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Editorial on the Research Topic

Insights in brain imaging methods: 2023

Brain imaging has revolutionized our understanding of the human brain, enabling the

exploration of its structure and function in great detail. This history of enduring success

has its roots in the continuous development of methods that merge new technologies

and processing approaches. Indeed, funding bodies like the European Commission, the

National Institutes of Health, and the Wellcome Trust have repeatedly included advanced

neuroimaging and next-generation imaging modalities among their funding priorities to

shape the future of neuroscience.

Methodological advances in brain imaging are thus at the forefront of neuroscience

progress. New methods in neuroimaging are crucial not only for neuroscience, but also

for improving our understanding of how brain structure and function change in response

to disease, injury, or therapeutic intervention. Brain imaging is pivotal in identifying

biomarkers of neurodegeneration, enabling earlier andmore accurate diagnosis and paving

the way formore targeted and effective treatments. By providing insight into an individual’s

brain structure and function, imaging can help tailor treatments to the needs of each

patient. Personalized medicine aims to optimize therapeutic outcomes by taking into

account individual variability, and brain imaging is an indispensable tool in achieving

this goal.

A reliable biomarker of myelin integrity is critical for further developments in the

understanding, diagnosis, and treatment of multiple neurological diseases. By combining

MRI and histology in mice, Searleman et al. showed that Ultrashort Echo Time (UTE)MRI

is sensitive to myelin loss due to its ability to detect very fast relaxation signals.

Structural and functional connectomics based on magnetic resonance imaging (MRI)

is a field in constant expansion, where innovations in signal acquisition, processing,

and theoretical modeling are equally important. Li et al. focused on the representation

of the microstructural connectome. They argued that the conventional reliance on

an adjacency matrix hampers statistical and computational efficiency by inflating

dimensionality beyond what is needed and showed that a topologically and biologically

informed tree representation preserves information and interpretability while drastically

reducing dimensionality.

Functional connectivity (FC) was the focus of the study by Hu et al., who investigated

its spatiotemporal modulation during naturalistic stimuli. They found that a naturalistic

stimulus (watching a movie) modulates the magnitude but does not change the pattern
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of connectivity compared to resting conditions. Temporal

coherence of fluctuations between subjects, as assessed by inter-

subject functional connectivity, was weak during the naturalistic

stimuli, indicating that brain fluctuations of different subjects

are not synchronous under the same naturalistic condition.

Overall, the authors reported improved stability of FC metrics

under naturalistic stimuli compared to rest, suggesting that

the presentation of naturalistic stimuli may be preferable for

performing FC studies in neurological and psychiatric patients.

While MRI-based FC has generated substantial new knowledge

at the scale of whole-brain connectivity, and single neurons can

be effectively studied by electrophysiological methods, it is still a

challenge to close the gap at the mesoscale, the scale of neural

circuits. Caznok Silveira et al. review the potential, challenges,

and limitations of neuroimaging to investigate connectivity at

the mesoscale.

Local assessment of cell number and density is a useful tool for

the study of CNS diseases in animal models; however, it is prone

to technical biases associated with tissue deformation, selection of

sampling sites, and mere errors. Tian et al. reported a multimodal

approach based on MR histology and light sheet microscopy, to

address this problem, and show that their workflow allows accurate

regional counting in a mouse model of aging.

At the other extreme of the spatial scale, brain volume and

cortical thickness can be assessed by computational techniques

leveraging structural MRI images. Del Giovane et al. briefly

examined the effectiveness of current approaches for extracting

these metrics from brains with abnormal anatomy, such as those

seen in idiopathic Normal Pressure Hydrocephalus. They conclude

that the task still requires a degree of manual editing that is

necessarily associated with inter-rater variability.

While neuroscientists are normally concerned with

populations, individual variations can convey information

and are certainly crucial for personalizing treatments. Kampel

et al. showed that multivariate time-series classification of

MEG time-series performed with random convolutional kernel

transformation (ROCKET) allows neuronal fingerprinting, i.e., the

identification of single subjects with great accuracy on time-series

windows as short as 1 s. This performance is promising for

personalized medicine and the development of brain-computer

interfaces (BCI).

BCI decoding algorithms can be improved by optimizing the

extraction of features from EEG signals. Ma et al. introduced

a method for extracting network features from EEG traces,

based on directed transfer function and graph theory. The

authors showed that their method improves performance in

the classification and decoding of motor imagery tasks, thus

potentially contributing to increased accuracy and reliability

of BCI.

Finally, the transition from research to clinical settings requires

standardized procedures. Wang et al. described the optimization

of a scoring system based on semiquantitative MRI imaging,

common in hospitals, designed to assess Wilson’s Disease; they

showed improved predictive performance over previously available

approaches. In another clinically oriented work, Gao et al.

investigated the risk of postoperative cerebral hypoperfusion after

revascularization surgery for moyamoya disease using pulsed

arterial spin labeling combined with time-of-flight angiography.

The researchers showed that the risk can be stratified using non-

invasive and safe MRI procedures, without the administration of

contrast agents.

While certainly not exhaustive, this Research Topic offers an

overview of some of the frontier themes in brain imaging methods.

Taken together, the studies clearly suggest that multimodal

integration, new acquisition and processing techniques, and

validation for clinical applications are interplaying features of brain

imaging method development.
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A weighted cranial 
diffusion-weighted imaging scale 
for Wilson’s disease
Shi-jing Wang 1,2†, Hao Geng 3,4†, Si-rui Cheng 5†, Chen-chen Xu 2, 
Rui-qi Zhang 3,4, Yu Wang 3,4, Tong Wu 1, Bo Li 2, Tao Wang 3, 
Yong-sheng Han 2, Zeng-hui Ding 3, Yi-ning Sun 3, Xun Wang 1,2, 
Yong-zhu Han 1,2 and Nan Cheng 1,2*
1 Graduate School, Anhui University of Chinese Medicine, Hefei, China, 2 Hospital Affiliated to the 
Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China, 3 Institute of Intelligent 
Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China, 4 Department 
of Biophysics, University of Science and Technology of China, Hefei, China, 5 Department of Economics, 
Nankai University, Tainjin, China

Objectives: Cranial magnetic resonance imaging (MRI) could be  a crucial tool 
for the assessment for neurological symptoms in patients with Wilson’s disease 
(WD). Diffusion-weighted imaging (DWI) hyperintensity reflects the acute brain 
injuries, which mainly occur in specific brain regions. Therefore, this study aimed 
to develop a weighted cranial DWI scale for patients with WD, with special focus 
on specific brain regions.

Materials and methods: In total, 123 patients with WD were enrolled, 118 of 
whom underwent 1.5 T-MRI on admission. The imaging score was calculated as 
described previously and depended on the following sequences: one point was 
acquired when abnormal intensity occurred in the T1, T2, and fluid-attenuation 
inversion recovery sequences, and two points were acquired when DWI 
hyperintensity were found. Consensus weighting was conducted based on the 
symptoms and response to treatment.

Results: Intra-rater agreement were good (r = 0.855 [0.798–0.897], p < 0.0001). 
DWI hyperintensity in the putamen was a high-risk factor for deterioration during 
de-copper therapy (OR = 8.656, p < 0.05). The high-risk factors for readmission 
for intravenous de-copper therapies were DWI hyperintensity in the midbrain (OR 
= 3.818, p < 0.05) and the corpus callosum (OR = 2.654, p < 0.05). Both scoring 
systems had positive correlation with UWDRS scale (original semi-quantitative 
scoring system, r = 0.35, p < 0.001; consensus semi-quantitative scoring system, 
r = 0.351, p < 0.001.). Compared to the original scoring system, the consensus 
scoring system had higher correlations with the occurrence of deterioration (OR 
= 1.052, 95%CI [1.003, 1.0103], p  < 0.05) and readmission for intravenous de-
copper therapy (OR = 1.043, 95%CI [1.001, 1.086], p < 0.05).

Conclusion: The predictive performance of the consensus semi-quantitative 
scoring system for cranial MRI was improved to guide medication, healthcare 
management, and prognosis prediction in patients with WD. For every point 
increase in the neuroimaging score, the risk of exacerbations during treatment 
increased by 5.2%, and the risk of readmission to the hospital within 6 months 
increased by 4.3%.

KEYWORDS

Wilson disease, rating scores, MRI, neuroimaging, clinical assessment
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1. Introduction

Wilson’s disease (WD) is an autosomal recessive copper 
metabolism disorder caused by mutations in the ATP7B gene 
(Członkowska et al., 2018). According to the main symptoms and 
organs with copper deposits, patients with WD can be divided into 
hepatic, neurological, and hepatic-neurological subtype (Cheng et al., 
2017). Copper-chelating therapy has been used as the main treatment 
for most patients with WD and is effective in patients with the hepatic 
subtype, especially in the early-stages of the disease course (Walshe 
and Yealland, 1993). However, symptom worsening could occur in 
neurological subtype and hepatic-neurological subtype WD patients 
during early stage by copper-chelating treatment (Cheng et al., 2014). 
Currently, this deterioration is predicted through estimation by 
experienced physicians, instead of reliable biomarkers. Therefore, 
precise prediction, rather than empirical judgment, of the 
deterioration in neurological symptoms and prognosis has become a 
crucial target in recent therapeutic research on WD.

Neurological symptoms are caused by long-term copper 
accumulation in different brain regions (Masełbas et al., 2010; Hefter 
et  al., 2018). Injuries can be  found in putamen, globus pallidum, 
caudate nucleus, inner capsule, thalamus, midbrain, pons, medulla, 
cerebellum, cortex, and corpus callosum (Yu et al., 2019). The injury 
mode can be  referred into demyelination, microglial activation, 
central pontine myelinolysis, and injury of gray/white matter (Dusek 
et al., 2017). Brain imaging can directly monitor the lesion, presenting 
as atrophy (Smolinski et  al., 2019), white matter hyperintensity, 
increased magnetic susceptibility (Yang et al., 2015) and diffusion 
disorders (Favrole et al., 2006). Dusek developed a semi-quantitative 
MRI scale for patients with WD (Dusek et al., 2020; Rędzia-Ogrodnik 
et al., 2022). They paid special attention to sequences of T1, T2, Flair 
and SWI. Acute toxicity scores, chronic damage scores and atrophy 
scores were determined by the occurrence of T2/FLAIR hyperintensity, 
T2/T2*/SWI hypointensity and T1, respectively. WD cranial MRI 
severity was defined by acute injury and chronic damage (including 
atrophy) simultaneously, semi-quantified (Normal/absent = 0, mild/
moderate = 1, severe = 2) to a total score. Intrarater and interrater 
agreement of the scale were analyzed, and it was verified as a reliable 
instrument. Meanwhile, the association between clinical and imaging 
severity proved that it was an effective tool to assess the severity of 
patients with WD.

DWI hyperintensity showed a higher specificity and clinical 
predictive value than other sequences. Favrole et al. (2006) found that 
hyperintense lesions were detected in all symptomatic patients on 
FLAIR MR images but only in 11 of 13 patients with WD who had 
typical neurological manifestations on DWI. Additionally, the 
reduction in diffusion changes was correlated to clinical improvement 
in patients with WD. Furthermore, lesions intensively occurred in 
specific brain regions rather than the whole brain among patients with 
WD. There was a corresponding relationship between different brain 
region injuries and different symptoms. Thalamic injury, brainstem/
cerebellar injury, and corpus callosum injury were associated with a 
longer disease course, ataxia, and neuropsychiatric symptoms, 
respectively (Zhong et al., 2019; Zhou et al., 2019). Therefore, DWI 
hyperintensity in specific brain regions should be taken into crucial 
consideration as WD cranial MRI severity assessment.

Based on the semi-quantitative MRI scale for patients with WD, 
we aimed to weighting the specific brain regions according to the DWI 

hyperintensity and add it to the total WD cranial MRI severity score. 
Firstly, analysis was conducted to establish a corresponding correlation 
between injuries in specific brain regions and clinical symptoms, brain 
regions of interest and weighting coefficients were determined by data 
calculation and literature analysis. Secondly, weighting diffusion-
weighted imaging (DWI) hyperintensity scores were added into WD 
cranial MRI severity scores. The weighted scores were then analyzed 
in relation to clinical symptoms, quality of life, and biomarkers. 
Thirdly, analyzing the relationship between weighted scoring and the 
worsening of symptoms during treatment, as well as the likelihood of 
readmission within 6 months or 12 months, to evaluate its clinical 
predictive value. We hope that this study will further strengthen MRI 
as an adjunctive examination to evaluate WD and can also become an 
important marker for predicting the prognosis of WD.

2. Materials and methods

2.1. Participants and general information

This cohort study was performed at the Center of WD, the 
affiliated hospital of the Institute of Neurology, Anhui University of 
Chinese Medicine. The cranial imaging analysis was conducted and 
confirmed by the Hefei Institute of Physical Science, Chinese 
Academy of Sciences. The study protocol was approved by the Ethics 
Committee of the Hefei Institutes of Physical Science, Chinese 
Academy of Sciences (SWYX-Y-2021-08). Written informed consent 
was obtained from all subjects by the principal researcher after a self-
motivated behavior evaluation of the patient’s capacity to provide 
consent. The consent form was signed by the parents of patients 
under 18 years old.

At baseline, we enrolled 118 inpatients admitted between June 
2019 and June 2020 with a diagnosis of WD, as per the Chinese 
guidelines for the diagnosis and treatment of WD in 2021 (Inherited 
Metabolic Liver Disease Collaboration Group, Chinese Society of 
Hepatology, Chinese Medical Association, 2022). WD should 
be  considered in patients with unexplained liver disease, 
neurological symptoms (especially extrapyramidal symptoms), or 
psychiatric symptoms. Age of onset cannot be used as a basis for 
diagnosing or ruling out WD. The recommended diagnostic criteria 
include: (1) Neurological and/or psychiatric symptoms. (2) 
Unexplained liver damage. (3) Decreased serum ceruloplasmin 
and/or elevated 24-h urine copper (strong recommendation, 
moderate-quality evidence). (4) Positive Kayser-Fleischer (K-F) 
rings (strong recommendation, moderate-quality evidence). (5) 
Identification of pathogenic mutations in both chromosomes 
carrying the ATP7B gene through pedigree segregation and genetic 
analysis (strong recommendation, moderate-quality evidence). WD 
can be confirmed when meeting either (1 or 2) plus (3 and 4), or (1 
or 2) plus 5. Individuals with criteria 3 plus 4 or 5 but without 
obvious clinical symptoms are diagnosed as pre-symptomatic 
individuals. Individuals meeting any two of the first three criteria 
are diagnosed as “possibly WD, “and further follow-up observation 
is recommended, with ATP7B gene testing suggested for a definitive 
diagnosis. The Chinese guidelines for WD emphasize early and 
lifelong treatment, as well as lifelong monitoring. For patients in the 
pre-symptomatic stage, zinc preparations can be  used for 
maintenance therapy. Patients already receiving copper-chelating 
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therapy should be monitored for indicators such as complete blood 
count, liver function, 24-h urine copper, and cranial MRI. The 
guidelines also provide recommendations for dietary control, 
including fasting, moderate intake, appropriate consumption, and 
recommended foods. There are differences in the use of copper-
chelating agents between the Chinese guidelines and other 
guidelines. In China, sodium Dimercaptosulphonate (DMPS), 
Dimercaptosuccinic acid (DMSA) capsules, zinc gluconate, and 
traditional Chinese medicine are specifically considered. Among 
these, DMPS has a higher priority in copper-removing therapy for 
WD compared to penicillamine. DMSA and zinc gluconate offer 
alternative options for maintenance therapy and are suitable for 
patients allergic to penicillamine or with leukopenia. Trientine is 
not used in China for specific reasons.

Among these, 96 patients had been previously diagnosed with 
WD (referral patients), while 22 were newly diagnosed. At the time of 
admission, the Unified Wilson Disease Rating Scale (UWDRS) and 
cranial MRI examinations were conducted to assess the state of the 
disease. Patients were evaluated for the presence of any neurologic 
findings by 2 neurologists (R.W., 5 years of experience; XP.W., >30 
years of experience). All patients received Cu-chelating therapy 
according to the Chinese guidelines for the diagnosis and treatment 
of WD (Neurogenetics Group and Neurology Branch of Chinese 
Medical Association, 2021). During the course of treatment, serum 
copper, ceruloplasmin, and urine copper at 24 h before treatment and 
the highest urine copper at 24 h during treatment were tested to 
determine the efficacy of treatment (Figure 1).

2.2. Parameters of magnetic resonance

Philips Achieva 1.5 T MRI scanning equipment was used to scan 
the images of patients with WD. The scans ranged from the foramen 
magnum to the upper edge of the corpus callosum. The scan 
sequences included T1WI, T2WI, FLAIR, and DWI. The scanning 
parameters were FLAIR, TR/TE = 9,000 ms/140 ms, flip angle 120°, 
slices thickness 6.5 mm, slices spacing 1.3 mm; DWI (b = 0, 1,000 s/
mm2), single excitation SE-EPI sequence, TR/TE = 2,400 ms/104 ms, 
FOV 220 mm × 220 mm, matrix 168 × 105, slice thickness 6.5 mm, 
slice spacing 1.3 mm, number of slices 17 ~ 18 slices.

2.3. Image-scoring method and 
determination of weight coefficients

The image score evaluations were performed by two radiologists. 
According to previous studies (Favrole et al., 2006; Sinha et al., 2006), 
T1, T2, FLAIR, and DWI sequences were selected as reference 
sequences. The regions of interest included the caudate nucleus, 
putamen, globus pallidus, internal capsule, thalamus, midbrain, pons, 
cerebellum, medulla oblongata, cortex, and corpus callosum. T2/
FLAIR hyperintensity was scored as 1 point, T1 abnormal signal 
intensity was scored as 1 point, and DWI hyperintensity was scored as 
2 points. Subsequently, we conducted logistic regression analysis, using 
specific brain region imaging scores as independent variables, and the 
presence of clinical symptoms and prognostic indicators as dependent 
variables. Clinical symptoms consisted of dysarthria, dysphagia, gait 
disturbances, dystonia, muscular hypertonia, and psychiatric disorders. 

Prognostic indicators included post-treatment deterioration and 
readmission within 6–12 months. We identified statistically significant 
data and extracted the corresponding brain regions along with their 
corresponding odds ratios (OR). Weight coefficients were based on 
brain regions and corresponding OR mainly, as well as experts’ 
experience, literature reviews and actual application. For example, 
midbrain lesions are rare and worthless compared to corpus callosum 
lesions and caudate nucleus lesions. Therefore, the weight assigned to 
the midbrain region is reduced accordingly.

Finally, the average scores of the two evaluations were calculated. 
To avoid subjective bias, two researchers independently evaluated the 
signal abnormality of all images. The specific scoring rules are listed 
(Table 1). Figures 2A–J shows the injuries to various parts of the brain 
in the T1, T2, FLAIR, and DWI sequences.

2.4. Statistical analysis

Statistical analyses were performed with R (Version 4.2.1 for 
Windows, Comprehensive R Archive Network).1 To determine 
agreement between two scorers, the intraclass correlation coefficient 
(ICC) was calculated to determine the inter-rater reliability. A Student’s 
t-test of two independent samples was used for normally distributed 
data, and the Mann–Whitney U test was used for non-normally 
distributed data. Data were analyzed using the Chi-square test. The 
Pearson or Spearman correlation test was used for the correlation 
analysis. The univariate analysis used the logistic regression model 
selection method, and statistical significance was set at p < 0.05.

3. Results

3.1. General characteristics of the patients 
with WD

The enrolled patients were divided into two groups according to 
whether they were newly diagnosed. No significant differences (p > 
0.05) were found in terms of sex, subtype, UWDRS scale, ADL score, 
highest urine copper level before treatment, serum copper level, 
ceruloplasmin level, and imaging scores between the newly diagnosed 
group (n = 22) and referral group (n = 96). However, the age at onset 
was higher in the newly diagnosed group than in the referral group 
(p < 0.05). Detailed data are presented in Table 2, Part I.

3.2. Difference in symptoms between 
newly diagnosed patients and patients 
referred with WD

The differences in symptoms between patients in the newly 
diagnosed and referral groups. Compared to the newly diagnosed 
group, choreoathetosis and torsion spasms were significantly lower in 
the referral group (p < 0.05), whereas no significant differences were 
found in terms of dysarthria, difficulty swallowing, tremor, gait 

1 https://www.r-project.org
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disturbance, salivation, dystonia, bradykinesia and rigidity, ataxia, 
mental disorders, and epilepsy (p > 0.05).

3.3. Analysis of injury sites between newly 
diagnosed patients and patients referred 
with WD

Table 2, Part II shows the injury sites of the newly diagnosed and 
referred patients with WD. The putamen, globus pallidus, caudate 
nucleus, thalamus, midbrain, pons, and cerebellum are the main 
damage sites for copper accumulation in patients with WD and brain 
atrophy. Damage to the cortex and corpus callosum is rare, and 
medullary damage has only been found in a single patient. There was 
no significant difference in the common sites between the two groups, 
as observed on MRI (p > 0.05).

3.4. Correlations between the cranial injury 
site and symptoms

As shown in Figures 2K–N, the correlations between the cranial 
injury site and clinical symptoms. Putamen injuries were strongly 
associated with dysarthria (OR = 16.604, 95%CI [4.111, 67.06], p < 

0.001), dysphagia (OR = 8.554, 95%CI [1.616, 45.283], p < 0.05), and 
dystonia (OR = 4.24, 95%CI [1.129, 15.917], p < 0.05). Midbrain injury 
was strongly associated with dysarthria (OR = 4.012, 95%CI [1.44, 
11.176], p < 0.01), dysphagia (OR = 3.386, 95%CI [1.197, 9.578], p < 
0.05), and gait disturbances (OR = 3.7, 95%CI [1.552, 8.822], p < 0.01). 
Pontine injuries were correlated with torsion spasm (OR = 4.239, 
95%CI [1.143, 15.726], p < 0.05). Thalamic injuries were associated 
with mental disorders (OR = 2.6, 95%CI [1.124, 5.568], p < 0.05).

3.5. Risk prediction of DWI hyperintensity 
at different sites for deterioration or not 
during treatment

In this study, we included the DWI sequence as an evaluation 
index because DWI hyperintensity usually represents acute damage. 
Therefore, we increased the score weight by up to eight times in the 
case of DWI hyperintensities. The proportion of hyperintensity in 
the nucleus, caudate nucleus, thalamus, pons, and cerebellum in the 
newly diagnosed patient group was significantly higher than in the 
referral patient group. In contrast, DWI hyperintensity in the 
globus pallidus, internal capsule, medulla, and cortex in the two 
groups was rare, and the difference was not statistically significant. 
Patients in both groups were likely to have DWI hyperintensities in 

FIGURE 1

General idea and flow chart of this study.
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the midbrain and corpus callosum, but the difference was not 
statistically significant.

Therefore, we substituted the putamen, caudate nucleus, thalamus, 
pons, cerebellum, midbrain, and corpus callosum as independent 
variables into the logistic regression equation, and OR were calculated 
using a backward method by taking “whether it was aggravated during 
treatment,” “whether it was readmitted to the hospital within 6 months,” 
and “whether it was readmitted within 1 year” as a dependent variable, 
respectively. As shown in Figures 2O–Q, putamen injury was strongly 
associated with deterioration during treatment (OR = 8.656, 95%CI 
[1.085, 69.043], p < 0.05), corpus callosum injury was strongly associated 
with readmission within 1 year (OR = 2.654, 95%CI [1.003, 7.022], p < 
0.05), and midbrain injury was strongly associated with readmission 
within 6 months (OR = 3.818, 95%CI [1.122, 12.999], p < 0.05).

3.6. Consensus weighting of the 
semi-quantitative scoring system for 
cranial MR in WD

Intrarater agreement (ICC) was good for two scorers, that is for 
MRI score (0.855 [0.798–0.897], p < 0.0001).

According to the results detailed in 3.3 and 3.5, we found that 
DWI hyperintensities in the lentiform nucleus (putamen and globus 
pallidus) and midbrain were strongly associated with prognosis and 
brain atrophy. Therefore, the integral weights of the DWI 
hyperintensities of the putamen, midbrain, and corpus callosum 
should be  increased to prove the susceptibility of the semi-
quantitative scoring system for clinical prediction. Here, we provide 
an consensus algorithm as presented in Table 1. In this new scoring 
system, the point weights of the caudate nucleus, thalamus, pons, and 
cerebellum in the sequences of T1, T2, FLAIR, and DWI remained 
unchanged compared with the former version (Table 1). The weights 
of the DWI hyperintensity in the lentiform nucleus, midbrain, and 
corpus callosum increased to 18, 4, and 6, respectively.

As shown in Figures  3A–J, the original and consensus semi-
quantitative scoring systems showed strong correlations between the 
UWDRS and ADL scores. The positive correlation of UWDRS with 
the consensus semi-quantitative scoring system (r = 0.351, p < 0.001) 
and original semi-quantitative scoring system (r = 0.35, p < 0.001), 
while it was both negative correlations to the ADL score (consensus 
semi-quantitative scoring system, r = −0.205, p < 0.05; original semi-
quantitative scoring system, r = −0.254, p < 0.01). No significant 
differences were found between the two systems and other clinical 
indices (urine copper before treatment, serum copper, 
and ceruloplasmin).

As shown in Figures  3K,L, we  reassessed the predictive 
performance of the weighted cranial DWI scale. Compared with the 
original imaging score, the weighted imaging score had a similar result 
with deterioration during treatment (OR = 1.052, 95%CI [1.003, 
1.0103], p < 0.05) and readmission within 6 months (OR = 1.043, 
95%CI [1.001, 1.086], p < 0.05).

4. Discussion

In the early stages of WD treatment, there may be a deterioration 
of neurological symptoms, which could be associated with copper-
related oxidative stress reactions (Ziemssen et al., 2022). However, 
the current approach to preventing the deterioration of neurological 
symptoms during treatment is mostly based on physicians’ 
experience, rather than reliable clinical markers (Hou et al., 2022). 
According to our results, there was no significant difference in 
terms of gender composition, clinical phenotypes, UWDRS scale 
scores, cranial MRI imaging scores, 24-h urinary copper, 
ceruloplasmin, serum copper and ADL scores between newly 
diagnosed patients and referral patients. This indicated the limited 
specificity of clinical assessment methods in evaluating the efficacy 
and prognosis of WD patients, emphasizing the need for more 
reliable clinical markers (Hou et al., 2022). The imaging scoring 
system developed by Dusek et al. (2020) can reflect the alleviation 
of acute cranial brain injury in WD patients as treatment progresses, 
which indicated that neuroimaging may serve as a potential reliable 
tool for prognostic prediction. Considering the mild changes in 
chronic injuries over the short term and the focus trend of damage 
in the regions of interest, we  adjusted the scoring strategy for 
assessing cranial MRI damage in WD according to former research. 
Adjustments include increasing of weight coefficient of DWI 
hyperintensity and specific regions of interest. Subsequently, 
we verified the clinical value of this scoring system by establishing 

TABLE 1 Cranial injury score of patients with WD.

Site of injury T1 T2 FLAIR DWI

Original

Putamen 1 1 1 2

Globus pallidus 1 1 1 2

Caudate nucleus head 1 1 1 2

Inner capsule 1 1 1 2

Thalamus 1 1 1 2

Midbrain 1 1 1 2

Pons 1 1 1 2

Medulla oblongata 1 1 1 2

Cerebellum 1 1 1 2

Cortex 1 1 1 2

Corpus callosum 1 1 1 2

Brain atrophy 1

Total score

Optimized

Lentiform nucleus 1 1 1 18

Caudate nucleus head 1 1 1 2

Thalamus 1 1 1 2

Midbrain 1 1 1 4

Pons 1 1 1 2

Cerebellum 1 1 1 2

Corpus callosum 1 1 1 6

Brain atrophy 1

Score

Flair, fluid-attenuation inversion recovery; DWI, diffusion weighted imaging. The degree of 
injury was not taken into account, and points were scored whenever there was damage in a 
specific area.
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FIGURE 2

Injuries of various parts of the brain in the T1 (①), T2 (②), Flair (③) and DWI (④) sequences. (A) Putamen and globus pallidus, (B) caudate nucleus, 
(C) thalamus, (D) inner capsule, (E) midbrain, (F) pons, (G) cerebellum, (H) corpus callosum, (I) cortex, (J) brain atrophy. The red arrows mark the 
specific site of the injury. Brain atrophy can only be observed in the T1 sequence. Enlargement of the ventricular system, reduction of brainstem 
volume, widening of the tricorn and cortical sulcus fissure can be seen when brain atrophy occurs. (K–N) Correlations between cranial injury site and 
symptoms. (O–Q) Correlations between cranial injury site and therapeutic regimen.
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the regression relationships between the imaging scores and clinical 
outcomes. Including deterioration during de-copper therapy and 
readmission within 6/12 months.

DWI hyperintensity representing acute cranial brain injuries may 
exhibit greater predictive value and potential for assessing treatment 
efficacy in the short term, compared to chronic injuries (Chen et al., 

TABLE 2 General information and injury sites of patient with WD in the newly diagnosed group and the referral group.

the referral group 
(n = 96)

the newly diagnosed 
group (n = 22)

χ2, Z p

Sex (male/female) 63/33 14/8 0.031 >0.05

Hepatic subtype/neurologic subtype 10/86 4/18 0.937 0.293

Age of onset 15 (10, 19) 19.91 ± 7.61 −2.37 0.018

UWDRS-I 45.5 (36, 60.75) 66.55 ± 47.99 −1.185 0.236

UWDRS-II 6 (4, 7) 5 (5, 8) −0.708 0.479

UWDRS-III 6.5 (5, 9) 6.5 (5, 8.75) −0.421 0.674

UWDRS 58 (46.25, 74.75) 82.32 ± 48.48 −1.579 0.114

ADL (able/disabled) 85/11 16/6 3.63 0.087

Urine copper before treatment 194.97 (120.34, 288.37) 274.12 ± 165.32 −1.106 0.269

Highest urine copper 1324.96 (785.45, 2066.23) 1199.73 ± 469.39 −1.258 0.209

Serum copper 2.71 (1.65, 4.05) 2.12 (1.19, 5.32) −0.308 0.758

ceruloplasmin 45.15 (36.25, 61.23) 47.95 (33.63, 67.45) −0.373 0.709

Total score of imaging 9.5 (7, 14) 14.32 ± 9.14 −1.741 0.082

Deterioration (yes/no) 38/58 7/15 0.457 0.628

Whether to be readmitted to hospital within 6 months (yes/no) 19/77 9/13 4.41 0.051

Whether to be readmitted to hospital within a year (yes/no) 38/58 16/6 7.922 0.008

Putamen (yes/no) 81/11 18/4 0.673 0.476

globus pallidus (yes/no) 38/58 10/12 0.256 0.637

caudate nucleus (yes/no) 26/70 8/14 0.752 0.437

Inner capsule (yes/no) 6/90 1/21 0.099 1

Thalamus (yes/no) 39/57 11/11 0.644 0.478

Midbrain (yes/no) 64/32 17/5 0.98 0.447

Pons (yes/no) 51/45 16/6 2.802 0.103

cerebellum (yes/no) 38/58 10/12 0.256 0.637

medulla (yes/no) 1/95 0/22 0.415 1

cortex (yes/no) 17/79 5/17 0.286 0.556

corpus callosum (yes/no) 17/79 2/20 1.102 0.521

Brain atrophy (yes/no) 86/10 20/2 0.035 1

Putamen DWI hyper-intensity (yes/no) 7/89 6/16 7.289 0.015

globus pallidus DWI hyper-intensity (yes/no) 1/95 1/21 1.022 0.339

caudate nucleus DWI hyper-intensity (yes/no) 2/94 3/19 4.429 0.044

Inner capsule DWI hyper-intensity (yes/no) 1/95 1/21 1.022 0.339

Thalamus DWI hyper-intensity (yes/no) 5/91 6/16 8.077 0.005

Midbrain DWI hyper-intensity (yes/no) 6/90 6/16 8.659 0.009

Pons DWI hyper-intensity (yes/no) 2/94 4/18 7.132 0.011

Cerebellum DWI hyper-intensity (yes/no) 2/94 4/18 7.132 0.011

Medulla DWI hyper-intensity (yes/no) 1/95 0/22 0.415 1

Cortex DWI hyper-intensity (yes/no) 1/95 1/21 1.022 0.339

corpus callosum DWI hyper-intensity (yes/no) 23/73 2/20 2.755 0.156

The significant difference was marked with bold.
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2017). In this study, no significant differences had been found in the 
occurrence rates of neurological symptoms related to brain damage, 
such as dysarthria, dysphagia, tremor, gait disturbances, sialorrhea, 
dystonia, bradykinesia, muscular rigidity, ataxia, psychiatric 
disorders, and epilepsy, between newly diagnosed patients and 
referral patients. These findings suggest that cranial abnormalities in 
patients with neurologic WD are correlated with their clinical 
symptoms, age of onset, and disease course (Yu et al., 2019). Previous 
studies have indicated that common manifestations on cranial MRI 
lesions of patients with WD include: T1 hypointensity/T2 
hyperintensity, T1 hyperintensity and T1/T2 hypointensity, which 
may be due to the copper accumulation in different disease courses 
and different brain regions (Li et al., 2019). Sener (2003) found that 
the restricted water diffusion presenting as DWI hyperintensity/ADC 
hypointensity is due to cellular inflammatory injury and toxic edema 
caused by copper deposition among patients with WD (Pulai et al., 
2014). In newly diagnosed patients with WD, there is a relatively high 
proportion of DWI hyperintensity in the caudate nucleus, putamen, 
thalamus, midbrain, pons, and cerebellum. When considering the 
apparent diffusion coefficient (ADC) sequence to determine whether 
DWI hyperintensity represents water diffusion, we found the DWI 
hyperintensity was caused by T2 shine-through effect in some 
patients. Therefore, simultaneous presence of DWI hyperintensity 
and ADC hypointensity was considered as the criterion for abnormal 
DWI intensity, to exclude the interference of T2 shine-through effect. 

In conclusion, based on the higher specificity and clinical significance, 
we  have assigned a greater weight to DWI hyperintensity as an 
important scoring criterion in our assessment.

There is a correlation between different clinical presentations and 
the location of cranial MRI lesions among patients with WD (Yu et al., 
2019). Previously, it was believed that a specific clinical symptom in 
patients with WD is likely caused by simultaneous damage from 
different brain regions rather than being directly attributed to the 
injury of a single brain region (Zhong et al., 2019). In this study, to 
adjust the weight coefficients, we calculated the OR values of abnormal 
MRI intensity in different brain regions corresponding to clinical 
symptoms. Occurrence of putamen injuries promoted the risk of 
dysarthria, dysphagia and dystonia by 16.604, 8.554 and 4.24 times, 
respectively. Occurrence of midbrain injuries promoted the risk of 
dysarthria, dysphagia and gait disturbances by 4.012, 3.386 and 3.7 
times, respectively. Occurrence of pontine injuries promoted the risk 
of torsion spasm by 4.239 times. The occurrence of thalamic injuries 
promoted the risk of mental disorders by 2.6 times. Additionally, 
patients with DWI hyperintensity in the putamen were more prone to 
experiencing deterioration of neurological symptoms during the 
de-copper treatment. Patients with DWI hyperintensity in the corpus 
callosum and midbrain may require de-copper therapy within 6/12 
months to stabilize the condition.

Sinha et al. (2006) and Selwa et al. (1993) graded quantification 
criteria for cranial injury in patients with WD, grade was done for 

FIGURE 3

(A–J) The promotion of the consensus semi-quantitative scoring system compared to the original semi-quantitative scoring system, both their 
correlations between the UWDRS score, ADL score and other clinical indexes (urine copper before treatment, serum copper and ceruloplasmin). 
(K,L) The consensus imaging score had a strong correlation between deterioration during treatment [OR = 1.052, 95%CI (1.003, 1.0103), p < 0.05] and 
readmission within 6 months [OR = 1.043, 95%CI (1.001, 1.086), p < 0.05]. While no significant correlations had been found between the original 
imaging score and deterioration during treatment [OR = 1.043, 95%CI (0.981, 1.11), p > 0.05] and readmission within 6 months [OR = 1.036, 95%CI 
(0.973, 1.103), p > 0.05].
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the severity of change in signal intensity (deviation from the 
conventionally accepted signal intensity of a given structure in a 
particular sequence) and associated atrophy (0 = no abnormality, 1 
= change in signal intensity with no atrophy, 2 = change in signal 
intensity with mild or moderate atrophy, and 3 = change in signal 
intensity with severe atrophy). MRI changes correlated with the 
mean NSS, S and E activities of daily living, and Chu staging scores 
(p < 0.001), but did not correlate with the duration of illness. Sinha 
et al. (2007) investigated the changes in cranial MRI and clinical 
symptoms in 50 patients with WD, revealing varying degrees of 
improvement in both MRI and clinical manifestations following 
treatment. They also found a strong correlation between pre-and 
post-treatment Neurological Severity Score (NSS) and cranial MRI 
scores, indicating that both can serve as indicators of treatment 
effectiveness in WD patients. Their results demonstrate that this 
method is an effective means of observing treatment response in 
WD patients. Li (2019) employed the grading method proposed by 
Sinha et  al. (2006) to quantify abnormal signals in WD cranial 
MRI. This method, based on the T2 sequence, categorizes abnormal 
signals into hyperintensity and hypointensity and assigns them into 
four grades based on lesion size: no abnormality = 0 points, mild = 
1 point, moderate = 2 points, severe = 3 points. This method can 
reflect the extent of copper deposition and neural damage in the 
brains of WD patients. However, it does not provide information 
regarding the changes and significance of this method during 
copper chelation therapy. Dusek et al. (2020) developed a semi-
quantitative method for assessing abnormalities in WD cranial 
MRI, which is divided into acute and chronic parts. The acute 
toxicity scores ranged from 0 to 2 based on the degree of T2/FLAIR 
hyperintensity in the caudate nucleus, putamen, thalamus, 
midbrain, and pons. The chronic damage scores were based on the 
presence of cerebral atrophy and T2/SWI hypointensity. This 
method demonstrated high consistency and effectiveness in a 
24-month follow-up of 37 patients. Changes in MRI scores were 
primarily driven by changes in the acute and chronic scores. The 
MRI scores were positively correlated with the UWDRS-III 
psychiatric scale, indicating that this method can semi-
quantitatively reflect the severity of WD. In this study, we explored 
an improved scoring method for cranial MRI injuries, aiming to 
assess the extent of brain damage and treatment effectiveness in 
patients with WD. Based on previous research, we modified the 
scoring method for WD cranial MRI injuries by incorporating DWI 
sequences and assigning them higher scores. Eight brain regions 
were selected as scoring areas, including the caudate nucleus, 
putamen, thalamus, midbrain, pons, cerebellum, corpus callosum, 
and cerebral atrophy. We  increased the scores for the caudate 
nucleus, midbrain, and corpus callosum to emphasize their 
importance based on the therapeutic implications of DWI 
hyperintensity in different regions. We analyzed the advantages and 
disadvantages of the two scoring methods and found that the 
revised scoring system, which includes reselected scoring areas and 
scores, can be used to evaluate whether WD patients experience 
deterioration of neurological symptoms during de-copper therapy 
and whether they require readmission within 6 months to stabilize 
the copper homeostasis. Our results indicated that for every 
one-point increase in cranial MRI scores, there is a 5.2% increased 
risk of deterioration during treatment and a 4.3% increased risk of 
readmission within 6 months. We believe that this cranial MRI 

injury scoring method holds significant clinical implications for 
guiding the management of WD.

Brain injuries in WD primarily involve multiple brain regions, 
such as the caudate nucleus, putamen, thalamus, midbrain, pons, 
cerebellum, and corpus callosum, accompanied by varying degrees 
of cerebral atrophy (Yu et al., 2019). Currently, MRI examination is 
one of the crucial tools for cranial injuries assessment (Shribman 
et al., 2022). However, due to significant inter-individual variations 
in clinical and radiological manifestations of WD, there is a lack of 
unified standards and methods for its classification and grading. To 
solve this issue, this study proposed a weighted-multiple-brain-
regions-based approach that extracts quantitative features from 
multimodal images of WD patients. By combining regression 
models, we  have established a cranial imaging scoring system 
capable of predicting the prognosis of WD patients. This scoring 
system demonstrates excellent predictive ability and provides a more 
objective and effective basis for the clinical treatment of WD 
patients. The scoring system integrates the key injured brain regions, 
DWI hyperintensity and clinical therapeutic experience to derive a 
weighted score that reflects neurological symptoms. We conducted 
correlation analysis between this score and clinical indicators as well 
as prognostic factors, revealing its effective discrimination ability 
among patients with different risk levels and significant associations 
with treatment response and risk of readmission. The method 
possesses the advantages of objectivity and simplicity, providing a 
novel tool for prognostic management of WD patients. Our study 
demonstrates that this imaging scale exhibits favorable predictive 
performance for the short-term prognosis of WD patients. However, 
its long-term performance still requires validation. Only 20.33% 
(24/118) of patients underwent neuroimaging follow-up, and only 
37.50% (9/24) of those patients exhibited changes in neuroimaging 
scores. This suggests that neuroimaging changes may be stable in the 
short term. Therefore, in future research, it is necessary to include a 
larger cohort of follow-up and initial visit patients and attempt to 
construct clinical prediction models for their treatment by 
incorporating laboratory indicators such as 24-h urinary copper and 
serum non-ceruloplasmin-bound copper during therapy. This will 
enable us to more accurately assess the condition and prognosis of 
WD patients, providing them with consensus individualized 
treatment plans.
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Neural fingerprinting is the identification of individuals in a cohort based on 
neuroimaging recordings of brain activity. In magneto- and electroencephalography 
(M/EEG), it is common practice to use second-order statistical measures, such 
as correlation or connectivity matrices, when neural fingerprinting is performed. 
These measures or features typically require coupling between signal channels 
and often ignore the individual temporal dynamics. In this study, we show that, 
following recent advances in multivariate time series classification, such as the 
development of the RandOm Convolutional KErnel Transformation (ROCKET) 
classifier, it is possible to perform classification directly on short time segments 
from MEG resting-state recordings with remarkably high classification accuracies. 
In a cohort of 124 subjects, it was possible to assign windows of time series of 
1  s in duration to the correct subject with above 99% accuracy. The achieved 
accuracies are vastly superior to those of previous methods while simultaneously 
requiring considerably shorter time segments.

KEYWORDS

neural fingerprinting, resting state, rocket, time series classification, 
magnetoencephalogra, MEG, machine learning

1. Introduction

Historically, neuroscientists have inferred knowledge about the brain from the 
population level, and commonalities between individuals were used as the foundation for 
our understanding of the brain (van Horn et al., 2008). However, it is now known that 
individual variations may convey important information, and disregarding them as noise 
may limit our insight into the brain [see (van Horn et al., 2008) for a review]. Placing the 
individual as the focus of research led to the emergence of the field of neural 
fingerprinting, i.e., the identification of individuals in a cohort using different 
neuroimaging modalities such as magnetic resonance imaging (Wachinger et al., 2015; 
Valizadeh et al., 2018), functional magnetic resonance imaging (Miranda-Dominguez 
et al., 2014; Finn et al., 2015; Kaufmann et al., 2017; Amico and Goñi, 2018; Bari et al., 
2019), functional near-infrared spectroscopy (de Souza Rodrigues et  al., 2019), 
electroencephalography (Rocca et al., 2014; Fraschini et al., 2015; Kong et al., 2019), and 
magnetoencephalography (MEG) (da Silva Castanheira et al., 2021; Sareen et al., 2021).
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The development of neuroimaging techniques has further led to 
the possibility of using second-order statistical summaries of brain 
activity, such as functional connectomes, as the basis for neural 
fingerprinting (Sareen et al., 2021). However, functional connectomes 
are not necessarily required for neural fingerprinting as neural 
fingerprinting can be  performed directly on the time series from 
which the connectomes are usually computed. In fact, (multivariate) 
time series classification ((M)TSC), where unlabeled time series are 
assigned to one of multiple classes, is an exciting, yet challenging, field 
of research (Keogh and Kasetty, 2003; Yang and Wu, 2006). For 
example, many practical applications have emerged for (M)TSC in 
fields such as biology, medicine, finance, or engineering (Keogh and 
Kasetty, 2003). Despite these advances, applications have been limited 
due to the fact that time series classification methods are 
computationally expensive (Abanda et al., 2019).

Recently, a fast approach for time series classification, known as 
RandOmConvolutionalKErnelTransform (ROCKET), has been 
introduced and requires only a fraction of the computational expense 
of most existing methods (Dempster et al., 2020). Its new variant, 
called MiniRocket (MINImally RandOm Convolutional KErnel 
Transform), introduced by the same group, provides similar or better 
accuracy but is up to 75 times faster compared to ROCKET on larger 
datasets (Dempster et al., 2021).

Given these capabilities, we sought to reduce the complexity of 
neural fingerprinting by directly applying the multivariate time series 
classifier MiniRocket to source time courses from MEG resting-state 
recordings. Data requirements for training a successful classifier were 
investigated. Furthermore, it has been suggested that day-to-day 
variations in the background noise may have a significant impact on 
the classification results (da Silva Castanheira et al., 2021). Therefore, 
we conducted experiments to estimate the effect of background noise 
by incorporating empty-room recordings (i.e., noise recordings taken 
without a subject being measured) into the training and 
testing datasets.

Using MiniRocket, it was possible to differentiate between MEG 
resting-state recordings from 124 subjects with accuracies exceeding 
99.5%. A set of parameters providing a good trade-off between 
accuracy, speed, and amount of available data was investigated. Based 
on our findings, the impact of background noise on the classification 
results for fingerprinting appears to be minimal.

2. Methods

2.1. Time series classification

In a similar way to image classification, TSC also requires the 
input values to be  ordered, and it is possible that important 
information relevant to the classification might be  buried in the 
ordering process (Bagnall et al., 2017). Moreover, in the case of a 
multivariate time series, discriminatory features might even depend 
on interactions between the individual time series, and special 
multivariate classifiers are needed to deal with this added complexity 
(Ruiz et  al., 2021). While it is generally possible to adapt strictly 
univariate classifiers to the multivariate case, for example, by using an 
ensemble of separate univariate classifiers for each of the multivariate 
dimensions, inter-dimensional dependencies are ignored, and 
information is inevitably lost (Ruiz et al., 2021).

A variety of MTSC methods, which include ensembles of 
univariate classifiers such as Hierarchical Vote Collective of 
Transformation-based Ensembles (HIVE-COTE) (Bagnall et  al., 
2020), dedicated multivariate TSC methods such as RandOm 
Convolutional KErnel Transformation (ROCKET) (Dempster et al., 
2020), MINImally RandOm Convolutional KErnel Transform 
[MiniRocket, (Dempster et al., 2021)] and deep-learning approaches 
such as InceptionTime (Ismail Fawaz et  al., 2020), were recently 
reviewed for their performance on openly available TSC datasets 
(Ruiz et al., 2021). Due to the exceptionally fast training times and 
state-of-the-art classification accuracy, we elected to use MiniRocket 
in this paper.

2.1.1. Rocket
The basic principle behind ROCKET is to randomly generate a 

large number of convolutional kernels, which are then applied to the 
multivariate time series to obtain transformed features. Finally, a 
linear classifier, such as logistic regression or ridge regression, is 
trained on the transformed ROCKET features (Dempster et al., 2020). 
Since the training complexity is linear in both the length of the time 
series and the number of training samples, ROCKET is an attractive, 
scalable algorithm for large datasets (Dempster et al., 2020).

There are five basic parameters that characterize a random 
convolutional ROCKET kernel: length, lk and dilation, d, the 
individual weights, w, a bias term, b, and the use of padding (Ismail 
Fawaz et al., 2019; Dempster et al., 2020). The convolution, C, of the 
ROCKET kernel with a univariate time series can be computed by 
performing a sliding dot product operation over time t across the 
entire time series:
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Since patterns in the time series congruent with the kernel will 
result in large values (Ismail Fawaz et al., 2019; Dempster et al., 2020), 
basic patterns or shapes can thus be detected. In ROCKET, global max 
pooling and the proportion of positive values (ppv) pooling are 
applied separately to the kernel output, providing two features per 
kernel. By using ppv pooling, ROCKET weights the prevalence of a 
feature captured by the kernel output over n time samples, t.

 
ppv � �� �

�

�

�1 0

0

1

n
C

i

n
i .

 
(2)

By using different values for the dilation, it is possible to capture 
patterns at different scales, and it is even possible to capture frequency 
information with larger dilation values corresponding to smaller 
frequencies and vice versa (Yu and Koltun, 2016).

ROCKET generates the kernel parameters based on several 
predefined rules. First, the length of a kernel is selected with uniform 
probability from the set {7, 9, 11}. Then, the weights are sampled from 
a normal distribution, wjN(0,1), and subsequently mean centered, i.e., 
after all weights have been determined, the mean weight is subtracted. 
A uniform distribution is used to sample the bias term with bU(−1,1). 
The dilation is sampled from an exponential scale with d = [2x] where 
xU(0, A) and A = log2(linput

−1/lk
−1). Finally, a binary decision with equal 
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probability determines whether padding is used, i.e., whether (lk − 
1)/2 zeros are added to the beginning and the end of the time series 
(Dempster et al., 2020).

For multivariate time series, an additional sixth kernel parameter 
is provided, which determines the particular dimensions a given 
kernel is applied to Ruiz et  al. (2021). The kernels then become 
matrices with independently generated weights for each dimension, 
and consequently, the convolution is computed as the sliding dot 
product between two matrices (Ruiz et al., 2021).

The feature that makes ROCKET special, and distinguishes it 
from earlier methods using (random) convolutional kernels, is the 
huge number and variety of kernels (10,000 per default) (Dempster 
et al., 2020). Furthermore, a key contributor to the ability of ROCKET 
to detect patterns at different scales and frequencies is its effective use 
of dilation (Dempster et al., 2020). Yet, the potentially most important 
aspect of ROCKET’s success is that ROCKET computes two features 
for each kernel: the maximum value (similar to global max pooling) 
and a novel feature called the proportion of positive values, which 
provides the classifier with information about the prevalence of a 
given pattern in the time series (Dempster et al., 2020). Thus, the use 
of effective features and the combination of a large number of kernels 
enable ROCKET to distinguish between a multitude of time series 
patterns for the purpose of classification.

Finally, the ROCKET features are used to train a linear classifier. 
Logistic regression with stochastic gradient descent was recommended 
for very large datasets where the number of training examples is 
significantly higher than the number of features while, for smaller 
datasets, the authors recommended the use of ridge regression with 
cross-validation for the regularization parameter (Dempster 
et al., 2020).

2.1.2. MiniRocket
The major difference between MiniRocket and ROCKET is that it 

uses a fixed set of convolutional kernels instead of kernels with 
random hyperparameters. In brief, the kernel length, lk in MiniRocket 
is fixed to 9 instead of {7, 9, 11}, and the kernel weights are restricted 
to either −1 or 2 instead of a weight drawn from a normal distribution 
between 0 and 1. Moreover, MiniRocket uses fixed padding, and the 
maximum number of dilation per kernel is restricted to 32 (Dempster 
et al., 2021). These features allow the method to minimize the number 
of hyperparameters per kernel, enabling faster computation. 
Moreover, MiniRocket computes the kernel weights, w and −w and 
the ppv at the same time by using a trick: with the proportion of 
negative values being pnv = 1 − ppv, MiniRocket uses the ppv of the 
inverted kernel without increasing the number of convolutions, thus 
doubling the number of kernels applied using a single convolution. In 
addition, several mathematical optimizations are applied [for details, 
see (Dempster et al., 2021)] that makes MiniRocket much faster (up 
to 75 times) compared to ROCKET, while maintaining the same 
accuracy (Dempster et al., 2021).

2.2. The data

MEG recordings from two different sites (United States and 
Germany) were used for analysis. The first dataset was obtained 
from the Human Connectome Project (HCP), while the second 
dataset was provided by the Institute of Neuroscience and 

Medicine at Forschungszentrum Jülich (FZJ), Germany. MEG data 
in the two datasets were recorded at various points in time. For 
each subject, a minimum of two resting-state measurements and 
at least one empty-room recording were available. The total 
number of MEG recordings used was 372 from 124 
different subjects.

2.2.1. Dataset HCP
The Human Connectome Project (HCP) offers open access to a 

dataset consisting of MEG resting-state recordings and anatomical 
MR scans for 89 subjects acquired at St. Louis University (Van Essen 
et al., 2012, 2013; Larson-Prior et al., 2013; Hodge et al., 2016). From 
this dataset, we used recordings from 84 subjects, 44% of whom were 
female, and the mean age was 28.9 ± 3.6 years. Between two and three 
resting-state recordings with durations of approximately 6 min were 
available for each subject. Furthermore, an empty-room measurement 
of approximately 5 min in duration was available for each subject.

