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‘Invasive rabbitfish in eastern Mediterranean’, photo by Dimitris Poursanidis.
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Invasive alien species are non-indigenous taxa introduced to areas beyond their natural distri-
bution and bio-geographical barriers by human activity, with important impacts on biodiver-
sity, human health and ecosystem services. With the human population being higher than ever 
before and increasing, together with unprecedented rates of mobility of humans and goods, 
the introduction of new invasive species is more common than ever and is at the forefront of 
research in many disciplines such as ecology, epidemiology and food security.
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The mechanisms of successful introduction, establishment and spread of invasive alien species 
are highly complex as biological, social, geographic, economic and climatic factors influence 
the way an invasive species is introduced and determine the options available for its eventual 
detection and control.

With the rapid development of smart sensors, social networks, digital maps and remotely-sensed 
imagery, spatio-temporal data are more ubiquitous and richer than ever before. The availability 
of such large datasets (Big data) poses great challenges in data analysis. In addition, increased 
availability of computing power facilitates the use of computationally-intensive methods for 
the analysis of such data.

Thus new methods are needed to efficiently study and understand biological invasions. A Research 
Topic held in Frontiers Environmental Informatics aimed to address this topic. Methods are 
defined in the widest terms and may be analytical, practical or conceptual. Among others, a 
key aim of the thematic was to maximize the use of the proposed methods/techniques by the 
scientific community and environmental stakeholders.
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Editorial on the Research Topic

Data Mining and Methods for Early Detection, Horizon Scanning, Modelling, and Risk

Assessment of Invasive Species

Alien species are taxa introduced to areas beyond their natural distribution by human activities,
overcoming bio-geographical barriers [1]. Accelerating movement of humans, animals and goods
are driving an increasing rate of biological invasions [2, 3]. Through a multitude of mechanisms of
introduction, broadly classified into five categories—release, escape, contaminant, stowaway, and
corridor—many thousands of species have moved into new regions [2]. In Europe alone, ∼15,000
alien species have been recorded, with an increasing trend in new introductions [4]. For most
taxonomic groups, the global rate of new introductions is increasing with no sign of saturation
in the accumulation of alien species [5].

Many alien species have become invasive with substantial impacts on biological diversity,
human health and ecosystem services. Impacts of invasive species range from reduction in
individual fitness of native species to population declines, local extinctions, changes in community
composition, effects on entire ecosystem processes, and wider ecosystem function, health problems
in humans or even deaths, and substantial economic losses [6–11]. The ecological impacts of
invasive species are so severe that they are considered as one of the major drivers of global
biodiversity loss [12, 13].

The Convention on Biological Biodiversity (CBD) recognized the need for the “compilation and
dissemination of information on alien species that threaten ecosystems, habitats, or species to be
used in the context of any prevention, introduction and mitigation activities,” and calls for “further
research on the impact of alien invasive species on biological diversity” [14]. Indeed, research
efforts to better understand the factors controlling alien species introduction, initial dispersal,
establishment success, distribution, abundance, spatio-temporal dynamics, and invasiveness have
been intensified. In the 1990s and 2000s, research on human-mediated invasions has exploded,
with an exponential increase of publications dealing with or mentioning biological invasions
(Figure 1). In addition, many peer-reviewed journals specifically targeting biological invasions
have been established (e.g., “Biological Invasions,” “Aquatic Invasions,” “Management of Biological
Invasions,” “BioInvasions Records”), a large number of dedicated information systems and online
databases have been created [15], and a number of international initiatives advancing research and
collaboration in the field have been promoted [16].
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FIGURE 1 | Number of publications registered in Scopus by year, including

the words “biological invasions” or “non-indigenous species” or “alien species”

or “invasive species.”

Despite the intensification of research efforts, there are still
substantial gaps in our knowledge on the dynamics of biological
invasions and the accumulation of alien species across regions
and taxa. Understanding the spread and successful introduction
of invasive species is highly complex as biological, social,
geographic, economic, and climatic factors influence the way
an invasive species is introduced and determine the options
available for its eventual detection and control. This in turn
calls for an interdisciplinary approach as traditional ecological
approaches need to be combined with data mining and data
analytics [17]. Data availability has often been the limiting factor
in predictive modeling [18, 19]. With the rapid development of
smart sensors, social networks, digital maps, and remotely-sensed
imagery, spatio-temporal data are more ubiquitous and richer
than ever before [20]. The availability of such large datasets (big
data) poses great challenges in data analysis [21]. In addition,
increased availability of computing power facilitates the use of
computationally-intensive methods for the analysis of such data
[22]. Thus new methods are needed to understand biological
invasions and to efficiently use new technologies and handle
big datasets. The current Research Topic in Environmental
Informatics aims to address this interesting and cutting-edge
theme. Specifically, the special issue focuses on data analysis and
novel methods for early detection, horizon scanning, modeling,
and risk assessment of invasive species. These themes have been
rapidly developing or are expected to develop in the near future
(Figure 2). Ten contributions were finally accepted after the peer
review process.

Data in alien species inventories are often scattered in
numerous disconnected formats and databases that lack
interoperability entangling their analysis. In their contribution,
Groom et al. describe seven ways that data on alien species
can be made more accessible and useful. These include data
management plans, interoperability of information sources,
metadata documentation, existing data formulation, use of
common data semantics, data availability, and long-term data
preservation.

FIGURE 2 | Number of publications registered in Scopus by year, including

the words “biological invasions” or “non-indigenous species” or “alien species”

or “invasive species” and one of the following words: “modeling,” “risk

assessment,” “early detection,” and “horizon scanning.”

Spatially explicit high resolution data are elementary for
assessing the impacts of alien species and mitigation; however,
often these data are unavailable. Environmental explanatory
covariates available at the resolution of the alien species, as well
as at finer resolutions, can be used to infer alien species presences
at finer resolutions using random forests, a machine learning
technique, as suggested by Daliakopoulos et al.

Building and managing large datasets of alien species
is elementary for their monitoring and management. The
geodatabase of the European Alien Species Information Network
(EASIN), an initiative of the European Commission, is presented
by Deriu et al. The key feature of EASIN is that it aggregates,
integrates, and harmonizes spatio-temporal data of alien species
in Europe, through standardized processes, supporting both
research and policies on biological invasions.

Land use change is the major contributor to the introduction
and spread of alien species, and forest lodging and road
constructions increase the exposure to infectious diseases. In
addition, climatic changes can facilitate alien species and disease
spread. The spatio-temporal spread of Hemorrhagic fever with
renal syndrome (HFRS) is studied using powerful statistical
methods and core areas in China, and the association of climatic
cycles are quantified by He et al. demonstrating the applicability
of modern space-time modeling and mapping techniques to
assess biological invasions.

Islands are undergoing strong pressure from alien species due
to their restricted size and increased human impact. Hypotheses
of invasibility were explicitly tested by Bjarnason et al. using a
detailed statistical framework, and it was concluded that areas
of high species richness have greater invasibility. A negative
relationship between alien and endemic species richness was also
recorded potentially providing inverse learning patterns between
alien and endemic species.

The fact that closely related species share a higher chance of
becoming infected or attacked by pests allows the identification
of taxa with different degrees of vulnerability. Using publicly
available information about pest-host interactions and their
geographic distributions, in combination with host phylogenetic
reconstructions, Robles-Fernández and Lira-Noriega estimated a
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pest-host interaction or infection index in geographic space as
spatially explicit tool for risk assessment.

Species distribution models are a commonly used tool for
the analysis of alien species. However, they strongly rely on
species’ presence/absence and confirmed absences are hard to
quantify. Environmental DNA is a novel technique that presents
higher detectability and accuracy in comparison to conventional
sampling techniques, and can effectively differentiate between
species’ presence/absence, improving species distribution
models, as argued by Muha et al.

Calibrated Individual based models (IBMs) are useful tools
for investigating the dynamics of alien species. Samson et
al. highlight how early-stage data-limited IBMs can play an
important role in defining key research priorities of invasive
species in order that subsequent models can provide robust
insight into potential management interventions.

Ensemble methods are meta-algorithms that combine several
techniques into a unique predictive model to minimize variance;
they are increasingly employed in science including a recent
application to draw up the habitats’ maps for mosquito alien
species [23]. However, the development of these models should
not be done in a “black box” mode and it should be accompanied
by a set of in-depth analysis regarding key training and operation
decision points, thereby promoting a reproducible evaluation of
the proposed methodology, as suggested by Demertzis et al.

Uncertainty is an attribute of (lack of) information and it
is a vital component in other scientific disciplines; however, it
is usually missing from marine invasion science studies. The
final contribution in this Research Topic, by Katsanevakis and
Moustakas, argues that without assessing uncertainty, it is hard

to envisage future improvements. In addition, if scientists are
perceived by the public either to overstate their findings in order
to receive high visibility or to downplay the uncertainty of their
findings, society is likely to lose confidence in the outputs of
invasion science.

We believe that this Research Topic provides useful new
insights for advancing the field of invasion science, by
combining knowledge and techniques from multiple disciplines.
Science initially went from the phase of “homo-universalis”
to high specialization potentially missing the inter-connection
with other scientific disciplines. While this may have been
a necessity in the history of science, in the big data and
globalization era the necessity and feasibility of a more
integrated data-based but combining practical and theoretical
knowledge approach appears to be more feasible than ever
before.
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Science-based strategies to tackle biological invasions depend on recent, accurate,

well-documented, standardized and openly accessible information on alien species.

Currently and historically, biodiversity data are scattered in numerous disconnected data

silos that lack interoperability. The situation is no different for alien species data, and

this obstructs efficient retrieval, combination, and use of these kinds of information

for research and policy-making. Standardization and interoperability are particularly

important as many alien species related research and policy activities require pooling

data. We describe seven ways that data on alien species can be made more accessible

and useful, based on the results of a European Cooperation in Science and Technology

(COST) workshop: (1) Create data management plans; (2) Increase interoperability of

information sources; (3) Document data through metadata; (4) Format data using existing

standards; (5) Adopt controlled vocabularies; (6) Increase data availability; and (7) Ensure

long-term data preservation. We identify four properties specific and integral to alien

species data (species status, introduction pathway, degree of establishment, and impact

mechanism) that are either missing from existing data standards or lack a recommended
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controlled vocabulary. Improved access to accurate, real-time and historical data will

repay the long-term investment in data management infrastructure, by providing more

accurate, timely and realistic assessments and analyses. If we improve core biodiversity

data standards by developing their relevance to alien species, it will allow the automation

of common activities regarding data processing in support of environmental policy.

Furthermore, we call for considerable effort to maintain, update, standardize, archive, and

aggregate datasets, to ensure proper valorization of alien species data and information

before they become obsolete or lost.

Keywords: checklists, data interoperability, data management plan, introduced species, non-indigenous, non-

native, pest species, standards

1. INTRODUCTION

Sound decision-making to minimize the risk associated with the
introduction of alien species requires accurate and up-to-date
data and the knowledge derived from them. These data feed
into a wide range of processes to tackle problematic invasive
alien species and are needed to develop an appropriate, evidence-
based response (Table 1). Horizon scanning (the systematic
examination of future potential threats and opportunities,
leading to their prioritization), risk assessment, riskmanagement,
early detection and rapid response all depend on accurate and
accessible data [1–4]. So, although alien species data are little
different from data on other species, the demands we place on
these data are considerable and specific.

Current invasive alien species policies depend on the
availability and quality of data. For example, the EU regulation
no. 1143/2014 on Invasive Alien Species [5], requires member
states to report on the status of invasive alien species of
Union concern and their progress in managing them, likewise
similar regulations exist in other countries, such as the
USA [6]. Responsible authorities need access to timely and
validated data and they need to report this in a standardized
way, so it can be collated nationally and internationally.
Within the EU, the European Alien Species Information
Network (EASIN) [7, 8] has been developed to this end,
including a mechanism for quality assurance, safeguarding and
improvement [9].

Mitigating and preventing biological invasions present
particular challenges with regard to the quality, relevance and
scope of data sources and infrastructure [10]. The numerous
origins of the data and broad taxonomic scope, combined with
the global geographic extent and input from diverse disciplines
make proper handling of alien species data difficult, but also
necessary. With this perspective, we gathered database managers,
data users, data generators and biodiversity informatics
specialists to outline how alien species data can be made more
useful, taking into account the peculiarities and applications
of such data. This resulted in seven recommendations, which,
if followed, would improve the use of alien species data
for research, policy and management purposes. Some of
these recommendations are not unique to alien species data,
but their impact would be particularly significant in this
discipline.

TABLE 1 | Data/information categories and their invasive alien species-related

evidence-based processes.

Alien species checklists Horizon scanning (e.g., [2])

Selection of species for risk assessment (e.g., [46])

Analysis of pathways of introduction and spread (e.g.,

[43, 61, 62])

Pathway regulation

Feeding indicators for policy evaluation (e.g., [63–65])

Occurrence data of

alien and native species

Species distribution models (e.g., [66, 67])

Niche and occupancy modelingRisk modeling and risk

mapping (e.g., [68])

Impact assessment

Risk assessment

Climate matching

Impact research (e.g., [69, 70])

Early warning and rapid response programs (e.g.,

[35, 71])

Climate data Niche and occupancy modeling

Climate matching (e.g., [72])

Risk assessment

Genetic data Species identification (e.g., [71, 73])

Early detection through e-DNA (e.g., [32])

Data on management

actions

Risk management (e.g., [62])

Evaluation of effectiveness of control actions

Cost-benefit analysis of control actions (e.g., [74, 75])

Assessment of non-target effects of control actions

2. APPROACH

Correspondence A workshop titled Data for invasive species
research, policy making and management was organized in
Brussels in 2016 with representatives from sixteen European
countries and the United States. The attendees were from
the European Alien Challenge COST1 Action, from important
institutions and projects related to alien species data such as

1http://www.cost.eu/
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the European Alien Species Information Network (EASIN),
Delivering Alien Invasive Species Inventories for Europe
(DAISIE), Global Biodiversity Information Facility (GBIF),
Global Invasive Species Information Network (GISIN), Centre
for Agriculture and Biosciences International Invasive Species
Compendium (CABI–ISC), and the Biodiversity Information
Standards organization (formerly known as the Taxonomic
Databases Working Group and referred to by the acronym
TDWG). Effort was made to balance participant representation
in terms of gender, country of origin within Europe and
taxonomic and habitat interests (terrestrial, freshwater and
marine).

The workshop consisted of talks and participatory exercises
on four main invasive alien species themes: risk assessment,
horizon scanning, management and monitoring. For each of
these themes, participants reflected on the data needs and
requirements (Table 1), the data sources they commonly use,
and the existing data standards. Materials from the workshop
have been deposited in an open repository [11]. Conclusions
reported by breakout groups were refined and supplemented in
facilitated plenary discussion. Particular attention was paid to the
perspectives of both the data publishers and data users.

During the workshop a number of opportunities for
facilitating proper use and valorization of alien species data was
identified and these resulted in the recommendations presented
below and summarized in Table 2.

3. CREATE DATA MANAGEMENT PLANS

A DMP describes how the information generated by a project
will be handled both during and after it is generated. These plans
define responsibilities; aim to avoid data loss and incompatibility
by indicating how data will be preserved and formatted; stipulate
what metadata are required to understand the data; and consider
data sharing options, including licensing [12].

Such plans are a means to improve data management and are
now commonly required by funding agencies. The US National
Science Foundation has required them since 2010 [13] and
in 2013 the European Commission launched a pilot on open
research data requiring a DMP in the first 6 months of the project
[14]. The DMP approach also encourages journals to change their
policies toward the archiving of data, though it is taking time
for the whole scientific community to embrace these changes

[15, 16]. Typical minimum sections of a DMP are: (i) What type
of data and metadata are expected? (ii) Which standards are
used for alien species data? (iii) How should data be shared? (iv)
How should data be permanently preserved? Researchers new to
writing a DMP should refer to their institutional and funding
agency guidelines if any, and, with respect to invasive species
data, recommendations for ecologists [6, 17].

Strictly speaking, each recommended action could be
implemented without the need to compile a DMP. However,
preparing and agreeing upon a DMP ensures a holistic
approach to data management and increases its openness and
accountability, while also answering the needs from funding
agencies and institutional data policies [12], so we recommend
their use.

4. DOCUMENT THROUGH METADATA

Good metadata provide information on provenance, scope,
methods, limitations, data formats and units to facilitate correct
data use, as well as license and contact information. USGS’
Data Management Web site2 lists multiple tools and best
practices for metadata creation. Several metadata standards
for biodiversity data are available: such as Ecological Markup
Language (EML [18]) adopted by GBIF [19]; the INSPIRE
directive framework (Infrastructure for Spatial Information
in Europe)3, which describes geospatial data and the Data
Catalog Vocabulary (DCAT)4, to describe datasets. We have
not identified any specific metadata standards for alien species
data and recommend the use of the metadata standards above,
for which tools and services are already available [20]. An
example of a tool for metadata standardization is the desktop
application Morpho5, which guides users through the creation
of EML [21]. Morpho can interface with a MetaCat registry
to provide a searchable catalog of ecological datasets. This
technology is used by both the DataONE repository6 and
the European Biological Observations Network (EU BON)
[22]. Creating metadata may seem secondary to primary
data curation, but metadata are essential to ensure the data

2https://www2.usgs.gov/datamanagement/describe/metadata.php
3http://inspire.ec.europa.eu
4https://www.w3.org/TR/vocab-dcat/
5https://knb.ecoinformatics.org/#tools/morpho
6http://dataone.org

TABLE 2 | Seven recommendations for improving the usefulness of alien species data.

1 Create and implement data management plans to define the alien species data life-cycle, good data quality and metadata, standardization, data sharing options,

and long-term data preservation.

2 Describe alien species data through metadata, so users can understand their scope and limitations, and use metadata standards (EML, INSPIRE) to facilitate

metadata exchange.

3 Improve interoperability and sustainability of existing and new alien species information sources by exposing the data they contain through standard exchange

formats.

4 Format data using existing standards (Darwin Core, GISIN) and engage in their development through TDWG.

5 Adopt controlled vocabularies to further increase interoperability of data and engage with TDWG to make these compatible with existing standards.

6 Increase data availability by making alien species data openly accessible as soon as possible after collection.

7 Ensure long-term preservation of alien species data by archiving these in existing data repositories (GBIF, Zenodo).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2017 | Volume 3 | Article 13 | 11

https://www2.usgs.gov/datamanagement/describe/metadata.php
http://inspire.ec.europa.eu
https://www.w3.org/TR/vocab-dcat/
https://knb.ecoinformatics.org/#tools/morpho
http://dataone.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Groom et al. Making Alien Species Data Useful

can be discovered and used in the long term [23]. In the
context of alien species data, improved access to metadata
could enhance the speed with which data are found and
mobilized.

5. IMPROVED INTEROPERABILITY OF
INFORMATION SOURCES

Information on alien species is scattered among a multitude of
sources, including databases; peer-reviewed and gray literature;
unpublished research projects and institutional datasets [8,
24]. Important international sources of these data include
the 2000 Global Invasive Species Database (GISD) of the
IUCN/SSC Invasive Species Specialist Group (ISSG) [25]; the
2004 Global Invasive Species Information Network (GISIN);
and the Global Invasive Alien Species Information Partnership
(GIASIP), as well as global information providers such as the
CABI Invasive Species Compendium (ISC) and the Global
Register of Introduced and Invasive Species (GRIIS). Any new
initiative to collate data needs to consider its role and define
its niche within a complex environment of global, continental,
national and regional data repositories [7, 26].

Almost any effort to compile and harmonize data from these
sources is impeded by differences in field names, definitions,
and taxonomy, as well as access and license restrictions [3, 27].
The use of common standards for all these aspects can improve
the interoperability of these data sources: their data can be
more efficiently exchanged, combined, compared, and presented.
In addition, data processing should ideally be performed in
a repeatable way, to increase the efficiency of activities such
as horizon scanning and risk assessment. For invasion policies
to be proactive, these activities should be repeated at regular
intervals [2].

Online alien species catalogs and invasive alien species
information systems are difficult to keep up-to-date [28, 29], yet
they provide a wide variety of valuable information. Funding for
these initiatives has been sporadic at best [28] and is often time-
limited [29]. Thus relevant information stored and managed
within such initiatives become quickly out-dated, and efforts
to keep them updated are often suddenly discontinued. This
tends to spread errors to other systems that are populated with
data from such sources, particularly if provenance is poorly
tracked. As such, the current process restricts alien species
data exchange, aggregation, interoperability and even rescue.
Technological advances have boosted the number of initiatives
[30], but also increased the data’s volume and complexity [23, 31–
33]. A holistic approach to complex biological questions requires
more from data than a traditional reductionist approach, as
demonstrated by the success of the Gene Ontology [34]. Yet
this poses additional challenges of ensuring data quality, data
curation, interoperability and future-proofing against obsolete
technology and increasing data volumes [35]. Technological
change promises many improvements in data collection, with
systems such as smartphones equipped with built-in GPS, image
capture, external sensors, and automated and expert validation
[31]. Also, advances in species detection through environmental

DNA, such as those of Dejean et al. [32], need support to be
included within alien species initiatives.

We recommend that alien species databases work together to
follow common standards and that these standards are further
developed for emerging data streams.

6. FORMAT DATA USING EXISTING
STANDARDS

Within the scope of a single dataset, data only need to be
formatted consistently to be usable. However, to combine
datasets for broad-scale analysis, a community-defined exchange
format or standard is required to allow data interoperability.
Among the qualities of a “good standard” are that it be
readable (by both humans and machines), simple, learnable and
efficient [36].

The alien species research community is not universally aware
of biodiversity informatics standards, where they come from
and how they can be extended. Standards for the exchange of
biodiversity data, including alien species data, are developed,
discussed and promoted by the Biodiversity Information
Standards organization, TDWG [37]. This organization is the
guardian of Darwin Core, the most widely adopted standard
to exchange biodiversity information related to species [38]. By
following these standards, data managers can avoid duplication
of effort and mistakes. Furthermore, the organization can
give advice and support for updating existing standards and
proposing new ones. It is recommended that the invasive alien
species community continue to engage in TDWG, both to adopt
standards for common terms and to establish standards specific
to invasion biology.

7. ADOPT CONTROLLED VOCABULARIES
FOR FOUR ALIEN SPECIES PROPERTIES

In addition to a standard format to exchange data, specialist
communities often also require further control on the values
of terms to increase interoperability. This can be achieved by
adopting controlled vocabularies. This not only means that data
can be merged, but also contributes to the normative definition
of a term.

Four alien species properties were identified that are either
missing from Darwin Core or lacking a reference to a
recommended controlled vocabulary. These are introduction
pathway, degree of establishment, impact mechanism, and
species status. For each of these, vocabularies exist outside
Darwin Core, yet these currently exist as frameworks and require
further work to be developed into standards.

For pathway terminology, the need for a consistent
classification, hierarchy, and terminology has long been
recognized [39–41]. Meanwhile, a standardized hierarchical
pathway classification was adopted by parties to the Convention
of Biological Diversity [42] and is being applied to existing
databases [9, 43].

A framework for the degree of establishment has been
presented by Blackburn et al. [44]. This hierarchical
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classification provides a terminology for populations at
different points in the invasion process (casual/introduced,
alien, naturalized/established, invasive) and allows expression
of the range of establishments from those organisms only kept
in cultivation or captivity through to full naturalization and
invasiveness.

For alien species impact, a classification of categories based
on the magnitude of environmental impacts was developed by
Blackburn et al. [45], and has been adopted by the IUCN in 2016.
However, for impacts other than environmental, such as socio-
economic, plant health, human health and animal health, no
comprehensive overview is available, but several protocols have
been developed for risk assessment that can provide inspiration
for classifications (see [46] for an overview).

Standards from the trade and agriculture sectors can be
useful in describing species status, for example, the International
Plant Protection Conventions International Standard for
Phytosanitary Measures: specifically, IPSM 87, Determining
pest status in an area; and IPSM 68, Guidelines for surveillance.
We recommend these controlled vocabularies are expressed
in a machine-readable format and are referenced from the
appropriate terms in Darwin Core. This is in line with the
recommendations of the GBIF Task Group on Data Fitness for
use in Research into Invasive Alien Species [33].

Additionally, controlled vocabularies might prove helpful
in the dissemination of information on species management
[47]. Good examples are the Global Eradication and Response
Database [48] and the Database of Island Invasive Species
Eradications [49]. The documentation of management actions
in the field and the storage of these data are key to performing
cost-benefit analyses of management measures.

8. INCREASE DATA AVAILABILITY

Much has already been written about the methods and needs
for open data publication [3, 17, 50]. Beyond the good
intentions, Invasivesnet is a developing global association for
open knowledge and open data on alien species [51]. This
association will facilitate greater understanding, communication,
and improved management of biological invasions globally,
by developing a sustainable network of networks for effective
knowledge exchange. The association fosters tool development
and cyberinfrastructure for the collection, management and
dissemination of data and information on alien species from
a range of sources (e.g., research, citizen science). The key
point is that data should be shared and standardized to ensure
interoperability [52]. In the case of species observation data
a straightforward solution is to publish through a repository
such as GBIF or the Ocean Biogeographic Information System
(OBIS), as it ensures adherence to a minimum of common
standards.

There can be little doubt that data sharing using community
standards and adequate metadata are of benefit to research and
society in general [53]. Yet motivating good data management

7https://www.ippc.int/en/publications/612/
8https://www.ippc.int/en/publications/615/

is not easy when practitioners are not rewarded by their
institutions. However, this is changing [54, 55], particular with
the support of aspirational statements such as the Berlin9 and
Bouchout10 declarations, which show the willingness of some
institutions and individuals to change. Also, there are now
policy initiatives in place, such as the EU INSPIRE directive11

or the United States Administration’s Open Data Policy12,13, to
mandate harmonization of spatial data.

9. ENSURE LONG-TERM DATA
PRESERVATION

Under ideal circumstances databases would have funding for
maintenance and updating for as long as they are useful, however,
this is unrealistic. Furthermore, the end of a project is the wrong
time to consider the long-term persistence of data [29, 56].
Data actively being curated are often best maintained close to
their source, however, longevity can be built-in to procedures by
periodically depositing data in an open repository, not just on a
personal or university website. Hence, data are protected from
catastrophic events, human attrition, and the slow degradation
of obsolescent hardware, which is the fate of much data [57]. If a
publication is based upon a specific dataset it is good practice to
deposit that precise version in a repository.

Not all repositories are the same, for example the Dryad14

and Zenodo15 repositories are general-purpose repositories able
to accept data in ad hoc formats, not necessarily formatted
to community standards. They provide flexibility, however,
repositories dedicated to one data type provide much greater
opportunities for integration due to their enforcement of
standards. Examples of such repositories are GBIF and GenBank
[58]. Repositories also differ in their ability to embargo the
release of data and in the licensing options. We recommend that
considerable a priori thought goes into data preservation and the
choice of repository.

10. CONCLUSION

Many alien species databases have emerged either before
or without knowledge of existing standards for database
management in biodiversity informatics. Furthermore, existing
standards do not adequately cover all the needs of the research
domain. Not all ecologists have strong information technology
skills, nor are experts in technology-mediated collaboration,
shared instrumentation or standardized data collection [59].
In the rapidly changing information technology landscape,
ecologists and conservationists cannot be expected to keep up
with developments in software and data standards. This should
encourage data managers, wherever possible, to simplify the tools

9https://openaccess.mpg.de/Berlin-Declaration
10http://bouchoutdeclaration.org/
11http://inspire.ec.europa.eu
12https://www.fgdc.gov/standards
13https://project-open-data.cio.gov/IDC/
14http://datadryad.org/
15https://zenodo.org/
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created for ecological practitioners. This becomes more pressing
as new technologies are used to provide data on alien species.

Many data management issues are common to all biodiversity
data, yet species native range, introduction pathway, degree of
establishment and impact mechanism are specific to alien species.
Additionally, the need for fast dissemination of information
and data is typical to alien species, in particular early detection
and rapid response programs. Proactive responses to biological
invasions require repeatable workflows for horizon scanning
and risk assessment [60]. Adoption of standards and controlled
vocabularies for this information can boost the usefulness for
alien species research, policy-making and policy evaluation.
There is a need for the acceptance of common data standards
that take into consideration the needs of both data collectors
and diverse data users, from the science community to the end
user.

Work is required with the research and education
communities and the standards authorities to ensure that
suggested standards are shepherded through acceptance and
implementation and that these standards are introduced early
within the education of young scientists and promoted among
those in the biodiversity community, so that they are adopted
widely. Improving core biodiversity standards for their content
and usefulness for alien species data will allow the automation
of common activities needed to tackle biological invasions.
We call for considerable effort toward maintaining, updating,
standardizing, and archiving or incorporating current data sets,
to ensure proper valorization of alien species data and resulting
information before they become obsolete or lost.
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Spatially explicit assessments of alien species environmental and socio-economic

impacts, and subsequent management interventions for their mitigation, require large

scale, high-resolution data on species presence distribution. However, these data are

often unavailable. This paper presents a method that relies on Random Forest (RF)

models to distribute alien species presence counts at a finer resolution grid, thus

achieving spatial downscaling. A bootstrapping scheme is designed to account for

sub-setting uncertainty, and subsets are used to train a sufficiently large number of

RF models. RF results are processed to estimate variable importance and model

performance. Themethod is testedwith an∼8× 8 km2 grid containing floral alien species

presence and several potentially exploratory indices of climatic, habitat, land use, and soil

property covariates for the Mediterranean island of Crete, Greece. Alien species presence

is aggregated at 16 × 16 km2 and used as a predictor of presence at the original

resolution, thus simulating spatial downscaling. Uncertainty assessment of the spatial

downscaling of alien species’ occurrences was also performed and true/false presences

and absences were quantified. The approach is promising for downscaling alien species

datasets of larger spatial scale but coarse resolution, where the underlying environmental

information is available at a finer resolution. Furthermore, the RF architecture allows for

tuning toward operationally optimal sensitivity and specificity, thus providing a decision

support tool for designing a resource efficient alien species census.

Keywords: downscaling, data analytics, alien species, hydro-ecological data, random forests, vascular plants,

Crete

INTRODUCTION

The rate at which species are being translocated by humans beyond their native ranges, through
a variety of pathways, has been accelerating (Essl et al., 2015). Alien species pose a grave risk to
biodiversity, ecosystem services, and human health, and their presence is an important constituent
of the global change that we currently face (Vilà et al., 2011; Simberloff et al., 2013; Katsanevakis
et al., 2014), hence there is an urgent need for targeted actions for prevention and mitigation.
Despite global efforts to tackle biological invasions, so far there is no sign of saturation in the
accumulation of alien species (Hulme et al., 2009; Tittensor et al., 2014; Seebens et al., 2017).

A better understanding of the factors controlling alien species introduction, initial dispersal,
establishment success, distribution, abundance, spatio-temporal dynamics, and invasiveness is
essential for the efficient prioritization of measures to prevent further introductions and mitigate
the impacts of invasive alien species (Byers et al., 2002; Thuiller et al., 2006). Reliable fine scale

17

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
https://doi.org/10.3389/feart.2017.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2017.00060&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:daliakopoulos@tmsolutions.gr
https://doi.org/10.3389/feart.2017.00060
http://journal.frontiersin.org/article/10.3389/feart.2017.00060/abstract
http://loop.frontiersin.org/people/88814/overview
http://loop.frontiersin.org/people/90843/overview
http://loop.frontiersin.org/people/88918/overview


Daliakopoulos et al. Downscaling of Alien Species Presences

spatio-temporal information of alien species distribution at
large scales is thus crucial (Collingham et al., 2000; Giakoumi
et al., 2016). However, the spatial resolution of available data
often poses limitations in the analyses. For species distribution
data, spatial resolution and spatial extent are typically inversely
proportional (Collingham et al., 2000). The European Alien
Species Information Network (EASIN; Katsanevakis et al., 2015),
which has compiled the largest spatial dataset of alien species
distribution in Europe, reports species presence data at a 10 ×

10 km2 spatial resolution and for some species only at country
level. Such coarse resolution is often inadequate for the needs
of management and research, as data availability up to a point
determines the outputs of the analysis in several ways including
complexity, generality, utility, and predictive power (Evans et al.,
2014; Evans and Moustakas, 2016). Therefore, either more data
need to be collected or computational and statistical methods
could be used to increase the utility of readily available data and
the reliability of the analyses. To that end, accurate methods
for downscaling coarse spatial data can be extremely useful in
assessments of environmental and socio-economic impacts of
alien species and in management interventions for mitigation.

