of the entrance
in the stationary phase and the duration of the adaptation or
output of the lag phase. Taking into account the information
in Table 2 each of the objects identified as a yeast cell with
the digital analysis performed was labeled to indicate to which
population growth phase they belonged. From the estimates of
the kinetic parameters obtained by the fitting of the Buchanan
model (Table 2), the temporal evolutions of the eight replicates
were characterized.

In order to compare the kinetic parameters in the two growth
conditions the Student’s t-test for independent samples was
applied. It can be concluded that the maximum growth rates
for both conditions were significantly different (p = 0.016),
with a greater growth rate in aerobic conditions. The means
of the times in which the change from log phase to stationary
phase took place were also significantly different (p < 0.001),
with a greater time for microaerophilic conditions. Regarding
the duration of the log phase, significant differences were also
observed between the two growth conditions (p < 0.001), and,
in particular, this duration was greater for the microaerophilic
case. For the rest of parameters studied (initial population, final
population and duration of the lag phase) it was concluded that
the differences were non-significant at 5% (p-values were equal to
0.259, 0.747, and 0.086, respectively). Therefore, the evenness of
mean values for these parameters in the two growth conditions
was maintained.

Descriptive Analysis of the Distributions of

the Morphologic Parameters of Yeast Cells

Throughout the Different Phases of

Population Growth
Considering that sampling of images was carried out during
the population growth, and using the estimations of the kinetic
parameters obtained previously with the Buchanan model, it was
possible to locate each of the sampling times for each of the
eight replicates (4 aerobic and 4 microaerophilic) to one specific
population growth phase (lag, log, or stationary). Once the data

sets debugged, the graphical representation and characterization
of the distributions for the different morphologic variables
according to the sampling times were conducted for each of the
replicates of the two growth conditions tested, were conducted
(data not shown). Since no noteworthy differences were detected
between the behaviors observed for the four replicates in each
of the two growth conditions, the data of the four replicates
for each time sampling for both conditions were combined and
analyzed for both conditions. Hence, changes in the central
trends of distributions according to the growth phase, changes in
variability or range of distributions, as well as changes in the form
of distributions, were much better appreciated and more evident.
Figure 5 and Figures S2.1–S2.4 of the Supplementary Material
illustrate this type of information obtained from the individual
analysis of the cells.

Figure 5 shows the variable area of cells. In aerobic conditions
the areas range from 20 to 70 µm2 and that the distribution
of the percentages vary according to the phase of growth in
which the population is. Mainly in the lag phase (sampling
times at 4.5, 6, and 7.5 h), but also in the stationary phase
(sample times greater than 20 h), there is a higher percentage
of cells of areas smaller than 45 µm2. However, during the
log phase there is an increase in the percentage of cells with a
larger area (greater than 45 µm2), some of them even reaching
up to 75 µm2. In general, the areas followed approximately
normal (Gaussian) distributions, with the exception of the
end of log phase and beginning of the stationary phase that
presented bimodal distributions. In these distributions, the
smaller areas showed the highest frequencies. In microaerophilic
conditions most of the areas range of values from 20 to
80 µm2 and even, in some cases, reach values of 95 µm2

in the first samples, which correspond to the lag phase, yet
with lower percentages. Shape and central tendency of the
distributions of the areas change slightly according to the growth
phase. During the lag phase (sampling times less than 9 h)
and stationary phase (samples corresponding to times beyond
27 h), the highest percentages correspond to values of low and
medium areas (<55 µm2). In the log phase, the distribution
of the cell areas shifts toward intermediate and high values
(60–80 µm2). The distributions of areas in the lag and log
phases are, for the most part, rectangular distributions, but
at the end of the log phase and in the stationary phase the
distribution tends to be about normal. The values of the areas
may be associated with the growth phase, and the differences
are better appreciated in aerobic rather than in microaerophilic
conditions. In general, it is also observed that the cells in the
lag phase and stationary phase are smaller than those in the
log phase. The temporal distributions of the cell perimeters
(Figure S2.1 in Supplementary Material) display in general
similar behaviors to those observed with the cell areas (Figure 5).
Figure S2.2 in SupplementaryMaterial presents histograms of the
major diameter and minor diameter of the cells. The temporal
evolutions of the variables estimating shape, namely, elongation
(or aspect ratio) and circularity, are displayed, respectively, in
Figures S2.3, S2.4, which can be found in the Supplementary
Material.
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FIGURE 4 | Examples of population growth, with the data of one replicate under aerobic conditions (top) and the other under microaerophilic conditions (bottom),

fitted to the Buchanan’s piecewise linear model and the sets of corresponding kinetic parameter estimations provided by the nlsMicrobio package of R, from the

formula: LOG10N ∼ LOG10N0 + (t ≥ lag) * (t ≤ (lag + (LOG10Nmax − LOG10N0) * log(10)/mumax)) * mumax * (t − lag)/log(10) + (t ≥ lag) * (t > (lag + (LOG10Nmax

− LOG10N0) * log(10)/mumax)) * (LOG10Nmax − LOG10N0), where lag corresponds to time at which the change from lag phase to log phase occurs, the duration of

the lag phase (h); mumax is the maximum rate of growth (Log cfu/mL h-1); Log10N0 is the logarithm of the initial population (Log cfu/mL); and Log10Nmax is the

logarithm of the maximum population (Log cfu/mL).
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TABLE 2 | Summary of the kinetic parameters for the replicates of the aerobic conditions and the microaerophilic conditions with: tLag−Exp, duration time of the lag

phase or time at which the change from lag phase to log phase occurs (h); µ max, maximum growth rate (log cfu/mL h−1); Log10 (N0), logarithm of the initial population

(log cfu/mL); Log10 (Nmax), logarithm of the maximum population (log cfu/mL), and tExp−Stat, time in which the change from log phase to stationary phase occurs.

Aerobic conditions Microaerophilic conditions

Parameters R1 R2 R3 R4 Mean ± StDev R1 R2 R3 R4 Mean ± StDev

tLag−Exp 6.31 8.63 7.51 7.37 7.46 ± 0.95 6.79 7.95 7.22 7.14 7.28 ± 0.49

µ max 0.80 0.95 1.01 0.74 0.88 ± 0.13 0.54 0.60 0.52 0.55 0.55 ± 0.03

log10 (N0) 4.62 4.90 4.45 4.70 4.67 ± 0.19 4.48 4.60 4.53 4.59 4.55 ± 0.06

log10 (Nmax) 8.97 9.14 9.03 8.86 9.00 ± 0.12 9.16 9.19 9.09 9.57 9.25 ± 0.22

tExp−Stat 18.83 18.89 18.00 20.34 19.02 ± 0.97 26.58 25.61 27.25 28.03 26.48 ± 0.82

FIGURE 5 | Histograms of the area variable for the pooled data of the four replicates under aerobic conditions (A) and of the four replicates under microaerophilic

conditions (M) corresponding to different sampling times.

Relationships between Morphologic

Variables of Yeast Cells and Phases of

Population Growth According to the State

in the Reproduction Cycle
It is evident that the studied variables of shape and size are
considerably affected by the state of the cellular reproduction
cycle. Taking into account the direct visual inspection of the
images collected and the manual data recorded on the budding
state of each of the cells, the dichotomous variable budding
(Yes/No) was incorporated to the analysis.

Chi-square test for independence was used to assess the
relationship between the two categorical variables (budding,
growth phase) from the contingency table or cross tabulation of
the pooled data (the two growth conditions together). As was
expected, there was a strong evidence of association between
the two variables (p < 0.001). For the 582 cells belonging to
the lag phase only 184 were budded cells (31.6 %) and for the
5881 cells belonging to the stationary phase only 2719 were
in the budding phase (46.2%), while in the log phase from
the 3144 cells controlled, 2221 cells were in the budding phase
(70.6%).
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In order to analyze the association of these two variables,
and to characterize their distributions, the raw data were split
according to the budding phase, and the subsequent distributions
were studied again. This separation of the data affected the
shape, location and variability of the morphologic distributions
in a very remarkable way. After having introduced the variable
budding in the analysis, the distributions became much more
regular and symmetric, approaching Gaussian distributions. The
analysis of variance (ANOVA) was used to compare the means
between the different subgroups obtained from the combination
of these three factors (growth conditions, growth phase and
budding reproduction). As the assumption of equal variances
between groups was violated, Welch’s one-way ANOVA test
was performed. Once it was concluded that the means of
subgroups were significantly different for all the variables (all
p-values < 0.001), then the Games-Howell test was used to
compare differences between all pairs of groups. Table 3 provides
a numerical summary of the variables according to these three
factors studied.

For instance, regarding the area variable, Figure 6 displays
a set of histograms corresponding to different sampling times,
presenting the budded and unbudded cells separately for each of
the two growth conditions.

Table 3 shows that for each phase, the mean of the areas of
the unbudded cells in microaerophilic conditions were greater
than those in aerobic conditions, and the same applies for the
budded cells. In general, the means of the areas of budded
cells were higher than those of unbudded cells, although not
always significantly different. In relation to the means of the
areas according to the growth phase, the budded cells in
microaerophilic growth did not present significant differences
between lag and log phases, nor when comparing the unbudded
cells. Nevertheless, in aerobic conditions there were significant
differences between the means of areas for lag and log phases
in both cases (budded and unbudded cells). In the stationary

phase for budded and unbudded cells and in both growth
conditions, the means of the areas were reduced, although
not always with significant differences. The highest values
for the mean of the area were achieved by budded yeast
growing in microaerophilic conditions during the lag and log
phases with values of 65.6 and 60.7 µm2 (not significantly
different). The means of the perimeters behaved similarly to
the means of the areas. About the variability of the area
distributions, the biggest coefficient of variation (35.5%) was for
the unbudded cells grown in microaerophilic conditions that
were in the lag phase (followed by those cells that were in
the stationary phase, with a value of 29.5%), while the smallest
coefficient of variation of the area distributions (21.1%) was
for the budded cells grown in aerobic conditions that were
in the stationary phase. The group of budded cells grown
in microaerophilic conditions in the log phase had a small
coefficient of variation (23%).

Regarding the three growth phases, the means of the minor
diameters in aerobic conditions behaved differently from those
in microaerophilic conditions (Table 3). The mean of the minor
diameters of the unbudded cells under aerobic conditions in the
lag phase was higher than those in the log and stationary phases.
The latter two means showed no significant differences between
them. The means of the lag and log phases behaved similarly
in both growth conditions. Regarding the major diameters, the
means followed the same pattern in the three growth phases. The
means of unbudded cells in aerobic conditions showed the lowest
values, while the highest values corresponded to the budded cells
in microaerophilic conditions in lag and log phases. Unbudded
cells in microaerophilic conditions, and budded cells in aerobic
conditions showed significant differences according to growth
phases. The means of the major diameters of the lag phase
were higher than the means of the log and stationary phases,
except in the case of budded cells under aerobic conditions. In
microaerophilic conditions the means of budded cells in the

TABLE 3 | Number of yeast cells (N), means (± standard deviations) of the groups formed with the combinations of the three factors (growth condition, population growth

phase, individual state in the reproductive cycle) with the grouping mean information using the Games-Howell Method (95% confidence).

Conditions-

Phase-Budding

N Area (µm) Perimeter (µm) Minor diameter (µm) Major diameter (µm) Elongation Circularity

A-lag-N 303 29.65 ± 7.98 g 21.46 ± 3.21 f g 5.70 ± 0.84 e 6.50 ± 0.91 g 1.15 ± 0.09 d 0.80 ± 0.07 d

A-lag-Y 61 39.24 ± 9.05 d 26.04 ± 3.61 d 5.79 ± 0.77 d e 8.58 ± 1.40 d 1.50 ± 0.27 c 0.72 ± 0.06 e

A-log-N 760 26.44 ± 7.71 h 19.62 ± 3.06 h 5.40 ± 0.77 f 6.12 ± 1.00 h 1.14 ± 0.10 d 0.85 ± 0.04 a b

A-log-Y 953 46.34 ± 11.82 c 29.58 ± 4.01 c 5.59 ± 0.73 e 10.45 ± 1.71 c 1.88 ± 0.29 b 0.66 ± 0.07 f

A-stat-N 3,027 26.25 ± 6.54 h 19.48 ± 2.61 h 5.39 ± 0.67 f 6.12 ± 0.85 h 1.14 ± 0.10 a 0.86 ± 0.04 a

A-stat-Y 2,276 43.20 ± 9.12 d 29.25 ± 3.63 c 5.32 ± 0.59 f 10.28 ± 1.49 c 1.95 ± 0.28 d 0.63 ± 0.06 h

M-lag-N 95 38.93 ± 13.82 d e 24.20 ± 4.86 d e 6.35 ± 1.04 a b c 7.66 ± 1.78 e 1.21 ± 0.25 d 0.82 ± 0.07 c d

M-lag-Y 123 65.58 ± 19.10 a 35.27 ± 5.47 a 6.72 ± 0.97 a 12.24 ± 2.19 a 1.83 ± 0.28 b 0.65 ± 0.06 f g

M-log-N 163 33.93 ± 8.29 e f 22.41 ± 3.00 e f 6.12 ± 0.80 c d 6.96 ± 0.93 f 1.14 ± 0.10 d 0.84 ± 0.04 b c

M-log-Y 1,268 60.67 ± 13.93 a 34.05 ± 4.34 a 6.35 ± 0.76 a b 12.05 ± 0.74 a 1.91 ± 0.25 b 0.65 ± 0.06 f g

M-stat-N 135 30.69 ± 9.06 f g 21.16 ± 3.40 g 5.75 ± 0.88 e 6.66 ± 1.05 f g 1.16 ± 0.11 d 0.85 ± 0.04 a b c

M-stat-Y 443 48.90 ± 13.05 b 30.95 ± 4.60 b 5.59 ± 0.80 e 10.99 ± 1.81 b 1.98 ± 0.29 a 0.63 ± 0.06 g h

Where: M, microaerophilic condition; A, aerobic condition; lag, adaptation phase; log, exponential phase; stat, stationary phase; Y, budded cells; N, unbudded cells.

Means that do not share a letter are significantly different.
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FIGURE 6 | Histograms of the corresponding area variable in different sampling times where the data were split according to the two growth conditions and state in

the reproduction process. A, aerobic conditions; M, microaerophilic conditions; S, budded cells and; N, unbudded cells.
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lag and log phases were significantly different from that in the
stationary phase.

From direct visual inspection, a set of 5124 budded cells was
gathered, with a mean elongation value of 1.92 and a coefficient
of variation of 14.6%. Considering the data of the two growth
conditions together, the 95% confidence interval of the mean
elongation was (1.91, 1.93). The median of this data set was 1.95,
and the 50% of the central values for elongation of budded cells
ranged between 1.76 and 2.12. However, the means of elongation
corresponding to the different phases of growth were 1.72, 1.90,
and 1.95 for the lag, log and stationary phases respectively, with
their corresponding 95% confidence intervals (1.68, 1.77), (1.89,
1.91), and (1.94, 1.96) respectively. No significant differences
were observed for unbudded cells, regardless of the growth phase
or the growth conditions, obtaining the smallest values. Under
microaerophilic conditions the elongation had always higher
values than under aerobic conditions. Taking into account the
budded cells, for the log and stationary phases no significant
differences were detected between both growth conditions,
while for the lag phase the elongation means were significantly
different. The mean elongation of the lag phase and budded cells
in aerobic growth was much lower than the rest of budded cells
with a value of 1.5 (Table 3).

In both growth conditions, the means of the circularity values
of the unbudded cells were higher than those of the budded
cells, and significantly different, with values clearly far from
1 (Table 3). Considering the unbudded cells, the highest value
observed was 0.86 and the smallest was 0.80 corresponding to
cells in the stationary phase and in the lag phase for aerobic
growth conditions. In microaerophilic growth and unbudded
cells there were no significant differences of the means of
circularity according to the growth phases. The means of the
circularity of the budded cells were different depending on the
growth phase in aerobic conditions. The differences for this
variable in function of the phases were smaller in microaerophilic
growth than in aerobic growth.

Discriminant Analysis in Aerobic and

Microaerophilic Conditions
All the variables can be considered to be approximately normally
distributed within each group, except circularity and elongation.
Therefore, these two variables were excluded from the analysis.
Since equal variances could not be assumed, a quadratic
discriminant function was used, and there was no need to
jackknife or cross-validate the results because the data set was
sufficiently large (Sparks et al., 1999).

First, the data set of the cells was used in an attempt
to discriminate between the two growth conditions (aerobic,
microaerophilic) on the basis of their morphometry (area,
perimeter, major diameter, minor diameter). The overall
percentages of the cells that could be correctly allocated to
aerobic and microaerophilic conditions were: area (78.5%),
perimeter (70.2%), major diameter (69.0%), and minor diameter
(73.8%), with partial percentages of correct classification in
each group ranging from 60.9 to 82.1%. If allocations to
growth conditions were completely at random one would expect

50% correct allocation. When two predictors were combined,
the percentages were slightly improved. In particular, it was
worth considering the combinations: area-perimeter (80.4%)
and major–minor diameters (76.5%), because the former is
connected with circularity, and the latter with elongation. The
four-predictor combination was disregarded due to collinearity.
Since the morphometric predictors showed a strong potential to
discriminate between growth conditions, discriminant analysis
to classify cells according to phase (lag, log, stationary) and to
budding (Yes–No) is discussed below for each growth condition
separately. The results are displayed in Table 4. It should be
remembered that if allocation to groups budding and phase
were completely at random, one would expect a 50% and a
33.3% correct allocation, respectively. From Table 4 it is clear
that in both growth conditions, all the predictors, except minor
diameter, showed a high potential to classify cells into groups
according to their budding condition. The main differences in
the discriminant power were detected when allocating cells to
their growth phase. In microaerophilic conditions all predictors
presented overall percentages much larger than 33.3%. However,
the partial percentage of cells in lag phase correctly classified
fell far below 33.3%, except for predictors minor diameter, and
the combination major–minor diameters, with all the partial
percentages in each phase above 33.3%. On the contrary, in
aerobic conditions the overall percentages did not achieve 33.3%,
except for the minor diameter. Nevertheless, even in this case not
all groups were well classified. A more detailed analysis revealed
that cells in stationary phase were not correctly classified, in
general. To achieve a better discrimination in aerobic conditions,
phase and budding were merged into a new group phase-
budding, with six categories. Hence, if cells were allocated at
random, one would expect a 16.67% correct allocation. The
overall percentages improved in general: area (46.3%), perimeter
(48.7%), major diameter (48.0%), minor diameter (24.9%), area-
perimeter (53.4%), major-minor diameters (54.9%). It is worth

TABLE 4 | Quadratic discriminant analysis of morphometric predictors, showing

allocation of cells to groups (phase, budding), in aerobic and microaerophilic

conditions.

Group

Percentages

correct (overall)

Predictors Phase Budding

Aerobic Area 18.4 85.0

Perimeter 18.2 92.0

Major diameter 18.2 94.7

Minor diameter 57.9 50.4

Area–Perimeter 33.1 95.3

Major diameter–Minor diameter 28.0 97.0

Microaerophilic Area 56.0 79.6

Perimeter 59.5 89.1

Major diameter 57.2 91.3

Minor diameter 52.4 62.8

Area–perimeter 52.8 94.1

Major diameter–Minor diameter 57.0 94.4
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pointing out that only for major diameter and area-perimeter all
the groups showed partial percentages above 16.67%.

Simulations with the Individual-Based

Model INDISIM-Saccha
The IBM INDISIM-Saccha was extended by the incorporation of
an oxygen-using metabolic alternative (see section Adaptation
of INDISIM-Saccha to Tackle Aerobic Conditions). The
preliminary simulation results aimed to test whether the adapted
model was also capable of tackling experimental cultures
with oxygen available, combining outputs at population level
and at individual level in order to take full advantage of the
experimental data recently achieved and previously analyzed.

Experimental results were compared with simulation results
at population level by means of the number of cells in the
population growing in aerobic conditions and in microaerophilic
conditions as Figures 7A, 8A respectively show. Nevertheless,
with the study performed on the experimental distributions of
the individual characteristics of yeast cells offered new options
and challenges to be explored. A preliminary exploration of
the outputs at individual level related with the mass of the
yeast cells was carried out. Distributions of areas and volumes
for budded and unbudded cells were recorded (see section
INDISIM-Saccha: An Individual-Based Model of the Yeast
Saccharomyces cerevisiae). A direct comparison can be drawn
between simulation and experimental data. The simulated size
distributions corresponding to the 7.0 and 16.5 h for aerobic
conditions are shown in Figure 7B. Similarly, formicroaerophilic
conditions the simulated size distributions obtained at the
sampling times 9.0 and 25.5 h are shown in Figure 8B. As can
be seen, the area distributions from the simulated population
followed unimodal distributions that change during time.
Comparing the simulated distributions to their experimental
equivalents a number of remarks can be made. First, simulated
distributions during the lag phase (results not shown) did
not change while changes were evident in the distributions of
areas, perimeters, minor and major diameters, as well as in the
derived morphologic variables (elongation and circularity) as
Figure 5 and Figures S2.1–S2.2 display. Second, simulated both
budded and unbudded cells were smaller than those observed
experimentally, and the amplitude of the distributions found
experimentally was greater; and, in addition, the simulated
distributions were well formed (Figures 7B, 8B).

Several sets of simulations were carried out modifying the
values of the parameters of the reproduction submodel. When
these values increased, both mean cell sizes and amplitude of the
simulated distributions of budded and unbudded cells increased
and became closer to the experimental values. However, there
was a fundamental difference between the experimental and
the simulation sampling procedures that partially explained the
discrepancies observed. The fact that a small allicot of the
experimental procedure was being measured against the whole
simulated population suggested that the sampling effect had
to be accounted for also in the simulations. Consequently,
samples of the virtual system were also generated in order to
represent the simulated size distributions. Figures 7C, 8C show
these improved simulation results. Nevertheless, focusing on
the glucose, ethanol and cell number temporal evolutions, the

agreement between experimental and simulated values became
poorer (results not shown).

DISCUSSION

A collection of digital images of S. cerevisiae cells growing in
two different initial concentrations of oxygen was processed
to perform subsequently the statistical analysis of a set of
morphologic parameters. A working protocol was established
for the treatment of digital images of yeast cells using the free
program ImageJ-Fiji, adjusting the parameters when necessary
and designing different macros to automate the procedure. It
turned out that the automation of the image analysis was not
always the most suitable method, nor did it guarantee the
thorough analysis of all the cells. Therefore, an individualized and
manual review of all the analyzed cells was carried out, including
the supervision of the corresponding morphologic parameters
and the budding state with the visual inspection.

Concerning the type of model selected for the population
growth, the Buchanan model proved to be very appropriate
to fit the data analyzed, since in all the microbial cultures
the different growth phases could be clearly identified
(adaptation-lag, exponential-log, and stationary). The temporal
experimental evolutions of yeast populations for the aerobic
and microaerophilic conditions were well characterized from
the estimations of the parameters provided by the fitting to the
Buchanan model and from derived calculations. All the kinetic
population parameters obtained from the model (durations of
the lag and log phases, maximum growth rate, final population
or carrying capacity, times of change from the log to the
stationary phase) are of great microbiological interest for specific
applications in biotechnology. However, it is necessary to point
out that the values for the kinetic parameters also depend on
the adjusted model (Buchanan et al., 1997; López et al., 2004;
Griffiths et al., 2016). This fact should be taken into account
when comparing experimental results with simulated results, as
well as when referring to published results.

The production of starter cultures, a remarkable
biotechnological application, using a batch process with a
respiratory metabolism in microaerophilic conditions, according
to the results obtained, allows the log phase to be extended,
thus obtaining fully active and ready cells to be used as starters
for a longer period of time. Therefore, the achievement of a
long-term log phase of a population is positive for the industry.
Starter populations that are in stationary phase suffer from a
delay in their metabolic activity in the adaptation phase and in
longer fermentative processes (Ekberg et al., 2013). In addition,
in the stationary phase there is an aging of the population
and a reduction of viable cells as a consequence of lack of
nutrients. When the situation persists it causes the damage cell
accumulating and cell death (Carmona-Gutierrez and Büttner,
2014).

Likewise, the population level parameters assisted to the
interpretation of the morphologic parameter distributions of
the yeast cells collected from the analysis of the digital images
during the successive population growth phases. According to the
purpose of the yeast cultivation, the study of growth conditions
advantageous for the attainment of either a high number of yeast
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FIGURE 7 | Outputs obtained in aerobic conditions. (A) Temporal evolution of the experimental data of the four replicates of the population growth (different symbols)

with a simulation performed with INDISIM-Saccha (continuous line). (B) Distributions of the areas of the yeast cells that make up the virtual system (in silico population)

at different sampling times with the data split according to the state in the reproduction process: S, budded cells and N, unbudded cells. Notice that the

representation of the corresponding experimental results by means of small plots have been included in the same area of the simulated plots to facilitate the

comparison. (C) Size distributions that were obtained by changing the value of the standard variability of the minimum reproduction mass (σmC, from 0.15 to 0.25),

the minimum growth required for the cell to start the budding process (1mB1, from 0.5 to 2.0), and the minimum growth required for the bud to detach itself from the

mother cell (1mB2, from 1.0 to 9.0) and its standard deviation (σmB2, from 0.25 to 0.02), while keeping the rest of the parameter values used in the simulation

displayed in (A,B). In addition, the size distributions in (C) were produced by randomly sampling 500 individuals from the simulated yeast population to better mimic

the procedure used to produce the experimental distributions.
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FIGURE 8 | Outputs obtained in microaerophilic conditions. (A) Temporal evolution of the experimental data of the four replicates of the population growth (different

symbols) with a simulation performed with INDISIM-Saccha (continuous line). (B) Distributions of the areas of the yeast cells that make up the virtual system (in silico

population) at different sampling times with the data split according to the state in the reproduction process: S, budded cells and N, unbudded cells. Notice that the

representation of the corresponding experimental results by means of small plots have been included in the same area of the simulated plots to facilitate the

comparison. (C) Size distributions that were obtained by changing the value of the minimum reproduction mass (mC, from 5 to 15), of its standard variability (σmC,

from 0.15 to 0.5), the minimum growth required for the bud to detach itself from the mother cell (1mB2, from 1.0 to 25.0) and of its standard deviation (σmB2, from

0.25 to 0.75) while keeping the rest of the parameter values used in the simulation displayed in (A,B). In addition, the size distributions in (C) were produced by

randomly sampling 500 individuals from the simulated yeast population to better mimic the procedure used to produce the experimental distributions.
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cells or larger cells is noteworthy. For both the kinetic parameters
of the population growth and the distributions of the individual
variables of size and shape of the cells, it was shown that there
were important differences between the two growth conditions
tested. This reinforces the idea that a microbial system should
be analyzed from different perspectives (population - individual)
in order to make the most of the available information in any
modeling process. This two-fold analysis is indispensable and
much more relevant in any iterative process of parameterization
and calibration of IBMs. It has also been established that
the individual information obtained experimentally should be
coupled with that obtained at the population level for the same
system since, for slightly different levels of oxygen significant
differences in population parameters were detected, as well as
in the distributions of individual variables of the yeast cells that
made up those populations.

In both aerobic and microaerophilic growth conditions,
the numerical summaries of central tendency and variability
obtained for the area, perimeter, major and minor diameters,
elongation and circularity of the yeast cells were studied
together with their respective distributions, which were not
always normally distributed. Analysis and comparison of the
distributions of these morphometric variables allowed to connect
them with the three main microbial growth phases (log, lag, and
stationary). These distributions reflected the changes between
population growth phases in both growth conditions, and in a
more relevant way for the aerobic growth, probably due to a faster
growth and greater differentiation between phases.

The distributions of the size variables such as area and
perimeter presented similar evolutions. The results obtained
showed that cells growing in microaerophilic conditions
presented larger areas than those growing under aerobic
conditions. There were wider ranges for the distributions of
the budded cells than for those corresponding to the unbudded
cells. In general, the greatest cellular sizes occurred in the log
phase, in both oxygen conditions, in keeping with other studies
(Powell et al., 2003; Dungrawala et al., 2012), although in certain
conditions their values get closer to those achieved in the lag
phase.

The values of the major diameters, and to a lesser extent, those
of the minor diameters, reproduce again the evolution of the cell
size in the different growth phases, as observed in the variables
area and perimeter. As the log phase progressed, the percentage
of cells with a larger diameter increased, although percentages
of smaller cells (new cells) were also maintained. The bimodal
distributions in the log phase of all size parameters (except for
the minor diameter) indicated the presence of two groups of
cells differentiated by sizes that could be related to mother cells
and daughter cells, the latter not having yet reached critical size
to bud. The increasing percentage of small cells detected in the
stationary phase has been described in several studies (Aragon
et al., 2008; Svenkrtova et al., 2016) and may be related to glucose
depletion. But it may also be connected with the presence of
cells that in the stationary phase could give rise to quiescent
cells (Li et al., 2013; Carbó et al., 2015). Cells in microaerophilic
growth did not present the two size-differentiated subpopulations
at the end of the log phase and at the onset of the stationary

phase, although a wide range of cell sizes could be observed,
probably due to the slower and asynchronous growth. In general,
they were larger than in aerobic growth at all phases. The
small reduction of the initial oxygen concentration in the
medium, such as the one proposed in this study, led to larger
Saccharomyces cells. This could mean an improvement in the
industrial production of cells for dietary supplements or cellular
derivatives, such as glucans used in the bakery industry, or
for their bioactive properties in the pharmaceutical products
(Freimund et al., 2003). Under microaerophilic conditions larger
cells were obtained and foreseeably with greater concentration of
some cell components (although for some type of components
this should be checked, in general it is true for cellular wall
components such as glucans as they, β1-6 and β1-3 glucans,
which constitute about 55–65% of the wall dry weight of the cell
wall, Klis et al., 2002) It is worth bearing this result in mind
if the purpose is to produce cells to extract cell metabolites.
Besides, the populations grown in microaerophilic conditions
weremore homogeneous than those grown in aerobic conditions.
On the other hand, a similar cellular concentration (biomass) was
obtained in both growth conditions, but in aerobic conditions
this concentration was achieved from 8 to 10 h before that in
microaerophilic conditions, which indicates a higher yield in
the aerobic case. Nevertheless, the consumption of glucose was
superior in aerobic conditions, which makes it more expensive
to obtain biomass in industry [the glucose in aerobic growth
was exhausted at 18 h, just at the beginning of the stationary
phase, whereas at the beginning of the stationary phase of the
microaerophilic growth, there were still 6.68 g/L of glucose (data
not shown)].

Differences in shape were also detected (see Figures S2.3, S2.4
of the Supplementary Material). Cells in microaerophilic growth
presented mainly cylindrical or more elongated shape, whereas
those in the aerobic conditions were mostly oval or elliptic.
The elongation and circularity variables provided information on
the deformation of the cells. Coelho et al. (2004) proposed an
elongation value of 1.5 for S. cerevisiae. Although this reference
value must be calculated for each microorganism growing under
specific conditions, it held for the yeast cells in this study, in both
growth conditions, hence allowing the discrimination between
budded and unbudded cells. Differences in elongation values
depending on the growth phase could be in agreement with
the changes of the cell size for the different growth phases.
Regarding the circularity, it was more difficult to establish a value
that allowed to discriminate so clearly the budded cells from
the unbudded cells, since apparently it depended on the growth
phase. The discriminant analysis supported that, in both growth
conditions, size assisted in classifying cells according to their
budding state. However, while in microaerophilic conditions size
could accurately allocate cells to their growth phase, in aerobic
conditions only the combination of growth phase with budding
state granted an adequate discrimination.

Both oxygen concentrations studied affected the growth rate,
cell size and to a lesser degree, the number of viable cells of
Saccharomyces obtained at the end of the study. There is a trade-
off between the growth rate and the cellular size similar to that
shown by Spor et al. (2008) when studying the influence of
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different concentrations of glucose. It was observed that with
a higher concentration of oxygen dissolved in the medium, a
higher growth rate was detected, while cell sizes were smaller;
but, conversely, with lower initial oxygen concentration, a lower
growth rate appeared while cell sizes were greater. There was no
trade-off between the growth rate and the final viable population
achieved unlike the results shown in the work of Spor et al.
(2008); a higher initial oxygen concentration resulted in a greater
growth rate and a greater number of cells achieved in less time
(while more time was required to achieve the same final number
of cells with a little less initial oxygen). Probably this behavior
is due to the fact that the two initial oxygen concentrations
considered in this study did not constitute a stress factor.

Key aspects that should be further developed to move
microbial community modeling toward greater predictive power
have recently been revised (e.g., Song et al., 2014). In many cases,
in a microbial context, it is not yet understood how individual
cells should be programmed, manipulated or cultivated to ensure
the emergence of the required collective behavior. IBMs, together
with a suitable experimental work, makes it easier to tackle these
issues, offering a framework in which to simulate such systems.

The number of studies on IBMs addressing bacterial
populations greatly exceeds those dealing with yeast populations
(Hellweger and Bucci, 2009). However, there are, to our
knowledge, a few microbial IMBs that have been used to tackle
diverse questions related to yeast such as the work of Hellweger
et al. (2014) who investigated the hypothesis of a fitness benefit
of age-correlated stress resistance of yeast, or the work of
Momeni et al. (2013) who examined how through partner
fidelity feedback heterotypic cooperation between yeasts may be
protected against cheaters. Studies performed with INDISIM-
YEAST and INDISIM-Saccha focused on the qualitative behavior
and on the patterns and tendencies of variables connected with
the yeast system and their effect on the growth phases of the
population, specifically on the duration of the lag phase (Ginovart
et al., 2007, 2011a,b) and on the fermentative (anaerobic) growth
(Portell et al., 2014) respectively. Based on individual actions
and parameters for individual yeast cells rather than fitting the
model to data, these IBMs could predict themeasured compounts
profiles as well as biomass and genealogical age distributions.
With the current experimental information gathered and from
the examination of the distributions of sizes and shapes of
individual yeast throughout the different phases of population
growth, a quantitative study was carried out in order to improve
the parameterization and calibration of the new aerobic version
of INDISIM-Saccha. The individual-level observation of size is
an important parameter involved in the uptake submodel, which
takes into account the available nutrient at a microscale patch and
the probability of it encountering and entering the yeast through
the cellular membrane. Likewise, the review of the budding
reproduction submodel could be performed since it allowed not
only to distinguish mother yeast cells from daughter yeast cells,
but also to control the budding process, that is, the times and
masses for the separations of the buds from the cells. Besides,
the consideration of the cellular membrane of the individual
yeast (which is related with its size and geometry) in the uptake
submodel has effect on the amount of nutrients that the cell uses.

The uptake submodel, which assumes that a yeast cell translocates
low molecular weight compounds dissolved in water through
its cell membrane, could be revisited in light of these findings
about sizes and shapes of yeast cells. Such a revision would not
be possible without the availability of hands-on experimentation
as the one presented in this contribution.

There are several models that allow for mathematical
descriptions of distributed cell properties within microbial
populations, and cell size is usually chosen as a model variable
to study yeast populations due to its tight coupling to cell
growth and division, which in the case of this microorganism is
asymmetric (e.g., Hatzis and Porro, 2006; Lencastre Fernandes
et al., 2013). Nevertheless, an IBM grants the representation of
biological actions for a microorganism and its integration into
the structure of the model, and thereby cell size is indirectly
involved in the individual behavior rules. In consequence,
the available resources achieved by the virtual cell are shared
between maintenance, creation of new biomass (size growth)
and reproduction (increasing the size of the bud during the
budding phase), which mostly determines the distribution of
sizes that the model provides. Moreover, the distinction between
timers and sizes, two classical concepts for G1 control, was
investigated in yeast cells, and it turned out that size-independent
noise (presumably molecular noise) is the leading source of
variability in the duration of G1 (Di Talia et al., 2007). Thus,
a deterministic size control model would seem insufficient,
being then appropriate to incorporate certain stochasticity at
individual cell level to achieve virtual representations of yeast
populations when mass distributions and dynamics are explored.
This reinforces the idea that stochastic IBMs, such as INDISIM-
Saccha, are necessary tools to integrate both biological and
environmental heterogeneity to improve the process design and
scale up of microbial processes (González-Cabaleiro et al., 2017).

In the INDISIM-Saccha model, yeast cells experienced an
individual lag time, that is, a period in which they were internally
adapting in order to be able to undergo cellular growth. In the
simulation, the size of the cells undergoing the lag phase did not
change since the model assumed they were suffering the internal
changes required to start growing. Such behavior was chosen for
the sake of simplicity but there exist other conceptualizations
that can be regarded as plausible in the literature (Prats et al.,
2008, 2010). The behavior observed in the simulations does
not seem to agree completely with the experimental findings.
Although at the population level and during the adaptation
phase no movement of the total number of cells was perceived,
at individual level, as Figure 5 and Figures S2.1–S2.4 showed,
changes were evident in the distributions of areas, perimeters,
minor andmajor diameters, as well as in the derivedmorphologic
variables (elongation and circularity). This seems to suggest
that the submodel describing the lag time of the individual
cells should be reviewed in such a way that would allow for
more variability and changes in the temporal evolution of the
distribution of the individual areas, and, eventually, validated
against the tendencies observed in the present contribution.

The development of a calibration procedure incorporating
cell size distribution at strategic time points during the different
growth phases will help reach a better agreement between both
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kinds of data (experimental and simulated). It should be pointed
out that the digital analysis procedure that we have developed
lets sorting the size of budded and unbudded yeast. To our
knowledge this approach has not been used so far, yet it offers
some interesting characteristics that render it suitable for a
calibration step. In particular, it allows to isolate more efficiently
the effect of changes on themodel parameters of the reproduction
submodel so they can be detected more easily. For instance, in
relation to the second simulation result (Figure 7C) from the
first simulation result (Figure 7B) of the size distributions, fine
tuning a model parameter, mainly controlling the size of the
bud before detaching it from the mother cell (i.e., 1mB2), will
affect exclusively the distribution of the budded cells, but not the
distribution of the unbudded yeasts. Other parameters, such as
the critical mass before starting the budding phase (1mB1), will
have an impact on the distribution of both budded and unbudded
yeast cells.

The comparison between the individual-level information,
obtained from the digital analysis procedure, and the simulation
outputs of a calibrated IBM of the yeast S. cerevisiae is a valuable
approach to test the accuracy of the process undergone. Although
this does not invalidate the usefulness of the calibrated model
for particular goals, the model obviously is not able to capture a
number of important aspects of the real system. From now on,
and with the current experimental information accomplished,
a quantitative study can be carried out in order to improve
the calibration of the new INDISIM-Saccha from the particular
examination of distributions of sizes and shapes of individual
yeast throughout the different phases of population growth.

This type of study on microorganisms is essential to
ponder and develop methodologies for calibration processes
of models to tackle different levels of observation of the
system under consideration. Making IBMs simultaneously
reproduce patterns observed at both the individual and
population level will make these IBMs structurally realistic
so that they can deliver independent, testable predictions
(Kreft et al., 2013; Hellweger et al., 2016). The tasks to

complete this experimental-modeling-experimental iterative
process require a close relationship and extra effort to connect
both experimentalists and modelers, this approach being
exemplified by the model INDISIM-Saccha. Neither of the two
levels of observation (population and individual) in the process
of parameterization and calibration can be neglected, although
this requires an extra effort for modelers and an increment in the
complexity of the models (Hellweger, 2017).

The combination of individual-level knowledge, gathered
from the digital images processed, with population-level
information, drawn from primary growth models and the
estimation of kinetic parameters, proves to be crucial in
understanding the biological processes connecting different
experimental observations. The design, parameterization,
calibration and validation of a microbial IBMs can certainly
benefit from this 2-fold approach. At the same time, the
exploration of different strategies to study a specific microbial
population enhances the research process, providing in turn the
opportunity to address new objectives in the in vitro and in silico
representations of microbial systems and a more profound
understanding of community dynamics.
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1 School of Engineering, Chemical Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom,
2 Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing, Newcastle University,
Newcastle upon Tyne, United Kingdom

Cellular heterogeneity influences bioprocess performance in ways that until date are
not completely elucidated. In order to account for this phenomenon in the design
and operation of bioprocesses, reliable analytical and mathematical descriptions are
required. We present an overview of the single cell analysis, and the mathematical
modeling frameworks that have potential to be used in bioprocess control and
optimization, in particular for microbial processes. In order to be suitable for bioprocess
monitoring, experimental methods need to be high throughput and to require relatively
short processing time. One such method used successfully under dynamic conditions is
flow cytometry. Population balance and individual based models are suitable modeling
options, the latter one having in particular a good potential to integrate the various
data collected through experimentation. This will be highly beneficial for appropriate
process design and scale up as a more rigorous approach may prevent a priori
unwanted performance losses. It will also help progressing synthetic biology applications
to industrial scale.

Keywords: population heterogeneity, single cell analysis, flow cytometry, population balance models, individual
based models

INTRODUCTION

Microbial populations developing in seemingly homogenous environments have been historically
considered as formed by identical individuals. In reality no two cells in a pure culture are alike,
even if they are derived from single clonal colonies (Ackermann, 2015). This phenomenon is of
fundamental importance in biotechnological fermentations as the yields obtained will be lower if
the cells are not in the same optimal productive state (Fernandes et al., 2011).

In bioprocess industries the bioreactors, and in particular the stirred tanks, are the central
production units. The performance of any bioreactor is the emergent property of the activity and
interactions at the single cell level and therefore, variations at this level can profoundly affect the
dynamics and productivity of the process. Fluctuations that affect cell metabolism in industrial
fermentations are estimated to generate losses of 30% or above (Lara et al., 2006; Takors, 2012).
Moreover, sometimes recombinant protein production processes fail completely for reasons which
are not fully understood but can be related to heterogeneity in the microbial population (Rosano
and Ceccarelli, 2014).
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The effect of cell individuality when using bacteria for
obtaining useful products has been emphasized recently in
several publications (Li and You, 2013; Wyre and Overton,
2014a,b; Chen et al., 2015). Nevertheless, the true impact of
microbial population heterogeneity on bioprocesses remains
unknown (Delvigne and Goffin, 2014) and therefore it is
not systematically considered in design. This is partially due
to the fact that experimental biological data obtained with
traditional methods represents population average information
(Pasotti and Zucca, 2014) which means that the performance
of individuals is masked (Ackermann and Schreiber, 2015).
Another potential reason is the relatively limited options
for monitoring the heterogeneity under dynamic conditions.
There are suggestions that minor subpopulations will not have
significant influence on the whole population function (Lidstrom
and Konopka, 2010), but more recent work emphasizes
that non-genetic variation plays an important role in the
overall biosynthetic performance of a bioprocess (Xiao et al.,
2016).

Ultimately, industry needs to be able to engineer heterogeneity
to obtain better yields and more robust processes. This requires
both quantitative evaluation of the change of individual cells in
time and of their interaction with the environment (Bley, 2011;
Sauer and Mattanovich, 2012). Furthermore, this information
needs to be included in mathematical frameworks used for design
and control in order to have a realistic representation of the
bioprocesses and to improve their performance.

In this mini-review we present an overview of the
experimental methods used for characterizing the cell to
cell variation in bacterial cultures and the corresponding
mathematical tools for modeling them (see Figure 1), with a
focus on the appropriate ones for fermentation processes.

SOURCES OF CELL HETEROGENEITY

The sources of heterogeneity in clonal microbial populations
are biological (intrinsic) or environmental (extrinsic), or both.
Whereas the intrinsic heterogeneity is generated by factors as
cell cycle states, age distribution or the stochasticity of gene
expression and metabolic reactions, the source for the extrinsic
heterogeneity are the fluctuations in the environment. Therefore
the latter represents a physiological response to stress (Lidstrom
and Konopka, 2010; Ryall et al., 2012) and a survival strategy
developed over evolutionary times (Booth, 2002; Sumner and
Avery, 2002). This is the real challenge in the scaling-up
of bioprocesses as poor mixing and heat transfer limitations
generate concentration gradients which further influence the cells
physiology.

A proposed way to overcome extrinsic heterogeneity and
obtain similar performance in large scale reactors compared with
laboratory reactors is to use strains specifically engineered to
withstand certain environmental variability (Löffler et al., 2016).
However, some investigations, both by modeling (Lavric and
Graham, 2010) and experimental studies (Chi Fru et al., 2011;
Ofiţeru et al., 2012) suggest that bacterial populations display
constant heterogeneity in apparently steady growth and habitat

conditions, questioning the very existence of truly homogenous
cultures (Grote et al., 2015).

EXPERIMENTAL METHODS

The first step in single cell analysis is the isolation and/or
immobilization of individuals from cell suspension. The
experimental methods employed for this include serial dilutions
(the traditional method), physical trapping (mechanical,
hydrodynamic or dielectrophoretic), flow suspension [e.g., flow
cytometry and in particular fluorescence-activated cell sorting
(Winson and Davey, 2000)] and micromanipulation [mechanical
or with optical tweezers (Landry et al., 2013)]. Between these
techniques, the use of trapping of single cells in lab-on-a-chip
microfluidic devices is expanding.