All MEG data were acquired using a whole-head MAGNES 3600 
system (4D Neuroimaging, San Diego, CA) with 248 magnetometers 
and 23 reference channels at a sampling rate of 2034 Hz. ECG and 
EOG were acquired along with the MEG signals. At the beginning of 
each MEG recording session, the subject’s head shape, together with 
the positions of the localizer coils, were digitized for the alignment 
with the anatomical MR scans, which were recorded as T1-weighted 
volumes with 0.7 mm resolution using a Skyra 3 T scanner (Siemens 
Healthcare GmbH, Erlangen, Germany).

2.2.2. Dataset FZJ
The FZJ dataset consists of two different MEG resting-state 

recording sessions. The first one was acquired from 20 male subjects 
in 2012 and 2013, and the second set was acquired from another set 
of 20 subjects (55% female) in 2017 and 2018. The mean ages were 
26.2+/− 4.3 and 26.6+/− 4.9 years, respectively. While the recordings 
from 2012 and 2013 had a duration of approximately 3 min, followed 
by empty room recordings of about 5 min, the recordings from 2017 
and 2018 had a duration of 6 min, followed by empty room recordings 
of between 10 and 15 min. Similar to the HCP data, a whole-head 
MAGNES 3600 system with 248 magnetometers and 23 reference 
channels was used; however, the sampling rate was 1017.25 Hz.

Electrocardiography (ECG) and electrooculography (EOG) were 
recorded using the MAGNES 3600 system along with the MEG 
measurements. An external BrainAmp ExG system (Brain Products, 
Gilching, Germany) was used to record ECG and EOG at a sampling 
rate of 5,000 Hz for the later recordings (2017 and 2018). The subjects’ 
head shapes were digitized prior to the MEG recording sessions for 
alignment with the anatomical MR scans, which were recorded using 
a MAGNETOM 3 T scanner (Siemens, Munich, Germany) with 
MPRAGE (Mugler and Brookeman, 1990).

2.3. Data analysis

Python 3.10 was used for data analysis, with the main packages 
being MNE-Python v1.3.1 (Gramfort et al., 2013, 2014), Scikit-learn 
v1.2.2 (Pedregosa et  al., 2011), and sktime v0.17.1 (Löning et  al., 
2019). The source spaces were constructed from the anatomical MR 
scans based on an octahedral mesh using FreeSurfer (Dale et al., 1999; 
Fischl et al., 1999).
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2.3.1. Pre-processing
The first step in the pre-processing pipeline was to identify MEG 

channels with strong artifacts. An in-house machine learning 
algorithm based on density-based spatial clustering of applications 
with noise (DBSCAN) (Ester et al., 1996), which scans for artifacts 
both in the time and the frequency domain, was used for this purpose. 
Channels and time segments with strong artifacts were annotated as 
‘bad’ and were followed by a visual inspection of the automated 
procedure. Furthermore, all recordings were also visually inspected 
for segments containing unusually strong artifacts (e.g., muscle 
artifacts), which were discarded from the analysis. The signals of the 
annotated bad channels were subsequently replaced by virtual 
channels using the interpolation method as implemented in (Gramfort 
et  al., 2013, 2014). Table  1 summarizes the duration of the MEG 
recordings used for each dataset and the recording type (resting-state 
or empty room data).

Next, the MEG signals were band-pass filtered from 1 to 200 Hz. 
Environmental and power line noise was removed by subtraction of 
appropriate weighted reference signals from the band-pass filtered (0.1 
to 5 Hz) references signals as described in (Robinson, 1989). 
Furthermore, power-line noise (50 Hz in Germany and 60 Hz in the 
United  States of America) plus harmonics were isolated in the 
reference channels using anti-notch filters at these frequencies. The 
weighted signal from the reference channels was then subtracted from 
the signal channels to reduce power-line noise.

Finally, ECG and EOG artifacts were removed using independent 
component analysis (ICA) (Hyvärinen and Oja, 2000; Dammers et al., 
2008). Components containing significant contributions of cardiac or 
ocular activity were removed prior to source localization (Hyvärinen 
and Oja, 2000; Dammers et al., 2008).

2.3.2. Source localization and extraction of label 
time courses

The pre-processed, continuous MEG resting-state signals were 
projected onto the source space using the minimum-norm estimate 
(MNE) method (Hämäläinen and Ilmoniemi, 1994). The source 
spaces were then divided into 68 (34 per hemisphere) anatomical 
regions (labels) based on the Desikan-Killiany Atlas (Desikan et al., 
2006). As the frontal pole region is very small in this particular atlas, 
the number of vertices identified was very small, and no vertices were 
found in this region for one subject. Therefore, this subject was 
excluded from the analysis. Following this step, a single representative 
source time course was extracted for each region as the mean time 
course of all vertices inside this brain region. Finally, these continuous 

source time courses were split into time segments of different lengths 
(hereafter referred to as ‘trials’).

The same pre-processing and source localization steps were 
repeated for the empty-room data, with the data being treated as if it 
were a subject’s recording. The empty-room data, which contain 
environmental noise only, are recorded directly after the MEG 
recordings. To further investigate whether day-to-day environmental 
noise variability causes significant differences, all empty-room 
recordings were also projected onto the same source space of a 
randomly selected subject. In this way, the influence of the background 
noise can be minimized, allowing the classifier to use the recordings 
for fingerprinting decisions.

2.4. Classification

sktime (version 0.17.1) was used to perform the MiniRocket 
transformation of the MEG trials, and scikit-learn (version 1.2.2) was 
used to fit a ridge regression classifier to the transformed features.

To evaluate the classification performance, we  compute the 
accuracy (ACC) as the ratio of the number of correctly classified 
instances to the total number of instances. In relation to neural 
fingerprinting, we test how accurately the model detects whether two 
different datasets from the same subject match. In addition to the 
ACC, the Precision, the Recall, and the F1-Score are computed.

The Precision refers to the proportion of correctly predicted 
positive instances out of all the instances predicted as positive by the 
model and is defined by Precision = TP/(TP + FP), with TP and FP 
being the True Positive and False Positives, respectively. A high 
precision value indicates that the model has a low rate of false 
positives. Recall (a.k.a. Sensitivity) is defined by Recall = TP/(TP + FN), 
with FN being the False Negatives, and measures the proportion of 
actual positive instances that are correctly identified by the model. 
Higher Recall indicates that the model is better at identifying all 
relevant positive instances in the dataset. The F1-Score is defined by 
F1-Score = 2  *  (Precision  *  Recall)/(Precision + Recall). Thus, the 
F1-Score provides a balance between Precision and Recall and ranges 
from 0 to 1, where 1 represents perfect precision and recall, and 0 
indicates poor performance. We report the macro-average F1-Score, 
Precision, and Recall for each class independently and then take the 
average across all classes to ensure that the performance of each class 
(the subject) is given equal importance.

To evaluate the overall performance of the model, we employed a 
leave-one-out method (LOOM) at the subject level (Schlögl and Supp, 
2006). Specifically, each subject was left out of the training and test sets 
once. This results in a total of 124 mean scores (e.g., accuracy) for each 
of the two training and test variants, for which the overall mean and 
standard deviation are computed. In this way, the stability of the 
model performance and the influence of data from individuals can 
be evaluated by computing the variance of the performance metrics.

2.4.1. Resting-state neural fingerprinting
To investigate the performance of the classifier with respect to 

identifying a specific subject within the cohort, time series originating 
from the first resting-state recording (rs1) were used for training, 
while time series originating from the second resting-state recording 
(rs2) were used for testing. This order was then reversed to determine 
a broader estimate of the classifier’s performance.

TABLE 1 Median recording times and its ranges for the type of recording 
after the removal of bad data segments.

Dataset Rec. 
type

Tmedian Tmax Tmin

FZJ Empty 460 911 271

FZJ rs1 220 299 136

FZJ rs2 231 298 151

HCP Empty 275 300 171

HCP rs1 291 300 243

HCP rs2 293 300 232

Times (T) in seconds.

21

https://doi.org/10.3389/fnins.2023.1229371
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kampel et al. 10.3389/fnins.2023.1229371

Frontiers in Neuroscience 05 frontiersin.org

The continuous source time course of each brain region was used 
for a z-scored normalization. A random but fixed subset of trials was 
sampled from each recording to ensure balanced datasets across 
subjects. To gauge the variance expected due to the random nature of 
the method, we  repeated the procedure ten times using random 
selections of trials and kernel initializations. The classifier’s 
dependence on several parameters was tested by means of varying the 
number of trials used per subject in the training set, the trial duration, 
and the number of ROCKET kernels used.

2.4.2. Empty-room noise
To assess the impact of the day-to-day variations in the 

background noise with respect to the classification performance, 
we performed a control experiment with identical settings but with no 
subject in the scanner. These so-called empty room recordings were 
performed directly after the subject recording and were labeled with 
the same ID as the subject. In other words, the environmental noise 
data is used to have a third control condition to evaluate the model. 
With the empty-room noise data as a third set of recordings (rs1, rs2, 
empty), we performed the training and the testing of the model for all 
possible combinations. Each experiment was repeated ten times with 
a random selection of trials as well as different random kernel 
initializations. The mean accuracy was computed for 
each combination.

3. Results

3.1. Resting-state neural fingerprinting and 
its dependency on parameters

The classification of two MEG datasets recorded from the same 
subjects on the same day revealed remarkably high accuracy scores of 
about 99% using MiniRocket. The impact of important parameters on 
the classification accuracy was tested by varying the number of 
kernels, the number of trials, and the trial duration. While 
investigating the impact of one parameter, all other parameters were 

fixed as follows (unless stated otherwise): the number of kernels was 
set to 3,500, the number of trials to 15, and its duration to 1.5 s.

Figure 1 shows the dependency of the accuracy scores on the 
number of kernels used in MiniRocket. The figure shows a sharp 
increase in accuracy between 100 and 500 kernels, with scores already 
above 96% for 500 kernels. For the number of kernels ranging from 
1,000 to 5,000, there was a relatively marginal increase in accuracy, 
which only ranged from about 98.9 to 99.5%. All results, including the 
upper and lower range, can be found in Table 2.

To estimate the impact of the number of time segments used on 
the classification result, the number of trials was gradually increased 
until no further change in accuracy was observed. Figure 2 shows the 
dependence of accuracy scores on the number of training trials. The 
figure shows that when five or more trials are used, classification 
accuracies of 98% and above can be  achieved. Only a marginal 
increase in accuracy, ranging from about 99.3 to 99.6%, was achieved 
from 10 to 30 trials (Table 2).

The dependency of the accuracy scores on the trial duration is 
shown in Figure 3. For segment durations ranging from 0.1 s to 0.5 s, 
there is a sharp increase in accuracy, while for durations of 1 s in 
length, scores above 99.4% could already be achieved. Only a marginal 
increase in accuracy, from 99.5 to 99.6%, was achieved for durations 
ranging from 2.0 s to 5.0 s. A summary of all results and combinations 
is shown in Table 2.

The MiniRocket classification accuracy scores obtained through 
the LOOM method for neural fingerprinting based on resting-state 
data are as follows: The average accuracy score after cross-validation 
for training on rs1 and testing on rs2 was 99.15% ± 0.078%. Similarly, 
the mean Recall and Precision were found to be 99.15% ± 0.078 and 
98.72% ± 0.425%, respectively, and the F1-Score was 98.80% ± 0.124% 
(Table 3). For training on rs2 and testing on rs1, the average accuracy 
score was found to be  slightly larger with 99.96% ± 0.036%, as 
compared to the accuracy of 99.15% for training on rs1 and testing on 
rs2. This tendency was also observed in the other three metrics (cf. 
Table 3). Since the probability of obtaining a match for a single subject 
out of 124 subjects is 1/124, which is about 0.0081, the chance level in 
our experiment is approximately 0.81%. The difference in accuracy 

FIGURE 1

Dependence of the accuracy scores on the number of MiniRocket kernels. The classifier was trained on 15 time segments with a duration of 1.5  s per 
segment. The blue shaded area indicates the upper and lower range of the classification accuracy between the 10 repetitions with a random selection 
of time segments and a random initialization of kernels.
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TABLE 2 MiniRocket accuracy scores dependent on several parameters.

Dependence on number of kernels (15 training trials, 
1.5  s duration)

Number of 
kernels

Mean 
accuracy

Min 
accuracy

Max 
accuracy

100 81.32 76.16 85.27

200 83.6 79.78 87.8

300 93.33 91.96 94.73

400 96.45 95.51 97.34

500 97.37 96.26 98.01

750 98.32 97.74 98.71

1,000 98.87 98.52 99.06

1,250 99.11 98.79 99.52

1,500 99.3 98.98 99.6

2000 99.42 99.22 99.6

2,500 99.49 99.3 99.57

3,500 99.51 99.3 99.7

5,000 99.57 99.49 99.65

10,000 99.59 99.49 99.65

Dependence number of trials (3,500 kernels, trial 
duration 1.5)

Number of 
trials

Mean 
accuracy

Min 
accuracy

Max 
accuracy

1 63.63 56.45 70.16

2 90.18 86.29 93.15

3 96.36 94.76 97.58

4 97.97 97.48 98.29

5 98.63 98.31 98.87

6 98.97 98.66 99.26

7 99.11 98.85 99.37

8 99.22 98.94 99.5

9 99.31 99.06 99.55

10 99.35 99.15 99.52

12 99.45 99.13 99.56

15 99.51 99.3 99.7

20 99.57 99.54 99.6

25 99.58 99.56 99.61

Dependence on trail duration (3,500 kernels, 15 
training trails)

Trail 
duration

Mean 
accuracy

Min 
accuracy

Max 
accuracy

0.1 29.56 26.02 31.77

0.2 71.15 67.66 73.76

0.3 89.64 88.12 91.64

0.4 95.67 95.22 96.26

0.5 97.88 97.58 98.28

0.6 98.58 98.2 99.03

between the two classification tests were found to be significant, but 
with a change in score around the chance level (0.80–1.24%).

3.2. Influence of empty-room noise

Ten random trials were sampled per subject and per set with a 
trial duration of 1.5 s and 3,500 kernels. Whenever data originated 
from the same recordings, the continuous signal for each subject was 
split into two parts, and the trials for training and testing were sampled 
from the first and second half of the recording, respectively.

Figure  4 shows the dependence of the MiniRocket classifier 
accuracy scores on different combinations of training and test sets. 
The results show that accuracies above 99.3% were achieved for all 
combinations of training and testing on resting-state data (rs1 vs. rs2 
and rs2 vs. rs1). For resting-state recordings evaluated against the 
empty room recordings from the same day, the accuracies were close 
to the chance level, as depicted in Figure 4. In the case of empty vs. 
empty room recordings, the classifier achieved a low accuracy of 7.9%.

4. Discussion

There are many promising applications of multivariate time series 
classifications (MTSC) in medicine and neuroscience, including in the 
diagnosis of medical conditions, personalized treatment planning, and 
the development of brain-computer interfaces (BCIs). With this study, 
we have shown that it is possible to perform neural fingerprinting 
directly on MEG time series without performing feature engineering. 
This is, to the best of our knowledge, the first time that neural 
fingerprinting has been achieved based on magnetic field changes in 
single trials of MEG time series recordings without the need for a 
feature-based analysis. Furthermore, the MiniRocket approach used 
in the study required fewer data (shorter trials) for successful 
classification and also improved accuracy. For example, previous MEG (Continued)

Dependence on trail duration (3,500 kernels, 15 
training trails)

Trail 
duration

Mean 
accuracy

Min 
accuracy

Max 
accuracy

0.7 99.01 98.79 99.33

0.8 99.2 98.87 99.46

0.9 99.28 99.11 99.52

1.0 99.37 99.09 99.6

1.25 99.5 99.33 99.57

1.5 99.51 99.3 99.7

2.0 99.55 99.33 99.65

2.5 99.58 99.49 99.62

3.0 99.6 99.57 99.62

3.5 99.6 99.57 99.68

4.0 99.6 99.54 99.68

4.5 99.61 99.57 99.7

5.0 99.6 99.57 99.68

TABLE 2 (Continued)
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publications reached MEG resting-state classification accuracies with 
trial lengths of 30 s in healthy controls of about 94.9–96.2% (da Silva 
Castanheira et al., 2021), and 94.5–98.2% at trial lengths of 8 s (Sareen 
et  al., 2021). In contrast, MiniRocket analysis with 3,500 kernels 
achieved a classification accuracy of over 99% when training the 

model on as little as 15 s of data and testing it on 1 s time segments. 
These results demonstrate that substantially fewer data are needed for 
accurate classification in comparison with previous approaches that 
use MEG data in combination with connectivity measures (Demuru 
et al., 2017; da Silva Castanheira et al., 2021; Sareen et al., 2021) or data 
from electroencephalography (EEG) using EEG power spectra (Kong 
et al., 2019; Demuru and Fraschini, 2020).

In our parameter investigation, we  aimed to explore the 
minimum input data requirements while maintaining computational 
efficiency. Our tests on trial duration suggested that a minimum of 
0.9 s and 15 trials were sufficient to achieve accuracies above 99%. In 
terms of the number of trials, we found that training a MiniRocket 
classifier with 3,500 kernels requires at least nine trials of 1.5 s length 
to achieve accuracies above 99%. During our exploration of the 
number of kernels, we observed that increasing the number of kernels 
led to improved results in the low data regime, at the expense of 

FIGURE 2

Dependence of the accuracy scores on the number of training segments. The number of kernels for the MiniRocket classifier was set to 3,500. The 
duration of the time segments was set to 1.5  s. The blue shaded area indicates the upper and lower range of the classification accuracy between the 10 
repetitions with a random selection of time segments and a random initialization of kernels.

FIGURE 3

Dependence of the accuracy scores on the duration of the time segments. The number of kernels for the MiniRocket classifier was set to 3,500 and 
trained on 15 time segments. The duration of segments varied from 0.1 to 5  s. The blue shaded area indicates the upper and lower range of the 
classification accuracy between the 10 repetitions with a random selection of time segments and a random initialization of kernels.

TABLE 3 Loom-based performance scores for two classification tests 
with the number of kernels set to 3,500, the number of trials to 15, and its 
duration to 1.5  s.

Metric rs1  −  rs2 rs2  −  rs1

Accuracy 99.15 ± 0.0779 99.96 ± 0.0364

Precision 98.72 ± 0.4250 99.96 ± 0.0338

Recall 99.15 ± 0.0779 99.96 ± 0.0364

F1-Score 98.80 ± 0.1238 99.96 ± 0.0364
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FIGURE 4

Dependence of the accuracy scores of the MiniRocket classifier on 
different combinations of training and test sets. Since rest1, rest2, 
and empty were all recorded on the same day, it is possible to isolate 
the contribution of the daily background noise to the classification 
outcomes. The number of kernels for the MiniRocket classifier was 
set to 3,500. For both the training and test set, 10 time segments of 
1.5  s were sampled from each of the subjects.

computational demand. We were surprised to find that accuracies 
saturated at a relatively low number of 3,500 kernels using a fixed set 
of 15 trials of 1.5 s duration, resulting in accuracies above 99.3% 
(Table 2).

Interestingly, we observed a small but significant difference in all 
metrics when we reversed the order of training and evaluation set using 
the LOOM method. Specifically, the accuracies were 99.96% when 
training on rs1 and testing on rs2, whereas they fell to 99.15% when the 
order was reversed (Table 3). This difference in accuracy of 0.81% is about 
chance level and may be due to a single subject only. In principle, we did 
not expect the accuracies to be identical as the two measurements will not 
be identical in practice. The subject’s condition, such as mood and fatigue, 
is very likely to have an influence on the matching performance. 
Moreover, another source contributing to this difference may be due to a 
slight reduction in data quality over long recording sessions, possibly 
caused by increased subject movement due to fatigue or the execution of 
tasks before the second resting-state session. These findings raise the 
possibility that prioritizing training on datasets with higher complexity 
and diversity could be more crucial than employing the most complex 
data exclusively at the time of testing. However, in future work, it would 
be very interesting to investigate the model performance in a cohort of 
subjects where the temporal distance between rs1 and rs2 is increased by 
means of hours, days, weeks, and months.

In summary, these results are a proof of concept that subject 
differentiation can, in principle, be achieved directly from MEG 
brain recordings as short as 1 s to achieve high accuracies of about 
99% using MiniRocket. This would greatly simplify current 
procedures as the technique does not require the selection of the 
best-performing feature for the classification model – as is the case 
when using functional connectomes (da Silva Castanheira et al., 
2021; Sareen et al., 2021), for which the best-performing method 
needs to be determined. The high classification accuracy and the 

need for only relatively short segments of single trials data make 
MiniRocket a promising candidate for BCI research and motivate 
further research into the application of MiniRocket to 
MEG recordings.

4.1. Limitations

It has been suggested that day-to-day variations in the background 
noise during the recording may contribute significantly to the 
classification (da Silva Castanheira et al., 2021). We investigated this 
possibility by training the classifier on the subject’s recording and 
testing on corresponding empty-room data, which were recorded 
soon after the experiment. While our study shows that training the 
classifier on empty-room data and applying it to the subject’s resting-
state data or vice versa did not result in the correct identification of 
individuals, and accuracies achieved on the cross-over of resting-state 
measurements and empty-room measurements were approximately 
at chance level, our findings suggest that the background noise may 
have a minor influence on the fingerprinting classification results. 
Notably, our analysis shows that matching empty room signals could 
be identified with an accuracy of approximately 8%.

To further investigate the classification performance and 
limitations on neural fingerprinting, we  plan to implement a 
longitudinal study design to investigate the stability and performance 
of the classifier over time. Moreover, given that the subject is the class 
to be identified in this approach, we cannot split the data into training 
and test sets by subjects for the typical generalization purposes, which 
is a limitation of the method and is similar to a fingerprint analysis in 
criminal investigations, where a match can only be  found if the 
suspect’s fingerprints are already in the database.
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A rapid workflow for neuron 
counting in combined light sheet 
microscopy and magnetic 
resonance histology
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Information on regional variation in cell numbers and densities in the CNS 
provides critical insight into structure, function, and the progression of CNS 
diseases. However, variability can be real or a consequence of methods that 
do not account for technical biases, including morphologic deformations, 
errors in the application of cell type labels and boundaries of regions, errors of 
counting rules and sampling sites. We address these issues in a mouse model 
by introducing a workflow that consists of the following steps: 1. Magnetic 
resonance histology (MRH) to establish the size, shape, and regional morphology 
of the mouse brain in situ. 2. Light-sheet microscopy (LSM) to selectively label 
neurons or other cells in the entire brain without sectioning artifacts. 3. Register 
LSM volumes to MRH volumes to correct for dissection errors and both global 
and regional deformations. 4. Implement stereological protocols for automated 
sampling and counting of cells in 3D LSM volumes. This workflow can analyze 
the cell densities of one brain region in less than 1 min and is highly replicable in 
cortical and subcortical gray matter regions and structures throughout the brain. 
This method demonstrates the advantage of not requiring an extensive amount 
of training data, achieving a F1 score of approximately 0.9 with just 20 training 
nuclei. We report deformation-corrected neuron (NeuN) counts and neuronal 
density in 13 representative regions in 5 C57BL/6J cases and 2 BXD strains. 
The data represent the variability among specimens for the same brain region 
and across regions within the specimen. Neuronal densities estimated with our 
workflow are within the range of values in previous classical stereological studies. 
We demonstrate the application of our workflow to a mouse model of aging. 
This workflow improves the accuracy of neuron counting and the assessment of 
neuronal density on a region-by-region basis, with broad applications for studies 
of how genetics, environment, and development across the lifespan impact cell 
numbers in the CNS.
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neuron density, light sheet microscopy, mouse brain, neurologic image analysis, neuron 
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1. Introduction

Accurate counts of neurons are essential metrics for understanding 
the structure and function of the brain (Bonthius et  al., 2004; 
Herculano-Houzel and Lent, 2005). This is particularly important for 
pre-clinical studies of human disease, as it provides a necessary starting 
point for assessing neurodegenerative changes on a regional basis 
(Price et al., 2001; Rosen and Williams, 2001; Bandeira et al., 2009). In 
addition to absolute counts, measuring neuron density can provide 
important insights into the structural complexity of local circuits. The 
distribution of neurons in the mouse brain on a region-by-region basis 
is also crucial for understanding variation between individuals and 
strains. The density of neurons can reflect the distinctive 
cytoarchitecture of brain regions, including laminar organization, size 
and shape of constituent neurons, and the volume and composition of 
associated neuropil (Wree et al., 1982; Spocter et al., 2012; Kasthuri 
et al., 2015). Furthermore, assessing neuronal densities in targeted 
brain regions under varying conditions may reveal impacts that change 
the composition of neuropil with or without associated loss (or gain) 
of neuronal cell bodies (Amunts et al., 1996; Selemon and Goldman-
Rakic, 1999). The heterogeneity of neuronal density within a given 
region can provide insights into the complexity, developmental history, 
and functional diversity of the region (Peters et al., 1991). Establishing 
such datasets enables pre-clinical studies of the impact of genetics, 
environment, and development across the lifespan on brain structure.

To investigate cells numbers and densities in CNS, researchers have 
developed various quantitative methods, including several stereological 
approaches (Williams and Rakic, 1988; West, 1999; von Bartheld, 2002; 
Schmitz and Hof, 2005; Deniz et al., 2018) and approaches that first 
homogenize brain tissue and dissociate brain cells (Herculano-Houzel 
and Lent, 2005; Collins et al., 2010; Young et al., 2012). Stereology is a 
quantitative method for estimating the three-dimensional characteristics 
of biological structures using two-dimensional histological sections or 
images and systematic random sampling within delineated brain regions. 
In traditional approaches to stereology, the specimen is preserved by 
means of chemical fixation, the brain is removed from skull, sectioned 
into thin slices (usually 5–50 μm thick), and stained with specific dyes to 
highlight different cell types. The sections are then viewed under a 
microscope, and measurements are taken to estimate the cell numbers 
within delineated brain regions. Both 3D counting and the optical 
fractionation are alternatives to traditional stereological methods 
introduced by Abercrombie (1946, reviewed in Rosen and Williams, 
2001) that is design-based in its approach to sampling a volume of tissue, 
counting targeted objects (e.g., neurons), and generating statistics that 
assess the precision of the counts (West, 1999). These methods are 
considered unbiased, but still can suffer from bias due to differential 
z-axis shrinkage and variable penetration of stains. By providing a less 
biased estimate of structural parameters, these modern stereological 
methods have contributed significantly to our understanding of many 
biological systems. However, there are some limitations. Stereological 
methods require extensive preparation of tissue and the use of 
microtomes to produce thin tissue sections. This can introduce damaging 
artifacts, lost sections, and distortions, even in the hands of experts. The 
results are sensitive to a range of factors, including the choice of chemical 
fixation, the post-fixation treatment of the specimens, the specific 
histological protocols used, and the specific features of the design-based 
approach to sampling and counting. Thus, it has be difficult to determine 
the accuracy of the measurements obtained in tissue that was subject to 

such deformation and the range of operational variables employed. 
Finally, stereological analysis can be a laborious and time-consuming 
process (Bonthius et al., 2004). When multiple brain regions are analyzed, 
the time and effort required can increase significantly, and the manual 
aspect of the process can introduce additional sources of variability.

In contrast, the isotropic fractionator (IF) involves homogenizing 
a small tissue sample from a region of interest—or the entire brain —
and processing it into a uniform suspension of cells. The cells are then 
stained with a dye and placed into a special counting chamber, where 
the number of cells in a known volume is counted under a microscope 
(Herculano-Houzel and Lent, 2005), or by the flow cytometry (Collins 
et al., 2010; Young et al., 2012). The total number of cells in the brain 
region can then be estimated by extrapolating the cell density from the 
counting chamber to the reported or measured volume of the entire 
brain region. The downsides to isotropic fractionator are similar to 
stereology. One limitation is that both IF and stereology use the brain 
which is taken out of the skull and processed, introducing swelling 
and/or shrinkage, which can affect the accuracy of volume estimation.

Light sheet microscopy (LSM) has emerged as a powerful tool for 
3D visualization of targeted populations of cells in intact, cleared tissue 
samples using fluorescent immunocytochemistry. Recent advances in 
tissue clearing (Ueda et al., 2020) have enabled the capture of high-
quality, countable images in the whole-brain using LSM (Hillman et al., 
2019). These intact 3D volumes can then be used for accurate counting 
of neurons and assessing neuronal densities, providing a more 
comprehensive and representative view of the brain region of interest. 
Typically, the whole brain images are registered to a standard reference 
atlas, such as the Waxholm Space Atlas (WHS) (Johnson et al., 2010) or 
the Allen Brain Atlas (ABA) (Wang et al., 2020). The combination of the 
digital images and the standard reference atlas facilitates the segmentation 
of regions and correction of altered brain morphology, allowing for 
comparison of neuron numbers and density within and across studies.

Researchers have employed this approach of registering LSM to 
WHS or ABA atlases in a number of recent studies (Susaki et al., 2014; 
Menegas et al., 2015; Renier et al., 2016; Zhang et al., 2017; Krupa 
et al., 2021). Susaki et al. (2014) mapped LSM to WHS space but did 
not proceed with cytometric quantitative analysis. The remaining 
studies mapped the LSM images to ABA space for analysis. ClearMap, 
as described by Renier et al. (2016), utilizes a peak detection algorithm 
with a threshold determined by comparing manual and machine 
counting, which may not yield optimal results when applied to 
complex and heterogeneous neuron distributions. Zhang et al. (2017) 
employed L1 minimization (Lasso), a machine learning regression 
method, to detect neurons in the whole brain. However, this method 
assumes sparsity of objects and a linear relationship between input 
features and output variables, with all features equally important, 
which may not hold true in the case of heterogeneous neuron 
distributions. Krupa et al. (2021) used a 3D Unet for cell detection, but 
these deep learning methods require large inputs and considerable 
training time compared to other machine learning methods. Menegas 
et al. (2015) utilized Ilastics1 to segment cells in eight brain regions, 
with separate training for each region.

Registration of LSM images obtained from mouse brains to ABA 
space for correcting deformation and quantitatively segmenting brain 

1 https://www.ilastik.org
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structures and regions has one fundamental deficiency. The ABA atlas 
was generated from multiple specimens that were imaged after the 
brains were removed from the skulls (Wang et al., 2020). The lack of 
skull support and the effects of processing will deform the brain. 
Furthermore, ABA assembled their atlas from 1,600 animals, which 
were registered into a volume that does not conform to the size and 
morphology of the in situ mouse brain—as we  demonstrate in 
this work.

We present a novel approach that is highly reproducible and 
allows efficient counting across the whole brain. Our method 
utilizes magnetic resonance histology (MRH), an extension of MRI 
to microscopic resolution of fixed tissue specimens (Johnson et al., 
1993). MRH images are acquired with the brain inside the skull, 
resulting in a representation that more closely approximates the 
size and morphology of the in vivo brain (Johnson et al., 2023), as 
compared to reconstructions from histological methods that 
require cranial dissection, serial sectioning of the brain, and 
chemical treatment of thin brain sections. As a result, MRH images 
can serve as the “gold standard” for correcting ex situ brain 
morphology. Our workflow offers a powerful combination of 
morphological correction based on MRH, machine learning-based 
neuron classification, and post-processing. It provides accurate 
and detailed neuron counts and calculations of neuronal density, 
which can be  readily derived from different brain regions and 
specimens. Our method features a large, well-defined field of view 
in 3D, which allows for a comprehensive analysis of an entire 
subvolume under study. Moreover, our workflow applies the 
principles of optical fractionation to systematically sample and 
count neuron numbers in 3D volumes, which reduces the 
computational costs and represents a novel digital approach not 
previously explored.

2. Materials and methods

2.1. Specimens

Two groups of animals were used to test the methods (see Table 1). 
The first group included 5 C57BL/6 J mice (4 male and 1 female) that 
were sacrificed at 90 ± 3 days to test the consistency of the counts and 
provide measures that could be related to existing literature. A second 
experiment with BXD89 mice included two male specimens at 111 
and 687 days to test the sensitivity of the method to changes in 
neuronal density arising from aging. The mice were obtained from 
independent litters. The BXD strains are a set of well-characterized 

recombinant inbred mouse strains, making them a valuable tool for 
systems genetics studies (Ashbrook et al., 2021).

2.2. MRH, label map and LSM scanning

All animal procedures were carried out in accordance with 
guidelines approved by the Duke Institutional Animal Care and Use 
Committee. Specimens were perfusion-fixed using an active staining 
method as previously described (Johnson et al., 2019). Briefly, warm 
saline was perfused through a catheter in the left ventricle to 
exsanguinate, followed by ~5 min of perfusion (50 mL) of a mixture of 
10% buffered formalin and 10% Prohance (Gadoteridol) to reduce the 
spin lattice relaxation time (T1) of the tissue for accelerated scanning. 
MRH scanning was performed on a 9.4 T vertical bore magnet with a 
Resonance Research, Inc., gradient coil yielding peak gradients up to 
2,500 mT/m, controlled by an Agilent console running VnmrJ 4.0. The 
MRH scanning was performed using a Stesjkal Tanner spin echo 
sequence with b values of 3,000 s/mm2 and 108 angular samples 
spaced uniformly on the unit sphere. Compressed sensing (Lustig 
et al., 2007) was used with a compression factor of 8X (Wang et al., 
2018), resulting in a large (252 GB) 4D volume with isotropic 
resolution of 15 µm (Johnson et al., 2023).

The label map in this study is based on a modified version of the 
Common Coordinate Framework (CCFv3) (Johnson et  al., 2023) 
from ABA (Wang et al., 2020). The CCFv3 atlas includes 461 carefully 
curated regions of interest (ROIs). Our workflow relies on an initial 
mapping of labels from our canonical MRH atlas of a 90-day male 
C57BL/6 J mouse to the MRH of the specimen under study using a 
pipeline built around Advanced Normalization Tools (ANTs) (Avants 
et al., 2011; Anderson et al., 2019). Many of the CCFv3 ROIs are less 
than 1 mm3, including numerous subdivisions of cortical areas 
(laminae) and subcortical structures (subnuclei) that are of limited 
value within the present scope of our analyses. Accordingly, 
we reduced the label set to 360 ROI (180 per hemisphere) gray matter 
and white matter structures. This modified atlas, which we refer to as 
the reduced CCFv3 (r1CCFv3), consolidates these smaller subregions 
in CCFv3. The r1CCFv3 provides a label set that registers to the MRH 
volumes reproducibly enabling precise neuron counting within a large 
number of structures. The details of this registration process are 
described in Johnson et al. (2023).

Following the MRH scans, the brains were carefully removed from 
the skulls. Paraformaldehyde-fixed samples were preserved with using 
SHIELD reagents (LifeCanvas Technologies) using the manufacturer’s 
instructions (Park et al., 2019). Samples were delipidated using Clear+ 
delipidation reagents. Following delipidation samples were labeled 
using eFLASH technology which integrates stochastic electrotransport 
(Kim et al., 2015) and SWITCH (Murray et al., 2015). The samples 
were then washed in PBS for 7-8 h before overnight fixation in 4% 
paraformaldehyde followed by incubation in secondary labeling buffer 
at 37°C with two refreshes over the course of 7–8 h before secondary 
labeling in the SmartLabel device. For each brain, 10 μg of rabbit anti-
Iba1 (Cell Signaling Technologies 17198S*) primary antibody, 10 μg 
mouse anti-NeuN (Encor MCA-1B7), 6 μg rabbit anti-NeuN (Cell 
Signaling Technologies 24307S*), or 20 μg mouse anti-MBP (Encor 
MCA-7G7). Secondary antibodies were used at a 2:1 
Secondary:Primary molar ratio. After immunolabeling, samples were 
incubated in 50% EasyIndex (RI = 1.52, LifeCanvas Technologies) 

TABLE 1 Test specimens for neuron counting.

Specimen ID Sex Strain/Age

191209 M C57BL/6J/90 d

200302 M C57BL/6J/90 d

200316 F C57BL/6J/90 d

200826 M C57BL/6J/92 d

210823 M C57BL/6J/93 d

190108 M BXD89/111 d

200803 M BXD89/687 d
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overnight at 37°C followed by 1 d incubation in 100% EasyIndex for 
refractive index matching. After index matching the samples were 
imaged using a SmartSPIM axially-swept light sheet microscope using 
a 3.6x objective (0.2 NA) (LifeCanvas Technologies, Cambridge, MA). 
The processing streams for MRH and LSM are depicted in Figure 1A.

2.3. Automated neuron counting

2.3.1. Overview of the algorithm
To address the significant distortion introduced during skull 

removal and chemical processing in the preparation of LSM samples, 
the LSM images are first registered to the MRH volumes of the same 
specimen (Figure 1B; Tian et al., 2023). Section 3.1, accompanied by 
Figure 2, provides a detailed explanation of the impact of correcting 
the morphology and extraction of the cytometric statistics. 
We  examine the effects of the preprocessing steps on the neuron 
density measurements, providing insights into the importance of these 
steps for accurate data analysis.

The workflow is visualized in Figure 1C. After warping the LSM 
and label map to the MRH space, the user selects a region for analysis 
by inputting the corresponding label from the label map into Fiji. This 
generates a surface defining the region of the selected label, as well as 
a group of subvolumes within the surface. These subvolumes are 
distributed in a uniform but random manner, which improves the 
accuracy of neuron counting and facilitates analysis of the heterogeneity 
of neuron distribution throughout the selected region. Please note that 
subvolumes located on boundaries and containing broken tissues will 
be  automatically excluded by screening the label value of the 
subvolume. For each subvolume (Figure  1C), we  apply a lightly 
supervised algorithm called random forest neuron segmentation, 
which utilizes an ensemble of decision trees to generalize the projection 
between graphical features and labels. This algorithm is commonly 
used in image processing tasks and requires only a small amount of 
training data to perform well (Pavlov, 2000). Prior to segmentation, the 
random forest classifier is pre-trained using training data consisting of 
binary signatures, where neurons are labeled as 1 and non-neurons as 
0, as well as feature vectors extracted from various visual characteristics 
of the image, such as texture, shape, and size. The training process 
optimizes the relationship between graphical features of an image and 
the assigned neuron labels. The labeling example can be  seen in 
Supplementary Figure S1. In general, labeling approximately 20 
neurons with both the cell body and background enables the algorithm 
to learn the essential features of neurons, resulting in a commendable 
F1 score (Supplementary Section S2) of around 0.9, as illustrated in 
Supplementary Figure S2. After the random forest segmentation is 
applied to each subvolume, the workflow will perform post-processing 
on the objects classified as neurons. This post-processing uses 3D 
watershed (showcased in Supplementary Figure S3) and volume filters 
to further isolate the neurons as discrete objects. The final count of the 
neurons in each subvolume is generated based on these refined objects. 
The density is calculated by averaging densities obtained from 
subvolumes, and the standard deviation of the density provides insight 
into the variability of the neuron distribution within the region.

2.3.2. Big data environment
Whole brain LSM images are large – typically ~300 GB. To enable 

efficient, interactive development and execution of the workflow 

we have assembled a hardware/software environment suited for these 
large data. The pipeline has been implemented on two high 
performance Dell servers: Dell E5-2400, NVIDIA Tesla V100 GPU 
and a Dell E52670, NVIDIA V100 GPU. Each server has 1.5 TB 
of memory.

Several software packages have been integrated into the big data 
environment. Imaris2 is a commercial software package designed for 
interactive 3D/4D viewing of large microscopy data sets. It 
accommodates simultaneous visualization of multiple light sheet 
volumes using a hierarchical data format. Imaris has been developed 
to allow memory sharing with external packages. One of these is Fiji,3 
a distribution of Image J that has been developed for applications such 
as that envisioned here through the extensive use of plugins. One 
crucial plugin for our work is BigDataViewer (Pietzsch et al., 2015), 
an open source solution for accommodating large volumes in Fiji and 
supporting plugins for post processing. This includes LabKit (Arzt 
et al., 2022) a user friendly Fiji plugin for microscopy segmentation 
using the random forest algorithm.

2.3.3. Compiled algorithms
To improve the accuracy and efficiency of neuron counting, 

we developed two pipelines for different purposes: one for visualized 
validation and the other for production use. The initial pipeline 
(available on GitHub4) provides visualization of classification and 
segmentation performance. This algorithm is built on the coding 
interface of the image rendering software, Imaris.5 The procedures, 
from applying classifiers to obtaining statistics, are executed in the 
GUI of Imaris. Although the workflow cannot be fully automated 
through the Imaris coding interface, it can be automated through 
recording applications such as OS Automator.6 The second algorithm 
(available on GitHub7) provides an automated workflow constructed 
using Python and macros. This method utilizes Fiji macro GUIs to 
automate segmentation, 3D watershed, and region counting plugins. 
The watershed uses morphological erosion to identify the center of 
each object, followed by calculating a distance map from the object 
center points to the object edges. The resulting topological map is then 
filled with imaginary water, and dams are built at locations where two 
watersheds meet to separate them. The region counting method 
assigns unique labels to each unconnected component to facilitate 
subsequent counting. The plugin used for constructing the random 
forest model is Labkit.8 The watershed method and the 3D connected 
region counting method in the first algorithm are available in Imaris. 
The 3D watershed and 3D connected region counting method in the 
second algorithm are the Fiji/binary/watershed function and from the 
open-source plugin MorphoLibj.9

2 https://imaris.oxinst.com

3 https://fiji.sc/

4 https://github.com/YuqiTianCIVM/NeuronCounting/blob/main/Algor_

forVisualization.py

5 https://imaris.oxinst.com

6 https://support.apple.com/guide/automator/intro-to-automator-

aut6e8156d85/mac

7 https://github.com/YuqiTianCIVM/NeuronCounting/blob/main/

MainAlgor.py

8 https://imagej.net/plugins/labkit/

9 http://imagej.net/MorphoLibJ
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2.3.3.1. Imaris pipeline for visualization
The user identifies the structure to be analyzed and loads the 

surface defining that structure. A Python script generates a 
collection of 3D subregions that are randomly placed within the 

volume of the structure defined by the surface. Each counting 
subregion is a 100 μm × 100 μm × 100 μm cube. To avoid 
oversampling or undersampling in different regions and to 
accurately capture the heterogeneity, we analyzed 15 subvolumes 

FIGURE 1

Overview of the workflow for assessing the density of neurons. (A) The mouse brain is imaged using two modalities: MRH imaging while the brain is in 
the skull, followed by LSM after the brain is removed from the skull and subjected to tissue clearing. (B) The LSM data are pre-processed by registering 
to MRH correcting the deformation in brain morphology. (C) The automated workflow locates the region with the label from r1CCFv3 and generates 
random subvolumes within that region to sample, applying the design-based principles of optical fractionation. Neurons in each subvolume are 
identified via a random forest algorithm followed by 3D watershed and volume filters and counted.
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per brain region while keeping the number of subvolumes 
consistent across regions to facilitate statistical analysis. The user 
selects “Labkit” in the Fuji extension. The GUI displays the 
subregion’s volume, and the user either imports a pre-trained 
classifier or starts labeling neurons and background with binary 
labels. Supplementary Figure S1 shows representative images of the 
training process. Once a classifier has been trained, it can be saved 
for future use in other ROI or other specimens, with some 
limitations discussed below. The classification is then sent to 
Imaris. Imaris applies thresholding to the binary labels and 
generates individual surfaces based on the results. The watershed 
algorithm uses seed points to split touching surfaces. After 
approximating the size of neurons through visualization, the 
volume filter is applied, and the count is generated.

2.3.3.2. Fiji pipeline for high throughput
A Python script generates sub-regions inside the surface of the 

structure being analyzed and saves these subvolumes as individual 
TIFF files. The same Python script creates and executes a FIJI macro 
that reads the TIFF files in batches, applies the pre-trained random 
forest classifier, and performs 3D watershed. Components in the 
resulting image are labeled with different colors using the FIJI function 
“connected components labeling” and saved as a TIFF file. A second 
Python script reads these TIFF files in batches, applies volume filters, 

and generate counts of the components. The details of the volume 
filters are provided in Supplementary Section S6.

2.4. Data availability statement

Original datasets are available in a repository. The access will 
be granted upon request.

3. Results

3.1. Visualization of morphology correction

Figure  2 displays the comparison between images from an 
uncorrected and deformation-corrected whole brain light sheet 
volume. Much of the existing literature for stereology has employed 
optical light microscopy and confocal microscopy with higher 
resolution and smaller field of view than that in the whole brain 
LSM images. However, the deformation, which is dependent on the 
fixation and staining method, is likely to be similar to that presented 
in Figures 2A,C,E. The compensation of this deformation is usually 
done through the application of an isotropic correction factor, but 
this factor may be  insufficient to fully address the nonuniform 

FIGURE 2

Effect of morphology correction on light-sheet datasets. (A) A single slice from a whole-brain LSM before correction. (B) The same slice as in (A) after 
correction using MRH. Magnified axial views of auditory areas and hippocampus before (C) and after (D) correction, and coronal views of the anterior 
temporal and posterior diencephalic region (showing the amygdaloid complex) before (E) and after (F) correction. The specimen is the same on both 
sides, and the colormap is used to illustrate the contrast between before and after correction.
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deformation arising from tissue processing. Figure 2B shows the 
LSM image with morphology correction by MRH, which 
significantly reduces the irregular distortion present in the raw LSM 
images. The magnified views of the posterior cerebrum (showing 
the auditory cortex and hippocampus (Figure  2D) and LGN 
(Figure 2F)) illustrate the benefits of the morphology correction 
method in improving the quality of imaging data and segmentation 
label maps, compared to Figures 2C,E. Supplementary Figure S4 
illustrates the differences in neuron density between raw LSM and 
deformation corrected LSM for 6 brain regions. The smallest percent 
difference (calculated as the difference between raw and corrected 
density over the corrected density), observed in the primary visual 
cortex, is 7%, while the largest, observed in the subiculum, is 64%. 
These results demonstrate that deformation is not uniform 
throughout the brain.

Figures 3A,C,E displays the label-map CCFv3. Data for the ABA 
were obtained by averaging 2-photon microscopy images of 1,600 
animals. The distortions from tissue handling are not consistent across 
all 1,600 animals. Wang et al. (2020) report variability in the volume 
of the regions in their atlas ranging from 6 to 80% so tissue handling 
introduces variation. Figures 3B,D,F displays the r1CCFv3 labels with 
morphology correction by MRH. The resulting corrected label map 
provides more accurate representation of brain regions (Figure 3).

3.2. Comparison of machine counting and 
human counting

To assess the accuracy and precision of our workflow, we chose 
five brain regions with cell densities we  determined would 
be countable: Dorsal part of the lateral geniculate complex (LGd), 
Auditory area (AUD), retrosplenial area (RSP), orbital area (Orb), and 
subicular region (SUBR). We  created 15–20 3D subvolumes for 
sampling within these regions with dimensions of 1,000 μm × 1,000 
μm × 12 μm (556 × 556 × 3 voxels) for visualization in Figures 4A,B, 
and 100 μm × 100 μm × 100 μm (56 × 56 × 25 voxels) for routine 
implementation of the workflow. The random forest classifier, trained 
on a random sub volume in the auditory cortex of a specimen not 
involved in the experiment, was applied automatically to identify the 
objects to be  included. We  randomly selected 10–15 subvolumes 
within the same datasets, and an experienced researcher manually 
counted the neurons within them by labeling neurons in subvolumes 
across 3–5 specimens. We compared the results of both methods and 
found that both manual counting and the machine had overall 
performance that was comparable (Figures 4A,B). One consideration 
to note is that during the manual labeling process, the researcher was 
involved in selecting the subvolumes, which introduced potential bias. 
Although efforts were made to minimize bias and select subregions 
randomly, there may have been a tendency to choose subregions with 
visually distinguishable neurons, leading to an uneven distribution. 
That means the manual classification has a tendency to 
underestimatesthe heterogenieoty of the neuron distribution. 
However, in the subsequent machine classifier analysis, subvolumes 
were automatically generated without bias. As a result, the machine 
counts in this panel exhibit greater variability in comparison. A 
statistical comparison is shown in Figure 4D.

Supplementary Table S2 presents a comparison between the 
proposed method and other cell counting software solutions.

3.3. Neuron counting in C57BL/6J mouse 
brain

We demonstrated the use of the pipeline in counting neurons in 
13 different brain regions across 7 specimens. We  choose 
representative regions to demonstrate the capability of our workflow 
in neocortex, hippocampus, amygdala, thalamus, and brainstem. 
These regions include (1) neocortex: orbital area (Orb), auditory area 
(AUD), retrosplenial area (RSP), primary visual area (VISp); (2) 
hippocampal region: entorhinal area (ENT), subicular region (SUBR), 
field CA1 (CA1), field CA3 (CA3); (3) amygdala: basolateral 
amygdalar nucleus (BLA); (4) thalamus: dorsal part of the lateral 
geniculate complex (LGd), and the entire thalamus (Th); (5) 
brainstem: facial motor nucleus (VII), principal sensory nucleus of the 
trigeminal (PSV). Initial measurements were performed on 5, 90-day 
old male C57BL/6J specimens. The results show that neuron density 
in some regions (LGd, AUD, RSP, Orb) is quite consistent across 
specimens, and much more variable while there is a high standard 
deviation in others (PSV, VISp, TH, BLA), as indicated by the relatively 
high standard deviation of the means (Figure  5). 
Supplementary Figure S5 and Supplementary Table S1 present the 
comparison between the neuron density obtained from our workflow 
and previous studies.

To assess the variability of our measurements, we calculated the 
coefficient of variation (CV) for the density and number of neurons 
in several brain regions across different specimens 
(Supplementary Table S3). The CV for neuron density ranged from 
0.062 in CA1 to 0.333 in VII, with an average of 0.139. The CV for 
neuron number ranged from 0.06 in CA1 to 0.44 in PSV, with an 
average of 0.17. These results indicate that there is considerable 
variation in neuron density and number across individual animals, 
even within the same brain region. Notably, the regions with the 
highest CV for neuron density and number were VII (0.333) and PSV 
(0.44), respectively. This is likely to be induced by the small sizes of 
these regions. The higher coefficient of variation for small regions may 
be due to minor displacements between the placement of individual 
delineations from the labelmap and the actual neuroanatomical 
structures, as discerned in LSM, especially for brainstem regions 
where deformation was significant. Conversely, the regions with the 
lowest CV for neuron density and number were CA1 (0.062), RSP 
(0.073), AUD (0.076), Orb (0.092), CA3 (0.091), and SUBR (0.097), 
respectively. These findings underscore the importance of accounting 
for inter-individual variability when analyzing neuronal parameters 
and highlight the need for careful consideration of sample size and 
statistical power in studies of brain structure.

3.4. Illustration of aging effects on the 
neuron density and number

Figure 6 presents a comparison between one young (111 day) and 
one old (687 day) BXD89 specimen to demonstrate the application of 
our workflow to a different strain and its potential to be  used to 
examine the impact of aging on neuron density. It is important to note 
that only two animals are being assessed in this Figure and the 
standard deviation thus reflects the heterogeneity of neuron 
distribution within each brain region, which was obtained by 
analyzing mean neuronal counts within the subvolumes. Our analysis 
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revealed that in certain regions, such as the orbital area (Orb), the 
observed decrease in neuron density was primarily due to a reduction 
in the total number of neurons, while in other regions such as the 
entorhinal area (ENT) and basolateral amygdala (BLA), the observed 
decrease in density was largely attributable to regional enlargement of 
the brain during aging. These findings underscore regional variation 
and the complexity of the aging process and highlight the need for 
careful consideration of volume and cellular number when studying 
brain development across the lifespan.

4. Discussion

We present a workflow that corrects the deformation introduced 
by the chemical treatment of brain tissue for LSM and uses an 
automated algorithm for neuron segmentation and counting through 
machine learning and post-processing. To improve the accuracy of the 
results, we use the MRH of the same specimen as a reference for LSM 
image morphology, as MRH provides in-skull images of the brain that 
closely approximate the compartmental configuration and accurate 
size of the living brain. Our method offers a reliable means of 

acquiring neuron number and density and requires less human labor 
and subjective judgment than previous methods. The method exhibits 
high flexibility, as it requires a much lower amount of pre-training 
data and demonstrates efficient computational time and performance 
compared to deep learning methods, as depicted in 
Supplementary Figure S6. It is also much easier to replicate across 
multiple brain regions and specimens. By correcting raw images and 
conducting region segmentation, our method provides improved 
estimates over previous counting methods. Furthermore, by 
incorporating the principles of optical fractionation, our workflow 
provides an unbiased sampling method with equal probability to 
sample for each section with a relatively low sampling ratio 
(Supplementary Table S4), resulting in reduced computational costs 
and representing a novel digital approach that has not been 
explored before.