Based on the fundamental assumption that detectable
relationships exist between information across spatial scales,
spatial downscaling refers to the process and methodologies of
using coarse resolution input to infer finer resolution output.
Although, it has extensively been used in other scientific
disciplines (Trzaska and Schnarr, 2014), downscaling is not a
trivial process. Keil et al. (2013) lists four strictly computational
approaches that have been used to predict fine-gridded species
presence based on a coarse grid. Assumptions made by direct
and iterative approaches (Keil et al., 2013) are often criticized
for speculating similar species association with environmental
variables across scales (Menke et al., 2009). On the other hand,
point sampling and clustering approaches make assumptions
regarding habitat suitability within the coarse grid (Keil et al.,
2013). In their review, Trzaska and Schnarr (2014) distinguish
downscaling methods between the relatively straight-forward but
normality-limited linear methods (e.g., delta method, simple and
multiple linear regression, canonical-correlation analysis, etc.)
and the more versatile but data-intensive and extrapolation-
limited non-linear methods (e.g., analogmethod, cluster analysis,
artificial neural networks, self-organizing maps, etc.).

Since essentially spatial downscaling is largely based on
the inter-relationship between local and large-scale properties,
given the absence of fine scale alien species data, potential
environmental explanatory covariates available at the resolution
of the alien species, as well as at finer resolutions, could be used
to infer alien species presences at finer resolutions. While data
on alien species presences may be scarce, environmental data
may be readily available. Recent advances in remote sensing,
social networks, and digital technology resulted in the availability
of large spatially and temporally explicit datasets (Moustakas,
2017). Ecology, epidemiology, and biogeography need to employ
novel methods for big data analytics combing statistics and
computer science, as the analysis of such datasets requires
advancedmethods for compiling the data, their visualization, and
their analyses (Moustakas, 2017; Moustakas and Evans, 2017).

Furthermore, computational methods for data analytics and
simulation modeling are facilitated by the existence of increased
computer power (Moustakas and Evans, 2015).

Recently, methods that generate numerous classifier functions
and aggregate their output, widely referred to as “ensembles
methods,” have attracted wide interest. In this context, Random
Forest (RF) algorithms are ensembles of decision trees (Breiman
et al., 1984), each trained on a randomly sampled subset of
the available dataset, thus reducing the chance of overfitting
(Breiman, 2001). In the domain of ecology, RFs have been
applied for tropical forest carbon mapping using LiDAR (Light
Detection and Ranging)-based carbon estimates (Mascaro et al.,
2014), downscaling of global livestock census data (Nicolas et al.,
2016), occurrence of fish species in relation to environmental
variables (Vezza et al., 2015), forest health and vitality in relation
to climate and air pollution parameters (Vitale et al., 2014),
classification of tree species using an ensemble of remote sensing
data (Naidoo et al., 2012), and vegetation spatial distribution
assessment under current and future climate scenarios (Prasad
et al., 2006). Especially regarding alien species, RFs have been
used for mapping of presence using spatial (Peerbhay et al.,
2016) or spatiotemporal (Dorigo et al., 2012) analysis of remote
sensing data, prediction of presence based on environmental
variables (Cutler et al., 2007; Jarošík et al., 2011), and invasion risk
assessment based on biogeographical and life-history variables
(Chen et al., 2015).

Here we showcase the applicability of spatial downscaling
alien species presences using data from vascular plant species
coupled with environmental, potential explanatory, covariates
comprised of climatic, soil, habitat, and land use indicators at
a finer resolution at the Mediterranean island of Crete, Greece.
Apart from investigating the potential of using the fine-resolution
environmental covariates as predictors for spatial downscaling
alien species presences, the developed methodology also assesses
the relevant importance of predictors for the downscaling process
as well as visualizing and quantifying their actual response on
alien species presences. Furthermore, considering an operational
framework for assessing presence, themethodology integrates the
use of a detection sensitivity threshold.

CASE STUDY

The Island of Crete
Covering an area of 8,700 km2, Crete is the largest and
most populated island of Greece, and the fifth largest in the
Mediterranean. According the Köppen classification, Crete has
a Mediterranean—Semiarid climate featuring long and dry
summers, and relatively wet and cold winters (Kottek et al., 2006).
Crete receives on average about 7.7 billionm3 of rainfall, of which
only and 10–15% produces runoff, while 68–76% evapotranspires
and 14–17% infiltrates (Koutroulis et al., 2016). The intense
tectonic history has formed the island’s complex topography
that ranges from sea level to 2,450 m, and is abundant in
small, ephemeral watersheds (Tsanis et al., 2011). This highly-
rugged terrain has been definitive for human development as
well as its spatial allocation (Koutroulis et al., 2016). Similarly,
this variability has spurred the development of the wide variety
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of biotopes present on the island (Sfikas, 1987), ranging from
coastal to alpine, and the reciprocal plethora of endemic and
rare species that constitute one of the 10 biodiversity hotspots in
the Mediterranean (Medail and Quezel, 1997) numbering 1,624
native and 47 introduced vascular floral species (Turland et al.,
1993). The importance of this biodiversity is highlighted by the
fact that over 30% of the island has been included in the Natura
2000 protected area network (Dimitrakopoulos et al., 2004).

Plant Data
Maps of presence-absence of vascular plant species distributions
in Crete were digitized from Turland et al. (1993) and its latest
supplement (Chilton and Turland, 2004). The island of Crete
and its surrounding islets were divided into 162 grid cells, each
covering an area of 8.25× 8.25 km2, following the grid cell size of
Turland et al. (1993). On each cell, the native, endemic, and alien
species richness was calculated. We used (Turland et al., 1993;
Chilton and Turland, 2004; and references therein) to define
native (nnat = 1,395) and endemic (nend = 174) species, and
the vascular plants from D’Agata et al. (2009) that are listed
in Chilton and Turland (2004) and Turland et al. (1993) were
used to define alien species richness. Only species present in at
least two cells were used (nalien = 47). Coarse-grid information
was estimated by aggregating this dataset by a factor of two,
thus reducing resolution to grid cells of 16.5 × 16.5 km2. The
spatial distribution of the original as well as the resampled data
regarding alien species presences are visualized in Figure 1. All
input variables and their ranges (min – max values within each
cell) are listed in Table 1.

Habitat Data
Habitat classification relied on the most detailed resolution
available of the CORINE Landcover (level 3, spatial resolution
100 m; EEA-ETC/TE., 2002), to calculate the richness and
percentage of every land cover class within every grid cell, using
Patch Analyst 5.1 within ArcGIS. In order to avoid potential
temporal deviance between habitat classifications and species
presences in cells, the last updated available supplement for the
flora of Crete published in 2008 (Chilton and Turland, 2004) and
the closest available time snapshot of the CORINE landcover for
Crete in 2010 were used. The classification process resulted in 29
habitat types, of which 9 agricultural, 7 artificial, and 13 natural.
We recorded habitat richness per cell as the number of different
land cover types present on each cell (total, artificial, agricultural,
and natural habitat richness) as well as percentage of cover (total,
artificial, agricultural, and natural % of cell cover).

Climatic, Soil, and Altitude Data
Climatic variables were derived fromWorldClim (Hijmans et al.,
2005) for Crete and surrounding islets. The original resolution
of the climatic data was 1 × 1 km2. In order to re-scale them
to 8.25 km and match them with the grid of the plant data, the
mean values of the 1 km data within the 8.25 km cells were
calculated and used. The climatic variables used were annual
mean temperature (Tempmean), annual mean temperature of
warmest quarter (Tempwarm), annual mean temperature of
coldest quarter (Tempcold), all in ◦C, annual mean precipitation

(Precipmean), precipitation of wettest quarter (Precipwet), and
precipitation of driest quarter (Precipdry), all in mm year−1. Soil
data were derived from SoilGrid (Hengl et al., 2014) and rescaled
from 1 to 8.25 km as the climatic data. The soil variable used
was soil richness in the cell (Soildiv) derived as the number of
different soil types occurring within each cell. The indices of
elevation recorded were the mean of all elevation values within
the cell (Alt) and the range of elevation within the cell (Alt range)
both in meters.

METHODOLOGY

Random Forests
Random Forests (RFs; Breiman, 2001) take advantage of boosting
(Schapire et al., 1998) and bagging (bootstrap aggregating;
Breiman, 1996a) of the Classification And Regression Tree
(CART; Breiman et al., 1984) model, and adapt a more
random but nevertheless more efficient node splitting strategy
than standard CARTs (Liaw and Wiener, 2002). In RFs, each
individual tree is developed after the following steps: (1) Given
a set of training data N, n random samples with repetition
(bootstrap) are taken as training set; (2) For each node of the
tree, M input variables are determined, and m≪M, variables are
selected for each node. The most important variable randomly
chosen is used as a node. The value of m remains constant;
(3)Each tree is developed to its maximum expansion.

RFs have been employed in a wide variety of classification
and prediction problems (Scornet et al., 2015; Cano et al.,
2017) as they are among the most effective computationally-
intensive algorithms to extract information from unstable
estimates (Scornet et al., 2015). They are especially well suited
for large, high-dimensional datasets, where problem complexity
and scale render direct discovery of a good model in a single
step impossible (Büchlmann and Yu, 2002; Kleiner et al., 2014;
Wager et al., 2014). The fact that RFs require tuning of only two
parameters (the tree population in each forest and the number of
input variablesm randomly selected at each node) for which they
are usually not very sensitive (Liaw and Wiener, 2002), and their
accuracy and competence when faced with scarce, multivariate
datasets of intricate structure (Scornet et al., 2015), have greatly
contributed to their popularity.

Similar to other data-driven approaches, RFsmay not perform
equally well when the task at hand is extrapolatory beyond
the range of the recovered predictor-predictand relationship
or involves scenario analysis (Daliakopoulos and Tsanis, 2016).
Furthermore, Strobl and Boulesteix (2007) showed that variable
importance measures of the original RF algorithm may be
biased due to differences among predictor structure and scale,
adding to the interpretability challenges of data-driven methods.
Nevertheless, an extensive data-driven model inter-comparison
by Fernández-Delgado et al. (2014) showed that they may be the
first weapon of choice for real-world problems.

Evaluation Criteria
Typically, CARTs error is estimated following the out-of-bag
(OOB) error R(D) of a selection of the input observations based
on bagging, otherwise an OOB sample D (James et al., 2013).
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FIGURE 1 | Original (Left) and resampled (Right) spatial distribution of alien species presence in Crete.

TABLE 1 | Environmental variables used as input for the estimation of alien

species presence.

Type Variable Value range

Ecological Habitat richness 2–16

Artificial habitat richness 0–9

Agricultural habitat richness 0–7

Natural habitat richness 1–9

Endemic species richness 0–54

Topographical Altitude 0–2,673 m

Altitude range 0–1,579 m

Climate Mean annual temperature 0–19.0◦C

Maximum annual temperature 17.1–26.0◦C

Minimum annual temperature 3.2–13.2◦C

Temperature range 11.9–13.9◦C

Mean annual precipitation 519–1,023 mm

Maximum annual precipitation 265–539 mm

Minimum annual precipitation 0–31 mm

Precipitation range 260–514 mm

Land use Natura % of cover 0–100%

Artificial % of cover 0–43%

Agricultural % of cover 0–100%

Natural % of cover 0–100%

Soil type richness 1–8

In RFs, for each tree t, prediction error of D is estimated
before and after randomly permuting the values of the j-th

variable, thus giving R
(

Dt
n

)

and R
(

D
tj
n

)

, respectively. Typically,

imbalanced datasets favor correct classification of the majority
class, nevertheless, RFs can account for this bias by adjusting the
voting cut-off from the default 1/c, where c is the number of
classes. This provides additional flexibility to the RF algorithm
(Ma et al., 2006) and allows for favoring sensitivity or specificity
to different classes. A variable can be considered a strong
predictor when permuting it increases the prediction error
(Gregorutti et al., 2017), therefore it’s importance IV can be
defined as:

IV
(

Xj, t
)

= R
(

D
tj
n

)

− R
(

Dt
n

)

(1)

The Mean Decrease in Accuracy (MDA) is estimated by
averaging this difference over all trees, and normalizing it by the
standard deviation of the differences. The more the accuracy of
the RF decreases due to the exclusion (or permutation) of a single
predictor, the more important that predictor is considered, and
therefore variables with a largeMDA are more important for data
classification.

Gini is one of the most encountered impurity functions,
providing a measure of the “goodness-of-split” for CARTs by
favoring splits that allocate a single pure node for the largest class
and the rest for the remaining classes (Breiman, 1996b). The Gini
index for a node t can be calculated as:

IG (t) =

c
∑

i 6= j

p (i|t) p
(

j|t
)

= 1−

c
∑

j

p
(

j|t
)2

(2)

where c is the number of classes and p (i|t), p
(

j|t
)

are the
estimated probabilities of classes i, j at node t (Cano et al., 2017).
In this context, Mean Decrease Gini (MDG) aggregates the Gini
gain over all splits and trees to assess the classifying capacity of
a variable (Friedman et al., 2009) and is thus a metric of the
homogeneity of nodes and leaves in the RF (Bluemke and Stepień,
2016).

MDA and MDG can rank each independent variable for its
effectiveness as a predictor of alien species richness, but don’t
show or quantify the actual positive, negative, humped, etc.
relationship between them. Nevertheless, this is an elementary
process under conditions of multiple acting variables (Häring
et al., 2012), such as cumulative human impacts. For this reason,
partial dependence plots (Friedman, 2001; Friedman et al., 2009)
can be used to depict the relationship of alien species presence
probability on each predictor after averaging out the effects of all
classification predictors (Cutler et al., 2007).

Finally, the Receiver Operating Characteristics (ROC) analysis
has been an indispensable tool for signal detection and diagnostic
systems. As documented by Pontius and Si (2014), ROC has been
employed in a wide range of applications requiring a threshold-
independent measure to compare predicted against observed
values. ROC plots have been previously considered in plant
ecology, both at a theoretical (Guisan and Zimmermann, 2000)
and applied (Manel et al., 2002; Wang et al., 2014) level as
effective indicators of model performance independent of the
threshold probability. Typically, ROC curves depict true positive
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rate (TPR), otherwise sensitivity, recall or hit rate, against true
negative rate (TNR), otherwise called specificity. In terms of
model estimates, TPR and TNR are defined as:

TPR =
TP�P =

TP

TP + FN
(3)

TNR =
TN�N =

TN

TN + FP
(4)

where T, F, P, and N stand for true, false, positive and negative,
respectively. The complementary values of TPR and TNR are
false negative rate (FNR), otherwise miss rate, and false positive
rate (FPR), otherwise fall-out or false alarm. Based on these
values, the Matthew’s correlation coefficient (MCC; Matthews,
1975), a reduction of the Pearson correlation coefficient for
binary variables (Baldi and Brunak, 2001), is a popular evaluation
criterion of machine learning performance (Bhasin and Raghava,
2004; Chen et al., 2004; Bao and Cui, 2005):

MCC =

TP × TN − FP × FN
√

(TN + FN) (TN + FP) (TP + FN) (TP + FP)
(5)

MCC has an advantage in imbalanced datasets where the
disparity in the number of presence and absence samples is
significant.

Random Forest Application
Experiments were developed using the latest (v4.6–12)
implementation of Breiman and Cutler’s original Fortran
code by Liaw and Wiener (2002) in R. While RFs can be trained
very efficiently and avoid overfitting (Breiman, 2001), predictions
and variable significance ranking are seldom the identical after
each random training, especially for small datasets. To account
for this uncertainty, a bootstrapping approach of training
multiple RFs is adopted. For each training iteration k, RFk is
presented with 70% of the dataset, sampled with replacement,
and the remaining is reserved for testing. Presenting only part
of the dataset to the RFs also simulates operational use where
only part of the study area is sampled at fine grid and the rest
is sampled at coarse-grid resolution. Furthermore, as subsets of
alien species presence and absence were imbalanced, training
was executed using a variable training cutoff, ranging from 0.1
to 0.9. The full code in R used for the analysis is provided in
Supplementary Material.

RESULTS

Importance and Gini
Mean decrease in accuracy (MDA) results as estimated from
bootstrap randomizations indicate that, apart from the coarse
resolution alien species presence, the percentage of natural cover
within each cell was the most important predictor of alien
species presence, followed by the endemic species richness,
altitude, minimum temperature, and altitude range within each
cell (Figure 2, left). From the ones explored here, the least
predictive in MDA were artificial habitat richness, temperature
range, habitat richness, the percentage of the surface area of
each cell within the Natura 2,000 protected area network, and

the soil type richness (Figure 2, left). In the latter cases, some
bootstrap samples have yielded negative results suggesting that
permuting these variables from the predictor vector increases
accuracy. Results in Mean Decrease Gini (MDG) are in general
agreement with those of MDA, also evaluating natural cover,
endemic species richness, and altitude as the most efficient
splitting variables (Figure 2, right). Agricultural cover replaces
minimum temperature for the MDG rating but both variables
score highly for both criteria. The least efficient node splits
according to MDG were performed by artificial habitat richness,
natural habitat richness, agricultural habitat richness, soil type
richness, and temperature range (Figure 2, right). Emphatically,
artificial habitat richness is the worst predictor for both metrics,
essentially boosting the noise in the dataset.

Partial Dependence Plots
Results from partial dependence plots among the most predictive
variables according to the MDA and MDG criteria indicate
that the percentage of natural cover has an overall positive
relationship with alien species richness, while the percentage of
agricultural cover has an overall negative relationship with alien
species richness (Figure 3). Altitude, and altitude range has an
overall positive relationship between alien species richness, mean
temperature has a negative relationship for larger temperature
values while mean annual precipitation and precipitation range
has a humped relationship with alien species richness (Figure 3).
Therefore, for the case at hand, in the event of a survey
priority may be given to low-temperature, elevated natural areas
with high topographic variability, far from agricultural use and
precipitation extremes. The percentage of each cell within the
Natura 2,000 protected area network has a positive relationship
with alien species richness (Figure 3), albeit this variable was
not within the most predictive of alien species richness based on
MDA or MDG.

As shown by the results, the bootstrapping method followed
herein is helpful for drawing a more robust conclusion,
particularly regarding the partial dependence plots. Bootstrapped
predictors (solid black lines in Figure 3) are more stable, less
prone to overfit and more inclusive than single experiment
predictors. This becomes obvious in the Mean Temperature plot
of Figure 3, where the red line representing an OOB sample does
not cover the entire range of temperature values in the dataset.
As low temperatures are not common in the dataset, the OOB
estimation of dependence does not always include these values.
Using an additional layer of bootstrapping ensures that the full
range of values is explored.

Uncertainly and Risk Assessment
True negative detection rates (TNR; not detecting alien species
in cells where alien species are not present) declines with an
increasing cut-off rate while true positive detection rates (TPR;
detecting alien species in cells where alien species are present)
increases with an increasing cut-off rate (Figure 4). MCC values
indicate a strong positive relationship at cut-offs between 0.2
and 0.5 and are otherwise acceptable correlation. When cut-off
increases TNs decrease and TFs increase, therefore more alien
species can be detected but by being more exhaustive more false
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FIGURE 2 | Distribution of Mean Decrease in Accuracy (MDA) and Mean Decrease Gini (MDG) estimated from the bootstrap runs.

FIGURE 3 | Partial dependence plots for selected independent variables for random forest downscaling of alien species presence. Y-axis is on the logit scale. Here

3rd degree polynomial splines (solid black lines) are fitted over the output the Monte Carlo runs (gray points). Red lines connect points from a single random sample of

the bootstrap experiment.

alarms are also generated. When cut-off remains low, less risk is
taken with surveying resources but a significant fraction of alien
species presences is missed.

DISCUSSION

Aichi Target 9 of the Convention on Biological Diversity, states
that “by 2020, invasive alien species and pathways are identified

and prioritized, priority species are controlled or eradicated
and measures are in place to manage pathways to prevent
their introduction and establishment.” Prioritization of species,
pathways of introduction, and sites for management measures
is crucial for the implementation of Aichi Target 9, but the lack
of adequate data often compromises the ability of countries to
make substantial progress (McGeoch et al., 2016). Large scale,
high-resolution data on alien species distributions as well as the
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FIGURE 4 | Performance of Random Forest ensemble vs. training cut-off value. A nonparametric bootstrap is used to obtaining confidence limits (gray areas) and

bootstrap means for the Matthews correlation coefficient (MCC), True Negative Rate (TNR), True Positive Rate (TPR), without assuming normality.

FIGURE 5 | Distribution of alien plants in Europe on a 10 × 10 km2 grid

according to the available data in the European Alien Species Information

Network (EASIN; Katsanevakis et al., 2015). These spatial data, integrated in

EASIN, originate from the following sources: (1) the Global Biodiversity

Information Facility (GBIF; http://www.gbif.org/); (2) the Global Invasive

Species Information Network (GISIN; http://www.gisin.org); (3) the Regional

Euro-Asian Biological Invasions Centre (REABIC; http://www.reabic.net/);

(4) the European and Mediterranean Plant Protection Organization (EPPO;

http://www.eppo.int/); (5) the Norwegian Biodiversity Information Centre

(NBIC, http://www.biodiversity.no/) and (6) EASIN-Lit (http://easin.jrc.ec.

europa.eu/About/EASIN-Lit; Trombetti et al., 2013).

associated human and environmental pressures are necessary
when performing a spatially explicit quantitative environmental
and socio-economic evaluation and prioritizing interventions for
their mitigation and management (Hobbs and Humphries, 1995;
McGeoch et al., 2016).

It is only evident that substantial part of model output
reliability is based on model input validity, thus uncertainty
needs to be accounted for (Burgman et al., 2005). Therefore,
investment in conservation actions that have been supported by
poor field observations has a high probability of yielding poor
outcomes (McGeoch et al., 2016), regardless of the subsequent
decision process quality. Moreover, ecological processes are
often inherently non-linear, and potential explanatory covariates
include correlated independent variables, as well as interacting
effects.As shownhere,RFs canmakeuseof input variableswithout
prior scaling and knowledge of physical or other dependences
between predictors and predictands. RFs make no assumptions
regarding linearity, handle multiple correlated independent
variables well, quantify the importance of each predictor variable,
and through partial plots depict the contribution of each
independent variable. By assessing the importance of predictors
for the desired classification, RFs can effectively permute noisy
or otherwise unprofitable data. In addition to enhancing existing
model accuracy, this output can have operational value by
providing data/survey managers with hints about which data
recovery is worth investing in and which not.

Decision makers’ requirements for confronting
environmental risks and prioritizing mitigation measures at fine
grid scale are often much higher than what model limitations
and data availability allow. In these cases, a commonly used
approach is to employ statistical tools in order to infer impacts
at the required scale (Trzaska and Schnarr, 2014). It is crucial
to identify and evaluate the premises under which analyses and
techniques are used to deduce such output, and to recognize
their constraints and inherent uncertainties. In the case of
alien species presence downscaling, the approach relies on the
assumption that fine-resolution presence is a combination of a
coarse-grid presence assessment and environmental conditions,
and fine-grid environmental conditions. A common drawback
of such approaches is that inherent uncertainties from both
initial projections and downscaling procedure are not quantified
or adequately conveyed to decision makers and end-users,
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thus creating an over-confidence to the inferred results and
causing validation and updating of downscaled information to
be omitted.

Here we have performed spatial downscaling of alien species
presences using a relatively idiosyncratic and tricky dataset: the
spatial distribution of alien species is clustered, the spatial sample
size in terms of the number of cells of the grid of the study area
are limited (162 cells in total), and the study area is an island
meaning that there are edge effects, unequal land surface areas
in coastal cells than in mainland cells, and a very idiosyncratic
physical geography, as the island has over 50 mountain summits
above 2,000m (Vogiatzakis et al., 2003). Despite this, the method
worked well in the sense that environmental data/covariates
of finer scale than the ones of alien species presences can
produce finer resolution alien species presences spatial data,
and predicted presences or absences were verified and thus
the predictive accuracy is explicitly quantified. While additional
validation studies in different spatial contexts may highlight
other downscaling determining variables, this study outlines
an exploratory analysis for variable selection and operational
use where underlying environmental information is available
at higher resolution. In view of new, spatially and temporally
richer data sources (e.g., remote sensing products), results of
the present study can be greatly enhanced. Starting from a
cost-effective targeted survey design based on the proposed
downscaling approach, an improved alien species mapping result
can be reached. Beyond the downscaling process itself, a better
understanding of alien species distribution and environmental
factors that facilitate their presence on the island can be achieved.

Furthermore, the RF architecture allows for tuning toward
operationally optimal sensitivity and specificity, thus providing
a decision support tool for designing a resource-efficient alien
species census. For example, according to one of the most
updated alien species dataset in Europe, the distribution of
alien plant species appears to be highly clustered with some
countries such as the UK, Germany and France appearing to
contain the majority of alien species (EASIN dataset; see Figure 5
and references therein). This is unlikely to reflect the actual
situation; alien species sampling effort is not evenly distributed
among countries and even within countries some areas are better
sampled than others. Using the approach proposed here, areas
where alien species are not detected but are likely to occur and

thus detected once sampled as well as areas where alien species
are not detected but are unlikely to occur once sampled can be
identified. Additionally, the acceptable risk of false negative and
false positive occurrences, also reflecting field detection effort
and human labor, can be quantified. In this study, the predicted
variable was alien species richness of all alien species, however,
given the number of alien species records in the EASIN dataset,
the analysis performed here can be adapted at single species level.

CONCLUSIONS

The science needs for conducting research on biological
invasions and the policy needs for management prioritization
to prevent further introductions and to mitigate the impacts
of invasive alien species, include high-resolution spatiotemporal
data of species distributions. We herein demonstrated the
applicability of RFs for spatial downscaling, which is an effective,
advantageous and useful approach when environmental data are
available at better resolution than that of alien species’ spatial
information. In relation to other downscaling approaches, RFs
don’t rely on assumptions about environmental parameters and
their effect on alien species presence; rather these relationships
emerge from the classification process. This way, RFs can provide
a better understanding of facilitating and limiting factors of alien
species presence, both for research and management purposes.
By effectively downscaling coarse-grid alien presence, the RFs
can facilitate targeted actions for prevention and mitigation, thus
providing an operational exploration tool.
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Building and managing large datasets of alien species is crucial to research, management, 
and control of biological invasions. To this end, the European Alien Species Information 
Network (EASIN) platform aggregates, integrates, and harmonizes spatio-temporal data 
regarding alien species in Europe, including both invasive and non-invasive alien species. 
These data are stored in the EASIN Geodatabase after their harvesting from relevant 
sources in the frame of a global and European databases partnership and scientific 
literature. The ownership of the data remains with its source, which is properly cited 
and linked. The process of data harvesting is performed through the EASIN Data Broker 
system, which retrieves the information related to alien species data in Europe and 
stores them in a normalized database structure. Data are subsequently refined through 
validation, cleansing, and standardization processes and finally stored in the EASIN 
Geodatabase. All data are finally visualized and shown in occurrence maps at different 
levels of spatial visualization. Analysis of the data contained in the EASIN Geodatabase 
through flexible web services offered by the system has already provided useful input 
in scientific works and policies on biological invasions. Data from European Union (EU) 
member state official surveillance systems, within the framework of the EU Regulation 
1143/2014 on invasive alien species, are expected to contribute to the update of the 
EASIN Geodatabase. In addition, data from citizen science initiatives will further enrich 
the Geodatabase after appropriate validation. In this article, we describe and discuss the 
technical aspects, data flow and capabilities of the EASIN Geodatabase.

Keywords: alien, dataset, european Alien Species Information network, europe, geodatabase, network

InTRoDUcTIon

There are more than 14,000 alien species that have been reported so far in Europe (Katsanevakis 
et al., 2015). About 10% of them correspond to invasive alien species (IAS) based on the Tens Rule 
(Williamson and Fitter, 1996). IAS threaten or adversely impact upon biodiversity and related ecosys-
tem services of Europe [Millennium Ecosystem Assessment (MEA), 2005; Ricciardi et al., 2013; EU, 
2014; Jeschke et al., 2014]. As a conservative estimate, IAS cost the European Union (EU) Member 
States €12 billion in damages on annual basis (Kettunen et al., 2009) but cumulated costs probably 
reach €20 billion per year (IEEP, 2016). In addition, there is an increasing trend toward introduction 
of new alien species (Essl et al., 2015; Roques et al., 2016; Seebens et al., 2017). Recognizing the need 
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TABle 1 | European Alien Species Information Network (EASIN) Data Partners 
and details on their technology, access, and update schedule in the EASIN 
Geodatabase.

Data partner Technology Access Update 
schedule

Global Biodiversity Information Facility Web service Online Monthly

Global Invasive Species Information 
Network

MS access 
DB

Offline No 
schedule

Regional Euro-Asian Biological Invasions 
Center

MS SQL DB Online 
restricted

Monthly

Hellenic Network on Aquatic Invasive 
Species (ELNAIS)

ArcGIS DB Offline No 
schedule

International Commission for Scientific 
Exploration of the Mediterranean Sea 
(CIESM)

ArcGIS DB Offline No 
schedule

EASIN-LIT Excel file/
ArcGIS DB

Offline Monthly

HCMR-European Environmental Agency Excel file Offline No 
schedule

International Union for Conservation of 
Nature online information system for 
monitoring invasive non-native species in 
marine protected areas (MEDMIS)

PostgreSQL 
DB

Online 
restricted

Monthly

Marine Mediterranean Invasive Alien 
Species

Excel file Offline No 
schedule

Norwegian Biodiversity Information Center Excel file Offline No 
schedule
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for a coordinated set of actions to prevent, control, and mitigate 
the adverse impact of IAS on biodiversity and related ecosystem 
services, the European Parliament and the Council have adopted 
the EU Regulation no. 1143/2014 (EU, 2014; hereafter referred 
to as the IAS Regulation) on the prevention and management of 
the introduction and spread of IAS, which entered into force on 
January 1, 2015.

Managing large datasets of alien species is crucial to research, 
management, and control of biological invasions. Handling such 
large datasets poses a great challenge, since the information 
available is generally scattered across many different information 
systems and databases (Panov and Gollasch, 2004; Gatto et al., 
2013). In addition, data format and information about the data 
(metadata) are frequent limitations to the interoperability of data 
repositories and information systems (Katsanevakis et al., 2012).

The European Alien Species Information Network (EASIN1) 
aims to provide a single repository of alien species data for access-
ing all the information necessary to underpin alien-species-related 
policy and evidence-based decision-making (Katsanevakis et al., 
2013a). A key component of the EASIN system is the EASIN 
Catalog: a comprehensive list of alien species in Europe, currently 
including information on more than 14,000 taxa in a wide range 
of environments. Both invasive and non-invasive alien species 
are included. IAS are tagged as “high-impact” species in EASIN 
and are considered those that are highlighted by the lists of 
Delivering Alien Invasive Species Inventories for Europe, Global 
Invasive Species Database, NOBANIS (European Network on 
IAS), CABI’s Invasive Species Compendium, MedPAN (Network 
of Marine Protected Areas managers in the Mediterranean), and 
SEBI-2010 (list of worst IAS threatening biodiversity in Europe; 
Streamlining European 2010 Biodiversity Indicators), to cause 
severe ecological and socio-economic impacts in Europe and/
or globally. Other species are tagged as “low/unknown impact” 
species (see also Katsanevakis et al., 2012). In the latest version 
of EASIN (v.4.1), there are 908 species tagged as “high-impact,” 
while 13,102 species are tagged as “low/unknown impact.”