Once the isolation is achieved, single cell heterogeneity can
be assessed. Bioprocess monitoring requires high throughput
methods which allow rapid and highly parallel experimentation,
with relative fast processing time. In general, the methods for
single cell analysis were primarily developed for basic research
and not all of them are adapted to be used for fermentation
processes (Geiler-Samerotte et al., 2013). At the same time,
some micro tools for isolation and interrogation of single cells
developed for mammalian cells need further refinement when
dealing with smaller microbial cells (Love et al., 2013).

The experimental methods for monitoring and assessing
single cell heterogeneity can be classified as: (i) biophysical
characterization; (ii) gene expression; (iii) protein analysis; and
(iv) metabolite analysis. Several detailed reviews exist on single
cell heterogeneity analysis (Brehm-Stecher and Johnson, 2004;
Amantonico et al., 2010; Fernandes et al., 2011; Lecault et al.,
2012; Shi et al., 2015; Vasdekis et al., 2015). We are presenting a
general overview, emphasizing the ones appropriate for microbial
population under dynamic process conditions.

Biophysical characterization gives information on the cell
size, mass, volume, internal structure, and mechanical properties.
Optical microscopy is widely used, being the simplest and
quickest method but with low throughput. A high throughput
method which provides information on cell size is flow
cytometry. The composition of the individual cells can be
obtained by Raman spectroscopy, a label free optical method that
has been used for bioprocess investigation (Huang et al., 2004).

Gene expression methods (e.g., RT-qPCR, RNA-seq, FISH)
give information on the expression state of a certain gene and
protein synthesis dynamics. However, if a method involves lysis
of cells, the dynamics of the gene expression in bioprocesses
cannot be followed. An alternative is to use reporter systems (e.g.,
green fluorescent protein and its variants) that can be monitored
with fluorescent time-lapse microscopy (Young et al., 2012). The
limitation in this case is that production cultures usually do not
contain fluorescent protein as marker and therefore this method
is less suitable for monitoring fermentation processes.

Protein analysis at the single cell level can, in theory,
provide information on protein abundance, protein secretion,
or protein/protein interaction. Flow cytometry is the most
commonly used method for measuring the protein content (Wu
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FIGURE 1 | Single cell analysis methods and modeling approaches for characterizing population heterogeneity. An individual or a group of sorted individuals isolated
from a cell population can be characterized with respect to its biophysical properties, gene expression, protein and metabolite characteristics. The data collected
through experimentation is then included in mathematical models which will help interpreting it and further inform the bioprocess design. Reciprocally, the
experimental data will help validate the mathematical models proposed.

and Singh, 2012). Mass spectrometry has a high sensitivity
and offers high quantity of information, from simultaneous
identification of proteins to their posttranslational modifications.
A workflow for sorted subpopulations, involving flow cytometry
and mass spectrometry, was reported by Jahn et al. (2013).
Nevertheless, there are still significant limitations due to the
complexity of the proteome, the small amount of protein and the
various types of measurement to be performed.

Metabolites analysis (intracellular and extracellular) is an
indirect measurement of the phenotype of the biological
system. The small size of the microbial cell and the minute
quantity of metabolites make their detection at the single cell
level very challenging. Methods used successfully in proof-of-
concept experiments are Raman microspectroscopy, secondary
ion mass spectrometry (SIMS) and Fourier transform infrared
spectroscopy (Heinemann and Zenobi, 2011; Armitage et al.,
2013; Rubakhin et al., 2013). Coupling a microfluidic unit
to a mass spectrometer has the highest potential to deliver
relevant data. NanoSIMS is a powerful tool for revealing
element distribution in nanometer-scale resolution (Musat
et al., 2012; Gao et al., 2016). However, the single cell
metabolite analysis is considered to still be in its early
stages.

From the reviewed methods, flow cytometry is the most
suitable, relatively fast and user-friendly for measuring
phenotypic single cell heterogeneity in bioprocesses and

under dynamic conditions (Want et al., 2009; Muller and
Nebe-von-Caron, 2010; Ambriz-Aviña et al., 2014; Delvigne and
Goffin, 2014; Baert et al., 2016). Flow cytometry measures the
distribution of a large variety of cellular parameters across a
cell population by analyzing the light scattering and fluorescent
signals of stained cells which flow in front of a powerful light
source (e.g., a laser beam). Individual cells can be segregated
based on their size, shape, intracellular properties, membrane
potential, and variation in fluorescent signal. Because the
large number of cells (tens of thousands) measured in a short
processing time, flow cytometry offers statistically significant
results and provides a quantitative measurement of heterogeneity
in the sample, having the potential to identifying rare cell
types (Shapiro, 2000; Davey and Winson, 2003). Recently, in
combination with supervised machine learning techniques,
flow cytometry was used also for single cell identification of
populations in synthetic bacterial communities (Rubbens et al.,
2017).

Nevertheless, the challenge of the high throughput methods
is the amount of data generated, which requires rigorous quality
control, together with sophisticated bioinformatics and statistics.
Therefore, although automated flow-cytometry was expected
to be implemented for real-time quality programs in factories
(Hewitt et al., 1999; Díaz et al., 2010), to date single cell
characterization is not routinely used in-process (Royle et al.,
2013).
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A complementary way to evaluate the microbial phenotypic
heterogeneity under realistic bioprocess conditions is by
employing scale down single cell micro-cultivation devices in
which large scale reactors conditions are mimicked. Single
cells in lab-on-a-chip microfluidic devices allow parallelization
and high throughput experiments (Grünberger et al., 2014;
Dusny and Schmid, 2015; Rosenthal et al., 2015; Oliveira
et al., 2016), contributing to large-scale bioprocess improvement
(Grünberger et al., 2012; Ladner et al., 2017). Sorting of different
subpopulations of cells in order to understand the physiological
responses in fluctuating microenvironments was also performed
by microarray analysis (Hewitt et al., 2007).

MODELING OPTIONS FOR
HETEROGENEOUS POPULATIONS

There is currently a gap between the new methods for single cell
analysis and the availability of mathematical models which can
integrate the data collected. But models are essential in the design
and control of bioprocesses. Use of the complex information
obtained by investigations of cells at genomic, transcriptomic,
proteomic, and metabolomic level to predict bioprocesses
is challenging and requires multidisciplinary analysis and
significant computational efforts (Zhang et al., 2010).

The traditional classification of the mathematical models
for cell populations is in unsegregated/segregated and
unstructured/structured. The least complex is a model
unstructured and unsegregated, which considers a homogenous
population represented by an average unstructured cell, while
the most complex is a model structured and segregated, which
considers a heterogeneous population of structured cells (Song
et al., 2014). The behavior of an average cell is representative
only for a synchronous population (Noack et al., 2008), but for a
heterogeneous population the model needs to include at least the
segregation in the biophase.

Since their initial development, single cell models were seen
as a promise for connecting the macroscopic bioreactor with
the microscopic one, the cell (Shuler, 1999). Integrated multi-
omics predictive models can inform biological discovery but their
application is in its infancy (Brink et al., 2016; Kim et al., 2016).
Some authors have attempted models which involve a laborious
theoretical development to account for different sources of
heterogeneity (Stamatakis and Zygourakis, 2010), though the
same authors acknowledge them as being far too complex to lend
themselves for practical application (Fredrickson and Mantzaris,
2002). Therefore, so far, the distributed properties measured
within cell population are not integrated in a single modeling
framework appropriate to be used in design, optimization and
control of bioprocesses (Henson, 2003; Müller et al., 2010;
Fernandes et al., 2011).

Here, we are presenting two options for modeling
heterogeneity: population balance models (PBM) and individual
based models (IBM). Both modeling approaches describe the
variation in the population, but, while the PBM consider each
fraction of the population as a continuous phase, in IBM the cells
are discrete particles.

Population Balance Models
In PBM cells are differentiated based on variables which
characterize their intracellular state. Most commonly these
variables are cell age or/and cell mass. The mass balances for
substrates, biomass, and products are represented by non-linear
and partial differential equations which have as independent
variables time and the internal state of the cells. The different
phases during the cell life cycle can be represented. The results
obtained with PBM will predict the time variation of the cell
number distribution, as resulted from growth and division.

Multidimensional PBM can be developed based on flow
cytometry data (Fernandes et al., 2013; Ramkrishna and Singh,
2014). Biological heterogeneity in bioreactors was modeled by
coupling a population balance model with a biokinetic model
(Morchain et al., 2013) and later with a hydrodynamic model
(Pigou and Morchain, 2015). One important limitation of PBM is
that they are computationally demanding if they are represented
more than one single internal state of the cells and this limits on
line applications (Royle et al., 2013).

Individual Based Models
In IBM the cells are discrete particles which interact with each
other and with the environment. Microbial characteristics are
described at single cell level. This allows the study of the system
behavior as a result of the properties and performance of the
individual components (Railsback and Grimm, 2012). However,
it is not always possible to simulate all the individual cells of
the system due to computing constraints and choices need to be
made about the type of agents used (a cell or a cluster of cells or
superindividual) and the level of detail for each of them.

In the last two decades IBM have gained popularity in
microbiology (Ferrer et al., 2008; Schuler et al., 2011; Hellweger
et al., 2016) due to rapid advancement in computational
technologies and the development of specialized software. Open
source generic platforms are now available (e.g., Sklar, 2007;
Lardon et al., 2011; Rudge et al., 2012; Coakley et al., 2016).
However, due to their complex structure IBM require more
computing skills than other modeling approaches.

Both PBM and IBM approaches can be used for multispecies
fermentation and can take into account the environmental
heterogeneity in bioreactors (see Coupling the scales). However,
PBM models explicitly the behavior of the population and can
include only limited cell properties. They are also more restricted
in representing stochastic processes as problems of closure may
arise (Ramkrishna and Mahoney, 2002). Instead, IBM models the
behavior of individuals, each having its own properties, with the
population behavior emerging from their interactions. Therefore,
it has a higher potential to integrate the detailed data generated
with single cell analysis. At the same time, IBM offers a better
representation of the stochastic processes, being able to describe
the average fluctuations and not only the average behavior in a
population.

Coupling the Scales
The solution for PBM and IBM involve a numerical method using
discrete time steps. In biological processes there is a wide range of
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relevant timescales, varying from nanoseconds to hours. The use
of time steps in solving the mathematical models means that all
the transformations which have a timescale smaller than the time
step chosen for the numerical solution will only be approximated.
Their influence on the state variables may then results as non-
realistically high. Therefore, it is important to understand the
effect of the approximations on the final output of the model and
how it affects its predictive capabilities (Gameiro et al., 2016).

For a complete mathematical representation of the bioprocess,
suitable to be used in scale-up and design applications, a
two-way coupling between mass transfer, hydrodynamics, and
biology is required (Wang et al., 2015; Morchain, 2017). These
interactions are important as extracellular micro-heterogeneities
may amplify the intracellular ones and place an upper limit on
productivity and bioprocess reliability (Vasdekis et al., 2015).
Local environmental conditions generated by flow streams affect
the microbial metabolism and can be described by computational
fluid dynamics (CFD). The Euler-Lagrange method represents
the appropriate option for studying the impact of substrate
gradients on the microbial metabolism in conjunction with the
hydrodynamics (Lapin et al., 2004; Liu et al., 2016; Haringa
et al., 2017; Kuschel et al., 2017). However, because of the high
number of individual cells involved in a fermentation, it is not
feasible to directly couple IBM with CFD at the large scale.
One useful approach is using statistical emulators (metamodels),
which extract the significant information from microscale and
are computationally much faster (Wilkinson, 2009; Conti and
O’Hagan, 2010). The advantage of an emulator over using a
continuous model is that the former will not select a priori the
information to be transmitted across scales but it will be based on
a detailed mechanistic single cell model, representing therefore
a simplified simulation strategy to calibrate multi-scale models.
This approach was recently implemented by Oyebamiji et al.
(2017) as an attempt to scale up a microbial system.

CONCLUSION

In industrial setups there is a tradeoff between cellular growth and
process robustness (Carlquist et al., 2012). Understanding and
controlling cell heterogeneity at the single cell level will generate
more robust and efficient bioprocesses, as, for example, it has
been proven that it is not the highest biomass concentration, but
higher proportion of viable cells which gives the best productivity

(Want et al., 2009). Insights into bioprocesses at single cell
level are expected to contribute also to the development of
more accurate mathematical models that can be applied to the
prediction and control of fermentative processes (Zhang et al.,
2015). This will be highly beneficial as appropriate process and
bioreactor design, able to prevent a priori unwanted performance
losses, is still missing (Takors, 2012) and scaling up has a
high degree of empiricism (Brognaux et al., 2013). IBM have
the potential to integrate protein measurements with genomics,
transcriptomics and metabolomics, and to predict the dynamics
of the system across scales and in different environments
(Hellweger et al., 2016), giving a better evaluation of the overall
system performance.

This is relevant also for synthetic biology, a rapidly growing
field which is limited by the lack of understanding on complex
fluctuations in physiology and fitness of overall microbial
populations (Cardinale and Arkin, 2012). Therefore connecting
the single cell dynamics and heterogeneity of cell population with
the bioreactor performance is a strategically important objective
that is vital to the translation of systems and synthetic biology
into an industrial reality.

AUTHOR CONTRIBUTIONS

All authors contributed to the writing of the manuscript. IO
carried out the initial literature review and wrote the initial draft.
RG-C provided insight relating to the mathematical modeling.
AM and WS provided expertise relating the experimental
methods. AW provided over-all guidance of the work and editing
of the text.

FUNDING

AM acknowledges the support of the EPSRC DTA scholarship.
RG-C, AW, and IO acknowledge the support of the EPSRC
Frontier Grant “Simulation of open engineered biological
systems,” led by Newcastle University, ref EP/K038648. WS and
AW acknowledge the support of the EPSRC Grant “Synthetic
Portabolomics: Leading the way at the crossroads of the Digital
and the Bio Economies,” ref EP/R003629/1. No new data were
created during this study.

REFERENCES
Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity

in microorganisms. Nat. Rev. Microbiol. 13, 497–508. doi: 10.1038/nrmicro
3491

Ackermann, M., and Schreiber, F. (2015). A growing focus on bacterial
individuality. Environ. Microbiol. 17, 2193–2195. doi: 10.1111/1462-2920.12877

Amantonico, A., Urban, P. L., and Zenobi, R. (2010). Analytical techniques for
single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398,
2493–2504. doi: 10.1007/s00216-010-3850-1

Ambriz-Aviña, V., Contreras-Garduño, J. A., and Pedraza-Reyes, M. (2014).
Applications of flow cytometry to characterize bacterial physiological responses.
Biomed Res. Int. 2014:461941. doi: 10.1155/2014/461941

Armitage, E. G., Kotze, H. L., and Lockyer, N. P. (2013). Imaging of metabolites
using secondary ion mass spectrometry. Metabolomics 9, S102–S109.
doi: 10.1007/s11306-012-0477-6

Baert, J., Delepierre, A., Telek, S., Fickers, P., Toye, D., Delamotte, A., et al. (2016).
Microbial population heterogeneity versus bioreactor heterogeneity: evaluation
of Redox Sensor Green as an exogenous metabolic biosensor. Eng. Life Sci. 16,
643–651. doi: 10.1002/elsc.201500149

Bley, T. (2011). From single cells to microbial population dynamics: modelling in
biotechnology based on measurements of individual cells. Adv. Biochem. Eng.
Biotechnol. 124, 211–227. doi: 10.1007/10_2010_79

Booth, I. R. (2002). Stress and the single cell: intrapopulation diversity is a
mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol.
78, 19–30. doi: 10.1016/S0168-1605(02)00239-8

Frontiers in Microbiology | www.frontiersin.org September 2017 | Volume 8 | Article 181386

https://doi.org/10.1038/nrmicro3491
https://doi.org/10.1038/nrmicro3491
https://doi.org/10.1111/1462-2920.12877
https://doi.org/10.1007/s00216-010-3850-1
https://doi.org/10.1155/2014/461941
https://doi.org/10.1007/s11306-012-0477-6
https://doi.org/10.1002/elsc.201500149
https://doi.org/10.1007/10_2010_79
https://doi.org/10.1016/S0168-1605(02)00239-8
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01813 September 16, 2017 Time: 18:55 # 6

González-Cabaleiro et al. Cellular Heterogeneity in Bioprocesses

Brehm-Stecher, B. F., and Johnson, E. A. (2004). Single-cell microbiology:
tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559.
doi: 10.1128/MMBR.68.3.538-559.2004

Brink, B. G., Seidel, A., Kleinbolting, N., Nattkemper, T. W., and Albaum, S. P.
(2016). Omics fusion - a platform for integrative analysis of omics data. J. Integr.
Bioinform. 13:296. doi: 10.2390/biecoll-jib-2016-296.

Brognaux, A., Thonart, P., Delvigne, F., Neubauer, P., Twizere, J. C., Francis, F.,
et al. (2013). Direct and indirect use of GFP whole cell biosensors for
the assessment of bioprocess performances: design of milliliter scale-down
bioreactors. Biotechnol. Prog. 29, 48–59. doi: 10.1002/btpr.1660

Cardinale, S., and Arkin, A. P. (2012). Contextualizing context for synthetic biology
- identifying causes of failure of synthetic biological systems. Biotechnol. J. 7,
856–866. doi: 10.1002/biot.201200085

Carlquist, M., Fernandes, R. L., Helmark, S., Heins A-L, Lundin, L., Sørensen,
S. J., et al. (2012). Physiological heterogeneities in microbial populations and
implications for physical stress tolerance. Microb. Cell Fact. 11:94. doi: 10.1186/
1475-2859-11-94

Chen, Y., Kim, J. K., Hirning, A. J., Josić, K., and Bennett, M. R. (2015). Emergent
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This study attempted to investigate the physiological response of six Lactobacillus
brevis strains to hop stress, with and without the addition of Mn2+ or ethanol. Based
on the use of different fluorescent probes, cell viability and intracellular pH (pHi) were
assessed by fluorescence microscopy combined with flow cytometry, at the single cell
level. The combined approach was faster than the traditional colony based method,
but also provided additional information about population heterogeneity with regard to
membrane damage and cell size reduction, when exposed to hop compounds. Different
physiological subpopulations were detected under hop stress in both hop tolerant and
sensitive strains. A large proportion of cells were killed in all the tested strains, but a
small subpopulation from the hop tolerant strains eventually recovered as revealed by
pHi measurements. Furthermore, a short term protection against hop compounds was
obtained for both hop tolerant and sensitive strains, by addition of high concentration
of Mn2+. Addition of ethanol in combination with hop compounds caused an additional
short term increase in damaged subpopulation, but the subsequent growth suggested
that the presence of ethanol provides a slight cross resistance toward hop compounds.

Keywords: Lactobacillus brevis, hop compounds, manganese, ethanol, fluorescence microscopy, flow cytometry,
heterogeneity

INTRODUCTION

Beer represents a hostile environment for most microorganisms due to the presence of hop
compounds, low pH, ethanol and carbon dioxide as well as the limited amount of oxygen and
nutrients (Sakamoto and Konings, 2003; Suzuki, 2011). Nevertheless, some bacteria are still able
to spoil beer. Lactobacillus brevis is the predominant spoilage organism, and has therefore been
studied extensively (Yansanjav et al., 2004; Behr et al., 2007; Suzuki, 2011; Bergsveinson et al., 2015;
Schurr et al., 2015a).

Hop compounds are an essential part of beer brewing. Besides imparting a bitter flavor,
hop compounds (mainly iso-α-acids) are antimicrobial, and tolerance toward hop is therefore a
prerequisite for beer spoilage bacteria (Suzuki, 2011). There are two antibacterial modes of hop
compounds. They can act as mobile-carrier ionophores, which cause a decrease in intracellular
pH (Simpson, 1993). The minimum inhibitory concentration (MIC) of trans-iso-α-acids decrease
with pH and increase with concentration of divalent cations, particularly Mn2+ (Simpson, 1993).
An additional mode of action with hop that influence on transmembrane redox reactions in the
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presence of Mn2+ gradients, was recently demonstrated (Behr
and Vogel, 2010). Interestingly,

Haakensen et al. (2009) investigated a wide selection of
Lactobacilli and Pediococcus isolates and found that the addition
of ethanol to hop agar plates caused a decreased growth of
some isolates, while ethanol protected other isolates against hop
compounds.

The traditional method of studying susceptibility of
microorganisms, e.g., Lactobacillus and Pediococcus species
toward hop compounds has been used to assess the growth of an
isogenic population (Simpson, 1993; Fernandez and Simpson,
1995; Haakensen et al., 2009). However, these culture-based
method require extended incubations and some strains even
exhibit viable but non-culturable characteristics in traditional
laboratory media like the de Man Rogosa Sharpe (MRS) medium
(Suzuki et al., 2008). In addition, recent studies showed that
even cells from an isogenic population exhibit heterogeneous
gene expression and differ in physiological parameters such as
growth rate and resistance to stress (Strovas et al., 2007; Ryssel
et al., 2013; Zhao et al., 2014). Several studies have also shown
that under stress conditions, a minor robust subpopulation can
subsequently dominate the overall population (Balaban et al.,
2004; Lidstrom and Konopka, 2010; Ambriz-Avina et al., 2014).
Therefore, single cell analysis can provide additional insights
into microbial behavior under stress from hop compounds.

Fluorescence microscopy (FM) and/or flow cytometry
(FCM) have been successfully used for determination of cell
population heterogeneity, including live, dead, or intermediate
subpopulations (Guldfeldt and Arneborg, 1998; Barbesti et al.,
2000; Ambriz-Avina et al., 2014; Stiefel et al., 2015). These
observations include morphological changes like cell size
and clumping, as well as physiological changes in membrane
permeability, intracellular pH and membrane potential at a single
cell level (Davey and Kell, 1996; Garcia-Betancur et al., 2012).
Morphological information is readily available from microscopy,
while a very large number of individual cells can be analyzed by
FCM. Hence, the combined methods of FM and FCM can deliver
a combination of qualitative and quantitative information that
will provide a comprehensive description of subpopulations and
even individual cells.

To the best of our knowledge, the response of L. brevis
toward hop compounds is still not well described at the single
cell level. Therefore, the aim of this study was to analyze how
individual cells from six different isogenic strains respond to hop
compounds by FM and FCM. Furthermore, an interaction with
Mn2+ or ethanol under hop stress was investigated, in order to
further elucidate mechanisms involved in hop tolerance.

MATERIALS AND METHODS

Media and Chemicals
Two different MRS media were used throughout the study.
Normal MRS medium (MRS5.6, Merck), which was prepared
according to the instructions from the supplier. An acidified
MRS medium (MRS4.3), where pH was lowered to 4.3 using
hydrochloric acid. The final concentration of hop compounds

TABLE 1 | Organisms used in this study.

Abbreviation Organisms Source

JK09 Lactobacillus brevis JK09 Danish craft beer

JK09--a Lactobacillus brevis JK09-- Plasmid cured JK09

HF01 Lactobacillus brevis HF01 Danish craft beer

A Lactobacillus brevis A Danish craft beer

G430b Lactobacillus brevis G430 Czech beer

Q Lactobacillus brevis Q Danish craft beer

aPlasmid cured variant JK09-- was derived by subculturing JK09 in MRS5.6
containing the plasmid curing agent novobiocin. The plasmid curing was confirmed
by the absence of selected plasmid-borne hop tolerant related genes by PCR
(results not shown).
bL. brevis G430 was kindly provided by Dr. J. J. Leisner (Department of Veterinary
Disease Biology, University of Copenhagen).

(iso-α-acids) in stress experiments was 55.2 µM unless otherwise
indicated, which was obtained by addition of a stock solution
of 30% (w/w) iso-α-acids in an aqueous solution of potassium
(Hopsteiner, New York, NY, USA). Sodium acetate buffer
(50.0 mM, pH 4.3, with 0.1 M glucose) was used for experiments
where growth was not wanted. A final concentration of either
2.9 µM manganese (corresponding to levels in pilsner lager beer)
(Behr and Vogel, 2009) or 265.0 µM manganese (as in MRS),
was obtained by addition of a 26.5 mM MnSO4 stock solution
to sodium acetate buffer.

Bacteria Strains and Culture Condition
A total of six L. brevis strains isolated from beer were included
in the present study (Table 1). A preculture was started by
inoculating 10 mL MRS5.6 from a frozen stock culture, and
incubated at 30◦C overnight. The preculture was subcultured into
fresh MRS5.6 (inoculation concentration 1%) at 30◦C. After 16 h,
optical density (OD600) of each strain was adjusted with fresh
MRS5.6 to 1.0, corresponding to approximately 5× 108 CFU/mL.

Determination of Growth Activity of
L. brevis
Hundred microliter standardized culture was inoculated into
10 mL of the following media MRS5.6 (control), MRS5.6 with
hop compounds (MRS5.6+H), MRS4.3 and MRS4.3 with hop
compounds (MRS4.3+H), separately. The growth curves were
assessed in 96-wells microplates by measuring OD600 for every
12 h using a VarioskanTM Flash (Thermo Fisher Scientific Oy,
Finland) until 168 h. Each well of a microplate was added 200 µL
suspension. Microplates were sealed with parafilm (Sigma–
Aldrich) to minimize loss of volume and incubated at 30◦C
until measurement. For each strain, the average OD600 value was
calculated from 16 wells.

Fluorescent Staining
To investigate viability in individual cells, cells were stained
with SYTO 13 (Molecular Probes, Thermo Fisher scientific)
and Propidium Iodide (PI, Molecular Probes, Thermo Fisher
scientific). 1 mL of an overnight culture was incubated
with SYTO 13 (final concentration 10.0 µM) and PI (final
concentration 15.0 µM) simultaneously at 30◦C for 30 min in the
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dark. The suspensions were subsequently diluted 20 times to an
approximate concentration of 107 cells/mL with saline solution
(NaCl, 0.9%, w/w). All dual stained cell suspensions were kept on
ice until further analysis.

For pHi measurement, cells were stained with 5(6)-Carboxy-2,
7-dichlorofluorescein diacetate succinimidyl ester (CDCFDA-
SE, 3.9 mM, Molecular Probes, Thermo Fisher scientific). The
CDCFDA-SE staining procedure used in this study was modified
from Shabala et al. (2006). Briefly, 1mL standardized culture was
harvested by centrifugation (10,000 × g, 5 min), and the pellet
was re-suspended in 980 µL phosphate buffered saline (PBS,
50.0 mM, pH 7.4) with 10 µL 1.0 M glucose and 10 µL CDCFDA-
SE. The cell suspension was incubated at 30◦C in the dark for
30 min.

Sample Preparation for Viability
Assessments and Cell Size Comparisons
A standardized culture (200 µL) was inoculated in 20 mL MRS4.3
and MRS4.3+H, separately, and incubated at 30◦C. A 1 mL sample
was taken every 6 h until 48 h and then every 24 h until 96 h. Cells
were centrifuged at 10,000 × g for 5 min and the pellets were re-
suspended in 0.5 mL saline solution and stained with SYTO13/PI
as described above. Subsequently, samples were analyzed by
FM and/or FCM. For FCM, a positive control (fresh overnight
culture, live cells) was stained with SYTO 13 and a negative
control (dead cells) was stained with PI. For the negative control,
preliminary results using 70% ethanol to kill all the cells, but this
method caused cell aggregation in FCM analysis. Therefore, a
combination of 552 µM hop compounds and 20% ethanol (v/v)
was used to obtain a fully permeabilized population of single
cells, where almost 100% cells were stained with PI, which was
confirmed by FM.

Sample Preparation for pHi
Measurement
Cells from overnight culture were stained with CDCFDA-SE,
centrifuged at 10,000 × g for 5 min and the pellet was re-
suspended in 1mL sodium acetate buffer. Subsequently, the
suspension was divided into two tubes, centrifuged at 10,000 × g
for 5 min and re-suspended into 500 µL sodium acetate buffer
with and without hop compounds. Images were acquired after 1,
12, and 24 h by FM. Samples were kept at 30◦C in the dark until
image acquisition.

To construct a calibration curve for pHi, stained cells were
exposed to 70% ethanol for 30 min to achieve fully permeabilized
cells. Aliquots of permeabilized cells were then re-suspended in
sodium acetate buffer with pH 4.3, 4.7, 5.0, 5.5, and 6.0. Since
all six strains exhibited similar ratio values at a given pH, it
was decided to construct one standard curve. The average ratio
of at least 100 cells for each pH value was plotted against the
Ratio (488/435 nm), and the standard error of the mean (SEM) was
calculated (Figure 1).

Manganese Addition
1.5-mL standardized culture was centrifuged at 10,000 × g for
5 min and re-suspended in 1.5 mL of acetate buffer. For viability

FIGURE 1 | Calibration curves for pHi determination of six
Lactobacillus brevis strains. The values are average of at least 100 cells of
all six strains with error bars (SEM). A third degree polynomial was fitted to the
calibration points.

assessment, the suspension was divided into three tubes, followed
by centrifugation (10,000 × g, 5 min), and the pellets were re-
suspended in acetate buffer with hop compounds, acetate buffer
with hop and 2.9 µM manganese, as well as acetate buffer with
hop and 265.0 µM manganese, respectively. Cell suspensions
were incubated at 30◦C for 2.5 h, stained with SYTO 13/PI
for 0.5 h, and analyzed by FCM. For pHi measurement, the
suspension was first stained with CDCFDA-SE, then divided into
three tubes, centrifuged at 10,000 × g for 5 min and the pellets
were re-suspended in the three solutions described above. Cell
suspensions were incubated at 30◦C for 3 h before being analyzed
by FM.

Ethanol Addition
OD600 of all strains were measured in MRS4.3 and MRS4.3+H
with and without addition of ethanol (4.6%, v/v), according
to the method described above. For viability assessment, 2 mL
standardized culture was centrifuged at 10,000 × g for 5 min
and the pellet was re-suspended in 2 mL acetate buffer.
The suspension was divided into four tubes, followed by
centrifugation (10,000 × g, 5 min) and the pellets were re-
suspended in acetate buffer with and without hop compounds
and ethanol. Cell suspensions were incubated at 30◦C for 2.5 h,
stained with SYTO 13/PI for 0.5 h, and then analyzed by FCM.

Fluorescence Microscopy and Data
Analysis
For viability assessment, a 63× Plan-Apochromat, N.A 1.4 (Zeiss)
was used. The green fluorescence (SYTO 13) was recorded by
excitation of 470–490 nm and emission of 515–565 nm. The red
fluorescence (PI) was recorded by excitation of 515–565 nm and
emission of 610–680 nm.

For pHi measurement, the method was the same as previously
described (Shabala et al., 2006). Briefly, the two excitation
wavelengths were 435 and 488 nm, and emission was collected
by a 515–565 nm bandpass filter. Images were acquired by

Frontiers in Microbiology | www.frontiersin.org February 2017 | Volume 8 | Article 23992

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00239 February 11, 2017 Time: 14:47 # 4

Zhao et al. Cell Response to Hop Compounds

FIGURE 2 | Growth curves of L. brevis exposed to hop compounds in MRS adjusted to different pH values. Cells were cultured at 30◦C in MRS5.6

(control,�), MRS5.6+H (N), MRS4.3 (�), MRS4.3+H (4). (A–F) JK09, HF01, A, JK09--, G430 and Q. The values are the means of OD600 of 16 wells in 96-wells
microplate, and the error bars indicate the standard deviation.

using the Metamorph 7 software (Universal imaging Corp., West
Chester, PA, USA) and analyzed with the free image analysis
software ImageJ [version 1.48; National Institutes of Health
(NIH), Bethesda, MD, USA1].

Flow Cytometry and Data Analysis
Samples were counted and analyzed by a BD FACS Jazz Cell
Sorter with a 488 nm argon ion laser. Green fluorescence emitted
from SYTO 13 stained cells was collected with bandpass filter
530 ± 20 nm, whereas the red fluorescence emitted form PI
stained cells was collected with bandpass filter 692 ± 20 nm.
Events were collected by triggering on the side scatter channel.
A 1 mL cell suspension was added into a plastic tube and 100.000
events per sample were recorded. Data were collected and stored
in BD FACS Software sorter software (BD Biosciences, USA). The
collected data were analyzed with the FlowJo_V10 (Tree Star,
Inc. USA). For subpopulation assessments, four quadrants were
defined clockwise starting from the top-left one as Q1, Q2, Q3,

1http://imagej.nih.gov/ij/

and Q4 on the dot plot images. For cell size comparisons, the
histogram of the forward scatter channel (FSC) was used.

Data Analysis
When growth experiments were performed in several replicates,
the average and the standard deviation were calculated. In the
FCM experiments, 100.000 cells were analyzed to obtain a large
sample, and the proportions of subpopulations were generated
by FlowJo_V10 software. In the intracellular pH experiments,
the calibration curve from section “Sample Preparation for pHi
Measurement” was used to calculate the pHi. Subsequently,
the average of at least 20 individual cells was calculated, and
the individual cells were manually ascribed to predefined pHi
intervals.

RESULTS

Growth Behavior of L. brevis Strains
Growth curves of six strains were obtained under normal
conditions, under low pH stress, under hop compounds stress

Frontiers in Microbiology | www.frontiersin.org February 2017 | Volume 8 | Article 23993

http://imagej.nih.gov/ij/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00239 February 11, 2017 Time: 14:47 # 5

Zhao et al. Cell Response to Hop Compounds

FIGURE 3 | Cells of JK09 (A–C) and JK09-- (D–F) exposed to hop compounds in MRS4.3 after 0, 24, and 48 h, stained with SYTO 13 and PI and analyzed by
fluorescence microscopy (FM). BF, bright-field; FI, fluorescent image. For fluorescent images, cells stained with SYTO 13 are labeled green, while cells stained with PI
are labeled red.

as well as under the combined stress condition (Figure 2). All
six isolates grew well in normal MRS5.6, with G430 reaching
the highest OD600 (Figure 2E). In MRS4.3, five strains had a
slightly prolonged lag phase, but with the same growth rate and
the same final OD600. Only G430 was significantly inhibited
by the low pH alone (Figure 2E). In contrast, all the bacteria
exhibited poor growth under hop stress. The combined stress
was even more inhibitory. In MRS4.3+H, JK09--, G430 and Q
were so inhibited that they did not produce any change in
optical density during the experiment (168 h), and these strains
were consequently designated as hop sensitive strains. JK09,
HF01 and A were comparatively tolerant to hop compounds in
MRS4.3+H, and these strains were designated as hop tolerant
strains. However, the lag phase and growth rate of the hop
tolerant strains were dramatically affected, particularly for strain
A. As the antibacterial effect of hop compounds was mostly
pronounced at pH 4.3, a typical pH for beer, pH 4.3 was used for
further investigations.

Viability Assessment of L. brevis Cells by
FM Analysis
Viable cells could easily be distinguished from membrane
damaged cells by dual-staining with SYTO 13 (green
fluorescence) and PI (red fluorescence) using FM. At the
beginning of the experiment (T = 0 h), most cells of both JK09
and JK09-- showed bright green fluorescence (Figures 3A,D).
After incubation in MRS4.3+H for 24 h, fuzzy, weak red
fluorescent clusters of cells could be observed for both strains,

and some cells even appeared unstained (Figures 3B,E). But
most fluorescent cells of JK09 were labeled green (Figure 2B)
while most cells of JK09-- were red (Figure 3E). After 48 h,
the same pattern could be observed with the exception that
most of the clusters were not stained with any fluorescent dye
(Figures 3C,F).

Viability Assessment and Cell Size
Comparison of L. brevis Cells by FM
Analysis
In order to investigate the viability of L. brevis under hop
compounds stress at a single cell level, stained cells were
additionally analyzed with flow cytometer. Four different
quadrants were recognized, which represents cells in different
physiological states. Quadrant 1 (Q1) is the subpopulation
of viable cells with intact membranes that only stained with
SYTO 13, Q2 represents an intermediate subpopulation which
corresponds to viable cells but with damaged membranes, Q3
describes the subpopulation of dead cells, which stained strongly
with PI, Q4 consists of weakly stained cells after hop treatment
(Figure 4A).

The proportion of viable cells for all the strains without
hop compounds treatment were above 90% until 72 h followed
by a small reduction after 96 h (results not shown). The
hop compounds caused an obvious reduction in viable cells
in the first 24 h in all strains, especially for the sensitive
strains (Figures 4 and 5). The viable proportions of JK09, HF01,
and A dropped to 48, 35, and 20%, respectively, after 24 h
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FIGURE 4 | Density plot images of JK09 (A–C) and JK09-- (D–F) exposed to hop compounds in MRS4.3 after 0, 24, and 48 h, analyzed by flow cytometry
(FCM). The SYTO 13 signal was recorded in the green channel (530_40), the PI signal was recorded in the red channel (692_40). Events in different quadrants
corresponds to different populations: viable cells (Q1), intermediate population with damaged membranes (Q2), dead cells (Q3) and weakly stained cells (Q4), the
number in each quadrants represents the relative percentage of each population.

exposure (Figures 4B and 5; Supplementary Figure S1), most of
the cells were situated in Q3 and/or Q4 instead (Figure 4B;
Supplementary Figure S1). However, the proportion of viable
cells of these three strains increased markedly during the next

24 h, where the viable proportion of JK09 and HF01reached the
same level as in the control experiments after 48 h (Figures 4C
and 5; Supplementary Figure S1). On the contrary, the proportion
of viable cells in the hop sensitive strains JK09--, G430 and Q
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FIGURE 5 | Change in proportion of the viable subpopulation of
L. brevis exposed to hop compounds in MRS4.3 over time by flow
cytometric analysis. The percentage of viable cells corresponds to the
number in Q1 in the density plot images.

continued to decrease after 24 h, and there were almost no viable
cells detected after 48 h (Figures 4E,F and 5; Supplementary
Figure S1). The proportion of viable cells did not change from
48 to 96 h for any of the strains (Figure 5).

The histogram of the FSC from the FCM analysis reveals the
distribution of cell sizes after 48 h (Figure 6). Some of the strains
revealed a homogenous distribution of cell sizes in the control
experiments, e.g., JK09 and Q (Figures 6A,F), where other
strains exhibited a more heterogeneous distribution, e.g., HF01
and JK09-- (Figures 6B,D). The histogram of hop stressed cells
shifted toward lower values for all the strains, which indicates that
the average cell size was reduced, compared to the control cells,
and this tendency was more pronounced for the three sensitive
strains.

Dynamic Change in Intracellular pH of
L. brevis Cells
Changes in the intracellular pH during 24 h of hop stress
in acetate buffer (pH 4.3) were determined by fluorescence
microscopy. For clarity, three subpopulations were created
according to the pH points of the calibration curve. Cells
with 4.3 ≤ pHi < 4.7 have a small or absent 1pH, which
correspond to the population of damaged or dead cells, cells with
4.7 ≤ pHi < 5.0 have a small but noticeable 1pH, and represent
the intermediate population, whereas cells with pHi ≥ 5.0 have a
large 1pH and are regarded as viable cells.

After 1 h, the average pHi of all six strains in acetate buffer
without hop compounds was 5.3 ± 0.1, with all of the individual
cells exhibiting a pHi ≥ 5.0 (Figure 7A). The only exception was
JK09--, which had a minor percentage (10%) in the intermediate
population. There was a slight reduction in average pHi for all
strains over time, but G430 showed the biggest pHi reduction.
Under hop stress for 1 h, a sharp drop in pHi was observed for
all six strains, where all cells reached the detection limit of pH 4.3
(Figure 7B). During the following 23 h, JK09, HF01, A as well as
JK09-- had an obvious increase in pHi. For HF01, the average pHi
value after 24 h reached 5.0, and with 55% of the individual cells
exhibiting a pHi ≥ 5.0. On the other hand, the average pHi value
for Q and G430 was fluctuating around 4.3, with almost all cells in

the damaged/dead subpopulation (4.3 ≤ pHi < 4.7) throughout
the experiment.

Protective Effect of Mn2+ on L. brevis
Cells
The impact of manganese on the viability of L. brevis was tested
in acetate buffer with hop compounds using FCM (Figure 8A).
After 3 h of exposure to hop compounds, the number of viable
cells in acetate buffer without manganese was decreased. There
is no clear trend that separated the hop tolerant strains from
the hop sensitive strains. After supplementation with the level
of Mn2+ found in pilsner lager beer (2.9 µM Mn2+), there was
a tiny increase in the viable and/or intermediate populations of
all strains except JK09--. When Mn2+ addition was increased
to the level found in MRS (265.0 µM), the percentage of viable
cells increased significantly in all strains with the largest relative
change in strain Q.

As shown in Figure 8B, the pHi of all six strains after 3 h
exposure was around 4.3, the same value as after 1 h exposure
(Figure 7B). 2.9 µM Mn2+ had limited effect on pHi for most
of the strains except JK09, where 40% shifted to the intermediate
population. At high level of Mn2+ (265.0 µM), a very significant
increase in the average pHi was observed in all strains, with 100%
individual cells exhibiting a pHi ≥ 4.7, except in JK09--, where
55% individual cells had pHi < 4.7.

Effect of Ethanol on L. brevis Cells
Ethanol (4.6% v/v) inhibited the growth of both hop tolerant
strain HF01 and hop sensitive strain Q, as demonstrated by
the OD600 values after 96 h incubation (Figure 9A). This
reduction was less pronounced than the effect of hop addition,
but the combined addition of hop and ethanol did not show
any additional reduction in OD600. In fact, the hop tolerant
strain grew faster in the combined addition than hop alone,
with the largest difference in OD600 at 96 h (Figure 9A). This
phenomenon was also observed in the other two hop tolerant
strains (results not shown). The two strains, HF01 and Q, were
subsequently analyzed by FCM, and the damaged subpopulations
after 3 h showed that the combination of hop and ethanol at this
stage was more lethal than hop alone (Figure 9B).

DISCUSSION

Initially, the growth potential of L. brevis strains exposed
to various combinations of pH, and hop compounds was
determined on the population level. Low pH in beer did not by
itself inhibit the growth of most of the tested L. brevis. However,
the low pH had a pronounced influence on the inhibitory effect of
hop compounds, and this combination was further explored. The
hop tolerant strains JK09, HF01 and A were able to grow slowly
during exposure to hop compounds at pH 4.3 (Figures 2A–C),
but from the growth curves, it is not possible to distinguish
whether all cells in the population exhibit a similar response, or
whether there are subpopulations that differ in their response to
hop compounds.
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FIGURE 6 | Cell size distribution of L. brevis in MRS4.3 after 48 h incubation determined by the forward scatter channel (FSC) from FCM. (A–F) JK09,
HF01, A, JK09--, G430 and Q. The red histogram corresponds to cells incubated without hop compounds, while the blue histogram corresponds to cells incubated
with hop compounds.

To answer these questions, we investigated the dynamic
physiological response of L. brevis cells to hop compounds at
a single cell level using FM and FCM. A clear difference in
the proportions of subpopulations between hop tolerant and
sensitive strains was observed with both techniques. A small but
significant subpopulation of the hop tolerant strains exhibited
only green fluorescence, while almost 100% of fluorescent cells

of the sensitive strains were labeled red after 24 h (Figures 3–5;
Supplementary Figure S1). This indicates that hop compounds
causes membrane damage in most cells. Moreover, unstained
cells or weakly stained cells could be found after 24 h as well
(Figures 3 and 4). The reason is still unclear, but ‘ghost cells,’
which has intact cell structures but without nucleic acids, have
been reported previously (Booyens and Thantsha, 2014; Léonard
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FIGURE 7 | Distribution of subpopulations of L. brevis according to the pHi of individual cells. In sodium acetate buffer (A) and in sodium acetate buffer
with hop compounds (B) after 1, 12, and 24 h, analyzed by FM. The average pHi value is based on at least 20 individual cells, and the cells were attributed to
different subpopulations according to the pH points of the calibration curve.

et al., 2016). It is conceivable that hop compounds caused such
severe damage to the cells that DNA was lost, and consequently
the cells were weakly stained.

The hop tolerant strains exhibited a pronounced heterogeneity
at the single cell level, which must be a phenotypic variation,
as the population is genetically homogeneous. In addition, the
growth curves of the tolerant strains exhibited a longer lag
phase when exposed to hop compounds (Figure 2), which
may be partly explained by the reduction of viable cells, and
partly by the lower growth rate that was observed. Within
the three tolerant strains, the reduction in viable cells was
most pronounced in strain A (Figure 5), which also had the
longest lag phase (Figure 2C). This suggests that the reduction
in viable cells had a large influence on the observed lag
phase. Furthermore, the viable population of the hop tolerant

strains increased gradually during the next 24 h (Figure 5),
which could be explained by the growth of the surviving
cells.