To validate the method, we  used the workflow to analyze 13 
regions in different divisions of 5 C57BL/6 J specimens. The results, as 
shown in Figure  5, demonstrate the variability in neuron density 
across regions within the same animal and across animals for the same 
regions. In the Supplementary materials, we conducted a systematic 
search of the literature providing neuron counts of the same regions 

FIGURE 3

Comparison of similar levels from the ABA (A,C,E) and a single specimen imaged by MRH. (B,D,F) The colormaps are different because the ABA atlas is 
shown with the full complement of 461 (CCFv3) labels and the MRH is shown with the reduced (r1CCFv3) labels in which some ROI have been 
combined.
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for comparison with our method. As our method produces regional 
neuron density as its direct output, we assessed the accuracy of our 
results in terms of density. For most cortical regions, our findings were 

consistent with those of previous studies or fell within the range of 
previously reported results. However, in some regions, e.g., LGd, PSV, 
VISp, TH, and BLA, our results showed a higher neuron density than 
what was reported in earlier studies. This is likely due to our utilization 
of the morphology-corrected space for calculating neuron density. 
This space closely approximates the volume and morphology of the 
brain confined within the skull, which may have contributed to the 
observed differences in density measurements. In certain regions 
where our density measurements were markedly different from those 
reported in previous studies, such as the facial motor nucleus, 
we  manually counted the sub-regions to validate the neuron 
distribution. Our findings indicated that the neuron distribution in 
this region was indeed sparse, with a density measurement about six 
times lower than that reported in the Blue Brain Map (BBM) (Ero 
et al., 2018). We hypothesize that this discrepancy may be due to 
differences in data quality or acquisition methods between studies. 
BBM estimated neuron counts using a transfer function and Monte 
Carlo method applied to the ABA Nissl atlas. The authors only used 
whole-brain values from literature, such as the total number of cells 
and neurons in the mouse brain, to constrain their estimates of cell 
densities in each brain region. Further investigation is required to 
elucidate the causes of the observed discrepancy. Nonetheless, our 
method, which directly measures regional neuron density, provides a 
reliable alternative to indirect methods such as those used by BBM, 
and can contribute to a more accurate appreciation of brain structure.

Our method has two limitations. In those regions in which the cell 
density is so high that the resolution of the LSM we acquired is not 
sufficient to differentiate countable cells (e.g., dentate gyrus, granule cell 
layer of cerebellar cortex), the random forest classifier and watershed 
algorithms will fail, and hence the performance hinges on the volume 
filter, which approximates the neuron count by partitioning the volumes 
of nested neurons based on the average neuron size 
(Supplementary Section S7). A second limitation is that performance is 
dependent on the quality of the raw data. In cases where the tissue 
preparation and scanning are suboptimal, the method will not function 
properly. Although the data provided by LifeCanvas, which we used for 
our study, are generally of high quality, there are occasionally regions 
with poor image quality (as shown in Supplementary Figure S7), which 

FIGURE 4

Comparison of neuron density between the machine workflow 
(A) and manual counting (B). Note that both the labeling will go 
through watershed illustrated in (C) to ensure the connected surfaces 
are separated. Standard deviation is shown in (D), representing 
statistical variations across five different 90-day C57BL/6J specimens.

FIGURE 5

Demonstration of the variation of neuron density (A) and neuron number (B) across brain regions, as well as variations across specimens. Error bars are 
standard deviations of the means. The dots indicate neuron counts from individual specimens. Region: LGd: Dorsal lateral geniculate nucleus, AUD: 
auditory area, RSP: retrosplenial area, Orb: orbital area, SUBR: subiculum, VII: facial motor cortex, PSV: trigeminal, ENT: entorhinal area, CA1: field CA1, 
CA3: field CA3, VISp: primary cortex, TH: thalamus, BLA: Basolateral amygdala.
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can limit the method’s reliability. Advanced imaging techniques such as 
expansion microscopy, as demonstrated by Wassie et  al. (2019) or 
acquisition with higher power objectives will address resolution 
questions and are likely to produce reliable and accurate counts of 
neurons using our workflow.

The application of stereology to counting cells has a venerable 
history. As acquisition methods have improved the methods to count 
cells have been adapted to the newer data. The advent of tissue 
clearing and volume light sheet imaging yield opportunities for 
significant improvement in precision and accuracy. This is 
particularly important in our studies of the mouse brain as we seek 
apply this workflow to quantitative studies of the mophological and 
cytological impacts of neurodegeneration and aging. Correction for 
tissue changes, use of a more accurate label set, and automation 
described in this work will provide crucial tools in 
quantitative neuropathology.
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The brain structural connectome is generated by a collection of white matter fiber

bundles constructed from di�usion weighted MRI (dMRI), acting as highways for

neural activity. There has been abundant interest in studying how the structural

connectome varies across individuals in relation to their traits, ranging from age

and gender to neuropsychiatric outcomes. After applying tractography to dMRI

to get white matter fiber bundles, a key question is how to represent the brain

connectome to facilitate statistical analyses relating connectomes to traits. The

current standard divides the brain into regions of interest (ROIs), and then relies

on an adjacency matrix (AM) representation. Each cell in the AM is a measure

of connectivity, e.g., number of fiber curves, between a pair of ROIs. Although

the AM representation is intuitive, a disadvantage is the high-dimensionality

due to the large number of cells in the matrix. This article proposes a simpler

tree representation of the brain connectome, which is motivated by ideas in

computational topology and takes topological and biological information on the

cortical surface into consideration. We demonstrate that our tree representation

preserves useful information and interpretability, while reducing dimensionality

to improve statistical and computational e�ciency. Applications to data from

the Human Connectome Project (HCP) are considered and code is provided for

reproducing our analyses.

KEYWORDS

adjacency matrix, brain connectome, persistent homology, structural connectivity, tree

1. Introduction

The human brain structural connectome, defined as the white matter fiber tracts

connecting different brain regions, plays a central role in understanding how brain structure

impacts human function and behavior (Park and Friston, 2013). Recent advances in

neuroimaging methods have led to increasing collection of high quality functional and

structural connectome data in humans. There aremultiple large datasets available containing

1,000s of connectomes, including the Human Connectome Project (HCP) and the UK

Biobank (Essen et al., 2012; Bycroft et al., 2018). We can now better relate variations in the

connectomes between individuals to phenotypic traits (Wang et al., 2012; Hong et al., 2019;

Roy et al., 2019). However, the large amount of data also creates the need for informative

and efficient representations of the brain and its structural connectome (Galletta et al., 2017;

Zhang et al., 2018; Jeurissen et al., 2019; Pizarro et al., 2019; Sotiropoulos and Zalesky,

2019). The main focus of this article is a novel and efficient representation of the processed

connectome data as an alternative to the adjacency matrix (AM) as input to statistical

analyses.
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Diffusion magnetic resonance imaging (dMRI) uses diffusion-

driven displacement of water molecules in the brain to map the

organization and orientation of white fiber tracts on a microscopic

scale (Bihan, 2003). Applying tractography to the dMRI data, we

can construct a “tractogram” of 3D trajectories of white fiber tracts

(Jeurissen et al., 2019). It is challenging to analyze the tractogram

directly because (1) the number of fiber trajectories is extremely

large; (2) the tractogram contains geometric structure; and (3)

alignment of individual tracts between subjects remains difficult

(Zhang et al., 2019). Because of these challenges, it is common

to parcellate the brain into anatomical regions of interest (ROIs;

Desikan et al., 2006; Destrieux et al., 2010; Wang et al., 2010), and

then extract fiber bundles connecting ROIs. We can then represent

the brain structural connectome as a weighted network in the form

of an AM, a p by p symmetric matrix, with i, j-th entry equal to the

number of fiber curves connecting region i and region j, where p is

the total number of regions in the parcellation.

Statistical analyses of structural connectomes are typically

based on this AM representation, which characterizes the

connectome on a fixed scale depending on the resolution of ROIs.

However, research has shown that brain networks fundamentally

organize as multi-scale and hierarchical entities (Bassett and

Siebenhühner, 2013). Some research has attempted to analyze

community structures in functional and structural brain networks

across resolutions (Betzel and Bassett, 2017); however, these works

are limited to community detection. Brain atlases have anatomically

meaningful hierarchies but only one level can be captured by the

AM representation. If the lowest level in the atlas hierarchy with

the greatest number of ROIs is used, this creates a very high-

dimensional representation of the brain. The number of pairs of

ROIs often exceeds the number of connectomes in the dataset. This

presents statistical and computational challenges, with analyses

often having low power and a lack of interpretability (Cremers et al.,

2017; Poldrack et al., 2017).

For instance, to infer relationships between the connectome

and a trait of interest, it is common to conduct hypothesis tests for

association between each edge (connection strength between a pair

of ROIs) and the trait (Fornito et al., 2016; Gou et al., 2018; Wang

et al., 2019; Lee and Son, 2021). As the number of edges is very

large, such tests will tend to produce a large number of type I errors

without multiple testing adjustment. If a Bonferroni adjustment is

used, then the power for detecting associations between particular

edges and traits will be very low. A common alternative is to control

for false discovery rate, for example via the Benjamini-Hochberg

approach (Genovese et al., 2002). However, such corrections cannot

solve the inevitable increase in testing errors that occur with more

ROIs. An alternative is to take into account the network structure

of the data in the statistical analysis (see, for example Leek and

Storey, 2008; Fornito et al., 2016; Alberton et al., 2020). Such

approaches can potentially improve power to detect differences

while controlling type I errors through appropriate borrowing of

information across the edges or relaxation of the independence

assumption, but statistical and computational problems arise as the

number of ROIs increases. Finally, it is common to vectorize the

lower-triangular portion of the brain AM and then apply regression

or classification methods designed for high-dimensional features

(e.g., by penalizing using the ridge or lasso penalties).

To make the problems more concrete, note that a symmetric

p × p connectome AM has
(p−1)p

2 pairs of brain ROIs. For the

popular Desikan-Killiany parcellation (Desikan et al., 2006) with

p = 68,
(p−1)p

2 = 2, 278. A number of other common atlases have

many more than p = 68 brain regions, leading to a much larger

number of edges. Even if one is relying on data from a large cohort,

such as the UK Biobank, the sample size (number of subjects) is still

much smaller than the connectivity features, leading to statistical

efficiency problems without reducing the dimensionality greatly

from q =
(p−1)p

2 . Dimensionality reduction methods, such as

Principal Components Analysis (PCA), tensor decomposition, or

non-negative matrix factorization, can be a remedy for studying

relationships between the connectome and traits (Yourganov et al.,

2014; Smith et al., 2015; Zhang et al., 2019; Patel et al., 2020).

But, they may lack interpretability and fail to detect important

relationships when the first few principal components are not

biologically meaningful or predictive of traits.

In this paper, we propose a new representation of the brain

connectome that is inspired by ideas in computational topology, a

field focused on developing computational tools for investigating

topological and geometric structure in complex data (Carlsson,

2009; Edelsbrunner and Harer, 2010). A common technique in

computational topology is persistent homology, which investigates

geometry/topology of the data by assessing how features of the data

come and go at different scales of representation. Related ideas

have been used successfully in studying brain vascular networks

(Bendich et al., 2016), hippocampal spatial maps (Dabaghian et al.,

2012), dynamical neuroimaging spatiotemporal representations

(Lee et al., 2011; Geniesse et al., 2019), neural data decoding

(Rybakken et al., 2019), and so on (Sizemore et al., 2019). We

propose a fundamentally different framework, which incorporates

an anatomically meaningful hierarchy of brain regions within a

persistent homology approach to produce a new tree representation

of the brain structural connectome. This representation reduces

dimensionality substantially relative to the AM approach, leading

to statistical and computational advantages, while enhancing

interpretability. After showing our construction and providing

mathematical and biological justification, we contrast the new

representation with AM representations in analyses of data from

the Human Connectome Project (HCP).

2. Method

2.1. Tree construction

There is a rich literature defining a wide variety of parcellations

of the brain into regions of interest (ROIs) that are motivated by

a combination of biological and statistical justifications (Desikan

et al., 2006; Destrieux et al., 2010; Klein and Tourville, 2012). The

ROIs should ideally be chosen based on biological function and to

avoid inappropriately merging biologically and structurally distinct

regions of the brain. Also, it is important to not sub-divide the

brain into regions that are so small that (a) it may be difficult to

align the data for different subjects and (b) the number of ROIs is

so large that the statistical and computational problems mentioned

in the introduction are exacerbated. Based on such considerations,
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the Desikan-Killiany (DK) atlas is particularly popular, breaking the

brain into p = 68 ROIs (Desikan et al., 2006).

A parcellation such as DK is typically used to construct an

AM representation of the structural connectome at a single level

of resolution. However, we instead propose to introduce a multi-

resolution tree in which we start with the entire cortical surface

of the brain as the root node, and then divide into the right and

left hemisphere to produce two children of the root node. We

further sub-divide the two hemispheres into large sub-regions, then

divide these sub-regions into smaller regions.We continue this sub-

division until obtaining the regions of DK (or another target atlas)

as the leaf nodes in the tree. In doing this, we note that there is

substantial flexibility in defining the tree structure; we need not

choose a binary tree and can choose the regions at each level of

the tree based on biological function considerations to the extent

possible. Finally, we summarize the connectivity information at

different resolutions in the weights of the tree nodes.

In this article, we focus primarily on the following tree

construction based on the DK atlas for illustration, while hoping

that this work motivates additional work using careful statistical

and biological thinking to choose the regions at each layer of the

tree. The DK parcellation is informed by standard neuroanatomical

conventions, previous works on brain parcellations, conversations

with expert scientists in neuroscience, and anatomic information

on local folds and grooves of the brain (Desikan et al., 2006).

We use the Freesurfer software to obtain the DK parcellation

for each individual brain, and DK parcellation divides each

hemisphere into 34 regions that can be organized hierarchically

(Desikan et al., 2006). Specifically, each hemisphere has six regions:

frontal lobe, parietal lobe, occipital lobe, cingulate cortex, temporal

lobe, and insula. All of these regions, except the insula, have

multiple sub-regions, many of which are further sub-divided in

the DK atlas. The full hierarchy can be found in Appendix 1.1

(Supplementary material). We calculate the weight of each node

as the sum of all connections between its immediate children. For

instance, the weight at the root node will equal the sum of all the

inter-hemisphere connections. The weight of the left hemisphere

node will equal the sum of all connections among the left temporal

lobe, frontal lobe, parietal lobe, occipital lobe, cingulate cortex,

and insula. The weight of the left temporal lobe is the sum of all

connections between regions within the temporal medial aspect

and lateral aspect. We continue this calculation for all nodes that

have children. The weights of a leaf node will be all connections

within that region, or equivalently, the diagonal element at that

region’s index on the AM representation.

To rephrase the tree construction in math notations, let A =

A1
1 be the whole brain, A2

1 be the left hemisphere, A2
2 be the

right hemisphere, and Al
i be the i-th region at level l, where l =

1, · · · , L and i = 1, · · · ,Nl. For example, in DK, L = 5, N1 =

1, N2 = 2, N3 = 12,N4 = 44,N5 = 32 (Appendix 1.1 in

Supplementary material). Define the weight of region Al
i, denoted

byHl
i , asH

l
i := number of fibers connecting any two children of Al

i

for all l = 1, 2, · · · , L and i = 1, · · · ,Nl. For example, for DK-

based tree, H2
1 is the number of fibers connecting children of left

hemisphere, that is, fibers between temporal lobe, cingulate cortex,

occipital lobe, parietal lobe, and frontal lobe. Similarly, H3
1 is the

number of fibers connecting children of temporal lobe, that is, fibers

between medial aspect and lateral aspect.

Figure 1 provides an illustration of the DK-based tree structure

and the connections summarized at each node. Often the

connections within the leaf nodes are not estimated in the AM

representation (i.e., the diagonal elements of an AM are set to

zero), thus, they have weights zero and are omitted from the

figure. We also introduce a more compact visualization of the

tree based on circle chord plots. Figure 2 shows the steps in our

pipeline to construct a brain tree. The final output circle plot

displays bundles of white matter tracts as overlapping chords scaled

inversely proportional to the level of the tree they belong to and

color-coded by the node they belong to.

2.2. A persistent homology interpretation

Persistent homology is a method for computing topological

features of a space at different resolutions. As quantitative features

of noisy data, persistent homology is less sensitive to the choice of

coordinate andmetric and robust to noise (Carlsson, 2009). The key

construction in persistent homology is the filtration, a multi-scale

structure similar to the brain network. As a result, we can interpret

the above defined Hl
k
as corank of the persistent homology. As

a rigorous definition of persistent homology is highly technical,

we present a simple version and leave the rigorous version and

the proof to the Appendix in Supplementary material. For relevant

background in topology (see Hatcher, 2002; Munkres, 2016).

Theorem 1. Hl
k
is the corank of the persistent homology.

Theorem 1 provides a topological interpretation of Hl
k
, and

partially explains why the tree T = (A,H) is a powerful

representation of the brain network. It states thatHl
k
, our proposed

summary statistic, is the corank of the persistent homology. In

simpler terms, this means that our statistic measures the “holes”

or loops in the structure of the brain network that persist across

different levels of partition. These holes can be thought of as

stable features of the network, in that they remain even when

we change our perspective or level of detail. As we increase

the resolution (i.e., when we move from looking at large-scale

structures to focusing on smaller-scale details), some holes may

“close up” (disappear), while others continue to exist. These

persistent holes can inform us about the topological structure of

the brain network. Thus,Hl
k
, by capturing these persistent features,

provides a summary statistic that is less sensitive to changes in

perspective and robust against noise.

We consider the tree T = (A,H) to be a powerful

representation because it captures not just the connections between

different regions of the brain (as the adjacency matrix A does),

but also the persistent homological features (captured by Hl
k
). This

allows us to include topological information, like the persistence

of holes at different scales, which can potentially capture complex

structural information about the brain network that a simple

adjacency matrix might miss. In effect, T = (A,H) provides us with

a richer, more nuanced view of the brain network, thus making it a

powerful representation for brain connectivity analysis.
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FIGURE 1

Visualization of the DK tree structure and connections summarized at each node on the brain image. Leaves, including the insula, have no internal

connections and are omitted for readability. Individual brains were created using the brainconn R package (Orchard et al., 2021).

3. Results

3.1. Data description

We investigate our tree representation’s ability to preserve

information from the AM representation while improving

interpretability in analyses relating brain structures to behavioral

traits. We use neuroimaging data and scores on various behavioral

assessments from the HCP (Glasser et al., 2013, 2016). The HCP

collects high-quality diffusion MRI (dMRI) and structural MRI

(sMRI) data, characterizing brain connectivity of 1,200 healthy

adults, and enables comparison between brain circuits, behavior

and genetics at the individual subject level (Essen et al., 2012). We

use data from the 2017 release accessed through ConnectomeDB.

Details on data acquisition and preprocessing pipeline of dMRI

and sMRI data in the HCP can be found in Essen et al. (2012)

and Glasser et al. (2013, 2016). To produce connectome data

from raw dMRI/sMRI data, we use the reproducible probabilistic

tractography algorithm in Girard et al. (2014) to construct

tractography data for each subject, the DK atlas (Desikan et al.,

2006) to define the brain parcellation, and the preprocessing

pipeline in Zhang et al. (2018) to extract weighted matrices of

connections. More details of these steps can be found in Zhang

et al. (2019). In the extracted data matrices, each connection

is described by a scalar number. The HCP data include scores

for many behavioral traits related to cognition, motor skills,

substance use, sensories, emotions, personalities, and many

others. Details can be found at https://wiki.humanconnectome.

org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+

for+the+1200+Subject+Release. The final data set consists of

n = 1, 065 brain connectomes and 175 traits. We construct the

tree representations of the connectomes based on the construction

described in Section 2.1.

We conduct purely visual exploratory comparisons of the

tree and AM representation in Figure 3. Figure 3A shows how

four example brain connectomes are visualized differently under

two representations. We see that different nodes in the tree

representation correspond to different pixel patterns in the AM

representation. Figure 3B shows the percent difference in brain

connections between the top and bottom ten percent of scores

in four cognitive tasks. The percent difference in the AM

representation of a trait is calculated as
CAM
top −CAM

bottom

CAM
bottom

, where CAM
top is

the average AM of people who score in the top 10% of that trait,

and CAM
bottom

is the average AM of people who score in the bottom

10%. Similarly, the percent difference in the tree representation of

a trait is calculated as
Ctree
top −Ctree

bottom

Ctree
bottom

, where Ctree
top is the average tree

of people who score in the top 10% of that trait, and Ctree
bottom

is

the average tree of people who score in the bottom 10%. Figure 3B

shows the visualization of the tree representation as amore effective

exploratory analysis tool to find regions of the brain with large

percentage change between the top and bottom scores. On the other
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FIGURE 2

The tree construction pipeline: first, tractography and Desikan-Killiany (DK) protocol are used to estimate an adjacency matrix; then, the adjacency

matrix and a hierarchy based on the DK protocol are combined to produce the tree representation. We introduce a compact circle chord plot that

shows the tree representation of white matter fiber tracts connecting brain regions from the DK protocol. Connections are color-coded by the node

they belong to, the same color codes as in Figure 1, and scaled inversely proportional to the level they belong to in the tree.

hand, the AM, being a much higher dimensional representation,

can capture connection-specific associations, especially negative

ones that get washed out at the brain-region level.

To quantitatively compare the strengths and weaknesses of

the AM and tree-based representations of the brain connectome

in the next subsections, we use a simple two-step approach: first

vectorizing the connectome data, and then applying a regression

method. Since a connectomematrix is symmetric, we only vectorize

the upper triangular part, resulting in a 2,278-dimensional vector

for each matrix. We also remove pairs of ROIs that show no

variability in connectivity across subjects, reducing the vectorized

matrices to 2,202 dimensions. Self-edges are not recorded in the

connectome matrices, so the leaves in the tree representation have

zero weights. As a result, we remove the leaf nodes, leaving the

vectorized trees to be 23-dimensional instead of 91-dimensional.

To apply regression algorithms, we first reduce the dimension

of the adjacency matrix to K ≪ 2, 202 by selecting the top principal

components (PCs). We observed that the regression MSEs of

commonly used algorithms including linear regression, decision

trees, support vector machines (SVM), boosting, Gaussian process

(GP) regression, etc., did not decrease when we increased the

number of PCs, and Zhang et al. (2019) also observed that the

regression performance is robust for K = 20–60. As a result, we

keep the first K = 23 PCs to match the dimension of the tree

for a fair comparison. We refer to the data from the vectorized

trees as Dtree and that from principal components of the vectorized

matrices as DPCA.

3.2. Canonical correlation analysis

Human brain connectivity has been shown to be capable

of explaining significant variation in a variety of human traits.

Specifically, data on functional and structural connectivity have

been used to form latent variables that are positively correlated with

desirable, positive traits (i.e., high scores on fluid intelligence or

oral reading comprehension) while also being negatively correlated

with undesirable traits (i.e., low sleep quality, frequent use of

tobacco, or cannabis; Smith et al., 2015; Tian et al., 2020). In this

first analysis, we compare how strongly latent variables inferred

from the two representations are associated with the perceived

desirability of traits. We choose to work with a subset of 45 traits

that have been shown to strongly associate with brain connectome

variations, including cognitive traits, tobacco/drug use, income,

years of education, and negative and positive emotions (Smith et al.,

2015; Zhang et al., 2019). We include only traits with continuous

values to simplify the analyses. The full list of variables used can

be found in the Appendix (Supplementary material). We will use

a statistical method called canonical correlation analysis (CCA),

which finds linear combinations of the predictors that are most
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FIGURE 3

Examples of adjacency matrices and corresponding tree representations of brain connectomes. (A) The sample average from the HCP data (left

most) and its modifications so that di�erent regions of the brain (i.e., the frontal lobe, temporal lobe, and occipital lobe) have denser connections.

Because these modifications are unrealistic and only meant to better distinguish how connections are visualized di�erently in the AM and tree

representations, color scales are omitted. Values in the adjacency matrices are normalized for visual clarity. (B) Percent di�erence in brain

connections between the top and bottom ten percent of scores in four cognitive tasks.

correlated with some other linear combinations of the outcomes. In

our case, the predictors are principal components of the vectorized

AM or features of the vectorized trees, and the outcomes are scores

measured on 45 traits. Mathematically, let X ∈ R
n×p be the feature

matrix (n = 1, 065, p = 23), and Y ∈ R
n×q be the outcome matrix

(q = 39 with some traits being removed due to extensive missing

values, see the next paragraph for more details). Additionally, let

ak ∈ R
p and bk ∈ R

q, k = 1, ..., min(p, q) be pairs of linear

transformation of the data. We refer to (rk, sk) = (Xak,Ybk)

as the feature and outcome canonical variates or the kth pair of

canonical variates. CCA aims to learn ak, bk such that (ak, bk) =

argmax
ak ,bk

corr(rk, sk), so the linear transformations maximize the

correlation between components of the canonical variates pair.

Pairs of canonical variates are also constrained to be orthogonal,

that is, rT
k
rh = 0 and s

T
k
sh = 0 for k 6= h.

Since this analysis considers all traits simultaneously, we

remove traits with extensive missing values (i.e., more than 10% of

all observations) and are left with 39 traits.We then normalizeDtree,

DPCA, and these 39 trait scores, and fill in missing values with the

feature’s mean. We fit two CCAs using Dtree and DPCA separately,

and use the Wilks’s lambda test to check that the first canonical

variate pair, which has the largest co-variation, is significant at the

5% level in each model. We hand-label the traits as desirable or

not desirable based on previous research (Smith et al., 2015; Tian

et al., 2020). Figure 4 plots the correlation of the trait scores with the

first feature canonical variate and color-codes traits by desirability.

Traits with smaller fonts have smaller contributions to the linear

combination that makes up the first outcome canonical variate.

It shows that desirable traits tend to be more highly negatively

correlated with the first feature canonical variate compared to the

undesirable traits, which tend to be weakly correlated. This is most

clear with traits with strong signal such as fluid intelligence and

spatial orientation. With the same number of features, the tree

representation produces a canonical variate that can separate traits

into groups of the same desirability slightly better than the principal

components of the AM can.
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FIGURE 4

Correlations between behavioral traits and the first canonical variate extracted from 23 principal components of the AM compared to the 23 non-leaf

nodes of the tree representation. The y-axis has been transformed so that traits do not overlap. The font size of each trait indicates the magnitude of

the coe�cients of a linear combination that defines the first canonical variate.

3.3. Prediction

Additionally, we consider the performance of these

representations in predictive tasks. We hypothesize that if

the tree representation preserves important information from the

AM representation, they will provide comparable performance in

predicting trait scores. Since in Section 3.2, cognitive traits generally

have the largest correlations with the first feature canonical variate,

we will examine cognitive traits in more details in this section.

Specifically, we include all 45 cognitive traits in the HCP data,

including different metrics of the same trait. We fit a baseline

model that returns the sample mean and 19 popular machine

learning models (including linear regression, decision tree, SVM,

ensemble trees, GP regression, and their variants) to the Dtree and

DPCA data. To evaluate predictive performance, we consider two

scale-free metrics: (1) correlations between predictions and true

outcomes and (2) the percentage of improvement in test MSE

compared to the baseline predictor. We calculate these metrics

using five-fold cross validation repeated 10 times. Figures 5,

6 shows the cross-validated predictive performance for two

representative regression algorithms: linear regression and GP

regression. Linear regression represents a simple, interpretable,

and widely used algorithm, while GP regression is a flexible

algorithm that has the best overall performance among the 19

algorithms we studied. For each algorithm and each trait, the

x-axis is the performance of the AM representation while the

y-axis is that of the tree representation. Points above the diagonal

line y = x indicate better performance by the tree representation,

while points below the line indicate better performance by

the AM representation.

Overall, the performance of both representations seems

similar. However, for most traits, even when considering the
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FIGURE 5

Percentage of change in MSE compared to baseline of linear regression and GP regression using tree and AM representation in predicting 45

cognitive traits.

FIGURE 6

Correlation between predictions and observed outcomes of linear regression and GP regression using tree and AM representation in predicting 45

cognitive traits.

GP regression with best overall performance, the correlation is

smaller than 0.2, and the improvement in test MSE is <3%.

This suggests that the vectorized brain connectivity might not

be relevant to predicting most of these traits. If we focus on

traits with large correlations or improvement in MSE, the tree

representation has better performance in terms of both correlation

and improvement in MSE for five out of eight traits with

correlations >0.2. These traits include fluid intelligence, picture

vocabulary, spatial orientation, and oral reading recognition, which

also have the largest correlations with the canonical variate in

Section 3.2.

3.4. Interpretability of regression

Finally, we compare interpretability of the two representations.

Scientists are often interested in identifying structures in the

connectomes that are associated with traits to answer questions

such as which kind of connections might be damaged by routine

use of drugs or which might be responsible for enhanced working

memory. Therefore, we compare interpretability, in terms of

biologically meaningful inference, of regression results using the

two representations. We focus on spatial orientation (number

correct), picture vocabulary (age-adjusted), fluid intelligence
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(correct responses), oral reading recognition (age-adjusted), and

working memory (age-adjusted) because these traits show strong

associations with the connectomes in the CCA and prediction tasks.

We fit a separate linear regression with Bayesian model

selection on Dtree and DPCA to infer associations between brain

connectomes and the traits mentioned above. Bayesian model

selection accounts for uncertainty in the model selection process

by posterior probabilities for the different possible models. The

regression coefficients are averaged across all models, weighted

by estimated model posterior probabilities. For feature selection,

we define important features as those with posterior inclusion

probabilities of more than 0.75. For models using Dtree, we simply

interpret posterior means and credible intervals of the estimated

effects of important features directly. Figures 7, 8 (left column)

show tree features whose colors are based on their estimated

coefficients, and opacity are based on their posterior inclusion

probabilities.

For the models using DPCA, after selecting important principal

components, we can calculate a regression coefficient for each brain

connection from the regression coefficients of these important

principal components. Let X be an n × p matrix of vectorized

brain connections whose columns have been standardized. Recall

that PCA is based on the singular-value decomposition of the data

matrix X = UDVT , where VVT = I,UTU = I and D is a diagonal

matrix of p non-negative singular values, sorted in decreasing

order. The jth principal axis is the jth eigenvector or the jth column

of V , and the jth principal component is the jth column of UD.

With K PCs, we get a rank-K approximation of X ≈ UKDKV
T
K

where MK contains the first K columns of matrix M. Applying the

approximation to the linear model Y = Xβ + ǫ ≈ UKDKθ + ǫ,

we get VT
Kβ ≈ θ , where θ is a K-vector of regression coefficients of

the principal components. There are multiple generalized inverses

β̂ = VKθ + b for b such that VT
Kb = 0. We will use b = 0 to

get the standard least-norm inverse β̂ = VKθ as estimates of the

regression coefficient for the original brain connections (Bernardo

et al., 2003). We interpret the results based on 50 connections with

the largest coefficient magnitude. Figures 7, 8 (right column) show

these connections colored by their estimated coefficients.

The tree-based model finds no structure statistically significant

(with posterior inclusion probability>0.75) in predicting enhanced

working memory. This is consistent with previous sections

showing weak signals for associations between working memory

and brain connectomes. The matrix-based model finds some

cross-hemispheric connections between temporal lobes positively

correlated with enhanced memory, which is supported by prior

research (Eriksson et al., 2015). However, it also finds many

right hemispheric connections negatively correlated with these

scores, which contradicts some prior findings (Poldrack and

Gabrieli, 1998). For oral reading recognition, the models find cross-

hemispheric and left-hemispheric connections important in both

the tree and adjacency matrix representations. This is consistent

with prior research that showed better reading ability associated

with more cross-hemispheric connections between frontal lobes

(Zhang et al., 2019) and with increased fractional anisotropy in

some left hemispheric fiber tracts (Yeatman et al., 2012). The

matrix-based model additionally finds many connections across

all regions in the right hemisphere to be important, among

which the insula, frontal opercular, and lateral temporal lobe

have previously been found to correlate with this score (Kristanto

et al., 2020). On the other hand, the tree-based model found

increased connectivity in the right occipital lobe to negatively

correlate with higher scores. While healthy adults typically have

larger left occipital lobar volume, research has found associations

between developmental stuttering and phonological dyslexia with

rightward occipital asymmetry or no occipital asymmetry (Foundas

et al., 2003; Zadina et al., 2006), which is consistent with our

tree-based model’s result. For fluid intelligence, the tree-based

model finds connections within the left hemisphere and between

hemispheres to be important. The matrix-based model finds

within-hemisphere connections, especially those involving the

frontal lobes, to be important. The fluid intelligence score serves as

proxy for “general intelligence” (Raven, 2000; Gershon et al., 2014),

which relies on many sub-networks distributed across the brain

(Dubois et al., 2018). For the vocabulary task, the tree-based model

finds connections within the left hemisphere, while the matrix-

based model finds connections within both hemispheres, to be

important. Both results support existing findings that interpreting

meanings of words activates many regions across the brain (Huth

et al., 2016). Finally, in the spatial orientation task, the tree-

based model finds cross-hemispheric connections to be important

and positively correlated with better scores, while the matrix-

based model does for connections between regions within each

hemisphere (Figure 8, bottom). Both are somewhat similar to

prior research that found decreased cross-hemispheric and right

hemispheric connectivity to be associated with impaired spatial

recognition of stroke patients (Ptak et al., 2020). Overall, we

observe that the results from the tree representation are easier to

interpret because of the inherent low-dimensional and biologically

meaningful structure. The results from the AM representation

tend to be noisier, and more likely to involve negative correlations

between connectivity and better performance in cognitive tasks.

Potentially, the representations may better encode different kinds

of information that are both important.

4. Discussion

We propose a novel and efficient tree representation based

on persistent homology for the brain network. Through analyses

of the HCP data, we show that the tree representation preserves

information from the AM representation that relates brain

structures to traits while being much simpler to interpret.

Simultaneously, it reduces the computational cost and complexity

of the analysis because of its inherent lower dimension. We believe

the advantages of the tree representation will be more evident on

small brain imaging data sets.

Our new representation opens doors to new mathematical and

statistical methods to analyze brain connectomes; in particular,

taking into account the tree structure of the data. Topological

data analysis (TDA) uses notions of shapes and connectivity to

find structure in data, and persistent homology is one of the most

well-known TDA methods (Wasserman, 2017). TDA has been

used successfully in studying brain networks (Saggar et al., 2018;

Gracia-Tabuenca et al., 2020), but we provide a fundamentally

different approach. Our analyses of the connectome trees in this

paper are simplistic. We treat tree nodes as independent and
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FIGURE 7

Brain connectome structures significantly associated with each trait inferred using the tree representation (left) and principal components of the AM

representation (right). Colors represent the sign and magnitude of significant (i.e., posterior inclusion probability >0.75) regression coe�cients. For

tree-based results, the opacity also represents the posterior inclusion probability to improve the visibility of bundles of connections with larger e�ects.

non-interacting. Future work should consider the tree structure

to enforce dependence between the nodes, and hence, between

their effects on behavioral traits. The tree structure may also be

exploited to model interactions between connectome structures

across different scales. For instance, Bayesian treed models are

flexible, nonparametric methods that have found widespread and
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FIGURE 8

(Continue) Brain connectome structures significantly associated with each trait inferred using the tree representation (left) and principal components

of the AM representation (right). Colors represent the sign and magnitude of significant (i.e., posterior inclusion probability >0.75) regression

coe�cients. For tree-based results, the opacity also represents the posterior inclusion probability to improve the visibility of bundles of connections

with larger e�ects.

successful applications in many domains (Linero, 2017). Existing

treed models might prove unwieldy to fit and interpret on AM-

based brain networks but their modifications may fit the nature of

our tree representation well.
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Introduction: Moyamoya disease (MMD) is associated with a risk of postoperative 
cerebral hyperperfusion syndrome (CHS) after revascularization surgery. This 
study aimed to explore the feasibility of using three-dimensional pulsed arterial 
spin labeling (3D PASL) and phase contrast (PC) magnetic resonance imaging (MRI) 
for predicting CHS occurrence in patients with MMD before revascularization 
surgery.

Methods: Overall, 191 adult patients (207 hemispheres) with MMD who underwent 
combined revascularization surgery were included in this study. Preoperative 
3D PASL-MRI and PC-MRI were performed before surgery. The PASL-MRI data 
were analyzed using SPM12. Patient clinical information, average flow, and 
preoperative cerebral blood flow (CBF) were compared between the non-CHS 
and CHS groups.

Results: Among the patients, 45 (21.74%) developed CHS after revascularization 
surgery. No significant differences were noted in age, sex, clinical symptoms, 
hypertension, diabetes, surgical side, or history of revascularization surgery 
between the non-CHS and CHS groups. However, the average flow in the 
superficial temporal artery was significantly lower in the CHS group than in the 
non-CHS group (p  <  0.05). Furthermore, 11 clusters of preoperative CBF values 
were significantly greater in the CHS group than in the non-CHS group [p  <  0.05, 
false discovery rate (FDR) corrected]. A significant correlation was also observed 
between the preoperative time-to-flight MR angiography (MRA) scores and CBF 
values in patients with MMD (p  <  0.05).

Conclusion: Compare patients with lower preoperative CBF and higher 
preoperative average flow in the STA, patients with higher preoperative CBF 
and lower preoperative average flow in the STA are more likely to develop 
postoperative CHS Preoperative PASL-MRI and PC-MRI examinations may help 
to screen patients at high risk of developing CHS after revascularization surgery.
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1. Introduction

Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular 
disease of unknown etiology. It is characterized by steno-occlusive 
changes in the terminal part of the internal carotid artery and an 
abnormal development of vascular network (moyamoya vessels) at the 
base of the brain (Research Committee on the Pathology and 
Treatment of Spontaneous Occlusion of the Circle of Willis, and 
Health Labour Sciences Research Grant for Research on Measures for 
Infractable Diseases, 2012). The symptoms of MMD primarily result 
from two major causes: brain ischemia (transient ischemic attacks, 
stroke, and seizures) and the compensatory response to ischemia. 
These include the common symptom of headache, which may be due 
to dilated transdural collaterals, and another symptom of hemorrhage, 
which is caused by fragile moyamoya vessels (Scott and Smith, 2009).

MMD often presents at younger ages, and its progressive 
characteristics can lead to irreversible brain damage due to prolonged 
brain hypoperfusion and multiple cerebral infarction/hemorrhagic 
events, resulting in severe disability and a poor prognosis (Fung et al., 
2005). Revascularization surgery, including indirect, direct, and 
combined procedures, is recommended to improve cerebral perfusion, 
reduce the incidence of cerebrovascular events, and prevent 
neurocognitive decline (Zhang et al., 2020). Indirect procedures in 
combination with direct bypass offer the advantages of both direct and 
indirect bypass and are recommended for patients with MMD 
(Esposito et al., 2018). However, it should be noted that the superficial 
temporal artery-middle cerebral artery (STA-MCA) bypass provides 
only a limited blood supply (Kazumata et al., 2014).

Patients with MMD are more likely to experience postoperative 
cerebral hyperperfusion syndrome (CHS), compared to patients with 
other atherosclerotic diseases (Fujimura et al., 2011). Postoperative CHS 
can cause transient neurological symptoms, including permanent 
neurological defects, as intracranial vasculature pressure increases, 
which may elicit intracranial hemorrhage and even hematogenous 
cerebral edema (Park et  al., 2018). Multiple studies recommend 
maintaining low perioperative blood pressure to reduce the risk of 
postoperative CHS (Hayashi et al., 2012). However, lowering blood 
pressure can also result in cerebral hypoperfusion and an increased risk 
of cerebral infarction after surgery (Hayashi et al., 2012). Some studies 
suggest induction of hypertension and hypervolemia during the 
perioperative period to prevent neurologic complications (Li et  al., 
2022). The identification of high-risk patients for developing 
postoperative CHS before surgery is crucial. Implementing appropriate 
treatment during the perioperative period is essential in preventing 
postoperative CHS and avoid adverse events at the same time, this may 
improve the overall prognosis of these patients (Østergaard et al., 2014).

Various imaging modalities can evaluate cerebral perfusion status. 
Computed tomography and single-photon emission computed 
tomography are radiation-based techniques, while magnetic resonance 
imaging (MRI) is a nonradiative alternative. MRI techniques include 
perfusion imaging, dynamic susceptibility contrast, and arterial spin 

labeling (ASL). ASL-MRI is magnetically labeled by the radiofrequency 
(RF) pulse protons of arterial blood flowing into the brain as an 
endogenous tracer (Zaharchuk et al., 2009). The cerebral blood flow 
(CBF) of brain tissues is quantified by estimating the labeled arterial 
blood water (Goetti et al., 2013). Studies have shown that even patients 
with normal renal function may have chronic gadolinium deposition in 
brain tissue after repeated intravenous injections of gadolinium-based 
contrast agents (McDonald et al., 2015). The ASL sequence presents a 
viable alternative for gadolinium-based contrast perfusion imaging. ASL 
permits repeated examinations without the risk of contrast leakage or 
residuals, and its clinical utility spans from ischemic stroke to 
arteriovenous malformations. ASL also has the potential to measure CBF 
patterns in patients with MMD (Federau et  al., 2017). In addition, 
quantitative phase-contrast MR imaging (PC-MRI) can measure blood 
flow in a specified vessel without the need of contrast agent.

Patients with MMD, who are typically young, require regular MR 
examinations throughout their lifetime. This renders ASL sequences 
and quantitative PC-MRI highly suitable those patients. This study 
aimed to identify potential risk factors for postoperative CHS in adult 
patients with MMD who underwent surgical revascularization using 
three-dimensional (3D) pulsed arterial spin labeling (PASL)-MRI and 
PC-MRI were employed. We anticipate that the findings of this study 
contribute to the advancement of personalized medicine, 
implementation of appropriate treatment during the perioperative 
period, and improved patient care in Moyamoya disease.

2. Materials and methods

2.1. Clinical data and participants

This study was approved by the Ethics Committee of HuaDong 
Hospital (approval no. 2018030). All examinations in current study 
are in accordance with relevant regulations and guidelines. All patients 
in current study provided written informed consent.

From August 2018 to September 2022, a total of 191 adult patients 
with MMD (mean age, 43.80 ± 11.29 years; range, 18–65 years; female, 
102; male, 89) were included in this study. A small subset (16/191) of 
these participants underwent bilateral revascularization surgery. 
Finally, 207 hemispheres were included in this study. Digital 
subtraction angiography (DSA) was used to diagnose MMD (Fukui, 
1997). The inclusion criteria were as follows: (i) patients aged 
≥18 years; (ii) those with no contraindication to MR examination; and 
(iii) those who underwent combined revascularization surgery 
[encephalo-duro-myo-synangiosis (EDMS) combines STA-MCA 
bypass]. The exclusion criteria were as follows: (i) patients with any 
other neurosurgical disease and (ii) those who underwent only 
STA-MCA bypass or EDMS surgery. The enrolment flowchart is 
shown in Figure 1. In this study, the preoperative and postoperative 
blood pressure and blood glucose will be  carefully monitored for 
patients with hypertension and diabetes (blood glucose is controlled 
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within the range of 7–9 mmol/L; systolic blood pressure is controlled 
within the range of 120–130 mmHg).

2.2. MRI examination protocol

All MRI examinations were performed using a 3-T machine 
(Siemens Prisma; Siemens Medical Solutions) with a 32-channel 

head–neck coil. Preoperative MRI examinations were conducted 
within 1 week before surgery.

The parameters for 3D PASL acquisition were as follows: label time: 
700 ms; post-labeling delay time: 1,290 ms; inversion time: 1,990 ms; field 
of view (FOV): 192 × 192; voxel size: 3 × 3 × 3 mm; slice thickness: 3 mm 
with a 1.5 mm gap; time to echo (TE): 16.18 ms; repetition time (TR): 
4,600 ms; axial slices: 40; number of excitations: 4; and time of acquisition 
(TA): 296 s. The other MRI sequence parameters are listed in Table 1.

FIGURE 1

Flowchart describing the patient inclusion process.

TABLE 1 MRI scanning sequences and parameters.

TR/TE (ms) Thickness 
(mm)

Flip angle 
(°)

Intersection 
gap

TA FOV 
(cm2)

Matrix b value

T1WI 230/2.46 5 70 30% 25 s 22 × 22 256 × 192 /

T2WI 5000/117 5 90 30% 54 s 22 × 22 384 × 281 /

FLAIR 8000/85 5 140 20% 1 min 36 s 22 × 22 256 × 162 /

DWI 1300/62 5 192 30% 30 s 24 × 24 192 × 192 0,1,000

T1-MPRAGE 2300/2.32 0.9 8 50% 5 min 22 s 26 × 26 256 × 256 /

TOF-MRA 21/3.43 1 18 −18.75% 5 min 13 s 22 × 22 320 × 180 /

PC-MRI (pre-

scan)
84.6/4.86 6 20 20% 19 s 34 × 34 192 × 68

/

PC-MRI 73.08/7.54 4 10 20% 5 min 29 s 18 × 18 336 × 336 /

TR, time of repetition; TE, time of echo; FOV, field of view; TA, time of acquisition; FLAIR, fluid-attenuated inversion-recovery sequence; DWI, diffusion-weighted imaging; T1-MPRAGE, T1 
magnetization prepared rapid acquisition gradient echo; TOF-MRA, time-to-flight MR angiography; PC-MRI, phase-contrast MRI.
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The 3D-time-of-flight (TOF) MR angiography (MRA) sequence, 
from the top of the skull to the common carotid artery, was located 
using the T1- MPRAGE sequence. The TOF-MRA sequence is 
reconstructed by maximum intensity projection (MIP), and it was 
used to locate the PC MRI sequence. The detailed procedure for 
measuring the average flow in the internal carotid artery (ICA), basilar 
artery (BA), and superficial temporal artery (STA) is consistent with 
a previous study (Gao et al., 2019).

2.3. MRI data Preprocessing

The 3D PASL data were analyzed using SPM12 software 1 and the 
ASL toolbox2 (Wang et al., 2008). In this study, CBF was quantitatively 
assessed at the whole-cerebral voxel level, using an individual’s 
T1-MPRAGE anatomical scan as a reference. The detailed procedure 
for ASL image analysis has been previously described (Huang et al., 
2022). CBF map values were reported in absolute units 
(mL/100 g/min).

The MIP images of the MRA sequence were used to assess the 
MRA scores of the intracranial arteries. Two senior neuroradiologists 
with more than 10 years of experience evaluated the MRA scores 
following previously reported criteria (Houkin et al., 2005). The total 
MRA scores ranged from 0 to 20.

2.4. Diagnosis of CHS, grouping, and 
analysis

In this study, postoperative symptomatic CHS was diagnosed if 
patients experienced severe headaches, seizures, or new neurological 
deficits developed after surgery, and brain CT images or/and diffusion 
magnetic resonance images shows neither definite hematomas nor 
definite acute infarctions (van Mook et al., 2005; Iwata et al., 2014). 
The diagnosis of postoperative symptomatic CHS was made by a 
senior neurosurgeon who was blinded to the study. Based on the 
presence or absence of CHS, the patients were divided into CHS and 
non-CHS groups. The preoperative CBF status and average flow in the 
ICA, STA, and BA were compared between the two groups.

2.5. Statistical analyses

An independent t-test was used to compare the age and average 
flow in the ICA, STA, and BA between the CHS and non-CHS groups. 
The average flows of the target blood vessel were separately measured 
for the left and right sides, and the data from both sides were averaged. 
The Chi-squared test was used to compare categorical variables, such 
as sex, clinical symptoms, diabetes, hypertension, surgical side, and 
history of revascularization surgery between the CHS and non-CHS 
groups. Statistical analyses were conducted using the Statistical 
Package for the Social Sciences (version 24.0; IBM SPSS) and an 

1 http://www.fil.ion.ucl.ac.uk/spm

2 http://cfn.upenn.edu/zewang/ASLtbs.php

automated anatomical labeling atlas (AAL) template 
(Ashburner, 2007).

The CBF maps were statistically analyzed using second-level 
statistical procedures implemented in SPM12, based on a generalized 
linear model. The preoperative CBF in the CHS and non-CHS groups 
was compared using a two-sample t-test. Only CBF of cerebral was 
selected for analysis, as MMD rarely affects the cerebellum. Sex and 
age were included as covariates in the regression analysis. The 
correlation between preoperative CBF and MRA scores was analyzed 
using multiple regression and regression of the z-transformed 
correlation coefficients. A statistically significant difference was 
considered at p < 0.05 after false discovery rate (FDR) correction.

The xjview toolbox3 was used to visualize CBF clusters. Clusters 
with significant differences and correlations are displayed in pseudo-
colors on a calibrated standard brain map. The voxel sizes of the peak 
intensities and also their Montreal Neurological Institute coordinates 
are listed.

3. Results

In this study, 45 of 207 patients with MMD (21.74%) developed 
symptomatic CHS after surgery. The main symptoms of CHS included 
speech impairment (15 cases), severe headache (12 cases), decreased 
muscle strength (upper limbs in 3 cases and lower limbs in 5 cases), 
persistent vomiting (4 cases), dysphagia (3 cases), seizures (2 cases), 
and face and eye pain (1 case). These symptoms typically appeared 
within 1–9 days (3.87 ± 1.87 days) after surgery and improved before 
the patients were discharged from our hospital.

No significant differences were noted in age, sex, clinical 
symptoms, hypertension, diabetes, surgical side, or history of 
revascularization surgery between the two groups (Table  2). The 
average preoperative flows in the ICA and BA were not significantly 
different between the two groups (Table 2). However, before surgery, 
the average STA flow was significantly lower in the CHS group than 
in the non-CHS group (p < 0.05; Table  2). The ROC curve of the 
average flow of STA in predicting postoperative CHS is shown in 
Figure 2, and the area under curve (AUC) was 0.67. The two-sample 
t-test showed the significant differences in preoperative CBF status 
between the two groups. Specifically, 11 clusters of preoperative CBF 
were significantly higher in the CHS group than in the non-CHS 
group. These clusters were mainly located in the following brain areas: 
right inferior temporal gyrus (Temporal_Inf_R), left gyrus rectus 
(Rectus_L), right lenticular nucleus, putamen (Putamen_R), right 
olfactory cortex (Olfactory_R), right precuneus (Precumeus_R), right 
hippocampus (Hippocampus_R), right middle temporal gyrus 
(Temporal_Mid_R), left calcarine fissure and surrounding cortex 
(Calcarine_L), right superior temporal gyrus (Temporal_Sup_R) 
(Table 3; Figure 3).

Spearman’s correlation coefficients were calculated to evaluate the 
relationship between the preoperative CBF values and MRA scores of 
intracranial arteries in patients with MMD. The results revealed a 
significant correlation between preoperative MRA scores and CBF 
values in patients with MMD (p < 0.05). The brain areas related to 

3 http://www.Alivelearn.p/xjview
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MRA scores in the CHS group are shown in Table 4 and Figure 4. 
Negative correlations were observed between MRA scores and the 

following preoperative brain areas: the bilateral superior temporal gyri 
(Temporal_Sup_R,L), right superior frontal gyri, medial (Frontal_
Sup_Medial_R), right middle temporal gyri (Temporal_Mid_R), right 
inferior occipital gyri (Occipital_Inf_R), right middle occipital gyri 
(Occipital_Mid_R), and right superior parietal gyri (Parietal_Sup_R). 
On the other hand, positive correlations were identified between the 
MRA scores and the following preoperative brain areas: the bilateral 
posterior cingulate gyrus (Cingulum_Post_R,L), left parahippocampal 
gyrus (ParaHippocampal_L), left hippocampus (Hippocampal_L), left 
olfactory cortex (Olfactory_L), left lenticular nucleus, putamen 
(Putamen_L), and left thalamus (Thalamus_L).

4. Discussion

In this study, 3D PASL sequences were used to evaluate cerebral 
perfusion in patients with MMD. The results indicate that the 
preoperative 3D PASL-CBF in certain brain areas was significantly 
higher in the CHS group than in the non-CHS group. There was a 
significant correlation between the preoperative MRA and CBF values 
in patients with MMD. The utilization of 3D PASL sequences and PC 
MRI may help to identify patients with MMD who are at a higher risk 
of accruing postoperative symptomatic CHS.

The development of new pathological vessels in MMD is caused 
by chronic brain hypoperfusion and ischemia. These new 
compensatory vessels are pathological vessels. The cerebrovascular 
reactivity and autonomic regulation are impaired. Consequently, after 

FIGURE 2

Received operating characteristic (ROC) curve of the average flow of 
STA in predicting postoperative CHS. The area under the curve (AUC) 
is 0.67.

TABLE 2 Clinical information of MMD patients (207 brain hemispheres).

CHS Non-CHS p

No. of patients (%) 45 (21.74%) 162 (78.26%)

Age 40.47 ± 13.82 44.04 ± 10.59 t = −1.61 0.113

Gender χ2 = 0.281 0.596

  Male 22 72

  Female 23 90

Hypertension 29 89 χ2 = 1.299 0.254

Diabetes 21 72 χ2 = 0.385 0.535

Clinical symptom χ2 = 0.443 0.801

  Ischemia 26 85

  Hemorrhage 15 59

  Nonspecific 4 18

Surgery side χ2 = 0.238 0.626

  Left 24 93

  Right 21 69

Revascularization surgery history χ2 = 2.748 0.097

  No 45 114

  Yes 10 48

Average flow (mL/s)

Superficial temporal artery 0.24 ± 0.19 0.37 ± 0.29 t = −3.552 0.010

Internal carotid artery 2.17 ± 1.69 2.37 ± 1.92 t = −0.657 0.512

Basilar artery 1.28 ± 1.17 1.57 ± 1.33 t = −1.312 0.191

CHS, cerebral hyperperfusion syndrome; non-CHS, non-cerebral hyperperfusion syndrome.
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successful revascularization surgery, these vessels are unable to control 
the increased cerebral blood flow, leading to the occurrence of 
symptomatic CHS (Hayashi et al., 2012). In this study, the incidence 
of postoperative CHS was found to be  21.74% (45/207), which is 
consistent with previous studies (Fujimura et al., 2011, 2012). The 
reduced cerebral metabolism and downregulation of cortical 
neurotransmitter receptor function by CHS can lead to cerebral 
function impaired (Shimada et al., 2018). During the perioperative 
period, it is crucial to take reasonable preventive measures for high-
risk patients who may come up with CHS after surgery.