For each alien species of the EASIN Catalog information is 
available on the year and country of the first record in Europe, 
alien status (alien, cryptogenic, questionable), native range, 
taxonomy, synonyms, common names, environment, pathways, 
vectors, and impact. Links to factsheets are also provided for 
selected taxa (Katsanevakis et al., 2015). Given the vast amount 
of information recorded in EASIN and the need for constant 
updating and revision, an Editorial Board has been established 
to ensure the quality and updates of the information contained 
in the EASIN Catalog (Tsiamis et al., 2016).

Besides the EASIN Catalog, EASIN provides aggregated and 
integrated spatial data on alien species in Europe as well as online 
mapping tools for the retrieval of these data, through the EASIN 
Geodatabase. All spatial data are visualized and shown in occur-
rences maps at different levels (country, grid 10  km  ×  10  km, 
river basin, marine ecoregion). In the current paper, we demon-
strate the approach, functionality, and technical background of 
the EASIN Geodatabase, which is the backbone of the EASIN 

1 http://easin.jrc.ec.europa.eu.

network, responsible for the collection, quality control, harmo-
nization, integration, storage, visualization, and dissemination of 
large datasets on alien species in Europe, coming from various 
sources.

DeScRIpTIon oF The eASIn 
geoDATABASe

Data Sources
The EASIN Geodatabase hosts about 50 millions of alien spe-
cies spatial data (i.e., records) across Europe, all originating 
from a network of data sources, named as EASIN Data Partners 
(Table 1). These are global, regional, and national databases or 
repositories that have agreed to provide EASIN with spatial infor-
mation of alien species in Europe. These sources do not always 
contain alien species data exclusively, but they might host broader 
species biodiversity information, including also native species in 
Europe, such as in the case of Global Biodiversity Information 
Facility. However, EASIN performs a targeted harvesting only to 
species which are considered alien or partly alien in the whole 
European scale (see Data Harvesting). Ownership of the data 
remains with its source, which is properly cited and linked in the 
EASIN Geodatabase. The EASIN Data Partners gain increased 
visibility and networking possibilities through EASIN, and can 
also benefit from mutual data exchange. Additional and updated 
spatial data are being gathered through EASIN-Lit (Trombetti 
et  al., 2013), which contributes to enriching the Geodatabase 
with geo-referenced data published in the scientific literature. By 
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EASIN 
Catalogue Database Data Partner

EASIN 
Staging Database

EASIN 
GeoDatabase

EASIN 
Data Broker

Species scien�fic names + synonyms Species data (name, loca�on, year, source)

EASIN 
Data Processing

EASIN 
Mapping Services

Valida�on, cleansing, standardiza�on, Geocoding

Normalized structure (EASIN Data Model), na�ve range check

Data aggregated by layer, species, first and last 
date, loca�on, data partner and reference

Well Known Text nota�on 

Loca�ons projected to the European Terrestrial Reference System1989

OGC Services

FIgURe 1 | Data flow in the European Alien Species Information Network (EASIN) Geodatabase.
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March 2017, 11 data sources have been included as EASIN Data 
Partners.

Data harvesting
The targeted information for the EASIN Geodatabase is the alien 
species spatial data in Europe, regardless if they are invasive or 
not. These can also include partly native species in Europe, i.e., 
species which are alien in some areas of Europe but native to some 
others. The process of harvesting information is done through 
the EASIN Data Broker system (Figure 1). This system is able to 
retrieve heterogeneous species data from different categories of 
data sources and formats and store them in a normalized database 
structure. In more detail, it screens and harvests information from 
the EASIN Data Partners based on the scientific names of the 
alien species listed in the EASIN Catalog. The EASIN Data Broker 
system identifies only the binomial of each species, without taking 
into consideration the species scientific authorities. As a result, 
typos and/or various formats of the species authorities in other 
sources do not affect the harvesting of the targeted information. 
In addition, scientific synonyms of each species are considered 
during harvesting. This is achieved through the information 

contained in the EASIN Catalog. For each species in the Catalog 
all scientific synonyms are also included, based on the Integrated 
Taxonomic Information System for terrestrial and freshwater 
species, and the World Register of Marine Species (WoRMS) for 
marine species. Thus, the EASIN Data Broker system can spot 
and harvest information based not only on the species binomial 
but also on its scientific synonyms.

Once the EASIN Data Broker system spots the binomial of a 
species within a dataset of an EASIN Data Partner, it will harvest 
targeted information about the specific species: (a) its location 
(name of the area and/or coordinates), (b) its date of collection 
(year), and (c) a reference to the original source of the record. 
Inside the EASIN system each Data Partner has a specific data-
base and unique identifier. For each new data harvesting of a Data 
Partner a new dataset with related metadata is created.

Data processing
Once harvested, the data are processed through different 
transformation steps: validation, cleansing, standardization, and 
geocoding (Figure  1). The validation and cleansing processes 
verify if the harvested data contain all the required information 
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(species name, date, location, reference), and if the reported 
location falls in one of the countries included in the EASIN 
geographical coverage of Europe.2 In case the harvested data 
contains spatial information through coordinates, a further 
verification checks if the reported location corresponds with the 
relevant environment of the species. This is achieved through the 
information contained in the EASIN Catalog for the environment 
of each species (terrestrial, freshwater, marine, oligohaline—see 
also Katsanevakis et al., 2015). As a result, the verification check 
can spot a mismatch of a species environment compared with 
a geo-reference occurrence. Thus, a record containing a terres-
trial or freshwater species reported in the sea will be discarded. 
Similarly, a marine species reported in a terrestrial or freshwater 
location will be also excluded. After validation and cleansing, the 
information is standardized following the EASIN Data model. 
This model organizes and normalizes the information coming 
from the Data Partners. During this process unique identifiers 
for locations and references are created.

The format of the aggregated spatial information regarding 
the locations is varying across the EASIN Data Partners. To this 
end, a conversion of this information is performed through the 
Well Known Text (WKT3) markup language, ensuring interoper-
ability of the spatial information aggregated. Spatial information 
retrieved from the Data Partners is stored in the coordinate 
system of World Geodetic System 1984 (WGS84).4 In case the 
original information contains the location of a record in a different 
coordinate system, a re-projection process is performed through 
Arc GIS. When no coordinates are available, a conversion of cited 
place names or maps to a spatial format is performed with the 
best possible accuracy through the Google Geocoding.5

Staging Database
After the data have been processed, the information is moved 
to a normalized intermediate database, named EASIN Staging 
database (Figure 1). This structure allows transformation of the 
information in data formats that can be used for specific pur-
poses, e.g., for serving the EASIN mapping (see Geodatabase and 
Mapping Services). In addition, through the Staging database the 
information can be transformed to the schemas required by the 
INSPIRE Regulation (INSPIRE Framework Directive 2007/2/EC; 
EU, 2007; INSPIRE, 2013). The EASIN Staging database contains 
the information about the location and the references in separate 
data collections in order to reduce data redundancy (e.g., one 
location may be reported in several different records) and improve 
data integrity (Figure 2). In this phase, the dates of the records are 
approximated to years, while locations are processed to contain 
the spatial information also in the European Terrestrial Reference 
System 1989 (ETRS89)6 for coordinates. In the EASIN Staging 
database, the locations are intersected with the EASIN layers, in 
order to show in which country, grid cell 10 km × 10 km, marine 
ecoregion or river basin they fall. This process is fundamental for 

2 https://easin.jrc.ec.europa.eu/Catalogue.
3 https://en.wikipedia.org/wiki/Well-known_text.
4 https://en.wikipedia.org/wiki/World_Geodetic_System.
5 https://developers.google.com/maps/documentation/geocoding/intro.
6 https://en.wikipedia.org/wiki/European_Terrestrial_Reference_System_1989.

creating data aggregations by layers. The data are also processed 
against the information contained in the EASIN Catalog regard-
ing the native range of a partly native species in Europe. This 
information is available in the EASIN Catalog in country-level. 
Once a partly native species is harvested from a Data Partner, the 
Staging database marks which occurrences fall inside countries 
which have been tagged as “native range” for the certain species 
in Europe. For example, if a partly native species in Europe is 
considered native in Italy, based on the information contained in 
the EASIN Catalog, then all harvested occurrences of the species 
falling in Italy will be set as native. The native range of the partly 
native species in Europe can be updated by the EASIN Editorial 
Board.

geodatabase and Mapping Services
The EASIN Geodatabase is populated by extracting the data 
from the Staging database, aggregated by layer, species, first and 
last date, location, data partner, and reference (Figure 1). The 
result is a data format suitable for providing all the necessary 
information needed by the EASIN mapping services, which 
visualizes alien species occurrences’ maps. The maps can be cre-
ated at four levels, as many as the EASIN layers: by country, grid 
10 km × 10km (based on EEA, 2012 reference grid), river basins, 
and marine ecoregions. When it comes to partly native species 
in Europe, their occurrences falling in countries which have 
been tagged as “native range” are depicted in a different color 
compared with the occurrences falling in countries tagged as 
“alien range.” All the maps are exposed through Open Geospatial 
Consortium (OGC7) compliant services as Catalog Service for 
the Web, Web Map Service, and Web Feature Service.

Aiming at more tailored distribution maps of alien species in 
Europe, the EASIN Geodatabase can filter the related information 
based on the selection of the environment (terrestrial, freshwater, 
marine, oligohaline), species status (alien, cryptogenic, question-
able), specific taxonomic groups (in various taxonomic levels 
from species to Kingdom), and pathways of introduction based 
on the scheme proposed by Hulme et al. (2008). Regarding the 
latter EASIN will gradually align its pathways categorization to 
the one proposed by the Convention of Biological Diversity (CBD, 
2014) aiming at achieving synchronization and harmonizing of 
information on alien species pathways (Tsiamis et  al., 2017a). 
Moreover, a distinction between high-impact and low-impact 
alien species is possible when depicting the occurrences maps.

IMpAcT oF The eASIn geoDATABASe

The EASIN Geodatabase has been used to support scientific 
research on biological invasions, addressing (a) distribution pat-
terns (Katsanevakis et al., 2013b,c), (b) pathways and gateways of 
introduction (Katsanevakis et al., 2013c, 2014; Nunes et al., 2014, 
2015; Essl et al., 2015; Roques, 2015; Pergl et al., 2017; Tsiamis 
et al., 2017a), (c) risk and impact assessments of invasive species 
(Katsanevakis et al., 2014, 2016; Perdikaris et al., 2016), and (d) 
Horizon Scanning exercises (Roy et al., 2015).

7 http://www.opengeospatial.org/.
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EASIN Staging Database (v3.0)
Schema of the Normalized Records

FIgURe 2 | Schema of the normalized records in the European Alien Species Information Network (EASIN) Staging Database, containing the information about the 
location and the references in separate data collections.
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European Alien Species Information Network constitutes the 
core information system supporting MS in the implementation 
of the IAS Regulation (EU, 2014, Art. 25). The 37 IAS of Union 
concern, published in the Commission Implementing Reg. 
1141/2016 in application of the IAS Regulation, are all included in 
EASIN and tagged distinctively as “Union concern.” The informa-
tion stored in the EASIN Geodatabase regarding these 37 taxa has 
been used as the basis for the establishment of a distribution base-
line of those species in terms of the IAS Regulation. This baseline 
is an important tool supporting the implementation of the IAS 
Regulation, the Art. 16 in particular regarding early detections 
of the IAS of Union concern, and also provides a factual basis 
for the review of the application of the IAS Regulation (Tsiamis 
et  al., 2017b). In addition, information found in the EASIN 
Geodatabase has been used for the review of the EU Biodiversity 
Strategy, especially when it comes to spatial patterns of the main 
pathways of introduction of alien species into Europe, including 
both invasive and non-invasive species (EU, 2015).

chAllengeS AnD SolUTIonS

Handling heterogeneous information coming from different 
sources and providing maps to the users requires to address two 
main challenges: (a) harmonizing of the information coming 
from different data sources and (b) minimizing the time required 
for showing a map to the user.

Normalizing the data (references and locations) and using 
a unique format for storing the information has been crucial 
for further managing the data and producing integrated maps 
and reports. In particular, aside the effort on implementing the 
data processes, the solution has been the choice to use only one 
projection (WGS84) for uniquely identifying the locations. Each 
EASIN Data Partner has its own particular data model, storage 
type, publishing approach, and standards that require a specific 
EASIN data brokering procedure (Table 1).

The EASIN Geodatabase output is to provide to the users 
occurrences maps of alien species in Europe. Taking into account 
the vast information included in the Geodatabase and the pro-
cessing of it, there has been a challenge to visualize maps in the 
EASIN interface through the shortest possible time. In order to 
improve the reading performance, the first solution implemented 
has been the de-normalizing and grouping of some information. 
After the massive update of EASIN Geodatabase during 2016, 
which reached the amount of almost 50 million of data processed, 
it has been clear that the de-normalization solution was not 
enough anymore, considering also the large amount of space 
occupied by the redundant information. The solution has been 
found in the creation of a “dynamic query pre-cooking.” Every 
time a user sends a query to the Geodatabase, the result of the 
query is stored in a specific location. Thus, a unique identifier 
is built for each query result through a hash algorithm. If a user 
sends a query already present in the EASIN Geodatabase the 
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system retrieves the final result without further processing. Any 
new release of the Geodatabase results in deleting the current 
pre-cooked queries, as the aggregations in the new release may 
differ from the previous one.

Maps provided by the EASIN Geodatabase are exclusively 
based on the information provided by the EASIN Data Partners. 
However, this information might be biased due to varying 
monitoring efforts, geographical coverage, environment, and 
taxonomic groups addressed in each original dataset of an EASIN 
Data Partner. As a principle, EASIN targets to be enlarged with 
as many Data Partners as possible hosting information on alien 
species in Europe. Then, it is up to the user to select only the Data 
Partners which are considered more appropriate for an optimal 
visualization of occurrences of alien species in Europe and cor-
rect the data from potential biases.

FUTURe DeVelopMenTS

Up to March 2017 there have been 11 EASIN Data Partners, but 
at least 7 new ones will be integrated in EASIN by the end of 
2017: Icelandic Institute of Natural History, Academy of Science 
of Moldova, National Biodiversity Data Center—Ireland, Great 
Britain Non-Native Species Secretariat, Croatian Agency for 
the Environment and Nature, Azorean Biodiversity Portal, Life 
Project STOPVESPA.

The EASIN Geodatabase will be further enriched by records 
of IAS of Union concern [EU, 2014, Art. 3(3) and 4(1)] submit-
ted by the EU Member States’ Competent Authorities for the 
IAS Regulation in an Early Warning and Rapid Eradication 
Notification System (NOTSYS), developed with close links to 
EASIN. Through this system, the European Commission and 
all Member States are notified about new occurrences of IAS of 
Union concern detected on EU territory. NOTSYS is also used 
for reporting eradication measures as well as their effectiveness, 
as foreseen in Art. 16-17 of the IAS Regulation.

In addition, it is under consideration that data of alien spe-
cies coming from citizen science initiatives in Europe (e.g., 
the JRC smartphone application “Invasive Aliens Species in 
Europe”—Tsiamis et  al., 2017c), which are increasingly recog-
nized as an important source of alien species data (Thiel et al., 
2014; Adriaens et al., 2015; Daume, 2016), will further enrich the 
EASIN Geodatabase after appropriate validation. In this context, 
the EASIN Geodatabase could offer an aggregation and harmo-
nization point for data coming from all citizen science projects 
related with alien species in Europe.

Prioritization of areas which are most sensitive and/or suscep-
tible to biological invasions is critical for their effective manage-
ment (McGeoch et al., 2015). To this end, the EASIN Geodatabase 
will include an additional layer within its mapping services on 
the Natura 2000 conservation network, in the frame of the Birds 
Directive (EU, 2009) and the Habitats Directive (EU, 1992).  
Moreover, the inclusion of the Marine Strategy Framework 
Directive (EU, 2008) marine regions as a distinct layer in EASIN 
maps is also under consideration. This would facilitate suitable 
filtering of the related information regarding marine alien species 
in terms of the Directive’s purposes. In addition, the linkage with 
the IAS Regulation will not be limited exclusively to the 37 IAS of 

Union concern, but to a wider context of the EASIN Geodatabase 
species, taking into account the possible inclusion of additional 
species in the Union concern list, and the establishment of species 
of “Regional,” “Member State” concern, and IAS of EU “outermost 
regions” (Art. 11, 12, and 6, respectively, of the IAS Regulation).

Speeding up the data processing is a critical aspect for any 
procedure that integrates data from different sources and requires 
constant update. In particular, when spatial information is 
shown on aggregated maps, as in the case of EASIN, a less time- 
demanding data process is required. In order to retrieve huge 
amounts of data, such as in the case of the grid 10 km × 10 km, the 
usual approach of processing the information record by record 
cannot be the most efficient approach. A location is usually shared 
among different records, thus the number of locations is less than 
the number of records. Therefore, locations can be processed faster 
than records. To this end, the locations must be normalized, as  
in the EASIN Staging database, before being processed. By adopt-
ing this approach in EASIN, the time required for processing 
millions of records can be reduced from weeks to hours.

conclUSIon

Tackling biological invasions effectively relies on the availability 
of up-to-date scientific information, and requires the sharing 
of knowledge on the topic in order to enhance science-based 
decision-making (Panov et  al., 2011; Katsanevakis et  al., 2012; 
McGeoch et al., 2012; Roy et al., 2014; Groom et al., 2017a). In 
addition, it is crucial to have a single aggregation point, where 
available knowledge on alien species from various data sources is 
integrated, harmonized, and standardized (Panov and Gollasch, 
2004; Katsanevakis et  al., 2013a; Ojaveer et  al., 2014). This 
knowledge should be openly displayed in ways that is findable, 
accessible and interoperable, encouraging exchange, and dissemi-
nation of data with other existing data platforms (Groom et al., 
2015, 2017b; Lucy et al., 2016), in line with the EU Open Science 
Strategic Priority, and the plan of the Commission to develop the 
European Open Science Cloud (EU, 2016).

European Alien Species Information Network is the core of the 
information support system supporting the implementation of 
the IAS Regulation, while at the same time there has been a linkage 
with the EU Biodiversity policy. Connection with other policies 
on alien species, such as the MSFD and Natura 2000 sites is also 
under consideration. Therefore, it is crucial that the information 
provided by the EASIN Geodatabase is of high quality, updated, 
accessible, and easily processed by all interested stakeholders.

European Alien Species Information Network, through the 
EASIN Geodatabase, offers both a single aggregation point of 
alien species spatial data and flexible services for mapping alien 
species occurrences within Europe. EASIN works in partnership 
with European and global data providers to facilitate access to 
key data and information on alien species, promotes the princi-
ples of open-source, ensures accreditation of data publishers and 
data owners, highlights the work of other initiatives, increases 
their visibility, and facilitates direct access to the original 
information/data.

The number of alien species data processed by the EASIN 
Geodatabase will considerably increase in the near future due to 
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the incorporation of new EASIN Data Partners, NOTSYS data, 
and citizen science data. This additional amount of information 
will test the efficiency and endurance of the EASIN Geodatabase, 
and possibly new adaptations and technical solutions might 
be needed. In addition, the continuous growth of the EASIN 
Geodatabase will test the soundness of the statistical correlations 
performed based on EASIN data, such as in the case of the analy-
ses on pathways of introduction or distribution patterns of alien 
species. This is because bigger data sets could result in higher 
bias and bring up spurious correlations (Silver, 2012; Donoho 
and Jin, 2015) with possible implications to outcomes crucial to 
biological invasions research and to related policies. To this end, 
careful selection of data and appropriate statistical design should 

be ensured in order to limit correlated errors when handling big 
data sets (see also Moustakas, 2017 and references therein).
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Background:Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in China,

especially in Heilongjiang province (90% of all reported HFRS cases worldwide occur in

China). The dynamic identification of high HFRS incidence spatiotemporal regions and

the quantitative assessment of HFRS associations with climate change in Heilongjiang

province can provide valuable guidance for HFRSmonitoring, preventing and control. Yet,

so far there exist very few and of limited scope quantitative studies of the spatiotemporal

HFRS spread and its climatic associations in Heilongjiang province. Making up for this

lack of quantitative studies is the reason for the development of the present work.

Method: To address this need, the well-known Bayesian maximum entropy (BME)

method of space-timemodeling andmapping together with its recently proposed variant,

the projected BME (P-BME) method, were employed in this work to perform a composite

space-time analysis and mapping of HFRS incidence in Heilongjiang province during the

years 2005–2013. Also, using multivariate El Niño-Southern Oscillation index as a proxy,

we proposed a combination of Hilbert-Huang transform and wavelet analysis to study

the “HFRS incidence-climate change” associations.

Results: The main results of this work were two-fold: (1) three core areas were identified

with high HFRS incidences that were spatially distributed and exhibited distinct biomodal

temporal patterns in the eastern, western, and southern parts of Heilongjiang province;

and (2) there exists a considerable association between HFRS incidence and climate

change, particularly, an ∼6 months period coherency was clearly detected.

Conclusions: The combination of modern space-time modeling and mapping

techniques (P-BME theory, Hilbert-Huang spectrum analysis, and wavelet analysis) used

in this work led to valuable quantitative findings concerning the spatiotemporal spread

of HFRS incidence in Heilongjiang province and its association with climate change. Our

essential findings include the identification of three core areas with high HFRS incidences

in Heilongjiang province, and considerable evidence that HFRS incidence is closely

related to climate change.

Keywords: hemorrhagic fever with renal syndrome, spatiotemporal, mapping, Bayesian maximum entropy,

Hilbert-Huang transformation, wavelet analysis
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INTRODUCTION

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-
borne zoonosis caused by Hantavirus (belonging to the
Bunyaviridae family). In China, the Hantaan and Seoul viruses
dominate HFRS infection, the leading rodent hosts of which
are Apodemus agrarius and Rattus norvegicus, respectively [1, 2].
The virus is transmitted from rodents to humans via inhalation
of aerosols contaminated by rodents’ urine, saliva, excreta, and
dung, possibly through ingestion of contaminated food and by
direct contact of contaminated materials with broken skin or
mucous membranes, or by rodent bites [3, 4]. Clinical HFRS
manifestations include fever, headache, nausea, and abdominal
pain. Complications, like adverse kidney effects and subsequent
pulmonary edema, shock, renal insufficiency, encephalopathy,
hemorrhages, and cardiac complications, can cause death [5, 6].
The disease goes through five stages: febrile, hypotensive shock,
oliguric, polyuric, and convalescent, which last, respectively, 1–7
days, 1–3 days, 2–6 days, 2 weeks, and 3–6 months [7].

Historically, numerous HFRS-like cases have occurred in
China going back to the tenth century AD. Currently, about
20,000–50,000 cases/year are reported in mainland China, which
account for 90% of all reported cases worldwide [5, 8, 9]. The
foci of HFRS often locates in rural areas, which constitute more
than 70% of the total number of cases, because of poor housing
conditions and abundant rodent hosts [10, 11]. According to the
data of the National Health and Family Planning Commission
of China, the HFRS death rate was 2.89% during 1950–2014 [7].
Rattus norvegicus, which hosts the Seoul virus, is regarded as one
of the most damaging invasive species around the world, and it is
closely associated with humans, particularly in largemetropolitan
areas [12, 13]. As HFRS remains a severe public health problem,
it is necessary to study historical HFRS evidence to provide
rigorous scientific support to current disease monitoring and
control procedures. Yet, so far there exists a very limited
number of quantitative studies regarding the spatiotemporal
HFRS distribution and spread in Heilongjiang province. In fact,
the reason for the development of the present work is to make up
the lack of such quantitative studies.

Based on province-level data, a number of nationwide studies
have been carried out in China. Their results indicated that
the geographical distribution of HFRS incidences was clustered,
particularly in the northeastern, central and eastern parts of
China. The observed hotspots shifted and expanded from
year to year, whereas most HFRS cases were mainly reported
during the spring and the autumn-winter seasons [14–16].
In these studies, global indicators of spatial autocorrelation
(GISA), local indicators of spatial association (LISA) and
Kulldorff ’s scan statistic were employed to characterize the
spatial variation of HFRS incidence during several time periods.
However, these studies suffered from certain drawbacks: (a) they
considered neither the temporal nor the combined space-time
(spatiotemporal) correlation of HFRS incidences, and (b) a fine
temporal resolution (i.e., monthly data) was assumed, whereas
the spatial resolution used for mapping purposes was rather
coarse (i.e., at the province-level).

For more than two decades, the Bayesian Maximum Entropy
theory of space-time data analysis and mapping (BME, [17–19])

has been proven to provide efficient and cost-effective methods
for characterizing, predicting and mapping disease attributes
(such as disease incidence) in a composite space-time domain
under conditions of in-situ uncertainty [20]. For example, Law et
al. [21] used BME to qualitatively and quantitatively detect core
areas with high syphilis incidence density in the city of Baltimore
(USA) between the years 1994 and 2002; also, based on age-
adjusted influenza mortality data at the county-level, Choi et al.
[22] used BME to represent the space-time disease dependence
structure of the disease, to map the influenza mortality rates and
to assess the associated disease risk in the state of California
(USA). In this work, wewill use both the original BME and a BME
variant (projected BME, P-BME) to study the spatiotemporal
HFRS dependence pattern in Heilongjiang province, including
the identification of particular disease features and the detection
of high incidence areas.

Since HFRS is transmitted by reservoir hosts (especially
rodents), it is expected that climatic factors (such as
precipitation, temperature, humidity, and global climate
pattern) should influence human HFRS morbidity by affecting
the reproduction and abundance of rodents [3, 23–27].
To some extent, understanding climate change can offer a
preliminarily assessment or an early warning concerning the
epidemic situation. Few studies have investigated the intrinsic
HFRS period and its inherent relationships with climate
attributes and factors. In recent years, the Hilbert–Huang
transformation (HHT, an adaptive method combining empirical
mode decomposition and spectral analysis) has been developed
for analyzing nonlinear and temporally non-stationary data,
in general [28–30]. With this method, the intrinsic mode and
intensity of a disease attribute is obtained that can provide useful
insight regarding the temporal regulation of disease variation.
Moreover, cross-wavelet transforms and wavelet coherence can
explore the relationship between two series in the time-frequency
domain [31]. As a matter of fact, the wavelet method has been
employed in the past to study disease incidence and climate
change. For example, Thai et al. [32] have found a strong non-
stationary association between El Niño-Southern Oscillation
(ENSO) indices and climate variables and the corresponding
dengue incidence in the Binh Thuan province (Vietnam) during
a 2–3 years period; also, Chowell et al. [33] have suggested that
in Peru the dengue incidence is significantly linked with the
seasonal cycle timing of mean temperature variations.

In view of the above considerations, the objective of this
work is two-fold: (1) to investigate the characteristics and
spatiotemporal distribution of HFRS incidence in Heilongjiang
province (China) using the BME and P-BMEmethods; and (2) to
assess the intrinsic mode and coherence similarities between the
HFRS incidence spread and the time series of key climatic factors
using the Hilbert-Huang spectrum method and wavelet analysis.

MATERIALS AND METHODS

Study Area and Data Collection
The Heilongjiang province is located in northeastern China, with
an area of ∼473,000 Km2 and a population of 38.35 million
people. Remarkably, the Heilongjiang province is one of the
highest HFRS morbidity regions in China [34]. The Heilongjiang
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basin includes four major river systems: the Heilong, Songhua,
Wusuli, and Suifen rivers (Figure 1). Monthly data of HFRS
cases (21,383 cases in total) were collected at 130 counties and
districts during the January 2005–December 2013 period by the
China Information System for Disease Control and Prevention
(CISDCP). Demographic data for each county were obtained
from the National Bureau of Statistics of China. Subsequently,
the HFRS cases were population-standardized and used in the
present work.

The multivariate ENSO Index (MEI) integrates 6 oceanic
and meteorologic variables over the tropical Pacific region
to represent global climatic cycles (i.e., El Niño-Southern
Oscillation): sea-level pressure, zonal and meridional
components of surface wind, sea surface temperature, surface
air temperature, and total cloudiness fraction of sky [35]. The
MEI has been used in the scientific literature to diagnose ENSO
phenomena that can cause global climate variability, including
world-wide correlations with temperature and precipitation data
[36]. In the present study, the MEI is employed as a proxy for
representing climatic factors in order to explore their effects on
HFRS incidence (MEI data is available at https://www.esrl.noaa.
gov/psd/enso/mei/table.html).

Spatiotemporal Analysis and Mapping
Methodologically, the standardized HFRS incidence was
regarded as a spatiotemporal random field (S/TRF, [19, 37]),
denoted as X(p), with arguments p = (s,t) ∈ R2 × T in a
composite space-time domain, where s = (s1, s2) ∈ R2 denote
the centroid coordinates of each administration unit and t ∈ T
denotes the time argument. In this quantitative modeling setting,
space (s) represents the order of co-existence and time (t)

represents the order of successive existence of HFRS incidence
distribution in Heilongjiang province. In-situ uncertainty
manifests itself as an ensemble of possible HFRS realizations x
regarding the space-time X(p) distribution, where the likelihood
that each one of these possible realizations occurs is expressed
by the corresponding HFRS probability density function f . In
the BME method, two main knowledge bases are considered:
the general or core knowledge base (G-KB), and the site-specific
knowledge base (S-KB). The G-KB includes theoretical models
of the space-time HFRS mean and covariance (correlation),
whereas the S-KB consists of hard (exact) and soft (uncertain)
HFRS data [38]. The BME method uses the general knowledge
available to generate the G–based (prior) probability density
function, fG, of HFRS incidence distribution. Subsequently, the
S-KB is incorporated to generate the combined G- and S-based
probability density function [19]

fK(xk) = A−1

∫

dS(xs) fG(x), (1)

where K = G+S denotes the total KB (core G and site-
specific S), x = (xh, xs, xk) are HFRS realizations at the hard
data points (ph), the soft data points (ps), and the unsampled
(prediction) points (pk), and A is a normalization constant.
After the probability density function fK has been derived at all
prediction points pk, various HFRS incidence, X(p), estimates at
these points are readily available, like the mean, the mode and the
median X(p) values at each pk.

It is widely-recognized that the joint spatial-temporal
covariance of a disease attribute is rather difficult to calculate
experimentally (primarily due to the limited number of sample
points) and to fit to a theoretical covariance model [39, 40].