Additional morphological information was obtained from the
combined analysis. When grown in MRS4.3+H for 48 h, the
individual cells retained their rod shape (Figure 3), but there was
a small reduction in the cell size of hop tolerant strains, compared
to grow in MRS4.3 (Figure 6). This result is in agreement with
previous results where L. brevis and L. lindneri cells appeared as
smaller rods when grown in degassed beer compared to growth in
MRS (Suzuki, 2011). The hop sensitive strains were much smaller
after exposure to hop, probably because they have not divided
(Figure 6).

Intracellular pH is another parameter to assess stress response
(Yansanjav et al., 2004; Smigic et al., 2009; Schurr et al., 2015b).
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FIGURE 8 | Distribution of subpopulations of L. brevis according to the addition of manganese. Effects of different concentrations of Mn2+ on viability
(A) and pHi (B) of L.brevis after exposure to hop compounds in acetate buffer for 3 h. The distribution in (A) corresponds to the number in each quadrant of the
density plot images. The average of pHi values in (B) is based on at least 20 individual cells and the cells were attributed to different subpopulations according to the
pH points of the calibration curve.

As cell division after staining with CDCFDA-SE will reduce
the intensity of cell fluorescence, we decided to test the pHi in
sodium acetate buffer, with the same pH, acetate and glucose
as MRS4.3, but without additional nutrients. This enabled an
assessment of recovery with 24 h without cell division. Since
most of the tested strains were only slightly affected by the
exposure to pH 4.3 (Figure 2), the pHi values in pure acetate
buffer provided information about the basic pH regulation in
an acidic environment. The average pHi of all strains was
around 5.3 at T = 1 h, with a small decline in the following
hours (Figure 7A), but this was probably due to a slight
acidification of the media (down to pH 4.1) caused by lactic
acid production. This is comparable to previous reports that

lactic acid bacteria was able to maintain a constant 1pH of
approximately 1.0 (Hutkins and Nannen, 1993). Moreover, G430
had the biggest pHi decrease among the six strains (Figure 7A)
which corresponds well with the observed acid sensitivity
(Figure 2E).

Simpson (1993) observed that hop tolerant strains can
maintain a higher intracellular pH than sensitive strains. On the
other hand, Behr et al. (2006) found that the pHi of a hop-
adapted strain also decreased strongly after exposure to hop
compounds in acetate buffer for 40 min. In this study, the pHi
of all tested strains dropped to pH 4.3 in 1 h (Figure 7B),
indicating that the initial drop in pHi following exposure to
hop compounds is unavoidable. It is a consequence of the
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FIGURE 9 | Effect of ethanol in combination with hop compounds. The growth experiments of HF01 and Q were performed in MRS 4.3 with and without
addition of hop compounds and ethanol, and the OD600 values were measured after 96 h incubation (A). The subpopulations of HF01 and Q were analyzed after
exposure to acetate buffer with and without addition of hop compounds and ethanol for 3 h (B).

protonophoric effects of the hop compounds, but may also be
influenced by the reduction in cell size (Figure 6), which can
increase the intracellular concentration of protons (Vindeløv
and Arneborg, 2002). However, we found that the pHi of
some individual cells of the hop tolerant strains increased after
12 h (Figure 7B). This was also observed in the plasmid
cured strain JK09--, but not in the two other sensitive strains.
This may be due to the overexpression of membrane-bound
ATPase, which pumps protons from the cytoplasm (Sakamoto
et al., 2002). Although JK09-- was sensitive to hop compounds

in the growth experiments (Figure 2D), this strain exhibited
a similar recovery in the pHi experiment as the wild type
JK09 (Figure 7B). This suggests that part of this recovery
mechanism can be chromosomal and therefore present in both
JK09 and JK09--. This underlines that the mechanism behind
hop tolerance is multifactorial, and in this case, partly related
to the plasmid borne resistance genes, but also to a certain
degree to chromosomal genes. The heterogeneity in the pHi
regulation further emphasizes that only a proportion of the cells
can withstand the stress from hop compounds.
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Previous studies have shown that the MIC of hop compounds
increased with an increased addition of Mn2+ (Simpson, 1993),
and the growth of L. brevis could be accelerated by high
concentrations of Mn2+ (Behr, 2008). We therefore investigated
the effect of Mn2+ on the viability and intracellular pH by
FCM and FM. The viable proportion was slightly increased for
most strains by low amounts of Mn2+, while it was greatly
enhanced for all strains by higher amounts of Mn2+ (Figure 8A).
It has been reported that lipoteichoic acids from the cell wall
provides a reservoir of divalent cation such as Mn2+. This is
very close to the plasma membrane, and therefore the divalent
cation probably interact with the negatively charged head groups
of phospholipids and decrease the membrane fluidity (Asai et al.,
2000; Behr, 2008). It is conceivable that this can reduce the
intrusion of hop compounds into cells, and thereby reduce the
toxicity of hop compounds. It also has been demonstrated that
hop compounds form Mn2+-hop compounds complexes inside
the cell (Simpson and Hughes, 1993; Behr and Vogel, 2010),
so another possibility is that they form complexes outside the
cells if there is sufficient Mn2+, and these complexes cannot
efficiently penetrate the cytoplasmic membrane. Furthermore,
the high concentration of Mn2+ is equivalent to MRS, and
it is surprising that the physiological response from the FCM
experiments with high Mn2+ suggest a protective effect against
hop after 3 h (Figure 8A), but this protection does not correlate
with the observed growth, where only the hop tolerant strains
grew (Figure 2). This indicates a difference between short term
and long term effects. In addition, without Mn2+ addition, some
of the sensitive strains exhibited higher survival than some of
the hop tolerant strains after 3 h exposure (Figure 8A). This
mechanism requires further investigation, but we hypothesize
that it may be related to manganese transporters.

The pHi reduction was less pronounced when hop compounds
was added together with high amount of Mn2+ (Figure 7B),
which indicates that the protonophoric effect of hop compounds
is much decreased, at least in the short term. These results
are similar to the FCM experiments (Figure 8A), and suggest
that extracellular Mn2+ provides some degree of short term
protection against hop, but the results from growth experiments
(Figure 2) and pHi measurement (Figure 7) demonstrate that
manganese protection is only part of the explanation behind hop
tolerance, which must include several other factors as suggested
previously (Behr et al., 2006; Bergsveinson et al., 2015).

The combination of hop and ethanol resulted in a larger
damaged subpopulation after 3 h than each treatment alone
(Figure 9B). This suggests that ethanol increases the membrane
permeability (Barker and Park, 2001), facilitating the immediate
intrusion of hop compounds and injury. In contrast, when
following the optical density of the investigated strains over
time, the hop tolerant strains grew faster and to slightly higher
levels when ethanol and hop was present compared to hop alone
(Figure 9A). This may seem surprising, but supports a previous
observation made on solid hop-gradient agar plates, where a
higher tolerance toward hop in the presence of ethanol was
observed in a number of beer spoilage strains (Haakensen et al.,
2009). Changes in membrane fluidity may be involved, as it has
been demonstrated that the membrane fluidity decreases when

L. brevis cells are grown at low pH and even more upon the
addition of hop compounds (Behr et al., 2006). Furthermore, Da
Silveira et al. (2003) observed that even though the membranes
of Oenococcus oeni become more fluid and leaky with increasing
concentrations of ethanol, intact cells are able to adapt and reduce
their membrane fluidity. We therefore assume that, although the
combination of ethanol and hop is more lethal, the few individual
cells that survive and grow will adapt to the ethanol in the
medium, and the consequent reduction in membrane fluidity has
the side effect of protecting cells against hop compounds. This
phenomenon highlights that in order to predict beer spoilage
potential, it is not sufficient to look only at the immediate
physiological response, but also the cell division of the small
subpopulation of robust cells.

CONCLUSION

The results from FM combined with FCM provide important
information about the variation in the response of different
L. brevis strains. Our results show that hop compounds caused
membrane damage, intracellular pH decrease, and cell size
reduction in L. brevis cells. Upon hop exposure at low pH,
only a small subpopulation within the hop tolerant strains
maintained membrane integrity. It is only these cells that
eventually upregulate the pHi and contribute to the subsequent
growth. Furthermore, a high amount of Mn2+ provides a short
term protection as it increased the viability and the pHi of
L. brevis cells exposed to hop compounds. In the tested strains,
a combination of ethanol and hop compounds caused increased
immediate damage to the overall population, while the surviving
subpopulation exhibited slightly better growth indicating a level
of cross-protection. Overall, the combination of FM and FCM
enables us to obtain a better understanding of the physiological
response of L. brevis cells exposed to a beer-like environment.
Additionally, FCM has the potential to become a rapid quality
control method in breweries, even though this requires further
optimization of the equipment.
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Repetitive Short-Term Stimuli
Imposed in Poor Mixing Zones
Induce Long-Term Adaptation of
E. coli Cultures in Large-Scale
Bioreactors: Experimental Evidence
and Mathematical Model

Alexander Nieß, Michael Löffler, Joana D. Simen and Ralf Takors *

Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany

Rapidly changing concentrations of substrates frequently occur during large-scale

microbial cultivations. These changing conditions, caused by large mixing times,

result in a heterogeneous population distribution. Here, we present a powerful and

efficient modeling approach to predict the influence of varying substrate levels on the

transcriptional and translational response of the cell. This approach consists of two

parts, a single-cell model to describe transcription and translation for an exemplary

operon (trp operon) and a second part to characterize cell distribution during the

experimental setup. Combination of both models enables prediction of transcriptional

patterns for the whole population. In summary, the resulting model is not only able

to anticipate the experimentally observed short-term and long-term transcriptional

response, it further allows envision of altered protein levels. Our model shows that locally

induced stress responses propagate throughout the bioreactor, resulting in temporal,

and spatial population heterogeneity. Stress induced transcriptional response leads to a

new population steady-state shortly after imposing fluctuating substrate conditions. In

contrast, the protein levels take more than 10 h to achieve steady-state conditions.

Keywords: scale-down, hybrid modeling, population heterogeneity, adaptation times, Escherichia coli

INTRODUCTION

Large-scale industrial bioprocesses make use of reactors ranging from 100 to 800 m3 reaction
volume. For aerobic processes, stirred tank reactors are still preferred, albeit alternative setups
such as airlift reactors may be attractive if reactor sizes exceed the volume of about 500 m3. All
reactors have in common that gradients of substrates, dissolved gases and pH occur, which are the
consequence of poor mixing conditions (Nienow et al., 1997). Cells are circulating in these reactors,
thereby frequently passing through zones of different substrate availability. Accordingly, cellular
interactions are repeatedly triggered (Oldiges and Takors, 2005; Lara et al., 2006; Neubauer and
Junne, 2010; Takors, 2012). Noteworthy, related regulatory responses are not limited to changes of
metabolism but also comprise transcriptional and translational programs (Löffler et al., 2016, 2017;
Simen et al., 2017).
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Often, microbial processes are controlled by limited substrate
feeding to avoid non-wanted overflowmetabolism and to prevent
too high metabolic activity that may exceed the technical
capacities of aeration and cooling. Industrial examples are the
implementation of glucose or ammonia limitations (Neubauer
et al., 1995). Recently, Chubukov et al. (2014) outlined that
proper nitrogen (or phosphate) limitation may even increase
biomass specific substrate uptake during production phases
when cell growth is strongly limited. Michalowski et al. (2017)
further succeeded to engineer the E. coli HGT host for likewise
conditions.

Löffler et al. (2016) and Simen et al. (2017) studied the
scenario of frequently occurring glucose or ammonia limitations
by using a conventional STR-PFR (stirred tank reactor—plug
flow reactor) setup as described by George et al. (1993). Unlike
previous investigations, these studies installed steady-state
growth conditions before large-scale gradients were repeatedly
imposed on the cells by connecting the PFR to the STR. As
such, a distinct reference steady-state was created that enabled
quantitative and highly accurate analysis of the metabolic and
transcriptional responses of the cells on the installed glucose or
ammonia gradients.

These data sets are the experimental basis for the modeling
approaches presented in this study. By exploiting the metabolic
and transcriptional time series it will be investigated whether and
how similar dynamics can be modeled to predict short- and long-
term regulatory responses of E. coli. Related data-driven models
can serve as the core for ensemble modeling (Henson, 2003) to
predict large scale cellular performance in silico and ab initio.

For the sake of simplicity, transcriptional dynamics of the
tryptophan operon were chosen as an illustrative example. It has
been shown by Simen et al. (2017) that the repetitive exposure
to nitrogen starvation induced the frequent transcription
of the trp operon. Considering the well-known attenuation
control (Yanofsky, 2004, 2007), the expression of downstream
genes trpEDCBA, consequently, indicates not only the ongoing
transcriptional response on environmental triggers but also the
start of protein translation. Accordingly, modeling trp expression
dynamics needs to fulfill several challenges: (i) Short-term
transcript dynamics observed in the PFR must be predicted, (ii)
long-term transcript responses of the whole population should
be mirrored, and (iii) the different time-scales of transcriptional
and translational dynamics have to be reflected, too. This study
will outline that every constraint is properly met by a simple
mechanistic model.

MATERIALS AND METHODS

Experimental Setup
Oscillating substrate availability was simulated in a stirred-tank-
reactor (STR) plug-flow-reactor (PFR) scale-down approach.
Figure 1 shows the schematic setup of the system. As Simen
et al. (2017), the STR system was operated as nitrogen limited
chemostat cultivation with a dilution rate of 0.2 h-1 (5 mL
min-1). The well-mixed bioreactor was simulated by using the
steady-state condition in STR without the PFR (SS0). After
characterization of SS0 the PFR was connected and a fraction

FIGURE 1 | Scheme of the scale-down approach. A large-scale bioreactor

and its substrate gradient is simulated by a chemostat STR (limitation zone)

coupled to a PFR (starvation zone). This approach allows the examination of

the influence of substrate gradients (i.e., glucose or ammonia) on the

population dynamic.

of cells cycled through the PFR loop. No additional feed was
added into the PFR. Therefore, the cells shift from nitrogen
limitation to starvation along the PFR. The experimental design
allows the observation of the transcriptional responses along the
PFR (short-term) and over the process time in the STR (long-
term). The system characteristics and cultivation conditions were
published in Löffler et al. (2016). Residence times τ of STR and
PFRwere estimated to be 6.2 min and 125 s, respectively. Samples
for transcriptome analysis were taken at sampling ports P1, P3,
and P5 in the PFR with corresponding residence times of 31,
70, and 110 s. Volumes in STR and PFR were 1.12 and 0.38 L,
respectively. Biosuspension was continuously pumped through
the PFR (180 mL min-1).

Compared to SS0 with a growth rate of 0.2 h-1 in the STR,
the STR-PFR setup splits growth rates individually in the two
compartments. Whereas, the total growth rate of the STR-PFR
system is still 0.2 h-1, no growth can be expected inside PFR
when the nutrient is completely consumed. Accordingly, PFR
can be subdivided into a first part considering still growing cells
and a subsequent part characterized by no growth. Because the
total system runs with the dilution rate of 0.2 h-1, STR growth
rates must be increased accordingly to compensate missing cell
growth in the PFR. Calculation of growth rates in the STR can
be performed based on the residence time distributed average
growth rate that is set equal to the dilution rate. For the sake
of simplicity and because nutrient starvation occurred very rapid
in PFR, no growth was assumed to be existent in the total PFR
compartment. Therefore, the average growth rate can be split into
two different growth rates for each compartment (Equation 1).

µSTR τSTR + µPFRτPFR

τSTR + τPFR
= D (1)

Samples for transcriptome analysis were taken at 25 and 120
min as well as at 28 h after installing the substrate gradient.
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Transcript measurements are published in Simen et al. (2017)
and are available under GEO Accession GSE90743.

Single-Cell Model
For the agent based transcription-translation model, DNA and
mRNA templates are discretized in nucleotides, defining a 1D
lattice. Movement of RNA polymerases (RNAPs) is treated
according to Equation (2). Here, x describes the relative position
of nucleotides inside the operon starting with the first mRNA
encoding nucleotide of the operon sequence. RNAP movement
is based on the elongation rate vRNAP

elo
and the distance 1x

between two subsequent polymerases. The following criteria were
considered for RNAP motion:

- The first elongation step is treated as the initiation step and can
only occur if t is in the interval of possible induction (tind).

- The minimum distance 1x between two subsequent RNAPs is
fulfilled.

dxi

dt
=







0
0

vRNAP
elo

if xi = 0 ∧ t /∈ tind
if xi−1 − xi < 1x ∧ i > 1

otherwise
(2)

For each passed nucleotide on the DNA sequence, the respective
nucleotide in the mRNA sequence is transcribed. The resulting
mRNA strand iwith length LmRNA

i can be directly derived from xi.

LmRNA
i (t) = xi (t) (3)

For simplification, we neglected the modeling of the attenuation
process considering terminator/antiterminator interactions and
assumed ongoing translation only during nitrogen starvation
instead. Position yi,j of a ribosome j on mRNA strand i is a

function of LmRNA
i and the position of the previous ribosome yj−1.

The number of ribosomes that translate a gene g (NTL,max
g ) can

vary and depends on the gene itself. Ribosomal motion on a gene
g starts at Cstart

g (first coding nucleotide) and stops at Cend
g (third

nucleotide of the terminating codon). The necessary criteria for
translation are stated as follows:

- At least 1y nucleotides downstream are already synthesized.
- The previous ribosome is more than 1y nucleotides further
downstream.

- The maximum number of translations for the given gene is not
exceeded.

dyi,j

dt
=













0
0
0

vRibosome
elo

if Li−yi,j ≤ 1y

if yi,j−1 − y
i,j

< 1y ∧ j > 1

NTL
i,g (t) ≥ NTL,max

g

otherwise

(4)

The number of ribosomes acting on a single mRNA i is calculated
following the Iverson brackets (Equation 5). These brackets
return 1 if the term inside is true and 0 if the term is false.

NTL
i,g (t) =

∑

j

[

yi,j (t) ≥ Cstart
g

]

(5)

The amount of synthesized proteins per cell from the single-cell
model (NProtein

g, SC ) encoded by gene g can be calculated as the sum

of all ribosomes acting on all mRNA strands that have passed the
final nucleotide Cend

g .

NProtein
g, SC (t) =

∑

i

∑

j

[

yi,j > Cend
g

]

(6)

Each mRNA strand is expected to be degraded by RNases.
Initiation of mRNA breakdown begins at the start codon of
transcription. Movement along mRNA is encoded by position
zi on strand i and depends on the degradation elongation
rate vRNAse

elo
. The following constraints define the motion of

RNAses:

- The number of active ribosomes per gene g NTL,max
g is

estimated as the turnover ratio of mRNAs and proteins (see
below)

- 1z encodes the closest nucleotide distance to the next ribosome
downstream of zi

dzi

dt
=









0
0

vRNase
elo

if NTL
i,g (t) < NTL,max

g

if y
i, NTL,max

g
− zi ≤ 1z

otherwise

(7)

Accordingly, the current amount of mRNA per gene is calculated
as the difference of already synthesized mRNAs and the amount
of degraded mRNAs. The first is modeled from the number of
complete mRNA strands synthesized. The second mirrors the
amount of RNases that have passed the first codon.

NmRNA
g, SC (t) =

∑

i

[

LmRNA
i (t) > Cend

g

]

−

∑

i

[

zi ≥ Cstart
g

]

(8)

NTL,max
g is calculated as the turnover ratio of mRNAs per protein

for a given gene g. Protein turnover rProteinturnover was calculated based
on protein levels at a growth rate of 0.2 h-1 (kProtein

deg
= µ)

(Valgepea et al., 2013). Active protein degradation was neglected
and only growth based dilution was considered. mRNA turnover
rmRNA
turnover was calculated based on the levels measured by Valgepea
et al. (2013) with average half-lives of 2 min (kmRNA

deg
= 20.79 h−1)

(Chen et al., 2015). However, no mRNA measurements of trpA
were given in this data set. We thus assumed the translations
per mRNA for trpA to be the same as for trpB, due to the fact
that the resulting protein complex is a tetramer consisting of two
trpA and two trpB (Hyde et al., 1988). TrpL, the leader peptide,
was neglected in this calculation. Table 1 shows the resulting
translations per mRNA.

NTL. max
g =

rProteinturnover

rmRNA
turnover

=

cProteing kProtein
deg

cmRNA
g kmRNA

deg

(9)

We used the trp operon as an example for several reasons:
(i) The trp operon leads to a polycistronic mRNA (Yanofsky
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TABLE 1 | Calculated translations per mRNA for the trp operon.

Gene trpE trpD trpC trpB trpA

Translations per mRNA 4 4 5 10 10

The value for trpA was extrapolated from trpB.

et al., 1981), (ii) the attenuation sequence in the trpL leader
peptide allows the coupled investigation of transcription and
translation (see Figure 2), and (iii) the published data by Simen
et al. shows that the trp operon is upregulated during STR-
PFR cultivations. Accordingly, translation must have happened
if transcripts of genes downstream of trpL are measured, as it
is the case in the data sets used for this study. Simplification
was made by treating the structural genes trpGD and trpCF and
their corresponding proteins as single genes (trpG and trpC,
respectively) and proteins.

All three actively moving species (RNAP, ribosomes and
RNase) are treated as equally fast and their elongation rate was
taken from the RNAP elongation rate reported by Chen et al.
(2015) and set to 21 nucleotides s-1 (see Table 2). Minimum
distances 1 x, 1 y, and 1 z were set to 100 nucleotides each
[which is larger than (Bremer and Dennis, 1987) estimated for a
growth rate of 0.5 h-1].

Each PFR passage induced transcription, however, with a
delay of 30 s based on experimental observations. Once induction
has started and RNAP has passed the attenuation sequence,
transcription was assumed to continue until the terminator
sequence after trpA was reached (see Figure 2).

Cell Distribution Model
The ensemble cell model needs to be embedded in a process
model for describing the flow wiring and residence times of
the cells in the compartments. The PFR is considered as a
plug flow reactor showing almost equally distributed residence
times for all cells. The STR is assumed to be ideally mixed,
thus, having a residence time distribution constrained by the
reaction volume and the throughput. Dilution and growth rate
additionally influence the population.

For population balancing, the following events were
considered to track the fate of each individual cell:

Cells may

1. leave the STR for entering the PFR and cycle back into STR
after τPFR, the residence time in the PFR

2. be drained off by the efflux (harvest)
3. divide, setting all transcriptional and translational programs

on default (no initiation of transcription or translation in the
corresponding daughter cell)

The following probability functions αi were defined

α1 = NSTR
V̇PFR

VSTR
(10)

α2 = NSTR
V̇Feed

VSTR
(11)

α3 = N0
STR D (12)

For modeling event (1), the rate α1is used, indicating that a cell
leaves the STR and enters the PFR again. Washout of cells (event
2) was treated equally with the dilution rate as flux value (α2).
The probability for cell division (α3) is based on the set dilution
rate D and the cell number N0

STR during SS0. Return of cells from
the PFR compartment was fixed to occur after τPFR passed. Cells
that are washed out by event (2) are deleted from the system and
newly born cells from event (3) are treated as default daughter
cells without any transcriptional deflection.

The reaction system was numerically solved by applying
Gillespie’s stochastic simulation algorithm (Gillespie, 1977). Time
increment τ was solved based on the sum of the three reaction
events considering the probabilities as indicated in Equation (13).
The chosen reaction i is calculated, based on Equation (14). r1
and r2 are uniformly distributed random variables in the interval

(0, 1).

τ =
1

∑

αi
ln

(
1

r1

)

(13)

i−1
∑

j =1

αj ≤ r2

3
∑

j =1

αj ≤

i
∑

j =1

αj (14)

Simulations were performed using 10,000 cells, assuming
uniform distribution in the STR (N0

STR) before it is connected to
the PFR. Simulations tracked cell numbers in the STR and the
PFR as well as each transition of a cell from STR to PFR.

Coupling of Single-Cell and Cell

Distribution Model
To minimize computational efforts, the impact of single-cell
metabolic activities on the local environment was ignored.
In essence, cells were considered to travel through a “frozen”
bioreactor background that triggers transcriptional and
translational responses as reflected in the single-cell model. For
balancing the population distribution properly, the history of
every cell was tracked. As the trigger “PFR” is of outstanding
importance, the entrance of each cell into the PFR was logged.

The resulting in a set of time flags (t
flag
i ) for each cell that was

stored for the total simulation period, which allows detailed
tracking of the cells motion in the STR-PFR setup. Additionally,
the events (2) and (3) were tracked for each cell allowing the
calculation of the population distribution in the STR and the
PFR at each time step of simulation.

The simulation approach allowed the independent solution
of the single-cell and cell distribution model. Simulations of
the single-cell model resulted in distinct mRNA (NmRNA

g, SC (t))

and protein (NProtein
g, SC (t)) patterns for every cell entering and

leaving the PFR and this constant sequence can be stored as
look-up table. In the distribution model, each flag indicates start
of induction, whose sequence is stored in the look-up table.
Duration of an induction phase is defined from entering the PFR
at tflag until the lastmRNA is degraded at tflag+∆ t. Superposition
of all transcriptional and translational patterns over the cells
lifetime results in a continuous description of transcriptional and
translational patterns in the STR-PFR system.
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FIGURE 2 | Model of coupled transcription and translation. RNA polymerase ( ) binds to the trp promotor and starts transcribing with constant elongation rate. After

transcription of each genes ribosome binding site, translation takes place and ribosomes ( ) elongate with constant elongation rate that is set equal to RNAP rate. If

trp-tRNA is missing, translation continues (A), if trp-tRNA is available, a terminator sequence forms and translation stops (B). Each gene has its own number of

translations before degradation takes place. Degradation by RNases ( ) starts at the 5′ end and continues from gene to gene if the mentioned number of translations

already took place.

Cellular growth by event (3) is treated as generation of a new
default cell without any additional mRNA and protein content
without altering the mother cell.

NmRNA
g (t) =

∑

i

{

NmRNA
g,SC

(

t − t
flag
i

)

0

if t − t
flag
i ≤ 1t

otherwise
(15)

NProtein
g (t) =

∑

i

{

NProtein
g,SC

(

t − t
flag
i

)

NProtein
g,SC (1t)

t − t
flag
i ≤ 1t

otherwise
(16)

RESULTS

Key assumptions
Löffler et al. (2016) and Simen et al. (2017) showed that
the repeated oscillation of the substrate availability of E. coli,
simulated with a STR-PFR system, induce repeated on/off
switching of several hundred genes. Among them, the frequent
activation of the tryptophan operon could be observed (Simen
et al., 2017). The mathematical model comprising the (Equations
2–16) was used to describe not only short- and long-term
transcriptional dynamics but also to estimate the impact
on protein formation by linking the transcription with the
translation machinery. The following key assumptions were
made: (i) Once transcription of mRNA has started, it continued
until the stop signal was achieved at the end of the operon,
namely on the relative position 6726 nt after trpEDCBA (Stoltzfus
et al., 1988), (ii) mRNA was assumed to be immediately
translated into proteins. The number of active ribosomes per

TABLE 2 | Model parameters used for simulation of both single-cell and cell

distribution model.

Parameter Value Unit

νRNAP
elo

21 Nucleotides per second

νRibosome
elo

21 Nucleotides per second

νRNase
elo

21 Nucleotides per second

∆x 100 Nucleotides

∆y 100 Nucleotides

∆z 100 Nucleotides

tind [30 125] Seconds

V̇PFR 180 mL min-1

V̇Feed 5 mL min-1

VSTR 1,120 mL

D 0.2 h-1

N0
STR

10,000 cells

gene (encodingmRNA)was calculated based on the experimental
findings of Valgepea et al. (2013).

Modeling Short-Term Transcriptional

Dynamics
The simulation of transcriptional dynamics during a single
PFR passage was achieved using the single-cell model with the
parameters listed in Table 1. Figure 3A depicts mRNA courses
of two subsequent PFR-STR passages. At t = 0, the PFR
entering cell is induced and initiates transcription after the
experimentally observed delay time of 30 s. Then, transcription
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FIGURE 3 | Time courses of two subsequent cell cycles comprising PFR and STR passage. (A) mRNA and (B) protein profiles are shown, both simulated using the

single-cell model. The genes and their gene products are encoded as follows: Black solid line = trpL, gray solid line = trpE, black short dashed line = trpD, gray short

dashed line = trpC, black long dashed line = trpB, gray long dashed line = trpA. Gray shaded areas indicate that the cell currently passes the PFR.

of the trp operon starts with trpL. As shown, trpL is fully
and trpE partially transcribed before the cell leaves the PFR.
Accordingly, the remaining genes downstream of the operon
were transcribed after the cell reenters the STR. Shortly after
initiation, degradation of trpL mRNA has started, as indicated
by the constant mRNA levels. After leaving the PFR, the cell
stops further RNAP initiation and RNases immediately degrade
the remaining transcripts. Noteworthy, all gene transcripts were
fully degraded (except for a small residual of trpA) before the cells
again reentered the PFR.

Modeling Protein Formation
Based on the single-cell model, translation of mRNA was
simulated as depicted in Figure 3B. It was assumed that protein
formation started as soon as the ribosomal binding site was
transcribed. Because trpL encodes the leader peptide, translation
modeling was simply focused on trpEDCBA. First, TrpE proteins
were produced while the cells passed the PFR compartment.
Downstream proteins were translated after the cells reentered
the STR. Consequently, the majority of translation happened in
STR. Protein formation is delayed and multiplexed compared
to mRNA production. Accordingly, dynamics of protein courses
are less steep than those of transcript levels. The latter are
characterized by fast transcription and fast mRNA degradation
that finally lead to sharp peaks of transcript contents. Protein
degradation is slower by orders ofmagnitude. Consequently, only
moderate pool dynamics and even protein accumulation was
observed after PFR-STR transits.

Each PFR-STR cycle lasted for about 500 s. During this period,
cells managed to produce 20 mRNA copies of the complete
trp operon. Subsequent translation enabled the formation of
80 TrpED, 100 TrpC, and 200 TrpBA copies (considering

FIGURE 4 | Protein levels for the new steady-state after >15 h as a function of

the degradation constant (solid lines). Higher values show the influence of

declining half-lives and thus higher degradation constants. Measured protein

levels (bar graph) were taken from Valgepea et al. (2013).

the ribosomal stoichiometry of Table 1) with corresponding
translation rates of 9.6, 12 and 24 proteins per cell per minute.

As outlined above, protein degradation is known to be
much slower than mRNA decay which enabled the simplified
simulation of protein dynamics shown in Figure 3B. However,
the scenario may change if steady-states are analyzed. As outlined
in equation 17, steady-state protein levels will be dependent on
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FIGURE 5 | Predicted transcript levels for (A) PFR residence times of 30, 71, and 110 s compared to measured values (scaled to mean trpLE level) and (B) for the

STR population compared to measured values (scaled to simulated trpE levels).

the degradation constant.

dcProtein

dt
= rTranslation − rdeg = rTranslation

−cProtein k
Protein
deg = 0 (17)

cProtein =
rTranslation

kProtein
deg

(18)

Because the individual degradation constants for the trp gene
products are unknown, simulation studies were performed and
summarized in Figure 4. In essence, results for kProtein

deg
=

0 indicate protein loss simply based on cell drain under
continuous operating conditions whereas results with kProtein

deg
> 0

consider additional protein degradation with the given rates. For
comparison, experimental results are indicated, too. As shown,
when kProtein

deg
exceeds 0.6 h-1 (which corresponds to half-lives

lower than 1.1 h) simulated protein levels are smaller than
those reported for the given growth rate of 0.2 h-1. Accordingly,
the simplifying assumption to neglect protein degradation for
simulating STR-PFR dynamics is validated as half-lives of 1.1 h
fairly exceed cycling times of about 500 s (about 0.12 h).

Simulating Long-Term Adaptation
As indicated in Löffler et al. (2016) and Simen et al. (2017),
the STR-PFR experiments were performed as a continuous
cultivation. First, glucose- or ammonia limited steady-states were
installed cultivating the cells in STR only. Then, the PFR was
connected while retaining the total system dilution rate of 0.2
h-1. As such, not only short-term transcript dynamics could be
elucidated by sampling the PFR but also long-term adaptation
of the whole population by studying transcript patterns in STR
during the adaptation period of 28 h after PFR connection.

For simulation studies, the cell and the process model were
linked predicting a stable distribution of 7526 ± 68 tracked cells

in the STR (75.0 ± 0.68%) and 2513 ± 47 simulated cells in the
PFR (25.0 ± 0.47%). Accordingly, the simulated cell population
matched well with the volumetric setup comprising 74.7 vol% in
the STR and 25.3 vol% in the PFR.

Neglecting the residence time distribution in the STR indicates
that cells in the STR are always induced as shown in Figure 3.
Therefore, population heterogeneity is not observable. Including
residence time distribution for a perfectly mixed reactor reveals
the existence of several subpopulations. Whilst 34% of the cells
are currently not induced, 48% of the cells are currently induced
once and 18% of the population are induced multiple times.
Multiple inductions in this context indicate that the cell reenters
the PFR while still being induced from a previous PFR passage,
resulting in multiple transcription events (time dependency is
shown in Supplementary Material).

Figure 5A compares measured and simulated transcript
dynamics of the trp operon while passaging through the PFR.
Notably, measured transcript dynamics were very similar so that
measurements taken after 25, 120 min and 28 h were cumulated
and indicated by a common variance. According to the modeling
constraints, mRNA production started after 30 s which is in good
agreement with experimental observations for trpL and for trpE.
Synthesis of further downstream genes trpDCBA was neither
predicted nor measured.

The long-term adaptation of the population was simulated
for the exemplary time points of 25 and 120 min as well as for
28 h (see Figure 5B). Again, experiments and simulation results
show a high agreement for all conditions. This also holds true
for the short trpL mRNA which was hardly detected in the PFR,
confirming the simulation.

To compare the dynamics of transcript and protein adaptation
toward new steady-states, both species were simulated. For
transcript studies, the average trpA transcription was considered.
Protein formation of TrpA disregarded putative degradation
and simply considered continuous cell drain under steady-state

Frontiers in Microbiology | www.frontiersin.org June 2017 | Volume 8 | Article 1195109

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Nieß et al. Short Stimuli Propagate in Bioreactors

FIGURE 6 | Long-term prediction of transcript and protein levels neglecting protein degradation. mRNA levels reach stable levels after ∼7 min whereas protein

leveling takes more than 15 h.

conditions. Figure 6 clearly outlines the different speeds.
Whereas, transcript levels converge to a new steady-state within
10 min (slightly more than a PFR-STR cycle), proteins need
about 15 h.

DISCUSSION

The transcriptional dynamics observed in the STR-PFR
experiments of Löffler et al. (2016) and in particular Simen
et al. (2017) were modeled using a combined cell and process
model. By focusing on details of transcription and translation
in the cell model, a set of 10,000 individual cells was created
and tracked during their repeated passages through the STR-
PFR system. Inherently, the modeling approach mirrors a
mechanistic understanding linking external stimuli with cellular
transcriptional responses thereby excluding putative stochastic
events (Elowitz et al., 2002; Avery, 2006). Accordingly, the
modeling approach showed fundamental characteristics of an
ensemble model, as outlined by (Henson, 2003). Here, we used
the trp operon as an example because its polycistronic mRNA
consisting of five structural genes and a leader peptide was
repeatedly transcribed envisaging ammonia limitation (Simen
et al., 2017) and, most importantly, its induction was followed by
attenuation which directly linked transcription and translation
of the gene products. Only by using the approach of ensemble
modeling, individual cell fates could be tracked which finally
explain the occurrence of population heterogeneity.

Comparing the experimental observations of transcript
dynamics with modeling predictions, high agreement between
simulations and experimental data can be observed (Figure 5).
The qualification holds true not only for the prediction of short-
term transcript dynamics in the PFR but also for the long-term
adaptations in the STR, visualized by analyzing samples up to 28
h after initial connection of the PFR with the STR. Notably, the
high precision of transcript prediction was achieved without any
parameter regression. Only literature documented parameters
were chosen to fix the setting of the ensemble model. Again, this
finding is qualified as a confirmation of the basic approach.

Protein formation was assumed to start immediately after
mRNA transcription. Unlike mRNA degradation, no distinct
decay kinetics for the trp genes were known. Simulation studies of

Figure 4 revealed that realistic protein half-lives should be about
1.1 h, which is in the range of experimental observations for other
proteins (Nath andKoch, 1970; Lahtvee et al., 2014). Accordingly,
impacts of protein degradation on short-term kinetics can be
ruled out. However, the long-term adaptations indicated in
Figure 6 are likely to be affected. The additional consideration
of decay kinetics will likewise reduce steady-state levels.

One of the key findings of the STR-PFR studies of Löffler et al.
(2016) and Simen et al. (2017) was the observation that PFR
induced regulatory responses are propagated into STR finally
causing the adaptation of the whole population. Exactly this
phenomenon could be modeled as well. Figures 3, 5 document
that only trpL and trpE are fully transcribed in PFR whereas
the transcription of the rest of the operon continued in the
STR. Subsequently, most of the stress induced cellular burden
occurred after a time-delay in the well-mixed STR compartment
and not immediately in the PFR, the origin of the trigger. As a
consequence, the population in the STR is very heterogeneous,
consisting of cells in different transcription and translation
states. Some cells should be still propagating the PFR induced
stress response, whereas others may have completed the same.
Moreover, given that the STR and the PFR compartments do
not physically exist in large-scale bioreactors, cells are expected
to co-exist next to each other while circulating around. Similar
studies have already be performed investigating the lifelines of
fluctuating cells (Haringa et al., 2016; Kuschel et al., 2017).

CONCLUSION

The ensemble model used in this study succeeded to
predict experimental observations of long- and short-term
transcriptional dynamics with high precision and without
parameter adjustments. As such, the approach demonstrated
its fundamental suitability for predicting large-scale population
heterogeneity as a consequence of local stress triggers.
Accordingly, likewise modeling approaches open the door for an
in silico scale-up design, simulating large-scale performance of
the cells ab initio.

This study illustrates that locally induced stress responses
are propagated into different regions of the bioreactor thereby
creating temporal and spatial inhomogeneity of the population.
Notably, cellular reactions do happen on different time
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scales: Whereas transcriptional responses require <10 min,
translational changes may continue for more than 10 h to
reach new steady-states. Additionally, metabolic responses may
occur which are likely to precede the transcriptional reaction.
The hierarchical sequence of regulatory responses is overlaid
with dynamics of mass transfer, mixing and process control
which make it necessary to track individual cell responses
properly for predicting large-scale performance of the total
culture.
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Clustered microbial communities are omnipresent in the food industry, e.g., as colonies of

microbial pathogens in/on food media or as biofilms on food processing surfaces. These

clustered communities are often characterized by metabolic differentiation among their

constituting cells as a result of heterogeneous environmental conditions in the cellular

surroundings. This paper focuses on the role of metabolic differentiation due to oxygen

gradients in the development of Escherichia coli cell communities, whereby low local

oxygen concentrations lead to cellular secretion of weak acid products. For this reason,

a metabolic model has been developed for the facultative anaerobe E. coli covering the

range of aerobic, microaerobic, and anaerobic environmental conditions. This metabolic

model is expressed as a multiparametric programming problem, in which the influence

of low extracellular pH values and the presence of undissociated acid cell products in

the environment has been taken into account. Furthermore, the developed metabolic

model is incorporated in MICRODIMS, an in-house developed individual-based modeling

framework to simulate microbial colony and biofilm dynamics. Two case studies have

been elaborated using the MICRODIMS simulator: (i) biofilm growth on a substratum

surface and (ii) submerged colony growth in a semi-solid mixed food product. In the

first case study, the acidification of the biofilm environment and the emergence of typical

biofilm morphologies have been observed, such as the mushroom-shaped structure of

mature biofilms and the formation of cellular chains at the exterior surface of the biofilm.

The simulations show that these morphological phenomena are respectively dependent

on the initial affinity of pioneer cells for the substratum surface and the cell detachment

process at the outer surface of the biofilm. In the second case study, a no-growth zone

emerges in the colony center due to a local decline of the environmental pH. As a result,

cellular growth in the submerged colony is limited to the colony periphery, implying a

linear increase of the colony radius over time. MICRODIMS has been successfully used

to reproduce complex dynamics of clustered microbial communities.

Keywords: multiscale modeling, individual-based modeling, metabolomics, E. coli, biofilm dynamics
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INTRODUCTION

In their natural or industrial settings, many bacterial species
form clustered communities, such as biofilms or colonies,
rather than living in a free-swimming planktonic state. Living
as a community often confers specific advantages, such as
antibiotic resistance and immune evasion due to horizontal gene
transfer, resistance against flow shear forces and persistence
in dynamic and stressing environments due to metabolic
differentiation (Costerton, 1995; Costerton et al., 1999). This
metabolic differentiation is the result of diffusion limitations and
concomitant gradients in the nutrient, oxygen and metabolic
waste product concentrations. These concentration gradients are
induced by nutrient/oxygen consumption and the secretion of
metabolic waste products such as acetic, formic, and lactic acid by
the relatively densely packed cells (Stewart and Franklin, 2008).

Microbial colony and biofilm development is a significant
issue in food industry. Biofilm formation on food equipment
surfaces constitutes a major contamination source of the food
products. Surface colony growth occurs when food surfaces are
exposed to these microbial contamination sources of spoiling or
pathogenic organisms. In mixed or coagulated food products,
such as minced meat or cheese, these microbial contaminants
can penetrate the food interior during the production process,
resulting in submerged colony growth (Wimpenny et al.,
1995). Cellular growth in clustered communities may also be
used intentionally to obtain specific beneficial effects, such as
biodegradation or synthesis by the use of catalytic biofilms
(Benedetti et al., 2016).

This article focuses on the simulation of Escherichia
coli biofilm and colony growth dynamics. E. coli is a
particularly dangerous food pathogen for young, elderly and
immunocompromised people causing gastrointestinal disorders,
renal failure or even death (Rowe, 2009). An increasing trend
of E. coli infections has been observed in the EU from 2009
to 2013, possibly due to an increased awareness after the large
outbreak of EHEC O104:H4 in 2011 (EFSA and ECDC, 2015).
In addition, as a facultative anaerobe, E. coli is able to survive
both in the presence and absence of oxygen, increasing the risk of
food contamination. Therefore, accurate quantitative microbial
risk assessment is indispensable to guarantee microbial food
safety in the whole food production and distribution chain. For
this purpose, mathematical models are developed in predictive
microbiology to describe and predict microbial dynamics in food
products as a function of environmental conditions resembling
food processing and storage (Buchanan, 1993).

Traditionally, predictive models are (semi-)empirically based
on data of microbial dynamics in well-mixed liquids and
only consider the average microbial population dynamics at a
macroscopic scale. However, as a result of the heterogeneous
environmental conditions in mature biofilms and colonies, and
due to the concomitant metabolic differentiation among the
constituting cells, the individual microbial cell is the most
intuitive modeling level. In individual-based models (IbM), the
individuals/agents of a population are described as discrete,
unique, and autonomous entities (Grimm and Railsback, 2005;
Railsback and Grimm, 2012). This enables the modeler to include

individual variability, directed or local interactions of agents
with the surrounding medium or other agents, and adaptive
physiological behavior. Population dynamics are not modeled
explicitly, but emerge from the behavior of the individuals
and their interactions with the environment and each other.
As suggested above, in predictive microbiological IbMs, the
microbial cell is taken as the individual modeling unit (Ginovart
et al., 2002; Standaert et al., 2004; Dens et al., 2005; Prats et al.,
2006; Verhulst et al., 2011; Ferrier et al., 2013; Tack et al., 2014,
2015).

Despite the specific advantages of IbMs, this kind of models
is notorious for its complex structure (Grimm, 1999; Grimm
et al., 1999). While traditional predictive models only consist
of a limited set of equations, IbMs contain a multitude of
mathematical and logical rules grouped in submodels, each
representing a major and more or less independent process
of the real-life system. This complexity can make IbMs
computationally intensive and slow to run, hard to comprehend
and communicate, data hungry, prone to overfitting, difficult
to calibrate, and laborious to test. In the microbial systems
considered in this work, the most complex process is the
metabolism of the E. coli cells, which is determined by amyriad of
possible intracellular reaction pathways. Therefore, it is necessary
to develop a non-complex, yet accurate metabolic model, valid
under the environmental conditions in our case studies.

Information on the individual cell metabolism could be
included in IbMs by metabolic flux balance analysis (FBA)
with genome-scale models (Palsson, 2006). To represent the
specific microbial growth rate or the secretion rates of major
cell products as a function of nutrient and oxygen consumption,
phenotypic phase planes (PhPPs) can be constructed by
performing FBAs at varying specific cellular nutrient and
oxygen uptake rates. However, this would result in long run
times due to the thousands/millions of cells in IbMs and the
myriad of intracellular pathways in FBA. In addition, FBAs
determine metabolic flux distributions by optimizing a certain
cellular objective (e.g., maximization of biomass or metabolite
production) which is often unknown, especially when the cell
is exposed to stressing environmental conditions (Feist and
Palsson, 2010). Therefore, the PhPPs are approximated in
this article with a low-complexity linear model that contains
the intracellular information from the FBAs without explicitly
incorporating it. However, the PhPPs to which the linear model is
calibrated are only valid when cells aim tomaximize their growth.
To account for deviations from growth-optimal conditions in the
culture environment, growth inhibition and metabolic shifts due
to low pH values and the presence of weak acid cell products in
the environment are incorporated in the linear model.