Further, no significant differences were observed in age, sex, 
clinical symptoms, hypertension, diabetes, surgical side, or history of 
revascularization surgery between the two groups. Although 

symptoms related to ischemia are the most common clinical 
manifestation of MMD, 10.63% (22/207) of the patients were 
asymptomatic which is consistent with previous studies, that 
1.5% ~ 17.8% of patients with MMD are asymptomatic (Baba et al., 
2008). Current study showed that hemorrhage-onset symptoms were 
observed in approximately 35.75% (74/207) of the patients. Among 
patients with postoperative CHS, 57.78% (26/45) and 33.33% (15/45) 
presented with ischemic- and hemorrhage-onset symptoms, 
respectively. Whether patients with hemorrhagic- or ischemia-onset 
symptoms more often come up with postoperative CHS remains 
controversial (Fujimura et al., 2009; Hayashi et al., 2010). Different 
study populations, preoperative management, and surgical procedures 
may have contributed to this discrepancy.

TABLE 3 Comparison of the preoperative cerebral blood flow between CHS and non-CHS groups.

Cluster Brain region Cluster size Peak MNI 
coordinates(x, y, z)

Peak intensity T value p FDR-corr

1 Temporal_Inf_R 518 54, –38, –28 6.176 6.18 0.000

2 Rectus_L 167 −6, 20, –26 4.398 4.40 0.005

3 Putamen_R 42 16, 8, –8 3.999 4.00 0.011

4 Olfactory_R 123 2, 16, –6 4.282 4.28 0.006

5 Precumeus_R 691 12, –46, 6 5.745 5.74 0.000

6 Hippocampus_R 81 32, –30, –4 4.321 4.32 0.006

7 Putamen_R 638 28, –12, 12 5.034 5.03 0.001

8 Temporal_Mid_R 71 58, –60, 6 4.525 4.53 0.004

9 Calcarine_L 28 −14, −60, 10 3.496 3.50 0.028

10 Temporal_Sup_R 51 56, –46, 14 3.710 3.71 0.019

11 Temporal_Mid_R 26 44, –66, 22 4.059 4.06 0.010

CHS, cerebral hyperperfusion syndrome; non-CHS, non-cerebral hyperperfusion syndrome.

TABLE 4 Correlation between the preoperative CBF values and MRA scores of intracranial arteries in the CHS group.

Cluster Brain region Cluster size Peak MNI 
coordinates(x, y, z)

Peak intensity T value p FDR-corr

Negative

1 Frontal_Sup_Medial_R 81,668 12, 44, 32 10.291 10.29 0.000

2 Temporal_Mid_R 504 70, –34, 0 4.499 3.68 0.001

3 Occipital_Inf_R 174 36, –88, –12 3.542 3.54 0.001

4 Occipital_Mid_R 33 36, –96, 8 3.420 3.42 0.001

5 Temporal_Sup_R 64 50, –30, 6 2.375 2.37 0.019

6 Temporal_Sup_L 147 −44, –36, 14 3.056 3.06 0.003

7 Parietal_Sup_R 39 36, –74, 50 2.962 2.96 0.004

Positive

1 ParaHippocampal_L 107 −16, 2, –18 −5.948 5.95 0.000

2 Hippocampal_L 50 −22, –20, –12 −4.602 4.60 0.002

3 Olfactory_L 34 0, 6, –8 −5.660 5.66 0.000

4 Putamen_L 345 −22, –6, 10 −6.202 6.20 0.000

5 Cingulum_Post_L 27 −4, –38, 10 −5.689 5.69 0.000

6 Cingulum_Post_R 85 4, –38, 12 −6.687 6.69 0.000

7 Thalamus_L 40 −2, –18, 16 −5.204 5.20 0.000

CHS, cerebral hyperperfusion syndrome; non-CHS, non-cerebral hyperperfusion syndrome; MRA, time-to-flight MR angiography.
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Previous studies have demonstrated that symptomatic CHS can 
be diagnosed based on specific postoperative clinical symptoms (van 
Mook et al., 2005; Iwata et al., 2014). In the present study, the most 
prevalent clinical symptoms of CHS were headache and speech 
impairment, which was consistent with previous study (Egashira 
et al., 2017).

PC MRI was used to calculate preoperative blood flow in the ICA, 
BA, and STA. The target vessels for bypass surgery were MCA (branch 
of ICA) and STA (branch of the external carotid artery). This study 
showed that the average flow in the ICA and BA had not significantly 
different between the two groups. However, the preoperative average 
STA flow was significantly lower in the CHS than in the non-CHS 
group (p < 0.05). Cerebral reconstruction surgery artificially lowers 

blood pressure and increases blood flow in the distal STA. Patients 
with lower vessel flow before surgery may experience a more 
substantial increase in blood flow volume after surgery. The average 
STA flow increases significantly after cerebrovascular reconstruction 
surgery, which greatly affects the blood supply to the brain tissue. This 
may be the reason why patients with a lower average STA flow before 
surgery were more likely to develop symptomatic CHS after 
reconstruction surgery.

The preoperative CBF status measured by PASL was compared 
between the non-CHS and CHS groups. The importance of ASL 
sequence has been well-validated in studies on ischemic brain diseases 
(Soman et  al., 2020). In patients with MMD, extensive collateral 
circulation may cause vascular territory boundaries to shift. In this 

FIGURE 3

Comparison of the preoperative cerebral blood flow between cerebral hyperperfusion syndrome (CHS) and non-CHS groups. Significant regions are 
(false discovery rate corrected p  <  0.05) illustrated in warm colors for increased values. Significant differences are revealed in the following brain 
regions: right inferior temporal gyrus (Temporal_Inf_R), left gyrus rectus (Rectus_L), right lenticular nucleus, putamen (Putamen_R), right olfactory 
cortex (Olfactory_R), right precuneus (Precumeus_R), right hippocampus (Hippocampus_R), right middle temporal gyrus (Temporal_Mid_R), left 
calcarine fissure and surrounding cortex (Calcarine_L), right superior temporal gyrus (Temporal_Sup_R).
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study, CBF was assessed quantitatively based on the whole-cerebral 
voxel level but not on a specific cerebral artery-supplied brain region. 
This method of measurement can aid in direct analysis of the original 
data, while simultaneously avoiding the effects of malacia or chronic 
hemorrhagic foci.

The results of the current study indicate that preoperative 3D 
PASL-CBF was higher in the CHS group than in the non-CHS 
group in some brain areas of the frontal lobe, temporal lobe, 
limbic lobe, lentiform nucleus, and white matter, which are 
typically supplied by the ICA and MCA (Table 3; Figure 3). The 
PCA is rarely involved in MMD. In this study, 29.95% (62/207) of 
the patients showed PCA involvement (27 cases with unilateral 
and 35 cases with bilateral PCA involvement). The ischemic status 
of MMD is different from other internal carotid artery stenosis 
caused by atherosclerotic disease. In MMD, as the recipient’s 
vessels are relatively small, postoperative CHS is not only caused 
by an increase in postoperative bypass flow but may also be caused 
by vasodilation due to long-term chronic ischemia (Chen and Tu, 
2022). In MMD, stenosis of the ICA and its terminal branches may 
lead to the development of moyamoya vessels and compensatory 
vasodilation, which may extend the time to peak and mean 
transmission time, while CBF is increased as a compensatory 
mechanism. In this study, preoperative CBF was also higher in the 
CHS group than in the non-CHS group, indicating that the 
collateral circulation status before surgery was slightly better in 
the CHS group.

Impaired cerebral autoregulation is related to postoperative 
cerebral hyperperfusion, which is mediated by endothelial 
dysfunction. After surgery, cerebral vascular reactivity cannot respond 
appropriately to the increased blood flow as it is impaired and requires 
several days to adapt to the new state (Bernstein et al., 1984). A new 
vascular pathway was established after revascularization surgery, 

which may have a high priority. This means the blood flow pattern was 
reversed after revascularization surgery, led to hyperperfusion in the 
operation area and manifested as hypoperfusion remote from the site 
of anastomosis (Bao et al., 2022). The clinical symptoms improved 
after several days of the revascularization surgery.

Our study showed a negative correlation between preoperative 
MRA scores and CBF values in some brain regions, especially in the 
temporal and frontal lobes (p < 0.05; Table  4; Figure  4). This 
observation is consistent with previous ASL reports stating that with 
the severity of intracranial arterial steno-occlusions, the CBF value 
decreases (Noguchi et al., 2013). Our study also showed that a small 
part of the brain region exhibited a positive correlation between 
preoperative MRA scores and CBF values, especially in the limbic 
lobe of the left cerebral cortex (p < 0.05, Table 4; Figure 4). A previous 
study showed that the dominant language functional area is the left 
hemisphere and the functional areas are sensitive to CBF changes; 
therefore, it required higher CBF stability (Lu et  al., 2019). In 
addition, impaired cerebrovascular reactivity is more evident in the 
left hemisphere (Mukerji et al., 2015). Therefore, when the blood 
supply to the brain is insufficient, moyamoya vessels may 
preferentially supply blood to the dominant brain areas. However, as 
the sample size in this study was limited, this result requires 
further verification.

In the current study, non-invasive 3D PASL sequences and 
PC-MRI were used to access cerebral perfusion and blood flow in 
patients with MMD. The results indicate that the sequences may help 
to identify patients with MMD at a higher risk of developing 
postoperative symptomatic CHS. CBF in this study was assessed 
quantitatively based on the whole-cerebral voxel level, as this method 
avoids the effects of malacia or chronic hemorrhagic foci, which are 
often seen in patients with MMD. This measurement method also 
increases the reliability of this study.

FIGURE 4

Correlation of preoperative cerebral blood flow (CBF) between brain regions and preoperative MRA sores in patients with MMD. (A–C) A negative 
correlation (false discovery rate corrected p  <  0.05) is identified between MRA scores and the following preoperative brain area: bilateral superior 
temporal gyrus (Temporal_Sup_R, L), right superior frontal gyrus, medial (Frontal_Sup_Medial_R), right middle temporal gyrus (Temporal_Mid_R), right 
inferior occipital gyrus (Occipital_Inf_R), right middle occipital gyrus (Occipital_Mid_R), right superior parietal gyrus (Parietal_Sup_R). (D–F) Positive 
correlations (false discovery rate corrected p  <  0.05) were identified between the MRA scores and the following preoperative brain areas: the bilateral 
posterior cingulate gyrus (Cingulum_Post_R, L), left parahippocampal gyrus (ParaHippocampal_L), left hippocampus (Hippocampal_L), left olfactory 
cortex (Olfactory_L), left lenticular nucleus, putamen (Putamen_L), and left thalamus (Thalamus_L).
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Our study has few limitations. First, it did not include a 
comparison with other traditional methods for measuring cerebral 
perfusion status. Previous studies have compared the ability of 
ASL-MRI to assess hemodynamic status using nuclear medicine 
methods (Yun et al., 2016). The results of ASL perfusion MRI can 
be  influenced by moyamoya vessels, which may lead to an 
underestimation of CBF values (Zaharchuk et al., 2011). However, 
recent studies have suggested that the overestimation effects on the 
calculated CBF using single post-label delay ASL can be negligible in 
patients with MMD (Fahlström et al., 2020). A validation study that 
compares it with other methods and re-evaluates it will be conducted 
in the future. Second, symptomatic CHS was diagnosed mainly based 
on the clinical features of patients (van Mook et al., 2005). However, 
these clinical features are not unique to patients with postoperative 
CHS. Furthermore, a comparison of postoperative CBF with 
preoperative CBF status will be conducted in future studies to further 
investigate changes in CBF. In this study we considered the possible 
influence of diabetes and hypertension for the results, but education 
and medication may affect the results. The data of this study was small, 
especially the CHS group. We will increase the number of cases in 
future study to further validate the results.

To further enhance our understanding and improve clinical 
practice, future research should focus on conducting comparative 
analyses between ASL-MRI and traditional methods, exploring the 
impact of collateral moyamoya vessels on ASL perfusion MRI results, 
refining diagnostic criteria for postoperative symptomatic CHS, and 
evaluating changes in cerebral perfusion by comparing postoperative 
CBF with preoperative CBF status. Addressing these aspects can 
contribute to advancing our knowledge and application of ASL-MRI 
in assessing cerebral perfusion and optimizing patient management 
in moyamoya disease.

5. Conclusion

Patients with higher preoperative PASL-CBF and lower 
preoperative average STA flow were more likely to develop 
postoperative symptomatic CHS, compared with those with lower 
preoperative PASL-CBF and higher preoperative average STA flow. 
Preoperative 3D PASL sequencing and PC MRI may assist in 
identifying patients at high risk of developing postoperative CHS 
before surgery and in determining the most suitable treatment 
strategy during the perioperative period.
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Characterizing the spatiotemporal 
features of functional connectivity 
across the white matter and gray 
matter during the naturalistic 
condition
Peng Hu 1, Pan Wang 1*, Rong Zhao 1, Hang Yang 1,2 and 
Bharat B. Biswal 1,3*
1 MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, 
Center for Information in Medicine, School of Life Science and Technology, University of Electronic 
Science and Technology of China, Chengdu, China, 2 Chinese Institute for Brain Research, Beijing, 
China, 3 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United 
States

Introduction: The naturalistic stimuli due to its ease of operability has attracted 
many researchers in recent years. However, the influence of the naturalistic 
stimuli for whole-brain functions compared with the resting state is still unclear.

Methods: In this study, we  clustered gray matter (GM) and white matter (WM) 
masks both at the ROI- and network-levels. Functional connectivity (FC) and 
inter-subject functional connectivity (ISFC) were calculated in GM, WM, and 
between GM and WM under the movie-watching and the resting-state conditions. 
Furthermore, intra-class correlation coefficients (ICC) of FC and ISFC were 
estimated on different runs of fMRI data to denote the reliability of them during 
the two conditions. In addition, static and dynamic connectivity indices were 
calculated with Pearson correlation coefficient to demonstrate the associations 
between the movie-watching and the resting-state.

Results: As the results, we found that the movie-watching significantly affected 
FC in whole-brain compared with the resting-state, but ISFC did not show 
significant connectivity induced by the naturalistic condition. ICC of FC and 
ISFC was generally higher during movie-watching compared with the resting-
state, demonstrating that naturalistic stimuli could promote the reliability of 
connectivity. The associations between static and dynamic ISFC were weakly 
negative correlations in the naturalistic stimuli while there is no correlation 
between them under resting-state condition.

Discussion: Our findings confirmed that compared to resting-state condition, the 
connectivity indices under the naturalistic stimuli were more reliable and stable to 
investigate the normal functional activities of the human brain, and might promote 
the applications of FC in the cerebral dysfunction in various mental disorders.
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functional connectivity, inter-subject functional connectivity, intra-class correlation 
coefficient, naturalistic condition, white matter
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1. Introduction

Functional connectivity (FC) was proposed as a measure to 
characterize the temporal synchronization between different brain 
regions (Aertsen et al., 1989; Friston et al., 1993). Biswal and colleagues 
found that primary motor network existed during the resting-state by 
performing FC, suggesting that the human brain has also functional 
pattern even though subjects did not perform a specific task (Biswal 
et al., 1995). Additional intrinsic function networks have also been 
extracted from resting-state fMRI (rsfMRI) adopting the FC measure, 
such as the auditory network (Cordes et al., 2000), visual network 
(Lowe et al., 1998), and default mode network (Greicius et al., 2003). 
Furthermore, FC under rsfMRI has been associated with demographic 
and cognitive measures, such as age (Dosenbach et al., 2010), gender 
(Zhang et al., 2016, 2018b), and fluid intelligence (Finn et al., 2015). 
FC during rsfMRI has also provided an impetus to the field of brain 
disorders, such as autism (Plitta et al., 2015), schizophrenia (Yang 
et al., 2018), Alzheimer (Dennis and Thompson, 2014), and depression 
(Villa et al., 2020). These studies have established that FC measures 
have many important applications in characterizing the human brain’s 
functional activities.

Since static FC (sFC) did not consider the dynamic of signal 
changes in time, researchers further investigate the dynamic 
fluctuation of FC (Chang et al., 2009). Dynamic FC (dFC) also have 
important applications in recognizing relationship between the 
behavioral/clinical measures and brain functional activities such as the 
attention scores (Fong et al., 2019), brain maturity (Qin et al., 2015) 
and cognitive vulnerabilities unmasked by a stressor like sleep 
restriction (Patanaik et al., 2018). Moreover, combining dFC and sFC 
features numerically improves predictions over either model alone 
(Fong et  al., 2019). dFC hold promise to provide fundamental 
information for the neurodegenerative diseases, including Alzheimer’s 
disease (Jones et al., 2012; Córdova-Palomera et al., 2017; Jie et al., 
2018), Parkinson’s disease (Madhyastha et al., 2015; Kim et al., 2017; 
Liu et al., 2018), and dementia with Lewy bodies (Lowther et al., 2014; 
Peraza et al., 2014). The aforementioned studies suggested that the 
dFC is as important as the sFC for understanding the functional 
activity of the human brain and psychiatric disorders.

Accumulating naturalistic stimuli studies including watching the 
movie and listening to the story have attracted the interest of many 
researchers as a compromise between rsfMRI and task-evoked fMRI 
(tfMRI). Compared with rsfMRI, naturalistic condition improves the 
similarity between subjects as they are experiencing the same stimuli 
(Hasson et al., 2004; Nastase et al., 2019). With continuous presentation 
of sound and visual information, naturalistic scanning is closer to the 
real life environment (Chen G. et al., 2020). Furthermore, previous 
studies demonstrated that the naturalistic paradigm was better than the 
resting-state for controlling the head motion, especially for children 
(Vanderwal et al., 2015, 2019; Greene et al., 2018). Movie-watching 
paradigm also has been shown to improve participant arousal levels 
(Vanderwal et al., 2017). Compared with tfMRI, naturalistic condition 
is easier to perform particularly for children, elders, and clinical 
populations (Vanderwal et al., 2015; Huijbers et al., 2017).

As both movie-watching and resting-state had no specific task 
when subjects were scanned, the naturalistic paradigm is more similar 
to rsfMRI than tfMRI, resulting in the universality of FC patterns that 
are especially associated with the resting-state. Finn and Bandettini 
demonstrated that compared to the resting-state condition, FC during 

the naturalistic viewing (i.e., movie watching) gave more accurate 
prediction of trait-like phenotypes in the domains of both cognition 
and emotion (Finn and Bandettini, 2021). A widespread FC pattern 
was identified that it could predict whether individuals are watching 
a movie or resting (Sanchez-Alonso et  al., 2021). To uncover 
differences between two states, Lynch and colleagues calculated the 
FC differences between them, and suggested that the naturalistic 
condition showed weaker FC than the resting-state after correction 
(Lynch et al., 2018). However, only 10 subjects were used in this study 
and the length of the movie clip was less than 6 min, suggesting that 
their findings need to be evaluated in a large group of subjects. In 
another study, the FC reliability of brain networks was significantly 
improved during natural viewing conditions over resting-state 
conditions, with an average increase of almost 50% across various 
connectivity measures (Wang et al., 2017).

The dFC measure has recently been used in the naturalistic stimuli 
as a method of detecting the neuro-information (Sastry et al., 2022). 
For clinical populations involving body dysmorphic disorder (BDD), 
Wong and colleagues uncovered that the naturalistic viewing could 
affect dynamic connectivity when symptoms of BDD were triggered 
(Wong et al., 2021). Previous studies have shown that although dFC 
values exhibited weaker reliability than sFC during the resting-state 
and in the naturalistic viewing condition, the reliability of dFC could 
be significantly improved in the naturalistic viewing (Zhang et al., 
2018a, 2021; Wang et al., 2021).

A basic question in neuroscience is how synchronous different 
subjects’ brains are under the real-world. To answer this question, the 
naturalistic condition such as movie have been used to simulate the 
real-world stimuli. Inter-subject correlation (ISC) and inter-subject 
functional connectivity (ISFC) have been performed to evaluate the 
synchronization between subjects. Hasson and colleagues calculated 
ISC during natural vision and found that similarities for visual, 
auditory, and their association cortices were significantly improved 
(Hasson et al., 2004). Furthermore, dynamic ISC was proposed to 
explore the consistent dynamic connectivity between different subjects 
in widespread brain regions (Di and Biswal, 2020). As an extension of 
ISC, Simony and colleagues introduced ISFC that was calculated 
between the time series in one ROI of one subject and the average time 
series in all ROIs of all subjects. ISFC could be  used to evaluate 
stimuli-evoked correlations, because non-neuronal artificial signals 
are not correlated between different subjects (Simony et al., 2016). 
Moreover, ISFC could be calculated with another way. Specifically, the 
correlation was evaluated between the time series of one ROI of one 
subject and all ROIs’ time series across other subjects. The approach 
of correlating each subject with every other subject (rather than 
correlating each subject’s data with all other subjects’ data average) 
preserves the variability from individual subjects (Cantlon and Li, 
2013). The authors found that primary sensory cortices appeared to 
have strong ISFC consistence (Ren et al., 2017). Furthermore, ISFC 
was proved as an effective measure to evaluate specific brain disorder, 
such as attention deficit hyperactivity disorder (ADHD; Tang et al., 
2019), and had benefit to discover the influence of negative family 
environments for children’s psychological wellbeing (Su et al., 2022). 
The joint model (ISFC + FC) yield the highest predictive accuracy and 
significantly predicted individuals’ social cognitive abilities. The 
model also proved the hypothesize that ISFC and FC provide distinct 
and complementary information about individual differences in social 
cognition (Xie and Redcay, 2022). ISFC has ability to explore the 
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importance of feed-back connections in action prediction (Cerliani 
et al., 2022). Dynamic ISFC (dISFC) was able to isolate effects of the 
naturalistic condition and to capture the temporal information of 
brain activity (Bolton et al., 2019). Furthermore, dISFC could be used 
to detect the functional brain configurations, which autism spectrum 
disorder and typical development subjects continuously adjusted 
based on movie cues under the naturalistic stimulation (Bolton et al., 
2020). The effect of naturalistic stimuli for FC and ISFC compared 
with rsfMRI has not been systematically addressed.

White matter (WM) is a dense structure that connects to different 
gray matter (GM) areas and occupies almost half of human brain (Teo 
et al., 1997; Zhang and Sejnowski, 2000; Arai and Lo, 2009; Harris and 
Attwell, 2012). Although the WM plays an important role in the 
human brain, the functional properties of WM were rarely analyzed 
and frequently ignored in fMRI. Recent studies have suggested that 
WM shows blood oxygen level-dependent (BOLD) signal fluctuations 
similar to those of GM (Peer et al., 2017; Jiang et al., 2019; Ji F. et al., 
2019; Ji G. J. et al., 2019). Peer and colleagues found that the signals of 
WM could be  organized with FC to generate symmetrical WM 
functional networks and the replication was proved in an independent 
group (Peer et al., 2017; Wang et al., 2021). Furthermore, by evaluating 
the reliability of sFC and dFC in GM and WM, Wang and colleagues 
found that the reliability of sFC was higher than that of dFC, applying 
to both WM and GM (Wang et al., 2021). Moreover, WM functional 
signals could be  used to explain neurological diseases, such as 
schizophrenia (Jiang et al., 2019; Fan et al., 2020), Parkinson’s disease 
(Ji G. J. et  al., 2019), and Alzheimer’s disease (Ji F. et  al., 2019). 
However, the influence of naturalistic condition for WM functional 
signals remains unclear.

In this study, we aim to investigate the influence of the naturalistic 
paradigm on the whole-brain FC compared with the resting state. 
We have mainly focused on the following three topics: (1) Compared 
with the resting-state, the differences of naturalistic paradigm for 
different connectivity in whole-brain (sFC, dFC, sISFC and dISFC in 
GM, WM, and between GM-WM); (2) Evaluating the reliability of 
different connectivity in the naturalistic and the resting-state 
conditions; (3) Associations between the naturalistic stimuli and the 
resting-state conditions, and associations between them for different 
connectivity measures. Specifically, we clustered GM templates with 
200 ROIs and 8 functional networks and adopted similar processing 
steps to obtain WM templates with 200 ROIs and 9 functional 
networks. sFC, dFC, sISFC, and dISFC were calculated for both 
movie-watching and resting-state at ROI- and network-levels. To 
compare sFC and dFC between the naturalistic and resting-state 
conditions, we calculated paired-T test to show significant changes 
between two states. The subject-wise bootstrapping (SWB) was 
performed to show the significant sISFC and dISFC induced by 
naturalistic viewing. ICC was performed to demonstrate the reliability 
of FC and ISFC. Heat maps were calculated to denote associations 
between two conditions and between static and dynamic properties.

2. Materials and methods

2.1. Human connectome project data

This study used data from the WU-Minn 7-Tesla Human 
Connectome Project (HCP). This is a widely used open-access 

dataset.1 Using the 7-Tesla scanner a total of 184 subjects were 
scanned. Eight subjects had incomplete data and were therefore 
excluded from this study. We  also removed four subjects with 
missing rest or movie images. Therefore, a total of 172 subjects 
could be used in this study. Briefly, in this study, four sessions were 
scanned across two or three different days. A number of imaging 
sequences including movie-watching and resting-state data was 
performed. Specifically, session1 included MOVIE1, MOVIE2, and 
REST1; session2 included REST2; session3 included REST3; and 
session4 included MOVIE3, MOVIE4, and REST4. The REST and 
MOVIE runs were collected using the same gradient-echo-planar 
imaging (EPI) sequence with the following parameters: repetition 
time (TR) = 1,000 ms, echo time (TE) = 22.2 ms, flip angle = 45 deg., 
field of view (FOV) = 208 × 208 mm, matrix = 130 × 130, spatial 
resolution = 1.6 mm3, number of slices = 85, multiband factor = 5, 
image acceleration factor = 2, partial fourier sampling = 7/8, echo 
spacing = 0.64 ms, bandwidth = 1,924 Hz/Px. The parameters of T1 
series were as following: TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, 
flip angle = 8 deg., FOV = 224 × 224 mm, voxel size = 0.7 mm 
isotropic, BW = 210 Hz/Px, iPAT = 2, acquisition time = 7 min and 
40 s. The direction of phase encoding alternated between posterior-
to-anterior (REST1, REST2, MOVIE2, MOVIE3) and anterior-to-
posterior (REST3, REST4, MOVIE1, MOVIE4). Frames (TRs, 
second) per run for REST = 900; frames of MOVIE1 = 921; frames 
of MOVIE2 = 918; frames of MOVIE3 = 915; frames of 
MOVIE4 = 901.

Detailed information about the Movie paradigm has been 
described elsewhere and therefore only briefly described here (Finn 
and Bandettini, 2021). The MOVIE runs contained several rest and 
movie clips. There was a rest clip before and after movie clips. The 
detailed MOVIE clips’ time points were described in Table 1.

2.2. The preprocessing steps of fMRI 
dataset

The preprocessing steps of fMRI data were performed using 
custom built MATLAB scripts and the Data Processing Assistant for 
Resting-State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010)2 and 
Statistical Parametric Mapping (SPM12).3 REST and MOVIE data sets 
were analyzed using the same preprocessing steps. The first 20 time 
points were discarded as the first clip of MOVE data was a 20s rest clip, 
and to minimize the T1 relaxation. Head motion was corrected using 
rigid body translation and rotation. T1-weighted anatomic images 
were co-registrated with functional images, then segmented to GM, 
WM, and CSF by using the DARTEL algorithm. Linear drift was 
detrended. CSF signal as covariates were regressed from functional 
images. Head motion was also regressed based on Friston 
24-parameter model (6 head motion parameters, 6 head motion 
parameters one time point before, and the 12 corresponding squared 
items; Friston et al., 1996). To further reduce the influence of head 
motion, we performed scrubbing regressors by motion “spikes,” which 
was defined by the frame-wise displacement (FD) > 1 mm and used 

1 http://humanconnectomeproject.org

2 http://rfmri.org/DPARSF

3 http://www.fil.ion.ucl.ac.uk/spm
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by previous WM BOLD signals studies demonstrating highly reliable 
FC both in GM and WM (Power et al., 2012; Peer et al., 2017; Jiang 
et al., 2019; Wang et al., 2020, 2021). Previous studies demonstrated 
that the head motion scrubbing did not affect correlation coefficients 
and could effectively reduce the influence of head motion (Power 
et al., 2012; Satterthwaite et al., 2013). A temporal filter with range 
from 0.01 to 0.1 Hz was performed to reduce the non-neuronal 
contribution to blood oxygen level dependent fluctuations. The 
functional images were smoothed separately within GM and WM 
using MATLAB scripts to avoid the confusion between GM and WM 
signals. Normalization was performed to transform the smoothed 
functional images to standard Montreal Neurological Institute (MNI) 
space with 3 × 3 × 3 mm3.

After preprocessing the data sets using the steps described 
above, the resting state clips (4 or 5) were removed from the 
MOVIE runs. The remaining time points of MOVIE runs 
were as follows: MOVIE1 = 801 (244 + 222 + 188 + 64 + 83, second); 
MOVIE2 = 818 (227 + 259 + 249 + 83, second); MOVIE3 = 795 
(181 + 185 + 204  + 142 + 83, second); and MOVIE4 = 801 
(233 + 230 + 255 + 83, second; Table 1). MOVIE1 and MOVIE2 were 
concatenated as MOVIE Day1 (time points = 801 + 818 = 1,619, 
second); MOVIE3 and MOVIE4 were concatenated as MOVIE Day2 
(time points = 795 + 801 = 1,596, second); REST1 and REST2 were 
concatenated as REST Day1 (time points = 880 + 880 = 1,760, second); 
REST3 and REST4 were concatenated as REST Day2 (time 
points = 880 + 880 = 1,760, second; Table  2). The advantage of 
concatenation was to increase signal length to improve signal-noise 
ratio. Furthermore, except the last movie clip, all other movie clips 
are different, so it is hard to average MOVIE runs. Though some 
subjects were not scanned in 2 days but in 3 days, we still separate 
them in Day1 and Day2 as shown above.

2.3. Creation of group-level masks and 
functional networks

Group-level structural GM and WM masks were calculated 
separately by MATLAB scripts. First, spatially normalized GM maps 
or WM maps were averaged from all subjects (Figure 1A, step 1). 
Then, the subcortical and cerebellum were removed based on the 
Harvard-Oxford atlas and Buckner atlas. Only values greater than 0.6 
were identified as WM. The voxels were recognized as GM if they were 
not WM and their values were higher than 0.2. If less than 80% of 
them from all subjects was not a number based on obtained GM and 
WM masks, the voxels were removed.

Since the brain function is based on the cooperation of many 
regions whose voxels may be  adjacent in space, normalized cut 
spectral clustering (NCUT) was determined to generate ROIs by its 
spatial constraint (Craddock et  al., 2012). Because WM had no 
functional template and we  wanted to keep the processing steps 
similar between GM and WM, we clustered functional templates with 
200 ROIs as Craddock and colleagues recommended for GM and WM 
by using preprocessed REST1 images. As the processing steps to 
perform clustering for GM and WM were similar, we  have only 
described it for the WM clustering. Voxel-level signals were extracted 
from REST1 fMRI data using the group-level WM mask (Figure 1A, 
steps 2, 3). Then, functional template with 200 ROIs was obtained 
based on NCUT by using voxel-level signals (Figure 1A, step 4). To 
detect FC on a larger scale compared with ROI-level, we also clustered 
network-level functional templates for both GM and WM. Similar to 
the processing for extracting voxel-wise signals, we  got ROI-level 
signals from REST1 images by averaging all voxel time series in the 
ROIs based on the above template (Figure 1A, steps 5, 6). sFC matrices 
were calculated by the Pearson correlation coefficient of ROI-level 
signals (Figure 1A, step 7). We transformed sFC matrices from r to z 
by using the Fisher’s z transform. They were then averaged to generate 
the group-level z matrix. The group-level matrix was converted back 
to r (Figure 1A, step 8). Then, the group-level connectivity matrix was 
as input of K-means analysis to cluster functional networks from 2 to 
20. Based on the elbow criterion of the cluster validity index that was 
calculated by the ratio between within-cluster to between-cluster 
distance and the distance was decided by Squared Euclidean distance 
(Allen et al., 2014). We iterated 100 times to evaluate the relationships 
between the number of functional networks and the elbow criterion. 
By drawing the relationship curve figures, 8 GM functional networks 

TABLE 1 The information about movie runs.

Run Clip Start TP End TP Duration Run Clip Start TP End TP Duration

MOVIE1 1 21 264 244 MOVIE3 1 21 201 181

2 285 506 222 2 222 406 185

3 527 714 188 3 427 630 204

4 735 798 64 4 651 792 142

5 819 901 83 5 813 895 83

MOVIE2 1 21 247 227 MOVIE4 1 21 253 233

2 268 526 259 2 274 503 230

3 547 795 249 3 524 778 255

4 816 898 83 4 799 881 83

Here are the start time point, end time point, and duration of movie clips for all four movie runs. TP, time point.

TABLE 2 The description of concatenate MOVIE and REST runs.

Series Concatenate runs Time points

MOVIE Day1 MOVIE1 + MOVIE2 801 + 818 = 1,619

MOVIE Day2 MOVIE3 + MOVIE4 795 + 801 = 1,596

REST Day1 REST1 + REST2 880 + 880 = 1,760

REST Day2 REST3 + REST4 880 + 880 = 1,760

MOVIE1 and MOVIE2 were concatenated as MOVIE Day1; MOVIE3 and MOVIE4 were 
concatenated as MOVIE Day2; REST1 and REST2 were concatenated as REST Day1; REST3 
and REST4 were concatenated as REST Day2.
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FIGURE 1

Schema of clustering functional networks and FC measures analysis. (A) ROI-level and network-level functional templates were clustered based on 
normalized cut spectral clustering (NCUT) and K-means in WM. The processing steps were: (1) Group WM mask was generated based on all subjects’ 
WM masks. (2) All fMRI data were masked by the group WM mask. (3) Voxels-wise signals were extracted from masked fMRI data. (4) 200 ROIs 
functional template was clustered by NCUT using voxel-wise signals. (5) All fMRI data were masked by ROI-level template. (6) ROI-level signals were 
extracted from fMRI data after being masked. (7) Every subject’s FC matrices were calculated by Pearson correlation coefficient. (8) These matrices 

(Continued)
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and 9 WM functional networks were finally determined because they 
have more clear “turning point” than other network numbers 
(Figure 1A, steps 9, 10; Supplementary Figure S1). Because the serial 
numbers of ROIs in a network were not continuous, we reorganized 
ROIs based on the networks of GM or WM.

2.4. Static FC and static inter-subject FC

Voxel-wise time series were averaged in the ROIs to generate ROI 
time series for each subject. sFC matrices for all ROI pairs across all 
subjects were calculated by using Pearson correlation coefficients in 
MOVIE and REST images (Figure  1B). Fisher’ z transform was 
performed on all subjects’ sFC matrices and above transformed 
matrices were averaged as the group-level sFC matrix. The z values of 
group-level sFC matrix were transformed back to r for more intuitive 
exhibiting the degree of correlation.

Similar to sFC, the static inter-subject FC (sISFC) was calculated 
by the Pearson correlation coefficient based on ROI signals. The 
difference was that sFC was evaluated in the same subject but the 
sISFC was calculated between different subjects. Since the matrices of 
sISFC were not symmetrical for each ROI pair and the diagonal values 
were calculated in the same subject, we averaged each matrix of sISFC 
excluding the diagonal elements. Specifically, the sISFC between 
{Subject x – ROI a} and {Subject y – ROI b} is different from the sISFC 
between {Subject x – ROI b} and {Subject y – ROI a}. Even though 
both presented the sISFC between ROI a and ROI b. Therefore, we first 
performed the Fisher’s z analysis to transform r to z values for the ROI 
a and ROI b sISFC matrix generating sISFC-z matrices. Then, upper 
angular and lower angular values within the sISFC-z matrix were 
averaged as the z value of these two ROIs, which meant that the z 
transformed sISFC matrix was averaged except for its diagonal 
because the diagonal values were the (intra-subject) sFC. After 
averaging, the z values were transformed back to r values as the group-
level sISFC to show correlation level (Figure 1B). We performed the 
same steps above for all ROIs to obtain the group-level sISFC matrix.

2.5. Dynamic FC and dynamic inter-subject 
FC

Sliding window analysis has been commonly used to estimate the 
dynamic FC (dFC; Hutchison et al., 2013; Di and Biswal, 2020; Zhang 
et al., 2021). Previous studies have indicated higher reliability when 
the sliding window size was around 30 s in calculating dFC (Hutchison 
et  al., 2013; Allen et  al., 2014; Leonardi and Van De Ville, 2015). 
Therefore, the current study used a sliding window size of 30 time 
points (30 s), and a time step of 1 time point (1 s). ROI time series were 

extracted from all subjects by averaging all voxels time series in the 
ROI from the same subject. Pearson correlation analysis was 
performed on each sliding window between different ROI time series. 
Thus, there were a series of correlation coefficients across each pair of 
ROIs. We  calculated the standard deviation of these correlation 
coefficient series to generate a dFC matrix for each subject (Figure 1B). 
Group-level dFC was calculated by averaging all subjects’ 
dFC matrices.

Dynamic inter-subject FC (dISFC) was also computed to detect 
the dynamic property across different subjects. ROI signals were 
extracted by averaging all voxels signals in the same ROIs. dISFC was 
then calculated using different subjects’ ROI signals based on the 
sliding window with the same parameters described in dFC. As with 
sISFC, the matrices of dISFC were not symmetric. Therefore, 
we averaged the upper angular and lower angular of all ROI pairs 
dISFC matrices as the values of the group-level dISFC matrix 
(Figure 1B).

2.6. Movie-watching vs. resting-state 
conditions

To estimate the sFC and dFC differences between the movie-
watching and the resting-state conditions, MOVIE vs. REST matrices 
were calculated by subtracting REST matrices from the corresponding 
MOVIE matrices. The pair-T test was performed on pairs of ROI or 
network between the resting-state and the movie conditions to 
determine which ROIs or networks had significant differences 
between two conditions. For any pair of ROIs, there were 172 (number 
of subjects) correlation coefficients. Thus, the inputs of pair-T test 
were the vector of 172 sFC or dFC in the naturalistic condition and 
the vector of 172 sFC or dFC in the resting-state condition for each 
pair of ROIs. Fisher’s z transform was performed on the correlation 
coefficients of sFC before statistics. The above resulting matrices were 
shown as reverted z to r. Bonferroni correction was performed to 
estimate the significant differences with p < 0.05/n (n was the number 
of ROI-pairs or network-pairs).

2.7. Movie-evoked FC

An earlier study demonstrated that FC of the movie-watching 
contained the intrinsic FC in addition to the movie-evoked FC (Lynch 
et  al., 2018). To demonstrate the influence of movie contents, 
we  performed the statistic method of subject-wise bootstrapping 
(SWB). It has been shown that when using SWB, the false positive rate 
was the lowest compared with other nonparametric approaches (i.e., 
element-wise bootstrapping, subject-wise permutation, and 

were transformed to z matrices based on Fisher’s z. And they were averaged as group z matrix. Then group FC matrix was converted back from group 
z matrix. (9) Elbow criterion was used to decide the number of clusters (networks). The cluster validity index was the ratio between within-cluster to 
between-cluster distance. 9 clusters were determined as the results shown. (10) 9 WM networks were clustered by K-means. (B) FC methods. sFC was 
calculated by Pearson correlation coefficient. dFC was calculated by slice window method. Standard deviation was determined as dFC index. sISFC 
matrix was calculated based on Pearson correlation coefficient between ROI a and ROI b from different subjects. sISFC-z matrix was calculated by 
Fisher’s z transform. Group sISFC-z value between ROI a and ROI b was calculated by averaging upper triangular (UT) and lower triangular (LT) of the 
sISFC-z matrix. Group sISFC value was transformed back from z to r. dISFC was calculated using the slice window method between ROI a and ROI b 
from different subjects. dISFC index was also the standard deviation. UT and LT of dISFC matrix were averaged as the group dISFC value between ROI a 
and ROI b.

FIGURE 1 (Continued)
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element-wise permutation) and student’s t-test (Chen et al., 2016). 
Another reason for not using the student’s t-test is that most of the 
ISFC values are dependent, violating the principle of independence 
needed for t-test.

We also performed SWB for ISFC. Since the ISC is calculated 
between pairs of subjects in the same ROI or network, it results in a 
symmetrical ISC matrix. Thus, Chen and colleagues had only focused 
on the lower triangles. However, when the ISFC was calculated using 
different ROIs, the matrix of ISFC was not symmetrical. In other 
words, ISFC contains ISC (Simony et  al., 2016). To solve the 
asymmetrical matrix of ISFC, we calculated centrality-based measure 
on both the lower and upper triangles of ISFC matrices without using 
the diagonal elements of the matrices. Instead of the mean, 
we performed median as the chosen centrality measure of ISFC to 
prevent the back-and-forth transformation processing. For example, 
if using mean value, we should first performed the Fisher’s z transform 
for correlation coefficients, then average above z values, and further 
converted the z values back to correlation coefficients (r). Another 
reason is that the median is less sensitive to biases than the mean when 
data are not represent normal Gaussian distribution (Chen et  al., 
2016). The median of the lower and upper triangles of the ISFC matrix 
was calculated as the statistical parameter from all subjects of each 
ROI or network. Specifically, SWB was performed as following: (1) 
The median value of the ISFC matrix was calculated as the raw median 
value. (2) ISFC values were selected randomly to raw ISFC matrix size 
as bootstrapping ISFC matrix, then the bootstrapping median value 
was calculated based on this bootstrapping ISFC matrix. (3) If the 
bootstrapping median value was higher (lower) than raw median 
value, the number increases by one. (4) Bootstrapping was performed 
using 5,000 repetitions from step (2) to step (3). Then p-value was 
calculated based on the number divided by 5,000. (5) Multiple 
comparison correction was performed by Bonferroni (p < 0.05/n). (6) 
All these steps were performed for each ROI or network within GM, 
WM, and GM-WM. Only the ROI (or network) pairs that passed the 
multiple comparison correlation were shown.

2.8. Reliability

To estimate the reliability of results, the intraclass correlation 
coefficient (ICC) was performed on the FC or ISFC between Day1 and 
Day2 (Müller and Büttner, 1994). Specifically, ICC was computed as:

 
ICC BMS WMS

BMS k WMS
�

�
� �� �1  (1)

where BMS is the between-subjects mean squared variance, WMS 
is the within-subjects mean squared variance, and k is the repetition 
number of scans for each participant (k = 2). The reliability of FC and 
ISFC were calculated as follows: (1) sFC was calculated for all ROI 
pairs across all subjects separate on Day1 and Day2, resulting in 172 
(number of subjects) correlation coefficients for each ROI pair on 
Day1 or Day2. For each pair of ROIs, both Day1 and Day2 have the 
vectors of length 172. sFC ICC matrix was calculated based on the 
vectors between Day1 and Day2 across all ROI pairs. For dFC ICC, 
we used standard deviation to calculate ICC. Finally, sFC ICC and 
dFC ICC in GM, WM, and GM-WM were estimated based on these 

steps above within network- and ROI-levels. (2) For sISFC, we first 
calculated Pearson correlation coefficients between subjects for each 
ROI pairs, resulting in the sISFC matrix for each pair of ROIs. The 
lower and upper triangles of sISFC matrix (excluding diagonal 
elements) were reshaped to a vector (length is 172 × 172 − 
172 = 29,412). After arranging the vectors for both Day1 and Day2, 
sISFC ICC was calculated using the vectors of Day1 and Day2 for each 
pair of ROIs. Similar to dFC ICC, we analyzed the dISFC ICC using 
its standard deviation. These processing steps were performed in GM, 
WM, and GM-WM at the network- and ROI-levels separately.

After calculating the ICC, permutation analysis of ICC was 
performed between the movie-watching and the resting-state. The raw 
difference was calculated by mean ICC value of movie-watching 
subtracting mean ICC value of resting-state. The permutation was 
iterated with 5,000 times. In each iteration, ICC matrices between two 
conditions were shuffled, then separated to two matrices. The random 
difference was calculated by minus between mean values of these two 
matrices. The count was added when the raw difference was lower 
than the random difference. The p value was calculated by the count 
dividing by the iteration number.

3. Results

3.1. Clustering GM and WM functional 
networks

We performed the elbow criterion of the cluster validity index to 
estimate the numbers of functional networks in GM and 
WM. We found that the optimal numbers of functional networks in 
GM and WM were 8 and 9, respectively. These functional networks 
within GM were: lateral visual network (LVN), limbic network 
(LIMB), frontoparietal network (FPN), dorsal attention network 
(DAN), ventral attention network (VAN), medial visual network 
(MVN), sensorimotor network (SMN), and default mode network 
(DMN). These results have been labeled and shown in Figure 2. The 
primary networks contained LVN, MVN, and SMN. The high-level 
networks contained LIMB, FPN, DAN, VAN, and DMN. The 
functional networks in WM were: sensorimotor network (SMN-
WM), occipital network (ON-WM), superior temporal network 
(STN-WM), anterior corona radiata network (ACRN-WM), posterior 
corona radiata network (PCRN-WM), inferior corticospinal network 
(ICN-WM), deep network (DN-WM), orbitofrontal network (OFN-
WM), frontoparietal network (FPN-WM; Figure 2). The superficial 
layers contained SMN-, ON-, STN-, OFN-, and FPN-WMs. The 
middle layers contained ACRN- and PCRN-WMs. The deep layer 
contained DN-WM. The ICN-WM across superficial and 
middle layers.

To compare between the results of clustering and traditional 
networks, we decided the Yeo7 GM networks as the traditional GM 
networks and the Peer12 WM networks as the traditional WM 
networks. The Dice Coefficient was determined as the similarity 
algorithm. As the result shown, somatomotor (Sensorimotor), dorsal 
attention, ventral attention, limbic, frontoparietal, and default mode 
networks indicated the high connection between the Yeo’s networks 
and our networks. The visual network of Yeo was separate to two 
networks, which were lateral visual network and medial visual 
network. For WM networks, some of our WM networks integrated 
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FIGURE 2

Obtaining 8 GM and 9 WM functional networks. (A) GM networks: 01. Lateral visual network (LVN); 02. Limbic network (LIMB); 03. Frontoparietal 
network (FPN); 04. Dorsal attention network (DAN); 05. Ventral attention network (VAN); 06. Medial visual network (MVN); 07. Sensorimotor network 
(SMN); 08. Default mode network (DMN). (B) WM networks: 01. Sensorimotor network in WM (SMN-WM); 02. Occipital network in WM (ON-WM); 03. 
Superior temporal network in WM (STN-WM); 04. Anterior corona radiata network in WM (ACRN-WM); 05. Posterior corona radiata network in WM 
(PCRN-WM); 06. Inferior corticospinal network in WM (ICN-WM); 07. Deep network in WM (DN-WM); 08. Orbitofrontal network in WM (OFN-WM); 09. 
Frontoparietal network in WM (FPN-WM).
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Peer’s WM networks. To be specific, sensorimotor network contained 
semsorimotor superficial white-matter system and dorsal 
frontoparietal tracts; occipital network contained visual superficial 
white-matter system and inferior longitudinal fasciculus system; 
superior temporal network was similar to uncinate and middle 
temporal lobe tracts; anterior corona radiata network was similar to 
ventral frontoparietal tracts; posterior corona radiata network was 
similar to cingulum and associated tracts; inferior corticospinal 
network contained inferior corticospinal tract and posterior cerebellar 
tracts; deep network contained superior longitudinal fasciculus 
system; orbitofrontal network was similar to forceps minor system; 
frontoparietal network was similar to ventral frontoparietal tracts 
(Supplementary Figure S2).

3.2. FC and ISFC in GM

At the ROI-level and network-level analyses of GM regions, the 
resting-state and the movie-watching had similar functional patterns 
of sFC (Figures 3A,C). sFC demonstrated higher FC strengths within 
intra-networks than them within inter-networks (Figure  3A). 
We analyzed the differences of sFC between movie and rest conditions, 
and found the positive and negative values both existed in the 
difference matrix of sFC (Figure 3B). To better discuss the FC within 
networks, we  calculated number of elements, number of passed 
correction elements, number of positive elements, number of negative 
elements, and mean values within networks. More than half of the 
elements relating to LVN, MVN, and SMN passed significance based 
on Bonferroni correction. The above three networks had different 
performances of sFC during the resting-state and the movie-watching. 
All significant ROI pairs relating to LVN had higher sFC values in the 
naturalistic viewing, indicating the movie-watching heightened sFC 
relating to LVN. On the contrary, for significant ROI pairs in the SMN, 
the movie-watching condition showed weaker sFC than that during 
the resting-state. For MVN, most ROI pairs exhibited enhanced sFC, 
but 19% of ROIs showed negative values. The averaged sFC values 
within the various networks ranged between −0.077 and 0.07 
(Table 3). For the sFC Movie vs. Rest matrix at the network-level, 
primary networks had different performances. Specifically, in the 
movie-watching, sFC between LVN and MVN was higher than that 
in the resting state. But the sFC between MVN and SMN was stronger 
under the resting-state than under the naturalistic condition. The 
conditions had no significant difference between LVN and 
SMN. Between primary and high-level networks, sFC values between 
LVN and LIMV and between LVN and DAN were improved by the 
movie stimuli. However, sFC values were lower in the movie-watching 
condition than in the resting-state between LVN and FPN, between 
LVN and VAN, as well as between SMN and DAN. For the high-level 
networks, sFC between VAN and DMN was higher in the movie 
condition than that during the resting-state. However, sFC became 
weaker under the movie stimuli between LIMB and FPN, between 
FPN and DAN, as well as between DAN and VAN (Figure 3D).

The dFC patterns were similar in general between the resting-sate 
and the movie-watching at the ROI-level and network-level 
(Figures 3A,C). dFC showed weaker connectivity fluctuations in intra-
networks than those in inter-networks (Figure 3A). We analyzed the 
differences of dFC between Movie and Rest conditions, and the 
positive and negative values were found in the difference matrix of 

dFC (Figure 3B). The top 3 GM networks were LVN, MVN, and DAN, 
which had most elements that passed multiple correction. Specifically, 
30% of ROIs in the LVN have passed correction. It was found that all 
of them were weaker under the movie-watching than those in the 
resting-state. 27% of ROIs in the MVN demonstrated the significance. 
75% of these ROIs’ values were positive and 25% of them were 
negative. 18% of elements in the DAN have passed the correction. 17% 
of them were positive and 83% of them were negative. The range of 
averaged dFC values was from −0.017 to 0.01 (Table 3). As the dFC 
Movie vs. Rest matrix at the network-level, dFC between LVN and 
MVN became lower in movie-watching than in the resting-state. But 
dFC between MVN and SMN was higher in the naturalistic condition 
than that in the resting-state. Between primary and high-level 
networks, dFC showed lower values under the movie-watching than 
them in the resting-state between LVN and DAN as well as between 
DAN and MVN. Within high-level networks, dFC values were lower 
in the movie condition than them during the resting-state between 
FPN and VAN. But, the movie stimuli improved dFC values between 
LIMB and FPN, between DAN and VAN, and between LIMB and 
DMN (Figure 3D).

We did not find the specific functional pattern of sISFC and dISFC 
in the resting-state at the ROI-level. Under the movie-watching 
condition, compared to other functional networks, the sISFC values 
relating to LVN and MVN exhibited enhancement. However, dISFC 
did not show clear functional patterns (Figure 3A). At the network-
level, compared with the naturalistic condition, the resting-state did 
not show the clear sISFC and dISFC patterns. sISFC values of LVN, 
MVN, as well as between LVN and MVN were improved by the 
movie-watching condition. Compared with LVN, the enhancements 
of dISFC in MVN and between LVN and MVN were more evident 
(Figure 3C).