FIGURE 1 | Study area and delimiter of counties and districts.
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Hence, it would be very useful to develop an improved method
of space-time covariance fitting. Responding to this need,
Christakos et al. [41] presented a BME variant, the projected
BME (P-BME) method, which projects the disease incidence
distribution (HFRS incidence in our case) from the original
space-time disease domain R2 × T onto a lower dimensionality
traveling space domain R2 bymeans of the simple set of equations

X(p) = X̂(s− υt, 0) = X̂(ŝ), (2a)

cX(h, τ ) = cX̂(h− υτ , 0) = cX̂(
ˆh), (2b)

where ŝ = s − υt denotes the spatial coordinates of HFRS

incidence values, ˆh = h− υτ denotes the spatial lags (separation
distances) between HFRS incidence values, and υ = (υ1, υ2) is
the HFRS traveling vector. Then, p = (s1, s2, t) ∈ R2 × T are
the space-time coordinates in the original R2 × T domain, which
are matched one-to-one with the coordinates ŝ = (ŝ1, ŝ2) in the
traveling R2 domain according to the P-BME method, i.e., the
following transformation of HFRS incidence domains is used,

(s1, s2, t) ∈ R2 × T 7→ (ŝ1, ŝ2) ∈ R2. (2c)

Accordingly, cX(h, τ ) and cX̂(
ˆh) are the HFRS incidence

covariances in the space-time R2 × T and the traveling (spatial)
R2 domains, respectively. The fact that these covariance functions
are related by Equation (2b) provides a practical way to calculate
υ in-situ. Significant advantages of the P-BME method is that,

after projection, the covariance cX̂(
ˆh) is located in the spatial

(R2) domain, where (a) it is easier to fit a theoretical HFRS
covariance model to the data, (b) more choices of theoretical
HRFS covariance models are allowed, and (c) HSRF incidence
mapping is more accurate and computationally efficient than in
the space-time (R2

× T) domain.
By way of a summary, the P-BME method combines the BME

Equation (1) with the traveling Equations (2a–c) to derive HFRS
incidence predictions across space-time. The mean absolute
HFRS incidence prediction error can be used to evaluate the
accuracy of model cross-validation prediction. For comparison
purposes, the 10-fold cross-validation method will be used below
to test the performance of the direct BMEmethod and the P-BME
method in the R2 × T and the R2 domains, respectively. More
theoretical and technical details regarding BME and P-BME can
be found in the cited literature.

Hilbert–Huang Transformation
The HHT can help discover certain characteristics of the
cumulative HFRS incidence in the entire Heilongjiang province,
together with the MEIs and the underlying rules of their
variation. Basically, HHT consists of two steps: empirical mode
decomposition (EMD), and Hilbert transformation (HT).

More specifically, EMD is used to extract the intrinsic mode
functions (IMFs), each of which is independent of the others,
from the raw series

Y(t) =
∑n

m=1
cm + rn, (3)

where cm represents the IMF component, and rn denotes
residuals representing the raw series trend. We start by fitting

the local minima and maxima values of the raw time series, Y(t),
using cubic splines, and the mean time series, m1(t), is defined
(i.e., the splinemean).We also define the standard deviation (SD)

SD =

∑T

t=0

|h1(k−1)(t) − h1k(t)|
2

h2
1(k− 1)

(t)
, (4)

where k = 1, 2, .... denotes the number of times the process is
repeated (by convention, h10(t) = Y(t)). The first difference
h11(t) = Y(t) − m1(t) is considered as the first IMF if it
satisfies the criterion that the SD is between 0.2 and 0.3 [28],
otherwise, the process is repeated using h11(t) as a raw series
until the criterion are met. After the first IMF is extracted, the
difference between the first IMF and raw series is used to identify
subsequent IMFs. Then, a monotonic series is defined as the
residual of the raw series trend mentioned earlier.

The HT can be applied for each IMF above to obtain the
analytical function and its polar form

zi(t) = ci(t)+ jH[ci(t)],

zi(t) = ai(t) exp[jθi(t)], (5)

respectively, where H denotes the Hilbert transform, and ai(t)
and θi(t) are the IMF amplitude and phase, respectively. Each
IMF is the real part of its corresponding analytical function zi(t).
In view of the IMF summation, see Equation (3), the raw series
can be calculated by

Y(t) = Re{
∑n

i=1
ai(t)e

j
∫

ωi(t)dt
}, (6)

where ωi(t) is the IMF instantaneous frequency. The Hilbert
spectrum, H(ω, t), is subsequently defined as a frequency-time
distribution with the amplitude of the raw series of Equation (6).
And the marginal spectrum can be calculated by

h(ω) =

∫ T

0
dtH(ω, t). (7)

Considering that EMD may cause mode mixing [42], in this
work it was replaced by ensemble EMD (also denoted as EEMD).
The process is as follows: add a white noise series into the
raw series; use EMD to decompose the series with white noise
into IMFs; repeat the two steps above (say, m times in total)
with various white noise series; calculate the mean values of
the corresponding m IMFs, which will be the final IMFs. The
HHT can provide an amplified way of gaining insight into raw
time series in the time-frequency domain, whereas the marginal
spectrum offers an easy way to identify the cumulative amplitude
distribution across different frequencies in a probabilistic sense
[43]. In this work, the entire standardized HFRS incidences in
Heilongjiang province and the MEI, 108 months in total, were
analyzed by HHT for comparison. The software code used for
this purpose can be downloaded from http://rcada.ncu.edu.tw/
research1_clip_program.htm.
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Wavelet Analysis
The coherency between standardized HFRS incidence and MEI
expresses the association between these two variables, in which
case the coherent time-frequency areas can be easily discovered
in terms of wavelet analysis [31, 44].

Specifically, coherency can measure the covariation intensity
between two series. For this purpose, the time series, say Y1 and
Y2, are transformed by the continuous wavelet equation

W(τ ,α) = 1
√

a

∫

+∞

−∞

Y(t) ψ∗( t−τa )dt, (8)

where ψ(t) is the mother wavelet, and ∗ denotes the complex
conjugate. Subsequently, the two transformed series are cross-
wavelet transformed by

WY1Y2 = WY1W
∗

Y2
. (9)

Finally, the wavelet transform coherency across time-frequency
space can be calculated by

R2(τ ,α) =
|α−1WY1Y2 (τ ,α)|

2

S[α−1
|WY1 (τ ,α)|

2]S[α−1
|WY2 (τ ,α)|

2]
, (10)

where α and τ are the scale factor and time shift, respectively,
and S is a smoothing operator. As in the case of the BME
method, more theoretical and technical details regarding HHT
and wavelet analysis can be found in the cited scientific literature.

RESULTS

Spatiotemporal Analysis
A total of 14,040 space-time records were included in the
spatiotemporal analysis of this work. In the R2 × T domain,
the HFRS incidence variability in Heilongjiang province was
measured by means of the isotropic covariance plotted in
Figure 2A. This space-time HFRS covariance combined two
theoretical models, an exponential and a Gaussian (squared
exponential) model, i.e.,

cX(h, τ ) = e
−

h
72×103

−(
τ
2.6 )

2

, (11)

where 72 × 103 (m) and 2.6 (months) are, respectively, the
spatial and temporal correlation ranges of the HFRS incidence
distribution. The interpretation of the spatiotemporal covariance
plots of Figure 2A implies that the distribution of HFRS cases
during the period Jan 2005–Dec 2013 were controlled by spatial
and temporal dependences. In quantitative terms, the covariance

value [around 0.3 (cases/105)
2
] at the time lag τ = 4 (months)

indicates a rather strong temporal dependence among the HFRS
incidence values. On the other hand, the spatial neighborhood
effect is about 200 (km), which also indicates a significant spatial
dependence among incidence values.

By inserting Equation (11) into Equation (2b), the traveling
coefficient was calculated to be υ = |υ| = −10650.89τ . Then,
the HFRS incidence data points were projected from the R2 × T
domain onto the reduced dimensionality R2 domain (Figure S1).

Following the projection process, the empirical HFRS covariance
and the fitted covariance model in the R2 domain are plotted
in Figure 2B, where the HFRS covariance model is analytically
given by

c
̂X(

̂h) = 0.75(1−
1.5̂h

104
+

0.5̂h3

1012
)+ 0.25e

−

̂h
3.5×105 . (12)

This covariance is also of reduced dimensionality compared
to that of Equation (11). In addition, the theoretical
covariance model of Equation (12) provided a better fit to the
corresponding empirical covariance than the covariancemodel of
Equation (11).

HFRS Incidence Mapping
The HFRS incidence maps were firstly generated using the P-
BME technique. For illustration, the monthly HFRS incidence
maps for the year 2006 (January–December) are shown in
Figure 3. Additional HFRS incidence maps for all the years
considered can be found in the section of “Supporting
Information.”

As regards spatial variation, three areas with considerable
HFRS incidence are identified in the maps of Figure 3,
particularly, in the eastern, the western and the southern parts
of the Heilongjiang province. Among them, the eastern part
shows high HFRS incidence values over a larger area than in
the other two parts. As is noted in the section of Discussion,
this happens because there exists a corresponding large area
of croplands and rivers in the eastern part that are linked
to increasing HFRS incidence. As regards the temporal HFRS
variation in Heilongjiang province, the HFRS incidence variation
exhibited two outbreaks within a year’s time. Specifically, as is
shown in Figure 3 and Figure S12 (Supporting Information),
the HFRS incidence begins to increase in April of 2006, then
a peak is reached in June of 2006, and the HFRS incidence
reduces significantly in September of 2006. The next outbreak
is observed during September 2006 to February 2007 with the
peak occurring in November of 2006. Interestingly, the number
of HFRS cases during the autumn-winter period is much larger
than those during the spring-summer period. As noted in the
section of Discussion, the interpretation of this phenomenon is
that it is probably due to the fact that the autumn-winter period
coincides with the rice harvest season, i.e., after harvest the soil
condition switches from a flood state to a dry state, which leads
to the rodents dispersal or migration causing a higher number of
infected cases).

In the western part of the Heilongjiang province, low HFRS
incidence values were observed during the months February–
September of the period 2006–2013 (but not for the year 2005).
The HFRS incidence at the southern part of the Heilongjiang
province remained high during the months of June, October,
November, and December of each year considered. Apparently,
HFRS is transmitted to the southern part of the province
from its eastern part. Overall, a declining trend of HFRS
incidence is observed in the maps of Figures S3–S11 (Supporting
Information) for the period 2005–2013, which may be due, at
least in part to the development of medical condition and disease
prevention.
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FIGURE 2 | Plots of the spatiotemporal empirical covariances and the fitted theoretical models in (A) the R2 × T domain, and (B) the R2 domain.

A cross-validation analysis of P-BME mapping technique vs.
direct BME mapping is plotted in Figure S2 during the years
2005–2013: specifically, the P-BME mapping was more accurate
in predicting HFRS at low incidence points, whereas the direct
BME mapping was more accurate in predicting HFRS incidence
at high incidence points during 2005 and 2007 (see, also, the
months 1–36 of the time series of HFRS incidence in Figure 4A).
Overall, the P-BME was on average a better predictor of the
space-time HFRS incidence distribution in the Heilongjiang
province than the direct BME: the mean absolute prediction
error for BME over the entire domain was 0.524 cases/100,000
individuals, whereas that of P-BME was 0.459 cases/100,000
individuals. An explanation for the above results is given in the
section of Discussion below.

Ensemble Empirical Mode Decomposition
Using the ensemble EMD method, five IMFs and one residual
component were technically extracted from the HFRS and MEI
series. The results are shown in Figure 4. In the first 40 months,
the HFRS incidence series experienced much higher peaks than
during the remaining months (Figure 4A), which is consistent
with the findings of Figures S3–S11 (Supporting Information)
above. The IMF frequency decreases from IMF1 to IMF5,
whereas the corresponding IMF period increases. As it can be also
seen, the long trends (residual component) of HFRS andMEI are
decreasing.

Each IMF expresses a different fluctuation period (Table 1).
For HFRS, the IMF1 to IMF5 represent incidence periods lasting
5.959, 8.936, 18.024, 39.002, and 64.004months, respectively. The
mainHFRS inherent periods are 5.959, 8.936, and 18.024months,
according to the contribution percentage of IMF’s variance. The
corresponding MEI periods are 5.138, 17.662, 34.629, 50.129,
and 108.466 months, respectively, whereas the main periods are
17.662, 34.629, and 50.129 months. By comparing the periods of
each IMF, it was found that the IMF1 of HFRS has the same (6
months) period as the IMF1 of MEI. Similarly, the IMF3 of HFRS
has the same (18 months) period with the IMF2 of MEI.

Hilbert–Huang and Marginal HFRS
Incidence Spectra
The reason why the time-frequency technique (i.e., Hilbert–
Huang transformation) is used at this study stage is that we
seek to detect the similarities of the two series, in which case
it can be concluded that the two series are inter-related. The
Hilbert-Huang spectra of the HFRS and MEI series displayed in
Figures 5A,B represent the time-frequency-energy distributions
of the original series. As can be seen in Figures 5A,B, continuous
instantaneous frequencies are detected in the low frequency
region of the spectra (<0.15 cycle/month). The energy is also
high in the low frequency region, especially for MEI, although
some amounts of energy are detected in the middle and high
frequency region of the spectra (>0.15 cycle/month).

Moreover, the energy associated with HFRS incidence is more
discretely distributed than that associated with MEI. As is shown
in Figure 6, the marginal spectra of HFRS andMEI have a similar
peak occurring at ∼0.015–0.025 cycle/month. Also, we notice
the peaks at 0.0694 and 0.0787 cycle/month. From 0 to 0.15
cycle/month, both spectra exhibit a decreasing trend. However,
the MEI spectrum decreases rapidly to a small level and the
energy is concentrated in this frequency range. Compared to the
marginal MEI spectrum, the marginal HFRS spectrum presents
a more complex fluctuation pattern across the entire frequency
domain, and the amplitude (or energy) remains above the 0.15
cycle/month threshold.

Wavelet Coherency Analysis
As a result of the wavelet coherency analysis we obtained the
coherency wavelet spectrum between the HFRS and MEI series
shown in Figure 7A. This figure indicates that there exists a
strong coherency between the two series with a periodicity of
6-months band, particularly, during the sampled months 22–31,
41–52, 75–80, and 85–94. A weaker coherency was also detected
around the 12-month band during the sampled months 18∼28,
42∼52, and 61∼83.
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FIGURE 3 | HFRS incidence maps during the period Jan–Dec 2006.

The HFRS and MEI series reconstructed by means of the
wavelet transformation are plotted in Figures 7B,C. These plots
may be interpreted as providing an interesting demonstration
of the HFRS and MEI series oscillations, which is useful for
comparison purposes. A strong coherency is easily detected with
2 periodmonth bands (i.e., 5–7 and 8–16month band) during the
sampled months mentioned above. This explains why the same
oscillation pattern is found in Figures 7B,C.

DISCUSSION

Public health scientists and epidemiologists are increasingly in
need of gaining insight about the space-time HFRS incidence
variation, and about how climate change affects HFRS incidence
dynamics. This is particularly true in Heilongjiang province,
which is one of the most HFRS affected areas in China.
To the best of our knowledge, very few studies have used

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org August 2017 | Volume 3 | Article 16 | 41

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


He et al. A Space-Time Study of HFRS

FIGURE 4 | Ensemble EMD of (A) HFRS series and (B) MEI series. S is the original series and res. denotes the residual series.

TABLE 1 | Statistics of ensemble EMD results.

Modes IMF1 IMF2 IMF3 IMF4 IMF5 Res

HRFS

Period (month) 5.959 8.936 18.024 39.002 64.004 –

Variance (%) 56.612 18.194 20.051 0.913 4.231 –

Correlation coefficient 0.607** 0.390** 0.271** 0.029 0.232* 0.381**

MEI

Period (month) 5.138 17.662 34.629 50.129 108.466 –

Variance (%) 2.595 16.286 52.239 28.803 0.078 –

Correlation coefficient 0.172 0.436** 0.384** 0.340** 0.138 0.128

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

analytical methods to describe the space-time HFRS spread
in Heilongjiang province. On the other hand, the associations
between HFRS incidence and climate factors have been
always assessed in terms of numerical modeling, for example,
autoregressive integrated moving average models (ARIMA),
seasonal ARIMA (SARIMA), ecological niche models (ENM),
Poisson regression models, multiple regression, conditional
logistic regression, and principal components regression (PCR)
models [25, 34, 45–48]. Interestingly, none of these studies
explored the association between HFRS incidence and climatic
factors in the context of their co-variation.

Responding to the above need, the present work is a
collaborative effort between the Zhejiang University (Zhoushan,
China), the Institute of Disease Control and Prevention (Beijing,
China), and the San Diego State University (California, USA).
This collaboration led to the introduction of a combination
of modern space-time modeling and mapping techniques from
BME theory, Hilbert–Huang spectrum analysis and wavelet
analysis in the study of the spatiotemporal HFRS incidence
distribution in Heilongjiang province, and its association with
climate change.

In particular, one of the main elements of this study is
the implementation of the P-BME method [41] to analyze the
space-time HFRS incidence spread in Heilongjiang province.
Monthly HFRS incidence data were analyzed and processed
across the Heilongjiang province during the period 2005–2013.
Monthly HFRS data are used here because they lead to more
accurate predictions than annual data (see below) and, also, they
can serve better our goals to detect the temporal HFRS incidence
pattern (which can be explained in ecological terms) and assess
the association between the HFRS incidence pattern and climate
change (MEI).

A key feature of the P-BME method is that technically it
transfers the study of HFRS incidence spread from the original
3-D (i.e., two space dimensions plus time, R2 × T) domain
onto a reduced dimensionality 2-D (i.e., two space dimensions,
R2) domain. In this way, the difficult to determine space-time
distance (metric) is reduced to a much easier to define spatial
distance, which means that the empirical space-time covariance
of the monthly HFRS incidence distribution is accordingly
transformed into a spatial covariance (see Figure 2). As a result, it
is technically much easier to fit a theoretical model to the spatial
than to the spatiotemporal empirical covariance of monthly
HFRS data.

Next, for comparison purposes, the empirical covariances

and the fitted theoretical models (in the R2 × T and the R2

domains) for the annual HFRS data are shown in Figure S13. This

comparison shows that the temporal dependence of the annual

HFRS data is much stronger than that of the monthly HFRS
data (e.g., by comparing Figure 2 and Figure S13, it is seen that

the annual HFRS covariance value at time lag τ = 4 is about

0.7 (cases/105)
2
compared to 0.3 (cases/105)

2
for the monthly

covariance).
As regards the space-time mapping of HFRS spread in

Heilongjiang province, it was found that the weaker the temporal
dependence of the HFRS empirical covariance is, the better is the
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FIGURE 5 | Hilbert-Huang spectra of (A) the HFRS series and (B) the MEI series. The color bar ranging from dark blue to yellow indicates energy variation from

minimum to maximum.

FIGURE 6 | Marginal spectra of (A) the HFRS series and (B) the MEI series.

P-BME performance compared to that of the direct BMEmethod.
This improved performance of P-BME in this case is explained
by the fact that since the time argument is technically imbedded
within the projected coordinates of the reduced dimensionality
domain, the temporal points with the stronger dependence
(compared to the spatial ones) are not explicitly taken into
account, instead, only traveling spatial points are considered in
HFRS prediction and mapping, and the HFRS prediction error
would be larger in this case. Compared to the original BME
method, the P-BME was found to provide on average more
accurate HFRS incidence predictions in the case of monthly
HFRS incidence data (the mean absolute prediction error for P-
BME is 0.459 cases/100,000 individuals vs. 0.524 cases/100,000

individuals for direct BME), whereas the opposite was the case
for annual HFRS incidence data (the mean absolute prediction
error for direct BME was 3.34 cases/100,000 individuals and for
P-BME it was 4.56 cases/100,000 individuals).

Other findings of this study included the following. Three core
areas were observed in the HFRS incidence distribution maps
we obtained for the period Jan 2005–Dec 2013, particularly, the
eastern, western and southern parts of Heilongjiang province. As
the drainage map of Heilongjiang province shows (Figure S14),
the Wusuli and Songhua rivers, as well as parts of the Heilong
river belong to the eastern part, and the Neng and Mudan
rivers belong to western and southern parts, respectively, of the
Heilongjiang Province. Regarded as major water sources, these
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FIGURE 7 | The HFRS-MEI association. (A) Wavelet coherency between HFRS and MEI series. The colors depict coherency values from black (0) to white (1); black

line represents the cone of influence that delimits the region that is not influenced by edge effects; the dash dot line shows a = 5% significance level computed based

on 500 simple bootstrap. (B) The oscillation series during the period 5–7 months band that was reconstructed from the real part of the wavelet transformed series.

(C) The oscillation series during the period 8–16 months band reconstructed from the real part of the wavelet transformed series. Dash lines represent oscillation of

the HFRS series, while black line represents oscillation of the MEI series.

river basins provide a suitable environment for rodent hosts and
their reproduction. The presence of a river or a pond can be a
risk for human HFRS infection [49]. Bao et al. [50] found that
HFRS incidence had a strong correlation with distance to rivers
(in particular, HFRS incidence had a quadratic relationship with
distance to rivers, and R2 = 0.999, p = 0.000). On the other
hand, severe droughts can significantly decrease HFRS incidence
[2, 51]. As rivers can provide sufficient water for vegetation
irrigation purposes, the croplands are always located near rivers,
and Heilongjiang province is no exception.

In the Heilongjiang province, croplands, mixed forests, and
cropland/natural vegetation mosaic account for 38.98, 26.29, and
16.92% of the territory, respectively (Figure S15). Specifically,
croplands are largely distributed in the eastern and western parts
of Heilongjiang province, and there are also some croplands in
the southern part of Heilongjiang province, which correspond to
the three core HFRS areas mentioned above. It has been found
that crop production is highly correlated with HFRS incidence
with a correlation coefficient r = 0.96 (p = 0.005) due to
the fact that crop can directly or indirectly serve as food for
rodent hosts [45]. Increasing food availability contributes to the
growth of rodent host population. This can raise the infection
probability of humans, especially farmers, who have a higher
likelihood to come in contact with these animals [52, 53]. Farmers
usually don’t have steady jobs other than farming, and they also
have higher mobility compared to other professions. Therefore,
they may carry and spread hantaviruses to wider areas than
the croplands during their traveling after the farming season.

Under these conditions, HFRS may spread rapidly. Being aware
of the above high HFRS spread likelihood, it is necessary to
implement public health interventions in the core areas of the
Heilongjiang province to avoid HFRS outbreaks and spread
(these interventions include, e.g., the extermination of potential
rodent hosts and vaccination).

In addition, June and November HFRS incidence peaks were
found during the years 2005–2013 (Figure S12). Interestingly,
this bimodal temporal pattern was also found in Hubei province
after 1995, as result of the Seoul virus-related HFRS spring
outbreaks and the Hantaan virus-related HFRS winter outbreaks
[54]. Another study found that HFRS associated with wild and
house rodents occur during different seasons [55]. In view of
the fact that land-use can affect virus occurrence in hosts by
influencing movement and contact rate [56, 57], we notice that
Heilongjiang is located in a high latitude area, where paddy
rice only grows once a year (during May and October). At the
beginning of sowing season in May, soils are irrigated to remain
in a flood state for paddy rice growth, and the soil conditions
change from drying to flooding. After harvesting, the soil will
return to drying conditions in October. These switches between
different land environmental conditions may cause a cascade of
factors contributing to infectious disease emergence, especially
invasive alien species due to the fact that they are invaders
over their natural range in the new environment [58–60]. More
specifically, an agricultural ecosystem is particularly vulnerable
to invasive alien species and anthropogenic activities that can
initiate or accelerate the introduction or invasion of alien species
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[58]. Sufficient food availability during June contributes to
rodent reproduction, whereas insufficient food availability or
the dry conditions of November will result in spur sudden
dispersal or migration events, both of which can increase HFRS
infection [61]. Whats more, the edges of paddy fields may involve
ecotones as habitats with infectious disease and animal reservoir
hosts being abundant in wildlife [62]. Following a month-
long period of environmental change, HFRS outbreaks may
occur.

Generally, the study of real world phenomena is highly
complex and interdisciplinary, in particular the study of large
spatial scale climate and disease variation (which can be affected
by biological, social, geographic, economic, medical factors
etc.; [63]). Hence, the observation series may contain a large
amount of direct and indirect information. With such complex
information, it can be really hard for scientists to collect
data from various disciplines and explore the relationship
among them through hypothesis- and equation-driven
methods.

In view of the above considerations, time-frequency analysis
methods, regarded as data-mining tools, constitutes another
major component of the present study. The results can reveal
the intrinsic variation patterns of HFRS incidence and MEI
series, as well as the dynamic characteristics of the HFRS
and MEI cycles in the time-frequency domain. Understanding
the association between HFRS incidence and climate change
(using MEI as a proxy, measuring coupled oceanic-atmospheric
character of ENSO event) provides a potential auxiliary way to
assess the public health effects of global climate change, since
climate variability has important effects on wildlife population
dynamics [64, 65]. The Hilbert-Huang transformation is a
powerful tool for solving mode-mixing problems and can be also
used as a filter for decomposing raw HFRS incidence series into
several independent series with disparate modes, i.e., IMFs [66].
Different component series were obtained that describe various
inherent disease characteristics that cannot be detected in the raw
series. Our results showed that both HFRS and MEI series have
six types of characteristic components. A monotonic declining
trend is shown in Figure 4, and both series are characterized by 6-
and 18-months periods, approximately (Table 1), indicating that
similar patterns are hidden in the variation features of the two
series. For further analysis, the Hilbert–Huang and the marginal
spectra were used to assess the strength of series variation in the
combined time-frequency domain. For both series, stable and
consistent variations were observed at low frequency regions,
although certain discrete fluctuations can be found in the HFRS
spectra that are not observed in theMEI spectra. Such differences
may not be explained by climate change (MEI) but rather in terms
of non-climatic factors, e.g., population immunity, public health
condition, and socio-economic factors [10, 54, 67].

Moreover, wavelet coherency analysis showed that the HFRS
incidence has a strong association with MEI during a 6-month
period (Figure 7). These results suggest that the HFRS incidence
dynamics are interrelated with climate change and the MEI can

serve as a potential predictor of HFRS occurrence. We notice
that similar results have been found for diseases like dengue
fever, dengue hemorrhagic fever, hantavirus cardiopulmonary
syndrome, andmalaria [68–71]. Moreover, regional precipitation
is known to be influenced by ENSO, showing the strongest
interrelation with climate variability around the Globe [72].
Increasing precipitation provides sufficient soil moisture for
improving ecosystem productivity [64]. As a result, the number
of rodents grows rapidly, leading to increasing contact rates
between rodents and between rodents and humans [61]. The
HFRS infection rate increases under the above ecological
changes. A deeper understanding of the association between
climate change and HFRS incidence can provide a potential tool
of early HFRS outbreak warning, especially concerning short-
term effects.

Certain limitations of the present work should be
acknowledged, which are rather typical for this kind of
quantitative studies. The first one is data limitation, i.e., the
HFRS dataset used is an aggregated set that does not distinguish
the infectious HFRS types, e.g., Hantaan virus or Seoul virus,
for which the infectious dynamics may be different. Second,
the impact of climate change on human HFRS incidence can
be twofold: impact from rodents to rodents and infection
from rodents to humans. Therefore, distinct studies of these
two possibilities would offer a better understanding of HFRS
transmission. Third, some other impact factors could also be
included in HFRS pattern analysis, such as population immunity
and socio-economic factors. Future work should focus on a more
detailed analysis of spatiotemporal intensity differences of the
various environmental factors impacting HFRS incidence.

In sum, the present work provides a quantitative study of
the HFRS incidence spread in Heilongjiang province (China).
Three core areas with high HFRS incidences were identified. In
addition, time-frequency analysis provides evidence that HFRS
incidence is closely related to climate change.
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Invasive alien species cause major changes to ecosystem functioning and patterns of

biodiversity, and the main factors involved in invasion success remain contested. Using

the Mediterranean island of Crete, Greece as a case study, we suggest a framework for

analyzing spatial data of alien species distributions, based on environmental predictors,

aiming to gain an understanding of their spatial patterns and spread. Mediterranean

islands are under strong ecological pressure from invading species due to their restricted

size and increased human impact. Four hypotheses of invasibility, the “propagule

pressure hypothesis” (H1), “biotic resistance hypothesis vs. acceptance hypothesis” (H2),

“disturbance-mediated hypothesis” (H3), and “environmental heterogeneity hypothesis”

(H4) were tested. Using data from alien, native, and endemic vascular plant species,

the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and

environmental heterogeneity hypotheses were tested with Generalized Additive Modeling

(GAM) of 39 models. Based on model selection, the optimal model includes the positive

covariates of native species richness, the negative covariates of endemic species

richness, and land area. Variance partitioning between the four hypotheses indicated

that the biotic resistance vs. acceptance hypothesis explained the vast majority of the

total variance. These results show that areas of high species richness have greater

invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of

alien species. The negative correlation between alien and endemic species appears to be

predominantly driven by altitude, with fewer alien and more endemic species at greater

altitudes, and habitat richness. The negative relationship between alien and endemic

species richness provides potential for understanding patterns of endemic and alien

species on islands, contributing to more effective conservation strategies.

Keywords: biological invasions, alien species, endemic species, statistical hypothesis testing, data mining,

statistical interpretation, island ecosystems, Crete
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Bjarnason et al. Hypotheses of Plant Species Invasions

INTRODUCTION

Alien species are non-indigenous taxa introduced to areas
beyond their natural distribution and biogeographical barriers
by human activity. They can become invasive and have major
impacts on native biodiversity by causing local or global
extinctions, modifying community composition, and impeding
or altering ecosystem functioning (Kolar and Lodge, 2001;
Richardson and Pyšek, 2006; Reaser et al., 2007; Blackburn et al.,
2014; Kumschick et al., 2015). Invasion can be viewed as a
function of the relationship between abiotic characteristics of
an invaded ecosystem, the traits of alien species and recipient
community, in addition to propagule pressure that includes the
number of non-native individuals in an introduced group and the
number of introduction events (Lockwood et al., 2005; Catford
et al., 2009). Each of these factors contribute to the success of
an invasion, although their influence is unlikely to be equal,
and in many cases, there are multiple, largely interactive factors
underlying invasibility (Alpert et al., 2000; Catford et al., 2009,
2011).

Several hypotheses have been proposed for explaining
successful invasions (Hierro et al., 2005; Jeschke, 2014). These
hypotheses may actually be overlapping and they are not
necessarily mutually exclusive. According to the “propagule
pressure hypothesis” (H1), high supply and frequency of
plant propagule introductions (including adult plants, seeds or
reproductive vegetative fragments) should raise the probability
of successful invasion through increased genetic diversity, seed
swamping and ongoing addition of new individuals, greater
probability of introduction into a favorable environment, and
increasing the chances of overcoming environmental and
demographic stochasticity (Lockwood et al., 2005, 2013; Catford
et al., 2009; Simberloff, 2009). In the British Isles, the H1 may
explain, to a degree, why many plant invasions occur close to
human sites and settlements (Crawley et al., 1996).

The “biotic resistance hypothesis” predicts ecosystems will
have greater resistance to invasion with high native species
richness compared to ecosystems with low richness (Elton,
1958; Levine and D’Antonio, 1999; Lonsdale, 1999; Jeschke,
2014). It is a special formulation of the “diversity-stability
hypothesis,” a more general ecological hypothesis, according to
which ecosystems with high biodiversity are more stable than
ecosystems with low biodiversity. This is closely related to the
“empty niche” hypothesis, which posits that when an ecosystem
is unsaturated from low indigenous species diversity, invading
groups will occupy underutilized niches and use available
resources (MacArthur, 1970; Hierro et al., 2005). This hypothesis
predicts a negative correlation between native and alien species
richness. However, a number of studies reported the opposite
pattern, i.e., a positive correlation between native and alien
species richness (McKinney, 2002), leading to the formulation
of the “acceptance hypothesis” and to a “rich-get-richer” pattern
(Stohlgren et al., 2003, 2006). As “biotic resistance hypothesis vs.
acceptance hypothesis” (H2) are essentially two sides of the same
coin we have therefore treated them as one testable hypothesis,
i.e., the chances of successful invasion depend (positively or
negatively) on the native species richness.

The “disturbance-mediated hypothesis” (H3) states that
disturbance can reset succession and improve availability of
resources, providing alien species with an equal or improved
chance of success in colonization and establishment (Catford
et al., 2009). A strong global relationship has been proposed
between human-induced disturbance and invasibility (Zhang
et al., 2006), explained both by human activities creating
pathways for the introduction of alien species and the ongoing
generation of new (artificial or agricultural) habitat types due to
human-mediated habitat destruction (of natural habitat types)
and biodiversity loss.