Finally, the linear metabolic model is incorporated in
MICRODIMS, an in-house developed IbM (Verhulst et al., 2011;
Tack et al., 2015). In this way, MICRODIMS is applicable as a
virtual laboratory to explore the behavior of E. coli cells on/in
food products under various combinations of heterogeneous
environmental conditions. Two case studies are elaborated in
detail: (i) two-dimensional biofilm growth on abiotic food
equipment surfaces, and (ii) three-dimensional submerged
colony growth occurring in mixed or coagulated semi-solid food
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products. In both case studies, oxygen limitations emerge in
mature microbial structures due to diffusion limitations, leading
to local pH drops as a result of the cellular secretion and
accumulation of weak acid substances. The resulting metabolic
differentiation among the cells influences the global population
dynamics: low pH values and cell lysis at the substratum
surface lead to biofilm detachment, while submerged colonies
are characterized by the emergence of a central no-growth zone
influencing the colony radius growth.

MATERIALS AND METHODS

In the first part of this section, the basic concepts of developing
a non-complex metabolic model for E. coli are explained. These
concepts have already been partly described in Tack et al. (2014).
Secondly, the structure of the IbM in which the metabolic model
is incorporated is described according to the ODD (Overview,
Design concepts, and Details) protocol of Grimm et al. (2006,
2010).

Development of a Non-complex Metabolic
Model for E. coli
The non-complex metabolic model that is incorporated in the
IbM is based on systems biology concepts. These concepts and
the derivation of the developedmetabolic model will be explained
in the following subsections. Furthermore, the dependency of
the metabolic model outputs (i.e., the specific cellular growth
rate and the secretion rates of the main cell products) on the
environmental pH and concentrations of weak acid cell products
is explained.

Flux Balance Analysis
In mathematical terms, the intracellular metabolic pathways
and the exchange reactions with the extracellular environment
are contained within the exchange stoichiometric matrix Sexch
(Palsson, 2006):

dx

dt
= Sexch

(

v

q

)

, (1)

with x the concentrations of the involved metabolites, and v and
q the metabolic fluxes through respectively the intracellular and
exchange reactions.

Flux balance analysis (FBA) determines a steady-state solution
of Equation (1) by optimizing a specific cellular objective
function J, leading to the following optimization problem
(Palsson, 2006):

min
v,q

[

J = w ·

(

v

q

)]

, (2)

subject to

Sexch

(

v

q

)

= 0, (3)

vi,min ≤ vi ≤ vi,max, (4)

qi,min ≤ qi ≤ qi,max. (5)

In Equation (2), the weightsw are defined by the intended cellular
objective. The constraints on the kinetic rates of the intracellular
reactions (vi,min and vi,max) and the physicochemical constraints
on the external fluxes due to environmental conditions (qi,min

and qi,max) are taken into account in Equations (4, 5)
respectively.

Phenotypic Phase Plane Analysis
Flux balance analysis is an accurate tool to determine the specific
cellular growth rate and secretion rates of the main weak acid
cell products for a known specific glucose and oxygen uptake
rate. To examine the metabolic regimes of E. coli under different
glucose and oxygen availability conditions, a phenotype phase
plane (PhPP) analysis can be carried out by executing multiple
FBAs for a range of specific glucose and oxygen uptake rates
(Edwards et al., 2001), as illustrated in Figure 1. For these FBAs,
the genome-scale model iAF1260 of Feist et al. (2007) has been
used, and it has been assumed that the cell aims to maximize its
biomass. The metabolic operation of the cell is retrieved from
the PhPP by maximizing the specific cellular growth rate as a
function of the specific glucose and oxygen uptake rate:

max
qG ,qO

[J = µ(qG, qO)] (6)

subject to

0 ≤ qG ≤ qG,max ·
CG

KG + CG
, (7)

0 ≤ qO ≤ qO,max ·
CO

KO + CO
. (8)

The upper constraints for the glucose and oxygen uptake rate
are determined according to the Monod kinetic law (Monod,

1942). In these constraints, qG,max

[
mol

gDW·h

]

and qO,max

[
mol

gDW·h

]

are kinetically the maximal specific uptake rates for glucose
and oxygen (where DW is the abbreviation of dry weight,
mol the indication of mole, and h the abbreviation of hour),
CG [mol/L] and CO [mol/L] the extracellular glucose and
oxygen concentrations (with L the abbreviation of liter), while
KG [mol/L] and KO [mol/L] are the Monod half-saturation
constants for respectively glucose and oxygen. The optimization
problem in Equation (6) is straightforward to solve as the PhPP
in Figure 1 is a monotonically increasing function of both the
glucose and oxygen uptake rate, implying that the specific glucose
and oxygen uptake rates are equal to the upper boundaries in
Equations (7, 8). Values for the above-mentioned parameters can
be found in Table 1.

A Linear Metabolic Model for E. coli under Reference

Environmental Conditions
As the PhPP contains much information about intracellular
metabolic fluxes from its constituting FBAs, it is not appropriate
to incorporate it in its original form into an IbM. Multiple
evaluations of the whole intracellular reaction network would
result in an excessive increase of the required IbM simulation run
time. For this reason, the planes in the PhPP at a specific oxygen
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FIGURE 1 | Phenotypic phase plane analysis: specific cellular growth rate as a function of specific glucose and oxygen uptake rates with maximization of biomass

growth as cellular objective, presented as (A) 3D plot and (B) contour plot. The phenotypic phase plane consists of four phases, each representing a different

metabolic regime. In Sector 1 glucose is completely converted to CO2 through the tricarboxylic (TCA) cycle. The other sectors are characterized by the secretion of

weak acid cell products in the cellular environment: acetic acid in Sector 2; acetic and formic acid in Sector 3; acetic acid, formic acid and ethanol in Sector 4. On the

boundary between Sector 1 and 2, glucose is converted to biomass at a maximal observed yield. For this reason, this boundary is indicated as the line of optimality

(LO).

uptake rate are described by means of the linear growth law of
Pirt (Schulze and Lipe, 1964; Pirt, 1965):

µ = (qG −mG) · YX/G, (9)

with qG

[
mol

gDW·h

]

the specific glucose uptake rate, mG

[
mol

gDW·h

]

the maintenance coefficient, and YX/G [gDW/mol] the biomass
yield coefficient on glucose. The secretion rates of the main

acid metabolites (acetic, formic, and lactic acid) are expressed
similarly:

qi = Yi/G · qG + q0i , (10)

where qi

[
mol

gDW·h

]

is the specific secretion rate of metabolite i,

q0i is the specific secretion rate at a zero glucose uptake rate and
Yi/G [mol/mol] the production yield of metabolite i on glucose.
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TABLE 1 | Parameter values.

Parameter Value Reference

qG,max 9.02·10−3 mol/(gDW·h) Portnoy et al., 2010

qO,max 16.49·10−3 mol/(gDW·h) Portnoy et al., 2010

KG 2.994·10−6 mol/L Ihssen et al., 2007

KO 0.121·10−6 mol/L Stolper et al., 2010

The Influence of pH and Weak Acids on the E. coli

Metabolism
In the optimization problem in Equations (6–8), it is assumed
that the cell aims to maximize its growth. This assumption is only
valid for a non-stressing reference environment, i.e., a neutral M9
minimal medium enriched with glucose at 37◦C. However, the
cellular secretion of weak acid metabolites under oxygen-limited
conditions in microbial biofilms and colonies constitutes an
inhibiting factor for cellular growth and survival. The inhibiting
effect of weak acid cell products on cellular growth is 2 fold:
(i) dissociation of acid metabolites in the food environment leads
to a decrease of the extracellular pH, and (ii) reintrusion of the
lipophilic undissociated cell products into the cell results in an
intracellular pH drop.

Under the stressing conditions of low extracellular pH values
and the presence of undissociated acid cell products, the cellular
objective changes to maximize survival chances. As a matter of
fact, the cellular objective needs to be modified as

max
qG ,qO

J(qG, qO, pH, [Ui]), (11)

restating the optimization problem in Equations (6–8) as
a multiparametric programming problem. However, the
exact mathematical formulation of the cellular objective is
unfortunately not known. For this reason, a more pragmatic
approach is required.

Synergistic effects of low extracellular acidity and
undissociated acid cell products in the environment can be taken
into account in the maintenance coefficient in Equation (9):

mG = mG,ref + A ·
[H+]− 10−7

[H+]min − 10−7
+ B ·

∑

i

[Ui]

[Ui]min
. (12)

In this expression, the maintenance coefficient consists of three
terms: (i) the reference maintenance coefficient mG,ref that can
be derived from the reference PhPP in Figure 1, (ii) additional
maintenance requirements due to an increase of the extracellular
proton concentration [H+], and (iii) a supplementary effect
of weak acid cell products in their undissociated form [Ui].
Microbial growth stops when the proton concentration reaches
a critical value [H+]min. Analogous minimum inhibitory
concentrations [Ui]min exist for the undissociated acid cell
products. The mathematical constants A and B are calculated
by replacing this expression for the maintenance coefficient in
Equation (9).

The increase of the maintenance coefficient due to low
extracellular pH values and the presence of undissociated acid cell

products does not only affect the microbial biomass growth, but
also the secretion of metabolic products in Equation (10):

qi = Yi/G · qG +
mG

mG,ref
· q0i , (13)

ODD Description of the Developed IbM
The developed metabolic model is incorporated in the
MICRODIMS IbM (Verhulst et al., 2011; Tack et al., 2015).
This in-house developed IbM is adapted and extended to
simulate the dynamics of microbial biofilms and submerged
colonies. In this section, a general overview of the MICRODIMS
simulator is described according the to first part of the standard
ODD protocol of Grimm et al. (2006, 2010). Details about the
specific MICRODIMS versions for the two considered case
studies are included in the next section.

Model Purpose
The purpose of the new MICRODIMS versions is the simulation
of chemical gradients and the resulting metabolic differentiation
in E. coli biofilms and submerged colonies. The influence of this
metabolic differentiation on the development of mature biofilms
and colonies is investigated as well.

Entities, State Variables, and Scales
Microbial systems consist of two kinds of agents: the microbial
cells and their surrounding environment.

The microbial cells contain the same state variables as in the
previous MICRODIMS versions (Tack et al., 2015): cell mass
and radius, spatial coordinates, maximum specific glucose and
oxygen uptake rates and a list variable with information about
the ongoing DNA replication cycles. In addition, an inclination
vector is introduced to take the rod shape and orientation of
E. coli into account.

The liquid environment is modeled as a two-dimensional
space for the biofilm simulations, while the submerged colonies
are simulated in a three-dimensional food environment. In both
cases, the environment is discretized as a spatial grid. Each of the
grid units is associated with a glucose, oxygen, acetic acid and
formic acid concentration. To simulate chemical gradients at a
microscopic level, the size of a grid unit needs to be in the same
order of magnitude as a microbial cell, viz., 6 µm. The whole
space has a dimension of 300 µm.

Process Overview and Scheduling
MICRODIMS consists of several interlinked subprocesses, as
illustrated in Figure 2. These subprocesses exhibit different time
dynamics (Picioreanu et al., 1999) and are executed at different
time steps. In MICRODIMS, three time steps are used: (i)
1t1 = 0.00005 min, a very short time step for the fast diffusion
processes and the update of local pH values, (ii) 1t2 = 0.01 min,
an intermediate time interval for the metabolic processes of
nutrient and oxygen uptake, biomass growth and metabolite
secretion, and (iii) 1t3 = 0.1 min, the long time step for slow
processes such as cell reproduction, cell lysis, and cell movement.
This cell movement consists of a shoving mechanism to avoid
spatial overlap between the cells, and a detachment process for
loosely bound biofilm cells. After the initiation of the simulation,
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FIGURE 2 | Process schedule of the MICRODIMS model.

all the subprocesses are executed consecutively as presented in
the simulation scheme in Figure 2.

Software
The MICRODIMS IbM has been implemented in the MASON
multiagent simulation toolkit in Java (Luke et al., 2003, 2004,
2005). The strict separation between the execution of the
model and graphical output increases the simulation speed in
comparison to other IbM simulation toolkits, such as Repast
Simphony.

RESULTS

Case Study I: Biofilm Growth
Over the last years, several models have been developed for the
description of single species biofilm structures using information
of genome-scale metabolic models (Biggs and Papin, 2013;
Chen et al., 2016; Bauer et al., 2017). However, these models
basically rely on one determining factor to explain the simulated
biofilm morphologies at a mesoscopic level, namely the diffusion
of nutrients/oxygen into and the diffusion of metabolic waste
products out of the biofilm. In addition, the modeling unit
in these cellular automaton models is the local microbial
concentration in a small square of the environment. This spatial

resolution that is used to model the microbial cells, is too coarse
to simulate morphological phenomena at a finer microscopic
scale, such as the formation of cellular chains at the outer
biofilm surface. To take these microscopic events into account,
each cell needs to be modeled as a separate discrete entity in a
realistic individual-based model, where the modeling unit is the
microbial cell itself and direct microscopic interactions between
the microbial cells (such as intercellular adhesion) can be taken
into account. The emergence of these microscopic morphological
phenomena in E. coli biofilms is described in this case study.

Model Details
Besides the incorporation of the developed metabolic model,
other submodels in the basic MICRODIMS module of Verhulst
et al. (2011) needed to be slightly adapted or included to simulate
the characteristic dynamics of biofilms on food processing
surfaces. In this subsection, these adaptations, and extensions are
described in more detail.

Initialization and boundary conditions
The initial environment is neutral and does not contain any
initial weak acid cell products. Initially, the oxygen concentration
is taken to be the saturated oxygen concentration in water
(6.73 mg/L) in order to clearly demonstrate the transition from
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aerobic to anaerobic environmental conditions in the biofilm.
Furthermore, the environment has a glucose concentration of 0.1
g/L in order to ensure that the simulation starts with a metabolic
regime in region 1 of the PhPP (see Figure 1). In reality, the initial
glucose concentration is typically higher (1 g/L) implying that the
simulation would start in metabolic regime 2, 3, or 4 with a very
high production of weak acid cell products already in the initial
stages of the simulation. Consequently, the simulation would
not demonstrate the full transition from aerobic to anaerobic
conditions. In the environment, biofilm growth starts from
three cells randomly situated at the substratum surface. This
substratum is situated at the lower environmental boundary. It
is modeled by means of a Neumann boundary condition, i.e., any
chemical gradients or fluxes are absent at this insulating surface.
In contrast, the opposite upper boundary of the environment
is in contact with the bulk medium and is characterized by
a Dirichlet boundary condition with constant concentrations.
In this way, the bulk medium is represented as an infinite
reservoir of nutrients and oxygen, and an infinite sink for
metabolic waste products. The remaining two side boundaries
are wrapped toward each other, creating periodic boundary
conditions.

Diffusion
Diffusion is modeled according to the second law of Fick:

∂Ci

∂t
= Di ·

(
∂2Ci

∂x2
+

∂2Ci

∂y2

)

, (14)

with Ci [mol/L] the concentration of substance i in the liquid
phase, Di [µm

2/min] the diffusion coefficient of substance i,
x [µm] and y [µm] the spatial dimensions, and t [min] the
temporal dimension. This equation has no analytical solution in
combination with the initial and boundary conditions defined
in the previous paragraph. For this reason, it is discretized
according to an explicit Forward-Time Central-Space (FTCS)
numerical scheme (Roache, 1972). To incorporate the restrictive
effect of EPS and surrounding microbial cells on the diffusion
processes, the diffusivityDi is deliberately decreased by a factor of
50 in the biofilm to provide a good match between the simulated
biofilm morphologies and experimentally observed biofilm
structures, as there are unfortunately no direct experimental data
available for this decrease in diffusivity.

pH update
Local pH values are calculated from the acid cell product
concentrations and their dissociation constants. This procedure
has been explained in Tack et al. (2014).

Glucose and oxygen uptake
Glucose and oxygen uptake are modeled according to the
Monod kinetic model (Monod, 1942). A normally distributed
stochastic element with a coefficient of variation of 0.10 has
been superposed on this kinetic model, to incorporate biological
variability and growth asynchrony (Schaechter et al., 1962; Koch,
1993).

Cell reproduction
The DNA replication and cell division processes are simulated
according to an adapted version of the model of Donachie (1968),
that has been developed in Tack et al. (2014, 2015). Daughter cells
are placed along the orientation of their mother cell, upon which
a uniformly-distributed random deviation angle of maximally
π/8 radians is superposed.

Cell movement
Spatial overlap between neighboring cells is avoided by means
of a cell shoving mechanism (Kreft et al., 1998). Detachment
of cells from the biofilm’s outer surface occurs when these cells
are not properly aligned with their neighbors. Cell adhesion
factors on the cell surface, such as Antigen 43 (Ag43) are mainly
concentrated around the cell poles, implying that only the cell
poles take part in intercellular adhesion interactions (Vejborg
and Klemm, 2009). If a cell has less than four neighbors and is
not attached to the substratum surface, it is assumed that this cell
is situated at the biofilm exterior. To stay attached to the biofilm,
the orientation vectors of this cell and one of its neighbors need to
be aligned within a maximal detachment angle θmax of π/6 with
the line between the centers of these two cells.

Simulation Results

Biofilm development
The development of the biofilm structure in the IbM simulation
is presented in Figure 3. Initially, cellular chains form from
the initial cells at the substratum surface, which has been
experimentally observed (Vejborg and Klemm, 2009). After this
initial stage, the biofilm environment gets oxygen-depleted and
acidified at the substratum surface, mainly due to acetic acid
production and to a lesser extent due to the formic acid secretion.
Lactic acid production was not observed in the simulations
as the oxygen concentration never dropped to a completely
anaerobic level, which is a necessary condition for lactic acid
secretion by themicrobial cells. This acidification inhibits cellular
growth and survival at the substratum, leading to a mature
biofilm structure with mushroom-shaped pillars separated by
water-filled channels. These channels are more acidified than
the bulk medium, inhibiting cell growth. The mushroom-
shaped architecture of mature biofilms has also been observed
experimentally (Reisner et al., 2003).

Finally, due to the acidic cellular stress, cells stop growing
at the substratum, indicated by the red cell color in Figure 3C.
Ultimately, these growth-compromised cells die, resulting in
biofilm detachment. Experimental studies of E. coli biofilm
growth have demonstrated the failure of biofilm formation and
the detachment of already existing biofilms under anaerobic
conditions (Colón-Gonzáez et al., 2004). The absence of biofilm
formation under anaerobic conditions has been explained by a
reduced production of type 1 pili, inhibiting cell-substratum and
cell-cell adhesion interactions. However, this explanation is not
suitable for the detachment of already existing biofilms in which
type 1 pili are abundantly available. This IbM simulation shows
that acidification of the biofilm environment at the substratum
surface can play a significant role in the biofilm detachment
process as well.
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FIGURE 3 | Evolution of the biofilm development: (A) cellular chain formation from the initial cells at the substratum surface at t = 10 h, (B) initial biofilm architecture at

t = 25 h, (C) mature biofilm structure at t = 70 h. The viability of the cells is indicated by their color: green is used for actively growing cells, while red cells have

stopped growing.

Cell detachment
As the cell-cell adhesion factors on the cell surface are mainly
concentrated around the cell poles, cells at the biofilm outer
surface need to be well-aligned with their neighbors to avoid
detachment from the biofilm due to flow shear forces. This
results in the formation of cellular chains at the biofilm exterior
surface (Vejborg and Klemm, 2009). To investigate the influence
of the cell detachment process on the biofilm development and
morphology, the maximal detachment angle θmax is varied over
a range of values. The results of this analysis are summarized in
Figure 4. At higher values of θmax, i.e., less restrictive detachment
conditions, a thicker biofilm structure with more densely packed
cells emerges, causing more severe acidification and cell death at
the substratum surface. Less cellular chains protrude from the
exterior biofilm surface. For lower values of θmax, the opposite
trend is observed as more cells detach from the biofilm and
disperse into the bulk medium: the biofilm structure is thin and
more open with many cellular chains. The biofilm structure at
a maximal detachment angle of approximately π/6 corresponds
best with experimental observations of E. coli biofilms (see e.g.,
Danese et al., 2000; Reisner et al., 2003; Vejborg and Klemm,
2009).

Initial cell affinity for the substratum surface
For the initial attachment of planktonic cells to the substratum,
these cells need to overcome electrostatic repulsive forces from
the substratum, that is often conditioned by the adsorption
of various solutes to avoid biofilm growth. High affinities of
dispersed cells in the bulk medium for the substratum lead to
high densities of initial cells at the substratum surface. Increasing
the number of initial cells at the substratum in the simulation
leads tomore continuous and flat biofilm structures, as illustrated
in Figure 5. Both mushroom-shaped pillar structures for low
initial cell numbers and more continuous structures at higher
cell-surface affinities have been experimentally observed (see
respectively, Reisner et al., 2003; Vejborg and Klemm, 2009). As
a consequence, the substratum surface conditioning treatment
plays a determining role in the formation of specific biofilm
structures.

Case Study II: Submerged Colony Growth
Most individual-based models for colony behavior are developed
to describe phenomena that are experimentally observed for
colonies on the surface of semi-solid food media. It is however
much more difficult to experimentally observe dynamics of
submerged colonies that are growing in mixed food products
(Boons et al., 2001). For this reason, this case study focuses on
submerged colony growth behavior and its connection to surface
colony dynamics.

Model Details
For the simulation of a submerged colony in semi-solid food
products, the food system is modeled in principle as a three-
dimensional environment to account for complex geometry as
well, with the initial cell in the center. Note that the simulation
of the growth of one submerged colony can be reduced to a two-
dimensional problem in case of non-complex geometry. In such
case, the two horizontal dimensions are equivalent, so only one
horizontal dimension and the vertical dimension are needed if
appropriate scaling of the spatial density of colonies from 3D to
2D is applied.

The simulation of the diffusion processes in the environment
cannot be reduced to a two-dimensional problem, as substances
diffuse from or to the colony in the three spatial dimensions.
However, updating the local concentrations in a complete
3D environment would be too computationally expensive.
Therefore, only a central layer of the environment has been
simulated, indicated in blue in Figure 6. Nevertheless, diffusion
interactions in the perpendicular direction on this layer have been
taken into account. For these interactions, the concentrations
of environmental substances in the layers above and below
the central layer, indicated in yellow in Figure 6, need to be
determined. Under the assumption that the isoconcentration
planes of chemical substances around the submerged colony
can be locally approximated by concentric spheres around the
environmental origin, the concentrations in the environmental
units in the yellow layers are deducible from goniometric
principles and interpolation between concentrations in the
central layer. More specifically, the concentration of substance
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FIGURE 4 | Biofilm structures at t = 70 h for different values of the maximal detachment angle θmax .

FIGURE 5 | Biofilm structures at t = 70 h emerging from (A) 3 initial cells, or (B) 10 initial cells.

i in the yellow layers is expressed by means of the following
expressions:

Ci(j, k, l− 1) = Ci(j, k, l+ 1) =

(1− sign(1y) · 1y) ·

((1− sign(1x) · 1x) · Ci(j, k, l)+

sign(1x) · 1x · Ci(j+ sign(1x), k, l))+

sign(1y) · 1y ·

((1− sign(1x) · 1x) · Ci(j, k+ sign(1y), l)+

sign(1x) · 1x · Ci(j+ sign(1x), k+ sign(1y), l)), (15)

where Ci(j, k, l) is the concentration of substance i in
the environmental unit with the coordinates (j, k, l),
and

1x = 1 ·
j

√

j2 + k2
, (16)

1y = 1 ·
k

√

j2 + k2
(17)

1 =

√

j2 + k2 + 1−

√

j2 + k2, (18)
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FIGURE 6 | The simulated submerged colony environment (For reasons of

clarity, the discretization pattern is represented in a more coarse way than in

the real simulation).

Initialization and boundary conditions
The simulation starts with one initial cell which is located in the
origin of the environment. The environmental boundaries are
characterized by constant chemical concentrations.

Diffusion
In the central environmental layer, diffusion processes are
modeled according to the second law of Fick in three dimensions,
discretized by means of the FTCS numerical scheme. For
numerical stability reasons, a smaller time step 1t1 =

0.00002 min is required in this explicit scheme for three-
dimensional diffusion. For glucose and chemical compounds of
the same molecular size as glucose, the diffusion coefficients
in a 5% (w/v) agarose gel environment are approximately 75%
of their normal diffusivities in water (Hooijmans et al., 1990;
Andersson and Öste, 1994; Azevedo and Oliveira, 1995). The
oxygen diffusivity is hardly effected by the agarose concentration
(Guaccio et al., 2008).

Cell movement
As the cells cannot detach from the colony due to motility
limitations, the spatial organization of the colony cells is only
determined by cell shoving to avoid spatial overlap between
neighboring cells.

Simulation Results
Figure 7 illustrates the growth of a submerged colony, starting
from one initial cell in the origin of the environment. The
colony remains more or less circular over its whole evolution,
confirming the assumption that has been used to obtain the
expressions in Equations (15–18). In the colony center, diffusion
limitations lead to the accumulation of weak acid cell products,

mainly acetic acid. The resulting pH drop causes cell lysis,
indicated by the emergence of a no-growth zone and the
disappearance of cells in the colony center. Due to the emergence
of these no-growth conditions in the colony center, the initially
superlinear growth of the colony radius slows down, resulting in a
linear colony radius increase, as presented in Figure 8. This linear
radius increase has been observed for quasi-two-dimensional
surface colonies as well (Kamath and Bungay, 1988; Wimpenny
et al., 1995; Mitchell and Wimpenny, 1997), indicating that
easily-observable qualitative trends in two-dimensional surface
colony dynamics can be representative for the behavior of
three-dimensional submerged colonies that require much more
advanced monitoring techniques.

DISCUSSION

An in-house developed simulator for individual based modeling
of microbial dynamics has been extended with a metabolic model
for E. coli expressing specific cellular growth rate and metabolic
secretion rates as a function of the local extracellular pH
and the concentration of undissociated cell products, covering
all metabolic regimes from anaerobic respiration to anaerobic
fermentation.

From the simulations, it is observed that E. coli biofilm
dynamics are mainly determined by metabolic differentiation
due to concentration gradients of weak acid cell products, cell
detachment leading to persistent cell chains, and the affinity
of planktonic cells for the substratum surface. Experimental
studies also suggest a role for quorum sensing by the production
or addition of autoinducer 2 (AI-2) signaling molecules, or
through the production of N-acyl-L-homoserine lactones (AHL)
by other species (DeLisa et al., 2001; Sperandio et al., 2001;
González Barrios et al., 2006; Beloin et al., 2008). The effect
of quorum sensing mechanisms on biofilm and microbial
colony behavior has been investigated in other IbM simulations
(see e.g., Tang et al., 2007; Nadell et al., 2008; Melke et al.,
2010; Jang et al., 2012). In addition, cross-feeding interactions
between the E. coli cells, such as the consumption of the
produced acetate by cells at the substratum surface (Oh
et al., 2002), has not been taken into account as this acetate
uptake only occurs under low environmental concentrations of
glucose. In the performed simulations, there is no local glucose
depletion at the substratum surface. Furthermore, cells under
stressing conditions may exhibit additional complex behavior
and resilience by going into a dormant state (Agafonov et al.,
2001). This transition to dormancy has not been taken into
account in the simulations. The scope of this case study is in
fact limited to the simulation of mature biofilm morphologies
and the emergence of these morphologies is solely dependent
on cellular events at the outer biofilm surface where the
cells are not hibernated. Finally, it should be noted that the
formation of cellular chains is a typical phenomenon in E. coli
biofilms, which has not been observed for other species such
as Pseudomonas aeruginosa. It is therefore not recommended to
extrapolate the applied cell adhesion model to other species than
E. coli.
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FIGURE 7 | Evolution of the submerged colony development: (A) initial phase without severe growth-inhibiting conditions, (B) emergence of a central no-growth

zone, (C,D) cell lysis in the colony center.

FIGURE 8 | Evolution of the colony radius.

The submerged colony simulations demonstrate that the
initially homogeneous concentration of oxygen at saturation level
decreases sharply over time in the colony center, while the oxygen
concentration at the boundaries remains constant. However, it

should be noted that these constant boundary conditions are a
strong simplification of the conditions in real food systems, as
the overall oxygen availability in food products strongly depends
on the distance from the food surface (Noriega et al., 2008).
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The model may probably also be used for other food pathogens
which are similar to E. coli, such as the gram-negative rod-shaped
Salmonella Typhimurium. However, not enough microscopic
data are available about this food pathogen to validate this
assertion.

CONCLUSIONS

Mature microbial communities of clustered cells, such as biofilms
or colonies, are of paramount industrial andmedical importance.
Such microbial communities are characterized by metabolic
differentiation among the constituting microorganisms due
to diffusion limitations and chemical gradients in their
environment. Due to the metabolic differences between the
cells according to their position in the community, it is most
appropriate to simulate these biosystems by means of an IbM
with the microbial cell as basic modeling unit.

In this article, an in-house developed IbM platform for
microbial dynamics, MICRODIMS, has been extended with a
new metabolic model for the simulation of two-dimensional
biofilm dynamics on abiotic food processing surfaces and three-
dimensional submerged colony behavior in semi-solid food
products. This metabolic model covers all metabolic regimes
from aerobic respiration to anaerobic fermentation and expresses
the specific cellular growth rate and metabolic secretion rates as
a function of the local extracellular pH and the concentration of
undissociated cell products. This model allows to studymetabolic
differentiation due to oxygen gradients in the development
of E. coli cell communities, whereby low local oxygen
concentrations lead to cellular secretion of weak acid products.

This metabolic model is expressed as a multiparametric
programming problem, in which the influence of low
extracellular pH values and the presence of undissociated
acid cell products in the environment has been taken into
account.

Two case studies have been elaborated in this article, using
the MICRODIMS simulator: (i) biofilm growth on a substratum
surface and (ii) submerged colony growth in a semi-solid mixed
food product.

In the biofilm case study, accumulation of weak acid cell
products and a concomitant pH drop occur at the substratum

surface. This leads to cell lysis and biofilm detachment from
the substratum. Apart from the metabolic cellular differentiation,
biofilm dynamics are mainly determined by the cell detachment
process at the biofilm outer surface, inducing the formation
of protruding cell chains. The acidification of the biofilm
environment and the emergence of typical mushroom-shaped
morphologies of mature biofilms and the formation of cellular
chains at the exterior surface of the biofilm are observed. In
addition, high affinity of planktonic cells in the bulk medium for
the substratum surface results in a high density of initial cells at
the substratum and a more continuous and flat biofilm structure.
The simulations show that these morphological phenomena are
respectively dependent on the initial affinity of pioneer cells for
the substratum surface and the cell detachment process at the
outer surface of the biofilm.

The submerged colony case study demonstrates the
development of a central no-growth zone with a sharp decline
of the local pH, comparable to the pH drop at the substratum
surface in the biofilm simulations. Cellular growth is limited to
a thin band of cells at the colony periphery, resulting in a linear
increase of the colony radius over time.
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Using the model host/pathogen pair Galleria mellonella/Bacillus thuringiensis, we have
shown that these bacteria could kill their insect host, survive in its cadaver and
form spores by sequentially activating virulence, necrotrophism and sporulation genes.
However, the population isolated from the cadavers was heterogeneous, including
non-sporulating cells in an unknown physiological state. To characterize these bacteria,
we used a transcriptional fusion between the promoter of a gene expressed during early
exponential growth (abrB) and a reporter gene encoding a destabilized version of GFP,
in combination with a fluorescent reporter of the necrotrophic state. The composition
of the bacterial population during infection was then analyzed by flow cytometry. We
showed that the PabrB promoter was activated in the population that had turned on the
necrotrophic reporter, suggesting a re-entry into vegetative growth. Strikingly, the cells
that did not go through the necrotrophic state did not activate the PabrB promoter
and appear as a dormant subpopulation. We propose a new model describing the
B. thuringiensis cell types during infection.

Keywords: population heterogeneity, single cell analysis, Bacillus thuringiensis, infectious cycle, dormancy

INTRODUCTION

Bacteria are often exposed to changes in their environment. Pathogenic bacteria in particular have
to face an array of environments that change with the progression of the disease. They adapt most
of the time by modifying their gene expression profile in response to the signals they receive. And
interestingly, a clonal population will not always behave as a whole. Genetically identical bacteria
can differentiate into specialized cell-types that will provide different answers to the signal received
(Lopez and Kolter, 2010; Verplaetse et al., 2015; Mouammine et al., 2017).

Our model bacteria belong to the Bacillus cereus group. This group is composed of 8 Gram-
positive and sporulating species including B. anthracis, B. thuringiensis and B. cereus sensu stricto.
These pathogens are responsible for infections in humans and in animals. B. anthracis is the agent
of anthrax (Mock and Fouet, 2001). B. cereus mainly causes food-borne toxi-infections and is also
an opportunistic pathogen responsible of endocarditis, meningitis and endophthalmitis (Stenfors
Arnesen et al., 2008; Bottone, 2010). B. thuringiensis is an insect pathogen whose host specificity
depends on the production of insecticidal toxins (Deng et al., 2014). The entomopathogenic
properties of this bacterium are widely used in the world for pest control (Sanahuja et al., 2011;
Sanchis, 2011).

Frontiers in Microbiology | www.frontiersin.org December 2017 | Volume 8 | Article 2471126

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02471
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02471
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02471&domain=pdf&date_stamp=2017-12-12
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02471/full
http://loop.frontiersin.org/people/112562/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02471 December 8, 2017 Time: 17:25 # 2

Ben Rejeb et al. abrB Expression during Infection

To understand the mechanisms involved in the pathogenicity
of these bacteria we work with the insect model Galleria
mellonella. This infection model has been successfully used
to characterize numerous genes involved in the pathogenic
properties of B. cereus and B. thuringiensis (Salamitou et al., 2000;
Fedhila et al., 2006; Raymond et al., 2010). These bacteria are
capable of carrying out a full infectious cycle in the larva of this
insect. We have shown that this process is composed of three
major phases (for a review Slamti et al., 2014). At the beginning of
the infection, virulence factors are expressed under the control of
the quorum sensor PlcR. These factors, which include proteases,
phospholipases and cytotoxins, allow the bacteria to invade its
host and to kill it (Salamitou et al., 2000). After the death of the
insect, NprR, another quorum sensor, will trigger a necrotrophic
lifestyle permitting the bacteria to survive in the cadaver (Dubois
et al., 2016). Finally, the cells will sporulate and will be able to
disseminate and withstand hostile environmental conditions.

A recent study reported the differentiation process of cells
in insect cadavers, using fluorescent reporters under the control
of promoters reflecting the activity of the regulators responsible
for virulence, necrotrophism and sporulation at the cell level
(Verplaetse et al., 2015). Although these physiological states take
place in a sequential manner in a cell, the necrotrophic phase is
only triggered in a part of the population in the insect cadaver,
suggesting an activation specificity linked to the environment.
It was also shown that sporulation only occurs in the sub-
population that has activated the necrotrophic regulon. This is
in agreement with the fact that the apo form of NprR inhibits
sporulation, whereas NprR in complex with its signaling peptide
NprX, activates the necrotrophic genes (Perchat et al., 2016).
We also identified a category of cells that did not express any
of the previously described reporters in biofilm and in the host
(Verplaetse et al., 2015, 2016). This category represented about
20% of the population throughout the infectious process.

Here we investigated the physiological state of the cells that
did not enter the necrotrophic state, since the necrotrophic
sub-population is the most inclusive. We sought to determine
if these cells were actively growing bacteria. To monitor the
vegetative state of these bacteria we chose to assay the activity
of the promoter of the abrB gene during insect infection using
a fluorescent reporter. This gene encodes the AbrB transition
state regulator and is transcribed during the transition from
lag to exponential phase and during early exponential phase
(O’Reilly and Devine, 1997; Lucking et al., 2009). This central
regulator has been shown to repress the expression of stationary
phase genes in B. subtilis (Perego et al., 1988; Strauch and Hoch,
1993) as well as the synthesis of the cereulide toxin synthesis
and the expression of the inhA1 metalloprotease-encoding gene
in B. cereus (Grandvalet et al., 2001; Lucking et al., 2009). We
engineered a B. thuringiensis-improved allele of the bright and
fast folding sfGFP (Pedelacq et al., 2006) and, in order to follow
fluctuations in gene expression, we destabilized the resulting
protein by using the ssrA-mediated peptide tagging system that
addresses specifically tagged proteins to the Clp degradation
machinery in Escherichia coli and in B. subtilis (Keiler et al., 1996;
Gottesman et al., 1998; Wiegert and Schumann, 2001). Using this
tool, we showed that the abrB gene is expressed at the beginning

of the infection and at a later stage of the process, only in cells
that already went through the necrotrophic state. However, there
is still a bacterial population in an unknown physiological state
and we show that more than 60% of this population are living
cells.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The acrystalliferous B. thuringiensis 407 Cry− strain (Bt 407−)
(Lereclus et al., 1989) was used as the parental strain to create
all the strains used in this study. E. coli strain DH5α (Taylor
et al., 1993) was used as the host strain for plasmid construction.
E. coli strain ET12567 (MacNeil et al., 1992) was used to prepare
DNA prior to electroporation in B. thuringiensis. Cells were
grown in LB medium (1% tryptone, 0.5% yeast extract, 1%
NaCl) or HCT medium (0.7% casein hydrolysate, 0.5% tryptone,
0.68% KH2PO4, 0.012% MgSO4 7H2O, 0.00022% MnSO4 4H2O,
0.0014% ZnSO4 7H2O, 0.008% ferric ammonium citrate, 0.018%
CaCl2 4H2O, 0.3% glucose, pH 7.2) (Lereclus et al., 1982) at 37◦C
and stored at−80◦C in LB containing 15% glycerol.

For B. thuringiensis cultures, t0 corresponds to the beginning
of the transition between the exponential and stationary phases
of growth.

The antibiotic concentrations used for selection of
B. thuringiensis and E. coli were as follows: erythromycin,
10 µg/mL; ampicillin, 100 µg/mL. Chloramphenicol was used at
a concentration of 100 µg/mL to block the synthesis of proteins
(Periago et al., 2002) in B. thuringiensis.

When required, xylose was used at a concentration of 20 mM.

Plasmid and Strain Constructions
DNA manipulations are detailed in the Supplementary
Experimental Procedures. All the plasmids and strains used
in this study are indicated in Tables 1, 2. Oligonucleotides are
listed in Supplementary Table S1.

In Vitro Growth of the Cells for
Measurement of the GFP-Based
Fluorescence
To assay the GFP-based fluorescence of cells harboring
the sf gfp gene and its derivatives designed to improve
fluorescence, overnight cultures incubated at 30◦C in HCT
medium supplemented with erythromycin were diluted 1000-
fold in HCT and incubated at 37◦C under agitation until an
OD600 of 0.5. Xylose was then added and growth was resumed.
Cells were harvested at the time of xylose addition (T0) as well
as at other time points after xylose addition (Tn). Cultures were
carried out in the same way to assay the GFP-based fluorescence
of cells harboring the gfpBte gene and its derivatives designed to
destabilize the GFP, except that chloramphenicol was added to the
cells 1 h after xylose addition.

In all cases, the cells were harvested and fixed as described
in Verplaetse et al. (2015). Essentially, the cells were centrifuged,
fixed for 7 min in PBS-formaldehyde 4% then washed in PBS. The

Frontiers in Microbiology | www.frontiersin.org December 2017 | Volume 8 | Article 2471127

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02471 December 8, 2017 Time: 17:25 # 3

Ben Rejeb et al. abrB Expression during Infection

pellet was then resuspended in GTE buffer (Vlamakis et al., 2008)
and kept at 4◦C until flow cytometry analysis or microscopy.

In Vivo Experiments
Intrahemocoelic injection experiments with G. mellonella were
carried out essentially as described previously (Salamitou et al.,
2000; Verplaetse et al., 2015). For each strain, 20 larvae were
injected each with 2.104 bacteria and kept at 30◦C for 72 h.
18 h after injection, surviving insects were eliminated. At each

time point, B. thuringiensis cells were harvested from 2 or 3
dead insects as follows: the larva was cut open, transferred to a
1.5 mL Eppendorf tube containing 1 ml of PBS and vortexed.
The suspension was pipetted into a new 1.5 mL Eppendorf tube
(leaving behind most of the large insect debris). The sample was
centrifuged and the pellet was resuspended in PBS-formaldehyde
4%, fixed for 7 min then washed in PBS. This suspension was
filtered onto a cotton pad in a 1 mL syringe in order to retain the
cadaver debris and recover the bacterial cells in the filtrate. These

TABLE 1 | Plasmids used in this study.

Name Relevant information Reference

pHT304 Replicative multicopy E. coli/B. thuringiensis shuttle vector. Arantes and Lereclus, 1991

pHT304.18 Replicative multicopy E. coli/B. thuringiensis shuttle vector. Agaisse and Lereclus, 1994

p304-Pxyl+ pHT304 harboring a modified version of the xylose-inducible promoter region of xylA to enhance
translation efficiency (Stammen et al., 2010). The original sequence AGGGGGAATCACATG was
changed to AGGAGGTGACACCATG were the RBS is in bold letters and the translation start site is
underlined.

Slamti et al., 2015

pPx’sf gfp sf gfp was amplified by PCR from pCM11 (Pedelacq et al., 2006) using primer pair sfgfp1/sfgfp2,
digested with BglII and KnpI, and cloned between the BamHI and KpnI restriction sites of
pHT304.18-Px (Slamti and Lereclus, 2002). This created a transcriptional fusion between the
xylose-inducible promoter region of xylA and sf gfp.

This study

pPx’gfpBt B. thuringiensis codon optimized gfpBt, synthesized and cloned in the pEX plasmid by Eurofins
Genomics (France), was amplified by PCR from this vector using primer pair sfgfp1/sfgfpBt2, digested
with BglII and KnpI, and cloned between the BamHI and KpnI restriction sites of pPx to create a
transcriptional fusion between PxylA and gfpBt.

This study

pPx+’gfpBt B. thuringiensis codon optimized gfpBt, synthesized and cloned in the pEX plasmid by Eurofins
Genomics (France), was amplified by PCR from this vector using primer pair sfgfpBt1/sfgfpBt2,
digested with BsaI and KpnI, and cloned between the NcoI and KpnI restriction sites of p304-Pxyl+ to
create a transcriptional fusion between Pxyl+ and gfpBt.

This study

pPx’gfpBte B. thuringiensis codon optimized gfpBt, synthesized and cloned in the pEX plasmid by Eurofins
Genomics (France), was amplified by PCR from this vector using primer pair sfgfpBtcomGBt1/sfgfpBt2,
digested with BsaI and KpnI, and cloned between the NcoI and KpnI restriction sites of p304-Pxyl+.
The forward primer included 24 bp encoding the first eight amino acids of comGA. These have been
shown to enhance the stability of fluorescent proteins (Veening et al., 2004). The resulting cassette
comprising the modified RBS from Pxyl+ and the comGA’gfpBt sequence was designated gfpBte.

This study

pPx’gfpBteLAA/
LVA/AAV/ASV

gfpBte was amplified by PCR from pPx’gfpBte using primer pairs
sfgfpBtcomGBt1/gfpLAA-gfpLVA-gfpAAV-gfpASV, digested with BsaI and KpnI, and cloned between
the NcoI and KpnI restriction sites of p304-Pxyl+. The reverse primers add an ssrA tag to the gene:
GKQNNLLSLAA for gfpBteLAA, GKQNNLLSLVA for gfpBteLVA, GKQNNLLSAAV for gfpBteAAV and
GKQNNLLSASV for gfpBteASV. These tags will address the protein to proteases that will degrade them
with varying efficiencies (Keiler and Sauer, 1996; Keiler et al., 1996; Andersen et al., 1998).

This study

pHT-gfpBteAAV gfpBteAAV was amplified by PCR from pPx’gfpBteAAV using primer pair Xyl10/PU, and cloned between
the SmaI and EcoRI restriction sites of pHT304.18.

This study

pPabrB’gfpBteAAV The promoter region of the abrB gene was amplified by PCR from the chromosome of Bt 407 using
primer pairs PabrB-F-XbaI/PabrB-R-AscI and cloned between the XbaI and AscI restriction sites of
pHT-gfpBteAAV.

This study

pPnprA’mcherryLGC pHT304.18 harboring a transcriptional fusion between the promoter of nprA and the
B. thuringiensis-adapted mcherry reporter gene.