3.3. FC and ISFC in WM

As shown in the sFC matrices at the ROI-level and network-level, 
the movie-watching did not modify the functional patterns compared 
with the resting-state (Figures 4A,C). About the Movie vs. Rest matrix 
of sFC, the naturalistic condition increased FC within some networks, 
but the opposite situation also existed in some networks (Figure 4B). 
Specifically, about 30% of the ROIs passed the multiple comparison 
correction in the SMN-WM, and most (99%) of these ROIs were 
negative values. 33% of ROIs demonstrated significance within 
ON-WM, and 77% of them were positive values (Table 4). As the sFC 
Movie vs. Rest matrix at the network-level, sFC values between SMN- 
and ON-WMs and between STN- and OFN-WMs were lower in the 
naturalistic condition than them in the resting-state within the 
superficial layer. However, sFC between STN- and FPN-WMs was 
higher in the movie-watching than that during the resting-state within 
the superficial layer. As the WM network crosses superficial and 
middle layers, ICN-WM showed high sFC values with superficial 
networks, including SMN-, STN-, and FPN-WMs. As layers between 
superficial and middle, the sFC between STN- and PCRN-WMs was 
weak in the naturalistic condition. However, the sFC values between 
STN- and ACRN-WMs, and between PCRN- and FPN-WMs became 
strong from the resting-state to the movie condition. For layers 
between superficial and deep, the sFC between ON- and DN-WMs 
was lower in the movie-watching while sFC values between SMN- and 
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FIGURE 3

ROI- and network-levels FC and ISFC matrices in GM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state 
and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the corresponding MOVIE 

(Continued)
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DN-WMs, and between DN- and OFN-WMs were higher in the 
movie-stimuli than them during the resting-state. The sFC between 
ACRN- and PCRN-WMs was improved by the movie-watching in the 
middle layer. Between middle and deep layers, the sFC between 
PCRN- and DN-WMs was higher in the movie condition than that 
during the resting-state (Figure 4D).

The dFC patterns under the movie-watching condition were 
similar to the corresponding values in the resting-state at the ROI-level 
and network-level (Figures 4A,C). For the dFC Movie vs. Rest matrix 
at the ROI-level, 22% of ROIs in the ON-WM demonstrated the 
significance and 83% of them were negative. Only a small fraction of 
elements (4%) passed multiple comparison correction in the 
SMN-WM (Table  4). For the dFC Movie vs. Rest matrix at the 
network-level, dFC between STN- and FPN-WMs of the superficial 
layers was lower during the movie-watching than that in the resting-
state. But dFC values between SMN- and ON-WMs, and between 
STN- and OFN-WMs were higher in the movie-stimuli than them 
during the resting-state. Between superficial and middle layers, dFC 
between STN- and ACRN-WMs became low from the resting-state to 
the movie-watching. For layers between middle and deep, the dFC 
also got low in the movie condition compared with the resting-state 
between PCRN- and DN-WMs (Figure 4D).

For ISFC matrices at the ROI-level, only the sISFC matrix of the 
movie-watching demonstrated distinct functional patterns. The sISFC 
patterns of ON- and STN-WMs were found to be distinct during the 
movie watching (Figure 4A). For sISFC and dISFC matrices at the 
network-level, the resting-state did not show clear patterns. The movie 
stimuli have improved sISFC values of the ON- and STN-WMs. 
Compared with sISFC matrix, only the ON-WM showed a relatively 
stable signal due to its low dISFC value during the movie-watching. 
On the other hand, inter-networks connectivity had relatively fewer 
sISFC and higher dISFC values compared with the intra-networks 
(Figure 4C).

3.4. FC and ISFC in GM-WM

Like GM and WM, the resting-state and the movie-watching had 
similar sFC patterns at the ROI-level and the network-level 
(Figures 5A,C). Unlike GM or WM in which intra-network FC values 
were talked at the ROI-level, we  calculated Pearson correlation 
coefficients between GM and WM networks both in the resting-state 
and during the movie-watching. In general, the correspondence 
between GM and WM functional networks were similar, and the only 
difference was that the GM network corresponding to the PCRN-WM 
became the MVN under movie-watching condition from DMN 
during the resting-state. However, as the absolute difference of 
correlation coefficients between MVN-PCRN (GM-WM 
networks) and DMN-PCRN was less than 0.01, GM network could 
be  thought as the DMN corresponding to the PCRN-WM 
(Supplementary Tables S1, S2). For the matrix of sFC Movie vs. Rest 
at the ROI-level, 40% of elements in SMN-SMN and MVN-ON passed 
correction. 99% of SMN-SMN values were negative. 47% of MVN-ON 
values were positive and 53% of them were negative. 32% of elements 
in LVN-ACRN, DMN-PCRN, and LVN-DN have demonstrated 
significance. 77% of LVN-ACRN values were positive. 100% of 
DMN-PCRN and 95% of LVN-DN values were negative (Table 5). 
Under the movie-watching condition, the sFC matrix showed stronger 
connectivity for MVN-ON and SMN-SMN. However, we  also 
observed weaker connectivity between GM-WM networks including 
the LVN-DN, LVN-ICN, VAN-FPN, and DMN-PCRN in the movie 
condition. LVN-ACRN, LIMB-STN, and DMN-OFN did not show 
significant differences between the resting-state and the naturalistic 
conditions (Figure 5D).

dFC of the resting-state and movie-watching performed 
similar functional patterns at the ROI-level and the network-level 
(Figures 5A,C). As dFC Movie vs. Rest matrices at the ROI-level, 
MVN-ON demonstrated most correction elements. Still, only 20% 

matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set blank. (C) Networks-
level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The processing steps within 
network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. LVN, Lateral visual network; LIMB, Limbic network; FPN, Frontoparietal 
network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, Medial visual network; SMN, Sensorimotor network; DMN, Default 
mode network.

FIGURE 3 (Continued)

TABLE 3 sFC and dFC in GM networks.

Networks NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

LVN 225 138 (61%) 68 (30%) 138 (100%) 0 (0%) 0 (0%) 68 (100%) 0.070 −0.017

LIMB 1,089 300 (28%) 120 (11%) 166 (55%) 0 (0%) 134 (45%) 120 (100%) 0.004 −0.009

FPN 529 134 (25%) 70 (13%) 116 (87%) 0 (0%) 18 (13%) 70 (100%) 0.027 −0.011

DAN 256 72 (28%) 46 (18%) 30 (42%) 8 (17%) 42 (58%) 38 (83%) −0.014 −0.007

VAN 441 196 (44%) 50 (11%) 14 (7%) 34 (68%) 182 (93%) 16 (32%) −0.051 0.001

MVN 400 210 (53%) 106 (27%) 40 (19%) 80 (75%) 170 (81%) 26 (25%) −0.051 0.010

SMN 1,600 798 (50%) 242 (15%) 0 (0%) 240 (99%) 798 (100%) 2 (1%) −0.077 0.010

DMN 1,024 292 (29%) 24 (2%) 4 (1%) 10 (42%) 288 (99%) 14 (58%) −0.046 0

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements. LVN, lateral visual network in GM; LIMB, limbic network in GM; FPN, frontoparietal network in GM; DAN, dorsal attention network in GM; VAN, ventral attention network in 
GM; MVN, medial visual network in GM; SMN, sensorimotor network in GM; DMN, default mode network in GM.
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FIGURE 4

ROI- and network-levels FC and ISFC matrices in WM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state 
and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the corresponding MOVIE 

(Continued)
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of elements passed multiple comparison correction. 40% of their 
values were positive and 60% of their values were negative. There 
were too few elements left after correction for other networks 
between GM and WM (Table 5). For the matrix of dFC Movie vs. 
Rest at the network-level, MVN-ON, LVN-ACRN, LVN-DN, 
DMN-OFN and VAN-FPN exhibited similar connectivity patterns 
with the sFC results. For other networks between GM and WM, 
dFC of SMN-SMN was higher while LIMB-STN performed weaker 
dFC value under the naturalistic viewing than them during the 
resting-state. Furthermore, LVN-ICN and DMN-PCRN did not 
show significant differences between the resting-state and the 
movie condition (Figure 5D).

For four matrices of ISFC at the ROI-level, only sISFC matrix in 
the movie condition showed functional patterns. sISFC values in 
LVN-ON and MVN-ON were stronger than other networks 
(Figure 5A). At the network-level, sISFC and dISFC did not denote 
any clear functional patterns in the resting-state. sISFC values of 
LVN-ON, DAN-ON, MVN-ON and LIMB-STN were improved by 
the naturalistic stimuli. For dISFC in movie-watching, only MVN-ON 
performed weaker signal fluctuation compared with the resting-state 
(Figure 5C).

3.5. Movie-evoked FC

The subject-wise bootstrapping (SWB) was performed to detect 
the significant activation induced by the movie stimuli. However, 
we did not observe any ROI or network that exhibited the significant 
activation in both sISFC and dISFC. We also repeated the analysis 
steps in the Day2 data and the results were similar to Day1. Though 
the movie-watching did enhance ISFC of the visual networks for both 

GM and WM, as the matrices have shown in Figure  5, the 
improvements were not strong enough to pass the 
nonparametric approach.

3.6. Reliability analysis

In general, the intraclass correlation coefficients (ICCs) in the 
movie-watching were higher than them during the resting-state in 
GM, WM, and GM-WM. In detail, sFC and sISFC values in the 
resting-state were low, and their ICCs were poor. sISFC and dISFC 
values of visual networks denoted relatively high reliability including 
the LVN, MVN, and ON-WM than other networks. sISFC and dISFC 
values between visual networks of GM and WM have also shown 
strong reliability. These results about visual networks performed 
similarly at the ROI-level and network-level.

Compared with the resting state condition, the sISFC ICC of SMN 
at network-level under the movie-watching showed relative 
improvement. At the ROI-level, the sISFC ICC of SMN was smaller 
than the corresponding value obtained at the network-level. The sISFC 
ICC of DAN exhibited a similar result between ROI- and network-
levels under the movie-watching condition. The network-level dFC 
ICCs between FPN and VAN and between LIMB and DMN were 
relatively high, and their ROI-level results had a similar result 
(Figure 6).

For WM, the sISFC ICCs within STN-WM, between ON- and 
ACRN-WMs, and between STN- and FPN-WMs were high in the 
movie-watching. As the dFC, the ICCs between SMN- and 
ACRN-WMs and between OFN- and FPN-WMs showed the high 
values under the movie condition. The dISFC ICC denoted high value 
between ON- and DN-WMs in the movie stimuli (Figure 7).

matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set blank. (C) Networks-
level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The processing steps within 
Network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. SMN, Sensorimotor network; ON, Occipital network; STN, Superior 
temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal network; DN, Deep 
network; OFN, Orbitofrontal network; FPN, Frontoparietal network.

FIGURE 4 (Continued)

TABLE 4 sFC and dFC in WM networks.

Networks NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

SMN-WM 1,156 352 (30%) 42 (4%) 2 (1%) 40 (95%) 350 (99%) 2 (5%) −0.067 0.005

ON-WM 1,024 342 (33%) 224 (22%) 262 (77%) 38 (17%) 80 (23%) 186 (83%) 0.028 −0.008

STN-WM 169 16 (9%) 6 (4%) 14 (88%) 0 (0%) 2 (12%) 6 (100%) 0.016 −0.007

ACRN-WM 576 102 (18%) 2 (0.4%) 68 (67%) 0 (0%) 34 (33%) 2 (100%) 0.010 −0.004

PCRN-WM 81 12 (15%) 0 (0%) 0 (0%) 0 12 (100%) 0 −0.034 −0.002

ICN-WM 169 26 (15%) 0 (0%) 0 (0%) 0 26 (100%) 0 −0.055 0.001

DN-WM 1,156 20 (2%) 2 (0.2%) 18 (90%) 0 (0%) 2 (10%) 2 (100%) −0.001 −0.002

OFN-WM 441 22 (5%) 12 (3%) 14 (64%) 0 (0%) 8 (36%) 12 (100%) 0.010 −0.008

FPN-WM 400 52 (13%) 2 (0.5%) 2 (4%) 0 (0%) 50 (96%) 2 (100%) −0.022 −0.003

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements; SMN-WM, sensorimotor network in WM; ON-WM, occipital network in WM; STN-WM, superior temporal network in WM; ACRN-WM, anterior corona radiata network in WM; 
PCRN-WM, posterior corona radiata network in WM; ICN-WM, inferior corticospinal network in WM; DN-WM, deep network in WM; OFN-WM, orbitofrontal network in WM; FPN-
WM, frontoparietal network in WM.
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FIGURE 5

ROI- and network-levels FC and ISFC matrices between GM and WM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in 
the resting-state and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the 

(Continued)
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For GM-WM, ROI-level sISFC ICC in DAN-ON was higher 
under the movie-watching than that during the resting-state. 
Generally, the sISFC reliability of GM-WM networks was enhanced 
by the naturalistic condition in network-level, especially in 
SMN-SMN, DAN-ON, LIMB-STN, LVN-ACRN, SMN-STN, 
MVN-PCRN, LIMB-FPN, and DAN-FPN. The dFC values of 
DMN-PCRN and FPN-FPN exhibited higher reliability than others in 
the resting-state. dISFC ICC of LVN-DN performed relatively high 
reliability under the movie-watching compared with the resting-state 
and other networks (Figure 8).

Permutation analysis was performed between the movie-
watching ICC matrix and the resting-state ICC matrix to evaluate 
the reliability differences between two conditions. As the result 
shown, most of FC and ISFC indicated p < 0.0001. The biggest p 
value was in network-level GM dFC ICC matrices between the 
movie-watching and the resting-state, which was around with 
0.01 (Supplementary Table S3).

3.7. Association between movie-watching 
and resting-state

We calculated the heat maps to estimate the associations between 
the resting-state and the movie-watching using both static and 
dynamic connectivity indices. Positive correlations for sFC were 
observed between the movie-watching and the resting-state in GM, 
WM, and GM-WM. Moreover, dFC also showed a degree of positive 
correlation between the movie condition and the resting-state. For 
sISFC and dISFC associations between naturalistic condition and 

resting-state, there were no correlations in GM, WM, and GM-WM 
(Figure 9).

Associations between sFC and dFC in the resting-state and the 
movie-watching showed negative correlations in GM, WM, and 
GM-WM. In addition, we did not observe any correlations between 
sISFC and dISFC under the resting-state, but a relatively negative 
correlation was observed between sISFC and dISFC in the movie-
watching (Figure 10).

4. Discussion

The current study compared the spatiotemporal characteristics of 
whole-brain FC between the naturalistic and the resting-state 
conditions. We found that the naturalistic stimuli not only improved 
sFC within and between networks compared with the resting-state, 
but lower sFC values also existed in some networks during the movie-
watching. dFC values demonstrated opposite in general. The movie-
watching did not change the FC patterns compared with the resting-
state. sISFC was enhanced by the naturalistic condition, but the 
movie-watching had limited effect on dISFC, especially for ROI-level. 
The naturalistic paradigm improved the reliabilities of sFC, dFC, 
sISFC, and dISFC. Moreover, sFC and dFC showed positive 
correlations between the two conditions. sISFC and dISFC had 
negative correlation under the naturalistic viewing, but they 
demonstrated no correlation during the resting-state.

We found the high consistency patterns between the resting-state 
and movie-watching conditions similar to previous studies about the 
rfMRI and tfMRI (Cole et al., 2014; Krienen et al., 2014; Gratton et al., 

corresponding MOVIE matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set 
blank. (C) Networks-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The 
processing steps within Network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. GM: LVN, Lateral visual network; LIMB, Limbic 
network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, Medial visual network; SMN, Sensorimotor 
network; DMN, Default mode network. WM: SMN, Sensorimotor network; ON, Occipital network; STN, Superior temporal network; ACRN, Anterior 
corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal network; DN, Deep network; OFN, Orbitofrontal network; 
FPN, Frontoparietal network.

FIGURE 5 (Continued)

TABLE 5 sFC and dFC between GM and WM networks.

Networks 
(GM-WM)

NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

SMN-SMN 1,360 546 (40%) 128 (9%) 8 (1%) 117 (91%) 538 (99%) 11 (9%) −0.014 −0.004

MVN-ON 640 259 (40%) 129 (20%) 121 (47%) 51 (40%) 138 (53%) 78 (60%) −0.006 −0.005

LIMB-STN 429 117 (27%) 47 (11%) 65 (56%) 7 (15%) 52 (44%) 40 (85%) −0.027 −0.004

LVN-ACRN 360 115 (32%) 14 (4%) 88 (77%) 5 (36%) 27 (23%) 9 (64%) 0.009 −0.006

DMN-PCRN 288 93 (32%) 9 (3%) 0 (0%) 2 (22%) 93 (100%) 7 (78%) 0.045 −0.008

LVN-ICN 195 26 (13%) 0 (0%) 8 (31%) 0 18 (69%) 0 0.033 −0.006

LVN-DN 510 165 (32%) 0 (0%) 9 (5%) 0 156 (95%) 0 0.038 −0.006

DMN-OFN 672 72 (11%) 26 (4%) 24 (33%) 0 (0%) 48 (67%) 26 (100%) −0.007 −0.006

VAN-FPN 420 117 (28%) 10 (2%) 10 (9%) 7 (70%) 107 (91%) 3 (30%) 0.051 −0.009

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements; SMN-SMN, sensorimotor network in GM and sensorimotor network in WM; MVN-ON, medial visual network in GM and occipital network in WM; LIMB-STN, limbic network in 
GM and superior temporal network in WM; LVN-ACRN, lateral visual network in GM and anterior corona radiata network in WM; DMN-PCRN, default mode network in GM and posterior 
corona radiata network in WM; LVN-ICN, lateral visual network in GM and inferior corticospinal network in WM; LVN-DN, lateral visual network in GM and deep network in WM; DMN-
OFN, default mode network in GM and orbitofrontal network in WM; VAN-FPN, ventral attention network in GM and frontoparietal network in WM.
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2016). They suggested that the patterns of the functional networks 
were relatively stable, and the tasks or naturalistic condition only 
influenced the strength of FC. Lynch and colleagues denoted that all 
of the significant connectivity differences were stronger under the 
resting-state than that under the movie-watching, particularly for 
visual networks (Lynch et  al., 2018). However, several weaker 
connections were observed in the current study under the resting-
state than them during the naturalistic condition. Further, the increase 
and decrease in connectivity occurred in both primary and high-level 
GM networks, and superficial, middle, and deep WM layers. This 
denotes the influence of the naturalistic viewing for connectivity is not 
dependent on the traditional classifications of primary and high-level 
networks in GM and layers in WM, but the effect of the movie-
watching for FC relates to the whole-brain. The explanations could 
be that: (1) The naturalistic condition contains a wealth of information, 

which induced different effect for different functional networks. (2) 
Functional networks might affect each other (Demirci et al., 2009). 
Tian and colleagues found considerable resemblance among movie-
watching FC based on different movies (Tian et al., 2021), suggesting 
that the type of movie has limited impact on FC.

The higher ISFC under the naturalistic viewing was found to 
be associated with visual networks. Specifically, sISFC of LVN, MVN, 
ON-WM, and MVN-ON was improved during the movie-watching, 
demonstrating that ON-WM may show more similarly visual function 
to MVN than LVN. We  found the sISFC within STN-WM was 
improved during the naturalistic viewing as STN-WM could 
be consider as the hub for the distributed brain network in complex 
stimuli (Jefferys et al., 2012; Lahnakoski et al., 2012). The movie-
watching condition reduced dISFC values of MVN, ON-WM, and 
MVN-ON at the network-level. But for other networks at the 

FIGURE 6

The ICC analysis of FC and ISFC in GM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-state and 
movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching separately. 
LVN, Lateral visual network. LIMB, Limbic network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, 
Medial visual network; SMN, Sensorimotor network; DMN, Default mode network.
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network-level and all networks at the ROI-level, the naturalistic 
viewing performed limited effect about dISFC.

As the number of time points in MOVIE DAY1 and MOVIE 
DAY2 are different, we balanced the number of time points between 
them by extracting the first 1,596 time points of MOVIE DAY1, and 
compared the difference matrix of FC and ISFC. The results showed 
that there was limit change of FC and ISFC after the balance in the 
whole-brain (Supplementary Figures S3–S5).

The reliability of FC and ISFC was evaluated by ICC. In general, 
ICC values of the movie-watching were higher than them of the 
resting-state, denoting that the naturalistic viewing could improve the 
reliability of FC and ISFC. In addition, previous studies have 
demonstrated that ICCs of sFC were stronger than that of dFC within 
whole-brain under the resting-state (Wang et al., 2021). In our study, 
we also found that the reliability of sFC was higher than that of dFC 

under the naturalistic condition. Further reliability analysis showed 
the low reliability corresponding to sISFC and dISFC under the 
resting-state, denoting that ISFC may not be suitable for the resting-
state due to the huge variance between subjects in the resting-state. 
The reason may be that subjects may have different thoughts under 
the rest scanning inducing the high signal fluctuation between 
subjects. Therefore, ISFC values were lower in the resting-state than 
those under the movie-watching. Though ISFC maps showed relative 
reliability in the naturalistic condition, ISFC ICC values were weaker 
than FC ICC values under the naturalistic viewing. The reason may 
be that FC is affected by more noise than ISFC, as ISFC could isolate 
the noise (Simony et al., 2016).

Chen and colleagues suggested nonparametric approaches 
and parametric methods for ISC (Chen et al., 2016, 2017; Chen 
G. et al., 2020). As these statistical approaches were designed for 

FIGURE 7

The ICC analysis of FC and ISFC in WM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-state and 
movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching separately. 
SMN, Sensorimotor network; ON, Occipital network; STN, Superior temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona 
radiata network; ICN, Inferior corticospinal network; DN, Deep network; OFN, Orbitofrontal network; FPN, Frontoparietal network.

78

https://doi.org/10.3389/fnins.2023.1248610
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2023.1248610

Frontiers in Neuroscience 18 frontiersin.org

ISC and nonparametric approaches were easier to be performed, 
we  determined SWB as the statistics of ISFC to detect the 
significantly movie-evoked connectivity. However, no significant 
ISFC was observed including visual networks, suggesting that 
though the naturalistic paradigm could enhance the inter-subject 
synchronization, the enhancement is not strong enough to pass 
the statistics. The reason may be  that different subjects have 
different responses to the complex movie stimuli. Furthermore, 
non-significance of ISFC may also be because that the statistics 
approaches of ISC are not suitable for ISFC. ISFC is calculated 

between all of ROIs or networks across subjects, but ISC is 
evaluated between subjects in a same ROI or network.

The heat maps were performed to estimate the associations 
between static and dynamic properties during two conditions and the 
associations of connectivity indices between the naturalistic viewing 
and the resting-state. We found positive correlations between sFC of 
the resting-state and sFC of the naturalistic condition in GM, WM, and 
GM-WM. We also observed the relatively positive correlations between 
dFC of two conditions in whole-brain, suggesting a degree of similarity 
of FC between the resting-state and the movie-watching. Furthermore, 

FIGURE 8

The ICC analysis of FC and ISFC between GM and WM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-
state and movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching 
separately. GM: LVN, Lateral visual network; LIMB, Limbic network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention 
network; MVN, Medial visual network; SMN, Sensorimotor network; DMN, Default mode network; WM: SMN, Sensorimotor network; ON, Occipital 
network; STN, Superior temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal 
network; DN, Deep network; OFN, Orbitofrontal network; FPN, Frontoparietal network.
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both sISFC and dISFC showed no correlations between the two 
conditions, as there was scarcely any ISFC between subjects under the 
resting-state. The resting-state and the movie-watching showed 
similarly negative correlations between sFC and dFC in GM, WM, and 
GM-WM. We did not find any correlation between sISFC and dISFC 
under the resting-state, but sISFC values had weakly negative 
correlations with dISFC values under the naturalistic paradigm in 
whole-brain, suggesting that the movie-watching enhanced ISFC 
compared with the resting-state. However, considering the statistic 
results and the range of ISFC values, the enhancement is relatively weak.

Previous study has shown that even though movie contents were 
different in different scanning runs, there was considerable resemblance 
among movie-watching FC based on different movies (Tian et al., 2021). 
The similarity was also demonstrated in our study, and the most obvious 
networks were visual networks in gray matter and occipital network in 
white matter. However, the functional networks connectivity was 
reasonably considered to be influenced by the movie content. In HCP 
data, MOVIE1 and MOVIE3 contained clips from independent films 
(both fiction and documentary) made freely available under Creative 
Commons license on Vimeo. MOVIE2 and MOVIE4 contained clips 
from Hollywood films including action, adventure, science fiction, 
biography, drama, crime, thriller, and so on. In this study, we combined 
MOVIE1 and MOVIE2 as MOVIE Day1, and combined MOVIE3 and 
MOVIE4 as MOVIE Day2. The different movie types between MOVIE 
Day1 and MOVIE Day2 were science fiction (Day1), crime (Day1), 
thriller (Day1), comedy (Day2), family (Day2), and fantasy (Day2). The 
ICC values of LIMN, DAN, STN-WM, and OFN-WM were lower than 

other networks. LIMN could mediate emotional regulation and reward 
processing (Chen Y. L. et  al., 2020). There was an evidence for a 
modulatory role of the DAN on the orienting of attention in space (Ptak 
and Schnider, 2010). The correlation between STN-WM and LIMN was 
higher than 0.8. Therefore, STN-WM probably has the similar function 
as LIMN. OFN-WM performed over 0.7 correlation coefficient with 
DMN that works in unison with language networks at certain points in 
the narrative, while exhibiting antagonistic responses at other times 
(Simony et al., 2016). Overall, as these networks demonstrated emotion, 
attention, and so on brain functions, different types of movie clips might 
induce different signals in a brain. Therefore, the low ICC values of these 
networks might be affected by different scanning runs and different 
movie types.

In this study, there are some limitations. (1) When subjects 
were watching movies, the brains were in a higher arousal 
condition with less head motion (Vanderwal et al., 2017). The 
effect of the noise should be evaluated about connectivity between 
the resting-state and the movie-watching in the following studies. 
(2) In this study, the subject studied were mostly between 22 and 
35 years of age and did not cover the entire life span. It is quite 
possible, as has been shown in recent papers, that there are 
differences in sFC and dFC as the age range is increased and 
across gender (Jiang et al., 2020; Wen et al., 2020; Sen and Parhi, 
2021; Snyder et al., 2021; Di and Biswal, 2022). Thus, it is quite 
possible that as a greater age range is used the systematic 
differences of the spatiotemporal characteristic of FC may 
be  present. (3) Whether parametric method is better than 

FIGURE 9

Heat maps of sFC, dFC, sISFC, and dISFC between the resting-state and the movie-watching in GM, WM, and GM-WM. We calculated the Pearson 
correlation coefficients for all connectivity indices between the resting-state and the naturalistic viewing. The densities were evaluated based on these 
correlation coefficients by using circles method.
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nonparametric method for ISFC, and whether the influence 
between ROIs or networks of different subject should be consider 
in the parametric statistics, they are needed to be clarified in the 
future studies. (4) As the FC metrics were calculated based on 
data obtained from Caucasian populations, therefore there is 
potential influence when performing same calculations to 
Chinese populations (or other ethnic populations). Ge and 
colleges have studied the influence of populations about brain 
function between Chinese and people living in Western countries 
that from HCP dataset, and found that the corresponding large-
scale brain parcellations were highly reproducible across the two 
datasets, with the language processing task showing the largest 
differences (Ge et  al., 2022). However, whether ISFC will 
be influenced by populations, it need to be clarified in the further. 
Also, we did not focus on gender differences, thus FC may show 
variations after regressing them. (5) As some windows spanned 
two different runs, there is a potential effect about dFC and 
dISFC values.

5. Conclusion

This study investigated the effect of naturalistic viewing for whole-
brain FC and ISFC, including sFC, dFC, sISFC, and dISFC compared 
with the resting-state. And we also evaluated the reliability of FC and 
ISFC in two conditions. Moreover, we  explored the associations 
between static and dynamic properties and the associations between 

the naturalistic and the resting-state conditions. Specifically, the 
movie-watching not only improved FC values of inter- and intra-
networks, but the decrease also exited. Besides, ISFC was enhanced 
generally under the naturalistic viewing. In this study, we did not find 
any ROI or network passed statistics of SWB for ISFC. The naturalistic 
paradigm generally enhanced reliabilities of sFC, dFC, sISFC, and 
dISFC compared with the resting-state, especially for sISFC and 
dISFC. Finally, the resting-state was positive correlation with the 
naturalistic viewing for sFC and dFC. Furthermore, sFC had negative 
correlation with dFC under the resting-state and the movie-watching. 
sISFC also showed relatively weak negative correlation with dISFC in 
the naturalistic viewing. As there was no significant ISFC and the 
range of ISFC values was small, the movie-watching has limit 
improvement for ISFC in this study.
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The study of brain connectivity has been a cornerstone in understanding

the complexities of neurological and psychiatric disorders. It has provided

invaluable insights into the functional architecture of the brain and how it is

perturbed in disorders. However, a persistent challenge has been achieving

the proper spatial resolution, and developing computational algorithms to

address biological questions at the multi-cellular level, a scale often referred

to as the mesoscale. Historically, neuroimaging studies of brain connectivity

have predominantly focused on the macroscale, providing insights into inter-

regional brain connections but often falling short of resolving the intricacies

of neural circuitry at the cellular or mesoscale level. This limitation has

hindered our ability to fully comprehend the underlying mechanisms of

neurological and psychiatric disorders and to develop targeted interventions.

In light of this issue, our review manuscript seeks to bridge this critical

gap by delving into the domain of mesoscale neuroimaging. We aim

to provide a comprehensive overview of conditions affected by aberrant

neural connections, image acquisition techniques, feature extraction, and

data analysis methods that are specifically tailored to the mesoscale. We

further delineate the potential of brain connectivity research to elucidate

complex biological questions, with a particular focus on schizophrenia

and epilepsy. This review encompasses topics such as dendritic spine

quantification, single neuron morphology, and brain region connectivity.
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We aim to showcase the applicability and significance of mesoscale

neuroimaging techniques in the field of neuroscience, highlighting their

potential for gaining insights into the complexities of neurological and

psychiatric disorders.

KEYWORDS

connectivity, mesoscale, NeuroImage, schizophrenia, epilepsy, computer vision,
segmentation, deep learning

1 Introduction

The human brain is a remarkably intricate network
composed of billions of neurons, encompassing diverse cell
types interconnected through trillions of synapses (Luo et al.,
2008). Different brain regions exhibit distinct microstructural
architectures, functional specializations, interconnectivity, and
often an orderly topographic arrangement. The major task
in connectivity-related research is capturing the hierarchical
multiscale organization of the brain by mapping network
relationships across various spatial dimensions (Sporns, 2013).
It extends beyond structural considerations and encompasses
functionality, denoted by the degree of correlation and covariance
among brain signals, influenced by both experimental parameters
and temporal context (Cabral et al., 2017).

The organization of brain connections plays a pivotal role in
shaping interactions between different brain areas, giving rise to
a multitude of functional networks. Structural data provide the
anatomical framework, while functional data reveal how different
brain regions work together and respond to various stimuli or tasks.
The multimodal correlation of imaging techniques, integrating
both structural and functional neuroimaging methods, allows the
harnessing of their best features, offering a broader approach
and better understanding of brain connectivity (Howard et al.,
2023). This multidimensional approach is essential for advancing
our knowledge of complex neurological and cognitive processes
(Hirsch et al., 2015).

Multiple, albeit subtle, non-physiological shifts in brain
organization likely lead to network disorders which encompass
a wide range of neurological and psychiatric conditions arising
from aberrant neural connections. These include autism spectrum,
schizophrenia, attention-deficit/hyperactivity, epilepsy, depression,
and anxiety disorders (Kaiser, 2013; Contreras-Rodríguez et al.,
2015; Holmes et al., 2023).

Most of the data used to reconstruct brain networks comes
from bidimensional (2D) images. However, the correlation between
a single cell interacting with the whole neuronal tissue in a
tridimensional (3D) manner remains an open problem. This 3D
spatial-scale context holds the key to bridging morphological
mechanisms and functional outcomes to better understand the
complexities of brain connectivity-related disorders. The complex
3D circuits that define brain connectivity comprise a variety
of organizational structures and microarchitectures that can be
arduous to discern (Sporns et al., 2005), presenting a significant
challenge in the field of neuroscience and computational analysis.
Additionally, to preserve the volumetric information of the

network it can be necessary to work with samples as thick as
possible coupling to 3D-imaging techniques, as extensively applied
in image-based neuroresearch and diagnosis (Kim et al., 2021).

The brain connectome sensu (Sporns et al., 2005) takes
on different definitions at various scales, presenting a defying
task in translating morphological and functional measurements
to the symptoms of brain disorders affected by connectivity.
Understanding integrated brain function demands a multitude
of measurements across various scales. Neurophysiological and
neuroimaging methods, along with the use of whole-brain models
to provide fresh insights into its underlying mechanisms (Hallett
et al., 2020). Thus, brain connectivity conventionally encompasses
three scales: nano/microscale, mesoscale, and macroscale (Bohland
et al., 2009), each one with its optimized imaging method
(Figure 1).

At the nano/microscale, lies the ultrastructural information,
that can reveal synaptic morphology, their components and
connections in individual cells, often employing Electron
Microscopy (EM), demanding sample chemical preservation
and physical sectioning. The opposite extreme encompasses
the macroscale, which examines the anatomical and connective
patterns between distinct brain regions, such as long-range
connections, often inferred from fiber tracts, and frequently
revealed by techniques also capable of retrieving functional
aspects, such as Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), Single Photon Emission Computed
Tomography (SPECT). These approaches prove particularly
valuable for non-invasive studies of living tissues (Bennett et al.,
2018).

Between both spatial extremities lies the multi-cellular level
(Mitra, 2014), also known as the mesoscale, which plays a pivotal
role in the investigation of the intricate network of the brain.
Mesoscale spans from the structural and functional properties
of single neurons to local neural circuits and their intrinsic
connectivity (Mitra, 2014; Haueis, 2021).

Most neuroimaging studies on humans and human samples
have primarily used macroscale techniques like PET and functional
magnetic resonance imaging (fMRI) for in vivo imaging, and
microscale techniques such as thin-depth light microscopy for
tissue samples. Although substantial insights into brain networks
and abnormal connectivity have been acquired using these
techniques, they lack the spatial resolution needed to resolve the 3D
conformation of local neuronal connections (Tyson and Margrie,
2022). Consequently, further progress in the understanding
of brain functions within complex neuronal circuits requires
exploration at the mesoscale level (Rah et al., 2015). It depicts
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FIGURE 1

Overview of experimental bioimage tools currently available for studying neural connectivity across a range of spatial scales and biological
questions. At the left, different human brain organization structures are presented under the perspective of spatial scales: from the study of the
dendritic spine (top) to the whole brain (bottom), with a focus on the structures that can be studied using mesoscale imaging. From the top to the
bottom, spatial scales range from 10 nanometers to 10 millimeters. The second section, denoted Biological Inquiries, displays the cellular elements
that contribute and shape neural connectivity across the different scales, followed by a repertoire of image acquisition techniques displayed as
vertical bars in the last section. Purple bars represent techniques suited to structural imaging while the pink bars represent the ones suited for
functional purposes; lastly, the red bars represent techniques that incorporate both. MRI, magnetic resonance imaging; fMRI, functional magnetic
resonance Imaging; SPECT, single photon emission computed tomography; PET, positron emission tomography.

connections, networks, and spatial cellular gradients of distinct
neuronal populations, improving resolution and the analysis of
interactions that form the basis of cognitive and behavioral
processes (Haueis, 2021). Intact/live samples can be used, albeit
sample preparation is necessary according to the specific imaging
technique. Optical microscopies (wide field, laser confocal, light
sheet, and two-photons) allow both high spatial and temporal
resolution, often used to study live cells.

In this landscape, data acquisition and image processing emerge
as a critical domain of local neural circuits, i.e., spatially co-
localized neurons of the same kind or with shared organizational
traits (Bohland et al., 2009). It also generates a huge amount of

data to be processed and may not be as easily quantifiable (Lang
et al., 2012; Chen et al., 2019). Currently, artificial intelligence
algorithms have proved their ability to help researchers in image
processing and analysis: from contrast enhancement/normalization
to segmentation and extraction of morphological features necessary
for structural correlation of connectivity (Durkee et al., 2021).

As stated above, neuroimaging encompasses a diverse array
of techniques for exploring different scales of magnitude and
activities within cells and tissues. Consequently, data analyses are
predominantly linked to the complexities of the images, posing
a challenge for neuroscientists who may not be familiar with the
intricacies of the field. In this review, we aim to explore mesoscale
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brain imaging and processing, arranging the main methodologies
traditionally used to investigate brain functioning throughout its
network. It begins by exploring the state-of-the-art in neurological
and psychiatric disorders research and imaging techniques relevant
to the field; it then addresses image processing strategies suited
to solving these questions. Recent literature was compiled on
various imaging modalities to study neural connections and the
respective computational methods to identify misorganization in
schizophrenia and epilepsy. It also organizes concepts in network
neurological disorders to guide non-expert and advanced readers in
the field of neuroimaging and processing. Finally, to accommodate
the diverse readership in this multidisciplinary field, a Glossary
tailored to the terminology of some key concepts in neurobiology,
imaging, and computational processing is included.

2 Brain connectivity in disorders of
the central nervous system

This section explores a selection of connectivity-related issues
and the bioimaging techniques employed to address them.
Disorders affected by brain connectivity encompass a wide range
of neurological and psychiatric conditions arising from aberrant
neural connections. These include autism spectrum disorder,
schizophrenia, attention-deficit/hyperactivity disorder, epilepsy,
depression, and anxiety disorders (Kaiser, 2013; Contreras-
Rodríguez et al., 2015; Holmes et al., 2023). Although substantial
insights into the network of the brain and abnormal connectivity
in these disorders have been gained using macroscale imaging
techniques such as MRI and PET, further progress in our
understanding requires the exploration at the mesoscale level for
increased resolution. In this section, we examine brain connectivity
in two different disorders, representing examples from psychiatric
and neurological conditions. Our analysis highlights the crucial
role of advanced neuroimaging techniques in uncovering the
complexities of these conditions. We particularly focus on the
potential of mesoscale neuroimaging to further enhance our
understanding of their underlying mechanisms.

2.1 Schizophrenia

Schizophrenia is a multifactorial mental condition that
impacts over 23 million individuals worldwide. It involves
positive symptoms such as delusions and hallucinations, negative
symptoms such as reduced motivation and social withdrawal,
and cognitive impairment. The pathophysiology of schizophrenia
involves molecular and morphological abnormalities within the
nervous system, encompassing faulty brain connectivity, altered
myelination of brain regions and white matter tracts, as well as
abnormal neuronal morphology and defects in neurotransmitter
systems (Schultz and Andreasen, 1999; Kahn et al., 2015).

Recent years have witnessed significant advancements in
imaging studies, shedding light on the neurobiological basis of
schizophrenia. In this section, we delve into the contribution of
imaging studies to our understanding of the connectivity basis
of the disorder.

2.1.1 Structural and functional brain network
abnormalities

Coordinated functioning of multiple brain regions is crucial
for normal brain function, encompassing perception, cognition,
emotions, and mood responses. A significant amount of evidence
points to a dysfunctional local circuitry in schizophrenia in the
prefrontal cortex (PFC) and its connections with other brain
regions, particularly those associated with the limbic system (Lewis
et al., 2005). In the past two decades, numerous studies involving
neuroimaging techniques like fMRI have yielded compelling
findings indicating abnormal activity within the local prefrontal
network and disrupted integration of information processes in the
PFC and other brain regions among individuals with schizophrenia
(Anticevic et al., 2014, 2015; Hunt et al., 2017). Although the
evidence supporting disconnectivity in schizophrenia is robust,
understanding its causes is complex, and there is ongoing debate
regarding its mechanisms and significance concerning clinical
symptoms (Gao W. et al., 2022).

Investigations using fMRI have consistently revealed disrupted
connectivity in individuals with schizophrenia, both during resting-
state conditions and while engaged in specific cognitive tasks
(Garrity et al., 2007; Whitfield-Gabrieli et al., 2009; Sheffield and
Barch, 2016; Erdeniz et al., 2017; Godwin et al., 2017). More
recently, a meta-analysis and an original article reported consistent
changes in local functional connectivity in schizophrenia. It
was found that patients showed significantly higher Regional
Homogeneity (ReHo) in the bilateral medial superior frontal gyrus,
while lower ReHo in the bilateral post-central gyrus, right pre-
central gyrus, and right middle occipital gyrus (Cai et al., 2022);
and differences in the functional connectivity between the salience
network and certain brain regions, including the right inferior
and middle temporal gyrus, left caudate, and right pre-central
gyrus (Huang H. et al., 2022). These findings suggest that there
are consistent aberrant local functional connectivity patterns in
schizophrenia.

The assessment of functional connectivity in schizophrenia
relies predominantly on fMRI scanning data acquired from adult
individuals diagnosed with the disorder. However, due to the
dependence of fMRI on hemodynamic fluctuations associated with
neural activity, it is unsuitable for capturing rapid transitions in
brain functional connectivity configurations with high temporal
resolution (Jamadar et al., 2021). Moreover, the spatial resolution
of this technique is limited to a millimeter scale. As a result, our
comprehension of the cellular mechanisms underlying the aberrant
brain functional connectivity observed in schizophrenia remains
incomplete.

2.1.2 Neurotransmitter systems
Multiple etiological hypotheses have been proposed to

elucidate the abnormal brain connectivity seen in schizophrenia.
The dopaminergic hypothesis posits that abnormal dopaminergic
neurotransmission contributes to the development and
manifestation of schizophrenia (Creese et al., 1976; Toda and
Abi-Dargham, 2007). Several lines of evidence support the
dopaminergic hypothesis such as alterations in dopamine receptor
density and availability in affected individuals revealed by PET
and SPECT imaging (Patel et al., 2010). Specifically, an increased
number of dopamine D2 receptors has been observed in the limbic
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striatum. Hyperactivity of D2 receptors in the mesolimbic pathway
is thought to contribute to the positive symptoms of schizophrenia
(Howes et al., 2009).

The glutamatergic hypothesis was also proposed as an
additional perspective on the pathophysiology of schizophrenia
(McCutcheon et al., 2020). For instance, decreased glutamate
levels have been found in the anterior cingulate cortex and
prefrontal cortex, regions implicated in cognitive and emotional
processing (Chen et al., 2017). Moreover, PET studies have
shown abnormalities in the expression, binding, and availability
of glutamate receptors in various brain regions of individuals with
schizophrenia (Beck et al., 2021).

It is becoming increasingly evident that the dopaminergic
and glutamatergic hypotheses alone fall short of providing a
comprehensive explanation for the disorder highlighting the
need to consider additional neurochemical systems involved in
schizophrenia, such as the GABAergic system (Jahangir et al.,
2021). fMRI and PET studies have also provided insights into
the altered neural connectivity and network dynamics associated
with GABAergic abnormalities in the disorder (Shukla et al., 2019;
Marques et al., 2021).

2.1.3 Myelin and white matter tracts
Employing MRI, researchers investigated gray/white-matter

contrast in sensory and motor regions of the cortex in
schizophrenia revealing reduced myelin in three bilateral sensory
and motor regions (Jørgensen et al., 2016). Furthermore, a
study employing Diffusion Tensor Imaging (DTI-fMRI) observed
significantly lower fractional anisotropy (FA) values in white
matter tracts of patients with psychosis compared to healthy
controls (Xu et al., 2022). Additionally, the study demonstrated a
positive correlation between decreased white matter tract integrity
and cognitive performance in patients with psychosis. Electron
microscopy of brain tissue from individuals with schizophrenia
revealed ultrastructural signs of apoptosis and necrosis in
oligodendroglial cells within the cortex and the caudate nucleus
with damage to myelin sheath lamellae, and a significant decrease
in the nucleus area and volume density of mitochondria (Uranova
et al., 2001).

2.1.4 Dendritic pathology
Dendritic spines are the primary sites of excitatory synaptic

connections (Papa et al., 1995). As such, alterations to their
morphology directly impact the neuronal circuitry within and
across multiple brain regions, potentially contributing to the
pathogenesis of schizophrenia. Studies on schizophrenia subjects
have revealed reductions in dendritic spine density, dendritic
arborization and plasticity in several cortical and non-cortical
areas (Glantz and Lewis, 2000; Konopaske et al., 2014; MacDonald
et al., 2017). By employing confocal microscopy, researchers
have investigated the formation, maturation, and pruning of
synaptic connections, using in vitro models (Sellgren et al., 2019).
Studies in human stem cell-derived neural models have revealed
increased synapse elimination and significant developmental
and connectivity issues, including the abnormal spread of
proliferating neural progenitor cells from the ventricular zone
to the intermediate and cortical zones (Stachowiak et al., 2017).
Interestingly, maturing neurons were found to be abundantly

developed in the deeper neural structure (analogous to subcortical
regions) but were notably depleted in surface layers (analogous to
the cortical region) of schizophrenia neural organoids.

2.2 Epilepsy

Epilepsy is recognized as a network disorder with multifactorial
causes, representing a multiscale challenge that includes cellular,
network, and systems levels. It encompasses widespread areas
that stretch well beyond the pinpointed site of a seizure,
displaying distinctive patterns that might be specific to each
particular syndrome (Stafstrom and Carmant, 2015). To gain
a comprehensive understanding of the mechanisms underlying
hyperexcitability in epilepsy, it is essential to highlight two
primary epilepsy classifications. The first is focal epilepsy, which
is characterized by seizures originating from a specific focal
onset within one hemisphere of the brain, as determined by
clinical patterns or electroencephalogram (EEG) localization.
Common examples of focal epilepsy encompass conditions like
mesial temporal lobe epilepsy associated or not with hippocampal
sclerosis and malformations of cortical development. The second
classification, generalized epilepsy, is defined by seizures occurring
simultaneously in both hemispheres (Fisher, 2017). In this topic, we
review the literature on abnormal neural networks and harness the
potential of imaging techniques to address critical knowledge gaps
in epilepsy-related brain connectivity.

2.2.1 Structural and functional brain network
abnormalities

In vivo mapping of the regional distribution of network
abnormalities is a crucial way to define precisely the site of
seizure onset. The identification of the site where seizures
start and how they propagate is critical to understanding both
the pathophysiology of epilepsies and developing therapeutic
approaches. Macroscale neuroimaging techniques, such as high-
resolution MRI and fMRI, are the entrance step in providing
insights into the topological organization of brain networks and
connectivity disruptions in epilepsy patients.

Extensive findings have emerged from quantitative
structural MRI investigations employing volumetry, voxel-
based morphometry, cortical thickness mapping, and structural
covariance analysis. In DTI investigations, several parameters can
be obtained to characterize white matter microstructure including
tractography, tensor-derived metrics, and connectivity matrices
(Bartolomei et al., 2005).

In structural MRI, volumetric analysis frequently reveals
atrophy in limbic structures, such as the hippocampus, entorhinal
cortex, and amygdala, which often correlates with histological
evidence of neuronal loss in excised temporal lobe epilepsy
(TLE) brain tissue (Bartolomei et al., 2005; Bernhardt et al.,
2013). Likewise, post-processing methods in quantitative MRI,
such as voxel-based morphometry and cortical thickness analysis,
have also revealed that TLE is linked to widespread neocortical
irregularities. Covariance analyses of these abnormalities extend
beyond mesial temporal structures to comprise prefrontal,
frontocentral, cingulate, occipitotemporal, and lateral temporal
neocortex (Bernasconi et al., 2004; Bernhardt et al., 2012, 2013).
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ENIGMA-Epilepsy MRI scans showed gray and white matter
changes in different epilepsy types, with more widespread and
bilateral extra-hippocampal gray matter differences in left TLE
(Whelan et al., 2018; Hatton et al., 2020; Sisodiya et al., 2020). Also,
in individuals with TLE, the investigation of preoperative structural
connectivity using DTI-fMRI and its association with post-
operative seizure control outcomes revealed specific preoperative
connectivity patterns that are associated with improved surgical
outcomes (Bonilha et al., 2013).

While there has been substantial progress in understanding
structural connectivity abnormalities at the macroscale, we face
limitations due to our access being restricted to network topology
without achieving a finer neuronal resolution and specificity. In
this regard, the mesoscale provides a more precise comprehension
by pinpointing the particular neural components contributing
to local connectivity. Thus, the gold standard for noticing
abnormal structural connectivity in a mesoscale is anterograde
and retrograde viral neuronal tracing (Lanciego and Wouterlood,
2020). These tracers exhibit high accuracy and sensitivity, especially
when mapping long-range connections, thus contributing to a
comprehensive and detailed understanding of connectivity across
various brain areas (Saleeba et al., 2019). Their invasive nature
restricts the use to animal models. Du et al. (2017) employed
a rat model induced by pilocarpine and utilized rabies tracing
techniques to discern intricate morphological details of projections
within the dynamic hippocampal circuit. This study revealed that
newly formed dentate granule cells (DGCs) in adults, triggered by
seizures, receive excitatory signals from pyramidal cells in the cornu
Ammonis (CA3) and repeated excitatory inputs from other DGCs.

In fMRI, Englot et al. (2016) explored local and distant
synchronization of resting-state fMRI signals in TLE and focal
epilepsy patients. They observed altered connectivity within and
between various brain regions, highlighting the impact of epilepsy
on network organization. Likewise, analysis of resting state in focal
cortical dysplasia (FCD) identified distinct patterns of functional
connectivity with the hypo-connected patterns in cases with FCD
type IIB, whereas the hyperconnected lesions were predominantly
associated with type IIA (Hong et al., 2019).

2.2.2 Abnormal neuron morphology
Alterations in the size and shape of neuronal cell bodies

have been detected across diverse brain regions, encompassing the
hippocampus, neocortex, and other regions linked to abnormal
neural connectivity (Stouffer et al., 2016). The connection between
these morphological alterations and epileptogenesis has already
been confirmed (Abdijadid et al., 2015). These deviations in
neuronal cell body structure can influence the interconnection and
communication between neurons, potentially influencing the onset
and advancement of epilepsy (Hsieh et al., 2016; Wu et al., 2022).
More precisely, these alterations in local and global connectivity
can impact the manifestation of seizures, determining whether
abnormal connectivity and hyperexcitability result in focal or
generalized seizures (Sheybani et al., 2018; Represa, 2019).

In focal epilepsies, malformations of cortical development
are associated as the primary substrate in which the
presence of morphologically abnormal neurons significantly
affects neural connectivity (Mainen and Sejnowski, 1996;
Richards and Van Hooser, 2018). The existence of atypical neurons
could influence the subsequent stages of development that regulate

cortical synaptic connectivity (Subramanian et al., 2020). Avansini
et al. (2022) observed an enhanced level of network connectivity
(termed effective connectivity) along with increased neuronal
excitability in human neural organoids derived from pluripotent
stem cells of patients with FCD. The aberrant connectivity seen
in FCD appears to be influenced by neuronal morphological
abnormalities, particularly the presence of dysmorphic neurons.
Using 3D confocal microscopy, the researchers detected enlarged
cell bodies and increased dendritic complexity, potentially
contributing to a more interconnected neural circuitry and the
formation of an epileptogenic network in FCD.

Using high-resolution synchrotron x-ray microtomography
and Golgi-Cox staining, Fonseca et al. noticed an altered
distribution of neurons and a reduction of cell number in
the hippocampus in a status epilepticus mouse model. These
approaches allowed the assessment of the 3D cytoarchitecture,
neuron density, and morphology (Fonseca et al., 2018).

2.2.3 Abnormal neuronal localization
The integration of dendrites and synapses into functional

networks is heavily affected by how neocortical neurons
are positioned during development (Martineau et al., 2018).
Malpositioned neurons in the cortex cytoarchitecture are called
heterotopic neurons (Ishii et al., 2015). These neurons alone
may play a role but do not seem to be sufficient to trigger
seizures (Aghakhani et al., 2005). The aberrant organization
of cortical cytoarchitecture potentially leads to aberrant
connections within these developing neuronal networks.
Additionally, the recruitment of distinct microcircuits from
different cortical locations could alter synchronicity, leading to
abnormal neural oscillations (Dubeau et al., 1995; Abdijadid et al.,
2015).

Neuronal disorganization and clusters of heterotopic neurons
are primarily observed in human specimens from cortical
migration malformations such as periventricular heterotopia
(Ekşioğlu et al., 1996) and FCD type I (Coras et al., 2021)
using light microscopy with immunohistochemical and DiI
tracing techniques. Additionally, in animal epilepsy models
(Mello et al., 1993), there have been observations of heterotopic
granule cells in the dentate gyrus, resembling those found
in human epilepsy. Heterotopic granule cells establish new
connections and potentially impact synaptic reorganization (Babb,
1991).

2.2.4 Dendritic pathology
The presence of dendritic spine pathologies and abnormal

dendritic arborization have been suggested to be implicated in
epilepsy worsening, increasing neuronal hyperexcitability in the
circuits, and contributing to cognitive deficits, synaptic remodeling,
and aberrant plasticity (Fiala et al., 2002).