According to the “environmental heterogeneity hypothesis”
(H4), ecosystems can host a diversity of species when they
contain a variety of niches and high environmental variability
(Melbourne et al., 2007; Catford et al., 2009). Heterogeneity in
key environmental factors, such as temperature, water, nutrients,
sunlight and physical disturbances plays a definite role in
community-level resistance to new invasions, as well as in their
outcome and the severity of their impacts (Melbourne et al.,
2007).

Islands are geographically isolated and often have a distinct
combination of species compared to those found on continents,
and are under particularly strong ecological threat from invasive
alien species (Reaser et al., 2007). The Mediterranean islands
are considered more vulnerable to invasive alien species
introductions than their comparable closest mainland areas due
to their proportionally lower native diversity and the presence
of unsaturated local communities (Hulme et al., 2008), and
evidence suggests there have been major increases in the number
of invasive alien species recently (Celesti-Grapow et al., 2016).
Moreover, the historical and modern importance of ports,
trade and anthropogenic disturbance, with changes to land use
and climate are likely facilitating further the introduction and
establishment of alien species (Ross et al., 2008). Crete, the fifth
largest Mediterranean island, and surrounding islets provide an
interesting case study to test hypotheses on plant invasions, as
the islands are a biodiversity hotspot containing a unique flora
(Medail and Quezel, 1997). The islands have been populated
by humans for over 9,000 years, but there are recent severe
anthropogenic pressures and land use changes (Papanastasis and
Kazaklis, 1998; Sarris et al., 2005). We sought to quantify the
patterns of alien vascular plant species richness by testing four
invasibility hypotheses.

METHODS

Study Area
The island of Crete and 49 surrounding islets (i.e., the Cretan
area Turland et al., 1993) were examined, covering an area of
8,374 km2 and including 1,647 vascular plant species (Turland
et al., 1993). The Crete area exhibits rich plant diversity and is a
red alert biodiversity hotspot within the Mediterranean (Médail
and Diadema, 2009), and around 10% of its total native number
of species comprises endemic vascular flora (Turland et al., 1993).
Apart from the endemic species, the flora comprises significant
Eastern Mediterranean and Anatolian elements, (e.g., Datisca
sp), Tertiary relictual Aegean endemics (e.g., Lomelosia sp), and
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North African species (Erodium sp). There are three mountain
massifs in Crete, with Psiloritis the highest (at 2,456m) and
Lefka Ori the most extensive. The latter, situated at the western
part on the island include 15 peaks above 2,200m (Vogiatzakis
et al., 2003). The distribution of elevations on the island changes
steeply, particularly on its south-western part (Vogiatzakis et al.,
2003). Coastal areas are highly modified mainly for tourism
infrastructure, and the human population of the island mainly

resides on the north side where most cities are located (and thus
most human-created and modified habitats are present). There
is a significant number of cultivated land areas (agricultural
habitats) predominantly with olive trees and grapes.

Linking Hypothesis with Covariates
Statistical models were designed to explicitly test the four
hypotheses. The covariates used to test H1 were the percentage

TABLE 1 | List of all models and predictor covariates of alien species richness related to each of the four hypotheses.

Hypothesis Model Predictor variables

g0 Area

1 g1 Artificial coverage + area

g2 Agricultural coverage + area

g3 Artificial coverage + agricultural coverage + area

2 g4 Native species richness + area

g5 Endemic species richness + area

g6 Native species richness + endemic species richness + area

3 g7 Artificial richness + area

g8 Agricultural richness + area

g9 Artificial richness + agricultural richness + area

4 g10 Soil richness + area

g11 Habitat richness + area

g12 Altitude range + area

g13 Temperature range + area

g14 Precipitation range + area

g15 Altitude range + habitat richness + area

g16 Altitude range + soil richness + area

g17 Altitude range + temperature range + area

g18 Altitude range + precipitation range + area

g19 Habitat richness + soil richness + area

g20 Habitat richness + temperature range + area

g21 Habitat richness + precipitation range + area

g22 Soil richness + temperature range + area

g23 Soil richness + precipitation range + area

g24 Temperature range + precipitation range + area

g25 Altitude range+ habitat richness + soil richness + area

g26 Altitude range+ habitat richness + temperature range + area

g27 Altitude range+ habitat richness + precipitation range + area

g28 Altitude range+ soil richness + temperature range + area

g29 Altitude range+ soil richness + precipitation range + area

g30 Altitude range+ temperature range + precipitation range + area

g31 Habitat richness+ soil richness + temperature range + area

g32 Habitat richness+ soil richness + precipitation range + area

g33 Habitat richness+ temperature range + precipitation range + area

g34 Soil richness+ temperature range + precipitation range + area

g35 Altitude range+ habitat richness+ soil richness + temperature range + area

g36 Altitude range+ habitat richness+ soil richness + precipitation range + area

g37 Habitat richness+ soil richness+ temperature range + precipitation range + area

g38 Altitude range+ habitat richness+ soil richness+ temperature range + precipitation range + area

All models also included area as a covariate.
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cover of artificial and agricultural habitats, with each providing a
measure of human presence, activity and intensity of the main
pathways for alien plants, i.e., ornamental planting, trade of
contaminated commodities, and cultivation, (see European Alien
Species Information Network; Katsanevakis et al., 2015), and
used herein as a surrogate of propagule pressure. For H2, native
and endemic species richness provides a measure of species
diversity. For H3, artificial and agricultural habitat richness
were used measuring the variety of anthropogenic habitats and
thus available empty habitats deriving from human-mediated
disturbance. Artificial plus agricultural percentage of cover was
partly correlated with total habitat richness (linear regression,
R2 = 23.1%) and thus to that end there is some co-linearity
between the covariates for H1 and H3 (see Figure S1). For
H4, environmental traits measuring heterogeneity were used;
these included altitude range, habitat richness, soil richness,
temperature range, and precipitation range. In the plant atlas by
Turland et al. (1993) coastal cells have unequal surface area with
inland cells. In order to account for this effect the total surface
area of each cell was normalized by the surface area of inland cells
(8.25× 8.25= 68.0625 km2). All hypotheses included the effects
of cell land area as a fixed covariate in order to account for the
effect of unequal land surface area of cells neighboring with the
sea. Therefore, apart from cell area, all four hypotheses included
different sets of covariates. A full list with all the statistical models
explored and their link with the four hypotheses is provided in
Table 1.

Plant Data
Maps of presence-absence vascular plant species distributions in
the Cretan area were digitized from Turland et al. (1993) and its
latest supplement (Chilton and Turland, 2008). The main island
of Crete and the surrounding islands were divided into 162 grid
cells of 8.25 × 8.25 km following the grid cell size of Turland
et al. (1993). For each cell, the native, endemic, and alien species
richness was calculated. We used (Turland et al., 1993; Chilton
and Turland, 2008) and references therein to define native (nnat
= 1,395) and endemic (nend = 174) species, and the vascular
plants from D’Agata et al. (2009) that are listed in Turland et al.
(1993) and Chilton and Turland (2008) were used to define alien
(nalien = 78) species.

Land Cover Data
Habitat classification relied on the most detailed resolution
available of the CORINE Landcover (level 3, spatial resolution
100m; EEA, 2010), to calculate the richness and percentage of
every land cover class within every grid cell, using Patch Analyst
5.1 within ArcGIS. In order to avoid potential temporal deviance
between habitat classifications and species presences in cells, the
last updated available supplement for the flora of Crete published
in 2008 (Chilton and Turland, 2008) and the closest available
time snapshot of the CORINE landcover for Crete in 2010 were
used. The classification process resulted in 29 habitat types, of
which 9 were agricultural, 7 were artificial, and 13 were natural.
We recorded habitat richness per cell as the number of different
land cover types present on each cell as well as their percentage of
cover.

Climatic, Soil, and Altitude Data
Climatic variables were derived fromWorldClim (Hijmans et al.,
2005) for Crete and surrounding islets. The original resolution
of the climatic data was 1 km. In order to re-scale them to
8.25 km and match them with the grid of the plant data
the mean values of the 1 km data within the 8.25 km cells
were calculated and used. The climatic variables used here
were: annual mean temperature (Tempmean), annual mean
temperature of warmest quarter (Tempwarm), annual mean
temperature of coldest quarter (Tempcold) all in ◦C, annual
mean precipitation (Precipmean), precipitation of wettest quarter
(Precipwet), precipitation of driest quarter (Precipdry) all in mm
year−1. Soil data were derived from SoilGrid (Hengl et al., 2014)
and were rescaled from 1 to 8.25 km as done for the climatic data.
The soil variable used was soil richness in the cell (Soildiv) derived
as the number of different soil types occurring within each cell.
The indices of elevation recorded were the mean of all elevation
scores within the cell (Alt) and the range of elevation within the
cell (Alt range) both in meters.

Statistical Analysis
The inherently non-linear relationship between alien species
richness and potential explanatory covariates were modeled with
Generalized Additive Models (GAMs); (Hastie and Tibshirani,
1990). GAMs are a generalization of the multiple regression
model maintaining the additive nature of the model replacing
the terms of the linear equation with non-parametric smooth
functions s(Xi) of each independent variable (Xi). In GAMs the
distribution of the dependent variable can be explicitly quantified
and therefore does not need to be normal nor does it have
to be continuous. Having specified the underlying distribution
of the dependent variable, values are predicted from a linear
combination of independent variables, via a link function which
specifies the distribution of the dependent variable:

g (E [Y]) = b0 + s1 (X1) + . . . + sm(Xm)

where Y is the dependent variable, E[Y] is the expected value of Y
and g(E[Y]) is the link function, that links the dependent variable
to the predictor variables Xi.

Specifically, the expected value of alien species richness in each
8.25 × 8.25 km cell was related to the explanatory covariates,
according to the general formulation:

g
(

E
[

Richnessi
])

= c+
∑

m

sm(Xmi)

where g is the link function, sm(·) is the one-dimensional
smooth function for covariate m, and Xmi is the value of
covariate Xm for the ith cell. All the smooth functions sm(·)
were implemented using penalized cubic regression splines (with
the default basis dimension q = 10, estimated by penalized
iterative least squares; Wood, 2006). Optimum smoothing was
determined using generalized cross validation (GCV), increasing
by a factor of γ = 1.4 in the GCV score the amount that the
effective degree of freedom of each model counts. As occasionally
the GCVmethod may result in over-fitting a value of γ ≈ 1.4 was
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FIGURE 1 | Initial data mining: (A) exploring the relationship between species

richness data (described in the main text, methods “Plant data”) (B) land cover

indices (described in the main text, methods “Land cover data”), and

(C) environmental and climatic data (described in the main text, methods

“Climatic, soil, and altitude data”) with multi-scatter plots. Grey circles indicate

data points, solid red lines linear regression, and dashed green lines a lowess

smoother between each two data indices.

used in order to account for this without compromising model fit
(Kim and Gu, 2004). The model fitting was conducted using the
mgcv package (Wood, 2006) in R v.3.1.2 (R Development Core
Team, 2016).

To identify the best underlying probability distribution, five
different error distributions were examined including Gaussian,
Lognormal, Gamma, Poisson, and Negative binomial; these
distributions were compared based on a full model with all of
the predictor variables included using the Akaike Information
Criterion (Akaike, 1973; Burnham and Anderson, 2002). After
identifying the best probability distribution, AIC was used for
model selection among the set of candidate models. Thirty-nine
alternative GAMs gi, i = 0–38 were fitted, where a reference
model go was used with area as the only predictor variable.
The subsequent 39 models all involved one or more predictor
variables related with the four hypotheses (see Table 1 for the full
list). The equations of the maximal model for H1, H2, H3, and
H4, respectively are:

H1 : g3
(

E
[

Alien
])

= s1
(

Artif . cover
)

+ s2
(

Agric. cover
)

+ s3(area)

H2 : g6
(

E
[

Alien
])

= s1
(

Native spp richness
)

+ s2
(

Endemic spp richness
)

+ s3(area)

H3 : g9
(

E
[

Alien
])

= s1
(

Artif . richness
)

+ s2
(

Agric. richness
)

+ s3(area)

H4 : g38
(

E
[

Alien
])

= s1
(

Alt. range
)

+ s2
(

Habitat richness
)

+ s3
(

Soil richness
)

+ s4
(

Temp. range
)

+ s5
(

Precip. range
)

+ s7(area)

Themodel with the lowest AICwas selected as the best model. An
empirical semivariogram of the residuals of the optimal model
showed no evidence of spatial autocorrelation (Legendre and
Fortin, 1989).

Variance partitioning was employed in order to provide a
furthermeasure of howmuch independent variation is accounted
for by each of the four hypotheses (Borcard and Legendre,
1994). We added together all the relevant covariates to each
hypothesis and quantified the independent contribution of each
hypothesis to the total pattern of alien species richness (H1
included variables as described in the model g3, H2 as in g6,
H3 as in g9, and H4 as in g38). Randomizations (n = 99) were
also performed in order to asses confidence intervals (Mac Nally,
2002).

RESULTS

An initial data mining exploration between all dependent and
independent variables with multi-scatter plots is provided in
Figure 1 and a cluster analysis is provided in the Supplementary
Material (Figure S1). From a simple initial linear regression or
smoothing perspective, alien species richness have a positive
relationship with native species richness, and no relationship
(regression slope close to zero) or weakly negative based
on smoothing trend lines with endemic species richness
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(Figure 1A). Endemic species richness was positively correlated
with native species richness (Figure 1A). Overall the relationship
between richness and cover is not straightforward as either
regression slopes are relatively low or there is a deviance
between regressions and smoothing (Figure 1B). Altitude is
positively correlated with altitude range and mean precipitation
with precipitation range but temperature mean has no clear
relationship with temperature range (Figure 1C). As expected
altitude is negatively correlated with mean temperature, but not
with temperature range (Figure 1C). Altitude is also negatively
correlated with soil richness (Figure 1C).

The Poisson probability distribution had the lowest AIC score
(Table S1), and thus all models were run using a Poisson error
distribution and log as the natural link function. From the
full analyses of all 39 models (Table S2), the model g6 related
with the H2 was the best-supported model with the lowest
AIC (550.7793) and explained 67.8% of deviance. Model g6

included native species richness, endemic species richness and
area as predictor variables. Alien species richness was positively
correlated with native species richness, negatively correlated with
endemic species richness, and, as expected, increased with area
across the main range of cell land areas (the slightly declining
richness with area at high values of area was non-significant and
was based on a very low number of data points); (Figure 2).

Variance partitioning of the habitat and environmental
covariates included in each hypothesis showed the variables
involved in H2 explained close to 60% of variation in alien
richness, whereas H1 explained just over 10%, H3 close to 30%,
and H4 under 10% of variation (Figure 3).

DISCUSSION

Patterns of alien species in the Cretan area, based on testable
hypotheses, provided the greatest support for the “biotic

FIGURE 2 | Estimated smooth terms for the best model of alien species richness. The top panels (A) show the positive correlation between alien species richness

and native species richness, (B) the middle panel shows the negative correlation with endemic species richness, and (C) bottom panel the relationship with area. For

panels on the left, smooth terms (black lines) are given in the linear predictor scale and the corresponding 95% confidence intervals are indicated with gery intervals.

For panels on the right, smooth terms are given in the response scale of the raw data (i.e., smooth terms were exp-transformed). The numbers after the commas in

the y-axis titles are the estimated degrees of freedom of the smooth terms. Rug on the horizontal axis represents density of datapoints.
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FIGURE 3 | Variance partitioning of environmental and habitat covariates

included in each of four hypotheses. H1, propagule pressure hypothesis;

H2, biotic resistance vs. acceptance hypotheses; H3, disturbance-mediated

hypothesis; H4, environmental heterogeneity hypothesis.

resistance vs. acceptance hypotheses” (H2) both in terms of
model selection out of 39 models as well as from variance
partitioning—nearly 60% of the total variance was explained
by H2. This does not mean there is no relationship between
alien species richness and human activity and environmental
disturbance. Indeed, other models than the optimal had strong
explanatory power and all hypotheses showed patterns as
expected with alien species richness been positively correlated
with propagule pressure (Wallace and Prather, 2016), human
activity (Malavasi et al., 2016), and environmental disturbance
(Peltzer et al., 2016) as well as synergistic interactions (Barney
et al., 2016; Berg et al., 2016). These results are only partly shown
here, as the deviance explained by each model and variance
partitioning show the magnitude of the result but not the sign of
the relationship, and interactions of covariates between different
hypotheses were not explored.

Our results indicate that rather than a “black and white” or
a “single variable” attempt to explain patterns of alien species,
the reality seems to lie in between—all hypotheses contributed to
explaining the pattern. The concept of a single “true” predictive
model seems to be of little utility in ecology (Evans et al., 2014)
with more data resulting in more complex models (Evans and
Moustakas, 2016). Nevertheless, in this study the goal was not
to develop the best possible predictive model (i.e., explaining as
much of the variance as possible) but rather to investigate the
differential support of the main hypotheses in invasion biology.
Note that several more testable hypotheses exist—(see e.g., Hierro
et al., 2005; Catford et al., 2009; Jeschke, 2014)—regarding
invasibility that we did not explore because some of them are
overlapping and would require using the same covariates to
explore different hypotheses.

According to the results derived here there is a strong
implication for the acceptance hypothesis and a “rich-get-richer”
distribution of invasive vascular plant species in the Cretan area,
whereby regions with high native species richness are associated
with high alien species richness (Stohlgren et al., 2003). The
positive correlation between alien and native species richness

is consistent with multiple previous large-scale observational
studies (Knops et al., 1995; Robinson et al., 1995; Planty-Tabacchi
et al., 1996; Levine and D’Antonio, 1999; Lonsdale, 1999; Levine,
2000; McKinney, 2002; Stohlgren et al., 2003, 2006; Souza et al.,
2011; Blackburn et al., 2016). It is difficult to ascertain the full
causal relationship between alien and native species distributions,
as their apparent co-variation may be due to similar, independent
reactions to the same factors, specifically favorable environmental
conditions, adequate resources and fertile land, meaning the
conditions good for native species are also good for alien species
(Levine and D’Antonio, 1999; Stohlgren et al., 1999; Richardson
and Pyšek, 2006).

There are several studies reporting an inverse relationship
between alien and native species, in terms e.g., of environmental
energy and human impact (Marini et al., 2009), responses to
soil fertility and in general of trait or performance differences
among plant functional groups (Peltzer et al., 2016). However, the
existence of different patterns between alien and native species
is not consistent worldwide (Ordonez and Olff, 2013), and the
result of inverse patterns between alien and endemic species
reported here appears to be fairly novel.

We performed a post-hoc analysis examining separately the
relationship of alien and endemic species richness with altitude
and habitat richness, and the correlation between endemic
and native species richness (Figure 4). There is a positive
correlation between endemic species richness and altitude,
the opposite pattern found for alien species (Figures 4A,B),
indicating the observed relationship between alien and endemic
species richness is possibly linked with altitude. Indeed, almost
half (43%) of Cretan endemics are found solely at elevations
higher than 1,000m (Legakis and Kypriotakis, 1994). Endemic
species richness is known to increase with altitude (Cañadas
et al., 2014), and typically peaks at higher altitudes compared
to total species richness (Vetaas and Grytnes, 2002). Alien
and endemic species distributions have been shown to differ
along a longitudinal gradient in rivers in another Mediterranean
island (Sardinia), with endemic species more common in natural
upper parts and alien species more common in lower and
middle parts, the latter linked to human impact and agriculture
(Angiolini et al., 2013). In Tenerife (Canary islands) altitude
was the most important factor determining (inverse) patterns
in endemic and native species along roadsides (Bacaro et al.,
2015). Altitude itself is likely to be masking several long-term
acting processes regarding endemism: the increased proportion
of Cretan endemics with altitude is regarded as being due to
diversification linked to the Cretan mountains (especially mid-
altitude areas), driven by altitudinal-driven ecological isolation
(Trigas et al., 2013). Climate filtering reflected in varying patterns
along altitudinal gradients is an important determinant of the
richness of alien species (which are not adapted to high altitudes),
while anthropogenic pressures may explain the richness of
alien species at low elevation (Bacaro et al., 2015). Higher
elevations have an interaction effect between area and habitat
diversity: area since in small islands land surface area extends
with elevation, and components of habitat diversity, such as
more heterogeneous topography, a broader selection of micro-
habitats, and a reduced effect of the sea are related with elevation
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(Panitsa et al., 2006). It is therefore possible that the effect of
environmental heterogeneity is hidden behind elevation.

Our post-hoc analysis indicated a further variable of interest,
habitat richness, which showed a positive correlation with alien
species richness (Figure 4C), supporting theH4 but no consistent
effect on endemic species (Figure 4D). This shows the two groups

have different responses to habitat richness, but the inconclusive
results for endemic species seem to rule out habitat richness as
a primary driver of the relationship between alien and endemic
species richness. In this case this implies that habitat richness is
explored differently by alien and endemics potentially because
alien species are habitat generalists while endemics are specialists

FIGURE 4 | Estimated smooth terms for (A) alien species richness and altitude, (B) endemic species richness and altitude, (C) alien species richness and habitat

richness, (D) endemic species richness and habitat richness, and (E) endemic species richness and native species richness. Smooth terms (black lines) are given in

the linear predictor scale and the corresponding 95% confidence intervals are indicated with gray intervals. The numbers after the commas in the y-axis titles are the

estimated degrees of freedom of the smooth terms. Rug on the horizontal axis represents density of datapoints.
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(Harrison, 1999; Evangelista et al., 2008). More often than not,
high habitat richness locations contain agricultural or artificial
habitats (i.e., high habitat richness is associated with non-natural,
modified habitats). This is particularly important as due to
climatic change, disproportionately more high altitude habitats
are likely to be modified (Louca et al., 2015), thereby increasing
habitat richness in high altitute locations (Dirnböck et al., 2011).
Additional post-hoc analysis regarding alien species richness
exhibited no consistent trends against indices of temperature
(mean, warmest, and coldest) or precipitation (mean, wettest,
and driest); (Figure S2).

Understanding the mechanisms by which alien plants impact
native (Vilà et al., 2011) or endemic species (Thomson, 2005)
is a key question for understanding alien species dynamics. The
interaction between alien and native species may also be positive
through mutualism or facilitation (Mooney and Cleland, 2001;
Rodriguez, 2006). A key question that arises here is whether
patterns of endemic species can provide long-term resistance
indicators to invasions, or if the inverse pattern between alien
and endemics is simply a result of isolation and inaccessibility
due to high altitude. Eitherway this has strong implications
for conservation: high altitude locations would need to remain
unmodified as their habitat modification could result in increased
habitat richness that in turn can be explored by alien species
(Marvier et al., 2004). While speciation in endemic species
could be linked to their biogeographical and genetic isolation
from closely related species (Cañadas et al., 2014), the positive
correlation with native species richness shows more endemic
species are present in areas with higher richness (Figure 4E),
and the dynamics of the relationship between endemic and alien
species richness are not simply proxies for relationships with total
species richness. In addition, endemic and alien components of
the flora are not random assemblages of species: there are more
alien than endemic families, and the pool of alien species is less
of a random selection of species than it is for endemics (Vilà and
López-Darias, 2006).

CONCLUSIONS

Using the Mediterranean island of Crete as a case study, we
suggest a framework for analyzing spatial data of alien species
distributions, based on environmental predictors, aiming to
gain an understanding of their spatial patterns and spread.
The analysis involved a three-way coupling of data [(i) spatial
plant species distributions, (ii) land-use data, and (iii) physical
geography-related data, such as climatic, altitudinal, and soil
data]. Technological developments in smart sensors, social
networks, and digital maps, spatio-temporal data are more

available than ever before (Reis et al., 2015; Miyazaki et al.,
2016; Niphadkar and Nagendra, 2016) and ecology in the big
data era needs to integrate novel methods for their analysis
(Moustakas, 2017). The availability of large datasets poses great
challenges in data analytics (Moustakas and Evans, 2017) but also
increased availability of computing power facilitates the use of
computationally-intensive methods for the analysis of such data
in ecology (Moustakas and Evans, 2015).

Despite the relatively large volume of data, the analysis
conducted was on a hypothesis-based model selection rather
than statistical-only model selection. Recent debates in data
analytics have argued that the availability of a large volume of
data will make the scientific method obsolete (Anderson, 2008);
hypothesis-driven, or equation-driven research will become
irrelevant and hypothesis-free data mining will be used instead
(Anderson, 2008). This analysis showcases that if one simply
relies on data-driven science several components of scientific
methods could bemade poorer (Moustakas, 2017). This study has
identified an inverse relation between alien and endemic species
richness, to our knowledge a novel result. The result was derived
via a correlative analysis which does not show causality nor
provide a mechanism. However, it has identified the potential for
learning patterns, traits, and proccesses from endemic species as
counter preferences or potentially competitive exclusion between
alien and endemic species. This could be achieved via (a) field
experiments and mechanistic studies (b) biogeographic analysis
of alien and endemics and (c) exploring additional variables than
the ones explored here at a macroecological scale as potential
traits.
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Phytosanitary agencies conduct plant biosecurity activities, including early detection of

potential introduction pathways, to improve control and eradication of pest and pathogen

incursions. For such actions, analytical tools based on solid scientific knowledge

regarding plant-pest or pathogen relationships for pest risk assessment are needed.

Recent evidence indicating that closely related species share a higher chance of

becoming infected or attacked by pests has allowed the identification of taxa with

different degrees of vulnerability. Here, we use information readily available online

about pest-host interactions and their geographic distributions, in combination with

host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases

infection) index in geographic space as a more comprehensive, spatially explicit tool

for risk assessment. We demonstrate this protocol using phylogenetic relationships for

20 beetle species and 235 host plant genera: first, we estimate the probability of a

host sharing pests, and second, we project the index in geographic space. Overall,

the predictions allow identification of the pest-host interaction type (e.g., generalist or

specialist), which is largely determined by both host range and phylogenetic constraints.

Furthermore, the results can be valuable in terms of identifying hotspots where pests and

vulnerable hosts interact. This knowledge is useful for anticipating biological invasions

or spreading of disease. We suggest that our understanding of biotic interactions will

improve after combining information from multiple dimensions of biodiversity at multiple

scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution).

Keywords: ambrosia beetle, biological invasions, biotic interaction, host range, logistic regression, phylogenetic

distance, phytosanitary risk assessment

1. INTRODUCTION

Understanding the geographic distribution and evolutionary ecology of plant pests and pathogens
represents an advance in phytosanitary risk assessment. While pests and pathogens can arrive at
new locations through natural dispersal, or be introduced for the purpose of biological control or
accidentally, or even by hybridization in situ [1], their relationships with specific hosts highlights
their potential to interact with different hosts, which is largely determined by their phylogenetic
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constraints. Typically, phytosanitary agencies provide plant
biosecurity at regional or national levels through eradication
or control of new pests via preventive activities such as
quarantining, detection of illegal introduction through customs,
and other local measures, once the problem is detected. However,
although pest control and phytosanitary risk assessment require
a thorough analysis of the areas of distribution of pests
or pathogens, the environmental conditions in which they
develop, and the hosts with which they are associated, resources
available for carrying out such analyses are normally insufficient.
A more effective alternative for an efficient phytosanitary
response should be based on analytical tools that incorporate
sound scientific knowledge regarding plant-pest relationships
to help identify which pests pose risks [2, 3]. Two of the
most informative sources of information (i.e., dimensions of
biodiversity [4, 5]) for phytosanitary risk assessment include
the geographic distribution of the pests and their associated
hosts and phylogenetic distance among hosts as a surrogate of
vulnerability, given that phylogenetically close species or genera
share a higher probability of being affected by the same pest [6].
It is possible to encode information about phylogenetic distances
among species in such a way that it can be shown geographically
[7], thus providing a spatially explicit risk assessment of the
plant-pest interactions. On this theoretical basis, it is possible to
calculate the probability of infection by a pathogen or attack by
a pest, either through its geographical distribution or by using
statistical methods to estimate the incidence of pests on a series
of hosts of different phylogenetic distances. The combination of
these two sources of information regarding pest/pathogen-host
interactions would provide amore comprehensive and integrated
biogeographic approach to risk analysis.

In general, information currently available regarding the
interaction of plants with pests or pathogens, or even insects, is
scarce and mainly pertains to a few sites. However, it is possible
to use information about the number of known hosts and the
phylogenetic distance between known hosts and other species
of interest to make inferences regarding plant-taxon interactions
at different taxonomic or phylogenetic levels [6]. Gilbert et al.
[6] used the Global Pest and Disease Database of the Plant
Protection and Quarantine Division of the Animal and Plant
Health Inspection Service of the United States Department of
Agriculture (APHIS-PPQ) database to extract all of the recorded
plant pests from 210 genera of flowering plants, and evaluate
the strength of the phylogenetic signal in terms of host range
for nine major groups of plant pests and pathogens. They found
clear statistical patterns in terms of the likelihood of different
plant genera sharing a common pest. On the other hand, primary
biodiversity data of species distributions for major taxa can be
readily accessed via several online databases, such as the Global
Biodiversity Information Facility (GBIF)1, and can be used
simply as occurrence information with which to conduct spatial
queries or as input data for obtaining potential distributional
ranges from species distribution modeling. As distributional data
from such databases present spatial and taxonomic biases and
gaps, they must therefore be used with some caution [8].

1http://www.gbif.org

Here, we propose an approach by which to: (1) assess the
probability that a source host shares a pest with a target host,
considering the phylogenetic distance between them, and (2) use
this model to project the intensity of the expected likelihood
in geographic space given the distribution of host taxa in
what could be interpreted as a spatial index of interaction
or risk to host plants. This procedure represents an efficient
method for performing a geographical assessment, especially
when interpretation depends on the interactions of the pest or
pathogen with host plants or any other agent (e.g., insects) found
to be associated with the host plants. We apply this protocol
to a set of ambrosia beetles (Scolytinae: Xyleborina) and their
associated hosts to illustrate the efficacy of this assessment and
evaluate its similarity to empirical evidence collected previously
[6, 9].

2. METHODS

2.1. Beetle and Plant Host Incidence Matrix
We derived an incidence matrix I based on information
pertaining to 23 ambrosia beetle species and their associated
host plant species by retrieving information from one of the
most comprehensive databases on bark and ambrosia beetles,
curated by Thomas Atkinson2. These 23 species were selected
because of their phylogenetic relationship to Xyleborus glabratus,
an invasive alien species in North America and vector of the
fungus Raffaelea lauricola, which causes Laurel Wilt Disease and
is a major agent for tree mortality for species of Lauraceae [10]. In
general, these data coincided with recently published information
on the phylogenetic relationships of ambrosia beetles [11]. The
taxonomy of beetle species to X. glabratus was checked using
information validated for GBIF and NCBI with the R package
taxize [12].

Using information from the same database, we found 372
host plant species associated with this set of beetle species. From
this group of host plant species, we summarized information
at the genus level (243 genera), of which we kept only
those genera with phylogenetic information valid for the
Angiosperm Phylogeny Group (APG III; [13] for reconstructing
a phylogenetic hypothesis (235 genera in total; see below). A final
incidence matrix I= aij was then obtained with 20 beetle species
for rows i and 235 host plant genera for columns j, coding it as
1 if the beetle-plant association was reported as present and 0
otherwise. We considered only beetle species with three or more
plant associations, since a lower number of incidences could lead
to unreliable results in the linear regression ([6]; see below).

I =



















aij|aij =

{

1 if host is infected

0 if else

}

(1)

2.2. Plant Host Phylogenetic Distance
Matrix
For the 235 host plant genera, an ultrametric phylogenetic tree
was obtained from Phylomatic through the R package brranching

2http://www.barkbeetles.info/
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[14]. This tree was then imported into Phylomatic, where branch
lengths were estimated using the bladj function [15]. This step
uses information from the APG III supertree [13] and the dated
nodes given by Wikstrom [16]. From this phylogenetic tree, we
then obtained a symmetric real-valued dissimilarity matrix D1 =

[dij] of order n = 235, in which dii = 0 for all 1 ≤ i ≤ n and
dij ≥ 0 for all 1 ≤ i < j ≤ n for each n plant genus with
the R package ape [17] and then transformed the matrix as D
= log10(D1 + 1), following Gilbert et al. [6].