Verplaetse et al., 2015

pPabrB’gfpBteAAV-
PnprA’mcherryLGC

The transcriptional fusion between the promoter region of abrB and the promoterless gfpBteAAV
reporter gene was amplified from pPabrB’gfpBteAAV using primer pair PabrB-F-NcoI/gfpBteAAVin-BglII.
pPspoIID’yfp-PnprA’mcherryLGC (Verplaetse et al., 2015) was used as a PCR template to amplify the
plasmid without the PspoIID’yfp region using primer pair Term-R-BglII/NprA-F-NcoI. This fragment and
PabrB’gfpBteAAV were digested with BglII and NcoI and ligated together to generate
pPabrB’gfpBteAAV-PnprA’mcherryLGC which harbors the two transcriptional fusions in divergent
orientation and separated by about 100 bp.

This study

pPaphA3’sf gfp sf gfp was amplified by PCR from pCM11 (Pedelacq et al., 2006) using primer pair sfgfp1/sfgfp2 and
digested with BglII and EcoRI. PaphA3 was amplified from pDG792 (Guerout-Fleury et al., 1995) using
primer pair PkanHind1/PkanBam2 and digested with HindIII and BamHI. Both fragments were cloned
between the HindIII and EcoRI restriction sites of pHT304.18 generating a transcriptional fusion
between the constitutive PaphA3 promoter and sf gfp.

This study
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were then concentrated by centrifugation, resuspended in GTE
buffer (Vlamakis et al., 2008) and kept at 4◦C until flow cytometry
analysis or microscopy.

For the assessment of the percentage of live cells in the
bacterial population in insect cadavers, the experiments were
carried out in the same manner except that the cells were
not fixed with formaldehyde. After filtration on the cotton
pad, the suspension was centrifuged, resuspended in saline,
incubated with the SYTOX Green Dead Cell Stain (Molecular
Probes) according to the manufacturer’s instructions and
analyzed immediately with the flow cytometer. Dead bacteria
will present a bright green fluorescence compared to live
cells.

Flow Cytometry Analysis
Fluorescence was measured on a CyFlow Space cytometer
(Partec, France). Details about the parameters used to collect
fluorescence and the softwares used to analyze the data are given
in the Supplementary Experimental Procedures. The different
populations were identified using histograms or bi-parametric
cytograms. GFP- or mCherry-expressing cells were identified as
cells giving a higher signal intensity than the reporterless cells
used as controls.

Fluorescence Microscopy
Cells were observed with an AxioObserver.Z1 Zeiss inverted
fluorescence microscope equipped with a Zeiss AxioCam MRm
digital camera and with Zeiss fluorescence filters. GFP was
imaged using the 38 HE filter (excitation: BP 470/40, beam
splitter: FT 495, emission: 525/50). mCherry was imaged using
the 45 HE filter (excitation: BP 590/20, beam splitter: FT 605,
emission: 620/14). Images were processed using the ZEN software
package.

Nucleotide Sequence Accession
Numbers
The DNA sequence of the plasmid containing the gfpBteAAV
sequence was submitted to GenBank and is available under the
accession number MF673728.

RESULTS

Construction of a GFP Variant Highly
Expressed in B. thuringiensis
To facilitate the analysis of gene expression in B. thuringiensis,
we engineered a highly expressed version of the sfGFP. We used
the reporterless sf gfp (Pedelacq et al., 2006) under the control
of the xylose-inducible PxylA promoter as a template for our
improvement procedure. sf gfp encodes a version of the Aequorea
victoria GFP that has been shown to be four times brighter and
that folds 4 times faster in vivo than GFPmut3 (Milde, 2008).
We modified the sf gfp gene and the features required for its
translation to adapt it to B. thuringiensis. Our first step was to
change the codon usage to one that would correspond better to
that of our strain, using the GENEius software and the associated
B. thuringiensis serovar thuringiensis codon usage table (Eurofins
Genomics). We designated this allele gfpBt . We then modified the
RBS present in the promoter region of PxylA to the improved
RBS+, that resulted in a twofold increase in protein production
in B. megaterium, as described in Stammen et al. (2010). Finally,
we added the first 24 bp of comGA to the 5’ end of the sf gfp
coding sequence. The corresponding eight amino acids have been
shown to enhance the stability of fluorescent proteins (Veening
et al., 2004). The resulting cassette comprising the modified
RBS and the comGA’gfpBt sequence was designated gfpBte. Using

TABLE 2 | Strains used in this study.

Name Relevant information Reference

Bt (pHT304) Bt 407− carrying the empty pHT304 vector and used as a Fluorescence− control. This study

Bt (pPx) Bt 407− carrying the empty pPx vector and used as a Fluorescence− control. This study

Bt (pPx’sf gfp) Bt 407− used to measure the fluorescence generated by the transcriptional fusion between the
xylose-inducible promoter of xylA and sf gfp.

This study

Bt (pPx’gfpBt ) Bt 407− used to measure the fluorescence generated by the transcriptional fusion between the
xylose-inducible promoter of xylA and the B. thuringiensis codon-optimized gfpBt.

This study

Bt (pPx+’gfpBt ) Bt 407− used to measure the fluorescence generated by the transcriptional fusion between Pxyl+ and
the B. thuringiensis codon-optimized gfpBt.

This study

Bt (pPx’gfpBte) Bt 407− used to measure the fluorescence generated by the transcriptional fusion between Pxyl+ and
the B. thuringiensis codon-optimized gfpBt to which the sequence encoding the first eight amino acids
of comGA have been added.

This study

Bt (pPx’gfpBteLAA/
LVA/AAV/ASV)

Bt 407− used to measure the fluorescence generated by the transcriptional fusion between Pxyl+ and
gfpBte to which a degradation tag has been added.

This study

Bt (pPabrB’gfpBteAAV) Bt 407− in which we measure the activity of the promoter of abrB using a reporter gene encoding an
unstable GFP.

This study

Bt
(pPnprA’mcherryLGC)

Bt 407− in which we measure the activity of the promoter of nprA using the mcherry reporter gene. Verplaetse et al., 2015

Bt (pPabrB’gfpBteAAV-
PnprA’mcherryLGC)

Bt 407− in which we measure the activity of the promoter of abrB, using a reporter gene encoding an
unstable GFP, as well as the activity of the promoter of nprA, using mcherry.

This study

Bt (pPaphA3’sf gfp) Bt 407− used to measure the fluorescence generated by the transcriptional fusion between the
promoter of aphA3 and sf gfp.

This study
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flow cytometry, we showed that the gfpBte-expressing cells grown
in HCT medium were about 20 times brighter than the sf gfp-
expressing cells, 2 h after the addition of xylose (Figure 1A;
median fluorescence of 34 and 1.6 AU and pink and orange lines,
respectively). Codon adaptation resulted in the most efficient
improvement compared to the RBS modification and the comGA
sequence addition. Indeed, the gfpBt-expressing cells are fivefold
brighter than the sf gfp-expressing cells, whereas each subsequent
modification step increased the fluorescence of the cells by
approximately twofold (Figure 1A; median fluorescence of 8,
1.6, 22, and 34 AU and blue, orange, green and pink lines,
respectively). This increase in fluorescence intensity is visible
on the microscopy pictures taken 2 h after xylose addition
(Figures 1B–F).

Construction of Unstable GFPBte Variants
To monitor variations in gene expression, we decided to generate
an unstable version of the GFPBte. We used a previously
described method that takes advantage of the ssrA-mediated
peptide tagging system (Andersen et al., 1998). The principle
of the method is to tag a protein for specific degradation
by a protease. We added 10 amino acids at the N-terminal
end of GFPBte with a variation in the last 3 amino acids of
the sequence (GKQNNLSLAA/-LVA/-AAV/-ASV), generating
GFPBteLAA, GFPBteLVA, GFPBteAAV, and GFPBteASV. Amino
acids GKQNNLSLAA correspond to the putative proteolytic tag
added by the ssrA tmRNA we identified in the genome of strain
B. thuringiensis 407. These amino acids have been shown to
address the tagged protein to the Clp degradation machinery
in E. coli and in B. subtilis (Keiler et al., 1996; Gottesman
et al., 1998; Wiegert and Schumann, 2001). Each tag variant
should alter the stability of the protein (Keiler and Sauer, 1996;
Andersen et al., 1998). We monitored the fluorescence of the
cells harboring the GFPBte tagged variants during growth in HCT
medium and the results are presented on Figure 2. At the time
of inducer addition, all the cells present a fluorescence similar
to that of the reporterless cells (Figure 2A, left panel). 30 min
after xylose induction, there is a striking difference between the
cells harboring the wild-type -LAA or the -LVA tag and the cells
harboring the -AAV or the -ASV tag (Figure 2A, second panel
from the left). The latter present a fluorescence closer to that of
the cells producing GFPBte whereas the fluorescence of the former
is weaker. 1 h after xylose induction (Figure 2A, third panel from
the left), the cells harboring the GFPBteLAA or the GFPBteLVA
tag had a similar fluorescence (median fluorescence of 2 and 2.3
AU which is 33- and 28-fold lower than that of GfpBte-producing
cells, respectively). The cells expressing gfpBteASV were the most
fluorescent (median fluorescence of 43AU, 1.5-fold lower than
that of gfpBte-expressing cells), however, the histogram profile was
not satisfying since it showed two peaks which indicate that gfp
expression and/or GFP degradation in the population was highly
heterogeneous. The cells harboring the GFPBteAAV presented a
median fluorescence of 19 AU that was 3.5-fold lower than that
of the GFPBte-producing cells (median fluorescence of 65 AU)
and a histogram profile similar to that of the latter. Two hours
after addition of the inducer (Figure 2A, right panel), all the
histograms were similar to those observed 1 h after induction.

FIGURE 1 | Comparison of the GFP-based fluorescence of Bacillus
thuringiensis strains. (A) Flow cytometry analysis of the B. thuringiensis cells
harboring the empty vector p304-Pxyl+ (black), pPx’sf gfp (orange), pPx’gfpBt

(blue), pPx+’gfpBt (green) or pPx’gfpBte (pink). The left and right panels
represent the fluorescence of the cells harvested when xylose was added and
2 h after xylose addition, respectively. The X-axis of the histograms is the
fluorescence intensity in arbitrary units (AU) in logarithmic scale. The Y-axis
represents the cell count. (B–F) Fluorescence microscopy images of cells
harboring p304-Pxyl+ (B), pPx’sf gfp (C), pPx’gfpBt (D), pPx+’gfpBt (E), or
pPx’gfpBte (F). The cells were harvested 2 h after xylose addition. Left panels,
phase contrast images; middle panels, epifluorescence images; right panels,
merge between the two channels. The scale bars represent 10 µm. These
results are representative of two independent experiments.

gfpBte-expressing cells were more fluorescent than 1 h before
(median fluorescence of 125 AU vs. 65 AU, respectively) whereas
the fluorescence of gfpBteAAV-expressing cells was similar at both
times (median fluorescence of 19 AU and 15 AU 1 and 2 h after
addition of xylose, respectively). gfpBteAAV was thus chosen as a
reporter of gene expression for the subsequent experiments.

The decrease in fluorescence of GFPBteAAV-producing cells
was then monitored after the addition of chloramphenicol, an
inhibitor of translation (Periago et al., 2002), to determine
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FIGURE 2 | Comparison of the fluorescence of B. thuringiensis strains harboring different alleles of gfpBte. (A) Flow cytometry analysis of the B. thuringiensis cells
harboring the empty vector p304-Pxyl+ (black), pPx’gfpBte (orange), pPx’gfpBteLAA (blue), pPx’gfpBteLVA (green), pPx’gfpBteAAV (pink), or pPx’gfpBteASV
(turquoise). The cells were harvested when xylose was added, 30 min, 1 h and 2 h after xylose addition (panels from left to right). (B) Flow cytometry analysis of the
B. thuringiensis cells harboring the empty vector p304-Pxyl+ (black), pPx’gfpBte (orange), and pPx’gfpBteAAV (pink). From left to right, the histograms show the
fluorescence of cells harvested when xylose was added, 1 h after xylose addition (which also corresponds to the time when chloramphenicol was added), 1 and
22 h after chloramphenicol addition. The X-axis of the histograms is the fluorescence intensity in arbitrary units (AU) in logarithmic scale. The Y-axis represents the
cell count. These results are representative of two independent experiments.

GFP stability (Figure 2B). The median fluorescence of gfpBte-
expressing cells was similar at the time of and 1 h after
chloramphenicol addition (median fluorescence of 73 AU and
77 AU, respectively) (Figure 2B, second and third panels from
the left, respectively). In contrast, the median fluorescence of
gfpBteAAV-expressing cells decreased by 17-fold between these
two time-points (median fluorescence of 26 AU and 1.5 AU,
respectively). 22 h after chloramphenicol addition, the majority
of the gfpBte-expressing cells remained fluorescent whereas the
gfpBteAAV-expressing cells presented a fluorescence close to that
of the control cells (Figure 2B, right panel). These results indicate
that, in these conditions, the GFPBteAAV-based fluorescence
shows a half-life of approximately 15 min.

Monitoring the Expression of abrB
in Vitro Using gfpBteAAV
In order to monitor the vegetative state of B. thuringiensis cells
during the infectious cycle we chose to use the promoter of
the abrB gene. This gene encodes a transition state regulator
transcribed and active during the exponential phase (Perego
et al., 1988; O’Reilly and Devine, 1997; Banse et al., 2008;
Lucking et al., 2009). We monitored the fluorescence of the
cells harboring a PabrB’gfpBteAAV transcriptional fusion during
growth in LB medium and the results are presented on Figure 3.
The data are from two independent experiments. We represented
2 negative control samples on the graph to account for the
difference between the auto-fluorescence of the reporter-less
cells at t-2 and the cells harvested at the other time-points
(Figure 3A, left panel). All the negative control histograms
are shown in Supplementary Figure S1. The flow cytometry
histograms show that the PabrB’gfpBteAAV-expressing cells at
t-2 are already fluorescent compared to the negative control

(median fluorescence of 2.1 vs. 0.4 AU, respectively) and their
fluorescence increases until it reaches a maximum at t-1 and t0
before decreasing at t1 and t2 (median fluorescence of 5.2, 5.8, 3.1,
and 2.7 AU, respectively, to be compared to the light gray negative
control with a median fluorescence of 0.8 AU) (Figure 3A,
left panel). At t24, the cells harboring PabrB’gfpBteAAV do not
present any fluorescence (Supplementary Figure S2). The shape
of the histograms suggests that the PabrB’gfpBteAAV fusion is
expressed in a homogeneous fashion in the population (only 1
peak is visible). The right panel of Figure 3A recapitulates the
data for both experiments as kinetics of median fluorescence
intensity and shows that the peak of PabrB’gfpBteAAV expression
was reached between t-1 and t0. Microscopy pictures of
PabrB’gfpBteAAV-expressing cells harvested at t0 and at t2
support the flow cytometry data (Figure 3B). These results show
that the PabrB’gfpBteAAV transcriptional fusion is expressed
during exponential phase and that we can visualize a decrease in
its expression when the cells enter the transition phase.

abrB Expression Is Activated in Cells
That Have Entered the Necrotrophic
Pathway
We investigated the physiological state of B. thuringiensis cells
during infection in order to characterize in more detail the
composition of the population during this cycle. To achieve
this objective we examined the state of the cells that did
not activate the promoters previously used, in particular the
necrotrophic reporter (Verplaetse et al., 2015). We infected
G. mellonella larvae with B. thuringiensis cells harboring
the PnprA’mcherryLGC transcriptional fusion as well as the
PabrB’gfpBteAAV transcriptional fusion on the same vector. nprA
is under the control of NprR, the regulator of the necrotrophic
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FIGURE 3 | Expression of the abrB-driven gfpBteAAV gene in vitro. (A) Left
panel: flow cytometry analysis of the B. thuringiensis cells harboring the empty
vector pHT304 (gray areas) or pPabrB’gfpBteAAV (lines). The cells were grown
in LB and harvested at various times during growth that can be identified with
the time map on the graph. The negative control cells represented here were
harvested at t-2 (dark gray) and t2 (light gray). The X-axis of the histograms is
the fluorescence intensity in arbitrary units (A.U.) in logarithmic scale. The
Y-axis represents the cell count. These results are representative of two
independent experiments. Right panel: median fluorescence intensity of the
same cells represented as a function of time. Black squares, B. thuringiensis
cells harboring the empty vector pHT304; Green dots, B. thuringiensis cells
harboring pPabrB’gfpBteAAV. Each dot/square represents a replicate. The
dotted lines connect the mean values at each time point. (B) Fluorescence
microscopy images of cells harboring pPabrB’gfpBteAAV at t0 and t2. Left
panels, epifluorescence images; right panels, merge between the two
channels. The scale bar represents 10 µm. t0 corresponds to the beginning of
the transition between the exponential and stationary phases. These results
are representative of two independent experiments.

state, and reflects its activity (Perchat et al., 2011). We monitored
the fluorescence of the cells harvested from the insect cadavers
at various times following infection. The results are presented in
Figure 4. The kinetics profile of the Nec+ population (i.e., cells
expressing nprA) is similar to what has been published before
(Verplaetse et al., 2015) with a low percentage of the population
expressing nprA 18 h post-infection (pi) (mean value of 11%)
that increases between 24 and 48 h pi (mean values of 27 and
68%, respectively) to reach a maximum 72 h pi (mean value of
74%). We observed that the vegetative PabrB’gfpBteAAV reporter
is expressed at 18 h pi in 13% of the population. Interestingly,
less cells expressed it at 24 h pi (mean value of 4%). The
percentage of cells in which PabrB is expressed increased at
48 and 72 h pi (mean value of 15 and 22%, respectively). The
expression of PabrB’gfpBteAAV is almost exclusively restricted

FIGURE 4 | abrB and nprA promoter activities in cells isolated from insect
cadavers. Flow cytometry analysis of B. thuringiensis cells harboring
pPabrB’gfpBteAAV-PnprA’mcherryLGC. Bacteria were isolated from cadavers
of G. mellonella larvae infected by intrahemocoelic injection and incubated at
30◦C. Samples were harvested 18, 24, 48, 66, and 72 h after injection. The
percentage of cells of each population discriminated on cytograms (as
described in the Supplementary Experimental Procedures) are presented as a
function of time. Each population phenotype is associated to a color as
indicated on the graph: ND, cells that do not express any of the markers
used; Nec, cells expressing the necrotrophic marker PnprA’mcherryLGC only;
Veg, cells expressing the vegetative growth marker PabrB’gfpBteAAV only;
Nec+Veg, cells expressing both the vegetative growth and necrotrophic
markers. Each symbol represents bacteria extracted from one larva. The
dotted lines connect the mean values at each time point. These data are the
result of two independent experiments.

to cells that have activated the nprA gene promoter from 48
to 72 h pi. Figure 4 also shows that the proportion of cells
that did not express the necrotrophic or the vegetative reporters
changed from 71% at 18 h pi to 25% 72 h pi. In order
to verify that the expression patterns observed were not due
to loss or copy number heterogeneity of the plasmid during
the infectious process, we infected G. mellonella larvae with
B. thuringiensis cells harboring the pPaphA3’sf gfp vector carrying
a transcriptional fusion between the promoter of a constitutive
gene in B. thuringiensis, and the reporter gene encoding sfGFP.
The results show that the fusion is expressed in a homogeneous
fashion in the population 24 and 72 h pi (only 1 peak is visible)
(Supplementary Figure S3). Furthermore, a previous study has
reported that 100 and 99.3% of the bacteria harvested from
insect cadavers still carried a vector with the same backbone 48
and 96 h post-infection, respectively (Verplaetse et al., 2015).
This indicates that the phenotypic heterogeneity observed for the
reporters mentioned above is not due to plasmid instability or
copy number heterogeneity in B. thuringiensis during infection.

Cells That Did Not Enter the
Necrotrophic Pathway Are Viable
In order to verify that the bacteria that did not express any
of the reporters used were alive, we infected G. mellonella
larvae with B. thuringiensis cells harboring the PnprA’mcherryLGC
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FIGURE 5 | Viability assessment of the bacterial cells isolated from insect
cadavers. Flow cytometry analysis of B. thuringiensis cells harboring
pPnprA’mcherryLGC and stained with the SYTOX Green Dead Cell Stain.
Bacteria were isolated from cadavers of G. mellonella larvae infected by
intrahemocoelic injection and incubated at 30◦C. Samples were harvested 24,
48, and 72 h after injection. The percentage of cells of each population
discriminated on cytograms (as described in the Supplementary Experimental
Procedures) are presented as a function of time. (A) Percentage of cells that
did not enter the necrotrophic pathway (Nec-). (B) Percentage of cells that did
not enter the necrotrophic pathway and that were considered live using the
SYTOX Green Dead Cell Stain. Each symbol represents bacteria extracted
from one larva. The color of the symbols for each time point in (A,B) indicates
bacteria extracted from the same larva. These data are the result of two
independent experiments and the lines represent the mean values at each
time point.

transcriptional fusion and incubated the samples harvested from
the insect cadavers at various times following infection with the
SYTOX Green Dead Cell Stain. We then immediately monitored
the mCherry- and SYTOX Green-based fluorescence of the
bacteria. The cells recovered at each time-point were mostly
alive. Indeed 89, 79, and 84% of the bacteria were not stained
by the SYTOX Green Dead Cell dye at 24, 48, and 72 h pi,
respectively (Supplementary Figure S4). Figure 5A shows that in
these conditions we recovered 78, 26, and 29% of Nec− cells at 24,
48, and 72 h pi, respectively. In these samples, the SYTOX Green
stain shows that 81, 69, and 62% of the Nec− bacteria were live
cells, respectively (Figure 5B). This indicates that the majority of
the cells that did not express any of the reporters used were not
dead.

FIGURE 6 | Model representing the different B. thuringiensis cell types during
infection. Based on the model published by Verplaetse et al. (2015), we
propose the following schematic to describe the various physiological states
of B. thuringiensis during infection. The full description is given in the
discussion section of the main text. Oblong shapes represent cells (i) in an
undefined state (gray), (ii) in a vegetative state (green), (iii) displaying a virulent
phenotype (orange), (iv) displaying a necrotrophic lifestyle (magenta) and (v)
committed to sporulation (purple). Spores are represented as oval shapes with
a red core.

DISCUSSION

Our initial goal was to characterize in more detail the
composition of the B. thuringiensis population during the
infectious process. We were interested in particular by the cells
that did not express any of the reporters we used in a previous
study, especially the necrotrophic state reporter (Verplaetse et al.,
2015).

To begin to answer this question we constructed a genetic
tool to enable us to follow gene expression fluctuations using a
fluorescent reporter. We used the ssrA-mediated peptide tagging
system (for a review Karzai et al., 2000) that was published for
the first time by Andersen et al. (1998) as a tool to destabilize
GFP in order to follow transient gene expression in bacteria.
Destabilizing the GFP would reduce the fluorescence of the cells
harboring this construct. Thus, it was also necessary to improve
its fluorescence in B. thuringiensis cells. GFP improvement has
been described for other bacterial species (Veening et al., 2004;
Overkamp et al., 2013) and even bacteria of the B. cereus group
(using gfpmut1 as the original template) (Sastalla et al., 2009).
We designed a new construct –gfpBte– based on the sf gfp allele
mainly because of its fast-folding properties (Pedelacq et al., 2006;
Milde, 2008). The B. thuringiensis cells expressing gfpBte were
20-fold brighter than the ones harboring the initial construct.
The best improvement resulted from the codon optimization.
Destabilization of the protein was then accomplished by adding
a degradation tag to the GFPBte. The resulting GFPBteAAV
rendered the cells almost as fluorescent as the ones without the
tag, but with a half-life of approximately 15 min compared to at
least 7.5 h for the original construct. This destabilization method
has been adapted by various laboratories to different bacterial
species (for example Blokpoel et al., 2003; Hentschel et al.,
2013; Mouammine et al., 2017). However, to our knowledge,
this system has been only used in very few and elegant studies
to monitor fluctuations in gene activity in an infection model
(Nielsen et al., 2010; Laughlin et al., 2014).
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We fused the gfpBteAAV reporter gene to the promoter of
abrB and associated it to the PnprA’mcherryLGC transcriptional
fusion to determine if the bacteria that did not go through the
necrotrophic state during the course of infection were vegetative
cells. We saw that the promoter of the abrB gene was active
throughout the infection cycle, at least from 18 h pi to 72 h
pi. At 18 h pi a large number of bacteria did not express
either reporter. We cannot exclude that these cells expressed the
PabrB’gfpBteAAV fusion during the early stage of the infection,
considering the unstable nature of the fluorescent protein and the
fact that at this time point, the bacteria have reached a growth
plateau after a period of active multiplication (Dubois et al.,
2016). The proportion of vegetative cells and of undetermined
cells then diminished as the proportion of necrotrophic cells
increased. This was expected as the necrotrophic marker is a
stationary phase marker. However, we did not expect the cells
that went through the necrotrophic state to activate the PabrB
promoter. The stability of the mCherry protein [half-life of
more than 50 h (Verplaetse et al., 2015)] is a double-edged
property. It allows us to follow the cells that went through
the necrotrophic state but we do not know when -or if- they
stopped expressing the necrotrophism genes. Using a fluorescent
protein whose spectral properties change with time could help
solve this issue (Terskikh et al., 2000). We hypothesize that
the cells that activated PabrB were no longer in a necrotrophic
state and that they resumed vegetative growth following a
signal that they sensed. It was shown that the sporulating
cells arose almost exclusively from necrotrophic cells in the
host cadaver (Verplaetse et al., 2015). It is possible that re-
activation of the vegetative state is a way of delaying sporulation
in some cells. Sporulation is a costly and, at some point,
irreversible process (Piggot and Hilbert, 2004). In B. subtilis,
bacteria that have engaged in sporulation use toxins to kill
non-sporulating cells (for a review Gonzalez-Pastor, 2011). This
allows the non-committed sporulating cells to arrest sporulation
and resume growth by using nutrients provided by the lysis of
neighboring cells. Sporulation delay might be why the cells re-
enter a vegetative state in this PabrB’gfpBteAAV-expressing sub-
population. The mechanism by which this could occur remains
to be elucidated. Another hypothesis, which would not exclude
the above mentioned one, would be that some of the spores
germinated. Indeed, the spores, that originate from necrotrophic
cells, retain an mCherry-based fluorescence (Verplaetse et al.,
2015, 2016) and the PabrB promoter is activated while spores are
in the process of germination (data not shown). It is likely that
if nutrients become accessible, at least some of the spores will
germinate.

To recapitulate these events and integrate them with the
previously published data (Verplaetse et al., 2015), we propose
the following model as schematized on Figure 6. During the
early steps of infection, the bacteria activate the vegetative state
marker while multiplying. After the virulence stage and death
of the host, the bacterial number has reached a plateau and
part of the population will turn on the necrotrophic genes.
Among these bacteria, some will re-enter a vegetative state. These
cells will subsequently have to activate the necrotrophic genes
before sporulation can occur in part of this sub-population. Some

spores are then able to germinate and resume vegetative growth.
During this infectious cycle, some bacteria do not fit in any of
the categories mentioned above. Indeed, the cells that did not
go through the necrotrophic state did not appear to activate
the PabrB promoter. About 20% of the population are still in
an undetermined state. However, we have shown that about
70% of these bacteria are viable. This suggests that these cells
could be dormant. Dormancy has been studied in Gram-positive
and Gram-negative bacteria as a successful survival strategy
(Rittershaus et al., 2013; Verstraeten et al., 2016). However, these
species were non-sporulating. In sporulating bacteria, the spore
is the ultimate form of dormancy. Nevertheless, a quiescent
physiological state would constitute an alternative to the complex
process of sporulation. Indeed, once the cells are committed
to sporulation, they would not be able to return quickly to
a vegetative state if competing bacteria invaded their niche.
And bacteria in such a quiescent state could rapidly return
to exponential growth, compared to germination, if favorable
conditions were encountered, or might respond to a different
resuscitation signal than that of germination. Many questions
remain to be answered, such as the ability of these cells to grow
back from this state. Their infectious capacity as well as their gene
expression profiles during infection should also be investigated to
determine if they can reproduce the parental phenotypes. We are
now in the process of pursuing this research further.
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Up to recent years, bacterial adhesion has mostly been evaluated at the population level.
Single cell level has improved in the past few years allowing a better comprehension of
the implication of individual behaviors as compared to the one of a whole community.
A new approach using atomic force microscopy (AFM) to measure adhesion forces
between a live bacterium attached via a silica microbead to the AFM tipless cantilever
and the surface has been recently developed. The objectives of this study is to examine
the bacterial adhesion to a surface dedicated to ship hulls at the population and
the cellular level to understand to what extent these two levels could be correlated.
Adhesion of marine bacteria on inert surfaces are poorly studied in particular when
substrata are dedicated to ship hulls. Studying these interactions in this context are
worthwhile as they may involve different adhesion behaviors, taking place in salty
conditions, using different surfaces than the ones usually utilized in the literacy. FRC
(fouling release coatings)–SPC (self-polishing coatings) hybrids antifouling coatings have
been used as substrata and are of particular interest for designing environmentally
friendly surfaces, combining progressive surface erosion and low adhesion properties.
In this study, a hybrid coating has been synthetized and used to study the adhesion
of three marine bacteria, displaying different surface characteristics, using microplate
assays associated with confocal scanning laser microscopy (CSLM) and AFM. This
study shows that the bacterial strain that appeared to have the weakest adhesion
and biofilm formation abilities when evaluated at the population level using microplates
assays and CSLM, displayed stronger adhesion forces on the same surfaces at the
single cell level using AFM. In addition, one of the strains tested which presented
a strong ability to adhere and to form biofilm at the population level, displayed a
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heterogeneous phenotypic behavior at the single cell level. Therefore, these results
suggest that the evaluation of adhesion at the population level cannot always be
correlated with adhesion forces measured individually by AFM and that some bacteria
are prone to phenotypic heterogeneity among their population.

Keywords: marine bacteria, adhesion, heterogeneity, AFM, copolymers surfaces

INTRODUCTION

Little is known on adhesion of marine bacteria on surfaces
in particular when they are dedicated to ship hulls. The
comprehension of bacterial adhesion on these surfaces should
help finding potential environmentally less toxic anti-adhesion
or anti-fouling strategies. The specific intrinsic nature of marine
bacteria, that are poorly studied and characterized, may modify
the type of interactions that can be observed between a cell
and its surface, particularly when the interactions take place in
marine conditions, making them worthwhile studying. Overall,
molecular or cellular mechanisms of bacterial adhesion have
been in fact mostly evaluated at the population level but very
rarely at the single cell level. Indeed, very few information are
factually available on individual behaviors of bacteria regarding
adhesion. Due to the development of new single cell level
approaches, individual cells can be studied with the purpose
of understanding how a single cell behaves as compared to its
population of origin and if bacterial cells behave all similarly
within a supposedly clonal population, after synchronization
in growth culture, or if important behavioral differences exist
between them. Recently, the idea that bacterial population
could be composed of heterogeneous individuals has emerged,
even when coming from a single cell or a group of clonal or
genetically identical individuals (Grote et al., 2015; Martins and
Locke, 2015). Differential gene expression could explain these
phenotypic fluctuations. Some bacterial strains are also more
prone to allelic variations than others (Davis and Isberg, 2016).
In adhesion studies, atomic force microscopy (AFM) approaches
have been used to study adhesion forces at the single cell level
between a cell and a surface. They have been improved during
the past few years, making it possible to study these interactions
with alive bacteria (Kang and Elimelech, 2009; Loskill et al.,
2012; Beaussart et al., 2013, 2014; El-Kirat-Chatel et al., 2014a).
Indeed, a new approach using a silica microbead fixed on the
tipless cantilever allows the attachment of a single cell that can
stay alive during the time of the measurement. These approaches
have been proven very useful to decipher adhesion of bacteria
such as Staphylococcus aureus, Escherichia coli toward glass and
functionalized surfaces.

In the marine context, all artificial surfaces immersed in
seawater are subjected to the accumulation of marine organisms
such as microorganisms and macrofoulers, known as marine
biofouling. Current antifouling strategies rely on the wide use of
self-polishing coatings (SPC), which release toxic biocides with
a constant rate controlled by the coating erosion process (Yebra
et al., 2004). The erosion of the coating is achieved through
the hydrolysis of the polymeric binder in seawater making the
polymer water-soluble. Fouling release coatings (FRC) represent

a second type of antifouling coatings, which are able to release
organisms settled on the surface while boats are navigating (Lejars
et al., 2012). Their efficacy relies on hydrophobicity, low surface
energy and low elastic modulus of its poly(dimethylsiloxane)
(PDMS) cross-linked matrix, which decreases the adhesion
strength of marine organisms and enhance their removal.
Despite, the clear environmentally friendly advantage of this
antifouling solution, FRCs are inefficient when vessels are
docked. During navigation, the coating is able to release the
macrofouling but retains a microfouling film (composed mainly
of bacteria and diatoms), which is still responsible for 10%
of drag resistance (Schultz, 2007). An attractive option in
developing such coatings is the synthesis of new polymers which
are both hydrolyzable and hydrophobic/low-surface energy
materials. Poly(dimethylsiloxane) blocks could be inserted in
silylated-based polymers to provide access to a wide variety
of materials with tunable hydrophobicity, water resistance and
mechanical properties. Bressy and Margaillan (2009), Bressy
et al. (2010, 2014), Lejars et al. (2014) have synthesized
tri-alkylsilylester-based statistical copolymers by conventional
radical polymerization and several diblock copolymers using
the reversible addition-fragmentation chain transfer (RAFT)
polymerization for developing erodible binders for marine
antifouling coatings. Hybrid copolymers with PDMS blocks or
side-chains and silylated side groups have been reported to
exhibit surface erosion and hydrophobic surfaces depending on
the relative content of the two components (Lejars et al., 2013).
These hybrid surfaces displaying SPC and FRC properties have
been characterized including for their antifouling efficacy (Duong
et al., 2014, 2015).

In this study, three strains isolated from the Mediterranean
sea, presenting different phenotypical traits, have been used to
evaluate their ability to adhere on a new antifouling coating
dedicated to ship hulls at the population and the cellular level
(Brian-Jaisson et al., 2014). TC5 belonging to the Polaribacter
genus, a non-motile marine bacteria, is the most hydrophobic
of the three strains according to Microbial Adhesion to Solvents
(MATS) assays and has a poor ability to form biofilm on
polystyrene when studied in microplates (Brian-Jaisson et al.,
2014). TC10 and TC11 are two different strains of Shewanella,
which are overall more hydrophilic and are motile. TC11 is
able of a stronger adhesion and a faster capacity to form a
biofilm on polystyrene while for TC10, it takes more time to
form its biofilm. In this context, adhesion have been tested on
an hybrid block copolymer SPC-FRC coating called MC3MB6
[PDMS-b-p(SiMA-stat-BMA)]. The results have been compared
to its SPC block alone called MB6 (SiMA-stat-BMA). In contrast
with conventional SPC, MB6 has no biocide but retaining the
ability of self-hydrolysis. Both surfaces have been synthesized
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and their properties characterized similarly as previously done
(Duong et al., 2014, 2015). The adhesion assays of these three
marine strains on the hybrid coatings have been performed
through a microplate assay associated with CLSM and AFM, in
order to verify if the adhesion forces measured at the single cell
level could be correlated with the evaluation of the population
adhesion. Bacterial adhesion has been very rarely evaluated at the
same time, at the population and the cellular level to understand
to what extent these two levels could be correlated for each of the
strain.

MATERIALS AND METHODS

Substrates
Two copolymers based on Tert-butyldimethylsilyl methacrylate
(SiMA) were synthesized as previously reported (Duong et al.,
2014). Butyl methacrylate was used as co-monomer of SiMA to
prepare films without cracking (Table 1). Each copolymer was
dissolved in toluene, at a 40–50 wt% solid content, and applied on
abraded poly(vinyl chloride) (PVC) substrates with a bar-coater
resulting in about 100 µm dried thickness coatings. The surfaces
of the samples for the contact angle measurement and for AFM
measurements were 25 mm × 45 mm and 10 mm × 10 mm,
respectively. The coated plates were left to dry in the open air for
15 days.

Characterization Methods
The number-average molar mass (Mn) and dispersity (Ð) of
polymers were determined by triple detection size exclusion
chromatography (TD-SEC). Analyses were performed on a
Viscotek apparatus, composed of a GPC Max (comprising a
degasser, a pump and an autosampler) with a TDA-302 (RI
refractive index detector, right and low angle light scattering
detector at 670 nm and viscometer) and an UV detector
(λ = 298 nm). The following columns were used: a Viscotek
HHR-H precolumn and two Viscotek ViscoGel GMHHR-H
columns. THF was used as the eluent with a flow rate of 1.0 mL
min−1 at 30◦C. For each precipitated polymer, the refractive
index increment (dn/dc) was determined using the OmniSec
software, from a solution of known concentration (ca. 10 mg
mL−1) filtered through a 0.2 mm PTFE filter.

Differential scanning calorimetric (DSC) measurements
were performed on a DSC Q10 apparatus from TA Instruments
calibrated with indium. Polymer samples weighing 15–20 mg
were run at equal heating and cooling rates, 10◦C min−1,
under a constant stream of nitrogen. The MC3MB6
sample was first scanned from room temperature to 100◦C

[PDMS-block-P(SiMA-stat-BMA)]. The sample was then cooled
to −165◦C. This temperature was held for 5 min to allow the
system to attain thermal equilibrium before the second heating
scan. The first heating ramp of each sample was discarded for
this work. The glass transition temperature (Tg) values were
determined as the midpoint between the onset and the end of
a step transition using the TA Instruments Universal Analysis
2000 software.

Static contact angle measurements were carried out at room
temperature using a sessile drop method with a DIGIDROP
contact angle meter from GBX Instruments. Two test liquids:
deionized water and diiodomethane (Sigma–Aldrich) were used.
The liquid drop volume was 1 and 0.5 µL for water and
diiodomethane, respectively. A picture of the liquid drop on
the surface was taken 4 s after its formation for contact angle
measurement. The reported contact angles were an average
of five individual measurements in different regions of the
same coating (±σ). Surface free energies of the coatings (γs)
and their dispersive (γs

D) and polar components (γs
P) were

calculated using the Owens–Wendt method. Dynamic contact
angle measurements were carried out under ambient conditions
by using the dynamic sessile drop technique. A water drop with
a volume of around 1 µL is growing on a syringe tip and picked
up by the surface. The syringe tip never leaves the liquid drop.
The water was inflated and sucked up from the surface and the
advancing and receding angles were obtained.

AFM Characterization of the Surface
Atomic force microscopy measurements were performed on a
Nanoscope V controller equipped with a Multimode V Atomic
Force Microscope, with a 8610 JVLR type scanner. Tapping mode
cantilever probes (RTESP model from BRUKER) were used to
show the topography of the supported polymer films and to
evaluate their Young modulus values. The system sensitivity and
cantilever spring constant kc are successively determined from
force measurements on a rigid sample and from the thermal tune
method (Butt et al., 2005), implemented in Bruker Nanoscope
(V7.3) software. The topography was initially scanned in tapping
mode with a cantilever spring constant around 48 N/m and
a resonance frequency of ∼ 380 kHz. AFM force curves were
performed with maximum forces lower than 1.5 µN (The slope
of the force–displacement approach curve in the linear elastic
range gives an apparent stiffness keff which is directly linked
to the sample stiffness ks knowing the cantilever stiffness (Butt
et al., 2005). In the case of a perfectly elastic tip with a spherical
end and a homogeneous sample, with no adhesive effects, the
Hertz model can give an estimation of Young’s modulus from
ks measurement (Butt et al., 2005; Belec et al., 2015). The slope

TABLE 1 | Characteristics of diblock and statistical copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization of SiMA and BMA
from PDMS-macro RAFT agent at 70◦C in toluene.

Polymer %mol (DMS/SiMA/BMA) %mass (DMS/SiMA/BMA) % volPDMS Mn (g.mol−1)∗ Ð∗

MC3MB6 31/10/59 18/16/66 19 59,700 1.1

MB6 0/14/86 0/18/82 0 49,500 1.1

∗Assessed by triple detection size exclusion chromatography (TD-SEC).
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was calculated on the approach curves (between 400 and 450 nm
of deflection). The standard deviation is calculated on seven
measurements.

Microorganisms and Growth Conditions
Bacterial strains used in this study (TC for Toulon Collection)
are listed in Supplementary Table S1. They were isolated from
biofilms formed on inert surfaces immersed in the Mediterranean
Sea (bay of Toulon, France, 43◦06′23′′N-5◦57′17′′E) (Camps
et al., 2011; Briand et al., 2012). TC strains were grown in
Vaatanen nine salt solution (VNSS) at 20◦C in a rotary shaker
(120 rpm) (Mardén et al., 1985) up to post-exponential phase
prior to analysis.

Adhesion Assays on Polystyrene
Post-exponential phase grown cells were centrifuged and
resuspended in artificial sea water (ASW). Then 200 µL of cells
were inoculated at OD600 nm 0.3 in triplicate in black microplates
(sterile black PS; Nunc, Fisher Scientific, Illkirch, France). After
24 h of incubation at 20◦C, the non-adhered bacteria were
eliminated by three successive washes (36g.L−1 sterile NaCl
solution). The adhered bacteria were stained by both Syto 61
Red and Syto 9 Green fluorescent markers (5 µM) targeting
bacterial DNA (Life technology). After 10 min, the excess stain
was eliminated by one wash. Fluorescence intensity (FI) was
measured using an Infinite 200 microplate fluorescence reader
(Tecan, Lyon, France). A fluorescent intensity was calculated per
well: Fluorescent intensity (FI) = FI average assay/FI average
negative control. Three independent assays were done for each
strain tested. Same results were found with both stains (data not
shown).

Adhesion Assays on Copolymers
Adhesion assay on copolymers were performed as described for
the adhesion assays on polystyrene excepted for the following
points. PVC coverslips of 13 mm of diameter were coated with
the MB6 and MC3MB6 polymers. Each copolymer previously
dissolved in toluene, at a 40–50 wt% solid content, were applied
on PVC coverslips with a bar-coater resulting in about 100 µm
dried thickness coatings. Coverslips were inserted in 24 well
microplates (sterile transparent PS; VWR) and sterilized 15 min
with UV. Post-exponential bacterial strains were resuspended in
ASW and inoculated at OD600 nm 1 in the microplates. After
24 h of incubation at 20◦C strains were labeled with 5 µM of
Syto 9 Green fluorescent nucleic acid stain (Life technology).
After 10 min, the excess stain was eliminated by three washes.
FI was measured using an Infinite 200 microplate fluorescence
reader (Tecan, Lyon, France). A fluorescent intensity was
calculated per well: FI = FI average assay/FI average negative
control. Three independent assays were done for each strain
tested.

CSLM Observation
The same coverslips were used for the observation of the bacteria
on the surfaces using confocal scanning laser microscopy (CSLM)
Zeiss LSM 510. Briefly, the coated coverslips were glued onto a

glass slide and covered with prolong antifade (Life technology)
and a new glass coverslips. After 48 h drying, the samples were
stored at 4◦C until use for CSLM observation.

Statistical Analysis
GraphPad Prism 5 (GraphPad Software, San Diego, CA, United
States) was used for statistical analysis of the adhesion assays.
Data were analyzed using one-way ANOVA and treatment effects
were separated using Turkey’s multiple comparison post hoc tests.
Statistical significance was accepted at p <0.05.

Atomic Force Microscopy Imaging
Atomic force microscopy contact mode images were obtained in
air, at room temperature, using a Nanoscope VIII Multimode
AFM (Nano Surfaces Business, Bruker Corporation, Santa
Barbara, CA, United States), MSCT cantilevers with a nominal
spring constant of ∼0.01 N/m (calculated with the thermal
noise method), and a scanning rate of 2 Hz. One hundred
µl of cell suspension from post-exponential growth phase
was put in contact with freshly cleaved mica supports
mounted on steel pucks. The samples were incubated for
2 h at 30◦C, gently rinsed in three successive baths of
ultrapure water (Elga, purelab), and allowed to dry at 30◦C
overnight.

Cell Probes
For single-bacterial cell force spectroscopy, cell probes were
prepared using a recently developed protocol that combines
colloidal probe cantilevers and bioinspired polydopamine wet
adhesives (Beaussart et al., 2013). Briefly, silica microspheres
(6.1 µm diameter, bangs laboratories) were attached on
triangular shaped tipless cantilevers (NP-O10, Microlevers,
Bruker Corporation) using UV-curable glue (NOA 63, Norland
Edmund Optics). The cantilevers were then immersed for
1 h in a 10 mM Tris Buffer solution (pH 8.5) containing
4 mg ml−1 dopamine hydrochloride (99%, Sigma), and
dried with N2 flow. Single bacteria were then attached onto
polydopamine-coated colloidal probes using a Bioscope Catalyst
AFM (Bruker corporation, Santa Barbara, CA, United States).
To this end, 2 µl of a cell suspension were added to 4 ml
of ASW solution (pH 8, Sea salts, Sigma) in a glass Petri
dish containing MB6 and MC3MB6 substrates. A single probe
was brought into contact with an isolated cell for 3 min,
and the obtained cell probe was then transferred over a
solid substrate for further force measurements. Viability of
the attached bacteria was checked using a Live-dead Baclight
viability kit (Invitrogen, kit L7012) following the manufacturer
instructions.