Dendritic spines are mostly observed in excitatory synapses
and neurons respond to epileptogenic changes in the circuitry
by modifying the structure of their dendritic trees. Alterations
in the distribution, quantity, and morphology of dendritic spines
have been proposed to have a direct impact on seizures and
epileptogenesis (Jiang et al., 1998; Jean et al., 2023). However,
it remains unclear whether these changes are the cause or are
a consequence of seizure recurrence (Wong and Guo, 2013).
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Dendritic pathology in epilepsy can be broadly categorized into two
main fields, as described below:

Neuronal dendritic arborization: Morphological changes of
dendrites can affect neuronal excitability. Abnormalities in
dendritic length, shape, and branching patterns have been
described in epilepsies associated with either hippocampal sclerosis,
or tumors, or microdysgenesis (von Campe et al., 1997), and
also associated with the presence of varicose swelling of the
dendrites of granular dentate neurons of the hippocampus
(Blümcke et al., 1999).

Dendritic spine pathology: The initial observation of dendritic
spine loss occurred in hippocampal pyramidal neurons and dentate
granule cells among individuals with TLE (Scheibel et al., 1974),
providing a plausible mechanism to elucidate the learning and
memory challenges experienced by these patients (Chen et al.,
2010). In Lennox-Gastaut syndrome, a childhood epileptic disorder
linked to intellectual disability, pyramidal neurons from brain
biopsy were observed to possess a reduced number of spines
using EM (Renier et al., 1988). In human cerebral cortices derived
from FCD patients, a reduction of dendritic spines, and sporadic
filopodia-like protrusions emerging from the soma in dysmorphic
neurons were noticed using Golgi impregnation and confocal
microscopy (Rossini et al., 2023).

Employing Golgi-Cox staining, optionally combined with
immunohistochemistry, as well as DiI tracing, and utilizing
both confocal microscopy and EM techniques, provides a
comprehensive method for assessing the morphology and structure
of dendritic arborization, as well as the density and morphology of
neuronal dendritic spines in epilepsy.

2.3 Exploring connectivity in central
nervous system disorders via mesoscale
imaging for deeper insights

Functional and structural imaging studies have consistently
identified aberrant connectivity as a fundamental feature in the
pathogenesis of various brain disorders. These investigations
have primarily involved live human subjects and focused on a
macroscale level, employing techniques such as MRI/fMRI and
PET/SPECT, which deliver the overall spatial context of a large
field of views, albeit at lower resolution. As seen in Table 1,
which compiles brain connectivity studies in schizophrenia and
epilepsy from the literature, there has historically been an over-
representation of use of macroscale techniques to try to answer
biological questions. While these studies have provided valuable
insights into the presence of aberrant connectivity, they have
fallen short in uncovering its precise etiological underpinnings
in different brain disorders. Mesoscale imaging provides a means
to address the potential untapped source of information for
novel insights pertaining to brain connectivity, as observed
in this context.

To gain more understanding of the etiology of these
disorders, the integration of morphological and functional 3D
data at mesoscale resolution is imperative. Multimodal imaging
techniques, including confocal microscopy, light-sheet microscopy,
EM, and x-ray tomography, present promising opportunities
to obtain a more comprehensive perspective on alterations in

neural connectivity. Nevertheless, it is essential to recognize the
impracticality of performing live imaging at a mesoscale level
in human subjects. In this scenario, robust in vitro models,
such as 2D neuronal cultures and 3D neural organoid cultures,
play a critical role in investigating the complexities of human
aberrant connectivity within a controlled environment in a model
that more closely resembles human brain development. These
combined efforts have the potential to enhance our comprehension
of the origins and establishment of aberrant connectivity, and
may ultimately contribute to the development of innovative
therapeutic approaches.

In recent years, significant advancements have been achieved in
the field of mesoscale multimodal imaging, enabling the integration
of diverse techniques for comprehensive analysis. Notably, it is
now possible to merge a myriad of imaging modalities, resulting
in the complete 3D morphological reconstruction of individual
neurons while simultaneously acquiring invaluable functional
data in view to study global connectivity (Keller and Ahrens,
2015; Kuan et al., 2020; Santuy et al., 2020; Muñoz-Castañeda
et al., 2021; Walsh et al., 2021; Bosch et al., 2022; Pisano
et al., 2022). Among these techniques are Genetically Encoded
Calcium Indicators (GECIs) (Miyawaki et al., 1997; Nakai et al.,
2001), with the recently developed CaMPARI (calcium-modulated
photoactivatable ratiometric integrator) emerging as a notable
standout in mesoscale imaging (Fosque et al., 2015). CaMPARI
distinguishes itself by its unique feature of irreversibly labeling
photoconverted neurons, extending the observation of active
networks beyond the initial snapshot of activity. This capability has
been leveraged to capture task-dependent activity patterns across
brain regions and visualize hippocampal synaptic plasticity in freely
moving animals (Berndt et al., 2023; Das et al., 2023). Notably, the
practicality of CaMPARI is enhanced by its capability for multiple
uses in longitudinal in vivo studies (Das et al., 2023). Furthermore,
the single-cell precision of CaMPARI facilitates the exploration
of interconnected microcircuits, allowing for the evaluation of
disruptions in excitatory and inhibitory (E/I) signaling (Martin
and Plavicki, 2020), a crucial factor in connectivity influencing
conditions such as schizophrenia and epilepsy. This remarkable
progress reflects the convergence of innovative technologies and
methodologies, leading to a deeper understanding of neural
structures and their structural and functional connections at the
mesoscale level.

In this context, there are several gaps in understanding
disorders affected by brain connectivity that could be addressed by
leveraging mesoscale-related approaches. In schizophrenia, delayed
PFC maturation, specifically GABAergic interneurons, contributes
to cognitive and social deficits in adolescence (Lewis, 1997;
Caballero and Tseng, 2016; Delevich et al., 2018). Investigating
prefrontal circuitry formation and the impact of excitatory inputs
from subcortical regions on interneurons vs. pyramidal neurons
in the PFC is crucial. CaMPARI, for example, could offer valuable
means to investigate these dynamics. Integrating 3D models with
mesoscale imaging (e.g., confocal or live cell imaging and functional
calcium imaging) can address these questions, revealing dynamic
processes and synaptic development in the neuronal circuitry.

Likewise, in epilepsy research, we may inquire about the
processes involved in the conversion of a focal seizure into a
generalized event encompassing several cortical areas by addressing
questions such as: What factors drive this electrical propagation? Is
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TABLE 1 Compilation of brain connectivity studies in schizophrenia and epilepsy: synthesis across different scales, data acquisition modalities, and
image processing strategies.

Biological
question

Scale Data
acquisition

Output Image processing References

Structural and functional
brain network
abnormalities

Macroscale MRI Functional connectivity Seg.: in house MATLAB tools Anticevic et al.
(2015)

Functional connectivity Macroscale MRI Task-based functional
connectivity

Seg.: registration to neuroanatomical atlas Garrity et al. (2007)

Functional connectivity Macroscale MRI Task-based functional
connectivity

Prep.,1 seg.: registration to
neuroanatomical atlas coordinates

Whitfield-Gabrieli
et al. (2009)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: registration to
neuroanatomical atlas coordinates

Erdeniz et al. (2017)

Functional connectivity Macroscale MRI Intra- and inter-network
task-based functional
connectivity

Prep.,1 seg.: cortical parcellation of
functional connectivity boundaries maps

Godwin et al. (2017)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: voxel-wise
meta-analysis–SDM-PSI software

Cai et al. (2022)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: independent component
analysis–CONN toolbox

Huang H. et al.
(2022)

Neurotransmitter
systems

Macroscale PET 18F-DOPA uptake Prep.,1 seg: semi-automatic, probabilistic
registration to neuroanatomical atlas

Howes et al. (2009)

Neurotransmitter
systems

Macroscale MRI Glu and GABA levels Metabolite quantification. Voxel seg: not
detailed

Chen et al. (2017)

Neurotransmitter
systems

Macroscale PET NMDAR ligand tracer
volume distribution

Prep.,1 seg.: neuroanatomical atlas
registration

Beck et al. (2021)

Neurotransmitter
systems

Macroscale MRI Glu and GABA levels and
functional connectivity

Prep.,1 seg.: automatic metabolite
quantification; functional connectivity in
MRS voxel

Shukla et al. (2019)

Neurotransmitter
systems

Macroscale PET GABAAR ligand tracer
volume distribution

Prep.,1 seg.: neuroanatomical atlas
registration

Marques et al. (2021)

Myelin and white matter
tracts

Macroscale MRI GM/WM contrast Seg.: surface-based mapping–FreeSurfer
5.3.0

Jørgensen et al.
(2016)

Myelin and white matter
tracts

Micro/Nanoscale EM Myelin sheath lamellae
damage

Seg.: manual analysis–Kontron
Mop–Videoplan image analyzer

Uranova et al. (2001)

Dendritic spine
quantification

Micro/Nanoscale LM Mean diameter, total
length, location and
number of dendritic spines

Manual tracing Glantz and Lewis
(2000)

Dendritic spine
quantification

Micro/Nanoscale BM Spine density and dendrite
length

Manual tracing Konopaske et al.
(2014)

Dendritic spine
quantification

Micro/Nanoscale CM Spine density, number, and
area

Manual tracing MacDonald et al.
(2017)

Functional connectivity Macroscale FM Cell density and FIM Seg.: stereology–Visiopharm software,
semi-automatic FIM: Zen 2.0 Blue Imaging
software

Stachowiak et al.
(2017)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Prep.,1 Seg: surface-based mapping Bernhardt et al.
(2013)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Seg: histology-based volumetry Bartolomei et al.
(2005)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Prep.,1 seg: voxel-based volumetry Bernasconi et al.
(2004)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes and cortical
thickness

Prep.,1 seg: semi-automatic, surface-based Bernhardt et al.
(2012)

(Continued)

Frontiers in Neuroscience 08 frontiersin.org92

https://doi.org/10.3389/fnins.2024.1340345
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1340345 February 15, 2024 Time: 17:26 # 9

Caznok Silveira et al. 10.3389/fnins.2024.1340345

TABLE 1 (Continued)

Biological
question

Scale Data
acquisition

Output Image processing References

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes and cortical
thickness

Seg: surface-based mapping–FreeSurfer
v5.3.0

Whelan et al. (2018)

Structural and functional
brain network
abnormalities

Macroscale MRI FA, MD, AD and RD Prep.,1 seg: tensor estimation and
tractography

Hatton et al. (2020)

Structural and functional
brain network
abnormalities

Macroscale MRI Structural connectivity Prep.,1 seg.: diffusion tensor calculation
and structural connectivity–FDT toolbox

Bonilha et al. (2013)

Structural and functional
brain network
abnormalities

Mesoscale CM Colocalization of
immunoreactivity

Manual counting: Adobe Photoshop CS6 Du et al. (2017)

Structural and functional
brain network
abnormalities

Macroscale MRI Functional connectivity Prep.,1 seg: manual and automatic
segmentation–AAL

Hong et al. (2019)

Abnormal neuron
morphology

Mesoscale FM, CM, MRI Cell density, ex-vivo FA Prep.: Image reconstruction–Imaris. Cell
seg.: auto-thresholding–ImageJ. DTI seg.:
not detailed.

Hsieh et al. (2016)

Abnormal neuron
morphology

Mesoscale CM Cell density, Sholl analysis,
dendritic spine
morphology

Prep.: gray-scale conversion, Seg.: Manual
cell counting, optical density, Sholl analysis:
ImageJ. Dendritic spine: Imaris
FilamentTracer module

Wu et al. (2022)

Abnormal neuron
morphology

Mesoscale CM Cell morphology and
density

Seg.: semi-automatic
quantification–Analyze Particles on ImageJ
and Imaris

Avansini et al. (2022)

Abnormal neuron
morphology

Mesoscale Synchrotron
x-ray CT

Cell morphology and
density

Prep.: noise reduction. Seg.: threshold,
morphological filters and manual
correction–Avizo software

Fonseca et al. (2018)

Abnormal neuronal
localization

Multiscale:Meso
(CM) and
Micro: EM

CM, EM Cell and dendritic spine
density and morphology

Prep.: image and neuron
reconstruction–Neurolucida. Seg.:
automatic morphometry–L-measure.
Dendritic spines: manual tracing on
SynPAnal. Puncta analysis: ImageJ

Martineau et al.
(2018)

Abnormal neuron
morphology

Multiscale:
macro (RM)
and meso (LM)

MRI, LM Type and number of
lesions

Qualitative visual analysis Dubeau et al. (1995)

Abnormal neuronal
localization

Mesoscale LM Cell morphology Qualitative analysis Ekşioğlu et al. (1996)

Abnormal neuronal
localization

Microscale LM Cell density Manual cell counting Mello et al. (1993)

Abnormal neuronal
localization

Microscale LM, EM Densitometry, cell
morphology

Manual densitometry–Ziess IBAS image
analysis system

Babb (1991)

18F-DOPA, 18F-Fluoro-L-Phenylalanine tracer; AAL, automatic anatomic labeling; AD, MD, RD, axial, mean, and radial diffusivity, respectively; BM, brightfield microscopy; CM, confocal
microscopy; CONN, functional connectivity toolbox; CT, computed tomography; DAPI, 4′ ,6-diamidino-2-phenylindole; DMN, default mode network; DTI, diffusion tensor imaging; EM,
electron microscopy; FA, fractional anisotropy; FDT, FMRIB’s Library’s Diffusion Toolbox; FM, fluorescence microscopy; FIM, Fluorescence Intensity Measurements; GABA/GABAAR: γ-
aminobutyric acid/GABA α-subunit receptor; Glu, glutamate; GM, gray matter; LM, light microscopy; MRI, magnetic resonance imaging; NMDAR, N-Methyl-D-aspartate receptor; ROI,
region-of-interest; PET, positron emission tomography; Seg., segmentation; Prep., preprocessing; PSI, seed-based d Mapping with Permutation of Subject Images toolkit; T1WI, T1-weighted
image; WM, white matter. 1Reported preprocessing steps for neuroimaging: slice-timing, attenuation, and motion corrections, registration to T1WI, normalization to neuroanatomical atlas,
field-map correction, and smoothing (for functional MRI); intensity correction, registration to neuroanatomic atlas, smoothing; eddy current and susceptibility artifacts correction (diffusion
MRI); realignment, motion correction, PET registration to T1WI, normalization to neuroanatomical atlas (for PET).

it the result of abnormal neurite branching patterns or an unusual
number of dendritic spines? Moreover, it remains imperative to
determine the specific neural cell type responsible for orchestrating
the shift from a localized circuit, synchronizing neighboring cells,
to the initiation of a generalized ictal event. Thus, studying brain
network development and organization in the mesoscale will allow
us to understand seizure formation and spread.

3 Image processing: quantifying
connectivity

Image processing tools are essential for quantifying data and
revealing the intricate relationships between brain networks and
aberrant connectivity. Image processing techniques can extract
qualitative and quantitative measurements from a variety of
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neuroimaging modalities, including MRI, two-photon, confocal,
super-resolution, microscopy, and EM. Initial steps involve the
identification of which information the research needs to extract
from the data (e.g., tiny structures), followed by the selection of
algorithms and their fine-tuning on a particular data (e.g., noise
filtering, contrast enhancement). After establishing an adequate
workflow, the outcome must be validated by expert neurobiologists.
During this stage of image processing, human input on several
levels inevitably leads to undesired bias or even difficulties
in identifying subtle information such as fine morphological
structures. Adding to this equation, the amount of raw data is
sometimes not feasible to be fully accomplished manually, and this
is especially true for mesoscale generated data. In this scenario,
the development of automated or semi-automated computerized
processing is paramount to achieving an efficient large-scale data
processing. In general, a typical processing workflow consists of
three fundamental steps: image preprocessing, image analysis, and
quantification (Figure 2). However, it is important to note that
specific modifications on the pipeline are required based on the
type of image used and the particular neural structure under
investigation. While a general image analysis pipeline can find
utility in various scenarios, it is important to recognize that each
biological question has a unique demand, and this requires the
development of dedicated processing pipelines.

In the following section, we will explore the most suitable
image acquisition and processing techniques for tackling key issues
associated with conditions affected by abnormal brain connectivity.
These issues encompass inter-regions brain connectivity, axonal
and soma density, single neuron morphology, and dendritic spine
quantification and morphology. Our approach will commence with
the macroscopic analysis of brain regional images and end with
the micro-scale assessment of dendritic spine quantification and
morphology. We will not address image contrast enhancement
and noise reduction preprocessing strategies as they have
several computational implementations in each of the acquisition
techniques and it could divert our focus from the main goal of this
section: understanding the crucial role of segmentation and data
analysis in comprehending connectivity. For an in-depth review of
image denoising, the interested reader is referred to Kollem et al.
(2019), Kaur et al. (2021), and Huang C. et al. (2022). There is a
plethora of manual image analysis tools but in this review we will
focus on automatic or semi-automatic quantification.

3.1 Quantifying inter-regional brain
connectomics

Anatomically, the brain is compartmentalized into distinct
regions, each with designated functions that collectively contribute
to a range of high-order cognitive processes. Inter-regional brain
connectomics consists of mapping and studying the complex
networks between different regions (Behrens and Sporns, 2012).
By analyzing these connections, using either macro, meso, or
multiscale imaging strategies, it is possible to gain insights into how
different regions cooperate or compete (Behrens and Sporns, 2012),
and how disruptions in these networks may lead to neurological or
psychiatric disorders. The macroscale approach focuses on imaging
techniques that encompass the entire brain, ideally in vivo, with a

FIGURE 2

Overview of the bioimage analysis workflow. The pipeline generally
comprises three fundamental steps: image preprocessing (I), image
analysis (II), and quantification (III). In the preprocessing step, raw
image quality is enhanced to facilitate subsequent analysis or
visualization. Image analysis involves identifying and delineating
specific regions or objects of interest, which is essential for
extracting quantitative data from bioimages. The quantification step
involves extracting meaningful quantitative measurements and
deriving insights from the acquired images.

selection of modalities such as MRI for structural covariance, fMRI,
diffusion weighted image (DWI–including DTI and tractography),
and PET. Structural connectivity, primarily addressed through
DWI/DTI and tractography, when combined with fMRI, can also
reveal structural connectivity (Axer and Amunts, 2022).

In the context of computational processing for macroscale
images, artificial intelligence methods for image analysis are
widely utilized in diagnosis contexts to understand neurological
and psychological disorders (Zhang et al., 2020). For meso
and micro scales, image analysis techniques currently available
to extract neural connectivity lie within the segmentation and
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neuron individualization. Pixel/voxel classification, frequently
called Region of Interest (ROI) delimitation, is the first step to a
multitude of tasks. Once an ROI is defined, it becomes possible
to trace morphological markers in longitudinal or comparative
studies. Furthermore, it aids in the precise delineation of abnormal
regions, guiding surgeons in tasks such as tumor extraction
or identifying the epileptogenic zone by PET/fMRI images. In
longitudinal developmental studies, segmenting regions like the
prefrontal cortex over time provides valuable insights into the
maturation of connectivity networks associated with cognitive
development (Liu et al., 2023). ROI segmentation is also a crucial
step for morphological quantification assessment as it enables
researchers to access region volume or identify morphological
differences in patients compared to control individuals in MRI.

Within psychiatric imaging, schizophrenia research has
consistently revealed two prominent observations: increased
cerebroventricular size and reductions in cerebral gray matter
volume (Ananth et al., 2002; Shapleske et al., 2002). Automatic
ROI segmentation and morphometric quantification of gray
matter volume in MRI images decrease human biases and help to
evaluate different groups in comparative or longitudinal studies
(Fornito et al., 2017; Nemoto et al., 2020). While traditional image
processing techniques such as thresholding-based segmentation,
watershed labeling, neuroanatomical-atlas-based segmentation, or
semi-manual masking [using tools like FreeSurfer (Fischl, 2012) or
BET (Smith, 2002) are available, the medical context often requires
greater accuracy even on images with unclear borders or blurred
definition (Wang et al., 2023)]. In this context, several machine
learning techniques have been successfully used in analysis of
complex datasets, including k-means clustering, Support Vector
Machines (SVM), Random Forest, Adaptive Boosting (AdaBoost),
eXtreme Gradient Boosting (XGBoost) and Deep Learning
strategies like Convolutional Neural Networks (CNN), Generative
Adversarial Networks (GAN), Recurrent Neural Networks (RNN)
(Wang et al., 2014; Zhang Z. et al., 2021; Verma et al., 2023).

In the field of epilepsy, image segmentation or ROI delimitation
primarily aims to locate the epileptogenic zone and define pre-
operative surgical areas. While this kind of analysis is commonly
applied to MRI-T1 and fMRI images (Segato et al., 2020), its
applicability extends to PET, DTI, and DWI scans (Sollee et al.,
2022). For instance, in the study conducted by Lee et al. (2020),
the authors used deep-learning CNN to pinpoint specific regions
for surgical resection in DWI and tractography images of pediatric
patients. Additionally, (Zhang Q. et al., 2021) constructed a pair-
of-cube (PoC)-based Siamese CNN using two identical 18-layer
ResNet to identify epileptic focus in F-fluorodeoxyglucose (F-
FDG) PET images. After localization, the metabolic abnormality
level of the predicted focus was automatically determined using
the asymmetric index (AI). In another instance (Li K. et al.,
2019; Vakharia et al., 2019) conducted detailed segmentation
of critical areas, including the ventricular system, brainstem,
amygdalohippocampal complex, parahippocampal gyrus, and sulci,
from MRI-T1 9 images. Subsequently, they employed Random
Forest algorithms to preplan laser trajectories of respective
surgeries of epileptic zones with less adverse events associated with
epilepsy surgery. For a comprehensive exploration of how deep
learning techniques can be used in epilepsy, we recommend Sollee
et al. (2022) review.

3.2 Multiscale imaging: bridging micro to
macroscale

Macroscale inter-regional insights are directly associated with
microscale synaptic organization and arborization (Wei et al.,
2019). The overall cortico-cortical connectivity observed at the
macroscale in BigBrain profiles is strongly correlated to microscale
laminar cytoarchitectonic patterns (Wei et al., 2019). Essentially,
cortical regions exhibiting higher similarity in microscale patterns
are more likely to be interconnected (Wei et al., 2019).

Additionally, multiscale approaches, which integrate data from
various imaging modalities, hold the potential to interlink micro
and macro scales. For example, the BigMac dataset, developed
by Howard et al. (2023), combines in vivo MRI images with
post-mortem microscopy data and ultra-high angular resolution
diffusion imaging and enables the mapping of microscale cellular
structures to macroscale features. This comprehensive approach
allows researchers to study brain connections at both macro and
micro levels, bridging the gap between them.

However, Haueis (2021) cautioned against oversimplifying
the micro-to-macro correlation by merely averaging microscale
details. Failing to account for the intermediate mesoscale
structure and organization in this practice may lead to analytical
errors. Haueis further emphasized the critical role of mesoscale
circuit organization in accurately depicting the structure-function
relationship, particularly in the context of cortical gradient
modeling. This is a compelling piece of evidence that bridging
micro-to-macro scale connectivity should pass through mesoscale
circuit understanding.

3.3 Mesoscale imaging

The trade-off between image resolution and sample size in 3D
is a well-known limitation. The higher spatial resolution comes at
the cost of a smaller field of view (FOV). Nonetheless, mesoscale
brain imaging strategies combine cellular-level resolution and
an extended spatial range. The primary approach employed in
mesoscale imaging involves the use of wide-field or laser-scanning
confocal microscopies, heavily impacted by the thickness of the
sample. Recent methodologies such as light-sheet and two-photon
partially overcome this limitation by going deeper inside intact
tissues, while preserving high spatial resolution (Cazemier et al.,
2016; Tyson and Margrie, 2022). For example, Li et al. (2010)
used an automatic micro-optical sectioning tomography (MOST)
to obtain a mesoscale atlas of the mouse brain. This strategy
integrates a microtome, light microscope, and image recorder, and
allows for simultaneous imaging and sectioning (Li et al., 2010).
Another possible approach was the use of post-mortem axonal
projections enhanced by green fluorescent protein (EGFP)-labeling
(Oh et al., 2014). They imaged many small patches of brain tissue
with two-photon microscopy to form a big image with cellular-level
resolution (Oh et al., 2014). Imaging at this scale in larger FOV took
18.5 h of scanning and resulted in a 750 GB raw dataset. Likewise,
(Wang et al., 2019) developed the VISoR system, a sophisticated
adaptation of light sheet microscopy, to obtain 3D mouse brain
images with neurite resolution within 1.5 h.
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Another time-optimizing approach for mesoscale involves the
use of synchrotron X-ray imaging. Especially in 3D computed
tomography is becoming popular since the higher energies of x-rays
allow deeper penetration and very high resolution. Although it can
take a few hours to measure a sample in benchtop equipment,
synchrotron sources emerge as a solution for fast measurements
and even higher spatial and temporal resolutions, which also
allow a combination of several tomograms to reconstitute large
FOV (Fonseca et al., 2018; Rodrigues et al., 2021; Claro et al.,
2023). Image processing pipelines are usually developed for a
specific imaging acquisition technique. A comprehensive summary
of primary mesoscale image processing methods for the main image
acquisition modalities can be found in Figure 3.

3.3.1 Processing at the mesoscale level: insights
into neurite and soma regional density

Extensively imaging and tracing axons throughout the brain
provides a mesoscale view of regional connectivity, offering insights
into soma and neurite density as well as assessing total cell
reductions and identifying cell death in specific brain regions
(Bazinet et al., 2023). Although mesoscale imaging strategies
can unveil a series of histological structures, they present their
computational challenges.

The first challenge encountered in the mesoscale is usually the
stitching of large quantities of high-resolution microscopy images.
Image stitching refers to the process of aligning and overlaying
two or more images of the same object taken from different,
consecutive, and overlapping FOV. Through image registration
processing (Sarvaiya et al., 2009), corresponding features or
structures in these images are spatially aligned, making it possible
to combine them into a single and panoramic image. In the
case of brain microscopy, this involves merging multiple images,
sometimes acquired at varying scales, into a comprehensive, high-
resolution representation of the brain. Registering can mean either
tile stitching multiple consecutive FOVs, without overlapping or
positioning microscopic images into a larger dataset using fiducial
markers, or a common reference frame to localize them into
the brain. In both cases, it is expected that mesoscale imaging
strategies generate the largest amount of raw data. BigStitcher is a
method of stitching consecutive FOVs into a single high-resolution
image (Hörl et al., 2019). To manage such large amounts of
data, the BigSticher software computes shifts between overlapping
image tiles by using a phase correlation method in downsampled
images, which optimizes the computational time necessary for
image stitching (Hörl et al., 2019). Moreover, DeepSlice is a
CNN specifically trained on a substantial histological dataset to
automatically align coronal mouse brain two-photon microscopy
images with the Allen Common Coordinate Framework (CCF)
(Carey et al., 2023).

The following step is to detect neuronal cell bodies in the
entire image and quantify soma density across brain regions.
The size of mesoscale data makes manual handling impractical
and prone to biases; hence, automatic or semi-automatic tools
are more suitable for its processing (Bjerke et al., 2023). Soma
detection can be made either by traditional image enhancement
filters followed by intensity thresholds, such as in ClearMap
(Renier et al., 2016) and MIRACL (Goubran et al., 2019), or by
advanced machine learning techniques for pixel classification as

deep learning approaches (Tyson and Margrie, 2022). Intensity
thresholding approaches also work well with DAPI-stained nuclei
images (Kim et al., 2015), and modifications of thresholding can be
done to address large-scale GFP images even with a large variability
in contrast (Frasconi et al., 2014). These modifications consist of
first using mean shift clustering to detect soma centers followed by
image deconvolution and finally manifold learning for filtering false
positives (Frasconi et al., 2014). However, intensity thresholding
and morphological approaches fail especially with densely packed
images and that is precisely where deep learning can be used.
For example, (Hu et al., 2021) combined 3D U-shaped full CNN
with multi-task learning to perform soma segmentation in Nissl
stained images. This strategy is done in small patches and would
take a long time to train in teravoxel mesoscale images. As a faster
approach, (Wei et al., 2023) used a lightweight MCC-Net to reduce
computational complexity in soma detection. Then, in the second
stage, they employed SFS-Net for precise soma localization in
mouse brain images, utilizing advanced segmentation techniques.
Experimental results confirmed the excellent performance of the
method and its capacity to provide valuable information for
neuron reconstruction (Wei et al., 2023). The user-friendly software
CellPose (Stringer et al., 2021) also has a DeepLearning module
that has been used to count pyramidal neurons in histopathological
images (Oltmer et al., 2023). An alternative option is to employ
Suite2p software (Pachitariu et al., 2017), which offers AutoROI cell
segmentation designed for simultaneous analysis of functional and
morphological two-photon calcium images. The compilation of the
main soma quantification methods for mesoscale connectivity is
presented in Table 2.

The next step to a mesoscale connectivity view is to detect,
trace, and quantify neurites across the brain. In the study conducted
by Allen Mouse Brain Connectivity Atlas (Oh et al., 2014), axonal
detection at the mesoscale level starts with a very similar process
to single neuron morphology mesh tracing. Signal detection
algorithms, such as filament tracing, can be used as an initial
segmentation. The authors then rescale image intensity and remove
noise using filters and morphological techniques. Candidate signal
objects were identified based on adaptive edge/line detection and
morphological attributes such as length and area. Additionally,
high-intensity pixels near these objects were considered. In a post-
segmentation step, objects considered artifacts were removed. It
is important to note that passing fibers and terminals were not
differentiated. The outcome is a high-resolution mask classifying
each 0.35 µm × 0.35 µm pixel as a signal or background
(Oh et al., 2014).

Also in the mesoscale, TRAILMAP uses a modification of a
3D UNet to extract axonal projections from uncleared brain tissue
in light-sheet microscopy (Friedmann et al., 2020). This method
focuses on segmenting axons from the background in a generalized
way that can be applied to all brain regions. Unlike filament tracing
methods, it does not address neurite branching numbers or spatial
positions. The purpose is mainly to address axonal fiber density and
compare it across brain regions (Tyson and Margrie, 2022).

Another possibility is to use the MIRACL pipeline and toolbox.
MIRACL is based on a multimodal approach that integrates
CLARITY data at the microscopic level with macroscopic in vivo
and ex vivo imaging data, including structural, diffusion, and
quantitative MRI, all aligned to the Allen atlas reference frame
"ARA." This integration facilitates various analyses, including the
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FIGURE 3

Overview of mesoscale bioimage processing methods. Image acquisition techniques are represented by big circles: Light Microscopy (orange),
Serial Section Electron Microscopy (blue), and Synchrotron X-ray (pink). Image processing steps are depicted by ellipses, and algorithms of analysis
are represented by boxes. Labels I, II, and III denote the fundamental steps of mesoscale image analysis: preprocessing, segmentation, and data
analysis, respectively. Algorithms tools are referenced in Table 2 (I) and Table 3 (1). FOV, field of view; FFN, flood-filling network; CNN,
convolutional neural network; EM, electron microscopy; PCA, principal component analysis.

TABLE 2 Main soma quantification methods for mesoscale connectivity.

Soma quantification
method

Sample
preparation/microscopy

Principle

Kim et al. (2015) DAPI stained nuclei Intensity threshold

Frasconi et al. (2014) GFP transgenic mice Adaptation of intensity threshold: mean shift clustering to detect soma centers,
supervised semantic deconvolution by means of neural networks for image
enhancement and manifold learning for filtering false positives

ClearMap YFP Nuclei detection with background subtraction, filters, morphological operations,
and 3D peak detection, followed by watershed segmentation and volume-based
filtering to identify cells.

MIRACL Pipeline YFP + DTI registering Segmentation workflow in ImageJ, utilizing optimized pre-processing,
morphological analysis algorithms, and a parallelized feature extraction
algorithm for 3D cellular features.

CellPose (Stringer et al., 2021;
Oltmer et al., 2023)

Light microscopy, HE stained
histopathological images

A simulated diffusion process generates spatial gradients pointing toward the
center of a cell, and a neural network trained on these gradients, along with pixel
categorization, forms a gradient vector field used to predict masks by constructing
a dynamical system with fixed points.

Suite2p (Pachitariu et al., 2017) Two-photon calcium images Greedy segmentation of nearby pixels

Hu et al. (2021) Nissl stained Modified 3D fully connected Unet

Wei et al. (2023) fMOST Lightweight neural network for quick soma detection in low resolution, followed
by a network with multi-scale context and a module for precise soma localization.

DAPI, 4′ ,6-diamidino-2-phenylindole; GFP, green fluorescent protein; YFP, yellow fluorescent protein; DTI, diffusion tensor imaging; fMOST, fluorescence micro-optical sectioning
tomography; 3D, three-dimensional; HE, Hematoxylin and eosin stain.

examination of histological features across network graphs and
fiber tracts, as well as connectivity analyses based on projection
terminals. Additionally, MIRACL supports group-level statistics,
multimodal correlations, and comparisons of connectivity maps
across different scales (Goubran et al., 2019).

3.3.2 Single neuron morphology
The morphology of a neuron can have a big impact on its

connectivity with other local neuronal circuits. Neurons with a
complex dendritic branching pattern tend to have a larger surface
area and a denser synaptic field, allowing them to have more
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TABLE 3 Main filament tracing and neuron individualization methods for mesoscale connectivity.

Method Microscopy Overview Sparse/dense References

APP2 Confocal Image enhancement step followed by seed point
detection on local maxima and FFM

Originally created for single
neuron use. But can be used on
sparse images

Xiao and Peng (2013)

NeuronCrawler Confocal Similar to APP2 but improved to large images Originally created for single
neuron use

Zhou et al. (2015)

CAAT fMOST 3D CNN predicts object probability, followed by an
adaptive voxel scooping approach on the probability
map,

Dense and large scale neuron
tracing

Huang et al. (2021)

NTNR Ultra-scale optical
microscopy

A hybrid model. CNN backbone merged with a
Transformer encoder-decoder architecture

Dense Wang et al. (2022)

G-Cut Confocal Requires prior tracing and soma identification. Somas
are used as seeds and adaptation of Djikstra’s algorithm
based on morphological priors is used to segment
neuron instances

Dense Li R. et al. (2019)

Neuro-GPS-Tree Many modalities Uses local and global cues to automatically classify
neurites and reconstruct large-scale neuronal
populations with dense neurites

Dense Quan et al. (2016)

FFM, fast marching method; fMOST, fluorescence micro optical sectioning tomography. Adapted from Magliaro et al. (2019).

candidate synapses (van Pelt and van Ooyen, 2013). According to
Peter’s rule, the colocalization of dendritic and axonal arbors are
reasonable predictors of connectivity among neuron types (Rees
et al., 2017). Nevertheless, a greater number of potential synapses
does not always mean a greater number of functional synapses
(Rees et al., 2017). Axo-dendritic overlapping is a necessary but
not sufficient condition to ensure a synaptic connection. Light
microscopy is the ideal imaging technique to study both neuronal
morphology (using cytoplasmic markers) and synaptic connectivity
(using puncta colocalization) (Wang et al., 2020). In contrast,
neuron morphology has recently been described to predict non-
random connectivity in local networks and circuits (Udvary et al.,
2022). The authors state that the specificity in neural wiring is
influenced by morphological factors such as similarities in neurite
projections, packing density, and the diversity of cell types in the
neuropil (Udvary et al., 2022). High values in these factors lead to
recurring patterns in the network, while lower values result in a
more feedforward network structure (Udvary et al., 2022).

To address single neuron morphology using imaging
techniques we must first extract from the image which pixels
belong to each neuron. This process is called instance segmentation
or neuron instance individualization (You et al., 2019). The main
techniques used to measure multiple neurons are light microscopy
(including confocal, two-photon, STED, and light-sheet) and
serial-section EM.

3.3.2.1 Single neuron morphology using light microscopy

Traditionally in light microscopy (confocal, light sheet, and
STED), neuron instance individualization starts with filament
tracing methods (Xiao and Peng, 2013; Feng et al., 2015; Liu et al.,
2016; Quan et al., 2016; Shih et al., 2021). These methods work
as an initial segmentation and are responsible for differentiating
the neural mass foreground from the noisy scattered background
(Magliaro et al., 2019). They transform an image into a graph
of connected points. Filament tracing pipelines consist mainly of
four steps: (i) an image pre-processing step to improve signal-to-
noise ratio enhancing filaments and smoothing background; (ii) a

seed point detection step followed by (iii) “energy minimization
algorithms” such as Fast Marching Method (FMM) (Sethian, 1996)
and Dijkstra algorithm (Dijkstra, 1959); and (iv) a pruning step
to reduce redundant traces and improve overall segmentation
(Liu Y. et al., 2022).

In the pre-processing step, the main goal is to significantly
enhance the signal-to-noise ratio. In confocal imaging techniques,
the pre-processing involves PSF (point spread function)
deconvolution, feature-enhancing filters (Frangi et al., 1998),
or deep learning techniques that enhance neurons based on a
predicted morphology (Yang et al., 2021a). Then, seed point
detection usually includes the detection of somata searching for
the brightest point on the image (Xiao and Peng, 2013). After
that, energy minimization algorithms find the shortest path
between a starting point and all other points in a graph, using
a cost function usually based on image intensity or transformed
distance of a filament. The final step is filament pruning and
morphological corrections (Liu Y. et al., 2022). These traditional
tracing methods are very robust and widely used in neuron
imaging. Nonetheless, most algorithms are not optimized for large
volumetric images (giga or tera voxels) and images with densely
packed cells. If the traced image contains multiple neurons this will
result in a mesh containing all cells and will require further neuron
individualization.

Nonetheless, filament tracing has improved a lot since the
2008’s DIADEM golden age. The Big Neuron Project and Mouse
Light Project have reconstructed over 1000 neurons and are
constructing a database. Neuron Crawler (Zhou et al., 2015) has
begun solving the big data problem and, Deep Learning methods
have been helping to improve the tracing framework (Dai et al.,
2019; Tan et al., 2020; Huang et al., 2021; Yang et al., 2021b; Liu
C. et al., 2022; Wang et al., 2022). Table 3 summarizes the main
filament tracing methods used in the mesoscale connectivity.

Once the neuronal mesh is accurately traced by filament
tracing strategies, the next step is to individualize each neuron.
Algorithms such as G-Cut (Li R. et al., 2019) and NeuroGPS-Tree
(Quan et al., 2016) use the soma identity and position, and from
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previously learned morphological parameters trace the most
probable neuron given the soma and the traced neuronal mesh.

3.3.2.2 Single neuron morphology using electron
microscopy

Electron Microscopy can also uncover single neuron
morphology and local connectomics with nanometric synapse
level resolution. Using EM to reconstruct neuron wiring and
connectivity involves multiple steps: high-throughput data
acquisition, image registration, image segmentation, proofreading,
and tracking (Beyer et al., 2022). Unlike confocal or light sheet
microscopy, 3D EM neuron reconstruction requires physical
sectioning of the sample. The samples are cut into about 30 nm
thick samples and individually imaged. A 1 mm3 brain sample
requires about 5000 slices, 2.1 petabytes of raw microscopy data,
and 326 days to finish data acquisition (Shapson-Coe et al.,
2021). Similarly, (Winding et al., 2023) imaged 3016 neurons and
548,000 synapses in a Drosophila larval brain. The resulting image
contained 4841 z-slices and processing it took manual annotation
of multiple users and a specialized annotation tool for big images
(CATMAID) (Winding et al., 2023).

After each image has been acquired the next step is to stitch
adjacent 2D images and correctly stack (register) them to form
a 3D volume. During 3D thin-sliced EM image acquisition, the
most fundamental step for proper 3D reconstruction is image
registration. Aligning microscopy slices can be challenging since
they are not perfectly aligned and often have different quality and
acquisition parameters (Beyer et al., 2022). The main 2D stitching
includes plugins such as TeraSticher (Bria and Iannello, 2012) and
3D registration can be done with the ImageJ plugin TrackEM2
(Cardona et al., 2012). Once the image volume is completed,
the next step is to individualize and segment each neuron. Due
to the highly textured nature of EM images, segmentation is
typically accomplished using deep learning techniques (Shapson-
Coe et al., 2021), using a flood-filling network (FFN). Most of the
EM segmentation algorithms rely on detecting cell membranes to
separate neurons, and even small errors in this detection could split
or merge neurons, significantly impacting the reconstructed neural
circuit (Krasowski et al., 2018). In this context, combining neuro-
morphological priors with local membrane information can be a
viable resource to reduce errors in the neuronal individualization
process (Krasowski et al., 2018; Hong et al., 2023).

3.3.3 Morphology quantification of individual
neurons

The first and most important parameter to quantify single
neuron morphology is the radial profile of neuron dendrite
spanning tree, also known as the Sholl Intersection Profile (SIP)
(Bird and Cuntz, 2019). The complete Sholl analysis includes
measuring the total length of the dendrite, the axon domain
maximum and minimum from the soma, and the angular
distribution of dendritic segments that deviate from a direct path to
the soma. According to the authors (Bird and Cuntz, 2019), a larger
dendrite extension length implies a larger region where synapses
can occur, peaks in the SIPs are related to regions where synapses
have a higher probability to occur and valleys in the SIPs are regions
to where synapses have a lower probability to occur. The angular
distribution is related to a neuron’s centripetal bias and implies a

neuron that minimizes wiring to ensure an efficient propagation of
electrical impulses.

Alternative ways to measure neuronal shape include parameters
such as the total length of neurites, the minimal occupied volume,
the distribution of branch lengths as represented in histograms, and
the frequency of distances between successive bifurcations along
the neural trajectory. These measurements are obtained through
the open-source software L-measure, as outlined in the work of
Scorcioni et al. (2008).

A further challenge is to classify neuron types using only their
morphological assets without any molecular markers (Polavaram
et al., 2014) used L-measure to extract morphological features
of neurons in the NeuroMorpho database. They subsequently
applied principal component analysis (PCA) as a statistical tool
to identify key morphological parameters capable of effectively
classifying dendritic structures across diverse metadata categories.
Their findings highlight the importance of specific measures
like branching density, size, tortuosity, bifurcation angles, arbor
flatness, and topological asymmetry in capturing meaningful
features of dendritic trees. Similarly, Khalil et al. (2021) extracted
L-measure metrics and modified Sholl descriptors from the
NeuroMorpho database and used PCA and KNN clustering to
classify neuronal types.

Deep learning revolutionized feature extraction and image
classification and has been used to classify neurons. For example,
GraphDINO used a Transformer-based Graph Neural Network
to create 3D spatial embedding representations of neuronal
graphs and later classified them into neuronal types (Weis
et al., 2021). The authors adapted positional encoding and
introduced a novel attention mechanism called AC-Attention to
fit neuronal graphs and achieved results comparable to expert-
manual classification without prior knowledge about neuronal
structural features and outperforms previous methods in predicting
expert labels on quantitative benchmarks (Weis et al., 2021).
Similarly, MorphoGNN is a novel approach for embedding single
neuron morphologies using graph neural networks (GNN) and
learns spatial relationships between nodes in reconstructed neuron
fibers by considering their nearest neighbors on each layer.
This process generates a reduced-dimensional representation of
individual neurons using an end-to-end model that incorporates
densely connected Densely Connected Convolutional layers and a
dual pooling operator (Zhu et al., 2023).

3.4 Dendritic spine quantification and
morphology

Dendritic spines are small protrusions from dendrites that
constitute the center of excitatory synaptic interaction among
central neurons (Papa et al., 1995). They are crucial structures for
interneuronal communication and play a crucial role in learning
and memory. Neuronal spines can range in size from tiny, barely
visible protrusions to larger and more complex structures. This
variety suggests that neuronal spines have a wide range of functions
and are essential for neural plasticity and cognitive and sensory
functions (Rochefort and Konnerth, 2012; Ekaterina et al., 2023).

The analytical approach is often used to study dendritic spines,
including their density and respective morphological features
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(Chang et al., 2017). Light microscopy and EM can image dendritic
spines and monitor their dynamic alterations in response to neural
network activity (Arellano et al., 2007). In this section, we have
chosen to emphasize image processing tools obtained by light
microscopy.

Traditionally, dendritic spine images are obtained through
Golgi staining and wide-field microscopy. 3D studies of such
structures can benefit from confocal reflection imaging, although
manual dendrite tracing is still in place. Popular software like
Imaris (Govindan et al., 2021), or NeuroLucida (Dickstein et al.,
2016), followed by the utilization of semi-automatic measurement
tools such as software like SPINEJ (Levet et al., 2020) and
NeuronStudio (Rodriguez et al., 2008) have a broad use. To
employ deep learning for automated methods, it requires extensive
datasets comprising meticulously segmented, high-quality images,
known as “ground truth images”(Vidaurre-Gallart et al., 2022).
However, it’s important to note that even with such datasets,
there may still be limitations to achieving precise reconstructions
(Vidaurre-Gallart et al., 2022).

The image processing routine for analyzing dendritic spines
involves a five-step pipeline: (i) data pre-processing as described
before, (ii) spine location detection, (iii) segmentation to isolate
them, (iv) quantification of morphological characteristics, and
(v) classification or clustering based on their morphology
(Li et al., 2023).

The primary objective in the spine detection phase is the precise
identification of individual entities’ locations within the 3D image
(Rodriguez et al., 2008). This process begins delineating dendrite
boundaries, utilizing information extracted from the dendrite 3D
mesh (Mukai et al., 2011; Okabe, 2020). There are four main spine
detection automatic approaches. The most prevalent method is
skeletonization, which involves the removal of consecutive layers
of pixels from the dendritic boundary (Okabe, 2020). To detect
spines using skeletons, it is necessary to binarize the original images
correctly and extract all spines that are still connected to dendritic
shafts. If any spines become disconnected during the binarization
process, they need to be reattached through further processing
(Rusakov and Stewart, 1995). The Rayburst sampling (Rodriguez
et al., 2006, 2008), gradient-based methods (Zhang et al., 2010), and
analysis of 3D surfaces (Li and Deng, 2012) represent alternative
automated approaches for spine detection.

For spike detection, it is necessary to establish the boundary
that separates the spines from the dendritic shafts, using iterative
methods (Okabe, 2020). One way to perform automatic spine
segmentation using light microscopy involves a calculation of the
distance to the surface of the neuritic shaft for each voxel outside
the shaft (Rodriguez et al., 2008; Singh et al., 2017).

After segmentation, a variety of spine morphological
measurements and posterior spine classification can be
automatized. Parameters of the 3D structure of spines
encompassing spine length, head diameter, neck length, volume,
curvature, basal radius, maximum and minimum radius, and
head-to-neck ratio (Rodriguez et al., 2006; Janoos et al., 2009).
After 3D neuronal morphometry, various principles for spine
classification have been proposed and the commonly employed
method involves categorizing spines into four main groups
stubby, thin, filopodia, and mushroom-shaped (Hering and
Sheng, 2001). While traditional phenotypic classification often
relies on manual inspection, machine learning approaches, aided

by labeled training datasets, have demonstrated comparable
accuracy to human operators (Basu et al., 2018), most
of them using semi-supervised learning (Shi et al., 2009,
2014). Computational analysis of 3D spine morphology has
the potential to unveil novel spine characteristics by fusing
clustering methods to automatically group spines with similar
structures. Luengo-Sanchez et al. (2018) proposed a probabilistic
approach that categorized the spine in clusters based on a
selected set of morphology features, with a Gaussian finite
mixture model.

The rise of the high-resolution light microscopy image era has
led to an expansion of techniques for automated spine detection,
segmentation, and measurement. For a comprehensive overview,
we recommend a thorough review presented by Okabe (2020).

4 Challenges and perspectives

In the examination of mesoscale connectivity within the
context of connectivity-related brain disorders, we highlighted
the following challenges: (i) refinement of human models; (ii)
enhancement of imaging acquisition; and (iii) optimization of
computational processing.

Human neural organoids are revolutionizing the study of
neural development and diseases in a controlled in vitro setting,
overcoming the limitations of traditional animal models. These
organoids recapitulate the complexities of neural development,
offering insights into health and diseases (Avansini et al., 2022).
The in vitro system allows for drug testing, intervention studies,
and close observation of potential side effects. Organoid models
support experiments and correlative microscopy in multimodal
platforms, enabling comprehensive characterizations of entire
samples in vivo. This approach represents a significant stride
in neurobiology and drug development. Neural tracing using
viral vectors and X-ray markers offers precise tools to investigate
neural connections and circuitry, enhancing imaging capabilities
for detailed visualization and mapping of neural structures.
This combination facilitates a deeper understanding of neural
development.

From the perspective of image acquisition, EM provides
unparalleled spatial resolution at the sub-micron to nanoscale, but
it comes with challenges, including difficulties in measuring
samples several micrometers thick due to the destructive
nature of sample preparation for transmission images and
limitations on molecular markers. Photon-based microscopies
offer an alternative, capable of imaging multiple cell layers with
single-cell identification resolution. Visible light microscopies
simultaneously label numerous molecular markers, but a
new physical phenomenon limits resolution due to the larger
wavelength of light. Super-resolution microscopies (e.g., STED,
SIM, PALM/STORM) overcome this limitation and are now widely
available in bioimaging facilities, paving the way for enhanced
imaging beyond traditional light microscopy constraints.

Expansion microscopy techniques have recently proven
effective in reconstructing neuronal connections by employing a
water-swellable polymer to expand tissue samples, overcoming
optical microscopy limitations (Chen et al., 2015; Gallagher and
Zhao, 2021; Lillvis et al., 2022; Kraft et al., 2023). This approach
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preserves sample integrity while providing detailed insights into
cellular and sub-cellular details, including cell projections and
connections.

A complementary approach involves increasing photon energy
(i.e., shortening the wavelength), with X-rays being a prominent
choice due to their deep penetration and high resolution.
Although not practical for most benchtop equipment, synchrotron
radiation techniques have demonstrated feasibility in neuronal
connectomics, offering effective contrast for both unstained
(phase propagation) and contrast-enhanced (absorption) samples
(Kuan et al., 2020; Rodrigues et al., 2021; Claro et al., 2023).
Scanning X-ray fluorescence can map cellular and subcellular
chemical elements, potentially providing a biochemical signature
for specific disorders (Finnegan et al., 2019; Álvarez-Marimon
et al., 2021). Correlative Light and Electron Microscopy (CLEM)
is a promising technique that seamlessly combines the advantages
of light microscopy, such as molecular markers, with the high
spatial resolution of EM. Particularly valuable for studying
neural circuits, CLEM generates synaptic-level resolution images
across a large field of view, revealing extensive neural circuitry.
Its ability to incorporate fluorescent markers streamlines post-
processing segmentation, resulting in a more precise reconstruction
of neural networks (Iwasaki et al., 2022). It is important to
highlight additional aspects of multimodal imaging. APEX2
and MiniSOG serve as genetic tags that are applicable not
only in EM as molecular markers but are also suitable for
X-ray tomography absorption contrast, as noted by Kuan et al.
(2020). These tags, when fused with specific proteins, enable
researchers to selectively label and study the dynamics of organelles,
membrane structures, and the localization of proteins within cells
in 3D space.

Computational processing in a High-Performance Computing
(HPC) environment imposes several challenges, including storage
of large datasets and models, memory capacity, and parallelization
of algorithms (Zhang et al., 2023). Although deep learning
techniques have been demonstrated as a cornerstone approach
for image analysis, the use of such algorithms on large-scale
datasets in HPC environments still requires advanced expertise
in the design of parallel algorithms and programming in
specialized language programming (e.g., C/C++, CUDA). To
overcome this limitation, a new research area, called High-
Performance Machine Learning, has recently emerged to provide
methodologies and tools that explore data and model parallelism
in a heterogeneous computing environment, i.e., composed of
hundreds of CPU cores and GPUs, transparently to the users
(Website, no date). Thus, the researchers can focus efforts on
solving the problem by designing proper algorithms, without caring
about model size and how to feed the neural networks with large
datasets.

Another crucial limitation of deep learning techniques is their
dependency on labeling data. Machine learning has streamlined
the manual processing of imaging data, yet the scarcity of
validated annotated datasets are bottlenecks. Collaboration within
neuroscience is vital for creating integrated, standardized and
multiscale validated datasets, akin to efforts by the Allen Institute.
The demand for multidisciplinary experts in neurosciences and
computational vision is rising to evaluate machine learning model
predictions. Synthetic data generated by artificial intelligence
serves as a data augmentation resource, mitigating the scarcity

of labeled data in deep learning training. Vision transformers
and morphological features for neuron classification are reshaping
image analysis, enhancing algorithm performance, particularly
with large datasets, and providing efficient methods to quantify
mesoscale connectivity.

5 Conclusion

To attain a comprehensive understanding of brain function
it is essential to seamlessly integrate cellular functions into
the broader framework of brain organization. This integration
involves incorporating fine details, ranging from the intricacies
of dendritic spines to the branching patterns and interactions
of individual neurons, into tridimensional models of neuronal
network formation and adaptation to stimuli. A critical aspect
of this integration is the preservation of the hierarchical
organization of brain tissue, ensuring that cellular and sub-
cellular data become an intrinsic part of the entire network.
The mesoscale (cell-cell interactions) information links the
micro/nanoscale (cellular and subcellular data) to the macro
scale (whole brain functioning network). As such, integrative
data can retrieve meaningful connections between cells, providing
deeper insights into the complex neural network and reveal
mechanisms underlying neurological and psychiatric disorders.
Our review article aimed to highlight the state-of-the-art of
the innovative field of neuroimaging in the context of the
mesoscale, giving particular attention to its importance for
a better comprehension of schizophrenia and epilepsy. This
work presented the main techniques for image acquisition, data
processing, and analysis optimized for mesoscale, emphasizing
their distinctive aspects in analyzing specific structures, as
well as acknowledging their limitations, especially concerning
sample integrity. In this regard, we pinpoint multimodal imaging
techniques like CLEM are emerging as the next frontier to
capture large volumes in fine detail. Additionally, the latest (4th)
generation of synchrotron accelerators offers approximately 1000x
faster measurement capacities, enabling objective data generation
through scanning, volume registration studies, and increased
sample sizes (Winding et al., 2023).