2.3. Beetle-Host Association Probability
Matrix
To obtain the probability of a host plant genus being affected
by, or found in association with, a particular beetle species (or
all of the beetle species), we calculated a logistic regression
relating the host-beetle incidences in matrix I to the host
phylogenetic distances in matrix D, using phylogenetic distance
as the independent variable. To this end, we first constructed
a two-column array between I and D as follows: for each
row in I, we randomly selected one interacting host (known
as the source host), and then selected the remaining host
genera (target hosts) iteratively at random. We repeated this
process for each row in I, adding the information corresponding
to each new row to the two-column array until we had
completed the entire set of beetle species. A matrix of
probabilities P was then obtained by applying the regression
coefficients to the logistic transformation of I (see Section
2.2). In Equation (2), β0 and β1 were obtained by repeating
the previous procedure 1,000 times and selecting both the
mean intercepts (β0) and slope coefficients (β1) of these
regressions.

P =

1

1+ e−β0+β1D
(2)

2.4. Presence-Absence Matrices Of Host
Plants
A presence-absence matrix summarizes information pertaining
to the geographic distribution of every host plant species over
a regular grid for any given region, with presence coded as 1
and absence as 0. We defined M = [mij] in which mij = 1
if the host genera was present and mij = 0 where absent. If
this occurred, we considered two cases with which to show the
host plant genera distribution on a regular grid of 1 degree
spatial resolution: one matrix containing information on host
plant genera, derived from the list of host plant species in
the database of Atkinson (called M1), and a second matrix
corresponding to host plant genera in the phylogenetic tree but
showing occurrences for each genus directly from GBIF using
the R package spocc [18] (called M2). For M1, all 372 host
plant species were used to obtain occurrence data from GBIF,
after which we grouped information at the genus level and
merged it with the genera in the phylogenetic distance matrix
D. This procedure rendered a matrix of m = 232 host plant
genera by n = 62, 640 sites. For M2, the occurrence data
from GBIF rendered a matrix of m = 203 host plant genera

by n = 62, 640 sites. We used both matrices M1 and M2 to
illustrate the fact that the occurrence data could also be biased
or incomplete when using different avenues by which to retrieve
it. This problem is potentially common when handling resources
available on different databases or using different search engines
(e.g., accessing GBIF directly online or through the R package
spocc).

2.5. Interaction or Infection Spatial Index
and Risk Maps
We obtained an interaction or infection matrix G = PM by
multiplying matrix P by matrix M1 or M2. Matrix G contains
information about the probability that a given source host can
share a beetle with other target hosts when they are present
at a given site. We suppose that each interaction or infection
event could occur regardless of which host is the source, an ideal
scenario that simplifies the process of the interaction or infection.
The interaction or infection index per site g =

∑m
j=1[gij] was then

obtained by summing each column inG. Finally, to spatialize this
index vector, we assigned the longitude and latitude of every cell
in the 1 degree grid to build a raster that portrays the index value
over geographic space. This index was normalized and rescaled
with cumulative and generalized logistic transformation using
the R package bossMaps [19], allowing us to compare among
different outputs (e.g., different sets of species or genera); this
index is equivalent to a suitability index. We also converted the
logistic output to a binary map, using a threshold of 0.5 (see
Supplementary Material).

FIGURE 1 | Phylogenetic signal and probability of host plant genera sharing

beetle species. Curves are predicted from logistic regressions using the

coefficients given in Table 1. Four relationships are highlighted: a narrow host

range and phylogenetically constrained species (Xyleborus xylographus), a
wide host range and phylogenetically constrained species (Xyleborus
glabratus), a wide host range and phylogenetically dispersed species

(Xylosandrus crassiusculus), and all beetle species together.
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TABLE 1 | Logistic regression coefficients and confidence intervals.

Beetle species β0 2.5% 97.5% β1 2.5% 97.5%

Ambrosiodmus obliquus 2.005 −3.5225 7.5325 −2.1993 −4.3305 −0.0682

Ambrosiodmus rubricollis 5.1398 −4.1651 14.4448 −3.3163 −6.8702 0.2377

Ambrosiodmus tachygraphus 4.6856 −9.1553 18.5264 −3.3991 −8.6864 1.8882

Xyleborus obesus 2.3697 −4.2957 9.0352 −2.5059 −5.0497 0.038

Cnestus mutilatus 3.4716 −2.5458 9.489 −2.4619 −4.7168 −0.207

Coptoborus pseudotenuis 7.7836 −3.7667 19.3338 −4.192 −8.639 0.2551

Euwallacea fornicatus 3.014 −3.2981 9.3261 −1.8585 −4.2341 0.5171

Euwallacea validus 4.7687 −1.7713 11.3087 −2.6016 −5.0338 −0.1695

Sampsonius dampfi 5.8214 −6.8643 18.5071 −3.8804 −8.7952 1.0343

Xyleborinus saxeseni 2.6893 −3.0522 8.4309 −1.8111 −3.9597 0.3375

Xyleborus affinis 2.1088 −2.9366 7.1543 −1.1084 −2.9856 0.7688

Xyleborus ferrugineus 2.6372 −2.3476 7.622 −1.5189 −3.395 0.3571

Xyleborus glabratus 15.941 7.6353 24.2468 −7.1511 −10.3155 −3.9866

Xyleborus posticus 1.7296 −3.4087 6.8678 −1.8582 −3.8101 0.0936

Xyleborus seriatus 2.6659 −3.6384 8.9702 −2.1272 −4.4742 0.2197

Xyleborus xylographus 9.6907 −4.2267 23.6081 −5.5552 −11.0613 −0.0491

Xylosandrus compactus 3.3348 −3.6878 10.3575 −2.0683 −4.6553 0.5188

Xylosandrus crassiusculus 2.9637 −2.7676 8.695 −1.4082 −3.5437 0.7273

Xyleborus germanus 2.319 −2.9065 7.5446 −1.5299 −3.4579 0.3982

Xylosandrus morigerus 3.5355 −2.0179 9.0889 −1.8522 −3.9433 0.2389

FIGURE 2 | Spatial projection of the interaction or infection index summarized at 1-degree spatial resolution for the case with all of the beetles pooled together using

GBIF occurrence information from (A) host plant genera derived from the list of host plant species in the bark beetles database (M1) and (B) host plant genera in the

phylogenetic tree after obtaining the occurrences for each genus directly using the R package spocc (M2).

2.6. Relationship between Host Range,
Host Richness and Interaction or Infection
Spatial Index
To explore the relationship between host range (i.e., the number
of host genera interacting with a beetle species) and the
correlation between host richness (i.e., number of host genera
per cell in the grid) and the interaction or infection index, we
obtained the correlation coefficients rn between the interaction
or infection index for each beetle species gn (n = 20 cases) and
host richness S (rgn,S = corr(gn, S)). These correlation coefficients
were then used to perform a linear regression with a negative
exponential transformation of the host range (Equation 3). Host

richness was estimated by S =

∑j
m=1 aij for mij both for M1 and

M2, respectively. Host range was obtained from H =

∑j
m=1 aij

for aij elements of I. All methods were implemented in the R
package geotax available through GitHub3.

r = α0 + α1e
−H (3)

3. RESULTS

Figure 1 shows the probability of a host plant genus sharing a
beetle interaction determined by the phylogenetic distance from
the source host using the coefficients of the logistic regression
(Table 1). Particular cases are highlighted in the figure, in which
the red dotted line corresponds to the case where all beetles

3https://github.com/alrobles/geotax
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are included in the analysis; three other cases were selected
to show relationships in which the beetle corresponds to (1)
a narrow host range and phylogenetically constrained species
(Xyleborus xylographus), (2) an intermediate host range and
phylogenetically constrained species (Xyleborus glabratus), and
(3) a wide host range and phylogenetically dispersed species
(Xylosandrus crassiusculus).

The geographic expression of the interaction or infection
index in the case of all beetles pooled together derived from both
M1 and M2 shows approximately the same pattern, although
some differences in the pattern distribution are apparent
depending on the particular host plant distribution matrix used
(Figure 2). These maps indicate that the highest probability
of interaction or infection occurs over large areas worldwide,
with the highest intensity of this process occurring in parts
of Neotropical America and the eastern and western coasts of
North America, Central Europe, smaller portions of sub-Saharan
Africa andMadagascar, Southeast Asia, and eastern and northern
portions of Australia. These patterns corresponded in large part
to the distribution of the 235 host genera worldwide. When the

distribution of the index was mapped over the binary map, we
observed a reduction in the distribution of the interaction or
infection index (Figure S1).

The geographic distribution of the interaction or infection
index for the three particular cases of phylogenetic constraint
and host range depicted different regions depending on the
beetle species and host plant genera distributionmatrix, although
these differences were not so marked between M1 and M2

(Figure 3). In the narrow host range and phylogenetically
constrained species (Xyleborus xylographus), the intensity of
the interaction was highest in eastern North America, Central
Europe, and parts of Southeast Asia. For the intermediate
host range and phylogenetically constrained species (Xyleborus
glabratus), highest intensity was in eastern North America, from
the northern limit of the Neotropics through Central America,
and in northern and eastern South America, as well as in
eastern China, Southeast Asia, and eastern Australia. In the wide
host range and phylogenetically dispersed species (Xylosandrus
crassiusculus), the distribution of the interaction index intensity
was similar to X. glabratus.

FIGURE 3 | Spatial interaction or infection index for three cases of host range size and different levels of phylogenetic constraint. Maps in (A,C,E) correspond to the

interaction or infection index for host plant genera from the original host-beetle database (M1), and maps in (B,D,F) correspond to the interaction or infection index for

host plant genera from the phylogenetic tree (M2). The three cases correspond to a narrow host range and phylogenetically constrained species (Xyleborus
xylographus), a wide host range vector and phylogenetically constrained species (Xyleborus glabratus) and a wide host range and phylogenetically dispersed species

(Xylosandrus crassiusculus). Maps summarize information at 1-degree spatial resolution.
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We observed a linear relationship (Equation 3) between the
transformed host range size H and the correlation coefficient
r between the interaction or infection index and host richness.
The values to calculate the relationship are shown in Table 2.
This pattern was constant when the correlation was conducted
for both host plant genera matrices M1 and M2 (Figure 4). This
result showed that, with a small number of interacting hosts,
the model had a lower correlation with host richness; however,
when the host range was large, the correlation with host richness
grew asymptotically to one. It is thus possible to characterize
quantitatively the nature of the interaction (according to host
range and phylogenetic constraint) in relation to a set of pests
or interacting agents and their hosts.

4. DISCUSSION

Prediction of biological interactions and invasions is a challenge.
From a phytosanitary perspective, meeting this challenge
would yield the potential to anticipate the ecological and
evolutionary dynamics of species and the potential for alteration
of native or cultivated ecosystems. Here, we show that
combining information from the ecological and phylogenetic
relationships of pest species and geographic distributions of
known and potential hosts offers an opportunity to map
risk of problems even before a new pest is recognized. This
process could also be used to anticipate the potential for

species invasions [20] or outbreaks of disease related to novel
pathogens [21].

Development of interaction or infection predictions involves
two main steps: The first is to estimate the likelihood of sharing a
pest from simple linear regression models sensu [6]. The second
is to use that likelihood to predict the geographic patterns of
interactions, considering the distribution of known hosts of
the species, or those that could potentially interact with the
species, given their phylogenetic proximity to the interacting
agents (i.e., vectors, pests, etc.). The first step of this process
allows estimation of the probability of sharing a host, considering
different levels of phylogenetic proximity among hosts and host
range size. This result is therefore very informative from an
ecological and evolutionary perspective in terms of evaluation of
patterns of infection [9]. The second step projects the likelihood
of interaction over geographic space, presenting spatially explicit
predictions of the interaction between the agents and their hosts.

While we know of no previous attempt to represent
this combination of factors geographically, some previous
efforts to combine ecological, phylogenetic, and geographic
information have been made. For example, Leibold et al.
[7] coded phylogenetic nodes per site to obtain geographical
patterns of the phylogenetic signal, but without considering the
interaction process. Furthermore, in a recent study Morales-
Castilla et al. [22] summarized different frameworks to infer
biotic interactions from different biodiversity dimensions, one
of which included a combination of phylogenetic information

FIGURE 4 | (A) World host richness. This corresponds to host plant genera in M1. (B) Linear model between host range (negative exponential transformation, also

see Equation 3; a small value implies a larger host range and vice versa) and the correlation coefficients between host richness and the interaction or infection spatial

index. M1 corresponds to host plant genera derived from the list of host plant species in the bark beetles database and M2 to host plant genera in the phylogenetic

tree after obtaining the occurrences for each genera directly using the R package spocc. (C) Binary predictive model for Xylosandrus crassiusculus, a generalist bark

beetle species. (D) Binary predictive model for Xyleborus xylographus, a specialist bark beetle species. Note that cases (C,D) correspond to extremes in (B), and that

(C) has a higher correlation with species host richness than (D).
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and species distributions. However, none of these frameworks
transferred or projected the inferred interactions to geographic
space.We suggest that this step is critical in anticipating potential
interactions; from our analysis, we can conclude that the
potential geographic distribution depends on, or is a consequence
of, the number and type of interactions (i.e., according to host
range and level of phylogenetic constraint; also see [23, 24]).
An extension of this approach could be to improve single
species distribution models [25] by including both the customary
environmental information and species interactions. Moreover,
since this index may be interpreted as a suitability index for
predicting ecological interactions, it could also be interpreted
as summarizing the parts of the realized ecological niche of the
species related to the Eltonian ecological niche [26, 27]. Given the
fact that biotic interactions are difficult to predict and quantify at
geographic scales [28], this information is crucial for predicting
the geographic distributions of species [29, 30].

In our example using ambrosia beetles, we detected at
least three main cases of potential interaction between the
likelihood of sharing an interaction and phylogenetic distance
among hosts. These situations were the narrow host range and
phylogenetically constrained species (Xyleborus xylographus),
narrow to intermediate host range and phylogenetically
constrained species (Xyleborus glabratus) and wide host
range and phylogenetically dispersed species (Xylosandrus
crassiusculus). These cases show a different pattern in terms
of the likelihood of sharing an interaction, which is quantified
from the coefficients of the linear regression (see Figure 1

and Table 1). Moreover, these individual patterns correspond
well with the host range known for these beetle species from

TABLE 2 | Host range for each beetle species and correlation coefficients

between host plant genera richness and the interaction or infection index from M1

and M2.

Host range rM1
rM2

Ambrosiodmus obliquus 6 0.8814 0.9859

Ambrosiodmus rubricollis 7 0.8451 0.9841

Ambrosiodmus tachygraphus 4 0.7278 0.8787

Xyleborus obesus 4 0.6861 0.8758

Cnestus mutillatus 10 0.873 0.997

Coptoborus pseudotenuis 10 0.8897 0.9843

Euwallacea fornicatus 31 0.8952 0.9988

Euwallacea validus 22 0.8836 0.9988

Sampsonius dampfi 4 0.8339 0.9042

Xyleborinus saxeseni 25 0.8876 0.999

Xyleborus affinis 70 0.8918 0.9999

Xyleborus ferrugineus 47 0.8927 0.9995

Xyleborus glabratus 9 0.8163 0.9713

Xyleborus posticus 10 0.8873 0.9945

Xyleborus seriatus 11 0.8714 0.993

Xyleborus xylographus 3 0.5687 0.6785

Xylosandrus compactus 22 0.8882 0.9996

Xylosandrus crassiusculus 73 0.8917 0.9999

Xyleborus germanus 32 0.8859 0.9996

Xylosandrus morigerus 48 0.8939 0.9992

the original database. Prediction of these patterns had been
suggested by Gilbert et al. [6] and other authors have found
similar trends [31]; however, those authors did not show the
geographic pattern of the relationship with actual or potential
hosts.

We conclude from these single-species relationships that, to
obtain a statistically significant linear regression model or a
relationship with less uncertainty, it is necessary to have several
observed interactions with different hosts or use quantitative
impact data [32]. In our single-species examples, we excluded
cases in which the beetles had two or fewer host plant species. In
addition, the relationship pattern observed with all beetles pooled
together was frequently different from that of single-species
cases, thus suggesting that useful information exists at the single-
species level that differs from that of the whole set of species.
Interestingly, when we project the interaction or infection index
for the single-species cases, it is clear that potential interaction
with hosts depends largely on their geographic distribution and
also that the differences in the predictions for the individual cases
are not particularly marked. This outcome could be due to the
fact that these beetle species are phylogenetically related and,
in some cases, share host genera that have similar geographic
distributions. However, we would expect this result to change for
different taxonomic groups or sets of species.

Overall, the geographic distribution patterns of the interaction
or infection index coincide with the distributions of host genera
in both the native and invaded areas of the beetles. The most
recently invaded areas for some of these species in North America
(i.e., Xyleborus glabratus and Euwallacea sp.) coincide with a
pattern of invasion with high intensity values for the interaction
or infection index. Areas that are not yet invaded but where the
plant host genera are present show high invasive potential, as
predicted by other studies. For example, the vector of the fungus
Raffaelea lauricola, Xyleborus glabratus which causes the Laurel
Wilt Disease, has shown relatively fast expansion in easternNorth
America following its introduction from Asia in 2002 [33]. The
interaction or infection index for this species predicted not only
its native range in Asia, but also its currently invaded range in the
United States. This species has advanced from Georgia to Texas
in a period of 15 years, affecting species from the Lauraceae family
and impacting native and cultivated plantations4. However, its
invasive potential expands southwards to regions in Mexico,
Central, and South America, where Lauraceae species are diverse
and abundant, and where cultivated plantations of avocado
(Persea americana) are also an economically important crop.
Hence, the interaction or infection index appears to predict what
is known about the current distribution for these species and can
be a valuable tool for anticipating host ranges and areas with
potential for invasion.

The fact that we observed a linear relationship between the
host range size and the correlation between the interaction or
infection index and host richness suggests that host range size
and host diversities are important drivers of ecological and
evolutionary interactions. Overall, there is a higher intensity
of the interaction or infection index between beetles and hosts

4https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd523011.pdf
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in more host-diverse regions. This pattern can be useful for
interpretation and regionalization of the expected distribution
of interactions, considering the diversity of hosts. However,
an important difference exists in the results depending on the
amount of information used (e.g., whether plant host genera are
derived fromM1 orM2).We suggest that host richness alone does
not provide sufficiently good prediction and that converting the
index to a binary map allows for improved delimitation of the
areas at higher risk (e.g., Figure 4). This interaction or infection
index projected in geographic space provides a manner by which
to re-scale the process of infection using both host richness
and phylogenetic distance. It is also important to consider that
while there is currently more primary biodiversity information
(i.e., information on species occurrences) available from which
to address new questions from the perspective of biodiversity
informatics, variation in both the availability and quality of data
remains an important problem to be resolved [34].

In summary, the combination of different biodiversity
dimensions is a necessary avenue by which to understand
patterns and processes in biodiversity [4, 34–36]. While
further theoretical background is still necessary to understand
the extent and limitations of combining phylogenetic and
distributional information for anticipating biotic interactions,
empirical evidence indicates that this tool is promising for
confirming actual and vulnerable hosts. Implementation of this
relationship in easy-to-use algorithms, such as we present here,
represents a step forward toward evaluating risk in phytosanitary
and biological invasion assessment, and in particular to project
potential host-pest interactions over geographic space. This
approach, however, would benefit from further fieldwork
to test these models empirically [37]. We also expect that
these implementations will be important for more quantitative
approaches toward understanding ecological and evolutionary
patterns and processes.
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Individual-based models (IBMs) incorporating realistic representations of key range-front

processes such as dispersal can be used as tools to investigate the dynamics of

invasive species. Managers can apply insights from these models to take effective

action to prevent further spread and prioritize measures preventing establishment of

invasive species. We highlight here how early-stage IBMs (constructed under constraints

of time and data availability) can also play an important role in defining key research

priorities for providing key information on the biology of an invasive species in order that

subsequent models can provide robust insight into potential management interventions.

The round goby, Neogobius melanostomus, is currently spreading through the Baltic

Sea, with major negative effects being reported in the wake of its invasion. Together with

stakeholders, we parameterize an IBM to investigate the goby’s potential spread pattern

throughout the Gulf of Gdansk and the Baltic Sea. Model parameters were assigned by

integrating information obtained through stakeholder interaction, from scientific literature,

or estimated using an inverse modeling approach when not available. IBMs can provide

valuable direction to research on invasive species even when there is limited data and/or

time available to parameterize/fit them to the degree to which we might aspire in an ideal

world. Co-development of models with stakeholders can be used to recognize important

invasion patterns, in addition to identifying and estimating unknown environmental

parameters, thereby guiding the direction of future research. Well-parameterized and

validated models are not required in the earlier stages of the modeling cycle where their

main utility is as a tool for thought.

Keywords: individual-based model, RangeShifter, round-goby, invasive, stakeholder, dispersal, management
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INTRODUCTION

Invasive Species and the Need for
Ecological Modeling
Invasive species are one of the driving forces behind biodiversity
loss, and their persistence in non-native areas can result in
substantial environmental and economic costs (Pimentel
et al., 2000, 2005; Molnar et al., 2008; Cardador et al.,
2016). Once established, invasive species have the potential
to alter local habitat quality, increase competition for
resources, prey on native populations, and spread disease
(Kwon et al., 2006; Karlson et al., 2007; Salo et al., 2007;
Crowl et al., 2008; Gallardo et al., 2016). As a result, the
management and control of invasive species has been a central
research focus for many years, and a priority for biological
conservation.

There is a continual need for the development and
improvement of both new and existing conservation
management strategies either to control the spread, reduce
biomass or, if possible, to eradicate an invasive species from
its non-native environment (Ojaveer et al., 2015). However,
implementing management procedures can be costly, both
economically and environmentally (Hulme, 2009). Therefore,
techniques for forecasting the spread of species and assessing the
likely impact of alternative management strategies are desirable
(Uden et al., 2015; Kotta et al., 2016; Katsanevakis et al., 2017).
One such way to evaluate potential management strategies is
through ecological modeling (Uden et al., 2015; Goldstein et al.,
2016; Kotta et al., 2016). For example, being able to model the
spatial distribution of a species accurately can potentially provide
numerous facilities, such as predicting future distributions or
furthering our understanding of the original invasion process
(Adams et al., 2015).

Forecasting Dispersal in Invasive Species
through Spatially Explicit Models
The accuracy and utility of process-based models for ecological
forecasting has vastly improved over the past few years
(Cuddington et al., 2013; Evans et al., 2013; Urban et al.,
2016), particularly as the understanding surrounding ecological
processes such as dispersal dynamics has increased (Bocedi
et al., 2014; Goldstein et al., 2016). As dispersal is one of the
key determinants of species spatial dynamics, understanding
and accurately simulating the dispersal process is central to
predicting species spread (Hastings et al., 2005; Bocedi et al.,
2014; Brown et al., 2014). Numerous studies demonstrate that
dispersal is key to species undergoing range expansion, and
that there is selection for increased dispersal propensity at the
range front (Travis et al., 2010; Brown et al., 2014; Huang
et al., 2015; Myles-Gonzalez et al., 2015; Parry et al., 2015;
Therry et al., 2015). For example, in the invasive Cane toad
(Rhinella marina Linnaeus, 1758), individuals in the invasion
front disperse further, more frequently and in straighter paths
than those in established core populations (Brown et al., 2014;
Hudson et al., 2015), and even possess physiology that facilitates
their dispersal propensity (Phillips et al., 2006). As such,
spatially explicit models that incorporate ecological and even

evolutionary or physiological complexity can be vital tools in
making predictions regarding range extent and the effectiveness
of control regimes for invasive species (Higgins et al., 1996;
Meekins and Mccarthy, 2002; Vuilleumier et al., 2011; Goldstein
et al., 2016). Calibrating and validating such models with
suitable data, if available, can provide an excellent opportunity
to investigate species-specific invasions, assess invasion patterns
and address concerns. However, very rarely (if ever) will all the
data required to parameterize a model fully be readily available
in the literature. One way of obtaining such information is
through stakeholder interaction. Involving stakeholders in the
modeling process additionally allows for the continual evaluation
of model utility, accuracy and the development of future model
applications.

Early Engagement of Stakeholders in the
Ecological Modeling Process
Often stakeholders encounter a model only at the stage where
it has been tightly parameterized and validated by ecological
researchers. Traditional thinking tends to be that a model
needs to be well-parameterized and validated before it can be
useful in an applied context. Indeed, an often encountered
view is that it can be dangerous for a modeler to demonstrate
an “immature” model to stakeholders due to risks of losing
credibility or of providing unsound advice. However, developing
a well-tested model can be a time consuming process, and this
is problematic especially when early intervention is often critical
for successful management outcomes. It has been repeatedly
highlighted that early involvement of stakeholders into ecological
management efforts increases chances for success (Bayliss et al.,
2013; Seidl et al., 2013) and we consider that models can
provide an important tool for thought at this early stage, well
before they reach the level of maturity that we would expect
them to have reached prior to providing robust management
advice. In assessing the potential risks posed by an invasive
species, and scoping out potential control options, scientists and
stakeholders must first objectively assess where their knowledge
might be incomplete (Krueger et al., 2012) and a prototype
model can provide an excellent tool for formalizing the process
of establishing what is already known, what is not known and,
critically, identifying what it is that isn’t known that is likely
to be most influential in determining the invasion dynamics.
Understanding of where key knowledge gaps exist can inform
future research and data collection (Voinov and Bousquet,
2010). Furthermore, the importance of clear communication
of the results and implications of risk assessment exercises to
stakeholders and authorities has been emphasized, increasingly
so in recent years, with particular relevance to themanagement of
our marine ecosystems (Katsanevakis et al., 2017; Stelzenmüller
et al., 2018). Here, we put this into practice, and emphasize
that it can be extremely valuable to engage stakeholders with
an early prototype model and use their input to tailor the
modeling process to practical needs. We additionally emphasize
the value that an early stage model can provide as a means
for horizon scanning for potential threats due to the invasive
species, and can be used to provide some initial risk assessments
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of particular threats (Parrott et al., 2012; Reed et al., 2013; Parrott,
2017).

Case Study: The Round Goby in the Baltic
As a case study, we use our experience of developing an early-
stage model for the round goby’s spread through the Baltic Sea
in order to facilitate stakeholder engagement. The round goby
(Neogobius melanostomus Pallas, 1811) is a species, for which
ecological modeling can be valuable, firstly for formalizing the
process of establishing what we know and what we still need to
know and, subsequently, for developing well-tested models that
can be used to provide robust management recommendations.
This species is native to the Ponto-Caspian region, and has
invaded the Great Lakes in North America andmultiple locations
throughout Europe, most likely as a result of transport through
shipping routes via ship ballast water (Kornis et al., 2012; Kotta
et al., 2016). The species has been termed “one of Europe’s
100 worst invaders” and has in a recent evaluation of 18 taxa
of non-indigenous species in the Baltic Sea region been found
to be amongst those with the greatest impact (Kotta et al.,
2016; N’Guyen et al., 2016). For the past 25 years, the species
has been in the process of spreading throughout the Baltic
Sea (Sapota, 2004; Schrandt et al., 2016). The first reported
sighting was in 1990 in the Gulf of Gdansk, and since then,
sightings of the species have been recorded in various areas of
the Baltic (Kotta et al., 2016). Whilst some stages of the goby’s
spread have been well-documented, such as the introduction and
invasion of the Gulf of Gdansk (Sapota, 2004) and the inner
Danish waters (Azour et al., 2015; Carl et al., 2016), there are
other stages of the invasion that are substantially lacking in
information.

Here, we highlight how a spatially explicit ecological
simulation platform, RangeShifter (Bocedi et al., 2014) can
rapidly be used to develop an initial prototype model for early
engagement of stakeholders with the process, and subsequently
calibrated using spatial data available from the literature and
input from stakeholders. We then demonstrate how this
intermediate-stage model can be applied to further research in
order to identify key data gaps that would need to be filled
before a well-tested model could be used to robustly inform
management actions.

OVERVIEW OF THE PROCESS

The work described in this paper has been designed to be
consistent with the adaptive modeling approach for ecological
forecasting outlined in Urban et al. (2016). The overall
process of developing the model is outlined in Figure 1. A
prototype model of the goby’s spread throughout the Baltic
was developed and parameterized within a 6 week period
through an iterative process (Grimm et al., 2005; Grimm and
Railsback, 2012) to present to stakeholders in a symposium
context. This period of initial model development was by
necessity short in our case, as we had been invited to a
round goby symposium to discuss the potential utility of the
RangeShifter software in the context of managing the round
goby. The description of this initial model development will

be kept brief, as it was predominantly an iterative process of
altering parameter values and comparing the model output
to that of the HELCOM round goby distribution (Michalek
et al., 2012). The rapid production of a prototype model
allowed demonstration of the potential utility of the model to
stakeholders, especially for use in the future after more rigorous
assessment. Furthermore, it also provided an overview of what
the model could do, which opened the way for suggestions on
scenarios and improvements that the model can be used to
explore.

Stakeholder Collaboration
Overview of the Symposium
A symposium centered around the spread and impact of the
round goby in the Baltic Sea was held in Kalmar, Sweden in
June 2016. The organization of the symposium was headed by
the Swedish Agency for Marine and Freshwater Management1,
and there were an estimated 30 attendees. The main stakeholder
groups consisted of representatives of different levels of local and
regional environmental administration, people that participated
in a private capacity, and representatives of other groups
interested or affected by round goby spread, such as recreational
and professional fishermen. The symposium was followed by
a workshop focusing on solutions to manage and impede the
spread of the round goby throughout the Baltic Sea. During
the symposium the overall research project and the model was
presented in a 30min power point presentation (Supplementary
Figure 1). The presentation had two main components. First,
RangeShifter was presented to the participants along with
examples of how the software had already been used to address
conservation relevant questions, including invasive species.
This was key as a means for establishing our credibility as
modelers. Second, the prototype goby model, implemented using
RangeShifter, was presented to the stakeholders to demonstrate
the potential utility of the model within the Baltic Sea and
hence within the geographical focus of the participants’ interests.
Throughout this second part, we repeatedly stressed both the
prototype nature of the model and the fact that while we were
in a room full of goby experts, the modelers who had rapidly
developed a prototype for demonstration were certainly not.

At the end of the presentation a specific call for input was
issued: a slide stating “What we hope to get from you. . . ” followed
by six suggested inputs: Specific parameters (e.g., demographic
and dispersal), The estimated introduction sites (and when),
Patterns for comparing model outputs with spatial and temporal
patterns of density and sediment type and habitat, Proposed
management techniques. Following the presentation there was
an open discussion with a call for feedback and input. In
transdisciplinary projects it is important that both scientists and
non-academic partners contribute on an equal footing (Hadorn
et al., 2008; N’Guyen et al., 2016). This is especially relevant in the
case when inputs are qualitative rather than quantitative. In our
case, we were interested in qualitative inputs, and we therefore
designed the interaction with stakeholders as open and did not
follow a standardized procedure. We felt this would ensure an

1https://www.havochvatten.se/
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FIGURE 1 | A schematic representation of the modeling process, from initial

literature search to the proposed next steps. Model refinement and evaluation

is iterative, reflecting the alterations that are constantly made to the model

during the calibration process. Once refined, this model should then be

reintroduced to stakeholders for further co-development.

atmosphere that encouraged stakeholders to contribute even
anecdotal but possibly relevant information which they might be
less inclined to share when e.g., filling out a questionnaire.