Single-Cell Force Spectroscopy
Measurements
Single-cell force spectroscopy (SCFS) measurements were
performed at room temperature (20◦C) in ASW solution pH 8
and using a Bioscope Catalyst AFM (Bruker AXS Corporation,
Santa Barbara, CA, United States). The nominal spring constant
of the colloidal probe cantilever was∼0.06 N m−1, as determined
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TABLE 2 | Wetting properties of the coating surfaces.

Polymer Contact angle (◦) Surface energies (mJ.m−2)∗

θH2O σ θCH2I2 σ γs γs
D γs

P

MC3MB6 101.9 1 71.5 0.6 22 20.9 1.1

MB6 91.3 0.5 64.3 4.6 26.7 23.3 3.3

∗Using Owens–Wendt’s method (Owen and Wendt, 1969).

FIGURE 1 | Height atomic force microscopy (AFM) images of (A) MB6 and
(B) MC3MB6. Rms is 2.3 ± 0.10 and 5.4 ± 1 for MC3MB6 and MB6,
respectively, with Ra of 8.6 ± 0.6 and 14 ± 7, respectively.

by the thermal noise method. Multiple force-distance curves were
recorded on various spots of MB6 and MC3MB6 substrates using
a maximum applied force of 250 pN, a contact time of 100 ms or
1 s, and constant approach and retraction speeds of 1000 nm s−1.
For each condition, the interaction forces of three bacterial cells
from independent cultures were measured and n > 400 force
curves were recorded for each bacteria.

RESULTS AND DISCUSSION

Polymers Synthesis and
Characterization of Copolymer Surfaces
Well-defined diblock copolymers combining a tert-butyl-
dimethylsilyl methacrylate (SiMA)-based block, as hydrolyzable
“SPC-type” monomer, with a poly(dimethylsiloxane) (PDMS)
block, as hydrophobic, “FRC-type” monomer have been
investigated. The synthesis of the PDMS-b-p(SiMA-stat-BMA)
block copolymer called MC3MB6 was achieved from
copolymerizations of tert-butyldimethylsilyl methacrylate

TABLE 3 | Young’s modulus at the coating surfaces measured by AFM.

Polymer E (MPa) Indentation (nm)

MC3MB6 73 ± 4 207 ± 4

MB6 88 ± 7 145 ± 5

(SiMA) and butyl methacrylate on PDMS macro-RAFT
agents. The methodology relies on the synthesis of PDMS
monofunctional chain transfer agents easily available in one
synthetic step from commercially available hydroxylated PDMSs
(Duong et al., 2014). A statistical copolymer P(SiMA-stat-BMA)
called MB6, with a composition similar to the second block of
MC3MB6, has also been prepared (Table 1). As these copolymers
might be used in marine environment as coatings, their ability
to form films without cracking is required. Good film properties
have been displayed for MB6 and MC3MB6 due to their low
glass transition temperature of 45–46◦C corresponding to
P(SiMA-stat-BMA) block. In the case of MC3MB6, the Tg
of the PDMS block (from −127 to −124◦C) was not visible
because of a low amount of DMS monomer units within the
copolymer (Duong et al., 2014). Surface properties including
wetting properties and smoothness have been investigated.
Table 2 shows that the water contact angle values increased and
the polar component of the surface free energy (γs

P) decreased
when the PDMS block was added within the copolymer. Taken
together these results show that MC3MB6 is more hydrophobic
than its MB6 counterpart which could suggest according to
the literature a close packing of the pendant methyl groups of
the flexible siloxane chain at the film/air interface (Lejars et al.,
2012). Tapping-mode AFM analysis shows the topography of
the PDMS-based films to be smoother than the MB6 PDMS-free
coating (Figure 1 and Supplementary Figure S1). In addition,
the flexibility of the PDMS block coming from its low Tg value
and the flexibility of the methacrylic block coming from the
presence of BMA monomer units provided soft samples. A lower
Young’s modulus value and a higher indentation were found for
the PDMS-based sample (Table 3). Taken together these results
show that MC3MB6 surface is softer than MB6 one.

When immersing these silylester-based polymers in artificial
seawater, the hydrophilic character of the two coating surfaces
increased with time as the water contact angle θH2O decreases
with immersion time (Figure 2). This result is in agreement
with the well-known hydrolysis reaction of the hydrophobic silyl
ester groups of SiMA units into hydrophilic sodium carboxylate
groups in artificial seawater (Bressy and Margaillan, 2009).
Nevertheless, the surface of the PDMS-based coating MC3MB6
remains more hydrophobic than the MB6 one.

Adhesion Tests of Marine Bacteria on
Polystyrene
Biofilm formation has been previously evaluated in different rich
marine media for a number of marine bacteria isolated from the
Mediterranean sea (Camps et al., 2011; Brian-Jaisson et al., 2014).
Five of these marine bacterial strains (Supplementary Table S1),
which were all isolated from biofilms formed on immersed
supports in the bay of Toulon (France), were analyzed for their
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adhesion ability in ASW on polystyrene (Figure 3). Three of them
(TC9-TC10 and TC11) belong to Shewanella genus. TC5 and
TC8 belong, respectively, to Polaribacter and Pseudoalteromonas
genus (Supplementary Table S1). All strains except TC5, were
able to form a biofilm in laboratory conditions (Brian-Jaisson
et al., 2014). In this study, strains exhibited different adhesion
patterns on polystyrene after 24 h (Figure 3) in a poor medium,
ASW. Bacterial adhesion of TC11 was the strongest. TC8 adhered
to polystyrene but fluorescence intensity was 1.6 times less than
for TC11. Adhesion on polystyrene was weak for TC5 and very
weak for the TC10 and TC9 strains. Three profiles based on
adhesion on polystyrene and biofilm formation pattern can be
identified: (i) a weak adhesion profile in ASW with an incapacity
to form biofilm in rich media (Brian-Jaisson et al., 2014) for
TC5; (ii) a strong adhesion on polystyrene with a strong ability
to form biofilm in rich media for TC8 and TC11; (iii) a weaker
ability to adhere on polystyrene in ASW and a slower capacity to
form a biofilm in rich media for TC9 and TC10, corresponding
thus to an intermediary phenotypic between the two first groups.
For the following approaches, we therefore chose to work with
one strain of each group. TC5 belonging to the Polaribacter
genus, a non-motile marine bacteria, is the most hydrophobic
of the three strains according to Microbial Adhesion to Solvents
(MATS) assays, has a weak adhesion profile and has a poor ability
to form biofilm (Brian-Jaisson et al., 2014). TC10 and TC11
are two different strains of Shewanella, which are overall more
hydrophilic and are motile. TC11 is able of a stronger adhesion
and a faster capacity to form a biofilm on polystyrene while for
TC10, it takes more time to form its biofilm (Brian-Jaisson et al.,
2014).

AFM Imaging to Unravel Morphological
Features of Bacteria Species
We used AFM contact mode imaging in air to visualize the
general cell topography of TC5, TC10, and TC11. For all
strains, bacteria were small rod-shaped, which agree well with
observations performed previously (Brian-Jaisson et al., 2014).

FIGURE 2 | Evolution of the static water contact angle of MC3MB6 (�) and
(�) MB6-based coatings with ASW immersion time.

FIGURE 3 | Evaluation of the adhesion of five marine bacterial strains on
polystyrene. After 24 h of incubation at 20◦C, bacteria were stained by Syto 9
Green and fluorescent intensity was measured as a representation of bacterial
adhesion. Bars represent the standard deviation obtained from three
independent measures. TC5 is a Polaribacter sp. strain, TC8 is a
Pseudoalteromonas lipolytica strain, TC9, TC10, and TC11 are three strains of
Shewanella. Bars represent the standard deviation obtained from three
independent measures. Statistical significance was accepted at p < 0.05.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

TC5 and TC10 were about 3.4 µm long. TC11 seemed to be
smaller and was about 2.6 µm long (Figure 4).

Pili and flagella are major contributors to mobility, adhesion
and biofilm formation (Mattick, 2002; Telford et al., 2006; Pelicic,
2008; Belas, 2014; Laverty et al., 2014). As suspected flagella
were clearly present on the surface of TC10 and TC11, while
they were not seen for TC5 (Figure 4), previously described
as non-motile (Brian-Jaisson et al., 2014). Furthermore, in few
images of TC10, we observed a smaller and thinner structure,
which could be pili, on the surface of this strain (Figure 4D,
white thin arrow). Overall, pili were more difficult to observe
than flagella. It is possible that pili were broken during the
preparation of the cells for the AFM observation. Despite the
presence of small residues particles most likely coming from the
culture medium, spherical particles, which surround TC5 strain
seem to be of different nature (Figure 4B, black triangle). We
hypothesized that this strain produces outer membrane vesicles
(OMV). A wide variety of Gram-negative bacteria secrete OMV
including marine bacteria such as Prochlorococcus or Shewanella
vesiculosa (Beveridge, 1999; Perez-Cruz et al., 2013; Biller et al.,
2014). OMV are implicated in many functions such as bacterial
survival, pathogenicity, enzyme delivery and biofilm formation
(Beveridge, 1999; Schooling and Beveridge, 2006; Lee et al., 2008;
Yonezawa et al., 2009; Baumgarten et al., 2012; van Hoek, 2013;
Altindis et al., 2014; Murphy et al., 2014; Orench-Rivera and
Kuehn, 2016). Taken together, these observations show that the
Polaribacter TC5 strain presents different features from the 2
Shewanella strains as it has no flagella and seems to present OMV
at its surface.

Evaluation of Adhesion on Copolymers
at the Population Level
In order to evaluate bacterial adhesion on the hybrid MC3MB6
and its control MB6, these polymers were coated onto round
PVC coverslips (as they did not stick well on glass) and
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FIGURE 4 | Imaging bacterial surface in air. AFM images of TC5 (A,B), TC10
(C,D), and TC11 (E,F) were performed in air using contact mode. AFM
deflection and height (insets) images of post-exponentially growing cells that
were directly deposited on mica and dried prior analysis. Vertical cross
sections taken in the height images (asterisks indicate the correspondence
with dashed lines) are also shown to emphasize sizes of cellular structures.

inserted in 24 well plates. Glass coverslips, widely used in
fluorescence or CLSM microscopy experiments, served as a
reference. Bacteria were then left to seed onto the surface
for 24 h, washed off to remove non-adherent bacteria and
then stained using the fluorescent marker Syto9. Because some
polymers can present an autofluorescence, a direct observation
of the same samples was performed using CLSM. This double
approach is rarely undergone when such coatings are used.
Figures 5A,B show that for each coating tested, TC11 was
the strain displaying stronger adhesive properties, in particular
with glass alone. TC11 adhered 2 and 1.5 times more than
TC5 or TC10 on MB6 or MC3MB6, respectively (Figure 5B).

FIGURE 5 | Adhesion of TC5, TC10, and TC11 on MB6 and MC3MB6
surfaces. Adhesion was first measured at the population level in 24 well
plates. (A,B) Are different statistical analysis displays of the same
measurement. After 24 h of incubation at 20◦C, bacteria were stained by Syto
9 green fluorescent nucleic and fluorescent intensity was measured using a
TECAN microplate reader as a representation of bacterial adhesion. Bars
represent the standard deviation obtained from three independent measures.
Statistical significance was accepted at p < 0.05. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001. (C) Show the CSLM visualization of adhered bacteria on the
surfaces. The same coverslips were used in the microplate assay and in
CSLM. Glass coverslips were used as a control.

All three strains adhered better on glass coverslips than on
the polymers (Figures 5A,C), with no significant difference
in adhesion between MB6 and MC3MB6 (Figure 5A). These
results have been corroborated with the CSLM observation as
very few bacteria can be seen on either MC3MB6 or MB6
surfaces in sharp contrast with the glass surface (Figure 5C).
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Taken together, these results suggest that copolymers MB6 and
MC3MB6 prevent bacterial adhesion. While the adhesion was
overall very weak, TC11 appears to adhere slightly better on
these two surfaces. MB6 alone, composed of SiMA-stat-BMA
with self-hydrolysis properties (with no biocide) is self-sufficient
for the inhibition of bacterial adhesion in these conditions. The
hydrophobic PDMS blocks, do not add in efficacy whichever
bacteria studied despite their different hydrophilic surface
properties (Brian-Jaisson et al., 2014). As previously described,
hydrophobic/hydrophilic interactions can be easily overcome by
the presence of extracellular appendages and covalent bindings,
in particular in the stage of the “irreversible adhesion” (Garrett
et al., 2008). Bacteria can adapt to their environment, i.e.,
the presence of a surface, very rapidly by, temporarily and in
coordinated manner, specifically expressing numbers of proteins
anchored in the membrane or being part of the extracellular
appendages that can modify and overcome such interactions.

Single-Cell Adhesion Force Analysis
The results of the previous experiments reflect the behavior of the
bacteria at the population level. In order to understand how each
bacterium behaves on these surfaces at the single cell level, AFM
was used in SCFS mode (Helenius et al., 2008; Muller et al., 2009)
to quantify the adhesive properties of individual TC5, TC10,
and TC11 bacterial cells toward surfaces MB6 and MC3MB6
(Beaussart et al., 2013). Briefly, a colloidal probe cantilever coated
with polydopamine bioadhesive was used to pick up single cells
without altering their viability (assessed using the Live-dead
Baclight viability kit) and to measure force-distance curves
between the bacterium and the surfaces MB6 and MC3MB6
(Figure 6). The three bacteria tested stayed alive during the
course of the experiment.

We first used SCFS to investigate the adhesion force of
single cells toward MB6 surfaces and the effect of contact time
between cells and substrates. Figure 7 shows the adhesion force
and rupture length histograms, together with representative
force curves, obtained between TC5 (Figures 7A,B), TC10
(Figures 7C,D), and TC11 (Figures 7E,F) cells and MB6 surfaces
at short (Figures 7A,C,E) and prolonged (Figures 7B,D,F)
contact times. Consecutive force curves were recorded on
different spots of the substrate and no changes were observed
regarding the general features of the curves, indicating the
cells were not damaged and cell surface properties were not
altered by force measurements. Cell from independent cultures
were analyzed and generally yielded similar behavior although
sometimes one cell showed differences (Figures 7C,D,F) that
we attribute to heterogeneity of the bacterial population. This
phenotypic heterogeneity was less pronounced for TC5, whereas
it was more obvious for TC11 whether at a short or long
contact time. At short contact time, the adhesion frequency of
TC5 cells on MB6 surfaces was ∼30–35% with adhesive force
curves presenting force of 50–400 pN and rupture distances
of 100–900 nm (Figure 7A). Prolonged contact time (1 s) led
to increased adhesion frequencies (75–90%), increased adhesion
forces (from 300 to 2400 pN) and rupture lengths in the same
range as at short contact time, yet with higher frequencies of short
rupture distances (Figure 7B). At short contact time, most force

distance curves presented multiple well-defined individual peaks
of 50–100 pN (Figure 7A, right histogram inset). According
to previous observations, we attribute those multiple peaks
signatures with flat regions preceding each peak to type IV
pili interaction with MB6 surfaces (Touhami et al., 2006; Biais
et al., 2010). The absence of such structures on bacterial images
(Figures 4A,B) suggest that TC5 pili are fragile, short or could be
retracted during sample drying. On 1 s contact time force curves,
similar peaks were sometimes observed but the short distances
interaction at higher forces (>300 pN) seemed to govern the
adhesion of cell on MB6 surfaces. Such first large force and
short distance adhesive events phenomenon could be attributed
to the outer membrane surface property itself that needs longer
contact time for interaction rather than appendages or adhesives
molecules that would lead to longer rupture lengths. Analysis
of TC10 cells led to similar results, still with few differences.
Increasing the contact time did not significantly increases the
adhesion frequency or the range of forces. As for TC5, force
curves signatures obtained for TC10 suggested type IV pili
interaction and this conclusion was confirmed by AFM images
(Figure 4D). For TC11 cells, the adhesion frequency did not
increase with contact time. However, adhesion forces of some
cells significantly increased up to 10 nN (Figure 7F). These high
forces corresponded to short rupture distances peak suggesting
strong hydrophobic interactions between the cell surface and the
MB6 substrate. At short contact time, force curves frequently
showed a first adhesive event with sometimes a sawtooth pattern
(Figure 7E, inset in right histogram, upper curve). This first peak
may correspond to cell surface proteins interacting with MB6
surface and strengthened in force and number under prolonged
contact time. On short contact time curves, although no pili
were detected on bacterial images (Figures 4E,F), peaks following
the initial adhesive event presented signatures that could be
attributed to pili and as for TC5, we hypothesize that those pili
were fragile, short or could be retracted on image samples. Force
curves obtained after prolonged contact time revealed sawtooth
pattern with regular peaks and long rupture distances. Based
on previous observations, these signatures could correspond to
proteins interacting with the surface and containing multiple
repeats that are unfolded upon bacterial pulling from the
substrate (Alsteens et al., 2009; Beaussart et al., 2014; El-Kirat-
Chatel et al., 2014b).

The MC3MB6 surface was used similarly to evaluate
the impact of the surface chemistry change on bacterial
adhesion of TC5, TC10, and TC11 cells. Figure 8 shows
the adhesion force and rupture length histograms, together
with representative force curves, obtained between TC5
(Figures 8A,B), TC10 (Figures 8C,D), and TC11 (Figures 8E,F)
cells and surfaces MC3MB6 at short (Figures 8A,C,E) and
prolonged (Figures 8B,D,F) contact times. TC5 cells presented
high frequency adhesion toward surface MC3MB6 (more than
70% at short contact times and about 100% at prolonged contact
times). Increasing contact time resulted in higher adhesion
forces (from 300–2000 pN to 1200–4800 pN). Force curves
recorded for TC5 on surface MC3MB6 presented large initial
force peaks followed by smaller forces that may correspond
to stretching of cell surface molecules. Compared to results
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FIGURE 6 | The use of a microbead for single-cell force spectroscopy analysis. (A) Principle of single cell force spectroscopy with tip less cantilevers modified with
colloidal beads and coated with polydopamine to attach a single bacteria (green) and probe it toward surfaces. (B) Optical microscope image of a single bacterium
attached to the colloidal cantilever probes documenting that the cell is properly located and alive (green fluorescence).

FIGURE 7 | Single-cell force spectroscopy analysis on surface MB6. Adhesion force (left) and rupture length histograms with representative retraction force profiles
(right) obtained by recording multiple force-distance curves between single TC5 (A,B), TC10 (C,D), or TC11 (E,F) bacteria and surface MB6 at short (100 ms,
A,C,E) or prolonged (1 s, B,D,F) contact times. Black, red, and blue colors represent results from three cells from independent cultures (n > 400 force-distance
curves for each cell).

obtained on surfaces MB6, force curves recorded on surface
MC3MB6 rarely presented pili signature, suggesting that TC5
pili are mostly involved in interaction with surface MB6 and
that the interaction with surface MC3MB6 is governed by
the cell wall itself together with surface adhesive molecules.
TC10 cells presented slightly similar adhesive profile on surface
MC3MB6 and surface MB6. Its adhesion to both surfaces is
lower in term of frequency and force than the adhesion of

TC5. Based on force curves shape, this adhesion seems to be
mainly controlled by pili at short contact time (small peaks at
long distance and visualization of pili on image Figure 4) and
at longer contact time, the cell adhesion through pili seems to
be reinforced by cell wall and surface molecule (large initial
peak and sawtooth pattern of molecules unfolding). TC11 cells
were slightly more adhesive to surface MC3MB6 than what was
observed for surfaces MB6. Still, the interaction looks similar
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FIGURE 8 | Single-cell force spectroscopy analysis on surface MC3MB6. Adhesion force (left) and rupture length histograms with representative retraction force
profiles (right) obtained by recording multiple force-distance curves between single TC5 (A,B), TC10 (C,D), or TC11 (E,F) bacteria and surface MC3MB6 at short
(100 ms, A,C,E) or prolonged (1 s, B,D,F) contact times. Black, red, and blue colors represent results from three cells from independent cultures (n > 400
force-distance curves for each cell).

with almost no pili signature but rather protein unfolding
and large initial peaks suggesting that TC11 adhere mainly
through cell wall hydrophobicity and adhesive macromolecules
containing repeated domains unfolded upon pulling. Phenotypic
heterogeneity in adhesion was also more obvious on MC3MB6
for TC11 than for the two other strains, whether on short or long
contact time.

To validate the specificity of the measured adhesion forces
and rule out the possibility of artifact associated with the
cell probe preparation, a control experiment was performed
using a 1 s contact time (Supplementary Figure S2). Use of
polydopamine-coated probes instead of bacterial probes led to a
major reduction of adhesion frequency and no signatures similar
to what we observed for cells were present. This control indicates
that the adhesive events measured above reflect the interactions
between bacteria and coatings.

Taken together, these results show first that TC5 was the
most adhesive of the three strains on both surfaces in terms of
frequency and presented large adhesion forces, in particular on
the hydrophobic surface, MC3MB6, while TC10 showed a weaker
adhesion on both surfaces with adhesion forces averaging 1000 or
1200 pN. The influence of surface chemistry is mostly observed
for TC5. This comes in contrast with the results found at the
population level, as TC11 was the bacteria that adhered the most

efficiently on polystyrene, glass as well as on MB6 and MC3MB6,
even though adhesion on the antifouling surfaces was overall very
low (Figure 4). Second, different extracellular components seem
to be involved in the three strains adhesion on the surfaces. Short
distance interactions at higher forces govern adhesion of TC5
and TC10 on the surfaces (Dufrene, 2015). Adhesion seems to
be controlled by pili, cell wall on MB6 (and MC3MB6 for TC10)
and by cell wall and stretching of surface molecules on MC3MB6.
TC11 adheres mainly through cell wall hydrophobicity and
adhesive macromolecules containing repeated domains unfolded
upon pulling. Third, some TC11 cells were slightly more adhesive
to both surfaces (with long rupture distances) than others. While
TC5 and in a lesser extent TC10 showed a more homogenous
response toward the surfaces, TC11 presented heterogeneous
adhesion profiles toward both surfaces, with some bacterial cells
presenting weak adhesion forces and some of them presenting
very strong ones. Phenotypic heterogeneity within a population,
which corresponds to the expression of substantial phenotypical
differences by individuals when they are in a similar context, is
thought to allow better chance of survival for the population as
a whole entity. A subpopulation may be then better equipped
to face stressful situations and settle in new environmental
niches. This heterogeneity can come from variations of gene
expression at the single cell level but also from allelic variations
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(Davis and Isberg, 2016). Some bacteria are more susceptible to
genetic variations than others (for instance the ones undergoing
phase variation). These phenomena have been described for
instance in biofilm with the apparition of persisters as well
as in relation with QS dependent mechanisms due to highly
heterogeneous gene expression at a single cell level (Grote et al.,
2015). This is most likely a widespread phenomenon, which just
started to be highlighted in the literature with the development
of single cell approaches, even though this variability may
differs from a bacterium to another. This emerging evidence
of phenotypical variability need to be studied more precisely
at the molecular and cellular level in order to understand how
these variations can make a subpopulation adapt and survive
in an environmental niche. It is possible that TC11 fits to this
description and can present at the population level a better fitness
when facing a new environment than TC5 or TC10. Phenotypic
heterogeneity, and differential bacterial-bacterial collaborative
interactions involved in biofilm formation could explain the
reason why, despite a weaker adhesion at the single cell level,
TC11 is able to form more biofilm than TC5 including in ASW
(data not shown). Further studies would be required using, for
instance, other single cell techniques, such as the newly developed
single cell RNA-seq, allowing a broader vision of the variability to
confirm these results (Davis and Isberg, 2016).
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The production of extracellular polymeric substance (EPS) is important for the survival

of biofilms. However, EPS production is costly for bacteria and the bacterial strains

that produce EPS (EPS+) grow in the same environment as non-producers (EPS−)

leading to competition between these strains for nutrients and space. The outcome of

this competition is likely to be dependent on factors such as initial attachment, EPS

production rate, ambient nutrient levels and quorum sensing. We use an Individual-based

Model (IbM) to study the competition between EPS+ and EPS− strains by varying the

nature of initial colonizers which can either be in the form of single cells or multicellular

aggregates. The microbes with EPS+ characteristics obtain a competitive advantage

if they initially colonize the surface as smaller aggregates and are widely spread-out

between the cells of EPS−, when both are deposited on the substratum. Furthermore,

the results show that quorum sensing-regulated EPS production may significantly reduce

the fitness of EPS producers when they initially deposit as aggregates. The results provide

insights into how the distribution of bacterial aggregates during initial colonization could

be a deciding factor in the competition among different strains in biofilms.

Keywords: individual-based model, biofilm, competition, EPS, aggregates, quorum sensing

INTRODUCTION

Biofilms are surface associated communities of bacteria that are surrounded by adhesive
extracellular polymeric substance (EPS) (Davey and O’toole, 2000) which not only provides
them with mechanical integrity but also allows resistance against attack from foreign
entities. Understanding the dynamics of growth and competition between several microbial
species in a biofilm is crucial for our understanding of chronic diseases such as cystic
fibrosis, infection in medical devices, biofouling and various processes used in wastewater
treatment. Mathematical models such as Cellular Automaton (CA) and Individual-based
Models (IbMs) (Kreft et al., 2001; Picioreanu et al., 2004; Xavier et al., 2005; Nadell
et al., 2008; Lardon et al., 2011; Jayathilake et al., 2017) have been instrumental in
providing insights into the spatiotemporal growth and competition of microbes under
varying conditions. Kreft et al. (1998) proposed the use of IbM as a bottom-up approach
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which attempts to predict community behavior based on the
actions and characteristics of the constituent individuals. The
IbM was introduced to cope with artifacts which occurred due
to the discrete displacement of biomass in CA (Picioreanu et al.,
2004; Tang and Valocchi, 2013). As Ib modeling leads to more
realistic biofilm structures (Kreft et al., 2001), it has been widely
used to study social evolution in biofilms (Kreft, 2004; Xavier and
Foster, 2007; Nadell et al., 2008; Mitri et al., 2011).

Kreft (2004) used IbM to study competition between the rate
and yield strategists in biofilms and concluded that certain spatial
structures are needed for maintenance of yield strategists. The
rate strategists are found to dominate the biofilm in the short-
term due to their high growth rates, while in the long run the
yield strategists dominate since they consume nutrients more
economically. Nadell et al. (2010) studied competition between
enzyme secreting and non-secreting bacteria under different
ratios between nutrient provision and nutrient consumption, and
found that if the ratio is small, cell (bacteria) lineage segregation
occurs and consequently the cooperative cells (i.e., enzyme-
secreting cells) dominate within the biofilm. The cell lineage
segregation confers an advantage to the cooperative cells because
they are not exploited by non-cooperative ones. Mitri et al. (2011)
found that addition of new species in a multispecies biofilm
especially in resource limited scenarios would reduce the fitness
of existing cooperative cells that secrete public goods. In addition,
the ecological advantages of quorum sensing (QS) -regulated
enzyme production (Schluter et al., 2016), QS inhibition (Wei
et al., 2016) and evolution of bacteriocin production (Bucci et al.,
2011) in biofilms have also been investigated using IbM.

EPS mediated adhesion is known to be very important
for bacterial biofilm development as it affects both the initial
attachment to surfaces and the subsequent resistance to shear
flows. However, bacterial adhesion to surfaces ought to be costly
because it restricts bacteria mobility and hinders movement
to nutrient rich environments. Schluter et al. (2015) studied
the effect of EPS mediated adhesion and found that cells with
greater adhesive capabilities gained a competitive advantage
when nutrients are abundant. Xavier and Foster (2007) showed
that cells that constitutively produce EPS (EPS+) outcompete
non-producers (EPS−) in the presence of significant nutrient
gradients. When the EPS+ and EPS− strains are co-cultured
in a biofilm, the EPS+ cells initially grow slower than EPS−
cells because the EPS+ cells spend a fraction of energy on EPS
production, and therefore the EPS− bacteria would initially
dominate in the biofilm. However, eventually the production
of EPS would help the EPS+ cells to push their descendants
into nutrient rich top layers and hence the progeny of EPS+
bacteria would get more access to nutrients and would dominate
in the biofilm in long run. Quorum sensing (QS) is a cell-cell
communicationmechanism used to regulate gene expression and
production of public goods in biofilms (Fuqua and Greenberg,
2002). Nadell et al. (2008) investigated the competitive advantage
of quorum sensing-mediated down regulation of EPS production.
They found that EPS producers under negative quorum sensing
control (i.e., EPS production by bacteria stops at high cell
densities, referred to as the QS− strain), would dominate when
competing with EPS+ strain. However, this effect only lasts for

a limited time and the EPS+ cells dominate in the long-term
because EPS+ cells suffocate the QS− cells by continuously
secreting polymeric substance thereby separating QS− cells from
nutrients.

These studies demonstrate that spatial distribution of
microbes influences the microbial competition in biofilms. In
addition nutrient gradients have been known to cause cell lineage
segregation in biofilms and the effect has been addressed in
many papers (Xavier and Foster, 2007; Nadell et al., 2010).
Generally, low nutrient conditions favor cooperative strains (or
species) that produce public goods such as EPS and enzymes.
The biofilm structure is also influenced by other factors including
microbial mobility, adhesion, initial attachment frequency and
bacteria re-attachment to the biofilm (van Gestel et al., 2014);
however, the effect of these factors on microbial competition
in biofilms has not been extensively investigated. For example,
when a biofilm grows in a reactor, it can experience erosion
and sloughing due to hydrodynamic shearing and the detached
biofilm clusters can re-colonize new surfaces and develop into
biofilms. Similarly, the aerobic granular sludge aggregates found
in sequencing batch reactors can be transported to new locations
and have the ability to colonize new surfaces (McSwain et al.,
2005). It is therefore very likely that bacterial aggregates deposit
on new surfaces, hence biofilms originate from both individual
cells (single cells) and cell clusters (aggregates). Only recently,
Melaugh et al. (2016) and Kragh et al. (2016) addressed a similar
problem by performing IbM simulations to understand the trade-
off between aggregate surface area and relative height compared
to single cell colonizers. The findings suggest that single cells
perform better when competition is low (i.e., at low single cell
densities) and multicellular rounded aggregates perform better
when competition is high (i.e., at high single cell densities). In
more competitive environments the aggregates perform better
because they have access to nutrient rich areas due to their
initial height advantage compared to single cells. This trade-
off is likely to be influenced by EPS production characteristics
of cells because EPS provides cells with sufficient structure to
reach high nutrient layers. Moreover, multispecies biofilms may
contain strains of bacteria that can either be EPS+ or EPS−.
Therefore, EPS production characteristics of cells might offset the
competitive advantage gained by bacterial aggregates due to their
height.

In the present study, we develop a two-dimensional biofilm
model based on IbM principles to understand competition
between cells and aggregates which express a combination of
characteristics (EPS+, EPS−, QS+ and QS−, described under
“Methods” below). We simulate the spatiotemporal dynamics of
competition under various scenarios of attachment (i.e., as single
cells or multiple aggregates) and for different values of energy
invested in EPS production by the microbes. The maximum
competitive advantage is obtained when the EPS+ cells are
initially deposited on the substratum as smaller aggregates and
are randomly distributed among individual cells of the EPS−.
We also study the effect of quorum sensing- regulated EPS
production on competition between single cells and aggregates
for different values of QS signal threshold. Overall, the work
demonstrates the role of EPS production in conferring an
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advantage to either single cells or aggregates as they form biofilms
under differing conditions.

METHODS

Individual-Based Model
The components of the two-dimensional Ib model are similar to
that used in Nadell et al. (2008). The bacteria are represented
as hard spheres, each having variable mass/volume and a set
of growth parameters. Each bacterium grows by consuming
substrate (S) which is supplied from the bulk liquid. Four
strains are considered: (i) EPS producer with no quorum sensing
(EPS+), (ii) no EPS production, with no quorum sensing (EPS−),
(iii) EPS producer under negative quorum sensing in which
EPS secretion stops at high cell densities (QS−), and (iv) EPS
producer under positive quorum sensing in which polymer
secretion starts at high cell densities (QS+). The growth rate of
a bacterium of any strain (EPS+, EPS−, QS+, QS−) having a
mass ofm is calculated as:

dm

dt
=

(

(1− f Q(AI))µmax
S

KS + S
−

σ

YAX

)

m (1)

where µmax, KS, and S are the maximum specific growth rate,
half saturation coefficient and local substrate concentration,
respectively. σ and YAX are the production rate and
corresponding yield of the quorum sensing signal (auto-
inducer, AI). The EPS producing bacteria spend a fraction of
the energy (f ) gained from nutrients on EPS production and the
remaining fraction (1−f ) on growth and division. The value of
the switching function Q(AI) is calculated as explained below.
As shown in Table 1, all strains except EPS− can produce EPS
and all strains produce AI. Over time EPS accumulates within
the shells around the EPS producing cells and is subsequently
excreted as EPS particles. Once a bacterium reaches a pre-
determined cellular mass, it divides into two cells. The pressure
build-up due to biomass growth is released by biofilm expansion
(Kreft et al., 1998). The concentrations of substrate (S) and
auto-inducer (AI) are calculated as:

∂S

∂t
= DS∇

2S−
µmax

YXS

S

KS + S
X (2)

∂AI

∂t
= DAI∇

2AI + σX (3)

where X is the local biomass concentration and D represents
the diffusion coefficient of the respective solute. For the non-
quorum sensing strains EPS+ and EPS− the function Q(AI)
given in Equation (1) is independent of the AI signal and is
always equal to 1 and 0, respectively. For the negative quorum
sensing strain (QS−), Q(AI) = 1 if the quorum sensing signal
concentration is less than the quorum sensing threshold τ and
Q(AI) = 0 otherwise. For the positive quorum sensing strain
(QS+), Q(AI) = 1 if the quorum sensing signal concentration
is greater than the quorum sensing threshold τ and otherwise
Q(AI) = 0.

The physical space in which the biofilm grows is represented
by a rectangular space of 400 µm × 200 µm divided into a

200 × 100 computational grid. The x direction has periodic
boundaries which means that a bacterium that is pushed beyond
the boundary plane re-enters the domain through the opposite
boundary plane. The y direction has the no-flux boundary
condition at the substratum and Dirichlet boundary condition at
the opposite end, which is the bulk liquid. Bacteria can spread
toward the bulk liquid but not into the substratum (Kreft and
Wimpenny, 2001). Equations (2) and (3) are solved for the steady
state solution, as the rate of diffusion of solutes is very fast
compared to the bacterial growth rate. Additional details about
the model can be found in Xavier and Foster (2007) and Nadell
et al. (2008).

Numerical Simulations and Data Analysis
At the beginning of any simulation the bacteria are placed on
the inert, impermeable substratum located at y = 0 and are
considered to be attached. Initially, 50 cells of each bacterial
strain (EPS producing and non-producing) are placed on the
substratum. The simulations are performed for a maximum of
12-days as the simulation box (400 µm × 200 µm) cannot
accommodate larger biofilms. Similar to others (Xavier and
Foster, 2007), the fitness of EPS+ is calculated as wEPS+ =

log2

(
NEPS+,t

NEPS+,t0

)

, where NEPS+,t0 is the initial number of bacterial

cells and NEPS+,t represents the number of bacterial cells at
a chosen time t. The fitness of EPS− is defined in the same
manner and the relative fitness of EPS+ compared to EPS− is
calculated as wr =

wEPS+
wEPS−

. The fitness of QS+ and QS− strains

relative to EPS− are defined in the samemanner. The parameters
used for the numerical simulations are listed in Table 2. Each
simulation is replicated 10 times and the average is taken for the
analysis.We also analyse the relationships between relative fitness
of EPS+/QS+/QS− and various input variables discussed below
by using generalized linear modeling (GLM) in the R statistical
programming language.

RESULTS AND DISCUSSION

In the following sections, the competition between various
strains of bacteria (EPS+/QS+/QS−/EPS−) are investigated for
a period of 12 days given that they initially attach on the surfaces
as either cells or aggregates.

Competition between EPS Producing
(EPS+) and EPS Non-producing (EPS−)
Strains
Competition between EPS+ strain and EPS− strain when they
initially deposit on the substratum as individual cells has been
studied by Xavier and Foster (2007). A similar case is reproduced
here as a control. The bacteria (50 EPS+ and 50 EPS−) are
randomly inoculated on the substratum and all of the cells have
equal access to substrate (at t = 0 s). Figure 1 shows the biofilm
formation for different values of investment in EPS production
(different f -values). It is seen that if there is no investment in EPS
(f = 0, Figure 1B) both species grow identically and there is no
competitive advantage for either. However, if energy investment
in EPS production is relatively high (f = 0.6, Figure 1D),
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TABLE 1 | Stoichiometric table.

Reaction Soluble components Particulate components Rate expression

S AI XEPS+,QS+,QS− XEPS− EPS

EPS+/QS+/QS− growth −
1
YXS

1− fQ(AI) fQ(AI) µmax

S
KS+S

XEPS+,QS+,QS−

EPS− growth −
1
YXS

1 µmax

S
KS+S

XEPS−

AI production by EPS+/QS+/QS− 1 −
1

YAX
σXEPS+,QS+,QS−

AI production by EPS− 1 −
1

YAX
σXEPS−

The substrate and auto inducer are considered as soluble components, while the bacteria and EPS are considered are particulate components. EPS+ cells invest a fraction (f) of energy

on EPS production and the remaining 1-f goes for biomass production. Q = 1 for EPS+. For QS− strain, the function Q is equal to zero if auto inducer concentration AI is greater than

a certain threshold value (τ) and otherwise Q is equal to 1 and it is other way around for QS+.

TABLE 2 | Parameters used for the simulations.

Symbol Description Value Reference

τ Quorum sensing threshold 5–10 × 10−7 kg/m3 Frederick et al., 2011

σ AI production rate 1.7 × 10−8 s−1 Vaughan et al., 2010

f Fraction of energy investment in EPS 0–0.6 Nadell et al., 2008

µmax Maximum bacteria growth rate 1 h−1 Nadell et al., 2008

ρ Biomass density 220 kg/m3 Kreft, 2004

ρEPS EPS density 33 kg/m3 Nadell et al., 2008

DS Diffusivity of substrate 1.6 × 10−9 m2/s Nadell et al., 2008

DAI Diffusivity of AI 1.6 ×10−9 m2/s Vaughan et al., 2010

KS Half-saturation constant 3.5 × 10−5 kg/m3 Nadell et al., 2008

YXS Yield of biomass on substrate 0.5 Nadell et al., 2008

YAX Yield of auto-inducer on biomass 20 Nadell et al., 2008

Sb Bulk substrate concentration 5 × 10−4 kg/m3 Nadell et al., 2010

L Boundary layer thickness 100 µm –

EPS+ strain is outcompeted by EPS− strain. At an intermediate
fraction of energy investment (f = 0.2, Figure 1C), EPS+ cells
dominate in the biofilm. The variation of relative fitness of
EPS+ cells as a function of investment in EPS (f ) and EPS
material density ρEPS is shown in Figure 2A. If the density of
EPS decreases compared to the density of bacteria (i.e., ratio
ρ/ρEPS increases) it is advantageous for EPS+ cells since the
volume of polymeric substances expands faster. This results in
the EPS+ strain being pushed into substrate rich environments
while EPS− cells are starved. Xavier and Foster (2007) also briefly
demonstrated that the amount of substrate plays a vital role in
the competition between EPS+ and EPS− strains. We find that
the relationship between the ratio of the fitness of EPS producers
to non-producers for different values of EPS investment (0 < f
< 0.6) is unimodal for density ratio ρ/ρEPS > 2.2 (t = 6.745,
P = 0 and t = −9.809, P = 0 respectively for the linear and
quadratic terms for investment in EPS, f, more details about
GLM are in Supporting information), indicating that above a
certain threshold of investment in EPS the relative fitness of EPS
producers declines. For low density ratio conditions (ρ/ρEPS <

2.2), the relative fitness of the EPS+ strain declines with increased
investment in EPS.

To better understand the trade-off due to substrate limitation
and bacteria growth, we direct our attention to the nutrient

transport equation. (The density ratio for the following
simulations is ρ/ρEPS = 6.67 which is estimated from the
parameters in Table 2). For our model, the substrate gradients
are determined by Equation (2), which can be re-written in
non-dimensional form as:

∂S∗

∂t∗
= δ2∇2S∗ −

S∗

κ + S∗
X∗ (4)

where S∗ = S/Sb is the non-dimensional concentration and

Sb denotes the bulk substrate concentration. δ =

√
DSYXSSb
µmaxρL

2

and κ =
KS
Sb

are non-dimensional parameters, and ρ and L

are biomass density and substrate concentration boundary layer
thickness, respectively. The dimensionless parameter δ (Nadell
et al., 2010) represents the ratio between the maximum rate
of substrate transport and maximum rate at which substrate is
consumed by bacteria. The biological meaning of κ is subtle: it
expresses the affinity of the bacteria for a substrate in the context
of given bulk substrate concentration.

It can be deduced from Equation (4) (if we only consider
the y direction) that the steady state substrate transport is

given by d2S∗

dy∗2
=

1
δ2

S∗

κ+S∗X
∗, and thus the substrate gradient

across the biofilm is dS∗

dy∗
=

1
δ

√
2X∗(S∗ − κ ln(S∗ + κ)+ C,
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FIGURE 1 | Competition between EPS+ and EPS− strains when both strains are initially randomly inoculated on the substratum: (A) initial inoculation of bacteria; (B)

biofilm after 12 days at f = 0; (C) biofilm after 12 days at f = 0.2; (D) biofilm after 12 days at f = 0.6. It is seen that both strains co-exist in the biofilm if there is no EPS

production, EPS+ strain dominates at f = 0.2 and EPS− strain dominates at f = 0.6. The contour plot shows the nutrient level from low to high as white to black. All

values are in SI units.

FIGURE 2 | Effect of different parameters on the fitness of EPS+: (A) Fitness of EPS+ strain relative to EPS− strain as a function of investment in EPS (f ) and biomass

to EPS density ratio (ρ/ρEPS ). It is seen that if the density ratio is high it is advantageous for EPS+ strain and also there would be an optimum f-value which gives the

maximum benefit for EPS+ strain. If the EPS density is relatively low, EPS+ cells are easily outcompeted by EPS− cells since EPS+ cells cannot push their progeny

fast into the nutrient rich upper levels. The lines are the polynomial fits to the corresponding data points and the error bars indicate the standard deviations; (B) relative

fitness of EPS+ strain relative to EPS− strain as a function of δ and κ which are two non-dimensional parameters appeared in the nutrient transport equation. It is

clear that EPS+ are not beneficial at high values of δ and κ since the heterogeneity of nutrient concentration is less in this case and hence both strains are mixed in

the biofilms rather than making own lineages. The lines are the polynomial fits to the corresponding data points and the error bars indicate the standard deviations.

where C is a constant. It is obvious that the substrate gradients
are negatively correlated with κ and δ. Increasing the value
of either parameter would decrease substrate gradients and
therefore result in substrate rich conditions throughout the
biofilm. Figure 2B shows that when κ and δ increase, the

EPS− strain easily outcompetes the EPS+ strain due to smaller
substrate gradients across the biofilm. If κ is very high (κ = 7),
the EPS− strain outcompetes the EPS+ strain regardless of δ.
Increasing either parameter results in substrate rich conditions
throughout the biofilm and results in a lack of lineage segregation
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in the biofilm. Since the EPS+ and EPS− strains are well mixed
in the biofilm network the EPS+ cells can be exploited by EPS−
cells. We were inspired by Nadell et al. (2013) to derive a simple
relationship analogous to Hamilton’s rule for the competition
between EPS producers and non-producers to show that our
model predictions (Figures 1, 2) are consistent with this rule.
According to Hamilton’s rule (Hamilton, 1964), a cooperative
strategy, such as EPS production, will evolve if rB > C, where
r, B and C are relatedness (measure of genetic similarity of the
neighboring cells to the focal cell), fitness benefit, and fitness
cost, respectively. The growth rate of a EPS+ cell can be written

as dmEPS+

dt
= [µ0(1 + B) − f ]mEPS+, where B is the additional

benefit gained by the cell because the cell is advected to high
nutrient layers by the polymeric substances and µ0 is the specific
growth rate of the cell. A nearby EPS− cell will also be benefited
by EPS production depending on how far that cell resides
from the EPS+ cell. If we assume this EPS-mediated benefit is
inversely proportional to the distance from the EPS+ cell (d), the

growth rate of EPS− cell can be written as dmEPS−

dt
= [µ0(1 +

BrEPS+/d)]mEPS−, where rEPS+ is the radius of EPS+ cell. The
EPS+ cell will outcompete EPS− cell if EPS+ cell has higher
fitness and therefore:

1

mEPS+

dmEPS+

dt
>

1

mEPS−

dmEPS−

dt
(5)

which gives that if [µ0(1+B)−f ] > [µ0(1+BrEPS+/d]. Therefore,
the cooperative strategy will evolve if:

(1− rEPS+/d)B > f /µ0 (6)

The condition given in Equation (6) is analogous to Hamilton’s
rule, rB > C, with r = 1 − rEPS+/d and C = f /µ0. According
to Equation (6), when f increases the relationship will fail at
a point where the EPS− strain would outcompete the EPS+
strain. Figures 1, 2 clearly show this behavior. Equation (6) also
indicates that EPS+ cells will dominate if EPS− cells are far
away from the growing EPS+ cells (d >> rEPS+, meaning that
relatedness is high). Figure 2B shows similar behavior, the EPS+
strain dominates when there is lineage segregation (for low κ and
δ) and EPS− strain dominates when the two strains are mixed
(for high κ and δ). Despite the simplicity of the current Ib model,
it can predict the competition between polymer producers and
non-producers in biofilms which is akin to Hamilton’s rule.