Like every frontier of knowledge, neuroimaging is
continuously expanding and experiencing rapid innovations.
Its interdisciplinarity should not, therefore, be the primary
limitation to its advancement. It is crucial that neuroscientists and
computer scientists can comprehend the uses and potentials within
the field of neuroimaging through a shared language.
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Glossary

Adaptive Boosting
(AdaBoost):

is a meta-learning algorithm that
combines weak learners, slightly
outperforming random guessing, into a
weighted sum during the training process
(Schapire and Singer, 1999).

3D neural organoids: three-dimensional structures generated
from stem cells that can mimic certain
aspects of the developing human brain
(Paşca et al., 2022).

Calcium-modulated
photoactivatable
ratiometric
integrator
(CaMPARI):

a photoconvertible calcium indicator to
investigate network dynamics. CaMPARI
shifts from green to red fluorescence when
exposed to calcium influx and violet light,
allowing for precise identification of
activated neuronal populations (Fosque
et al., 2015).

Confocal
microscopy:

light microscopy technique that uses a
laser to illuminate a single plane
eliminating out-of-focus light to produce
sharp, high-contrast images (Jonkman and
Brown, 2015).

Convolutional
Neural Network
(CNN):

neural network architecture for images
that uses a hierarchical stack of
convolutional layers to extract features
(Yamashita et al., 2018).

Covariance: statistical tool used to understand the
relationship between two variables.
A positive covariance means both variables
increase together, while a negative
covariance suggests that they move in
opposite directions (Koch et al., 1982).

DAPI
(4′,6-diamidino-2-
phenylindole):

fluorescent probe that binds to the minor
groove (A-T rich) of double-stranded
DNA (Kapuscinski, 1995).

Diffusion weighted
image (DWI):

MRI technique that measures water
diffusion in tissues. DWI images are used
to diagnose and monitor a variety of
neurological disorders (Baliyan et al.,
2016).

Diffusion MRI
tractography:

allow assessing the topological
organization of brain networks (Jeurissen
et al., 2019).

Diffusion Tensor
Imaging (DTI):

MRI-based technique that measures the
diffusion of water molecules within the
brain. DTI and tractography are employed
to visualize and map the pathways of nerve
fiber bundles and the white matter tracts
(Alexander et al., 2007).

Dijkstra algorithm: greedy graph algorithm for finding the
shortest path from a single source node to
all other nodes in a weighted graph
(Dijkstra, 1959).

Effective
connectivity:

the causal interactions among neural
elements within a neural system aiming to
identify their intricate interrelation
(Stephan and Friston, 2010).

Electron microscopy
(EM):

technique that uses electron beams instead
of visible light to achieve much higher
resolution in imaging (Hayes and Pease,
1968).

Epileptogenic zone: macroscopic/microscopic brain lesion
responsible for the generation of seizures
(Jehi, 2018).

Fast Marching
Method (FMM):

numerical method for finding the global
minimum of an energy function (Sethian,
1996).

Fields Of View
(FOV):

in optical instruments is the angle at the
camera’s vertex, created by the two edges
that represent the maximum range within
which the measured target’s object can
traverse (Gao S. et al., 2022).

Filament tracing: bioimaging technique used to reconstruct
the three-dimensional (3D) morphology of
neuronal filaments, such as axons and
dendrites (Østerlund et al., 2022).

Fractional
Anisotropy (FA):

metric in diffusion imaging that measures
the directionality and integrity of water
diffusion in tissues. Higher FA values
indicate healthy white matter, while lower
values suggest disruption or damage
(Zolkefley et al., 2021).

Functional
connectivity:

measurement of the synchronization of
neural activity between different brain
regions (Biswal et al., 1995).

GABA: main inhibitory neurotransmitter in the
brain, reduces neuronal excitability by
binding to GABA receptors on neurons
(Möhler, 2012).

Genetically Encoded
Calcium Indicator
(GECI):

a molecular probe designed to monitor
intracellular calcium ion (Caˆ2+) levels
within living cells (Oh et al., 2019).

Generative
Adversarial
Networks (GAN):

type of deep learning model consisting of
two neural networks, a generator and a
discriminator, trained in a competitive
manner to generate realistic data
(Goodfellow et al., 2014).

Graph: data structure composed of nodes or
vertices connected by edges or links,
representing their relationships (Zhou
et al., 2020).

Hippocampus: region of the brain located in the medial
temporal lobe and involved in processes
related to memories
(Squire et al., 2004).

Ictal event: seizure caused by abnormal electrical
activity in the brain (Fisher et al., 2014).
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K-Means clustering: unsupervised learning technique that
subdivides data into groups based on their
characteristics. This algorithm operates by
placing so-called centroids within the
data’s vector space, and data points are
classified by the centroid closest to them
(Jin and Han, 2011).

L-measure: software tool for quantifying the
morphology of neurons (Scorcioni et al.,
2008).

Light sheet
microscopy or
Selective Plane
Illumination
Microscopy (SPIM):

imaging technique that uses a thin sheet of
laser light to illuminate a specimen from
the side, minimizing photodamage and
allowing for fast 3D imaging (Hillman
et al., 2019).

Magnetic resonance
imaging (MRI):

non-invasive, non-ionizing, quantitative,
and multi-parametric imaging technique
(Liu et al., 2021). It includes functional
MRI (fMRI) and structural MRI (sMRI)
(Shenton et al., 2012; Wu et al., 2021).

MCC-Net: deep learning model for medical image
segmentation that learns robust features at
different scales of the image using
contrastive learning (Wei et al., 2023).

Microtubules: tube-like structures that provide structural
support and facilitate intracellular
transport (Desai and Mitchison, 1997).

Mossy fiber: excitatory axons that project to and
modulate hippocampal activity for spatial
memory formation and consolidation
(Henze et al., 2000).

MRI-T1: type of MRI scan that produces images
with high contrast between water and fat
(Chen et al., 2018).

Neuropil: defined as the space between neuronal and
glial cell bodies that is composed of
dendrites, axons, synapses, glial cell
processes, and microvasculature (Spocter
et al., 2012).

Point spread
function (PSF)
deconvolution:

method that attempts to correct the optical
distortion. It serves as a mathematical
representation of the blurring effect that
occurs when a point source of light is
recorded by an optical system (Corle and
Kino, 1996).

Positron emission
tomography (PET):

medical imaging technique that uses small
amounts of radioactive tracers to visualize
and measure physiological processes in the
body (Phelps, 2000).

Principal
Component Analysis
(PCA):

statistical method for reducing the
dimensionality of data while preserving as
much of the variation in the data as
possible (Jolliffe, 2002).

Pyramidal neurons: Neurons exhibit a distinctive cellular
structure, featuring apical and basal
dendritic trees, as well as a
pyramidal-shaped soma (Spruston, 2008).

RandomForest: machine learning algorithm used for
classification and regression, where the
result is generated from the combination
of multiple decision trees. Each decision
tree is an independent model that divides
the data into subsets based on a sequence
of rules for data features (Belgiu and
Drăguţ, 2016).

Regional
homogeneity
(ReHo):

concept and analysis technique to measure
the similarity or coherence of the blood
oxygen level-dependent (BOLD) signal
within a specific brain region or voxel (Xu
et al., 2019).

Region of interest
(ROI):

significant portion of an image to be
focused on or analyzed (Poldrack, 2007).

Residual Network
(ResNet):

neural network architecture designed to
address the vanishing gradient problem in
very deep convolutional neural networks.
It introduces skip connections, which
allow gradients to flow more easily during
training, improving the training of deeper
networks in tasks like image recognition
(He et al., 2015).

Resting state: state in which a person is awake and alert
but not actively engaged in a specific task
or mental activity, also known as a baseline
functional connectivity, when the brain
continues to exhibit spontaneous neural
activity (Biswal et al., 1995).

Serial section
electron microscopy:

EM technique that sections and images a
specimen to create 3D models of its
internal structures, aiding in mapping
neuronal connections within the brain
(Gay and Anderson, 1954; Motta et al.,
2019).

Sholl descriptors: rule that links each neuron to a specific
feature, associating neuron morphology
with a function that produces numeric
values in a metric space (Khalil et al.,
2021).

Signal-to-Noise
Ratio (SNR):

measure used to quantify the quality or
strength of a signal in relation to the level
of background noise or interference.
A higher SNR indicates a more reliable and
discernible signal compared to unwanted
or random variations (noise) (Welvaert
and Rosseel, 2013).

Single-photon
emission computed
tomography
(SPECT):

nuclear medicine imaging technique that
uses gamma-ray-emitting radiotracers to
create 3D images of the distribution of
radioactive compounds within the body
(Devous, 1995).

Stimulated Emission
Depletion (STED):

super-resolution microscopy technique
that uses a combination of laser beams to
overcome the diffraction limit, achieving
extremely high spatial resolution in
imaging (Vicidomini et al., 2018).
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Structural
connectivity:

Anatomical connections between different
brain regions. It represents the physical
pathways formed by bundles of nerve
fibers (axons) that connect neurons in one
part of the brain to neurons in another
part (Hagmann et al., 2008).

Support Vector
Machines (SVM):

supervised machine learning algorithm
used for classification operates by
identifying a hyperplane that separates
different classes with a larger margin
(Cristianini and Ricci, 2008).

Synchrotron x-ray
microtomography:

non-destructive image technique that uses
intense x-ray beams generated by a
synchrotron particle accelerator to create
high-resolution, 3D images of the internal
structures of biological specimens (Betz
et al., 2007).

Synthetic data: artificially generated data used for various
purposes, including training machine
learning models (Rajotte et al., 2022).

Two-photon
microscopy:

microscopy technique able to image a
cm-thick biological specimen to create 3D
images of its internal structures, aiding in
mapping neuronal connections within the
brain (Denk et al., 1990).

UNet: Architecture employed for image
segmentation. Uses convolutional layers
for feature extraction and employs
upsampling and transposed convolutional
layers to create a segmentation mask
(Ronneberger et al., 2015).

Voxel: three-dimensional pixel, which is the
smallest unit of a 3D space in a digital
image or a 3D dataset (Foley, 1990).

Vision Transformers
(ViT):

neural network architectures that utilize
attention mechanisms to transform image
patches into embedded representations,
replacing traditional convolutional layers
in computer vision tasks (Khan et al.,
2022).

XGBoost (eXtreme
Gradient Boosting):

an optimized version of the Gradient
Boosting algorithm for classification and
regression problems (Mason, no date).

Watershed: image segmentation and instance labeling
algorithm. It starts by dropping seeds to
mark different regions, then these labeled
seeds expand and delimitate the image into
different areas, helping to identify
individual instances in the image
(Najman and Schmitt, 1994).
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Background: The development of Brain-Computer Interface (BCI) technology 
has brought tremendous potential to various fields. In recent years, prominent 
research has focused on enhancing the accuracy of BCI decoding algorithms by 
effectively utilizing meaningful features extracted from electroencephalographic 
(EEG) signals.

Objective: This paper proposes a method for extracting brain functional network 
features based on directed transfer function (DTF) and graph theory. The method 
incorporates the extracted brain network features with common spatial pattern 
(CSP) to enhance the performance of motor imagery (MI) classification task.

Methods: The signals from each electrode of the EEG, utilizing a total of 32 
channels, are used as input signals for the network nodes. In this study, 26 
healthy participants were recruited to provide EEG data. The brain functional 
network is constructed in Alpha and Beta bands using the DTF method. The 
node degree (ND), clustering coefficient (CC), and global efficiency (GE) of the 
brain functional network are obtained using graph theory. The DTF network 
features and graph theory are combined with the traditional signal processing 
method, the CSP algorithm. The redundant network features are filtered out 
using the Lasso method, and finally, the fused features are classified using 
a support vector machine (SVM), culminating in a novel approach we  have 
termed CDGL.

Results: For Beta frequency band, with 8 electrodes, the proposed CDGL method 
achieved an accuracy of 89.13%, a sensitivity of 90.15%, and a specificity of 
88.10%, which are 14.10, 16.69, and 11.50% percentage higher than the traditional 
CSP method (75.03, 73.46, and 76.60%), respectively. Furthermore, the results 
obtained with 8 channels were superior to those with 4 channels (82.31, 83.35, 
and 81.74%), and the result for the Beta frequency band were better than those 
for the Alpha frequency band (87.42, 87.48, and 87.36%). Similar results were also 
obtained on two public datasets, where the CDGL algorithm’s performance was 
found to be optimal.

Conclusion: The feature fusion of DTF network and graph theory features 
enhanced CSP algorithm’s performance in MI task classification. Increasing the 
number of channels allows for more EEG signal feature information, enhancing 

OPEN ACCESS

EDITED BY

Federico Giove,  
Centro Fermi - Museo Storico della Fisica e 
Centro Studi e Ricerche Enrico Fermi, Italy

REVIEWED BY

Emma Colamarino,  
Sapienza University of Rome, Italy
Davide Borra,  
University of Bologna, Italy

*CORRESPONDENCE

Chaoyi Dong  
 dongchaoyi@imut.edu.cn

RECEIVED 03 October 2023
ACCEPTED 08 March 2024
PUBLISHED 21 March 2024

CITATION

Ma P, Dong C, Lin R, Liu H, Lei D, Chen X and 
Liu H (2024) A brain functional network 
feature extraction method based on directed 
transfer function and graph theory for MI-BCI 
decoding tasks.
Front. Neurosci. 18:1306283.
doi: 10.3389/fnins.2024.1306283

COPYRIGHT

© 2024 Ma, Dong, Lin, Liu, Lei, Chen and Liu. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 21 March 2024
DOI 10.3389/fnins.2024.1306283

112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1306283&domain=pdf&date_stamp=2024-03-21
https://www.frontiersin.org/articles/10.3389/fnins.2024.1306283/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1306283/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1306283/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1306283/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1306283/full
mailto:dongchaoyi@imut.edu.cn
https://doi.org/10.3389/fnins.2024.1306283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1306283


Ma et al. 10.3389/fnins.2024.1306283

Frontiers in Neuroscience 02 frontiersin.org

the model’s sensitivity and discriminative ability toward specific activities in brain 
regions. It should be noted that the functional brain network features in the Beta 
band exhibit superior performance improvement for the algorithm compared to 
those in the Alpha band.

KEYWORDS

brain–computer interface, motor imagery, directed transfer function, graph, brain 
network

1 Introduction

Brain–computer interface (BCI) is a technology that directly 
connects the human brain to external devices, and it has gained 
significant attention in the fields of neuroscience and engineering 
(Värbu et  al., 2022). BCI technology provides a novel means of 
communication and operation for individuals facing challenges in 
motor function, neurological impairments, or other physical 
limitations, thus enabling them to overcome difficulties in normal 
communication and interaction (Cheng et al., 2020; Chen et al., 2022; 
Davis and Meschede-Krasa, 2022; Hu et al., 2023; Wang et al., 2023). 
The motor imagery (MI) paradigm holds significant potential in the 
field of BCI, particularly in rehabilitation medicine and assisted living 
technology, owing to its high feasibility and adaptability (Pichiorri 
et  al., 2015). In recent years, research on MI paradigms has been 
focused in two directions. One direction aims to improve the decoding 
algorithm, enhancing the accuracy of MI categorization tasks 
(Vallabhaneni et al., 2021). The other direction involves constructing 
a brain network model to investigate the associations and patterns of 
information transfer between different brain regions (Yu et al., 2022).

Despite the advancements in BCI technology for recognizing and 
decoding brain signals, there are still limitations in terms of accuracy 
and reliability. The decoding process of brain signals is prone to 
errors and uncertainties, resulting in less stable and reliable 
performance of BCI systems. While traditional algorithms like 
discrete wavelet transform (DWT) (Ji et  al., 2019) and common 
spatial patterns (CSP) (Blankertz et  al., 2008) are simple and 
convenient, they do not yield satisfactory classification results (Amin 
et al., 2015; Jin et al., 2021). The Filter Bank Common Spatial Pattern 
(FBCSP) algorithm, which combines band filtering and CSP analysis, 
aims to enhance the accuracy of MI recognition. However, individual 
differences and noise significantly impair its effectiveness. To address 
this problem, Mammone et al. (2023) proposed AutoEncoder-Filter 
Bank Common Spatial Patterns (AE-FBCSP), incorporating an 
autoencoder into the FBCSP algorithm, and Park et  al. (2018) 
introduced regularization in the Filter Bank Regularized Common 
Spatial Pattern (FBRCSP), both of which greatly improved the 
classification accuracy of FBCSP. However, these approaches 
primarily focus on the spatial domain features of EEG signals with a 
single attribute and do not consider the transmission mode of brain 
information during MI. Deep learning, as a powerful machine 
learning method, has garnered significant interest and research in the 
field of BCI (Amin et al., 2019; Dai et al., 2020). Convolutional neural 
networks (CNNs) have shown great potential in capturing 
information in BCI (Simões et al., 2020; Borra et al., 2022; An et al., 
2023). However, the performance of CNNs relies not only on the 

choice of convolutional kernels (Song et al., 2021) but also on the 
number of convolutional layers. On the other hand, recurrent neural 
networks (RNNs) process EEG time-series information more 
effectively and can be successful in classifying MI tasks (Bore et al., 
2021). Lawhern et al. (2018) proposed a lightweight deep learning 
approach which is called EEGNet for the task classifications of 
EEG-based BCIs. EEGNet exhibited an exceptional generalization 
ability for classifying both within-subject and cross-subject tasks, 
even when faced with limited training data. Across various tested 
paradigms, such as P300 Visual Evoked Potentials, Error-Related 
Negativity (ERN), Movement-Related Cortical Potentials (MRCP), 
and Sensory Motor Rhythms (SMR), the classification accuracies of 
the EEGNet algorithm have consistently been superior to those of 
many benchmark algorithms (Lawhern et  al., 2018). While deep 
learning has achieved remarkable results in BCI, it also faces common 
disadvantages, such as high data volume requirements and challenges 
in obtaining physiological interpretations. Brain network research 
methods offer a high degree of physiological interpretability. These 
methods view the brain as a complex network structure, where brain 
regions or electrodes are considered nodes, and the connections 
between them indicate functional or structural relationships. By 
applying concepts and methods from graph theory (de Vico et al., 
2014) and network science, researchers can uncover the topology of 
brain networks, information transfer properties, and interactions 
between brain regions (Rodrigues et  al., 2019). Most studies on 
functional brain networks have focused on functional connectivity 
metrics. Zhang et  al. (2016) constructed brain networks using 
Pearson correlation coefficients and observed significant differences 
in small-world network metrics during different MI periods. Gong 
et al. (2017) proposed a brain functional network modeling method 
based on time-frequency Cross Mutual Information (CMI) and 
found significant differences in small-world network metrics across 
different tasks. Additionally, they discovered significant differences 
in brain response levels, reaction times, and activation targets under 
different tasks. Wang et  al. (2022) used a phase-locked-value 
approach to construct functional brain networks, providing a better 
functional connectivity perspective for neurofeedback training. In 
the MI paradigm, directed causal connectivity provides insights into 
the causal interactions between nodes, making it more adept at 
uncovering hidden and overlooked connectivity compared to 
functional connectivity. Varsehi and Firoozabadi (2021) utilized 
Granger causality analysis (GC) to choose 8 channels from EEG 
signals, leading to enhanced model classification accuracy, specificity, 
and sensitivity. However, GC analysis is less suitable for non-linear 
signals despite its effectiveness in capturing the dynamics and 
temporal order of causality in EEG signals. Li and Zhang (2022) 
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constructed a brain functional network for MI data classification 
using continuous wavelet transform (CWT) and symbolic transfer 
entropy (TE). However, it should be noted that TE is dependent on 
data distribution and has a high computational time complexity (Li 
and Zhang, 2022). In the field of BCI, directed transfer function 
(DTF) outperforms other effective connectivity metrics due to its 
ability to capture frequency-specific causality, high temporal 
resolution, and model simplicity. Therefore, utilizing DTF to 
construct brain functional networks is advantageous. Ma et al. (2022) 
enhanced the classification accuracy of a MI task by incorporating 
DTF features into an Auto-Regressive (AR) mode. However, their 
study did not investigate the impact of different frequency bands on 
classification performance. Awais et al. (2021) combined DTF with a 
probabilistic neural network (PNN), achieving a classification 
accuracy of 82.81%, thereby validating the activation of multiple 
brain regions during MI tasks. However, their study lacked an 
exploration of graph theoretic features and the number of channels.

Traditional electroencephalogram (EEG) signal processing 
methods, such as DWT and CSP, are limited in obtaining a satisfying 
classification accuracy. FBCSP, as an improved version of CSP, yields 
an increased accuracy but still focuses primarily on EEG’s spatial 
characteristics, overlooking the brain’s intricate multidimensional 
dynamical information. Deep learning techniques, despite 
significantly enhancing classification performance, however, depend 
heavily on large datasets and struggle with physiological interpretation. 
Furthermore, some studies have utilized TE to measure brain network 
connectivity, forming TE-based functional brain networks. However, 
TE’s computational demand is high, especially with large datasets, 
presenting a significant challenge for the computational capability of 
devices. Addressing these aforementioned issues, the proposed fusion 
method combines graph theory features with DTF features to further 
improve classification accuracy. The fusion method, call 
CSP+DTF+Graph theory feature+Lasso (CDGL) method, combined 
DTF’s capability to detect frequency-specific causal links and graph 
theory’s potential for in-depth physiological analysis of EEG signals, 
aiming to enhance classification precision in BCI applications and also 
offering a novel insight for graphic characteristics of the MI-BCI tasks. 
Therefore, the objective of this study is to propose and validate a brain 
functional network feature extraction method based on DTF and 
graph theory. The proposed CDGL incorporating DTF network 
features and graph theory features together achieves the highest 
classification accuracy among the other feature fusion methods. 
Furthermore, the study aims to assess the effectiveness of this method 
in classifying MI tasks with different frequency bands and channels. 
The research presented in this paper aims to investigate the influence 
of brain network features on decoding algorithms. The specific 
objectives are as follows: (1) test the ability of CSP, DTF and graph 
theory features to classify MI-EEG data (left vs. right hand MI), (2) 
test the ability of combination of features to classify MI-EEG data (left 
vs. right hand MI), including the novel method proposed in the study, 
on EEG data collected from 26 healthy participants and on public EEG 
dataset. In each comparison the impact of the channel numbers and 
the frequency band (alpha and beta) was investigated.

The remainder of this paper is organized as follows: Section 2 
presents the classification algorithms of CSP, DTF and graph theory, 
the feature classification of Lasso algorithm, and the acquisition and 
processing method of EEG data. Section 3 shows the comparison 
experimental results with different feature incorporation and 

experimental setup. In Section 4, a thorough analysis and discussion 
of the results is provided. Finally, Section 5 presents the conclusions 
according to the aforementioned three objectives of this research.

2 Methods

2.1 Feature extraction methods

2.1.1 CSP
Common spatial pattern is a commonly employed feature 

extraction method in the classification of MI EEG signals (Sun et al., 
2022). Its fundamental concept involves projecting the data sequence 
onto a specific surface through the computation of a set of spatial 
filters. These filters aim to maximize the variance of the projections for 
the two categories on that surface, thereby accentuating the most 
distinctive features of each category. The CSP method is highly 
effective in extracting EEG signal features that exhibit exceptional 
discriminative capabilities among different categories, thereby offering 
robust performance for classification tasks.

The two types of EEG signal time series data, namely X1 and X2, 
were normalized. Subsequently, the covariance matrices of the 
normalized data were computed using Eq. 2.1.
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X X
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1 1
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2 2
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( )

=
( )
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(2.1)

where XT  denotes the transpose of X and trace X( )  is the trace of 
the matrix.

For each series of data, its corresponding covariance matrix was 
calculated. Subsequently, the covariance matrices of the two series of 
data were separately averaged and then added together to obtain the 
mixed covariance matrix. This calculation is demonstrated in Eq. 2.2.

 R R R= +1 2, (2.2)

The resulting mixed covariance matrix was subjected to an eigen-
decomposition, as demonstrated in Eq. 2.3.

 R U UT= λ , (2.3)

where U represents the eigenvector matrix of the mixed covariance 
matrix R, and λ represents the diagonal array of eigenvalues.

Next, the whitening matrix is computed from the eigenvector 
matrix and the diagonal array of eigenvalues, as demonstrated in 
Eq. 2.4.

 P UT= −λ 1
, (2.4)

A whitening transformation is performed on the two types of 
mean covariance matrices, denoted as R1 and R2. The whitening 
matrices, denoted as S1 and S2, are computed using Eq. 2.5.

 S PR P S PR PT T
1 1 2 2= =, , (2.5)

114

https://doi.org/10.3389/fnins.2024.1306283
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnins.2024.1306283

Frontiers in Neuroscience 04 frontiersin.org

S1 and S2 are decomposed in Eq. 2.6.

 S B B S B BT T
1 1 1 1 2 2 2 2
= =λ λ, , (2.6)

where the eigenvectors of the S1 and S2 matrices are the same and the 
diagonal array λ1 and λ2 consisting of the two types of eigenvalues 
sums to a unit array, there is the expression of Eq. 2.7.

 B B B I1 2 1 2= = + =, ,λ λ  (2.7)

When the eigenvalue of matrix S1 is the largest and the eigenvalue of 
matrix S2 is the smallest, the two types of signals can be classified using 
the matrix B. This classification enables the derivation of the projection 
matrix W, which serves as the spatial filter. The formula is shown in 
Eq. 2.8.

 W B PT= , (2.8)

The feature matrix Z, obtained by applying the spatial filter W to 
the two types of data, is calculated using Eq. 2.9.

 Z WX Z WX
1 1 2 2= =, , (2.9)

The feature matrix Z is logarithmically computed for variance, and 
the resulting values are used as a new feature denoted as f. The 
calculation process is shown in Eq. 2.10.

 
f

Z
Z

=
( )

∑ ( )








log

var

var
,

 
(2.10)

The classification of the two types of signals can be achieved by 
inputting the feature vector f into the classifier. For a detailed 
mathematical discussion, see reference Koles et al. (1990).

2.1.2 Dtf
The DTF method, proposed by Kamiński et  al. (2001) is a 

universal multivariate approach for computing the directed 
connections between any pair of signals within a multidimensional 
dataset. DTF is developed based on GC theory, which has stronger 
robustness and directionality compared with GC analysis. The DTF 
algorithm is able to analyze signals in different frequency ranges, thus 
revealing the interaction of brain regions in different frequency 
bands, which is important for the study of brain activity and 
functional connectivity patterns in specific frequency bands.

The acquired multichannel EEG signal is denoted as 
X. Subsequently, the multivariate autoregressive model (MVAR) 
(Shibata et al., 2004) is used to fit the multichannel EEG data. This 
fitting process results in Eq. 2.11.

 k

p
k X t k E t

=
∑ ( ) −( ) = ( )
0

Λ ,

 
(2.11)

Here, the elements in the N*N matrix Λ k( )  represent the 
parameters of the MVAR model, where N is the number of channels. 

The vector E(t) represents the multivariate zero-mean white noise. The 
parameter p denotes the order of the MVAR model, which influences 
the fitting performance. To accommodate subsequent computational 
needs, Eq. 2.12. is transformed into the frequency domain.

 
X f f E f H f E f( ) = ( ) ( ) = ( ) ( )−Λ 1

,
 (2.12)

Among them, detailed information is shown in Eq. 2.13.
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(2.13)

H f( ) is the system transfer matrix. The value of element Hij  in 
H f( ) describes the strength of the connection between two leads 
with j as input and i as output (Kamiński et al., 2001). The DTF matrix 
can be constructed as follows (Kaminski and Blinowska, 1991). The 
DTF matrix can be constructed in Eq. 2.14.

 θij ijf H f2 2( ) = ( ) , (2.14)

To alleviate the impact of singular sample data, the DTF matrix is 
normalized (He et al., 2011). The feature matrix is then obtained using 
Eq. 2.15.

 
γ ij ij
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N
imf H f H f2 2

1

2( ) = ( ) ( )
=
∑/ ,

 
(2.15)

where γ ij  represents the information inflow ratio from node j to node 
i, with a value ranging between 0 and 1. γ ij  value closer to 1 indicates 
that a larger proportion of information in node i originates from 
node j. Conversely, a value closer to 0 suggests that there is less 
information flow from node j to node i.

The normalized DTF matrix is vectorized and utilized as feature 
vectors in the classifier for the purpose of classifying the MI tasks. 
The coefficient matrix of the 15-channel DTF network features is 
depicted in Figure 1.

2.1.3 Graph theory method
The human brain, consisting of hundreds of millions of 

interconnected nerve cells, is widely regarded as one of the most 
complex systems in nature. This intricate neural network exhibits 
highly structured and functional characteristics. Through the 
application of graph theory, which is widely employed for the 
structural analysis of complex brain connectomes, we can uncover 
specific organizational patterns between brain structure and 
function. This approach provides a powerful tool to enhance our 
understanding of the structural connectivity networks within 
the brain.

Functional brain networks based on graph theory encompass 
crucial network features that quantify network performance. Binarizing 
the effective connectivity matrix, however, can lead to the loss of 
significant network information. In this study, the method described 
in Filho et al. (2018) is employed to compute characteristic parameters 
of the weighted network. The DTF coefficient matrix is utilized as a 
weighted directed graph to facilitate graph theory analysis. The graph 
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theory metrics used in this article are as follows (Bullmore and 
Bassett, 2011):

(1) The calculation of ND is shown in Eq. 2.16.

 
S wi

j
ij=∑ ,

 
(2.16)

where wij  is the connectivity between node i and node j, and Si is the 
node strength, which is calculated by summing up the individual 
weights connected to that node. The greater the node strength, the 
stronger the connectivity between that node and other nodes.

(2) The calculation of CC is shown in Eq. 2.17.
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2

2
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(2.17)

The clustering coefficient is a metric used in graph theory to 
measure the degree of node aggregation within a network. It quantifies 
the extent to which neighboring nodes of a given node are connected 
to each other, thus indicating the presence of community structures 
in the network. A higher clustering coefficient indicates a more 
interconnected network.

(3) The calculation of GE is shown in Eq. 2.18.

 
G

n n di j ij
=

−( ) ≠
∑1

1

1
,

 
(2.18)

where n is the number of nodes, dij  is the shortest path length 
between node i and node j. Global efficiency is a metric used to 
quantify the effectiveness of information dissemination in a 
network. It provides a measure of how efficiently information is 
transferred and spread across the network. A higher global 

FIGURE 1

The DTF coefficient matrix of left hand and right hand MI tasks for different frequency bands. Panel (A) shows the DTF coefficient matrix for left hand 
MI in the Alpha frequency band. Panel (B) shows the DTF coefficient matrix for right hand MI in the Alpha frequency band. Panel (C) shows the DTF 
coefficient matrix for left hand MI in the Beta frequency band. Panel (D) shows the DTF coefficient matrix for right hand MI in the Beta frequency band.
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FIGURE 2

The flowchart of the 10-fold cross-validation.

efficiency indicates a more efficient and rapid dissemination of 
information within the network.

2.2 Feature selection and classification 
methods

2.2.1 Lasso
Feature selection is a crucial aspect in the field of BCI. Its 

objective is to identify the most relevant and discriminative 
features from EEG signals, facilitating accurate classification and 
control of EEG signals (Lin et al., 2022). The Lasso algorithm is 
employed to reduce the dimensionality of the original feature space 
by selecting and compressing the variables (Zhang et al., 2021). The 
basic concept of the Lasso algorithm involves imposing a constraint 
on the sum of absolute values of regression coefficients, ensuring 
it remains below a specified threshold during the construction of 
a linear regression model. By applying this constraint, the Lasso 
algorithm effectively compresses regression coefficients with 
smaller absolute values to zero, thereby achieving feature sparsity 
and interpretability. The cost function associated with the Lasso 
algorithm is Zhang et al. (2021). The formula is shown in Eq. 2.19:
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(2.19)

In the context of the Lasso algorithm, the variables are defined as 
follows: m represents the number of training samples, n represents the 
dimensionality of the original spatial features. Additionally, the cost 
function includes two important components: λ, which represents the 
weight of the penalty term and controls the dimensionality of feature 
selection and compression, and β , which denotes the parameter in the 
regression model.

2.2.2 SVM
Support vector machine (SVM) is a robust machine learning 

algorithm that has gained significant popularity in the field of BCI in 

recent years (Wang et al., 2021). SVM effectively performs classification 
task by identifying the optimal hyperplane that separates samples 
belonging to different classes. It exhibits strong generalization ability 
and can handle high-dimensional data effectively. The underlying 
model of SVM is Jia et al. (2019). The formula is shown in Eq. 2.20:
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1  
(2.20)

where sgn is the sign function, k x xi ⋅( ) is the kernel function, and ai  
and b are the parameters that determine the optimal classification 
plane. The kernel function takes the RBF kernel function.

This paper evaluates the generalization ability of the 
classification models using a 10-fold cross-validation, a typical 
statistical method for assessing machine learning models’ 
generalization capability. This method is particularly useful in 
situations where limited data is available for model evaluation. In 
10-fold cross-validation, the division ratio of training and test sets 
is consistent, with each fold involving a 90% training data and 10% 
test data. Upon completing 10 iterations, an array of performance 
metrics is obtained, and their average is calculated to gauge the 
overall model performance. Figure 2 illustrates the process of the 
10-fold cross-validation.

2.2.3 CDGL classification method
A method incorporating CSP, DTF, graph theory feature, and 

Lasso regularization (CDGL) is proposed in this paper, which 
innovatively integrates five features with the aim of enhancing 
classification accuracy in MI-BCI applications. The choices of CSP, 
DTF, ND, CC, and GE features were made in order to provide a 
comprehensive representation of brain activity. In this study, these five 
features were initially combined, and subsequently selected by a Lasso 
method to eliminate redundant features. The resulting integrated 
features were then fed into the SVM classifier. Each of these features 
adds a unique dimension to the analysis, facilitating the exploration 
of different temporal, spatial, frequency, and connective information 
of EEG signals. The amalgamation of these diverse features 
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significantly enhances the robustness and accuracy of the SVM 
classifier. The flowchart of the CDGL method is shown in Figure 3.

To assess the efficacy of the CDGL algorithm, this study conducts 
a comparative analysis with EEGNet, a widely recognized deep 
learning algorithm for EEG signal processing. EEGNet is a specialized 
lightweight convolutional neural network, which is tailored for EEG 
signal processing. Its architecture encompasses standard convolutional 
layers, depthwise convolutional layers, and separable convolutional 
layers, which can integrate spatial and temporal features effectively. 
This integration renders EEGNet adept at various EEG analysis tasks. 
This paper adopted a standard architecture of EEGNet, consistent with 
the framework presented in the reference literature (Lawhern et al., 
2018), without any modifications. The training and testing sets were 
divided into 80 and 20%, respectively. The loss function was chosen to 
be Cross Entropy Loss, and the optimizer selected was Adam. The 
number of epochs was set as 100, and the batch size was set as 16. The 
‘kernLength’ was set to 32, and the dropout rate was established at 0.5. 
The dimension of input for EEGNet was # of trials × # of channels × 
sampling time, where # of channels was set to 4 or 8.

2.3 Evaluating metric

Three evaluation metrics: accuracy, sensitivity, and specificity, are 
primarily utilized in this paper for testing classification results. These 
metrics provide a comprehensive framework for assessing 
model performance.

(1) The calculation of accuracy is shown in Eq. 2.21.

 
accuracy TP TN

TP TN FP FN
=

+
+ + +

,
 

(2.21)

where TP is the number of samples that are actually positive and have 
been classified as positive by the classifier. TN is the number of 
samples that are actually negative and have been classified as negative 

by the classifier. FP is the number of samples that are actually negative 
but have been classified as positive by the classifier. FN is the number 
of samples that are actually positive but have been classified as negative 
by the classifier. Accuracy is the most intuitive performance metric, 
representing the overall proportion of correct predictions for both 
positive and negative classes by the model.

(2) The calculation of sensitivity is shown in Eq. 2.22.

 
sensitivity TP

TP FN
=

+
,
 

(2.22)

where sensitivity is a measure of a classifier’s ability to correctly 
identify positive samples, with the advantage of being able to 
accurately capture positive samples.

(3) The calculation of specificity is shown in Eq. 2.23.

 
specificity TN

TN FP
=

+
,
 

(2.23)

where is a measure of a classifier’s ability to correctly identify negative 
samples, enabling accurate exclusion of these instances and reducing 
false positives.

2.4 Statistical analysis methods

In this study, ANOVA and dependent sample t-test are used as the 
statistical analysis methods. To avoid errors associated with repeated 
measurements, the Bonferroni correction method is also employed 
here. Specifically, if five comparisons were made, the significance level 
was adjusted from the nominal α  = 0.05 to α  = 0.01 (0.05/5), thus 
maintaining a very stringent criteria for statistical significance. In 
ANOVA, this study employed both one-way ANOVA and two-way 
ANOVA. The two-way ANOVA was used to compare the effects of 
two factors on the experimental outcomes, as well as to determine 

FIGURE 3

The flowchart of the CDGL method.
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whether there is an interaction effect between these factors. The 
ANOVA can analyze the significant changes of means across multiple 
groups effectively, whereas the dependent sample t-test is more 
suitable for comparing means within the same group under varying 
conditions, offering sensitivity for detecting changes within the group. 
Actually, this paper performed the within-subjects test. To 
demonstrate the authenticity of the study, this research utilizes a 
paired t-test and Bonferroni correction method on a public dataset to 
discern the notable differences between CDGL and EEGNet.

To be aligned with the research objectives, this study organized 
the statistical analysis methods. For objective 1, one-way ANOVA, 
two-way ANOVA, and paired t-test were employed to analyze and 
compare the capabilities of different features in classifying MI-EEG 
data. For objective 2, one-way ANOVA was used to assess the effect of 
feature combinations and to investigate the impact of the number of 
channels and frequency bands. Additionally, paired t-tests and 
Bonferroni correction methods were utilized to validate the differences 
between CDGL and EEGNet on public datasets.

2.5 Data acquisition and preprocessing

2.5.1 Data acquisition instructions
In this paper, an EEG signal acquisition experiment was 

conducted on a MI tasks involving 26 subjects aged between 23 and 
27. The MI task is described as the mental simulation of hand grasping 
action being performed by an individual without the actual execution 
of the action. In the experiment, a 32-lead EEG equipment from Brain 
Products (BP) Inc. was used to collect EEG data from the MI BCI, and 
the sampling frequency was set at 500 Hz. Prior to the experiment, 
various steps were taken to ensure the suitability of the subjects. 
Firstly, all subjects underwent vision correction to ensure normal 
visual acuity. Additionally, a thorough examination was conducted to 
verify their mental health and overall well-being. The subjects were 
informed about the purpose and significance of the experiment 
beforehand. Following this, the subjects wore an EEG cap and were 
seated in front of a computer as instructed by the experimenter. The 
experimenter applied the conductive paste to the EEG cap, reducing 
the resistance to less than 5 kΩ. Throughout the experimental period, 
the subjects were instructed to maintain a stable mental state and 
avoid intense emotional fluctuations, ensuring data integrity. The 

electrode positions were set based on the international 10–20 lead 
standard, as shown in Figure 4. The AFz electrode (marked in black 
in Figure 4) serves as the ground electrode, and the FCz electrode 
(marked in blue in Figure 4) is used as the reference electrode, and the 
IO electrode (marked in red Figure  4) is used as the 
Electrooculography electrode.

During the acquisition process, the subjects performed 
corresponding tasks based on the interface displayed on the computer 
screen. Each experiment had a duration of 10 s, consisting of different 
stages. Firstly, there was a 2-s period where the screen would display 
a blank interface, and subjects were expected to be in a relaxed state. 
Following this, a 2-s period followed where a cross interface appeared, 
indicating the preparation state for the MI tasks. Lastly, the screen 
displayed either a left hand fist or a right hand fist for 6 s, during which 
subjects were required to carry out the MI tasks corresponding to the 
displayed hand. The flow of the experiment is summarized in Figure 5.

FIGURE 4

The distribution diagram of electrode positions.

FIGURE 5

The flow of the MI experiment.
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Each subject performed two sets of experiments, one set of 
experiments performed a left hand MI tasks 40 times, and one set of 
experiments performed a right hand MI tasks for a total of 80 
experiments, obtaining EEG data in the shape of 32*3000*80 (32 
represents the number of EEG channels, 3,000 represents the data 
length sampled over 6 s at a sampling frequency of 500 Hz, and 80 
represents the number of trials).

2.5.2 Data preprocessing
EEG signal preprocessing is a crucial process that involves 

applying a series of steps to raw EEG data. The goal is to purify the 
signal, eliminate noise, and prepare the data for subsequent analysis. 
Pure EEG signals are of crucial importance for accurate analysis. In 
the pre-processing phase, an 8 Hz to 40 Hz bandpass filter was 
applied to extract the study’s key frequency components and 
eliminate potential low-frequency artifacts and high-frequency 
noises. With a Finite Impulse Response (FIR) design, the filter was 
configurated for achieving its linear phase response, effectively 
preventing a phase distortion. The filter’s order was algorithmically 
determined, based on a predefined multiple of the sampling rate and 
the lower cutoff frequency. Post-filtering, the Independent 
Component Analysis (ICA) algorithm from EEGLAB (Delorme and 
Makeig, 2004) was employed to eliminate artifacts, including eye 
movements and muscle activity, resulting in purified EEG signals. 
To ensure the validity of MI, a time window of 3 s was selected 
for analysis.

2.5.3 Public datasets
To validate the effectiveness of the proposed algorithm, this study 

employs the datasets from BCI Competition IV 2a (Tangermann et al., 
2012) and PhysioNet’s BCI2000 (Schalk et al., 2004). The BCI IV 2a 
dataset records EEG data through 22 scalp electrodes at a 250 Hz 
sampling frequency. In the experiment, each subject performed 6 
experimental runs, totaling 48 trials (12 each for left-hand, right-hand, 
both feet, and tongue MI). The average duration of each trial was 
approximately 8 s, with an actual MI period of 3 s. On the other hand, 
the BCI2000 dataset employs 64 scalp electrodes and captures data at 
a 160 Hz sampling frequency, featuring eight tasks that include MI of 
the left hand, right hand, both hands, both feet, and actual movement 
tasks. Each subject performed 14 experimental runs, totaling 84 trials. 
Each trial lasted for 4 s. The MI task studied in this article is a binary 
classification task with a left-hand MI class and a right-hand MI class. 
To ensure consistency with our experimental tasks, the same 
electrodes and MI tasks (left and right hand) were also selected from 
these public datasets.

3 Results

3.1 Data collected by IMUT

3.1.1 The effect of CSP, DTF, graph theory 
features on MI task classification performance

To investigate the effect of network features on the classification 
performance of MI tasks, a DTF brain network model was constructed 
using various channel configurations, including 4-channel (FC1, FC2, 
C3, and C4), 8-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, and CP2), 
12-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, F3, F4, P3, and P4), 
15-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, F3, F4, P3, P4, FC5, 
and FC6), and 32-channel configurations. The actual values of DTF 
matrices are used here to construct the feature set.

The DTF coefficient connection matrix was selected as the feature 
set for the classification task, and a SVM was employed as the classifier. 
To ensure the stability of the classification results, a 10-fold cross-
validation method was utilized. The study involved 26 participants 
who performed MI classification task in both the Alpha and Beta 
frequency bands. The average classification performance of the 
DTF + SVM method is presented in Table 1.

Table  1 demonstrates that DTF network features possess the 
capability to distinguish between left and right hand MI tasks, 
enabling accurate recognition of these tasks. It was observed that as 
the number of channels increased, the classification accuracy also 
improved. Notably, when utilizing 32 channels, the classification 
system not only reached a high level of accuracy at 91.74%, but also 
demonstrated a sensitivity of 92.32% and a specificity of 90.51%. 
Furthermore, analysis of the Alpha and Beta bands revealed that the 
DTF coefficient matrix yielded slightly higher classification accuracy 
for the Beta band compared to the Alpha band. In this study, a 
Two-Factor Analysis of Variance (ANOVA) was performed to provide 
a detailed analysis of the results. This analysis is crucial for evaluating 
the effects of various channel combinations (X1) and frequency band 
(X2) analyses on the essential metrics of the research.

Table 2 displays the results of ANOVA analyses, which provide a 
comparative overview of accuracy, specificity, and sensitivity under 
different conditions. The results indicated significant effects of channel 
combinations on the three metrics: accuracy [F(4, 250) = 33.16, 
p < 0.0001], specificity [F(4, 250) = 28.35, p < 0.0001], and sensitivity 
[F(4, 250) = 19.89, p < 0.0001], each showing considerable differences. 
Similarly, frequency band types significantly influenced these metrics, 
as shown by accuracy [F(1, 250) = 14.73, p = 0.000157], specificity [F(1, 
250) = 17.47, p < 0.0001], and sensitivity [F(1, 250) = 16.05, p < 0.0001]. 
However, no significant interaction effect was observed between 

TABLE 1 The average classification performance of the DTF  +  SVM method using different channel configurations for 26 subjects.

Accuracy Sensitivity Specificity

Alpha Beta Alpha Beta Alpha Beta

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Channels = 4 72.03 7.9 75.70 8.9 74.33 9.6 76.15 9.1 69.72 9.9 76.44 10.8

Channels = 8 76.03 9.1 81.14 8.7 77.12 9.2 81.48 9.2 75.69 9.8 79.81 10.2

Channels = 12 79.65 8.3 84.30 7.8 80.71 8.6 84.39 7.7 78.01 10.9 83.91 9.7

Channels = 15 82.43 7.8 85.54 9.3 83.30 8.1 86.73 7.5 80.33 11.2 85.45 9.5

Channels = 32 89.17 6.7 91.74 5.9 90.30 7.6 92.32 6.5 87.12 8.8 90.51 8.3
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channel combination and frequency band [Accuracy: F(4, 250) = 0.17, 
p = 0.9546; Specificity: F(4, 250) = 0.27, p = 0.8941; Sensitivity: F(4, 
250) = 0.28, p = 0.8881], suggesting that the interaction of channel 
combination and frequency band type does not significantly alter 
these outcomes. BrainNet Viewer (Xia et  al., 2013) software was 
employed to visualize the connectivity matrix. It is worth noting that 

IO, TP9, and TP10 electrodes were excluded from the visualization 
due to channel position considerations.

The analysis of Figure 6 reveals a distinction in the direction of 
EEG signal transmission during MI tasks involving different hands. 
The color gradient from blue to red signifies weaker to stronger 
connections, respectively. This difference is a reliable foundation for 

FIGURE 6

Visualization of the DTF connectivity matrix. Panel (A) shows the DTF connectivity matrix for left hand MI in the Alpha frequency band. Panel (B) shows 
the DTF connectivity matrix for right hand MI in the Alpha frequency band. Panel (C) shows the DTF connectivity matrix for left hand MI in the Beta 
frequency band. Panel (D) shows the DTF connectivity matrix for right hand MI in the Beta frequency band.

TABLE 2 The comparison of accuracy, specificity, and sensitivity for DTF+SVM using a two-way ANOVA analysis.

Accuracy Sensitivity Specificity

F P F P F P

X1 33.16 3.46e-22 28.35 1.51e-19 19.89 3.07e-14

X2 17.47 4.03e-5 11.57 7.79e-4 16.05 8.12e-5

X1*X2 0.1678 0.9546 0.2714 0.8941 0.2842 0.8881
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accurately classifying left and right hands movements. When 
performing MI tasks with the left and right hands, the information 
connectivity patterns within the brain regions exhibit significant 
variations. To be more specific, there is an increase in connectivity 
strength within the right hemisphere of the brain when engaging in 
MI of the left hand, and conversely, an increase within the left 
hemisphere when MI of the right hand.

The DTF graph-theoretic features serve to depict the information 
transfer relationships between different brain regions by transforming 
the DTF coefficient connectivity matrix into graph structures and 
extracting relevant features. The topology of the brain network is 
represented by feature vectors derived from three graph theory 
features: node degree (ND), clustering coefficient (CC), and global 
efficiency (GE). This paper directly utilizes the DTF coefficient matrix 
as a directed weighted graph for calculating the graph-theoretic 
features. Notably, ND assumes a pivotal role in graph theory analysis 
as it quantifies the significance or activity level of individual nodes 
within the network.

Based on the ND in Figure  7, notable distinctions in ND are 
observed among the electrodes during the two different MI tasks, 
particularly for the C3, C4, Cz, P3, P4, FC1, and FC2 electrodes. These 
discrepancies highlight the regions of the brain where these electrodes 
are positioned, which exhibit significant information flow and strong 
connectivity with other electrodes during MI tasks. Taking this 
characteristic as a feature in the classification of MI tasks proves 
effective in accurately distinguishing between left and right hand 
MI tasks.

Figure 8 illustrates the average performance achieved using an 
SVM classifier for five distinct features of EEG signals extracted from 
26 subjects. These features include CSP features, DTF network 
features, ND features, CC features, and GE features.

Analysis of Figure  8 reveals how the number of electrodes 
influences complexity of the brain functional network and the 
discriminative ability of feature selections. As the number of electrodes 
increases, the classification accuracy using the graph theory features 

for the MI-BCI tasks demonstrates an increasing trend [confirmed by 
a one-way ANOVA under Alpha for ND feature, F(4, 250) = 2.95, 
p < 0.001]. In the Alpha band, utilizing 32 channels, ND features 
exhibited average classification accuracy, sensitivity, and specificity of 
86.88, 87.54, and 86.06%. CC features showed values of 85.22, 87.61, 
and 84.75%, while GE features had 86.04, 87.17, and 84.62%. In the 
Beta band, ND features demonstrated corresponding values of 87.51, 
89.33, and 89.64%; CC features presented 89.15, 88.38, and 86.59%; 
and GE features had 87.57, 88.35, and 87.08%, respectively. ND’s 
performance between Alpha and Beta frequency bands revealed 
significant differences by one-way ANOVA in the results of F(1, 
50) = 4.19, p = 0.04 for accuracy, F(1, 50) = 4.08, p = 0.04 for sensitivity, 
and F(1, 50) = 4.67, p = 0.03 for specificity. CC’s performance: F(1, 
50) = 4.61, p = 0.03; F(1, 50) = 4.94, p = 0.03; F(1, 50) = 4.6, p = 0.03 for 
the three metrics, respectively. GE’s performance: F(1, 50) = 4.16, 
p = 0.04; F(1, 50) = 4.19, p = 0.04; F(1, 50) = 4.23, p = 0.04 for the three 
metrics, respectively. However, due to feature redundancy, the 
effectiveness of these graph theory features on classification tasks 
remains slightly lower than the performance of the traditional CSP 
algorithm, which achieves an accuracy of 94.91% [In Beta: ANOVA 
in the results of F(1, 50) = 12, p < 0.001 for ND feature, F(1, 50) = 19.82, 
p < 0.001 for CC feature, and F(1, 50) = 19.22, p < 0.001 for GE feature].

3.1.2 The effect of feature fusion on MI task 
classification performance (including the new 
method proposed)

The CSP algorithm is effective in extracting spatial features from 
EEG signals. However, since the brain exhibits time-varying 
characteristics during MI tasks, a single spatial feature cannot fully 
capture all the information relating to the left and the right hand 
MI. To address this limitation, the DTF network features and graph 
theory features are integrated into the CSP algorithm to explore the 
impact of the DTF brain functional network on the classification 
effectiveness of MI tasks. As the fused features possess high 
dimensionality, they are susceptible to feature redundancy, which can 

FIGURE 7

The node degree of each electrode for different frequency bands. Panel (A) shows the node degree of each electrode in the Alpha frequency band. 
Panel (B) shows the node degree of each electrode in the Beta frequency band.
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lead to a decrease in the classification accuracy. To avoid this issue, the 
Lasso method is employed to screen the fused features, selecting the 
optimal ones for classification. Figure 9 presents box-and-line plots 

for four MI EEG decoding algorithms under two frequency bands: the 
CSP algorithm, the CSP added DTF with Lasso regularization (CDL), 
the CSP added graph theory with Lasso regularization (CGL), and 

FIGURE 8

The average classification performance of five feature selections for different frequency bands. Panel (A) shows the average classification accuracy in 
the Alpha frequency band. Panel (B) shows the average classification accuracy in the Beta frequency band. Panel (C) shows the average classification 
sensitivity in the Alpha frequency band. Panel (D) shows the average classification sensitivity in the Beta frequency band. Panel (E) shows the average 
classification specificity in the Alpha frequency band. Panel (F) shows the average classification specificity in the Beta frequency band.
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CSP added DTF and graph theory with Lasso regularization (CDGL). 
Due to the relatively balance between different classes for the datasets, 
only one metric “accuracy” is chosen to evaluate the 
algorithm performance.