Outcomes of the Symposium
The interaction with stakeholders identified essential knowledge
gaps, which would have gone unnoticed by us as scientists alone.
Crucially the interactions also provided a clear focus in terms of
what a useful model would need to include and would need to be
able to predict in order that it was most useful to the stakeholders.

Also, personal communications with multiple researchers and
stakeholders present at the meeting provided an insight into the
current understanding of the round goby’s spatial presence in
the Baltic Sea that was not obvious from searching the literature,
including information on new studies that will yield high quality
data. Three essential qualitative outcomes of the symposium
that were derived from the interactions between modeling team
and stakeholders provided strong focus for future work. These
related to model building such that key processes driving the
spread dynamic are properly represented and parameterized and
to developing the model to ensure its relevance for informing key
management decisions:

First: A knowledge gap regarding the depth of goby dispersal
was highlighted as potentially crucial. Prototype model results
shown at the workshop included one suggesting that the invasion
dynamic is likely to be very sensitive to the depth range over
which gobies can disperse. At the workshop attendees noted that
adult gobies are sometime caught in deeper water. However,
it was suggested that this occurs during winter months and
may reflect some adults exhibiting seasonal migration to deeper
waters. It became obvious that whether gobies disperse through
deep water or disperse solely in shallow areas is currently
unknown. Understanding the depth range of goby dispersal
may be of great importance to those involved with the round
goby invasion for a number of reasons. Depth acting as a
barrier to dispersal may be utilized in numerous management
protocols to impede or inhibit goby spread into undesirable
areas. Furthermore, understanding goby dispersal depth helps
to predict future areas that may be under threat of round
goby invasion, even without a human-mediated element to the
dispersal. Identifying the potential importance of the depth
sensitivity of dispersal for patterns of goby spread was a novel
outcome of the workshop that will motivate new empirical work.

Second: Threats of the round goby’s invasion of the freshwater
systems that connect to the Baltic Sea, particularly with regards
to Salmonids were identified, as the round goby may devastate
their populations through egg consumption (Chotkowski and
Ellen Marsden, 1999; Marentette et al., 2011; Ladago et al., 2016).
This potential impact of the round goby was a key issue for many
of the stakeholders present and highlighted the importance that
to be useful for management a model would need to be able
to effectively operate into riverine systems and potentially also
account for salinity gradients and tolerances.

Third; The threat that the round goby poses to the long-tailed
duck (Clangula hyemalis Linnaeus, 1758) was emphasized (Hearn
et al., 2015). The Baltic Sea is the key wintering destination for
the majority of the western Siberian and northern European
populations of the long-tailed duck (Hearn et al., 2015),
which currently faces a multitude of threats such as predation,
competition, oil spills, gillnets, hunting, habitat destruction, and
water traffic (information available on the BirdLife International
website2). The round goby and the long-tailed duck share a diet
of mussels and crustaceans. Hence, the spread of the round goby
to the overwintering habitats may result in competition for food.
As the Baltic Sea is the main overwintering area, a reduction

2http://www.birdlife.org
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in food availability for the long-tailed duck in this area may
prove devastating. Consequently, this area is recommended to
be a crucial area to protect from invasion by the round goby
(Hearn et al., 2015). Currently there are no effective means
for estimating the risk that these areas will be invaded. Hence,
estimations for whether, and if so when, the goby will reach
the overwintering areas from their current distribution would
be valuable, to estimate time-scales for conservation efforts for
the long-tailed duck, and to design measures to protect the area
from the spread of the round goby. We note here that while
there was existing information in the literature highlighting the
potential impact of round goby on long tailed duck in the duck’s
key overwintering sites (Hearn et al., 2015), it would have been
unlikely that the modeling team would have easily found it.
Thus, the stakeholder workshop provided a means for those fully
familiar with the system to direct the modeling team to literature
relating to the focal species and its potential impacts that isn’t
primarily about the focal species.

The Modeling
Modeling Population Dynamics and Dispersal in

RangeShifter
We used a spatially explicit, individual-based model (IBM),
RangeShifter (Bocedi et al., 2014) to simulate the spread of
the round goby throughout the Baltic Sea. RangeShifter was
developed in response to the demand for integrated dynamic
models, and as such, provides a platform with which to model
complex population dynamics and dispersal behaviors, at the
individual scale (Franklin, 2010; Huntley et al., 2010; Thuiller
et al., 2013; Lurgi et al., 2015).

To represent the Baltic Sea, a gridded seascape was
created in ArcGIS 10.3.1 using raster data extracted from
the EMODnet Bathymetry portal3 Each cell was 2.5 by
2.5 km and characterized by depth. Population dynamics were
modeled at the cell scale. The numbers of individual fish
in the Baltic, or even in a local area, at reported densities
(Vélez-Espino et al., 2010) would be far too large to be
explicitly represented in the model, and therefore we treated
a modeled “individual” as representing a localized established
sub-population of unspecified size (hereafter “individual” for
consistency with RangeShifter terminology), which was regarded
as female in a single-sex model. It was not necessary to represent
the overlapping generations of the species, but sufficient to
model the reproductive rate of such “individuals,” i.e., the
rate at which “daughter” sub-populations were produced,
some of which would disperse to expand the range of the
species.

At model initiation, individuals were assigned to cells within
species introduction points at half carrying capacity. In each
year, the overall dynamics consists of reproduction, death of
adults, and offspring dispersal. Reproduction by each individual
is determined by a stochastic draw from a Poisson distribution
having a mean set by the maximum growth rate at low density
and subject to density-dependent reduction following Maynard-
Smith and Slatkin (1973). Carrying capacity, K, was set to 10

3http://www.emodnet-bathymetry.eu/

individuals/ha for all cells. However, this limitation is unlikely to
be critical for the pattern of range expansion on which we were
focused, given that densities at the range front are expected to be
much lower than in long-established areas (Brownscombe et al.,
2012; Groen et al., 2012; Azour et al., 2015).

Once reproduction has taken place, individuals could
emigrate away from their natal cell, an action dependent on the
local density within the cell. If an individual left the cell, its
trajectory wasmodeled using the StochasticMovement Simulator
(SMS; Palmer et al., 2011). SMS simulates an individual’s path
throughout the landscape, in which the direction of movement
between cells is based on the relative cell “costs” to movement
and on a tendency to follow a correlated path (directional
persistence). The perceptual range, in which costs were evaluated,
was set at 1 cell (i.e., no more than 2.5 km).

Incorporating the Stakeholder Input into the Model
A key issue that emerged from the stakeholder workshop was
a lack of knowledge relating to the depths of water through
which gobies can disperse. This issue was, in part, highlighted by
some of the runs of the prototype model, demonstrated at the
workshop, in which it was clear that including a depth threshold
resulted in very different spread patterns than omitting one.
Accordingly, cell cost was set in relation to a threshold depth for
movement: the cost of traversing a cell of the depth threshold and
deeper was set to a very high value, and the cost of traversing
a cell above the depth threshold was set to a very low value. In
doing so, individuals were much less likely to travel into deeper
water than that set by the threshold. For all depths, each step
an individual took had an associated spatially and temporally
constant mortality risk.

Upon reaching a new cell, an individual had the opportunity
to settle or continue movement to a different cell. The decision to
settle was density-dependent. If the population density was too
high in a cell, then the individual would not settle but continue to
disperse to a neighboring cell (Bocedi et al., 2014).

Parameter Calibration and Assessing Model

Performance
The majority of the parameters required for the model were not
widely available in the literature or through online resources.
Consequently, in order to calibrate the model parameters, the
Gulf of Gdansk was chosen, as detailed spatial information
regarding the goby’s spread through the area was available.
This spatial information was primarily obtained from the
NOBANIS fact sheet, produced by Sapota (2012). NOBANIS
is the European Network on Invasive Alien Species, and the
project produces information and fact sheets on invasive alien
species. The fact sheet, written and referenced by experts,
provides a range of information including recommendations
for management, species ecology and information regarding
its historical introduction and spread. This temporal spatial
presence information available in the NOBANIS fact sheet was
used as a baseline to calibrate the model.

Parameter values were calibrated using a pattern-oriented
modeling approach (POM) (Grimm et al., 2005; Grimm and
Railsback, 2012; Bauduin et al., 2016), in which simulations
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were run for a variety of values for four key parameters,
namely the maximum growth rate, the depth threshold, the per-
step mortality risk, and the maximum settlement probability
(Table 1), in order to find a combination which most precisely
matched that of the historical round goby spread throughout the
Gulf of Gdansk. For each simulation, the final model distribution
was compared to the actual distribution reported in Sapota
(2012). Other more minor parameter values, such as the depth
threshold cost, were assigned during the creation of the prototype
model, using an iterative process. During this process, the values
chosen were arbitrary, and altered until the model output started
to match the goby distribution seen in the NOBANIS fact sheet.
Therefore, these parameters were used more as values to tune
the initial model, rather than parameters that were important to
investigate. The model’s predicted output was compared to the
observed output for each year that data were available, in order
to obtain the most accurate dispersal pattern throughout the Gulf
of Gdansk.

TABLE 1 | RangeShifter settings and parameter values for Gulf of Gdansk and

Baltic Sea models.

Parameter Description Gdansk Baltic

Cell-based landscape, cell

size

2,500m 2,500m

Rows × Columns 48 × 43 625 × 717

Habitat codes (representing

depth classes)

1–12 1–12

Female-only model, no

stage structure

K Carrying capacity (per ha)

(all habitats)

10.0 10.0

Rmax** Mean growth rate at low

density

1.2, 1.4, 1.6 1.2, 1.4, 1.6

bc Competition coefficient 1.0 1.0

d Density-independent

emigration rate

0.7 0.7

Transfer model–SMS

Cost for depth layers above

threshold

1 1

Cost for depth layers below

threshold

100,000 100,000

PR Perceptual range (cells) 1 1

PRmethod Perceptual range method 1 1

DP Directional persistence 1.0 1.0

SMconst** Per-step mortality risk 0.1, 0.2, 0.3, 0.4 0.1, 0.2, 0.3, 0.4

Density-dependent

settlement:

S0** Maximum probability 0.4, 0.5, 0.6, 0.7,

0.8, 0.9

0.4, 0.5, 0.6,

0.7, 0.8

alphaS Slope −10.0 −10.0

betaS Inflection point 1.1 1.1

**For the Gulf of Gdansk, three levels of Rmax, four levels of SMconst, six levels of S0,
and 11 depth thresholds were applied in a fully factorial design yielding 792 simulations,
each of which was replicated 100 times. For the Baltic Sea, a partially factorial set of 48
combinations of Rmax, SMconst, S0, and four depth thresholds (selected from the Gulf
of Gdansk model) were each replicated 100 times.

Accuracy of Model Calibration
To assess the accuracy of the model for each parameter
combination, four metrics were used, in addition to visually
inspecting the model output. Model specificity (in which both the
observed distribution and the model’s predicted distribution do
not have individuals present in a cell), sensitivity (in which both
the actual distribution and the model have individuals present
in a cell), the receiver operator characteristic (ROC) curve with
the associated area under the curve (AUC), and Cohen’s Kappa,
κ. The κ statistic represents a way to measure reliability, or
precision, and compares the model prediction accuracy with the
accuracy expected to occur by chance (Allouche et al., 2006).
Sensitivity and specificity both vary from −1 to +1, in which
a score of 0 represents no better than chance, and +1 would
represent a perfect score. κ can vary between 0 and 1, where 0
represents an agreement no better than chance, and 1 represents
a perfect agreement. An accurate model with an AUC score of an
ROC plot would be close to 1. A score close to 0.5 would represent
a poor model. Whilst the AUC is threshold independent, the
other measurements are threshold dependent. The threshold
during analysis is the cut-off value used to translate predicted
probabilities into a presence or an absence. Consequently, for a
predicted probability to be classed as a presence under a high
threshold (such as 0.9), a cell would need to be colonized by
individuals in 90% or more of replicated model runs given the
specified combination of model parameters.

In order to calculate the sensitivity, specificity, AUC and κ

for each parameter combination, each combination was repeated
over 100 simulations. These metrics were calculated using the
PresenceAbsence package in RStudio 3.3.1 (Freeman andMoisen,
2008).

Ports of Introduction and Modeled Population

Initiation in the Gulf of Gdansk and the Baltic Sea
The species introduction points of the Baltic Sea, where
populations were initiated, were estimated using information
available in the literature (Kotta et al., 2016), species presence
information from the symposium and shipping port and traffic
information available on Baltic Transport Maps4 Ports of
introduction were assumed to be the closest shipping port to
a current goby distribution. The initiation of a population at
the entry points was staggered in an attempt to replicate the
introduction of the goby throughout the Baltic at various points
in time. For example, populations were initiated in the Gulf of
Gdansk entry points at year 0 (representing the year 1990), but
populations initiated around Kalmar were not initiated until year
20 (2010). The timing of the staggered introductions at various
points on the map were based on estimates from the literature
(reviewed by Kotta et al., 2016). The staggered introductions
were carried out using a customized version of RangeShifter
that allowed populations to be initialized in individual cells
at specified times. Parameter values applied were informed
by the results from fitting the model to the Gulf of Gdansk
(Table 1).

4http://www.baltictransportmaps.com
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MODEL RESULTS

Model Calibration: Role of Depth Threshold
in the Gulf of Gdansk
Model accuracy was most strongly influenced by the depth
threshold: 76% of the variance in κ was explained by depth, as
compared with 11% by the maximum settlement probability,
4.6% by the per-step mortality risk, 3.3% by the maximum
growth rate and negligible amounts by interactions. The model
was most accurate for a depth threshold between 10 and
25m, and accuracy increased slightly with decreasing settlement
probability and mortality risk and with increasing growth
rate (Figure 2). Similar conclusions regarding the importance
of the depth threshold were drawn from the other accuracy
metrics (Table 2; Supplementary Table 1). Examples of various
outputs can be seen in Figure 3, ranging from good (AUC
and k scores close to 1) to poor (AUC and k scores close
to 0.5 and 0, respectively). Through the process, a number

of models with high accuracy were produced, with some
models obtaining accuracy values of 0.8 for all four accuracy
metrics, even when the model threshold was high (0.8)
(Figure 4).

Model Output: Projections Based on the
Role of Depth Threshold, across the Entire
Baltic Sea
Despite obtaining a range of accurate parameter combinations
for the Gulf of Gdansk, when they were applied to the entire
Baltic, the overall model output was poor when compared
to the extensive observed distribution spanning a substantial
proportion of the Baltic coastline as reported in the literature
(Figure 5). The accuracy scores calculated for The Baltic suggest
that the model was not much better at predicting the goby
distribution than chance (AUC scores close to 0.5, and other
scores close to 0.1).

FIGURE 2 | Fit of the RangeShifter model for the Gulf of Gdansk: marginal mean values of κ (kappa) in relation to (A) the depth threshold class, (B) the maximum

settlement probability, (C) the risk of mortality at each step taken during dispersal, and (D) the maximum population growth rate.
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TABLE 2 | An example of the effect of varying the depth threshold of dispersal on

the accuracy of the predicted population distribution, all other parameters being

held constant.

Depth threshold (m) Sensitivity Specificity Kappa AUC

0–5 0.587 0.876 0.432 0.843

5–10 0.471 0.997 0.588 0.803

10–15 0.740 0.993 0.807 0.906

15–20 0.888 0.976 0.862 0.959

20–25 0.915 0.964 0.848 0.970

25–30 0.897 0.930 0.757 0.957

30–35 0.892 0.904 0.699 0.944

35–40 0.888 0.889 0.666 0.935

40–45 0.883 0.881 0.647 0.932

45–50 0.883 0.871 0.628 0.924

Below 50 0.901 0.689 0.379 0.836

For all three model assessment parameters, values over 0.8 represent a highly accurate
model fit. The model threshold for the cut-off (i.e., above which the predicted probability
was regarded as presence, and below which as absence) was 0.8. The most accurate
models are displayed in bold text.

DISCUSSION

In this study, we rapidly developed a prototype model of
round goby spatial dynamics that was used to facilitate early
engagement with stakeholders. We subsequently combined data
available in the literature and stakeholder input in order to
calibrate the IBM such that it simulated the round goby’s spread
throughout the Gulf of Gdansk to a high level of accuracy. We
then used the calibrated model to simulate its spread through
the Baltic Sea, despite the limitation of imprecise and potentially
inaccurate presence data. Our experience demonstrates the
value of involving stakeholders early in the modeling process.
Prototype model results had indicated that predicted spread was
highly sensitive to the inclusion of a depth threshold for dispersal,
and the subsequent stakeholder communication highlighted
how little is currently understood about goby dispersal at
various depths. Consequently, various depth thresholds were
incorporated into the modeling, in order to assess the impact
of depth on model accuracy and therefore goby dispersal. We
demonstrated how, by using known spread patterns, it can
be possible to use the model to infer details of the dispersal
process, in this case related to the depth threshold of goby
dispersal. In detail, we could show that that the limit to
dispersal depth of the round goby lies between 10 and 25m.
Empirical data are now required on the depth sensitivity of
dispersal such that a robustly parameterized model can be
used by the stakeholder/modeler grouping in further steps
toward identifying management options. The involvement of
stakeholders as early as possible in the process and their regular
inclusion throughout as co-developers of the modeling will
facilitate a cooperation between scientists and stakeholders in
putting possible management measures into practice.

Stakeholder Collaboration—Putting Theory
to Practice
Research has identified that the long lag time between research
and its publication hinders managers of biological invasions to
make use of important results such as our models generated

(Matzek et al., 2015). In addition, theory predicts that the
success rate of management should be higher if stakeholders
and scientists engage early on in the transdisciplinary process
of managing an invasive species (Hirsch et al., 2016a; N’Guyen
et al., 2016). The main reason behind this is that scientific results
that were co-produced by relevant parties in a transdisciplinary
process should have better social acceptance and higher
compliance by decision makers (Pohl and Hadorn, 2008).

In our study, we put these theoretical predictions into practice
and engaged in a modeling process that used stakeholder
input as an essential component. Stakeholders provided two
essential inputs regarding future model optimization: providing
information on where higher quality distribution data would
be available in the near future and on the priority of including
depth in the model. Stakeholders contributed their knowledge
and understanding on an equal footing. In an excellent recent
contribution on how to co-develop models with stakeholders
effectively to address pressing ecological problems, Parrott (2017)
argues that it is important for the modelers to get to know
the study system well before meeting with stakeholders. Parrott
(2017) writes, “Knowing the system well is a key to gaining
the trust and confidence of stakeholders in the ability of the
modeler and the entire research team to contribute meaningfully
to the issue. If the researchers are not from the area, they
should spend time visiting and getting to know the region before
initial meetings with stakeholders.” We had been approached
by stakeholders and asked to present the modeling software at
a meeting on the threat posed by round gobies to illustrate
what might be possible in terms of using RangeShifter to inform
management of the species. We only had a few weeks ahead
of the meeting in which we were able to build a prototype
model for the goby and were thus unable to acquire substantial
knowledge of the system prior to meeting stakeholders. However,
at the meeting we were able to demonstrate our credibility
as ecological modelers by first providing examples of how the
RangeShifter was being used to address a range of other applied
issues, including landscape management to conserve African
forest birds (Aben et al., 2016), assisted colonization of butterflies
in Finland (Heikkinen et al., 2014) and the invasion of American
mink (Neovison vison) in Scotland (Fraser et al., 2015).

Acknowledging the Different Roles of
Scientists and Stakeholders
A potential advantage of the approach we took in this study is
that the stakeholders naturally take the role as the species/system
experts, and the potential risk whereby stakeholders perceive that
the researchers assume the role of experts and tell them how
their system works is reduced. One potential disadvantage of
such an approach is that researchers cannot glean data from
stakeholders in the form of quantitative assessments through e.g.,
specifically designed questionnaires. This disadvantage, however,
is compensated by the fact that stakeholders can contribute
their knowledge freely through unstructured interactions with
researchers. For that, it is clearly critical that the modeling team
gain the confidence of the stakeholders, but that need not be by
having acquired detailed understanding of the particular study
system in advance of a first meeting. Indeed, we suggest that the
effective establishment of a model co-development group may be
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FIGURE 3 | Example model outputs from four different parameter combinations in the Gulf of Gdansk. X and Y cell numbers represent the cell number, or

coordinates, on the gridded landscape created for the modeling exercise. Green cells represent a cell that was colonized by populations in each of the 100 repetitions

(i.e., 1.0 refers to 100% of repetitions). Model (A) represents the actual goby distribution, and therefore a perfect model output. Model (B) represents an example of an

accurate model, whereas (C) represents model over dispersion, and (D) under dispersion combined with dispersion into the wrong depths.

facilitated if this is actually not the case and at the start of the
process there is a clear division of expertise between modelers
and stakeholders. As the process of co-development of a model
proceeds, both researchers and stakeholders can build upon this
first interaction on an equal footing albeit with quite different
expertise. Our study provides a practical example for future
model building efforts on how to rapidly initiate transdisciplinary
projects, which is absolutely vital if models are to be successfully
used to inform early intervention against invasive species.

Model Calibration
Calibrating the model with precise spatial data produced a
highly accurate model that simulated the spread of the goby
throughout the Gulf of Gdansk over an 11 year period. The
model outputs obtained from the calibration process highlighted
the key role of the depth threshold to movement. However,
when scaled up through space and applied to the whole of
Baltic Sea, the model failed to predict a distribution similar to
that observed in the literature. The failure to produce a model
for the Baltic Sea with a high degree of accuracy has several
implications.

One of the main downfalls of the Baltic model seems to
occur from uncertainty regarding introduction points. In order
to obtain a predicted presence from the model that was similar
to that of the observed presence, further introduction points
would need to be added, if the parameters obtained from Gdansk
were to be used. Although short-distance (∼30 km/year) active

migration appears to occur in some local areas (Azour et al.,
2015), this suggests that, at the scale of the Baltic sea, the goby
did not disperse over long distances as a primary mode of
invasion, but that human-mediated transport, for example via
ships or other means, was the primary cause of invasion. As
large ports were used in the model as the introduction points,
this may also suggest that the goby was introduced to various
areas that were not necessarily large commercial ports, but also
small recreational ports. Subsequently, future efforts to manage
the spread of the goby may benefit from focusing preventative
measures on human-mediated transport, such as the cleaning of
recreational boats (Hirsch et al., 2016c). This will be particularly
important in protecting regions that would otherwise be likely
to be out of the range of goby colonization due to their being
effectively isolated by channels of deeper water.

Furthermore, the presence data used to produce the observed
map for model calibration was at a coarse spatial scale. It may
be that the goby’s presence at various depths in the Baltic
was not represented in the observed distribution at a fine
enough resolution for accurate model assessment. Given more
precise presence data, at a finer resolution, the accuracy of the
models predicted goby presence in the Baltic Sea could improve
substantially. One of the benefits of such models is the ability to
identify on which future data collection efforts should be focused.
This is in agreement with the recent call for mandatory catch
records and citizen science programs in order to collect data on
the round goby (Ojaveer et al., 2015). In the case of this modeling

Frontiers in Ecology and Evolution | www.frontiersin.org November 2017 | Volume 5 | Article 149 | 76

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Samson et al. IBM’s for Invasive Species Management

FIGURE 4 | An example of the plots used to assess the accuracy of parameter combinations, using kappa, specificity, and sensitivity measures. The accuracy

measures vary from zero to one, in which a value of one represents a perfect accuracy measure and zero a poor one. The cutoff threshold represents the number of

repeat simulations a cell was required to have been colonized, in order to be characterized as a presence in the final model evaluation, with 1.0 being 100% and 0.0

being 0% of repeats. (A) represents a set of parameter combinations that predict a goby presence close to that of the observed presence from the literature. In

comparison, plots (B–D) demonstrate a decrease in model accuracy.

exercise, presence data over various depth distributions, and
the identification and incorporation of the correct introduction
points, have been identified as being critical for accurate model
calibration.

Depth Sensitivity
In order to replicate the observed goby distribution throughout
the Gulf of Gdansk, a dispersal depth limit of ∼20 ± 5m
produced the most accurate model. It is nevertheless important
to note that this was calibrated using one area of the Baltic
Sea. Thus, to obtain more accurate results, presence data
spanning various depths over more locations in the Baltic Sea
are required. Hitherto there have however not been any studies
dedicated to investigating this aspect of the biology of the species.
Furthermore, as round goby is not a commercial species, no
catch-related depth information is available from the fishery. The
sparse information that exists is from a Polish young fish surveys
program, showing that, although generally considered a shallow

water inhabitant, high catch rates occur at 50–60m depth during
winter months (November and January–March) (Grygiel, 2007).
This suggests that during the cold season, the fish is wintering in
deeper sea areas, but whether dispersal occurs during this period
or when the fish resides in more shallow, coastal waters remains
speculative. The present modeling exercise thus indicates that
future research efforts should prioritize obtaining presence and
absence data for round goby at various depths throughout the
Baltic, and investigate whether dispersal to novel areas occurs

during the warm or cold season. Although often expensive
and time consuming to collect, this type of information has

been achieved for several species though tagging studies (e.g.,
Boje et al., 2014). Furthermore, compilation of existing data

from various national and international surveys and monitoring
programs (e.g., the biannual Baltic International Trawl Surveys,
BITS) could prove to be a cost-efficient way to obtain essential
information. The depth threshold of round goby dispersal is an
essential parameter not only for calibrating models, but also for
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FIGURE 5 | Comparison between (A), the observed goby distribution

available from the literature, and (B), an example predicted distribution

obtained from the model. The color of the cell represents the presence of a

population in a cell, and therefore its colonization in a repetition. The presence

varies from one to zero, with a value of one meaning the cell was colonized in

every repetition and a value of zero meaning the cell was never colonized. The

values along the axis represent the cell numbers of the landscape grid used in

the modeling exercise, in which each cell size was 2.5 km.

incorporating into risk assessments of the species spread, both
generally and for areas of special interest.

Salinity Tolerance and Ecological
Parameters Influencing Spread
Although not identified by the stakeholders in the present
study, parameters besides depth should be evaluated for
their potential relevance for dispersal tendency. Charlebois
et al. (2001) highlighted the need for research determining
“dispersal mechanisms and environmental characteristics that
limit dispersal.” Round goby is considered a euryhaline species,
which is able to adapt to salinities ranging from freshwater to
brackish conditions. Previous studies have suggested that round
goby will not endure oceanic conditions (i.e., high salinity)
(Ellis and Macisaac, 2008; Karsiotis et al., 2012). A recent study
acclimating round goby to salinities spanning from fresh to
seawater has shown that slow increases in salinity (5 PSU per
week) to salinities approaching oceanic conditions (30 PSU)
severely affected the osmoregulatory capacity of round goby.
Although survival was also reduced at oceanic salinities, still 61%

of the fish survived at 30 PSU. So while salinity will likely not act
as an effective barrier, it might still impede the ongoing spread of
round goby through the salinity gradient from the brackish Baltic
Sea and into the oceanic North Sea and this warrants its inclusion
into dispersal models (Behrens et al., 2017). Further parameters
which could turn out to be relevant depend on the study system
and could include temperature (thermal limits in round goby
are between 0.5 and 26◦C (Chekunova 1974 cited in Charlesbois
et al., 2001) and, in running waters, flow velocity (round
goby show a critical swimming speed of 35.5 cm s−1; Tierney
et al., 2011). Recent research suggests that population niche
modeling in combination with climatic parameters might benefit
from the introduction of thresholds for certain environmental
parameters (Almpanidou et al., 2016). Incorporating a minimum
of climatic suitability might allow coupling of dispersal models
with models of population establishment (Almpanidou et al.,
2016). Understanding the interplay of population dynamics
and dispersal is relevant for selecting population management
options in newly identified populations (N’Guyen et al., 2017).

Personality-Dependent Behavior as a
Model Parameter and Management
Options
Not only the abiotic environment, but also personality-
dependent behaviors can be important at the invasion front,
where local sub-populations consist mostly of bigger/older
asocial individuals (Thorlacius et al., 2015). Recent research has
found that personality traits can inform models of dispersal
such that only individuals showing trait values above a certain
threshold are predicted to disperse (Hirsch et al., 2017). In
combination with the depth thresholds, such an approach can
complement future models to achieve an even higher accuracy
in predicting dispersal.

Until further information is available, our modeled depth trial
results may be used as a preliminary guide to assess management
regimes and prioritize management areas for vulnerable species.
For example, from an applied perspective, the model results raise
the prospect that artificial deep channels may stymie the spread
of the species. Telemetry-based data on the spread of invasive
crayfish in a Central European large lake has also suggested a
spread along the shoreline down toward a certain depth isocline.
This might make it plausible to slow the natural spread by
barriers (Hirsch et al., 2016b). In Lake Tahoe, USA, invasive
bivalves have been successfully controlled by the installation of
gas impermeable benthic barriers (Wittmann et al., 2012). These
examples demonstrate how knowledge of the spatial spread of an
invasive species can directly inform its management.

Practical Model Application for Protecting
the Long-Tailed Duck
In a practical application of this transdisciplinary approach, we
designed a preliminary modeling experiment as an example of
how detailed models developed with stakeholders can inform
risk assessment of invasive species and help to identify priority
areas for management. A key issue that emerged through the
stakeholder interaction is the implication of the goby’s invasion of
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the over-wintering habitat of the western Siberian and northern
European wintering populations of the endangered long-tailed
duck. The populations of the duck may be threatened by the
round goby through exploitative competition for food (Hearn
et al., 2015; Skabeikis and Lesutiene, 2015; BirdLife International
website). In a preliminary trial, we used the calibrated model
to demonstrate how an effectively parameterized model could
be used to assess whether the long-tailed duck overwintering
habitat was at risk of colonization from the round goby in the
future. Again, we did this by running the model over a number
of years and a number of depth thresholds. This produced a
number of scenarios in which the overwintering habitat of the
long-tailed duck was invaded, but the time it took for the invasion
depended greatly on the depth threshold at which the round goby
was able to disperse. Given the current uncertainty surrounding
the results of these initial trials or the risk to long-tailed duck
populations, and the potential influence results from them might
have, we decided that it was premature to publish the results at
this stage. However, whilst only being a preliminary experiment,
this example reinforces generally (and very effectively reinforced
to our co-development team of modelers and stakeholders) the
importance of obtaining accurate spatial data regarding the
presence of the round goby at various depths.

Future Modeling Perspectives
In this study, we made use of an IBM to simulate the spread of
the invasive species. However, it is important to recognize that
alternative approaches exist that could equally well be used in
transdisciplinary work where models are co-developed to inform
understanding and management of invasive species. Indeed, in
future studies one valuable approach will be to utilize more than
one of these modeling approaches in concert. For example, there
can be considerable benefits of jointly developing a stochastic
IBM and a typically deterministic integrodifference model to
estimate rates of spread (e.g., Travis et al., 2011; Santini et al.,
2016). Notably, while until recently integrodifference models
have almost exclusively been used to project spread rates across
homogenous landscapes, recent developments are enabling
rapid simulation of integrodifference equations across spatially
complex landscapes (e.g., Synes et al., 2016; Gilbert et al., 2017).
One major potential advantage of the integrodifference approach
is that the much faster speed of individual simulations will
make inverse fitting of parameters through Bayesian approaches
including approximate Bayesian computationmuchmore readily
achievable. A further important development will be to integrate
environmental niche modeling with the population dynamic
modeling approaches available.

A key challenge is to move beyond the approach most often
taken in what are often termed hybrid species distributionmodels
and to relate the environmental variables directly to the key
demographic traits (e.g., reproduction, survival, and dispersal),
rather than simply using the environmental niche model to
demark suitable and unsuitable environments for a focal species.
However, many such relationships have yet to be established in
detail (see Zurell et al., 2016 for excellent discussion of key issues).
We note here that regardless of the modeling approach taken,
in order to engage with stakeholders effectively, it is extremely

useful to have clear spatially realistic model output that enables
individuals of different backgrounds to relate to the modeling
process and its potential (as called for in Stelzenmüller et al.,
2018). Thus, as we develop more sophisticated and complex
models for predicting and managing spread, we need also to
focus on how we develop effective approaches for presenting the
results of these models (including associated uncertainties) in an
accessible form for those stakeholders with whom we are jointly
developing the models, and for others who are likely to find the
models useful.