Competition between Aggregates and
Cells (with EPS+/EPS− Characteristics)
In reality, biofilms can be initiated by a mixture of single cells and
aggregates. If there is a steep nutrient gradient across the biofilm
(i.e., small κ and δ values), the initial colonization pattern (i.e.,
excess of aggregates or single cells) could have a profound effect
on the fate of the biofilm inhabitants. Two recent studies (Kragh
et al., 2016; Melaugh et al., 2016) that did not consider EPS
production, found that bacteria attaching as aggregates would
have a competitive advantage over single cells; as the height of
the former gives better access to resources. This competition can
be directly influenced by over expression of EPS in the aggregates

which can provide themwith even greater access to resources and
thereby an even greater advantage. To investigate such scenarios
we modeled the competition between EPS+ and EPS− bacteria
when they attach on the substratum as either circular aggregates
or individual cells.

We start the investigation by considering two different
scenarios for the initial cell and aggregate attachment on the
substratum:

(i) Case 1: EPS+ bacteria are deposited as aggregates and EPS−
bacteria are distributed as single cells.

We consider the case in which EPS+ and EPS− cells deposit
on the substratum as aggregates and single cells, respectively.
The initial number of aggregates is varied between 1, 2, and 5
such that the cell number ratio between two strains is always
1:1. Therefore, as the number of aggregates increases, the size
of each aggregate decreases accordingly (Figure S1). Given the
pattern of initial colonization, EPS+ aggregates should have two
distinct advantages: as the aggregates produce EPS they can
suffocate EPS−, and they can use their height advantage to obtain
improved access to substrate.

Figure 3A shows biofilm growth when EPS+ strain deposits
as a single aggregate. We find that EPS+ strain grows as a single
tower and the growth of EPS− cells is inhibited. The population
density of EPS+ cells in the EPS matrix decreases as f (the
fraction of energy devoted to EPS production) increases.

(ii) Case 2: EPS+ bacteria are spread out as single cells and EPS−
bacteria are deposited as aggregates.

We consider the situation in which the EPS− and EPS+
cells deposit on the substratum as aggregates and single cells,
respectively. Similar to Case 1, the number of aggregates is
varied as 1, 2, and 5 while maintaining the 1:1 ratio between
the strains. Even though EPS− cells do not produce EPS, they
are still likely to aggregate due to pili-pili interactions between
bacterial cells (Ponisch et al., 2017). Aggregates of EPS− may
have a competitive advantage over EPS+ cells due their height
and better access to nutrients, however the EPS+ cells may gain
a competitive advantage by producing EPS.

Figure 3B shows the results when EPS− strain deposits as a
single aggregate. We find that, although EPS− cells are initially
aggregated and have some competitive advantage due to height,
EPS+ cells always dominate in the biofilm. As the energy invested
in EPS production is relatively high (f = 0.6), the EPS− tower is
surrounded by the polymeric matrix due to rapid EPS production
and hence EPS− aggregate is not able to access nutrients.

The variation in the relative fitness of EPS+ cells for both
cases (i and ii) is shown in Figure 4. At relatively low values of
EPS investment (f < 0.25), starting as a single aggregate (EPS+
or EPS−) decreases the relative fitness of EPS+ bacteria when
compared to both strains starting as single cells (Figure 4A).
However, with greater EPS investment (f > 0.45), the relative
fitness of EPS+ strain is significantly enhanced even though
EPS− cells gain a height advantage by starting out as an
aggregate. An increase in the number of aggregates results in the
relative fitness curves moving upward and downward for Case 1
or Case 2, respectively (Figure S2), indicating that the number of
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FIGURE 3 | Initial colonization of one aggregate and biofilm after 12 days for different level of energy investment in EPS (f ): (A) Case 1, EPS+ cells are initially

aggregated while EPS− cells are randomly spread out on the substratum. It is seen that EPS+ strain dominates in the biofilm for all the cases; (B) Case 2, EPS+ cells

are randomly spread out on the substratum while EPS− cells are initially aggregated. It is seen that EPS+ strain dominates in the biofilm for all the cases. All values

are in SI units.

aggregates have a significant effect on the competition between
these two strains. As the number of aggregates increases (i.e.,
size of each aggregate decreases), the initially aggregated strain
receives competitive advantage over the other strain.

EPS production (f > 0), no matter how modest, is better than
no EPS production in nearly all situations as it allows better
access to nutrients, suggesting that, if bacteria can produce EPS,
they should. Our results show that the EPS+ strain obtains the
maximum competitive advantage (Figures 4A,B) at f = 0.5± 0.1
(P = 0.0131) when EPS− strain is initially deposited as one/two
aggregates and EPS+ strain is deposited as single cells. However,
as the number of aggregates increases to five (Figure 4C) the
EPS+ strain obtains the maximum competitive advantage at
around f = 0.3 ± 0.2 (P = 0.0146) when EPS+ cells are initially
deposited as aggregates and EPS− strain as single cells.

Generalized linear modeling for the data shown in Figure 4

was also performed to test the statistical significant of the results
as detailed in the Supporting information. Case 1 with higher
numbers of aggregates have higher relative fitness for EPS+ strain
than either control or Case 2 (t = 9.737, P < 2 × 10−16). This
indicates that EPS+ aggregates that are spread out more widely
across the substratum relative to the non-EPS producers have
a fitness advantage compared to when they are clumped into
one colony, relative to non-EPS producers or when they are
both distributed as single cells on the surface. The optimum EPS
investment to maximize the relative fitness of EPS producers is
clearly dependent on the spread and size of aggregates in the
initial population.

The variation in fitness curves seen for Case 1 and Case 2
(Figure 4) for different numbers of aggregates can be further
explained by scrutinizing the contribution of the initial aggregate
to the biomass (mass of EPS+/EPS− cells) and EPS production
over time. Bacteria at the bottom of the aggregate do not
contribute to biomass production, irrespective of their status
(EPS+ or EPS−) because they do not get sufficient substrate

(Figure 5A). This limits the ability of a tall aggregate to compete
with the singleton cells that surround it. When EPS investment
increases from f = 0–0.6, the fraction of aggregate which
contributes to EPS production increases from zero to around
0.55; while the fraction of aggregate which contributes to bacteria
production hovers around a value of 0.2 (Figure 5B). Since the
production of a unit volume of EPS is less expensive than the
production of biomass (EPS+ strain) (material density of EPS
is smaller than that of biomass, Table 2); it is easier for cells to
directly invest in EPS production rather than creating new EPS+
cells. Separately, Figure 4 shows that the initially aggregated
strain can obtain a fitness advantage by a greater margin if that
strain deposits as smaller aggregates (Figures 4B,C). When the
aggregate size decreases, the inactive bacteria seen in the initial
aggregate (Figure 5) also decreases and hence a greater number
of cells of the aggregated strain are available to actively compete
with the other strain.

For Case 1, when EPS+ and EPS− strains are deposited
as aggregates and single cells respectively, the EPS− cells are
outcompeted by EPS+ cells over the whole range of f values (0
< f < 0.6). However, in Case 2, the distributed EPS+ cells can be
outcompeted by EPS− aggregates if they do not produce enough
EPS (f < 0.1, Figure 4C). This is in contrast to the control case
(single cell attachment) where the EPS− cells can “catch a ride”
on the polymeric material only when EPS+ cells heavily invest
on EPS (when f > 0.5) and get lifted toward the nutrient rich
surface (see Figures 1, 4), thereby gaining an advantage over the
EPS+ cells. The segregation of the EPS+ and EPS− strains, as
observed in Case 1 and Case 2, prevents the non-producers from
being pushed to the top by the EPS+ neighbors investing heavily
(f > 0.5) in production of polymeric material.

For smaller aggregates (Figure 4C) the greatest relative fitness
for EPS+ is observed when EPS+ cells (around f = 0.3) are
initially deposited as aggregates and EPS− strains are deposited
as single cells (Case 1). This is expected because the EPS+ strain
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FIGURE 4 | Fitness of EPS+ relative to EPS− as a function of f and initial inoculation and number (or size) of aggregates (see Figure S2 for different cases): (A) one

aggregate; (B) two aggregates; (C) five aggregates. EPS+ strains get the maximum benefit if EPS− and EPS+ strains are initially spread out and aggregated,

respectively. The lines are the polynomial fits to the corresponding data points and the error bars indicate the standard deviations.

FIGURE 5 | Inactive bacteria in the aggregate for Case 1: (A) As the biofilm grow some inactive bacteria are seen at the bottom of the aggregate. The inactive

bacteria of the aggregate are shown in green color and these inactive bacteria would not contribute to biomass production (f = 0). Even though the aggregate gets a

competitive advantage through its height the inactive cells in the bottom of the aggregate would be costly for it: (B) fraction of the active bacteria in the initially

aggregated EPS+ strain as a function of investment in EPS production. As the investment in EPS increases from 0 to 0.6 the fraction contributes to bacteria

production remains fairly constant around 0.2 and the fraction contributes to EPS production increases to around 0.55. Mass of the bacteria is the sum of the mass of

EPS+ and EPS− strains. All values are in SI units.

gains competitive advantage owing to its moderate height (even
though they have a fraction of inactive bacteria) and ability to
produce EPS. However, for larger aggregates (Figures 4A,B), the

greatest relative advantage is observed when the EPS producers
(around f = 0.5) are single cells and the non-producers are
aggregated (Case 2) and this seems counter-intuitive. On closer
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FIGURE 6 | Transient variation of the fitness of EPS+ relative to EPS− at f =

0.5. The general trends for control case and Case 1 are similar. However, the

fitness of EPS+ rapidly increases to 1.5 for Case 2 and then temporarily

decreases and again increases at the same rate as other cases.

inspection of time dependent relative fitness of EPS+ (f =

0.5, Case2, one aggregate) we find that it increases rapidly to
around 1.5 at time < 1day, and then decreases transiently, before
increasing again at the same rate as the other two scenarios
(Figure 6). Therefore, the overall superior fitness of the EPS+
strain at f = 0.5 (Figures 4A,B) at day 12 can be attributed
to the initial boost in fitness for the cells as seen in Figure 6.
The reason for this initial fitness boost for EPS+ cells is two-
fold: larger EPS− aggregates can have many inactive cells, and
all EPS+ cells initially have good access to nutrients, hence they
grow well. The initial fitness boost increases as f decreases since
the EPS+ strain can invest more energy on production of EPS+
cells than polymeric substance. However, at low f -values, the
EPS+ strain cannot maintain this initial boost for long since the
EPS+ colonies cannot expand quickly due to lack of EPS.

Overall, the microbes with EPS+ characteristics gain a better
competitive advantage if they initially colonize the surface as
smaller aggregates and are widely spaced between the cells
of EPS−. As the aggregate size decreases the EPS producing
strain dominates in the biofilm even with lower levels of EPS
production.

Competition between QS+/QS− and EPS−

Strains
While EPS production is advantageous it is also metabolically
expensive, and therefore it should be beneficial for its production
in bacteria to be regulated through a feedback control mechanism
such as quorum sensing. Two quorum sensing settings are
considered in this work. In the first setting, QS− cells compete
with EPS− cells and in the second setting QS+ cells compete
with EPS− cells. For the sake of simplicity, the study is carried
out at f = 0.5 which gives better fitness for EPS producers for a
single aggregate deposition (Figure 4A). We examine the effects
of different QS threshold values on the relative fitness of QS− and
QS+ strains for the three scenarios mentioned above (control,

Case1 and Case 2) but focus only on the case of a single aggregate
(Figure S1).

Figure 7 shows the diffusion of AI from the biofilm to
the surrounding liquid and the resulting QS−regulation for
the control case. Starting with single cells being deposited on
the substratum (Figure 7A1), the population of QS− increases
(Figure 7A2) and reaches the threshold for AI, τ = 5 ×

10−7 kg/m3 (Figure 7A3), then EPS production is terminated
but the QS− cells (colored red in Figure 7A4) continue to
proliferate under the negative QS control. For the positive QS
control, starting from single cells (Figure 7B1), initial growth
(duration < 1.3 days) of both strains is similar because their
characteristics are identical when there is no EPS production
(Figure 7B2). The QS+ strain then starts to produce EPS when
AI reaches its threshold of τ = 5× 10−7 kg/m3 (Figure 7B3) and
subsequently the QS+ strain dominates in the biofilm because
they gain a competitive advantage due to formation of EPSmatrix
(Figure 7B4).

We compare three cell deposition scenarios (control, Case
1 and Case 2) when EPS production is regulated through QS,
and examined the effect of threshold concentration of the auto-
inducer (τ = 1 × 10−7, 5 × 10−7, 8 × 10−7, and 10 × 10−7

kg/m3) on the fitness of different strains.
Figure 8 shows how the negative QS control affects the relative

fitness of QS− strains for three cell deposition scenarios. The
relationship between the fitness of EPS producers relative to
non-producers under different initial deposition scenarios is
significantly related to the threshold value of the auto-inducer
concentration (t = 12.141, P = 0).

For the control case (Figure 8A), at the lowest threshold (τ
= 1 × 10−7 kg/m3) the relative fitness is around 1 over time.
This is because the QS− strain quickly reaches the QS threshold
and terminates EPS production. Both QS− and EPS− strains
become biologically identical and hence the relative fitness is
around 1. At moderate thresholds (τ = 5 × 10−7 kg/m3) the
fitness of QS− is only enhanced in the early stages of biofilm
growth. However, higher thresholds (τ = 8 × 10−7 and 10
× 10−7 kg/m3) consistently improve QS− strain fitness. Low
thresholds confer an initial short-term advantage followed by
consistent reduction in fitness; higher thresholds confer a long-
term advantage which is consistent with the findings of Nadell
et al. (2008). The QS influence for Case 1 (QS− aggregate vs.
EPS− single cells, Figure 8B) is analogous to the control case,
except at the lowest threshold. At the lowest threshold the QS−
strain stops production at the onset of growth; they only have the
height advantage (Case 1) and therefore take longer to dominate
the biofilm.

The benefit of QS in Case 2 (EPS− aggregate vs. QS−
single cells, Figure 8C) is either negative or marginally positive.
Quorum sensing is only of long-term value at the highest
threshold (τ = 10 × 10−7 kg/m3). At the lowest threshold (τ
= 1 × 10−7 kg/m3) the relative fitness of QS− strain rapidly
increases to 8.5 and then gradually decreases and finally becomes
negative. QS− cells stop producing polymeric substance in the
beginning, and then the growth of the QS− strain is boosted
(τ = 1 × 10−7 kg/m3). The reason behind this initial fitness
boost for the QS− strain has already been explained in Figure 6.
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FIGURE 7 | EPS production is negatively (A1–A4) and positively (B1–B4) controlled through quorum sensing (f = 0.5, τ = 5 × 10−7 kg/m3): (A1) both QS− and

EPS− strains are randomly spread out on the substratum as individual cells; (A2) biofilm after 1.7 days; (A3) biofilm after 2.3 days, the QS− cells on the top of the

biofilm gradually terminate the production of EPS; (A4) biofilm after 7 days, there is no EPS on the top of QS− linages. (B1) both QS+ and EPS− are randomly

spread out on the substratum as individual cells; (B2) biofilm after 1.0 days; (B3) biofilm after 1.3 days, QS+ strain starts to produce EPS; (B4) biofilm after 7 days,

QS+ strain dominates in the biofilm due to EPS matrix. All values are in SI units.

At the lowest threshold, EPS− cells dominate in the long run
because they have a competitive advantage due to their initial
height.

Figure 8D indicates that the long-term fitness of the QS−
strain is more sensitive to the QS threshold for Case 2, but
less sensitive for the other two cases. Moreover, for all the
cell deposition scenarios, the relative fitness of the QS− strain
is positively correlated with the QS threshold (the Pearson’s
correlation coefficients are 0.9512, 0.9921, and 0.9927 for control,
Case 1 and Case 2, respectively). QS− cells are not outcompeted
for the whole range of QS thresholds for the control and Case
1. Since QS− cells terminate EPS production at the onset of
growth at the lowest threshold, both strains are identical for
the control case and QS− cells have the height advantage for
Case 1 (see Figure 4, control and Case 1 at f = 0). However,
in Case 2, when QS− cells stop EPS production at the onset
of growth, the QS− strain is easily outcompeted by EPS− due
to the height advantage of the EPS− (see Figure 4, Case 2 at
f = 0). At the highest QS threshold (τ = 10 × 10−7 kg/m3),
although the relative fitness of QS− strain is at least slightly
enhanced compared to the strains without QS for all attachment
scenarios, only for Case 1 can we guarantee that QS− benefits
from quorum sensing (P = 2.38E-9). This is because at higher
thresholds, the QS− strain terminates EPS production after they
dominate the biofilm, hence stopping EPS production may give
a definite advantage to QS− strain for Case 1 because this
strain also has the height advantage due to its initial aggregate
nature.

Figure 9 shows how the positive QS control affects the relative
fitness of EPS producing strains for the three cell deposition
scenarios. For the control (Figure 9A), the quorum sensing-
regulated EPS productionmarginally enhances the relative fitness
of QS+ strain for the whole range of QS thresholds (10−7 <

τ <10−6 kg/m3). At higher thresholds (τ >1 × 10−7 kg/m3),
the QS+ strain does not produce EPS for a long time and thus
the relative fitness of QS+ strain is around 1 until they start
to produce EPS, and subsequently their fitness increases once
EPS production commences. However, at the lowest threshold
(τ = 1 × 10−7 kg/m3), EPS production starts quickly and
so the QS+ strain needs time (about 6 days, Figure 9A) to
dominate in the biofilm because it invests energy on both EPS
matrix and QS+ cells, which is analogous to biofilm growth
without quorum sensing regulation. There is an optimum QS
threshold value for the control case at around τ = 5 × 10−7

kg/m3 (P = 0.006) (Figure 9D). However, for Case 1 and Case
2 (either strain initially deposited as an aggregate), the positive
QS regulation of EPS is advantageous only at the beginning of
biofilm growth (Figures 9B,C). The long-term relative fitness of
the QS+ strain decreases as the QS threshold increases (P <

0.005) (Figure 9D). Therefore, the relative fitness of the QS+
strain is negatively correlated with QS threshold for Case 1
and Case 2 (the respective Pearson’s correlation coefficients are
−0.9867 and−0.9644).

Generalized linear modeling was used to investigate the
collective effects of aggregate type, quorum sensing threshold
and the occurrence of positive or negative regulation on the

Frontiers in Microbiology | www.frontiersin.org September 2017 | Volume 8 | Article 1865158

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jayathilake et al. EPS-Mediated Competition in Biofilms

FIGURE 8 | The effect of negative quorum sensing regulation on relative fitness of QS− strain at f = 0.5: (A) control case, both QS− and EPS− strains are initially

spread out on the substratum; (B) Case 1, QS− cells are initially aggregated while EPS− cells are spread out; (C) Case 2, QS− cells are initially spread out while

EPS− strains are aggregated. At the lowest threshold, the relative fitness rapidly increases to 8.5 and then decreases; (D) relative fitness of QS− strain on day 12. The

dotted lines in (D) are the relative fitness without QS for respective cases. The standard deviations of plots (A–C) are shown only at the end for clarity. The standard

deviation increases over time.

relative fitness of EPS producers compared to non-producers as
detailed in the Supporting information. The detrimental effect
of the quorum sensing threshold (t = −6.540, P = 3.83 ×

10−10) and the occurrence of positive vs. negative control of EPS
production (t = −10.248, P < 2 × 10−16) on relative fitness is
very significant. There is a significant correlation between the
quorum sensing threshold and whether the EPS is positively or
negatively regulated (t = 13.868, P < 2 × 10−16) indicating
a synergy between the two variables in their effects on fitness.
The relative fitness of EPS producers is also dependent on the
nature of cell deposition, with aggregated EPS producers (Case 2)
resulting in higher fitness than the other two deposition scenarios
(t = 6.660, P = 1.94× 10−10).

Overall, we conclude that quorum sensing-regulated EPS
production would enhance the fitness of EPS producers only
marginally, or even reduces their competitive advantage, under
the investigated conditions. This analysis shows that quorum
sensing-mediated gene regulation in bacteria may be detrimental
at times depending on the nature of the competition. Zhao
and Wang (2017) argued that depending on the conditions
there would be a “right time” and “right place” in which
QS−regulated EPS production can favor biofilm growth;
otherwise it would have unfavorable consequences for the EPS

producers. Numerical experiments of Frederick et al. (2011)
also show that QS−regulated EPS production rarely facilitates a
biofilm to achieve a high cell population. However, maximizing
offspring generation is not the only strategy bacteria may have,
and sometimes production of EPS is beneficial if the objective
is to produce a thick EPS protective layer. Therefore, further
studies are needed to understand the role of QS− regulated
EPS production for the cell deposition scenarios investigated
here, taking into account the multiple functional roles of EPS in
bacterial biofilms.

CONCLUSIONS

Microbial competition between two bacterial strains with
differing EPS producing characteristics (EPS+/QS+/QS− vs.
EPS−), has been studied using an IbM, with one strain initially
deposited on the substratum as aggregate(s) and the other as
individual cells. The results show that when there is no quorum
sensing and if EPS− cells attach as relatively large aggregates;
then the EPS+ cells gain the maximum competitive advantage if
they attach on the substratum as single cells (under the condition
that the EPS+ strain invests about half of their energy in EPS
production). Xavier and Foster (2007) and Nadell et al. (2008)
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FIGURE 9 | The effect of positive quorum sensing regulation on relative fitness of QS+ strain at f = 0.5: (A) control case, both QS+ and EPS− strains are initially

spread out on the substratum; (B) Case 1, QS+ cells are initially aggregated while EPS− strains are spread out; (C) Case 2, QS+ cells are initially spread out while

EPS− strains are aggregated. At the highest threshold, the relative fitness rapidly increases to 6 and then decreases; (D) relative fitness of QS+ strain on day 12. The

dotted lines in (D) are the relative fitness without QS for respective cases. The standard deviations of plots (A–C) are shown only at the end for clarity. The standard

deviation increases over time.

also showed that the optimum investment in EPS is around 0.5,
when EPS+ compete with others that invest either more or less
in EPS production (in these studies, both strains are initially
deposited as single cells on the surface, similar to the control case
in this paper). However, when the EPS+ strain is deposited in
relatively small clusters and the EPS− strain is deposited as single
cells, then the EPS+ bacteria always benefit from producing EPS
regardless of the level of energy invested in EPS. According to
this simulation, as the EPS+ aggregate size decreases they need
to expend less energy on EPS production (f < 0.5) to gain the
maximum fitness advantage.

Quorum sensing-regulated EPS production is found
to provide no significant advantage over continuous EPS
production for all of the cell deposition scenarios, for the range
of parameters chosen for the present study. Our numerical
results indicate that quorum sensing-regulated EPS production
significantly reduces the competitive advantage gained by matrix
producers when they deposit as aggregates and compete with
single cells of EPS− or vice-versa.

Laser-diffraction particle-size scanning tests have shown that
90% of the total planktonic biomass of Pseudomonas aeruginosa
consist of cellular aggregates in the size range of 10–400µm
(Schleheck et al., 2009). Therefore, it is inevitable that single
cells deposited on a surface will compete with different sizes of

bacterial aggregates of P. aeruginosa which are deposited on the
same surface. Our simulation results may give an insight into
this competition because the present results indicate that the
aggregate size plays a significant role in the competition with
single cells. In vitro experiments of Kragh et al. (2016) have shown
that aggregates of P. aeruginosa gain a competitive advantage
over their single cells when competing in the same environment.
These experiments could be extended to investigate the effects of
different EPS production characteristics and different aggregate
sizes on microbial competitions in biofilms, and then our
predictions could be tested.

Wessel et al. (2014) used a gelatin based three-dimensional
printing strategy to make different sizes of P. aeruginosa
aggregate and showed that when the aggregate size exceeds
a critical size, localized oxygen depletion regions were found
inside the aggregate. These in vitro experimental results show
that the growth rate decreases as the aggregate size increases
which is consistent with our findings. Although the experimental
and simulation results based on continuous model have general
agreements, there was some discrepancy due to simplifying
assumptions including uniform oxygen consumption throughout
the aggregate. However, an Individual-based modeling technique
similar to the present study should give more comparable results
to these experiments because the IbM can capture heterogeneities
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inside aggregates more accurately. The present simulation
techniques can also be adapted to study the interaction of bacteria
such as Sinorhizobium meliloti that forms aggregates (Dorken
et al., 2012) with other species during the wastewater treatment
process (Ben Rebah et al., 2002).

Even though it is widely believed that public goods
producing bacteria are benefited by quorum sensing-regulated
gene modulations, our numerical results show that quorum
sensing can also have detrimental effects on public good
producers. However, these numerical simulations need to
be extended to cover a wider range of parameters and be
experimentally tested to draw a solid conclusion about these
findings.

In the present Individual-basedModel, factors such as bacteria
motility, founder cell density, detachment and attachment etc.
are not considered and these developments can form the basis
for future work. Moreover, for biofilms growing in a flow
environment, the mechanical strength of the biofilm mediated
by the EPS composition can provide insights into the biological
evolution of polymer producing strains. The flow can also advect
quorum sensing signals which can cause the bacteria to misread
their local cell density, thereby influencing bacterial competition
in constricted geometries, for example in the pores of the
soil.
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Models are important tools in microbial ecology. They can be used to advance

understanding by helping to interpret observations and test hypotheses, and to predict

the effects of ecosystem management actions or a different climate. Over the past

decades, biological knowledge and ecosystem observations have advanced to the

molecular and in particular gene level. However, microbial ecology models have changed

less and a current challenge is to make them utilize the knowledge and observations at

the genetic level. We review published models that explicitly consider genes and make

predictions at the population or ecosystem level. The models can be grouped into three

general approaches, i.e., metabolic flux, gene-centric and agent-based.We describe and

contrast these approaches by applying them to a hypothetical ecosystem and discuss

their strengths and weaknesses. An important distinguishing feature is how variation

between individual cells (individuality) is handled. In microbial ecosystems, individual

heterogeneity is generated by a number of mechanisms including stochastic interactions

of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry,

small-scale environmental heterogeneity, and differential transport in a heterogeneous

environment. This heterogeneity can then be amplified and transferred to other cell

properties by several mechanisms, including nutrient uptake, metabolism and growth,

cell cycle asynchronicity and the effects of age and damage. For example, stochastic

gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which

in turn results in heterogeneity in intracellular nutrient levels. Individuality can have

important ecological consequences, including division of labor, bet hedging, aging and

sub-optimality. Understanding the importance of individuality and the mechanism(s)

underlying it for the specific microbial system and question investigated is essential for

selecting the optimal modeling strategy.

Keywords: microbial ecology, gene-centric modeling, metabolic flux modeling, agent-based modeling,

individuality, heterogeneity, single cell
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INTRODUCTION

Microbes are important drivers of biogeochemical cycles in all
ecosystems and impact their environments in a plethora of ways.
For example, in lakes, the harmful cyanobacterium Microcystis
aeruginosa can bloom and produce toxins that make the water
unsafe to drink (Paerl et al., 2011). The common gut bacterium
Bacteroides fragilis produces a chemical that helps the host
develop its immune system (Atarashi et al., 2013).

Models are important tools for understanding and managing
ecosystems. They can be used to advance scientific understanding
by interpreting field observations and aid in hypothesis testing.
For example, Jöhnk et al. (2008) used a model to quantify
the roles of temperature range and buoyancy regulation in the
fitness of the toxic cyanobacteriumMicrocystis during heat waves.
Buffie et al. (2015) applied the model of Stein et al. (2013)
to infer an antagonistic interaction in the gut between the
pathogen Clostridium difficile and another species of that genus,
Clostridium scindens. For ecosystemmanagement, models can be
used to answer “what if ” questions and make predictions about
the effects of future environmental conditions. For example,
Blumberg and Di Toro (1990) used a model to predict the effects
of climate warming on phytoplankton and dissolved oxygen in a
lake. Bucci et al. (2016) predicted the composition of the mouse
gut microbiota following infection with C. difficile.

In the past decades, microbiology has experienced rapid
advances in observational and experimental technologies,
resulting in substantial progress in the understanding ofmicrobes
at the molecular level. For example, nitrogen (N) fixation
by the cyanobacterium Anabaena involves a division of labor
among N-fixing heterocysts and photosynthesizing vegetative
cells. The nitrogen-containing β-aspartyl-arginine is produced
by cyanophycinase in heterocysts, transferred intercellularly to
vegetative cells where it is converted to aspartate and arginine
by isoaspartyl dipeptidase (Burnat et al., 2014). Another example
involves transcription of genes to messenger RNA (mRNA)
and translation to proteins, which is performed by RNA
polymerase (RNAP) and the ribosome complex, respectively. In
bacteria, those can form a single transcribing and translating
“expressome” complex, with known 3D structure and functional
consequences on transcriptional pausing, backtracking and
termination (Kohler et al., 2017). Characterization of ecosystems
is following the same trend. For example, lakes used to be
characterized using bulk measures, like Chlorophyll a and total
phosphorus concentrations, but observations are now often at
the molecular level, including gene expression (transcript levels)
(Vila-Costa et al., 2013). Animal and human microbiota are now
routinely characterized using multiple omics technologies, such
as community characterization using bacterial 16S ribosomal
RNA (rRNA) polymerase chain reaction (Costello et al.,
2009), and increasingly meta-genomics, transcriptomics and
proteomics (Wang et al., 2015).

The development of models is lagging behind as most models
still do not make use of molecular level understanding or
observations. It is recognized that there is a substantial gap
between our microbial ecology models and current microbiology
knowledge and environmental observations (Fuhrman et al.,

2013; Trivedi et al., 2013; Hellweger, 2015; Dick, 2017; Stec et al.,
2017). For example, lake phytoplankton models still simulate
phytoplankton biomass concentrations (e.g., µg Chlorophyll a
L−1) and the effect of a nutrient on the growth rate using an
equation developed 75 years ago (Monod model). Likewise, most
models of the gut aggregate species into functional groups based
onmetabolic pathways (Kettle et al., 2015). Models are now being
developed that explicitly resolve genes and make predictions at
the population and ecosystem level.

This paper has two parts. First, we review existing modeling
approaches. Here, we focus on mechanistic models that explicitly
include genes and simulate population-level properties (e.g.,
microbe concentration, nutrient uptake) rather than empirical
models. One aspect in which the existing approaches differ
is their representation of microbial individuality. The second
part of our review will use examples to explain why including
individuality is important.

PART 1: REVIEW OF EXISTING MODELING
APPROACHES

In this section we describe three modeling approaches that have
been used to bridge the gap between genes and ecosystems,
including metabolic flux, gene-centric and agent-based modeling
(ABM). We illustrate each approach using a hypothetical
ecosystem, where two microbial species grow and interact via
three metabolites (Figure 1). We then discuss a number of
examples from the literature, focusing mostly on the modeling
aspects of the studies. Then we highlight the weaknesses and
strengths of each approach. Finally, we characterize the models
along a number of dimensions, including space, time, function,
heterogeneity, species diversity and genes.

Literature Selection Criteria
The review is focused on the use of gene-level models for
advancing understanding and making predictions of microbial
ecosystems. To keep the scope of the review manageable,
we included only quantitative models, which are required for
predictions, although qualitative models may be sufficient to
advance understanding. We applied the following selection
criteria: (1) model uses a mechanistic (vs. empirical) approach,
(2) model explicitly considers at least one actual gene or protein;
(3) model includes some form of direct or indirect interaction
among microbes; (4) model includes multiple microbial species
(or strains) or phenotypes in different locations; and (5) model
makes predictions at the population level. We therefore exclude
empirical models that correlate observed gene distributions to
environmental factors and function (e.g., carbon export in the
ocean, Guidi et al., 2016), models that use hypothetical genes or
digital genomes describing behavioral traits (e.g., Lenski et al.,
1999; Clark et al., 2011), scale up single-cell models using
multiple independent simulations where the cells do not interact
(e.g., Emonet and Cluzel, 2008; Labhsetwar et al., 2013) and
studies that infer interactions from comparison of metabolic
networks and do not make quantitative predictions (e.g., Levy
and Borenstein, 2013; Zelezniak et al., 2015).
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FIGURE 1 | Hypothetical ecosystem used to illustrate different modeling

approaches. Species 1 takes up metabolites A and B, produces metabolites

C, D, E, and F and excretes metabolite C. Species 2 takes up metabolites A

and C and produces metabolites D, G, and H.

Metabolic Flux Modeling
Definition
This approach builds on the genome-scale, constraint-based
modeling approach most commonly applied to single species
(Feist et al., 2008). In this approach, the genome sequence
is used to derive a network of potential metabolic reactions
by a combination of automated and manual (curation) steps.
Then, a flux distribution is predicted, typically by optimizing
the flux distribution to maximize an objective function, like
maximization of biomass production (Schuster et al., 2008). The
extension of this approach to multiple species builds on efforts
to extend it to multiple compartments of higher eukaryotic
organisms. There are three approaches tomulti-speciesmetabolic
flux modeling, which we will refer to as environmentally coupled,
directly linked and aggregated approaches. The environmentally
coupled approach builds on the dynamic flux balance analysis
(FBA) approach (Varma and Palsson, 1994), where the microbes
and extracellular metabolites are represented using concentration
state variables. The growth rate and metabolite fluxes are
computed from FBA assuming a common pool for extracellular
metabolites and that the system is in a steady state during
each time step. The directly linked approach explicitly links
the metabolic networks of the species using exchange reactions.
This is conceptually the same way in which multi-compartment
organisms are modeled. The aggregated approach (also referred
to as pooled, supra-organism or enzyme soup approach) involves
constructing one network by combining the individual networks
and removing duplicates. This ignores cellular boundaries and
is most applicable to metagenomic datasets. Box 1 illustrates
these three approaches for the hypothetical ecosystem shown in
Figure 1. This approach has also been referred to as Ecosystems
Biology (Klitgord and Segrè, 2011) or Community Systems
Biology (Zengler and Palsson, 2012).

Examples
There have been several applications of metabolic flux models
to communities of microbes. For recent reviews see Zengler and
Palsson (2012), Biggs et al. (2015), Tan et al. (2015), Zomorrodi

and Segrè (2016), Perez-Garcia et al. (2016), and Gottstein et al.
(2016).

Environmentally coupled models
Scheibe et al. (2009) applied FBA to learn about the growth
of Geobacter and uranium bioremediation in a contaminated
groundwater site where Geobacter dominates the community.
They coupled a genome-scale FBA model to a two-dimensional
reactive transport model. The FBA model computes growth
rate and fluxes based on ambient acetate, Fe(III) and ammonia
concentrations in each grid element. Those growth rates and
fluxes are then used by the reactive transport model to
compute the Geobacter biomass, acetate, Fe(III) and ammonia
concentrations, as well as other processes like U(VI) reduction.
The new ambient concentrations are then again used by the
FBA model to compute the growth rate and fluxes at the next
time step and so on. Due to computational constraints, the
FBA calculations were done a priori for 1,000 combinations of
metabolite concentrations and stored in a look-up table, rather
than a dynamic coupling between the models. One of the main
advantages of the FBA-based approach is that it allows for
variable substrate utilization and growth yields, which is not
supported by conventional models. The model was able to make
predictions of similar quality as the previous reactive transport
model (i.e., without FBA component), but it did so without the
need to calibrate rate parameters (Figure 2).

Tzamali et al. (2009) and Tzamali et al. (2011) used the
dynamic FBA approach to simulate the interaction among
various E. coli strains, including wild type and single gene
knockouts. For various substrates, they identified potential
communities of co-existing strains. For example, growth on
pyruvate supported communities with up to 6 strains. The most
efficient community of 4 mutants produced 2.2% more biomass
than a pure culture of the wild type.

Zhuang et al. (2011) developed a dynamic, genome-scale FBA
model of two species in competition in a uranium-contaminated
aquifer. Rhodoferax and Geobacter both oxidize acetate and
reduce Fe(III), but only Geobacter can reduce U(VI), rendering
it less soluble and therefore contributing to the clean-up of the
site. The FBA models of the two species calculate growth and
metabolite production/consumption rates, which are used to
integrate biomass and metabolite concentration state variables.
The model predicted that, under low-ammonia conditions,
Rhodoferax is outcompeted by Geobacter, which can fix nitrogen,
and that this promotes respiration (vs. biomass production) and
associated U(VI) reduction, which are patterns consistent with
observations.

Zhuang et al. (2012) expanded the model by Zhuang et al.
(2011) and applied it to design remediation scenarios. In
particular, they used two separate FBA models for attached and
planktonic Geobacter to differentiate their functions: planktonic
cells reduce U(VI) and attached cells reduce Fe(III). Attachment
and detachment rates were used to transfer biomass among
these two fractions. This illustrates one approach by which
heterogeneity can be simulated in these types of models.

Harcombe et al. (2014) developed dynamic FBA models of
two and three species on a two-dimensional grid, where biomass
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BOX 1 | From genes to ecosystems using metabolic �ux modeling.

Single species

The starting point for a metabolic flux model is a set of mass balance equations:

dx

dt
= S · v (B1.1)

where x (mmol gDW−1, i.e., per gram biomass dry weight) is a vector of metabolite concentrations, S is the stoichiometric matrix and v (mmol gDW−1 h−1 ) is a

vector of reaction rates for uptake, excretion, internal metabolism and growth. Typically, a steady-state is assumed so the derivatives are zero. The stoichiometric

matrix (S) for species 1 of the hypothetical ecosystem is presented in Table B1, where columns are reactions and rows are metabolites. Lower and upper bounds

for the reaction rates, determined based on thermodynamics, enzyme kinetics or measurements, can be included in the optimization procedure.

There are typically infinitely many solutions that satisfy the equation. For example, in species 1 (Figure B1.1), biomass (metabolite F) can be produced by any

combination of two pathways (A:E:F or A:D:F). Computational methods are available that decompose the stoichiometric matrix into unique sets of functional

units (pathways) such as elementary modes or extreme pathways (Papin et al., 2004). A more common approach, flux-balance analysis (FBA), involves optimizing

reaction rates to maximize the value of some objective function using linear programing (LP). Several objective functions have been used, such as minimizing ATP

production and maximizing production of some metabolite, but maximizing biomass production yield or rate is often considered to be the most appropriate in an

ecological context. When biomass production is maximized, it is assumed that the cell regulates fluxes through its metabolic network in a way that maximizes

biomass production. The corresponding objective function for the species 1 of our example system is to maximize the production of metabolite F (VMetE1 + VPrdF1
or VGrowth1 in Table B1). This is relatively simple and real models typically use a more complex biomass growth function, e.g., a genome-scale model may include

various precursors (e.g., G6P, F6P) and cofactors (e.g., ATP, NADH). Algorithms that integrate gene expression data are also available (Becker and Palsson, 2008).

FBA is fundamentally a steady-state approach, but a pseudo-time-variable model can be constructed (Varma and Palsson, 1994; Mahadevan et al., 2002).

Multiple species—environmentally coupled models

Figure B1.1 illustrates the dynamic, multi-species metabolic flux modeling methodology. The model includes state variables for microbial biomass (X) and

extracellular metabolites (C). The microbes grow according to a growth rate (µ) and consume/produce metabolites according to specific consumption/production

rates (V). Those values are calculated from the metabolic flux models, which are optimized to maximize the growth yield subject to a number of constraints, including

a maximum consumption rate for each metabolite based on its concentration. A simulation will proceed in a step-wise manner: (1) Calculate the constraints based

on all C. (2) Optimize the metabolic model of each species, which yields µ and V. (3) Calculate the new X for both species based on µ. (4) Calculate the new C

for both metabolites based on V from both species. Repeat. When the metabolic model does not lead to a viable solution, a simple death routine can be invoked

(Zhuang et al., 2011). It is conceptually straightforward to include other reactions (e.g., between extracellular compounds) and transport (Scheibe et al., 2009).

FIGURE B1.1 | Multi-species metabolic flux modeling—environmentally coupled models. After Figure 2 in Zhuang et al. (2011). X (gDW L−1) = microbial biomass

concentration, C (mmol L−1) = extracellular metabolite concentrations, µ (h−1) = specific growth rates, V (mmol gDW−1 h−1) = specific flux velocities.

(Continued)
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BOX 1 | Continued

Multiple species—directly linked model

Figure B1.2 illustrates the multi-species metabolic flux modeling approach developed by Stolyar et al. (2007). The metabolic models for each species (Figure B1.1)

are combined into a single model. Exchange of metabolites among the species occurs by directly linking their reactions, which constrains them to be the same.

This is equivalent to assuming there is no change in the extracellular metabolite concentrations. The model is optimized to maximize a weighted combination of the

biomasses.

Multiple species—aggregated model

Figure B1.3 illustrates the multi-species metabolic flux modeling approach developed by Taffs et al. (2009). The reactions and metabolites for the two species (as

shown in Figure B1.1) are merged into a single model and a single objective function is used to determine the flux distribution.

FIGURE B1.2 | Multi-species metabolic flux modeling—directly linked model. After Figure 2 in Stolyar et al. (2007). The metabolic models for each species

(Figure B1.1) are combined into one model, with exchange reactions linking their metabolisms.

FIGURE B1.3 | Multi-species metabolic flux modeling—aggregated model. After Figure S2 in Taffs et al. (2009). The metabolic models for each species (as

shown in Figure B1.2) are merged into one model.

(Continued)
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BOX 1 | Continued

TABLE B1 | Stoichiometric Matrix (S) and lower and upper bounds for the FBA of species 1.

VMetA1 VMakE1 VMetE1 VPrdF1 VUptA1 VUptB1 VExcC1 VGrowth1

A −1 −1 0 0 1 0 0 0

B 0 0 0 −2 0 1 0 0

C 0 0 0 2 0 0 −1 0

D 1 0 0 −1 0 0 0 0

E 0 1 −1 0 0 0 0 0

F 0 0 1 1 0 0 0 −1

Lower 0 – ∞ 0 0 0 0 0 0

Upper ∞ ∞ ∞ ∞ MM∗ MM∗
∞ ∞

Rows are metabolites and columns are reactions. ∗Calculated from extracellular substrate concentration using the Michaelis-Menten function (see Figure B1.1).

grows and dies, extracellular metabolites are consumed and
produced, and biomass and metabolites move by diffusion. Cole
et al. (2015) extended the dynamic FBA approach further to
three dimensions and used it to simulate growth of E. coli in
colonies on agar. The model was able to simulate the small-scale
environmental heterogeneity in dissolved oxygen and nutrient
concentrations, and the resulting phenotypic differentiation of
the bacteria (i.e., fermenting cells in the interior). Other multi-
species, environmentally coupled metabolic flux models were
presented by Salimi et al. (2010), Hanly and Henson (2011),
Hanly and Henson (2013), Biggs and Papin (2013), Chiu et al.
(2014) and Louca and Doebeli (2015). Zomorrodi et al. (2014)
presented a dynamic version of the multi-level optimization
routine presented previously (Zomorrodi andMaranas, 2012, see
below).

Directly linked models
Stolyar et al. (2007) developed an FBA model of two microbes
that are mutualistic in the absence of sulfate, Desulfovibrio
vulgaris and Methanococcus maripaludis. In the scenario
evaluated, D. vulgaris grows on lactate, producing H2, formate,
CO2 and acetate, which support the growth of M. maripaludis.
The model consists of three compartments, representing the
metabolism of the two species and the exchange between
them. The metabolite fluxes in the central metabolism of each
species and exchange reactions are represented using 89 and
82 equations, respectively. The third compartment represents
the exchange flux of H2, formate, CO2 and acetate, where H2

and formate were not allowed to accumulate in the medium, so
that their rates of production by D. vulgaris and consumption
by M. maripaludis are the same. The combined model was
optimized to maximize biomass production of both species,
with a larger weight for D. vulgaris, based on observations.
However, the biomass ratio of the two species is constrained by
the exchange reaction, so it was relatively invariant to the weights
used. The model suggested that the H2 was essential, but that
formate could be eliminated.