Figure  9 reveals that the accuracy of CSP algorithms can 
be enhanced by integrating DTF network features and graph theory 
features into traditional CSP algorithms. As the number of channels 
increases, all four algorithms’ average classification accuracy 
improves. Notably, both the CDL, CGL, and CDGL algorithms 
outperform the traditional CSP algorithms. A One-way ANOVA was 
used here to test for significance, yielding a result of F(3, 100) = 15.12, 
p < 0.001. Following this result, a post hoc analysis was further 
conducted using the “multcompare” function in MATLAB, with a 
“CType” parameter set to “tukey–kramer,” which means the Tukey 
HSD method was used. The analysis indicated that there are 
significant differences between the CSP algorithm and the other 
three algorithms, with all p-values being less than 0.005. When the 
number of channels reaches 32, the CDGL algorithm achieves 
higher accuracy in the Beta frequency band than in the Alpha 
frequency band [confirmed by a one-way ANOVA, F(1, 50) = 4.55, 
p = 0.03]. This observation suggests that the Beta band exhibits more 
intricate and diverse signal features, which may be attributed to 
highlight brain activity and enhanced information processing 
capacity during cognitive tasks. Here, in Figure 9, one single asterisk 
(*) indicates a significance level of 0.05, double asterisks (**) 
indicates 0.01 level, and triple asterisks (***) indicates 0.001 level.

3.2 Data from BCI competition and 
PhysioNet BCI2000

3.2.1 The effect of CSP, DTF, graph theory 
features on MI task classification performance

To validate the aim drawn in this paper, the algorithms 
discussed in this article were also tested using the BCI Competition 
IV 2a dataset and PhysioNet’s BCI2000 dataset. To maintain data 
consistency, the validation was conducted using the same 
electrodes, specifically the 4-channel and 8-channel configurations. 
The broken lines depict the accuracy, sensitivity, and specificity 
metrics of the six classification methods according to different 
channels and different frequency band. Panels (a), (b), and (c) 
present the results obtained from the BCI IV 2a dataset, whereas 
panels (d), (e), and (f) show the results from PhysioNet’s 
BCI2000 dataset.

It can be  easily seen from Figure  10 that the algorithms 
involved in 4-channel are less correctly classified than 8-channel, 
both in the Alpha band and in the Beta band. The accuracy, 
sensitivity, and specificity of CDGL (CSP+DTF+Graph theory 
feature+Lasso) are significantly higher than that of CSP, DTF, 
CSPL (CSP+Lasso), CDL (CSP+DTF+Lasso), and CGL 
(CSP+Graph theory feature+Lasso). As the analysis focuses on 
discerning significant differences among various algorithms 
applied to the same datasets, a paired sample t-test is employed 
to ascertain the statistical disparities between the CDGL 

FIGURE 9

The classification accuracies of four methods for two frequency bands with five different channel combinations. Panel (A) shows the classification 
accuracy for two frequency band and 4 channels. Panel (B) shows the classification accuracy for two frequency band and 8 channels. Panel (C) shows 
the classification sensitivity for two frequency band and 12 channels. Panel (D) shows the classification sensitivity for two frequency band and 15 
channels. Panel (E) shows the classification specificity for two frequency band and 32 channels.

124

https://doi.org/10.3389/fnins.2024.1306283
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnins.2024.1306283

Frontiers in Neuroscience 14 frontiersin.org

algorithm and others. Due to requiring multiple comparisons, 
therefore, the Bonferroni correction was employed, leading to 
the adjustment of the p-value from 0.05 to 0.01 (0.05/5). The 
findings reveal that the p-values of the three assessment model 
indicators are consistently below the significance threshold of 
0.01, whether within the BCI IV 2a dataset or the PhysioNet’s 
BCI2000 dataset.

3.2.2 The effect of feature fusion on MI task 
classification performance (including the new 
method proposed) and comparison with EEGNet 
method

In the validation using public datasets, this paper also 
explored the impact of the feature fusion algorithm CDGL on 
classification performance. As shown in Figure  10, the CDGL 
algorithm’s performance was rigorously evaluated under varying 
conditions of channel and frequency band configurations using 
the three specific evaluation metrics. Comparisons were 
conducted in two primary scenarios: First, the algorithm’s 
performance were compared between alpha band and beta band 
while maintaining constant channel settings. This involved an 
assessment of the performance in alpha and beta bands separately 
configured at channels = 4 or channels = 8. Secondly, the study 
focused on comparing the algorithm’s performance metrics across 
different channel configurations, channels = 4 and channels = 8, 
within unchanged frequency band. The results of each comparison 
show significant differences (all p-value <0.0125). This 
comparative analysis was aimed at exploring the impact of channel 
and frequency band variations on the effectiveness of the 
CDGL algorithm.

In addition, this paper also made a comparison with one of gold-
standard methods (EEGNet) commonly used for MI-BCI 
classification tasks. The comparison results of the three performance 
indicators of the two algorithms are shown in Figure 11.

The parameter selection for CDGL is as channel numbers = 8, 
Beta band, the model’s order = 8. A comparative analysis of two 
models—EEGNet and CDGL—was conducted using the 
standardized BCI IV 2a and PhysioNet’s BCI2000 dataset. It was 
indicated that for the three key metrics (accuracy, sensitivity, and 
specificity), CDGL performs better than EEGNet, affirming the 
superior capability and dependability of CDGL for the classification 
of MI-BCI tasks. On the BCI IV 2a dataset, the CDGL achieved 
84.98% accuracy, 86.08% sensitivity, and 84.82% specificity 
respectively, surpassing the values of 80.77, 78.13, and 82.65% 
reported by EEGNet (Paired t-test, p = 0.008 for accuracy, p = 0.01 
for sensitivity and p = 0.012 for specificity). Similarly, for the 
PhysioNet’s BCI2000 dataset, CDGL attained an accuracy of 
91.37%, a sensitivity rate of 86.08%, and a specificity rate of 90.96%, 
in contrast to the 81.84, 78.82, and 75.57% obtained by EEGNet 
(Paired t-test, p = 0.012 for accuracy, p = 0.014 for sensitivity and 
p = 0.003 for specificity).

4 Discussion

This article presents an exploration of a brain functional network 
construction method based on the DTF. We  demonstrate its 
discriminative ability in left and right hand MI tasks by extracting 
DTF network features and graph theory features. Specifically, for the 
left-hand MI tasks, there is a noticeable enhancement in the strength 

FIGURE 10

Three metrics of the six algorithms for the MI-BCI task classifications for two frequency bands and the two different datasets. Panels (A–C) display the 
classification accuracy, sensitivity, and specificity, respectively, for the BCI competition dataset. Panels (D–F) display the classification accuracy, 
sensitivity, and specificity, respectively, for the PhysioNet BCI2000 dataset.
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of neural connections within the left hemisphere, indicating an 
increased neural activity and a significant flow of information (as 
demonstrated in Figure 6). This increment in activity not only results 
in reduced energy within the left hemisphere but is also correlated 
with a decline in power within specific frequency bands (namely, the 
alpha and beta bands), consistent with the Event-Related 
Desynchronization (ERD) phenomenon observed in the contralateral 
sensorimotor cortex. Similarly, this phenomenon occurs within the 
right hemisphere during right hand MI tasks.

The findings of this study offer a novel approach to enhancing the 
performance of traditional CSP algorithms. We showed the improved 
classification results by integrating DTF network features and graph 
theory features into CSP. These findings are consistent with previous 
findings (Ghosh et al., 2015; Filho et al., 2018; Li and Zhang, 2022) 
that indicators of functional brain connectivity have the potential for 
categorization in the domain of MI tasks. Compared to the methods 
used in previous research, we innovatively integrate DTF network 
features with graph theory features, obtaining significantly improved 
experimental results. Our study further demonstrates the 
effectiveness of the DTF-based brain functional network construction 
method for MI tasks. Graph feature application effectively captures 
the spatial correlations and network structures in EEG data, which 
are the aspects often overlooked in traditional time-frequency feature 
analysis. Insight into this spatial correlation is crucial for deeply 
understanding the brain’s activity patterns while MI tasks. Our use of 
graph features aims not merely to achieve superior performance on 
datasets but is based on a profound understanding of brain network 
analysis and signal processing. Our research delves deeply into the 
brain activity analysis during the MI process, seeking a comprehensive 
understanding of these complex activities rather than a mere 
accumulation of features. It is worth noting that our study was limited 
to the dichotomous categorization problem for left and right hand MI 
tasks. Future studies could extend it to more complex multi-
categorization MI tasks. This will further validate our proposed 

approach for various tasks and contexts. In addition, we  plan to 
explore the impact of multiple network feature fusion techniques on 
motion imagery decoding algorithms. By combining different types 
of features, such as time-domain features, frequency-domain features, 
and spatial features, we can expect to further improve the decoding 
accuracy and robustness of the MI tasks.

The algorithm’s information transmission rate in offline 
experiments, which utilized 3 s of data, was not enough for a real-
time application, for examples brain-controlled wheel chair and 
robots. The sliding time window sampling might be a reasonable 
choice to enhance this rate in forthcoming real-time studies. The 
further research will focus on evaluating the real-time performance 
of the proposed algorithm, applying it to develop a brain-controlled 
robotic arm for enhancing the rehabilitation of patients suffering 
from nerve injuries.

5 Conclusion

In this paper, a brain functional network feature extraction 
method based on DTF network features and graph theory features is 
proposed for classifying two MI tasks. The following conclusions 
were reached:

(1) Both DTF network features and graph theory features have 
demonstrated their effectiveness in classifying MI tasks and have 
positively contributed to the performance improvement of the CSP 
algorithm. Especially, the proposed CDGL incorporating DTF 
network features and graph theory features together achieves the 
highest classification accuracy among the other feature fusion 
methods. This indicates that analyzing the features of brain functional 
networks can provide essential information for distinguishing between 
different MI tasks.

(2) Increasing the number of channels provides more information 
about the EEG signals, which improves the model’s sensitivity and 

FIGURE 11

The performance comparison of two algorithms (EEGNet and CDGL) on two different datasets (BCI IV 2a and PhysioNet’s BCI2000). Panel (A) shows 
the classification performance of two algorithms for the BCI IV 2A dataset. Panel (B) shows the classification performance of two algorithms for the 
PhysioNet BCI2000 dataset.
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ability to discriminate between specific activities in brain regions. 
Specifically, as the number of channels increases, the ability to 
characterize the expression of EEG signals is enhanced.

(3) The Beta band functional brain network features exhibited 
superior performance enhancement for the CDGL algorithm compared 
to the Alpha band. This suggests that EEG signals in the Beta band may 
contain more valuable information and have a greater impact on the 
accuracy and robustness of the classification algorithm in MI tasks.

These findings contribute significantly to our understanding of the 
mechanisms underlying BCIs and MI tasks, offering fresh insights and 
novel possibility for further research in the field of neuroscience. 
Future studies can focus on exploring and refining feature extraction 
methods based on DTF and graph theory, extending their applicability 
to a wider range of tasks and practical applications.
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3D inversion recovery ultrashort
echo time MRI can detect
demyelination in
cuprizone-treated mice

Adam C. Searleman1‡, Yajun Ma1‡, Srihari Sampath1,

Srinath Sampath1, Robert Bussell1†, Eric Y. Chang1,2,

Lisa Deaton3, Andrew M. Schumacher3 and Jiang Du1,2,4*

1Department of Radiology, University of California, San Diego, San Diego, CA, United States,
2Radiology Service, Veterans A�airs San Diego Healthcare System, San Diego, CA, United States,
3Novartis Institutes for BioMedical Research, San Diego, CA, United States, 4Department of

Bioengineering, University of California, San Diego, San Diego, CA, United States

Purpose: To test the ability of inversion-recovery ultrashort echo time (IR-

UTE) MRI to directly detect demyelination in mice using a standard cuprizone

mouse model.

Methods: Non-aqueous myelin protons have ultrashort T2s and are “invisible”

with conventional MRI sequences but can be detected with UTE sequences. The

IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress

the long T2 water signal so that the remaining signal is from the ultrashort

T2 myelin component. In this study, eight 8-week-old C57BL/6 mice were fed

cuprizone (n = 4) or control chow (n = 4) for 5 weeks and then imaged by 3D

IR-UTE MRI. The di�erences in IR-UTE signal were compared in the major white

matter tracts in the brain and correlated with the Luxol Fast Blue histochemical

marker of myelin.

Results: IR-UTE signal decreased in cuprizone-treated mice in white matter

known to be sensitive to demyelination in this model, such as the corpus

callosum, but not in white matter known to be resistant to demyelination, such

as the internal capsule. These findings correlated with histochemical staining of

myelin content.

Conclusions: 3D IR-UTE MRI was sensitive to cuprizone-induced demyelination

in the mouse brain, and is a promising noninvasive method for measuring brain

myelin content.

KEYWORDS

MRI, IR-UTE, myelin imaging, mouse model, cuprizone

1 Introduction

In the central nervous system, myelin is a component of oligodendrocytes defined by

its ultrastructure of multiple lamellae of protein-rich lipid bilayers; myelin insulates the

axons of certain nerves to facilitate saltatory conduction and provides trophic support

(Morell and Quarles, 1999a). The extent of myelination modulates the function and health

of axons and is dynamically regulated throughout the lifespan and in response to a variety

of neurologic conditions (Young et al., 2013; Duncan and Radcliff, 2016).
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The development of robust and specific biomarkers of

myelination would facilitate further advancements in the

diagnosis, monitoring, and treatment of demyelinating diseases.

For instance, there has been recent interest in the development

of promoters of remyelination as complementary to the current

immunosuppressive treatment of multiple sclerosis (Magalon et al.,

2012; Deshmukh et al., 2013; Plemel et al., 2017; Lubetzki et al.,

2020), an autoimmune demyelinating disease that most commonly

affects young adults and ultimately results in progressive functional

impairment, cognitive deficits, and early mortality (Lucchinetti

et al., 2005; Popescu et al., 2013). An imaging-based biomarker of

myelin would be crucial for the development of these potential

remyelinating agents at both the pre-clinical and clinical stages.

Myelin imaging is challenging because the T2 of myelin protons

(T2 from several µs to a few 100’s of µs) is much shorter than the

minimal echo times (TEs; no less than several ms) of conventional

sequences (Horch et al., 2011; Wilhelm et al., 2012; Du et al.,

2014a; Sheth et al., 2016). In addition, the longer T2 water protons

comprise over 90% of the MRI signal in the brain (Fan et al.,

2018). We have previously shown that adiabatic inversion recovery

prepared ultrashort echo time (IR-UTE) sequences with nominal

TEs as short as 8 µs are able to robustly suppress long-T2 water

signals and generate a high contrast myelin image on a clinical

3T scanner (Du et al., 2014a,b). This short T2 signal persists after

removing most of the myelin-associated water fraction by D2O

exchange (Fan et al., 2017, 2018; Seifert et al., 2017), suggesting

that the IR-UTE sequence is detecting signal from semisolid myelin

protons. Myelin is comprised of ∼40–45% lipids/cholesterol, 10–

15% protein, and 40% water (Morell and Quarles, 1999b). The

majority of the myelin protons detected by UTE sequences are

thought to originate from the long-chain methylenes of the

bilayers, with additional contributions from cholesterol, choline,

and proteins (Horch et al., 2011; Wilhelm et al., 2012). The IR-UTE

sequence has also been shown to detect demyelinated MS lesions as

confirmed by autopsy (Sheth et al., 2016, 2017).

This study was designed to test the capability of the IR-UTE

sequence in detection of demyelination using an animal model.

In adult C57BL/6 mice, the copper chelator cuprizone induces

demyelination with well-characterized temporal and regional

dynamics, notably resulting in pronounced demyelination of

the caudal corpus callosum (CC) after 5–6 weeks of exposure

(Hiremath et al., 1998; Mason et al., 2001; Matsushima and

Morell, 2001; Taylor et al., 2010). Additional acute changes

are likely reactive to demyelination including mild edema,

microgliosis, astrocytosis, and axonal injury; however there is

minimal inflammation compared to models such as experimental

autoimmune encephalitis (Matsushima and Morell, 2001; Gudi

et al., 2009). Thus, the C57BL/6 cuprizone model is well-suited for

determining the sensitivity of IR-UTE for acute demyelination.

Abbreviations: CC, Corpus callosum;DTI, Di�usion tensor imaging; ETL, Echo

train length; FA, Fractional anisotropy; FSE, Fast spin echo; IR-UTE, Inversion-

recovery ultrashort echo time (IR-UTE); LFB, Luxol Fast Blue; MT, Magnetic

transference; NEX, Number of excitations; RD, Radial di�usivity; ROI, region

of interest; TE, echo time; TI, Inversion time; TR, Repetition time; VHC, ventral

hippocampal commissure.

In this study, eight 8-week-old C57BL/6 mice were fed

cuprizone (n = 4) or control chow (n = 4) for 5 weeks and

then imaged by 3D IR-UTE MRI and compared with conventional

diffusion tensor imaging (DTI). The differences in IR-UTE signal

were compared in the major white matter tracts in the brain and

correlated with the Luxol Fast Blue (LFB) histochemical marker

of myelin.

2 Materials and methods

2.1 Sample preparation

All animal studies conformed to institutional IACUC-approved

protocols. Ten 8-week-old female C57BL/6 mice were included

in this study. Five mice were given 0.2% cuprizone chow (Sigma

Aldrich, St Louis, MO; Harlan Laboratories, Inc., Madison,

Wisconsin) ad lib for 5 weeks, and five controls were given chow

lacking cuprizone for 5 weeks prior to being sacrificed for imaging

and analysis. This cuprizone dose and duration were chosen

to induce maximal regional demyelination in the caudal corpus

callosum in this mouse strain (Horch et al., 2011; Wilhelm et al.,

2012; Du et al., 2014a; Sheth et al., 2016). One mouse from each

group was used for image optimization and excluded from further

analysis due to extended imaging times, which may have altered

the biological characteristics of the myelin and surrounding tissues.

The mice were decapitated and their heads skinned and then

flash frozen in liquid nitrogen until analysis to prevent temporal

effects related to scan order. Each head was warmed in a room

temperature water bath for 2 h immediately prior to MRI to allow

for a consistent brain temperature between specimens given the

effect of temperature on T1 and thus nulling time.

2.2 MRI

Brain imaging was performed on a Bruker 7T BioSpec

(Billerica, MA) scanner using a mouse brain surface coil for signal

reception. The specimens were placed in 15mL conical tubes on a

cardboard insert to facilitate consistent positioning in the center of

the coil. No solution was added to the tubes. A conventional T2-

weighted fast spin echo (T2-FSE) sequence, with repetition time

(TR) = 2,760ms, TE = 40ms, and echo train length (ETL) = 8,

was used for anatomic imaging. A conventional two-dimensional

adiabatic inversion recovery prepared FSE (2D IR-FSE) sequence,

with TR = 8,000ms, TE = 18.6ms, and inversion times (TIs) =

60, 150, 300, 450, 600, 750, 900, 1,200, 1,500, and 2,000ms, was

used to measure T1 of the long T2 white matter components using a

single coronal image of the ventral hippocampal commissure. A 3D

IR-UTE sequence was used to image myelin, using the following

parameters: TR = 1,000ms, TI = 382.5ms, TE = 20 µs, FOV

= 2.0×2.0×2.0 cm3, matrix = 110×110×110, flip angle = 15◦,

number of excitations (NEX)= 4. To speed up data acquisition, 25

spokes centered on TI were acquired per IR preparation, with 5ms

from the start of one spoke to the next, leading to a total scan time

of 100min. The same 3D IR-UTE sequence was repeated with TE

= 2.0ms and NEX = 1. Similar imaging parameters were used for

the T2-FSE and IR-FSE sequences. Echo planar imaging based DTI
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MRI was performed using 30 non-colinear gradient directions with

gradient b-values= 0, 750, 1,500, and 2,000 s/mm2, TR= 4,000ms,

TE= 23ms, and ETL= 13, for a total scan time of 25 min.

2.3 Histology

Immediately after imaging, mouse brains were removed intact,

fixed in zinc formalin, and then embedded in paraffin using

standard protocols as previously described (Beckmann et al., 2018).

One of the control mouse brains was damaged during sample

processing and excluded from further histological analysis. Five

micron sections were stained with LFB using standard protocols as

previously described (Beckmann et al., 2018). Myelin content was

semi-quantitatively measured in the genu of the corpus callosum

based on staining density as follows: the corpus callosum in each

section was visually identified and outlined as the region of interest

(ROI) for analysis using the NDP View software for NanoZoomer

scanners (Hamamatsu, Photonics, Shizuoka, Japan). The myelin

density was then calculated as the LFB optical density within

this ROI. LFB densities from nine corpus callosum sections per

animal were averaged, and this was compared across 3–4 animals

per group.

2.4 Region of interest selection

The 3D IR-UTE images of a control mouse were mapped

to anatomical structures using the Allen Mouse Brain Atlas as

a reference (Allen Institute for Brain Science, 2004). Regions

of interest (ROIs) were generated in two ways. First, ROIs

were drawn manually for the genu and splenium of the CC,

ventral hippocampal commissure (VHC), and internal capsule by

an investigator blinded to group assignment using standardized

criteria for ROI selection to ensure consistency. Secondly, ROIs

were generated in a semi-automated fashion from a common

IR-UTE template. To remove the influence of signal from the

calvarium and other extracranial structures on the registration

method, brain extraction was performed using custom Matlab

scripts (The Mathworks Inc., Natick, MA). The IR-UTE template

was generated using Advanced Normalization Tools (Avants et al.,

2008) using symmetric diffeomorphic image registration with a

cross-correlation metric from IR-UTE images of an untreated

mouse. Each specimen was individually registered to this common

template. The ROI analysis was done by manually drawing the ROI

on the template and using the inverse transformation to map to the

corresponding ROI in the original image space. Both ROI analyses

were comparable; however, the backpropagation of the ROIs was

not as reliable and therefore the first analysis is presented as it

was considered to be more accurate. The template-registered IR-

UTE images were also analyzed by averaging the registered IR-UTE

images in the control mice and the cuprizone-treatedmice to obtain

averaged IR-UTE signal for each voxel. Subtraction of the averaged

control IR-UTE map from the averaged cuprizone-treated IR-UTE

map will demonstrate differences in signal for each voxel between

these two groups, which was then analyzed for regional patterns

of change.

2.5 Data analysis

The IR-UTE absolute signal was obtained from magnitude

images. A coil sensitivity map was generated using the magnitude

images from the same IR-UTE sequence on a degassed phantom of

20% H2O and 80% D2O with 35.5mM MnCl2 (for T∗
2 of 355ms)

in a 15mL conical tube. The map was then smoothened with a

Gaussian filter with size = 4 and σ = 2 and scaled to a maximum

value of 1. The IR-UTE signal from each specimen was normalized

to this coil sensitivity map by simple division. The fractional

anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD)

were generated using the dtifit function in FDT (Jbabdi et al., 2012),

and compared to the IR-UTE signal using the Pearson correlation

coefficient. T1 values of white matter were calculated using custom

code in Matlab in the ventral hippocampal commissure using

the normalized maximum likelihood estimate (assuming a Rician

distribution) and non-linear least squares fitting. Statistical analysis

was performed using the R statistical programming language

(v3.4.1) using the Wilcoxon rank-sum test for each ROI. A p-value

of < 0.05 was considered statistically significant.

3 Results

Representative images of the optimized IR-UTE sequence of

a control mouse brain are shown in Figure 1. The IR-UTE image

in Figures 1B, C demonstrates high signal intensity in the major

white matter tracts, including the corpus callosum, internal capsule,

dorsal and ventral hippocampal commissures, and deep cerebellar

white matter; intermediate signal in mixed white and gray matter

structures such as the basal ganglia and both superior and inferior

colliculi; and minimal signal from cortical gray matter and cerebral

spinal fluid (CSF). The high signal in the calvarium seen only

on IR-UTE and not FSE images reflects ultrashort T2 signal from

cortical bone, and there is additional signal from retrobulbar fat.

The later echo time of TE = 2ms in Figure 1D has dramatically

reduced signal intensities, notably with the majority of the white

matter tracts now demonstrating less signal than residual CSF,

indicating that the majority of the white matter IR-UTE signal has

ultrashort T2. The retrobulbar fat, bone marrow fat, and minimal

CSF signal are more apparent in the TE = 2ms image due to

longer T2s.

The IR-UTE signal visually decreased in the cuprizone-

treated mice in several white matter tracts that are known to

be sensitive to cuprizone-induced demyelination (Figure 2). Axial

images through the ventral hippocampal commissure and splenium

of the corpus callosum demonstrate the greatest decrease in

signal intensity in the corpus callosum and to a lesser extent

in the ventral hippocampal commissure and white matter of

the basal ganglia. In contrast, there was no significant signal

change in the internal capsule, which is known to be resistant

to cuprizone (Yang et al., 2009). These findings are confirmed to

be statistically significant with quantitative analysis using ROIs

(Figure 3).

DTI imaging also was able to detect a difference between

the control and cuprizone-treated mice. Demyelination is thought

to be associated with a decrease in total fractional anisotropy,

specifically with an increase in radial diffusivity as the loss of
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FIGURE 1

Representative coronal images of an untreated adult C57BL/6 mouse. (A) T2 weighted FSE, (B, C) IR-UTE at TE = 0.020ms with and without

annotations, (D) IR-UTE at TE = 2ms [displayed with a 10X narrower window than (B) to show detail]. BSC, Brachium of the superior colliculus; DHC

and VHC, dorsal and ventral hippocampal commissure, respectively.

FIGURE 2

Averaged IR-UTE signal from untreated and cuprizone treated mice. IR-UTE images were registered to a common template after brain extraction and

then averaged. These averaged axial images are displayed at the level of the (A) ventral hippocampal commissure and (B) splenium corpus callosum.

On the right, subtraction images are shown such that areas of decreased signal in the cuprizone-treated mice are red, and areas of no change are

white. Note that the largest decrease in signal was in the splenium of the corpus callosum (B), and the lack of signal di�erences in the internal

capsule (A) and midbrain structures (B) that are resistant to cuprizone.

myelin bilayers allows water molecules to diffuse in a radial

direction from the axon tracts (Xie et al., 2010). In contrast, axial

diffusivity is more sensitive to axonal damage, which transiently

changes during early treatment with cuprizone (Sun et al., 2006).

As expected and in line with prior studies of DTI imaging of

cuprizone-treated mice, a decrease in fractional anisotropy and

an increase in radial diffusivity were seen in the splenium of

the corpus callosum, whereas there was no statistically significant

change in axial diffusivity. The IR-UTE signal correlated with both

fractional anisotropy and radial diffusivity, but only had a weak

correlation with axial diffusivity that was not statistically significant

(Figure 4).
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FIGURE 3

(A) Example of ROI placement in a representative control mouse on coronal IR-UTE images at TE = 0.02ms. In the top right figure, the red ROI

corresponds to the genu corpus callosum and the blue ROI corresponds to the ventral hippocampal commissure. (B) Average magnitude of IR-UTE

images at TE = 0.02ms for selected ROIs. Bars represent 95% confidence intervals. (a.u.), arbitrary units.

FIGURE 4

IR-UTE signal correlates with (A) fractional anisotropy and (B) radial di�usivity, but not (C) axial di�usivity in cuprizone-treated mice. Both fractional

anisotropy and radial di�usivity but not axial di�usivity were di�erent between cuprizone-treated and untreated mice with p < 0.05.

Both the IR-UTE and DTI imaging results are corroborated

by semi-quantitative histochemical analysis of myelin using

LFB staining (Figure 5). All of the cuprizone-treated mice

had decreased myelin staining in the genu of the corpus

callosum compared to the control mice; however complete

demyelination was not achieved in this study. Additionally,

T1 mapping demonstrates that cuprizone treatment did

not significantly change the T1 of the ventral hippocampal

commissure (Figure 6). Therefore, the TInull of the long T∗
2

components does not significantly change in this model.

Otherwise, it could have resulted in artifactual signal

intensity changes.

4 Discussion

This study demonstrated that the 3D IR-UTE sequence is

able to detect demyelination with decreased myelin signal in

an animal model of acute demyelination. The ability of the IR-

UTE sequence to detect the ultrashort T2 signal and suppress

the long T2 signal was demonstrated in mouse brains, similar

to prior work using in vitro phantoms and human volunteers

(Du et al., 2014a; Sheth et al., 2017; Fan et al., 2018). The mice

treated with cuprizone demonstrated loss of IR-UTE signal in white

matter tracts known to be sensitive to cuprizone but no changes

in white matter tracts that are known to be resistant, whereas
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FIGURE 5

Decreased Luxol Fast Blue (LFB) staining in cuprizone treated mice compared with control mice. The plane of sectioning is analogous to Figure 2A,

showing decreased myelin in both the genu of the corpus callosum and the ventral hippocampal commissure.

FIGURE 6

The T1 of myelin in the ventral hippocampal commissure is

unchanged by cuprizone treatment.

the IR-UTE signal in white matter tracts of control mice was

unchanged. The IR-UTE signal was also correlated with findings

using DTI MRI. The 3D IR-UTE measurement of demyelination

was further confirmed by LFB staining. These findings demonstrate

that the IR-UTE signal was sensitive to myelin loss in the cuprizone

mouse model.

Many of the existing methods for myelin imaging and

quantification detect myelin indirectly through its interactions

with myelin-associated water, and have been shown to detect

demyelination in the cuprizone model and other animal models.

These include magnetic transference (MT)-based imaging methods

(Zaaraoui et al., 2008; Varma et al., 2015; Khodanovich et al.,

2017), T2 relaxometry/myelin water fraction imaging (Thiessen

et al., 2013; Wood et al., 2016), diffusion based imaging methods

(Song et al., 2005; Sun et al., 2006; Wang et al., 2011),

quantitative susceptibility mapping (Wang et al., 2019), and

others. However, these methods may also be sensitive to other

pathologic changes including microgliosis, edema, and mild axonal

injury that accompany demyelination in this model (Wood et al.,

2016). Directly imaging myelin protons using IR-UTE would be

expected to improve specificity for myelin loss in the setting of

heterogeneous pathological changes, or may complement these

other methods. The indirect measures of myelin are sensitive to

B1 and B0 inhomogeneities and may be complicated by edema

and iron deposition. Unlike IR-UTE, conventional MRI techniques

also cannot measure myelin relaxation times (e.g., T1 and T2∗

relaxation times), which may allow for a direct assessment of

myelin quality.

Recently, another UTE-based method was found to correlate

with histological markers of myelin in the cuprizone model better

than the myelin water fraction and RD and similar to the MT-

based macromolecular fraction (Soustelle et al., 2019). This Diff-

UTE sequence uses diffusion gradients for suppression of long T2

water signals, which allows relative preservation of the ultrashort

T2 signal at a short TR. In contrast, the IR-UTE sequence uses IR

preparation for long T2 signal suppression, allowing for recovery

of the ultrashort T2 signal using a longer TR and multispoke

acquisition per IR preparation (Carl et al., 2016; Ma et al., 2020b).

The IR-UTE sequence is more robust to B1 inhomogeneity and
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does not require assumptions about the T1 and T2 of myelin for

gradient tuning, which is required in Diff-UTE imaging of myelin

for appropriate signal nulling of diffusive long-T2 components

of the white matter (Soustelle et al., 2019); however, inversion

time needs to be carefully determined for IR-UTE imaging. We

have recently designed a Double-Echo Sliding Inversion Recovery

Ultrashort Echo Time (DESIRE-UTE) method which allows image

reconstruction at a wide range of inversion times so that the optimal

inversion time does not need to be chosen prospectively (Ma

et al., 2020c). Another approach is a short-TR adiabatic inversion-

recovery UTE (STAIR-UTE) method which allows robust long T2

signal suppression with optimized short TR/TI pairs (Ma et al.,

2020a). In addition, the Diff-UTE study was performed on mouse

brains that had been fixed, which may alter the MR properties

of myelin. The specificity of the IR-UTE and Diff-UTE sequences

have not yet been tested during remyelination or in other models

of demyelination.

There are several limitations of this study. First, the sample

size of both the treated and control mice was small, owing to the

fact that this study was designed as a proof-of-concept for future

studies. Additionally, complete demyelination was not achieved,

which limited the ability to examine other contributors to the

ultrashort T2 IR-UTE signal such as inflammation and gliosis. A

possible reason for myelin not being as low as expected could be

animals not eating enough, or variable amounts, of the cuprizone-

containing diet. Future studies will be needed to test the specificity

of the IR-UTE signal formyelin in the setting of both demyelination

and remyelination using other models of demyelination, and to

investigate the advantages and disadvantages over conventional

MRI techniques for myelin quantification.

5 Conclusion

In conclusion, the 3D IR-UTE method was able

to robustly detect the ultrashort T2 components in

major white matter tracts of the mouse brain with

decreased IR-UTE signal of myelin during cuprizone-

induced demyelination as confirmed by LFB staining.

Therefore, 3D IR-UTE is a promising non-invasive method

for measuring brain myelin content in mouse models

of demyelination.
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Methodological challenges of 
measuring brain volumes and 
cortical thickness in idiopathic 
normal pressure hydrocephalus 
with a surface-based approach
Martina Del Giovane 1,2*, Michael C. B. David 1,2, 
Magdalena A. Kolanko 1,2, Anastasia Gontsarova 2, 
Thomas Parker 1,2, Adam Hampshire 2,3, David J. Sharp 1,2, 
Paresh A. Malhotra 1,2,4 and Christopher Carswell 2,4

1 UK Dementia Research Institute, Care Research & Technology Centre, Imperial College and the 
University of Surrey, London, United Kingdom, 2 Department of Brain Sciences, Imperial College 
London, London, United Kingdom, 3 Centre for Neuroimaging Sciences, Institute of Psychiatry, 
Psychology and Neuroscience, King’s College London, London, United Kingdom, 4 Department of 
Neurology, Imperial College Healthcare NHS Trust, London, United Kingdom

Identifying disease-specific imaging features of idiopathic Normal Pressure 
Hydrocephalus (iNPH) is crucial to develop accurate diagnoses, although the abnormal 
brain anatomy of patients with iNPH creates challenges in neuroimaging analysis. 
We  quantified cortical thickness and volume using FreeSurfer 7.3.2  in 19 patients 
with iNPH, 28 patients with Alzheimer's disease (AD), and 30 healthy controls (HC). 
We noted the frequent need for manual correction of the automated segmentation 
in iNPH and examined the effect of correction on the results. We identified statistically 
significant higher proportion of volume changes associated with manual edits in 
individuals with iNPH compared to both HC and patients with AD. Changes in cortical 
thickness and volume related to manual correction were also partly correlated with 
the severity of radiological features of iNPH. We highlight the challenges posed by the 
abnormal anatomy in iNPH when conducting neuroimaging analysis and emphasise 
the importance of quality checking and correction in this clinical population.

KEYWORDS

normal pressure hydrocephalus, enlarged ventricles, (NPH), FreeSurfer, brain 
segmentation, dementia, Alzheimer’s disease (AD)

Introduction

Idiopathic Normal Pressure Hydrocephalus (iNPH) is a neurological condition that affects 
approximately 0.3–3%, of individuals aged 60 and above (Jaraj et al., 2014). It is characterized 
by alterations in cerebrospinal fluid dynamics, leading to the enlargement of the ventricles to 
maintain a stable intracranial pressure (Carswell, 2022). A triad of symptoms; gait apraxia, 
urinary incontinence, and cognitive deficits, result from this compensatory ventricular 
expansion, which stretches and distorts the surrounding parenchyma (Carswell, 2022). 
Therapeutic redirection of cerebrospinal fluid to an area of lower pressure (i.e., shunting) can 
dramatically improve symptoms (Carswell, 2022).

iNPH occurs in the elderly population in which traditional neurodegenerative diseases are 
common (Jaraj et  al., 2014), and identifying iNPH-specific clinical and imaging features is 
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paramount to being able to distinguish these disorders. The anatomical 
features of iNPH introduce methodological challenges in neuroimaging 
analysis. Reduced callosal angle, ventriculomegaly, and disproportionately 
enlarged subarachnoid space hydrocephalus (DESH) are some of such 
distinctive features of iNPH seen on brain imaging (Hashimoto et al., 
2010). Here, we would like to address potential limitations associated 
with the use of FreeSurfer,1 a software used for the analysis and 
visualization of brain imaging data, in this specific patient group.

One notable advantage of FreeSurfer is its ability to employ a fully 
automated pipeline, enabling the segmentation of the brain into regions of 
interest. It is freely available, widely used and there is extensive experience 
within the field in implementing it within analysis pipelines aiding 
reproducibility. FreeSurfer registers the volume with the MNI305 atlas. It 
performs a surface-based reconstruction of the cortex, which classifies 
voxels as either white or non-white matter based on voxel intensity and 
neighbour constraints, and a volume-based stream for volume labelling of 
each point (voxel) of the brain mask (Dale et al., 1999; Fischl et al., 2002). 
It derives the white matter surface as the interface between the white and 
gray matter, and the pial surface as the boundary between the pial and 
cerebrospinal fluid (CSF). Cortical thickness and volumes can then 
be quantified in 34 different regions derived from the Desikan-Killiany 
atlas. This automated process is considerably less laborious and less prone 
to bias than manual regions of interest segmentation.

Quality control and manual editing can be performed to rectify 
errors related to skull stripping, grey-white matter segmentation, and 
intensity normalization.2 Several studies have compared the outputs 
of the FreeSurfer’s pipeline with and without manual edits in groups 
of healthy adults, individuals with genetic disorders, and severe head 
injuries and found mixed results (McCarthy et al., 2015; Guenette 
et  al., 2018; Waters et  al., 2019). There is also limited research 
investigating the significance of the manual editing step in clinical 
populations with extremely abnormal brain morphology, which can 
impact the registration and segmentation analysis stages.

Methods

We evaluated the importance of manually correcting the 
segmentation output produced by FreeSurfer 7.3.23 on the MRI scans of 
19 patients with iNPH, 28 patients with Alzheimer’s disease, and 30 
healthy controls (HC). To improve the readability of the results and 
reduce multiple comparisons, the 34 regions segmented by FreeSurfer 
where clustered to derive cortical thickness and volumes for the frontal, 
temporal, parietal, occipital and cingulate lobes (see Footnote 1). Between-
group differences in age and gender were analysed using Kruskal-Wallis 
test and Chi-Square test, respectively. All scans were visually checked to 
ensure their quality met appropriate research standards. We then ran the 
FreeSurfer recon-all command using the -bigventricles flag. Of the 19 
iNPH patients, 12 were classified as probable, 4 as possible and 3 as 
asymptomatic iNPH, as defined by international criteria (Relkin et al., 
2005). Among the 16 symptomatic iNPH patients, 15 received a lumbar 
puncture and had their CSF samples analysed to determine the presence 
of comorbid AD pathology. Amyloid deposition was detected in two 

1 http://surfer.nmr.mgh.harvard.edu/

2 https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData

3 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation

patients. Radiological features of iNPH were assessed and calculated by a 
neuroradiologist. Participants were scanned on a 3 T Siemens scanner as 
part of a wider ongoing study run by the UK Dementia Research Institute, 
Care Research & Technology Centre focused on using sensor technology 
to monitor behaviours of people living with dementia. We  visually 
inspected each output and performed manual editing when necessary 
(Figure  1). Wilcoxon signed-ranked tests were used to compare the 
FreeSurfer’s measurements (volumes and cortical thickness) before and 
after manual edits while accounting for non-normally distributed data. 
Between-group differences in these changes were assessed via repeated 
measures ANOVA, followed by two-tailed t-tests with FDR correction for 
post-hoc comparisons. Finally, exploratory Spearman correlations were 
conducted between changes in cortical thickness/volumes pre and post 
manual correction and radiological features of iNPH (i.e., Radscale score, 
Evan’s index, callosal angle and DESH score). To assess the potential for 
rectifying FreeSurfer’s inaccuracies through alternative pre-processing 
software, we conducted two additional evaluations. First, we integrated 
the HD-BET tool for skull stripping before executing the FreeSurfer 
recon-all command. Notably, HD-BET has exhibited superior 
performance compared to various widely used brain extraction 
algorithms, even in the presence of brain pathology (Isensee et al., 2019). 
Additionally, we experimented with running the FreeSurfer recon-all 
command using a combination of T1 and FLAIR scans.4

This study was approved by the Health Research Authority’s 
London-Surrey Borders Research Ethics Committee (19/LO/0102) 
and the Health Research Authority’s London-Central Research Ethics 
Committee (18/LO/0249). All participants gave written and/or 
electronic consent.

Results

HC (14 females, mean age = 75.58 years, SD = 6.07), AD patients (12 
females, mean age 75.25 years, SD =7.64 years) and NPH patients (7 
females, mean age = 71.58 years, SD = 5.92 years) did not differ significantly 
in terms of gender. No significant age difference was found between HC 
and AD patients. Conversely, iNPH participants were significantly 
younger than AD and HC (p = 0.01). The iNPH patients had a mean 
Evan’s Index of 0.38 (SD = 0.04), mean callosal angle of 75.7 (SD = 15.83), 
mean Radscale score of 9.3 (SD = 1.51) and mean DESH score of 7.06 
(SD = 1.77). Out of the 19 scans of patients with iNPH, 3 failed the 
segmentation step (Figure  2) and 15 required extensive manual 
corrections (Figure 1). Of the 3 patients whose Freesurfer segmentation 
failed, 2 were asymptomatic. Of the 28 patients with Alzheimer’s disease, 
one failed the segmentation and 4 required manual corrections. In the HC 
group, only 2 participants needed manual editing of the segmentation 
output. No corrections of the white matter surface were required in any 
study group. In the iNPH group, manual edits aimed to improve the 
removal of skull and rectify inaccuracies in defining the pial surface, 
which had extended into the dura and skull. Following manual correction, 
the parietal, frontal and temporal regions exhibited the most substantial 
differences; with volume and cortical thickness measures decreasing 
bilaterally across the group (Table  1). Wilcoxon signed-ranked tests 

4 https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all#UsingT2orFLAIRdata

toimprovepialsurfaces
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comparing these measurements before and after manual edits did not 
reach significance, although we may have been underpowered by small 
participants’ number. Repeated measures ANOVA indicated an effect of 
group on the delta values of the volumes (F(19,630) = 2.84, p < 0.001), but not 
cortical thickness (p > 0.05), which suggest potential higher reliability of 
this measure relative to volumes. Between group differences were 
observed for the delta values of the frontal, parietal, temporal and 
cingulate volumes (Table 1). In Supplementary Table S1, we also report 
the differences in cortical thickness and volumes before and after manual 
correction for all the 34 individual regions segmented by FreeSurfer and 
the between-group comparisons of the delta values.

Spearman correlations showed that, in the left and right temporal 
lobe, cortical thickness changes significantly correlated with the Radscale 

score (rho = 0.61/60, p = 0.01), and the left temporal lobe volume also 
correlated with the callosal angle in isolation (rho = −0.53,p = 0.03). 
We also found a significant correlation between DESH scores and the 
change in volume of the right occipital lobe (rho = −0.51, p = 0.04).

The additional evaluations of FreeSurfer’s accuracy using HD BET 
in the pre-processing step revealed 7 segmentation failures and the 
necessity of multiple manual edits in 11 scans. Similarly, employing a 
combination of FLAIR and T1 images also led to seven segmentation 
failures and required manual corrections in five outputs.

Discussion

The higher proportion of scans requiring correction within our 
sample of iNPH patients relative to the AD and HC groups underlines 
the importance of conducting and reporting this quality check in this 
group – which is not consistently done (Cogswell et al., 2021).

Whilst we acknowledge that the overall effect of the correction in 
these data is minor, it is important to note that this is a relatively small 
sample size and that we employed a conservative manual correction 
approach to mitigate the risk of bias associated with human judgement; 
the effect of this correction process might become substantial enough to 
influence results significantly when conducting larger studies. Our 
findings also reveal a statistically higher proportion of volume alterations 
attributed to manual edits in individuals with iNPH compared to both 
healthy controls and patients with AD. Changes in cortical thickness were 
in part correlated with the severity of radiological features of iNPH and 
underline the importance of exercising caution when using FreeSurfer 
with severe hydrocephalus. It is important to underline that one 
significant limitation of this study is the subjectivity of the visual 
inspections and manual corrections, which are prone to human error. 
However, we have followed the methodology and guidelines provided by 

FIGURE 1

Left: Output of the Freesurfer’s recon-all command before the manual editing step for one subject. DESH features (i.e., enlarged ventricles, widened 
sylvian fissure and tight high convexity) are marked in red. Right: Output of the manual editing step for the same subject showing reduced cortical 
thickness..

FIGURE 2

Example of failed segmentation for one iNPH patient. Due to the 
presence of oedema, the pial and white matter surface are wrongly 
estimated around the ventricles and extend into the CSF space.
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TABLE 1 Values of cortical thickness and volumes before and after manual correction for the 5 main lobes (left and right), and between-group comparisons of the delta values (FDR corrected).

Region Group Volume (mm3) Cortical Thickness (mm)

Pre correction Post correction Delta Pre correction Post correction Delta

Mean std Mean std Mean std Group differences 
of delta

Mean std Mean std Mean std Group differences 
of delta

Frontal 

Right

iNPH 27982.59 32251.94 27484.46 31659.98 498.13 889.84
iNPH>AD**

iNPH>HC ***

26.52 0.96 26.40 0.89 0.13 0.17

all p > 0.05AD 72282.74 9094.58 72247.37 9055.27 35.37 202.31 26.01 1.15 26.00 1.16 0.00 0.04

HC 77633.17 8287.50 77620.77 8295.22 12.40 47.48 26.32 1.13 26.42 1.18 −0.10 0.72

Parietal 

Right

iNPH 23787.64 20635.75 23445.83 20257.78 341.81 706.61
iNPH>AD** iNPH>HC 

**

11.63 0.57 11.55 0.58 0.08 0.16

all p > 0.05AD 48385.96 6646.78 48353.67 6666.74 32.30 194.25 10.66 0.56 10.65 0.57 0.01 0.03

HC 52999.70 6776.29 52969.13 6758.55 30.57 138.82 11.13 0.53 11.09 0.60 0.04 0.24

Temporal 

Right

iNPH 18742.05 20548.49 18548.28 20318.95 193.76 461.20

iNPH>HC*

24.29 1.29 24.15 1.30 0.13 0.35

all p > 0.05AD 44192.44 6443.66 44122.67 6435.27 69.78 211.15 22.82 1.50 22.83 1.47 0.00 0.06

HC 50096.23 5268.73 50099.43 5271.93 −3.20 35.51 24.75 1.01 24.39 1.74 0.36 1.39

Occipital 

Right

iNPH 7150.50 4793.46 7164.83 4872.66 −14.33 191.05

all p > 0.05

7.86 0.46 7.80 0.49 0.06 0.18

all p > 0.05AD 24471.63 4030.69 24437.26 4048.02 34.37 165.71 7.69 0.33 7.68 0.34 0.00 0.05

HC 25645.37 3492.30 25643.50 3491.76 1.87 18.49 7.78 0.29 7.76 0.31 0.02 0.08

Cingulate 

Right

iNPH 3379.86 2485.74 3295.53 2465.91 84.33 234.82
iNPH>AD*

iNPH>HC *

8.98 0.45 9.01 0.45 −0.02 0.25

all p > 0.05AD 8382.74 1091.51 8379.07 1074.23 3.67 46.02 9.24 0.62 9.21 0.62 0.03 0.11

HC 8789.83 1348.99 8788.03 1351.10 1.80 12.32 9.35 0.57 9.43 0.54 −0.08 0.30

Frontal Left

iNPH 28596.39 33052.43 28126.09 32465.30 470.30 989.51

iNPH>HC*

26.63 0.74 26.52 0.73 0.12 0.08

all p > 0.05AD 72453.30 9273.70 72371.37 9155.49 81.93 545.67 25.88 1.34 25.87 1.33 0.01 0.10

HC 77708.63 8387.38 77694.00 8392.59 14.63 72.29 26.66 1.14 26.79 1.18 −0.12 0.68

Parietal Left iNPH 24024.05 21592.56 23551.29 21031.64 472.76 1414.00 iNPH>HC* 11.82 0.49 11.77 0.48 0.05 0.06 all p > 0.05

AD 46883.11 7368.76 46790.07 7290.69 93.04 316.13 10.55 0.61 10.54 0.60 0.01 0.02

HC 52576.80 6192.32 52563.13 6199.92 13.67 54.74 11.12 0.46 11.08 0.52 0.04 0.20

Temporal 

Left

iNPH 18552.15 20247.22 18508.36 20237.00 43.78 163.17 all p > 0.05 23.78 1.37 23.70 1.35 0.08 0.07 all p > 0.05

AD 43225.59 7460.71 43214.41 7450.57 11.19 78.14 22.45 1.71 22.45 1.70 0.00 0.06

HC 50498.93 5080.39 50501.70 5069.62 −2.77 55.24 24.47 1.08 24.11 1.81 0.37 1.44

Occipital 

Left

iNPH 6968.31 4692.93 6921.50 4736.47 46.81 190.65 all p > 0.05 7.70 0.42 7.70 0.41 0.00 0.03 all p > 0.05

AD 21937.30 3412.64 21891.44 3420.34 45.85 197.02 7.40 0.33 7.40 0.33 0.01 0.04

HC 23544.13 2652.42 23538.57 2654.60 5.57 23.25 7.58 0.30 7.58 0.35 −0.01 0.15

Cingulate 

Left

iNPH 3539.31 2722.25 3469.56 2687.10 69.75 136.51 iNPH>AD*

iNPH>HC*

9.09 0.52 9.08 0.55 0.00 0.14 all p > 0.05

AD 8864.07 1590.36 8845.22 1581.45 18.85 64.79 9.24 0.65 9.24 0.65 0.00 0.05

HC 9556.57 1501.67 9552.33 1504.06 4.23 17.66 9.41 0.45 9.49 0.50 −0.07 0.29

Delta values for each group have been calculated averaging the difference between pre and post cortical thickness and volume values for each subject. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.0001.
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the developers to mitigate bias and maximise consistency in our 
approach.5

The challenge for the field lies in establishing brain biomarkers that 
can differentiate between iNPH and other dementia types with 
overlapping clinical presentations and radiological features, such as 
ventriculomegaly, in order to identify patients to target with therapeutic 
shunting. Previous studies have demonstrated abnormal cortical 
thickening in the parietal lobe, and in the high convexity of the frontal, 
parietal, and occipital lobes in iNPH patients compared to healthy 
individuals and patients with Alzheimer’s disease (Moore et al., 2012; 
Kang et al., 2020; Bianco et al., 2022). Studies have suggested that cortical 
thickening may be characteristic of iNPH and related to the ventricular 
expansion, which leads to compression and stretching of the brain tissue, 
which may then reduce the cerebrospinal fluid space in the high 
convexity regions (Kang et al., 2020; Han et al., 2022). We cautiously 
suggest that increased cortical thickness and tightness of the high-
convexity space increase the likelihood of FreeSurfer failing to delineate 
the pia from the dura and hence erroneously classifying extra voxels to 
grey matter. If not corrected, these inaccuracies may provide even further 
and exaggerate evidence of increased cortical thickness and volumes in 
these areas. Interestingly, segmentation errors did not affect the white 
matter surface. FreeSurfer’s failures seems to specifically impact the 
delineation of the pial surface. Since this is measured as the interface 
between the pial and the CSF, these inaccuracies could arise from the 
reduced CSF space and the tight high-convexity regions resulting from 
ventricular expansion.

In light of the challenges discussed above, we propose that researchers 
consider the likely lengthy process of manual correction that is required 
when using FreeSurfer in this clinical group and encourage the reporting 
of the completion of this step so that readers can have confidence in any 
associated results. However, there is a need for further, large-scale iNPH 
studies to reliably identify disease-specific biomarkers. In this case, 
conducting laborious manual corrections which can take several hours per 
subject (Lotan et al., 2022) may be unfeasible and introduce the likelihood 
of bias, especially given the challenges in blinding raters to the clinical 
group each scan comes from, given such apparent structural abnormalities.

With this in mind, alternative automatised software and analysis 
techniques with superior accuracy have been developed and may 
be preferential (Carass et al., 2017; Shao et al., 2019; Billot et al., 2023). 
Nevertheless, as shown above, FreeSurfer is still being widely used in 
current studies. This may be due to some limitations of these alternative 
tools. These in fact do not always provide segmentation of the individual 
compartments of the ventricles or are validated in small subsamples of 
iNPH patients (Shiee et al., 2011; Roy et al., 2015; Shao et al., 2019), do not 
improve the required processing time relative to FreeSurfer (Ellingsen 
et al., 2016), are not always freely available (Shao et al., 2019) or easily 
accessible as FreeSurfer (Ellingsen et al., 2016), or need manual delineation 
of new atlases when employed with new scanners (Roy et al., 2015).
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