CONCLUDING REMARK

We calibrated an IBM for the round goby, using spatial presence
information from the invasion of the Gulf of Gdansk. Stakeholder
involvement with question design provided both a preliminary
answer and future research directions. It is important that
we encourage a culture of publishing work on the process of
co-development of models, such that we can learn from one
another’s successes and failures. This will require more papers,
such as this one, that are published at potentially earlier stages
of model development and before models are necessarily ready
for use to inform management action. In this instance, while
short of being ready to inform management action, the model
has helped to emphasize the requirement for investment in
gathering greater empirical understanding of the depth at which
round goby disperse. In the next part of the co-development
modeling spiral (Parrott, 2017) this will be gathered, and models
will be built using this information, together with higher quality
information on human-mediated dispersal pathways, to improve
our ability to capture Baltic-wide patterns of invasion and to
enable improved forecasts of future distribution under alternative
management options to be developed. In general, we promote the
increased use of models as a heuristic device for horizon scanning
and risk assessment of invasive species and suggest that this utility
may be at least as influential as their more traditional usage for
informing management at the stage when they are well-validated.
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Species Distribution Models (SDMs) have been reported as a useful tool for the risk

assessment and modeling of the pathways of dispersal of freshwater invasive alien

species (IAS). Environmental DNA (eDNA) is a novel tool that can help detect IAS at

their early stage of introduction and additionally improve the data available for a more

efficient management. SDMs rely on presence and absence of the species in the study

area to infer the predictors affecting species distributions. Presence is verified once

a species is detected, but confirmation of absence can be problematic because this

depends both on the detectability of the species and the sampling strategy. eDNA is a

technique that presents higher detectability and accuracy in comparison to conventional

sampling techniques, and can effectively differentiate between presence or absence

of specific species or entire communities by using a barcoding or metabarcoding

approach. However, a number of potential bias can be introduced during (i) sampling,

(ii) amplification, (iii) sequencing, or (iv) through the usage of bioinformatics pipelines.

Therefore, it is important to report and conduct the field and laboratory procedures

in a consistent way, by (i) introducing eDNA independent observations, (ii) amplifying

and sequencing control samples, (iii) achieving quality sequence reads by appropriate

clean-up steps, (iv) controlling primer amplification preferences, (v) introducing PCR-free

sequence capturing, (vi) estimating primer detection capabilities through controlled

experiments and/or (vii) post-hoc introduction of “site occupancy-detection models.”

With eDNAmethodology becoming increasingly routine, its use is strongly recommended

to retrieve species distributional data for SDMs.

Keywords: aquatic freshwater invasive species, barcoding, metabarcoding, environmental DNA, environmental

sampling, independent evaluation

INTRODUCTION

Current policies on invasive alien species (IAS) depend on the availability and quality of data used
for their risk assessment (Groom et al., 2017). Species Distribution Models (SDMs) use available
data of invasive species and are one of the most widely used tools for risk assessment, predicting
species distribution and pathways of dispersal (Jiménez-Valverde et al., 2011).

This methodology relates the distribution data of the IAS (e.g., presence and absence records) in
the study area with a set of independent spatially explicit variables to explain and predict the range
expansion of the species. However, there are limitations on these approaches because of two main
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reasons: (i) confirmed absences are desirable but scarce in
available databases, and (ii) independent data for evaluation
is normally not available. The consideration of absences has
been reported to provide more accurate predictions of the
actual distribution of IAS (Václavík and Meentemeyer, 2009).
Therefore, there is a need for tools that allow the recording of
presence and absence and a faster compilation of independent
data to test spatially explicit models. Efficient spatial monitoring
of invasive species vectors of introduction, further dispersal as
well as initial detection of newly present species, are crucial for
species management as are prevention, control and eradication.

In the recent years, a new environmental molecular tool
has been developed- environmental DNA (eDNA). eDNA refers
to DNA which can be extracted from environmental samples
without separation of specific organisms from the environment
(Taberlet et al., 2012). eDNA contains both cellular as well as
extracellular DNA from all kinds of organisms. It is subject to
high levels of degradation but can be preserved in nature from
few weeks up to hundreds of thousands of years (Thomsen and
Willerslev, 2015). The ability to detect species through eDNA
water samples is relatively novel and has proved as a useful tool
for the detection of aquatic IAS (Dejean et al., 2012; Goldberg
et al., 2013; Nathan et al., 2014). It can be applied for the
detection of a number of specific IAS (barcoding), or detecting
multiple IAS as part of whole communities (metabarcoding).
New revolutionary techniques for eDNA are being developed
on a daily basis with the aim to provide a number of useful
information such as, presence or absence of the species (Ficetola
et al., 2008), density assessments (Moyer et al., 2014), population
dynamics (Sigsgaard et al., 2016), sex (Nichols and Spong,
2017), hybridization process between subspecies, (Uchii et al.,
2016; Goricki et al., 2017), spatial representativeness (Civade
et al., 2016; Bista et al., 2017) and ability to amplify whole
mitochondrial genome (Deiner et al., 2017b). A wide range
of eDNA detection possibilities is currently limited. Knowing
what are the limitations of eDNA methods is key to successful
estimation of species presence (or absence) and estimations of
their biological characteristics.

APPROACH

Nowadays, useful information on IAS within SDMs is in the
detection of presence and absence of the species (Ficetola et al.,
2008). In this article, we discuss the range of possibilities and
limitations with regard to reporting IAS presence or absence
using eDNA in freshwater ecosystems in order to obtain
additional and more accurate distribution data to be used in the
SDMs.

Potential Applications
eDNA has thus far been mainly used in the early detection
and monitoring of invasive species, contributing to the increase
of IAS presence records. The use of eDNA techniques could
facilitate a more effective method for recording IAS absence
than do regular monitoring surveys or possibly may aid in the
compilation of independent data similar to the approach used
for proving (non)successful eradications (Dejean et al., 2012).

Currently, eDNA research is focusing its effort on the species
detection efficiencies based on the competence of sampling,
amplification and sequencing techniques. A detailed review has
been conducted based on the potential for the future application
of eDNA tool by identifying the proportion of positive detections
of IAS within individual research (Table 1). The review proves
how useful the tool can be dealing with IAS detection. A recent
increase in presented eDNA research conducted on invasive
species is only the tip of the iceberg of what can be achieved for
conservation and IAS management. There is however a number
of limitations that should be remembered before applying eDNA
data to retrieve distribution data for SDMs.

Current Limitations
Freshwater ecosystems, lentic, and lotic, provide excellent study
area for defining the wide range of detection possibilities
of eDNA techniques as well as the limitations. Small-scale
freshwater lentic bodies provide an excellent opportunity to study
eDNA characteristics related to degradation, which can affect
successful detectability of species. Recent studies have tried to
underline degradation rates in correlation to abiotic factors,
such as, (i) most effective water stratum for eDNA detection
(Moyer et al., 2014), (ii) pH, UV-B (Strickler et al., 2015),
(iii) effects of temperature on eDNA degradation (Strickler et al.,
2015; Eichmiller et al., 2016), and (iv) temporal effects (Dejean
et al., 2011). Freshwater lotic bodies can provide important
information due to their longitudinal downstream dynamics,
such as, (i) eDNA persistence in the environment (Jerde et al.,
2016; Wilcox et al., 2016), (ii) residence time of eDNA (Jerde
et al., 2016), and (iii) the ecology of eDNA (Barnes and
Turner, 2016). In case of newly introduced IAS, measures of
low abundances present another limitation (Jerde et al., 2011)
which is highly important when discerning between presence
and absence records. Some of the reported examples are applied
to non-invasive species, but the reason why we focus on IAS is
that time, i.e., rapid response, is key to management, so that an
identified IAS can be eradicated/controlled before any negative
ecosystem impact occurs. Since eDNA can assist in more rapid
detection and early response to IAS invasions than traditional
sampling, this technology most greatly benefits identification of
invasive species.

All the limitations of eDNA that are currently being studied
are crucial for IAS assessment. When monitoring, especially in
a new environment, it is fundamental to detect it at extremely
low abundances and report negative or positive presence. False
positives and negatives are essentially relevant for their use
within SDM and cannot be misjudged, whether they are products
of sampling bias or metabarcoding bioinformatics pipeline.
The distribution patterns and biology of the eDNA is another
important factor influencing the accuracy of information which
is relevant for the distribution of IAS within the models. The
accuracy that we can obtain through eDNA highly depends
on the strategies followed during the fieldwork and through
laboratory protocols. In order to more accurately state the
proportion of the positive (or negative) detections, independent
observations (Steel et al., 2013) would need to become an
essential part of eDNA studies to overcome the bias of false
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positives or negatives. An increased eDNA sampling effort based
on a temporary scale would provide a more accurate proportion
of positive (negative) detections and should be replaced by
research proposed on a single sampling events (Simmons et al.,
2015; Fujiwara et al., 2016; Hänfling et al., 2016). Independent
observations would need to become a necessary procedure
especially when dealing with estimations of newly introduced
species (Jerde et al., 2011) or dealing with the estimations of
successful eradication measures (Dunker et al., 2016).

To avoid bias due to inconsistent use of eDNA tools a
minimum information based on field and laboratory procedures
should always be reported and presented in a consistent manner
as presented by (Goldberg et al., 2016). Pioneers in eDNA
research (Ficetola et al., 2016) highly recommend following
general requirements such as, precautionary approach to avoid
contamination, respecting a general practice of obtaining control
samples, extraction blanks, as well as incorporating PCR positive
and negative controls. In cases of individual species assessment,
parallel mesocom experiments are highly recommended in order
to be able to estimate the limitations of detectability for each
individual primer set. Another method to assess limitations of
primer detections is assessing detectability of the species “in
time” after its removal from the controlled environment. When
working on multiple species assessment using a metabarcoding
approach, it is recommended, to sequence the control samples,
compare the sequencing control outputs with the actual samples,
and if none of the last achieve high quality sequence reads by
appropriate clean up steps; removal of singletons, chimeras, as
well as including a record of removed sequences (Deiner et al.,
2017a). Bias due to universal primer preferential amplifications
of species can alter the relative abundance of individual species
eDNA (Deiner et al., 2017a). A PCR-free method, namely
sequence capturing offers promising solutions in order to avoid
amplification bias (Shokralla et al., 2016).

In terms of IAS certainty of existence in a non-native
environment, false- positive and false- negative are crucial points
for management and environmental policies (Moyer et al., 2014;
Lahoz-Monfort et al., 2016). Even low rate false- positives
pose a bias toward species specific occupancy (Lahoz-Monfort
et al., 2016). Errors produced during PCR and sequencing are
main source of bias for false- positives whereas false- negatives
normally appear due to bias during sampling. Sampling and PCR
replicates are key to avoid obtaining false presence and absence
and should be routinely corrected with the appropriate statistical
tools referred to “site occupancy-detection modeling” (SODM)
(Lahoz-Monfort et al., 2016). The SODM model shows precise
estimation of the probability for the site occupancy, including
overall probability of detection at sites where the species is
present. The model provides unbiased estimation of occupancy
when properly applied using large amount of initial data, even
with a smaller amount of replications. Researchers (Ficetola
et al., 2016) adopting SODM as part of their eDNA pipeline,
give advice to avoid referring to single occurrences within one
sample as reliable ones. Precautionary measures should be taken
up before coming to conclusions that non-detection of species
corresponds to species absence, and in converse that detections
directly relies to species presence (Roussel et al., 2015) simply

due to eDNA characteristics, such as potential longevity. In order
to overcome the frontiers of eDNA techniques and to make it
generally applicable within the SDM the above consistency is
pivotal within the immense growing body of eDNA literature.

Combination of eDNA and SDMs
The method appears to be highly efficient on bony fish and
amphibians with successful spatial representativeness in lotic
and lentic systems (Civade et al., 2016). It has been shown that
the eDNA samples are able to overcome spatial autocorrelation
biases (Deiner et al., 2016) which are normally a result of
conventional biodiversity assessments. eDNA seasonal diversity
at the ecosystem scales (Bista et al., 2017) are key for more
holistic understanding of the successful invasions of species
within SDMs.

There are many possibilities of using eDNA for SDMs but
currently one of the most important novel uses is a more
precise sampling of absences which is sometimes difficult or
impossible to obtain (Nezer et al., 2017). As commented,
the information regarding species existence in certain system
measured through eDNA can be susceptible to certain bias,
due to eDNA characteristics. However, there exist approaches
within the spatial modeling that might be applied to deal with
the uncertainties from eDNA results. For instance, Dudík et al.
(2006) presented the di-bias approach, which gives a higher
weight in the models to those localities where presences or
absences aremore reliable. In the sameway, those localities where
eDNA is less reliable can receive a lower weight in the models,
such weighting might correspond with the reported detection
rates (Table 1). Therefore, there are possibilities from the SDMs
to deal with the potential bias arising from using eDNA as
a sampling technique which encourage its use despite current
relative limitations. The ability to cope with the limitations and
strength of the combination of these distinct research fields
will benefit from the collaboration between molecular ecologists
and modelers contributing to the evolution of two scientific
disciplines (Coccia and Wang, 2016). Other disciplines apart
from invasion ecology (e.g., biogeography or spatial ecology)
might also benefit from future development of molecular ecology
tools as a sampling technique. Thus, we highly recommend
involving eDNA analysis into spatial models to predict future
invasions and many other ecological processes. For example,
targeting IAS hot spots and vectors of introduction, is a perfect
starting point for detection of IAS and estimation of their future
dispersal within the SDMs. Spatial representativeness of IAS
within the SDMs is key to understanding the ecology behind their
successful dispersal and the management of invasions.

CONCLUSION

Collaboration between modelers and molecular ecologists has
a high potential to overcome the flaws of spatial distribution
patterns due to difficulties or inconsistency in the information
obtained through conventional surveys. The strength of the
information that eDNA can provide is crucial as it fulfills the
previously unidentified absences within the SDMs. The eDNA
method is currently rapidly evolving and in the near future
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a mass of information related to IAS presence, absence as
well as other species specific biological characteristic can be
obtained and applied to, for example, mechanistic SDMs. Thus,
its use is highly recommended with the aim of obtaining species
distribution data for spatial models combining two scientific
fields, useful as a helpful tool for IAS management and relevant
policy requirements.
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A commentary on

Aedes albopictus and Aedes japonicus—two invasive mosquito species with different

temperature niches in Europe

by Cunze, S., Koch, L. K., Kochmann, J., and Klimpel, S. Parasit. Vectors (2016). 9:573.
doi: 10.1186/s13071-016-1853-2

INTRODUCTION

In this interesting and original study, the authors present an ensemble Machine Learning (ML)
model for the prediction of the habitats’ suitability, which is affected by the complex interactions
between living conditions and survival-spreading climate factors. The research focuses in two of
the most dangerous invasive mosquito species in Europe with the requirements’ identification in
temperature and rainfall conditions. Though it is an interesting approach, the ensemble ML model
is not presented and discussed in sufficient detail and thus its performance and value as a tool for
modeling the distribution of invasive species cannot be adequately evaluated.

METHODOLOGY USED

The authors use an Ensemble Approach (ENAP) based on 10 timelyML algorithms, aiming to draw
up the habitats’ maps for both species of mosquitoes. Ensemble methods are meta-algorithms that
combine several techniques into a unique predictive model to decrease variance. For example, in
Bagging different training data subsets are randomly drawn—with replacement—from the entire
training dataset, to train a different classifier. In Boosting, resampling is strategically geared
to provide the most informative training data for each consecutive classifier, or to improve
predictions. Stacking, involves training to combine the predictions of several other learning
algorithms (Zhou, 2012).

Unlike a statistical ensemble in statistical mechanics which is usually infinite, a ML ensemble
consists of only a concrete finite set of alternative models, but typically allows for much more
flexible structures to exist among those alternatives. Perhaps one of the earliest works on ensemble
systems is the paper by Dasarathy and Sheela (1979). They first introduced an ENAP for
partitioning the feature space, using two or more classifiers, in a divide-and-conquer fashion. Over
a decade later, Hansen and Salamon (1990) showed the variance reduction property of an ENAP.
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They managed to improve the generalization performance of an
ANN by using an ensemble of similarly configured ANN. But
it was Schapire’s work that has put the ENAP at the center of
ML research, as he has proven that a strong classifier can be
generated by combining weak classifiers (Schapire, 1990). Finally,
Buisson et al. suggested that attention should be paid to the
use of predictions ensembles resulting from the application of
several statistical methods. Forecasted impacts should always be
provided with an assessment of their uncertainty (Buisson et al.,
2010).

Unfortunately, the authors of this interesting paper, do not
offer a deep description of the proposed ENAP and it is
not clear if their approach can cover the main points of the
ensemble techniques. For example, the proposed ENAP convert
species’ probability of occurrence into binary presence-absence
data using a predefined threshold. Assessing models based on
presence only data, it is difficult to learn the overall species
occurrence probability, based on false or misleading information
or unjustified simplifying assumptions, because there is typically
no validation data with true presences and absences (Hastie and
Fithian, 2013). The ENAP that was proposed cannot surmount
this problem, it only makes it more hidden.

ALIEN SPECIES DISTRIBUTION
MODELING AND MACHINE LEARNING
ENSEMBLES MODELS

Current practices in Alien Species Distribution Modeling
(ASDM) algorithms (Lorena et al., 2011; Duan et al., 2014;
Shabani et al., 2016), include Profile Methods (BIOCLIM, ENFA)
(Lorena et al., 2011; Duan et al., 2014; Shabani et al., 2016),
Regression-based techniques (GLM, MARS) (Lorena et al.,
2011; Duan et al., 2014; Shabani et al., 2016), ML techniques
(MAXENT, ANN, SVM) (Lorena et al., 2011; Duan et al., 2014;
Shabani et al., 2016).

A widely used and effective method in ASDM involves
creating ML ensembles’ models (Duan et al., 2014). The
two most important advantages of ENAP focus on the fact
that they offer better prediction and more stable and robust
models, as the overall behavior of a multiple model is less
noisy than a corresponding single one (Kuncheva, 2004;
Zhou, 2012). For example, in Zhang and Zhang (2012) the
authors propose an effective ENAP to assess the impacts
of predictor variables and ASDM. In Daliakopoulos et al.
(2017) the Random Forest EANP has proven that it can
provide a better understanding of facilitating and limiting
factors of alien species presence, both for research and
management purposes. Finally, Lauzeral et al. (2012) proposes
an iterative ENAP to ensure noise absence and hence to
improve the predictive reliability of ensemblemodeling of species
distributions.

Some of the most important points related to the operation
and use of the ENAP that should be included and discussed
thoroughly by the authors are presented below:

1. The ensemble size of the proposed model. The number of
classifiers included in the creation of an ensemble model has

a large impact on the accuracy of the prediction (Kuncheva,
2004; Zhou, 2012). Regarding the proposed ENAP, a 10 state-
of-the-art algorithms used, nevertheless without thorough
analysis and explanation. On the other hand, their theoretical
framework of Ensemble Learning shows that using the same
number of independent component classifiers as class labels
gives the highest accuracy (Hamed and Can, 2016).

2. A detailed and complete description and justification of the
classifiers selection. The choice of the proper classifiers (e.g.,
ANN) to be included in an ENAP (Kuncheva, 2004; Zhou,
2012) should be based on the selection of the implementation
mode and on the parameters’ settings which can lead to
different decision boundaries, even if all other parameters
remain constant (Kuncheva, 2004; Zhou, 2012). It is a fact
that there is no point or advantage to combining a group
of models that are identical and generalize in the same way
(López et al., 2007; Bougoudis et al., 2014). In the proposed
ENAP, both GLM and MAXENT were used, and there is
no clear explanation on how the authors have chosen this
specific architecture. As shown by Renner and Warton (2013)
MAXENT is equivalent to a GLM with a Poisson error
structure and differing only in the intercept term, which
is scale-dependent in MAXENT. One cannot argue that
MAXENT has different predictive performance than a GLM
when they are equivalent.

3. A clear and sufficiently detailed discussion-explanation on the
determination and handling of the weights employed by the
distinct ensemble models (Kuncheva, 2004; Zhou, 2012). The
weight vector is a very important parameter in the process of
training an ENAP, as it is used in the determination of the
classifiers’ performance and of the classification confidence
level (Kuncheva, 2004; Zhou, 2012). The authors do not
include a detailed description of the weights employed by the
distinct ensemble models, with no attempt to tie them to the
problem at hand.

4. Clear description of the process that has determined the
optimal model, its potential hybrid nature and justification of
the proposed ensemble’s architecture reliability. This can be
done using inclusion of diagrams or algorithms. The variance
of prediction results in a ML model is one of the most
important measures for assessing the credibility of themethod
(Kuncheva, 2004; Zhou, 2012). The work by Yackulic et al.
(2013) shows that MAXENT model outputs (i.e., maps) are
presented completely casually and without providing readers
with any means to critically examine modeled relationships.
This fact may be hidden or masked within proposed ENAP,
but the problem remains.

DISCUSSION AND CONCLUSIONS

It is worth noting that in general an ENAP can lead to much
better prediction results, while offering generalization. This is
one of the key issues in the field of ML, as it can reduce bias
and variance and it has the potential to eliminate overfitting
(Kuncheva, 2004; Zhou, 2012). Moreover, it implements robust
predictive models capable of responding to high complexity
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problems such as those of spreading invasive species (Demertzis
and Iliadis, 2015, 2017). However, the development of these
models should not be done in a black box mode research
and it should be accompanied by a set of in-depth analysis
regarding key training and operation decision points, thus
allowing critical readers to fully and thoroughly evaluate
the proposed methodology and to promote research in the
broader scope. Finally, there are cases where wide variety of
comparatively model-free forecasting methods outperforms the
correct mechanistic data-driven model. However, according to

Moustakas (2017) “if one simply relies on data-driven science,
several components of scientific methods will be made poorer.”
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Uncertainty can be considered as an attribute of (or reciprocally lack of) information (Zadeh,
2005). Nevertheless, this vital attribute is usually missing from marine invasion science studies
(Figure 1), despite the fact that methods such as Monte Carlo simulations, sensitivity analysis,
Bayesian uncertainty assessment, and Latin hypercube sampling appear more frequently in the
ecological literature (e.g., Harwood and Stokes, 2003; Moustakas and Evans, 2015; Aiello-Lammens
and Akçakaya, 2017). Most studies of marine invasions are plagued by uncertainties, which in most
cases are totally ignored or if acknowledged are not properly addressed or quantified. Herein we
provide some examples of uncertainties in invasion science, aiming to highlight the existing gaps
and stress the need for the development and implementation of frameworks, methods and tools
that will assist invasion biologists to adequately tackle uncertainty.

UNCERTAINTY IN ALIEN STATUS

Although there are various definitions of alien species (Falk-Petersen et al., 2006), the most widely
accepted one is that of species, which, by human agency, have managed to overcome physical
barriers and colonize new regions beyond their natural range. In a rapidly changing world, it is
often difficult to attribute a new arrival to a region to human activities. Species’ natural ranges
are inherently dynamic, shaped by natural variability, and thus sometimes it is impossible to
determine the relative importance of natural and anthropogenic factors in distributional changes.
Furthermore, assessing the alien or native status of rare species or of very old invasions is often
impossible due to the lack of historical data. For example, shipping has been acting as an invasion
pathway for many millennia making it difficult to evaluate the biogeographic status of species
introduced to new marine regions hundreds or thousands years ago, some of which may have
gradually become cosmopolitan. The term “cryptogenic” has been used by invasion biologists
(Carlton, 1996) to indicate species that could be either native or alien but for which uncertainty
is high. Assessing the native/alien status of species is important both for ecological science and
management, hence a standardized framework with robust definitions, transparent criteria for
classification and proper uncertainty assessment is urgently needed.

UNCERTAINTY IN ALIEN SPECIES INVENTORIES

National or regional inventories of alien species are a valuable tool for both invasion science and
management, especially for prioritizing pathways, developing prevention or control strategies,
and assessing (through trend analyses) of the effectiveness of management measures. However,
alien species inventories suffer from a number of uncertainties e.g. in species identification
(taxonomic uncertainty), incomprehensive search of data sources, low spatial resolution, poor
documentation of data and knowledge, and inadequate native range information (McGeoch et al.,
2012). This has resulted in regular revisions of such inventories, excluding species previously
included (e.g., Zenetos et al., 2017), and even in scientific disputes among research groups
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FIGURE 1 | Time series of publications registered in Scopus, including in the

title or abstract or keywords at least one the words “biological invasions” or

“non-indigenous species” or “alien species” or “invasive species,” and at least

one of the words “marine” or “sea” (dark blue markers). If in addition one of the

words “uncertainty” or “confidence” is included (light blue markers) the number

of publications drops to 2% of the initial number (91/4415).

(e.g., Galil, 2009, 2012; Zenetos, 2010; Zenetos et al., 2017). To
avoid misuse of inventories, misunderstandings, mistrust and
unnecessary conflicts, proper account of the level of confidence
and inherent uncertainties should be included in all species
inventories. The uncertainty in inventories is likely to increase
with the use of citizen science (ElQadi et al., 2017) as well as
withmining (geo-referenced) social media (Daume, 2016).While
these techniques are likely to increase the total amount of data
availability, the inclusion of non-experts in the process of data
collection as well as the automated way of classification is likely
to increase uncertainty as well as to introduce noise and spurious
correlations in the dataset (Moustakas, 2017). In addition, as
more datasets become publicly accessible it is likely that datasets
collected under different protocols or for different purposes may
be merged together and thus introduce additive uncertainties
(Evans and Moustakas, 2016).

UNCERTAINTY IN PATHWAY ASSESSMENT

Assessment of the pathways of introduction of alien species (i.e.,
any means that allows the entry or spread of an alien species
into a new region) is fundamental to biological invasion risk
assessments, management of invasive species, monitoring and
surveillance of new introductions (Essl et al., 2015). However,
assigning each marine alien introduction to a specific pathway
is subject to substantial uncertainty (Zenetos et al., 2012). Apart
from intentional introductions, in most other cases more than
one possible pathway can be inferred based on the human
activities in or near the locality of first record. However, such
inferences are largely based on expert judgement and suffer
from lack of evidence. For example, the invasive crab Percnon
gibbesi was recorded for the first time in the Mediterranean
Sea in 1999 in many different locations, and its introduction
has been attributed to a number of different possible pathways
by different authors: shipping, aquarium trade or larval drift
by the Atlantic surface current entering the Mediterranean (see

(Katsanevakis et al., 2011) and references therein); in the latter
case the species should not be considered as an alien, because
its introduction was not mediated by humans but happened
through natural processes. Many other possible pathways that
are commonly neglected or understudied, e.g., aquarium trade
(Padilla and Williams, 2004; Strecker et al., 2011) or marine
litter (Barnes, 2002), could have had much higher importance
than currently acknowledged. It is vital that such uncertainties
in pathway assessments are transparent by providing an estimate
of the related confidence and highlight possibilities for alternative
pathways (Zenetos et al., 2012; Essl et al., 2015).

UNCERTAINTY IN IMPACT AND RISK
ASSESSMENTS

Impact assessments depend on uncertain data such as the actual
distribution of alien species, the vulnerability of ecosystems
and their services, heterogeneity of biophysical processes,
and spatiotemporal variability in the magnitude of impacts.
Assessments of cumulative impacts of many invasive species to
marine ecosystems suffer from additional uncertainties related
to insufficient data, sensitivity weights, type of responses of
ecosystems to invasive species, type of multiple species effects
(additive or with synergistic or antagonistic interactions), and
resolution of spatial data (Katsanevakis et al., 2016). Such
uncertainties can substantially affect impact assessments and
jeopardize their quality and consequently their value for
management. Important gaps exist in properly addressing
uncertainty in impact assessments, which, if at all, are
restricted in qualitative accounts based largely on expert
judgement (Blackburn et al., 2014). The International Pest Risk
Mapping Workgroup has identified “improving representations
of uncertainty” among the most important actions to improve
pest risk assessment procedures (Venette et al., 2010). Research
effort is needed to further develop proper tools that will allow
addressing uncertainty in impact and risk assessments in an
adequate and transparent way.

UNCERTAINTY IN FIELD SURVEYS

Monitoring of marine aliens species is based on field surveys,
commonly conducted by visual surveys through SCUBA diving
or the use of sampling and fishing gears. One important source of
error in field surveys of marine species is imperfect detectability
or imperfect catchability, i.e., the fact that not all individuals or all
target species in a study area can be detected by observers (divers)
or caught by sampling devices or fishing gears (Katsanevakis
et al., 2012). Although many methods have been developed
that properly account for imperfect detectability/catchability,
such as distance sampling, mark-recapture, repeated presence-
absence surveys for occupancy estimation (Issaris et al., 2012;
Katsanevakis et al., 2012), the number of marine field surveys
that apply such methods remains very limited. Failure to
properly account for detectability leads to underestimation
of the population state variable (e.g., abundance, population
density, or occupancy), or even total failure to detect an alien

Frontiers in Marine Science | www.frontiersin.org February 2018 | Volume 5 | Article 38  | 94

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Katsanevakis and Moustakas Uncertainty in Marine Invasion Science

species and thus underestimation of alien species richness in
community studies. This is further intensified by the inability
to properly identify alien species in situ in visual surveys.
To improve the performance of field surveys and reduce
uncertainties it is imperative to select an adequate method
properly accounting for detectability, and apply field protocols
and tools (sampling devices, photos, video) that will reduce
identification uncertainties.

UNCERTAINTY IN DISTRIBUTION
MODELING

Species distribution models (SDM) have been extensively used
to predict the potential present or future distribution of marine
alien species, based on a limited set of observations and a set
of environmental variables that presumably describe their niches
(Peterson, 2003). Uncertainty arising due to the appliedmodeling
technique, spatial resolutions, scales, data availability, climate
change and subsequent biological responses, model selection and
evaluation methods can be substantially high (Beale and Lennon,
2012). SDMs are based in the (silent) presupposition that there
exists information in the species distribution that can be used
for estimating the species’ niche, though there is no certainty
that all niche axes have limits within the spatial extent of the
dataset (Beale and Lennon, 2012). In addition, a critical form of
uncertainty in SDMs is identifying the dimensions of explanatory
variables (Beale et al., 2010); omitting informative variables
produces poor model predictions while including uninformative
variables may result in correlations with informative variables
and thus result in reduced parameter estimation accuracy (Beale
et al., 2010). Improved assessment of errors and uncertainties is

among the prevailing challenges facing SDM research (Guisan
and Thuiller, 2005).

CONCLUDING REMARKS

Quantifying or at least acknowledging uncertainty is an
elementary exercise in science, as without uncertainty assessment
it is hard to envisage future improvements (see e.g., Benali et al.,
2017). In addition, biological invasions and their impacts is a
very timely topic receiving high public attention. If scientists are
perceived by the public either to overstate their findings in order
to receive high visibility or to downplay the uncertainty of their
findings, society is likely to lose confidence in the outputs of
invasion science.

It is evident from the above non-exhaustive list that invasion
science is challenged by various sources of uncertainty. Such
uncertainties, if ignored, render many types of analyses and
results doubtful and of limited practical use to policy makers
and marine managers. To further advance invasion science
in the marine environment we need (1) to acknowledge the
need for appropriate assessments of uncertainty in all aspects
of biological invasions research, (2) put research effort in
improving/developing methods and tools for uncertainty
analyses, (3) report uncertainties and their effects on
research outcomes in all scientific outputs and technical
reports.
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