Wintermute and Silver (2010) applied the FBA modeling
approach at the genome scale to 46 E. colimutants, each incapable

to synthesize an essential metabolite. Growth experiments were
conducted with 1,035 binary strain combinations. A joint FBA
of each pair allowing for exchange of all shared metabolites
between the strains was developed. The models were optimized
to minimize the difference between the flux distributions of the
wildtype and mutant (minimization of metabolic adjustment,
MOMA, Segrè et al., 2002). The idea behind this objective
function is that the regulatory system is still based on the wildtype
and has not yet adjusted to the mutation. The joint FBA models
were consistent with the finding that pairings of mutants blocked
in the same biosynthetic pathway rarely show synergistic growth
(4% of the cases) while pairings of mutants in separate pathways
did so in 18% of cases. The model correctly predicted that strains
grow best when they require small amounts of metabolites that
are cheap to produce by the other strain. The ability of simple
stoichiometric models to predict fitness costs and benefits of
metabolic cross-feeding is encouraging.

Klitgord and Segrè (2010) applied the FBAmodeling approach
to binary pairs of seven species and identified the media
composition that would support symbiosis. They developed
genome-scale FBA models of all possible binary pairs and did
a systematic search for media compositions that would support
growth of the pair but not the individual species.

Huthmacher et al. (2010) generated an FBA model of the
metabolism of the malaria causing Plasmodium falciparum and
its host, the erythrocyte (red blood cell). By constraining the
metabolic network with gene expression data of P. falciparum,
they were able to predict metabolic fluxes for different life cycle
stages of the pathogen.

Zomorrodi and Maranas (2012) developed a community FBA
modeling framework and applied it to a number of systems,
including those of Stolyar et al. (2007) and Taffs et al. (2009).
A novel aspect in this work is the consideration of multiple
objective functions, including maximization of growth of each
species as well as biomass production at the community level,
which can be used to explore tradeoffs between selfish and
altruistic driving forces.

Other multi-species, directly linked metabolic flux models
were produced by Taffs et al. (2009), Bizukojc et al. (2010),
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FIGURE 2 | Comparison of observations (symbols), traditional model (solid lines) and FBA-based model (dashed lines). Reproduced from Scheibe et al. (2009) with

permission. The figure shows acetate and U(VI) concentrations at a groundwater bioremediation site. Concentration time series are presented at 3.7, 7.3, and 14.6m

distance from the acetate injection gallery. Acetate increases at progressively later times as the distance from the injection gallery increases. Consistent with this, U(VI)

decreases at progressively later times. Colors identify single wells.

Bordbar et al. (2010), Freilich et al. (2011), Khandelwal et al.
(2013), Nagarajan et al. (2013), Shoaie et al. (2013), Ye et al.
(2014), El-Semman et al. (2014), Merino et al. (2015) and
Heinken and Thiele (2015).

Aggregated models
Taffs et al. (2009) applied different approaches to model
three species (oxygenic phototrophs, filamentous anoxygenic
phototrophs and sulfate-reducing bacteria) in the thermophilic,
phototrophic mat communities from Octopus and Mushroom
Springs in Yellowstone National Park (USA). One of their
approaches does not consider compartments, but lumps all
reactions into one species (see Box 1). This approach ignores
compartmentalization and the fact that intermediate intracellular
metabolites from one species may not be available to another.
However, it does not require assigning individual enzymes or
reactions to species, functional groups or guilds and is well suited
for data from metagenomics. A unique aspect of this study is the
use of elementary mode analysis (EMA), which is an alternative
to FBA and characterizes the set of all possible flux distributions,
rather than just the optimal one.

Tobalina et al. (2015) applied the aggregated approach
to naphthalene-contaminated soil communities. An interesting
aspect of that study was that the model was based on
metaproteomics data, which implicitly accounts for regulation.

Cerqueda-García and Falcón (2016) applied the aggregated
approach to study the metabolism of communities in microbial
mats and microbialites (living carbonate rock structures similar
to corals and stromatolites). Starting with metagenomic datasets,
they reconstructed a metabolic network, and then used EMA
to identify feasible pathways through this network for C and N
assimilation. They identified a number of alternative CO2 fixation
pathways, which were not identified for these systems previously.

Strengths
• The FBA approach can directly utilize molecular data,

genomics, transcriptomics, proteomics and metabolomics,
from pure laboratory cultures and the environment (e.g.,
metagenomics) as long as annotations are available, which is
increasingly the case.

• The approach is comprehensive in terms of functions and
metabolites. This is likely to be increasingly useful, as
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recent observations from a number of environments suggest
that bacteria have a high substrate specificity (Kindaichi
et al., 2013; Salcher et al., 2013). For example, when a
freshwater community was presented with 14 radiolabeled
low-molecular weight (LMW) organic substrates, the two
most abundant microbes belonging to the Actinobacteria ac1
and Alphaproteobacteria LD12 tribes had no overlap in their
substrate acquisition spectra. The concept of dissolved organic
carbon (DOC) as a common currency for heterotrophic
microbes is too simplistic. One of themain applications of FBA
has been to understand complex substrate uptake patterns.

Weaknesses
• The directly linked and aggregated approaches assume the

system to be in a steady-state. The environmentally coupled
approach also assumes steady-state flux distributions during
each time step, but flux distributions can change from time to
time. For many cases this assumption will be sensible, but for
others not. For example, planktonic bacteria experience a very
heterogeneous nutrient regime and may experience nutrient
patches with short durations (∼60 s, Taylor and Stocker, 2012),
comparable to the time required for gene expression, protein
translation and maturation. Genome-scale models are being
developed that go beyond steady-state metabolite fluxes (e.g.,
include dynamic transcript, protein andmetabolite pools, Karr
et al., 2012) and this technology will eventually be applied at
the ecosystem scale.

• It is not always clear what objective function should be
used to optimize the flux distribution (Schuster et al., 2008).
Maximization of biomass production seems like a good
choice from a biotechnological perspective. However, there
are cases where it is advantageous to divert production away
from biomass, including to storage products, toxins or EPS
(Merino et al., 2015), which may conflict with the biomass
objective. Moreover, in a well-mixed, stable environment,
specific growth rate will likely be maximized by natural
selection while in a spatially structured environment such as a
biofilm, the biomass yield is likely to be maximized by natural
selection (Kreft, 2004).

• The approach typically entails specifying a biomass
composition, and commonly this is applied across different
conditions. However, the biomass composition is known to
change (Benyamini et al., 2010).

• Growth dilution of metabolites, other than the ones used in the
growth equation (see above), is typically ignored (Benyamini
et al., 2010). Specifically, there should be a “–µ x” on the right-
hand side of Equation B1.1. Accounting for growth dilution
is conceptually straightforward but it requires specifying the
metabolite concentrations, which are not typically available
at the genome scale. Metabolomics data can help to fill this
gap, but this would be difficult for all metabolites, times
and locations in the model and impossible for prediction
simulations. Another hurdle is the computational cost. The
metabolite dilution FBA (MD-FBA) model of Benyamini et al.
(2010) uses mixed-integer linear programming (MILP, vs. LP
used by FBA), which is computationally more demanding
than LP. This limitation may be especially important for

applications that require solutions for multiple species, times
and locations.

• The approach does not account for individual heterogeneity
(see Part 2).

Gene-Centric Modeling
Definition
In the gene-centric or functional gene approach, the model is
built based on genetic information, as inmetabolic fluxmodeling,
but focused on capturing the dynamic behavior of specific
genes or gene activities in the system. Thus, the biogeochemical
fluxes are based on the genetic composition of the microbial
community. Microbes are grouped based on specific functional
or proxy genes and tracked using corresponding concentration
state variables. This is similar in spirit to modeling functional
groups (e.g., N-fixers, lactate producers, Le Quéré et al., 2005;
Kettle et al., 2015). The concentrations of genes (e.g., number
of gene copies per liter) are simulated using mass balance
differential equations, which is how typical microbial ecology
models simulate species. The rate of gene production (or
growth) can be tied to the Gibbs free energy released by the
reaction catalyzed by the corresponding enzyme. The approach
is illustrated in Box 2.

Examples
Reed et al. (2014) presented the gene-centric approach and
applied it to study nitrogen cycling in the Arabian Sea oxygen
minimum zone (OMZ). The model includes eight functional
genes, including those for denitrification (nitrate reductase, narG,
nitrite reductase, nirK), aerobic ammonia oxidation (ammonia
monooxygenase, amoA) and anaerobic ammonium oxidation
(anammox, hydrazine oxidoreductase, hzo), as well as relevant
metabolites, including dissolved oxygen (O2), ammonium
(NH+

4 ), nitrate (NO
−

3 ), and nitrite (NO−

2 ). The model-predicted
gene abundances were compared directly to observations from
qPCR (gene copies L−1, Figure 3). The authors also compared
model-predicted changes in gene abundances over time to
observed mRNA concentrations in a qualitative manner (gene
copies L−1 s−1 vs. mRNA copies L−1, Figure 3). An interesting
problem addressed by this model is the dual role of nitrogen
as an energy source and biomass component, where the latter
is not considered by the gene-centric approach. This was
handled by calculating the total biomass increase/decrease and
removing/adding corresponding amounts of N from/to the
extracellular metabolite pools. The model was used to show that
denitrification is the dominant nitrogen loss process in this area,
which is different from many other OMZs, where anammox
dominates.

Reed et al. (2015) applied the gene-centric approach to
simulate functional genes for sulfur, nitrite, ammonia, methane
and hydrogen oxidation and associated metabolites in a
submarine hydrothermal vent plume. The pathways for oxidation
of a number of reduced sulfur species (e.g., hydrogen sulfide,
thiosulphate) co-occur in one species (SUP05), so the pathways
were combined into one functional gene in the model. The
authors compared their model-predicted relative abundance (%)
of functional genes to observations. The hydrogen concentration
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BOX 2 | From genes to ecosystems using gene centric modeling.

The following description is based on Reed et al. (2014), but adapted to the hypothetical ecosystem considered here and some of the nomenclature is altered to

facilitate comparison with the other approaches. The first step in the development of the model is to identify the functional genes. For the hypothetical example, we

will use prdF and metC and ignore the others (Figure B2). Thus, state variables prdFg and metCg (no. L−1) represent species 1 and 2, respectively. The reactions

mediated by these gene products are assumed to be the limiting reactions along the pathway, but exchange with extracellular metabolites requires accounting for

the input and output of the entire pathway. For prdF, the overall reaction is:

Aext
+ 2 Bext

prodF
→ 2 Cext (B2.1)

The production rate of metC genes as a result of metabolism associated with the metC gene (RmetC , no. L
−1 d−1) is:

RmetC = metCg FT,metC µmax,metC
CC

Km,metC,C + CC
(B2.2)

metCg (no. L
−1) is themetC gene concentration. FT,metC is a thermodynamic potential factor, which accounts for the chemical energy available to drive themetabolism,

and can be estimated from the energy yield of the associated reaction. µmax,metC (d−1) is the maximum specific growth rate. CC (molC L−1) and Km,metC,C (molC

L−1 ) are the extracellular concentration and half-saturation constant for metabolite C. The production rate of prdF genes (RprdF ) is:

RprdF = prdFg FT,prdF µmax,prdF
CA

Km,prdF,A + CA

CB

Km,prdF,B + CB

Ki,prdF,C

Ki,prdF,C + CC
(B2.3)

The last fraction accounts for inhibition by metabolite C. The mass balance equation for extracellular metabolite B is (transport and other reactions are omitted for

clarity):

dCB

dt
= −

γprdF,B

γprdF,A

RprdF

qprdF YprdF
(B2.4)

γprdF,B and γprdF,A are stoichiometric coefficients. Here, 2mol B are consumed for every 1mol A, so γprdF,B = 2 and γprdF,A = 1. qprdF (no. gDW−1, i.e., per gram

biomass dry weight) is the intracellular concentration of prdF genes, which depends on the number of gene copies in the genome. YprdF (gDW molA−1 ) is the yield,

which depends on the energy yield of the associated reaction. For metabolite A, we have to consider consumption by both species:

dCA

dt
= −

RprdF

qprdF YprdF
−

γmetC,A

γmetC,C

RmetC

qmetC YmetC
(B2.5)

Here, A and C are consumed in equal amounts, so γmetC,A = γsmetC,C = 1. Metabolite C is consumed by the reaction associated with metC and produced by the

reaction associated with prdF:

dCC

dt
= −

RmetC

qmetC YmetC
+

γprdF,C

γprdF,A

RprdF

qprdF YprdF
(B2.6)

Here, 2mol C are produced for every 1mol A consumed, so γprdF,C = 2 and γprdF,A = 1. The mass balance for gene prdF is:

dprdFg

dt
= RprdF − kd prdFg (B2.7)

where kd (d−1) is the death rate. The first term in the gene mass balance equation accounts for the production of the gene due to the growth associated with its

reaction and the second term accounts for mortality.

FIGURE B2 | Gene centric modeling.

is relatively low in this system and their model predicted no
significant increase in hydrogenase gene abundance due to
aerobic hydrogen oxidation. However, substantial quantities of
hydrogenase genes were observed suggesting that they may be
produced because they co-occur with a gene that does experience
substantial growth as observed (SUP05 may have genes for sulfur

and hydrogen oxidation, Anantharaman et al., 2013). When this
coupling is included in the model, it was able to reproduce the
observations.

Louca et al. (2016) presented a gene-centric model of
six functional genes and eight metabolites for a number of
dissimilatory redox pathways involved in nitrogen and sulfur
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FIGURE 3 | Comparison of gene-centric model predictions (solid lines) to observations (dotted line in top left and symbols in other panels) of metabolites, gene and

mRNA levels in the Arabian Sea oxygen minimum zone. From Reed et al. (2014). Copyright © (2014) by the National Academy of Sciences. The figure shows an

oxygen low from about 400 to 900m and a coincident low in ammonia monooxygenase (amoA) DNA and mRNA, and an increase in anaerobic ammonium oxidation

(anammox, hydrazine oxidoreductase, hzo) DNA and mRNA.

cycling in a seasonally anoxic fjord (Saanich Inlet, Vancouver
Island, Canada). That model extends the gene-centric modeling
approach by explicitly simulating mRNA and proteins, assuming
their production rates are proportional to the corresponding
reaction rates and subjecting them to transport and decay
processes. Model predictions for mRNA and proteins were
compared to observations on a qualitative basis. The model
was used to gain insights into the sulfur and nitrogen pathways
in this system. For example, the model predicted incomplete
denitrification by the SUP05 clade, which results in leakage of
nitrite that supports anammox and loss of nitrogen.

Strengths
• The approach is readily integrated into existing models based

on concentration state variables (Reed et al., 2014).
• The approach makes quantitative predictions of gene levels

that can be compared directly to observations.

Weaknesses
• While this modeling approach is readily applied to

chemotrophs where there is a direct link between the

rate of the reaction and the growth rate of the microbe, it
is less clear how to apply it to a phytoplankton species that
may be limited by nitrate, but uses the energy derived from
sunlight to reduce it to ammonia for incorporation into
amino acids. Heterotrophs growing on a complex mixture
of dissolved organic matter (DOM) may also be difficult to
model with this approach.

• The extension of the method to mRNA and proteins
(Louca et al., 2016) includes simulating them as independent
concentration variables. This does not account for their
natural co-existence in the cell and may lead to some odd
effects, like mRNA and protein appearing in locations where
there are no corresponding genes.

• The method supports multiple co-occurring genes (see Reed
et al., 2014 for equations), but that is based on constant
fractions within a community, which may change dynamically
and spatially in a natural community (e.g., species succession
in phytoplankton). This method is also more difficult to
implement. The reader is invited to rework the example in
Box 2 for a model that uses metA and metC (which co-occur
in species 1) as functional genes.

Frontiers in Microbiology | www.frontiersin.org November 2017 | Volume 8 | Article 2299172

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kreft et al. From Genes to Ecosystems

• The approach does not account for individual heterogeneity
(see Part 2).

Agent-Based Modeling (ABM)
Definition
ABM or individual-based modeling (IBM) involves simulating
microbes as individuals. This is in contrast to the traditional
population-level approach, where microbes are simulated as
concentration state variables. ABM is already an established
modeling technology in microbial ecology (Hellweger et al.,
2016a). Microbial ABMs increasingly resolve intracellular
mechanisms and the extension to genes is a natural progression
and already well on the way. The approach is illustrated in Box 3.
This approach has also been referred to as Systems BioEcology
(Hellweger, 2009).

Examples
ABM was used by Hellweger (2009) to explore the role of
photosynthesis genes (psbA, hli) carried by viruses that infect the
marine cyanobacterium Prochlorococcus. The idea is that these
genes help to maintain the host photosynthesis apparatus during
the latent period, increasing energy to support the replication of
the virus. The model simulates individual viruses and host cells
and explicitly resolves mechanisms of gene expression, protein
synthesis, photosynthesis and events associated with infection at
the molecular level. The model was calibrated to observations
of virus and host gene transcript and protein levels and then
used to simulate population dynamics in the water column of
the Sargasso Sea. Modeled populations were diverse, including
multiple virus types (different combinations of psbA and hli
copies) and cells with different light histories, cell cycle phases
and infection stages. Using competition experiments between
virus strains that have different combinations of psbA and hli,
and evolution experiments (i.e., gene packaging error), the model
predicted an optimal gene content that matched that of the
wild-type.

An ABM of the cyanobacterium Synechococcus and its
circadian clock was constructed by Hellweger (2010). The model
structure is similar to the Prochlorococcusmodel described above.
A new feature was the explicit simulation of the concentration
of proteins with different phosphorylation states and their
interaction. The modeled population includes cells at different
phases in their cell and circadian cycles and gene expression
levels (psbAI luminescence) were compared to observations at
the individual level.

Mina et al. (2013) used an ABM of genetically-engineered
quorum sensing E. coli cells in a three-dimensional microfluidics
chamber. The model simulates a heterogeneous population of
individual, motile cells, each with a number of genes (luxI, aiiA,
and yemGFP) and associated proteins, which communicate via a
diffusible substance. They showed that autoinducer oscillations
on the population level do not follow simply from synchronizing
single cell oscillations. Single cells can switch between a state of
constant signal concentration and oscillations, depending on the
parameters of the positive and negative feedback loops in the gene
regulatory network. Yet in a population of these cells, only the
oscillatory state is stable—once cell density exceeds a threshold.

Hellweger et al. (2014) built an ABM of the yeast
Saccharomyces cerevisiae and used it to explore the fitness effect
of age-correlated stress resistance. The model explicitly simulates
the regulation of the proteins Tsl1 and Tps3, which synthesize
the stress protectant trehalose. Their expression is modeled using
constant, age-dependent and stochastic terms. The population is
diverse consisting of cells in different phases of their cell cycles as
well as different ages, damage and Tsl1/Tsl3 expression levels. The
modeled heterogeneity was compared to observations obtained
using flow cytometry. Comparison of the various expression
strategies showed that age-correlated stress resistance can be
beneficial under some conditions.

A model of Anabaena—nitrogen interactions was developed
by Hellweger et al. (2016b). This model simulates the uptake
of various forms of nitrogen and early intracellular assimilation
pathways. Uptake and intracellular reactions are mediated by
enzymes (e.g., GlnA) and their expression is controlled by a
number of regulatory proteins (e.g., NtcA). A novel feature
of this model is the explicit simulation of cell differentiation
and division of labor. When fixed nitrogen is depleted, the
cells become nitrogen-stressed and some differentiate into
heterocysts, which are anoxic cells that fix nitrogen and pass the
fixed nitrogen to their neighboring vegetative cells (Figure 4C).
The model was informed by observations from 269 laboratory
experiments from 55 papers published from 1942 to 2014,
including transcript levels and enzyme activities (Figures 4A,B).
Hellweger et al. (2016b) also applied the model to a hypothetical
lake, but validation by comparison to field observations was not
performed.

Another gene-level ABM was developed by Hellweger (2013)
to explore the mechanisms underlying adaptation of E. coli to
tetracycline resistance.

Strengths
• The main advantage of ABM is the ability to resolve intra-

population heterogeneity. We will discuss the importance of
individuality in the second part of this review.

• In ABM, the description of the system is very flexible and
not constrained by having to use one specific mathematical
formalism (e.g., the stoichiometric matrix of the FBA
approach). For example, on/off control of a gene by light can
be modeled simply using an “if” statement (if light is on, then
turn on gene, otherwise turn it off). It is much more difficult
to incorporate this into a stoichiometric matrix or differential
mass balance equation.

Weaknesses
• This approach is relatively complex and difficult to apply.

Although it can theoretically be extended to the whole-
genome scale, past models have focused on a handful of
genes, transcripts, proteins and metabolites. This is due to the
limited availability of rate formulations and parameters, and
the difficulty of calibrating a model with numerous non-linear
feedbacks.

Summary of Examples
The models reviewed above are characterized along six different
dimensions, including space, time, function, heterogeneity,
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BOX 3 | From genes to ecosystems using agent-based modeling.

Here the approach for dynamic, molecular-level, mechanistic modeling is illustrated by application to the hypothetical ecosystem (Figure 1). The model explicitly

resolves genes, transcripts, proteins and metabolites (Figure B3). Following the central dogma of biology, genes are transcribed by the RNA polymerase to yield

transcripts (mRNA), which are translated by the ribosomes to yield proteins, which then carry out various functions. Once a biomass (in the case of strain 1 the

metabolite E, QE) threshold is reached, the DNA polymerase is induced, which synthesizes DNA. Once that is complete, cell division is induced and the cell divides,

which involves division of all intracellular components. The approach entails explicitly modeling genes, transcripts and proteins. However, typically only a handful of

representative genes are simulated using a coarse-grained approach (Castellanos et al., 2004; Hellweger, 2013).

FIGURE B3 | Agent-based modeling of microbes. Gene/protein: rpoMH/RNAP, RNA polymerase; rptMH/RPT, ribosome; ftsMH/Fts, cell division; polMH/Pol, DNA

polymerase; dumMH, dummy (accounts for genes not explicitly considered); uptA/UptA, uptake A; metA/MetA, metabolism A; excC/ExcC, excretion C. Substrates

and metabolites (extracellular, concentration C; intracellular, quota Q): CA, substrate A; QH, metabolite H, etc. After Figure 1 of Hellweger (2009).

To illustrate the approach, we present the equations for uptB1 transcription, UptB1 synthesis, UptB1 rate and QB mass balance. Here, intracellular concentrations

are defined on a per biomass dry weight (DW) basis, but carbon and volume can also be used. The uptB1 transcript (uptB1t , mol mRNA gDW−1, i.e., per gram

biomass dry weight) mass balance equation is:

duptB1t

dt
=

kS,T

LDNA
RNAP1 γuptB1 uptB1g − kd,TuptB1t − µguptB1t (B3.1)

(Continued)
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BOX 3 | Continued

where kS,T (bp RNAP−1 s−1) is the transcription rate, LDNA (bp) is the total DNA length, RNAP1 (mol protein gDW−1) is the RNA polymerase level, yuptB1 is the uptB1

expression level (may depend on various factors), uptB1g is the number of uptB1 gene copies, kd,T (s−1) is the mRNA decay rate and µg (s−1) is the specific growth

rate. The UptB1 (mol gDW−1) protein mass balance is:

dUptB1

dt
= kS,P

uptB1t

TxL
RPT1− kd,P,UptB1UptB1− µG UptB1 (B3.2)

where kS,P (nt RPT−1 s−1) is the translation rate, TxL (mol mRNA gDW−1) is the total mRNA, RPT1 (nmol protein gDW−1) is the ribosome level and kd,P,UptB1 (s−1)

is the UptB1 decay rate. The UptB1 rate (VUptB1, mol gDW−1 s−1) is:

VUptB1 = UptB1 kUptB1
CB

Km,UptB1 + CB

Ki,UptB1

Ki,UptB1 + QB
(B3.3)

where kUptB1 (molB molUptB1−1 s−1) is the UptB1 catalytic rate constant, Km,UptB1 (molB L−1 ) is the half-saturation constant and Ki,UptB1 (molB gDW−1) is the

inhibition constant. The intracellular metabolite B (QB, mol gDW−1) mass balance is:

dQB

dt
= VUptB1 − 2 VSynF1 − µG QB (B3.4)

where VPrdF1 (molF gDW−1 s−1) is the PrdF1 reaction rate (the factor 2 accounts for 2mol B per 1mol F, see Figure 1).

species diversity, and genes (Figure 5). These dimensions were
selected as they highlight differences between the reviewed
models, nevertheless, the list is not exhaustive and other
dimensions can be used, like types of interactions. The figure
illustrates that, together, the population of past models covers the
entire space. However, no single model or approach has covered
the entire space by itself. The gene centric approach is amenable
to space, time and species diversity and those dimensions have
been explored in past models. Function and genes dimensions
are linked in this approach, and limited because each species is
typically associated with only one function. Simulating individual
heterogeneity is difficult with the population-level gene centric
approach and has not been explored in past models. Metabolic
flux models are routinely genome-scale, and past models have
pushed the boundaries along other dimensions, including space,
time (although only quasi-time-variable), and species diversity.
Function is often limited to metabolism and heterogeneity
to phenotypes. The agent-based approach is flexible along
most dimensions, but limited in terms of gene coverage and
models with more than a handful of genes have yet to be
developed.

PART 2: THE IMPORTANCE OF
INDIVIDUALITY

A key distinction between the modeling approaches reviewed
above is their consideration of individuality and heterogeneity.
It is now well established that microbial populations in the
environment and laboratory exhibit substantial heterogeneity in
properties and behaviors. There are probably cases where this
individuality averages out and is of no consequence to the ecology
or biogeochemistry of the system (e.g., steady-state growth of
a single species on a single nutrient). However, there are also
cases where individuality has been shown to critically affect the
fitness of a population. A thorough understanding of individual

heterogeneity and its potential ecological consequences is critical
for selecting the most appropriate modeling strategy.

In this part, we review the importance of individuality. There
are a number of mechanisms that produce heterogeneity in a
population, which we refer to as sources. Once heterogeneity
is introduced, it can be maintained and amplified in a number
of ways. Finally, there are a number of important ecological
consequences of heterogeneity (Figure 6).

From a modeling perspective, the distinction of sources,
amplifiers and consequences is important. Specifically, sources
of heterogeneity are included in the design of the model.
In other words, there are equations or parts of the model
code that produce heterogeneity. For example, stochastic cell
division asymmetry can be included in an agent-based model
by randomly varying the daughter biomass from the perfect
50/50 split after division. Amplifiers are mechanisms that operate
at the individual level and change the cell’s properties. The
resulting additional heterogeneity is not prescribed in the model
design, but it emerges from running it (i.e., it is a model
output). For example, heterogeneity in birth sizes may lead to
heterogeneity in generation times without any added equation
or code. Consequences are also not included in the design of
a model, but they emerge as population- or ecosystem-level
properties rather than individual-level properties.

Sources of Individuality
There are many mechanisms that can produce and maintain
individual heterogeneity. Here we consider a mechanism that
would lead a colony growing up from a single cell to become
heterogeneous to be a “source of heterogeneity.” Of course these
mechanisms can also operate and produce/modify heterogeneity
in other scenarios.

Stochastic Interactions of Molecules
Intracellular “concentrations” of transcription factors and
macromolecules (DNA, mRNA, proteins) are often low. For
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FIGURE 4 | Anabaena—nitrogen interaction model. (A,B) Comparison to observations of transcript levels in filaments (fil., i.e., all cells), vegetative cells (veg.) and

heterocysts (het.) (A) and enzyme activities (B) of cells grown under different conditions (data are from Martin-Figueroa et al., 2000). (C) N fluxes for growth on N2.

Red, heterocysts; Green, vegetative cells. Numbers are fluxes in pmol N cell−1 d−1. From Hellweger et al. (2016b). The figure shows that heterocysts have higher

levels of nitrogenase (nifH) transcripts, higher levels of glutamine synthetase (glnA, GS) transcripts and enzyme levels and lower levels of glutamate synthase (glsF,

GOGAT) transcripts and enzyme activities. These observations support the model where N2 is fixed in heterocysts and combined with glutamate (GLU) that is

imported from adjacent vegetative cells to yield glutamine (GLU), which is then exported to vegetative cells and further incorporated into labile nitrogen (LN) and

structural nitrogen (SN) pools.

example, natural populations have on average less than one
transcript per gene (Cottrell and Kirchman, 2016). That means
the continuum assumption underlying deterministic chemical
reaction kinetics is not met and corresponding regulatory or
signaling networks can exhibit substantial stochasticity. This
leads to intra-population heterogeneity and when coupled with
positive feedbacks can lead to bi-stability and phenotypic
differentiation (Veening et al., 2008). For example, the expression
level of heterodisulfide reductase subunit A (central for
respiration in sulfate reducers) in Desulfovibrio vulgaris cells
varied by as much as 50-fold in a sample of 30 individual
cells (Qi et al., 2014). Another example is stochasticity in the

chemotaxis regulatory network. Low concentrations of signaling
molecules, specifically phosphorylated CheY, lead to behavioral
variability of individuals, and this can be reduced by increasing
the concentration of this element in the network (Korobkova
et al., 2004). However, stochastic gene expression may be more
the exception than the rule as the expression of most genes
in E. coli does not show any bursts (Silander et al., 2012).
Metabolic pathways are usually considered to be unaffected
by stochasticity because of the higher numbers of metabolic
enzymes and metabolites in the cell, but the stochastic expression
of catabolic enzymes has been found to lead to fluctuations in
growth rate that can perturb the expression of other enzymes
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FIGURE 5 | Comparison of modeling approaches along various dimensions. Based on metabolic flux (N = 32), gene-centric (N = 3) and agent-based (N = 6) models

included in this review. Dimensions: Space: 0 (i.e., well-mixed reactor), 1, 2 or 3 dimensional; Time: steady-state, quasi-time-variable (e.g., dynamic FBA),

time-variable; Function: None, metabolism, + regulation, + division, + additional functions; Heterogeneity (individuality): None, types (i.e., phenotypes), individuals;

Species diversity: None, one, two, three or more; Genes: None, a handful, core/central metabolism, whole genome. Symbols represent averages and “error bars” the

range between minimum (i.e., dimensions covered by all models) and maximum. For example, agent-based models have been developed with zero to three spatial

dimensions, and the average is 0.67.

(Kiviet et al., 2014). Heterogeneity may also arise from changes
to the DNA, including mutation, recombination andmethylation
(Avery, 2006; van der Woude, 2011).

Stochastic Cell Division Asymmetry
Another source of cell-to-cell variability is stochastic partitioning
of cellular components during cell division. This may be due to
low copy numbers of mRNAs, proteins, plasmids and genomes
(Huh and Paulsson, 2011; Jahn et al., 2015), or imperfections
in the cell division machinery leading to unequal daughter cell
sizes and consequently asymmetry in all cellular components.
Bacteria can control this heterogeneity by molecular mechanisms
that are increasingly understood. For example, interactions of
MinCDE proteins with themselves and the polar membranes
set up a spatial gradient inside the cell that favors assembly of
the FtsZ cell division ring in the middle of the cell (Kieser and
Rubin, 2014). Missing components of this regulatory system have
been implicated in the higher division asymmetry observed for
Mycobacterium smegmatis compared to E. coli (Aldridge et al.,
2012).

Deterministic Cell Division Asymmetry
In addition to stochastic processes, there are deterministic
mechanisms that lead to cell division asymmetry. Replication
in budding bacteria and yeast obviously produces two different
individuals and population heterogeneity. In Saccharomyces
cerevisiae, the mother cell is larger and accumulates damage,
including bud scars, extrachromosomal DNA circles (ERCs)
and carbonylated proteins, which are retained preferentially by
the mother cell during division by binding to special cellular
compartments (Unruh et al., 2013; Figure 7). Also, for cells that
divide by apparently symmetric binary fission, one “daughter”
inherits the old pole and one the new pole. The old pole may
have accumulated more damage or other properties over its
longer lifetime. For example, division in E. coli is associated with
asymmetric segregation of damaged protein aggregates (Lindner
et al., 2008). The aggregates diffuse by stochastic Brownian
motion but they are too large to enter the nucleoid region and
therefore get trapped at the poles (Coquel et al., 2013). The
asymmetry goes beyond damage. For example, since the outer
membrane (OM) is synthesized mostly along the cylindrical part
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FIGURE 6 | Sources, amplifiers and consequences of individual heterogeneity.

of the cell, old poles have older OM andmay include proteins that
were previously expressed and now repressed (Ursell et al., 2012).
Bacteria with flagella at one pole will also generate two different
daughter cells at division (Christen et al., 2010).

Small-Scale Environmental Heterogeneity
Spatially structured microenvironments constitute another
driver of heterogeneity. For example, microbes in colonies,
biofilms or granular sludge flocs experience gradients in dissolved
oxygen and nutrient concentrations (Wimpenny and Coombs,
1983; Matsumoto et al., 2010). The response of the microbes
to these different conditions, including growth and acclimation,
leads to a microbial population with heterogeneous properties.
For example, the growth rate of Pseudomonas putida cells in
biofilms was monitored using a reporter consisting of the growth
rate-regulated rrnBP1 promoter and unstable GFP (Sternberg
et al., 1999). Cells along the periphery of the biofilm were
observed to grow rapidly, whereas those on the inside grew
slower or not at all.

Differential Transport and Environmental

Heterogeneity
Transport, whether passive (e.g., with water or air) or active
(e.g., chemotaxis), can act differently on individuals within a

homogenous population. Water flow velocities tend to be larger
near the center of conduits (e.g., pores, pipes, rivers). Even
for a uniform flow field, advection is generally associated with
diffusion causing individuals from one location to be transported
to different locations. On leaf surfaces, cells can be dispersed
to different locations and grow into microcolonies, followed by
detachment and colonization elsewhere (van derWal et al., 2013).
Also, transport by active mechanisms, like chemotaxis, entails
stochastic variability and can lead to different paths of individuals
(due to stochastic signaling, see above) (Korobkova et al., 2004).
Often the environment exhibits substantial heterogeneity at this
scale. For example, the nutrient concentrations in surface waters
are highly heterogeneous, with microscale patches created by
lysing cells, phytoplankton exudates or marine snow (Stocker,
2012; Taylor and Stocker, 2012; Zehr et al., 2017). Similarly,
nutrient availability on plant leaf surfaces varies greatly at a
micrometer scale and often correlates with local topography
(Remus-Emsermann et al., 2011). Even environments that are
designed to be homogenous, like strongly agitated small-scale
fermentors, can be heterogeneous (Dunlop and Ye, 1990). When
differential transport occurs in a heterogeneous environment, it
can lead to intra-population heterogeneity as microbes respond
to their individual conditions (i.e., by gene expression, nutrient
uptake, and growth). By the same argument, the population at
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FIGURE 7 | Deterministic cell division asymmetry in the budding yeast

Saccharomyces cerevisiae leads to heterogeneity in size and bud scars

(stained bright). Scale bar is 5µm. Reproduced from van Deventer et al. (2015)

with permission.

any given location may be comprised of individuals with vastly
different life histories (Bucci et al., 2012). For example, depending
on how they were formed (by a mechanism of staying-together
or coming-together), aggregates of bacteria on leaf surfaces may
consist of cells that are either clonal with similar life histories or
represent a variety of previous leaf surface experiences (Tecon
and Leveau, 2012).

Amplifiers of Individuality
The heterogeneity produced by the above sources can manifest
itself in a number of properties and behaviors, which can then
feed forward and produce heterogeneity in other properties and
behaviors, effectively amplifying the overall heterogeneity.

Nutrient Uptake, Metabolism, and Growth
Stochastic gene expression, or any of the other primary sources
of heterogeneity discussed above, may result in different levels
of some functional enzyme and behavior, such as nutrient
uptake. For example, the assimilation of nitrate and urea is very
heterogeneous when a cultured population of nitrate-acclimated,
marine dinoflagellate Prorocentrum minimum cells is exposed
to a sudden input of urea (a preferred N source) (Figure 8;
Matantseva et al., 2016). This may in turn affect nutrient
metabolism and growth. For example, single-cell observations
for Methylobacterium extorquens AM1 showed high variability
in cell size at division, division time (2.5-fold range) and
growth rate (Strovas et al., 2007). Consequently, even some bulk
housekeeping functions, like metabolism and growth, which are
generally considered to be relatively homogenous, can be very
heterogeneous, even in cultured populations.

Cell Cycle Asynchronicity
Asymmetric division can lead to an asynchronous population
(i.e., where cells are in different phases in the cell cycle) because
size can be a major checkpoint for various cell cycle phases.
Since the cells perform different tasks at different phases in the
cell cycle, this translates into a population with heterogeneous
behavior. For example, in Saccharomyces cerevisiae, 800 genes are
cell-cycle regulated (Spellman et al., 1998) and in Caulobacter
crescentus, over 500 genes (Laub et al., 2000). In photosynthetic
microorganisms, such as microalgae and cyanobacteria, gene
expression is also tied to the light-dark cycle, often via a
circadian clock (Ito et al., 2009). Unless the population grows at a
generation time of 1 day, it will consist of cells with various phase
differences between their cell and diel cycles. This effectively
adds another dimension of variation and increases the number
of phenotypes and population heterogeneity.

Age and Damage
Asymmetric segregation of damage during cell division produces
younger and older cells and therefore an age distribution in the
population. This affects the growth rates and other behaviors of
cells. For instance, damaged protein aggregates are partitioned
asymmetrically in E. coli and new-pole cells with less damage
have a 4% higher specific growth rate (Lindner et al., 2008). In
S. cerevisiae, older cells also grow slower and they synthesize
more of the stress protectant trehalose (Levy et al., 2012).

Ecological Consequences of Individuality
In many cases the heterogeneity may simply average out and be
of little consequence to the fitness of the population. However,
there are a number of cases where heterogeneity has been shown
to have important ecological consequences.

Division of Labor
Phenotypic differentiation forms the basis for a division of
labor, where different cells carry out complementary tasks that
benefit the population. For example, oxygenic photosynthesis
and nitrogen fixation are incompatible processes. Specifically,
the enzyme nitrogenase, encoded by genes nifH, nifD and nifK
and responsible for reducing N2 to NH+

4 , breaks down in the
presence of oxygen. To overcome this problem, the filamentous
cyanobacterium Anabaena can differentiate into two types:
photosynthesizing vegetative cells and nitrogen fixing heterocysts
(Flores and Herrero, 2010). Another example includes evolved
populations of E. coli where the labor of converting glucose to
CO2 is divided over two cell types: one that converts glucose to
acetate while the other converts acetate to CO2 (Harvey et al.,
2014). There is also altruistic division of labor, which is the tasked
sacrifice of some members of the group to benefit others. For
example, Salmonella cells that invade the gut tissue get killed
by the host immune system, but not before triggering a host
response that kills other bacteria in the gut lumen but not the
subpopulation of Salmonella cells that stayed behind and now
have a competitive advantage in the gut lumen (Ackermann et al.,
2008). The basis for this strategy lies in the stochastic expression
of genes coding for a Type III Secretion System (T3SS) within
the clonal Salmonella population: only a subset of cells within
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this population express a T3SS and it is this subset of cells that
is capable of invading the gut tissue. Another example is the
split into motile and immotile subpopulations of Pseudomonas
aeruginosa that only together can generate mushroom-shaped
biofilms (Ghanbari et al., 2016). Division of labor does not have
to involve a direct effect of one phenotype on the other, but it may
simply involve growing on different nutrients, like nitrate and
urea, allowing the population to maximize uptake (Matantseva
et al., 2016).

Bet Hedging
The future is uncertain and may bring unpredictable changes in
stresses or any other environmental factors. If cells could react
instantly to changes in their environment, a good strategy may be
to rely on sensing and responding, but if the response is too slow,

it is better to maintain a diversity of phenotypes (Kussell and
Leibler, 2005), which is referred to as bet hedging. In the context
of stress resistance, bet hedging is when a population contains
some cells that are ill-adapted to the current environment but
better adapted to potential future stresses. An important example
are persister cells that are produced spontaneously, make up
a small fraction of the population, are inhibited in growth
(dormant) but can survive antibiotics (Balaban et al., 2004,
2013; Figure 9). Dormancy is widespread in microbes (Lennon
and Jones, 2011), and when it involves a fraction of the cells
and is not purely responsive to environmental conditions (i.e.,
at least partially spontaneous) it can also be considered a bet
hedging strategy. For example, the cyanobacterium Anabaena
forms akinetes that sink to the sediment bed and can serve as a
seedbank for future blooms. This can be considered a bet hedging

FIGURE 8 | Heterogeneity in urea uptake by P. minimum at the single-cell level. (A) P. minimum cells in UV light. (B) 15N-urea uptake by P. minimum cells depicted as
12C15N−/12C14N− ratio. Scale bar is 5µm. Reproduced from Matantseva et al. (2016) with permission.

FIGURE 9 | Survival of persister cells under antibiotic treatment. Growth of a hipA7 mutant, which produces a larger fraction of persisters, in microfluidic channels.

Times are in hours:min. Bacteria are exposed to three phases, including growth medium (GM1), ampicillin (A) and then washing and again growth medium (GM2).

Persister cells are marked with a red arrow. Reproduced from Balaban et al. (2004) with permission.
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strategy to protect the population from being wiped out by some
factor (washout, grazing), but it may also be a case of division
of labor, as the migration to the sediment bed allows the cells
to accumulate nutrients (Hellweger et al., 2008). Bet-hedging
strategies do not have to involve an all-or-nothing differentiation,
but can be gradual. For example, populations of the budding yeast
have a gradual (and age-correlated) distribution of the stress-
protectant trehalose (Levy et al., 2012). Finally, bet hedging is
not restricted to stress resistance, but it may involve nutrient
acquisition. For example, diversifying chemotactic behaviors in
clonal populations could be an adaptation to foraging in variable
environments (Frankel et al., 2014).

Aging
Aging is a strategy for eliminating damage from a population by
concentrating it in a few cells that will eventually be discarded
(i.e., die of old age). The alternative is to repair or eliminate
the damage in some way. The evidence for aging to provide
a significant ecological benefit in microbes is elusive, probably
because the extent of damage segregation varies between species
and environmental conditions. For example, for E. coli, one study
showed asymmetric partitioning of damaged protein aggregates
and decreased growth rates of older cells (Lindner et al., 2008),
but in another study growth rates were not observed to decrease
over many generations (Wang et al., 2010). Thus, there is an
ongoing debate about the ecological benefits of aging in bacteria
(Clegg et al., 2014; Koleva and Hellweger, 2015). Several recent
studies suggest that aging does not increase fitness or does not
occur under benign conditions but instead is a stress response
at the population level (Coelho et al., 2013; Clegg et al., 2014;
Iyer-Biswas et al., 2014; Vedel et al., 2016).

Sub-Optimality
In the absence of conditions that make heterogeneity
advantageous (division of labor, bet hedging or aging), it is
disadvantageous or sub-optimal. For any given set of (constant)
conditions, there is only one optimal behavior that maximizes
fitness (for one species). This has been explored in the context of
nutrient assimilation and the effect on growth. Nutrient quotas
of phytoplankton can be quite heterogeneous. This heterogeneity
leads to a reduction in growth rate, compared to a hypothetical
population with uniform quotas, due to the non-linearity of
the underlying process (Bucci et al., 2012; Fredrick et al., 2013).
When the cell’s environment (and thus the heterogeneity) is
controlled using microfluidic culturing technology, the growth
rate increases compared to flask cultures (Dusny et al., 2012).
Another case of sub-optimality stems from a mismatch between
cell and environmental cycles. When a population of cells in

different phases of their cell cycle grows in a cyclically varying
environment (i.e., diel cycle in light or temperature), the
cells have different alignments between these two cycles. It is
reasonable to expect that some of those alignments may be more
optimal than others, leading to sub-optimality.

Consideration of Individuality in Models
From the above review, it is clear that individual heterogeneity
can have important effects on the ecology of microbes and
the ecosystems harboring them. Any model that is to capture
these effects, whether for advancing understanding or making
predictions, has to be able to simulate the production and
amplification of this heterogeneity. Therefore, when selecting
a modeling strategy it is important to understand upfront the
role of heterogeneity in the system, and how it is produced
and amplified. Then, a modeling approach can be selected.
For example, the ecology of infectious bacteria is in many
ways controlled by bet hedging, which builds on individual
heterogeneity. In some cases, such as persisters that can survive
antimicrobial or other stresses, there are only two phenotypes.
This type of heterogeneity has been modeled with the metabolic
flux approach (Zhuang et al., 2012). Other cases involve a
more gradual differentiation, like age-correlated stress resistance.
Resolving this type of heterogeneity has been modeled using the
agent-based approach (Hellweger et al., 2014).
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